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ABSTRACT

Sparapany, Michael J. PhD, Purdue University, May 2020. Aerospace Mission Design
on Quotient Manifolds. Major Professor: Michael J. Grant.

Conceptual aerospace mission design has typically been performed in a computa-

tionally intensive and iterative manner. The introduction of modern computing has

resulted in the widespread adoption of various numerical methods. As a result, useful

information associated with the optimal solution is largely ignored. Optimization

through indirect methods, while still computationally intense, leverages this infor-

mation and also reveals a much deeper mathematical structure. This mathematical

structure provides the gateway to reformulating the problem definition to one with

certain desirable properties. In the presence of symmetries and constants-of-motion,

the dynamical systems of indirect methods live in a reduced dimensional quotient

manifold. Studies leveraging this reduced dimensional quotient manifold may benefit

in performance by using fewer operations per iteration.

Many limitations prevent the use of these quotient manifolds in practical aerospace

mission design. The five main issues include (1) rephrasing indirect methods in terms

of differential geometry in an efficient manner, (2) Pontryagin’s minimum principle

generating a large number of valid dynamical systems, (3) implementing reduction in

a global manner for highly non-linear systems, (4) numerical boundary-value prob-

lem solvers not supporting missions on quotient manifolds, and (5) scalability of the

methods to real aerospace missions. This work addresses all five issues.

In previous studies, computer algebra systems have been proven to be an effective

tool for automating complex indirect methods. However, when posed in the language
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of differential geometry, the majority of support from digital software is lost. A ver-

sion of indirect methods is recasted using differential geometry that effectively retains

all information of so-called traditional methods. Exploitation of the anti-symmetric

differential structure enables large-scale problems to be studied.

Root-solving the stationary Hamiltonian condition may generate several, poten-

tially valid dynamical systems. Each system must be evaluated at every point along

the trajectory using Pontryagin’s minimum principle. This process prohibits later

analytical derivations on the dynamical system. In the Integrated Control Regular-

ization Method, the control law is posed as a state of the dynamical system with an

equation-of-motion, thereby moving complicated root-solving to the boundary where

it is solved once. Introduction of the control law as a new state is done using geo-

metric adjoining methods where the original mathematical structure of the problem

is preserved.

Reduction is traditionally studied in a topological context where there is a wealth

of information. In terms of aerospace missions, there are very few applications in ex-

istence. These traditional studies rely on the quotient of entire global spaces. This is

impossible to apply on non-integrable, non-linear dynamical systems. To get around

this, a compact procedure is developed where the Lie algebra identifies dynamical

sub-systems that may be effectively eliminated. This removes the reliance of integra-

bility on the symmetry space.

In reduction, various dimensions desirable to a designer may be eliminated from

the system defined on a reduced dimensional quotient manifold. Crucial to satisfying

mission requirements, present day numerical solvers do not have the capability to

perform the necessary reconstruction. A modified collocation and shooting algorithm

with this functionality is given and a numerical example of a problem on a reduced
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dimensional quotient manifold is explored.

Including reduction, nearly all advanced analytical techniques on dynamical sys-

tems introduce their own set of complexities. Typical aerospace designers do not want

to deal with the many difficulties associated with each technique. By formalizing op-

timal control theory as a composable functorial process, these advanced strategies are

compartmentalized with well-defined and predictable results. This enables the use

and reuse of many different techniques in series, vastly improving on the automation

of indirect methods.



1

1. INTRODUCTION

Aerospace missions are mathematical representions of real-world scenarios involv-

ing an aerospace vehicle. There is an enormous variety of vehicles including launch

vehicles, manned near-Earth stations, interplanetary and deepspace craft, subsonic

commercial airliners, Mars EDL, strategic bombers, supersonic air superiority fight-

ers, and highly advanced hypersonic maneuvering vehicles. At the heart of every

single one of these vehicles is the mission it was designed to fly. This mission includes

some set of requirements guaranteeing success and a performance index that justifies

its use over a competing vehicle.

The iterative design and development process of these vehicles is an expensive,

man-hour intensive process. This process can range from a few hundred million dollars

in venture capital funds for startups and small companies, to established programs

costing a few billion US dollars [1,2]. These organizations strive to obtain high-quality

representations of a vehicle’s performance early on in the design process to prevent

costly iteration and redesigns. To accomplish this, vehicle performance is estimated

using a joint theoretical-computational field known as optimal control theory.

Optimal control theory is a broad mathematical field whose main concern is the

minimization of functionals, a generalization of variational calculus. Historical appli-

cation of optimal control dates back to Queen Elissar of Carthage who studied the

isoperimetric problem [3]. In a more modern format, Newton, L’Hôpital, Leibniz, and

the Bernoulli brothers studied the Brachistochrone problem [4]. The study of these

problems resulted in the creation of groundbreaking analytic strategies. The intro-

duction of digital computers and efficient nonlinear programming (NLP) strategies

created a fork in optimal control theory.
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Definition 1 (Optimal Control Problem). An optimal control problem (OCP) is a

functional minimization problem of the following structure

Problem Σ



min
u

K =

∫ tf

t0

L(t,x(t),u(t))dt+ η(x(tf ),u(tf ))

Subject to: dx
dt

= f(t,x(t),u(t))

ϕ(x(t0),u(t0)) = 0

ξ(x(tf ),u(tf )) = 0

glower ≤ g(t,x,u) ≤ gupper

(1.1)

End definition.

One category of numerical methods is the “direct” methods, which are widely

known as the computational branch of optimal control theory. Direct methods seek

to solve OCPs by discretizing the infinite-dimensional mathematical problem into an

approximate finite-dimensional computational problem. These problems are relatively

easy to set up on a digital computer and often times give very good results. The

majority of algorithms in the direct methods branch do not leverage fundamental

progress made in the theoretical branch of optimal control theory.

The other category of methods is the “indirect” methods, which is the theoretical

branch of optimal control theory. Indirect methods seek to solve an OCP by solving

a separate but equivalent boundary-value problem (BVP). The process of solving the

BVP is a numerical root-solving problem as opposed to an optimization process. The

majority of algorithms in the indirect methods branch ignore fundamental progress

made in computational procedures as a result of the current digital age. This progress

has largely not been numerically implemented due to the widespread use of direct

methods for digital computer applications.

A third, but less related, category based on Hamilton-Jacobi-Bellman’s (HJB)

principle and dynamic programming exists and is mathematically distinct from both

direct and indirect methods. HJB methods are not treated here because, although

they have been used with some success [5], they are seldom used for general aerospace
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missions due to their curse of dimensionality. It is worth mentioning that HJB’s

method offers the most mathematically powerful strategy proving global conditions for

optimality [6–8], whereas both direct and indirect only provide local conditions [9,10].

Ultimately, direct and indirect methods are intertwined, and progress in either

category is of benefit to both. There are several examples of this. The Co-vector

Mapping Principles (CMPs) is one example [3, 11, 12]. The CMP allows the Karush-

Kuhn-Tucker multipliers of the NLP problem in direct methods to be mapped to

the co-states from indirect methods, and therefore provide a strategy for verifying

optimality. General advancements in NLP, collocation, and pseudospectral routines

driven by direct methods research are shared with indirect methods. One example

of this is Kraft’s SLSQP software. SLSQP’s original application was direct methods,

although it is a common NLP solver of choice for indirect methods. The fact that the

CMP exists teases the existence of so-called hybrid methods; methods that may lever-

age the benefits of both direct and indirect methods while minimizing their respective

downsides. A figure showing each category and their driving numerical processes is

in Fig. 1.1.

1.1 State-of-the-Art Methods

In this section, we will give a brief overview and history of the current state-of-

the-art methods used in aerospace missions for solving optimal control problems.

1.1.1 Direct Methods

Direct methods operate by transcribing the OCP into an NLP. This effectively

turns a mathematical problem into a computational problem. Save for direct shoot-

ing and other recursive integration methods, most techniques directly discretize the

trajectory into a set of nodes. Every node represents a state approximation as a

function of time. The NLP solver attempts to satisfy dynamics, i.e., Newton’s laws,

by interpolating between nodes and imposing an NLP constraint at the midpoint of
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OCP

Direct Hybrid Indirect
Dynamic

Programming

Recursion Optimization ? Root-Solving

Figure 1.1. State-of-the-art trajectory optimization categories.

each pair of nodes. Mathematical OCPs are known as problems of type “Problem Σ”

while their discretized brethren are known as problems of type “Problem ΣN”.

Problem Σ Problem ΣN

discretization

convergence

Figure 1.2. Discretization of an OCP turns a mathematical problem into a computa-

tional one. The primary goal of computational Problem ΣN is to seek confidence in

the convergence of the approximation to Problem Σ.

Direct methods are widespread due to their generality and ease of use. Pro-

grams such as POST [13] are based on direct-shooting techniques, while POST2, GESOP,

DIRCOL, DYNOPT, and opty [14] use various types of direct collocation techniques [15].

Other programs such as GPOPS-II [16, 17], DIDO [18], PROPT, PSOPT, and OpenGod-
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dard use state-of-the-art pseudospectral methods [12]. The solution processes are

typically driven by IPOPT [19], NPSOL [20], SNOPT [21], or another compiled nonlin-

ear programming problem (NLP) solver. While there is an ongoing debate among

users of direct methods on the benefits and disadvantages of each of these imple-

mentations [22], there is clearly no shortage of high-performance codes. In general,

these programs are able to solve complex multiphase problems with multiple types of

constraints, and in some specialized cases, contact forces [23].

Like all modern computational processes, there are drawbacks to using direct

methods. Two of the most frequently cited downsides are listed below

1. Direct methods are less accurate than indirect methods.

2. Direct methods are difficult to parallelize.

While these drawbacks plague the majority of today’s state-of-the-art solvers,

these statements are broadly untrue. A brief word on these statements is listed below

1. While it is true that it is typically very easy to produce high quality trajecto-

ries with indirect methods, the broad statement that direct methods are less

accurate is untrue. There exist highly sensitive problems where propagation

of the indirect equations is inaccurate or prohibitively expensive. The inexact-

ness of modern direct methods is precisely what allows them to have a high

rate of convergence and often better accuracy over indirect methods. In fact,

there exist problems with an infinite number of global optima where indirect

methods do not yield a single solution. In these scenarios, direct methods can

yield a solution [24]. In many other cases, indirect methods yield higher quality

solutions.

2. Due to the optimization process at the core of direct methods, there are single-

threaded operations that block computational resources, leaving other functions

waiting for a response. While it is impossible for a general-purpose trajec-
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tory optimization algorithm to reach full computational parallelization 1, there

are certainly opportunities for “tricks”. There is ongoing research in the pa-

rameter optimization field to create efficient parallel NLP solvers [25–28], re-

search in computer science to create automated parallelization in digital compil-

ers [29–33], and research in trajectory optimization itself through parallel direct

shooting algorithms. Fundamentally, all trajectory optimization algorithms, re-

gardless of category, must satisfy dynamics by solving sequential sub-problems.

Both direct and indirect methods suffer from this drawback equivalently.

Overall, direct methods are used heavily with tremendous success. We list some

of the successful solvers in Table 1.1.

Table 1.1. Available Software for Direct Methods

ACADO [34] Astrogator (from STK) BOCOP [35,36]

CAMTOS [37] Copernicus [38–42] DIDO [18]

DIRCOL [43–45] dynopt [46, 47] FROST [48]

GESOP GPOPS I and II [16, 17] ICLOCS I and II [49]

MUSCOD I and II [50, 51] NUDOCCCS [52, 53] OpenGoddard [54]

OpenOCL [55] OptimTraj [56, 57] OPTRAGEN [58]

opty [14] OTIS [59] POST I and II [13]

PROPT [60] PSOPT [61] PyKEP [62]

Quickshot RIOTS-95 [63] SOCS [64]

SPARTAN [65] TAOS [66]

1An exception to this statement are general non-linear systems that satisfy the Liouville-Arnold
theorem. However, one can argue that such a system is no longer “trajectory optimization” and
require specialized routines for an efficient solution.
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1.1.2 Indirect Methods

Prior to the rise of the modern digital computer, trajectory optimization was

performed using so-called indirect methods. These methods are based on the cal-

culus of variations [67] and Pontryagin’s minimum principle (PMP) [68, 69]. They

are advantageous by providing the designer additional information about the opti-

mal solution. In fact relatively simple and low dimensional problems may be solved

analytically “by hand”, and larger problems are parallelizable, to an extent. Though

heavily dependent on the problem, indirect methods typically scale better than their

direct counterpart. This formulation rephrases the trajectory optimization problem

as a BVP, which can be solved using BVP solvers such as MATLAB’s BVP4C function

or SciPy’s solve_bvp method. Though the mathematics involved in setting up such

a problem for such a solver is beyond that of a typical designer with no knowledge of

optimal control theory, it has been previously shown that these complex mathematics

can be automated through computer algebra systems (CAS) [70–74]. In fact, there

appears to be an abundance of CASs with very rich histories [75–81]. These tools

enable an indirect solver to utilize an interface similar to that of GPOPS-II, providing

a familiar environment to an aerospace designer who may otherwise be unfamiliar

with the mathematics involved.

Similar to direct methods, there are various downsides associated with indirect

methods, some more valid than others, which are listed here

1. Specialized knowledge of calculus of variations as well as optimal control theory

is required to pose a well defined problem.

2. Incorporating path constraints requires prior knowledge of the order of the

constrained arc sequence.

3. The initial guess of a trajectory needs to be substantially close to the optimal

solution. This issue is further obfuscated by the co-states whose values generally

have no meaningful real-world interpretation.
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4. Sensitivity associated with propagating the first-order necessary conditions [10].

Some comments on each of these frequently cited downsides are below

1. CASs make the first point easier by automating the construction of the neces-

sary conditions for optimality. The earliest example of this is OCCAL [70]. We

already mentioned some of the modern work using MATLAB’s symbolic engine

and SymPy, however Enrico Bertolazzi, Francesco Biral, et. al. [71, 73] deserve

special recognition for being pioneers using Maple as a CAS to automate indi-

rect methods. This dissertation will further improve on this point in Chapters 2

and 7.

2. The phaseless construction of Enrico Bertolazzi et. al. [71,73] and Kshitij Mall

et. al. [82–84] has completely eliminated the need for any a priori knowledge

of path constraints.

3. A pseudo-hybrid method can overcome this point where initial guesses for co-

state variables are given by the Lagrange multipliers [85], or what is essentially

the CMP, combined with a homotopy continuation procedure that tracks solu-

tions to nearby dynamical systems. Since the point is partially overcome using

a direct method, its (in)validity depends on the viewpoint of direct and indirect

methods either being companion or competing strategies.

4. The Hamiltonian sensitivity issue exists in propagation, not batch integration.

That is, this sensitivity issue does not exist to the same degree in Hermite-

Simpson collocation. Often times Hermite-Simpson collocation is cited as not

being a so-called “complete method”. This only applies to direct methods. In

indirect methods, Hermite-Simpson collocation is the current state-of-the-art

algorithm.

Overall, indirect methods are significantly more complicated than direct methods.

The list of available indirect solvers is in Table 1.2. This list is much shorter than
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the list of direct methods. Additionally, beluga and PINS are the only two software

packages based on indirect methods that can be considered general-purpose. BNDSCO,

CAMTOS, and PyKEP use indirect methods, but not to the extent where they can be

considered for general aerospace missions.

Table 1.2. Available Software for Indirect Methods

beluga BNDSCO [86] CAMTOS [37]

PINS [73] PyKEP [62]

1.1.3 Hybrid Methods

At the end of his 1998 publication, Betts closes out with the following remark [87]

“...one may expect many of the best features of seemingly disparate tech-

niques to merge, forming still more powerful methods.”

(J. T. Betts)

This comment is in reference to the then state-of-the-art direct and indirect meth-

ods. Less than 5 years after this publication, Ross and Fahroo would go on to publish

one of the most significant advancements in trajectory optimization in recent history:

the Co-vector Mapping Principle (CMP) [11, 12, 88]. The CMP is a specialization

of the Riesz-Fréchet theorem [89–91], establishing a mathematical link between di-

rect and indirect methods. From this link, so-called complete methods may be de-

veloped. Modern complete methods include Legendre pseudospectral methods and

Hager’s Runge-Kutta (RK) methods [92]. More important than the development of

the present state-of-the-art computational tools, the CMP provides the mathemati-

cal bridge between theoretical analysis and computational tools. Ross and Fahroo’s

popular commutative diagram is reproduced here in Fig. 1.3.
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Problem Λ Problem ΛN

Problem ΣNλ

Problem Σ Problem ΣN

discretization

convergence

CMP

dualization

discretization

convergence
dualization

Figure 1.3. Commutative diagram for the dualization and discretization of an OCP

(reproduced from [11, 12, 88]).
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Throughout this dissertation, we will attempt to transform our problem defini-

tions in a manner that preserves the CMP. Returning to Fig. 1.1, the existence of

so-called hybrid methods is teased. This is made possible through the CMP. Al-

though some specialized hybrid methods have existed for quite some time [37, 93],

to my best knowledge, there is no hybrid direct and indirect method that can be

considered general-purpose. However, herein lies one of the most significant contri-

butions of the CMP: an advancement in either direct methods or indirect methods

is of benefit to both categories of trajectory optimization. Instead of being viewed

as competing strategies, direct and indirect methods should be viewed as compan-

ion strategies. This dissertation heavily focuses on indirect methods, which make a

significant contribution to beluga, as an effort to bring these methods up to a level

where general-purpose hybrid methods may be obtainable.

1.2 Foundations of Modern Indirect Trajectory Optimization

In this section, we will cover the majority of tools in modern trajectory opti-

mization using indirect methods. We will broadly touch on topics in the calculus of

variations and non-linear programming, as well as introduce concepts that will be

formally defined in later chapters. One such concept already introduced in Fig. 1.3

is that of mappings in a commutative diagram.

Definition 2 (Mapping). A mapping, which is denoted by an arrow →, is a transfor-

mation between two objects referred to as the domain and co-domain. This mapping

takes objects in the domain and transforms them in a well-known manner to the

co-domain. End definition.
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Remark 1. The mapping, →, is distinct from its implementation, 7→. For instance,

consider a “squared” function mapping real numbers to their squared value. This

complete mapping can be written as follows

squared : R → R

x 7→ x2
(1.2)

End remark.

Definition 3 (After). The composition operator, ◦, is the combination of two map-

pings to create a single chain mapping. Let, f and g be mappings where the co-domain

of f is the domain of g
f : A → B

g : B → C
(1.3)

The composition of mappings f and g is as follows

g(f) = g ◦ f : A → C (1.4)

This has the pronunciation “g after f”. End definition.

Definition 4 (Commutative Diagram). A commutative diagram is a collection of

objects and mappings where all paths taken by the same initial point that end in the

same terminal point are equivalent. Given f : A → B, g : B → C, and h : A → C,

then h = g ◦ f . This setup is shown in Fig. 1.4. End definition.

A B

C

f

h
g

Figure 1.4. A commutative diagram establishing h = g ◦ f .

Note that many definitions are introduced in the following section. These defini-

tions are true to the modern usage of these tools in aerospace mission design, however,

we will redefine many of these terms and quantities in later chapters.
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1.2.1 Calculus of Variations

To understand indirect methods in trajectory optimization we must first introduce

the calculus of variations, its role in physics, as well as some of its algebraic machinery.

We will explore the calculus of variations in detail since it is the foundation of this

dissertation. First introduced by Joseph-Louis Lagrange in 1788, the cornerstone of

the calculus of variations is the variation, δ [94]. This operator represents an off-shell

infinitesimal change in a system’s state sometimes called a virtual displacement. An

off-shell variation is a variation that may not satisfy the classical equations-of-motion.

Rather, the displacement may perturb a point off of the energy shell thus violating

conservation of energy [95]. The variation is distinct from the differential, d, in that a

differential represents an on-shell infinitesimal change in a system’s state. An on-shell

variation is a variation that satisfies the classical equations-of-motion. To see how a

variation differs from the differential, consider the following function

F : R× Rn → R

(t, q) 7→ F (t, q)
(1.5)

The function, F is an (n+1)-dimensional slice of (n+2)-dimensional space. Assuming

t is an independent variable, taking the differential of F gives us the following well-

known result

dF =
n∑

i=1

∂F

∂qi
dF +

∂F

∂t
dt (1.6)

Alternatively, the first variation of F is

δF =
n∑

i=1

∂F

∂qi
δqi (1.7)

By definition, variations take place in spacial dimensions only, so δt = 0. In finite-

dimensional parameter optimization, there is a significant focus on necessary condi-

tions for optimality. The calculus of variations has a nearly identical condition that

F is necessarily stationary about some fixed point q0. Mathematically, this becomes

δF |q=q0
= 0, ∀ δq (1.8)
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Substituting this condition back into the variation of F , we find

0 =
n∑

i=1

∂F

∂qi

∣∣∣∣
q=q0

δqi (1.9)

Assuming all variations are independent and all constraints are non-holonomic, then

we have
∂F

∂qi

∣∣∣∣
q=q0

= 0 (1.10)

This is our primary result from the first variation of F . Often in optimization, a

Hessian is constructed. The Hessian serves a multitude of purposes, the most common

being as a classifier of critical points for a function. In the calculus of variations, a

similar quantity exists as the second variation of F

δ2F =
1

2

n∑
i=1

n∑
j=1

(
∂2F

∂qi∂qj

)
δqiδqj (1.11)

Evaluating δ2F at the fixed point, q0, generates a symmetric matrix. From this

matrix, can conclude that if

• δ2F |q=q0
is positive definite, then the fixed point, q0, is a local minimum

• δ2F |q=q0
is negative definite, then the reference point, q0 is a local maximum

• δ2F |q=q0
is indefinite, then the reference point, q0, can be a saddle point, local

minimum, or local maximum

In trajectory optimization using indirect methods, the first variation provides the

first-order necessary conditions for optimality, whereas the second variation generates

the generalized Legendre-Clebsch condition [96]. All the complexities of aerospace

missions cannot be phrased within a single function F . Often there are several con-

straints that arise as smooth functions. Assume we have equations of constraint, ϕ,

defined as follows

ϕ : R× Rn → Rm

(t, q) 7→ (ϕ1(t, q), ϕ2(t, q), · · · , ϕm(t, q))
(1.12)
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Taking the first variation of ϕ, we have

δϕj =
n∑

i=1

∂ϕj

∂qi
δqi (1.13)

Since δϕ and δF exist as two independent quantities expressing behavior of a single

system, there are obvious challenges in ensuring both quantities are simultaneously

satisfied. To simultaneously satisfy these equations, we will use the Lagrange multi-

plier method to adjoin each constraint. This results in a single quantity expressing

the necessary condition for a critical point
n∑

i=1

[
∂F

∂qi
+

m∑
j=1

λj
∂ϕj

∂qi

∣∣∣∣∣
q=q0

δqi = 0 (1.14)

To solve this condition for critical points, we must choose a value for λ such that[
∂F

∂qi
+

m∑
j

λj
∂ϕj

∂qi

∣∣∣∣∣
q=q0

= 0, ∀ i = 1, · · · , n (1.15)

Eq. (1.13) and Eq. (1.15) provide us with m + n equations to solve. We also have

m + n unknowns due to the introduction of m Lagrange multipliers along with n

states. Viewing λ as variables at the same level as q, F ∗ is defined as

F ∗ : R× Rn × Rm → R

(t, q,λ) 7→

(
F (t, q) +

m∑
j=1

λjϕj(t, q)

)
(1.16)

Then, our first variation becomes

δF ∗ = δ(F + λϕ)

=
∂F

∂q
δq +

∂F

∂λ
δλ+ λ

∂ϕ

∂q
δq + ϕδλ

(1.17)

Collecting terms with multipliers δq and δλ we find

δF ∗ =

(
∂F

∂q
+ λ

∂ϕ

∂q

)
δq +

(
∂F

∂λ
+ ϕ

)
δλ (1.18)

Then, evaluating at the fixed point (q,λ) = (q0,λ0), we have n equations of the form

0 =

[
∂F

∂q
+ λ

∂ϕ

∂q

∣∣∣∣
(q,λ)=(q0,λ0)

(1.19)
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Considering ∂F/∂λ = 0, there are also m equations of the form

0 = ϕ|(q,λ)=(q0,λ0)
(1.20)

This method of augmenting functions using the Lagrange multiplier method gives us a

compact procedure for mathematically linking functions in a manner that would oth-

erwise have to be performed using a computationally intensive numerical procedure.

In general, not all equations of interest are in algebraic form. Commonly, conditions

exist as integrals. Recall our introduction of the variation, δ. A stationary integral

is an integral whose value is unchanging under its first variation. We begin with the

problem of finding a function, y0(x), such that the integral, K, has a stationary value

K =

∫ tf

t0

f(t, y(t), ẏ(t))dt (1.21)

where t is the independent variable, y is the dependent variable, and ẏ = dy/dt. We

have fixed endpoints, t0 and tf , f(y, ẏ, t) is a known function, and y0(t) is an unknown

function. Using the concept of a variation

y(t) = y0(t) + δy(t) (1.22)

That is, y0 represents the stationary solution and y the varied solution. We can

rewrite this equation as

y(t, α) = y0(t) + αη(t) (1.23)

with α as a small parameter and η an arbitrary smooth function. If we assume δy = 0

at the endpoints, then we find

η(t0) = η(tf ) = 0 (1.24)

Then for any given η(t) the integral K is a function of α only. Thus a necessary

condition for K to be stationary is

δK = α
dK

dα

∣∣∣∣
α=0

= 0 (1.25)

where the derivative of the integral is

dK

dα
=

∫ tf

t0

(
∂f

∂y

∂y

∂α
+

∂f

∂ẏ

∂ẏ

∂α

)
dt (1.26)
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from the chain rule. Then, from Eq. 1.23, we have

∂y

∂α
= η(t) (1.27)

Also from Eq. 1.23, we can find

ẏ = ẏ0(t) + αη̇(t)

∂ẏ

∂α
= η̇(t)

(1.28)

Using these equations in Eq. 1.26 and restricting α = 0, we have

dK

dα

∣∣∣∣
α=0

=

∫ tf

t0

[
∂f

∂y
η(t) +

∂f

∂ẏ
η̇(t)

∣∣∣∣
α=0

dt = 0 (1.29)

To get this into a format that is more convenient, we integrate the second term by

parts
u =

∂f

∂ẏ
, v = η(t)

du =
d

dt

(
∂f

∂ẏ

)
, dv = η̇(t)dt

(1.30)

∫
udv = uv −

∫
vdu∫

∂f

∂ẏ
η̇(t)dt =

∂f

∂ẏ
η(t)

∣∣∣∣tf
t0

−
∫

d

dt

(
∂f

∂ẏ

)
η(t)dt

(1.31)

Combining the result here with our previous integral terms, and also noting that the

endpoints are fixed gives us

dK

dα

∣∣∣∣
α=0

=

∫ tf

t0

[
∂f

∂y
η(t)− d

dt

(
∂f

∂ẏ

)
η(t)

]
dt = 0 (1.32)

Collecting non-constant coefficients of η(t), we find the Euler-Lagrange equation of f

∂f

∂y
− d

dt

(
∂f

∂ẏ

)
= 0 (1.33)

As a more general case, consider the multidimensional curve

y : R → Rn

t 7→ y(t)
(1.34)
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The general set of Euler-Lagrange equations of f are then

∂f

∂y
− d

dt

∂f

∂ẏ
= 0 (1.35)

The Euler-Lagrange equations of f provide the necessary and sufficient conditions for

a stationary functional. In general, optimal trajectories y are minimizers of Eq. (1.21),

and the Euler-Lagrange equations are a practical tool in finding such trajectories. In

certain cases, there may exist trajectories that minimize the functional K, but these

may occur in a different parameterization. As a concrete example, let K be the

functional

K =

∫ tf

t0

f(t,y(t), ẏ(t))dt (1.36)

Then, define the following on-shell variation

δαy = αη(t,y, ẏ) = y′ − y (1.37)

where y′ is a varied trajectory. Note that since this variation is on-shell, we are re-

stricting our focus on the set of trajectories that are also minimizers of this functional.

In general, we call on-shell variations the symmetry of a system.

Definition 5 (Symmetry (1)). Let δα be a variation acting on functional K. Then

δα is a symmetry if the variation is on-shell such that the varied solutions y′ are also

solutions to the Euler-Lagrange equations generated by δK. End definition.

Evaluating this variation of K, we find:

δαK = δα

∫ tf

t0

f(t,y, ẏ)dt (1.38)

Recalling our previous derivation of the Euler-Lagrange equations using integration

by parts, we have

δαK =

∫ tf

t0

[
∂f

∂y
δαy − d

dt

∂f

∂ẏ
δαy

]
dt+

∂f

∂ẏ
δαy

∣∣∣∣tf
t0

(1.39)

Note that, even though δy(t0) = δy(tf ) = 0, since η = η(y), then δαy(t0) 6= 0 and

δαy(tf ) 6= 0. For the terms under the integral

∂f

∂y
δαy − d

dt

∂f

∂ẏ
δαy = 0 (1.40)
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Rather, the varied path must still satisfy the Euler-Lagrange equations. Substituting

this expression back into the δαK, we find

δαK =
∂f

∂ẏ
δαy

∣∣∣∣tf
t0

(1.41)

Since δαy is on-shell, δαK = 0 for all solutions. Integrating this quantity, we have

Jδαy =
∂f

∂ẏ
ηδαy (1.42)

Therefore J is a constant-of-motion of the system. This result is also referred to

as a Noether current. In fact, for every on-shell symmetry of the system, Noether’s

Theorem guarantees the existence of a constant-of-motion [97].

Definition 6 (Noether’s Theorem). Let K be the functional

K(y(t)) =

∫ tf

t0

f(t,y(t), ẏ(t))dt (1.43)

If K is invariant under the on-shell variation δαy = αη(y, ẏ, t), then the following

quantity is conserved

J =
∂f

∂ẏ
η (1.44)

End definition.

