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ABSTRACT

Hyun, Jae-Sang Ph.D., Purdue University, May 2020. High-Accuracy, High-speed
3D Optical Sensing in Unstructured Environments. Major Professor: Prof. Song
Zhang, School of Mechanical Engineering.

Over the last few decades, as many companies have released low-cost commercial-

ized 3D sensors, vision-based 3D sensing has been more accessible and ubiquitous.

As a result, the range of applications for 3D-sensing technology has been extended to

medicine, entertainment, and manufacturing, as well as other industries. However,

unlike with well-controlled industries such as manufacturing factories, commercial

sensors and resolutions are not yet accurate enough to be applied in unstructured

environments, such as construction sites. For example, to inspect the inside of large

infrastructures such as steel bridges, robots need high-accuracy 3D maps for inspec-

tion and path planning, and robot sensors should be robust enough to withstand

harsh weather. To achieve the goal of scanning and inspecting surrounding environ-

ments, the 3D imaging system needs to reconstruct 3D images with high accuracy,

high speed, and robustness to noise.

The first challenge in realizing a high-accuracy 3D imaging system in unstructured

environments is noise in captured images. To improve the robustness of 3D images,

we developed a computational framework by using geometric constraints for high-

accuracy 3D sensing with only two-frequency patterns. A previously existing two-

frequency phase unwrapping method has a limitation in accuracy because the scaling

factor, which is calculated by the difference in fringe width between low-frequency

and high-frequency patterns, significantly amplifies the noise signal. The framework

suggested to use the relationship of optical devices for 3D sensing inversely. We can

dramatically decrease the scaling factor required to reconstruct 3D images. Without
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additional patterns, we can measure the geometry of objects within a certain depth

range accurately.

The second challenge is mainly caused by the dynamic motion of moving platforms.

If the sampling rate of 3D sensing is low, it is difficult for robots to localize the

platform, generate 3D maps for surrounding environment, and make a right decision

in planning a path or inspecting sites based on the information. To increase the

speed of 3D sensing, we can reduce the number of patterns used for generating one

3D image. The number of patterns is an important factor in determining the speed of

3D reconstruction because a camera captures the patterns sequentially, which means

that the number of patterns is proportional to the time taken to capture a set of

images for one 3D image. We developed a method to reduce the number of patterns

by using geometric constraints. In addition, by integrating texture image of the object

with a phase-coding method, we used a total of five binary patterns to get absolute

phase map for 3D reconstruction. By doing experiments with a high-speed camera,

the sensing system captures 2D images at 3,333 Hz, and 3D images at 667 Hz.

Although the speed of 3D sensing has increased through reducing the number

of patterns, the system has fundamental limitations in speed and spectrum of light.

The system typically includes at least one Digital Light Processing (DLP) projector

because of its accuracy and flexibility. However, the mechanism of the DLP projector,

which flips a set of micro mirrors inside the projector for determining whether each

pixel is turned on or off, slows down the speed of 3D sensing. To overcome the speed

limitation, we designed a custom-made mechanical projector that rotates a wheel

with evenly spaced spokes. By using the rotating wheel, the projector generates

fringe patterns for phase retrieval, which is the same as that which the DLP projector

generates. With the mechanism, we realize a speed of up to 10 kHz for 3D sensing.

In addition, we can overcome another limitation the DLP projector has, which is a

limited spectrum of light. The micro mirrors can reflect only a specific light spectrum,

and the light emitter inside the projector is not replaceable. The mechanical projector
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places the source of light independently, so, a broad-light spectrum—including visible,

infrared (IR), near infrared (NIR), and ultra-violet light—can be used for 3D sensing.

In summary, this dissertation research has contributed methods for realizing high-

accuracy and high-speed 3D shape measurement: (1) using geometric constraints in

phase-retrieval procedures to reduce noise on the captured images; (2) reducing the

number of images for one 3D image to realize high-speed 3D shape measurement; and

(3) developing a new type of projector to avoid the limitations in light spectrum and

achieve high-speed 3D data. These contributions enable engineers, workers, and even

robots to monitor unstructured environments with 3D sensor accurately and quickly

analyze the situations they face in the fields of infrastructure maintenance, homeland

security, and construction.
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1. INTRODUCTION

Since the 1990s, automation in manufacturing has led to highly increased productiv-

ity and efficiency. The term automobile factory may conjure up an image of numerous

robot arms engaged in manufacturing processes, such as welding, assembly, and paint-

ing. To minimize the defect rate of the final products, numerous sensor technologies

are integrated and used for inspecting products or supervising processes in detail.

Accurate 3D sensing is of especially great importance to manufacturing processes for

quality improvement and defect reduction [1–3]. Although some accurate measuring

tools use a contact method, inspecting a product by contacting a number of points

takes a long time, thus making it more desirable to use a non-contact method for the

sake of expediency.

The non-contact optical techniques for 3D sensing utilizes the properties of light;

this requires an environment that can block factors such as lighting, air, and tem-

perature from affecting the sensors’ performance. A manufacturing factory is good

because it can readily control these factors; however, it is difficult to apply the same

technology to unstructured environments such as construction sites because these sites

are more vulnerable to the changes in the environment. Even if the release of low-

cost commercial 3D sensors makes it easier to generate 3D images of the surrounding

environment, the accuracy and spatial resolution are still very low compared to the

level of accuracy required in automation and robotics [4]. More crucially, these 3D

sensors are vulnerable to dust and changes of lighting, which makes it difficult for

them to be used in unstructured environments.

This dissertation aims to improve 3D sensing technology by allowing it to be used

in unstructured environments. Specifically, the research focuses on achieving (1) high

robustness to noise, (2) high-accuracy and high-speed 3D reconstruction, and (3)

seamless stitching of 3D images for the surrounding environments. The goal of my
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research is to deal with each of these issues and ultimately seek a way to adapt the

3D technology in the unstructured environments.

The rest of this chapter provides motivation and objectives for the current re-

search, followed by the overall organization of the dissertation.

1.1 Motivation

1.1.1 Automation and robotics in construction

Automation and robotics in construction (ARC) has not received much attention

from companies and governments as much as manufacturing has [5]. Although an

astronomical amount of money is allocated to build environments, infrastructures,

and facilities every year, productivity in the construction industry has been declin-

ing [6]. Furthermore, the societies of many developed countries are rapidly aging,

and the number of workers in construction sites are decreasing [7]. Even the current

young generation is reluctant to work in the construction industry, which consumes

tremendous raw materials and exposes workers to harsh working conditions. For

these reasons, governments, major companies, and universities are trying to apply

automation and robotics in construction to replace human workers with the robots.

One major example of robots in construction is that of mobile robots in steel-

bridge inspection. There are more than 600,000 bridges in the United States, and

among them, more than 50,000 bridges are structurally deficient and in need of re-

pair [8]. In order to inspect the inside of the steel-bridge structures, human workers

have to climb the huge steel bridge and go through narrow tunnels. This human labor

costs a tremendous amount of money every year [9] and is not very accurate because

it necessarily entails human errors. Furthermore, this kind of inspection increases the

risk for serious physical injury to construction workers. According to an Occupational

Safety and Health Administration (OSHA) report, working in confined spaces for a

long time increases the risk of serious physical injury [10]. For these reasons, mobile

robots have been widely used in steel-bridge inspections.
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Unlike the robots in a manufacturing line performing repetitive tasks in an un-

changed setting, mobile-inspection robots respond to their surrounding unstructured

environments in approaching the target position and carrying out tasks. Additionally,

they must deal with changes in the environment, such as the interference of lighting,

dust, and weather. With the development of a high-performance processor, modern

robots have been improved to integrate information from various types of sensors

and process the data in real time to plan a motion path. However, the complexity

of the unstructured environment in construction sites makes it difficult for robots to

apply general localization and mapping algorithms. A few research groups designed

the inspection robots to generate 3D maps inside tunnels, based on information from

the sensors [11]. They succeeded in making the robots plan the paths with a laser-

based 3D sensor [12]. However, the robots’ sensors did not have high accuracy and

resolution to recognize the areas that needed renovation.

Measuring the depth of the area and detecting the location of the rust are some of

the key factors in diagnosing the status of the bridge, and this requires sensors with

high accuracy and high resolution. The improved sensor will not only increase the

task performance, but will also reduce the inspection time for robots.

1.1.2 Autonomous vehicle

Autonomous vehicles have been studied extensively since the 2000s. Many in-

ternational and domestic competitions, such as DARPA Urban Challenge, to elevate

levels of autonomy in vehicles [13]; additionally, major companies such as Google and

Tesla have invested significant capital into commercializing their autonomous vehicles.

For passenger transportation, the levels of autonomous driving can be classified into

five levels, from zero (non-autonomous vehicle) to five (fully autonomous, or without

the need of a human driver) [14]. With the development of sensors, networks, image

processing, and computing power, many companies have achieved a goal of highly
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automated driving; currently, a vehicle can drive autonomously for quite a long time

when accompanied by a human driver [15].

Despite these achievements, there are still many challenges to overcome. For

instance, the vehicle should be able to run in an unstructured environment where

no traffic lights are on the road or lanes are rarely visible; it also has to resolve the

social dilemma of autonomous vehicle [16], In addition, the vehicle should be able

to update its map in real time, have reactive behavior for avoiding obstacles, and

share information with vehicle-to-vehicle (V2V) technology [17, 18]. Currently, the

vehicle localizes itself by following global positioning system (GPS) signal and maps

its surroundings by using information from other sensors, such as lidar, radar, and

camera. Though the performance of lidar, which reconstructs 3D point clouds using

time-of-flight (TOF), has improved a lot, the resolution of the lidar is not enough

to detect surrounding objects independently. The camera is not sufficient because

there is no depth information of the image. In this context, high-speed and high-

resolution 3D sensing with texture image for classification of the objects and mapping

the surroundings in 3D could greatly improve the performance of autonomous vehicles.

1.1.3 Forensic science

With developments in the field of chemical and material science, a variety of

chemicals and tools have been used to collect evidence at crime scenes. However, for

collecting shoe prints or tire treads, investigators still prefer conventional methods,

such as plastering and measuring the size of the evidence with measuring tape because

newer technologies such as 3D scanners are expensive, not user-friendly, and not intu-

itive. Although plastering can reconstruct the shoe prints fairly well, the procedure of

hardening takes a lot of time; more crucially, it is an exothermic process, which might

ruin the site of the incident. In addition, the maintenance of the collected data using

the conventional method risks data loss. Therefore, the Forensic Science Research

and Development Technology Working Group (TWG) has prioritized research and
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development (R&D) to develop a system that satisfies operational requirements for

forensic science [19]. Because capturing the crime scene and collecting evidence re-

quires very high accuracy, it is another possibility where non-destructive 3D scanning

technology can be used.

1.2 Objectives

• Develop a method to improve the robustness and accuracy of the 3D

scanning algorithm by using geometric constraints.

Compared to many other 3D reconstruction methods, the digital fringe pro-

jection system (DFP) is preferable for scanning shoe prints in forensic science

and a painted surface for infrastructure maintenance because of its high spatial

resolution and high accuracy. Typically, the standard DFP system is composed

of one projector as transmitter and one projector as receiver. By projecting

sinusoidal fringe patterns onto the object and measuring the distortion level of

the patterns in the fringe analysis, the system can accurately reconstruct the 3D

geometry of the object. Based on the captured images with fringe patterns, the

system can ascertain the correspondence between the camera pixels and projec-

tor pixels one-by-one, which is key for 3D reconstruction. If the triangulation

relationship between two optical devices and the object is accurately set, the

system can reconstruct the 3D geometry accurately. However, under the un-

structured environments, it is difficult to match corresponding pairs accurately

because the sensors are disturbed by external factors. In order to reduce noise

and make the system more robust, this research aims to develop a method to use

the depth range that the system can measure as a constraint in calculating the

3D information. The system would be able to retrieve the 3D geometry within

the range more accurately and more robustly. The details of this research are

introduced in Chapter 3.
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• Develop a method to increase 3D scanning speed.

For the standard DFP system, converting the domain of captured images from

texture to phase is the most important procedure for 3D reconstruction. One

of the most common ways to retrieve the phase is through accumulating a set

of captured images. This means that the number of patterns is an important

factor to determine the speed of 3D reconstruction because the patterns are

captured by a camera sequentially; in other words, the number of patterns is

proportional to the time taken to capture a set of images for one 3D image.

This dissertation research aims to reduce the number of patterns required in

high-speed 3D sensing. By integrating texture image of the object with an

existing fringe analysis method, the required number of fringe patterns for 3D

reconstruction can be reduced.

The other challenge of high-speed 3D shape measurement for the DFP sys-

tem is that the projector utilizes 8-bit grayscale patterns to project sinusoidal

fringe patterns. However, the grayscale projection requires that the system be

precisely synchronized and do gamma calibration to compensate for nonlinear

effect. This dissertation research tries to maximize the projection speed by de-

focusing the projector lens and using binary patterns instead of 8-bit patterns.

The geometric constraints can also be used for 3D reconstruction to increase

the accuracy of the 3D reconstruction algorithm. The details of this research

are introduced in Chapters 4 and 5.

• Develop a custom-designed mechanical projector for high-speed and

high-accuracy 3D surface measurement and broad-light spectrum.

The DLP projector, which is widely used in the DFP system, has digital mirror

devices (DMD) to project a pattern(s) pixel by pixel. Micro mirrors inside

the DLP projector are made of a silicon-based material, which reflects only a

specific range of light spectrum, thereby limiting the light spectrum that can be

used for 3D sensing in the DFP system. Furthermore, the DLP projector has



7

a speed limitation for projecting gray-scale patterns needed for fringe analysis.

This research focuses on developing a new custom-designed projector, which

may overcome the light spectrum and speed limitation of the conventional DLP

projector. In order to tackle this issue, the current research places the source

of the light for projection independently and develops a projection mechanism

with a mechanical device, such as direct current (DC) motor. The details of

this research are discussed in Chapter 6.

• Compare the performance of the DLP projectors typically used for

3D reconstruction under ultra-resolution 3D shape measurement.

There are two types of DMD used in the DLP projectors: diamond-shaped pix-

els, and rectangular-shaped pixels. However, when the camera pixel size is much

smaller than the projector, in order to achieve ultrahigh resolution 3D shape

measurement, we found that the diamond-shaped DMD pixels cannot be used

to achieve high-quality 3D shape measurement. We believe that this is caused

by the sampling effect of mismatched pixel shape from the computer-generated

pixel and the projected pixel. This research focuses on the performance of the

DFP system for ultrahigh resolution 3D shape measurement using two differ-

ent types of projectors with a camera pixel size being much smaller than the

projector pixel size in object space. The details of this research are discussed

in Chapter 7.

1.3 Dissertation organization

The rest of the dissertation is organized as follows. In Chapter 2, we explain var-

ious types of sensors for unstructured environments and the configuration of sensors

for each example. In Chapter 3, we introduce a novel absolute phase unwrapping

method, which reduces noise compared to the existing methods. In Chapter 4, we

introduce an absolute phase-retrieval method, which uses only five binary patterns

and thereby increases the speed of 3D sensing. In Chapter 5, we introduce a novel
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method for the absolute phase-retrieval using only three binary patterns. In Chapter

6, we explain a novel method that enables us to utilize a broad-light spectrum and

enables superfast 3D sensing by customizing a new type of mechanical projector. In

Chapter 7, we compare the performance of two different projectors often used in 3D

reconstruction, and in Chapter 8, we outline the proposed work for this dissertation.



9

2. RELATED WORK

With the development of sensor technology, new types of sensors have been released.

Many sensors, except for ultrasonic sensor, utilize electromagnetic signal in different

frequencies to detect the environment and measure the geometries of objects. Proper

sensors should be configured depending on the environments measured. In this sec-

tion, we discuss various sensors used for recognizing the surrounding environments

and state-of-the-art sensing technologies.

