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queues or from the edge-cache.

D
(u)
i,j,βj ,νj

Download time fo chunk u ∈ {1, . . . , Li} of file i from node j,

from βj and νj queues.

R
(e)
j,νj

Service time of the video files at the parallel streams PS
(e,j)
(νj)

B
(d)
j,βj

MGF of the Service time of all video files from the parallel stream

PS
(d,j)
(βj)

ρ
(e)
j,νj

load intensity at the parallel stream PS
(e,j)
(νj)

.

ρ
(d)
j,βj

load intensity at the parallel stream PS
(d,j)
(βj)

.

ρ
(d)
j,βj

load intensity at the parallel stream PS
(d,j)
(βj)

.
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VSOC Video streaming over cloud

CDN Content delivery (or distribution) network

QoE Quality of experience

OTT Over-the-top

PSs Parallel streams

IP Internet protocol

vCDN virtual CDN

VoD Vedio on demand

FOTA Firmware-over-the-air

LRU Least recently used

FCDN fully qualified domain name (FQDN).

iDNS domain name service (called iDNS)

SDTP Stall duration tail probability

Pofd power-of-d

JSQ join shortest queue

LL Least Load

NOVA iNner cOnVex Approximation.

MDS Maximum Distance Separable

VM Virtual machine

FIFO First-in-first-out

RP-OA Random Placement, Optimized Access

RP-PEA Random Placement, Projected Equal Access

RP-PEA Random Placement, Projected Equal Access
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ABSTRACT

Al-Abbasi, Abubakr O. PhD, Purdue University, May 2020. A Quantitative Frame-
work for CDN-based Over-the-top Video Streaming Systems . Major Professor:
Vaneet Aggarwal.

The demand for global video has been burgeoning across industries. With the

expansion and improvement of video-streaming services, cloud-based video is evolving

into a necessary feature of any successful business for reaching internal and external

audiences. Over-the-top (OTT) video streaming, e.g., Netflix and YouTube, has been

dominating the global IP traffic in recent years. More than 50% of OTT video traffic

are now delivered through content distribution networks (CDNs).

Even though multiple solutions have been proposed for improving congestion in

the CDN system, managing the ever-increasing traffic requires a fundamental under-

standing of the system and the different design flexibilities (control knobs) to make

the best use of the hardware limitations. In Addition, there is no analytical under-

standing for the key quality of experience (QoE) attributes (stall duration, average

quality, etc.) for video streaming when transmitted using CDN-based multi-tier in-

frastructure, which is the focus of this thesis. The key contribution of this thesis is to

provide a white-box analytical understanding of the key QoE attributes of the end-

user in cloud storage systems, which can be used to systematically address the choppy

user experience and have optimized system designs. The first key design involves the

scheduling strategy, that chooses the subset of CDN servers to obtain the content.

The second key design involves the quality of each video chunk. The third key design

involves deciding which contents to cache at the edge routers and which content needs

to be stored at the CDN. Towards solving these challenges, this dissertation is divided

into three parts. Part 1 considers video streaming over distributed systems where the
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video segments are encoded using an erasure code for better reliability. Part 2 looks

at the problem of optimizing the tradeoff between quality and stall of the streamed

videos. In Part 3, we consider caching partial contents of the videos at the CDN as

well as at the edge-routers to further optimize video streaming services.

We present a model for describing a today’s representative multi-tier system ar-

chitecture for video streaming applications, typically composed of a centralized origin

server, several CDN sites and edge-caches. Our model comprehensively considers the

following factors: limited caching spaces at the CDN sites and edge-routers, allocation

of CDN for a video request, choice of different ports from the CDN, and the central

storage and bandwidth allocation. With this model, we optimize different quality

of experience (QoE) measures and present novel, yet efficient, algorithms to solve

the formulated optimization problems. Our extensive simulation results demonstrate

that the proposed algorithms significantly outperform the state-of-the-art strategies.

We take one step further and implement a small-scale video streaming system in a

real cloud environment, managed by Openstack, and validate our results
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1. INTRODUCTION

1.1 Motivation

The demand of video streaming services have been skyrocketing over these years,

with the global video streaming market expected to grow annually at a rate of 18.3%

[1]. With the proliferation and advancement of video-streaming services, cloud-based

video has become an imperative feature of any successful business. This can also be

seen as IBM estimates cloud-based video will be a $105 billion market opportunity

by 2019 [2].

Many industry observers believe that Content Delivery Networks (CDNs), which

play a critical role in the delivery of high-quality video, provide an excellent use case

for deployment within the evolving frameworks [8]. Increased popularity of OTT

(over-the-top) content from Hulu, Netflix, Amazon, Youtube, and others, increasing

premium resolution offerings (HD, 8K, 360, VR), and more connected homes and

mobile devices have been playing a significant role in the consumption of online video

thus helping drive the shift to cloud environments. This proposal focuses on efficient

control and end-to-end management of these OTT video streaming systems.

In cloud storage systems, erasure coding has seen itself quickly emerged as a

promising technique to reduce the storage cost for a given reliability as compared to

the replicated systems [3, 4]. It has been widely adopted in modern storage systems

by companies like Facebook [5], Microsoft [6], and Google [7]. We further note that

replication is a special case of erasure coding. Thus, the proposed research using

erasure-coded content on the servers can also be used when the content is replicated

on the servers.
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Fig. 1.1.: An illustration of our system model for video content delivery, consisting

of a datacenter, four cache servers (m = 4), and 2 edge routers. dj and Fj parallel

connections are assumed between datacenter and cache server j, and datacenter and

edge router, respectively.

In cloud-based-video, the users are connected to an edge router, which fetch the

contents from the distributed storage servers (as depicted in Fig. 1.11). Multiple

parallel streams (PSs) between a server and the edge router are considered, which

provides the ability to get multiple streams simultaneously. Unlike the case of file

download, the later video-chunks do not have to be downloaded as fast as possible to

1Detailed explaination for the system model and vCDN will be provided later.
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improve the QoE and thus multiple parallel streams help achieve better QoE. This is

because later chunks can be downloaded while earlier chunks are streamed. The key

differences in streaming of video content as compared to the file download include

1. video can be streamed at different quality which gives an additional choice of

the quality of each streamed video,

2. different video-chunks can be obtained from different set of servers,

3. stall duration accounts for time of delivery of each video-chunk rather than just

the last video-chunk, and

4. caching policy has to make decisions for every video segment rather than entire

video file, since video files are generally larger in size as compared to other files.

Thus, the choice among different qualities, caching, and server selection for each

video segment makes the problem challenging.

This thesis seeks to improve the QoE of the clients, key attributes of which include

(i) Mean stall duration, (ii) Tail probability of stall duration, (iii) Average quality of

streamed videos, and (iv) Cache miss (resp. hit) rate of edge-caches.

OTT video streaming, such as Netflix and YouTube, has been dominating the

global IP traffic in recent years. It is shown in [8] that video streaming applications in

North America now represents 62% of the Internet traffic, and this figure will continue

to grow due to the introduction of even higher resolution video formats such as 4K on

the horizon. With the growing popularity of video services, increased congestion and

latency related to retrieving content from remote datacenters can lead to degraded

end customer experience. Service and content providers often seek to mitigate such

performance issues by employing caching at the network edge and by pushing content

closer to their customers using content distribution networks (CDNs). More than 50%

of over-the-top video traffic are now delivered through CDNs [9].

Caching of video content has to address a number of crucial challenges that differ

from caching of web objects, see for instance [10] and the references therein. First,
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video streaming services such as Netflix [11] often adopt a proactive caching strategy,

which conciously pushes video files into local caches during off-peak hours, while

cache content is updated according to changes in predicted demand. Due to the

correlation in user preferences within different regions [10], it calls for new solutions

that take into account both regional and global popularity of video files, for jointly

optimizing cache content and performance. Second, video files are significantly larger

in size than web objects. In order to minimize congestion and latency, caching of

video files must be optimized together with network resource allocation and request

scheduling, which however, is currently under-explored. Finally, while recent work

have considered video-streaming over distributed storage systems [10], they normally

focus on network performance metrics similar to those considered by web object

caching (e.g., packet delay and cache hit rate), rather than QoE metrics that are

more relevant to end user experience in over-the-top video streaming.

This thesis considers video streaming when the content is placed on cloud servers,

where coding is used. We consider two different coding techniques: erasure and

repetition coding. The key QoE metric for video streaming is the duration of stalls at

the clients. This work gives bounds on the stall durations, and uses that to propose

an optimized streaming service that minimizes average QoE for the clients.

1.2 Target System

Our work is motivated by the architecture of a production system with a Virtu-

alized Content Distribution Network (vCDN), as depicted in Fig. 1.1. Such services,

for instance, include video-on-demand (VoD), live linear streaming services (also re-

ferred to as over-the-top video streaming services), firmware over the air (FOTA)

Android updates to mobile devices, etc. The main role of this CDN infrastructure

is not only to provide users with lower response time and higher bandwidth, but

also to distribute the load (especially during peak time) across many edge locations.

Consequently, the core backbone network will have reduced network load and better



5

response time. The origin server has original data and CDN sites have only part of

those data. Each CDN site is composed of multiple cache servers each of which is

typically implemented as a VM backed by multiple directly attached solid state drives

(SSDs) for higher throughput. The cache servers store video segments and a typical

duration of each segment covers 5− 11 seconds of playback time.

Further, the typical vCDN architecture includes an additional cache at the edge,

called edge cache. This edge cache allows for saving some recently accessed videos.

This cache can also help multicasting content to another user connected to the same

edge router. One of the typical policy that is used in edge cache is based on least-

recently-used (LRU) caching policy [12]. In this work, we will consider a modification

of this strategy to weigh the eviction policy of contents dependent on their weight,

placement, and access rates and thus can be optimized.

When a client such as VoD/LiveTV app requests a certain content, it goes through

multiple steps. First, it sees whether the content is in edge cache. If so, the content

is directly accessed from the edge cache. Then, it sees whether the content has been

requested by someone connected to the same edge router and is being sent to them.

In this case, the content already received at the edge router is sent to the user and

the remaining content is passed as received (equivalent to a multicast stream setup).

If the content cannot be obtained in the two steps, the client then contacts CDN

manager, choose the best CDN service to use and retrieve a fully qualified domain

name (FQDN). Fourth, with the acquired FQDN, it gets a cache server’s IP address

from a content routing service (called iDNS). Then we use the IP address to connect

to one of the cache servers. The cache server will directly serve the incoming request

if it has data in its local storage (cache-hit). If the requested content is not on the

cache server (i.e., cache-miss), the cache server will fetch the content from the origin

server and then serve the client.

In this thesis, we will present a generic mathematical model applicable to not

only our considered system but also other video streaming systems that implement

CDN-like two-tier caching structure.
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1.3 Thesis Contributions

The key contribution of this thesis is to provide a white-box analytical under-

standing of the key QoE attributes of the end-user in cloud storage systems, which

can be used to systematically address the choppy user experience and have optimized

system designs. The first key design involves the scheduling strategy, that chooses

the subset of CDN servers to obtain the content. The second key design involves the

quality of each video chunk. The third key design involves deciding which contents to

cache at the edge routers and which content needs to be stored at the CDN. Towards

solving these challenges, the thesis is divided into four parts.

Part 1 considers video streaming over distributed systems where the video seg-

ments are encoded using an erasure code for better reliability thus being the first work

to our best knowledge that considers video streaming over erasure-coded distributed

cloud systems. The download time of each coded chunk of each video segment is char-

acterized and ordered statistics over the choice of the erasure-coded chunks is used

to obtain the playback time of different video segments. Using the playback times,

bounds on the moment generating function on the stall duration is used to bound

the mean stall duration. Moment generating function based bounds on the ordered

statistics are also used to bound the stall duration tail probability which determines

the probability that the stall time is greater than a pre-defined number. These two

metrics, mean stall duration and the stall duration tail probability, are important

QoE measures for the end users. Based on these metrics, we formulate an optimiza-

tion problem to jointly minimize the convex combination of both the QoE metrics

averaged over all requests over the placement and access of the video content. The

non-convex problem is solved using an efficient iterative algorithm. Numerical results

show significant improvement in QoE metrics for cloud-based video as compared to

the considered baselines.

Part 2 looks at the problem of optimizing the quality of streamed video. Given

multiple parallel streams between each server and the edge router, we determine, for
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each client request, the subset of servers to stream the video, as well as one of the

parallel streams from each chosen server. In order to have this scheduling, we propose

a two-stage probabilistic scheduling. The selection of video quality is also chosen with

a certain probability distribution, that is optimized in our algorithm. With these pa-

rameters, the playback time of video segments is determined by characterizing the

download time of each coded chunk for each video segment. Using the playback times,

a bound on the moment generating function of the stall duration is used to bound

the mean stall duration. Based on this, we formulate an optimization problem to

jointly optimize the convex combination of mean stall duration and average video

quality for all requests, where the two-stage probabilistic scheduling, video quality

selection, bandwidth split among parallel streams, and auxiliary bound parameters

can be chosen. This non-convex problem is solved using an efficient iterative algo-

rithm. Based on the offline version of our proposed algorithm, an online policy is

developed where servers selection, quality, bandwidth split, and parallel streams are

selected in an online manner. Experimental results show significant improvement in

QoE metrics for cloud-based video as compared to the considered baselines.

Different from the previous two parts, in Part 3 we present a model for describ-

ing a today’s representative system architecture for video streaming applications,

typically composed of a centralized origin server and several CDN sites. Our model

comprehensively considers the following factors: limited caching spaces at the CDN

sites, allocation of CDN for a video request, choice of different ports from the CDN,

and the central storage and bandwidth allocation. With the model, we focus on min-

imizing a performance metric, stall duration tail probability (SDTP), and present

a novel, yet efficient, algorithm to solve the formulated optimization problem. The

theoretical bounds with respect to the SDTP metric are also analyzed and presented.

Our extensive simulation results demonstrate that the proposed algorithms can sig-

nificantly improve the SDTP metric, compared to the state-of-the-art strategies. We

take one step further and implement a small-scale video streaming systems in a real

cloud environment and validate our results.
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Since streaming services can include multiple caching tiers, at the distributed

servers and the edge routers, efficient content management at these locations improves

the QoE of the end users. In this part of the thesis, besides the several CDN caches,

edge-caches are placed close to the end users to further improve the QoE of users.

The theoretical bounds with respect to the SDTP metric are analyzed and presented.

The implementation on a virtualized cloud system manged by Openstack demonstrate

that the proposed algorithms can significantly improve the SDTP metric, compared

to the baseline strategies.

1.3.1 Thesis Outcomes and Publications

The work throughout my PhD study has resulted in the following publications:

• Abubakr Alabbasi, Vaneet Aggarwal, Tian Lan, Yu Xiang, Moo-Ryong Ra,

and Yih-Farn R. Chen, ”FastTrack: Minimizing Stalls for CDN-based Over-

the-top Video Streaming Systems,” IEEE Transactions on Cloud Computing,

Jun 2019.

• Abubakr Alabbasi, Vaneet Aggarwal, and Moo-Ryong Ra, ”Multi-tier Caching

Analysis in CDN-based Over-the-top Video Streaming Systems,” IEEE/ACM

Transactions on Networking, vol. 27, no. 2, pp. 835-847, April 2019.

• Abubakr Alabbasi and Vaneet Aggarwal, ”Video Streaming in Distributed

Erasure-coded Storage Systems: Stall Duration Analysis,” IEEE/ACM Trans-

actions on Networking, vol. 26, no. 4, pp. 1921-1932, Aug. 2018.

• Abubakr Al-Abbasi and Vaneet Aggarwal, ”Optimized Video Streaming over

Cloud: A Stall-Quality Trade-off,” Submitted to ACM Tompecs, Aug 2018

(Major Rev., Revised Apr 2019, v2).

• Abubakr Alabbasi and Vaneet Aggarwal, ”Joint Information Freshness and

Completion Time Optimization for Vehicular Networks,” Submitted to IEEE

Transactions on Service Computing, May 2018 (Major Rev, under revision, v3).
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• Abubakr Alabbasi and Vaneet Aggarwal, “Stall-Quality Tradeoff for Cloud-

based Video Streaming,” in Proc. IEEE SPCOM, Jul 2018

• Abubakr Alabbasi and Vaneet Aggarwal, ”EdgeCache: An Optimized Algo-

rithm for CDN-based Over-the-top Video Streaming Services,” in Proc. Infocom

Workshop (International Workshop on Integrating Edge Computing, Caching,

and Offloading in Next Generation Networks (IECCO)), Apr 2018.

• Abubakr Alabbasi and Vaneet Aggarwal, ”Mean Latency Optimization in

Erasure-coded Distributed Storage Systems,” in Proc. Infocom Workshop (In-

ternational Workshop on Cloud Computing Systems, Networks, and Applica-

tions (CCSNA)), Apr 2018.

Besides working towards my PhD thesis, I have worked on some other research

areas which, as a result, produces the following papers:

• Abubakr Al-Abbasi, Arnob Ghosh, and Vaneet Aggarwal, ”DeepPool: Dis-

tributed Model-free Algorithm for Ride-sharing using Deep Reinforcement Learn-

ing,” Accepted to IEEE Transactions on Intelligent Transportation Systems, Jul

2019.

• Abubakr Alabbasi, Vaneet Aggarwal, and Tian Lan, ”TTLoC: Taming Tail

Latency for Erasure-coded Cloud Storage Systems,” Accepted to IEEE TNSM,

May 2019.

• Abubakr Alabbasi, and Vaneet Aggarwal, ”BitFedEx: Quantifying Data

Freshness and Tail Latency in Multi-path Wireless Networks ,” submitted to

INFOCOM 2020.

• Abubakr Alabbasi, and Vaneet Aggarwal, ”Swift: Joint Information Fresh-

ness and Completion Time Optimization for Cloud Applications,” submitted to

INFOCOM 2020.
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• Ashutosh Singh, Abubakr Alabbasi, and Vaneet Aggarwal, ”A Reinforcement

Learning Based Algorithm for Multi-hop Ride-sharing: Model-free Approach,”

in Proc. Neurips Workshop, Dec 2019.

• Abubakr Alabbasi, Ali Elghariani, Anis Elgabli, and Vaneet Aggarwal, ”On

the Information Freshness and Tail Latency Trade-off in Mobile Networks,” in

Proc. Globecomm, Dec 2019.

• Ashutosh Singh, Abubakr Alabbasi, and Vaneet Aggarwal, ”A Distributed

Model-Free Algorithm for Multi-hop Ride-sharing using Deep Reinforcement

Learning,” Submitted to IEEE Transactions on Intelligent Trasnportation Sys-

tems, Oct 2019.

• Ashwin Kumar Boddeti, Abubakr Alabbasi, Vaneet Aggarwal, and Zubin

Jacob, ”Spectral domain inverse design for accelerating nanocomposite meta-

materials discovery,” submitted to Optical Materials Express, (Major Rev., Nov.

2019 Major Rev.)

• Abubakr Alabbasi and Vaneet Aggarwal, ”TTLCache: Minimizing Latency

in Erasure-coded Storage through Time To Live Caching,” Submitted to IEEE

Transactions on Network and Service Management, May 2019 (Major Rev.,

under revision).

• Abubakr Alabbasi, Ali Elghariani, Anis Elgabli, and Vaneet Aggarwal, ”PSS:

Joint Information Freshness and Tail Latency Optimization for Real-time Ap-

plications,” Submitted to IEEE/ACM TON, Mar 2019 (Major Rev., Revised

Sept 2019, v2).

1.3.2 Thesis Organization

The structure of this thesis is organized as follows. Chapter 2 provides related

work for this work. We first provide the related work in distributed storage systems

and highlight how our work advances them. Then, we present the related work in

video streaming and scheduling over parallel servers.
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In Chapter 3, we propose a framework for optimizing the video over erasure dis-

tributed storage system. In this chapter, we provide expressions for the download

and play times of the chunks which are used to find the upper bounds on the QoE

metrics of the mean stall duration and video stall latency. Then, based on these ex-

pressions, we formulate the QoE optimization problem as a weighted combination of

the two QoE metrics and propose the iterative algorithmic solution of this problem.

At the end of this chapter, numerical results are provided and a summary for the

main results are presented.

Chapter 4 extends the model presented in Chapter 3 to the scenarios where videos

can be streamed over parallel links with different quality levels. We first describe the

system model with a description of video streaming over cloud storage. We then

derive the download and play times of the chunks in closed forms. Based on this

analysis, we formulate a generic QoE optimization problem as a weighted combination

of the two QoE metrics (quality and stall) and propose efficient algorithms to solve

this problem. Simulation results show the superiority of our approach and the key

conclusion outcome are provided at the end of this chapter.

Chapter 5 presents a model for describing a today’s representative system archi-

tecture for video streaming applications, typically composed of a centralized origin

server, several CDN sites, and edge-caches. We start by describing the system model

used in the work with a description of CDN-based Over-the-top video streaming sys-

tems. We then provide an upper bound on the mean stall duration which is then used

to formulate the QoE optimization problem as a weighted sum of all SDTP of all files

and propose simple, yet efficient, solution for our problem. Experimental results are

also. We conclude this chapter by highlighting the key remarks concluded out of this

work.

The key observations and the major conclusion remarks are presented in Chapter

6.
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2. BACKGROUND AND LITERATURE REVIEW

2.1 Latency in Erasure-coded Storage

While latency in erasure coded storage systems has been widely studied, to our

best knowledge, quantifying exact latency for erasure-coded storage system in data-

center network is an open problem. Prior works focusing on asymptotic queuing delay

behaviors [13,14] are not applicable because redundancy factor in practical data cen-

ters typically remains small due to storage cost concerns. Due to the lack of analytic

latency models, most of the literature is focused on reliable distributed storage system

design, and latency is only presented as a performance metric when evaluating the

proposed erasure coding scheme, e.g., [15, 16], which demonstrate latency improve-

ment due to erasure coding in different system implementations. Related design can

also be found in data access scheduling [17, 18], access collision avoidance [19], and

encoding/decoding time optimization [20] and there is also some work using the LT

erasure codes to adjust the system to meet user requirements such as availability,

integrity and confidentiality [21].

Recently, there has been a number of attempts at finding latency bounds for an

erasure-coded storage system [22–26]. The key scheduling approaches include block-

one-scheduling policy that only allows the request at the head of the buffer to move

forward [27], fork-join queue [25, 28] to request data from all server and wait for the

first k to finish, and the probabilistic scheduling [22, 23] that allows choice of every

possible subset of k nodes with certain probability. Mean latency and tail latency

have been characterized in [22, 23] and [29] respectively for a system with multiple

files using probabilistic scheduling. This work considers video streaming rather than

file downloading. The metrics for video streaming does not only account for the end

of the download of the video but also of the download of each of the segment. Thus,
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the analysis for the content download cannot be extended to the video streaming

directly and the analysis approach in this work is very different from the prior works

in the area.

2.2 Video Streaming over Cloud

Servicing Video on Demand and Live TV Content from cloud servers have been

studied widely [30–34]. The placement of content and resource optimization over the

cloud servers have been considered. To the best of our knowledge, reliability of content

over the cloud servers have not been considered for video streaming applications. In

the presence of erasure-coding, there are novel challenges to characterize and optimize

the QoE metrics at the end user. Adaptive streaming algorithms have also been

considered for video streaming [35, 36], which are beyond the scope of this work and

are left for future work.

In [37], authors utilize the social information propagation pattern to improve

the efficiency of social video distribution. Further, they used replication and user

request dispatching mechanism in the cloud content delivery network architecture to

reduce the system operational cost, while maintaining the averaged service latency.

However, this work considers only video download. The benefits of delivering videos

at the edge network is shown in [38]. Authors show that bringing videos at the

edge network can significantly improve the content item delivery performance, in

terms of improving quality experienced by users as well as reducing content item

delivery costs. To the best of our knowledge, reliability of content over the cloud

servers have not been considered for video streaming applications. There are novel

challenges to characterize and optimize the QoE metrics at the end user. In [39–41]

a predictive model of video, apps, and web QoE is developed using machine-learning

algorithms. However, these works do not model (or quantify) the impact of the

control parameters on quality metrics or engagement. In [42], the effects of end-user

mobility on the perceived popularity distribution and join strategy across different
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CDN sites are considered. The data flow between different CDNs are investigated in

[43]. However, none of these works quantify the SDTP and/or optimize the resources

or chunk placement. Adaptive streaming algorithms have also been considered for

video streaming [36, 44, 45] which are beyond the scope of this work and are left for

future work.

2.3 Scheduling in Distributed Systems

Different approaches have been proposed to schedule task on different servers.

Some examples of these approaches are d-choose-2, or power-of-2 (pof(d)), In this

policy, d servers are randomly selected and then the request is sent to the shortest

two queues/links. Similar approaches like join shortest queue (JSQ) and Least Load-d

LL(d) are proposed in [46–48]. However, these approaches are queue dependent, hence

have to keep tracking the instantaneous queue levels, which increases the complexity

of servers selection. Further, unlike our policy, these approaches do not differentiate

between the different updates. We give more priority to the updates with higher

weights (e.g., higher arrival rates) in order to minimize the overall performance.

2.4 Caching Analysis

Performance of caching mechanisms is hard to analyze. This is because the Markov

chain associated with a single cache (adopting LRU for example) has exponential

number of states [49]. Several approximation methods have been investigated, in the

literature. Two key types of analysis techniques are considered: the characteristic

time approximation based approaches and the network calculus based approaches.

One of the key metrics to quantify caching systems is the hit ratio, which describes

the probability of finding a file in the cache given a popularity distribution on the set

of available content. Authors in [50] proposed a method for approximating the hit

rates for an LRU caching system assuming that all files are of identical size. However,

in most cases, files are of different sizes. Further work in [51] extends the previous
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work to accommodate the case of multiple file sizes. Several variants of LRU have

been proposed, including q-LRU, k-LRU, RANDOM, and k-RANDOM [52]. In order

to have better performance with realistic file sizes, multiple approaches have been

proposed. In [53], an admission control strategy is used to decrease the probability

that a large file size is added in the cache, thus reducing the possibilities that a large

file arrival can evict multiple small files.

TTL-based caching has been extensively studied in the literature. TTL caching

model has connections to the popular caching policies such as LRU. Even though

TTL caching has been widely studied, they have not been analyzed for characterizing

latency in erasure-coded storage systems which is the focus of this paper. Further,

our model differs from previous models by associating TTL window to files (ωi for

file i) and thus a file is evicted if not requested in the last ωi time, if needed.
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3. VIDEO STREAMING OVER DISTRIBUTED

STORAGE SYSTEMS

3.1 Introduction

In this part, we consider two measures of QoE metrics in terms of stall duration.

The first is the mean stall duration. Almost every viewer can relate to the quality

of experiences for watching videos being the stall duration and is thus one of the

key focus in the studied streaming algorithms [54, 55]. The second is the probability

that the stall duration is greater than a fixed number x, which determines the stall

duration tail probability. It has been shown that in modern Web applications such as

Bing, Facebook, and Amazon’s retail platform, the long tail of latency is of particular

concern, with 99.9th percentile response times that are orders of magnitude worse

than the mean [11,56]. Thus, the QoE metric of stall duration tail probability becomes

important. This work characterizes an upper bound on both QoE metrics.

We note that quantifying service latency for erasure-coded storage is an open

problem [26], and so is tail latency [29]. This thesis takes a step forward and explores

the notions for video streaming rather than video download. Thus, finding the exact

QoE metrics is an open problem. This work finds the bounds on the QoE metrics. The

data chunk transfer time in practical systems follows a shifted exponential distribution

[23, 24] which motivates the choice that the service time distribution for each video

server is a shifted exponential distribution. Further, the request arrival rates for

each video is assumed to be Poisson. The video segments are encoded using an

(n, k) erasure code and the coded segments are placed on n different servers. When

a video is requested, the segments need to be requested from k out of n servers.

Optimal strategy of choosing these k servers would need a Markov approach similar

to that in [26] and suffers from a similar state explosion problem, because states of
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the corresponding queuing model must encapsulate not only a snapshot of the current

system including chunk placement and queued requests but also past history of how

chunk requests have been processed by individual nodes.

In this work, we use the probabilistic scheduling proposed in [22, 23] to access

the k servers, where each possibility of k servers is chosen with certain probability

and the probability terms can be optimized. Using this scheduling mechanism, the

random variables corresponding to the times for download of different video segments

from each server are found. Using ordered statistics over the k servers, the random

variables corresponding to the playback time of each video segment are characterized.

These are then used to find bounds on the mean stall duration and the stall duration

tail probability. Moment generating functions of the ordered statistics of different

random variables are used in the bounds. We note that the problem of finding la-

tency for file download is very different from the video stall duration for streaming.

This is because the stall duration accounts for download time of each video segment

rather than only the download time of the last video segment. Further, the download

time of segments are correlated since the download of chunks from a server are in

sequence and the playback time of a video segment are dependent on the playback

time of the last segment and the download time of the current segment. Taking these

dependencies into account, this work characterizes the bounds on the two QoE met-

rics. We note that for the special case when each video has a single segment, the

bounds on mean stall duration and stall duration tail probability reduce to that for

file download. Further, the bounds based on the approach in this work have been

shown to outperform the results for mean file download latency in [22,23].

The proposed framework provides a mathematical crystallization of the engineer-

ing artifacts involved and illuminates key system design issues through optimization

of QoE. The average QoE metric over different requests can be optimized over the

placement of the video files, the access of the video files from the servers, and the

bound parameters. The tradeoff in the two QoE metrics is captured by defining the

objective function which is a convex combination of the two QoE metrics. Varying
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the parameter trading off the two metrics can be used to get a tradeoff region be-

tween the two metrics helping the system designer to choose an appropriate point.

An efficient algorithm is proposed to solve the proposed non-convex problem. The

proposed algorithm does an alternating optimization over the placement, access, and

the bound parameters. The optimization over probabilistic scheduling access param-

eters help reduce the mean and tail of the stall durations by differentiating video files

thus providing more flexibility as compared to choosing the lowest queue servers.

The sub-problems have been shown to have convex constraints and thus can be

efficiently solved using iNner cOnVex Approximation (NOVA) algorithm proposed

in [57]. The proposed algorithm is shown to converge to a local optimal. Numeri-

cal results demonstrate significant improvement of QoE metrics as compared to the

baselines.

Today, cloud-based video does not use erasure coding. One of the key reason is the

additional decoding latency from multiple coded streams. Since the computing has

been growing exponentially [58], it is only a matter of time when the computation

of decoding will not limit the latencies in delay sensitive video streaming and the

networking latency will govern the system designs. Further, we note that replication

is a special case of erasure coding. Thus, the proposed research using erasure-coded

content on the servers can also be used when the content is replicated on the servers.

The key contributions of this part of the thesis include:

• This chapter formulates video streaming over erasure-coded cloud storage sys-

tem.

• The random variable corresponding to the download time of a chunk of each

video segment from a server is characterized. Using ordered statistics, the ran-

dom variable corresponding to the playback time of each video segment is found.

These are further used to derive upper bounds on the mean stall duration of

the video and the video stall duration tail probability.
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• The QoE metrics are used to formulate system optimization problems over the

choice of the placement of video segments, probabilistic scheduling access policy

and the bound parameters which are related to the moment generating function.

Efficient iterative solutions are provided for these optimization problems.

• Numerical results show that the proposed algorithms converges within a few

iterations. Further, the QoE metrics are shown to have significant improvement

as compared to the considered baselines. For instance, the mean stall duration

for the proposed algorithm is 60% smaller and the stall duration tail probability

is orders of magnitude better as compared to random placement and projected

equal access probability strategy.

3.2 Chapter Organization

The remainder of this chapter is organized as follows. Section 2 provides related

work for this work. In Section 3 of this chapter, we describe the system model used in

the work with a description of video streaming over cloud storage. Section 4 derives

expressions on the download and play times of the chunks which are used in Sections

5 and 6 to find the upper bounds on the QoE metrics of the mean stall duration

and video stall latency, respectively. Section 7 formulates the QoE optimization

problem as a weighted combination of the two QoE metrics and proposes the iterative

algorithmic solution of this problem. Numerical results are provided in Section 8.

Section 9 concludes the work.

3.3 System Model

We consider a distributed storage system consisting of m heterogeneous servers

(also called storage nodes), denoted by M = 1, 2, ...,m. Each video file i, where

i = 1, 2, ...r, is divided into Li equal segments, Gi,1, · · · , Gi,Li , each of length τ sec.