While this version of Noether’s Theorem is relatively powerful, it isn’t very use-

ful for general-purpose aerospace missions. This is primarily due to the fact that

it is challenging to define an on-shell variation that leaves the functional invariant.

Additionally, given a constant-of-motion, J , in the variational context there is no

convenient manner of determining its associated on-shell variation. Later in Chap-

ter 3, we will give a reversible version of Noether’s Theorem that eliminates difficulties

associated with defining the on-shell variations.

1.2.2 Dualization

A key operation in trajectory optimization by indirect methods is the construction

of a dual problem to the OCP. The process of constructing such a problem is referred

to as dualization.
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Definition 7 (Dualization). In trajectory optimization by indirect methods, dual-

ization is the application of the Euler-Lagrange equations after adjoining constraints

D ≡ E ◦ Fλ (1.45)

This converts an OCP into a dual problem, which is a Hamiltonian BVP

Problem Λ = D(Problem Σ) (1.46)

End definition.

Remark 2. Let D(γ) be a trajectory in Problem Λ = D(Problem Σ). If D(γ) is a

solution to Problem Λ, then γ is a minimizer of the functional in Problem Σ. Ergo

solutions to Problem Λ indirectly solve Problem Σ. End remark.

To give a concrete example on how dualization is traditionally performed, let

Problem Σ be a non path-constrained OCP of the following form

min
u

K =

∫ tf

t0

L(t,x(t),u(t))dt+ η(x(tf ),u(tf ))

Subject to: dx
dt

= f(t,x(t),u(t))

ϕ(x(t0),u(t0)) = 0

ξ(x(tf ),u(tf )) = 0

(1.47)

In the first step of dualization, we adjoin the constraints with the augmented Lagrange

multiplier method introduced in Section 1.2.1. The boundary conditions are adjoined

with non-dynamical Lagrange multipliers (ν0,νf ), and the dynamics are adjoined

with dynamical Lagrange multipliers λ.

Definition 8 (Dynamical Parameter). Let ẋ = f be a dynamical system and let

ϕ and ξ be equations on the boundaries of solutions to the dynamical system. A

dynamical parameter, p, is a constant that affects the time-evolution of the dynamical

system such that
ẋ = f(t,x,p), p /∈ x

ϕ(x(t0),u(t0),p) = 0

ξ(x(tf ),u(tf ),p) = 0

(1.48)
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End definition.

Definition 9 (Non-Dynamical Parameter). Let p be a parameter of a dynamical

system. This parameter is non-dynamical if it does not affect the time-evolution of

states

ẋ = f(t,x), p /∈ f and p /∈ x (1.49)

End definition.

Remark 3. Though non-dynamical parameters do not impact the time-evolution of

a dynamical system, they may appear in functions at the boundaries

ϕ(x(t0),u(t0),p) = 0

ξ(x(tf ),u(tf ),p) = 0
(1.50)

End remark.

Lagrange multipliers (ν0,νf ) are non-dynamical parameters while Lagrange mul-

tipliers λ are dynamical states. The λ’s are often called co-states. First writing the

dynamical equations as f − ẋ = 0, we then augment the functional K as previously

shown in Eq. (1.16)

K∗ ≡
∫ tf

t0

[L+ λ (f − ẋ)] dt+ ν0ϕ+ (η + νfξ) (1.51)

Next, we introduce the control Hamiltonian, H ≡ L+ λf . Then

K∗ =

∫ tf

t0

(H − λẋ) dt+ ν0ϕ+ (η + νfξ) (1.52)

Eq. (1.52) is an unconstrained version of the original Problem Σ, called Problem Σ∗.

We use the symbol “Σ” to signify that it is still an OCP, but place the star on it to

emphasize its augmented nature. The second step in the dualization procedure is an

application of the Euler-Lagrange equations

E ≡ ∂

∂y
− d

dt

∂

∂ẏ
(1.53)
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Applying the Euler-Lagrange equations to Eq. (1.52) gives

E (K∗) = 0 (1.54)

For the dynamic portion of the functional, we have

E (H − λẋ) =

(
∂

∂y
− d

dt

∂

∂ẏ

)
(H − λẋ)

=
∂ (H − λẋ)

∂y
− d

dt

∂ (H − λẋ)

∂ẏ

(1.55)

In the case of our OCP, y = {x,λ,u}. Acknowledging ∂λ/∂z = 0 for z = {y}/{λ},

we expand

E (H − λẋ) =
∂H

∂x
+

∂H

∂λ
+

∂H

∂u
+

∂ (−λẋ)

∂λ
− d

dt

∂(−λẋ)

∂ẋ
(1.56)

Simplifying this expression down gives

E (H − λẋ) =
∂H

∂x
+

∂H

∂λ
+

∂H

∂u
− ẋ+ λ̇ (1.57)

From this, we choose λ such that the following holds

ẋ =
∂H

∂λ
, λ̇ = −∂H

∂x
, 0 =

∂H

∂u
(1.58)

Next, we look at the terms at the boundaries. In optimal control theory, emphasis is

placed on the structure of boundary conditions. Specifically, state terms are separated

into either being “fixed” or “free”. Although this strategy works well for certain

problems, the required structure of the boundary conditions is greatly restricted and

doesn’t lend itself well for general-purpose processes. Instead, the current state-of-

the-art strategy is to adjoin each of boundary conditions to the initial and terminal

cost functions with non-dynamical Lagrange multipliers. These terms then appear in

the BVP’s boundary conditions as follows

Φ = ν0
∂ϕ

∂x
+ λ

Ξ =
∂η

∂x
+ νf

∂ξ

∂x
− λ

(1.59)
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where ν0 and νf are newly introduced Lagrange multipliers. There is no special

treatment for whether a state is “free” or “fixed”. Finally, we arrive at the dynamic

first-order necessary conditions for optimality

Problem Λ


ẋ =

∂H

∂λ
, λ̇ = −∂H

∂x
, 0 =

∂H

∂u

Φ(x(t0),λ(t0),u(t0)) = 0

Ξ(x(tf ),λ(tf ),u(tf )) = 0

(1.60)

Eq. (1.60) is said to be of type Problem Λ. Note that the dynamical dimension

of Problem Λ is twice that of Problem Σ. Also, Problem Λ is in differential-algebraic

(DAE) form since ∂H/∂u = 0 must be solved simultaneously with ẋ and λ̇. Recall

that Noether’s theorem from the calculus of variations sections in Section 1.2.1 en-

abled us to generate a constant-of-motion for every symmetry of a functional. This is

due to the symplectic structure of the Hamiltonian system tying together constants-

of-motion with their associated symmetries. In Chapter 5, we will show how this

symplectic structure may be exploited to eliminate both the constant-of-motion and

its associated symmetry. Before that, we must cover one more important result

specifically from Hamiltonian mechanics.

Consider a non-control Hamiltonian system with phase-space, (x,λ) ∈ Λ. Let

ρ be a density function and let X be the concatenation of phase-space coordinates,

[x,λ]. Consider the continuity equation [98]

0 =
∂ρ

∂t
+∇ ·

(
ρẊ
)

(1.61)

Expanding the gradient term yields

∇ ·
(
ρẊ
)
=

∂
(
ρẊ
)

∂X
= ẋ

∂ρ

∂x
+ λ̇

∂ρ

∂λ
+ ρ

∂ẋ

∂x
+ ρ

∂λ̇

∂λ
(1.62)

Using the following relationships

ẋ =
∂H

∂λ
, λ̇ = −∂H

∂x
(1.63)

We can expand the derivative terms, ẋ and λ̇, on the right hand side of Eq. (1.62) to

find

ρ
∂2H

∂x∂λ
− ρ

∂2H

∂λ∂x
= 0 (1.64)
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Substituting this back into Eq. (1.61), we find

0 =
∂ρ

∂t
+

∂ρ

∂X

dX

dt
(1.65)

This expression is equivalent to the time-rate of change of ρ, dρ/dt.

Definition 10 (Liouville’s Theorem). Let Ẋ = f be a Hamiltonian system gener-

ated by a Hamiltonian function, H. Then, the density of states nearby a given state

is constant along every trajectory. End definition.

While Liouville’s theorem is a fundamental result that applies to optimal control

theory and has seen extensive theoretical usage [99, 100], there does not appear to

be many applications of Liouville’s theorem on the computational front of optimal

control theory. Recall Noether’s theorem as introduced in Section 1.2.1 was in a

format that was difficult to use, especially in aerospace design. In a similar manner,

Liouville’s theorem as presented in this section is very difficult to use in general-

purpose applications. Like Noether’s theorem, in Chapter 3 we will provide a different

version of Liouville’s theorem that is easier to use.

1.2.3 Nonlinear Programming

Nonlinear programming is the general class of methods of solving parameter op-

timization problems subject to a set of nonlinear constraints. These methods are

the language that ultimately enables a mathematical problem to be translated into a

computational problem that is solved by a computer. This computational problem is

referred to as a Non-Linear Programming (NLP) problem. NLP strategies are a large

focus within direct methods. However, they are often neglected in the literature when

indirect methods are involved. After all the analytical manipulations are performed

within an indirect method, it is highly unlikely that the resulting problem will be ana-

lytically solvable. For general-purpose applications, we must resort to NLP strategies

to generate approximate solutions to this problem.
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Definition 11 (Non-Linear Programming Problem). An NLP problem is a compu-

tational problem of the following form:

min K(x)

Subject to: gi(x) ≤ 0 ∀ i ∈ {0, · · · ,m}

hj(x) = 0 ∀ j ∈ {0, · · · , n}

(1.66)

End definition.

Aside from analytically solvable problems, all trajectory design problems, regard-

less if direct or indirect, are posed as an NLP and solved numerically. This is typically

not a challenge due to the present-day widespread use of NLP solvers. Though some-

what anecdotal, NLP solvers that aim to directly satisfy the Karush-Kuhn-Tucker

(KKT) conditions are the most well-behaved in trajectory design problems. The

KKT conditions are a set of first-order necessary conditions for optimality of the

NLP [101,102]. To define the KKT conditions, we must first augment the cost func-

tion with KKT multipliers to create the augmented Lagrangian function

L(x,λ) = K(x) +
m∑
i=0

λigi(x) +
n∑

i=0

λi+mhi(x) (1.67)

If x∗ is an optimal solution to the NLP, the KKT conditions are then

1. Stationary: 0 = ∇K(x∗) +
∑m

i=0 λi∇gi(x
∗) +

∑n
i=0 λi+m∇hi(x

∗)

2. Inequality Primal Feasibility: gi(x
∗) ≤ 0, ∀ i ∈ {0, · · · ,m}

3. Equality Primal Feasibility: hi(x
∗) = 0, ∀ i ∈ {0, · · · , n}

4. Dual Feasibility: λi ≥ 0, ∀ i ∈ {0, · · · ,m}

5. Complementary Slackness: λigi(x
∗) = 0, ∀ i ∈ {0, · · · ,m}
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Conditions 1-3 are directly obtained from the NLP problem definition in Eq. 1.66

and the augmented Lagrangian in Eq. 1.67. Conditions 4 and 5 come from the

following dual problem

max
λ

(
λ 7→ min

x
L(x,λ)

)
Subject to: λi ≥ 0 ∀ i ∈ {0, · · · ,m}

(1.68)

Sequential Quadratic Programming (SQP) is a direct constrained method that

utilizes a tiered iterative procedure to solve NLP problems. The upper tier uses

KKT multipliers for incorporating the constraints. From this, a Quadratic Program-

ming (QP) sub-problem with a quadratic objective function that approximates the

Lagrangian function and linear constraints is then created. The lower tier is respon-

sible for solving this QP sub-problem using convex optimization. Solutions to the

QP sub-problem directly satisfy KKT conditions and provide the upper tier search

direction information. The upper tier then uses this information to move the param-

eters to a new point and ultimately creates another approximation for the augmented

Lagrangian and QP sub-problem. The upper tier continues this process until KKT

conditions are satisfied.

To start the SQP process, an initial guess x0 is required. This guess is not required

to be feasible. Then the QP sub-problem is defined as follows

min Q(s) = K(x0) +∇KT (x0)s+
1

2
sTβs

Subject to: ∇gTi (x0)s+ δigi(x0) ≤ 0 ∀ i ∈ {0, · · · ,m}

∇hT
i (x0)s+ δ̄hi(x0) = 0 ∀ i ∈ {0, · · · , n}

(1.69)

In the QP sub-problem, we introduced β as the estimate of the Hessian of the

augmented Lagrangian function. The parameters δi are constant multipliers that

prevent cutting off feasible space due to the linearization of the constraints. For the

first upper tier iteration, β is the identity matrix. Choosing δ̄ is subjective and must

be between 0 and 1, but is usually close to 0.92. The δi are then determined byδi = 1 if gi(x0) < 0

δi = δ̄ if gi(x0) ≥ 0
(1.70)
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In the special case where gi or hi are linear, the QP sub-problem can directly

handle these constraints, and choosing δ̄ = 1 and δi = 1 yields better performance,

but is not necessary. Solving this QP sub-problem yields values for s, as well as

estimates for the KKT multipliers, λ.

1.3 End-to-End Mission Design

An aerospace system designer is likely not concerned with the intricacies of opti-

mal control theory. They simply want to pose a problem and get an answer. Beyond

the modeling of their specific system, a designer does not want to be bothered with

discretization schemes or Jacobian matrices, yet it is unfortunate that such an indi-

vidual will most likely need to learn some amount of optimal control theory in order

to be successful. When such a designer poses a hypothetical mission, this mission

undergoes various transformations before it reaches a computational architecture and

is solved numerically. An example process is shown in Fig. 1.5.

Aerospace

Designer

System

Modeling

Mathematical

Modeling
Computational

Architecture

Figure 1.5. End-to-end mission design process.

Regardless of what approach for computing a trajectory a designer chooses, both

direct and indirect methods are computationally intensive and iterative. In direct

collocation and pseudospectral methods, increasing a mesh’s accuracy, or number of

nodes, is directly proportional to the size of the resulting nonlinear programming

problem. In addition to mesh size, increasing the number of constraints also further

increases the size of the NLP problem. On the other hand, shooting solvers common

to indirect methods do not suffer the same performance impact with an increase in
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mesh accuracy. Instead, a state-transition matrix captures sensitivity information

thereby eliminating the need for a mesh. This state-transition matrix is proportional

in size to the square of the number of constraints, therefore, it does have a performance

impact similar to that of collocation and pseudospectral methods due to an increase

in the number of constraints. Herein lies one major challenge of all mission design and

trajectory optimization algorithms. As computational complexity increases, there is a

disproportionate increase in time to solution. One common technique to mitigate this

performance impact involves deploying algorithms on highly parallel architectures.

There is much present day research in mission design and trajectory optimization

in both indirect [103] and direct methods [28] that aims to make efficient use of high-

performance supercomputers [104], graphics processing units [105], field-programmable

gate arrays, and other highly parallel systems. These algorithms have varying degrees

of success; however, they experience a point of diminishing returns. For a low num-

ber of computational workers, there is a reasonable return on performance. As the

number of computational workers increases, one cannot expect a continued propor-

tional return on performance. This is due to the underlying nonlinear structure that

exists in both direct and indirect methods. This is not an issue for some scenarios

where the dynamics may be simplified to linear systems [106], or can be convexi-

fied [107, 108]. In general most nonlinear systems do not have these luxuries. The

ideal number of parallel workers is not well defined and changes based on problem

definition. This computational limitation is not unique to trajectory design and is

well-known to computer scientists as Amdahl’s law [109].

Since computational efficiency is ultimately limited by the nonlinear structure of

the problem, the primary goal of this dissertation is to change the nonlinear struc-

ture to one with certain desirable properties. Specifically, complete parallelization

is impossible since nonlinear systems are subject to causality. The entire dynamical

space cannot be reasonably sampled and predicted for every possible perturbation,

so computational workers are forced to consolidate their results and create an update

in a single-threaded, single-operation manner. By eliminating causality, perturba-
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tions that have no impact on the dynamical evolution of the system may be solved

independently and efficiently in a parallel manner. Segregating a system’s dynamics

in this manner introduces so-called quotient or reduced manifolds where a system’s

true causal dynamics live. This effectively offloads complex calculations to sophis-

ticated mathematics while saving computational resources for parts of the problem

where it is actually required. In this process, preserving the original design problem

and its mathematical structure through careful algebraic manipulations is incredi-

bly important. To do this, we use results from differential geometry and theoretical

physics.

Much of the modern research in theoretical physics aims to include gravity into

quantum theory. In the majority of proposed solutions, the quantization of gravity

introduces several issues from gauge theory. To overcome some of these issues, redun-

dant quantities are introduced into the system which must be removed in the end.

Handling these quotient constructions is typically done using the Becchi-Rouet-Stora-

Tyutin formalism [110–113], which is a semi-rigorous approach, while the Batalin-

Vilkovisky formalism [114–116] further generalizes this process. This work has been

extended to Hamiltonian gauge theories through the Batalin-Fradkin-Vilkovisky for-

malism [117] in the form of homotopical Poisson reduction. In mission design and

trajectory optimization, similar redundant quantities exist and, in fact, indirect meth-

ods with redundant quantities are structurally isomorphic to various systems that ap-

pear in theoretical physics. Though there isn’t a single generally agreed upon theory

of incorporating gravity into quantum theory, these tools have tremendous success

in theoretical physics and have natural extensions to mission design and trajectory

optimization through the field of geometric control theory.

Geometric control theory focuses on the structure and topological characteristics

of dynamical systems using known results from differential geometry and theoreti-

cal physics. This field models dynamical systems and their control inputs as flows

along manifolds as opposed to functions on a fixed chart, or coordinate system, as

is done in both direct and indirect methods. The manifolds that arise from indi-
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rect methods have a natural symplectic structure that can be exploited with the

Marsden-Weinstein-Meyer reduction theorem [118, 119] and Poisson reduction theo-

rems [120–122]. Since fixed charts are no longer used, this new setting may present

itself as unfamiliar to a designer. Similar to how indirect methods can be auto-

mated, we aim to automate all differential geometric operations abstracting away the

mathematical complexities from the designer. Currently, to the author’s knowledge,

there are no software tools available that fully automate the construction of quotient

manifolds required for design. The contribution of this dissertation is end-to-end in

the following sense: we will bring geometric control theory and Marsden-Weinstein-

Reduction to a level where it can be applied to general-purpose aerospace mission

design. As such, there is no single aerospace mission that has been selected for study,

but rather we will create a system that has potential application to every aerospace

mission.

1.4 Overview

The overall contribution of this dissertation is best described with an example.

Consider a mathematical system of equations. The type of equations are not impor-

tant. They may be algebraic linear, algebraic non-linear, or even ordinary differential

equations. In this system, there are 8 unknown variables and 2 known quantities. If

we manipulate the system by using its known quantities to solve for the unknowns,

what is the fewest number of unknowns we can have in the resulting new system?

Common sense tells us 6, yet this dissertation says 4. Using the standard engineering

interpretation of mathematics, this is an impossible result. On the other hand, this

has been a well-known result to mathematicians since the 1970’s. The trick to this

example is that there is vital information about the structure of the system that is

being withheld. Let’s now say our system is symmetric. By taking the transpose

of each known quantity we can generate another known quantity. Now we have a

clear picture that 8 − 2 ∗ 2 = 4. It is through the exploitation of structure in this
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example that we can eliminate double the number of unknowns than we typically

consider. For aerospace missions, symplectic mechanics exposes this information and

the Marsden-Weinstein-Meyer reduction procedure is the recipe to reduce the system

from 8 unknowns to 4 unknowns [118, 119].

The singular goal of this dissertation is create a general-purpose process for

applying the Marsden-Weinstein-Meyer reduction procedure to aerospace missions

[118, 119]. This novel approach to tackling general-purpose aerospace mission design

will result in computational problems that are lower dimensional than the current

state-of-the-art indirect methods provide. These computational problems ultimately

require the numerical solution of fewer equations. This is a multi-step process that

we break down into five unique sub-contributions in addition to some algebra.

Consider the presentation of the above example. It likely seemed unfair that vital

information was provided after the main question had already been posed. This

is precisely the limitation vector calculus and differential equations have in modern

trajectory optimization. To break free from this limitation, we will cover some algebra

in Chapter 2. Then, this will allow us to cover the five significant contributions of

this dissertation:

• In Chapter 3, we visit indirect methods of mission design and trajectory opti-

mization from a geometric control perspective. Several important definitions

are reviewed before covering collocation and shooting methods on the differen-

tial geometric system.

• In Chapter 4, we explore how to rephrase complex design problems to be com-

patible with definitions given in Chapters 2 and 3. Derivatives are used in

lieu of the typical algebraic operations from standard indirect methods thereby

bypassing the prohibitive Pontryagin’s minimum principle.

• In Chapter 5, we show how tools from differential geometry may be used to

simplify design problems in a manner that is not possible with standard indirect

methods.
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• In Chapter 6, a modified collocation and shooting algorithm that operates on

reduced manifolds is given and a sample problem with results is shown.

• In Chapter 7, we present a new method of constructing OCPs as well as asso-

ciated Hamiltonian BVPs. This is a scalable strategy for constructing compli-

cated path-constrained problems with compatibility with other strategies effec-

tively future-proofing indirect methods.

Each of these contributions plays a unique role in the design of aerospace missions.

By the end of this dissertation, we will have constructed a general-purpose process

that takes an aerospace system designer’s hypothetical mission and converts it into an

NLP problem which may be solved using readily available NLP solvers. This process

is shown in Fig. 1.6.

Designer
Symplectic

Mechanics

Symplectic

ICRM
Reduction

BVP

Solver
NLP

Figure 1.6. End-to-end mission design process as constructed in this dissertation.
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2. ALGEBRAS

Various types of algebras are used throughout this dissertation that are unconven-

tional in the typical engineering applications dominated by Gibbs (vector) algebra,

but are becoming increasingly popular [123]. The purpose of this section is to give a

quick introduction to some of their overarching rules, functionality, and purpose. Two

algebras used heavily throughout are Grassmann (exterior) and differential graded al-

gebras. Their purpose is to handle the modeling and implementation of algorithms,

structures of manifolds and their charts. This allows the use of results from stan-

dard calculus and linear algebra in a more generalized manner. Lie algebras, and

their associated groups, are primarily used for identifying and classifying symmetries

and constants-of-motion into a group structure which will provide several topological

results and serve as a guide for practical implementation. Rewriting many of our

processes in these tensor-based algebras will give us two benefits.

1. Tensors are very efficient computational objects. Although the numerical as-

pects will be nearly identical, by using tensor-based algebras as our foundation

we will create structurally consistent processes in Chapter 7.

2. Mathematical processes like reduction are inherently tensor-based due to their

exploitation of differential structures on manifolds. Since with standard calcu-

lus, differential structure is not represented, application of reduction is nearly

impossible without making simplifying assumptions. By using tensor-based al-

gebras, the process we introduce in Chapter 5 will become enabled for general-

purpose applications.
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2.1 Tensor Algebra

Tensors have seen heavy use in engineering applications. Some examples include

material stress [124], fluid mechanics [125], elasticity [126], electrodynamics [127],

and countless other applications. Originally developed by Ricci and Levi-Civita in

1900 [128], tensors and their algebras are most famous for their applications in both

special and general relativity. In this dissertations, tensors make up the foundation

for many other algebras.

Definition 12 (Tensor Algebra). Let W be a vector space over a field, K. Then,

an n-graded tensor is defined as the following direct product
n⊗

W = W ⊗W ⊕ · · · ⊗W (2.1)

The tensor algebra is the set of all tensors and their operations as n → ∞

∞⊕
i=0

i⊗
W = K ⊕W ⊕W ⊗W ⊕ · · · (2.2)

The multiplication for this algebra is defined as the follows

⊗ :
n⊗

W ×
m⊗

W →
n+m⊗

W (2.3)

End definition.

Remark 4. The grade of a tensor can exceed the dimension of the underlying vector

space. As such, the grade n → ∞ is usually assumed. Consider W = R2 and the 3

tensors, ae1, be2, and ce2 with e1, e2 ∈ W . Then the following grade-3 objects exist

abc e1 ⊗ e2 ⊗ e2 6= abc e2 ⊗ e1 ⊗ e2 6= abc e2 ⊗ e2 ⊗ e1 (2.4)

End remark.
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2.2 Grassmann Algebra

In addition to the now well-known linear algebra, the Grassmann (exterior) al-

gebra was formalized by Hermann Grassmann in 1844 [129]. His original work was

underappreciated, only being rediscovered by mathematicians between the 1860’s and

1870’s. The lack of reception was likely a contributing factor to his falling out from

mathematics later in life [130]. However, his contributions were enormous, catching

the attention of Hamilton himself [131]:

“Grassmann is a great and most German genius; his view of space is at

least as new and comprehensive as mine of time.”

(W. R. Hamilton)

Grassmann’s role in mechanics were apparent from very early, having created a

vector form for mechanics around 1832 [130]. Two key features of his algebra are

its anti-symmetric structure and graded structure. In Section 1.1.2, we saw that the

traditional form of Hamilton’s equations appear as the following set of anti-symmetric

equations

ẋ =
∂H

∂λ
, λ̇ = −∂H

∂x
(2.5)

The anti-symmetric structure of the Grassmann algebra ensures that all constructions

in this dissertation preserve the anti-symmetric structure of Hamilton’s equations.

Definition 13 (Grassmann Algebra). Given a vector space W , the n-graded Grass-

mann algebra is defined as the following quotient vector space
n∧
W =

n⊗
W/Vn (2.6)

where Vn is a subspace of n-tensors and Vn contains all tensors that are constructed

by tensor products in itself

x⊗ x⊗ · · · ⊗ x ∈ Vn, x ∈ W (2.7)
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Additionally, Vn contains all tensors generated by transposes

x⊗ y ⊗ · · · ⊗ z + y ⊗ x⊗ · · · ⊗ z ∈ Vn, x, y, z ∈ W (2.8)

End definition.

This is a graded algebra whose elements are compatible with the operations of

addition, associative multiplication, and scalar multiplication. While the addition and

scalar multiplication are the usual operations, the associative multiplication operation

in the Grassmann algebra is an anti-symmetric product referred to as the exterior, or

wedge product.

Definition 14 (Wedge Product). The wedge product, denoted ∧, is a bilinear tensor

product in the Grassmann algebra on a vector space, W , defined as follows

∧ :
n∧
W ×

m∧
W →

n+m∧
W

e1 ∧ e2 = (−1)nm e2 ∧ e1

(2.9)

where n and m are the grade of the input tensors

n = Deg(e1)

m = Deg(e2)
(2.10)

End definition.

To give a concrete example, consider the space W = R3. Given two vectors of

degree 1, we find Deg(e1 ∧ e2) = 2 with e1 ∧ e2 representing a parallelogram with

unique edges e1 and e2. This parallelogram is normal to the popular cross product

of vectors, e1 × e2. The Hodge star, ⋆, is a linear map sending an element of the

Grassmann algebra to its dual representation. Using the Hodge star in R3, we can

effectively decompose the cross product into the Hodge star and wedge product as

shown in Eq. (2.11). This setup can also be seen visually in Fig. 2.1.

⋆ (e1 ∧ e2) = e1 × e2 = e3, W = R3 (2.11)
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Figure 2.1. Dual representation of the parallelogram defined by the wedge product.

Remark 5. Since Grassmann algebra is a quotient of a tensor algebra, it itself is

a tensor algebra. As expected, the grade of a tensor can exceed the dimension of

the underlying vector space. However, the grade n → ∞ is usually never assumed.

Consider W = R2 and the 3 tensors, a e1, b e2, and c e2 with e1, e2 ∈ W . Then the

following grade-3 objects exist

abc e1 ∧ e2 ∧ e2 = abc e2 ∧ e1 ∧ e2 = abc e2 ∧ e2 ∧ e1 = 0 e1 ∧ e2 ∧ e2 (2.12)

These objects are dataless and therefore exploring tensors of grade n > dim(W ) is

typically not a useful exercise. End remark.

In general, the Grassman algebra is used to introduce geometric structure into

optimal control systems by governing the behavior of vectors. The anti-symmetric

nature of this algebra ensures the structure of Hamilton’s equations are always pre-

served.

2.3 Lie Algebra

Lie algebras are used extensively in particle physics, quantum mechanics, and

control systems with tremendous success. First introduced by Sophus Lie in the late

1870’s, then subsequently by Wilhelm Killing, Lie algebras deal with infinitesimal

transformations and their corresponding group structure [132].
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Definition 15 (Lie algebra). A Lie algebra is a vector space, g, together with an

alternating bilinear bracket operation known as the Lie bracket

[·, ·]L : g× g → g (2.13)

For some elements of the Lie algebra, f , g, and h, the following conditions are satisfied

1. [f, f ]L = 0

2. [f + g, h]L = [f, h]L + [g, h]L

3. [f, [g, h]L]L + [g, [h, f ]L]L + [h, [f, g]L]L = 0

The last condition is known as Jacobi’s identity. End definition.

One extremely common Lie algebra is the vector space R3 together with the cross

product operation as the Lie bracket. Another frequently used Lie algebra is the space

of smooth functions together with the Poisson bracket, [·, ·]P : C∞×C∞ → C∞. This

is commonly referred to as the Poisson algebra. In Chapter 5, we will asses the

functional dependence of constants-of-motion under the Poisson bracket. This allows

us to impose a very important restriction on the solution process that can be easily

evaluated in an automated fashion.

For every Lie algebra, there is a corresponding Lie group. Lie groups provide im-

portant information about the topological characteristics of the underlying manifolds

in optimal control systems and are leveraged to guarantee the existence of mani-

folds with desirable properties. Typically, Marsden-Weinstein-Meyer reduction takes

quotients by Lie groups; however, in Chapter 5 we will introduce a strategy that is

applied at the level of the algebra.