2.1 Lidar

Lidar, an acronym of light detection and ranging, is one of the essential sensors for

mapping because it has relatively high resolution in 3D and long-range detecting by

using laser. The lidar uses time-of-flight (TOF), which measures the time difference

between the moment of sending a signal and the moment of receiving the signal

from the target and calculating the distance by multiplying the speed of light. For

mobile applications, NIR lasers ranging from 780 nm to 2500 nm are most common

because the lights are invisible and a high-frequency laser can harm the human eye.

Lidar sensors have been used extensively in robotics, construction, and autonomous

vehicles. For autonomous vehicles, the lidar typically generates a 3D map by rotating

the system 360 degrees, as shown in Fig. 2.1(a). Figure 2.1(b) shows an example of

autonomous vehicle that has a lidar on top of the vehicle, and Fig. 2.1(c) shows a 3D

map generated by the lidar. Even if the lidar succeeded in making a long-range and

real-time 3D map, the sensor has still fused with other camera-based sensors such as

stereo vision camera and RGB-D sensor in real applications because the number of

point clouds is not enough for object classification or image segmentation, and there

is no color information on the 3D data.
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(a) (b) (c)

Fig. 2.1. (a) An image of Velodyne HDL-64E lidar1; (b) an image of
lidar attached on top of a car2; (c) lidar data set at a moment3.

Commercial solid-state lidar units have been developed, which utilize optical

phased array technology to steer the laser beam instead of rotating the system [20]

as shown in Fig. 2.2(b). Replacing the rotating mechanism of lidar with a million

individual micro-scale emitters helps lower the cost and increase accessibility to the

people. However, to scan the surrounding environments in 360 degrees, integrating

several lidar sensors is required because of the angle the sensor can scan, as shown

in Fig. 2.2(c). In addition, other types of sensors are still required to recognize the

surrounding object in localization and mapping. For example, to localize the vehicle

in the generated 3D map, GPS and Inertial Measurement Units (IMUs) are typically

integrated with the 3D data by lidar. However, GPS signal is not accurate in urban

areas because of the interference of signals, and IMUs can provide only the current

mechanical state of the vehicle. By accumulating the signals from IMUs, the vehicle

can get help localizing itself, but there is an inherent error: drift. In addition, the

lidar is not sufficient for recognizing environmental features such as lane markers and

curbs, as seen in Fig. 2.1(c).

1https://velodynelidar.com/hdl-64e.html
2https://atmelcorporation.wordpress.com/2015/09/08
3https://www.cnet.com/roadshow/news/how-lasers-map-the-world-for-self-driving-cars
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(a) (b) (c)

Fig. 2.2. (a) An illustration of how the solid-state lidar sensor
works1;(b) a schematic diagram of using multiple solid-state lidar
units2; (c) a illustration of scanning area that each solid-state lidar
sensor can see

2.2 Radar

Radar, an acronym of radio detection and ranging, is a system for detecting objects

and measuring their location with electromagnetic radiation [21]. Even though the

system cannot recognize the color of objects or receive detail information, the system

consistently performs the measurement in harsh conditions such as darkness, haze,

fog, rain, and snow. For this reason, from autonomous vehicles to space surveillance,

the radar system has been extensively used to detect surrounding objects. The system

consists of one emitter and one receiver to detect the reflected signal. For radar sensors

used in mobile platform such as autonomous vehicles and service robots, the sensors

can be classified, depending on the range the sensor can detect. Long-range radar

typically detects objects at a distance of up to 250 m, and mid-range radar detects

an object at a distance of up to 30 m [22].

2.3 Vision-based 3D shape measurement technologies

For a few decades, high-speed and high-accuracy 3D shape measurement tech-

niques have been used extensively in medicine, manufacturing, and even entertain-

1https://quanergy.com/s3
2https://www.youtube.com/watch?v=n3S8Io0kZZs



12

ment. Additionally, a lot of companies have successfully commercialized 3D sensor

modules, such as Microsoft Kinect, Intel RealSense, and Orbbec Astra, as shown in

Fig. 2.3, and major cell phone manufacturers have tried to put 3D techniques into

their cell phone devices for security and entertainment [4].

(a) (b) (c)

Fig. 2.3. Commercial 3D cameras. (a) Microsoft Kinect1; (b) Intel
RealSense2;(c) Orbbec Astra3.

The two major categories of vision-based 3D imaging technologies are the passive

and the active methods. The passive methods do not use any illumination devices to

obtain 3D images. The methods only utilize the reflected light from the object to be

measured. Standard stereo vision is one of the most widespread and direct methods to

reconstruct 3D. Figure 2.4 shows the typical setting of standard stereo vision. There

are several advantages of using the stereo-vision for 3D reconstruction. First, it is

easy to implement because only cameras are used to retrieve 3D image. Second, it is

appropriate for high-speed 3D shape measurement because only a pair of images at

the different perspectives are required to reconstruct one 3D image. Therefore, the

speed of getting 3D images is the same as the speed of capturing images with the

cameras.

From the captured images, the processor finds corresponding pairs of the images

by calculating the correlation. Based on the corresponding-pair information, the pro-

cessor can facilitate 3D reconstruction with triangulation [23, 24]. If the processor

1https://en.wikipedia.org/wiki/Kinect
2https://www.intelrealsense.com
3https://orbbec3d.com
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Fig. 2.4. A typical setting of standard stereo vision

tries to find the correspondence by comparing two images from the start, the com-

putational cost is high. To mitigate the problem, the concept of epipolar geometry is

applied and described in Fig. 2.5. O represents the focal point for the camera and the

superscripts l and r describe the left camera and the right camera respectively. El and

Er are the intersection points between the line OlOr and the two captured images,

which are called as epipoles. For example, a pixel P l has many candidates such as

P1, P2, and P3 and one of them should be the corresponding point, depending on the

depth in a 3D space. Even though all candidates has different depth information, all

these points should be on the same line Lr, which is called epiploar line. By applying

the same geometric conditions to other points on Ll, every point on the line Ll must

correspond to a point on the line Lr. Then, the epipolar plane is formed by P l, Ol,

and Or. The processor simplifies the algorithm to find the corresponding points by

searching it based on the epipolar line.

To speed up the procedure of finding corresponding pairs, image rectification,

which makes the epiploar lines on the same row, is required. With the use of rotation

and translation matrices indicating the relationship between two cameras, the images

from two cameras can be modified in the direction of aligning epipolar lines. Before

rectifying both images, the epipolar lines are not aligned on the same row. By using
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Fig. 2.5. A schematic diagram of epipolar geometry

the calibration data of two cameras, we can obtain the rectified images as shown in

Fig. 2.6. As the green horizontal lines shows, it makes the processor easier to find the

corresponding points by comparing the pixel value within the horizontal line.

Fig. 2.6. A pair of rectified images for stereo matching, horizontal
green lines show representative epipolar lines

Based on the epipolar geometry and the image rectification, numerous algorithms

for stereo matching have been developed. Based on the way of the optimization,

the algorithms can be classified into two categories: local stereo matching algorithms

[25–27] and global stereo matching algorithms [28,29].
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Even if the algorithm reduce the computational work significantly and new-released

algorithms speed up the calculation speed effectively, there are inherent limitations

in resolution and accuracy. The standard stereo-vision methods rely on the texture

value of the images; therefore, if the system tries to reconstruct a 3D image of a flat,

white plane, the algorithms may fail to find the correspondence.

On the other hand, the active methods have at least one light emitter to project

light to the object to facilitate 3D reconstruction. By using the preset patterns, the

processor can easily find the correspondence pairs between optical devices and increase

the accuracy and the resolution of the measuring system. The configuration of optical

devices could be different, depending on the patterns used for 3D reconstruction. For

example, an IR emitter can be used to compensate for the limitations of the standard

stereo vision by projecting a statistical pattern on an object. Even if the object

to be measured does not have enough feature points for standard stereo vision, the

processor already has the information of the pattern and calculates the corresponding

pairs quickly and accurately. The statistically random patterns have been successfully

adopted in commercial 3D sensors such as Microsoft Kinect V1, Intel RealSense R200,

and iPhone X. Figure 2.7 shows the patterns used in these commercial 3D sensors [4].

The advantage of using these random patterns is to achieve relatively higher accuracy

and higher resolution than what the standard stereo vision can achieve. Because of the

simple-hardware setting, the sensors can be miniaturized easily and commercialized

inexpensively. However, these active methods with statistical random patterns to

reconstruct 3D images also have the fundamental limitations for high-accuracy and

high-resolution 3D shape measurement. The projected light can be interfered with

another light source. In other words, the system is sensitive to noise. Additionally, a

feature point of the projected pattern on the object takes more than one camera pixel.

Therefore, the system standardizes the spatial resolution of the system downward,

even if the corresponding pairs can be matched by using the correlation method.

To overcome the limitation in spatial resolution and enhance the accuracy of the

measuring system, researchers have used fringe projection techniques in 3D shape
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(a) (b) (c)

Fig. 2.7. Statistically random patterns used in commercial 3D sensors.
Patterns used in (a) Microsoft Kinect; (b) Intel RealSense; and (c)
Apple iPhoneX.

measurement. Instead of using the intensity of surface texture, the processor finds

corresponding pairs by searching in phase domain, which is continuous and uniquely

defined in both horizontal and vertical directions. The patterns for obtaining the

phase information repeat changing from black to white gradually for each period, as

shown in Fig. 2.8. These are called fringe patterns or sinusoidal structured patterns.

Fig. 2.8. A schematic diagram of a DFP setup

Because the system typically includes at least one digital video projector, the

technology is referred to as the digital fringe projection (DFP) technique. Fig. 2.9

illustrates the relationship between an object(s) to be measured and the DFP system,

including one camera and one projector. When the fringe patterns are projected on

the object, the fringes are distorted depending on the geometry of the object. If

the object has a flat surface, a distortion of the patterns rarely occurs. Otherwise,
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if the object has some curves or a rough surface, the stripes on the patterns are

distorted. By capturing the distorted patterns on the object, we can calculate the

phase information used for 3D reconstruction.

Fig. 2.9. A schematic diagram of a DFP setup

There are many methods related to retrieving the phase from the fringe images.

Fourier Transform Profilometry (FTP) is one of the methods for phase retrieval,

which utilizes frequency domain to extract the phase information. The FTP-based

methods have the merit of high-speed 3D reconstruction because, theoretically, only

one image is required to retrieve phase [30,31]. Despite the advantage, the method is

very sensitive to noise and surface texture variation. Therefore, many FTP methods

using an additional one or more patterns have been developed [32,33]. Still, the FTP

methods are mainly adopted to measure relatively smooth surfaces or the object

that has not much difference in depth. Instead of the FTP methods, phase-shifting

profilometry (PSP) is widely used in 3D shape measurement because of high accuracy,

high-spatial resolution, and robustness to noise [34].
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The fringe pattern can be mathematically described as,

I(x, y) = I ′(x, y) + I ′′(x, y) cos[φ(x, y)], (2.1)

where I ′(x, y) is the average intensity, I ′′(x, y) the intensity modulation, and φ(x, y)

the phase to be solved for. The fringe patterns for PSP can be described as,

Ik(x, y) = I ′(x, y) + I ′′(x, y) cos[φ(x, y)− δk], (2.2)

where the subscript k means the k-th fringe image, and δ indicates the phase shift.

After capturing k images from the camera, the phase can be solved as,

φ(x, y) = − tan−1

[∑N
k=1 Ik(x, y) sin δk∑N
k=1 Ik(x, y) cos δk

]
. (2.3)

By the inherent properties of inverse tangent function, the phase ranges from −π

to π. It means that the phase value for each pixel repeats every period. We often

called the phase a wrapped phase. To uniquely define the phase value along one

axis, phase unwrapping is essential for 3D reconstruction. To unwrap the wrapped

phase, we need to add or multiple integer numbers of 2π. The number 2π added for

each pixel is referred to as fringe order. As a result, the process of determining the

fringe order is the phase unwrapping [35]. Numerous phase unwrapping algorithms

has been developed recently. We can classify the algorithms into two large groups:

spatial phase unwrapping algorithms and temporal phase unwrapping algorithms.

Spatial phase unwrapping algorithms utilize the phase value of surrounding points

in the same phase map through a local or global optimization [36–38]. The algorithms

assume that the phase map is connected continuously. However, if the difference in

phase value is larger than 2π—which means that there is a radical depth change, or

objects to be measured are isolated—then it is very challenging to determine correct

fringe order.

On the other hand, temporal phase unwrapping algorithms determine the fringe

order by capturing additional images. The most representative algorithm is the binary

coding method, or encoding the fringe order into a set of binary patterns. Mixing with
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the phase-shifting method, the method is often called a hybrid method [39]. Fig. 2.10

illustrates how the binary coding method unwrap the wrapped phase. Furthermore,

more algorithms related to encode the codeword for the fringe order into the patterns

have been developed [40,41].

Fig. 2.10. A schematic diagram of binary-coding unwrapping algorithm

Another temporal phase unwrapping algorithm is to utilize multi-frequency for

fringe patterns [42]. Two or more sets in different fringe densities of patterns are

used for phase unwrapping. If we set fringe period T as the number of pixels in a

period of fringe pattern, then the equivalent fringe period Teq can be calculated as,

T eq =
T1T2
|T1 − T2|

, (2.4)

where T1 and T2 are fringe periods for two different frequencies. Then, we can calculate

equivalent phase φ12 for two period, by using

φ12 = [φ1 − φ2] mod (2π), (2.5)
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where φ1 and φ2 are phases corresponding to T1 and T2 respectively. After calculating

multiple phase maps in different frequencies, the equivalent phase which covers the

whole projection pattern becomes the absolute phase Φeq which is the final result of

integrating all phase maps with Eq. (2.5) as,

Φeq(x, y) = φeq(x, y). (2.6)

If only two frequencies are used, φeq is equal to φ12. The fringe order k for phase

unwrapping can be determined by the precalculated equivalent phase map Φeq and

k(x, y) =
Φeq(x, y)× Teq/T1 − φ1

2π
. (2.7)

Because we can obtain the fringe order after calculating the equivalent phase map,

the method is often referred to as backward phase unwrapping. The more frequencies

fringe patterns have for projection, the less influence of noise the 3D image can be

obtained with [43]. Therefore, more than two frequencies are desirable for the robust-

ness of 3D reconstruction. However, for high-speed 3D sensing experiments, utilizing

more than two-frequency fringe patterns slows down the speed of 3D reconstruction

because the number of frequencies is proportional to the number of fringe patterns

for projection to obtain one 3D image [44]. To reduce the number of fringe patterns

for one 3D image, An et al. developed a method of using the relationship between

the phase value and the 3D coordinate inversely as geometric-constraints [45]. By

setting an imaginary depth range to be measured and referring the phase value of

the imaginary boundaries, the methods can automatically unwrap the phase; thus, it

is more suitable for high-speed application. With high-frequency fringe patterns, the

system can obtain high-accurate and high-speed 3D shape measurement results.

In the meantime, other researchers have tried to add at least one more optical

device to the standard DFP system [46–48]. They developed the DFP systems with

two cameras and one DLP projector. The system reconstructed the 3-D model of the

object with fringe patterns and a statistical pattern to use the benefits of standard

stereo vision and DFP techniques. Instead of using two cameras, a multi-view DFP
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system was built using mirrors [49]. Because the standard DFP system can recon-

struct only the 3-D geometry that the optical devices can see, the loss of data occurs

for the occluded area of the object. By setting the mirrors to make the system see

the occluded area, the system reconstructed the 3-D geometry of the occluded area,

which means that the 360-degree 3D model was achieved.
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3. ENHANCED TWO-FREQUENCY PHASE-SHIFTING

METHOD

3.1 Introduction

High-speed and high-accuracy three-dimensional (3D) shape measurement is of

great interest to numerous applications including in-situ quality control in manufac-

turing and diseases diagnosis in medical practices.