Then, each segment Gi,j for j ∈ {1, 2, . . . , Li} is partitioned into ki fixed-size chunks
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and then encoded using an (ni, ki) Maximum Distance Separable (MDS) erasure code

to generate ni distinct chunks for each segment Gi,j. These coded chunks are denoted

as C
(1)
i,j , · · · , C

(ni)
i,j . The encoding setup is illustrated in Figure 4.2.

The encoded chunks are stored on the disks of ni distinct storage nodes. These

storage nodes are represented by a set Si, such that Si ⊆ M and ni = |Si|. Each

server z ∈ Si stores all the chunks C
(gz)
i,j for all j and for some gz ∈ {1, · · · , ni}. In

other words, each of the ni storage nodes stores one of the coded chunks for the entire

duration of the video. The placement on the servers is illustrated in Figure 3.2, where

the server 1 is shown to store first coded chunks of file i, third coded chunks of file u

and first coded chunks for file v.

The use of (ni, ki) of MDS erasure code introduces a redundancy factor of ni/ki

which allows the video to be reconstructed from the video chunks from any subset

of ki-out-of-ni servers. We note that the erasure-code can also help in recovery of

the content i as long as ki of the servers containing file i are available [4]. Note that

replication along n servers is equivalent to choosing (n, 1) erasure code. Hence, when

a video i is requested, the request goes to a set Ai of the storage nodes, where Ai ⊆ Si
and ki = |Ai|. From each server z ∈ Ai, all chunks C

(gz)
i,j for all j and the value of gz

corresponding to that placed on server z are requested. The request is illustrated in

Figure 3.2. In order to play a segment q of video i, C
(gz)
i,q should have been downloaded

from all z ∈ Ai. We assume that an edge router which is a combination of multiple

users is requesting the files. Thus, the connections between the servers and the edge

router is considered as the bottleneck. Since the service provider only has control

over this part of the network and the last hop may not be under the control of the

provider, the service provider can only guarantee the quality-of-service till the edge

router.

We assume that the files at each server are served in order of the request in a

first-in-first-out (FIFO) policy. Further, the different chunks are processed in order

of the duration. This is depicted in Figure 5.1, where for a server q, when a file i is
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requested, all the chunks are placed in the queue where other video requests before

this that have not yet been served are waiting.

In order to schedule the requests for video file i to the ki servers, the choice

of ki-out-of-ni servers is important. Finding the optimal choice of these servers to

compute the latency expressions is an open problem to the best of our knowledge.

Thus, this work uses a policy, called Probabilistic Scheduling, which was proposed

in [22,23]. This policy allows choice of every possible subset of ki nodes with certain

probability. Upon the arrival of a video file i, we randomly dispatch the batch of ki

chunk requests to appropriate a set of nodes (denoted by set Ai of servers for file

i) with predetermined probabilities (P (Ai) for set Ai and file i). Then, each node

buffers requests in a local queue and processes in order and independently as explained

before. The authors of [22, 23] proved that a probabilistic scheduling policy with

feasible probabilities {P (Ai) : ∀i, Ai} exists if and only if there exists conditional

probabilities πij ∈ [0, 1] ∀i, j satisfying

m∑
j=1

πij = ki ∀i and πij = 0 if j /∈ Si.

In other words, selecting each node j with probability πij would yield a feasible

choice of {P (Ai) : ∀i, Ai}. Thus, we consider the request probabilities πij as the

probability that the request for video file i uses server j. While the probabilistic

scheduling have been used to give bounds on latency of file download, this work uses

the scheduling to give bounds on the QoE for video streaming.

We note that it may not be ideal in practice for a server to finish one video

request before starting another since that increases delay for the future requests.

However, this can be easily alleviated by considering that each server has multiple

queues (streams) to the edge router which can all be considered as separate servers.

These multiple streams can allow multiple parallel videos from the server. The prob-

abilistic scheduling can choose ki of the overall queues to access the content. Possible

approaches of extension to accommodate such scenarios are shown in the Appendix

A.10.
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We now describe a queuing model of the distributed storage system. We assume

that the arrival of client requests for each video i form an independent Poisson process

with a known rate λi. The arrival of file requests at node j forms a Poisson Process

with rate Λj =
∑

i λiπi,j which is the superposition of r Poisson processes each with

rate λiπi,j.

We assume that the chunk service time for each coded chunk C
(gj)
i,l at server j,

Xj, follows a shifted exponential distribution as has been demonstrated in realistic

systems [23,24]. The service time distribution for the chunk service time at server j,

Xj, is given by the probability distribution function fj(x), which is

fj(x) =

 αje
−αj(x−βj) , x ≥ βj

0 , x < βj

. (3.1)

We note that exponential distribution is a special case with βj = 0. We note that

the constant delays like the networking delay, and the decoding time can be easily

factored into the shift of the shifted exponential distribution. Let Mj(t) = E
[
etXj

]
be the moment generating function of Xj. Then, Mj(t) is given as

Mj(t) =
αj

αj − t
eβjt t < αj (3.2)

We note that the arrival rates are given in terms of the video files, and the service

rate above is provided in terms of the coded chunks at each server. The client plays

the video segment after all the ki chunks for the segment have been downloaded

and the previous segment has been played. We also assume that there is a start-up

delay of ds (in seconds) for the video which is the duration in which the content can

be buffered but not played. This work will characterize the stall duration and stall

duration tail probability for this setting.

3.4 Download and Play Times of the Chunks

In order to understand the stall duration, we need to see the download time of

different coded chunks and the play time of the different segments of the video.
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3.4.1 Download Times of the Chunks from each Server

In this subsection, we will quantify the download time of chunk for video file i

from server j which has chunks C
(gj)
i,q for all q = 1, · · ·Li. We consider download of qth

chunk C
(gj)
i,q . As seen in Figure 5.1, the download of C

(gj)
i,q consists of two components

- the waiting time of all the video files in queue before file i request and the service

time of all chunks of video file i up to the qth chunk. Let Wj be the random variable

corresponding to the waiting time of all the video files in queue before file i request

and Y
(q)
j be the (random) service time of coded chunk q for file i from server j. Then,

the (random) download time for coded chunk q ∈ {1, · · · , Li} for file i at server

j ∈ Ai, D(q)
i,j , is given as

D
(q)
i,j = Wj +

q∑
v=1

Y
(v)
j . (3.3)

We will now find the distribution of Wj. We note that this is the waiting time for

the video files whose arrival rate is given as Λj =
∑

i λiπi,j. Since the arrival rate of

video files is Poisson, the waiting time for the start of video download from a server

j, Wj, is given by an M/G/1 process. In order to find the waiting time, we would

need to find the service time statistics of the video files. Note that fj(x) gives the

service time distribution of only a chunk and not of the video files.

Video file i consists of Li coded chunks at server j (j ∈ Si). The total service time

for video file i at server j if requested from server j, STi,j, is given as

STi,j =

Li∑
v=1

Y
(v)
j . (3.4)

The service time of the video files is given as

Rj =

{
STi,j with probability

πijλi
Λj

∀i, (3.5)

since the service time is STi,j when file i is requested from server j. Let Rj(s) =

E[e−sRj ] be the Laplace-Stieltjes Transform of Rj.
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Lemma 1 The Laplace-Stieltjes Transform of Rj, Rj(s) = E
[
e−sRj

]
is given as

Rj(s) =
r∑
i=1

πijλi
Λj

(
αje

−βjs

αj + s

)Li
(3.6)

Proof The proof is provided in Appendix A.1.

Corollary 1 The moment generating function for the service time of video files when

requested from server j, Bj(t), is given by

Bj(t) =
r∑
i=1

πijλi
Λj

(
αje

βjt

αj − t

)Li
(3.7)

for any t > 0, and t < αj.

Proof This corollary follows from (4.10) by setting t = −s.

The server utilization for the video files at server j is given as ρj = ΛjE [Rj]. Since

E [Rj] = B′j(0), using Lemma 4.10, we have

ρj =
∑
i

πijλiLi

(
βj +

1

αj

)
. (3.8)

Having characterized the service time distribution of the video files via a Laplace-

Stieltjes Transform Rj(s), the Laplace-Stieltjes Transform of the waiting time Wj

can be characterized using Pollaczek-Khinchine formula for M/G/1 queues [59], since

the request pattern is Poisson and the service time is general distributed. Thus, the

Laplace-Stieltjes Transform of the waiting time Wj is given as

E
[
e−sWj

]
=

(1− ρj) s
s− Λj

(
1−Rj(s)

) (3.9)

Having characterized the Laplace-Stieltjes Transform of the waiting time Wj and

knowing the distribution of Y
(v)
j , the Laplace-Stieltjes Transform of the download

time D
(q)
i,j is given as

E[e−sD
(q)
i,j ] =

(1− ρj) s
s− Λj

(
1−Rj(s)

) ( αj
αj + s

e−βjs
)q

. (3.10)
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We note that the expression above holds only in the range of s when s−Λj

(
1−Rj(s)

)
>

0 and αj + s > 0. Further, the server utilization ρj must be less than 1. The overall

download time of all the chunks for the segment Gi,q at the client, D
(q)
i , is given by

D
(q)
i = max

j∈Ai
D

(q)
i,j . (3.11)

3.4.2 Play Time of Each Video Segment

Let T
(q)
i be the time at which the segment Gi,q is played (started) at the client.

The startup delay of the video is ds. Then, the first segment can be played at the

maximum of the time the first segment can be downloaded and the startup delay.

Thus,

T
(1)
i = max

(
ds, D

(1)
i

)
. (3.12)

For 1 < q ≤ Li, the play time of segment q of file i is given by the maximum of the

time it takes to download the segment and the time at which the previous segment is

played plus the time to play a segment (τ seconds). Thus, the play time of segment

q of file i, T
(q)
i can be expressed as

T
(q)
i = max

(
T

(q−1)
i + τ, D

(q)
i

)
. (3.13)

Equation (4.18) gives a recursive equation, which can yield

T
(Li)
i = max

(
T

(Li−1)
i + τ, D

(Li)
i

)
= max

(
T

(Li−2)
i + 2τ, D

(Li−1)
i + τ, D

(Li)
i

)
= max (ds + (Li − 1)τ,

Li+1
max
z=2

D
(z−1)
i + (Li − z + 1)τ

)
(3.14)

Since D
(q)
i = maxj∈Ai D

(q)
i,j from (4.16), T

(Li)
i can be written as
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T
(Li)
i =

Li+1
max
z=1

max
j∈Ai

(pi,j,z) , (3.15)

where

pi,j,z =


ds + (Li − 1) τ , z = 1

D
(z−1)
i,j + (Li − z + 1)τ , 2 ≤ z ≤ (Li + 1)

(3.16)

We next give the moment generating function of pi,j,z that will be used in the

calculations of the QoE metrics in the next sections. Hence, we define the following

lemma.

Lemma 2 The moment generating function for pi,j,z, is given as

E
[
etpi,j,z

]
=

e
t(ds+(Li−1)τ) , z = 1

et(Li+1−z)τZ
(z−1)
i,j (t) , 2 ≤ z ≤ Li + 1

(3.17)

where

Z
(`)
i,j (t) = E[etD

(`)
i,j ] =

(1− ρj) t (Mj(t))
`

t− Λj (Bj(t)− 1)
(3.18)

Proof The proof is provided in Appendix A.2.

Ideally, the last segment should be completed by time ds + Liτ . The difference

between T
(Li)
i and ds + (Li − 1)τ gives the stall duration. Note that the stalls may

occur before any segment. This difference will give the sum of durations of all the

stall periods before any segment. Thus, the stall duration for the request of file δ(i)

is given as

Γ(i) = T
(Li)
i − ds − (Li − 1)τ. (3.19)

In the next two sections, we will use this stall time to determine the bounds on the

mean stall duration and the stall duration tail probability.
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3.5 Mean Stall Duration

In this section, we will provide a bound for the first QoE metric, which is the

mean stall duration for a file i. We will find the bound by probabilistic scheduling

and since probabilistic scheduling is one feasible strategy, the obtained bound is an

upper bound to the optimal strategy.

Using (4.24), the expected stall time for file i is given as follows

E
[
Γ(i)
]

= E
[
T

(Li)
i − ds − (Li − 1) τ

]

= E
[
T

(Li)
i

]
− ds − (Li − 1) τ (3.20)

An exact evaluation for the play time of segment Li is hard due to the dependencies

between pjz random variables for different values of j and z, where z ∈ (1, 2, ..., Li + 1)

and j ∈ Ai. Hence, we derive an upper-bound on the playtime of the segment Li as

follows. Using Jensen’s inequality [60], we have for ti > 0,

e
tiE
[
T

(Li)
i

]
≤ E

[
etiT

(Li)
i

]
. (3.21)

Thus, finding an upper bound on the moment generating function for T
(Li)
i can

lead to an upper bound on the mean stall duration. Thus, we will now bound the

moment generating function for T
(Li)
i .
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E
[
etiT

(Li)
i

]
(a)
= E

[
max
z

max
j∈Ai

etipijz
]

= EAi
[
E
[
max
z

max
j∈Ai

etipijz | Ai
]]

(b)

≤ EAi

[∑
j∈Ai

E
[
max
z
etipijz

]]

= EAi

[∑
j

Fij1{j∈Ai}

]
=

∑
j

Fij EAi
[
1{j∈Ai}

]
=

∑
j

Fij P (j ∈ Ai)

(c)
=

∑
j

Fijπij (3.22)

where (a) follows from (4.21), (b) follows by upper bounding maxj∈Ai by
∑

j∈Ai , (c)

follows by probabilistic scheduling where P (j ∈ Ai) = πij, and Fij = E
[
max
z
etipijz

]
.

We note that the only inequality here is for replacing the maximum by the sum. Since

this term will be inside the logarithm for the mean stall latency, the gap between the

term and its bound becomes additive rather than multiplicative.

Substituting (A.74) in (A.73), we have

E
[
T

(Li)
i

]
≤ 1

ti
log

(
m∑
j=1

πijFij

)
. (3.23)

Let Hij =
∑Li

`=1 e
−ti(ds+(`−1)τ)Z

(`)
i,j (ti), where Z

(`)
i,j (t) is defined in equation (4.23).

We note that Hij can be simplified using the geometric series formula as follows.

Lemma 3 Let

Hij =
e−ti(ds−τ) (1− ρj) tiM̃j(ti)

ti − Λj (Bj(ti)− 1)

1−
(
M̃j(ti)

)Li(
1− M̃j(ti)

) , (3.24)

where M̃j(ti) = Mj(ti)e
−tiτ , Mj(ti) is given in (4.5), and Bj(ti) is given in (4.12).
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Proof The proof is provided in Appendix A.3.

Substituting (4.35) in (A.72) and some manipulations, the mean stall duration is

bounded as follows.

Theorem 3.5.1 The mean stall duration time for file i is bounded by

E
[
Γ(i)
]
≤ 1

ti
log

(
m∑
j=1

πij (1 +Hij)

)
(3.25)

for any ti > 0, ρj =
∑

i πijλiLi

(
βj + 1

αj

)
, ρj < 1, and∑r

f=1 πfjλf

(
αje
−βjti

αj−ti

)Lf
− (Λj + ti) < 0, ∀j.

Proof The proof is provided in Appendix A.4.

Note that Theorem A.19.1 above holds only in the range of ti when ti−Λj (Bj(ti)− 1) >

0 which reduces to
∑r

f=1 πfjλf

(
αje
−βjti

αj−ti

)Lf
− (Λj + ti) < 0, ∀i, j, and αj − ti > 0.

Further, the server utilization ρj must be less than 1 for stability of the system.

We note that for the scenario, where the files are downloaded rather than streamed,

a metric of interest is the mean download time. This is a special case of our approach

when the number of segments of each video is one, or Li = 1. Thus, the mean

download time of the file follows as a special case of Theorem A.19.1. We note

that the authors of [22, 23] gave an upper bound for mean file download time using

probabilistic scheduling. However, the bound in this work is different since we use

moment generating function based bound. The two bounds are compared in Section

5.6, and the bounds in this work are shown to outperform those in [22,23].

3.6 Stall Duration Tail Probability

The stall duration tail probability of a file i is defined as the probability that the

stall duration tail Γ(i) is greater than (or equal) to x. Since evaluating Pr
(
Γ(i) ≥ x

)
in closed-form is hard [22–27], we derive an upper bound on the stall duration tail

probability considering Probabilistic Scheduling as follows.
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Pr
(
Γ(i) ≥ x

) (a)
= Pr

(
T

(Li)
i ≥ x+ ds + (Li − 1) τ

)
= Pr

(
T

(Li)
i ≥ x

)
(3.26)

where (a) follows from (A.72) and x = x+ ds + (Li − 1) τ . Then,

Pr
(
T

(Li)
i ≥ x

)
(b)
= Pr

(
max
z

max
j∈Ai

pijz ≥ x

)
= EAi,pijz

[
1(

max
z

max
j∈Ai

pijz≥x
)
]

(c)
= EAi,pijz

[
max
j∈Ai

1(
max
z

pijz≥x
)]

(d)

≤ EAi,pijz
∑

j∈Ai 1(
max
z
pijz≥x

)
(e)
=

∑
j πijEpijz

[
1(

max
z
pijz≥x

)]
=

∑
j πijP

(
max
z
pijz ≥ x

)

(3.27)

where (b) follows from (4.21), (c) follows as both max over z and max over Aj are

discrete indicies (quantities) and do not depend on other so they can be exchanged,

(d) follows by replacing the max by
∑
Ai , (e) follows from probabilistic scheduling.

Using Markov Lemma, we get

P
(

max
z
pijz ≥ x

)
≤

E
[
e
ti

(
max
z

pijz

)]
etix

(3.28)

We further simplify to get

P
(

max
z
pijz ≥ x

)
≤

E
[
e
ti

(
max
z

pijz

)]
etix

=
E
[
max
z
etipijz

]
etix

(f)
=

Fij
etix

(3.29)

where (f) follows from (A.3). Substituting (3.29) in (3.27), we get the stall dura-

tion tail probability as described in the following theorem (details are provided in

Appendix A.5).
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Theorem 3.6.1 The stall distribution tail probability for video file i is bounded by

∑
j

πij
etix

(
1 + e−ti(ds+(Li−1)τ) Hij

)
(3.30)

for any ti > 0, ρj =
∑

i πijλiLi

(
βj + 1

αj

)
, ρj ≤ 1,∑r

f=1 πfjλf

(
αje
−βjti

αj−ti

)Lf
− (Λj + ti) < 0, ∀i, j, and Hij is given by (4.42).

We note that for the scenario, where the files are downloaded rather than streamed,

a metric of interest is the latency tail probability which is the probability that the file

download latency is greater than x. This is a special case of our approach when the

number of segments of each video is one, or Li = 1. Thus, the latency tail probability

of the file follows as a special case of Theorem 3.6.1. In this special case, the result

reduces to that in [29].

3.7 Optimization Problem Formulation and Proposed Algorithm

3.7.1 Problem Formulation

Let π = (πij∀i = 1, · · · , r and j = 1, · · · ,m), S = (S1,S2, . . . ,Sr), and t =(
t̃1, t̃2, . . . , t̃r; t1, t2, . . . , tr

)
. Note that the values of ti’s used for mean stall duration

and the stall duration tail probability can be different and the parameters t̃ and t

indicate these parameters for the two cases, respectively. We wish to minimize the two

proposed QoE metrics over the choice of scheduling and access decisions. Since this is

a multi-objective optimization, the objective can be modeled as a convex combination

of the two QoE metrics.

Let λ =
∑

i λi be the total arrival rate. Then, λi/λ is the ratio of video i requests.

The first objective is the minimization of the mean stall duration, averaged over all the

file requests, and is given as
∑

i
λi
λ
E
[
Γ(i)
]
. The second objective is the minimization

of stall duration tail probability, averaged over all the file requests, and is given as∑
i
λi
λ

Pr
(
Γ(i) ≥ x

)
. Using the expressions for the mean stall duration and the stall
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duration tail probability in Sections A.19 and 3.6, respectively, optimization of a

convex combination of the two QoE metrics can be formulated as follows.

min
∑
i

λi

λ

[
θ

1

t̃i
log

(
m∑
j=1

πij

(
1 + H̃ij

))

+ (1− θ)
∑
j

πij

etix

(
1 + e−ti(ds+(Li−1)τ) H ij

)]
(3.31)

s.t. H̃ij =
e−t̃i(ds−τ) (1− ρj) t̃i
t̃i − Λj

(
Bj(t̃i)− 1

)Q̃ij , (3.32)

H ij =
e−ti(ds−τ) (1− ρj) ti
ti − Λj

(
Bj(ti)− 1

)Qij , (3.33)

Q̃ij =

M̃j(t̃i)

(
1−

(
M̃j(t̃i)

)Li)
1− M̃j(t̃i)

 , (3.34)

Qij =

M̃j(ti)

(
1−

(
M̃j(ti)

)Li)
1− M̃j(ti)

 , (3.35)

M̃j(t) =
αje

(βj−τ)t

αj − t
, (3.36)

Bj(t) =
r∑

f=1

λfπfj
Λj

(
αje

βjt

αj − t

)Lf
, (3.37)

M̃j(t) =
αje

(βj−τ)t

αj − t
, (3.38)

Bj(t) =
r∑

f=1

λfπfj
Λj

(
αje

βjt

αj − t

)Lf
, (3.39)

ρj =
r∑

f=1

πfjλfLf

(
βj +

1

αj

)
< 1 ∀j (3.40)
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Λj =
r∑

f=1

λfπf,j ∀j (3.41)

m∑
j=1

πi,j = ki (3.42)

πi,j=0 if j /∈ Si , πi,j ∈ [0, 1] (3.43)

|Si| = ni, ∀i (3.44)

0 < t̃i < αj, ∀j (3.45)

0 < ti < αj, ∀j (3.46)

αj

(
e(βj−τ)t̃i − 1

)
+ t̃i < 0 ,∀j (3.47)

αj

(
e(βj−τ)ti − 1

)
+ ti < 0 ,∀j (3.48)

r∑
f=1

πfjλf

(
αje

βj t̃i

αj − t̃i

)Lf

−
(
Λj + t̃i

)
< 0, ∀i, j (3.49)

r∑
f=1

πfjλf

(
αje

βjti

αj − ti

)Lf

−
(
Λj + ti

)
< 0, ∀i, j (3.50)

var. π, t,S (3.51)

Here, θ ∈ [0, 1] is a trade-off factor that determines the relative significance of

mean and tail probability of the stall durations in the minimization problem. Varying

θ = 0 to θ = 1, the solution for (4.45) spans the solutions that minimize the mean stall

duration to ones that minimize the stall duration tail probability. Note that constraint

(4.48) gives the load intensity of server j. Constraint (4.49) gives the aggregate arrival

rate Λj for each node for the given probabilistic scheduling probabilities πij and arrival

rates λi. Constraints (4.51)-(3.44) guarantees that the scheduling probabilities are

feasible. Constraints (3.45)-(4.57) ensure that M̃j(t) exist for each t̃i and ti. Finally,

Constraints (3.49)-(4.58) ensure that the moment generating function given in (4.23)

exists. We note that the the optimization over π helps decrease the objective function

and gives significant flexibility over choosing the lowest-queue servers for accessing

the files. The placement of the video files S helps separate the highly accessed files

on different servers thus reducing the objective. Finally, the optimization over the
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auxiliary variables t gives a tighter bound on the objective function. We note that the

QoE for file i is weighed by the arrival rate λi in the formulation. However, general

weights can be easily incorporated for weighted fairness or differentiated services.

Note that the proposed optimization problem is a mixed integer non-convex opti-

mization as we have the placement over n servers and the constraints (3.49) and (4.58)

are non-convex in (π, t). We also note the placement may be decided for multiple

aggregation VMs simultaneously and may not be a parameter for single aggregation

VM. In that case, the proposed algorithm can still be used without an optimization

over the placement of video files. In the next subsection, we will describe the proposed

algorithm.

3.7.2 Proposed Algorithm

The joint mean-tail stall duration optimization problem given in (4.45)-(4.59) is

optimized over three set of variables: scheduling probabilities π, auxiliary parameters

t, and chunk placement S. Since the problem is non-convex, we propose an iterative

algorithm to solve the problem. The proposed algorithm divides the problem into

three subproblems that optimize one variable fixing the remaining two. The three

sub-problems are labeled as (i) Access Optimization optimizes π for given S and t, (ii)

Auxiliary Variables Optimization optimizes t for given π and S, and (iii) Placement

Optimization optimizes S for given π and t. This algorithm is summarized as follows.

1. Initilization: Initialize t,S, and π in the feasible set.

2. While Objective Converge

(a) Run Access Optimization using current values of S and t to get new values

of π

(b) Run Auxiliary Variables Optimization using current values of S and π to

get new values of t
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(c) Run Placement Optimization using current values of π and t to get new

values of S and π.

We first initialize Si, πij and ti ∀ i, j such that the choice is feasible for the

problem. Then, we do alternating minimization over the three sub-problems defined

above. We will describe the three sub-problems along with the proposed solutions

for the sub-problems in Appendix A.6. Each of the three sub-problems are solved by

iNner cOnVex Approximation (NOVA) algorithm proposed in [57], and is guaranteed

to converge to a stationary point. Since each sub-problem converges (decreasing) and

the overall problem is bounded from below, we have the following result.

Theorem 3.7.1 The proposed algorithm converges to a stationary point.

3.8 Numerical Results

In this section, we evaluate our proposed algorithm for optimization of mean and

tail probability of stall duration and show the effect of the trade-off of parameter θ.

We first study the two extremes where only either mean stall duration objective or

tail stall duration probability is considered. Then, we show the tradeoff between the

two QoE metrics based on the trade-off parameter θ.

Table 3.1.: Storage Node Parameters Used in our Simulation (Shift β = 10msec and

rate α in 1/s)

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

αj 18.2298 24.0552 11.8750 17.0526 26.1912 23.9059

Node 7 Node 8 Node 9 Node 10 Node 11 Node 12

αj 27.006 21.3812 9.9106 24.9589 26.5288 21.8067
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3.8.1 Numerical Setup

We simulate our algorithm in a distributed storage system of m = 12 distributed

nodes, where each video file uses an (10, 4) erasure code. These parameters were cho-

sen in [23] in the experiments using Tahoe testbed. Further, (10, 4) erasure code is

used in HDFS-RAID in Facebook [61] and Microsoft [6]. Unless otherwise explicitly

stated, we consider r = 1000 files, whose sizes are generated based on Pareto distri-

bution [62] with shape factor of 2 and scale of 300, respectively. We note that the

Pareto distribution is considered as it has been widely used in existing literature [63]

to model video files, and file-size distribution over networks. We also assume that

the chunk service time follows a shifted-exponential distribution with rate αj and

shift βj, whose values are shown in Table I, which are generated at random and kept

fixed for the experiments ( Recall that this distribution has been validated in real

experiments demonstrated in realistic systems [23, 24]). Unless explicitly stated, the

arrival rate for the first 500 files is 0.002s−1 while for the next 500 files is set to be

0.003s−1. Chunk size τ is set to be equal to 4 s. When generating video files, the sizes

of the video file sizes are rounded up to the multiple of 4 sec. We note that a high

load scenario is considered for the numerical results. In practice, the load will not

be that high. However, higher load helps demonstrate the significant improvement in

performance as compared to the lightly loaded scenarios where there are almost no

stalls. In order to initialize our algorithm, we use a random placement of files on all

the servers. Further, we set πij = k/n on the placed servers with ti = 0.01 ∀i and

j ∈ Si. However, these choices of πij and ti may not be feasible. Thus, we modify the

initialization of π to be closest norm feasible solution given above values of S and t.

We compare our proposed approach with five strategies:

1. Random Placement, Optimized Access (RP-OA): In this strategy, the placement

is chosen at random where any n out of m servers are chosen for each file, where

each choice is equally likely. Given the random placement, the variables t and
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π are optimized using the Algorithm in Section 5.5.2, where S-optimization is

not performed.

2. Optimized Placement, Projected Equal Access (OP-PEA): The strategy utilizes

π, t and S as mentioned in the setup. Then, alternating optimization over

placement and t are performed using the proposed algorithm.

3. Random Placement, Projected Equal Access (RP-PEA): In this strategy, the

placement is chosen at random where any n out of m servers are chosen for each

file, where each choice is equally likely. Further, we set πij = k/n on the placed

servers with ti = 0.01 ∀i and j ∈ Si. We then modify the initialization of π

to be closest norm feasible solution given above values of S and t. Finally, an

optimization over t is performed to the objective using Algorithm (4).

4. OP-PSP (Optimized Placement-Projected Service-Rate Proportional Allocation)

Policy: The joint request scheduler chooses the access probabilities to be pro-

portional to the service rates of the storage nodes, i.e., πij = ki
µj∑
j µj

. This

policy assigns servers proportional to their service rates. These access probabil-

ities are projected toward feasible region for a uniformly random placed files to

ensure stability of the storage system. With these fixed access probabilities, the

weighted mean stall duration and stall duration tail probability are optimized

over the t, and placement S.

5. RP-PSP (Random Placement-PSP) Policy: As compared to the OP-PSP Policy,

the chunks are placed uniformly at random. The weighted mean stall duration

and stall duration tail probability are optimized over the choice of auxiliary

variables t.

3.8.2 Mean Download Time Comparison

We note that when the number of segments, Li, the mean stall duration is

the same as the mean download time of the file. Further, the bounds in this
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work are different from those given in [22, 23] even though both the works use

probabilistic scheduling. We will now compare our proposed upper-bound on

download time of a file with the upper-bound given in [22,23]. The comparison

can be seen in Figure 3.4, where the above service time distributions are used

at the servers. We observe that our bound performs better for all values of

arrival rate (λ), and the relative performance increases with the arrival rate.

For instance, our bound is 30% lower than that given in [22, 23] when the

arrival rate equals 0.8× λ.

3.8.3 Mean Stall Duration optimization

In this subsection, we focus only on minimizing the mean stall duration of all files

by setting θ = 1, i.e., stall duration tail probability is not considered.

Convergence of the Proposed Algorithm

Figure 4.3 shows the convergence of our proposed algorithm, which alternatively

optimizes the mean stall duration of all files over scheduling probabilities π, auxiliary

variables t̃, and placement S. We notice that for r = 1000 video files of size 600 sec

with m = 12 storage nodes, the mean stall duration converges to the optimal value

within less than 700 iterations.

Effect of Arrival Rate and Video Length

Figure 3.6 shows the effect of different video arrival rates on the mean stall du-

ration for different-size video length.The different size uses the Pareto-distributed

lengths described above. We compare our proposed algorithm with the five baseline

policies and we see that the proposed algorithm outperforms all baseline strategies

for the QoE metric of mean stall duration. Thus, both access and placement of files

are both important for the reduction of mean stall duration. Further, we see that the
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mean stall duration increases with arrival rates, as expected. Since the mean stall du-

ration is more significant at high arrival rates, we notice a significant improvement in

mean stall duration by about 60% ( approximately 700s to about 250s) at the highest

arrival rate in Figure 3.6 as compared to the random placement and projected equal

access policy. In Figure A.7, Appendix A.9, we studied the effect of increasing the

arrival rate when the video-sizes are equal with mean of 600 sec.

3.8.4 Stall Duration Tail Probability Optimization

In this subsection, we consider minimizing the stall duration tail probability,

P
(
Γ(i) ≥ x

)
, by setting θ = 0 in (4.45).

Decrease of Stall Duration Tail Probability with x

Figure 3.7 shows the decay of weighted stall duration tail probability with respect

to x (in seconds) for the proposed and the baseline strategies. In order to signify

(magnify) the small differences, we plot y-axis in logarithmic scale. We observe that

the proposed algorithm gives orders improvement in the stall duration tail probabili-

ties as compared to the baseline strategies.

Effect of the number of video files

Figure 3.8 demonstrates the effect of increase of the number of video files ( from

200 files to 1200 files whose sizes are defined based on Pareto) on the stall duration

tail probability. The stall duration tail probability increases with the number of

video files, and the proposed algorithm manages to significantly improve the QoE as

compared to the considered baselines.
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3.8.5 Tradeoff between mean stall duration and stall duration tail prob-

ability

If the mean stall duration decreases, intuitively the stall duration tail probability

also reduces. Thus, a question arises whether the optimal point for decreasing the

mean stall duration and the stall duration tail probability is the same. We answer

the question in negative since for r = 1000 of equal sizes of length 300 sec, we find

that at the values of (π, S) that optimize the mean stall duration, the stall duration

tail probability is 12 times higher as compared to the optimal stall duration tail

probability. Similarly, the optimal mean stall duration is 30% lower as compared to

the mean stall duration at the value of (π, S) that optimizes the stall duration tail

probability. Thus, an efficient tradeoff point between the QoE metrics can be chosen

based on the point on the curve that is appropriate for the clients.