2.4 Co-algebras

In general, algebras provide the majority of the machinery required for calcu-

lations. However, there are a few instances of the dual representation of algebras,

so-called co-algebras, that are crucial.
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Definition 16 (Co-Algebra). A co-algebra is the dual of an algebra such that the

algebra’s structure maps are reversed. That is, the following general algebra multi-

plication rule

[·, ·] : W ⊗W → W (2.14)

and unit

e : K → W (2.15)

are reversed to form the following maps

δ : W → W ⊗W

e∗ : W → K
(2.16)

This setup is shown in the following diagram End definition.

W ⊗W ⊗W W ⊗W

W ⊗W W W ⊗W

W ⊗W K ⊗W ∼= W ∼= W ⊗K

IdW ◦δ
δ◦IdW

δ

δ

δ

δ

IdW
IdW ◦e∗

e∗◦IdW

Figure 2.2. Commutative diagram identifying (W ⊗W ) ⊗W ∼= W ⊗ (W ⊗W ) and

K ⊗W ∼= W ⊗K ∼= W .

In Section 2.5, we will combine the concepts of differentials and geometry in a

single algebra. This algebra leads to a natural definition of an important co-algebra.

2.5 Differential Graded Algebra

In engineering, geometry and structure is largely ignored whereas gradient in-

formation is heavily used for analysis. To ensure compatibility between geometric

structure and gradient information, we use the concept of differential (graded) alge-

bra first introduced by Joseph Ritt in 1950 [133]. Differential graded algebra is an
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associative algebra with the operations of addition, multiplication, and scalar mul-

tiplication. As the name suggests, this algebra has both a graded structure and a

differential structure, building on the tensor algebra introduced in Section 2.1. Ad-

ditionally, it is equipped with a derivation, D, that obeys the Leibniz (product) rule

D(xy) = D(x)y + xD(y) (2.17)

Note that the derivation, D, is abstract and specific implementations will be defined

as necessary. We now introduce graded structure to the Leibniz rule to arrive at

differential graded algebra.

Definition 17 (Derivation). A derivation is a graded operation on an algebra that

obeys the following graded Leibniz rule

D(xy) = D(x)y + (ϵ)Deg(x)Deg(D)x(Dy) (2.18)

For ϵ = 1, D is a derivation and for ϵ = −1, D is an anti-derivation. End definition.

The most important graded anti-derivation is the exterior derivative.

Definition 18 (Exterior Derivative). The exterior derivative is an arbitrary dimen-

sional counterpart to the common differential of a function. It is defined in terms of

the following invariant formula

dω(X0, X1, · · · , Xn) =
∑
i

(−1)iXi(ω(X0, · · · , X̂i, · · · , Xn))

+
∑
i<j

(−1)i+jω([Xi, Xj]L, X0, · · · , X̂i, · · · , X̂j, · · · , Xn)
(2.19)

where [·, ·]L is the Lie bracket of vector fields and the hat, X̂i, is the removal of that

particular element. End definition.

Remark 6. The exterior derivative is a grade 1 anti-derivation that is the inverse

transpose of the Lie bracket

d : g∗ → g∗ ∧ g∗ (2.20)
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More generally, the exterior derivative’s signature is

d :
•∧
g∗ →

•+1∧
g∗ (2.21)

Since d2 = 0, this forms a co-chain complex known as the de Rham complex

· · ·
∧0 g∗

∧1 g∗
∧2 g∗

∧3 g∗ · · ·d d d d d

Figure 2.3. The de Rham complex on g∗.

End remark.

The exterior derivative together with g∗ are a differential graded algebra that also

forms a Lie co-algebra. These tools, together with the Lie algebra on g∗, which is the

Poisson algebra, will later be used to build a tensor form of Noether’s theorem that

can easily be automated.

2.6 Summary

In this chapter, we introduced the algebras that will be commonly used through-

out this dissertation. We first introduced the idea of tensors and tensor algebra.

Building off of tensors, we introduced the Grassmann algebra which uses a geometric

construction that will become crucial in later chapters. Next, we gave an overview of

Lie algebra and differential graded algebra which are important algebras that govern

the manipulation of infinitesimal symmetries and constants-of-motion. These two

algebras are related through the concept of a co-algebra and in Chapter 3, we will

construct a method of transforming quantities between these algebras. After some

reworking of current-state-of-the-art methods to a symplectic formulation in Chap-

ter 4, we will then see the greater extent of the algebras’ power in Chapter 5 where

reduction is introduced. Reduction cannot be performed with standard calculus in

general-purpose applications.
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3. GEOMETRIC OPTIMAL CONTROL THEORY

In this chapter, optimal control theory will be rephrased from the typical Hamil-

tonian style of indirect methods to the language of differential geometry and, more

specifically, symplectic manifolds. While the results of this section do not immediately

offer any new information about optimal control systems, aside from a convenient ten-

sorial version of Noether’s theorem, the coordinate-free view of differential geometry

will allow one to modify optimal control systems in a unique way. By rephrasing

the system in this manner, the geometric structure of the system is exposed and will

be exploited in Chapter 5 to lower a system’s dimension to fewer equations than is

traditionally possible.

The dualization of Problem Σ to Problem Λ yields a Hamiltonian BVP whose dy-

namics live in a symplectic manifold. In Section 3.3, we will see how this dualization

is carried out. However, the Hamiltonian BVP generated contains control quanti-

ties and other terms adding complexity. In Section 3.2, we will look at symplectic

manifolds in a traditional context where these additional complexities do not exist.

3.1 Differential Geometry

Differential geometry is an extremely broad and rich field of mathematics. Calcu-

lus, in the modern sense, was first introduced by Isaac Newton and Gottfried Leibniz

in the mid 1600’s, whereas geometry dates back to the ancient Egyptians around 2900

BC with axiomatic geometry typically attributed to Euclid of Alexandria around 300

BC. Differential geometry is a field of mathematics that merges differential calculus

and geometry to study problems with elements of both fields. The majority of this

content is adapted from Frederic Schuller’s lectures on the geometrical anatomy of

theoretical physics [134, 135], Vladimir Arnold’s famous textbook on mathematical
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methods of classical mechanics [136], and Stephanie Singer’s digestible book on the

role of symmetry in mechanics [137].

3.1.1 Topological Objects

Differential geometry is akin to the Python programming language in that they are

generally regarded as gluing languages. At the local level, differential geometry uses

various algebras, some of which were introduced in Chapter 2, to carry out operations

explicitly. Similarly, the FORTRAN and C programming languages are commonly used

to carry out computationally intensive operations that would be significantly slower

in pure Python. However, a developer typically writes high-level Python code without

ever being exposed to the underlying C and FORTRAN doing the heavy lifting for them.

In this same spirit, a differential geometer works at a high-level with tools from an

area known as topology. Using topology enables a differential geometer to explore

mathematical constructs without being held back by the low-level implementation.

The central tool in topology that enables this type of study is the manifold.

Definition 19 (Manifold). A manifold, M , is a topological space where there exists

an open Euclidean neighborhood, R•, about every point.

Figure 3.1. A 2-dimensional manifold.

End definition.
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Definition 20 (Chart). Let M be a manifold. Then, a chart is a mapping from an

open subset V ∈ M to an open subset of a Euclidean space, R•. End definition.

Definition 21 (Smooth Manifold). Smooth manifolds are manifolds where all map-

pings are infinitely differentiable. End definition.

These tools enable gradient information to be encoded as vector fields on manifolds

and optimal motion as flows. We note that not all optimal motion is smooth as many

practical design problems contain control laws with bang-bang and singular arcs.

These scenarios are ignored for now and will be treated in Chapter 7. To describe how

optimal control systems are modeled using differential geometry, we first introduce

M as a smooth manifold and define a curve.

Definition 22 (Curve). A curve is a function of a single variable on a real line

mapping to M .

γ(t) : I ⊂ R → M (3.1)

End definition.

Assume M is embedded in Rm and there exists a point x ∈ M . Then, given some

function, f : M → R, we can evaluate the derivative of f along γ(t) at point x0 by

computing
d

dt

∣∣∣∣
x0

f = lim
h→0

f(γ(tx0 + h))− f(γ(tx0))

h
(3.2)

By choosing a local chart {x1, · · · , xn}, we can rewrite our derivative as the following

d

dt
f =

dx1

dt

∂

∂x1

f + · · ·+ dxn

dt

∂

∂xn

f (3.3)

Then, eliminating the arbitrary function f , we have

d

dt
=
dx1

dt

∂

∂x1

+ · · ·+ dxn

dt

∂

∂xn

(3.4)

Thus, d/dt is a linear combination of partial derivatives, ∂/∂xi. Given a vector, p,

at point x0, we write it in terms of the previous chart to find

p = p1
∂

∂x1

+ · · ·+ pn
∂

∂xn

(3.5)
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In Eq. (3.5) we used the partial derivatives, ∂xi
, as basis vectors. Additionally, p

may be used as a function in that p(f) evaluates the gradient of f along p. In this

case, p is a rank 1 contravariant tensor and degree 0 derivation. Consider the set of all

possible curves, γi(t), through the point, x0. The collection of all such tangent vectors,

pi, defines the tangent space of M at x0, Tx0M . While tangent spaces are effective in

describing local phenomena, manifolds by nature are global structures with infinitely

many tangent spaces. In an effort to describe more global characteristics, we now

define the tangent bundle of M , denoted TM .

Definition 23 (Tangent Bundle). Let M be a manifold. Then, the tangent bundle

of M , TM , is defined as the disjoint union of all tangent spaces of M , that is

TM ≡
⊔
x∈M

TxM (3.6)

The tangent bundle is equipped with a natural projection τM : TM → M and local

vector basis {∂x1 , · · · , ∂xn}. End definition.

The tangent bundle is a disjoint union in the sense that if some point, p ∈ TM , is

chosen, the fiber over M associated with p may be located. The fiber is the topological

space τ−1
M (x) where x ∈ M . That is, it is possible to identify some tangent space

TxM = τ−1
M (x) that contains a point p ∈ TM with base point x ∈ M . This setup is

illustrated in Fig. 3.2. Using the tangent bundle, we can define a vector field.

Definition 24 (Vector Field). Let M be a manifold and τM : TM → M be its

tangent bundle. Then a vector field, X : M → TM , is a section of the tangent

bundle such that Fig. 3.3 commutes.

End definition.

Vector fields provide valuable information mapping from a manifold to its tangent

bundle. In the case of dynamical systems, vector fields are the equations-of-motion

that govern motion of the system. Some illustrations of this setup are in Fig. 3.4.
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(a) A manifold with 3 tangent spaces (b) Tangent spaces collected into a bundle

Figure 3.2. The tangent bundle and some associated components. Note that since

dim (M) = 1, then dim (TM) = 2

TM

M

τMX

Figure 3.3. Vector field on M

Vector fields are typically denoted X ∈ X(M). However, we will identify vector

fields as X ∈ g. This is because the space of vector fields together with the Lie

bracket form a Lie algebra. This bracket operation, sometimes called the Jacobi-Lie

bracket, is defined in Eq. (3.7).

[·, ·]L : g× g → g

(X1, X2) 7→ X1(X2)−X2(X1)
(3.7)

From this definition, we begin to see how the algebraic tools defined in Chapter 2

are constructed as a result of the topological definitions. Recall we also defined a

Lie co-algebra in Chapter 2. One would expect there to exist a co-algebra to the Lie

algebra of vector fields. This requires the dual representation of a manifold’s tangent
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(a) A vector field modeled with tangent

vectors on M

(b) Vector field modeled with basis vec-

tors on TM

Figure 3.4. A vector field as the section of the tangent bundle

spaces which are called co-tangent spaces. A co-tangent space is defined as the set

of all linear functionals on TxM denoted T ∗
xM . Therefore, by choosing an element

θ ∈ T ∗
xM , there is a map θ : TxM → R. In a similar fashion to how the tangent

bundle was defined, we can now define the co-tangent bundle and co-vector fields.

Definition 25 (Co-Tangent Bundle). Let M be a manifold and τM : TM → M be

its tangent bundle. Then, the co-tangent bundle of M , T ∗M , is defined as the disjoint

union of all co-tangent spaces on M , that is

T ∗M ≡
⊔
x∈M

T ∗
xM (3.8)

The co-tangent bundle is equipped with a natural projection πM : T ∗M → M and

local co-vector basis {dx1, · · · ,dxn}. End definition.

Definition 26 (Co-Vector Field). Let M be a manifold and πM : T ∗M → M be

its co-tangent bundle. Then a co-vector field, θ : M → T ∗M , is a section of the

co-tangent bundle such that Fig. 3.5 commutes.

End definition.
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T ∗M

M

πMθ

Figure 3.5. Co-vector field on M

Co-vector fields are typically denoted θ ∈ Ω(M). However, we will identify co-

vector fields as θ ∈ g∗. This is because the space of co-vector fields together with the

exterior derivative form a Lie co-algebra.

d : g∗ → g∗ ∧ g∗ (3.9)

Recall from Chapter 2, the exterior derivative defined a co-chain complex of dif-

ferential forms known as the de Rham complex. In this framework, co-vector fields

of grade k on M are typically denoted Ωk(M), while we will opt to retain
∧k g∗.

Having defined both a Lie algebra and Lie co-algebra from an arbitrary manifold, M ,

one might hypothesize that there exists a map between the two. Collecting what we

know about tangent and co-tangent bundles, we can represent this as the commutative

diagram in Fig. 3.6.

TM T ∗M

M

τM πM

X θ

Figure 3.6. A potential mapping between the tangent and co-tangent bundles of

manifold M .

Curiously, the tangent and co-tangent bundles are isomorphic, however co-tangent

bundles carry canonical structures whereas tangent bundles do not. This is similar to

how Lagrangian and Hamiltonian formulations of mechanics describe similar motion
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at the same dimension, but are structured differently. For example, take M to be an

n-dimensional smooth manifold with local coordinates x. Let (x̃,λ) be the induced

coordinates on the co-tangent bundle, T ∗M , and let πM : T ∗M → M be the natural

projection defined as (x̃,λ) 7→ (x̃). This induces a C∞(M)-linear map on 1-forms

denoted π∗
M known as the pullback by πM , that is

π∗
M : Ω1(M) → Ω1(T ∗M)

(θ) 7→ (π∗
M(θ))

(3.10)

Consider π∗
M dx = dx̃ = dx by choice of x̃. Define a one-form on T ∗M as π∗

M,(x,λ)λ

mapping each point, (x, λ) ∈ T ∗M , to the co-vector (λ, 0) ∈ T ∗
(x,λ)T

∗M , an element

of the co-tangent space at (x, λ) on the co-tangent bundle. So using the formula for

π∗
M , we have

π∗
M,(x,λ)λ = λ ◦ πM dx

= λdx+ 0dλ

= λdx

(3.11)

The quantity λdx is sometimes referred to as the Liouville-Poincaré one-form [138].

This definition leads to a natural construction of symplectic manifolds which we will

cover in Section 3.2.

3.2 Symplectic Manifolds

In this section, we will give a brief introduction to symplectic manifolds and their

application to Hamiltonian dynamical systems. In addition to the Liouville-Poincaré

one-form, there exist various tensor quantities on symplectic manifolds. We will show

how we can use these quantities to create applied tensor versions of both Noether’s

and Liouville’s theorems. To begin, we recall the Liouville-Poincaré one-form

θ = λdx (3.12)

Since θ ∈
∧1 g∗ ∼= g∗, then dθ ∈

∧2 g∗ is well-defined and referred to as the standard

symplectic form.
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Definition 27 (Standard Symplectic Form). The standard symplectic form, ω, is a

closed and non-degenerate differential two-form defined as

ω ≡ −dθ = dx ∧ dλ (3.13)

End definition.

Consider a smooth manifold M . This manifold’s co-tangent bundle Λ = T ∗M

together with the standard symplectic form yield a symplectic manifold.

Definition 28 (Symplectic Manifold). A symplectic manifold is the pair (Λ, ω),

where Λ is an even dimensional smooth manifold equipped with a closed and non-

degenerate differential two-form, ω. End definition.

Two restrictions on some form ω for it to be a symplectic form are that it is

closed and non-degenerate. The closed condition provides the constraint that ω is

unchanging under flows on Λ, or dω = 0. This is usually easy to satisfy using anti-

symmetric constructions with the wedge product. The non-degeneracy condition

guarantees that for a function H ∈ Λ there exists a unique vector field corresponding

to every dH. Together, these conditions can be written in a nice formula using the

Lie derivative, but require the interior derivative.

Definition 29 (Interior Derivative). The interior derivative is the degree -1 anti-

derivation ι : g×
∧• g∗ →

∧•−1 g∗, defined as

ι : g×
•∧
g∗ →

•−1∧
g∗

(X,ω) 7→ ω(X, ·, · · · , ·)
(3.14)

End definition.

Using the interior derivative and Cartan’s magic formula, we write the Lie deriva-

tive as

£XH
ω = d (ιXH

ω) + ιXH
dω (3.15)



51

Since ω is closed this simplifies to

£XH
ω = d (ιXH

ω) (3.16)

Noting this form is exact, integration yields the symplectic equation, or the geometric

form of Hamilton’s equations where H is a Hamiltonian function.

Definition 30 (Symplectic Equation). Given a symplectic manifold, (Λ, ω), and a

Hamiltonian function, H : Λ → R, the standard symplectic equation is as follows

ιXH
ω = dH (3.17)

The flow lines of the flow generated by XH are trajectories of phase space.

End definition.

Eq. (3.17) is relatively easy to solve, especially with ω in its standard form. This

equation completely encodes the classical form of Hamilton’s equations without ex-

plicitly referencing coordinates. By using the symplectic equation, we can ensure that

the symplectic structure is preserved with any arbitrary transformation. This will be

done in Chapter 4, thus generating a slightly more difficult version of the symplectic

equation that uses a non-standard symplectic form.

In Eq. (3.17), the differential structure ω is directly used to define XH as op-

posed to the traditional methods in Section 1.1.2 which rely on variational methods.

Since the differential structure is in an explicit tensorial form instead of an implicit

variational form, one might expect there to be a tensorial analog to the variational

Noether’s theorem. To introduce this concept, we first need to introduce the tensorial

versions of symmetries and constants-of-motion.

Definition 31 (Symmetry (2)). Given a symplectic manifold, (Λ, ω), a vector field

S : Λ → TΛ ∼= g, and a Hamiltonian function, H : Λ → R, then S is a symmetry if

it leaves both H and ω invariant under its flow. End definition.



52

Definition 32 (Constant-of-Motion). Given a symplectic manifold, (Λ, ω) and a

Hamiltonian function, H : Λ → R, a constant-of-motion is a quantity J : Λ → R ∼= g∗

that is invariant under the flow generated by XH . End definition.

The co-domain of a symmetry is the Lie algebra of vector fields and the co-domain

of constants-of-motion are a Lie co-algebra. Given a symmetry, S, or a constant-of-

motion, J , we can generate its corresponding constant-of-motion or symmetry using

the differential structure. In the case where the symmetry is provided, since
∫
Λ
:∧• Λ →

∧•−1 Λ, and ω : g ∼= TΛ → T ∗Λ ∼=
∧1 g∗, we can define the Noether-like

map N =
∫
Λ
◦ω, that is

N : g → g∗

S 7→
∫
Λ

ιSω
(3.18)

From this map, we have

N(S) = J (3.19)

Remark 7. In general, the Hamiltonian function governing the motion of a dynam-

ical system is a constant-of-motion provided that it is not an explicit function of the

independent variable. Therefore, the Noether-like map, N , is an integrated form of

the symplectic equation in the sense that N(XH) = H. End remark.

In general, it is easier to identify symmetries of a system as opposed to constants-

of-motion due to their non-integrated form. However, there are plenty of cases where

the constants-of-motion are easily identifiable. In these cases, having a Noether-

like map N∗ that sends constants-of-motion to their corresponding symmetries is

desirable. To do this, we apply the same logic in reverse. Instead of searching for a

map g → g∗, we want to find the map g∗ → g. This can easily be done using the

induced Poisson bracket from ω.

Definition 33 (Induced Poisson Bracket [139]). Given a symplectic manifold, (Λ, ω),

the Poisson bracket induced by ω is the following quantity

[·, ·]P : g∗ × g∗ → g∗ (3.20)
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Such that [F,G]P = ω(XF , XG). End definition.

Using the induced Poisson bracket of ω, we can define the Noether-like map

N∗ : g∗ → g

J 7→ [·, J ]P
(3.21)

Remark 8. In general, the flow of a dynamical system is a symmetry of the phase

space provided that the Hamiltonian function generating said flow is a constant-of-

motion. Therefore, the Noether-like map, N∗, is a form of the symplectic equation in

the sense that N∗(H) = XH . End remark.

From these 2 maps, N and N∗, we have an applied tensorial form of Noether’s

theorem. This structure is desirable since it is significantly easier to automate in

digital software than the variational form. Additionally, both N and N∗ are essentially

rearranged versions of the symplectic equation. Therefore, local application of the

symplectic equation preserves Noether’s theorem.

While Noether’s theorem and the symplectic equation yield invaluable information

about the dynamical structure of a system, these results typically can only be applied

locally in practical scenarios. That is, in a typical aerospace mission, it is easy

to generate infinitesimal symmetries from constants-of-motion, but generating the

symmetries non-infinitesimal form may be prohibitively expensive or impossible. To

overcome this, we will transform the system to a new coordinate system where a full

symmetry is identified by a single state. In these cases, we can use Liouville’s theorem

to assist.

Definition 34 (Liouville’s Theorem). Given a symplectic manifold, (Λ, ω), and a

Hamiltonian function, H : Λ → R, then Liouville’s theorem necessarily states that

the volume of an infinitesimal area of phase space is invariant under Ft, which is the

flow generated by XH ∫
Λ

F ∗
t ω =

∫
Λ

ω (3.22)

End definition.
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Since coordinates of phase-space are well-defined by the dualization process, this

result may not appear to be immediately useful. Where Liouville’s theorem shines

is in defining so-called canonical transformations, or transformations that preserve

the differential structure globally. For instance, consider two symplectic manifolds,

(Λ1, ω1) and (Λ2, ω2) with local coordinates (x,λ) ∈ Λ1 and (q,p) ∈ Λ2, then a slight

generalization of Liouville’s theorem tells us the following∫
Λ1

ω1 =

∫
Λ2

ω2 (3.23)

In other words, transformations between the manifolds Λ1 and Λ2 must preserve the

infinitesimal volume of phase-space. If these manifolds are the dynamical manifolds

of a Hamiltonian BVP, then this ensures solutions to Problem Λ2 indirectly solve

Problem Λ1. Expanding the standard symplectic form for both of these manifolds,

we have ∫
Λ1

dx ∧ dλ =

∫
Λ2

dq ∧ dp (3.24)

Integrating both sides, we find the homogeneous equation of canonical transforma-

tions

− λdx = −pdq (3.25)

Rearranging these terms to solve for dq, we have

dq =
λ

p
dx (3.26)

Integrating both sides, we have the following definition of q

q ≡
∫
Λ1

λ

p
dx (3.27)

Therefore, by preservation Liouville’s theorem, Eq. (3.27) defines q as a function of

mixed coordinate functions (x,λ,p). At this time, p’s definition is not apparent; how-

ever, we will use Eq. (3.27) in Chapter 5 to assist in defining a new set of coordinates

in reduction.
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3.3 Nonliner Control Systems and Optimal Control

Up until this point, we have only studied dynamical systems from a geometric

point of view. While interesting in their own regard, the general class of aerospace

missions fall under the generalization known as optimal control theory. The intro-

duction of control variables presents a new coordinate function; however, this is not

a coordinate on a dynamical system’s manifold, nor is it on the tangent or co-tangent

bundles. In fact, the control variables yield a new topological object called the input

bundle. Take Σ as a manifold, then the input bundle is defined as follows

π τΣ : B → Σ

(x,u) 7→ x
(3.28)

A traditional nonlinear control system is the tuple (B,Σ, π τΣ,f). The user-

supplied vector field is defined as f : B → TΣ. Considering the natural projection of

TΣ on Σ, τΣ : TΣ → Σ, then π τΣ = τΣ ◦f . This setup is summarized in the following

commutative diagram

B

TΣ Σ

f
π τΣ

τΣ

Definition 35 (Trajectory). A trajectory is a curve, γ(t) : I ⊂ R → B, that is also

an integral curve of f . The requirement that γ is an integral curve of f provides the

following constraint
d

dt
(π τΣ ◦ γ) = f ◦ γ (3.29)

End definition.
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Given a nonlinear control system, Σ, and a path cost, L : B → R, define the

optimal control problem as

Problem Σ



min
u

K =

∫ tf

t0

L ◦ γ dt

Subject to: d
dt

(πΣ ◦ γ) = f ◦ γ

ϕ ◦ γ(t0) = 0

ξ ◦ γ(tf ) = 0

glower ≤ g ◦ γ ≤ gupper

(3.30)

Indirect methods of trajectory optimization refer to introducing a Hamiltonian

structure to the optimization problem formulation and searching for solutions to

the infinite-dimensional problem in a finite-dimensional phase space, or co-tangent

bundle, T ∗Σ = Λ with πΣ : T ∗Σ → Σ. Setting Λ ≡ T ∗Σ is the first step in defining

Problem Λ.

Remark 9. The notation “Problem M” refers to the fact that the main source

of computational complexity lies in manifold M . This provides a convenient and

topologically consistent means of integrating various transformations of our problem,

such as dualization Problem T ∗Σ = D(Problem Σ), into Ross and Fahroo’s popular

commutative diagram. End remark.

To implement this analytically, we introduce Lagrange multipliers as fiber coordi-

nates, λ ∈ π−1
Σ and augmenting the cost functional in Eq. (3.30) by adjoining dynamic

constraints, f . Considering these newly introduced coordinates, the dynamics in the

indirect optimal control problem are written as follows

ιXH
ω = dH (3.31)

For optimal control problems, XH : T → TΛ is of the form

XH =
dx

dt

T ∂

∂x
+
dλ

dt

T ∂

∂λ
(3.32)
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Note that the input-space manifold B contains the controls u which are not considered

coordinates on M ; therefore, they are accounted for in the differential of H ∈ B/Σ×

Λ ∼= E

dH =
∂H

∂x
dx+

∂H

∂λ
dλ+

∂H

∂u
du (3.33)

From the above equations, we can see that a natural choice for dx/dt and dλ/dt are

Hamilton’s equations
dx

dt
=

∂H

∂λ
dλ

dt
= −∂H

∂x

(3.34)

Since optimal control problems naturally have a presymplectic structure, applying

Eqs. 3.34 to Eqs. 3.31 leaves

0 =
∂H

∂u

T

du (3.35)

To satisfy this equality, choose u∗ : Λ → B/Σ such that

∂H

∂u
(x,λ,u∗(x,λ)) = 0 (3.36)

Simple problems return relatively simple expressions for ∂H/∂u, but complicated

problems return increasingly complex algebraic expressions and may not admit a

symplectic structure with the current set of relations. For these complicated cases,

u∗ will not have a single explicit solution and a different technique will be presented

in Ch. 4.

3.4 Collocation

Collocation is a numerical method of solving optimal control problems. It is based

on the assumption that optimal trajectories may be approximated by piece-wise third-

order polynomials. To define a third-order piece-wise polynomial, four numerical

pieces of information are required. At each endpoint, or node, of a polynomial, there
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is state position information and state gradient information. Taking xi to be states

at node i, the coefficients for each polynomial are then
C1

C2

C3

C4

 =


1 0 0 0

0 1 0 0

−3 −2 3 −1

2 1 −2 1




xi

ẋi

xi+1

ẋi+1

 (3.37)

To ensure the polynomial is a high quality approximation of the underlying dynamical

system, the predicted gradient at the midpoint of each polynomial is compared to the

actual gradient from the equations-of-motion. The error between these two values

vanishes when the curve is a high quality prediction, and therefore this condition is

included as a constraint into an NLP-solver. The predicted values in between each

node are
x̃i+1/2 =

1

2
(xi + xi+1) +

tf (ẋi − ẋi+1)

8(Ntotal − 1)

˙̃xi+1/2 = −3

2

(Ntotal − 1)

tf (xi − xi+1)
− 1

4
(ẋi + ẋi+1)

(3.38)

Using these predicted values, the following BVP represents a discretized computa-

tional problem that approximates the original BVP

ẋi+1/2 − ˙̃xi+1/2 = 0

Φ(x0, t0,p) = 0

Ξ(xf , tf ,p) = 0

(3.39)

where Φ and Ξ are the usual boundary conditions from optimal control. The ad-

ditional parameters, p, are constants-of-motion and other non-dynamical quantities

that may be adjusted by the solver. Since this algorithm solves the indirect problem,

there is no explicit cost function to minimize because optimality is guaranteed once

all boundary conditions and dynamic equations-of-motion are satisfied. Sequential

quadratic programming (SQP) is used to drive the optimization process, where the

constraints are adjoined to the cost with Lagrange multipliers. In the Python pack-

age SciPy, the minimize method is used from the optimize module with the SLSQP
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option. This algorithm serves as the basis for the numerical methods used in solving

indirect problems and will be modified in Section 5.1.3.

3.5 Shooting

Another set of common algorithms for solving boundary-value problems are shoot-

ing methods. Instead of using meshes like in collocation and pseudospectral meth-

ods, shooting methods capture sensitivity information in the State-Transition Matrix

(STM), ∆. The STM has initial and terminal states ∆0 and ∆f . Given a system

with n equations-of-motion, f , and m parameters, p, we construct the STM by first

defining the sensitivity matrix of the equations-of-motion

A(t) =
[
∂f
∂x

∂f
∂p

]
=


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f1
∂p1

∂f1
∂p2

· · · ∂f1
∂pm

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

∂f2
∂p1

∂f2
∂p2

· · · ∂f2
∂pm

... ... . . . ... ... ... . . . ...
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn

∂fn
∂p1

∂fn
∂p2

· · · ∂fn
∂pm

 (3.40)

Then, the state-transition matrix is defined as the following set of first-order differ-

ential equations

∆0 =
[
IdM 0

]
=


1 0 · · · 0 0 0 · · · 0

0 1 · · · 0 0 0 · · · 0
... ... . . . ... ... ... . . . ...