Among all 3D shape measurement techniques developed, phase-based methods

using fringe analysis techniques uniquely stand out due to their measurement speeds

and accuracy. Retrieving phase from a sequence of phase-shifted fringe patterns is

one of most popular methods since they can recover phase for each point, are less sen-

sitive to surface reflectivity variations etc. Typically, the phase directly obtained from

fringe patterns can only provides phase value ranging from −π to +π, and a phase

unwrapping algorithm has to be adopted to recover a continuous phase map. Phase

unwrapping can be classified into spatial and temporal phase unwrapping categories.

The spatial phase unwrapping determines 2π discontinuous locations from the phase

map itself and adds or subtracts multiple number of 2π accordingly. Numerous phase

unwrapping algorithms have been developed with some being fast but less robust and

some being robust but slow; and the principles and various spatial phase unwrapping

algorithms have been summarized in Book [36]. Among those spatial phase unwrap-

ping algorithms, the popular ones are reliability-guided phase unwrapping algorithms

since they tend to be robust. Different reliability-guided phase unwrapping algo-

rithms have be reviewed in Reference [50]. Regardless the robustness of any spatial

phase unwrapping algorithms, they typically only generate a relative phase map that

is relative to a point for each connected component. Therefore, 3D reconstructed

shape using a spatial phase unwrapping usually only provides relative geometry to
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that point instead of absolute geometry. Furthermore, the majority spatial phase

unwrapping algorithms fail if abrupt surface changes introduce more than 2π phase

changes from one point to the next point.

Temporal phase unwrapping, in contrast, tries to fundamentally eliminate the

problem of spatial phase unwrapping by capturing more images. And one of the pop-

ular methods is to use multi-frequency (or wavelength) phase-shifting techniques [43,

51,52], where fringe patterns with different fringe periods are used to generate equiv-

alent phase map, φeq. If the equivalent phase map ranges from −π to π covers the

whole range of surface, no phase unwrapping is necessary and thus φeq can be regarded

as the unwrapped phase, or Φeq = φeq. Φeq can then be used to determine fringe order

for each point on the high-frequency phase for temporal phase unwrapping.

Multi-frequency phase unwrapping algorithms were developed for laser interferom-

etry systems. Due to the flexibility of digital fringe projection (DFP) techniques, more

temporal phase unwrapping algorithms have been developed including gray-coding

plus phase-shifting methods [53, 54], spatial coding plus phase-shifting method [55],

and phase-coding plus phase-shifting methods [56–58]. Comparing to the two-frequency

phase-shifting based temporal phase unwrapping method, the gray-coding methods

typically requires more than three additional binary patterns to determine fringe or-

ders; and the method of spatial coding requires the knowledge of neighborhood pixel

information, and could fail if the surface is not locally smooth; and phase-coding

methods only need three additional fringe patterns, yet it is difficult to differentiate

the encoded fringe orders if the noise is large that is the same problem as conventional

two-frequency phase-shifting methods.

It is desirable for high-speed applications to use less number of fringe patterns

to reconstruct one 3D frame, and thus two-frequency phase-shifting algorithm is

preferable. Yet, large noise could completely fail the fringe order determination, as

thoroughly discussed by Creath [59]. Conventionally, multi-frequency phase-shifting

algorithms are often used in lien of the two-frequency phase-shifting algorithm for

applications where noise is severe. This chapter proposes a method to enhance the
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robustness of the two-frequency phase-shifting method yet not to increase the num-

ber of patterns captured. In lien of using more patterns, this proposed method uses

geometric constraints of DFP system to reduce the noise impact by allowing the use

of more than one period of equivalent phase map to determine fringe order. Exper-

iments demonstrated that noise impact on phase unwrapping can be reduced by a

factor of 4 or even higher.

Section 3.2 explains the principles of the proposed out-of-focus camera calibration

method. Section 3.3 shows some simulation results to validate the proposed method.

Section 3.4 presents experimental results to further validate the proposed method.

Lastly, Section 3.5 summarizes the paper.

3.2 Principle

This section thoroughly explains the principle of the proposed two-frequency

phase-shifting method. Specifically, we will present the basics of two-frequency phase-

shifting algorithm, details the minimum phase generation using geometric constraints

of the calibrated DFP system; and explains how to use the minimum phase to enhance

the two-frequency phase-shifting method.

3.2.1 Two-frequency phase-shifting algorithm

As aforementioned, phase-shifting algorithms are extensively used in optical metrol-

ogy. Over the years, numerous phase shifting algorithms have been developed in-

cluding three step, four step and least squares [60]. For high-speed applications, a

three-step phase-shifting algorithm is desirable since it uses the minimum number of
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patterns to recover phase. For a three-step phase-shifting algorithm with equal phase

shifts, three fringe images can be mathematically described as,

I1(x, y) = I ′(x, y) + I ′′(x, y) cos(φ− 2π/3), (3.1)

I2(x, y) = I ′(x, y) + I ′′(x, y) cos(φ), (3.2)

I3(x, y) = I ′(x, y) + I ′′(x, y) cos(φ+ 2π/3). (3.3)

Where I ′(x, y) is the average intensity, I ′′(x, y) is intensity modulation, and φ is the

phase to be solved for. Solving (3.1)–(3.3) simultaneously leads to

φ(x, y) = tan−1

[ √
3(I1 − I3)

2I2 − I1 − I3

]
. (3.4)

The phase obtained from (3.4) ranges from −π to π with 2π discontinuities, and

this phase is called wrapped phase. The process of removing 2π discontinuities to

obtain a continuous phase map is called phase unwrapping. As discussed in Sec. 3.1,

there are two types of phase unwrapping methods: spatial and temporal with spatial

algorithms being limited to smooth and continuous phase reconstruction and temporal

algorithms being more general but requires additional information.

One of the temporal phase unwrapping methods is to use multi-frequency phase-

shifted fringe patterns, where fringe patterns with different fringe periods are used

to generate equivalent phase map, φeq. If the equivalent phase map ranges from −π

to π for the whole surface, no phase unwrapping is necessary. Therefore, φeq can

be regarded as unwrapped phase Φeq = φeq. Φeq can be used to determine fringe

order for each point on the high-frequency phase for temporal phase unwrapping.

For high-speed measurement, a two-frequency phase-shifting algorithm is preferable

comparing to three- or more-frequency phase shifting algorithms since it uses less

number of images for 3D reconstruction.

From two-frequency phase-shifted fringe patterns, one can obtain two wrapped

phase maps φ1(x, y) and φ2(x, y). The equivalent phase map can be computed as

φeq(x, y) = φ1(x, y)− φ2(x, y) mod 2π, (3.5)
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here mod is the modulus operation. If the equivalent phase, φeq, does not have any

2π discontinuities, it can be regarded as unwrapped phase Φeq and be used to unwrap

φ1(x, y) and φ2(x, y) pixel by pixel.

For a DFP system, the frequency of a fringe pattern is actually defined as 1/T ,

where T is fringe period in pixel. If the fringe periods used for a two-frequency phase-

shifting algorithm are T 1 and T 2, it is straightforward to prove that the equivalent

fringe period to generate the equivalent phase is

T eq =
T 1T 2

T 2 − T 1
, (3.6)

assuming T 2 > T 1.

Therefore, the condition to use two-frequency phase shifting algorithm for tempo-

ral phase unwrapping is that T eq is the whole projection range. In such a case, the

fringe order for high frequency 1/T 1 can be determined by

K(x, y) = Round

[
φeq(x, y)T

eq

T 1 − φ1(x, y)

2π

]
, (3.7)

to temporally unwrap φ1(x, y) by

Φ1(x, y) = φ1(x, y) +K(x, y)× 2π. (3.8)

Here Round() is to round a floating point number to its closest integer number, and

Φ1(x, y) is the unwrapped phase of φ1(x, y).

The two-frequency phase unwrapping algorithm discussed above works in princi-

ple, yet has two major limitations:

1. Limited frequency choice. It is well known that using higher frequency (or

smaller T ) fringe patterns can generate accurate phase, and thus it is preferable

to use smaller T for higher accuracy 3D shape measurement. However, the two-

frequency phase-shifting algorithm limits its choices. For example, if a three-

step phase-shifting algorithm is used, it is preferable to use a fringe period of

n × 3 pixels (here n is an integer) to avoid phase shift error. Based on this

constraint, in order to generate T eq = 1024 pixels, the smallest fringe periods
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to use are T 1 = 54 pixels and T 2 = 57 pixels, which are very large comparing

to the desired value of around 30 pixels.

2. Large noise impact. From (3.7), one may notice that the equivalent phase φeq

is scaled up by a scaling factor of T eq/T 1 to determine fringe order K(x, y). It

is important to note that the noise in φeq is also proportionally scaled up by a

factor of T eq/T 1. This scaled noise could lead to incorrectly determine fringe

order, K(x, y). For example, if the phase noise is 0.2 rad, a scaling factor of 18

could lead to incorrect fringe orders.

Due to the flexibility of digital fringe pattern generation, the DFP methods miti-

gate the former limitation by directly projecting the equivalent frequency fringe pat-

terns that one single fringe covers the whole projection range (e.g., T 2 = T eq = 1024

pixels for a projector resolution of 1024 × 768) and then use φ2(x, y) = φeq(x, y) to

unwrap φ1. By doing so, it allows the use of higher frequency fringe patterns (e.g.,

T 1 = 30 pixels). The consequence of using such approach is that the noise problem

could be amplified since the scaling factor T eq/T 1 could be even larger. For exam-

ple, if T 2 = 1024 and T 1 = 30 pixels, the scaling factor is 34; and the phase noise

larger than 0.1 rad for a point can lead to a wrong fringe order. As a result, the

two-frequency phase-shifting method is not very appealing to practical applications,

and three or more frequency phase-shifting algorithms are more extensively used.

One may realize that the fundamental problem associated with the aforementioned

two-frequency phase-shifting algorithm is its requirement of T eq is large enough to

cover the whole measurement range; and if this strong requirement is relaxed, the

two-frequency phase-shifting algorithms could be substantially enhanced.

In this research, we propose to use the geometric constraints of DFP systems to

improve the performance of two-frequency phase-shifting algorithms. To understand

such an approach, we will introduce the mathematical model of DFP system and

how to use such a model to setup constraints for temporal phase unwrapping such as

smaller T eq can be used.
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3.2.2 DFP system model

In this research, we use a well-known pinhole model to describe an imaging

lens. This model essentially describes the relationship between 3D world coordi-

nates (xw, yw, zw) and its projection onto a 2D imaging coordinates (u, v). The linear

pinhole model can be mathematically described as,

s


u

v

1

 = A
[

R t
]

xw

yw

zw

1

 . (3.9)

Where,

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 , (3.10)

t =


t1

t2

t3

 , (3.11)

A =


fu γ u0

0 fv v0

0 0 1

 , (3.12)

respectively represents the rotation R and the translation t from the world coordinate

system to the lens coordinate system; and the projection A from the lens coordinate

system to the 2D image coordinate system. s is a scaling factor; fu and fv are the

effective focal lengths; γ is the skew factor of u and v axes, and for modern cameras

γ = 0; and (u0, v0) is the principle point, the intersection of the optical axis with the

imaging plane.
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For simplicity, let us define the projection matrix P as

P = A
[

R t
]

=


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

 , (3.13)

which can be estimated from calibration.

The same lens model is applicable to both the projector and the camera, and

the only difference is that the projector is the inverse of a camera. Therefore, if the

camera and the projector are calibrated under the same world coordinate system, we

have

sp
[
up vp 1

]t
= Pp

[
xw yw zw 1

]t
, (3.14)

sc
[
uc vc 1

]t
= Pc

[
xw yw zw 1

]t
, (3.15)

Here superscript p represents projector, superscript c presents camera, and superscript

t represents transpose of a matrix. After calibration, Pp and Pc are known.

3.2.3 Temporal unwrapping use minimum/maximum phase maps

For any given calibrated DFP system, the calibration volume is well known, which

defines minimum z, zmin and maximum z, zmax.

From (3.15), if zw is known, for any given pixel (uc, vc), coordinates xw and yw

can be uniquely solved. Once (xw, yw, zw) coordinates of a given point (uc, vc) are

known, its corresponding point on the projector (up, vp) can be computed using (3.14).

Because the phase on the projector is well defined for any given pixel (even multiple

fringe periods), the camera phase map can be built for a given zw value, and such

a phase map does not have any 2π ambiguities. Therefore we can create two phase

maps Φmin and Φmax that respectively corresponds to zmin and zmax.

Figure 3.1 illustrates the basic concepts of using minimum phase, Φmin, to correct

2π discontinuities. Assume the region on the projector that a camera captures at

z = zmin is shown in the red dashed window, the phase directly obtained from three-

phase-shifted fringe patterns has one 2π jump, φ1, as shown in Fig. 3.1(a). However,
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since such phase is well defined on the projector, the Φmin can be obtained, which is a

continuous phase on the projector space, as shown in Fig. 3.1(b). The cross sections

of the phase maps are shown in Fig. 3.1(c). This example shows that if the wrapped

phase is below Φmin, 2π should be added to the phase to unwrap it. One may also

notice that even if the phase is obtained at zmax, the condition of adding 2π to φ2 is

still the same: when φ2 < Φmin.
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Fig. 3.1. Conceptual idea of removing 2π jumps of low-frequency
phase map by using the minimum phase map determined from ge-
ometric constraints. (a) Windowed regions shows phase map that
acquired by camera at different depth z: red dashed window shows at
zmin and solid blue window shows at zmax; (b) Corresponding Φmin

and Φmax defined on the projector; (c) Cross sections of Φmin and
Φmax and the wrapped phase maps with 2π discontinuities.

The above example demonstrates that the equivalent phase φeq does not have to

be continuous across the whole area: it is fine to have one 2π jump. This indicates

that the scaling factor T eq/T 1 can be half of the required value, leading to reducing

the noise impact by a factor of 2.

The question is: can we increase the number of 2π jumps and still properly find

them using the geometric constraints (or Φmin) to remove them. Figure 3.2 illustrates

the cases for 2, and 3 jumps. Figure 3.2(a) shows a case where there are two 2π jump

locations, A and B. Between A and B, the phase difference Φmin − φ1 is larger than

0 but less than 2π; but on the right of Point B, the phase difference is larger than
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2π. Therefore, 2π should be added to unwrap the point between A and B, and 4π

should be added on the right side of Point B.
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Fig. 3.2. Determination of number of 2π to be added by using Φmin

when low-frequency phase has multiple 2π jumps. (a) Example of
having two 2π jumps; (b) Example of having three 2π jumps.

For cases with three jumps shown in Fig. 3.2(b), if 0 < Φmin − φ1 < 2π, 2π (i.e.

between A and B) should be added; 2π < Φmin − φ1 < 4π (i.e. between B and C),

4π should be added; and 4π < Φmin − φ1 < 6π (i.e., beyond C), 6π should be added.

Similarly approach can be used to determine the number of 2π to be added for the

equivalent phase.

As aforementioned, the use of 2π jumps for the equivalent phase for temporal

phase unwrapping is to reduce the scaling factor. If N number of jumps are used, the

scaling factor T eq/T 1 can will be reduced by a factor of N + 1, and thus reduce the

noise impact to 1/(N+1) times.