3.9 Chapter Conclusion

This work considers video streaming over cloud where the content is erasure-coded

on the distributed servers. Two QoE metrics related to the stall duration, mean stall

duration and stall duration tail probability are characterized with upper bounds. The

download and play times of each video segment are characterized to evaluate the QoE

metrics. An optimization problem that optimizes the convex combination of the two

QoE metrics for the choice of placement and access of contents from the servers is

formulated. Efficient algorithm is proposed to solve the optimization problem and

the numerical results depict the improved performance of the algorithm as compared

to the considered baselines.
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4. STALL-QUALITY TRADEOFF IN VIDEO

STREAMING OVER DISTRIBUTED STORAGE

SYSTEMS

4.1 Introduction

Cloud computing has changed the way many Internet services are provided and

operated. Video-on-Demand (VoD) providers are increasingly moving their streaming

services, data storage, and encoding software to cloud service providers [64,65]. With

the annual growth of global video streaming at a rate of 18.3% [1], cloud-based video

has become an imperative feature of any successful business. For example, IBM

estimates cloud-based video will be a $105 billion market opportunity by 2019 [2].

In this chapter, we will give a novel approach to an optimized cloud-based-video

streaming.

Since the computing has been growing exponentially [58], the computation of

decoding will not limit the latencies in delay sensitive video streaming and the net-

working latency will govern the system designs. The key advantage of erasure coding

is that it reduces storage cost while providing similar reliability as replicated sys-

tems [3, 4], and thus has now been widely adopted by companies like Facebook [5],

Microsoft [6], and Google [7]. Further, we note that replication is a special case of era-

sure coding. Thus, the proposed research using erasure-coded content on the servers

can also be used when the content is replicated on the servers.

In cloud-based-video, the users are connected to an edge router, which fetch the

contents from the distributed storage servers (as depicted in Fig. 4.1). Multiple

parallel streams (PSs) between a server and the edge router are considered, which

provides the ability to get multiple streams simultaneously. We assume that the

connection between users and edge router is not limited. However, our analysis can
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be easily generalized to accommodate the last hop between edge-routes and users.

Unlike the case of file download, the later video-chunks do not have to be downloaded

as fast as possible to improve the QoE and thus multiple parallel streams help achieve

better QoE. This is because later chunks can be downloaded while earlier chunks are

streamed. The key QoE metrics for video streaming are the duration of stalls at the

clients and the streamed average video quality. Every viewer can relate the QoE for

watching videos to the stall duration and is thus one of the key focus in the studied

streaming algorithms [54, 66]. The average quality of the streamed video is another

important QoE metric.

The key challenge in quantification stall duration is the choice of scheduling strat-

egy to choose the storage servers for each request, as well as the parallel streams

from the chosen servers. For a single video-chunk and single quality videos, the

problem is equivalent to minimizing the download latency Minimizing file download

time rather than stall duration follows as a special case of our framework since the

stall duration of a single-chunk video is the same as the download time. However,

for more than one chunk video, stall duration do not follow from the file download

time. This problem of file download is an open problem, since the optimal strategy

of choosing these k servers (when file is erasure coded with parameters (n, k)) would

need a Markov approach similar to that in [26] which suffers from a state explosion

problem. Further, the choice of video quality makes the problem challenging since

the selection of video quality would also depend on the current queue states. The

authors of [22,23] proposed a probabilistic scheduling method for file request schedul-

ing, where each possibility of k servers is chosen with a certain probability that can

be optimized. In this work, we extend this scheduling approach, in the video con-

text, to a two-stage probabilistic scheduling which chooses k servers and one of the

parallel streams from each of these k servers. Further, the choice of video quality is

chosen independent of the scheduling and is chosen by a discrete probabilistic distri-

bution. Thus, the proposed scheduling and quality assignment do not account for the

current queue state making the approach manageable for analysis. In addition, our
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scheduling techniques can assign different weights for different video files (to reflect

their importance/popularity) to further prioritize some videos over the other, hence

improving the overall QoE metrics.

The data chunk transfer time in practical systems follows a shifted exponential

distribution [23,24] which motivates the choice that the service time distribution for

each video server is a shifted exponential distribution. Further, the request arrival

rates for each video is assumed to be Poisson. The video segments are encoded using

an (n, k) erasure code and the coded segments are placed on n different servers. When

a video file is requested, the segments need to be served from k out of n servers as

well as one of the parallel streams from each of the k servers. Using the two-stage

probabilistic scheduling and probabilistic quality assignment, the random variables

corresponding to the download times of different video segments from each server are

characterized. By using ordered statistics over the k parallel streams (one from each

of the chosen k servers), the random variables corresponding to the playback time of

each video segment are obtained. These are then used to find a bound on the mean

stall duration. Moment generating functions of the ordered statistics of different

random variables are used in the bound. We note that the problem of finding latency

for file download is very different from the video stall duration for streaming. This is

because the stall duration accounts for download time of each video segment rather

than only the download time of the last video segment. Moreover, in video streaming,

the download time of segments are correlated since the chunks download times from

a server are in sequence and the playback time of a video segment both depend on:

the playback time of the last segment and the download time of the current segment.

Taking these dependencies into account, this chapter characterizes the bound on the

mean stall duration and provides experimental results to show the tightness of this

bound.

In this chapter, a convex combination of mean stall duration and average video

quality is optimized over the choice of two-stage probabilistic scheduling, video quality

assignment, bandwidth allocation among different parallel streams, and the auxiliary
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variables in the bounds. Changing the convex combination parameter gives a tradeoff

between the mean stall duration and the average video quality. An efficient algorithm

is proposed to solve this non-convex problem. The proposed algorithm performs an

alternating optimization over the different parameters, where each sub-problem is

shown to have convex constraints and thus can be efficiently solved using iNner cOn-

Vex Approximation (NOVA) algorithm proposed in [57]. The proposed algorithm is

shown to converge to a stationary point. Based on the offline algorithm, an online

version of the algorithm is further developed. Evaluation results demonstrate signifi-

cant improvement of QoE metrics as compared to the considered baselines and some

queue-based online algorithms, e.g., [48], [46], and [47]. The key contributions of our

work in this chapter are summarized as follows.

• This chapter proposes a two-stage probabilistic scheduling for the choice of

servers and the parallel streams. Further, the video quality is chosen using a

discrete probability distribution.

• Two-stage probabilistic scheduling and quality assignment are used to find the

distribution of the (random) download time of a chunk of each video segment

from a parallel stream. Using ordered statistics, the random variable corre-

sponding to the playback time of each video segment is characterized. This is

further used to give bounds on the mean stall duration.

• The QoE metrics of mean stall duration and average video quality are used to

formulate an optimization problem over the two-stage probabilistic scheduling

access policy, probabilistic quality assignment, the bandwidth allocation weights

among the different streams, and the auxiliary bound parameters which are

related to the moment generating function. Efficient iterative solutions with

low time complexity are provided for these optimization problems. Based on

the offline policy, an online algorithm is proposed.

• The experimental results validate our theoretical analysis and demonstrate the

efficacy of our proposed algorithm. Further, numerical results show that the
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proposed algorithms converge within a few iterations. In addition, the QoE

metrics are shown to have significant improvements as compared to the consid-

ered baselines and some queue-based policies. Even for the minimum stall point,

the proposed algorithm gets better quality than the lowest quality. The tradeoff

between stalls and quality can be used by the service provider to effectively find

an operating point.

4.2 Chapter Organization

The remainder of this chapter is organized as follows. Section 4.3 presents the

system model used in this chapter with a description of video streaming over cloud

storage. Section 4.4 derives expressions for the download and play times of the chunks.

Section 4.6 formulates the QoE optimization problem as a weighted combination of

the two QoE metrics and proposes the iterative algorithmic solution of this problem.

Numerical results are provided in Section 4.8. Section 4.8 concludes this chapter with

pointing out to the key observations.

4.3 System Model

In this section, we describe the system model and the video encoding parameters.

Then, we explain the two-stage probabilistic scheduling and the queuing model.

4.3.1 System Description

We consider a distributed storage system consisting of m heterogeneous servers

(also called storage nodes), denoted by M = 1, 2, · · · ,m. Each server j can be

split into dj virtual outgoing parallel streams (queues) to the edge router, where

the server bandwidth is split among all dj parallel streams (PSs). This is depicted

in Fig. 4.1. The reason of having dj PSs is to serve dj video files simultaneously

from a server thus helping one file not to have files wait for the previous long video
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Fig. 4.1.: An Illustration of a distributed storage system equipped with m = 4 nodes.

Storage server j has dj streams to the edge router.
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Fig. 4.2.: A schematic illustrates video fragmentation and erasure-coding processes.

Video i is composed of Li segments. Each segment is partitioned into ki chunks and

then encoded using an (ni, ki) MDS code. The quality index is omitted in the figure

for simplicity.

files. This is a key difference for video streaming as compared to file download since

the deadline for the later video chunks are late thus motivating prioritizing earlier

chunks. This parallelization helps download multiple files in parallel which also delays

the finishing of download of the last chunks of multiple requests. Multiple users are

connected to edge-router, where we assume that the connection between user and

edge router is infinite and thus only consider the links from the server to the edge

router. Thus, we can consider edge router as an aggregation of multiple users. Let{
wj,νj ,∀j = 1, · · · ,m, νj = 1, · · · dj

}
be a set of dj non-negative weights representing

the split of bandwidth at server j on the dj PSs. The weights satisfy
∑dj

νj=1wj,νj ≤

1∀j. The sum of weights at all PSs can be smaller than 1, representing that the

bandwidth may not be completely utilized. By optimizing wj,νj , the server bandwidth

can be efficiently split among different PSs. Optimizing these weights help avoid

bandwidth under-utilization and congestion, for example, assigning larger bandwidth

to heavy workload PSs can help reduce mean stall duration.
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Each video file i, where i = 1, 2, · · · , r, is divided into Li equal segments, each of

length τ seconds. We assume that each video file is encoded to different qualities, i.e.,

` ∈ {1, 2, · · · , V }, where V are the number of possible choices for the quality level1.

The Li segments of video file i at quality ` are denoted as Gi,`,1, · · · , Gi,`,Li . Then, each

segment Gi,`,u for u ∈ {1, 2, . . . , Li} and ` ∈ {1, 2, · · · , V } is partitioned into ki fixed-

size chunks and then encoded using an (ni, ki) Maximum Distance Separable (MDS)

erasure code to generate ni distinct chunks for each segment Gi,`,u. These coded

chunks are denoted as C
(1)
i,`,u, · · · , C

(ni)
i,`,u. The encoding setup is illustrated in Figure

4.2. The encoded chunks for all quality levels are stored on the disks of ni distinct

storage nodes. The storage nodes chosen for quality level ` are represented by a set

S(`)
i , such that S(`)

i ⊆ M and ni =
∣∣∣S(`)

i

∣∣∣. Each server z ∈ S(`)
i stores all the chunks

C
(g)
i,`,u for all u and for some g. In other words, ni servers store the entire content, where

a server stores coded chunk g for all the video-chunks for some g or does not store

any chunk. We will use a probabilistic quality assignment strategy, where a chunk

of quality ` of size a` is requested with probability bi,` for all ` ∈ {1, 2, · · · , V }. We

further assume all the chunks of the video are fetched at the same quality level. The

decision variable of choosing the quality takes into account the network’s congestion,

link capacity and video weights/popularities. Note that ki = 1 indicates that the

video file i is replicated ni times.

4.3.2 Two-stage Probabilistic Scheduling

In order to serve the incoming request at the edge router, the video can be recon-

structed from the video chunks from any subset of ki-out-of-ni servers. Further, we

need to assign one of the dj PSs for each server j that is selected. We assume that

files at each PS are served in order of the request in a FIFO policy. However, the

1While a constant bitrate (quality) is assumed for each video i, our algorithm will first determine
whether the downloading of the highest resolution/quality can be supported by the link capacity
(resources) with an acceptable downloading delay and/or stalls. If yes, the video would be down-
loaded and played at the highest quality; otherwise, it would consider a further optimization for the
video content with the next lower bitrate/quality.
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proposed framework and the scheduling policies remain applicable for other queuing

disciplines as long as the waiting time in the queue is characterized (see reference [67]

for priority queuing based models). Further, the different video chunks in a video are

processed in order. In order to select the different PSs for video i and quality `, the

request goes to a set A(`)
i = {(j, νj) : j ∈ S(`)

i , νj ∈ {1, · · · , dj}}, with
∣∣∣A(`)

i

∣∣∣ = ki

and for every (j, νj) and (k, νk) in A(`)
i , j 6= k. Here, the choice of j represents the

server to choose and νj represents the PS selected. From each choice (j, νj) ∈ A(`)
i ,

all chunks C
(g)
i,`,u for all u and the value of g corresponding to that placed on server

j are requested from PS νj. The choice of optimal scheduling strategy, or set A(`)
i

is an open problem. In this part, we extend the probabilistic scheduling proposed

in [22,23] to two-stage probabilistic scheduling. The two-stage probabilistic schedul-

ing chooses every possible subset of ki-out-of-ni nodes with certain probability, and

for every chosen node j, chooses 1-out-of-dj PSs with certain probability. Let π
(`)
i,j,νj

is

the probability of requesting file i from the PS νj that belongs to server j for quality

level `. Thus, π
(`)
i,j,νj

is given by

π
(`)
i,j,νj

= q
(`)
i,j p

(`)
j,νj
, (4.1)

where q
(`)
i,j is the probability of choosing server j and p

(`)
j,ν is the probability of choosing

PS νj at server j. Following [22, 23], it can be seen that the two-stage probabilistic

scheduling gives feasible probabilities for choosing ki-out-of ni nodes and one-out-of-

dj PSs if and only if there exists conditional probabilities q
(`)
i,j ∈ [0, 1] and p

(`)
j,νj
∈ [0, 1]

satisfying
m∑
j=1

q
(`)
i,j = ki ∀i and q

(`)
i,j = 0 if j /∈ S(`)

i , (4.2)

and
dj∑
νj=1

p
(`)
j,νj

= 1 ∀j. (4.3)
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4.3.3 Queueing Model

We now describe a queuing model of the distributed storage system. We assume

that the arrival of requests at the edge router for each video i form an independent

Poisson process with a known rate λi. Using the two stage probabilistic scheduling

and the quality assignment probability distribution, the arrival of file requests at PS

νj at node j forms a Poisson Process with rate Λj,νj =
∑

i,` λiπ
(`)
i,j,νj

bi,` which is the

superposition of rdj Poisson processes each with rate λiπ
(`)
i,j,νj

bi,`. We assume that the

chunk service time for each coded chunk C
(g)
i,`,u at PS νj of server j, X

(`)
j,νj

, follows a

shifted exponential distribution as has been demonstrated in realistic systems [23,24]

and is given by the probability distribution function f
(`)
j,νj

(x), which is

f
(`)
j,νj

(x) =

 α
(`)
j,νj
e
−α(`)

j,νj

(
x−β(`)

j,νj

)
, x ≥ β

(`)
j,νj

0 , x < β
(`)
j,νj

. (4.4)

where β
(`)
j,νj

represents the shift of quality ` at server j and PS νj, while α
(`)
j,νj

represents

the rate of the exponential random part of a video streamed at quality ` if it is

streamed from server j and PS νj. We note that exponential distribution is a special

case with β
(`)
j,νj

= 0. Let M
(`)
j,νj

(t) = E
[
e
tX

(`)
j,νj

]
be the moment generating function of

X
(`)
j,νj

whose quality is `. Then, M
(`)
j,νj

(t) is given as

M
(`)
j,νj

(t) =
α

(`)
j,νj

α
(`)
j,νj
− t

e
β
(`)
j,νj

t
t < α

(`)
j,νj

(4.5)

Note that the value of β
(`)
j,νj

increases in proportion to the chunk size, and the value

of α
(`)
j,νj

decreases in proportion to the chunk size in the shifted-exponential service

time distribution. Further, the rate α
(`)
j,νj

is proportional to the assigned bandwidth

wj,νj . More formally, the parameters α
(`)
j,νj

and β
(`)
j,νj

are given as

α
(`)
j,νj

= αjwj,νj/a`, β
(`)
j,νj

= βja`, (4.6)

where αj and βj are constant service time parameters when a` = 1 and the entire

bandwidth is allocated to one PS. Since β
(`)
j,νj

mainly represents the read time and

other processing times, we assume that all PSs have the same value of β
(`)
j,νj

.
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We note that the arrival rates are given for video files, and the service rate above

is provided in terms of the coded chunks at each server. Also, the client plays the

video segment after all the ki chunks for the segment have been downloaded and the

previous segment has been played. We also assume that there is a start-up delay of ds

(in seconds) for the video which is the duration in which the content for the first chunk

can be buffered but not played. This part will characterize the mean stall duration

using two-stage probabilistic scheduling and probabilistic quality assignment.

4.4 Download and Play Times of the Chunks

In this section, we derive the expressions for download and play times. In order

to understand the stall duration, we need first to get the download time of different

coded chunks. Then, the play time of the different segments of the video can be

obtained accordingly.

4.4.1 Download Times of the Chunks from each Server

In this subsection, we will quantify the download time of chunk for video file i

from server j which has chunks C
(g)
i,`,u for all u = 1, · · ·Li. The download of C

(g)
i,`,u

consists of two components - the waiting time of the video files in the queue of the

PS before file i request and the service time of all chunks of video file i up to the gth

chunk. Let Wj,νj be the random variable corresponding to the waiting time of all the

video files in queue of PS νj at server j before file i request and Y
(g,`)
j,νj

be the (random)

service time of coded chunk g for file i with quality ` from PS νj at server j. Then,

the (random) download time for coded chunk u ∈ {1, · · · , Li} for file i at PS νj at

server j ∈ A(`)
i , D

(u,`)
i,j , is given as

D
(u,`)
i,j,νj

= Wj,νj +
u∑
v=1

Y
(v,`)
j,νj

. (4.7)

We will now find the distribution of Wj,νj . We note that this is the waiting time

for the video files whose arrival rate is given as Λj,νj =
∑

i,` λibi,`π
(`)
i,j,νj

. In order to
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find the waiting time, we would need to find the service time statistics of the video

files. Note that f
(`)
j,νj

(x) gives the service time distribution of only a chunk and not of

the video files.

Video file i of quality ` consists of Li coded chunks at PS νj at server j (j ∈ S(`)
i ).

The total service time for video file i with quality ` at PS νj at server j if requested

from server j, ST
(`)
i,j,νj

, is given as

ST
(`)
i,j,νj

=

Li∑
v=1

Y
(v,`)
j,νj

. (4.8)

The service time of the video files is given as

Rj,νj =

{
ST

(`)
i,j,νj

with probability
π
(`)
i,j,νj

λibi,`

Λj,νj
∀i, `, j, νj (4.9)

since the service time is ST
(`)
i,j,νj

when file i is requested at quality ` from PS νj from

server j. Let Rj,νj(s) = E[e−sRj,νj ] be the Laplace-Stieltjes Transform of Rj,νj .

Lemma 4 The Laplace-Stieltjes Transform of Rj,νj , Rj,νj(s) = E
[
e−sRj,νj

]
is given

as

Rj,νj(s) =
r∑
i=1

V∑
`=1

π
(`)
i,j,νj

λibi,`

Λj,νj

α(`)
j,νj
e
−β(`)

j,νj
s

α
(`)
j,νj

+ s

Li

(4.10)

Proof

Rj,νj(s) =
r∑
i=1

V∑
`=1

π
(`)
i,j,νj

λibi,`

Λj,νj

E
[
e
−s
(
ST

(`)
i,j,νj

)]

=
r∑
i=1

V∑
`=1

π
(`)
i,j,νj

λibi,`

Λj,νj

E
[
e
−s
(∑Li

ν=1 Y
(ν,`)
j,νj

)]

=
r∑
i=1

V∑
`=1

π
(`)
i,j,νj

λibi,`

Λj,νj

(
E
[
e
−s
(
Y

(1,`)
j,νj

)])Li

=
r∑
i=1

V∑
`=1

π
(`)
i,j,νj

λibi,`

Λj,νj

α(`)
j,νj
e
−β(`)

j,νj
s

α
(`)
j,νj

+ s

Li

(4.11)
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Note that the service times of chunks are independent. Since we have Li chunks

for video file i, the MGF of the service time of video file i is the product of the MGF

of chunk service times, as shown in (4.11).

Corollary 2 The moment generating function for the service time of video files when

requested from server j and PS νj, Bj,νj(t), is given as

Bj,νj(t) =
r∑
i=1

V∑
`=1

π
(`)
i,j,νj

λibi,`

Λj,νj

α(`)
j,νj
e
β
(`)
j,νj

t

α
(`)
j,νj
− t

Li

(4.12)

for any t > 0, and t < αj,νj .

Proof This corollary follows from (4.10) by setting t = −s.

The server utilization for the video files at PS νj of server j is given as ρj,νj =

Λj,νjE
[
Rj,νj

]
. Since E

[
Rj,νj

]
= B′j,νj(0), using Lemma 4, we have

ρj,νj =
r∑
i=1

V∑
`=1

π
(`)
i,j,νj

λibi,`Li

(
β

(`)
j,νj

+
1

α
(`)
j,νj

)
. (4.13)

Having characterized the service time distribution of the video files via a Laplace-

Stieltjes Transform Rj,νj(s), the Laplace-Stieltjes Transform of the waiting time Wj,νj

can be characterized using Pollaczek-Khinchine formula for M/G/1 queues [59], since

the request pattern is Poisson and the service time is general distributed. Thus, the

Laplace-Stieltjes Transform of the waiting time Wj,νj is given as

E
[
e−sWj,νj

]
=

(
1− ρj,νj

)
s

s− Λj,νj

(
1−Rj,νj(s)

) (4.14)

By characterizing the Laplace-Stieltjes Transform of the waiting time Wj,νj and

knowing the distribution of Y
(v,`)
j,νj

, the Laplace-Stieltjes Transform of the download

time D
(u,`)
i,j,νj

is given as

E[e
−sD(u,`)

i,j,νj ] =

(
1− ρj,νj

)
s

s− Λj,νj

(
1−Rj,νj(s)

)
α(`)

j,νj
e
−β(`)

j,νj
s

α
(`)
j,νj

+ s

u

. (4.15)
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We note that the expression above holds only in the range of s when s−Λj,νj

(
1−Rj,νj(s)

)
>

0 and α
(`)
j,νj

+ s > 0. Further, the server utilization ρj,νj must be less than 1. The

overall download time of all the chunks for the segment Gi,u,` at the client, D
(u,`)
i , is

given by

D
(u,`)
i = max

(j,νj)∈Ai
D

(u,`)
i,j,νj

. (4.16)

4.4.2 Play Time of Each Video Segment

Let T
(u,`)
i be the time at which the segment Gi,`,u is played (started) at the client.

The startup delay of the video is ds. Then, the first segment can be played at the

maximum of the time the first segment can be downloaded and the startup delay.

Thus,

T
(1,`)
i = max

(
ds, D

(1,`)
i

)
. (4.17)

For 1 < u ≤ Li, the play time of segment u of file i is given by the maximum of the

time it takes to download the segment and the time at which the previous segment is

played plus the time to play a segment (τ seconds). Thus, the play time of segment

u of file i, T
(u,`)
i can be expressed as

T
(u,`)
i = max

(
T

(u−1,`)
i + τ, D

(u,`)
i

)
. (4.18)

Equation (4.18) gives a recursive equation, which can yield

T
(Li,`)
i = max

(
T

(Li−1,`)
i + τ, D

(Li,`)
i

)
= max

(
T

(Li−2,`)
i + 2τ, D

(Li−1,`)
i + τ, D

(Li,`)
i

)
= max

(
Fj,1,νj ,`,

Li+1
max
z=2

D
(z−1,`)
i + (Li− z+ 1)τ

)
(4.19)
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where

Fj,z,νj ,` =


ds + (Li − 1) τ , z = 1

D
(z−1,`)
i,j,νj

+ (Li − z + 1)τ , 2 ≤ z ≤ (Li + 1)

. (4.20)

Since D
(u,`)
i = max

(`)

(j,νj)∈A
(`)
i

D
(u,`)
i,j,νj

from (4.16), T
(Li,`)
i can be written as

T
(Li,`)
i =

Li+1
max
z=1

max
(j,νj)∈Ai

(
Fj,z,νj ,`

)
. (4.21)

We next give the moment generating function of Fj,z,νj ,` that will be used in the

calculations of the mean stall duration in the next section.

Lemma 5 The moment generating function for Fj,z,νj ,`, is given as

E
[
etFj,z,νj ,`

]
=


et(ds+(Li−1)τ) , z = 1

et(Li+1−z)τZ
D

(z−1,`)
i,j,νj

(t) , 2 ≤ z ≤ Li + 1
(4.22)

where

Z
D

(u,`)
i,j,νj

(t) = E[e
tD

(u,`)
i,j,νj ] =

(
1− ρj,νj

)
ti

(
M

(`)
j,νj

(ti)
)u

ti − Λj,νj

(
Bj,νj(ti)− 1

) (4.23)

Proof This follows by substituting t = −s in (4.15) and Bj,νj(ti) is given by (4.12)

and M
(`)
j,νj

(ti) is given by (4.5). This expression holds when ti−Λj,νj

(
Bj,νj(ti)− 1

)
> 0

and ti < 0 ∀j, νj, since the moment generating function does not exist if the above do

not hold.

Ideally, the last segment should have started played by time ds + (Li − 1)τ . The

difference between T
(Li,`)
i and ds + (Li − 1)τ gives the stall duration. We note that

T
(Li,`)
i is not the download time of the last segment, but the play time of the last

segment and accounts for the download of all the Li segments. This is a key difference

as compared to the file download since the download time of each segment of the
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video has to be accounted for computing stall duration. Also, note that the stalls

may occur before any segment. This difference will give the sum of durations of all

the stall periods before any segment. Thus, the stall duration for the request of video

file i of quality `, i.e., Γ(i,`), is given as

Γ(i,`) = T
(Li,`)
i − ds − (Li − 1)τ. (4.24)

In the next section, we will use this stall time to determine the bound on the mean

stall duration of the streamed video.

4.5 Mean Stall Duration

In this section, we will provide a bound on the mean stall duration for a file i. We

will find the bound by two-stage probabilistic scheduling and since this scheduling is

one feasible strategy, the obtained bound is an upper bound to the optimal strategy.

Using (4.24), the expected stall time for file i is given as follows

E
[
Γ(i,`)

]
= E

[
T

(Li,`)
i − ds − (Li − 1) τ

]

= E
[
T

(Li,`)
i

]
− ds − (Li − 1) τ (4.25)

Exact evaluation for the play time of segment Li is hard due to the dependencies

between Fj,z,νj ,` random variables for different values of j, νj, z, and `, where z ∈

(1, 2, ..., Li + 1) and (j, νj) ∈ A(`)
i . Hence, we derive an upper-bound on the playtime

of the segment Li as follows. Using Jensen’s inequality [60], we have for ti > 0,

e
tiE
[
T

(Li,`)
i

]
≤ E

[
etiT

(Li,`)
i

]
. (4.26)

Thus, finding an upper bound on the moment generating function for T
(Li,`)
i can

lead to an upper bound on the mean stall duration. Thus, we will now bound the

moment generating function for T
(Li,`)
i .
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E
[
etiT

(Li,`)
i

]
(a)
= E

[
max
z

max
(j,νj)∈A

(`)
i

etiFj,z,νj ,`

]
(4.27)

= EA(`)
i

[
E

[
max
z

max
(j,νj)∈Ai(`)

etiFj,z,νj ,` | A(`)
i

]]
(4.28)

(b)

≤ EA(`)
i

 ∑
(j,νj)∈A

(`)
i

E
[
max
z
etiFj,z,νj ,`

] (4.29)

= EA(`)
i

∑
(j,νj)

Fi,j,νj ,`1
{

(j,νj)∈A
(`)
i

}
 (4.30)

=
∑
(j,νj)

Fi,j,νj ,` EA(`)
i

[
1{

(j,νj)∈A
(`)
i

}] (4.31)

=
∑
(j,νj)

Fi,j,νj ,` P
(

(j, νj) ∈ A(`)
i

)
(4.32)

(c)
=

m∑
j=1

dj∑
νj=1

Fi,j,νj ,`π
(`)
i,j,νj

(4.33)

where (a) follows from (4.21), (b) follows by upper bounding max
(j,νj)∈A

(`)
i

by
∑

(j,νj)∈A
(`)
i

,

(c) follows by two-stage probabilistic scheduling where P
(

(j, νj) ∈ A(`)
i

)
= π

(`)
i,j,νj

, and

Fi,j,νj ,` , E
[
max
z
etiFi,z,νj ,`

]
. Recall that this choice is feasible as illustrated in [22,23].

We note that the only inequality here is for replacing the maximum by the sum. Since

this term will be inside the logarithm for the mean stall latency, the gap between the

term and its bound becomes additive rather than multiplicative.
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To use the bound (A.74), Fi,j,νj ,` needs to be bounded too. Thus, an upper bound

on Fi,j,νj ,` is calculated as follows.

Fi,j,νj ,` = E
[
max
z
etiFj,z,νj ,`

]
(d)

≤
∑
z

E
[
etiFj,z,νj ,`

]
(e)
= eti(ds+(Li−1)τ) +

Li+1∑
z=2

eti(Li−z+1)τ
(
1− ρj,νj

)
ti

ti − Λj,νj

(
Bj,νj(ti)− 1

)
α(`)

j,νj
e
tiβ

(`)
j,νj

α
(`)
j,νj
− ti

z−1

(f)
= eti(ds+(Li−1)τ) +

Li∑
v=1

eti(Li−v)τ
(
1− ρj,νj

)
ti

ti − Λj,νj

(
Bj,νj(ti)− 1

)
α(`)

j,νj
e
tiβ

(`)
j,νj

α
(`)
j,νj
− ti

v

(4.34)

where (d) follows by bounding the maximum by the sum, (e) follows from (4.22), and

(f) follows by substituting v = z − 1.

Substituting (A.74) in (A.73), we have

E
[
T

(Li,`)
i

]
≤ 1

ti
log

 m∑
j=1

dj∑
νj=1

π
(`)
i,j,νj

Fi,j,νj ,`

 . (4.35)

Further, substituting the bounds (A.3) and (4.35) in (A.72), the mean stall dura-

tion is bounded as follows.

E
[
Γ(i,`)

]
≤ 1

ti
log
(∑m

j=1

∑dj
νj=1 π

(`)
i,j,νj

(
eti(ds+(Li−1)τ) +

∑Li
v=1 e

ti(Li−ν)τ
)
Z

(v,`)
Di,j,νj

(ti)

− (ds + (Li − 1) τ))

= 1
ti

log
(∑m

j=1

∑dj
νj=1 π

(`)
i,j,νj

(
eti(ds+(Li−1)τ) +

∑Li
v=1 e

ti(Li−v)τZ
(v,`)
Di,j,νj

(ti)
)

− 1
ti

log
(
eti(ds+(Li−1)τ)

)
= 1

ti
log
(∑m

j=1

∑dj
νj=1 π

(`)
i,j,νj

(
1 +

∑Li
v=1 e

−ti(ds+(v−1)τ)Z
(v,`)
Di,j,νj

(ti)
)
, (4.36)

where Z
(v,`)
Di,j,νj

(ti) ,
(1−ρj,νj)tiBj,νj (ti)

ti−Λj,νj(Bj,νj (ti)−1)

α
(`)
j,νj

e
tiβ

(`)
j,νj

α
(`)
j,νj
−ti

v

.