0 0 · · · 1 0 0 · · · 0


∆̇ = A(t)∆

(3.41)

Note that the state-transition matrix has dimension n×(n+m) and is not square when

there are parameters. Since parameters are constants, they do not have equations-

of-motion and their sensitivities with respect to changes in states and all parameters
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are assumed zero. Using the state-transition matrix, sensitivities in the boundary

conditions are given by the Jacobian matrix

M =
∂Φ(x0, t0,xf , tf ,p)

∂x0

P =
∂Φ(x0, t0,xf , tf ,p)

∂p

J = [M,P ]

(3.42)

where J is the concatenation of M and P . Also, note that xf is directly affected by

perturbations in x0 and must be accounted for in M . Since the error in the boundary

conditions are given as

Φ(x0, t0,xf , tf ,p) = ϵ (3.43)

Then the shooting algorithm is driven by Newton’s Method with the update rule

Jxupdate = −ϵ (3.44)

3.6 Summary

In this chapter, we showed how the traditional indirect methods may be recasted

in the language of differential geometry. Specifically, we showed that the symplectic

equation correctly encoded the same information from traditional indirect methods.

Next, we provided two numerical processes for solving the resulting BVPs. Although

the procedure presented in this chapter yields a Hamiltonian BVP with identical

properties to the one from Section 1.2.2, the symplectic equation will be used further

in Chapters 4 and 5 and the numerical methods will be improved upon in Chapter 6.

Specifically, in Chapter 5 we eliminate more equations-of-motion than previously pos-

sible and then design numerical solvers in Chapter 6 to solve the resulting problems.

Even though our system is now phrased in terms of symplectic mechanics, there is

one major practical limitation to all indirect methods. That is the handling of control

variables. In the next chapter, we will improve on a current state-of-the-art method

for handling control variables by making it symplectic.
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4. ADJOINING OF OPTIMAL INFORMATION

All indirect methods generate a Hamiltonian BVP. One of the primary challenges

in creating a general-purpose process based on indirect methods is the large amount

of algebraic manipulation involved in generating this Hamiltonian BVP. Specifically,

Pontryagin’s Minimum Principle (PMP) necessarily states that optimal motion is

a minimizer of the control Hamiltonian for all time. This arises as the following

mathematical condition [68, 69]

H(t,x∗,λ∗,u∗) ≤ H(t,x∗,λ∗,u) (4.1)

Directly solving Eq. (4.1) is challenging. For general purpose applications, it is

possible to use a numerical optimization process such as Nelder-Mead simplex or

sequential quadratic programming to find a u∗ that satisfies Eq. (4.1). While using

a numerical process that can handle discontinuities is overall very generalized, it is

both numerically sensitive and computationally expensive. For large problems, the

computational cost can become prohibitive. Instead, most modern indirect processes

skip a direct solution of Eq. (4.1) and opt to solve the following condition in its place

dH

du
= 0 (4.2)

Rather, u∗ = u∗(t,x∗,λ∗) is chosen such that Eq. (4.2) is satisfied without directly

solving Eq. (4.1). The primary benefit of minimizing the Hamiltonian in this manner

is that an analytic function for u∗ is used as opposed to a numerical process. In

general, analytic functions have a much faster evaluation time and also do not have

the same numerical sensitivity issues that an optimization-based process would have.

Finding u∗ in this manner effectively eliminates u from the Hamiltonian BVP.

It has been shown numerous times that using symbolic manipulation software

to solve Eq. (4.2) is a promising approach for implementing indirect methods for
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general-purpose usage [70–74]. On the other hand, to the author’s knowledge, there

exist only two modern optimal control solvers based on indirect methods that can be

considered for general-purpose applications [73, 140].

The form of Eq. (4.2) can be incredibly challenging to solve even considering the

power of modern CASs. As the complexity and number of dimensions grows large,

there is a disproportionate increase in the difficulty of solving Eq. (4.2). For instance,

consider the thrust-limited Goddard rocket

min
T

J =

∫ tf

0

ϵtrig

(
sec

(
π

2

2T − Tmax − Tmin

Tmax − Tmin

)
− 1

)
dt− h(tf )

ḣ = v

v̇ =
T

m
− D

m
− g

ṁ = −T

c

(4.3)

with drag and gravity functions

D = dcv
2 exp

[
−hc

h− h0

h0

]
g = g0

(
h0

h

)2 (4.4)

Note that the control path-constraint has been trigonomerized [84]. Using Eq. (4.2)

and SymPy [76] to generate a control law, it can be shown there are four control

branches. Although the differences between each of the four branches is minor, each

branch must be evaluated at every point along a trajectory. Then, Eq. (4.1) must still

be used to find which control branch is optimal. In the Goddard rocket and similar

“academic” problems, this is usually not an issue. As the complexity of problems

grow, at best so does the complexity of the equations in each control branch as

well as the number of control branches. For analysis, this effectively generates a

new set of differential equations for every control branch. In the case of the Goddard

rocket, because there are four control branches, there are four dynamical systems that

must be solved simultaneously. At worst, Eq. (4.2) generates analytically unsolvable

transcendental functions. Both scenarios are prohibitive in the usage of indirect

methods for general-purpose applications.
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Antony, et. al. tackled the issue of multiple control branches in their Inte-

grated Control Regularization Method (ICRM) [74, 141]. The primary philosophy of

Thomas’s ICRM is simple: modern digital computers are better-equipped to solve

ordinary-differential equations (ODEs) as opposed to algebraic equations. Therefore,

the algebraic equations are recast as ODEs. This process has seen success in chal-

lenging path-constrained problems with various improvements by others [84,142–144].

Ideally, ICRM should operate as a functor on Hamiltonian BVPs

FICRM : Problem Λ → Problem Λ (4.5)

That is, in a general-purpose process, the ICRM strategy should generate a new

Hamiltonian BVP thereby enabling subsequent usage of other functors on Hamil-

tonian BVPs. In its current iteration, the ICRM strategy does produce a well-

formed Two-Point Boundary-Value Problem (TPBVP); however, it is not Hamil-

tonian. Again considering the Goddard rocket, the BVP produced by ICRM is

7-dimensional whereas a Hamiltonian BVP is necessarily even-dimensional. Since

mathematical structure is lost, any processes that follow the application of ICRM

are not guaranteed to work as expected. This is the primary issue in constructing a

general-purpose process where several different strategies may be used in series with

one another.

The contribution of this section is to improve upon the ICRM method to preserve

the Hamiltonian structure of BVPs. This will be done by encoding the optimal infor-

mation directly into the differential structure of the dynamical system. In Chapters

(2.5) and (4.3) of Ref. [137], the author describes how the differential structure of a

system may be altered to encode information into the solution using an example of

magnetism. Similarly, in Chapter (15) of Ref. [145], the author generalizes the notion

of a Hamiltonian system composed of 3 objects (a manifold, a differential structure,

and a Hamiltonian function) to that of a geometric mechanical system composed of

two objects (an extended manifold and an extended differential structure). This elim-

inates the need for a Hamiltonian function to have a well-defined mechanical system.
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These methods are adapted here for optimal control systems by introducing the con-

trol variables to the system as additional states with associated co-states. In doing

so, this method preserves the geometric structure of the system while simultaneously

eliminating the need to generate an augmented Hamiltonian to incorporate the newly

formed system of equations. By preserving the geometric structure of the system,

this enables the usage of powerful analytic tools that require preservation of math-

ematical structure including geometric integrators [146–148] and various reduction

techniques [118, 149–151].

4.1 Integrated Control Regularization Method

4.1.1 Differential Optimal Control Law

In this section, we will introduce trajectory optimization by indirect methods in

its traditional form [10]. From this process, the resulting system is a mixed set of

Differential-Algebraic Equations (DAEs). Then, we will recast the algebraic equations

as ODEs thereby translating the DAEs to a set of ODEs. The set of fixed initial

time optimal control problems with unbounded controls are considered where the

performance index to be minimized is of the Bolza form [9]

min J = η(tf ,x(tf ),p) +

∫ tf

0

L(t,x(t),u(t),p)dt

Subject to: ẋ = f(t,x(t),u(t),p)

Φ = x(t0)− x0

Ψ = x(tf )− xf

(4.6)

We then adjoin time into the original OCP as a state

x′ =

x
t

 f ′ =

tff
tf

 p′ =

p
tf

 (4.7)



65

This results in a new OCP with fixed endpoints on the independent variable τ ≡ t/tf

min J = η′(x′(1),p′) +

∫ 1

0

L(x′(τ),u(τ),p′)dτ

Subject to: ẋ = f ′(x′(τ),u(τ),p′)

Φ′ = x′(0)− x′
0

Ψ′ = x′(1)− x′
1

(4.8)

The control Hamiltonian, H = H(x′,λ,u), is defined as

H ≡ L+ λTf ′ (4.9)

Because the control Hamiltonian is autonomous, the first-order necessary conditions

for optimality are given as a two-point boundary valued problem with equations-of-

motion

ẋ′ =
∂H

∂λ
= f ′(x′(τ),u(τ),p′) (4.10)

λ̇ = −∂H

∂x′ (4.11)

0 =
∂H

∂u
(4.12)

Introducing ξ and ν as Lagrange multipliers for the initial and terminal boundary

constraint functions respectively, the boundary conditions for the two-point boundary

valued problem are found as

x′(a) = x′
a (4.13)

λ(a) =
∂G

∂x′(a)
(4.14)

H(τf ) +
∂G

∂τf
= 0 (4.15)

G ≡ η′(x′(1),p′) + νTΨ′(x′(1))− ξTΦ′(x′(0)) (4.16)

where a ∈ {0, 1}. Note that there are three equations associated with the dynamic

first-order necessary conditions, Eqs. (4.10 - 4.12), whereas the standard form of

Hamilton’s equations has two, only Eqs. (4.10 and 4.11). Simple problems return rel-

atively simple expressions for ∂H/∂u, but complicated problems return increasingly
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complex algebraic expressions. Often, there are several solutions to Eq. (4.12) result-

ing in multiple valid sets of ODEs. Typically, this can be considered a non-issue since

PMP is used to select the optimal control branch. However, for general-purpose ap-

plications the amount of numerical subroutines needs to be kept to a minimum while

simultaneously retaining the structure of the original problem formulation. To do

this, we make the assumption that u∗ is smooth, and the control law is reformulated

as an ODE.

u∗
i =

∫ t

0

u̇∗
i dt+ u∗

i (0) (4.17)

d

dt

∂H

∂u∗
i

= 0 =
∂2H

∂x′∂u∗
i

T

ẋ′ +
∂2H

∂λ∂u∗
i

T

λ̇+
∂2H

∂u∗∂u∗
i

T

u̇∗ (4.18)

Rearranging these terms, we find

− ∂2H

∂x′∂u∗
i

T

ẋ′ − ∂2H

∂λ∂u∗
i

T

λ̇ =
∂2H

∂u∗∂u∗
i

T

u̇∗ (4.19)

Where i = 1, · · · ,m is the number of control input variables. In Eqs. (4.17) and (4.19),

there are two new unknowns for every control variable. The first unknown, u̇∗
i , is found

by simultaneously solving Eq. (4.19) for all i. Since the coefficients of u̇∗ are known,

finding u̇∗ is accomplished by solving a system of the form Au̇∗ = B, that is
∂2H

∂u∗
1∂u

∗
1

∂2H
∂u∗

1∂u
∗
2

· · · ∂2H
∂u∗

1∂u
∗
m

∂2H
∂u∗

2∂u
∗
1

∂2H
∂u∗

2∂u
∗
2

· · · ∂2H
∂u∗

2∂u
∗
m... ... . . . ...

∂2H
∂u∗

m∂u∗
1

∂2H
∂u∗

m∂u∗
2

· · · ∂2H
∂u∗

m∂u∗
m




u̇∗
1

u̇∗
2

...

u̇∗
m

 =


− ∂2H

∂x′∂u∗
1

T
ẋ′ − ∂2H

∂λ∂u∗
1

T
λ̇

− ∂2H
∂x′∂u∗

2

T
ẋ′ − ∂2H

∂λ∂u∗
2

T
λ̇

...

− ∂2H
∂x′∂u∗

m

T
ẋ′ − ∂2H

∂λ∂u∗
m

T
λ̇

 (4.20)

As long as matrix A is invertible, the solution for u̇∗ is given by A−1B. For the

other unknown, u∗(0), there is no known general analytical formula; however, it only

needs to be determined at one location on a trajectory. Therefore, the root-solving for

u∗(0) is assumed to be handled by the same algorithm that solves for the boundary

conditions of x and λ by implementing the following boundary condition

0 =
∂H

∂u

∣∣∣∣
τ=0

(4.21)
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In this formulation, u adds m additional states to the system with their own

associated rates. The system is now described by 2n+m states each with equations-

of-motion. Although this system will accurately model optimal motion, it is not

Hamiltonian since m may take on odd integer values. We added the control variables

to the system as states, and in the next section, we will show how this process may

be modified to add a co-state variable for every control in a manner that preserves

the Hamiltonian structure.

4.1.2 Symplectification of the Differential Optimal Control Law

In this section, we will introduce trajectory optimization by indirect methods in

its differential-geometric form. From this process, the resulting system is a mixed set

of DAEs. Then we recast the algebraic equations as ODEs, thereby translating the

differential-algebraic system to a set of ODEs. These ODEs will then be finally ad-

joined back into the differential-geometric system. We begin by rewriting Eqs. (4.10)

to (4.12) as follows

ιXH
ω = dH (4.22)

Eq. (4.22) is called the symplectic equation and it serves as the geometric represen-

tation of Hamiltonian systems. For optimal control problems, XH is of the form

XH =
dx′

dτ

T ∂

∂x′ +
dλ

dτ

T ∂

∂λ
(4.23)

From this, it is relatively straight forward to show that Eq. (4.22) recovers the dynamic

first-order necessary conditions for optimality in coordinates

ιXH
ω = dH (4.24)

Expanding this equation, we have(
dx′

dτ

T ∂

∂x′ +
dλ

dt

T ∂

∂λ

)
¬ (dx′ ∧ dλ) = ∂H

∂x′

T

dx′ +
∂H

∂λ

T

dλ+
∂H

∂u

T

du (4.25)

This equation is rearranged into the following form(
ẋ′ − ∂H

∂λ

)T

dλ−
(
λ̇+

∂H

∂x′

)T

dx′ +

(
∂H

∂u

)T

du = 0 (4.26)
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In a hypothetical sense, root-solving Eq. (4.12) allows one to reformulate the phase

space entirely in terms of x and λ. As mentioned before this is not practical in

every scenario. If ∂H/∂u is substantially complex, explicit solutions of the form u =

u(x,λ) may not exist. This is where ICRM is applied to the system. One major issue

with using ICRM in its current formulation is that the natural symplectic structure is

lost in the process. The symplectic structure is necessarily even-dimensional because

each state must have an associated co-state. To introduce co-states for each newly

formed state, one may consider modifying ICRM by augmenting the Hamiltonian

using the well-known Lagrange multiplier method. This does not properly account

for the new states and co-states. The following is an incorrect formulation

H ′ = H + λT
u u̇

∗ (4.27)

Evaluating ιXH
ω = dH ′ yields incorrect results. Fundamentally, this changes the

original functional optimization, and thus, the resulting necessary conditions for op-

timality are altered as well. Since the canonical symplectic structure is a 2-form,

the optimal control laws must be 2-forms as well. Forming the control law using the

differential-algebraic structure provides the following constraint 1-form

du∗

dt
= u̇∗

du∗ = u̇∗
dt

du∗ − u̇∗
dt = 0

(4.28)

where u̇∗ is a known solution to Eq. (4.20). To preserve the symplectic structure of the

system, a corresponding co-state λu must be introduced. Currently, no meaningful

interpretation of this co-state is expected, so the assumption that its value and time-

rate of change are both 0 is made. Using the canonical definition of ω, the 2-form

control law is written as follows

(du∗ − u̇∗
dt) ∧ (dλu − 0dt) = 0 (4.29)
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The original canonical symplectic structure of the system is augmented by adding the

associated 2-form for each control, that is [137, 145]

ω′ = ω +
m∑
i

(du∗
i − u̇∗

i dt) ∧ (dλui
− 0dt) (4.30)

Represented in a matrix format, ω′ has the following structure

ω′ =



0 0 0 1 0 0

0 0 0 0 1 −u̇∗

0 0 0 0 0 1

−1 0 0 0 0 0

0 −1 0 0 0 0

0 u̇∗ −1 0 0 0


(4.31)

To account for the fact that u∗ and λu are variables with equations of motion, the

Hamiltonian vector field must be augmented as well

X ′
H = XH +

m∑
i

du∗
i

dτ

∂

∂u∗
i

+
dλui

dτ

∂

∂λui

(4.32)

The full dynamical system may be now represented using the augmented Hamiltonian

vector field, augmented symplectic form, and the original control Hamiltonian

ιX′
H
ω′ = dH (4.33)

Evaluating Eq. (4.33) can be slightly more challenging than evaluating Eq. (4.22)

due to the increased complexity of ω′. One key requirement of symplectic systems

is anti-symmetry. This anti-symmetry can be easily seen in Eq. (4.31). By using a
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Lower Upper (LU) decomposition, we exploit the anti-symmetric structure of ω′ to

solve Eq. (4.33) [152, 153]

ω′ = (ω′
P )

T
ω′
Lω

′
U =

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0





1 0 0 0 0 0

0 1 0 0 0 0

0 −u̇∗ 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 −u̇∗

0 0 0 0 0 1


(4.34)

For problems of very high dimension, it is possible to also exploit the sparsity of ω′

in the decomposition

ω′
Pω

′ω′
Q = ω′

Lω
′
U (4.35)

While exploiting sparsity is certainly an option, using the standard LU decomposition

appears to rapidly solve all systems tested with the differential optimal control law.

Solving the symplectic equation yields all the expected results for ẋ, λ̇, and u̇, while

λ̇u has the following interesting result

dλui

dτ
=

∂H

∂ui

(4.36)

At optimal conditions, Eq. (4.36) vanishes. Thus, the co-states for each control

variable represent the corresponding stationary conditions from the original optimal

control system.

4.2 Results

4.2.1 Goddard Rocket Problem

As mentioned prior, certain problems have dynamics that are so complex that

Computer Algebra Systems are unable to solve for the optimal control law u∗. The

thrust-limited Goddard rocket problem is one such example of many problems where
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this starts to become an issue. Root-solving dH/dT results in four separate control

branches. Instead, by using ICRM the control law is reformulated as a differential

equation to utilize the information in the problem. The equation-of-motion for the

control variable is
dT

dτ
=

(A−B − λvT ) (cm
2)−1

C +D
tf (4.37)

where:
A = λv

(
T − dcv

2 exp

(
−hc

h− h0

h0

))
B = cm

(
2m−1dcλvv exp

(
−hc

h− h0

h0

)
− λh

)
C =

[
(Tmax − Tmin)

2 cos3 (p)
]−1 [

2π2ϵtrig sin
2 (p)

]
D =

(
π2ϵtrig

)−1 [
(Tmax − Tmin)

2 cos (p)
]

p =
π

2

2T − Tmax − Tmin

Tmax − Tmin

(4.38)

Although Eqs. (4.37) and (4.38) together appear quite large, they were derived with

ease using SymPy 1.4 [76]. Additionally, there is a single equation thereby reducing

the total number of dynamical systems from four in PMP down to one in ICRM. In

order for the system to be symplectic, it must have an even number of dimensions.

Evaluating the symplectic equation to find the equation-of-motion for the co-state of

thrust, we have

dλT

dτ
= −

(
πϵtrig sin (p)

(Tmax − Tmin) cos2 (p)
+

λv

m
− λm

c

)
tf (4.39)

Note that Eq. (4.39) is equivalent to Eq. (4.36)

dλT

dτ
=

∂H

∂T
(4.40)

We then solved this problem numerically using the numerical values shown in

Table 4.1 for both the symplectic ICRM and another strategy using PMP. Some

results can be seen in Fig. 4.1. The control histories in both PMP and ICRM are split

into three phases: bang-singular-bang. These control histories are in very good overall

agreement. Additionally, ICRM generates a co-state for the control variable which is

also shown. We expected the co-state should be close to 0 at optimal conditions due
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to Eq. (4.36) and we see there is agreement with the numerical results. The error is

on the order of 1 × 10−6 which is in line with the tolerance of the numerical BVP

solvers used.

Table 4.1. Parameters of the Goddard rocket.

Symbol Value [nd]

h0 1.0

v0 0.0

m0 1.0

vf 0

mf 0.6

g0 1.0

hc 500

c 0.5

dc 310.0

Tmin 0

Tmax 3.5

4.3 Summary

In this chapter, we further improved upon Thomas’s ICRM strategy by applying

it to the symplectic equation. In our application of ICRM to the symplectic equation,

we shifted focus from directly modifying the state equations to encoding data in the

symplectic form in a structure preserving manner. This ultimately enables usage

of ICRM in problems that also will use dimension reduction strategies. We applied

this strategy to the classic Goddard Rocket OCP and compared it to the traditional

method of using PMP. The numerical results were in agreement thus validation this

strategy.
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(a) Comparison in the control time-

histories of the symplectic ICRM and

PMP strategies.

(b) Numerical values for the co-state of

thrust are close to 0. With PMP, thrust

does not have a co-state.

Figure 4.1. Results from the numerical solution of the BVP.
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5. REDUCTION

In typical dynamical systems, it is often noted that each constant-of-motion may

be used to eliminate a single equation-of-motion. While this is true in the Newtonian

sense, for a dynamical system derived in the Hamiltonian formalism, every constant-

of-motion may eliminate up to two equations-of-motion due to the underlying canon-

ical structure [118, 119]. This reduction, known as symplectic reduction, guarantees

that a symplectic manifold reduced by constants-of-motion and symmetries gives rise

to another symplectic manifold of lower dimension.

Marsden-Weinstein-Meyer reduction, or symplectic reduction, has a very recent

yet very rich history. Since its introduction, reduction has had very broad applica-

tion and generalizations to Hamiltonian systems [154], Lagrangian systems [155,156],

contact manifolds [157], presymplectic manifolds [158], and even non-holonomic sys-

tems [159–163]. Application of reduction has also extended to optimal control sys-

tems [150, 151, 163–169]. Despite the fact that reduction has been successfully ap-

plied to many optimal control systems, there appear to be very few, if any, numerical

results. Since aerospace missions are almost never analytically solvable, we will in-

troduce reduction in this chapter in a manner than lends itself well to be solved

numerically.

A common theme among every reduction strategy is that the structure of Hamil-

ton’s equations are intact. This means analytic and numerical tools applicable to

symplectic or Hamiltonian systems, such as Poisson brackets, canonical transforma-

tions, symplectic integrators, and even further reductions, are still viable tools on the

reduced manifold. Optimal control systems were previously rephrased as Hamiltonian

systems on symplectic manifolds, and we therefore propose a new class of tools for

indirect methods leveraging this reduced dimensional manifold. Our format in this

chapter will directly enable the creation of a standardized set of numerical algorithms
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which will be introduced later in Chapter 6. In addition to this, since reduction pre-

serves structure, we will also see in Chapter 7 how the extra tools mentioned may be

brought back into our process for usage.

This chapter is broken up into two halves: topological reduction and algebraic

reduction. In the first half, we will explore reduction from a topological perspective.

Since reduction is topological, this means that it only guarantees the existence of

certain desirable spaces. We will not go through the strategies in their traditional

form, but rather we will attempt to describe the impacts on the manifolds involved

as they are relevant to an aerospace system designer. Despite this, an aerospace

designer is likely to be left unsatisfied. These reduction strategies tease the existence

of desirable spaces but do not provide an explicit recipe for generating the algorithms

that can be applied to aerospace missions. The second half of this chapter is devoted

to extending reduction at the algebraic level thereby enabling application to general

aerospace missions. The reduction at the level of the algebra will then yield systems

that will be solved numerically with special solvers in Chapter 6.

5.1 Topological Reduction

5.1.1 Reduction

The Marsden-Weinstein-Meyer reduction theorem formalizes the reduction process

for symplectic manifolds. The full theorem and proof is available in Refs. [118, 119];

however, we will highlight some aspects of the theorem. The reduction process is a

two-step procedure beginning with identifying symmetries, constants-of-motion, and

their corresponding group structure. We first collect the constants-of-motion into a

momentum map.
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Definition 36 (Momentum Map). Given a symplectic manifold, (Λ, ω), and a Lie

group of symmetries, G, acting symplectically on this manifold. The momentum map

is a map to the first de Rham co-homology, J : M → g∗, such that

d 〈J, ξ〉 = ιXξ
ω (5.1)

End definition.

After collecting the constants-of-motion into a momentum map, we evaluate it at

the value µ ∈ g∗. Next, we restrict motion to the set of all reachable states J−1(µ).

This ensures optimal motion on (M,ω) is also on level sets of J . Because motion is

dependent on values of µ, this implies the value of µ must be known a priori. This is

not an issue for optimal control problems because an initial guess is required by the

majority of algorithms, so a sub-optimal value of µ is known.

Despite its unusual appearance and apparent complexity, this first reduction is

fairly common. One such example is the example of a time-optimal launch of a

Titan II in Ref. [9]. The authors note that since ∂H/∂x1 = λ̇1 = 0, then λ1 is no

longer needed as a state in the TPBVP effectively reducing the problem from 8 to 7

equations-of-motion. This is due to the fact that ∂/∂x1, or the vector corresponding

to the downrange distance of the vehicle, is an infinitesimal symmetry such that∫
∂

∂x1

¬ ω =

∫
dλ1

= λ1

(5.2)

In this case, the equations-of-motion are odd dimensional and no longer Hamiltonian.

The second step in the symplectic reduction procedure is to rewrite the problem on

the quotient space of J−1(r) by an isotropy sub-group, Gµ. In the case of a group of

symmetries forming a solvable Lie algebra, G = Gµ, the reduced symplectic manifold

is Mµ = J−1(µ)/G with dimension dimM − 2 dimG. The reduced symplectic form

is then defined as i∗µω = π∗
µωµ with iµ : J−1(µ) → M and πµ : J−1(µ) → Mµ. The

inclusion map, iµ, is evaluated relatively easily knowing values of µ. However, the

canonical projection, πµ, is a principal G-bundle and it is typically not a trivial task

to evaluate.
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Definition 37. A principal G-bundle, πµ, is a fiber bundle whose fibers carry the

structure of a Lie group.

π−1
µ (ν) ∼= Gµ (5.3)

End definition.

The symplectic reduction procedure is now complete, where the reduced symplec-

tic manifold is (J−1(µ)/Gµ, ωµ). Referring back to the example of a time-optimal

launch of the Titan II, this step in the procedure implies x1 is no longer needed as a

state since {∂/∂x1} = G and [∂/∂x1, ∂/∂x1]L = 0.

On the other hand, if a group of symmetries forms a non-solvable Lie algebra,

G 6= Gµ and dimGµ < dimG. There are two options to handle this: one can

either identify the isotropy group, Gµ, that leaves µ invariant, or one could identify

a subalgebra, p = {p ∈ g|Ad∗
pµ = 0} with Lie group P and define Mµ = J−1(µ)/P .

The former follows straight from the Marsden-Weinstein-Meyer theorem, whereas the

latter is from the Mishchenko-Fomenko theorem [170]. In the algebraic portion of

this chapter, we will use the smallest possible subalgebra; therefore, the Mishchenko-

Fomenko theorem is most applicable.

Unfortunately, this reduction procedure only guarantees the existence of such a

reduced manifold. It does not provide an explicit recipe for creating algorithms on

this space. To overcome this, and other difficulties described above, we will attempt

to separate the equations of motion in the next section using the fact that the reduced

manifold is the base space of a principal G-bundle as a guide. Overall, the reduction

process is described succinctly in the commutative diagram in Fig. 5.1.

Λ R

J−1(µ) J−1(µ)/Gµ

H

iµ

πµ

Hµ

Figure 5.1. Marsden-Weinstein-Meyer Reduction.
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5.1.2 Separation

To create algorithms and perform design on J−1(µ)/Gµ, the equations-of-motion

must be described by a chart that decouples dynamics on the fibers from those on

the base space of πµ. Consider the Carathéodory-Jacobi-Lie theorem as a thought

experiment. This theorem, at a high level, states that given involutive smooth func-

tions, {f1, · · · , fm}, additional functions, {fm+1, · · · , fn, g1, · · · , gn}, exist such that a

local chart may be chosen

ω =
∑
i

dfi ∧ dgi (5.4)

Given a Hamiltonian system, since dH 6= 0, a coordinate chart can be chosen where

the Hamiltonian is a coordinate. Since dtH = 0, then H =
∫
dH =

∫
∂λH

¬ ω so

that ∂λH
is a symmetry. This new chart decouples λH from the dynamics on the base

space of πµ. Applying this same procedure to arbitrary constants of motion, ci, we

see that since dci are rank 1 co-vector fields perpendicular to optimal motion, their

associated symmetries are “straightened out” such that dλci is tangential to optimal

motion.

For example, consider a circle with Hamiltonian H = x2+y2. Clearly, H represents

the square of the radius of the circle and is invariant under the group of rotations.

However, in this chart, equations-of-motion become

ẋ = 2y, ẏ = −2x (5.5)

By choosing a new chart where H is a coordinate and θ is its adjoint state, the

straightened out equations-of-motion become

Ḣ = 0, θ̇ = −1 (5.6)

Notice how both H and θ no longer appear in the equations-of-motion. We began

with two ODEs and then used a single constant-of-motion to arrive at Eq. (5.6).