3.3 Simulations

Simulations were performed to demonstrate the viability of the proposed method

to improve the two-frequency phase-shifting algorithm. Figure 3.3 shows an example
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Fig. 3.3. Simulation result of standard two-frequency phase unwrap-
ping when the signal to noise ratio (SNR) is not high (for this example
SNR = 25). (a) Three high-frequency phase-shifted fringe patterns
with phase shifts of 2π/3 and fringe period of T = 30 pixels; (b)
Zoom-in view of fringe patterns shown in (a); (c) Wrapped phase
of the high-frequency fringe patterns; (d) Zoom-in view of the high-
frequency phase; (e) Low frequency fringe patterns; (f) Low-frequency
phase; (g) Unwrapped high-frequency phase; (h) Zoom-in-view of the
unwrapped high-frequency phase.
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Fig. 3.4. Example of using one jump on the low-frequency phase
and geometric constraints to unwrap the high-frequency phase. (a)
Original low frequency phase φ2, the phase at zmin from geometric
constraints Φmin, and the unwrapped low-frequency phase Φ2; (b)
Unwrapped high-frequency phase Φ1.
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that fails standard two-frequency phase unwrapping when the high-frequency phase

has a fringe period of T 1 = 30 pixels; and the low-frequency phase has a fringe period

of T 2 = 1024 pixels. In this simulation, Gaussian noise was added such that the signal

to noise ratio (SNR) is 25. Figure 3.3(a) shows three phase-shifted high-frequency

fringe patterns; and Figure 3.3(b) shows a close-up view of the fringe patterns, as

can be seen the fringe patterns are noisy. Figure 3.3(c) shows the phase can be

computed using (3.4), and its zoom-in view is shown in Fig. 3.3(d). The low-frequency

fringe patterns and the phase is respectively shown in Fig. 3.3(e) and 3.3(f). Directly

applying the conventional two-frequency phase unwrapping will generate the phase

map shown in Fig. 3.3(g). Clearly, the phase is not smooth with many points being

incorrectly unwrapped. Figure 3.3(h) shows a closed-up view of the unwrapped phase,

showing that the incorrectly unwrapped phase points cannot be filtered out by filters

since they are many successive points.

We then added one jump to the low-frequency fringe patterns and use the geomet-

ric constraints to remove 2π jumps of the low-frequency phase, as shown in Fig. 3.4(a).

By using the unwrapped phase with one jump, the high-frequency phase shown in

Fig. 3.3(c) can be properly unwrapped, as shown in Fig. 3.4(b).

3.4 Experiment

To verify the performance of the proposed method, we developed a DFP system

that includes a complementary metal oxide semiconductor(CMOS) camera (Model:

Vision Research Phantom V9.1), a DLP projector (Model: Texas Instruments LightCrafter

4500) and a microprocessor (Model: Arduino Uno). The camera is attached with a 24

mm focal length lens (Model: SIGNA 24 mm f/1.8 EX DG). The camera resolution

selected was 1024 × 1024, and the image data was transferred to a computer via an

Ethernet cable. The resolution of the projector is 912 × 1140. The microprocessor

was used to synchronize the camera with the projector. The system was calibrated

using the method discussed in [61]. For all experiments presented in this chapter,
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3.5. Comparison of the conventional two-frequency phase-shifting
algorithm and the proposed enhanced algorithm when the fringe pat-
terns are of high quality. (a) Photograph of the measured statue;
(b) One of the captured high-frequency fringe patterns; (c) Wrapped
phase from high-frequency fringe patterns; (d) Wrapped phase from
low-frequency fringe patterns with fringe period of 1140 pixels; (e)
Unwrapped phase using the conventional two-frequency phase-shifting
algorithm; (f) Wrapped phase from low-frequency fringe patterns with
fringe period of 380 pixels; (g) Minimum wrapped phase Φmin; (h)
Unwrapped phase using the proposed method; (i) 3D result using the
conventional two-frequency phase-shifting method; (j) 3D result using
the proposed two-frequency phase-shifting method.

horizontal fringe patterns are generated by computer and projected by the projector.

Since the projector’s vertical resolution is 1140 pixels, the equivalent fringe period



35

has to be T eq = 1140 pixels in order to temporally unwrap high frequency phase if a

conventional two-frequency phase-shifting algorithm is used.

(a) (b) (c) (d)

Fig. 3.6. Close-up views of the results from Fig. 3.5 around the eye
region. (a) Zoom-in view of the unwrapped phase map shown in
Fig. 3.5(e); (b) Zoom-in view of the unwrapped phase map shown in
Fig. 3.5(h); (c) Zoom-in view of 3D result shown in Fig. 3.5(i); (d)
Zoom-in view of 3D result shown in Fig. 3.5(j).

We experimentally verified the performance of the enhanced two-frequency phase-

shifting method. We first test the case when fringe patterns are of high quality (i.e.,

high SNR). Figure 3.5(a) shows the photograph of the statue we measured. It is

important to note that we did not show the full resolution image of 1024 × 1024

because the rest areas are simply the background; and we crop the image the same

way for all images to for the same of clearer visualizations. In this experiment, the

high-frequency fringe patterns use fringe periods of T 1 = 30 pixels. One of the

high-requency fringe patterns and the wrapped phase map is respectively shown in

Fig. 3.5(b) and Fig 3.5(c). If a conventional two-frequency phase-shifting algorithm

is applied, the low-frequency fringe patterns have a fringe period of T 2 = 1140 pixels,

and the corresponding wrapped phase is shown in Fig. 3.5(d). Applying a conven-

tional two-frequency phase-shifting algorithm results in the unwrapped phase shown

in Fig. 3.5(e). As one might see, the unwrapped phase is not smooth on the neck

and around the right eye regions, indicating some areas of the phase are not correctly

unwrapped.

In contrast, if the proposed method is used, the low-frequency fringe pattern

can have multiple fringes. For example, we can can use fringe period of T 2 = 380
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 3.7. Comparison of the conventional two-frequency phase-shifting
algorithm and the proposed enhanced algorithm when the fringe pat-
terns have low SNR. (a) One of the captured high-frequency fringe
patterns; (b) 3D result using the conventional two-frequency phase-
shifting method; (c)-(f) 3D results using the proposed two-frequency
phase-shifting method when low frequency fringe patterns use two (c),
three (d), four (e), and five (f) periods of sinusoidal fringes respec-
tively; (g)-(k) Zoom-in views of the same regions for results shown in
(b)-(f).

pixels to reduce the noise impact. Figure 3.5(f) shows the wrapped phase map. The

minimum phase map determined from geometric constraints of the corresponding

region is shown in Fig. 3.5(g). Figure 3.5(h) shows the unwrapped phase map using

the proposed method. This phase map is smooth overall. Once the unwrapped

phase map are obtained, 3D shape can be reconstructed. Figure 3.5(i) and 3.5(j)

respectively shows 3D reconstruction using the conventional two-frequency phase-

shifting algorithm and that using our proposed algorithm.

To better visualize differences, Figure 3.6 shows the closed-up view of the un-

wrapped phase maps and the corresponding 3D reconstructions. 3D result from our

proposed method does not have spiky noisy points that are apparent on the result

from the conventional algorithm. These experiments clearly demonstrated that even
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for high-quality fringe patterns, the conventional two-frequency phase-shifting algo-

rithm could still fail to correctly unwrap the phase due to the large scaling factor

T eq/T 1. In comparison, the proposed method does not have such a problem.

To further verify the performance of the proposed method, we measured the same

statue with low fringe quality to emulate low SNR cases. Figure 3.7(a) shows one

of the capture high-frequency fringe patterns, clearly the pattern has low SNR. Fig-

ure 3.7(b) shows 3D results from the conventional two-frequency phase-shifting algo-

rithm. The whole surface is poorly measured with spiky points present everywhere,

as anticipated. In contrast, if we use the proposed method to perform measurement

under exactly the same settings, the 3D results are shown in Fig. 3.7(c)-Fig. 3.7(f)

with different number of jumps ranging from 1 to 4. To better visualize the differ-

ences, we showed zoom-in views of the overhead area for all these results, as shown in

Fig. 3.7(g)-Fig. 3.7(g). They all greatly reduced incorrectly unwrapped points with

more jumps providing better results. However, one may notice that, for such a low

SNR case, using one jump (or two periods for low-frequency fringe patterns) is not

sufficient, but using five periods of fringe patterns can almost eliminate all incorrectly

unwrapped points. It should be noted that by using five periods of fringe patterns, the

proposed method reduce the noise impact by a fact of five. These experiments further

demonstrated that the proposed two-frequency phase-shifting algorithm can indeed

greatly enhance the performance of the conventional two-frequency phase-shifting

algorithm by using the minimum phase.

3.5 Summary

This chapter has presented a method to substantially improve the conventional

two-frequency phase-shifting algorithm by using geometric constraints of the DFP

system. We demonstrated that the noise impact can be substantially reduced by

allowing the use of more than one period of equivalent phase map to determine fringe

order. Both simulation and experiments successfully verified the drastic improvements
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of the proposed method over the conventional two-frequency phase-shifting algorithm.

Since the proposed method does not require more fringe patterns to be captured, it

has the advantage of measurement speeds for high-speed applications.
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4. SUPERFAST 3D ABSOLUTE SHAPE

MEASUREMENT USING FIVE BINARY PATTERNS

4.1 Introduction

High-speed 3D shape measurement using structured light methods has been in-

creasingly employed to capture fast motion due to reduced hardware costs. Yet, it

is always beneficial to capture faster motion with the same available hardware tech-

nologies.

Typically, a high-speed 3D shape measurement system uses multiple rapidly chang-

ing structured patterns to recover one 3D shape. Given a pattern generator, its

maximum pattern switching rate is limited by its hardware layout. For example, a

now popular DLP Lightcrafter 4500 can switch binary patterns at 4225 Hz, or 8-bit

grayscale patterns at 120 Hz. Therefore, using less number of patterns to recover one

3D shape is always of interest for high-speed applications.

Fourier method uses only a single pattern for 3D shape measurement [30], yet it

is limited to measuring rather smooth surfaces without complex texture, and only

relative 3D geometry since the phase obtained from such a method is not absolute.

To increase its robustness, Guo et al. [62] developed modified FTP method that used

two fringe patterns. Though successful, it still can only measure relative shape. Li

et al. [63] added one more pattern to determine fringe order for 3D absolute shape

measurement. However, this method requires the voting process for fringe order

determination, making it difficult to measure object with complex surface geometry.

Furthermore, comparing with phase-shifting method, the phase accuracy obtained

from the Fourier method is much lower. Therefore, for high accuracy measurements,

phase-shifting methods are preferable.
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By encoding one single marker on carried fringe patterns, Zhang et al. [64] recov-

ered absolute phase only using three phase-shifted fringe patterns. Similarly, Cui et

al. [65] developed absolute recovery method by encoding a single line on three phase-

shifted fringe patterns. These marker encoding methods work if the surface geometry

is smooth since a spatial phase unwrapping algorithm is required.

Methods also developed to recover absolute phase by adding a second camera.

Li et al. [66] developed a method to obtain absolute phase with three phase-shifted

fringe patterns by using geometric constraint for a dual-camera and a single projector

system. Lohry and Zhang [46] developed two-stage method that uses stereo camera to

obtain rough disparity map and uses phase to refine the disparity map. Despite some

advantages, these techniques use two cameras and one projector. Such a dual-camera

and a single projector technique creates more shadow related problems since all three

devices must see the point in order to measure the point. Moreover, the high-speed

cameras are usually very expensive. Therefore, using a single projector and a single

camera for high-speed measurements is still desirable.

For absolute phase measurement, it typically requires more than three fringe pat-

terns for a single-projector and a single-camera system. Liu et al. [42] developed

a method that uses five phase-shifted fringe patterns by compositing two-frequency

phase information into the same phase-shifted patterns, and the absolute phase is

recovered after demodulating the phase. Zuo et al. [67] applied a similar strategy

using binary defocusing method with tripolar pulse-width-modulation (TPWM) for

kHz 3D shape measurement. However, since these methods encode two frequency

phases into the same fringe pattern, the phase-quality is compromised compared to

the single frequency phase encoding methods.

It is well known that absolute phase can be obtained by using two sets of phase-

shifted fringe patterns with two different frequencies with the equivalent wavelength

to cover the whole range of sensing [68]; and for DFP systems, one can also use a wide

fringe pattern with a single period of sinusoidal pattern covering the whole range [69].
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Yet, due to noise, it is typically difficult for two-wavelength methods to choose very

narrow fringe patterns for higher frequency phase [59].

For DFP systems, one can also combine binary patterns with phase-shifted fringe

patterns for absolute phase recovery [70]. In essence, this hybrid method uses the

binary patterns to determine fringe order for each pixel and unwrap the absolute

phase. However, three binary patterns can only generate 8 unique numbers, and

thus this method cannot use more than 8 fringe stripes if only six patterns are used.

Wang and Zhang [56] proposed a method that encodes fringe order information into

the phase of three phase-shifted fringe patterns for absolute phase unwrapping. Such

a method has proven successful to use narrow fringe patterns with only six pattern.

Yet, these methods use one more pattern for absolute phase retrieval than those

methods only using five patterns [42, 67]. To retrieve more accurate absolute phase

with higher frequency, Zheng et al. [57] proposed to use six additional patterns to

encode fringe order; though successful, it actually increases the number of patterns

used (9 total patterns). Apparently, similar concepts can be implemented into three

color channels [71], but it is well known that using color is not desirable to measure

colorful object. Lately, Xing et al. [72] attempted to use the Newton-Raphson method

to address the nonlinear gamma issues of the phase-coding method if the projector’s

nonlinear gamma is not pre-calibrated.

The above mentioned phase-coding methods all use 8-bit patterns for phase recov-

ery, which is good for slow speed applications. Yet, to capture higher speed motions,

faster 3D shape measurement is required. If binary patterns are used, much higher

frame rates (kHz) can be achieved especially a DLP projector is used. This chapter

presents a method that only uses five binary fringe patterns for pixel-by-pixel and

dense absolute phase recovery. Specifically, three dense binary dithered patterns are

used to compute the wrapped phase; and the average intensity and two additional

binary patterns are used to determine fringe order pixel by pixel in phase domain

using the phase-coding method developed by Wang and Zhang [56]. The wrapped

phase is temporarily unwrapped point by point by referring to the fringe order. To
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use narrow fringe patterns and reduce noise impact, we further developed a com-

putational framework by using geometric constraint of the DFP system. Since only

binary patterns are required, we demonstrated that superfast 3D shape measurement

can be achieved: we developed a system that can capture binary patterns at 3,333

Hz; and since 5 patterns can recover one 3D shape, we achieved a 667 Hz 3D shape

measurement rate.

Section 4.2 discusses the principles behind the proposed method. Section 4.3

presents experimental validation; and Sec. 4.4 summarizes this chapter.

4.2 Principle

In this section, we introduce related theoretical background of this research.

Phase-shifting algorithm is briefly introduced, and the proposed five pattern absolute

phase unwrapping method is detailed, and the proposed computational framework is

elucidated.

4.2.1 Three-step phase-shifting algorithm

Over recent decades, a number of strategies for phase-shifting algorithm that

are widely known in the field of 3D optical metrology have been rapidly improved.

Phase-shifting methods have considerable advantages: robust to noise and surface

reflectivity variations, and accurate in pixel-by-pixel 3D coordinate reconstruction.

Among all phase-shifting algorithms, the three-step phase-shifting algorithm requires

minimum number of fringe patterns for phase calculation. Three patterns can be

mathematically described as,

I1(x, y) = I ′(x, y) + I ′′(x, y) cos[φ(x, y)− 2π/3], (4.1)

I2(x, y) = I ′(x, y) + I ′′(x, y) cos[φ(x, y)], (4.2)

I3(x, y) = I ′(x, y) + I ′′(x, y) cos[φ(x, y) + 2π/3], (4.3)
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where I ′(x, y) is the average intensity, I ′′(x, y) the intensity modulation, and φ(x, y)

the phase to be solved for. By means of using an inverse tangent function, the phase

can be easily described as,

φ(x, y) = tan−1

[ √
3(I1 − I3)

2I2 − I1 − I3

]
. (4.4)

Because of the limitation of the arctangent function, the phase obtained from Eq. (4.4)

ranges from −π to +π. To retrieve absolute phase, a temporal phase-unwrapping

framework is usually needed. In the next section, we will introduce our proposed

temporal phase unwrapping method. Phase unwrapping essentially determines fringe

order K(x, y) such that 2π discontinuities of the wrapped phase can be properly

unwrapped

Φ(x, y) = 2π ×K(x, y) + φ(x, y), (4.5)

Here Φ(x, y) denotes the unwrapped phase map.

Equations (4.1)-(4.3) also give the average intensity information as

I ′(x, y) = [I1(x, y) + I2(x, y) + I3(x, y)]/3, (4.6)

which can be used to determine the texture of the object.