Let Hi,j,νj ,` =
∑Li

v=1 e
−ti(ds+(v−1)τ)Z

(v,`)
Di,j,νj

(ti), which is the inner summation in

(4.36). Hi,j,νj ,` can be simplified using the geometric series formula to obtain
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Hi,j,νj ,` =

Li∑
v=1

e−ti(ds+(v−1)τ)
(
1− ρj,νj

)
ti

ti − Λj,νj

(
Bj,νj(ti)− 1

)
α(`)

j,νj
e
tiβ

(`)
j,νj

α
(`)
j,νj
− ti

v (4.37)

=
e−tids

(
1− ρj,νj

)
ti

ti − Λj,νj

(
Bj,νj(ti)− 1

) × Li∑
v=1

e−ti(v−1)τ

α(`)
j,νj
e
tiβ

(`)
j,νj

α
(`)
j,νj
− ti

v (4.38)

=
e−ti(ds−τ)

(
1− ρj,νj

)
ti

ti − Λj,νj

(
Bj,νj(ti)− 1

) × Li∑
v=1

e−v(tiτ)

α(`)
j,νj
e
tiβ

(`)
j,νj

α
(`)
j,νj
− ti

v (4.39)

=
e−ti(ds−τ)

(
1− ρj,νj

)
ti

ti − Λj,νj

(
Bj,νj(ti)− 1

) × Li∑
v=1

α(`)
j,νj
e
tiβ

(`)
j,νj
−tiτ

α
(`)
j,νj
− ti

v

(4.40)

=
e−ti(ds−τ)

(
1− ρj,νj

)
ti

ti − Λj,νj

(
Bj,νj(ti)− 1

) ×
M (`)

j,νj
(ti)e

−tiτ
1−

(
M

(`)
j,νj

(ti)
)Li

e−tiLiτ

1−M (`)
j,νj

(ti)e−tiτ


(4.41)

=
e−ti(ds−τ)

(
1− ρj,νj

)
ti

ti − Λj,νj

(
Bj,νj(ti)− 1

) ×
M̃

(`)
j,νj

(ti)

(
1−

(
M̃

(`)
j,νj

(ti)
)Li)

1− M̃ (`)
j,νj

(ti)

 (4.42)

where

M̃
(`)
j,νj

(ti) = M
(`)
j,νj

(ti)e
−tiτ , (4.43)

M
(`)
j,νj

(ti) is given in (4.5), and Bj,νj(ti) is given in (4.12).

Theorem 4.5.1 The mean stall duration time for file i streamed with quality ` is

bounded by

E
[
Γ(i,`)

]
≤ 1

ti
log

 m∑
j=1

dj∑
νj=1

π
(`)
i,j,νj

(
1 +Hi,j,νj ,`

) (4.44)

for any ti > 0, ρj,νj =
∑

i,` π
(`)
i,j,νj

λibi,`Li

(
β

(`)
j,νj

+ 1

α
(`)
j,νj

)
, ρj,νj < 1, and

∑r
f=1

∑V
`=1 π

(`)
f,j,νj

λfbf,`

α
(`)
j,νj

e
−β(`)

j,νj
ti

α
(`)
j,νj
−ti

Lf

−
(
Λj,νj + ti

)
< 0, ∀j, νj.
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Note that Theorem above holds only in the range of ti when ti−Λj,νj

(
Bj,νj(ti)− 1

)
>

0 which reduces to∑r
f=1

∑V
`=1 π

(`)
f,j,νj

λfbf,`

α
(`)
j,νj

e
−β(`)

j,νj
ti

α
(`)
j,νj
−ti

Lf

−
(
Λj,νj + ti

)
< 0, ∀i, j, νj, and αj,νj−ti > 0.

Further, the server utilization ρj,νj must be less than 1 for stability of the system.

4.6 Optimization Problem Formulation and Proposed Algorithm

We are now ready to formulate the joint stall-quality optimization problem and

explain the proposed algorithm to efficiently solve it.

4.6.1 Problem Formulation

Let q = (q
(`)
i,j , ∀i = 1, . . . , r, j = 1, · · · ,m, ` = 1, . . . , V ), b = (bi,`, ∀i = 1, · · · , r, l =

1, · · · , V ), w =
(
wj,νj , ∀j = 1, · · · ,m, νj = 1, · · · , dj

)
,

p =
(
p

(`)
j,νj
, ∀j = 1, · · · ,m, νj = 1, · · · dj, ` = 1, · · · , V

)
, and t = (t1, t2, · · · , tr). We

wish to minimize the two proposed QoE metrics over the choice of two-stage proba-

bilistic scheduling parameters, bandwidth allocation, probability of the quality of the

streamed video and auxiliary variables. Since this is a multi-objective optimization,

the objective can be modeled as a convex combination of the two QoE metrics.

Let λ =
∑

i λi be the total arrival rate of file i. Then, λi/λ is the ratio of video

i requests. The first objective is the minimization of the mean stall duration, aver-

aged over all the file requests, and is given as
∑

i,`
λi
λ
E
[
Γ(i,`)

]
. The second objective

is maximizing the streamed quality of all video requests, averaged over all the file

requests, and is given as
∑

i,`
λi
λ
Libi,`a`. Using the expressions for the mean stall

duration in Section A.19 and the average streamed quality, optimization of a convex

combination of the two QoE metrics can be formulated as follows.
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min
r∑
i=1

λi

λi

[
θ

(
V∑
`=1

−bi,`Lia`

)
+ (1− θ)× ]

∑
`

bi,`
ti

log

 m∑
j=1

dj∑
νj=1

q
(`)
i,j p

(`)
j,νj

(1 +Hi,j,νj ,`)

 (4.45)

subject to: (4.46)

(4.42), (4.43), (4.5), (4.12), (4.13), (A.12), (4.6), (4.47)

ρj,νj < 1 ∀j, νj (4.48)

Λj,νj =
r∑

f=1

V∑
`=1

λfbf,`q
(`)
i,j p

(`)
j,νj

∀j, νj (4.49)

m∑
j=1

q
(`)
i,j = ki , ∀i, ` (4.50)

q
(`)
i,j =0 if j /∈ S(`)

i , q
(`)
i,j ∈ [0, 1] (4.51)∑

νj

p
(`)
j,νj

= 1, p
(`)
j,νj
≥ 0, ∀j, νj, `, (4.52)

∑
`

bi,` = 1, bi,` ≥ 0, ∀i, ` (4.53)

0 ≤ wj,νj ≤ 1, ∀j, νj (4.54)∑
νj

wj,νj ≤ 1, ∀j, (4.55)

0 < ti < α
(`)
j,νj
, ∀i, j, `, νj (4.56)

α
(`)
j,νj

(
e

(β
(`)
j,νj
−τ)ti − 1

)
+ ti < 0 ,∀i, j, νj, ` (4.57)

r∑
f=1

V∑
`=1

q
(`)
f,jp

(`)
j,νj
bf,`λf

α(`)
j,νj
e
β
(`)
j,νj

ti

α
(`)
j,νj
− ti

Lf

−

(
Λj,νj + ti

)
< 0, ∀i, j, νj (4.58)

var. q, t, b,w,p (4.59)

Here, θ ∈ [0, 1] is a trade-off factor that determines the relative significance of the

mean stall duration and the average streamed quality in the minimization problem.

Varying θ = 0 to θ = 1, the solution for (4.45) spans the solutions that maximize
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the video quality to those minimizing the mean stall duration. The equations (4.42),

(4.43), (4.5), (4.12), (4.13), (A.12), and (4.6) give the terms in the objective function.

The constraint (4.48) indicates that the load intensity of server j is less than 1.

Equation (4.49) gives the aggregate arrival rate Λj for each node. Constraints (4.51),

(4.51), and (4.52) guarantee that the two-stage scheduling probabilities are feasible.

Constraint (4.53) guarantees that the quality assignment probabilities are feasible

and (4.55) is for bandwidth splitting among different streams. Constraints (4.56),

(4.57), and (4.58) ensure that M̃j(t) and the moment generating function given in

(4.23) exist. In the next subsection, we will describe the proposed algorithm for this

optimization problem.

4.6.2 Proposed Algorithm

The mean stall duration optimization problem given in (4.45)-(4.59) is optimized

over five set of variables: server scheduling probabilities q, PS selection probabilities p,

auxiliary parameters t, video quality parameters b, and bandwidth allocation weights

w. We first note that the problem is non-convex in all the parameters jointly, which

can be easily seen in the terms which are product of the different variables. Since the

problem is non-convex, we propose an iterative algorithm to solve the problem. The

proposed algorithm divides the problem into five sub-problems (i.e., convex problems

and thus easy to solve with low complexity) that optimize one variable while fixing the

remaining four. The five sub-problems are labeled as (i) Server Access Optimization:

optimizes q, for given p, t, b and w, (ii) PS Selection Optimization: optimizes p, for

given q, t, b and w, (iii) Auxiliary Variables Optimization: optimizes t for given q,

p, b and w, and (iv) Video Quality Optimization: optimizes b for given q, p, t, and

w, and (v) Bandwidth Allocation Optimization: optimizes w for given q, p, t, and

b. The algorithm is summarized as follows.

1. Initialization: Initialize t, b, w, p, and q in the feasible set.

2. While Objective Converges
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(a) Run Server Access Optimization using current values of p, t, b, and w to

get new values of q

(b) Run PS Selection Optimization using current values of q, t, b, and w to

get new values of p

(c) Run Auxiliary Variables Optimization using current values of q, p, b, and

w to get new values of t

(d) Run Streamed Quality Optimization using current values of q, p, t, and

w to get new values of b.

(e) Run Bandwidth Allocation Optimization using current values of q, p, t,

and b to get new values of w.

We next describe the five sub-problems along with the proposed solutions for the

sub-problems.

Server Access Optimization

Given the probability distribution of the streamed video quality, the bandwidth

allocation weights, the PS selection probabilities, and the auxiliary variables, this

subproblem can be written as follows.

Input: t, b, p, and w

Objective: min (4.45)

s.t. (4.48), (4.49), (4.51), (4.51), (4.58)

var. q

In order to solve this problem, we have used iNner cOnVex Approximation (NOVA)

algorithm proposed in [57] to solve this sub-problem. The key idea for this algorithm is

that the non-convex objective function is replaced by suitable convex approximations

at which convergence to a stationary solution of the original non-convex optimization

is established. NOVA solves the approximated function efficiently and maintains fea-

sibility in each iteration. The objective function can be approximated by a convex
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one (e.g., proximal gradient-like approximation) such that the first order properties

are preserved [57], and this convex approximation can be used in NOVA algorithm.

Let Ũq (q; qν) be the convex approximation at iterate qν to the original non-convex

problem U (q), where U (q) is given by (4.45). Then, a valid choice of Ũq (q; qν) is

the first order approximation of U (q), e.g., (proximal) gradient-like approximation,

i.e.,

Ũq (q, qν) = ∇qU (qν)T (q − qν) +
τu
2
‖q − qν‖2 , (4.60)

where τu is a regularization parameter. Note that all the constraints (4.48), (4.49),

(4.51), (4.51), and (4.58) are linear in qi,j . The NOVA Algorithm for optimizing q is

described in Algorithm 3 (given in Appendix A.6). Using the convex approximation

Ũq (q; qν), the minimization steps in Algorithm 3 are convex, with linear constraints

and thus can be solved using a projected gradient descent algorithm with low com-

plexity and small timing overhead. A step-size (γ) is also used in the update of the

iterate qν . Note that the iterates
{
q(ν)
}

generated by the algorithm are all feasible

for the original problem and, further, convergence is guaranteed, as shown in [57] and

described in lemma 21.

In order to use NOVA, there are some assumptions (given in [57]) that have to be

satisfied in both original function and its approximation. These assumptions can be

classified into two categories. The first category is the set of conditions that ensure

that the original problem and its constraints are continuously differentiable on the

domain of the function, which are satisfied in our problem. The second category is

the set of conditions that ensures that the approximation of the original problem is

uniformly strongly convex on the domain of the function. The latter set of conditions

are also satisfied as the chosen function is strongly convex and its domain is also

convex. To see this, we need to show that the constraints (4.48), (4.49), (4.51),

(4.51), (4.58) form a convex set in q which is easy to see from the linearity of the

constraints in q. Further details on the assumptions and function approximation can

be found in [57]. Therefore, the following result holds.
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Lemma 6 For fixed b, p, w, and t, the optimization of our problem over q generates

a sequence of decreasing objective values and therefore is guaranteed to converge to a

stationary point.

Auxiliary Variables Optimization

Given the probability distribution of the streamed video quality, the bandwidth

allocation weights, the PS selection probabilitites and the server scheduling probabil-

ities, this subproblem can be written as follows.

Input: q, p, b, and w

Objective: min (4.45)

s.t. (4.56), (4.57), (4.58)

var. t

Similar to Access Optimization, this optimization can be solved using NOVA

algorithm. The constraint (4.56) is linear in t. Further, the next two Lemmas show

that the constraints (4.57) and (4.58) are convex in t, respectively.

Lemma 7 The constraint (4.57) is convex with respect to t.

Proof The constraint (4.57) is separable for each ti and thus it is enough to prove

convexity of C(t) = αj,νj

(
e(βj,νj−τ)t − 1

)
+ t. Thus, it is enough to prove that

C ′′(t) ≥ 0.

The first derivative of C(t) is given as

C ′(t) = αj,νj

((
βj,νj − τ

)
e(βj,νj−τ)t

)
+ 1 (4.61)

Differentiating it again, we get the second derivative as follows.

C ′′(t) = αj,νj
(
βj,νj − τ

)2
e(βj,νj−τ)t (4.62)

Since αj,νj ≥ 0, C ′′(t) given in (A.9) is non-negative, which proves the Lemma.

Lemma 8 The constraint (4.58) is convex with respect to t.
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Proof The constraint (4.58) is separable for each ti, and thus it is enough to prove

convexity of

E(t) =
∑r

f=1 πf,j,νjλfbf,`a`

(
αj,νj e

βj,νj
t

αj,νj−t

)Lf
−
(
Λj,νj + t

)
for t < αj,νj . Thus, it is enough

to prove that E ′′(t) ≥ 0 for t < αj,νj . We further note that it is enough to prove that

D′′(t) ≥ 0, where D(t) = e
Lfβj,νj

t

(αj,νj−t)
Lf

. This follows since

D
′
(t) =

Lfe
Lfβj,νj t

[
βj,νj +

(
αj,νj − t

)−1
]

(
αj,νj − t

)Lf ≥ 0

D
′′
(t) =

Lfβj,νje
Lfβj,νj t

[
βj,νj +

1+Lf
αj,νj−t

(
1 +

1/βj,νj
αj,νj−t

)]
(
αj,νj − t

)Lf+2
≥ 0

Algorithm 4 (given in Appendix A.6) shows the used procedure to solve for t.

Let U (t; tν) be the convex approximation at iterate tν to the original non-convex

problem U (t), where U (t) is given by (4.45), assuming other parameters constant.

Then, a valid choice of U (t; tν) is the first order approximation of U (t), i.e.,

U (t, tν) = ∇tU (tν)T (t− tν) +
τt
2
‖t− tν‖2 . (4.63)

where τt is a regularization parameter. The detailed steps can be seen in Algorithm

4. Since all the constraints (4.56), (4.57), and (4.58) have been shown to be convex in

t, the optimization problem in Step 1 of Algorithm 4 can be solved by the standard

projected gradient descent algorithm.

Lemma 9 For fixed q, b, w, and p, the optimization of our problem over t generates

a sequence of monotonically decreasing objective values and therefore is guaranteed to

converge to a stationary point.

Streamed Video Quality Optimization

Given the auxiliary variables, the bandwidth allocation weights, the PS selection

probabilities, and the scheduling probabilities, this subproblem can be written as

follows.
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Input: q, p, t, and w

Objective: min (4.45)

s.t. (4.48), (4.49), (4.53), (4.58)

var. b

Similar to the aforementioned two Optimization problems, this optimization can

be solved using NOVA algorithm. The constraints (4.48), (4.49), (4.53), and (4.58)

are linear in b, and hence, form a convex domain.

Algorithm 5 (given in Appendix A.6) shows the used procedure to solve for b.

Let Ub (b; bν) be the convex approximation at iterate bν to the original non-convex

problem U (b), where U (b) is given by (4.45), assuming other parameters constant.

Then, a valid choice of Ub (b; bν) is the first order approximation of U (b), i.e.,

Ub (b, bν) = ∇bU (bν)T (b− bν) +
τb
2
‖b− bν‖2 . (4.64)

where τt is a regularization parameter. The detailed steps can be seen in Algorithm

5. Since all the constraints have been shown to be convex in b, the optimization

problem in Step 1 of Algorithm 5 can be solved by the standard projected gradient

descent algorithm.

Lemma 10 For fixed t, w, p, and q, the optimization of our problem over b gener-

ates a sequence of monotonically decreasing objective values and therefore is guaran-

teed to converge to a stationary point.

Bandwidth Allocation Weights Optimization

Given the auxiliary variables, the streamed video quality probabilities, the PS se-

lection probabilities, and the scheduling probabilities, this subproblem can be written

as follows.

Input: q, p, t, and b

Objective: min (4.45)

s.t. (4.48), (4.54), (4.55), (4.58)
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var. w

This optimization problem can be solved using NOVA algorithm. It is easy to

notice that the constraints (4.54) and (4.55) are linear and thus convex with respect

to b. Further, the next two Lemmas show that the constraints (4.48) and (4.58) are

convex in w, respectively.

Lemma 11 The constraint (4.48) is convex with respect to w.

Proof Since there is no coupling between the subscripts j, `, and νj in (4.48), we

remove the subscripts in the rest of the proof. Moreover, since α is linear in w, it

is enough to prove the convexity with respect to α. Also, the constraint (4.48) is

separable for each α and thus it is enough to prove convexity of C1(α) = 1/α. It is

easy to show that the second derivative of C1(α) with respect to α is given by

C
′′

1 (α) =
2

α3
(4.65)

Since α ≥ 0, C
′′
1 (α) given in (4.65) is non-negative, which proves the Lemma.

Lemma 12 The constraint (4.58) is convex with respect to w.

Proof The constraint (4.58) is separable for each α`j,νj , and thus it is enough to

prove convexity of

E1(α
(`)
j,νj

) =
∑r

f=1

∑V
`=1 π

(`)
f,j,νj

λfbf,`

α
(`)
j,νj

e
β
(`)
j,νj

t

α
(`)
j,νj
−t

Lf

−
(
Λj,νj + t

)
for t < α

(`)
j,νj

. Since

there is only a single index j, νj, and ` here, we ignore the subscripts and superscripts

for the rest of this proof. Thus, it is enough to prove that E ′′1 (α) ≥ 0 for t < α. We

further note that it is enough to prove that D′′1(α) ≥ 0, where D1(α) =
(
1− t

α

)−Li .
This holds since,

D
′

1(α) =
−Li × t
α2

(
α

α− t

)Li+1

(4.66)

D
′′

1 (α) =
Li × t
α3

(
α

α− t

)Li+1 [
2 +

α (Li + 1)

αj − t

]
≥ 0 (4.67)
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Algorithm 5 (given in Appendix A.17) shows the used procedure to solve for w.

Let Uw (w;wν) be the convex approximation at iterate wν to the original non-convex

problem U (w), where U (w) is given by (4.45), assuming other parameters constant.

Then, a valid choice of Uw (w;wν) is the first order approximation of U (w), i.e.,

Uw (w,wν) = ∇wU (wν)T (w −wν) +
τw
2
‖w −wν‖2 . (4.68)

where τt is a regularization parameter. The detailed steps can be seen in Algorithm

5. Since all the constraints have been shown to be convex, the optimization problem

in Step 1 of Algorithm 5 can be solved by the standard projected gradient descent

algorithm.

Lemma 13 For fixed q, p, t, and b, the optimization of our problem over w gener-

ates a sequence of decreasing objective values and therefore is guaranteed to converge

to a stationary point.

PS Selection Probabilities

Given the auxiliary variables, the bandwidth allocation weights, the streamed

video quality probabilities, and the scheduling probabilities, this subproblem can be

written as follows.

Input: q, b, t, and w

Objective: min (4.45)

s.t. (4.48), (4.49), (4.52), (4.58),

var. p

This optimization can be solved using NOVA algorithm. The constraints (4.48),

(4.49), (4.52), and (4.58) are linear in p, and hence, the domain is convex.

Algorithm 6 (given in Appendix A.17) shows the used procedure to solve for p.

Let Up (p;pν) be the convex approximation at iterate pν to the original non-convex
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problem U (p), where U (p) is given by (4.45), assuming other parameters constant.

Then, a valid choice of Up (p;pν) is the first order approximation of U (p), i.e.,

Up (p,pν) = ∇pU (pν)T (p− pν) +
τp
2
‖p− bν‖2 . (4.69)

where τp is a regularization parameter. The detailed steps can be seen in Algorithm

6. Since all the constraints have been shown to be convex in p, the optimization

problem in Step 1 of Algorithm 6 can be solved by the standard projected gradient

descent algorithm.

Lemma 14 For fixed t, w, b, and q, the optimization of our problem over p gener-

ates a sequence of monotonically decreasing objective values and therefore is guaran-

teed to converge to a stationary point.

Proposed Algorithm Convergence

We first initialize q
(`)
i,j , p

(`)
j,νj

, wj,νj , ti and bi,`, ∀ i, j, νj, ` such that the choice is feasi-

ble for the problem. Then, we do alternating minimization over the five sub-problems

defined above. Since each sub-problem converges (decreasing) and the overall problem

is bounded from below, we have the following result.

Theorem 4.6.1 The proposed algorithm converges to a stationary solution.

4.6.3 Online Algorithm

While our proposed algorithm is optimized for an offline scenario, an online version

of this algorithm can be derived according to the stationary scheduling probabilities

and optimized probabilities. The arrival rates λi can be estimated based on a window

based method. In this setting, a window size of ∆W is chosen, and the decisions in

a window are based on the estimated arrival rates from the preceding window. Using

these estimated arrival rates, the solution for the optimization problem in (4.45) gives
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the optimal offline parameters (i.e., two-stage scheduling probabilities and quality de-

cisions). According to these stationary scheduling probabilities, a randomized online

policy can be obtained.

4.6.4 Time Complexity of the Offline Algorithm

In this section, we explain the time complexity of both online and offline algo-

rithms. In the offline version, we solve in an alternative manner five sub-problems.

Each problem is a approximated by a convex one. We use NOVA [57] to solve every

sub-problem, which has been shown to converge in a few iterations. In addition,

the objective function is separable with respect to the index i (i.e., video file index)

and thus every request for video file i can be solved in parallel with other requests.

Hence, solving the objective function can be parallelized which significantly results

in reducing the overall complexity.

It can be seen that while providing an approximate solution on the original problem,

our algorithm needs only a few iterations to converge to a stationary point which

translates into a good scalability (see Figure 5.7 for further details). We note that

an overhead is incurred every time we solve the offline problem at the central con-

troller. However, this optimization can be performed in the off-peak hours. The time

and optimization overhead depend on the service provider capabilities and how much

overhead the system can handle. For the online algorithm, the optimization is per-

formed offline and based on the optimized parameters, a stationary online policy is

obtained. Thus, there is O(1) complexity for the online problem, given the solution

to the offline problem.

4.7 Numerical Results

In this section, we evaluate our proposed algorithms for joint optimization of the

mean stall duration and the average streamed video quality.
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4.7.1 Parameter Setup

We simulate our algorithm in a distributed storage system of m = 12 distributed

nodes, where each video file uses an (7, 4) erasure code. However, our model can be

used for any given number of storage servers and for any erasure coding setting. We

assume dj = 20 (unless otherwise explicitly stated) and r = 1000 files, whose sizes

are generated based on Pareto distribution [62] (as it is a commonly used distribution

for file sizes [63]) with shape factor of 2 and scale of 300, respectively. Since we

assume that the video file sizes are not heavy-tailed, the first 1000 file-sizes that are

less than 120 minutes are chosen. We also assume that the chunk service time follows

a shifted-exponential distribution with rate α
(`)
j and shift β

(`)
j , given as (4.6). The

value of βja1 is chosen to be 10 ms, while the value of αj/a1 is chosen as in Table

5.1 (the parameters of αj/a1 were chosen using a distribution, and kept fixed for

the experiments). Unless explicitly stated, the arrival rate for the first 500 files is

0.002s−1 while for the next 500 files is set to be 0.003s−1. Chunk size τ is set to

be equal to 4 seconds (s). When generating video files, the size of each video file is

rounded up to the multiple of 4 seconds. The values of a` for the 4 second chunk are

given in Table 4.2, where the numbers have been taken from the dataset in [68]. We

use a random placement of each file on 7 out of the 12 servers. In order to initialize

our algorithm, we assume uniform scheduling, q
(`)
i,j = k/n on the placed servers and

p
(`)
j,νj

= 1/dj. Further, we choose ti = 0.01, bi,` = 1/V , and wj,νj = 1/dj. However,

these choices of the initial parameters may not be feasible. Thus, we modify the

parameter initialization to be closest norm feasible solutions.

Table 4.1.: The value of αj/a1 used in the Numerical Results, where the units are 1/s.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

18.238 24.062 11.950 17.053 26.191 23.906

Node 7 Node 8 Node 9 Node 10 Node 11 Node 12

27.006 21.381 9.910 24.959 26.529 23.807
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Table 4.2.: Data Size (per Mb) of the different quality levels.

` 1 2 3 4 5 6

a` 6 11 19.2 31.2 41 56.2

4.7.2 Baselines

We compare our proposed approach with six strategies, which are described as

follows.

1. Projected Equal Access, Optimized Quality Probabilities, Auxiliary variables and

Bandwidth Wights (PEA-QTB): Starting with the initial solution mentioned

above, the problem in (4.45) is optimized over the choice of t, b, w, and p using

alternating minimization. Thus, the value of q
(`)
i,j will be approximately close to

k/n for the servers on which the content is placed, indicating equal access of

the k-out-of-n servers.

2. Projected Equal Bandwidth, Optimized Quality Probabilities, Auxiliary variables

and Server Access (PEB-QTA): Starting with the initial solution mentioned

above, the problem in (4.45) is optimized over the choice of q, t, b, and p

(using Algorithms 3, 4, 5, and 6, respectively) using alternating minimization.

Thus, the bandwidth split wj,νj will be approximately 1/dj.

3. Projected Equal Quality, Optimized Bandwidth Wights, Auxiliary variables and

Server Access (PEQ-BTA): Starting with the initial solution mentioned above,

the problem in (4.45) is optimized over the choice of q, t, w, and p using alter-

nating minimization. Thus, the quality assignment, bi,` will be approximately

1/V .

4. Projected Proportional Service-Rate, Optimized Quality, Auxiliary variables and

Bandwidth Wights (PSP-QTB): In the initialization, the access probabilities

among the servers on which file i is placed, is given as q
(`)
i,j = ki

µ
(`)
j∑
j µ

(`)
j

, ∀i, j, `.
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This policy assigns servers proportional to their service rates. The choice of all

parameters are then modified to the closest norm feasible solution. Using this

initialization, the problem in (4.45) is optimized over the choice of t, b, w, and

p using alternating minimization.

5. Projected Lowest Quality, Optimized Bandwidth Wights, Auxiliary variables and

Server Access (PLQ-BTA): In this strategy, we set bi,1 = 1 and bi,` = 0, ∀` 6= 1

in the initialization thus choosing the lowest quality for all videos. Then, this

choice is projected to the closest norm feasible solution. Using this initialization,

the problem in (4.45) is optimized over the choice of q, t, w, and p using

alternating minimization.

6. Projected Highest Quality, Optimized Bandwidth Wights, Auxiliary variables

and Server Access (PHQ-BTA): In this strategy, we set bi,6 = 1 and bi,` = 0, ∀` 6=

6 in the initialization thus choosing the highest quality for all videos. Then,

this choice is projected to the closest norm feasible solution. Using this initial-

ization, the problem in (4.45) is optimized over the choice of q, t, w, and p

(using Algorithms 3, 4, 5, and 6, respectively) using alternating minimization.

Regarding the online mode, we compare our algorithm with three policies as de-

scribed below:

1. Join Shortest Queue (JSQ) Policy [46]: In this policy, the video requests are

assigned to the servers/PSs that have the lowest queue(s). All other parameters

are optimized in the same manner as of our proposed policy. For detailed

treatment of this policy, interested reader can refer to [46].

2. Least Load-d LL(d) Policy [47]: This policy works akin to a water-filling ap-

proach, where a set of d servers are chosen uniformly at random and then re-

quests are assigned to the k < d servers that have the lowest (remaining) loads

(or processing times) among those selected servers. Interested reader can refer

to [47] for further details. Note that also all other parameters are optimized in

the same manner as of our proposed policy.
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Fig. 4.3.: Convergence of mean stall duration.

3. Power-of-d Pow(d) Policy [48]: In this policy, a set of d servers are chosen

uniformly at random and then video file requests are assigned to the server (or

servers) that has the lowest queue/queues among those selected servers. In-

detail description for this strategy can be found in [48]. Similar to the previous

two policies, the other four parameters are optimized as of our proposed policy.

4.7.3 Results

In this subsection, we set θ = 10−4, i.e., prioritizing stall minimization over quality

enhancement. We note that the average quality numbers are orders of magnitude

higher (since the quality term in (4.45) is proportional to the video length) than

the mean stall duration and thus to bring the two to a comparable scale, the choice

of θ = 10−4 is small. This choice of θ is motivated since users prefer not seeing

interruptions more than seeing better quality. In this section, we will consider the

average quality definition as Average Quality =
∑

i,`
λi
λ

Li∑r
k=1 Lk

bi,`a`. We note that

the maximum average quality is bounded by a6 = 56.2. The division by the sum of

lengths is used as a normalization so that the numbers in the figures can be interpreted

better.
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video arrival rates.
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video lengths.

 Video length (s) 

400 600 800 10001200140016001800200022002400

A
v
e
ra

g
e
 Q

u
a
lit

y

10

20

30

40

50

60

PLQ-BTA

Prop. App.

PPS-QTB

PEA-QTB

PEB-QTA

PEQ-BTA

PHQ-BTA

Fig. 4.7.: Average quality for different

video lengths.



82

Number of Parallel Streams (d
j
)

10 15 20 25 30 35 40 45 50 55 60 65 70

 M
e

a
n

 S
ta

ll 
D

u
ra

ti
o

n
 (

s
)

0

2

4

6

8

10

12

14
15

10 20 30 40 50 60 70

   
   

 A
v
e

ra
g

e
 Q

u
a

lit
y

0

20

40

60

Lowest quality

Zero stall regimeHigher stall regime

Stall
Quality

Fig. 4.8.: Average video quality and mean

stall duration for different number of par-

allel streams dj.

5 10 15 20 25

Mean Stall Duration (seconds)

10

20

30

40

50

60

A
v
e
ra

g
e
 Q

u
a
lit

y

θ = 10
-5

θ increases from

θ=10
-5

 to θ = 10
-2

θ = 10
-2

Fig. 4.9.: Tradeoff between mean stall du-

ration and average streamed video quality

obtained by varying θ.



83

Convergence of the Proposed Algorithm

Figure 4.3 shows the convergence of our proposed algorithm, where we see the

convergence of mean stall duration in about 2000 iterations.

Effect of Arrival Rate

We assume the arrival rate of all the files the same, and vary the arrival rates

as depicted in Figures 4.4 and 4.5. These figures show the effect of different video

arrival rates on the mean stall duration and averaged quality, respectively. We note

that PLQ-BTA achieves lowest stalls and lowest quality, since it fetches all videos

at the lowest qualities. Similarly, PHQ-BTA has highest stalls, and highest video

quality since it fetches all videos in the highest possible rate. The proposed algo-

rithm has mean stall duration less than all the algorithms other than PLQ-BTA, and

is very close to PLQ-BTA. Further, the proposed algorithm has the highest video

quality among all algorithms except PHQ-BTA and PEQ-BTA. Thus, the proposed

algorithm helps optimize both the QoEs simultaneously achieving close to the best

possible stall durations and achieving better average video quality than the base-

lines. With the choice of low θ, the stall duration can be made very close to the

stall duration achieved with the lowest quality while the proposed algorithm will still

opportunistically increase quality of certain videos to obtain better average quality.

Effect of Video Length

The effect of having different video lengths on the mean stall duration and average

quality is also captured in Figures 4.6 and 4.7, respectively, where we assume that

all the videos are of the same length. Apparently, the mean stall duration increases

with the video length while the average quality decreases with the video length. The

qualitative comparison of the different algorithms is the same as described in the

case of varying arrival rates. Thus, at θ = 10−4, the proposed algorithm achieves
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the mean stall duration close to that of PLQ-BTA while achieving significantly bet-

ter quality. For algorithms other than PLQ-BTA, PEQ-BTA, and PHQ-BTA, the

proposed algorithms outperforms all other baselines in both the metrics.