These new ODEs are solvable.
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(a) Chart with {x, y} (b) Chart with {H, θ}

Figure 5.2. Straightening out a circle
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5.1.3 Reconstruction

Clearly, eliminating up to two equations-of-motion for every constant-of-motion

will have a significant beneficial impact on computational performance. However, in

practical design scenarios, one is interested in guiding a vehicle from an initial state

to a terminal state. This could be a hypersonic vehicle with fixed initial conditions

flying to a terminal downrange or crossrange, a satellite performing an orbit raising

manuever finishing at a fixed true-anomaly, or a robotic arm performing a required

task. For hypersonic reentry, the spherical symmetry of the earth allows one to

eliminate downrange or crossrange from the equations-of-motion. A spacecraft under

the gravitational influence of a central body in a spherically symmetric gravity field

no longer uses true-anomaly as a coordinate on the reduced space. A robotic arm

is subject to a set of holonomic constraints from its joints that may be explicitly

eliminated from the equations-of-motion. In each of these three scenarios, there is

valuable information to a designer that has been removed from the equations-of-

motion on the reduced manifold. Simply put, these coordinates no longer exist. How

do we leverage the computational and stability benefits of numerical algorithms on

J−1(µ)/Gµ when fundamentally, the design problem is on M? This section outlines

the process of reconstructing the full dynamics on M from information on J−1(µ)/Gµ.

Determining motion along J−1(µ) is relatively straightforward. In fact, it is al-

ready known that µ must be provided a priori for a numerical algorithm to operate on

the reduced dimensional space. However, motion along π−1
µ (ν) does not affect motion

on J−1(µ)/Gµ. Since the system on π−1
µ (ν) has been decoupled from the base space

dynamics, we note that coordinates chosen on the fibers are by definition symmetries

of the system. Therefore only an initial or terminal state is required to be known,

one of which is provided to a numerical algorithm in the initial guess structure. The

full set of dynamics then may be completely reconstructed by quadrature. This al-

lows the equations-of-motion to be evaluated on the reduced dimensional space while

simultaneously ensuring the boundary conditions of the original problem are satisfied.
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In other words, the subsystem on the base space is the set of nonlinear equations-

of-motion that affect the dynamics of the original system. They must be propagated

or otherwise enforced numerically and are referred to as the states of the system. The

subsystem on the vertical space, π−1
µ (ν), is not a part of the dynamics and therefore

does not need to be propagated or otherwise enforced numerically. We refer to the

vertical subsystem as the quads of the system. To solve for the quads of the system,

trapezoidal, Simpson’s, and other vectorized integration by quadrature techniques

work well. To determine the quads of the system, the states must be known. Since

the states are a function of time, integration of the quads are with respect to time as

well.

We gave a high level description of MWM reduction, focusing primarily on its

topological implications. In the next section, we will cover MWM reduction a second

time; however, we will focus more on the algebraic implementations of reduction.

5.2 Algebraic Reduction

Given a set of symmetries or constants-of-motion, the dynamical dimension of

Problem Λ may be reduced by up to 2 for every symmetry and constant-of-motion

pair. This is the primary result from the Marsden-Weinstein-Meyer (MWM) reduc-

tion theorem [171, 172]. The MWM theorem is a topological result guaranteeing the

existence of a reduced dimensional Λ, but does not provide an explicit recipe for per-

forming the reduction. This section aims to perform the reduction under the special

condition that the constants-of-motion and their associated symmetries are in invo-

lution with one another. A constant-of-motion is any function that is constant along

extremal curves of the OCP

g∗ 3 g(t,x∗,u∗) = 0 ∀ t ∈ [0, tf ] (5.7)

where x∗ and u∗ are minimizers of Problem Σ. In Problem Σ, since u∗ is not known

a priori, it is difficult to make use of g. On the other hand, after dualization we have

D(g(t,x∗,u∗)) = g(t,x,λ) = 0 (5.8)
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Since explicit u terms are eliminated in Problem Λ by dualization, it is significantly

easier to search for g ∈ Λ instead of g ∈ Σ. This is because all trajectories in

Λ satisfy local dynamic necessary conditions. In the reduction of Λ, two pieces of

information are required: the constant-of-motion and its associated symmetry. With

information about the constant-of-motion, its infinitesimal symmetry field can be

generated relatively easily as follows. Let [·, ·]P ≡ ω♯ be the Poisson bracket induced

by ω [139]
ω♯ = [·, ·]P = (dx ∧ dλ)♯

= ∂x ∧ ∂λ

(5.9)

Then, given some g, recall the infinitesimal symmetry fields can be generated using

the Noether-like map from Chapter 3

Xg = [·, g]P (5.10)

The infinitesimal symmetry field is a Lie algebra element, g, and the full symmetry

group can be generated through the exponential map [173]

exp : g → G

(Xg) 7→ (exp(tXg))
(5.11)

MWM reduction requires that one remove the entire symmetry group from Λ.

We will not directly evaluate the exponential map, but rather use the Lie algebra

elements to identify the states that may be removed. The MWM reduction procedure

is a two-step process beginning with the elimination of constants-of-motion. First,

we identify all independent g. Independent g are said to be in involution with one

another. Any dependent g need to be handled differently and are out of the scope of

this dissertation. There is a brief word on those cases in Section 9.1. Independent g

satisfy one the following equivalent conditions

0 = [gi, gj]P

= ω(Xgi , Xgj)
(5.12)

That is, for all i and j the g commute under the Poisson bracket induced by ω. Note

that for problems not explicitly dependent on time, dtH = 0 and therefore H ∈ g. In
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cases where [gi, gj]P 6= 0, the Mishchenko-Fomenko procedure [170] is a formal process

for choosing the largest commutative subset satisfying

h∗ = {g ∈ g∗|[gi, gj]p = 0} ⊆ g∗ (5.13)

On the other hand, if only a single constant-of-motion is used, then this step can be

ignored and h∗ ∼= g∗. The commutative subset, h∗, forms a momentum map for the

system Λ [174]
J : Λ → h∗

(x,λ, t) 7→ (g1, g2, · · · , gn)
(5.14)

With all the ingredients required for the first reduction, we perform it as follows.

Invert the moment map at a fixed-point to identify the set of all reachable states at

a given level of g

J−1(x0,λ0, 0) : h
∗ → Λ (5.15)

The fixed point was chosen to be the initial conditions for Problem Λ due to the fact an

initial guess is commonly provided, although any point in Λ is sufficient provided there

are no singularities. Solving for Eq. (5.15) requires root-solving g and can therefore

be a challenge; however, this will result in g being coordinates of the system. Because

g are constants-of-motion, ġ = 0. This ultimately means that g are not dynamical

states, but rather dynamical parameters. The dimension reduction in this stage is

equal to dim(g), and the first reduced space is identified as i : J−1(µ) → Λ where µ

is the fixed initial point (t0,x(t0),λ(t0)). Problems that have eliminated constants-

of-motion by moving these quantities to the dynamical parameters are solvable by

modern-day BVP solvers and will generate solutions for Problem Σ. However, these

problems are no longer of type Λ. This is because g’s associated symmetries have

not been eliminated. Similar to how ICRM introduced an arbitrary co-state variable,

other operations on Λ must preserve both Noether’s and Liouville’s theorems [97].

MWM reduction accounts for this in the second step of its procedure. In the second
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step, the MWM procedure requires the reduced problem to be the quotient of the

inverted moment map with the Lie group of symmetries

Λ∗ = J−1(x0,λ0, 0)/G

= Λ//G
(5.16)

This second reduction identifies the fully reduced manifold, τ : J−1(µ) → J−1(µ)/G =

Λ//G. However, evaluating the quotient by the full group of symmetries can be a

challenge. To perform the actual reduction, we use the infinitesimal symmetry fields,

Xg, instead of their exponentiation. This is possible with the Cartan-Lie (Lie III)

theorem [175], which enables the indirect study of Lie groups by study of their Lie

algebras. We use the Lie algebras Xg to identify removable states as follows

q̇ = X♭
H([·, g]P) (5.17)

where ♭ = ♯−1 such that ♭ ◦ ♯ = IdΛ. The above equation works by identifying the

infinitesimal symmetry fields with the Noether-like map N∗(g) = [·, g]P, then extract-

ing the dynamics on the symmetry from the Hamiltonian vector field. The resulting

function for q̇ is a 0-form, or scalar function. This equation bears a striking similarity

to the Lie-Poisson bracket, a common tool in some Poisson reduction strategies [176].

Both Eq. 5.17 and the Lie-Poisson bracket explicitly leverage a Poisson structure as

well as a Lie structure. A further discussion on the Lie-Poisson equation is in Sec-

tion 9.5. Identified by Eq. 5.17, these removable states, or quads, are typically not

analytically integrable since they are of the form q̇ = q̇(t,x,λ). In general, x(t) and

λ(t) are have no known closed-form solution. This is a direct result of performing the

reduction at the level of the algebra instead of the group. Because of this, the quads

must still be integrated along with the remaining dynamics from reduction of Λ. The

reduced dynamics are defined by

Hµ ◦ τ = H ◦ i

τ ∗ωµ = i∗ω
(5.18)
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To define the full coordinate transformation, recall Eq. (3.27) from Section 3.2.

We use that transformation together with g to define

q ≡
∫
Λ

λ

g
dx (5.19)

We can then define the trajectory Υµ on the reduced manifold as well as all other

quantities in terms of g and q. The resulting problem is of the form

Problem Λ//G



dHµ = ιXHµ
ωµ

q̇ = X♭
H([·, g]P)

0 = Φ ◦ i ◦ τ−1 ◦Υµ(t0)

0 = Ξ ◦ i ◦ τ−1 ◦Υµ(tf )

(5.20)

Note that the symplectic equation is on the reduced manifold Λ//G whereas q̇

and q are not. Instead, the q live in the fibers of τ .

The boundary condition functions, Φ and Ξ, have not been altered in any way. In-

stead, quantities from the reduced trajectory, Υµ, are mapped to the full-dimensional

manifold for evaluation of the boundary conditions. Evaluating τ−1 uses results from

q̇ and therefore must take place after solving for the reduced dynamics. Rather, the

group action on τ ’s fibers is given by q̇. Alternatively, reduced boundary condition

functions, Φµ and Ξµ, may be identified in a similar manner to how the reduced

Hamiltonian Hµ was defined
Φµ ◦ τ = Φ ◦ i

Ξµ ◦ τ = Ξ ◦ i
(5.21)

The reduced boundary conditions do not share the benefits of reduction so using

reduced or unreduced formulations yields similar results. The overall purpose of the

quads are to reconstruct information that has been eliminated from Λ//G as by using

data from Λ//G. This ensures that the reduced problem indirectly solves the original

Problem Σ. Despite some unreduced information carrying over, we still call the new
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formulation Problem Λ//G since these quantities are non-dynamical. In coordinates,

this becomes

Problem Λ//G



ẋ = ẋ(t,x,λ)

λ̇ = λ̇(t,x,λ)

q̇ = q̇(t,x,λ)

0 = Φµ ◦Υµ(t0)

0 = Ξµ ◦Υµ(tf )

(5.22)

Since q̇ is not a function of q, the quads are non-dynamical. This means that it can

be solved independently from the dynamical states x and λ, and can also be solved

rapidly in a parallel manner using numerical quadrature, hence the naming quads.

Most modern day BVP solvers can solve problems of the form in Eq. 5.22, however

they must stack q̇ together with ẋ and λ̇ to be handled in a similar, non-parallel

manner. This is a limitation of modern day BVP solvers. As modern computational

architectures become more massively parallel, modern day BVP solvers can likely

be modified to accommodate Problem Λ//G. Some such BVP solvers are given in

Ref. [177] and Chapter 6. In the next section, reduction is carried out explicitly on

several examples.

5.3 Examples

In this chapter, we explored the application of Marsden-Weinstein-Meyer reduc-

tion on optimal control systems. One significant difference between the resulting

Hamiltonian BVP from reduction and the traditional Hamiltonian BVPs is the exis-

tence of “quads”, or non-dynamical states. We use the term “quads” to imply how

these states can be efficiently solved. That is by using numerical quadrature. In direct

methods, nearly all orthogonal collocation methods use a high performance quadra-

ture scheme to approximate the cost function [178]. This operation may be repeated

for the quads, thereby potentially parallelizing the computation of the quads which

was previously was computed in a serial manner [179–185]. It is important to note
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that this parallelization is a true parallelization due to the elimination of causality

from the system, as opposed to a parallelization “trick” as it is with multiple shooting

methods. Currently, there appear to be a few direct solvers that can handle problems

of this structure. On the other hand, there are no solvers on the indirect side that

can solve these types of problems. Before we explore how BVP solvers can be built

to solve these problems in Chapter 6, we will next show how this reduction can be

carried out explicitly in a few example problems.

5.3.1 Currentless Zermelo’s Problem

One remarkable feature of reduction is that given enough involutory constants-

of-motion, a finite-dimensional Hamiltonian system may be reduced to an equivalent

0-dimensional system. A few comments on 0-dimensional systems are in Section 9.4.

Let Σ be the optimal control problem defined by

min
θ

K =

∫ tf

0

1dt

Subject to: ẋ = V cos(θ)

ẏ = V sin(θ)

x(t0) = y(t0) = 0

x(tf ) = xf

y(tf ) = yf

(5.23)

Dualization yields the following Hamiltonian system on Λ

H = λxV cos(θ) + λyV sin(θ) + 1

ẋ = V cos(θ)

ẏ = V sin(θ)

λ̇x = 0

λ̇y = 0

(5.24)
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Since the time rates-of-change of λx and λy are 0, their integrated forms become

λx = g1

λy = g2

(5.25)

Where g1 and g2 are constants-of-motion for the system. The momentum map is then

J : Λ → g∗

(x, y, λx, λy) 7→ (g1, g2)
(5.26)

The constants-of-motion g1 and g2 are in involution due to their commutativity under

the Poisson bracket

[g1, g2]P =
(
∂x ∧ ∂λx + ∂y ∧ ∂λy

)
(g1, g2)

=
(
∂x∂λx + ∂y∂λy

−∂λx∂x − ∂λy∂y
)
(λx, λy)

= 0 + 0 + 0 + 0

= 0

[g1, g2]P = [g2, g1]P

(5.27)

To perform the first reduction, i : J−1(µ) → Λ, choose g1 and g2 to be new free-

parameters in the dynamical system. Then, restrict motion of the original system by

pulling back the dynamics along i

Hr = g1V cos(θ) + g2V sin(θ) + 1

ẋ = V cos(θ)

ẏ = V sin(θ)

(5.28)

Note that λx and λy are eliminated in the process. The Poisson tensor is also reduced

to the following
i∗(∂x ∧ ∂λx + ∂y ∧ ∂λy) = ∂x ∧ ∂g1 + ∂y ∧ ∂g2

= ∂x ∧ 0 + ∂y ∧ 0

= 0

(5.29)
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The structure of the differential equations is no longer canonical and therefore

motion on J−1(µ) is not Hamiltonian. Instead, the differential equations in Eq. 5.28

will yield the correct motion to describe the original system and is Hamiltonian when

reconstructed on Λ. To perform the second reduction, τ : J−1(µ) → J−1(µ)/G =

Λ//G, identify the symmetries using the moment map and [·, ·]P ∈ Λ

[·, g1]P = (∂x ∧ ∂λx + ∂y ∧ ∂λy)(·, g1)

= ∂x∂λx(·, λx)− ∂λx∂x(·, λx)

+ ∂y∂λy(·, λx)− ∂λy∂y(·, λx)

= ∂x∂λx(·, λx)

= ∂x(·)

(5.30)

Similarly, the symmetry generated by g2 is ∂y. Since ∂x = x̂ and ∂y = ŷ, we identify

that ẋ and ẏ may be eliminated from the dynamics of the system. To do this, define

new quads as q1 = x and q2 = y with initial conditions q10 = x0 and q20 = y0. Then,

restrict the dynamical motion of the original system by pulling back along τ

Hµ = g1V cos(θ) + g2V sin(θ) + 1

q̇1 = V cos(θ)

q̇2 = V sin(θ)

(5.31)

The Poisson tensor is already 0 so pulling back along τ also results in 0. At first

glance, the systems in Eq. 5.28 and Eq. 5.31 are strikingly similar. Mathematically

speaking, these two sets of equations are identical; however, the former set of dynamics

are 2-dimensional and not Hamiltonian whereas the latter are 0-dimensional and

Hamiltonian. This is because the quads of the system, q1 and q2, are not states

in the dynamical sense because perturbations of the quads will not affect the time-

history of the overall system. Instead, q1 and q2 are solved rapidly using well-known

quadrature integration schemes. The results are mathematically equivalent dynamical

systems; however, the 0-dimensional system has certain properties that require fewer

computations to solve than the 2-dimensional system.
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5.3.2 Direct Brachistochrone

Despite the fact that the primary focus of this work is indirect methods, the

structure presented here is also well suited for direct methods. Since an indirect

system is generated by an OCP through the dualization functor, there is a direct

analog. In fact, reduction can take place on the direct side in an almost identical

manner. However, without any additional structure, the dimension reduction limit

is equal to the number of total symmetries and constants-of-motion combined. The

Brachistochrone problem illustrates this well.

The Brachistochrone problem is a classic optimal control problem that is analyti-

cally solvable. Solutions to the Brachistochrone problem are paths that minimize the

time a frictionless bead spends on a wire as it slide from two fixed points. Solutions to

the Brachistochrone problem are well known to be cycloid curves. The initial point,

terminal point, and a cycloid curve are shown in Fig. 5.3.

Figure 5.3. Cycloid curve as a solution to the Brachistochrone problem.
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In this problem, g represents the gravitational force acting on the bead. This

problem is posed as an OCP as

min
θ

K =

∫ tf

0

1dt

Subject to: ẋ = v cos(θ)

ẏ = v sin(θ)

v̇ = g sin(θ)

x(t0) = y(t0) = v(t0) = 0

x(tf ) = xf

y(tf ) = yf

(5.32)

There are two infinitesimal symmetries

{∂x, ∂y} ∈ g (5.33)

Since this problem has not undergone dualization, there is no Poisson bracket and

constants-of-motion cannot be generated by the symmetries. Since dim(Σ) = 3 and

dim(G) = dim(g) = 2, then dim(Σ/G) = 1. Using qx ≡ x and qy ≡ y, Problem Σ/G

becomes

min
θ

K =

∫ tf

0

1dt

Subject to:
q̇x = v cos(θ)

q̇y = v sin(θ)

 quads

v̇ = g sin(θ)
}

dynamical states

qx(t0) = qy(t0) = v(t0) = 0

qx(tf ) = qx(t0) +

∫ tf

0

v cos(θ)dt

qy(tf ) = qy(t0) +

∫ tf

0

v sin(θ)dt

(5.34)

Problem Σ/G is 1-dimensional in the sense that the velocity term is the only dy-

namical dimension. This is desirable from a computational standpoint since a solver
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will only need to discretize velocity, while the x and y position variables are not dis-

cretized in the same manner. Many modern digital direct solvers can handle problems

posed in the form above. In practice, quads are handled as integral constraints where

the integration strategy is the same one used in evaluating the cost functional. For

instance, nearly all orthogonal collocation methods use a high performance quadra-

ture scheme to approximate the cost function [178]. This operation may be repeated

for the quads, thereby potentially parallelizing a computation that previously was

computed in a serial manner [179–185].

5.3.3 Indirect Brachistochrone

Consider the same OCP from before in the direct Brachistochrone problem. Du-

alization yields the following Hamiltonian system

H = λxv cos(θ) + λyv sin(θ) + λvg sin(θ) + 1

ẋ = v cos(θ)

ẏ = v sin(θ)

v̇ = g sin(θ)

λ̇x = 0

λ̇y = 0

λ̇v = −λx cos(θ)− λy sin(θ)

(5.35)
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Clearly λx and λy are constants-of-motion due to their time rate-of-change being

equal to 0. In a similar manner to Zermelo’s problem, ẋ and ẏ are identified to be

quads of the systems and the reduced problem becomes

dynamical states

 v̇ = g sin(θ)

λ̇v = −λx cos(θ)− λy sin(θ)

non-dynamical states “quads”

q̇x = v cos(θ)

q̇v = v sin(θ)

dynamical free parameters

λx

λy

non-dynamical free parameters

qx0

qy0

(5.36)

When this problem is solved numerically, values for the quads are not reconstructed

for the entire trajectory. Instead, only the points at the boundaries are required

since the boundary conditions are a function of the quads. Though we have not yet

explained in detail how to solve this type of problem, a plot of the state-space of the

original OCP can be seen in Fig. 5.4. In this plot, it can clearly be seen that the

6-dimensional “traditional” BVP solves for the entire trajectory over x and y, whereas

the 2-dimensional “reduced” BVP is only solved for the endpoints, thus eliminating

some computations. In Chapter 6 and Ref. [177], we give more information on the

specifics of the numerical solution.

One important point where problems Σ/G and Λ//G differ is that Problem Λ//G

may be reduced an additional step using the Hamiltonian function as a constant-of-

motion whereas the same reduction cannot be performed on Σ/G because the control

law and Hamiltonian are unknown to it. The final reduced problems are 1-dimensional

for the direct system and 0-dimensional for the indirect system. This agrees with the

fact that the Brachistochrone problem is analytically solvable “by hand”.
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Figure 5.4. Brachistochrone state-space.

5.3.4 Free Parameters

In this example1, we turn our attention to problems containing so-called free

parameters, p. Free parameters differ from states in that dp/dt = 0. The physical

implication of free parameters is that they are design parameters that are constant

throughout a trajectory. For instance, some rocket motors generate a constant thrust

while in use, but may be modeled as a tune-able free parameter where the OCP then

aids in the selection of a rocket motor. The simplest method to incorporate free

parameters into an indirect solver is to add them as states with time derivatives of

zero. Despite being simple for the user, this method requires performing unnecessary

computation of states and sensitivity matrices. This is particularly true for multiple

shooting methods in which these calculations are computed for each arc [186, 187].

Non-dynamical parameters, which do not appear in the problem’s dynamic equa-

tions or path cost, do not require an additional adjoined value. These parameters may

appear in the terminal cost and the boundary conditions, or they may be internal
1This problem was a joint effort with Sean M. Nolan. I am grateful for his derivation of the co-
parameters and their associated time rates-of-change, which I then proceeded to reduce.
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to the solver. Dynamical parameters instead require the addition of corresponding

“co-parameters” or λp mirroring co-states. The necessity of these co-parameters and

how to treat them may be derived as the other necessary conditions from the aug-

mented cost functional or more easily by treating parameters as states. The resulting

state vector x′, co-state vector λ′, and dynamics f ′ are given in Eq. (5.37). The

Hamiltonian remains the same as before as shown in Eq. (5.38)

x′ =

x
p

 λ′ =

 λ

λp

 f ′ =

f(x,u,p)
0

 (5.37)

H = L+ λTf + λT
p · 0 = L+ λ′Tf (5.38)

By applying the Euler-Lagrange equations, the necessary conditions for the co-parameters

are given by
0 =

[
νT
0,p

∂ϕ

∂p
+ λT

p

]
t=t0

0 =

[
∂

∂p
η + νT

f,p

∂ξ

∂p
− λT

p

]
t=tf

λ̇p = −∂H

∂p

(5.39)

Notably, this verifies that non-dynamical parameters do not require co-parameters

because parameters are always constant and free. From Eq. (5.39), a non-dynamical

parameter pk only requires the condition that

0 =
∂

∂pk
η + ν0,pk

∂ξ

∂pk
+ ν0,pk

∂ϕ

∂pk
(5.40)

By definition, additional dynamical parameters that are treated as states are

constants-of-motion since ṗ = 0. However, their associated co-parameters are not

constants-of-motion because λ̇p 6= 0. The additional states with rates equal to zero

are identified as constants-of-motion that may be reduced. Using these constants-of-

motion, we identify the associated set of infinitesimal symmetries

g = {[·, pi]P|pi ∈ p}

= {∂λpi
|pi ∈ p}

(5.41)
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The Lie algebra is spanned by the vectors corresponding to the co-parameters. There-

fore, every co-parameter is a quad and the reduced system is written as

ẋ =
∂H

∂x

λ̇ = −∂H

∂x

λp(tf ) =

∫ tf

t0

−∂H

∂p
dt+ λp(t0)

(5.42)

First, ẋ and λ̇ must be solved simultaneously by numerical propagation, then the

result can be used to solve for λp(tf ) by numerical quadrature.

5.3.5 Clohessy-Wiltshire Equations

In spacecraft operations, the Clohessy-Wiltshire equations, or Hill’s equations,

are an important set of second-order differential equations that describe the relative

orbital motion between two nearby spacecraft. The origin of the system is a spacecraft

in a circular orbit and states (x, y, z) represent another spacecraft in a perturbed orbit

about the nominal circular orbit. This setup is shown in Fig. 5.5.

Figure 5.5. The Clohessy-Wiltshire equations govern the relative motion of a per-

turbed spacecraft in a rotating frame.
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The equations-of-motion are

ẋ = vx

ẏ = vy

ż = vz

v̇x = 3n2x+ 2nvy + Fx

v̇y = −2nvx + Fy

v̇z = −2nz2 + Fz

(5.43)

where (Fx, Fy, Fz) = u and represent a thruster’s decomposed force. Assume the cost

is of the form
∂L

∂y
= 0 (5.44)

Then y is a symmetry of the system. Because of this, λy is a constant-of-motion.

This can easily be verified by dualizing the system

H = λxvx + λyvy + λzvz

+λvx

(
3n2x+ 2nvy + Fx

)
+ λvy (−2nvx + Fy)

+λvz

(
−2nz2 + Fz

)
+ L(x,u, t)

(5.45)

ẋ = vx

ẏ = vy

ż = vz

v̇x = 3n2x+ 2nvy + Fx

v̇y = −2nvx + Fy

v̇z = −2nz2 + Fz

λ̇x = −3n2λvx −
∂L

∂x

λ̇y = 0

λ̇z = 4nλvzz −
∂L

∂z

λ̇vx = −λx + 2nλvy −
∂L

∂vx

λ̇vy = −λy − 2nλvx −
∂L

∂vy

λ̇vz = −λz −
∂L

∂vz

(5.46)
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Since dim(Σ) = 6 and dim(G) = 1, then we expect the reduced Hamiltonian system

to have a dimension of 2 dim(Σ) − 2(1) = 10. Introduce qy ≡ y and gy ≡ λy, then

Problem Σ//G then becomes

H = λxvx + gyvy + λzvz

+λvx

(
3n2x+ 2nvy + Fx

)
+ λvy (−2nvx + Fy)

+λvz

(
−2nz2 + Fz

)
+ L(x,u, t)

(5.47)

with equations-of-motion

ẋ = vx

ż = vz

v̇x = 3n2x+ 2nvy + Fx

v̇y = −2nvx + Fy

v̇z = −2nz2 + Fz

λ̇x = −3n2λvx −
∂L

∂x

λ̇z = 4nλvzz −
∂L

∂z

λ̇vx = −λx + 2nλvy −
∂L

∂vx

λ̇vy = −gy − 2nλvx −
∂L

∂vy

λ̇vz = −λz −
∂L

∂vz

(5.48)

and the following quad and integration rule

q̇y = vy

qyf =

∫ tf

t0

vy dt+ qy0
(5.49)

In Eq. (5.48), we have to solve 10 differential equations which is a reduction of 2

from the unreduced Hamiltonian BVP. Then, to reconstruct the trajectory back to

the full space, we solve the single differential equation in Eq. (5.49). Even though

Eqs. (5.48) and (5.49) together make 11 differential equations, the reconstruction

operation is completely parallelizable and a suitable high performance algorithm will

scale as if there are only 10 differential equations.

5.3.6 Planar Atmospheric Flight

Consider a vehicle in atmospheric flight. Such a vehicle is subject to the lift and

drag aerodynamic forces, as well as gravity. The states of the vehicle are shown in

Fig. 5.6.
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Figure 5.6. The planar configuration of a vehicle in atmospheric flight over a spherical

Earth.

Problem Σ is stated as follows (note that γ in this context is the flight-path angle

of the vehicle) [188]

min
α

K =

∫ tf

0

L(x,u, t)dt+ η(x(tf ), tf ))

ḣ = v sin(γ)

θ̇ =
v cos(γ)

h+Re

v̇ = −1

2

ρv2CdAref

m
− µ sin(γ)

r2

γ̇ =
1

2

ρv2ClAref

mv
+

v cos(γ)

r
− µ cos(γ)

vr2

0 = ϕ(x(t0), t0)

0 = ξ(x(tf ), tf )

(5.50)

Then, assume the cost is of the form
∂L

∂θ
= 0 (5.51)
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Some problems that fit this criteria (up to coordinate transformation) are the

supersonic minimum time to climb problem [189], ascent trajectories for launch ve-

hicles [9, 190], atmospheric re-entry [191], and aerobraking [192]. In these examples,

downrange is a symmetry of the system, {∂θ} ∈ g. Additionally, there are two more

symmetries associated with the system; however, these symmetries are associated

with the crossrange and the heading of the vehicle and do not apply to the planar

problem [193]. Because the resulting constants-of-motion are not involutive, they are

beyond the scope of this procedure. Using only downrange, dualization and subse-

quent reduction yields the 6-dimensional dynamical system

H = λh(v sin(γ)) + gθ

(
v cos(γ)

h+Re

)
+λv

(
−1

2

ρv2CdAref

m
− µ sin(γ)

r2

)
+λγ

(
1

2

ρv2ClAref

mv
+

v cos(γ)

r
− µ cos(γ)

vr2

)
+L(x,u, t)

(5.52)

ḣ =
∂H

∂λh

v̇ =
∂H

∂λv

γ̇ =
∂H

∂λγ

λ̇h = −∂H

∂h

λ̇v = −∂H

∂v

λ̇γ = −∂H

∂γ

(5.53)

In addition to the dynamics above, there is the additional free parameter, gθ, and its

associated quad

θ̇ =
∂H

∂gθ
(5.54)

Although a study on performance was not done, we numerically solved a single

unconstrained mission for a manuevering hypersonic vehicle. The trajectories gener-

ated as a result are shown in Figs. 5.7 and 5.8. In Fig. 5.7, we see a fully reconstructed

trajectory from the 8-dimensional “traditional” problem, and two points at the bound-

aries for the 6-dimensional “reduced” problem. This may be slightly misleading since

the altitude is fully reconstructed for both problems. It is not shown Fig. 5.7 because
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the downrange consists of just two points at the boundaries. Instead, we confirm

that the vehicle’s states at the boundaries satisfy the mission requirements for both

problems. In Fig. 5.8, we see that both altitude and velocity are fully reconstructed

for both problems. The energy of both vehicles over the course of their trajectories

are in agreement with one-another. Overall these problems indirectly solve the same

OCP, yet the reduced formulation uses fewer numerical computations in doing so.