4.2.2 Proposed phase-coding algorithm

We propose a new method that only requires two additional patterns to determine

fringe order for each pixel, these two additional fringe patterns directly encode fringe

order information as,

Φs(x, y) = −π + Floor[x/W ]× 2π

N
, (4.7)

I4(x, y) = I ′(x, y) + I ′′(x, y) cos[Φs(x, y)], (4.8)

I5(x, y) = I ′(x, y) + I ′′(x, y) sin[Φs(x, y)], (4.9)

where Φs is the stair phase map which determines the fringe order depending on where

(x, y) is located, N is the number of stairs, Floor[] is the floor operator to determine
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the truncated integer number, and W is the overall span of the fringe pattern along

x direction. In this case, there are 3 unknowns (I ′, I ′′, and Φs) and 2 equations

(Eq. (4.8) and Eq. (4.9)). To uniquely solve for Φs and thus fringe order, we combine

Eq. (4.6) with these two equations. Φs(x, y) and fringe order K(x, y) can be uniquely

solved for each pixel as,

Φs(x, y) = tan−1
[
I5 − I ′

I4 − I ′

]
, (4.10)

K(x, y) = Round

[
N ×

(
Φs + π

2π

)]
. (4.11)

It should be noted that Φs(x, y) is the unwrapped phase since one single fringe pattern

covers the whole fringe span.

Figure 4.1 shows an example of using the proposed temporal phase unwrapping

method. Figure 4.1(a) shows the wrapped phase from three phase-shifted fringe

patterns. Figure 4.1(b) shows the real number of fringe order before quantization

and the integer number of the fringe order. In this example, Gaussian noise with a

signal to noise ratio (SNR) of 25 was added to fringe patterns to emulate the practical

system noise. Figure 4.1(c) shows the result after directly applying the fringe order

to temporally unwrap the wrapped phase pixel-by-pixel. One can clearly see spiky

noise on the unwrapped phase map. Such spiky noise can be reduced by applying

a computational framework such as a median filter. Figure 4.1(d) shows the result

after the computational framework discussed by Karpinsky et al. [73].

Our experimental data shows that if the noise is larger and/or the phase shifted

fringe patterns are narrower (i.e., more stairs are used), the aforementioned com-

putational framework fails to effectively reduce the spiky noise. Unfortunately, for

our high-speed measurement application, the noise is quite large and we have to use

narrow fringe pattern to achieve high-quality measurement. To address this problem,

we have developed an computational framework to significantly reduce noise impact,

which will be discussed next.



45

0 50 100 150 200 250 300

X(pixel)

-π

0

π

P
ha

se
(r

ad
)

(a)

0 50 100 150 200 250 300

X(pixel)

-π

0

π

P
ha

se
 (

ra
d)

0

2

4

6

8

10

S
ca

lin
g 

fa
ct

or

Φs

K

(b)

0 50 100 150 200 250 300

X(pixel)

5π

10π

15π

20π

25π

P
ha

se
(r

ad
)

(c)

0 50 100 150 200 250 300

X(pixel)

5π

10π

15π

20π

25π

P
ha

se
(r

ad
)

(d)

Fig. 4.1. Cross section of ideal image. (a) Wrapped phase map with
fringe period of 30 pixels; (b) comparison of the stair phase with the
fringe order after rounding off the phase to the nearest integer;(c)
absolute phase directly obtained from Eq. (4.11); (d) absolute phase
after removing spikes.

4.2.3 Computational framework for reducing noise influence

As aforementioned, to achieve high accuracy, the fringe period needs to be small,

and thus the encoded stair height is small, making it more sensitive to noise; and the

use of dithered pattern and out-of-focus projector further deteriorates fringe quality.

To address such problems, we propose to use the geometric constraints of the DFP

system to allow the use of more than one period of patterns (i.e., more than 2π phase
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range) to encode fringe order. This section details the principle of this computational

approach.

To understand the proposed method, DFP system geometric model needs to be

discussed. In this research, we utilize the well-known pinhole model to illustrate the

imaging lenses of a DFP system. The model mathematically describes the relationship

between 3D (xw, yw, zw) world coordinates and 2D (u, v) imaging coordinates as,

s


u

v

1

 =


fu γ u0

0 fv v0

0 0 1



r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3



xw

yw

zw

1

 , (4.12)

where s is a scaling factor; fu and fv are, respectively, the effective focal length in u

and v directions; γ is the skew factor of u and v axes, and for research-grade cameras

γ = 0; rij and ti, respectively, denote the rotation and translation variables; and

(u0, v0) is the principle point. We can simplify the matrices as,

P =


fu γ u0

0 fv v0

0 0 1



r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

 =


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

 , (4.13)

where the projection matrix P can be estimated through calibration. The projector

and the camera have exactly the same mathematical model, albeit the projector is an

output device, as the inverse of a camera. If both projector and camera are calibrated

under the same world coordinate system, we have

sp[ up vp 1 ]t = P p[ xw yw zw 1 ]t, (4.14)

sc[ uc vc 1 ]t = P c[ xw yw zw 1 ]t. (4.15)

Here superscript p denotes the projector, superscript c the camera, and superscript

t the transpose of a matrix. Eq. (4.14) and Eq. (4.15) have six equations and seven

unknowns (sc, sp, xw, yw, zw, up, vp) for a given camera pixel (uc, vc). Therefore, we
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need one more equation to solve for up to get the corresponding absolute phase,

which can be obtained by the linear relationship between absolute phase Φ and up,

up = Φ× T/(2π), (4.16)

where T is a projection pattern’s fringe period in pixel. For any given point, if z is

known, the corresponding points for each camera pixel, (uc, vc), can computed and

thus the phase value can be determined,

Φ(uc, vc) = f(z, T, P c, P p). (4.17)

Assume that z = zmin which is the minimum depth z for the volume of interest, the

virtual absolute phase map, Φmin, corresponding to zmin can be generated by using

Eq. (4.17). We call Φmin as the minimum phase. Under the circumstance, Equa-

tion (4.10) only yields wrapped phase map φs = Φs mod (2π) since more than one

period of fringe patterns are used. Since φs is calculated by simply using Eq. (4.10),

the measurement volume is restricted as discussed by An et al. [45]. The wrapped

phase can be unwrapped pixel-by-pixel by comparing Φmin to obtain absolute phase

Φs.

Figure 4.2 illustrates the fundamental concept of using the minimum phase to

unwrapped periodical stair phase. Figure 4.2(a) shows the wrapped stair phase map

with two periods of fringe patterns. The red dashed windows is the wrapped stair

phase map of φ1 when z = zmin and the blue window is the phase map of φs when

z > zmin. Figure 4.2(b) shows the phase map of Φmin. This figure shows that the

absolute phase Φs can be obtained by adding 2π when Φmin > φs, as illustrated in

Figure 4.2(c).

Figure 4.3 shows a case for three periodical fringe patterns. If φs is located between

the point A and B, the difference between Φmin and φs is greater than zero and less

than 2π. Then, 2π should be added on the region. If φs is located on the right of the

point B, 4π should be added to get a correct fringe order map. In other words, if the

stair phase satisfies the following condition for an integer number P,

2π × (P − 1) < Φmin − φs < 2π × P, (4.18)
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Fig. 4.2. Conceptual idea of removing 2π discontinuity of stair phase
map by using the minimum phase. (a) Wrapped stair phase map
by using Eq. (4.10); (b) unwrapped stair phase map after adding 2π
where discontinuity occurs; (c) cross section of Φmin and Φs and the
wrapped phase maps.

or

P (x, y) = Ceil

[
Φmin(x, y)− φs(x, y)

2π

]
, (4.19)

the absolute stair phase Φs can be determined as

Φs(x, y) = 2π × P (x, y) + φs(x, y), (4.20)

and fringe order K as

K(x, y) = Round

[
M ×

(
Φs(x, y) + π

2π

)]
, (4.21)

where Ceil[] is the ceiling operator that gives the closest upper integer number, and

M is the number of stairs in one period of the stair phase. We can simplify Eq. (4.21)

as

R(x, y) = M ×
[

Φs(x, y) + π

2π

]
, (4.22)

and

K(x, y) = Round[R(x, y)], (4.23)

where R(x, y) is the real number to determine the integer number of fringe order K.

In summary, the proposed computational framework can more robustly unwrap

the phase by allowing the use of more than one period of fringe patterns to encode
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Fig. 4.3. Determination of the number of 2π jumps of the stair phase
over two periods.

stair phase map. The key idea is to artificially create a minimum phase map using

geometric constraints of the DFP system. The minimum phase map then unwraps

the periodical phase stair phase map. Once the periodical stair phase is unwrapped,

fringe order K can be determined that can be further used to temporally unwrap

the wrapped phase. Because the proposed method allows the use of more than one

period of fringe patterns for stair phase encoding, it is more robust to noise, enabling

the use of narrower fringe patterns for higher accuracy measurement.

4.3 Experiment

A hardware system was developed to verify the performance of the proposed

method. Figure 4.4 shows the photograph of our system. The system consists of

a CMOS camera (Model: Vision Research Phantom V9.1), a DLP projector (Model:

Texas Instruments LightCrafter 4500) and a microprocessor (Model: Arduino Uno).

The camera is attached with a lens (Model: SIGMA 24 mm f/1.8 EX DG) whose

focal length is 24 mm and aperture ranges from f/1.8 to f/22. The projector has the

resolution of 912 × 1140 pixels. The microprocessor is utilized to synchronize the

camera with the projector. The system is calibrated using the method developed by

Li et al. [74].
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Fig. 4.4. Experimental setup for DFP calibration

We first measured a statue with the proposed method. Figure 4.5 shows the

results. In this experiment, the camera resolution was set as 1024 × 1024 pixels,

and the projector sequentially projects five binary dithered patterns at 1kHz, and the

camera precisely synchronized with the projector captures each projected patterns.

The phase-shifted fringe patterns have a fringe period of 30 pixels, and the stair

phase encoded patterns have a fringe period of 1140 pixels. Figure 4.5(a) shows the

image of the sculpture. We cropped all images in a same way for better visualization.

Figure 4.5(b)-4.5(f) show five captured fringe patterns. From three phase-shifted

fringe patterns shown in Figs. 4.5(b)-4.5(d), we computed the wrapped phase map,

as shown in Fig. 4.5(g). Combining the averaged image, I ′(x, y), with two additional

fringe patterns shown in Figs. 4.5(e)-4.5(f), we obtained the stair phase map Φs(x, y)

as shown in Fig. 4.5(h). The fringe order of the wrapped phase can be calculated

by using Eq. (4.11). Figure 4.5(i) shows the fringe order map. Once fringe order

is determined, the phase can be unwrapped pixel by pixel. Figure 4.5(j) shows the

unwrapped phase map. Due to the dithering effect and random noise of the system,

the spiky noise is very severe. To visualize such a problem, we recovered 3D geometry

of the object from the unwrapped phase. Figure 4.5(k) shows the result. It is obvious

that it is very difficult to remove all spiky noise by filtering.
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k)

Fig. 4.5. Experimental captured data of the proposed method with
a fringe period of 1140 pixels for the stair phase. (a) Photograph
of the measured statue; (b)-(d) three phase-shifted high-frequency
fringe images; (e)-(f) two phase-shifted low-frequency fringe images;
(g) wrapped phase from high-frequency fringe patterns; (h) absolute
stair phase map Φs; (i) fringe order map K; (j) unwrapped phase Φ;
(k) 3D reconstruction result.

In comparison, we employed our proposed method to encode the stair phase.

Instead of using one single fringe period, we used 2 periodical fringe patterns. Fig-

ures 4.6(a)-4.6(b) show those two fringe patterns. The phase map obtained by directly

applying Eq. (4.10) is shown in Fig. 4.6(c), which still has 2π discontinuities, as ex-

pected. We then generated the minimum phase map Φmin, as shown in Fig. 4.6(d),

that was further used the unwrap the stair phase map. Figure 4.6(e) shows the un-
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 4.6. Experimental captured data of the proposed method using
geometric constraints. (a)-(b) two stair-shaped patterns (I4 and I5)
for φs with a fringe period of 570 pixels; (c) wrapped stair phase
φs with a 2π discontinuity; (d) the artificial minimum phase map
when z = zmin; (e) unwrapped stair phase Φs using the geometric
constraints; (f) fringe order map K; (g) unwrapped phase Φ; (h) 3D
reconstruction result using the proposed method without applying
any filter; (i) filtered 3D reconstruction result.

wrapped stair phase map using the proposed method. This stair phase map is then

used to generate fringe order map, shown in Fig. 4.6(f), and temporally unwrap the

phase map shown in Fig. 4.6(g). Figure 4.6(h) shows the reconstructed 3D shape.

Compared with the result shown in Fig. 4.5(k), the spiky noise is substantially re-
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duced, which can then be further removed by applying the computational framework

developed by Karpinsky et al. [73]. Figure 4.6(i) shows the final result, which is fairly

smooth, proving that the proposed method can successfully recover 3D shape of an

object.

To show the difference between the proposed method and the conventional method

clearly, we compared one cross section of the data. R was computed using Eq. (4.22),

from which fringe order can bed determined using Eq. (4.23). Figure 4.7(a) and

Figure 4.7(c) respectively show Φs using the conventional method and the proposed

method. The red line describes the region where the cross section is to be compared.

Figure 4.7(b) shows the graph of R and corresponding integer number K in the con-

ventional method. In the middle of the graph, the noise become severe and the fringe

order fluctuates depending on the noise effect. In comparison, R in Figure 4.7(d)

which is obtained from the proposed computational framework is stable enough to

determine the fringe order correctly. Despite some fluctuating noise, fringe order can

still be correct correctly obtained. These two graphs verify that the proposed method

is more robust to determine fringe order.

To demonstrate the capability of high-speed 3D shape measurement and absolute

phase recovery. We simultaneously measured tow moving hands. This experiment,

we set the camera resolution as 672 × 768. The projector projects and the camera

captures at 3,333 Hz with an exposure time of 300 µs. Since five images are used

to recover one 3D geometry, 3D measurement speed is actually 667 Hz. Figure 4.8

shows the measurement results. Figure 4.8(a) shows one of the frames we captured,

and Figure 4.8(b) shows one of the fringe patterns for that frame. Figure 4.8(c) and

associated video shows the sequence results for this experiment. This experiment

successfully demonstrated that our proposed method can measure multiple isolated

objects at high speed.
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Fig. 4.7. Images of the stair phase and graphs of a cross section to
compare the real number with its quantized number. (a) Absolute
stair phase map by using the conventional method; (b) cross section
of the red line on (a) to describe R and corresponding K of the con-
ventional method; (c) absolute stair phase map by using the proposed
method; (d) cross section of the red line on (c) to describe R and cor-
responding K of the proposed method.

4.4 Summary

This chapter has presented a superfast 3D absolute shape measurement method

using five binary patterns. The proposed method uses binary dithering technique for
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(a) (b) (c)

Fig. 4.8. Measurement result of capturing hands in high-speed. (a)
Photograph of two hands; (b) one of three phase-shifted fringe pat-
terns; (c) 3D reconstruction result.

high speed image projection, and reduces the number of frames by using the average

intensity. We demonstrated that the noise of patterns due to dithering and random

noise can be substantially reduced with the computational framework we developed.

Our experimental results demonstrated that high-quality 3D shape measurement can

be realized at a speed of 667 Hz.
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5. HIGH-SPEED THREE-DIMENSIONAL ABSOLUTE

SHAPE MEASUREMENT WITH THREE BINARY

PATTERNS

5.1 Introduction

High-speed 3D shape measurement is of great interest to many applications. Nu-

merous high-speed 3D shape measurement techniques have been developed. One of

the approaches to achieve high-speed measurement is Fourier transform profilometry

(FTP) [30]. FTP can reconstruct 3D geometry with a single pattern and thus achieve

the highest possible measurement speed. However, FTP method does not work well

when the object has complex surface geometry or texture because it is difficult to

separate the carrier phase signal and the background (DC). Qian [75] developed the

windowed Fourier transform (WFT) method that greatly improved the robustness of

the FTP, yet the DC signal impact still remains, albeit at a less degree. To reduce the

influence of DC signal, Guo et al. [62] developed a modified FTP method that uses

two fringe patterns to completely eliminate the DC component. However, overall,

the aforementioned methods can only recover relative phase and thus for relative 3D

shape measurement.