Effect of the Number of the Parallel Streams (dj)

Figure 4.8 plots the average streamed video quality and mean stall duration for

varying number of parallel streams, dj, for our proposed algorithm. We vary the

number of PSs from 10 to 70 with increment step of 10 with θ = 10−4. Increasing

dj can only improve performance since some of the bandwidth splits can be zero

thus giving the lower dj solution as one of the possible feasible solution. Increasing

dj thus decreases stall durations by having more parallel streams, while increasing

average quality. We note that for dj < 50, mean stall duration is non-zero and the

stall duration decreases significantly while the average quality increases only slightly.

For dj > 50, the stall duration remains zero and the average video quality increases

significantly with increase in dj. Even though larger dj gives better results, the server

may only be able to handle a limited parallel connections thus limiting the value of

dj in the real systems due to physical limitations.

Tradeoff between mean stall duration and average video quality

The preceding results show a trade off between the mean stall duration and the

average quality of the streamed video. In order to investigate such tradeoff, Figure 4.9

plots the average video quality versus the mean stall duration for different values of

θ ranging from θ = 10−5 to θ = 10−2. This figure implies that a compromise between

the two QoE metrics can be achieved by our proposed streaming algorithm by setting

θ to an appropriate value. As expected, increasing θ will increase the mean stall

duration as there is more priority to maximizing the average video quality. Thus, an

efficient tradeoff point between the QoE metrics can be chosen based on the service

quality level desired by the service provider.
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Appendix A.9 further provides evaluation results for varying the number of servers,

encoding parameters, the time complexity of the algorithm, and the performance of

the online algorithm.

4.8 Chapter Conclusion

In this chapters, a video streaming over cloud is considered where the content is

erasure-coded on the distributed servers. We consider two quality of experience met-

rics to optimize: mean stall duration and average quality of the streamed video. A

two-stage probabilistic scheduling is proposed for the choice of servers and the parallel

streams between the server and the edge router. Using the two-stage probabilistic

scheduling and probabilistic quality assignment for the videos, an upper bound on

the mean stall duration is derived. An optimization problem that minimizes a con-

vex combination of the two QoE metrics is formulated, over the choice of two-stage

probabilistic scheduling, probabilistic quality assignment, bandwidth allocation, and

auxiliary variables. Efficient algorithm is proposed to solve the optimization prob-

lem and the evaluation results depict the improved performance of the algorithm as

compared to the considered baselines.
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5. MULTI-TIER CACHING ANALYSIS IN CDN-BASED

OTT VIDEO STREAMING SYSTEMS

5.1 Introduction

Over-the-top video streaming, e.g., Netflix and YouTube, has been dominating

the global IP traffic in recent years. The traffic will continue to grow due to the

introduction of even higher resolution video formats such as 4K on the horizon. As

end-users consume video in massive amounts and in an increasing number of ways,

service providers need flexible solutions in place to ensure that they can deliver con-

tent quickly and easily regardless of their customer’s device or location. More than

50% of over-the-top video traffic are now delivered through content distribution net-

works (CDNs) [69]. Even though multiple solutions have been proposed for improving

congestion in the CDN system, managing the ever-increasing traffic requires a fun-

damental understanding of the system and the different design flexibilities (control

knobs) to make the best use of the limited hardware resources. This is the focus of

this work.

The service providers typically use two-tier caching approach to improve the qual-

ity of streaming services [70–72]. In addition to the distributed cache servers provided

by the CDN, the edge router can also have a cache so that some videos could be stored

in this cache and gets the advantage of the proximity to end-users. However, there

are many edge routers which imply that the hot content could be stored at multiple

edge routers. There is an additional cache at the distributed cache servers (in CDN)

from which data can be obtained if not already at the edge router. Such multi-tier

caching is related to fog computing where the caching could be distributed at multiple

locations in the network [71]. We also assume that the edge cache can help provide

advantages similar to multicasting. If another user on the edge router is already con-
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suming the file, the part of the video already downloaded is sent directly to the new

user and the later part is sent to multiple users who requested the content on the

same edge router. This work aims to analyze two-tiered caching in video streaming

systems.

In this work, we consider an architecture of streaming system with a Virtualized

Content Distribution Network (vCDN) [73,74]. The main role of this CDN infrastruc-

ture is not only to provide users with lower response time and higher bandwidth, but

also to distribute the load (especially during peak time) across many edge locations.

The infrastructure consists of a remote datacenter that stores complete original video

data and multiple CDN sites (i.e., distributed cache servers) that only have part of

those data and are equipped with solid state drives (SSDs) for high throughput. In

addition, we assume that a second caching tier is located at the edge routers. A user

request for video content not served from the edge cache is directed to a distributed

cache. If it is still not completely served, the remaining part of the request is directed

to the remote datacenter (as shown in Fig. 5.1). Multiple parallel connections are es-

tablished between the distributed cache server and the edge router, as well as between

the distributed cache servers and the origin server, to support multiple video streams

simultaneously. Our goal is to develop an optimization framework and QoE metrics

that service providers (or infrastructure) could use to answer the following questions:

How to quantify the impact of multi-tier video caching on end user experience? What

is the best video multi-tier caching strategy for CDN? How to optimize QoE metrics

over various “control knobs”? Are there enough benefits to justify the adoption of

proposed solutions in practice?

It has been shown that, in modern cloud applications such as Facebook, Bing, and

Amazon’s retail platform, the long tail of latency is of a major concern, with 99.9th

percentile response times that are, orders of magnitude worse than the mean [11,56].

Thus, this work considers a QoE metric, called the stall duration tail probability

(SDTP), which measures the likelihood of end users suffering a worse-than-expected

stall duration, and develop a holistic optimization framework for minimizing the over-
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all SDTP over joint caching content placement, network resource optimization and

user request scheduling. SDTP, denoted by Pr(Γ(i) > σ), measures the probability

that the stall duration Γ(i) of video i is greater than a pre-defined threshold σ. De-

spite resource and load-balancing mechanisms, large scale storage systems evaluations

show that there is a high degree of randomness in delay performance [75]. In contrast

to web object caching and delivery, the video chunks in the latter part of a video do

not have to be downloaded much earlier than their actual play time to maintain the

desired QoE, making SDTP highly dependent on the joint optimization with resource

management and request scheduling in CDN-based video streaming.

Quantifying SDTP with multi-tier cache/storage is an open problem. Even for

single-chunk video files, the problem is equivalent to minimizing the download tail

latency, which is still an open problem [26]. The key challenge arises from the difficulty

of constructing and analyzing a scheduling policy that (optimally) redirects each

request based on dependent system and queueing dynamics (including cache content,

network conditions, request queue status) on the fly. To overcome these challenges,

we propose a novel two-stage, probabilistic scheduling approach, where each request

of video i is (i) processed by cache server j with probability πi,j and (ii) assigned to

video stream v with probability pi,j,v. The two-stage, probability scheduling allows

us to model each cache server and video stream as separate queues, and thus, to

characterize the distributions of different video chunks’ download time and playback

time. Further, the edge caching policy plays a key role in the system design. This work

proposes an adaption of least-recently-used (LRU) caching mechanism [12,76], where

each file is removed from the edge cache if it has not been requested again for a time

that depends on the edge router and the file index. By optimizing these probabilities

and the edge-cache parameters, we quantify SDTP through a closed-form, tight upper

bound for CDN-based video streaming with arbitrary cache content placement and

network resource allocation. We note that the analysis in this work is fundamentally

different from those for distributed file storage, e.g., [22,23], because the stall duration

of a video relies on the download times of all its chunks, rather than simply the time
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to download the last chunk of a file. Further, since video chunks are downloaded and

played sequentially, the download times and playback times of different video chunks

are highly correlated and thus jointly determine the SDTP metric.

This work proposes a holistic optimization framework for minimizing overall SDTP

in CDN-based video streaming. To the best of our knowledge, this is the first frame-

work for multi-tier caching to jointly consider all key design degrees of freedom, includ-

ing bandwidth allocation among different parallel streams, multi-tier cache content

placement and update, request scheduling, and the modeling variables associated with

the SDTP bound. An efficient algorithm is then proposed to solve this non-convex

optimization problem. In particular, the proposed algorithm performs an alternat-

ing optimization over the different dimensions, such that each sub-problem is shown

to have convex constraints and thus can be efficiently solved using the iNner cOn-

Vex Approximation (NOVA) algorithm proposed in [57]. The proposed algorithm is

implemented in a virtualized cloud system managed by Openstack [77]. The experi-

mental results demonstrate significant improvement of QoE metrics as compared to

the considered baselines.

The main contributions of this chapter can be summarized as follows:

• We propose a novel framework for analyzing CDN-based over-the top video

streaming systems with the use of multiple caching tiers and multiple parallel

streams between nodes. A novel two-stage probabilistic scheduling policy is

proposed to assign each user request to different cache servers and parallel

video streams. Further, the edge router uses an adaptation of LRU, and the

distributed cache servers cache partial files.

• The distribution of (random) download time of different video chunks are an-

alyzed. Then, using ordered statistics, we quantify the playback time of each

video segment.

• Multiple recursive relations are set up to compute the stall duration tail prob-

ability. We first relate the compute of download time of each chunk to the play
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time of each chunk, Since the play time depends not only on download of the

current chunk, but also on the previous chunks. Second, stall duration must

account for whether the file has been requested by anyone within a window time

of a certain size to get advantage of edge cache. If it had been requested, the

stall duration is a function of the time of the last request and the stall duration

at that time. In the steady state analysis, this will lead to a recursion. This

analysis has been used to derive an analytical upper bound on SDTP for arbi-

trary distributed cache content placement, parameters of edge cache, and the

parameters of the two-stage probabilistic scheduling (Appendix A.13).

• A holistic optimization framework is developed to optimize a weighted sum of

SDTP of all video files over the request scheduling probabilities, distributed

cache content placement, the bandwidth allocation among different streams,

edge cache parameters, and the modeling parameters in SDTP bound. An effi-

cient algorithm is provided to decouple and solve this non-convex optimization

(Section 5.5).

• To better understand the SDTP and how it relates to the QoE of users, we

correlate this metric to a well-known QoE metric (called mean stall duration).

Since the optimal point for the mean stall duration is not the same as that of

the SDTP, we optimize a convex combination of the two metrics and show how

the two QoE metrics can be compromised based on the point on the curve that

is appropriate for the clients (Appendix A.19).

• The algorithm is implemented on a virtualized cloud system managed by Open-

stack. The simulation and trace-based results validate our theoretical analysis

with the implementation and analytical results being close, thus demonstrat-

ing the efficacy of our proposed algorithm. The QoE metric is shown to have

significant improvement as compared to competitive strategies (Appendix 5.6).
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5.2 Chapter Organization

The rest of this chapter is organized as follows. In Section 5.3, we describe the

system model used in the work with a description of CDN-based Over-the-top video

streaming systems. Section 5.4 provides an upper bound on the mean stall dura-

tion. Section 5.5 formulates the QoE optimization problem as a weighted sum of

all SDTP of all files and proposes the iterative algorithmic solution of this problem.

Experimental results are provided in Section 5.6. Section 5.7 concludes this chapter.

5.3 System Model

5.3.1 System Description

We consider a content delivery network as shown in Fig. 5.1, consisting of a

single datacenter that has an origin server, m geographically-distributed cache servers

denoted by j = 1, . . . ,m, and edge-cache storage nodes associated with the edge

routers ` ∈ {1, 2, · · · , R}, where R is the total number of edge-routers, as depicted

in Figure 5.2. The compute cache servers (also called storage nodes) are located

close to the edge of the network and thus provide lower access latency for end users.

We also assume that each cache server is connected to one edge router. Further,

the connection from the edge router to the users is not considered as a bottleneck.

Thus, the edge router is considered as a combination of users and is the last hop for

our analysis. We also note that the link from the edge router to the end users is

not controlled by the service provider and thus cannot be considered for optimized

resource allocation from the network. The service provider wishes to optimize the

links it controls for efficient quality of experience to the end user.

A set of r video files (denoted by i = 1, . . . , r) are stored in the datacenter,

where video file i is divided into Li equal-size segments each of length τ seconds. We

assume that the first Lj,i chunks of video i are stored on cache server j. Even though
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Fig. 5.1.: An illustration of our system model for video content delivery, consisting

of a datacenter, four cache servers (m = 4), and 2 edge routers. dj and Fj parallel

connections are assumed between datacenter and cache server j, and datacenter and

edge router, respectively.

we consider a fixed cache placement, we note that Lj,i are optimization variables and

can be updated when sufficient arrival rate change is detected.

We assume that the bandwidth between the data center and the cache server j

(service edge router `) is split into dj parallel streams, where the streams are denoted
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Fig. 5.2.: A schematic illustrates the parallel streams setup between the different

system model components.

as PS
(d,j)
βj ,`

for βj = 1, · · · , dj. Further, the bandwidth between the cache server j

and the edge router ` is divided into f
(`)
j parallel streams, denoted as PS

(f,j)
ζj ,`

for

ζ
(`)
j = 1, · · · , f (`)

j , and ` = 1, 2, · · · , R. Multiple parallel streams are assumed for

video streaming since multiple video downloads can happen simultaneously. Since we

care about stall duration, obtaining multiple videos simultaneously is helpful as the

stall durations of multiple videos can be improved. We further assume that f
(`)
j PSs

are divided into two set of streams dj and e
(`)
j . This setup is captured in Figure 5.2.

The first dj parallel streams are denoted as PS
(d,j)
βj ,`

for βj = 1, · · · , dj, and for all `

while the remaining e
(`)
j streams are denoted as PS

(e,j)
νj ,`

for νj = 1, · · · , e(`)
j . In order

to consider the splits, PS
(d,j)
βj ,`

gets {w(d)
j,βj ,`

, βj = 1, . . . , dj} fraction of the bandwidth

from the data center to the cache server j. Similarly, PS
(d,j)
βj ,`

gets {w(d)
j,βj ,`

, βj =

1, . . . , dj} fraction of bandwidth from cache server j to the edge router ` and PS
(e,j)
νj ,`

gets {w(e)
j,νj ,`

, νj = 1, . . . , e
(`)
j } fraction of bandwidth from cache server j to the edge

router `. Thus, we have

dj∑
βj=1

w
(d)
j,βj ,`

≤ 1,

dj∑
βj=1

w
(d)
j,βj ,`

+

e
(`)
j∑

νj=1

w
(e)
j,νj ,`
≤ 1, (5.1)

for all j = 1, · · · ,m and ` = 1, · · · , R. We note that the sum of weights may be

less than 1 and some amount of the bandwidth may be wasted. While the optimal

solution will satisfy this with equality since for better utilization, we do not need

to explicitly enforce the equality constraint. We note that if the cache server serves



94

multiple edge routers, the parallel streams between cloud storage and cache server

will be the sum of dj to each edge router thus making the problem separated for each

edge router. For ease, we will sometime omit ` to focus on links to one edge router

only and the same procedure can be used for each edge router.

We assume that the service time of a segment for data transfer from the data

center to the cache server j is shifted-exponential with rate α
(d)
j,` and a shift of η

(d)
j,`

while that between the cache server j and the edge router ` is also shifted-exponential

with rate α
(fj)
j,` and a shift of η

(fj)
j,` . The shifted exponential distribution can be seen as

an approximation of the realistic service time distribution in the prior works, e.g., [78],

and references therein. We also note that the rate of a parallel stream is proportional

to the bandwidth split. Thus, the service time distribution of PS
(d,j)
βj ,`

, PS
(d,j)
βj ,`

, and

PS
(e,j)
νj ,`

, denoted as α
(d)
j,βj ,`

, α
(d)
j,βj ,`

, and α
(d)
j,νj ,`

, respectively, and are given as follows.

α
(d)
j,βj ,`

= w
(d)
j,βj ,`

α
(d)
j , (5.2)

α
(d)
j,βj ,`

= w
(d)
j,βj ,`

α
(fj)
j,` , α

(e)
j,νj ,`

= w
(e)
j,νj ,`

α
(fj)
j , (5.3)

for all βj, νj, and `. We further define the moment generating functions of the service

times of PS
(d,j)
βj ,`

, PS
(d,j)
βj ,`

, and PS
(e,j)
νj ,`

as M
(d)
j,βj ,`

, M
(d)
j,βj ,`

, and M
(d)
j,νj ,`

, which are defined

as follows.

M
(d)
j,βj ,`

=
α

(d)
j,βj ,`

e
η
(d)
j,βj ,`

t

α
(d)
j,βj ,`
− t

, (5.4)

M
(d)
j,βj ,`

=
α

(d)
j,βj ,`

e
η
(d)
j,βj ,`

t

α
(d)
j,βj ,`
− t

, (5.5)

M
(e)
j,νj ,`

=
α

(e)
j,νj ,`

e
η
(e)
j,νj ,`

t

α
(e)
j,νj ,`
− t

(5.6)

We also assume that there is a start-up delay of ds (in seconds) for the video which

is the duration in which the content can be buffered but not played.
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5.3.2 Edge-cache Model

Edge cache ` ∈ {1, 2, · · · , R}, where R is the total number of edge-routers, stores

the video content closer to end users. This improves the QoE to end users. We

assume a limited cache size at the edge-router (edge-cache) of a maximum capacity

of C`,e seconds, at edge-router `. When a file is requested by the user, the edge cache

is first checked to see if the file is there completely or partly (in case some other user

is watching that content). If the file is not in the edge cache, the space for this video

file is created in the edge cache, and a file or some other video files have to be evicted

so as not to violate the space constraint.

We consider edge cache policy as follows. The file i is removed from edge cache

if it has not been accessed in time ωi,` after its last request time from edge-router `.

The parameter ωi,` is a variable that can be optimized based on the file preference

and its placement in the CDN cache. This caching policy is motivated by LRU since

the file is evicted if it has not been used in some time in the past. The key advantages

of this approach is that (i) It is tunable, in the sense that the parameters ωi,` can be

optimized, and (ii) the performance of the policy is easier to optimize as compared

to LRU. When a file i is requested, and someone has already requested from edge

router ` in the last ωi,` time units, the file is obtained from the edge router. Even if

the file may not be completely in the edge-router yet (not yet finished downloading),

the downloaded part is given directly to the new user and the remaining content is

delivered as it becomes available to the edge cache. This is akin to multicasting the

remaining part of the video to multiple users [79].

An illustration of the evolution of caching policy is illustrated in Figure 5.3, where

the index ` is omitted since we consider the procedure at a single edge router. Video

file i is requested at three times t1, t2, and t3. At t1, the file enters the edge cache.

Since it had not been requested in ωi time units, it is evicted. When the file is again

requested at t2, the space for the file is reserved in the edge cache. The file, when

requested at t3 is within the ωi duration from t2 and thus will be served from the
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request for file i
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  window reset

Fig. 5.3.: A schematic showing an example of how a time-line of a file i can change according

to the request pattern of a video file i.

edge cache. If the file is still not in the edge cache completely, it will obtain the

part already there directly while the remaining part will be streamed as it becomes

available. Since the file i was not requested for time ωi after t3, the file is again evicted

from the edge cache.

We note that the arrival rate of the files is random. Thus, this file eviction policy

may not satisfy the maximum edge cache constraint at all times. In order to handle

this, we will first assume for the analytical optimization that the probability that the

cache capacity of edge-cache ` is violated is bounded by ε` which is small. That could

lead us to obtain a rough estimate on the different parameters in the system. The

hard constraint on the capacity can be made in run-time, by evicting the files that

are closest to be going out based on when they were requested and the corresponding

ωi,`. This online adaptation will be explained in Appendix A.20.

5.3.3 Queueing Model and Two-stage probabilistic scheduling

If cache server j is chosen for accessing video file i on edge router `, the first

Lj,i chunks are obtained from one of the e
(`)
j parallel streams PS

(e,j)
νj ,`

. Further, the

remaining Li − Lj,i chunks are obtained from the data center where a choice of βj
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is made from 1, · · · , dj and the chunks are obtained from the stream PS
(d,j)
βj

which

after being served from this queue is enqueued in the queue for the stream PS
(d,j)
βj ,`

.

However, if video file i is already requested at time ti within a window of size ωi, the

request will be served from the edge-cache and will not be sent to a higher level in

the hierarchy, e.g., cache server.

We assume that the arrival of requests at the edge router ` for each video i form

an independent Poisson process with a known rate λi,`. In order to serve the request

for file i, we need to choose three things - (i) Selection of Cache server j, (ii) Selection

of νj to determine one of PS
(e,j)
νj ,`

streams to deliver cached content, (iii) Selection of βj

to determine one of PS
(d,j)
βj

streams from the data-center which automatically selects

the stream PS
(d,j)
βj ,`

from the cache server, to obtain the non-cached content from the

datacenter. Thus, we will use a two-stage probabilistic scheduling to select the cache

server and the parallel streams. For a file request at edge-router `, we choose server j

with probability πi,j,` for file i randomly. Further, having chosen the cache server, one

of the ej streams is chosen with probability pi,j,νj ,`. Similarly, one of the dj streams is

chosen with probability qi,j,βj ,`. We note that these probabilities only have to satisfy

m∑
j=1

πi,j,` = 1∀i, `; (5.7)

e
(`)
j∑

νj=1

pi,j,νj ,` = 1∀i, j, `; (5.8)

dj∑
βj=1

qi,j,βj ,` = 1∀i, j, `, (5.9)

πi,j,`, pi,j,νj ,`, qi,j,βj ,` ≥ 0∀i, j, βj, νj, ` (5.10)

We note that since file i is removed from the edge cache after time ωi, the requests

at the cache server are no longer Poisson. We note that this could be alleviated by

assuming that every time the file is requested, the time ωi is chosen using an exponen-

tial distribution. This change of distribution will make the distribution of requests

at the cache server Poisson thus alleviating the issue. This is because if ωi follows an
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exponential distribution (i.e., not fixed) with parameter νi, the probability that the

request of video file i is directed to the distributed cache servers and/or central server

is given by P (t̃i > ωi) = νi
νi+λi

. This result follows since t̃i and ωi are exponentially

distributed with paramters λi and νi, respectively. However, in the following, we will

assume constant ωi, while still approximate the request pattern at cache servers as

Poisson which holds when the times for which file remains in the edge cache is chosen

using an exponential distribution. This approximation turns out to be quite accurate

as will be shown in the evaluation results. Further, such approximations of Poisson

arrivals are widely used in the literature in similar fashions. In particular, it is used to

characterize the coherence time of an LRU-based caching, e.g., see [52] and references

therein. Further, in [80] (Ch.9, page 470) authors approximate the arrivals of new

and retransmitted packets in CSMA protocol as Poisson even though they are not

due to the dependencies between them.

Since sampling of Poisson process is Poisson, and superposition of independent

Poisson processes is also Poisson, we get the aggregate arrival rate at PS
(d,j)
βj ,`

, PS
(d,j)
βj ,`

,

and PS
(e,j)
νj ,`

, denoted as Λ
(d)
j,βj ,`

, Λ
(d)
j,βj ,`

, and Λ
(e)
j,νj ,`

, respectively are given as follows.

Λ
(d)
j,βj ,`

=
r∑
i=1

λi,`πi,j,`qi,j,βj ,`e
−λi,`ωi,` ; Λ

(d)
j,βj ,`

= Λ
(d)
j,βj ,`

, (5.11)

Λ
(e)
j,νj ,`

=
r∑
i=1

λi,`πi,j,`pi,j,νj ,`e
−λi,`ωi (5.12)

Remark 1 We note that since shift η is not zero, the requests at the cache servers

(i.e., the output of the first queues) are no longer Poisson. However, we note that

this could be alleviated by assuming that this shift is relatively very small compared to

the exponential rate α. This assumption will make the requests pattern at the storage

servers Poisson, thus alleviating this issue. In the following, we will assume a Poisson

approximation for simplicity, while still approximate the request pattern at storage

servers as Poisson which holds when the shift approaches zero. This approximation

turns out to be quite accurate as will be shown in the evaluation results. Further,
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such approximations of Poisson arrivals are widely used in the literature in similar

fashions, e.g., see [50] and references therein for further details.

Assumption 1 When the service time distribution of datacenter server (first queue)

is given by shifted exponential distribution, the arrivals at the cache servers (second

queue) are Poisson.

5.3.4 Distribution of Edge Cache Utilization

We will now investigate the distribution of the edge-cache utilization at any time.

This will help us in bounding the probability that the edge cache is more than the

capacity of the cache. In the analytic part, we will bound this probability. However,

the online adaptations in Appendix A.20 will provide an adaptation to maintain the

maximum edge cache capacity constraint at all times.

Let Xi,` be the random variable corresponding to amount of space in the edge-

cache ` for video file i. Since the file arrival rate is Poisson, and the file is in the

edge-cache ` if it has been requested in the last ωi seconds. Then, Xi,` is given as

Xi,` =

τ Li with prob. 1− e−λi,`ωi,`

0 with prob. e−λi,`ωi,`
(5.13)

where 1 − e−λi,`ωi,` is the probability that file i is requested within a window-size of

ωi,` time units. The total utilization of the edge-cache j is given as

X` =
r∑
i=1

Xi,` (5.14)

The mean and variance of X` can be found to be
∑r

i τLi(1− e−λi,`ωi,` and∑r
i (τLi)

2e−λi,`ωi,`(1 − e−λi,`ωi,`), respectively. Since r is large, we will approximate

the distribution of Xj by a Gaussian distribution with mean
∑r

i τLi(1− e−λi,`ωi,` and

variance
∑r

i (τLi)
2e−λi,`ωi,`(1−e−λi,`ωi,`). This distribution is then used as a constraint

in the design of ωi,`, where the constraint bounds the probability that the edge cache

utilization is higher than the maximum capacity of the edge cache. Since X` can
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be well approximated by a Gaussian distribution, the edge cache utilization, can be

probabilistically bounded as follows,

∞∫
C`,e

1√
2πσ2

e−
(x−µ)2

2σ2 dx ≤ ε` (5.15)

where µ =
∑r

i τLi(1 − e−λi,`ωi,`), σ2 =
∑r

i (τLi)
2e−λi,`ωi,`(1 − e−λi,`ωi,`) are the mean

and variance, respectively.

5.4 Stall Duration Tail Probability

This section will characterize the stall duration tail probability using the two-stage

probabilistic scheduling and allocation of bandwidth weights. We note that the arrival

rates are given in terms of the video files, and the service rate above is provided in

terms of segment at each server. The analysis would require detailed consideration of

the different segments in a video. In this section, we will assume that the edge-router

for the request ` is known, and thus we omit the subscript/superscript ` to simplify

notations.

In order to find the stall durations, we first consider the case where file i is not

in the edge cache and has to be requested from the CDN. We also assume that the

cache server j is used, with the streams βj and νj known. We will later consider the

distribution of these choices to compute the overall metric. In order to compute stall

durations, we would first calculate the download time of each of the video segment,

which accounts for the first Lj,i segments at the cache j and the later Li − Lj,i

segments at the server. After the download times are found, the play times of the

different contents are found. The detailed calculations are shown in Appendix A.13,

where the distribution of T
(g)
i,j,βj ,νj

, the time that segment g begins to play at the client

i given that it is downloaded from βj and νj queues, is found. The stall duration for

the request of file i from βj queue, νj queue and server j, if not in the edge-cache,

i.e., Γ
(i,j,βj ,νj)
U is given as

Γ
(i,j,βj ,νj)
U = T

(Li)
i,j,βj ,νj

− ds − (Li − 1) τ, (5.16)
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as explained in Appendix A.13. We use this expression to derive a tight bound on

the SDTP.

The stall duration tail probability of a video file i is defined as the probability that

the stall duration is greater than a pre-defined threshold σ. Since exact evaluation of

stall duration is hard [25,81], we cannot evaluate Pr
(

Γ
(i)
tot ≥ σ

)
in closed-form, where

Γ
(i)
tot is random variable indicating the overall stall duration for file i. In this section,

we derive a tight upper bound on the SDTP through the two-stage Probabilistic

Scheduling as follows.

We first note that the expression in equation (A.50) (Appendix A.13) accounts

only for the stalls that would be incurred if the video segments are not accessed from

the edge-cache (including stored, or multicasted). However, the user would experience

lower stalls if the requested content is accessed from the edge-cache. Thus, we need

an expectation over the choice of whether the file is accessed from the edge server, and

the choice of (j, βj, νj) in addition to the queue statistics. For a video file i requested

at time t̃i after the last request for file i, the stall duration for the request of file i can

be expressed as follows:

Γ
(i)
tot

d
=


(

Γ
(i)
tot − t̃i

)+

0 ≤ t̃i ≤ ωi

Γ
(i,j,βj ,νj)
U t̃i > ωi

(5.17)

where
d
= means equal in distribution. This is because if file i is requested again within

ωi time, then the multicast or stored file can lead to the reduced stall duration based

on how much time has passed since the last request. Further, if the file has not been

requested in the last ωi time units, then the file has to be obtained from the CDN,

and thus the expression of random variable Γ
(i)
tot also includes randomness over the

choice of (j, βj, νj) in this case. From (5.17), we can obtain the following result.

Lemma 15 For a given choice of (j, βj, νj), E
[
ehiΓ

(i)
tot

]
is bounded as

E
[
ehiΓ

(i)
tot

]
≤ c̃+ ãE

[
ehiΓ

(i,j,βj ,νj)

U

]
(5.18)
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where c = 1 − e−λiωi, a = e−λiωi, b =

[
1 − λi

λi+hi

(
1− e−(λi+hi)ωi

)]
, c̃ = c/b and

ã = a/b.

Proof The proof is provided in Appendix A.14.

We next derive E
[
e
hiD

(v)
i,j,βj ,νj |(j, βj, νj)

]
using the following two lemmas, which

will be used in the main result. The key idea is that we characterize the download

and play times of each segments and use them in determining the SDTP of each video

file request.

Lemma 16 For v ≤ Lj,i, E
[
e
hiD

(v)
i,j,βj ,νj |(j, βj, νj)

]
is given by

E
[
e
hiD

(v)
i,j,βj ,νj |(j, βj, νj)

]

=
(1− ρ(e)

j,νj
)ti

ti − Λ
(e)
j,νj

(B
(e)
j,νj

(ti)− 1)

α(e)
j,νj
e
η
(e)
j,νj

t

α
(e)
j,νj
− ti

v

(5.19)

Proof The proof follows from (A.27) in Appendix A.13 by replacing g by v and

rearranging the terms in the result.

Lemma 17 For v ≥ (Lj,i + 1), E
[
ehiD

(v)
r |(j, βj, νj)

]
is given by

E
[
ehiD

(v)
r |(j, βj, νj)

]
≤ E

[
ehiUi,j,βj ,v,Lj,i |(j, βj, νj)

]
+

v∑
w=Lj,i+1

(1− ρ(d)
j,βj

)ti

hi − Λ
(d)
j,βj

(B
(d)
j,βj

(hi)− 1)
×

α(d)
j,βj
e
η
(d)
j,βj

hi

α
(d)
j,βj
− hi

w−Lj,i−1
α(d)

j,βj
e
η
(d)
j,βj

hi

α
(d)
j,βj
− hi


v−w+1

, (5.20)

where E
[
ehiUi,j,βj ,v,Lj,i |(j, βj, νj)

]
and B

(d)
j,βj

are given in Appendix A.13, equations

(A.39), and (A.41), respectively.

Proof The proof is provided in Appendix A.15.
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Corollary 3 The (expected) time to the first chunk (TTFC) can be obtained from

equation (A.75) (Lemma A.19.1) by setting ds = 0 and gi = 1.

Using these expressions, the following theorem summarizes the stall duration tail

probability for file i. We include the edge router index ` in all the expressions in the

result for the ease of using it in the following section.