Figure 5.7. Trajectory of a maneuvering hypersonic vehicle.

The formulation shown in this example is valid for any missions that do not

explicitly contain downrange in the cost function. Commonly used path-constraints

in the hypersonic atmospheric flight problems are bounded angle-of-attack, heat rate,

and G-loading. All of these path-constraints do not explicitly use downrange and

therefore also have equivalent reduced formulations.

5.4 Summary

In this chapter, we introduced the central theme to this dissertation. We showed

how using Marsden-Weinstein-Meyer reduction enables an aerospace system designer

to eliminate more unknown quantities from their system than is allowed by traditional
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Figure 5.8. Energy of a maneuvering hypersonic vehicle.

indirect methods. In doing so, we explored some of the topological results of this

theorem and discovered that for practical applications, an aerospace mission must

be modeled on a principal G-bundle whose base space is a symplectic manifold and

fibers are isomorphic to Lie groups. This is the first major result of this chapter and

has a significant impact on how we will design BVP solvers in Chapter 6.

In other words, the states in the fibers of the G-bundle were identified to be

non-dynamical “quads”. This means their numerical solution is decoupled from the

recursive integration required for dynamical equations-of-motion, or rather the states

on the base space of the G-bundle. This was done by eliminating causality in the

system. This directly enables integration of the quads using batch integration in a

completely parallel manner in lieu of single-threaded recursive integration strategies.

Next, we explored how we will explicitly carry out reduction in an automated

manner. We created a strategy that used both Noether’s and Liouville’s theorems

that applies to the general set of problems with involutory functions. In carrying out

reduction, there were special cases where we generated 0-dimensional BVPs. This

means that this process can almost solve equations analytically, save for the terms at

the boundaries. This is the second major contribution of this chapter and has signif-
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icant impact on further application of these strategies to general-purpose aerospace

mission design.
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6. NUMERICAL SOLUTION TO

REDUCED-DIMENSIONAL BOUNDARY-VALUE

PROBLEMS

In this chapter, we will create novel BVP solvers that can solve BVPs as defined

in Chapter 5. To give an overview, one key result from trajectory optimization using

indirect methods is that the infinite-dimensional optimization problem is transcribed

into a finite-dimensional BVP on a manifold. Various reduction techniques exist that

may reduce this BVP to an equivalent, but lower dimensional problem. One such

reduction technique is MWM reduction; however, our BVP solvers are not restricted

to just using this result. In fact, our BVP solvers will be posed in a manner that

support several reduction techniques such as MWM reduction [118, 119], Poisson

reduction [120], Lagrangian (Routhian) reduction [194], and more.

There is a relatively modern and rich application of geometric structure to the

numerical integration of Initial Value-Problems (IVPs) [195–199]. A common result

from these studies generally suggest that numerical integrators leveraging dynamical

structure yield higher quality results using fewer calculations over numerical integra-

tors that do not leverage this structure.

While IVPs with geometric structure have proliferated and seen great success,

there has been limited application to BVPs [200,201]. In fact, there appear to be no

BVP solvers that can solve BVPs defined on principal G-bundles. Since the BVPs

generated from the process in Chapter 5 result in a mathematical problem defined

on a principal G-bundle, the contribution of this chapter is to design algorithms that

can solve these problems. To do this, we will first analyze the resulting BVP from the

reduction of constants-of-motion. Next, we will look at the result from the reduction

of symmetries. By looking at these two types of reduction independently, we will
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then be able to define a general algorithm that can handle both types of reduction

simultaneously. The result is a class of algorithms that can handle reduced BVPs

from MWM reduction and other types of reduction that result in a similar structure.

6.1 Boundary-Value Problems on Reduced Manifolds

6.1.1 Reduction of Constants-of-Motion

A standard BVP is described as a set of first-order differential equations on a

manifold, M , along with boundary conditions as

ẋ = f(t,x,p)

Φ(t0,x0, tf ,xf ,p) = 0
(6.1)

Assume f ∈ M with no additional structure. Then the existence of n constants-of-

motion allows one to reduce M by n dimensions as follows. Let µ be the map [202]

J : M → N

(t,x,p) 7→ µ (t,x,p)
(6.2)

If µ is a regular value of J , then define the reduced dimensional manifold by the

restriction J−1(µ). In this case, the system’s true dynamical motion lives in the

fibers of µ. The new parameters for the problem is the set of original parameters

concatenated together with the regular value of J

p∗ = [p,µ] (6.3)

We include the regular value as a parameter in the root-solving process since the

fiber containing optimal motion is not known. This enables a root-solver to select

the optimal value for the constant-of-motion, and therefore an optimal fiber. The

new dynamical system is defined on the reduced dimensional manifold with reduced

coordinates, x∗ ∈ J−1(µ) as

ẋ∗ = f ∗ (t,x∗,p∗) ∈ J−1 (µ) (6.4)
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Altogether, the reduced BVP is stated as

ẋ∗ = f ∗ (t,x∗,p∗)

Φ(t0,x
∗
0, tf ,x

∗
f ,p

∗) = 0
(6.5)

Note that while the dynamical system has changed since dimf ∗ < dimf , the bound-

ary conditions have not. Rather the original boundary conditions are used with a new

parameterization. This format is compatible with most modern day boundary-value

problem solvers because the only additional capability required by such a solver is

the ability to adjust the parameters, p∗. Since constants-of-motion by definition do

not change over a trajectory; therefore, µ(t0) and µ(tf ) are contained in p∗ and no

additional computations are necessary.

6.1.2 Reduction of Symmetries

Let the standard BVP be defined the same as in Eq. (6.1)

ẋ = f(t,x,p)

Φ(t0,x0, tf ,xf ,p) = 0
(6.6)

Assume f ∈ M with no additional structure. Then the existence of n symmetries

allows one to reduce M by n dimensions as follows. Let G be the Lie group corre-

sponding to the symmetries with action

S : G×M → M

(g,x) 7→ gx
(6.7)

If Sg is the action on M for every g ∈ G, then for an x ∈ M the orbit of the group

action is [203]

Ox = {Sg(x)|g ∈ G} (6.8)

Using all orbits on M , the reduced dimensional manifold is then defined as

M/G ≡ {Ox|x ∈ M} (6.9)
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Next, we introduce coordinates on the reduced dimensional manifold as x∗ ∈ M/G.

Since the Lie group is also a manifold, introduce coordinates on it as q ∈ G. The

new dynamical system is defined on the reduced dimensional manifold with reduced

coordinates as

ẋ∗ = f ∗(t,x∗,p) ∈ M/G (6.10)

The new dynamical system is not a function of the coordinates in the symmetry

space by definition, f ∗ 6= f ∗(q). Dynamical variables that live in the symmetry

space are not constants-of-motion, q0 6= qf ; therefore, the terminal values must be

reconstructed. Define h to be the equations-of-motion that live in the symmetry

space such that

q̇ = h(t,x∗,p) (6.11)

Since h 6= h(q), the q̇ do not need to be numerically integrated with a recursive

scheme such as RK4. However, there may not be a closed-form solution for x∗, so

there may not be an algebraic closed-form solution for q as a result since h = h(x∗).

To evaluate qf without recursive integration, we rewrite qf in an integral form

qf =

∫ tf

t0

h(t,x∗,p)dt+ q0 (6.12)

Knowing a defined time-history x∗ = x∗(t), the integral in Eq. (6.12) is only a function

of time. The integral is evaluated using a batch integration scheme such as Simpson’s

rule. This equation appears similar to a recursive integration; however, everything

under the integral is known a priori so this implies there is an inherent parallelism to

this operation that is otherwise unavailable. Altogether the reduced boundary-value

problem is stated as

ẋ∗ = f ∗(t,x∗,p)

q̇ = h(t,x∗,p)

Φ(t0,x
∗
0, q0, tf ,x

∗
f , qf ,p) = 0

(6.13)

Note that, similar to the reduction of constants-of-motion case, the dynamical system

has changed but the boundary conditions have not. The boundary conditions simply
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have a new parameterization. The form of Eq. (6.13) is not standard because modern

boundary-value problem solvers do not treat q̇ and ẋ as separate quantities.

6.1.3 Combined Reduction

In the presence of either symmetries, constants-of-motion, or additional struc-

ture on M , many reduction theorems allow one to reduce a dynamical system by

more states than there are known symmetries or constants-of-motion. The concept

is analogous to Noether’s theorem where, when there are additional structures on

M , knowledge of the symmetries yields constants-of-motion and vice versa [97]. For

example, in MWM reduction, the existence of n constants-of-motion allows one to

reduce a system by more than n-dimensions, but no more than 2n-dimensions. In gen-

eral, reduction processes involve eliminating either constants-of-motion whose time

rates of change are 0, or eliminating symmetries whose time rates of change are given

by a Lie group action. A general dynamical system containing both information on

eliminated constants-of-motion and symmetries may be written as

ẋ∗ = f ∗(t,x∗,p∗)

q̇ = h(t,x∗,p∗)

Φ(t0,x
∗
0, q0, tf ,x

∗
f , qf ,p

∗) = 0

(6.14)

To solve Eq. (6.14) in a numerical boundary-value problem solver, q̇ and ẋ∗ may

be concatenated and then propagated alongside each other. This forgoes the benefits

from the reduction of symmetries. In Ref. 151, Ohsawa claims that problems which

have been symmetry reduced are desirable from a computational standpoint due to

their lower dimension. The current status quo of boundary-value problem solvers

ignores information contained in h, thereby preventing practical implementation. In

the next section, we present new numerical algorithms that explicitly take h into

account, thus enabling analysis on reduced dimensional manifolds.
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6.2 Numerical Algorithms

We present two numerical algorithms for solving boundary-value problems on

reduced dimensional manifolds. We assume dynamical systems are already reduced

and are of the form in Eq. (6.14); however, the “star” notation is dropped.

6.2.1 Reduced Dimensional Collocation

Collocation is a numerical method of solving optimal control problems. One type

of collocation is called Hermite-Simpson collocation [56]. It is based on the assumption

that optimal trajectories may be approximated by piece-wise third-order polynomials.

To define a third-order piece-wise polynomial, four parameters are required. At each

node of a polynomial, there is state position information along with state gradient

information. Taking xi to be states at node i, the coefficients for each polynomial are

then 
C1

C2

C3

C4

 =


1 0 0 0

0 1 0 0

−3 −2 3 −1

2 1 −2 1




xi

ẋi

xi+1

ẋi+1

 (6.15)

To ensure the polynomial is an accurate approximation of the underlying dynamical

system, the predicted gradient at the midpoint of each polynomial is compared to

the actual gradient from the equations-of-motion. The predicted values between each

node are
x̃i+1/2 =

1

2
(xi + xi+1) +

tf (ẋi − ẋi+1)

8(Ntotal − 1)

˙̃xi+1/2 = −3

2

(Ntotal − 1)

tf (xi − xi+1)
− 1

4
(ẋi + ẋi+1)

(6.16)

where x̃ and ˙̃x refer to the predicted states and Ntotal is the total number of collocation

nodes. The error between the predicted and actual values for the rate of change vanish

when the curve is an accurate prediction, and therefore this condition is included as
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a constraint into the NLP solver. Using these predicted values of x and ẋ, the

optimization problem becomes the following BVP

0 = f(ti+1/2, x̃i+1/2,p)− ˙̃xi+1/2

0 = Φ(t0,x0, q0, tf ,xf , qf ,p)
(6.17)

The additional parameters p are constants and other non-dynamical quantities that

may be adjusted by the solver. Since this algorithm solves a BVP, there is no explicit

cost function to minimize. One issue with using modern day collocation solvers is that

the q are ignored. This can be remedied by including the q0 as parameters in an NLP-

solver; however, the qf are dependent on the q0 and therefore are not parameters.

Instead, after the solver has generated a third-order polynomial approximation, but

prior to its update step, we reconstruct qf by integrating over the trajectory

qf =

∫ tf

t0

h(t,x(t),p)dt+ q0 (6.18)

Since third-order polynomials are used to model the dynamics, x(t), we expect the

integral in Eq. (6.18) to be accurate when evaluated by Simpson’s rule.

Integration of Eq. (6.18) by numerical quadrature can be done in a highly efficient

vectorized manner. Increasing the number of nodes will yield a more accurate integral

without a significant impact on performance. Note that since ∂ph 6= 0, sensitivities

of q with respect to p must be computed. Because x, q0, and p are all general

parameters in an NLP-solver, these sensitivities are captured during the gradient

estimation and update step. Shooting methods do not have this luxury, which we

will explore in the next section.

6.2.2 Reduced Dimensional Shooting

Another common algorithm for solving boundary-value problems are shooting

methods [204]. Instead of using meshes like in collocation and pseudospectral meth-

ods, shooting methods capture sensitivity information by using a state-transition

matrix, ∆, with initial and terminal states ∆0 and ∆f . One important fact to keep
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in mind is that variations in q do not affect f and h, but variations in (x,p) affect

f and h. We construct the state-transition matrix by first defining the sensitivity

matrix of the equations-of-motion

A(t) =
[
∂f
∂x

∂f
∂p

]
=


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f1
∂p1

∂f1
∂p2

· · · ∂f1
∂pm

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

∂f2
∂p1

∂f2
∂p2

· · · ∂f2
∂pm

... ... . . . ... ... ... . . . ...
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn

∂fn
∂p1

∂fn
∂p2

· · · ∂fn
∂pm

 (6.19)

Then, the state-transition matrix is defined as the following set of first-order differ-

ential equations

∆0 =
[
Id 0

]
=


1 0 · · · 0 0 0 · · · 0

0 1 · · · 0 0 0 · · · 0
... ... . . . ... ... ... . . . ...

0 0 · · · 1 0 0 · · · 0


∆̇ = A(t)∆

(6.20)

Or more explicitly

∆̇ =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f1
∂p1

∂f1
∂p2

· · · ∂f1
∂pm

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

∂f2
∂p1

∂f2
∂p2

· · · ∂f2
∂pm

... ... . . . ... ... ... . . . ...
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn

∂fn
∂p1

∂fn
∂p2

· · · ∂fn
∂pm

0 0 · · · 0 0 0 · · · 0
... ... ... ... ... ...

0 0 · · · 0 0 0 · · · 0




∆

0
...

0

 (6.21)
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where the bottom dim(p) rows are removed prior to assignment in ∆̇. These rows

need not be propagated since ∂p/∂x = 0 by definition. Sensitivities in the boundary

conditions are given by the Jacobian matrix

J = [M0, P,Q0]

M0 =
dΦ(t0,x0, q0, tf ,xf , qf ,p)

dx0

P =
dΦ(t0,x0, q0, tf ,xf , qf ,p)

dp

Q0 =
dΦ(t0,x0, q0, tf ,xf , qf ,p)

dq0

(6.22)

Note that we use the total derivative as opposed to partial derivative. This was done

to capture the changes in xf and qf due to the perturbations in x0 and q0. The error

vector in the boundary conditions is given as

Φ(t0,x0, q0, tf ,xf , qf ,p) = ϵ (6.23)

then the shooting algorithm uses Newton’s Method to solve the linear system

Jxupdate = −ϵ (6.24)

In collocation, q0, x, and p are included as parameters in the NLP-solver; there-

fore, changes in qf due to perturbations in any of these parameters are captured by

gradient information in the NLP-solver. In shooting algorithms, points along the

trajectory between x0 and xf are not explicitly parameters. Since adjustments to x0

change which fiber the full trajectory lives in, qf is affected by any changes made in

the dynamics. Using Eq. (6.18) is sufficient in determining qf over an unperturbed

trajectory; however, when integrating over a perturbed trajectory we use the full

time-dependent state-transition matrix to capture this information

dqf

dx0

=

∫ tf

t0

h(t,∆t [dx0,0] + x(t),p)− h(t,x(t),p)dt

dqf

dp
=

∫ tf

t0

h(t,∆t [0,dp] + x(t),p+ dp)− h(t,x(t),p)dt

(6.25)

Note that, similar to Eq. (6.18), the integrals in Eq. (6.25) are over a known trajectory

and may be evaluated using Simpson’s rule or another batch integration scheme.



113

Although our implementation in this dissertation did not use parallelization, the

batch integration here is totally parallelizable. This is in contrast to all other BVP

parallelization techniques, such as multiple shooting, which use parallelization “tricks”

and do not completely scale to the available computational resources. There is more

info on the improvements that will benefit performance in Section 9.3.

6.3 Results

6.3.1 Modified FORTRAN BVP Test Cases

In Ref. 205, Mazzia, et. al. provide several boundary-value problems as a test set.

Three of these test cases, referred to as “T2”, “T8”, and “T18”, contain a symmetry

that may be eliminated. The general form of the three problems is

ẋ1 = x2

ẋ2 = s
x2

η

x1(0) = x10

x1(1) = x1f

(6.26)

This problem has adjustable parameters s, x10, and x1f , in addition to a difficulty

parameter η. Altering these parameters produce different families of solutions. The

values used for the parameters are listed in Table 6.1.

Table 6.1. Parameters for problems T2, T8, and T18

T2 T8 T18

s 1 -1 -1

x10 1 1 1

x1f 0 2 exp (−1/η)
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Since x1 does not appear in the dynamics, it does not need to be propagated with

x2. The reduced system is in Eq. (6.27).

q̇1 = x2

ẋ2 = s
x2

η

q1(0) = x10

q1(1) = x1f

(6.27)

While Eq. (6.26) and Eq. (6.27) appear identical aside from notation, the key feature

of Eq. (6.27) is that it is lower dimensional. Instead of a numerical BVP solver having

to solve two differential equations, only the differential equation for ẋ2 needs to be

solved. Then, approximating q1(1) can be done in a single operation with Simpson’s

rule. The reduced problem ultimately has fewer equations to satisfy. This directly

translates to a BVP solver using fewer operations to satisfy these equations. Using

the same parameters from the “T” problems, we refer to the reduced problems as

R2, R8, and R18 respectively. Solving problems R2, R8, and R18 indirectly solve

problems T2, T8, and T18. Solutions to the “R” problems are shown in Fig. 6.1.
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Figure 6.1. Solutions to R2, R8, and R18 with various difficulty parameters.

Comparing the “T” problems to the “R” problems in terms of performance, we

get the following times to solution across varying numbers of nodes:
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Figure 6.2. Times to solution of R2, R8, and R18 with η = 1× 10−2.

Unsurprisingly, the impact of reduction is similar across R2, R8, and R18. The

onset of computational complexity has been “delayed” by reduction. By offloading

the computation of numerical solutions to differential equations to quadrature rules,

a designer may use more nodes to obtain a higher quality solution at a lower cost.

On the other hand, the following times to solve R2, R8, and R18 using a reduced

dimensional shooting method are shown in Table 6.2. In this table, we also listed

the number of differential equations for each system. Overall, the original system

needed to integrate 6 differential equations recursively. The reduced system needed

to integrate 4 differential equations, but 2 of these can be done in completely parallel

manner with batch integration. Therefore, the reduced system will scale as if it is

only integrating 2 differential equations.
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Table 6.2. Results for the Shooting Method with η = 1× 10−2

Reduced Systems Standard Systems

EOMs 1 2

STM Size 1 4

Quads 1 0

Quads STM Size 1 0

Times to Solution [T/R2, T/R8, T/R18] [s] [1.76, 0.81, 0.81] [1.19, 0.62, 0.61]

Interestingly, the solution times for the reduced dimensional “R” problems were

slower than the “T” problems. This could be due to a number of different reasons.

It is possible that this problem is not well-suited for shooting methods to begin with.

Since reduction does not guarantee that the geometry of the reduced manifold is

simpler, it is possible that numerical challenges existing in the standard problem

are made worse by reduction. Another likely cause of this slightly worse time to

solution is the digital implementation. In an effort to make a fair comparison between

the reduced and standard formulations, the same numerical software was used for

both. Also, the batch integration was performed in a single-threaded manner, thus

eliminating any benefits of parallelization. This numerical software is not considered

high-performance and the additional overhead caused by handling q1 as a special

term may have outweighed the benefits. A high performance solver would eliminate

these issues. To the author’s knowledge, there is no such high-performance solver in

existence and is a point of future work Section 9.3.
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6.3.2 Brachistochrone Problem

Recall the Brachistochrone problem from Chapter 5. We now set up the equations-

of-motion and separate them based on their dynamical structure

h

ẋ = v cos(γ)

ẏ = v sin(γ)

[p,λ] = p∗ 3 λ

λ̇x = 0

λ̇y = 0

f

 v̇ = −g sin(γ)

λ̇v = −λx cos(γ)− λy sin(γ)

(6.28)

Clearly, λx and λy are constants-of-motion since their time rates of change are 0. Since

x does not appear explicitly in the equations-of-motion, then ∂x is a symmetry, and

similarly ∂y is a symmetry. The only states that must be enforced through collocation

or propagation are (v, λv), while (λx, λy) are guaranteed to be satisfied and (x, y) are

determined by quadrature. The final time, tf , is also included as a parameter to

nondimensionalize the system with respect to time.

Table 6.3 shows a table of the number of equations-of-motion that must be solved.

There were a total of 48 differential equations in the original system that must be

solved in a single-threaded manner. In the reduced system, there were a total of 24

differential equations that must be solved. Without further exploitation of the fact

that quads exist in the fibers of a G-bundle, this is already a 50% reduction in the

number of differential equations that must be solved. If we further exploit this fact

by integrating the quads using a completely parallel batch integration scheme, the

reduced problem will scale as if it only has 12 differential equations total. This means

that a theoretical upper bound on performance gain for this problem is an analytical

reduction of 75%.

Solution processes on the reduced and standard spaces were run for different

numbers of collocation nodes. In addition to the number of equations, Table 6.3

shows a comparison between shooting and collocation with 30 nodes. The reduced
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system is significantly faster than the standard system by virtue of having fewer

shooting equations-of-motion and fewer collocation parameters. Solutions and times

to solution across several different numbers of collocation nodes are shown in Fig. 6.3

and Fig. 6.4. As the number of collocation nodes increases, there are diminishing

returns on computational performance. Similar to the previous T/R2, T/R8, and

T/R18 examples, we see the familiar impact where the reduced system delays the

onset of the point of diminishing returns. This again enables a designer to use more

nodes in an effort to capture sensitivities within a trajectory. For instance, at 320

nodes the standard boundary-value problem took 912.6 seconds to converge while

reducing the dimension cut this time down to 315.5 seconds. Depending upon the

application, the standard system may be too costly to run at the fine resolution of

320 nodes while the reduced system may not be.

Table 6.4 lists the residual after each shooting update. Note that prior to the

first update, in iteration 0, the residuals are very different. The initial guesses differ

slightly since the standard system requires a guess for the terminal states, while in the

reduced system, the states that are transcribed to f do not need their final positions

given as an initial guess.
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Table 6.3. Information on the Brachistochrone problem setup (30 collocation nodes)

Reduced System Standard System

EOMs 2 6

STM Size 10 42

Quads 2 0

Quads STM Size 10 0

Collocation Parameters 65 181

Collocation Time to Solution 2.728 s 4.829 s

Shooting Time to Solution 1.114 s 1.633 s

Figure 6.3. Comparison of reduced and standard solutions to the Brachistochrone

problem
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Figure 6.4. Time to solution of the Brachistochrone problem for varying number of

collocation nodes
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Table 6.4. Residual after each shooting update

Iteration # Reduced System Standard System

0 1.44656507159 0.85857864376

1 0.62306825414 0.62312567771

2 0.26542468279 0.26542701768

3 0.10337793521 0.10337150044

4 0.03889321712 0.03888822881

5 0.01444720778 0.01444450136

6 0.00534142035 0.00534014315

7 0.00197142153 0.00197086232

8 0.00072715373 0.00072692027

9 0.00026814625 0.00026805203

10 0.00009887360 0.00009883656

11 0.00003645658 0.00003644233

12 0.00001344210 0.00001343672

13 0.00000495629 0.00000495430

14 0.00000000002 0.00000000002

6.4 Summary

In this chapter, we explored the impact of reduction from the perspective of nu-

merical methods. We analyzed two types of reduction: constant-of-motion reduction

and symmetry reduction. Although modern BVP solvers can handle constant-of-

motion reduced problems, we noted that modern BVP solvers are not equipped to

handle symmetry reduced problems. We then created a general method of writing

problem definitions for BVPs with an arbitrary number of constant-of-motion reduc-

tions and symmetry reductions. BVP solvers must use this general interface to handle

the unique structure of BVPs. In addition to designing a universal interface, we con-
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structed two numerical methods for solving reduced BVPs. These two solvers are

a novel approach to solving BVPs and ultimately solve fewer equations using fewer

operations.

Next, we used the solvers on two reduced BVPs and saw mixed results in terms

of performance; however, the results confirmed the mathematical equivalence of solv-

ing reduced and unreduced problems. In the first example we achieved an analytical

reduction of 50% fewer equations reducing the system from 8 to 4, plus 2 equations-

of-motion on a G-bundle’s fibers. In the second example we achieved an analyti-

cal reduction of 75% fewer equations, reducing the system from 48 to 12, plus 12

equations-of-motion on a G-bundle’s fibers. Even though reduction did not always

have a positive impact on performance, the solvers presented in this chapter are the

only two solvers available that can solve reduced problems. Ultimately, this work has

laid the foundation for designing newer and more efficient BVP solvers leveraging this

novel structure. High performance solvers that are specifically designed to handle re-

duced dimensional problems will most likely improve performance significantly. This

is a point of future work in Section 9.3.
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7. COMPOSABLE CONSTRUCTION OF HAMILTONIAN

BVPS

Indirect methods are traditionally cited as being too complicated for use in prac-

tical scenarios. Although some of this complexity is eased by the used of CASs,

modern digital software for indirect methods becomes complicated as a result. An

aerospace designer using such software will surely appreciate the ease of use enabled

by CASs. However, a computer scientist maintaining such software still needs to

deal with the complexities of indirect methods. To describe the computational im-

plementation of mathematical processes, flowcharts are often used in combination

with object-orientation [206]. While these are useful for NLP solvers and crucial

for many-systems analysis, optimal control theory primarily focuses on a single sys-

tem. Flowcharts and object-orientation are unnecessarily powerful for the methods

described in this dissertation. In fact, they are so powerful that the additional flexi-

bility causes more issues than they solve. The overall goal of this chapter is to delve

deeper into an alternative to object-orientation and flowcharts. Their replacement is

functional programming and commutative diagrams [207]. By restricting the tools we

have available for implementation, we will be forced to place an emphasis on mathe-

matical consistency. One major benefit of this is that other strategies outside of this

dissertation can be pieced together in a predictable manner.

Very rarely are practical problems unconstrained single-phase OCPs resulting

in TPBVPs; however, in Chapters 1 and 3 we ignored path-constraints and prob-

lems with multiple phases. This is because there already are several strategies for

handling problems with these components. Over the past several years, numerous

techniques have been developed by the students in the Rapid-Design-of-Systems-

Laboratory (RDSL). Some of these methods are the Universal Trigonomerization
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Method (UTM) [84], Relaxed Autonomously Switched Hybrid System (RASHS) [208],

and the Integrated Control Regularization Method (ICRM) [74, 141]. Each of these

techniques are an integral component in creating complex path-constrained multi-

stage missions. In effort to tie all this work together in a single coherent indirect

framework, we introduce the concept of a composable workflow. In this framework,

all operations are modeled as functors on the categories of OCPs and Hamiltonian

BVPs. By following a strict set of rules, these functors are guaranteed to return either

OCPs or Hamiltonian BVPs. One surprising result is that, despite their near sole use

in indirect methods, many of these functors can be applied equivalently to direct or

indirect methods. This chapter aims to accomplish the following:

1. Recall and preserve techniques that have been previously developed.

2. Assemble various strategies that can be mixed and matched in a manner that

preserves structure, and therefore aims to preserve the CMP.

3. Provide guidelines for extension with future techniques that have not yet been

developed.

Within the scope of this dissertation, this chapter enables reduction for path-

constrained multi-phase problems. This brings reduction up to a level suitable for

general-purpose applications.

7.1 Category Theory

In order to formalize many of the state-of-the-art processes developed, we must

first introduce some basic category theory. Category theory was first introduced

in its modern form by Samuel Eilenberg and Saunders Mac Lane [209]. One of

the significant roles that category theory has played in mathematics is in its ability

to generalize widely used processes and apply them in a repeatable manner. One

of the central concepts in category theory is the category; a collection of objects
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and mappings. We define a category based on Eilenberg and Mac Lane’s original

definition.

Definition 38 (Category). A category, A , is a set of objects, A, and mappings,

α. Assume that mappings α1 and α2 exist. These mappings may uniquely define a

new product mapping α2 ◦ α1. Under this assumption, the following 5 axioms of a

category must hold

Axiom 1. Assume α3 exists, then the mapping α3 ◦ (α2 ◦ α1) exists if and only

if (α3 ◦ α2) ◦ α1 exists such that α3 ◦ (α2 ◦ α1) = (α3 ◦ α2) ◦ α1; an associative

property.