To achieve absolute 3D shape measurement, Li et al. [76] proposed a method that

added one more pattern to the modified FTP method. The third pattern contains

slits that encode fringe order information for absolute phase unwrapping. However,

such a method may not work well if surface geometry is complex because the voting

process requires the use of many pixels within a window. Furthermore, all FTP

methods requires the filtering process and the filter selection affects measurement

quality. To overcome these limitations, this chapter propose a method that uses the

same number of patterns (i.e., three) for pixel-by-pixel absolute phase unwrapping



57

without the filtering process. The proposed method adopts Hilbert transform method

for phase retrieval and geometric constraint based method for robust absolute phase

unwrapping.

Phase information can also be recovered by applying the Hilbert transform. For

example, Zweig and Hufnagel [77] employed the Hilbert transform profilometry (HTP)

to directly retrieve phase from the original fringe image and Hilbert transformed

image, assuming that the DC signal remains constant per line. Sutton et al. [78]

increased the HTP capability by allowing varying DC signal through the development

of a Laplacian pyramid algorithm to filter out the DC signal. Gdeisat el al. [79] further

proved that if the object has abrupt depth change or shadow regions, HTP is superior

to FTP. Similar to FTP, the DC signal also has significant impact to the recovered

phase quality. To our knowledge, the state-of-the-art methods cannot recover absolute

phase pixel by pixel using Hilbert transform and three patterns.

This chapter thus presents a method that can perform high-accuracy 3D shape

measurement using only three patterns with one camera and one projector. To recover

absolute phase, the proposed method employs the following procedures are: (1) take

the difference between the sinusoidal fringe patterns and the DC pattern; (2) apply

Hilbert transform to the difference images to generate two phase maps; (3) employ the

geometric constraint based phase unwrapping method to unwrap the low-frequency

phase map [80]; (4) unwrap the high-frequency phase map using the unwrapped low-

frequency phase map; and (5) reconstruct 3D shape using the absolute phase. Since

only three patterns are required, high-speed 3D shape measurement can be achieved.

We developed a prototype system that can capture 2D images at 6,000 Hz, achieving

2,000 Hz 3D shape measurement speed.

Section 5.2 discusses the principle behind the proposed method. Section 5.3

presents experimental validation; and Sec. 5.4 summarizes the paper.
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5.2 Principle

In this section, we will introduce technologies used in the proposed method includ-

ing the Hilbert transform, enhanced two-frequency phase unwrapping method, as well

as the computational framework of the proposed method to explain the procedures

of 3D reconstruction.

5.2.1 Hilbert transform

Hilbert transform is a specific linear operator making a real function µ(t) to an-

other real function H(µ)(t) by using convolution,

H(µ)(t) =
1

π

∫ ∞
−∞

µ(τ)

(t− τ)
dτ. (5.1)

In frequency domain, one property of the Hilbert transform mathematically is

F(H(µ)(ω)) = δH(ω)×F(µ)(ω), (5.2)

where F(·) means Fourier transform and

δH(ω) =


i = eiπ/2, if ω < 0

0, if ω = 0.

−i = e−iπ/2, if ω > 0

(5.3)

The Hilbert transform induces a phase shift of π/2 for negative frequency component

and −π/2 for positive frequency components. For example, if the Hilbert transform

is applied to the real cosine signal cos(ωt), it is converted to the sine signal, sin(ωt).

For fringe analysis, a sinusoidal fringe pattern can be mathematically described as,

I(x, y) = A(x, y) +B(x, y) cos [φ(x, y)] , (5.4)

where A(x, y) is the average intensity, B(x, y) is the intensity modulation, φ(x, y) is

the phase to be solved for. To retrieve the phase by using the Hilbert transform, the

DC component of the fringe pattern should be removed in advance. The proposed
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method directly uses the average intensity A(x, y) to calculate the difference map

by subtracting the DC component from the fringe image before applying the Hilbert

transform, which can be described as,

IDC(x, y) = A(x, y), (5.5)

Id(x, y) = I(x, y)− IDC(x, y) = B(x, y) cos[φ(x, y)], (5.6)

where the subscript d means the difference map. Then, we can apply the Hilbert

transform as,

I∗d = H [Id(x, y)] = B(x, y) sin [φL(x, y)] , (5.7)

where the superscript ∗ means the Hilbert transformed image. According to afore-

mentioned property, the phase of the transformed image has been shifted in π/2.

Then, the phase can be retrieved by using an arctangent function,

φ(x, y) = tan−1
[
I∗d
Id

]
. (5.8)

The phase obtained from Eq. (5.8) ranges from −π to +π. To solve 2π discontinu-

ities, the process of numbering each period to add multiples of 2π is required, which

is called phase unwrapping.

Φ(x, y) = 2π ×K(x, y) + φ(x, y), (5.9)

here K(x, y) is fringe order, the multiples of 2π to be added to the wrapped phase.

If the wrapped phase is unwrapped by adding multiples of 2π with uniquely defined

fringe order K(x, y), the unwrapped phase is regarded as absolute phase. In the next

section, we will introduce a method for retrieving absolute phase map by determining

fringe order K(x, y) using geometric constraints.

5.2.2 Enhanced two-frequency phase unwrapping method

This method used predefined geometric constraints to determine the fringe or-

der K(x, y) for solving 2π discontinuities mentioned in the previous section [80]. A
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standard DFP system consists of a single camera and a single projector, which are

calibrated under the same coordinate system and follows a linear pinhole model. The

pinhole model of each optical device can be mathematically described as,

sc [ucvc1]t = Pc [xwywzw1]t , (5.10)

sp [ucvc1]t = Pp [xwywzw1]t , (5.11)

where P means a 3 × 4 projection matrix, superscript c denotes camera, and super-

script p denotes projector, and t denotes the transpose operation of a matrix. The

projection matrices Pc and Pp indicate the relationship between 3D world coordinate

and 2D image plane and these matrices are estimated by calibration [74]. After de-

termination of the matrices Pc and Pp, Eqs. (5.10) and (5.11) provide 6 equations

and have 7 unknowns (sc, sp, xw, yw, zw, up, vp) for a camera pixel (uc, uv). To solve

all unknowns uniquely, one additional constraint is required. The absolute phase Φ

provides us with one more constraint to reconstruct 3D geometry (xw, yw, zw).

On the other hand, if we set an artificial ideal plane at z = zw, each pixel on the

camera sensor can be uniquely matched to a pixel on the projector sensor with its

predefined phase value. The artificial generated phase map is called as minimum phase

map, Φmin, which is determined by zmin, fringe period T and projection matrices Pc

and Pp,

Φmin(uc, vc) = f(zmin;T,Pc,Pp). (5.12)

Then, the fringe order can be determined within a given depth range as

K(x, y) = ceil

[
Φmin − φ

2π

]
, (5.13)

where ceil[] means an operator that returns the closest upper integer value. Although

the method using geometric constraints recovers the phase accurately, there is a lim-

itation that the unwrapped phase is correct when the object is in a specific depth

range. Assuming the angle between the principle axis of the projector and the camera

is θ and the spatial span of one projected fringe period is ∆y, we can calculate the

maximum depth range as,

∆zmax = ∆y/ tan θ. (5.14)
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Therefore, if we used a narrow fringe pattern for absolute phase retrieval, it is obvious

that the available depth range for 3D shape measurement is very restricted. To over-

come the limited depth range problem for the narrow fringe pattern, the proposed

method used another set of fringe patterns at different frequency. By repeating the

same procedures using Eqs. (5.6)-(5.8), we can obtain two-frequency phase. With

these two-frequency phase and the geometric constraints, we can apply the enhanced

two-frequency phase unwrapping method [81]. First, the low-frequency phase is un-

wrapped with the geometric constraints by using Eqs. (5.9) and (5.13), which provide

larger depth range than the depth range which the high-frequency can have. The

high-frequency phase can be unwrapped by referring the unwrapped low-frequency

phase. The fringe order of the high-frequency can be defined as,

K(x, y) = Round

[
ΦL(x, y) T

L

TH − φH(x, y)

2π

]
, (5.15)

where the superscript L means the low-frequency, H the high-frequency, and Φ the

unwrapped phase.

In summary, we implemented a hybrid approach based on two major principles

mentioned above to reconstruct 3D. Figure 5.1 illustrates a schematic diagram of

the computational framework of the proposed method. We used only three patterns

to retrieve absolute phase, which are one high-frequency (i.e. fringe period = 18

pixels) pattern, one low-frequency (i.e. fringe period = 108 pixels) pattern and one

DC component pattern. To obtain two different frequency phase maps, the Hilbert

transform was applied to each difference map between the fringe pattern and its DC

component. Then, the absolute phase for 3D shape measurement can be robustly

retrieved by using the enhanced two-frequency unwrapping method.

5.3 Experiment

We designed a high-speed 3D shape measurement system to evaluate our proposed

method. The system consists of a CMOS camera (Model: Vision Research Phantom

340L) and a DLP projector (Model: Wintech PRO 6500). The camera lens (Model:
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Fig. 5.1. Computational framework of the proposed method.

SIGMA 24 mm f/1.8 EX DG) has a 24 mm focal length and an aperture ranging from

f/1.8 to f/22. The projector and camera are precisely synchronized with a micropro-

cessor (Model: Arduino Uno) to project and capture the fringe images simultaneously.

The image resolutions for the camera and the projector are 640 × 800 and 1920 ×

1080 respectively. All images are cropped in the same way for better visualization.

For all experiments, binary optimized dithered patterns were used for measuring dy-

namic motions [82]. The high-frequency pattern has 18-pixel fringe period and the

low-frequency pattern has 108-pixel fringe period. Figure 5.2 shows the photograph

of the system. We calibrated the system using the method developed by Li et al [74].

First, we measured a smooth sphere with a diameter of 200 mm for static object

experiment. We set the exposure time of the camera and projector as 500 µs. Fig-

ures 5.3(a)- 5.3(c) show the DC component, the low-frequency fringe image, and the

high-frequency fringe image respectively. Prior to applying the Hilbert transform, the

difference map was obtained by subtracting the DC component from each fringe pat-

tern using Eq. (5.6) and the result for low-frequency is shown in Fig. 5.3(d). Then, we
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Fig. 5.2. Experimental setup for DFP system.

generated the Hilbert transformed image shown in Fig. 5.3(e). With these captured

and transformed patterns, we calculated the wrapped phase for low-frequency using

Eq. (5.8), as shown in Fig. 5.3(f). The same phase-retrieval procedures were applied

to high frequency and the high-frequency wrapped phase is shown in Fig. 5.3(g).

For absolute phase retrieval, we implemented the two-frequency phase unwrapping

method [81]. To unwrap the wrapped phase, the method utilized the geometric

constraint, which is an artificial plane at the predefined minimum depth, zmin. Fig-

ure 5.3(h) shows the absolute phase. For better visualization, the mask was applied to

Figs. 5.3(d)-5.3(h) to remove the background. The 3D result is shown in Fig. 5.3(i).

Then, we measured a plaster statue, which has complex geometry shown in

Fig. 5.4(a). Figure 5.4(b) shows the low-frequency fringe image and Fig. 5.4(c) shows

the high-frequency fringe image. The same procedures were implemented on the im-

ages of the statue captured by the high-speed measurement system. As shown in

Fig. 5.4(d), the 3D result shows the details of the sculpture. The 3D result verifies

that the proposed method using the hybrid approach with Hilbert transform and the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5.3. Experimental results of a uniform sphere using the proposed
method. (a) DC component fringe image; (b) low-frequency fringe
image; (c) high-frequency fringe image; (d) difference map of low-
frequency fringe image; (e) Hilbert-transformed map of low-frequency;
(f) low-frequency wrapped phase; (g) high-frequency wrapped phase;
(h) unwrapped phase map using geometric constraints; (i) 3D recon-
struction result.

enhanced two-frequency unwrapping method reconstructs the 3D geometry accurately

with only three patterns.

To demonstrate the performance of our proposed method for dynamic applica-

tions, we did the high-speed 3D shape measurement with fast-moving objects. The

flapping robotic bird (Model: XTIM Bionic Bird Avitron V2.0) was used for dynamic

motion experiments. We set the speed of the flapping wing as 11 cycles per second.

For the high-speed 3D measurement system, we set the capturing speed at 6,000 Hz,

which is same as the projection speed. The exposure time of the camera is 160 µs. We
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(b)(a) (c) (d)

Fig. 5.4. Experimental results of a complex sculpture using the pro-
posed method. (a) DC component of the measured statue; (b) low-
frequency fringe image; (c) high-frequency fringe image; (d) 3D re-
construction result.

got the 3D capturing speed of 2,000 Hz under the settings, since we used only three

patterns to reconstruct one 3D geometry. Figure 5.5(a) shows a representative image

used for 3D reconstruction. Figures 5.5(b)-5.5(d) shows the reconstructed 3D results

using a set of three patterns. The dynamic 3D result is shown in its associated video

(Video 1). We also measured falling balls to evaluate the proposed method. The same

settings and computational framework were applied to the experiment. Figure 5.6(a)

shows a representative image and Figs. 5.6(b)-5.6(d) are 3D results. The 3D result

with multiple balls is in its associated video (Video 2). As mentioned before, the

proposed method reduces motion induced error caused by the time lapse between the

captured images, since only one fringe image and the DC component are required to

retrieve the wrapped phase at one frequency. Experimental results of the dynamic

motions successfully proved that the proposed method accurately reconstructed 3D

geometries at high speed.

5.4 Summary

This chapter has presented a high-speed 3D absolute shape measurement method

using only three patterns. The proposed method used the Hilbert transform to obtain

phase information directly from one fringe image and the DC component. Also,
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(a) (b) (c) (d)

Fig. 5.5. Measurement result of a flapping bird robot in high-speed.
(a) DC component of the fringe images at the specific moment; (b)-(d)
3D reconstruction results (Video 1, MPEG, 5.9 MB).

(a) (b) (c) (d)

Fig. 5.6. Measurement result of falling multiple balls in high-speed.
(a) DC component of the fringe images at the specific moment; (b)-(d)
3D reconstruction results (Video 2, MPEG, 3.8 MB).

the absolute phase can be retrieved accurately using the enhanced two-frequency

unwrapping method. To maximize the projection speed and get higher accuracy,

we used optimized binary dithering technique. Our dynamic experimental results

demonstrated that high-quality 3D shape measurement can be realized at a speed of

2,000 Hz.
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6. HIGH-SPEED AND HIGH-ACCURACY 3D SURFACE

MEASUREMENT USING A MECHANICAL PROJECTOR

6.1 Introduction

Due to high resolution, high speed, and flexibility of implementation, 3D shape

measurement techniques using DFP and phase-shifting algorithms have been exten-

sively used in science, engineering, as well as industrial applications [83].

Phase-shifting algorithms are widely used for 3D reconstruction through fringe

analysis because of their accuracy, speed, and robustness to noise. However, a typi-

cal phase-shifting algorithm can only provide the phase value ranging from −π to π

with 2π discontinuities, and such phase is often referred as wrapped phase. A phase

unwrapping algorithm has to be implemented to remove those 2π discontinuities to

create a smooth phase before 3D reconstruction. In the history, numerous phase un-

wrapping algorithms have been developed but they can be generally classified into

two categories: spatial and temporal unwrapping algorithms. The spatial unwrap-

ping algorithm analyzes the wrapped phase map itself and determines the number

of 2π to be added to a point assuming the object surface is smooth at least on one

path [36,50]. Since spatial phase unwrapping does not require any additional informa-

tion acquisition, such a method does not affect 3D data acquisition speeds. However,

regardless the robustness of a spatial phase unwrapping algorithm, it is fundamentally

limited to measure “smooth” object (e.g., no abrupt geometry changes, or isolated

patches). Temporal phase unwrapping algorithms, in contrast, solve the discontinuity

problem by acquiring additional information temporally. There are numerous tempo-

ral unwrapping algorithms including two- [59], or multi-frequency [52] phase-shifting,

and the gray-coding plus phase-shifting [53]. Since temporal phase unwrapping algo-

rithms do not require surface to be smooth, they can be used to measure arbitrary
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objects. However, the measurement speed is slowed down because the requirement of

additional information acquisition at different time.