Theorem 5.4.1 The stall distribution tail probability for video file i requested through

edge router ` is bounded by

Pr
(

Γ
(i,`)
tot ≥ σ

)
≤

m∑
j=1

πi,j,` ×

[
c` + ã` e

−hiσ + a`

e
(`)
j∑

νj=1

pi,j,νj ,`×

dj∑
βj=1

qi,j,βj ,`e
hiLiτ ×

(
δ(e,`) + δ(d,`) + δ(d,d,`)

)
(5.21)

for ρ
(d)
j,βj

< 1, ρ
(d)
j,βj ,`

< 1, ρ
(e)
j,νj ,`

< 1, where the auxiliary variables in the statement of

the Theorem are defined as

δ(e,`)=
M̃

(e,`)
j,νj

(hi)(1− ρ(e)
j,βj ,`

)ti((M̃
(e,`)
j,νj

(hi))
Lj,i− 1)

(hi − Λ
(e)
j,βj ,`

(B
(e,`)
j,βj

(hi)− 1))(M̃
(e,`)
j,νj

(hi))− 1)
(5.22)

δ(d,`) =
(1− ρ(d)

j,βj ,`
)ti(M̃

(d,`)
j,νj

(hi))
Lj,i−Li

hi − Λ
(d)
j,βj ,`

(B
(d,`)
j,βj

(hi)− 1)
(5.23)

δ(d,d,`)=γ(d,`)

(M̃ (d,d,`)
j,βj

(hi))
Li−Lj,i− (Li− Lj,i)

(M̃
(d,d,`)
j,βj

(hi))− 1
+ξ

(d,d,`)
i,j,βj ,

 (5.24)

ξ
(d,d,`)
i,j,βj ,

=
M̃

(d,d,`)
j,βj

(hi)
(

(M̃
(d,d,`)
j,βj

(hi))
Li−Lj,i−1 − 1

)
(M̃

(d,d,`)
j,βj

(hi))− 1
(5.25)

γ(d,`) =
(1− ρ(d)

j,βj
)ti(M̃

(d,`)
j,βj

(hi))
Li+1[

hi − Λ
(d)
j,βj

(B
(d)
j,βj

(hi)− 1)
]

(M̃
(d)
j,βj

(hi))Lj,i+1
(5.26)
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M̃
(d)
j,βj

(hi) =
α

(d)
j,βj
eηj,βj−hiτ

α
(d)
j,βj
− hi

, (5.27)

M̃
(d,`)
j,βj

(hi) =
α

(d)
j,βj ,`

eηj,βj ,`−hiτ

α
(d)
j,βj ,`
− hi

(5.28)

M̃
(e,`)
j,νj

(hi) =
α

(e)
j,νj ,`

eηj,νj ,`−hiτ

α
(e)
j,νj ,`
− hi

, (5.29)

M̃
(d,d)
j,βj ,`

(h) =
α

(d)
j,βj

(α
(d)
j,βj ,`
− h)e

η
(d)
j,βj

h

α
(d)
j,βj ,`

(α
(d)
j,βj
− h)e

η
(d)
j,βj ,`

h
, ∀j, βj (5.30)

c` =
(1− e−λi,`ωi,`)e−hiσ

1− λi
λi+hi

(1− e−(λi+hi)ωi)
(5.31)

ã` =
e−λi,`ωi,`

1− λi
λi+hi

(1− e−(λi+hi)ωi)
(5.32)

a` = ã`e
−hi(σ+ds+(Li−1)τ) (5.33)

Proof The detailed steps are provided in Appendix A.16.

We note that δ(e,`) = δ(d,`) = 0, if the storage server nodes are not hosting the

requested video files and δ(d,d,`) has nonzero value only if some sWe can also derive

the mean stall duration for video file i in a similar fashion. The interested reader is

referred to Appendix A.19 for detailed treatment of this metric.

5.5 Optimization Problem Formulation and Proposed Algorithm

5.5.1 Problem Formulation

We define π = (πi,j,`∀i = 1, · · · , r and j = 1, · · · ,m, ` = 1, · · · , R),p = (pi,,j,νj ,`, (νj, `) ∈

{(νj, `) : νj ∈ {1, . . . , e(`)
j }, ` ∈ {1, . . . , R}},∀i = 1, · · · , r , j = 1, · · · ,m , νj =

1, . . . e
(`)
j , ` = 1, · · · , R), q = (qi,,j,βj ,`∀i = 1, · · · , r , j = 1, · · · ,m , βj = 1, . . . dj, ` =
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1, · · · , R),h = (h1, t2, . . . , hr) ,w
(d) = (w

(d)
j,1,`, . . . , w

(d)
j,dj ,`

, and j = 1, · · · ,m, ` = 1, · · · , R) ,w(e) =

(w
(e)
j,1,`, w

(e)
j,2,`, . . . , w

(e)

j,e
(`)
j ,`

, and j = 1, · · · ,m, ` = 1, . . . , R), w(d) = (w
(d)
j,1,`, . . . , w

(d)
j,dj ,`

, and j =

1, · · · ,m),L = (Lj,i, ∀i = 1, and j = 1, · · · ,m) and ω = (ωi,`,∀i, `). Our goal is to

minimize the SDTP over the choice of cache and datacenter access decisions, band-

width allocation weights, portion (number) of cached segments, time window over

which we maintain the video files at edge-cache and auxiliary bound parameters.

To incorporate for weighted fairness and differentiated services, we assign a posi-

tive weight κi,` for each file i. Without loss of generality, each file i is weighted by the

arrival rate λi,` in the objective (so larger arrival rates are weighted higher). However,

any other weights can be incorporated to accommodate for weighted fairness or differ-

entiated services. Let λ =
∑

i,` λi,` be the total arrival rate. Hence, κi,` = λi,`/λ is the

ratio of file i requests. Hence, the objective is the minimization of stall duration tail

probability, averaged over all the file requests, and is given as
∑

i,`
λi,`
λ

Pr
(
Γ(i) ≥ σ

)
.

By using the expression for SDTP in Section 5.4, the optimization problem can be

formulated as follows.
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R∑
`=1

r∑
i=1

λi,`

λi,`

m∑
j=1

πi,j,` ×

[
c` + ã` e

−hiσ + a`

ej∑
νj=1

pi,j,νj ,`×

dj∑
βj=1

qi,j,βj ,`e
hiLiτ ×

(
δ(e) + δ(d) + δ(d,d)

)
(5.34)

s.t.

(5.1)− (5.12), (5.15), (5.22)− (5.33) (5.35)

ρ
(d)
j,βj ,`

=
r∑
i=1

λi,`πi,jqi,j,βj ,`e
λi,`ωi,`

Li − Lj,i
α

(d)
j,βj ,`

< 1, ∀j, βj (5.36)

ρ
(d)
j,βj ,`

=
r∑
i=1

λi,`πi,j,`qi,j,βj ,`e
λi,`ωi,`

Li − Lj,i
α

(d)
j,βj ,`

< 1 ∀j, βj, ` (5.37)

ρ
(e)
j,νj ,`

=
r∑
i=1

λi,`πi,j,`pi,j,νj ,`e
λi,`ωi,`

Lj,i

α
(e)
j,νj ,`

< 1, ∀j, νj, ` (5.38)

∑
i

Lj,i ≤ Cj, Lj,i ≥ 0, ∀i, j (5.39)

hi < α
(d)
j,βj
, hi < α

(d)
j,βj ,`

, hi < α
(e)
j,νj ,`

, ∀i, j, νj, ` (5.40)

0 < hi − Λ
(d)
j,βj

(B
(d)
j,βj ,`

(hi)− 1), ∀i, j, βj, ` (5.41)

0 < hi − Λ
(d)
j,βj ,`

(B
(d)
j,βj ,`

(hi)− 1), ∀i, j, βj (5.42)

0 < hi − Λ
(e)
j,νj ,`

(B
(e)
j,νj ,`

(hi)− 1), ∀i, j, νj, ` (5.43)

Lj,i ∈ Z (5.44)

var π, q, p, h, w(c), w(d), w(e), L,ω

Here, in (5.35), equations (1)−(3) give the feasibility constraints on the bandwidth

allocation, while equations (4)−(6) define the MGFs of the service time distributions,

equations (7)− (10) give the feasibility of the two-stage probabilistic scheduling and

(11)− (12) define the arrival rates at the different queues. Constraints (5.36)–(5.38)

ensure the stability of the systems queue (do not blow up to infinity). Constraints

(5.40)–(5.43) ensure that the moment generating functions exist. We note that some

optimization variables can be combined to form a single optimization variable which

results in having only five independent and separable variables as shown below. In
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the next subsection, we will describe the proposed algorithm for this optimization

problem.

5.5.2 Proposed Algorithm

We first note that the two-stage probabilistic scheduling variables are independent

and separable, thus we can combine them and define a single variable π̃ such that

π̃ = (π , p , q). Similarly, since the bandwidth allocation weights are independent

and separable, we concatenate them in a single optimization variable w, where w =(
w(e) , w(d) ,w(d)

)
. Hence, the weighted SDTP optimization problem given in (5.34)-

(5.44) is optimized over five set of variables: server and PSs scheduling probabilities

π̃ (two-stage scheduling probabilities), auxiliary parameters h, bandwidth allocation

weights w, cache placement L, and edge cache window size optimization ω.

Clearly, the problem is non-convex in all the parameters jointly, which can be eas-

ily seen in the terms which are product of the different variables. Since the problem

is non-convex, we propose an iterative algorithm to solve the problem. The proposed

algorithm divides the problem into five sub-problems that optimize one variable while

fixing the remaining four. These sub-problems are labeled as (i) Server and PSs Ac-

cess Optimization: optimizes π̃, for given h, w, ω, and L, (ii) Auxiliary Variables

Optimization: optimizes h for given π̃, w, ω, and L, (iii) Bandwidth Allocation Opti-

mization: optimizes w for given π̃, h, ω, and L. (iv) Cache Placement Optimization:

optimizes L for given π̃, h, ω, and w, (v) Edge-cache Window Size Optimization:

optimizes ω for given π̃, h, L, and w. The algorithm is summarized as follows.

1. Initialization: Initialize h, π̃, w, ω and L in the feasible set.

2. While Objective Converges

(a) Run Server Access Optimization using current values of h, w, ω, and L

to get new values of π̃
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(b) Run Auxiliary Variables Optimization using current values of π̃, w, ω,

and L to get new values of h

(c) Run Bandwidth Allocation Optimization using current values of π̃, h, L,

and ω, to get new values of w.

(d) Run Cache Placement Optimization using current values of π̃, h, w, and

ω to get new values of L.

(e) Run Edge-cache Window Size Optimization using current values of π̃, h,

w, and L to get new values of ω.

The proposed algorithm performs an alternating optimization over the different

aforementioned dimensions, such that each sub-problem is shown to have convex

constraints and thus can be efficiently solved using the iNner cOnVex Approximation

(NOVA) algorithm proposed in [57]. The subproblems are explained in detailed in

Appendix A.17.

We first initialize π̃, w, h, ω, and L ∀i, j, νj, βj such that the choice is feasible

for the problem. Then, we do alternating minimization over the five sub-problems

defined above. Since each sub-problem can only decrease the objective (properties of

convergence of subproblems to a stationary point is given in Appendix A.17) and the

overall problem is bounded from below, we have the following result.

Theorem 5.5.1 The proposed algorithm converges to a stationary solution.

Appendix A.20 describes how our algorithm can be used in an online fashion to

keep track of the systems dynamics at the edge-cache.

5.6 Implementation and Evaluation

In this section, we evaluate our proposed algorithm for weighted stall duration

tail probability.
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Fig. 5.4.: Testbed in the cloud.

5.6.1 Testbed Configuration and Parameter Setup

We construct an experimental environment in a virtualized cloud environment

managed by Openstack [77] to investigate our proposed SDTP framework. We allo-

cated one VM for an origin server and 5 VMs for cache servers intended to simulate

two locations (e.g., different states). We implement the proposed online caching mech-

anism in the edge cache that takes the inputs of ωi,` at each edge router. When a

video file is requested, it is stored in the edge-cache for a window size of ωi,` time

Table 5.1.: The value of αj used in the evaluation results with units of 1/ms. We set

η
(d)
j,βj

= η
(d)
j,βj

= η
(e)
j,νj

= 14 ms.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

82.00 76.53 71.06 65.6 60.13 54.66

Node 7 Node 8 Node 9 Node 10 Node 11 Node 12

49.20 44.28 39.36 34.44 29.52 24.60
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Fig. 5.5.: Weighted SDTP versus σs.
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of video files. We vary the arrival rate of the files from 0.01λi to

0.03λi with an increment step of 0.002, where λi is the base arrival

rate.
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Table 5.2.: Testbed Configuration

Cluster Information

Control Plane Openstack Kilo

VM flavor 1 VCPU, 2GB RAM, 20G storage (HDD)

Software Configuration

Operating System Ubuntu Server 16.04 LTS

Origin Server(s) Apache Web Server [82]: Apache/2.4.18 (Ubuntu)

Cache Server(s) Apace Traffic Server [83] 6.2.0 (build # 100621)

Client Apache JMeter [84] with HLS plugin [85]

units (unless requested again in this window). For the future requests within ωi or

concurrent user requests, the requests for the video chunks are served from the edge-

cache, and thus future/concurrent users would experience lower stall duration. If the

file can be accessed from the edge router, higher caching level is not used for this

request which consequently reduces the traffic at the core backbone servers. If the file

cannot be accessed from the edge router, it goes to the distributed cache. We assume

some segments, i.e., Lj,i, of video file i are stored in the distributed cache node j,

and are served from the cache nodes. The non-cached segments are served from the

data-center. The schematic of our testbed is illustrated in Figure 5.4. Since the two

edge-routers are likely in different states, they may not share the cache servers which

is the setup we study in the experiments. We note that the theoretical approach

proposed earlier is general and can work with shared cache servers across multiple

edge routers.

One VM per location is used for generating client workloads. Table 5.2 summa-

rizes a detailed configuration used for the experiments. For client workload, we exploit

a popular HTTP-traffic generator, Apache JMeter, with a plug-in that can generate

traffic using HTTP Streaming protocol. We assume the amount of available band-

width between origin server and each cache server is 200 Mbps, 500 Mbps between



112

cache server 1/2 and edge router 1, and 300 Mbps between cache server 3/4/5 and

edge router 2. In this experiment, to allocate bandwidth to the clients, we throttle

the client (i.e., JMeter) traffic according to the plan generated by our algorithm. We

consider 1000 threads (i.e., users) and set e
(`)
j = 40 for all ` = 1, 2, dj = 20. Segment

size τ is set to be equal to 8 seconds. Each edge cache is assumed to have a capacity,

equivalent to 15% of the total size of the video files. Further, distributed cache servers

can store up to 35% out of the total number of video file segments. The values of αj

and ηj are summarized in Table I.

Video files are generated based on Pareto distribution [62] (as it is a commonly

used distribution for file sizes [63]) with shape factor of 2 and scale of 300, respectively.

While we stick in the experiment to these parameters, our analysis and results remain

applicable for any setting given that the system maintains stable conditions under the

chosen parameters. Since we assume that the video file sizes are not heavy-tailed, the

first 500 file-sizes that are less than 60 minutes are chosen. When generating video

files, the size of each video file is rounded up to the multiple of 8 seconds. For the

arrival rates, we use the data from our production system for 500 hot files from two

edge routers, and use those arrival rates. The aggregate arrival rates at edge router

1 and router 2 are Λ1 = 0.01455s−1, Λ2 = 0.02155s−1, respectively.

In order to generate the policy for the implementation, we assume uniform schedul-

ing, πi,j = k/n, pj,νj = 1/ej, qj,βj = 1/dj. Further, we choose ti = 0.01, w
(e)
j,νj

= 1/ej,

w
(d)
j,βj

= 1/dj and w
(d)
j,βj

= 1/dj. However, these choices of the initial parameters may

not be feasible. Thus, we modify the parameter initialization to be closest norm

feasible solutions. Using the initialization, the proposed algorithm is used to obtain

the parameters. These parameters are then used to control the bandwidth allocation,

distributed cache content placement, the probabilistic scheduling parameters, and the

edge caching window sizes. Based on these parameters, the proposed online algorithm

is implemented. Since we assume the arrivals of video files are Poisson (and hence

inter-arrival time is exponential with λi for file i), we generate a sequence of 10000

video file arrivals/requests corresponding to the different files at each edge router.
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Upon an arrival of a video file at edge-cache, we apply our proposed online mecha-

nism. For each segment, we used JMeter built-in reports to estimate the downloaded

time of each segment and then plug these times into our model to obtain the stall

duration which will be used for evaluation of the proposed method.

5.6.2 Baselines

We compare our proposed approach with multiple strategies, which are described

as follows.

1. Projected Equal Server-PSs Scheduling, Optimized Auxiliary variables, Cache

Placement, Edge-cache Window-Size, and Bandwidth Wights (PEA): Starting

with the initial solution mentioned above, the problem in (5.34) is optimized

over the choice of h, w, L, and ω (using Algorithms 4, 5, 6, and 7 respectively)

using alternating minimization. Thus, the values of πi,j, pi,j,νj , and qi,j,βj will

be approximately close to k/n, 1/ej, and 1/dj, respectively, for all i, j, νj, βj.

2. Projected Proportional Service-Rate, Optimized Auxiliary variables, Bandwidth

Wights, Edge-cache Window-Size, and Cache Placement (PSP): In the ini-

tialization, the access probabilities among the servers, are given as πi,j =

µj∑
j µj

, ∀i, j. This policy assigns servers proportional to their service rates. The

choice of all parameters are then modified to the closest norm feasible solution.

Using this initialization, the problem in (5.34) is optimized over the choice of h,

w, L, and ω, (using Algorithms 4, 5, 6, and 7, respectively) using alternating

minimization.

3. Projected Equal Caching, Optimized Scheduling Probabilities, Auxiliary vari-

ables and Bandwidth Allocation Weights (PEC): In this strategy, we divide the

cache size equally among the video files. Thus, the size of each file in the cache

is the same (unless file is smaller than the cache size divided by the number

of files). Using this initialization, the problem in (5.34) is optimized over the



114

choice of π̃, h, w, and ω (using Algorithms 3, 4, 5, and 7, respectively) using

alternating minimization.

4. Caching Hot Files, Optimized Scheduling Probabilities, Auxiliary variables, Edge-

cache Window-Size, and Bandwidth Allocation Weights (CHF): In this strategy,

we cache entirely the files that have the largest arrival rates in the storage cache

server. Such hot file caching policies have been studied in the literature, see [12]

and references therein. Using this initialization, the problem in (5.34) is opti-

mized over the choice of π̃, h, w, and ω (using Algorithms 3, 4, 5, and 7,

respectively) using alternating minimization.

5. Caching based on Least-Recently-Used bases at edge-cache and Caching-Hottest

files at storage nodes, Optimized Scheduling Probabilities, Auxiliary variables,

Storage Cache Placement, and Bandwidth Allocation Weights (LRU): In this

strategy, a file is entirely cached in the edge-cache servers upon request if space

permits; otherwise, the least-recently used file(s) is removed first to evacuate

the needed space for the new file. Further, the hottest files are partially cached

in the distributed storage cache servers. Such hot file caching policies have been

studied in the literature, e.g., [12] and references therein. Using this initializa-

tion, the problem in (5.34) is optimized over the choice of π̃, h, and w, (using

Algorithms 3, 4, and 5, respectively) using alternating minimization.

6. Caching at edge-cache based on adaptSize policy [53] and Caching-Hottest files at

storage nodes, Optimized Scheduling Probabilities, Auxiliary variables, Storage

Cache Placement, and Bandwidth Allocation Weights (adaptSize): This policy

is a probabilistic admission policy in which a video file is admitted into the cache

with probability e−size/c so as larger objects are admitted with lower probability

and the parameter c is tuned to maximize the object hit rate (OHR), defined as

the probability that a requested file is found in the cache. In particular, given

a c and an estimate on the arrival rate for the requests for each video file, one

can estimate the probability that a given file will be served from the edge-cache.
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One can then use these probabilities to compute the OHR as a function of c

and then optimize. The value of c is recomputed after a certain number of file

requests, using a sliding window approach. We refer the reader to [53] for a

more in-depth description.

7. Caching at edge-cache based on variant of LRU policy [52], Caching-Hottest files

at storage nodes, Optimized Scheduling Probabilities, Auxiliary variables, Stor-

age Cache Placement, and Bandwidth Allocation Weights (xLRU): We denote

by xLRU one of the these policies: qLRU , kLRU , and kRandom. A qLRU

policy is the same as LRU except that files are only added with probability

q. In kLRU , requested files must traverse k − 1 additional virtual LRU caches

before it is added to the actual cache. kRandom is the same as kLRU except

files are evicted from the cache at random. The other optimization parameters

are optimized the same way as in the adaptSize policy.

5.6.3 Experimental Results

SDTP performance for different σ: Figure 5.5 shows the decay of weighted SDTP∑r
i=1

λi
λi
P(Γ(i) > σ) with σ (in seconds) for the considered policies. Notice that SDTP

Policy solves the optimal weighted stall tail probability via proposed alternating op-

timization algorithm. Also, this figure represents the complementary cumulative dis-

tribution function (ccdf) of the proposed algorithm as well as the selected baselines.

We further observe that uniformly accessing servers and simple service-rate-based

scheduling are unable to optimize the request scheduler based on factors like chunk

placement, request arrival rates, different stall weights, thus leading to much higher

SDTP. Moreover, the figure shows that an entire video file does not have to be present

in the edge-cache. That’s because when the user requests a cached video, it is served

by first sending the portion of the video locally present at edge-cache while obtain-

ing the remainder from the distributed cache servers and/or the origin server, and

transparently passing it on to the client. In addition, we see that the analytical (of-
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fline) SDTP is very close to the actual (online) SDTP measurement on our testbed.

Further, since adaptSize policy does not intelligently incorporate the arrival rates in

adding/evicting the video files, it fails to significantly reduce the SDTP. To the best of

our knowledge, this is the first work to jointly consider all key design degrees of free-

dom, including bandwidth allocation among different parallel streams, cache content

placement, the request scheduling, window-size of the edge-cache and the modeling

variables associated with the SDTP bound.

Arrival Rates Comparisons: Figure 5.6 shows the effect of increasing system work-

load, obtained by varying the arrival rates of the video files from 0.01s−1 to 0.03s−1

with an increment step of 0.002s−1 on the SDTP. We notice a significant improvement

of the QoE metric with the proposed strategy as compared to the baselines. Further,

the gap between the analytical offline bound and actual online SDTP is small which

validates the tightness of our proposed SDTP bound. Further, while our algorithm

optimizes the system parameters offline, this figure shows that an online version of

our algorithm can be used to keep track of the systems dynamics and thus achieve

an improved performance.

Effect of Number of files: Figure 5.13 shows the impact of varying the number of

files from 150 to 550 on the weighted SDTP for the online algorithm. Clearly, weighted

SDTP increases with the number of files, which brings in more workload (i.e., higher

arrival rates). However, our optimization algorithm optimizes new files along with

existing ones to keep overall weighted SDTP at a low level. We note that the proposed

optimization strategy effectively reduces the tail probability and outperforms the con-

sidered baseline strategies. Thus, joint optimization over all optimization parameters

help reduce the tail probability significantly. Also, the gap between online and offline

performance is almost negligible which reflects the robustness of our algorithm.

Additional performance evaluation is provided in Appendix 5.7 and Appendix 5.8.
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Fig. 5.7.: Convergence of weighted stall-duration tail probability.

5.7 Edge-cache Performance and further Evaluation

Convergence of the proposed algorithm: Figure 5.7 shows the convergence of

our proposed SDTP algorithm, which alternatively optimizes the weighted SDTP

of all files over scheduling probabilities π̃, auxiliary variables t, bandwidth allocation

weights w, cache server placement L, and window-size ωi. We see that for r = 500

video files of size 600s with m = 5 cache storage nodes, the weighted stall duration

tail probability converges within a few iterations.

Effect of scaling up the bandwidth of the cache servers and datacenter: The effect

of increasing the server bandwidth on the weighted SDTP is plotted in Figure 5.8.

Intuitively, increasing the storage node bandwidth will increase the service rate of the

storage nodes by assigning higher bandwidth to the users, thus, reducing the weighted

SDTP.

Effect of the bound percentage ε in the SDTP: Figure 5.9 plots the weighted SDTP

versus ε, i.e., probability that the cache size is exceeded. We see that the SDTP

increases significantly with an increase in ε. This is because as ε increases, there

are more edge capacity constraint violations and the the online adaptations may not

remain the optimal choice.
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Fig. 5.8.: Weighted SDTP versus the server bandwidth. We vary the server bandwidth

from ηj to 2.25ηj with an increment step of 0.25, where ηj = 20MBps.
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Fig. 5.9.: Weighted SDTP versus the percentage bound on the number of video files (i.e.,

maximum capacity) in the edge cache ε. The percentage of the capacity bound is changed

from 0.05 to 0.1 for a cache capacity of 0.20× Ctot.

In the following figures, a trace-based implementation is performed, where the

video ID, time requests, video lengths, etc. are obtained from one-week traces of a
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Fig. 5.10.: Time to the first chunk for different arrival rates for 1000 video files.

production system from the major service provider in the US. We note that the arrival

process is not Poisson in this case, while the proposed approach still outperform the

considered baseline approaches.

Effect of the arrival rates on the TTFC: Figure 5.10 shows the effect of different

video arrival rates on the TTFC for different-size video lengths. The different sizes

for video files are obtained from real traces of a major video service provider. We

compared our proposed online algorithm with the analytical offline bound and LRU-

based (explained in Section IV, B) policies. We see that the TTFC increases with

arrival rates, as expected, however, since the TTFC is more significant at high arrival

rates, we notice a significant improvement in the download time of the first chunk by

about 60% at the highest arrival rate in Figure 5.10 as compared to the LRU policy.

Effect of arrival Rates on the MSD: The effect of different video arrival rates on

the mean stall duration for different-size video length is captured in Figure 5.11. We

compared our proposed online algorithm with five baseline policies and we see that

the proposed algorithm outperforms all baseline strategies for the QoE metric of mean

stall duration. Thus, bandwidth, size of the time-window, access and placement of
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Fig. 5.11.: Mean stall duration versus arrival rates.

files in the storage caches are important for the reduction of mean stall duration.

Further, obviously, the mean stall duration increases with arrival rates, as expected.

Since the mean stall duration is more significant at high arrival rates, we notice a

significant improvement in mean stall duration (approximately 15s to about 5s) at

the highest arrival rate in Figure 5.11 as compared to the LRU policy

Effect of edge-cache capacity: We study the miss-rate (percentage of how many

video file requests are not served from the edge-cache) performance of the edge-

cache. Clearly, the miss-rate decreases with the increasing size of the capacity of

the edge-cache. However, when the edge-cache capacity is approximately 35% of the

entire video sizes, the miss-rate is around 20%. Further, adaptSize policy does not

neither optimize the time to live window of files ωi’s nor intelligently incorporate the

arrival rates in adding/evicting the video files, and thus its performance becomes less

sensitive to varying the cache size. The variant versions of LRU (qLRU with q = 0.67,

kLRU and kRandom with k = 6) obtain closer performance compared to that of the

basic LRU where kLRU performs that best among them as it somehow maintains a
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SDTP and PEA-based SDTP.

window (k-requests) for admitting a file into the cache and adapts LRU policy in the

eviction process.
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5.8 Joint Mean-Tail Optimization

We wish to jointly minimize the two QoE metrics (MSD and SDTP) over the

choice of server-PSs scheduling, bandwidth allocation, edge-cache window-size and

auxiliary variables. Since this is a multi-objective optimization, the objective can be

modeled as a convex combination of the two QoE metrics.

The first objective is the minimization of the mean stall duration, averaged over

all the file requests, and is given as
∑

i,`
λi,`
λ

E
[
Γ(i,`)

]
. The second objective is the min-

imization of stall duration tail probability, averaged over all the video file requests,

and is given as
∑

i,`
λi,`
λ

Pr
(
Γ(i,`) ≥ x

)
. Using the expressions for the mean stall du-

ration and the stall duration tail probability, respectively, optimization of a convex

combination of the two QoE metrics can be formulated as follows.

R∑
`=1

r∑
i=1

λi,`
λ

[
θ × Pr(Γ(i,`) ≥ σ) + (1− θ)× E

[
Γ(i,`)

]]
(5.45)

s.t. (5.46)

(5.35)− (5.44) (5.47)

gi < α
(d)
j,βj ,`

, gi < α
(e)
j,νj ,`

, ∀i, j, νj, ` (5.48)

0 < gi − Λ
(d)
j,βj

(B
(d)
j,βj ,`

(gi)− 1), ∀i, j, βj, ` (5.49)

0 < gi − Λ
(d)
j,βj ,`

(B
(d)
j,βj ,`

(gi)− 1), ∀i, j, βj (5.50)

0 < gi − Λ
(e)
j,νj ,`

(B
(e)
j,νj ,`

(gi)− 1), ∀i, j, νj, ` (5.51)

var π, q, p, h, g, w(c), w(d), w(e), L,ω.

Clearly, the above optimization problem is non-convex in all the parameters

jointly. This is can be easily seen in the terms which are product of the different

variables. Since the problem is non-convex, we propose an iterative algorithm to

solve the problem. This algorithm performs an alternating optimization over the

different aforementioned dimensions, such that each sub-problem is shown to have

convex constraints and thus can be efficiently solved using NOVA algorithm [57].

The subproblems are explained in detailed in Appendix A.17.
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Mean-Tail tradeoff: There is a tradeoff between the MSD and SDTP. Hence,

we now investigate this tradeoff in order to get a better understanding of how this

traddeoff can be compromised. To do so, we vary θ in the above optimization problem

to get a tradeoff between MSD and SDTP. Intuitively, if the mean stall duration

decreases, the stall duration tail probability also reduces, as depicted in Figure 5.14.

Therefore, a question arises whether the optimal point for decreasing the mean stall

duration and the stall duration tail probability is the same? Based on our real video

traces, we answer this question in negative since we find that at the desgin values

that optimize the mean stall duration, the stall duration tail probability is 10+ times

higher as compared to the optimal stall duration tail probability. Similarly, the

optimal mean stall duration is 7 times lower as compared to the mean stall duration

at the design values that optimizes the stall duration tail probability. As a result,

an efficient tradeoff point between the two QoE metrics can be chosen based on the

point on the curve that is appropriate for the clients.
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6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

This dissertation proposes a CDN-based edge-cache-aided over-the-top multicast

video streaming system, where the video content is partially stored on distributed

cache servers and access-dependent online edge caching strategy is used at the edge-

cache. The content at the distributed cache servers can be either erasure-coded or

coded using repetition code.

First, we consider video streaming over cloud where the content is erasure-coded

on the distributed servers. Two QoE metrics related to the stall duration, mean stall

duration and stall duration tail probability are characterized with upper bounds.

Both download and play times of each video segment are characterized to evaluate

the QoE metrics. An optimization problem that optimizes the convex combination

of the two QoE metrics for the choice of placement and access of contents from the

servers is formulated.

Next, we consider video quality as a QoE metric in our optimization problem.

Besides stall measures (mean and tail probability of stall), average quality of the

streamed video is optimized. A two-stage probabilistic scheduling is proposed for the

choice of servers and the parallel streams between the server and the edge router.

Using the two-stage probabilistic scheduling and probabilistic quality assignment for

the videos, an upper bound on the mean stall duration is derived. An optimization

problem that minimizes a convex combination of the two QoE metrics is formulated,

over the choice of two-stage probabilistic scheduling, probabilistic quality assignment,

bandwidth allocation, and auxiliary variables.

Third, we consider multi-stage caching system where content can be obtained

from edge-cache, distributed storage servers and/or a central node. Using this model,
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weighted stall duration tail probability is optimized by considering two-stage prob-

abilistic scheduling for the choice of servers and the parallel streams between the

server and the edge router. Using the two-stage probabilistic scheduling and the edge

caching mechanism, an upper bound on the stall duration tail probability is charac-

terized. Further, an optimization problem that minimizes the weighted stall duration

tail probability is formulated, over the choice of two-stage probabilistic scheduling,

bandwidth allocation, cache placement, edge-cache parameters, and the auxiliary

variables in the bound.

For all different scenarios, an efficient algorithm is proposed to solve the optimiza-

tion problem and the experimental results on a virtualized cloud system managed by

Openstack depict the improved performance of our proposed algorithm as compared

to the state-of-the-other algorithm and some competitive baselines.

6.2 Future Work

A server does not need to serve different video requests one after the other. It

may be better to serve video segments out of order from a queue thus helping stall

durations since the later video requests do not have to wait for finishing chunks of

earlier requests which have later deadlines. Exploiting this flexibility is an open

problem.

Possible extensions to accommodate multiple quality levels and different chunk

sizes are discussed in Appendix A.21. However, a complete treatment of adaptive

bit-rate video streaming is left as a future work.