Axiom 2. Axiom 1 holds when the products α3 ◦ α2 and α2 ◦ α1 exist.

Axiom 3. For every mapping αi there exists an identity Idi1 such that αi◦Idi1 =

αi and there exists another identity Idi2 such that Idi2 ◦ αi = αi.

Axiom 4. The map IdA for each object A is an identity.

Axiom 5. For every Idi, there is an object A such that IdA = Idi.

End definition.

Given that the objects and mappings of some category, A , satisfy these axioms, we

can represent this category visually. An example category is shown as a commutative

diagram in Fig. 7.1. Future categories that are presented in this section will have

identities omitted.

OCPs are defined as a large collection of objects (B,Σ, TΣ,R•) and mappings

(π τ, τΣ,f , g,ϕ, ξ, L, η). The physical meaning of (B,Σ, TΣ) is that they describe the

manifold an OCP lives in, where R• are the spaces of observable quantities pulled

from these manifolds. The physical meaning of (f , g) is the laws of motion that a dy-

namical system must obey, (ϕ, ξ) are mission requirements, and (π τΣ, τΣ) connect the

manifolds as bundles. These objects together with their mappings form the category

of OCPs, “Problem Σ”, and is shown as a commutative diagram in Fig. 7.2.
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A


A1 A2 A3 A4

IdA1

α1

α2◦α1

α3◦α2◦α1

α2

IdA2

α3

IdA3
IdA4

Figure 7.1. A category with 4 objects and 3 mappings.

Problem Σ



Rn TΣ

R B Σ

Rm Rk

τΣ
g

π τΣ

f

L, η
ϕ

ξ

Figure 7.2. Category of OCPs.

The structure of an OCP may seem relatively simple in that it is primarily a

dynamical system and a set of observables. Using category theory to represent such an

object likely seems “overkill”. The category of Hamiltonian BVPs is more complicated.

After dualizing with T ∗Σ = Λ, there are more manifolds, (E,Λ, TΛ, T ∗Λ), fewer

observables (H,Φ,Ξ), and more mappings (f , ω, τΛ, πΛ, π τΛ,u
∗). This setup is shown

in Fig. 7.3.

While interesting in their own regard, categorizing OCPs and Hamiltonian BVPs

does not yield too much additional information usable for aerospace missions. From

category theory, functors are the essential tool used to map one category to another.

Given two categories, {Ai, αi} ∈ A and {Bi, βi} ∈ B, a functor may be defined as

follows
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Problem Λ



TΛ T ∗Λ

R E Λ

Rm Rk

τΛ

ω

πΛ

H
π τΛ

f

u∗

Φ
Ξ

Figure 7.3. Category of Hamiltonian BVPs.

Definition 39 (Functor). A functor, F , is a mapping between two categories, A

and B. Every functor consists of the following set of data object-functions and

mapping-functions

1. For every object, A ∈ A , then F (A) ∈ B.

2. For every mapping, α ∈ A , then F (α) ∈ B.

The following axioms also must hold

Axiom 1. Unitality: F (IdA) = IdF (A).

Axiom 2. Composability: For every composable set of mappings, α2 ◦ α1, then

F (α2 ◦ α1) = F (α2) ◦ F (α1) (7.1)

End definition.

Returning to the example category in Fig. 7.1, we can define a functor which takes

objects and mappings in A and sends them to new objects and mappings also in A .

As we saw in Chapter 4, modification of a Hamiltonian BVP must result in a new

Hamiltonian BVP. By modeling our processes as functors between the categories of

Problem Σ’s and Problem Λ’s, we can ensure that we will properly form OCPs and

BVPs while simultaneously reducing the complexity of constructing such problems.
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A1 A2 A3 A4

F (A1) F (A2) F (A3) F (A4)

IdA1

α1 α2

IdA2

α3

IdA3
IdA4

IdF(A1)

F (α1) F (α2)

IdF(A2)

F (α3)

IdF(A3)
IdF(A4)

Figure 7.4. A functor on A .

It is important to note that while the functors presented in this section provide a

relatively accurate and convenient means for modeling complex OCPs in a homomor-

phic manner, the resulting OCPs are not necessarily equivalent to the original OCPs.

A common theme in the majority of these functors is that they add a small amount

of error in order to make the problem easier to solve numerically.

For example, a functor that transforms a path-constrained OCP into an uncon-

strained problem does not perfectly model the corners at which a path-constraint is

entered and exited. Often times tolerance parameters, ϵ, are added such that as ϵ → 0

the unconstrained OCP converges to the constrained OCP. The mathematical rigor

in this section does not guarantee the numerical equivalence of transforming OCPs,

but only serves to guarantee structure. Considering our example, this makes an im-

pact in that both the unconstrained OCP and the original path-constrained OCP are

both OCPs of type Problem Σ. Regardless of what sequence of functors are applied,

the resulting systems can always be dualized and the CMP is always preserved up to

the resulting OCP from applied functors.
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7.2 Optimal Control Functors

Optimal Control Functors (OCFs) are functors that transform one OCP into an-

other OCP. In general, their functor signature is as follows

F : Problem Σ → Problem Σ (7.2)

This can be done by defining each of the maps listed in Eq. (7.3).

F : Problem Σ → Problem Σ

F (f) : F (B) → F (TΣ)

F (g) : F (B) → F (Rn)

F (L) : F (B) → F (R)

F (η) : F (B) → F (R)

F (ξ) : F (Σ) → F (Rk)

F (ϕ) : F (Σ) → F (Rm)

F (τΣ) : F (TΣ) → F (Σ)

F (π τΣ) : F (B) → F (Σ)

Such that: F (τΣ ◦ f) = F (π τΣ)

(7.3)

Although there are many maps to define, this process ensures that when an OCF

is used to construct an OCP, the results are predictable and repeatable. OCFs are

always applied prior to dualization. Because of this order of operations, the CMP

is preserved regardless of the process. All OCFs fit nicely into Ross and Fahroo’s

commutative diagram as shown in Fig. 7.5.

Next, we will introduce some OCFs that have been created by various students

of RDSL. It is important to note that the functors themselves are not a contribution

of this dissertation since they have been developed by other students. Rather, the

composable implementation is the main contribution of this work.
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Problem Λ Problem ΛN

Problem ΣNλ
n

Problem Σ1 Problem Σn Problem ΣN
n

discretization

convergence

CMP

Fn◦···◦F1

dualization

discretization

convergence
dualization

Figure 7.5. OCFs preserve the CMP by modifying OCPs prior to dualization.

7.2.1 Eps-Trig Regularization

Mall’s Eps-Trig is a method of handling pure control-constraints in a smooth

manner [82,83]. This method is very similar to Hull’s method of replacing a bounded

control with an unbounded one [210].

FEps-Trig : Problem Σ → Problem Σ (7.4)

Beginning with a path-constrained OCP of the following form

min
u

K =

∫ tf

t0

L(t,x,u)dt+ η(x(tf ),u(tf ))

Subject to: ẋ = f(t,x,u)

ϕ(t0,x(t0)) = 0

ξ(tf ,x(tf )) = 0

ulower ≤ u ≤ uupper

(7.5)

Eps-Trig transforms this OCP into another OCP in a two-step process. The first step

is to substitute the control with a trigonomerized control

u ≡ uupper − ulower

2
sin(utrig) +

uupper + ulower

2
(7.6)

This results in a new input bundle, B∗. Using B∗ as a domain, a new path-constraint

function, g∗, is defined with the control-constraints eliminated. The second step is to

add an error control term to the cost function

L∗ ≡ L(t,x,utrig)− ϵT cos(utrig) (7.7)
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where the dimension of ϵ is equal to the dimension of g’s co-domain. Therefore we

have defined the following map

FEps-Trig : Problem Σ → Problem Σ

FEps-Trig(B) = B∗

g(t,x,u) 7→ g∗(t,x,utrig)

L(t,x,u) 7→ L∗(t,x,utrig, ϵ)

η(x(tf ),u(tf )) 7→ η(x(tf ),utrig(tf ))

f(t,x,u) 7→ f ∗(t,x,utrig)

(7.8)

The unlisted maps are identities. Note that, despite the chosen values for ϵ and

the accuracy of the overall method, Eps-Trig may be freely applied to any optimal

control problem provided that it fits within the restrictions of Eq. (7.5). If every

path-constraint is a control path-constraint, then the path-constraint functions are

mapped in the following manner

FEps-Trig : (B → Rn) → (B∗ → ∅) (7.9)

Rather, the output of the Eps-Trig OCF is an unconstrained OCP. This results in a

single-phase (up to discretization) system from a direct method, or TPBVP from an

indirect method.

7.2.2 Universal Trigonomerization Method

With his Eps-Trig method, Mall was able to impose pure control path-constraints

on OCPs, potentially simplifying what would have been a MPBVP down to a TP-

BVP for simple problems and eliminating some path-constraints for more complicated

problems. Two drawbacks of Eps-Trig are as follows

1. General path-constraints containing state terms often times result in unsolvable

transcendental control laws.
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2. Eps-Trig involves replacing terms inside of the equations-of-motion. A user may

enter parameters in a manner such that substitution does not properly occur.

As an improvement to his “trigonomerization” suite of tools, Mall introduced

the Universal Trigonomerization Method (UTM) [84]. In UTM, path-constraints

involving mixed state and control terms can be handled. This approach resolves the

first issue from Eps-Trig. Additionally, UTM can be implemented entirely by adding

additional terms to the path cost, which resolves the second issue from Eps-Trig.

UTM has the following signature

FUTM : Σ → Σ (7.10)

To use UTM, we first begin with an OCP of the following form

min
u

K =

∫ tf

t0

L(t,x,u)dt+ η(x(tf ),u(tf ))

Subject to: ẋ = f(t,x,u)

ϕ(t0,x(t0)) = 0

ξ(tf ,x(tf )) = 0

glower ≤ g(x,u) ≤ gupper

(7.11)

In this OCP, there are path-constraint functions, g, which are functions of mixed

state and control terms, (x,u)

g : B → Rn (7.12)

To account for these path-constraint functions, we first create the following penalty

term

LUTM = ϵT

 1

cos
(

π
2

2g(x,u)−gupper−glower
gupper−glower

) − 1

 (7.13)

where the dimension of ϵ is equal to the dimension of g’s co-domain. In this system,

LUTM is acting similar to an interior penalty method from parameter optimization.

LUTM is differentiable and infinite in value when the original constraint is active.

Augmenting the Lagrangian, we have

L∗ ≡ L+ LUTM (7.14)
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Then, we have the following OCF with no explicit path-constraints

FUTM : Problem Σ → Problem Σ

g(t,x,u) 7→ g∗(t,x,u)

L(t,x,u) 7→ L∗(t,x,u, ϵ)

(7.15)

where g∗ are the path-constraints that have not been treated with UTM. The unlisted

mappings are identities. In the case where UTM is applied to every path-constraint,

we have

FUTM : (B → Rn) → (B∗ → ∅) (7.16)

where B∗ = FUTM(B) ∼= B. That is, the UTM OCF converts a constrained OCP

into an unconstrained OCP with diffeomorphic input bundles.

7.2.3 Relaxed Autonomously Switched Hybrid System

Saranathan’s Relaxed Autonomously Switched Hybrid System (RASHS) is a method

of incorporating discontinuous functions in an OCP by approximating them with

smooth exponential functions [208, 211]. These discontinuous functions can be used

to model discrete events that alter the dynamics of a system. For instance, the staging

event of an ascent vehicle permanently modifies its mass and thrust profile. RASHS

may be used to accurately model this staging event while retaining a simplified TP-

BVP, instead of forming a more complicated MPBVP. Given an OCP of the following

form

min
u

K =

∫ tf

t0

L(t,x,u, h(t))dt+ η(x(tf ),u(tf ), h(tf ))

Subject to: ẋ = f(t,x,u, h(t))

ϕ(t0,x(t0), h(t0)) = 0

ξ(tf ,x(tf ), h(tf )) = 0

glower ≤ g(t,x,u, h(t)) ≤ gupper

(7.17)
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Assume h(t) is a function of the form

h(t) =

a if t < 0.5

b otherwise
(7.18)

Since h(t) is discontinuous, traditional optimal control theory would have us generate

a 3-point BVP with the middle point at t = 0.5 where the discontinuity occurs.

Instead, Harish’s RASHS method replaces the function h(t) with the following smooth

approximation

h∗(t, ϵ) =
a

exp
(
1
ϵ
(t− 0.5)

)
+ 1

+
b

exp
(
1
ϵ
(0.5− t)

)
+ 1

(7.19)

As the arbitrary tolerance ϵ tends towards 0, h∗(t) converges to h(t). Harish’s RASHS

OCF is of the following form

FRASHS : Problem Σ → Problem Σ

f(t,x,u, h(t)) 7→ f(t,x,u, h∗(t, ϵ))

g(t,x,u, h(t)) 7→ g(t,x,u, h∗(t, ϵ))

L(t,x,u, h(t)) 7→ L(t,x,u, h∗(t, ϵ))

η(x(tf ),u(tf ), h(tf )) 7→ η(x(tf ),u(tf ), h
∗(tf , ϵ))

ϕ(t0,x(t0), h(t0)) 7→ ϕ(t0,x(t0), h
∗(t0, ϵ))

ξ(tf ,x(tf ), h(tf )) 7→ ξ(tf ,x(tf ), h
∗(tf , ϵ))

(7.20)

Applying RASHS to a constrained OCP yields a new constrained OCP.
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7.2.4 Time-Shift

Especially in time-dependent OCPs, it is often easier to work with a dynamical

system whose independent variable is a state. Take for instance the time-dependent

OCP

min
u

K =

∫ tf

t0

L(t,x,u,p)dt+ η(x(tf ),u(tf ),p)

Subject to: ẋ = f(t,x,u,p)

ϕ(t0,x(t0),p) = 0

ξ(tf ,x(tf ),p) = 0

glower ≤ g(t,x,u,p) ≤ gupper

(7.21)

Many modern BVP solvers cannot solve systems where L = L(t) or f = f(t). A

known trick to get around this limitation is to make time a state with its own equation-

of-motion. To do this, we set τ ≡ t and extend the manifold with the time coordinate

x′ =

x
t

 f ′ =

f(t,x,u,p)
1

 (7.22)

Then the OCP becomes

min
u

K =

∫ τf

τ0

L(x′,u,p)dt+ η(x′(τf ),u(τf ),p)

Subject to: ẋ′ = f ′(x′,u,p)

ϕ(x′(τ0),p) = 0

ξ(x′(τf ),p) = 0

glower ≤ g(x′,u,p) ≤ gupper

(7.23)



137

Therefore, the time-shift functor is as follows

FTime-Shift : Problem Σ → Problem Σ

f(t,x,u,p) 7→ f(x′,u,p)

g(t,x,u,p) 7→ g(x′,u,p)

L(t,x,u,p) 7→ L(x′,u,p)

η(x(tf ),u(tf ),p) 7→ η(x′(τf ),u(tf ),p)

ϕ(t0,x(t0),p) 7→ ϕ(x′(τ0),p)

ξ(tf ,x(tf ),p) 7→ ξ(x′(τf ),p)

(7.24)

This strategy was used in Chapter 4 prior to dualization. Though a similar time

shift may be done on the Hamiltonian BVP, we give a reason for placing this functor

in the OCF category in Section 7.7.

7.3 Dualizing Methods

In this section, we explore the two different tools available for dualizing an OCP.

Functors in this section have the following signature

D : Problem Σ → Problem Λ (7.25)

7.3.1 Traditional Methods

In Section 1.1.2, we provided a detailed introduction to indirect methods in their

so-called “traditional” form. The Bryson-Ho functor DBH turns an OCP into a well-

defined Hamiltonian BVP [10]. The BVP generated by DBH is symplectic; however,

the operations that follow are severely restricted. This is because the map ω ◦ f is

entirely stored in f . There is no explicit ω generated by DBH. This is the primary

shortcoming of the Bryson-Ho functor and was the motivating factor behind the work

in Chapter 3.
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7.3.2 Differential Geometric Methods

In Chapter 3, we redefined indirect methods in terms of differential geometric

tools. The process of dualizing an OCP using differential geometric tools is repre-

sented by DDG. Although there was no immediate payoff, we later saw in Chapters 4

and 5 how the additional exposed data from DDG could be leveraged.

7.4 Symplectomorphic Functors

In Section 7.2 we explored processes that can be, for the most part, freely ap-

plied to OCPs. This freedom is due to the fact that dualization occurs after all

OCFs have been applied. After dualization occurs, our problem definition becomes

significantly more restrictive. In a Hamiltonian BVP, there is no cost function. The

cost information has been embedded in the Hamiltonian function as well as the co-

state equations-of-motion. As a result, modifications of the Hamiltonian function

effectively act as modifications of the cost function from the original OCP thereby

changing the problem definition. Similarly, modifications of the co-state equations-

of-motion also act as modifications of the cost function from the OCP. In this section,

we explore functors that transform one Hamiltonian BVP into another. We call these

Symplectomorphic Functors (SFs). First, we define a symplectomorphism

Definition 40 (Symplectomorphism). Assume two symplectic manifolds, (ΛA, ωA)

and (ΛB, ωB), and that a diffeomorphism between these two manifolds, F : ΛA →

λB, exists. A diffeomorphism is a symplectomorphism if it preserves the symplectic

structure across the mapping such that:

F ∗ωB = ωA (7.26)

End definition.

Typically, symplectomorphisms are studied in context of canonical transforma-

tions, Hamiltonian flows, and other Liouville theorem-preserving integrations. Our
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application is slightly broader in that the mapping need not be an integration of

phase-space.

Definition 41. (Symplectomorphic Functor) A Symplectomorphic Functor (SF),

F , is a functor on the category of Hamiltonian BVPs that preserves the symplectic

structure of the underlying dynamical system.

Problem Λ2 = F (Problem Λ1)

Such that: ω2 = F (ω1)
(7.27)

End definition.

An SF may be created by defining the following maps

F : Problem Λ → Problem Λ

F (f) : F (E) → F (TΛ)

F (ω) : F (TΛ) → F (T ∗Λ)

F (u∗) : F (Λ) → F (E)

F (H) : F (E) → F (R)

F (Ξ) : F (Λ) → F (Rk)

F (Φ) : F (Λ) → F (Rm)

F (τΛ) : F (TΛ) → F (Λ)

F (πΛ) : F (T ∗Λ) → F (Λ)

F (π τΛ) : F (E) → F (Λ)

Such that: F (τΛ ◦ f) = F (π τΛ)

F (πΛ ◦ ω) = F (τΛ)

(7.28)

While daunting, ensuring every transformation of a Hamiltonian BVP is also a

symplectomorphism guarantees that structure is carried throughout all mathematical

processes. While not guaranteed to exist in a general sense, by preserving structure,

we are not explicitly destroying prospects of a CMP. Where SFs fit in to the indirect
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optimization process is shown in Fig. 7.6. Note that, unlike OCFs, SFs occur after

dualization. Therefore, for an SF to preserve the CMP, one would expect there to

be a corresponding OCF. We call SFs that have corresponding OCFs hybrid functors

and these are treated in Section 7.5.

Problem Λ1 Problem Λn Problem ΛN
n

Problem ΣNλ

Problem Σ Problem ΣN

Fn◦···◦F1

discretization

convergence

CMP?

dualization

discretization

convergence
dualization

Figure 7.6. Symplectomorphic functors may preserve the CMP.

7.4.1 Symplectic ICRM

As initially introduced by Antony et al. [74,141] as an application of index reduc-

tion [212,213], ICRM does not fit the criteria for an OCF, nor does it fit the criteria

for an SF. An extension was made by Sparapany et al. to symplectic systems [214]

which was presented in detail in Chapter 4. The signature of ICRM is as follows

FICRM : Problem Λ → Problem Λ (7.29)
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There are two significant steps in the symplectic ICRM process: extension of the

base manifold and augmentation of the symplectic form. These operations fit into

the functor in Eq. (7.30).

FICRM : Problem Λ → Problem Λ

f(t,x,u) 7→ f(t,x′)

FICRM(Λ) = Λ′

FICRM(TΛ) = TΛ′

FICRM(T ∗Λ) = T ∗Λ′

FICRM(E) = E ′

ω 7→ ω′

(7.30)

7.5 Hybrid Methods

In this section, we explore a special set of methods that can be applied to both

an OCP or the resulting Hamiltonian BVP after dualization. Functors in this section

have the following signature

F :

Σ → Σ

Λ → Λ

(7.31)

These functors are OCFs in the sense that they will turn an OCP into another

OCP, while they are also SFs in that their transformations are symplectomorphic.

7.5.1 Reduction

In Chapter 5, we explored reduction on symplectic manifolds in detail. Then, in

Chapter 6, we explored how to construct BVP solvers that have the ability to solve

problems defined on the reduced dimensional spaces. Though not explored explicitly

in Chapter 5, the BVP solvers from Chapter 6 were specifically contructed to handle

problems that were not “fully reduced”. Rather, reduction is focused on finding a

manifold Λ//G; however, the BVP solvers were designed to handle problems with
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structure Λ/G or J−1. Since Λ//G ∼= J−1/G, the BVP solvers can handle more

general cases than were presented. This alludes to the idea that a symmetry may

be eliminated from a system without removing its associated constant-of-motion.

Similarly, a constant-of-motion may be eliminated without removal of its associated

symmetry. While Noether’s theorem guarantees the correspondence of symmetries

and constants-of-motion, this only applies on Problem Λ. In Problem Σ, a differential

structure is not guaranteed to exist. Therefore, reduction may be performed prior to

dualization of Problem Σ by reducing only the symmetries and constants-of-motion

that exist. Once dualized, the constants-of-motion that have been eliminated do

not yield symmetries and the symmetries that have been eliminated do not yield

constants-of-motion. This setup is shown in Fig. 7.7.

Problem Σ Problem Σ/G

Problem Λ Problem Λ//G

Dualization

OCP Reduction (direct)

Dualization

Hamiltonian Reduction (indirect)

Figure 7.7. Commutative diagram for the dualization and reduction of an OCP

possessing symmetries.

Ergo, a reduction functor designed to handle symmetries and constants-of-motion

independently will commute with the dualization of an OCP provided it is dualized

using the differential geometric formulation presented in Chapter 3.

DDG ◦ FReduction = FReduction ◦ DDG (7.32)

This is a result we already saw in Chapter 5. We solved two examples: the

direct and indirect Brachistochrone problems. Although we previously treated these

as two independent problems, they are mathematically intertwined by Eq. (7.32).

In other words, if a Co-vector Mapping Theorem (CMT) is an application specific
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incarnation of the CMP, then Eq. (7.32) guarantees there exists a CMT between those

two problems.

7.6 Examples

We will now give a few examples of how functors may be used in the construction

of numerically solvable Hamiltonian BVPs. These examples will be carried out step-

by-step in detail. Since the functorial process requires full duplication of all objects,

the results of every step are either a well-defined OCP or a well-defined Hamiltonian

BVP. This means any example can be cut short and solved numerically using either

the solvers from Chapter 6 or any standard direct solver in the case of an OCP. These

examples will take up a large amount of space; however, we will also rewrite them

using the new representation presented in this chapter. The result from this new

representation is a mathematically consistent one-liner describing an OCPs entire

transformation process into a Hamiltonian BVP.

7.6.1 Brachistochrone

In this section, we revisit the Brachistochrone problem from Section 6.3.2. In our

first encounter, recall that we posed the problem in a novel manner that allowed us to

solve it faster than the current state-of-the-art indirect method. To do this, we also

required the designer to pass additional information into the BVP solver about the

geometric structure of the problem. Recall there are two symmetries in this problem,

∂x and ∂y. Instead of identifying ∂x and ∂y as being two independent symmetries, we

identify a single symmetry

S = cos θ
∂

∂x
+ sin θ

∂

∂y
(7.33)

In Eq. (7.33), θ ∈ [0, 2π] is an arbitrary parameter that is varied. By defining our

symmetry in this manner, it forces our algorithm to choose an adequate basis for the

reduced dimensional manifold. When θ = nπ for all integer valued n, then q ≡ ±x.
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However, when θ = π(n + 1/2) for all integer valued n, then q ≡ ±y. Therefore

the algorithm cannot choose to annihilate x or y on the quotient manifold for every

case, but must instead adapt to the structure of the symmetry provided. In geometric

terms, we can consider the configuration of our problem as a fiber bundle whose fibers

are the symmetries of the system. In reduction, we are choosing a vector that rotates

through these fibers. A visual aid of this situation is shown in Fig. 7.8.

Figure 7.8. The configuration of the Brachistochrone problem is a principal G-bundle

whose positions are fibered over velocity.

In constructing the Hamiltonian BVP, we use a sequential process with functors.

We will go through each step manually starting with the definition of the OCP

min
γ

K =

∫ tf

0

1dt

Subject to: dx
dt

= v cos(γ)

dy

dt
= v sin(γ)

dv

dt
= g sin(γ)

S = cos(θ)
∂

∂x
+ sin(γ)

∂

∂y

0 = x(t0) = y(t0) = v(t0)

x(tf ) = 10, y(tf ) = −10

(7.34)
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First, we adjoin time as a state to the OCP

min
γ

K =

∫ τf

0

1dτ

Subject to: dx
dτ

= v cos(γ)

dy

dτ
= v sin(γ)

dv

dτ
= g sin(γ)

dt

dτ
= 1

S = cos(θ)
∂

∂x
+ sin(γ)

∂

∂y

0 = x(τ0) = y(τ0) = v(τ0) = t(τ0)

x(τf ) = 10, y(τf ) = −10

(7.35)

Next, we dualize the problem using the differential geometric methods described in

Chapter 3.

H = gλv sin(γ) + λt + λxv cos(γ) + λyv sin(γ) + 1

ω = dx ∧ dλx + dy ∧ dλy + dv ∧ dλv + dt ∧ dλt

S1 = cos(θ)
∂

∂x
+ sin(θ)

∂

∂y

S2 =
∂

∂t

0 = x(τ0) = y(τ0) = v(τ0) = t(τ0)

0 = ν1 + λx(τ0) = ν2 + λy(τ0) = ν3 + λv(τ0) = ν4 + λt(τ0)

x(τf ) = 10, y(τf ) = −10

0 = λx(τf )− ν5 = λy(τf )− ν6 = λv(τf ) = λt(τf )

0 = gλv(τf ) sin(γ) + λt(τf ) + λx(τf )v(τf ) cos(γ) + λy(τf )v(τf ) sin(γ) + 1

(7.36)

A part of this dualization is the usage of PMP, so we are not using the symplectic

ICRM strategy presented in Chapter 4. Since the Hamiltonian is not an explicit

function of time, we added a second infinitesimal symmetry, S2 ≡ ∂/∂t. After du-
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alization, we scale the Hamiltonian BVP by multiplying every state by a parameter

representing final time

H = gλv sin(γ) + λt + λxv cos(γ) + λyv sin(γ) + 1

ω = τ−1
f dx ∧ dλx + τ−1

f dy ∧ dλy + τ−1
f dv ∧ dλv + τ−1

f dt ∧ dλt

S1 = cos(θ)
∂

∂x
+ sin(γ)

∂

∂y

S2 =
∂

∂t

0 = x(0) = y(0) = v(0) = t(0)

0 = ν1 + λx(0) = ν2 + λy(0) = ν3 + λv(0) = ν4 + λt(0)

x(1) = 10, y(1) = −10

0 = λx(1)− ν5 = λy(1)− ν6 = λv(1) = λt(1)

0 = gλv(1) sin(γ) + λt(1) + λx(1)v(1) cos(γ) + λy(1)v(1) sin(γ) + 1

(7.37)

Finally, we finish off the construction with two applications of Marsden-Weinstein-

Meyer reduction as described in Chapter 5. The first application of MWM reduction
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eliminates the symmetry defined in Eq. (7.33) and its associated constant-of-motion

as defined by the Noether-like map introduced in Chapter 3

H = gλv sin(γ) + λt + v

(
c1

cos(θ)
− λy tan(θ)

)
cos(γ) + 1

ω = τ−1
f dy ∧ dλy + τ−1

f dv ∧ dλv + τ−1
f dt ∧ dλt

q̇1 = τf

(
−λy sin(γ)−

(
c1

cos(θ)
− λy tan(θ)

)
cos(γ)

)
S2 =

∂

∂t

0 =
q1(0)

cos(θ)
− y(0) tan(θ) = y(0) = v(0) = t(0)

0 =
c1

cos(θ)
+ ν1 − λy(0) tan(θ) = ν2 + λy = ν3 + λv = ν4 + λt

10 =
q1(1)

cos(θ)
− y(1) tan(θ), y(1) = −10

0 =
c1

cos(θ)
− ν5 − λy(1) tan(θ) = λy(1)− ν6 = λv(1) = λt(1)

0 = gλv(1) sin(γ) + λt(1) + λy(1)v(1) sin(γ)

+ v(1)

(
c1

cos(θ)
− λy(1) tan(θ)

)
cos(γ) + 1 sin(γ) + 1

(7.38)

where we introduced q1 as the quad and c1 ≡ λx cos(θ) + λy sin(θ). In this first

reduction, we introduced a singularity when θ = π(n+ 1/2). In instances where this

occurs, we eliminate the (y, λy) pair instead of the (x, λx) pair. Since this problem
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does not contain any explicit dependencies on time, time is a symmetry. The second

application of MWM reduction eliminates time and its adjoint state

H = gλv sin(γ) + c2 + v

(
c1

cos(θ)
− λy tan(θ)

)
cos(γ) + 1

ω = τ−1
f dy ∧ dλy + τ−1

f dv ∧ dλv

q̇1 = τf

(
−λy sin(γ)−

(
c1

cos(θ)
− λy tan(θ)

)
cos(γ)

)
q̇2 = τf

0 =
q1(0)

cos(θ)
− y(0) tan(θ) = y(0) = v(0) = q2(0)

0 =
c1

cos(θ)
+ ν1 − λy(0) tan(θ) = ν2 + λy = ν3 + λv = ν4 + c2

10 =
q1(1)

cos(θ)
− y(1) tan(θ), y(1) = −10

0 =
c1

cos(θ)
− ν5 − λy(1) tan(θ) = λy(1)− ν6 = λv(1) = c2

0 = gλv(1) sin(γ) + c2 + λy(1)v(1) sin(γ)

+ v(1)

(
c1

cos(θ)
− λy(1) tan(θ)

)
cos(γ) + 1 sin(γ) + 1

(7.39)

The Hamiltonian BVP in Eq. (7.39) is our final BVP. The Brachistochrone prob-

lem is one of the simplest OCPs yet the full procedure was lengthy and error-prone

if done by hand. Instead, we can leverage the functorial language introduced in this

chapter. The following equation is equivalent to the entire procedure

Problem Λ = (FMWM ◦ FMWM ◦ Fscale time ◦ DDG ◦ Ftime shift)(Problem Σ) (7.40)

While seemingly complicated, this entire process was automated using beluga

v0.3.3 [140]. To numerically solve the resulting Problem Λ, we use the BVP solvers

introduced in Chapter 6. We solved 64 different problems, each problem using a

different value of θ between 0 and 2π. In Fig. 7.9, we plot the numerical values for

q on the quotient problem as θ is rotated. The curves that are more red in color

are closely aligned with ∂x, while the curves that are more blue in color are closely

aligned with ∂y. Curves turn a purple color as the symmetry passes from ∂x to ∂y

and back again.
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Figure 7.9. Solutions on the quotient manifold of the Brachistochrone problem. Every

curve is a unique solution to the same OCP as the infinitesimal symmetry rotates

through the configuration’s fibers.