To address the speed limitations of conventional temporal phase unwrapping meth-

ods, researchers have attempted to simultaneously capture images from a different

perspective and utilized the secondary camera images to provide cues for phase un-

wrapping [84–90]. Such methods use geometric constraints along with other knowl-

edge of the system or the object to determine the number of 2π to be added for each

point. Though successful, the phase unwrapping process is typically very slow in

nature due to the backward and forward checking [91].

On the other hand, texture-based standard stereo-vision techniques have been well

developed, and numerous global or semi-global stereo-matching algorithms [92–97]

have developed to find the corresponding point. For example, the cost-based matching

approach calculate the cost on the texture difference between a region near a source

point on one image and the small region near a target point on the other image [25],

and the corresponding point is determined by minimizing or maximizing the cost

function. The stereo-matching algorithm typically generates a disparity map, a map

that stores the pixel shift of a corresponding pairs from one camera image to the other

camera image. The disparity map is then used to reconstruct 3D coordinates for each

point based on the calibrated parameters of the stereo vision system. Since it only uses

two cameras, the stereo-vision technique has obvious advantages: the simplicity of

hardware configuration and straightforward calibration for the system [98]. However,

hinging on natural texture variations to establish corresponding points, the accuracy

of stereo-vision techniques varies from one object to another; and the measurement

accuracy is not high if an object has no obvious distinctive features.

Lohry and Zhang [46] developed a 3D shape measurement technique that embraced

the advantages of a standard stereo-vision technique (e.g., speed and simplicity) and

those of the phase-shifting method (e.g., accuracy). In lieu of relying on nature tex-

ture images, such a method projects a locally unique statistical pattern along with the

sinusoidal fringe patterns to increase to the robustness of stereo matching, and then
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uses the phase constraint to improve the accuracy of stereo matching. In particular,

Lohry and Zhang employed the Efficient LArge-scale Stereo (ELAS) algorithm [99] to

obtain rough disparity map and then a local linear regression approach to refine the

disparity map for more accurate 3D reconstruction. Instead of using the linear re-

gression method for refinement, Song et al. [100] developed an algorithm to refine the

rough correspondence by interpolating two points: one point obtained from the stan-

dard stereo-vision algorithm that uses texture images and the other point obtained

from phase map. Gai et al. [101] projected a separate speckle pattern to generate cor-

responding pairs and chose a proper correlation window size to remove outliers. Liu

and Kofman [102] proposed to insert a background offset value into fringe patterns

to provide clues for better correct corresponding point establishments. Furthermore,

they used binary pattern to reduce the probability of incorrect corresponding point

determination. These additional research effort could improve measurement speed,

robustness, or/and accuracy, yet it is difficult for any of these approaches to achieve

sub-pixel level accuracy.

As mentioned earlier, the DFP techniques has the advantage of speed, accuracy,

flexibility, yet they all use a silicon-based digital projection devices such as liquid

crystal display (LCD) or DLP projectors. The silicon based projection devices can

only operate properly within a limited spectrum light range and a certain level light

power. For example, the DLP projection system uses the silicon-based DMD, if the

wavelength of light is over 2,700 nm or below 300 nm, the transmission rate drops

significantly [103].

To overcome the spectrum limitation of DFP techniques, Heist et al. [104] devel-

oped a 3D shape measurement system using two cameras and one mechanical projec-

tor with a rotating wheel. The rotating wheel has open and close slots to represent

ON/OFF of the light. By properly defocusing lens, aperiodic sinusoidal patterns can

be generated on the object surface. Since the projector does not use the silicon-

based device for pattern generation, the light spectrum of the GOBO projector can

be substantially broadened for applications such as 3D thermal imaging [105]. How-
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ever, 3D shape measurement is realized by capturing a sequence phase-shifted fringe

patterns, and then applying the stereo-matching algorithm to a pair of phase maps

captured from different perspectives. Even though high speed data acquisition was

realized, such a method did not precisely synchronize the projector with the camera

and thus precise phase shifts cannot be ensured. Furthermore, the correspondence

establishment still largely relies the computationally intensive backward-and-forward

checking.

To further embrace the broad spectrum band of the mechanical projection tech-

nology, yet mitigate the limitations of the method developed by Heist et al. [104], this

chapter presents a method that can achieve both high-speed and high-accuracy 3D

shape measurement. The major difference between the proposed method and that

developed by Heist et al. [104] are: (1) we use a rotating wheel with equally spaced

ON/OFF structures that create periodical sinusoidal fringe patterns; (2) our cameras

are precisely synchronized with the projector such that fringe patterns with precise

phase shifts can be acquired for precise phase reconstruction; (3) we insert a transpar-

ent film with locally unique statistical patterns such that the stereo matching can be

more efficiently established using a standard stereo-vision algorithm (e.g., ELAS algo-

rithm); and 4) we develop a novel computation framework that can achieve subpixel

stereo matching accuracy by using the phase constraint. Our prototype hardware

system can accurately measure both single and multiple isolated objects, and the

same hardware prototype system can potentially achieve 10,000 Hz 3D shape mea-

surement speeds regardless the number of phase-shifted fringe patterns required for

one 3D reconstruction.

Section 6.2 explains the principle behind the proposed method. Section 6.3

presents experimental results to verify the performance of the proposed method. Sec-

tion 6.4 discusses the advantages and shortcomings of the proposed method, and

finally Sec. 6.5 summarizes the paper.
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6.2 Principle

6.2.1 Least squares algorithm

Due to their speed, accuracy, and resolution, phase-shifting based 3D shape mea-

surement techniques have been extensively used in the field of 3D optical metrol-

ogy [60]. Assume the intensity of k-th fringe image can be described as,

Ik(x, y) = I ′(x, y) + I ′′(x, y) cos[φ(x, y)− δk], (6.1)

where I ′(x, y) is the average intensity, I ′′(x, y) the intensity modulation, and

φ(x, y) the phase to be solved for, and δk the phase-shift value. Theoretically, only

three patterns are required to compute phase per pixel if the phase-shift values be-

tween fringe patterns are precisely known. Yet, using more fringe patterns can in-

crease phase quality and, to various degree, tolerate phase error introduced by non-

sinusoidality, imprecise phase shift, etc. The phase can be retrieved by applying a

least square algorithm for equally phase-shifted fringe patterns (i.e., δk = 2πk/N),

φ(x, y) = − tan−1

[∑N
k=1 Ik(x, y) sin δk∑N
k=1 Ik(x, y) cos δk

]
. (6.2)

Due to the use of an arctangent function in Eq. (6.2), the obtained phase value

ranges from −π to π with 2π discontinuities . In general, a spatial or temporal phase

unwrapping algorithm should be employed to remove 2π discontinuities and create

smooth phase called unwrapped phase that can then be used for 3D reconstruction.

As discussed before, the spatial phase unwrapping algorithm [36, 50] determines 2π

discontinuities by assuming the smoothness of the surface and thus cannot be used

to measure a single object with abrupt geometry changes or simultaneously measure

multiple isolated objects. Temporal phase unwrapping algorithms, in contrast, can

fundamentally eliminate the limitation of spatial phase unwrapping algorithms. Yet,

they slow down the measurement speed by requiring the acquisition of additional

images, which is not desirable for high-speed applications.
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In the meantime, N phase-shifted fringe patterns can be used to obtain I ′(x, y)

by

I ′(x, y) =

[∑N
k=1 Ik(x, y)

N

]
. (6.3)

I ′(x, y) is often regarded as the texture image, the photograph of the object with-

out fringe stripes. The texture image can be used for visualization, or providing

additional information for analysis.

6.2.2 Phase-shifted sinusoidal fringe pattern generation with a mechani-

cal projector

As discussed in Sec. 6.1, we developed a mechanical projector for high-speed 3D

shape measurement. Figure 6.1 shows the system configuration. It includes a fiber

light source, a rapidly rotating wheel , a statistical pattern transparent film, and two

lenses (Lens 1 and 2). The fiber light passes through Lens 1 to create a bright area

on the rotating wheel that is an optical chopper (Model: Thorlabs MC2000). The

rotating wheel has two optical proximity sensors to sense the slot speed and generates

a square wave that is represents the timing of the slot rotation. The rotating wheel

has evenly spaced open and close slots that respectively pass through (ON) or block

(OFF) the light to create structured patterns on the wheel. The lens (Lens 2) is

projection lens that creates the image of the structured patterns on the object. The

structured patterns become pseudo sinusoidal if the the object is properly placed

at a out-of-focus depth position of Lens 2. Due to the use of a transparent film

with statistical pattern on the optical path, the structured patterns formed on the

object are modulated by such a statistical pattern. The rationale of adding statistical

pattern will be detailed in Subsec. 6.2.4

Since the wheel is rotating, phase-shifted fringe patterns are naturally generated

if sampled at a different time. For high-accuracy measurement, capturing precisely

phase-shifted fringe patterns is critical. In this research, we achieve high-accuracy
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Lens 2

Rotating wheel

Fiber light

Object

Lens 1 Transparent film

Fig. 6.1. Schematic diagram of the mechanical projection system.

and high-speed 3D shape measurement through precise synchronization between the

projector and the camera. A high-performance microprocessor (Model: Raspberry pi

2) takes the square wave generated by the mechanical projector and calculates the

trigger signal period as

T c = T s/N, (6.4)

where T s is the period of square wave representing the projection period of each slot,

T c is period of the trigger signal sent to the cameras, N is the number of phase-shifted

fringe patterns necessary for one 3D reconstruction. Assuming the angular velocity

of the rotating wheel is ω, and there are M number of evenly spaced slots on the

wheel, the slot speed can be calculated as,

f s =
ω

2π × 60
×M

in Hz. The microprocessor generates a periodical pulse trigger signal that is sent to

both high-speed cameras for image acquisition.

Figure 6.2 illustrates the timing chart of the proposed system. For example, if

a slot speed f s = 1, 000 Hz, or T s = 1 ms, is setup for the projector, the 1,000

Hz square wave is generated by the projector (i.e., 500µs ON and 500µs OFF slot

time). If a three-step phase-shifting algorithm (N = 3) is used, the trigger signal

period, from Eq. (6.4) is approximately T c = 333µs; and thus three equally spaced

pulses are generated within 1 ms. Similarly, if a four-step phase-shifting algorithm
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(N = 4) is used, four equally spaced pulses are generated within 1 ms period, or

T c = 250µs. In general, the camera exposure time texp should not be longer than

the trigger pulse period, i.e., texp ≤ T c. This timing chart indicates that, as long

Projector slot signal

Ts Ts

'OFF' slot

(500µs)

Tc Tc Tc Tc Tc Tc

Tc Tc Tc Tc Tc Tc Tc Tc

Camera trigger signal

N = 3 step

Camera trigger signal

N = 4 step

texp texp texp texp texp texp

'ON' slot

(500µs)

'OFF' slot

(500µs)

'ON' slot

(500µs)

texp texp texp texp texp texp texp texp

Fig. 6.2. Timing diagram for the proposed high-speed 3D shape mea-
surement system. Here T s represents the period of the slot projection;
T c represents the period of the signal generated by the microprocessor
to trigger both high-speed cameras; texp represents the exposure time
of the camera; and N represents the number of phase-shifted fringe
patterns required for one 3D reconstruction.

as the camera’s sampling speed is high enough, the time required to capture one 3D

frame is solely determined by the slot period T s, and is independent of the number

of phase-shifted fringe patterns required for one 3D reconstruction. In contrast, for

a standard DFP system, if the projector’s image refreshing rate is fixed, the time

required to capture one 3D frame is proportional to the number of fringe patterns

required for 3D reconstruction, resulting in a slower measurement speed for higher

accuracy measurement when more fringe patterns are required. Therefore, for high-

speed and high-accuracy 3D shape measurement applications, our proposed technique

is advantageous.
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6.2.3 Computational framework to achieve sub-pixel matching accuracy

Figure 6.3 shows the overall computational framework that we developed in this

research. Two high-speed cameras precisely synchronized with the projector capture

two sets of phase-shifted fringe patterns of the object from different perspectives.

Applying Eq. (6.3) to the captured fringe images by each camera yields one texture

image from each perspectives. We apply a standard stereo-matching algorithm, i.e.,

the ELAS algorithm [99], to generate a rough disparity map (a map representing

the corresponding point) that can be used to reconstruct a coarse 3D shape of the

object. Each set of phase-shifted fringe patterns can also generate a wrapped phase

map by applying a phase-shifting algorithm. Theoretically, if a corresponding point

is precise, the wrapped phase should be identical, and thus we apply this wrapped

phase constraint to refine the rough disparity to achieve sub-pixel correspondence

accuracy for higher accuracy 3D reconstruction.

Fringe images (left)
Texture (left)

Fringe images (right) Texture (right)

Rectification 

& averaging
ELAS algorithm

Refinement

algorithm

Phase (left)

Phase (right)

Least squares algorithm

Least squares algorithm

Rough 3D result Refined 3D result

Fig. 6.3. Computational framework of our proposed 3D reconstruction method.
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This subsection details the proposed computational framework. We will also

briefly explain the epipolar geometry that is critical to understand the proposed

method.

6.2.4 Epipolar geometry

The standard stereo-vision algorithm typically uses the epipolar geometry to in-

crease the robustness and speed of the stereo matching. Epipolar geometry essentially

describes the intrinsic projective geometric constraints of the stereo-vision system.

Figure 6.4 illustrates the fundamental concept of the epipolar geometry. Ol and Or

describe the focal point for the left camera lens and the focal point for the right

camera lens, respectively. El and Er are the points of intersection of the line OlOr

with two image planes, and these points are called epipoles. For a pixel P l on the left

camera image, the corresponding pixel on the right camera can be one of the points,

P1, P2, P3, depending on the depth information in a 3D space. Even though each

point corresponds to a different depth, all these points must fall on the same line on

the right camera image Lr, which is called epipolar line. With similar geometric rela-

tionships, all points on the line Ll can only be matched to points on line Lr, and the

plane formed by P l, Ol, and Or is called epipolar plane. Therefore, applying epipo-

lar geometry constraint essentially simplifies the complex two-dimensional searching

problem to be a simple one-dimensional searching problem, and thus increases the

searching speed and could enhance the robustness of the algorithm.

To further improve the correspondence searching speed, the stereo images are

rectified such that the matching point only occurs on the same row; and this procedure

is often referred as image rectification. Image rectification essentially translates and

rotates the original images to align those epipolar lines (e.g., make Ll and Lr on

the same line) using the stereo-vision system calibration data. Figure 6.5 shows an

example of the image rectification. Figure 6.5(a) shows the original image captured

by the left camera. After rectification, the image is slightly distorted, as shown in
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Fig. 6.4. Illustration of epipolar geometry for a stereo-vision system.

Fig. 6.5(b). Similarly, the image captured by the right camera can also be also

rectified. Figure 6.5(c) shows the result after putting these two rectified images

together, where the green horizontal lines (v1, v2, . . . ) represent the epipolar lines.

To search for the correspondence point for a given point the left camera image, one

only have to search the points on the same green line on the right image.

(a) (b) (c)

Fig. 6.5. Image rectification to facilitate correspondence searching.
(a) Texture image captured by the left camera; (b) rectified image of
(a); (c) a pair of rectified images for stereo matching, horizontal green
lines (v1, v2, . . . ) show representative epipolar lines.