We note that the current video streaming algorithms use adaptive bit-rate (ABR)

strategies to change the video qualities of segments within a video [54, 55]. One of

the strategies look at the buffer usage at the client to determine the quality of the

next segment [54]. Incorporating efficient ABR streaming algorithms is an interesting

future work. The main challenge in this extension is to incorporate the client behavior

which makes the arrival process non-memoryless thus making the analysis complex.
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Finally, considering the decoding time by combining data in the calculations is left

as a future work.
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A. APPENDIX

A.1 Proof of Lemma 1

Rj(s) =
r∑
i=1

πijλi
Λj

E
[
e−s(STi,j)

]
=

r∑
i=1

πijλi
Λj

E
[
e
−s
(∑Li

ν=1 Y
(ν)
j

)]
=

r∑
i=1

πijλi
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(
E
[
e
−s
(
Y

(1)
j

)])Li
=

r∑
i=1

πijλi
Λj

(
αje

−βjs

αj + s

)Li
(A.1)

A.2 Proof of Lemma 2

This follows by substituting t = −s in (4.15) and Bj(t) is given by (4.12) and

Mj(t) is given by (4.5). This expressions holds when t − Λj (Bj(t)− 1) > 0 and

t < 0∀j, since the moment generating function does not exist if the above does not

hold.
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A.3 Proof of Lemma 3
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A.4 Proof of Theorem A.19.1

We first find an upper bound on Fij as follows.

Fij = E
[
max
z
etipijz

]
(d)

≤
∑
z

E
[
etipijz

]
(e)
= eti(ds+(Li−1)τ)+

Li+1∑
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αje
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αje

tiβj

αj − ti

)`
(A.3)

where (d) follows by bounding the maximum by the sum, (e) follows from (4.22), and

(f) follows by substituting ` = z − 1.

Further, substituting the bounds (A.3) and (4.35) in (A.72), the mean stall dura-

tion is bounded as follows.

E
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(A.4)



137

A.5 Proof of Theorem 3.6.1

Substituting (3.29) in (3.27), we get

Pr
(
T

(Li)
i ≥ x

)
≤

∑
j

πijP
(
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z
pijz ≥ x

)
≤

∑
j

πij
Fij
etix
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j

πij
etix

(
eti(ds+(Li−1)τ) +Hij

)
=

∑
j

πij
eti(x+ds+(Li−1)τ)

(
eti(ds+(Li−1)τ) +Hij

)
=

∑
j

πij
etix

(
1 + e−ti(ds+(Li−1)τ) Hij

)
(A.5)

where (g) follows from (A.3) and Hij is given by (4.42).

A.6 Description of the Algorithms for the Three Sub-Problems

A.6.1 Access Optimization

Given the placement and the auxiliary variables, this subproblem can be written

as follows.

Input: t, S

Objective: min (4.45)

s.t. (4.48), (4.49), (4.51), (4.51), (3.49), (4.58)

var. π

In order to solve this problem, we have used iNner cOnVex Approximation (NOVA)

algorithm proposed in [57] to solve this sub-problem. The key idea for this algorithm is

that the non-convex objective function is replaced by suitable convex approximations

at which convergence to a stationary solution of the original non-convex optimization
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is established. NOVA solves the approximated function efficiently and maintains fea-

sibility in each iteration. The objective function can be approximated by a convex

one (e.g., proximal gradient-like approximation) such that the first order properties

are preserved [57], and this convex approximation can be used in NOVA algorithm.

Let Ũ (π;πν) be the convex approximation at iterate πν to the original non-convex

problem U (π), where U (π) is given by (4.45). Then, a valid choice of Ũ (π;πν) is

the first order approximation of U (π), e.g., (proximal) gradient-like approximation,

i.e.,

Ũ (π,πν) = ∇πU (πν)T (π − πν) +
τu
2
‖π − πν‖2 , (A.6)

where τu is a regularization parameter. Note that all the constraints (4.48), (4.49),

(4.51), (4.51), (3.49), and (4.58) are linear in πi,j . The NOVA Algorithm for opti-

mizing π is described in Algorithm 3. Using the convex approximation Ũ (π;πν),

the minimization steps in Algorithm 3 are convex, with linear constraints and thus

can be solved using a projected gradient descent algorithm. A step-size (γ) is also

used in the update of the iterate πν . Note that the iterates
{
π(ν)

}
generated by

the algorithm are all feasible for the original problem and, further, convergence is

guaranteed, as shown in [57] and described in the following lemma.

Lemma 18 For fixed placement S and t, the optimization of our problem over π

generates a sequence of decreasing objective values and therefore is guaranteed to

converge to a stationary point.

A.6.2 Auxiliary Variables Optimization

Given the placement and the access variables, this subproblem can be written as

follows.

Input: π, S

Objective: min (4.45)

s.t. (3.45), (4.56), (3.47),(4.57), (3.49), (4.58),
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Algorithm 1: NOVA Algorithm to solve Access Optimization sub-problem

1. Initialize ν = 0, k = 0,γν ∈ (0, 1], ε > 0,π0 such that π0 is feasible ,

2. while obj (k)− obj (k − 1) ≥ ε

3. //Solve for πν+1 with given πν

4. Step 1: Compute π̂ (πν) , the solution of π̂ (πν) =argmin
π

Ũ (π,πν) s.t.

(4.48), (4.49), (4.51), (4.51), (3.45), (3.49), solved using projected gradient

descent

5. Step 2: πν+1 = πν + γν (π̂ (πν)− πν).

6. //update index

7. Set ν ← ν + 1

8. end while

9. output: π̂ (πν)

var. t

Similar to Access Optimization, this optimization can be solved using NOVA

algorithm. The constraints (3.45) and (4.56) are linear in t. The next two Lemmas

show that the constraints (3.47), (4.57), (3.49), and (4.58) are convex in t respectively.

Lemma 19 The constraints (3.47) and (4.57) are convex with respect to t.

Proof The proof is provided in Appendix A.7.

Lemma 20 The constraints (3.49) and (4.58) are convex with respect to t.

Proof The proof is provided in Appendix A.8.

Algorithm 4 shows the used procedure to solve for t. Let U (t; tν) be the convex

approximation at iterate tν to the original non-convex problem U (t), where U (t) is
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Algorithm 2: NOVA Algorithm to solve Auxiliary Variables Optimization

sub-problem

1. Initialize ν = 0,γν ∈ (0, 1], ε > 0, t0 such that t0 is feasible,

2. while obj (ν)− obj (ν − 1) ≥ ε

3. //Solve for tν+1 with given tν

4. Step 1: Compute t̂ (tν) , the solution of t̂ (tν) =argmin
t

U (t, tν), s.t. (3.45),

(4.57), and (3.49) using projected gradient descent

5. Step 2: tν+1 = tν + γν
(
t̂ (tν)− tν

)
.

6. //update index

7. Set ν ← ν + 1

8. end while

9. output: t̂ (tν)

given by (4.45), assuming other parameters constant. Then, a valid choice of U (t; tν)

is the first order approximation of U (t), i.e.,

U (t, tν) = ∇tU (tν)T (t− tν) +
τt
2
‖t− tν‖2 . (A.7)

where τt is a regularization parameter. The detailed steps can be seen in Algorithm

4. Since all the constraints (3.45), (4.57),and (3.49) have been shown to be convex in

t, the optimization problem in Step 1 of Algorithm 4 can be solved by the standard

projected gradient descent algorithm.

A.6.3 Placement Optimization

Given π and t, this subproblem finds a permutation of the placement of files on the

different servers. Let the given π be denoted as π′ = {π′ij∀i, j} and the placement

corresponding to this access be S ′ = (S ′1,S ′2, . . . ,S ′r). We find a permutation of
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the servers m for each file i, and call it ζi(j) is a permutation of the servers from

j ∈ {1, · · ·m} to ζi(j) ∈ {1, · · ·m}. Further, having the mapping of the servers

for each file, the new access probabilities are πij = π′i,ζi(j). Having these access

probabilities, the new placement of the files will be Si = {ζi(j)∀j ∈ S ′i}. We note that

the constraints (4.51), (4.51), and (3.44) for the access from the modified placement

of the servers will already be satisfied. The Placement Optimization subproblem is to

find the optimal permutations ζi(j). The problem can be formally written as follows.

Objective: min (4.45)

s.t. (4.48), (4.49), (3.49), πij = π′i,ζi(j), ζi is a permutation on

{1, · · · ,m} ∀ i ∈ {1, · · · , r}

var. ζi(j) ∀j ∈ {1, · · · ,m} and i ∈ {1, · · · , r}

We note that the optimization problem is to find r permutations and is a discrete

optimization problem. We first consider optimizing only over one of the permutation

ζi. Let ζi be written as an indicator function x
(i)
u,v which is 1 if v = ζi(u) and zero

otherwise. Then, the new πij =
∑

u x
(i)
j,uπ

′
iu while for other files k 6= i, πij remains

the same. With the new values of πij, the only optimization variables are x
(i)
j,u. The

constraints for x
(i)
u,v are

∑
v x

(i)
u,v =

∑
u x

(i)
u,v = 1 and x

(i)
u,v ∈ {0, 1}. We note that this is

a non-linear bipartite matching problem [86]. All the r permutations taken together

result in rm2 discrete optimization variables that we wish to optimize.

In general, we have the constraints πij =
∑

u x
(i)
j,uπ

′
iu and

∑
v x

(i)
u,v =

∑
u x

(i)
u,v = 1

for all i ∈ {1, · · · , r}, u, v ∈ {1, · · · ,m}, where binary x
(i)
u,v for each i, u, v are the

decision variables. In order to solve the non-linear problem with integer constraints,

we use NOVA algorithm, where a term
(
1 + e(αcx)

)−1 −
(
1 + e(αc(x−1))

)−1
is added in

the objective for each constraint (to make the problem smooth), where αc is a large

number and C is large enough to force the solutions to be binary. NOVA algorithm

guarantees convergence for any given value of C and thus for large enough C, we will

obtain the stationary point that has integer constraints.
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A.7 Proof of Lemma 19

The constraints (3.47) and (4.57) are separable for each t̃i and ti and thus it is

enough to prove convexity of C(t) = αj
(
e(βj−τ)t − 1

)
+ t. Thus, it is enough to prove

that C ′′(t) ≥ 0.

The first derivative of C(t) is given as

C ′(t) = αj
(
(βj − τ) e(βj−τ)t

)
+ 1 (A.8)

Differentiating it again, we get the second derivative as follows.

C ′′(t) = αj (βj − τ)2 e(βj−τ)t (A.9)

Since αj > 0, C ′′(t) given in (A.9) is non-negative, which proves the Lemma.

A.8 Proof of Lemma 20

The constraints (3.49) and (4.58) are separable for each each t̃i and ti, and thus it

is enough to prove convexity of E(t) =
∑r

f=1 πfjλf

(
αje

βjt

αj−t

)Lf
− (Λj + t) for t < αj.

Thus, it is enough to prove that E ′′(t) ≥ 0 for t < αj. We further note that it is

enough to prove that D′′(t) ≥ 0, where D(t) = e
Lfβjt

(αj−t)Lf
. Hence, the first derivative of

D(t) is given as

D
′
(t) =

Lfe
Lfβjt

[
βj + (αj − t)−1]

(αj − t)Lf
> 0 (A.10)

Note that D′(t) > 0 since αj > t. Differentiating it again to get the second

derivative, we get the second derivative as follows.

D
′′
(t) =

Lfβje
Lfβjt

(αj − t)Lf+2
×[

βj + (1 + Lf ) (αj − t)−1

(
1 +

1

βj (αj − t)

)]
(A.11)

Since αj > t, D′′(t) given in (A.11) is non-negative, which proves the Lemma.
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Fig. A.1.: Mean stall duration for 2000 files and different number of servers m
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Fig. A.2.: Weighted stall duration tail probability for different coding with different

video lengths.

A.9 Additional Simulation Figures

In this section, in addition to the variations studied earlier, we will explore the

effects of changing some other system parameters, i.e., the number of servers, the

number of video files, the increase of video request arrival rates, and the code choice

on the stall durations.

Effect of number of servers: Figure A.1 depicts the mean stall duration for

increasing number of servers (12, 24, 36, 48). We note that the mean stall duration

decreases with increase of servers.

Effect of encoding parameters: Figure A.2 depicts the weighted stall dura-

tion tail probability for varying the number of files, and for different choices of code
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Fig. A.3.: Mean Stall Duration for replication-based setup (k = 1). We set m = 24

servers, r = 2000 video files, arrival rate is varied from 1 × λi to 7 × λi, where λi is

the base arrival rate. The video file sizes are Pareto-based distributed, i.e., can be

anywhere between 1-120 minutes.

parameters. We first note that the weighted stall duration tail probability is higher

for larger number of files. Further, we note that the code with larger n for the same

value of k performs better. This is because larger value of n gives more choice for

the selection of servers. Thus, (11, 6) performs better than (10, 6) and (8, 4) performs

better than (7, 4). Among (10, 6) and (8, 4), the additional redundancy is 4. With

the same number of parity symbols, it is better to have larger value of k since smaller

chunks are obtained from each server helping stall durations. Since the replication

has k = 1, this analysis thus shows that an erasure code with the same redundancy

can help achieve better stall durations.

Performance with Repetition Coding: Figure A.3 shows the effect of dif-

ferent video arrival rates on the mean stall duration for different-size video length

when each file uses (3, 1) erasure-code (which is triple-replication). We compare our

proposed algorithm with the five baseline policies and see that the proposed algo-

rithm outperforms all baseline strategies for the QoE metric of mean stall duration.

Thus, both access and placement of files are important for reducing the mean stall

duration. We see that the mean stall duration of all approaches increases with arrival

rates. However, since the mean stall duration is more significant at high arrival rates,
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Fig. A.4.: Mean stall duration for different number of video files with different video

lengths.
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Fig. A.5.: Stall duration tail probability for different arrival rates for video files

(x = 150 s).

we see the significant improvement in the mean stall duration of our approach as

compared to the considered baselines.

Effect of Arrival Rates Figure A.5 demonstrates the effect of increasing work-

load, obtained by varying the arrival rates of the video files from 0.25λ to 2λ, where λ

is the base arrival rate, on the stall duration tail probability for video lengths gener-

ated based on Pareto distribution defined above. We notice a significant improvement

of the QoE metric with the proposed strategy as compared to the baselines. At the

arrival rate of 2λ, the proposed strategy reduces the stall duration tail probability by

about 100% as compared to the random placement and projected equal access policy.

Convergence of Stall Duration Tail Probability Figure A.6 demonstrates

the convergence of our proposed algorithm for different values of x. Considering
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Fig. A.7.: Mean stall duration for different video arrival rates for 600s video files.

r = 1000 files of length 300s each with m = 12 storage nodes, the stall duration tail

probability converges to the optimal value within less than 200 iterations.

Effect of the Number of Video Files Figure A.4 demonstrates the impact of

varying the number of video files from 100 files to 700 files on the mean stall duration,

where the video lengths are generated according to Pareto distribution with the same

parameter defined earlier (scale of 300, and shape of 2). We note that the proposed

optimization strategy effectively reduces the mean stall duration and outperforms the

considered baseline strategies. Thus, joint optimization over all three variables S, π,

and t helps reduce the mean stall duration significantly.

A.10 Extension to more streams between the server and the edge router

In this section, we investigate extending the proposed approach to the case when

there are y parallel streams from each server to the edge router. Multiple streams can
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help obtain parallel video files thus helping one file not wait behind the other. We

label the y streams from server j as νj ∈ {1, · · · , y} (graphically depicted in Figure

A.8). The analysis in this work considers only one stream between the server and the

edge router. We now show how the analysis can be adapted when there are multiple

streams. We first note that the scheduling need to decide not only the server j but

also the parallel stream νj. We assume that the parallel stream νj is chosen equally

likely. Further, the multiple streams are obtained through equal bandwidth splits,

and thus the service time parameters would be different for streams as compared to

the server. For instance, the service rate would be a factor of y of the service rate

from the server due to the bandwidth split. Thus, the probability of choosing server

j and stream νj is

qi,j,νj = πi,j/y, (A.12)

where πi,j is the probability of choosing server j. Using this, we note that the analysis

of download time from a server can be modified to download time from a stream of

a server and the steps can be directly extended. The ordered statistics can use the

above probabilistic scheduling to choose a stream of a server and thus the entire

analysis can be easily extended.

Since the optimization also has the same parameters, we show an improvement of

the mean stall duration with the number of parallel streams in Fig. A.9. The choice

of the number of streams y can be determined by the practical limitations (e.g., num-

ber of ports possible at the server). A more detailed analysis of the parallel streams,

exploiting the flexibility of splitting of bandwidths among the different streams, choos-

ing one of the multiple parallel streams for each video are being considered in the

following chapters.

A.11 Impact Of Caching

So far, our analysis did not account for caching. In this Appendix, we present

how our model can be extended to accommodate for the impact of caching. Caching
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content at the network edge, closer to the customers, can further help reducing the

stall duration and thus improve the QoE. However, caching the video content has to

address a number of crucial challenges that differ from caching of web objects, see for

instance [87] and the references therein for detailed treatment of this aspect.

There are two methods for caching the video files. The first involves caching the

complete video file (all Li video chunks of file i) at edge routers. The second method

involves caching partial chunks, i.e., Lj,i, where Lj,i ≤ Li, for video file i. Most of the

current caching schemes cache entire files (for example, hot files). Our analysis can

accommodate both of these methods. In the first method, the video file is entirely

cached, and is thus not requested from the servers. This is equivalent to changing the

arrival rate of these files to zero, i.e., λi = 0. In the second method, only the later

(Li−Lj,i) are needed from the servers. This can be easily incorporated by requesting

the video of length (Li − Lj,i), while the first chunk can wait for an additional τLj,i

time which can be accounted by adding τLj,i in the startup delay for this file.

Mathematically, we can show that for g ∈ Lj,i + 1, · · · , Li, where Lj,i < g ≤ Li,

the random download time of the remaining (Li−Lj,i) segments from server j is given

as

D
(g)
i,j = Wj +

g∑
v=Lj,i+1

Y
(v)
j . (A.13)
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Since video file i consists of (Li − Lj,i) segments stored at server j, the total service

time for video file i, denoted by STi,j, is given as

STi,j =

Li∑
v=Lj,i+1

Y
(v)
i,j (A.14)

Hence, the service time of the video files at server j is given by

Rj =

{
STi,j with prob.

λiπi,j
Λj

∀i (A.15)

where Λj is the total arrival rate at server j. Also, we can show that the MGF of the

service time for all video files from server j is given by

Bj(t) = E[etRj ] =
r∑
i=1

λiπi,j
Λj

(
αje

ηjt

αj − t

)(Li−Lj,i)

(A.16)

Further, the current load intensity at server j, ρj, is as follows

ρj = ΛjB
′
j(0) =

r∑
i=1

λiπi,j(Li − Lj,i)
(
ηj +

1

αj

)
(A.17)

Similar to the previous analysis, since the arrival is Poisson and the service time

is shifted-exponentially distributed, the MGF of the waiting time at queue server j

can be calculated usingthe Pollaczek-Khinchine formula, i.e.,

E
[
etWj

]
=

(1− ρj)t
t− Λj(Bj(t)− 1)

(A.18)

From the MGF of Wj and the service time, the MGF of the download time of segment

g from server j for file i is then

E
[
etD

(g)
i,j

]
=

(1− ρj)t
t− Λj(Bj(t)− 1)

(
αje

ηjt

αj − t

)g
. (A.19)

Having characterized the download time for chunk g, we can then determine the stall

durations and evaluate the QoE metrics as in Equations (A.75) and (3.30). The

details are omitted here as they can easily follow.
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A.12 End-to-End Analysis

In this Appendix, we show how our analysis can be extended to consider the last

hop from the edge-router to the user. If the last hop is considered, the download time

of the chunk q for video file i, if requested from server j can be written as follows

D
(q)
i,j = Wj +

q∑
v=1

Y
(v)
j +

τRi

Ci

,

where Wj is the waiting time in the queue of server j, Y
(v)
j is the service time for

the chunk v, τ is the chunk size in seconds, Ri is the bit-rate for user i, and Ci

is the average bandwidth when downloading chunk q. Thus, as long as τRi
Ci can be

bounded, this is the additional stall duration (or additional startup delay). In most

wired setups, the capacity for the last hop may not be a bottleneck, and thus this

term is negligible and not varying significantly with q. Even for wireless network in

homes, the average bandwidth numbers are much higher than the video rate, and

thus this additional term may not be a bottleneck. Thus, the analysis can be easily

extended to the last hop. Since the last hop is dependent on the user and the cloud

provider wishes to optimize the system such that it does the best delivery in the part

controlled by the provider, we did not explicitly consider the last hop. However, as

long as the last hop capacity is higher than the data rate of the video, the last hop

does not affect the analysis except a small additional delay.

A.13 Download and Play Times of a Segment not Requested in ωi

Since we assume the edge-router index, we will omit ` in this section. In order

to characterize the stall duration tail probability, we need to find the download time

and the play time of different video segments, for any server j and streams with the

choice of βj and νj, assuming that they are not requested in ωi. The optimization

over these decision variables will be considered in this work.
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A.13.1 Download Times of first Lj,i Segments

We consider a queueing model, where W
(e)
j,νj

denotes the random waiting time of

all video files in the queue of PS
(e,j)
νj before file i request is served, and Y

(e,g)
i,j,νj

be the

(random service time of a coded chunk g for file i from server j and queue νj. Then,

for g ≤ Lj,i, the random download time of the first Lj,i segments g ∈ {1, . . . , Lj,i} if

file i from stream PS
(e,j)
νj is given as

D
(g)
i,j,βj ,νj

= W
(e)
j,νj

+

g∑
v=1

Y
(e,v)
i,j,νj

(A.20)

Since video file i consists of Lj,i segments stored at cache server j, the total service

time for video file i request at queue PS
(e,j)
νj , denoted by STi,j,νj , is given as

STi,j,νj =

Lj,i∑
v=1

Y
(e,v)
i,j,νj

(A.21)

Hence, the service time of the video files at the parallel stream PS
(e,j)
νj is given as

R
(e)
j,νj

=

{
ST

(e,Lj,i)
i,j,νj

with prob.
λiπi,jpi,j,νj e

λiωi

Λ
(e)
j,νj

∀i (A.22)

We can show that the moment generating function of the service time for all video

files from parallel stream PS
(e,j)
νj is given by

B
(e)
j,νj

(t) = E[e
tR

(e)
j,νj ] =

r∑
i=1

λiπi,jpi,j,νje
λiωi

Λ
(e)
j,νj

α(e)
j,νj
e
η
(e)
j,νj

t

α
(e)
j,νj
− t

Lj,i

(A.23)

Further, based on our 2-stage scheduling policy, the load intensity at PS
(e,j)
νj is as

follows

ρ
(e)
j,νj

= Λ
(e)
j,νj
B

(e)′

j,νj
(0) (A.24)

=
r∑
i=1

λiπi,jpi,j,νje
λiωiLj,i

(
η

(e)
j,νj

+
1

α
(e)
j,νj

)
(A.25)

Since the arrival is Poisson and the service time is shifted-exponentially dis-

tributed, the moment generating function (MGF) of the waiting time at queue PS
(e,j)
νj

can be calculated usingthe Pollaczek-Khinchine formula, i.e.,

E
[
e
tW

(e)
j,νj

]
=

(1− ρ(e)
j,νj

)t

t− Λ
(e)
j,νj

(B
(e)
j,νj

(t)− 1)
(A.26)
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From the MGF of W
(e)
j,νj

and the service time, the MGF of the download time of

segment g from the queue PS
(e,j)
νj for file i is then

E
[
e
tD

(g)
i,j,βj ,νj

]
=

(1− ρ(e)
j,νj

)t

t− Λ
(e)
j,νj

(B
(e)
j,νj

(t)− 1)

α(e)
j,νj
e
η
(e)
j,νj

t

α
(e)
j,νj
− t

g

. (A.27)

We note that the above is defined only when MGFs exist, i.e.,

t < α
(e)
j,νj

(A.28)

0 < t− Λ
(e)
j,νj

(B
(e)
j,νj

(t)− 1) (A.29)

A.13.2 Download Times of last (Li − Lj,i) Segments

Since the later video segments (Li−Lj,i) are downloaded from the data center, we

need to schedule them to the βj streams using the proposed probabilistic scheduling

policy. We first determine the time it takes for chunk g to depart the first queue (i.e.,

βj queue at datacenter). For that, we define the time of chunk g to depart the first

queue as

E
(g)
i,j,βj

= W
(d)
j,βj

+

Li∑
v=Lj,i+1

Y
(d,v)
j,βj

, (A.30)

where W
(d)
j,βj

is the waiting time from PS
(d,j)
βj

for the earlier video segments, and Y
(d,v)
j,βj

is the service time for obtaining segment v from the queue of PS
(d,j)
βj

. Using similar

analysis for that of deriving the MGF of download time of chunk g as in the last

section, we obtain

E
[
e
tE

(g)
i,j,βj

]
=

(1− ρ(d)
j,βj

)t

t− Λ
(d)
j,βj

(B
(d)
j,βj

(t)− 1)

α(d)
j,βj
e
η
(d)
j,βj

t

α
(d)
j,βj
− t

g−Lj,i−1

, (A.31)

where the load intensity at queue βj at datacenter, ρ
(d)
j,βj

ρ
(d)
j,βj

=
r∑
i=1

λiπi,jqi,j,βje
λiωi (Li − Lj,i)

(
η

(d)
j,βj

+
1

α
(d)
j,βj

)
(A.32)

B
(d)
j,βj

(t) =
r∑
i=1

λiπi,jqi,j,βje
λiωi

Λ
(d)
j,βj

α(d)
j,βj
e
η
(d)
j,βj

t

α
(d)
j,βj
− t

Li−Lj,i

(A.33)
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To find the download time of video segments from the second queue (at cache

server j), we notice that the download time for segment g includes the waiting to

download all previous segments and the idle time if the segment g is not yet down-

loaded from the first queue (PS
(d,j)
βj

), as well as the service time of the segment

from PS
(d,j)
βj

. Then, the download time of the video segments from the second queue

(i.e.,PS
(d,j)
βj

) can be derived by a set of recursive equations, with download time of

the first (initial) segment (Lj,i + 1) as

D
(Lj,i+1)
i,j,βj ,νj

= max(W
(d)
j,βj
, E

(Lj,i+1)
j,βj

) + Y
(d,Lj,i+1)
j,βj

, (A.34)

where W
(d)
j,βj

is the waiting time from queue PS
(d,j)
βj

for the previous video segments,

and Y
(d,v)
j,βj

is the required service time for obtaining segment v from the queue of

PS
(d,j)
βj

. The download time of the following segments (g > Lj,i + 1) is given by the

following recursive equation

D
(g)
i,j,βj ,νj

= max(D
(g−1)
i,j,βj ,νj

, E
(g)
i,j,βj

) + Y
(d,g)
j,βj

. (A.35)

With the above recursive equations from y = Lj,i to y = g, we can obtain that

D
(g)
i,j,βj ,νj

=
g

max
y=Lj,i

Ui,j,βj ,g,y, (A.36)

where

Ui,j,βj ,g,Lj,i = W
(d)
j,βj

+

g∑
h=Lj,i+1

Y
(d,h)
j,βj

(A.37)

Similarly, for y > Lj,i, we have

Ui,j,βj ,g,y = E
(y)
i,j,βj

+

g∑
h=y

Y
(d,h)
j,βj

. (A.38)

It is easy to see that the moment generating function of Ui,j,βj ,g,y for y = Lj,i is

given by

E[etUi,j,βj ,g,Lj,i ] =
(1− ρ(d)

j,βj
)t

t− Λ
(c)
j,βj

(B
(d)
j,βj

(t)− 1)

α(d)
j,βj
e
η
(d)
j,βj

t

α
(d)
j,βj
− t


g−Lj,i

, (A.39)
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where the load intensity at queue βj at cache server j, ρ
(d)
j,βj

is given by

ρ
(d)
j,βj

=
r∑
i=1

λiπi,jqi,j,βje
λiωi (Li − Lj,i)

η(d)
j,βj

+
1

α
(d)
j,βj

 (A.40)

B
(d)
j,βj

(t) =
r∑
i=1

λiπi,jqi,j,βje
λiωi

Λ
(c)
j,βj

α(d)
j,βj
e
η
(d)
j,βj

t

α
(d)
j,βj
− t


Li−Lj,i

(A.41)

Similarly, the moment generating function of Ui,j,βj ,g,y for y > Lj,i is given as

E[etUi,j,βj ,g,y ] = W
(d)

j,βj
×α(d)

j,βj
e
η
(d)
j,βj

t

α
(d)
j,βj
− t

y−Lj,i−1
α(d)

j,βj
e
η
(d)
j,βj

t

α
(d)
j,βj
− t


g−y+1

(A.42)

where W
(d)

j,βj
W

(d)

j,βj
=

(1−ρ(d)j,βj )tB
(d)
j,βj

(t)

t−Λ
(d)
j,βj

(B
(d)
j,βj

(t)−1)
. We further note that these moment generating

functions are only defined when the MGF functions exist, i.e.,

t < α
(d)
j,βj

; 0 < t− Λ
(d)
j,βj

(B
(d)
j,βj

(t)− 1) (A.43)

t < α
(d)
j,βj

; 0 < t− Λ
(d)
j,βj

(B
(d)
j,βj

(t)− 1) (A.44)

A.13.3 Play Times of different Segments

Next, we find the play time of different video segments. Recall that D
(g)
i,j,βj ,νj

is

the download time of segment g from νj and βj queues at client i. We further define

T
(g)
i,j,βj ,νj

as the time that segment g begins to play at the client i, given that it is

downloaded from βj and νj queues. This start-up delay of the video is denoted by ds.

Then, the first segment is ready for play at the maximum of the startup delay and

the time that the first segment can be downloaded. This means

T
(1)
i,j,βj ,νj

= max
(
ds, D

(1)
i,j,βj ,νj

)
. (A.45)

For 1 < g ≤ Li, the play time of segment g of video file i is given by the maximum

of (i) the time to download the segment and (ii) the time to play all previous segment
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plus the time to play segment g (i.e., τ seconds). Thus, the play time of segment

g of video file i, when requested from server j and from νj and βj queues, can be

expressed as

T
(q)
i,j,βj ,νj

= max
(
T

(q−1)
i,j,βj ,νj

+ τ, D
(q)
i,j,βj ,νj

)
. (A.46)

This results in a set of recursive equations, which further yield by

T
(Li)
i,j,βj ,νj

= max
(
T

(Li−1)
i,j,βj ,νj

+ τ, D
(Li)
i,j,βj ,νj

)
= max

(
T

(Li−2)
i,j,βj ,νj

+ 2τ, D
(Li−1)
i,j,βj ,νj

+ τ, D
(Li)
i,j,βj ,νj

)
=max

(
ds + (Li − 1)τ,

Li+1
max
z=2

D
(z−1)
i,j,βj ,νj

+ (Li − z + 1)τ
)

=
Li+1
max
z=1
Fi,j,βj ,νj ,z (A.47)

where Fi,j,βj ,νj ,z is expressed as

Fi,j,βj ,νj ,z =

ds + (Li − 1)τ , z = 1

D
(z−1)
i,j,βj ,νj

+ (Li − z + 1)τ 1 < z ≤ Li

(A.48)

We now get the MGFs of the Fi,j,νj ,βj ,z to use in characterizing the play time of the

different segments. Towards this goal, we plug Equation (A.48) into E
[
etFi,j,νj ,βj ,z

]
and obtain

E
[
etFi,j,νj ,βj ,z

]
= (A.49)

e(ds+(Li−1)τ)t , z = 1

e(Li−z+1)τtE
[
e
tD

(z−1)
i,j,βj ,νj

]
1 < z ≤ (Li + 1)

where E
[
e
tD

(z−1)
i,j,βj ,νj

]
can be calculated using equation (A.27) when 1 < z ≤ (Lj,i + 1)

and using equation (A.42) when z > Lj,i + 1 .

The last segment should be completed by time ds+Liτ (which is the time at which

the playing of the Li − 1 segment finishes). Thus, the difference between the play

time of the last segment T
(Li)
i,j,βj ,νj

and ds + (Li − 1) τ gives the stall duration. We note

that the stalls may occur before any segment and hence this difference will give the
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sum of durations of all the stall periods before any segment. Thus, the stall duration

for the request of file i from βj queue, νj queue and server j, i.e., Γ
(i,j,βj ,νj)
U is given as

Γ
(i,j,βj ,νj)
U = T

(Li)
i,j,βj ,νj

− ds − (Li − 1) τ (A.50)

Next, we use this expression to derive a tight bound on the SDTP.