For this OCP, we chose the initial point (x0, y0) = (0, 0) and terminal point

(xf , yf ) = (10,−10). However, we clearly see from Fig. 7.9 that the maximum values

of q are close to ±15. To investigate this further, we decompose q into two separate

plots. The first plot is for values of −π/4 < θ < π/4 and 3π/4 < θ < 5π/4

representing infinitesimal symmetries more aligned with ∂x. The rest are in the second

plot representing infinitesimal symmetries more aligned with ∂y. These two plots are

in Fig. 7.10. From these two plots, we can see that when the curves are the most

red or blue, they are at θ = nπ/2 (for integer n) and terminate at values of ±10.

This is consistent with the original terminal condition. However, the purple curves

associated with ±π1/4 and ±3π/4 have terminal values of 0 and near 15. Along the

−π/4 and 3π/4 axis, the terminal point of the quad is 0 since the terminal point

(10,−10) is located along that axis. Along the π/4 and −3π/4 axis, the terminal
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point of the quad is
√
102 ≈ 14.14. This makes sense since the terminal point is

located at (10,−10) and when the symmetry axis is perpendicular to the origin and

the terminal point, the quad’s terminal value is
√
102 + 102.

Figure 7.10. Quads of the Brachistochrone solution decomposed into ∂x and ∂y com-

ponents.

7.6.2 Orbit Raising

In this example, we explore a spacecraft in a circular orbit about a central body.

The spacecraft’s mission is to raise its orbit to as high of a circular orbit as possible
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in a fixed time-frame. The equations-of-motion that describe the spacecraft’s motion

along with its cost functional are as follows

min
α

K = −r2(tf )

Subject to: dr
dt

= vr

dθ

dt
=

vθ
r

dvr
dt

=
v2θ
r

− µ

r2
+

T cosα

m
dvθ
dt

= −vrvθ
r

+
T sinα

m
dm

dt
= mrate

S =
∂

∂θ

0 = r(t0)− r0 = θ(t0)− θ0 = vr(t0)− vr0 = vθ(t0)− vθ0

0 = m(t0)−m0 = vr(tf )− vrf = vθ(tf )−
√

µ

r(tf )

(7.41)

Solutions to this problem generally fall under two categories: low thrust and high

thrust cases. Low thrust cases appear quite frequently in literature due to the interest

in solar sails, ion drives, and other extremely high specific impulse propulsion. High

thrust cases are typically the result low specific impulse propulsion. Numerically, the

low thrust techniques are generally regarded to be significantly more difficult to solve

due to sensitivity of propagating the differential equations. We were able to create a
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Hamiltonian BVP out of this problem using a sequential process with functors. Our

first functor applied was the time shift functor. This appends time as a state.

min
α

K = −r2(τf )

Subject to: dr
dτ

= vr

dθ

dτ
=

vθ
r

dvr
dτ

=
v2θ
r

− µ

r2
+

T cosα

m
dvθ
dτ

= −vrvθ
r

+
T sinα

m
dm

dτ
= mrate

dt

dτ
= 1

S =
∂

∂θ

0 = r(τ0)− r0 = θ(τ0)− θ0 = vr(τ0)− vτ0 = vθ(τ0)− vθ0

0 = m(τ0)−m0 = t(τ0) = vr(τf )− vrf = vθ(τf )−
√

µ

r(τf )

(7.42)

With time appended as a state, we can now dualize the problem. To do this, we

create the symplectic system as described in Chapter 3; however, we will use PMP
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instead of Symplectic ICRM. This is because the problem can be solved relatively

easily using PMP and therefore Symplectic ICRM is not needed.

H = λmmrate + λrvr + λt + λθ
vθ
r
+ λvr

(
T cos(α)

m
− µ

r2
+

v2θ
r

)
+ λvθ

(
T sin(α)

m
− vrvθ

r

)
ω = dr ∧ dλr + dθ ∧ dλθ + dvr ∧ dλvr + dvθ ∧ dλvθ + dt ∧ dλt

S1 =
∂

∂θ

S2 =
∂

∂t

0 = r(τ0)− r0 = θ(τ0)− θ0 = vr(τ0)− vτ0 = vθ(τ0)− vθ0

0 = ν1 + λr(τ0) = ν2 + λθ(τ0) = ν3 + λvr(τ0) = ν4 + λvθ(τ0) = ν5 + λm(τ0) = ν6 + λt(0)

0 = m(τ0)−m0 = t(τ0) = vr(τf )− vrf = vθ(τf )−
√

µ

r(τf )

0 = λr(τf ) + 2r(τf )− ν7
1

2r(τf )

√
µ

r(τf )
= λθ(τf ) = λvr(τf )− ν8

0 = λvθ(τf )− ν9 = λm(τf ) = λt(τf )− ν10 = H(τf )

(7.43)

In the dualization process, the infinitesimal symmetry S2 was identified since both

the cost and the states are not explicit functions of time. Next, we scale the current
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Hamiltonian BVP with the final time of the problem. This introduces the final time

τf as a dynamical parameter.

H = λmmrate + λrvr + λt + λθ
vθ
r
+ λvr

(
T cos(α)

m
− µ

r2
+

v2θ
r

)
+ λvθ

(
T sin(α)

m
− vrvθ

r

)
ω = τ−1

f dr ∧ dλr + τ−1
f dθ ∧ dλθ + τ−1

f dvr ∧ dλvr + τ−1
f dvθ ∧ dλvθ + τ−1

f dt ∧ dλt

S1 =
∂

∂θ

S2 =
∂

∂t

0 = r(0)− r0 = θ(0)− θ0 = vr(0)− v0 = vθ(0)− v0

0 = ν1 + λr(0) = ν2 + λθ(0) = ν3 + λvr(0) = ν4 + λvθ(0) = ν5 + λm(0) = ν6 + λt(0)

0 = m(0)−m0 = t(0) = vr(f)− vrf = vθ(f)−
√

µ

r(f)

0 = λr(1) + 2r(1)− ν7
1

2r(1)

√
µ

r(1)
= λθ(1) = λvr(1)− ν8

0 = λvθ(1)− ν9 = λm(1) = λt(1)− ν10 = H(1)

(7.44)

Next, we will perform two sequential applications of the reduction process as described

in Chapter 5. The first reduction is of the pair (θ, λθ).

H = λmmrate + λrvr + λt + c1
vθ
r
+ λvr

(
T cos(α)

m
− µ

r2
+

v2θ
r

)
+ λvθ

(
T sin(α)

m
− vrvθ

r

)
ω = τ−1

f dr ∧ dλr + τ−1
f dvr ∧ dλvr + τ−1

f dvθ ∧ dλvθ + τ−1
f dt ∧ dλt

q̇1 = τf ∗
vtheta

r

S2 =
∂

∂t

0 = r(0)− r0 = q1(0)− θ0 = vr(0)− v0 = vθ(0)− v0

0 = ν1 + λr(0) = ν2 + λθ(0) = ν3 + λvr(0) = ν4 + λvθ(0) = ν5 + λm(0) = ν6 + λt(0)

0 = m(0)−m0 = t(0) = vr(f)− vrf = vθ(f)−
√

µ

r(f)

0 = λr(1) + 2r(1)− ν7
1

2r(1)

√
µ

r(1)
= c1 = λvr(1)− ν8

0 = λvθ(1)− ν9 = λm(1) = λt(1)− ν10 = H(1)

(7.45)
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By removing the pair (θ, λθ), we have lowered the dimension of our system from 10

to 8. Then, we will do the reduction process again using S2 which will lower the

dimension from 8 to 6.

H = λmmrate + λrvr + c2 + c1
vθ
r
+ λvr

(
T cos(α)

m
− µ

r2
+

v2θ
r

)
+ λvθ

(
T sin(α)

m
− vrvθ

r

)
ω = τ−1

f dr ∧ dλr + τ−1
f dvr ∧ dλvr + τ−1

f dvθ ∧ dλvθ

q̇1 = τf ∗
vtheta

r

q̇2 = τf

S2 =
∂

∂t

0 = r(0)− r0 = q1(0)− θ0 = vr(0)− v0 = vθ(0)− v0

0 = ν1 + λr(0) = ν2 + λθ(0) = ν3 + λvr(0) = ν4 + λvθ(0) = ν5 + λm(0) = ν6 + c2

0 = m(0)−m0 = q2(0) = vr(f)− vrf = vθ(f)−
√

µ

r(f)

0 = λr(1) + 2r(1)− ν7
1

2r(1)

√
µ

r(1)
= c1 = λvr(1)− ν8

0 = λvθ(1)− ν9 = λm(1) = c2 − ν10 = H(1)

(7.46)

This is our final Hamiltonian BVP that we will solve. Overall, this process was

lengthy and error-prone when done by hand. Instead, we can succinctly describe this

process using the language introduced in this chapter as follows

Problem Λ = (FMWM ◦ FMWM ◦ Fscale time ◦ DDG ◦ Ftime shift)(Problem Σ) (7.47)

Using the sequence in Eq. (7.47), we were able to automatically generate the

Hamiltonian BVP from the original OCP using beluga v0.3.3. To solve the resulting

Hamiltonian BVP numerically, we use both shooting and collocation algorithms. The

trajectories are shown in Fig. 7.11.

By eliminating θ and λθ in the reduction process, solving for θ is moved to the

reconstruction process in the BVP solver. Solutions for q ≡ θ are shown in Fig. 7.12,

and are displayed on top of known solutions for θ. From these figures, we see that there
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Figure 7.11. Solutions in the low and high thrust orbit raising problems.

is agreement across the known, reduced shooting, and also the reduced collocation

solutions.

Figure 7.12. Symmetries in the low and high thrust orbit raising problems.

7.6.3 Moon Lander

The moon lander is a classic OCP that solves the problem of an aerospace vehicle

in its terminal descent. The engines must be activated at a precise time to safely land

the vehicle on a surface. If the engines are activated too late, the vehicle will strike the
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surface with a non-zero velocity and if the engines are activate too early, the vehicle

will stop moving above the surface. This problem has a control path-constraint which

results in a bang-bang control. Mall’s UTM strategy has previously been shown to

be very effective for solving path-constrained problems in a phaseless manner. In this

problem, we show that using a composable workflow like introduced in this section

enables reduction and UTM to work together. The moon lander OCP is defined as

follows
min
u

K =

∫ tf

0

udt

dx

dt
= v

dv

dt
= u− g

S =
∂

∂x

0 ≤ u ≤ 4

0 = h(t0)− h0 = v(t0)− v0 = h(tf ) = v(tf )

(7.48)

Next, we will append time as a state.

min
u

K =

∫ τf

0

udτ

dx

dτ
= v

dv

dτ
= u− g

dt

dτ
= 1

S =
∂

∂x

0 ≤ u ≤ 4

0 = h(τ0)− h0 = v(τ0)− v0 = t(τ0) = h(τf ) = v(τf )

(7.49)
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Then, we will deal with the path-constraint using Mall’s UTM. This augments the

cost functional with a trigonometric term.

min
u

K =

∫ τf

0

ϵ

(
sec

(
π
u− 2

4

)
− 1

)
+ udτ

dx

dτ
= v

dv

dτ
= u− g

dt

dτ
= 1

S =
∂

∂x

0 = h(τ0)− h0 = v(τ0)− v0 = t(τ0) = h(τf ) = v(τf )

(7.50)

Now that we have dealt with the path-constraint, we can dualize the problem using

the procedure from Chapter 3. While still possible, root-solving the control law in

PMP is very challenging for problems that use UTM. To ease the some of the burden

on the algebra involved, we will instead use the Symplectic ICRM strategy described

in Chapter 4.

H = ϵ

(
sec

(
π
u− 2

4

)
− 1

)
+ u+ λxv + λt + λv(u− g)

ω = dx ∧ dλx + dv ∧ dλv + dt ∧ dλt + (du− u̇∗
dt) ∧ dλu

S1 =
∂

∂x

S2 =
∂

∂t

0 = h(τ0)− h0 = v(τ0)− v0 = t(τ0) = ν1 + λx(τ0) = ν2 + λv(τ0) = ν3 + λt(τ0)

0 = λu(τ0) = h(τf ) = v(τf ) = λx(τf )− ν4 = λv(τf )− ν5 = λt(τf ) = H(τf )

(7.51)

Where we define u̇ to be

u̇ =
λx

2π2ϵ sin
(
π u−2

4

)2 (
16 cos

(
π u−2

4

)3)−1

+ π2ϵ
(
16 cos

(
π u−2

4

))−1
(7.52)
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To eliminate the free final time of this Hamiltonian BVP, we scale the entire problem

by the final time. This adds τf as a dynamical parameter.

H = ϵ

(
sec

(
π
u− 2

4

)
− 1

)
+ u+ λxv + λt + λv(u− g)

ω = τ−1
f dx ∧ dλx + τ−1

f dv ∧ dλv + τ−1
f dt ∧ dλt + τ−1

f (du− u̇∗
dt) ∧ dλu

S1 =
∂

∂x

S2 =
∂

∂t

0 = h(0)− h0 = v(0)− v0 = t(0) = ν1 + λx(0) = ν2 + λv(0) = ν3 + λt(0)

0 = λu(0) = h(1) = v(1) = λx(1)− ν4 = λv(1)− ν5 = λt(1) = H(1)

(7.53)

Finally, we will use our reduction procedure on both S1 and S2. Starting with S1, we

eliminate the (x, λx) pair.

H = ϵ

(
sec

(
π
u− 2

4

)
− 1

)
+ u+ c1v + λt + λv(u− g)

ω = τ−1
f dv ∧ dλv + τ−1

f dt ∧ dλt + τ−1
f (du− u̇∗

dt) ∧ dλu

q̇1 = τfv

S2 =
∂

∂t

0 = q1(0)− h0 = v(0)− v0 = t(0) = ν1 + c1 = ν2 + λv(0) = ν3 + λt(0)

0 = λu(0) = q1(1) = v(1) = c1 − ν4 = λv(1)− ν5 = λt(1) = H(1)

(7.54)

In applying this procedure, we reduced our 8-dimensional system down to a 6-dimensional.

Next, we applying the reduction procedure again taking our system from 6 dimensions
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down to 4 dimensions. Our final BVP in a suitable form for the numerical solvers in

Chapter 6 is as follows

v̇ = τf (u− g)

u̇ =
τfc1

2π2ϵ sin
(
π u−2

4

)2 (
16 cos

(
π u−2

4

)3)−1

+ π2ϵ
(
16 cos

(
π u−2

4

))−1

λ̇v = −τfc1

λ̇u = −τf

(
πϵ

sin(π u−2
4
)

4 cos(π u−2
4
)2

+ λv + 1

)
q̇1 = τfv

q̇2 = τf

S2 =
∂

∂t

0 = q1(0)− h0 = v(0)− v0 = q2(0) = ν1 + c1 = ν2 + λv(0) = ν3 + c2

0 = λu(0) = q1(1) = v(1) = c1 − ν4 = λv(1)− ν5 = c2 = H(1)

(7.55)

Although the system of differential equations in Eq. (7.55) appears to be 6-dimensional,

it is seen as 4-dimensional by the BVP solver since both q1 and q2 are quads. In com-

parison to the both the Brachistochrone and orbit raising examples, the moon lander

problem is significantly more tedious. This is due to the fact that we used UTM to

handle the path-constraints and subsequently used Symplectic ICRM for the control

law. This is incredibly challenging to perform by-hand. Instead, since every step can

be boiled down to a functor transforming the problem definition in a known man-

ner, we can use software to automate this entire process. To solve this OCP, we use

beluga v0.3.3 with the following signature

Problem Λ = (FMWM ◦ FMWM ◦ Fscale time ◦ DDG ◦ FUTM ◦ Ftime shift)(Problem Σ)

(7.56)

The resulting Hamiltonian BVP was then solved with collocation. A solution is

shown in Fig. 7.13 with q overlayed on the known solution for x.
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Figure 7.13. Symmetries in the low and high thrust orbit raising problems.

7.7 Extension

By compartmentalizing strategies into functors as described in this section, com-

mutation relations between the strategies may be identified. For example, for a single

path-constraint, application of UTM after Eps-Trig yields a different result than if

Eps-Trig is applied after UTM. This is because with only a single path-constraint,

the output of the first functor is an unconstrained OCP. The second functor has no

path-constraints to adjoin, so in this example, our commutation relations are shown

in Eq. (7.57).

FUTM ◦ FEps-Trig 6= FEps-Trig ◦ FUTM (7.57)

In another example, say there exists an OCP with n path-constraints where n ≥

2. In this case, as long as Eps-Trig and UTM are each handling a different path-

constraint, they commute. This relationship is shown in Eq. (7.58).

F i
UTM ◦ F j

Eps-Trig = F j
Eps-Trig ◦ F i

UTM ∀ i 6= j (7.58)

Assuming there is a restriction in place such that a designer is not allowed to

apply both UTM and Eps-Trig to the same path-constraint, then Eq. (7.58) suggests

that either process can be first. A developer constructing such a system would be free

to choose where they place the UTM and Eps-Trig strategies without much concern
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for adverse side-effects. On the other hand, take dualization and UTM for instance.

Since UTM augments the path cost of an OCP, but a Hamiltonian BVP no longer

has an explicit path cost function, these two functors do not commute. This is shown

in Eq. (7.59).

FUTM ◦ D 6= D ◦ FUTM (7.59)

In this case, it is likely obvious that UTM must be applied prior to dualization.

Since UTM’s signature is (Σ → Σ), it clearly can’t take the Λ input given by du-

alization. This provides a mathematical rule for preventing UTM from appearing

after dualization. As we saw before in the examples, strictly adhering to these rules

enables one to design a system that can mix and match several functors. This same

concept can be used with new functors that have not yet been developed. For in-

stance, someone creates a strategy, Fnew. By filling out the commutation relations as

shown in Table 7.1, some clues can be given as to where functor Fnew should be used.

In this example, the strategy commutes with all OCFs and MWM. This researcher

likely developed a method for modifying data in the OCP, potentially “UTM at the

boundaries”. Even though this functor commutes with MWM, since MWM commutes

with dualization, Fnew would likely be placed before dualization.

Table 7.1. Example composition table.

Functor Commutes with Fnew

FUTM Y

FEps-Trig Y

FRASHS Y

Ftime shift Y

D N

FICRM N

Fscale time Y

FMWM Y
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One case where this strategy was used was in the time shift functor. We chose to

place this strategy prior to dualization, and more specifically ICRM. This is because

the time shift and symplectic ICRM strategies do not commute. In Chapter 4, the

symplectic form was augmented with the following two-form

(du∗ − u̇∗
dt) ∧ (dλu − 0dt) (7.60)

In this scenario, dt was used as an element of the co-vector basis, however such a

quantity would not exist if t was an independent variable as opposed to a state. This

implies time shifting must occur prior to ICRM.

7.8 Summary

In this chapter, we introduced the concept of a composable process for construct-

ing Hamiltonian BVPs. This type of construction lends itself well to functional pro-

gramming. By taking known strategies, such as UTM, RASHS, and reduction, and

categorizing them into functors on either OCPs or Hamiltonian BVPs, we created

a process that enables usage of these strategies together. This abstraction enabled

us to further improve on our reduction process by extending it to multi-phase path-

constrained problems. The ultimate benefit of this chapter is a repeatable process

of indirect methods that bypasses the laborious and error-prone manipulations that

an aerospace system designer either carries out by-hand or using an object-oriented

process. This new representation compresses processes that can take several pages

down to a single line equation.

Due to the more restrictive nature of this representation, systems produced in this

manner must preserve mathematical structure. The result is that any strategy in this

representation fits in Ross and Fahroo’s famous commutative diagram. Thus, there

is a deep connection between the computational implementation of a strategy and its

mathematical implications. Because of this, we were then able to give a method for

implementing new strategies that give predictable results and simultaneously fit in

Ross and Fahroo’s construct.
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8. CONCLUSIONS

In this dissertation we explored the Marsden-Weinstein-Meyer reduction theorem,

its application to aerospace mission design, and many practical considerations when

numerical designing methods around this theorem. This novel approach to tackling

general-purpose aerospace mission design results in computational problems that are

lower dimensional than the current state-of-the-art indirect methods. These compu-

tational problems ultimately require the numerical solution of fewer equations. To

recap the end-to-end process created, recall Fig. 1.6, which is reproduced here in

Fig. 8.1.

Designer
Symplectic

Mechanics

Symplectic

ICRM
Reduction

BVP

Solver
NLP

Figure 8.1. End-to-end mission design process as constructed in this dissertation.

In Chapter 3, we reformulated indirect methods in terms of differential geometry.

Specifically symplectic mechanics was chosen due to its exposed differential structure

as well as its easy-to-use tensorial language. The resulting Hamiltonian boundary-

value problems from this chapter were identical to the traditional indirect methods.

This reformulation is consistent with traditional approaches while also enabling more

advanced techniques, such as reduction, that cannot be used with traditional ap-

proaches.

Next, in Chapter 4, we improved upon Thomas’s Integrated Control Regular-

ization Method (ICRM) thus creating a symplectic ICRM strategy. The issue of

transcendental control laws exists equivalently in the traditional and symplectic sys-

tems. Thomas’s ICRM has been used successfully several times on the traditional
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system for solving these control laws where Pontryagin’s Minimum Principle (PMP)

fails. The contribution of Chapter 4 was a reformulation of ICRM in symplectic me-

chanics so that it may be applied to solve the symplectic system we have created.

This new system enables reduction in cases where PMP fails to solve for control laws.

Then, in Chapter 5, we created a practical method for carrying out Marsden-

Weinstein-Meyer reduction on a general set of problems. Even though reduction has

been used on practical problems before, it has never been used as strategy for general-

purpose applications. We explored some of the practical limitations as well as carried

reduction on several examples. The resulting number of equations-of-motion for each

of these problems was lower than is typically possible with standard calculus. This

reduction in dimension can lead to a faster numerical solution of large problems and

may enable solving problems of a large size that was not possible with traditional

approaches.

The resulting mathematical problem from reduction had a strikingly different

structure than is typically seen with BVPs. As a result, we created a new set of BVP

solvers to handle this structure in Chapter 6. Despite that these solvers had mixed

results in terms of performance, the reduced systems we examined had between 50%

and 75% fewer equations to solve. The main contribution of these new BVP solvers

is that they are a blueprint for creating new algorithms for solving reduced problems.

Presently, the two solvers in Chapter 6 are the only solvers in existence that are

capable of solving problems resulting from reduction.

This entire process carries an aerospace system designer’s hypothetical aerospace

mission to an NLP problem that may be solved using nearly any NLP solver. Rather,

we created a practical process for applying Marsden-Weinstein-Meyer reduction to

general-purpose aerospace mission design. Our final topic in Chapter 7 then touched

on the issue of problems with path-constraints, discontinuous functions, and other

difficulties that typically force a designer to create challenging multi-point boundary-

value problems by hand. We created a composable process of constructing problems
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using indirect methods that simplified constructions for a designer, eliminated error-

prone calculations, and enabled usage of reduction with other strategies.
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9. FUTURE WORK

9.1 Sequential Mishchenko-Fomenko Reduction

In the reduction section of this dissertation, we were limited to the reduction

of Hamiltonian BVPs containing constants-of-motion that were in involution with

one another. In the case where constants-of-motion under the Poisson bracket do

not vanish, our strategy does not work. The introduction of a composable process

for constructing Hamiltonian BVPs out of OCPs enables an incredibly complicated

processes to be implemented in an automated fashion with ease. By repeatedly ap-

plying the reduction strategy presented in this dissertation in the composable manner

as described in Chapter 7, it is possible that we may reduce each quantity in series.

Instead of trying to apply a full Marsden-Weinstein-Meyer process using isotropy sub-

groups, it may be possible to apply the Mishchenko-Fomenko process sequentially.

The sequential Mishenko-Fomenko process as described here is shown in Fig. 9.1.

9.2 Reduced Dimensional Co-vector Mapping Principle

Although the resulting BVP from dualization was heavily modified, special care

was taken to preserve its structure. We expect the CMP to be preserved, thus creating

a Reduced Dimensional CMP (RCMP). Since parameter reduction and symmetry

reduction can both be applied to the direct system, the famous commutative diagram

of Ross and Fahroo splits in to two diagrams: one for an OCP possessing symmetries

and one for an OCP possessing constants-of-motion. These diagrams are shown in

Figs. 9.2 and 9.3 respectively
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H

Hµ

πµ
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Hµn
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∼

Figure 9.1. Marsden-Weinstein-Meyer reduction and sequential Mishchenko-Fomenko

reduction may result in diffeomorphic manifolds.
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Problem Λ//G Problem Λ//GN

Problem Λ Problem ΛN

Problem ΣNλ Problem ΣNλ
r

Problem Σ Problem ΣN

Problem Σr Problem ΣN
r

discretization

reconstruction

convergence

reduction

discretization

convergence

CMP

RCMP?

dualization

discretization

restriction

convergence
dualization

reconstruction

discretization

dualization

convergence

Figure 9.2. Commutative diagram for dualization and discretization of an OCP’s

dynamical system possessing constants-of-motion.

Problem Λ//G Problem Λ//GN

Problem Λ Problem ΛN

Problem ΣNλ Problem Σ/GNλ

Problem Σ Problem ΣN

Problem Σ/G Problem Σ/GN

discretization

reconstruction

convergence

reduction

discretization

convergence

CMP

RCMP?

dualization

discretization

quotient

convergence
dualization

reconstruction

discretization

dualization

convergence

Figure 9.3. Commutative diagram for dualization and discretization of an OCP’s

dynamical system possessing symmetries.
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9.3 High Performance Numerical BVP Solvers

Nonlinear programming techniques are typically driven by solving dense linear

systems in the form of QP subproblems. At their worst, solving these dense linear

systems has computational complexity O(n3). Increasing a problem size by 10 times

will increase the computational cost by 1000 times. The numerical algorithms in this

work were driven by such dense methods. It is possible to improve the performance

of the numerical algorithms in this work by implementing sparse methods. There

are a number of computational tools available for solving sparse linear systems [215].

One software that is particularly effective is SuperLU which has seen some use in

sparse BVP solvers [216]. After an adequate sparse method has been developed, the

next step is to implement parallelized batch integration techniques as described in

Chapters 5 and 6.

9.4 0-D Boundary-Value Problems

In Chapter 5, we came across an example that started as a two-dimensional OCP,

but was reduced to a zero-dimensional Hamiltonian BVP through reduction. In the

literature, there appears to be no exploration of zero-dimensional BVPs. This is likely

for two reasons:

1. Since the majority of reduction is applied to problems from a theoretical stand-

point, numerical examples and NLPs are seldom generated. It is possible the

only zero-dimensional BVPs in existence are in this dissertation.

2. A zero-dimensional BVP is not a BVP.

One would think that a zero-dimensional BVP is analytically solvable. From a

dynamical standpoint this seems to be the case. The Liouville-Arnold theorem further

strengthens this point. However, from an aerospace mission standpoint, there exist

quantities at the boundaries that must still be solved. I hypothesize that, in general,

zero-dimensional BVPs collapse down to a more traditional type of NLP that does



171

not need collocation, shooting, pseudospectral, or other BVP algorithms to be solved.

Therefore, zero-dimensional BVPs should not be viewed as BVPs. A point of future

work is to explore its theoretical implications, as well as practical implementations of

a program to solve such a problem.

9.5 Lie-Poisson Reformulation

In Chapter 3, we reformulated modern trajectory optimization algorithms in terms

of symplectic geometry, although some instances used a Poisson formulation that

was more convenient. In Chapter 5, we created the following formula for extracting

dynamics from a Hamiltonian vector field:

q̇ = X♭
H([·, g]P) (9.1)

We noted this equation bears a striking resemblance to the Lie-Poisson bracket:

[F,G]L-P =

〈
ξ,

[
δF

δξ
,
δG

δξ

]
L

〉
(9.2)

Both of these equations appear to be leveraging the Poisson and Lie structures.

A point of further improvement to this dissertation would be in exploring the Lie-

Poisson bracket, its usage in indirect methods of trajectory optimization, and practical

implementation in modern software packages.
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