A.14 Proof of Lemma 15

From (5.17), we can get

ehiΓ
(i)
tot

d
=
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max

(
e
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(
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)
, 1

)
0 ≤ t̃i ≤ ωi
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U t̃i > ωi

(A.51)

By taking the expectation of both sides in (A.51), we can write

E
[
ehiΓ
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U ] t̃i > ωi

, (A.52)

where the expectation in the second case is over the choice of (j, βj, νj) in addition to

the queue statistics with arrival and departure rates. Since the arrivals at edge-cache

of video files are Poisson, the time till first request for file i, i.e., t̃i, is exponentially

distributed with rate λi. By averaging over t̃i, we have

E
[
ehiΓ

(i)
tot

]
≤

ωi∫
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(
1 + E

[
e
hi

(
Γ
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tot−t̃i

)])
λie
−λi t̃idt̃i (A.53)

+

∞∫
ωi

λiE[ehiΓ
(i,j,βj ,νj)

U ]e−λi t̃idt̃i

Performing the integration and simplifying the expressions, we get

E
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)
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)
(A.54)
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This can be further simplified as follows.
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(A.55)

where (a) and (b) follow by setting c = 1−e−λiωi , a = e−λiωi , b =

[
1− λi

λi+hi

(
1− e−(λi+hi)ωi

)]
,

c̃ = c/b and ã = a/b. We also recall that the expectation in E
[
ehiΓ

(i,j,βj ,νj)

U

]
is over

the choice of (j, βj, νj) and the queue arrival/departure statistics.

A.15 Proof of Lemma 17

We have

E
[
e
tiD

(v)
i,j,βj ,νj |(j, βj, νj)

]
(a)
= E

[
e
ti(maxvy=Lj,i

Ui,j,βj ,g,y)|(j, βj, νj)
]

= E
[

v
max
y=Lj,i

etiUi,j,βj ,g,y |(j, βj, νj)
]

≤
v∑

y=Lj,i

E
[
etiUi,j,βj ,g,y |(j, βj, νj)

]
= E

[
etiUi,j,βj ,g,Lj,i |(j, βj, νj)

]
+

v∑
w=Lj,i+1

(1− ρ(d)
j,βj

)ti

ti − Λ
(d)
j,βj

(B
(d)
j,βj

(ti)− 1)
×

α(d)
j,βj
e
η
(d)
j,βj

α
(d)
j,βj
− ti

w−Lj,i−1
α(d)

j,βj ,`
e
η
(d)
j,βj ,`

α
(d)
j,βj ,`
− ti


v−w+1

, (A.56)
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where (a) follows from (A.36), the inequality above follows by replacing the maxy(.)

by
∑

y(.). Moreover, the last step follows from (A.42). Hence, we can write
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this proves the statement of the Lemma.

A.16 Proof of Theorem 5.4.1

The SDTP for the request of file i can be bounded using Markov Lemma as follows

P
(

Γ
(i)
tot ≥ σ

)
≤

E
[
ehiΓ

(i)
tot

]
ehiσ

(A.58)

This can be further simplified as follows
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where Fi,j,βj ,νj ,z and D
(v)
i,j,βj ,νj

are given in Appendix A.13 in Equations (A.48) and

(A.27), respectively. Further, (c) follows from (5.18), (d) follows from (A.47) and

by setting c = c̃ e−hiσ, a = ã e−hi(σ+ds+(Li−1)τ), (e) follows by upper bounding the

maximum by the sum, and (f) follows from (A.48). Using the two-stage probabilistic

scheduling, the SDTP for video file i is further bounded by
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Using Lemmas 16 and 17 for E
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=
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where step (f) follows by substitution of the moment generating functions, and

the remaining of the steps use the sum of geometric and Arithmetico-geometric se-

quences. Note that the subscript ` is omitted in the above derivation for simplic-

ity. Further, δ(e) =
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. This proves the statement of the Theorem.
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A.17 Sub-problems Optimization

In this section, we explain how each sub-optimization problem is solved.

Server-PSs Access Optimization

Given the bandwidth allocation weights, the cache placement, edge-cache window

size, and the auxiliary variables, this sub-problem can be written as follows.

Input: h, w, ω, and L

Objective: min (5.34)

s.t. (5.35)– (5.38), –(5.40)– (5.43)

var. π̃

In order to solve this problem, we use iNner cOnVex Approximation (NOVA)

algorithm proposed in [57]. The key idea for this algorithm is that the non-convex

objective function is replaced by suitable convex approximations at which convergence

to a stationary solution of the original non-convex optimization is established. NOVA

solves the approximated function efficiently and maintains feasibility in each iteration.

The objective function can be approximated by a convex one (e.g., proximal gradient-

like approximation) such that the first order properties are preserved [57], and this

convex approximation can be used in NOVA algorithm.

Let Ũq (π̃, π̃ν) be the convex approximation at iterate πν to the original non-

convex problem U (π̃), where U (π̃) is given by (5.34). Then, a valid choice of

U (π̃;πν) is the first order approximation of U (π̃), e.g., (proximal) gradient-like

approximation, i.e.,

Ũq (π̃, π̃ν) = ∇π̃U (π̃ν)T (π̃ − π̃ν) +
τu
2
‖π̃ − π̃ν‖2 , (A.63)

where τu is a regularization parameter. Note that all the constraints (5.35)– (5.38)

are separable and linear in π̃i,j,k. The NOVA Algorithm for optimizing π̃ is described

in Algorithm 3. Using the convex approximation Ũπ (π;πν), the minimization steps

in Algorithm 3 are convex, with linear constraints and thus can be solved using a
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projected gradient descent algorithm. A step-size (γ) is also used in the update of

the iterate π̃ν . Note that the iterates {πν} generated by the algorithm are all feasible

for the original problem and, further, convergence is guaranteed, as shown in [57] and

described in lemma 21.

In order to use NOVA, there are some assumptions (given in [57]) that have to be

satisfied in both original function and its approximation. These assumptions can be

classified into two categories. The first category is the set of conditions that ensure

that the original problem and its constraints are continuously differentiable on the

domain of the function, which are satisfied in our problem. The second category is

the set of conditions that ensures that the approximation of the original problem is

uniformly strongly convex on the domain of the function. The latter set of conditions

are also satisfied as the chosen function is strongly convex and its domain is also

convex. To see this, we need to show that the constraints (5.36)–(5.40) form a convex

domain in π̃ which is easy to see from the linearity of the constraints. Further details

on the assumptions and function approximation can be found in [57]. Thus, the

following result holds.

Lemma 21 For fixed h, w, ω, and L, the optimization of our problem over π̃ gener-

ates a sequence of decreasing objective values and therefore is guaranteed to converge

to a stationary point.

Auxiliary Variables Optimization

Given the probability distribution of the server-PSs scheduling probabilities, the

bandwidth allocation weights, edge-cache window size, and the cache placement, this

subproblem can be written as follows.

Input: π̃, w, ω, and L

Objective: min (5.34)

s.t. (5.35), (5.40)–(5.43),

var. h
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Algorithm 3: NOVA Algorithm to solve Server Access and PSs selection

Optimization sub-problem

1. Initialize ν = 0, k = 0,γν ∈ (0, 1], ε > 0,π̃0 such that π̃0 is feasible ,

2. while obj (k)− obj (k − 1) ≥ ε

3. //Solve for π̃ν+1 with given π̃ν

4. Step 1: Compute π̂ (π̃ν) , the solution of π̂ (π̃ν) =argmin
π̃

Ũ (π̃, π̃ν) s.t.

(5.35)–(5.38), (5.40)–(5.43) solved using projected gradient descent

5. Step 2: π̃ν+1 = π̃ν + γν (π̂ (π̃ν)− π̃ν).

6. //update index

7. Set ν ← ν + 1

8. end while

9. output: π̂ (π̃ν)

Similar to Server-PSs Access Optimization, this optimization can be solved using

NOVA algorithm. The constraint (5.40) is linear in h. Further, the next Lemma

show that the constraints (5.41)– (5.43) are convex in h, respectively.

Lemma 22 The constraints (5.41)–(5.43) are convex with respect to h.

Proof The proof is given in Appendix A.18.

Algorithm 4 shows the used procedure to solve for h. Let U (h;hν) be the convex

approximation at iterate hν to the original non-convex problem U (h), where U (h) is

given by (5.34), assuming other parameters constant. Then, a valid choice of U (h;hν)

is the first order approximation of U (h), i.e.,

U (h,hν) = ∇hU (hν)T (h− hν) +
τh
2
‖h− hν‖2 . (A.64)

where τh is a regularization parameter. The detailed steps can be seen in Algorithm

4. Since all the constraints (5.40)– (5.43) have been shown to be convex in h, the
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Algorithm 4: NOVA Algorithm to solve Auxiliary Variables Optimization

sub-problem

1. Initialize ν = 0, γν ∈ (0, 1], ε > 0, h0 such that h0 is feasible,

2. while obj (ν)− obj (ν − 1) ≥ ε

3. //Solve for hν+1 with given hν

4. Step 1: Compute ĥ (hν) , the solution of ĥ (tν) =argmin
h

U (h,hν), s.t.

(5.35), (5.40)–(5.43), using projected gradient descent

5. Step 2: hν+1 = hν + γν
(
ĥ (hν)− hν

)
.

6. //update index

7. Set ν ← ν + 1

8. end while

9. output: ĥ (hν)

optimization problem in Step 1 of Algorithm 4 can be solved by the standard projected

gradient descent algorithm.

Lemma 23 For fixed π̃, w, ω, and L, the optimization of our problem over h gen-

erates a sequence of monotonically decreasing objective values and therefore is guar-

anteed to converge to a stationary point.

Bandwidth Allocation Weights Optimization

Given the auxiliary variables, the server access and PSs selection probabilities,

edge-cache window size, and cache placement, this subproblem can be written as

follows.

Input: π̃, L, ω, and h

Objective: min (5.34)
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s.t. (5.35)–(5.37), (5.40)–(5.43),

var. w

This optimization problem can be solved using NOVA algorithm. It is easy to

notice that the constraints that exist in (5.35)– (5.37) are linear and thus convex

with respect to w. Further, the next two Lemmas show that the constraints (5.40)–

(5.43), are convex in w, respectively.

Lemma 24 The constraints (5.40)–(5.43) are convex with respect to w.

Proof The proof is given in Appendix A.18.

Algorithm 5 shows the used procedure to solve for w. Let Uw (w;wν) be the

convex approximation at iterate wν to the original non-convex problem U (w), where

U (w) is given by (5.34), assuming other parameters constant. Then, a valid choice

of Uw (w;wν) is the first order approximation of U (w), i.e.,

Uw (w,wν) = ∇wU (wν)T (w −wν) +
τw
2
‖w −wν‖2 . (A.65)

where τt is a regularization parameter. The detailed steps can be seen in Algorithm

5. Since all the constraints have been shown to be convex, the optimization problem

in Step 1 of Algorithm 5 can be solved by the standard projected gradient descent

algorithm.

Lemma 25 For fixed π̃ , h, ω, and L, the optimization of our problem over w

generates a sequence of decreasing objective values and therefore is guaranteed to

converge to a stationary point.

Cache Placement Optimization

Given the auxiliary variables, the server access and PS selection probabilities,

edge-cache window size, and the bandwidth allocation weights, this subproblem can

be written as follows.
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Algorithm 5: NOVA Algorithm to solve Bandwidth Allocation Optimiza-

tion sub-problem

1. Initialize ν = 0, γν ∈ (0, 1], ε > 0, w0 such that w0 is feasible,

2. while obj (ν)− obj (ν − 1) ≥ ε

3. //Solve for wν+1 with given wν

4. Step 1: Compute ŵ (wν) , the solution of ŵ (wν) =argmin
b

U (w,wν), s.t.

(5.35)–(5.37), (5.40)–(5.43), using projected gradient descent

5. Step 2: wν+1 = wν + γν (ŵ (wν)−wν).

6. //update index

7. Set ν ← ν + 1

8. end while

9. output: ŵ (wν)

Input: π̃, h, ω and w

Objective: min (5.34)

s.t. (5.35)– (5.38), (5.39), (5.41)– (5.43)

var. L

Similar to the aforementioned Optimization sub-problems, this optimization can

be solved using NOVA algorithm. Constraints (5.36)– (5.38), are linear in L, and

hence, form a convex domain. Also, Constraint (5.39) is relaxed to have it convex.

Furthermore, the constraints (5.41)– (5.43) are convex as shown in the following

Lemmas in this subsection.

Algorithm 6 shows the used procedure to solve for L. Let UL (L;Lν) be the

convex approximation at iterate Lν to the original non-convex problem U (L), where
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Algorithm 6: NOVA Algorithm to solve Cache Placement Optimization

sub-problem

1. Initialize ν = 0, γν ∈ (0, 1], ε > 0, L0 such that L0 is feasible,

2. while obj (ν)− obj (ν − 1) ≥ ε

3. //Solve for Lν+1 with given Lν

4. Step 1: Compute L̂ (Lν) , the solution of L̂ (Lν) =argmin
L

U (L,Lν), s.t.

(5.36)–(5.38), (5.39), (5.41)–(5.43), using projected gradient descent

5. Step 2: Lν+1 = Lν + γν
(
L̂ (Lν)−Lν

)
.

6. //update index

7. Set ν ← ν + 1

8. end while

9. output: L̂ (Lν)

U (L) is given by (5.34), assuming other parameters constant. Then, a valid choice

of UL (L;Lν) is the first order approximation of U (L), i.e.,

UL (L,Lν) = ∇LU (Lν)T (L−Lν) +
τL
2
‖L−Lν‖2 . (A.66)

where τL is a regularization parameter. The detailed steps can be seen in Algorithm

5. Since all the constraints have been shown to be convex in L, the optimization

problem in Step 1 of Algorithm 5 can be solved by the standard projected gradient

descent algorithm.

Lemma 26 For fixed h, π̃, ω and w, the optimization of our problem over L gen-

erates a sequence of monotonically decreasing objective values and therefore is guar-

anteed to converge to a stationary point.
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Edge-cache Window size Optimization

Given the server access and PS selection probabilities, the bandwidth allocation

weights, the cache placement, and the auxiliary variables, this sub-problem can be

written as follows.

Input: h, w, π̃, and L

Objective: min (5.34)

s.t. (5.35)–(5.38), (5.41)–(5.43)

var. ω

similarly, this optimization can be solved using NOVA algorithm. It is easy to

show that Constraints (5.36)–(5.38), are convex in ω, and hence, form a convex

domain. Further, the constraints (5.41)–(5.43) are convex as shown in Lemma 27.

Algorithm 6 shows the used procedure to solve for ω. Let Uω (ω;ων) be the

convex approximation at iterate ων to the original non-convex problem U (ω), where

U (ω) is given by (5.34), assuming other parameters constant. Then, a valid choice

of Uω (ω;ων) is the first order approximation of U (ω), i.e.,

Uω (ω,ων) = ∇ωU (ων)T (ω − ων) +
τω
2
‖ω − ων‖2 . (A.67)

where τω is a regularization parameter. The detailed steps can be seen in Algorithm

5. Since all the constraints have been shown to be convex in ω, the optimization

problem in Step 1 of Algorithm 5 can be solved by the standard projected gradient

descent algorithm.

Lemma 27 For fixed h, π̃, ω and w, the optimization of our problem over ω gen-

erates a sequence of monotonically decreasing objective values and therefore is guar-

anteed to converge to a stationary point.

Proof The proof is provided in Appendix A.18.
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Algorithm 7: NOVA Algorithm to solve Edge-cache window size optimiza-

tion sub-problem

1. Initialize ν = 0, γν ∈ (0, 1], ε > 0, ω0 such that ω0 is feasible,

2. while obj (ν)− obj (ν − 1) ≥ ε

3. //Solve for ων+1 with given ων

4. Step 1: Compute ω̂ (ων) , the solution of ω̂ (ων) =argmin
ω

U (ω,ων), s.t.

(5.36)–(5.38), (5.39), (5.41)–(5.43)

using projected gradient descent

5. Step 2: ων+1 = ων + γν (ω̂ (ων)− ων).

6. //update index

7. Set ν ← ν + 1

8. end while

9. output: ω̂ (ων)

A.18 Proof of Results in Appendix A.17

A.18.1 Proof of Lemma 22

The constraints (5.41)–(5.43) are separable for each hi and due to symmetry of the

three constraints it is enough to prove convexity ofE(h) =
∑r

f=1 πf,jqf,j,βjλfe
−λiωi

(
α

α−hi

)Lf−Lj,f
−(

Λj,βj + hi
)
, assuming that the edge router ` is unfold, without loss of generality.

Thus, it is enough to prove that E ′′(h) ≥ 0. We further note that it is enough to

prove that D′′(h) ≥ 0, where D(h) =
(

α
α−ti

)Lf−Lj,f
. This follows since

D
′
(h) = (Lf − Lj,f )(1−

h

α
)Lj,f−Lf−1 × (1/α) ≥ 0 (A.68)

D
′′
(h) = (L2

f − L2
j,f + Lf − Lj,f )(1−

h

α
)Lj,f−Lf−2

× (1/α2) ≥ 0 (A.69)
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A.18.2 Proof of Lemma 24

The constraint (5.41)–(5.43) are separable for each α
(d)
j,βj

, α
(c)
j,βj

and α
(e)
j,νj

, respec-

tively. Note that we omit the subscript ` for simplicity, w.l.o.g. Thus, it is enough to

prove convexity of the following three equations

E1(α
(d)
j,βj

) =
r∑

f=1

πf,jλfqf,j,βje
−λiωi

(
α

(d)
j,βj

α
(d)
j,βj
− h

)Lf−Lj,f

−
(

Λ
(d)
j,βj

+ h
)

E2(α
(d)
j,βj

) =
r∑

f=1

πf,jλfqf,j,βje
−λiωi

 α
(d)
j,βj

α
(d)
j,βj
− h

Lf−Lj,f

−
(

Λ
(d)
j,βj

+ h
)

E3(α
(e)
j,νj

) =
r∑

f=1

πf,jλfpf,j,νje
−λiωi

(
α

(e)
j,νj

α
(e)
j,νj
− h

)Lf−Lj,f

−
(

Λ
(e)
j,νj

+ h
)

for h < α
(d)
j,βj

, h < α
(c)
j,βj

, and h < α
(e)
j,νj

, respectively. Since there is only a single index

j, βj, and νj, here, we ignore the subscripts and superscripts for the rest of this proof

and prove for only one case due to the symmetry. Thus, it is enough to prove that

E ′′1 (α) ≥ 0 for h < α. We further note that it is enough to prove that D′′1(α) ≥ 0,

where D1(α) =
(
1− h

α

)Lj,i−Li . This holds since,

D
′

1(α) = (Lj,i − Li)(1−
h

α
)Lj,i−Li−1 × (t/α2) (A.70)

D
′′

1 (α) = ((Lj,i − Li)2 − Lj,i + Li)(1−
h

α
)Lj,i−Li−2×

(h/α3) ≥ 0 (A.71)

A.19 Mean Stall Duration

In this section, a bound for the mean stall duration, for any video file i, is provided.

Since probabilistic scheduling is one feasible strategy, the obtained bound is an upper

bound to the optimal strategy.
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Using equation (A.50), the stall duration for the request of file i from βj queue,

νj queue and server j, Γ
(i,j,βj ,νj)
U is given as

Γ
(i,j,βj ,νj)
U = T

(Li)
i,j,βj ,νj

− ds − (Li − 1) τ (A.72)

An exact evaluation for the play time of segment Li is hard due to the dependencies

between Fi,j,νj ,βj ,z (i.e., equation (A.48)) random variables for different values of j,

νj, βj and z, where z ∈ (1, 2, ..., Li + 1). Hence, we derive an upper-bound on the

playtime of the segment Li as follows. Using Jensen’s inequality [60], we have for

gi > 0,

e
giE
[
T

(Li)
i

]
≤ E

[
egiT

(Li)
i

]
. (A.73)
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Thus, finding an upper bound on the moment generating function for T
(Li)
i will

lead to an upper bound on the mean stall duration. Hence, we will now bound the

moment generating function for T
(Li)
i . Using equation (A.62), we can show that

E
[
egiT

(Li)
i

]
≤

m∑
j=1

πi,j ×

[
c̃+ ã egi(ds+(Li−1)τ) + a×

ej∑
νj=1

pi,j,νj

dj∑
βj=1

qi,j,βje
giLiτ×

(
M̃

(e)
j,νj

(gi)(1− ρ(e)
j,βj

)gi((M̃
(e)
j,νj

(gi))
Lj,i − 1)

(gi − Λ
(e)
j,βj

(B
(e)
j,βj

(gi)− 1))(M̃
(e)
j,νj

(gi))− 1)

+
(1− ρ(d)

j,βj
)ti(M̃

(d)
j,νj

(gi))
Lj,i−Li

gi − Λ
(d)
j,βj

(B
(d)
j,βj

(gi)− 1)
+

(1− ρ(d)
j,βj

)ti(M̃
(d)
j,βj

(gi))
Li+1[

gi − Λ
(d)
j,βj

(B
(d)
j,βj

(gi)− 1)
]

(M̃
(d)
j,βj

(gi))Lj,i+1
×

(
(M̃

(d,d)
j,βj

(gi))
Li−Lj,i − (Li − Lj,i)

(M̃
(d,d)
j,βj

(gi))− 1
+

+
M̃

(d,d)
j,βj

(gi)
(

(M̃
(d,d)
j,βj

(gi))
Li−Lj,i−1 − 1

)
(M̃

(d,d)
j,βj

(gi))− 1

))]

=
m∑
j=1

πi,j ×M (i,j)
D (A.74)

Substituting (A.74) in (A.73), the mean stall duration is bounded as follows.

Theorem A.19.1 The mean stall duration time for file i is bounded by

E
[
Γ(i)
]
≤ 1

ti
log

(
m∑
j=1

πij

(
1 +M

(i,j)
D

))
(A.75)

for any ti > 0, ρ
(e)
j,νj ,`

< 1, ρ
(d)
j,βj ,`

< 1 , and ρ
(e)
j,νj ,`

< 1 and

the involved MGFs exist, ∀j, νj, βj.

We note that for the scenario, where the files are downloaded rather than streamed,

a metric of interest is the mean download time. This is a special case of our approach
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when the number of segments of each video is one, or Li = 1. Thus, the mean

download time of the file follows as a special case of Theorem A.19.1.

A.20 Online Algorithm for Edge-cache Placement

We note that for the setup of the edge cache, we assumed that the edge-cache

has a capacity of Ce,` seconds (ignoring the index of the edge cache). However, in

the caching policy, we assumed that a file f is removed from the edge cache ` if it

has not been requested in the last ωf,` seconds. In the optimization, we found the

parameters ωf,`, such that the cache capacity is exceeded with probability less than

ε`. However, this still assumes that it is possible to exceed the cache capacity some

times. This is, in practice, not possible. Thus, we will propose a mechanism to adapt

the decision obtained by the optimization formulation so as to never exceed the edge

cache capacity.

When a file i is requested, the last request of file i is first checked. If it has not

been requested in the last ωi,` seconds, it is obtained from the CDN. In order to do

that, the space of the file is reserved in the edge-cache. If this reservation exceeds

the capacity of the edge-cache, certain files have to be removed. Any file f that has

not been requested in the last ωf,` seconds is removed from the cache. If, even after

removing these files, the space in the edge-cache is not enough for placing file i in

the edge-cache, more files must be removed. Assume that H is the set contains all

files in the edge-cache, and tf,lt is the last time file f has been requested. Then, if

another file needs to be removed to make space for the newly requested file, the file

argminf∈H(tf,lt + ωf,` − ti) is removed. This continues till there is enough space for

the new incoming file. Note that multiple files may be removed to make space for

the incoming file, depending on the length of the new file. This is similar concept

to LRU where a complete new file is added in the cache, and multiple small files

may have to be removed to make space. The key part of the online adaptation so as

not to violate the edge-cache capacity constraint is illustrated in Figure A.10. This
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Request for file i at time t i

 First request

     for file i

          ? 
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      has

    space? 
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No

 Serve request 

  for file i  from
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     file i  from

     top storage 

        levels  

No

?

  (i.e., its window will
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     other file) 

         

     

         file i 

requested within 

Fig. A.10.: A flowchart illustrates the online updates for an edge-cache when a file i is

requested at time ti. Here, tf,lt represents the time of the last request of file i, and H is the

index set of all video files in the edge-cache.

flowchart illustrates the online updates for an edge-cache when a file i is requested at

time ti.

A.21 Extension to Different Quality levels

In this section, we show how our analysis can be extended to cover the scenario

when the video can be streamed at different quality levels. We assume that each video
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file is encoded to different qualities, i.e., Q ∈ {1, 2, · · · , V }, where V is the number

of possible choices for the quality level. The Li chunks of video file i at quality

Q are denoted as Gi,Q,1, · · · , Gi,Q,Li . We will use a probabilistic quality assignment

strategy, where a chunk of quality Q of size aQ is requested with probability bi,Q for

all Q ∈ {1, 2, · · · , V }. We further assume all the chunks of the video are fetched at

the same quality level. From Section 5.3.3, we can show that the for a file of quality

Q requested from edge-router `, we choose server j with probability π
(Q)
i,j,`. Further,

we can show that the aggregate arrival rate at PS
(d,j)
βj

, PS
(d,j)
βj ,`

, and PS
(e,j)
νj ,`

, denoted

as Λ
(d)
j,βj

, Λ
(d)
j,βj ,`

,and Λ
(e)
j,νj ,`

, respectively are given as follows.

Λ
(d)
j,βj

=
r∑
i=1

V∑
Q=1

λiπ
(Q)
i,j q

(Q)
i,j,βj

bi,Q (A.76)

Λ
(c)
j,βj

= Λd
j,βj

(A.77)

Λ
(e)
j,νj

=
r∑
i=1

V∑
Q=1

λiπ
(Q)
i,j p

(Q)
i,j,νj

bi,Q (A.78)

Similarly, we can define

α
(d,Q)
j,βj

= w
(d)
j,βj
α

(d,Q)
j , (A.79)

α
(d,Q)
j,βj ,`

= w
(d)
j,βj ,`

α
(fj ,Q)
j,` , α

(e,Q)
j,νj ,`

= w
(e)
j,νj ,`

α
(fj ,Q)
j , (A.80)

for all βj, νj, Q, and `. Note that α
(.,Q)
j = α

(.)
j /a` where alpha

(.)
j is a constant service

time parameter when a` = 1. We further define the moment generating functions of

the service times of PS
(d,j,Q)
βj

, PS
(d,j,Q)
βj ,`

, and PS
(e,j,Q)
νj ,`

as M
(d,Q)
j,βj

, M
(d,Q)
j,βj ,`

, and M
(d,Q)
j,νj ,`

,

which are defined as follows.

M
(d,Q)
j,βj ,`

=
α

(d,Q)
j,βj

e
η
(d)
j,βj

t

α
(d,Q)
j,βj
− t

, (A.81)

M
(d,Q)
j,βj ,`

=
α

(d,Q)
j,βj ,`

e
η
(d,Q)
j,βj ,`

t

α
(d,Q)
j,βj ,`
− t

, (A.82)

M
(e,Q)
j,νj ,`

=
α

(e,Q)
j,νj ,`

e
η
(e,Q)
j,νj ,`

t

α
(e,Q)
j,νj ,`
− t

(A.83)
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where η
(.,Q)
j,. = η

(.)
j,. × a` where eta

(.)
j,. is a constant time shift parameter when a` = 1.

Following the same analysis as in Section 5.4, it is easy to show that the stall duration

for the request of file i at quality Q from βj queue, νj queue and server j, if not in

the edge-cache, i.e., Γ
(i,j,βj ,νj ,Q)
U is given as

Γ
(i,j,βj ,νj ,Q)
U = T

(Li,Q)
i,j,βj ,νj

− ds − (Li − 1) τ. (A.84)

This expression is used to derive tight bounds on the QoE metrics. By simplifications

and some algebraic manipulation,the following theorems can be derived.

Theorem A.21.1 The mean stall duration for video file i streamed with quality Q

requested through edge router ` is bounded by

E
[
Γ(i,`,Q)

]
≤ 1

gi
log

(
m∑
j=1

π
(`)
i,j

(
1 +M

(i,j,`)
D

))
(A.85)

where:

M
(i,j,`,Q)
D = c̃` + ã` e

gi(ds+(Li−1)τ) + a`×
ej∑
νj=1

p
(Q)
i,j,νj ,`

dj∑
βj=1

q
(Q)
i,j,βj ,`

egiLiτ×

(
M̃

(e,Q)
j,νj ,`

(gi)(1− ρ(e)
j,βj

)gi((M̃
(e.,Q)
j,νj ,`

(gi))
Lj,i − 1)

(gi − Λ
(e)
j,βj

(B
(e)
j,βj ,`

(gi)− 1))(M̃
(e,Q)
j,νj ,`

(gi))− 1)

+
(1− ρ(d)

j,βj
)gi(M̃

(d,Q)
j,νj ,`

(gi))
Lj,i−Li

gi − Λ
(d)
j,βj

(B
(d)
j,βj ,`

(gi)− 1)
+

(1− ρ(d)
j,βj

)gi(M̃
(d,Q)
j,βj ,`

(gi))
Li+1[

gi − Λ
(d)
j,βj

(B
(d)
j,βj ,`

(gi)− 1)
]

(M̃
(d,Q)
j,βj ,`

(gi))Lj,i+1
×

(
(M̃

(d,d,Q)
j,βj ,`

(gi))
Li−Lj,i − (Li − Lj,i)

(M̃
(d,d,Q)
j,βj ,`

(gi))− 1
+

M̃
(d,d,Q)
j,βj ,`

(gi)
(

(M̃
(d,d,Q)
j,βj ,`

(gi))
Li−Lj,i−1 − 1

)
(M̃

(d,d,Q)
j,βj ,`

(gi))− 1

))
(A.86)

and c̃, ã, and a are defined earlier in Section 5.4, e.g., equation (5.18).
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Theorem A.21.2 The stall duration tail probability for video file i requested at qual-

ity Q and through edge router ` is bounded by

Pr
(

Γ
(i,`,Q)
tot ≥ σ

)
≤

m∑
j=1

π
(Q)
i,j,` ×

[
c` + ã` e

−hiσ + a`

e
(`)
j∑

νj=1

p
(Q)
i,j,νj ,`

×

dj∑
βj=1

q
(Q)
i,j,βj ,`

ehiLiτ ×
(
δ(e,`,Q) + δ(d,`,Q) + δ(d,d,`,Q)

)
(A.87)

for ρ
(d)
j,βj

< 1, ρ
(d)
j,βj ,`

< 1, ρ
(e)
j,νj ,`

< 1, where the auxiliary variables in the statement of

the Theorem are similarly defined as those in equations (5.22)-(5.33).

Having derived the MSD and SDTP, one can formulate a constrained optimization

problem to jointly optimize a convex combination of all QoE metrics as follows

min
∑R

`=1

∑r
i=1

λi,`
λi

[
θ1

(∑V
Q=1−bi,`Lia`

)
+∑V

Q=1
bi,Q
ti

(
θ2 × Pr(Γ(i,`,Q) ≥ σ) + θ3 × E

[
Γ(i,`,Q)

])]
(A.88)

s.t.

(5.47)− (5.51) (A.89)

θ1 + θ2 + θ3 = 1 (A.90)

To solve this porblem, we still have to use alternating minization based approaches

since the problem is not jointly convex in all the optimized parametes. Thus, we pro-

pose an iterative algorithm (similar to that explained in Appendix A.17) to solve the

problem. The proposed algorithm divides the problem into sub-problems that opti-

mizes one variable at a time while fixing the others. We refer the interested reader

to [88] for detailed treatment of this problem.
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We also note that similar methodology can be used to handle the scenarios where

the chunks have different sizes. If the video files have different chunk size (in MB),

our analysis can be easily extended to handle such cases as follows. Since a video file

has different chunk sizes, the service time will be different from one chunk to another.

However, one can still get the MGF of the service time in a similar fashion to those

in (A.81)-(A.83). Thus, the service time of a chunk will be related to its size. For

example, for a chunk indexed by κ and requested from the PS PS
(d,j,κ)
βj

, the MGF of

the servce time will be M
(d,κ)
j,βj

. Hence, similar formula to that in (A.85) for the stall

duration under different sizes for the chunks can be obtained.
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