Even though the epipolar geometry makes the searching process simpler and more

robust, it may not be enough to determine the exact corresponding pairs from the na-

ture texture if the object does not have texture variations. To alleviate this problem,

Lohry and Zhang [46] proposed to encode a statistical pattern into the phase-shifted
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patterns to make the projected texture locally unique. Different from the DLP projec-

tor which can generate those encoded images digitally, we printed out the statistical

pattern on a transparent film and placed next to the spinning wheel on the optical

path, as shown in Fig. 6.1.

6.2.5 Refinement algorithm

Although using epipolar geometry makes it easier to find the corresponding pairs,

and encoding additional statistical pattern onto the projected fringe patterns further

increases the robustness, one of the fundamental limitation of the standard stereo-

vision algorithm is that it is difficult to achieve correspondence at a scale much smaller

than the feature size, not to say at a sub-pixel level. As a result, applying the standard

stereo-vision algorithm only gives coarse measurement. As explained earlier, the phase

value obtained from phase-shifted patterns can be used as an additional constraint

to improve correspondence accuracy and thus 3D shape measurement accuracy.

The step of using phase constraint to further improve correspondence point de-

termination accuracy is called refinement. The proposed refinement algorithm is

fundamentally based on the assumption that if the pairs correspond to each other,

the phase values calculated by the images taken by both cameras must be the same.

Therefore, the phase maps can be used to refine the rough disparity map. The fol-

lowing steps describe how phase is used to achieve sub-pixel corresponding accuracy:

• Step 1: Find rough corresponding point using epipolar geometry. By employing

the ELAS algorithm and using epipolar constraints, we determine the corre-

sponding point on the right camera image for a given point on the left camera

image acquired simultaneously. As described previously, the standard stereo-

vision algorithm only provides a rough disparity map, or roughly determines

the corresponding points.

Figure 6.6 illustrates an example of the roughly corresponding point P r(ur0, v)

on the right camera image for a given point P l(ul, v) on the left camera image;
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and we call Point P r(ur0, v) as the rough disparity point corresponding to Point

P l(ul, v). Apparently, the matching point must be on an epipolar line v.

τ0
Pl(ul, v) Pr(u0

r, v)

v

v

v

Δτ 

Texture

Phase

Phase
Pr(u0

r + τ0, v) Pr(ur, v)

Fig. 6.6. Graphical illustrations of the proposed disparity map estab-
lishments on one epipolar line v. The first row image shows two recti-
fied images; the second row image illustrates the rough corresponding
point establishment using the standard stereo-vision algorithm on the
rectified texture image; the third row image illustrates that first step
of refinement by applying the phase constraint, e.g., the initial cor-
responding point P r(ur0, v) is shifted by τ0 to P r(ur0 + τ0, v); and the
bottom row image shows the last refinement stage by subpixel inter-
polation, further move P r(ur0 + τ0, v) by ∆τ to the ultimate matching
point P r(ur, v).

• Step 2: Apply phase constraint to more precisely locate the corresponding point.

The rough disparity map obtained from Step 1 can be refined by applying the

phase constraint. Because the texture image and the phase image are perfectly

aligned, the rough disparity point determined from the previous step has un-

derline corresponding phase value for the same point. Assume for the disparity
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value between Point P l(ul, v) and Point P r(ur0, v) determined from texture im-

age is d0 = ur0 − ul. The precisely matching point could be on the left or on

the right of the (ur0, v). In this research, we search ±5 pixels and determine the

more precisely corresponding point P r(ur + τ0, v) by satisfying

[
φr(ur + τ0, v)− φl(ul, v)

]
·
[
φr(ur + τ0 + 1, v)− φl(ul, v)

]
≤ 0, (6.5)

where τ0 is the additional disparity shift along ur direction on the epipolar line

v.

• Step 3: Determine sub-pixel accuracy correspondence through linear interpola-

tion. After applying Step 2, now the true precisely corresponding point for

Point P r(ur, v) should be within [ur + τ0, u
r + τ0 + 1]; and the subpixel shift ∆τ

can be determined by linearly interpolating these two points using

∆τ =
φl(ul, v)− φr(ur + τ0, v)

φr(ur + τ0 + 1, v)− φr(ur + τ0, v)
. (6.6)

Combining the initial disparity d0, the additional shift after applying the phase

constraint τ0, and the subpixel shift ∆τ , we can calculate the precise disparity

d between the left camera point and the corresponding right camera point as,

d = d0 + τ0 + ∆τ = ur0 − ul + τ0 + ∆τ. (6.7)

Once the precise disparity map is established, 3D coordinates for each pixel can

be calculated using a standard stereo-vision 3D reconstruction algorithm.

6.3 Experiment

We developed a prototype system to verify the performance of the proposed

method. Figure 6.7 shows the photograph of the hardware setup. Our system consists

of two high-speed cameras (Model: Phantom 340L) with each being attached to a lens

(Model: SIGMA 24 mm f/1.8 EX DG), and one mechanical projector whose principle
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was described in Subsec. 6.2.2. We used an optical chopper system (Model: Thorlabs

MC2000) to create structured patterns. The optical chopper system controls the slot

speed of the rotating wheel (Model: Thorlabs MC1F100) that has 100 equally spaced

slots. We used a halogen lamp and an optical fiber (Model: Thorlabs OSL2RFB)

as the light source for the projection system. Additional two lenses (Model: Nikon

AF 50mm f/1.8D, and Fuji Fujinon 75mm f/1.8) are placed on the optical path to

decide the field of view and the number of periodical fringes. Two cameras were used

to capture the projected fringe patterns from slightly different perspectives. A mi-

croprocessor (Model: Raspberry pi 2) and the function generator (Model: Tektronix

AFG 3022B) were used to generate the external signal to precisely synchronize the

cameras with the projector. We printed out a statistical pattern on a transparent

film and positioned right behind the rotating wheel to facilitate the correspondence

determination by a standard stereo-vision algorithm. We set the camera resolution

to be 1024 × 1024 for all static object experiments, and 512 × 512 for dynamically

moving object experiments.

High-speed 
cameras

Lens 1 Lens 2Rotating wheel

Transparent film

Fiber light

Fig. 6.7. Photograph of experimental hardware system setup.

We first measured a sphere (i.e., a ping-pong ball) to evaluate the measurement

accuracy of our proposed method. Figures 6.8 and 6.9 show the experimental results.

Figure 6.8(a) shows one of the three phase-shifted fringe patterns captured by the

left camera, and Fig. 6.8(b) shows the texture image by averaging three phase-shifted
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fringe images. The texture image contains a statistical pattern since the light goes

through the printed transparent film with a statistical pattern on. The wrapped

phase was also obtained from these three phase-shifted fringe images, as shown in

Fig. 6.8(c). The same procedures were applied to those fringe patterns captured by

the other camera at the same time. Figures 6.8(d)-6.8(f) show the corresponding

results.

(a) (b) (c) (d) (e) (f)

Fig. 6.8. Measurement results of a ping-pong ball. (a) One of three
phase-shifted fringe patterns captured by the left camera; (b) the
texture image obtained by averaging three fringe patterns captured by
the left camera; (c) wrapped phase map from those images captured
by the left camera; (d)-(f) corresponding images for the right camera.

We applied the ELAS algorithm to those two texture images shown in Fig. 6.8(b)

and Fig. 6.8(e) to generate a rough disparity map, from which we reconstructed one

3D model as shown in Fig. 6.9(a). This figure shows that even though the sphere

surface is smooth, the reconstructed 3D geometry from the rough disparity map

rough. We further employed our proposed disparity map refinement computational

framework to generate a more accurate disparity map. Figure 6.9(b) shows the 3D

result reconstructed from the refined disparity map, showing obvious improvements

over the result without employing our proposed computational framework.

We further evaluated the measurement accuracy by comparing our measured re-

sult with an ideal sphere. We adopted a least square algorithm to fit the measured

data with an ideal sphere having a diameter of 40 mm (the size of ping-pong ball).

Figure 6.9(c) shows an image that overlays the ideal fitted sphere with the measured

data. We then took the difference between the ideal sphere and the measured data,
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Fig. 6.9. Measurement results of a ping-pong ball shown in Fig. 6.8.
(a) 3D reconstruction using the rough disparity map generated by the
ELAS algorithm; (b) 3D reconstruction result from refined disparity
map after applying our proposed refinement algorithm; (c) overlays
of the ideal fitted sphere and the measured data; (d) difference map
between the fitted ideal sphere and the measured data (rms error of
approximately 6 µm, and the standard deviation of approximately 78
µm).

and Fig. 6.9(d) shows the result. The mean measurement error is approximately 6

µm, and the standard deviation of the measurement error is approximately 78 µm,

demonstrating that our proposed method can indeed achieve high-accuracy measure-

ment.

We also measured a statue with complex surface geometry to further verify the

performance of our proposed method. Figure 6.10(a) shows the photograph of the

statue we measured, Fig. 6.10(b) shows one of three phase-shifted fringe images,

and Fig. 6.10(c) shows the texture image calculated by averaging three phase-shifted

fringe images. Similarly, we applied the ELAS algorithm to generate a rough disparity

map that was used to reconstruct the rough 3D geometry, shown in Fig. 6.10(d).

Figure 6.10(e) shows the 3D result reconstructed from the disparity map obtained by

applying the phase constraint to determine the pixel that has the closest phase value.

Figure 6.10(f) shows the final result after employing the proposed sub-pixel level

refinement procedure. Comparing with the result shown in Fig. 6.10(d), the result

obtained from our proposed method, once again, substantially improved measurement

quality.
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(a) (b) (c) (d) (e) (f)

Fig. 6.10. Measurement results of a statue with complex geometry.
(a) Photograph of the sculpture; (b) one of three phase-shifted fringe
patterns captured by the left camera; (c) the corresponding texture
image; (d) 3D reconstruction using the rough disparity map generated
by the ELAS algorithm; (e) 3D reconstruction by applying the phase
constraint; (f) 3D reconstruction using our proposed sub-pixel level
refinement algorithm.

Figure 6.11 shows the closed-up views of those results shown in Fig. 6.10 to better

visualize the differences. This figure clearly shows that the proposed sub-pixel level

refinement algorithm indeed gives the best quality 3D data.

(a) (b) (c) (d)

Fig. 6.11. Closed-up views of the results from Fig. 6.10 around the
mouth region. (a) Zoom-in view of Fig. 6.10(a); (b) zoom-in view
of Fig. 6.10(d); (c) zoom-in view of Fig. 6.10(e); (d) zoom-in view of
Fig. 6.10(f).

Furthermore, we simultaneously measured two isolated objects to demonstrate

that our proposed method can actually recover absolute phase for absolute 3D shape

measurement. Figure 6.12(a) shows the photograph of these two objects. Fig-
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ure 6.12(b) and 6.12(c) respectively shows the 3D result reconstructed from the

rough disparity map, and that from the refined disparity map after applying our

proposed computational framework. This experiment successfully demonstrated that

our proposed method can indeed be used to measure absolute 3D geometry of multiple

isolated objects.

(a) (b) (c)

Fig. 6.12. Measurement results of multiple isolated objects. (a) Pho-
tograph of the objects; (b) 3D reconstruction using the rough disparity
map; (d) 3D reconstruction using the refined disparity map.

Lastly, we conducted an experiment to demonstrate the capability of high-speed

3D shape measurement. In this experiment, we set the camera resolution as 512 ×

512, the exposure time as 105 µs, the slot speed as 3,000 Hz, and theN = 3 step phase-

shifting algorithm for phase calculation (e.g., the cameras actually capture images at

3, 000 × 3 = 9, 000 Hz). Figure 6.13 shows a few representative 3D frames, and the

associated Visualization 1 includes the entire sequence of recording. This experiments

confirmed that our proposed method can be used for high-speed applications. It

should be noted that although the slot speed of the projection system can go up to

10,000 Hz for our particular system setup, we chose 3,000 Hz for this experiment

because the limited fiber light power.

It is important to note that comparing with the static measurement results shown

in Fig. 6.10(f), the high-speed measurement quality is obviously lower. We believe

this reduced measurement quality could be introduced by the following factors: (1)
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Fig. 6.13. Experimental results of measuring a rapidly moving object.
Five representative frames from a sequence of recording shown in the
associated with Visualization 1

the lower resolution cameras we used for high-speed measurement, i.e., 1024 × 1024

camera resolution was used for static measurements whilst 512 × 512 was used for

high-speed measurements; (2) the camera noise is larger for high-speed measurements

due to the reduced exposure time; (3) the fringe quality generated by the spinning

wheel was low because the fringe stripes are very wide and are nonsinusoidal even

after defocusing, as shown in Fig. 6.8(a), 6.8(d) and 6.10(b); (4) the phase quality

produced from the left camera could be different from that produced by the right

camera because of their different perspectives; and (5) the phase-based interpolation

may not be precise due to the circular nature of the fringe patterns.

6.4 Discussion

The proposed high-speed and high-accuracy 3D shape measurement technique has

the following major advantageous features:

• High measurement speed. The proposed technique can always achieve the same

3D measurement speed as the speed of the projector (10,000 Hz in our case)

regardless the number of phase-shifted fringe images required for one 3D re-

construction as long as the camera speed is high enough. In contrast, if the

projector’s refresh rate is fixed, the measurement speed of a conventional DFP
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system decreases when the number of phase-shifted fringe images used for one

3D reconstruction increases .

• High measurement accuracy. The proposed method can also achieve high mea-

surement accuracy because (1) phase-shifted fringe patterns are precisely cap-

tured through precise synchronization between the cameras can the projector;

(2) a statistical pattern is used to enhance the robustness of the initial rough

disparity map calculation; and (3) a novel rough disparity map refinement com-

putational framework is developed to achieve sub-pixel level disparity map de-

termination accuracy.

• Broad light spectrum. Since the mechanical projection device uses a metal plate

with ON and OFF slots, a broad spectrum of light can be used to generate

desired fringe patterns for 3D shape measurement. In contrast, the conven-

tional DFP systems use a silicon-based projectors (e.g., LCD, or DLP), and the

spectrum of light is greatly restricted to the region that silicon can properly

function.

However, the proposed method is not trouble free. Unlike the state-of-the-art DLP

based high-speed 3D shape measurement techniques, this proposed method requires

two high-speed cameras to realize absolute 3D shape measurement mainly because it

is more difficult to precisely calibrate the mechanical projection device than the DLP

projector, and is also more difficult to generate different frequency fringe patterns for

absolute phase recovery.

6.5 Summary

This chapter has presented a method for high-speed and high-accuracy 3D shape

measurement using a mechanical fringe projection system. In lieu of using a silicon-

based projection device such as a DLP or LCD projector, the proposed fringe pro-

jection system uses the metal-based pattern generation mechanism that allows the
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use of a much broader light spectrum of light for 3D shape measurement. The pro-

posed technique achieved both high-speed and high-accuracy 3D shape measurement

through precisely synchronizing the cameras with projector, and developing a novel

computational framework for sub-pixel disparity map generation. We developed a

prototype hardware system that can accurately measure both single and multiple iso-

lated objects. The same hardware prototype system could potentially achieve 10,000

Hz 3D shape measurement speeds regardless the number of phase-shifted fringe pat-

terns required for one 3D reconstruction.
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7. INFLUENCE OF PROJECTOR PIXEL SHAPE ON

ULTRAHIGH-RESOLUTION 3D SHAPE

MEASUREMENT

7.1 Introduction

With recent advancements of the 3D shape measurement field and the increasingly

availability of affordable commercial 3D sensors, 3D shape measurement techniques

have been rapidly impacting in fields ranging from biomedical engineering, manufac-

turing, robotics, and entertainment [106].

Among existing 3D shape measurement techniques, DFP has been especially pop-

ular because of its achievable high measurement accuracy, and high spatial resolu-

tion [4]. A typical DFP system consists of one projector that projects fringe patterns

onto the object and one camera that receives the fringe patterns scattered by the

object surface. Instead of using intensity, a DFP system uses the carrier phase of

fringe image(s) for 3D shape recovery. To achieve high quality measurement, high

quality phase has to be recovered. As such, DFP techniques can achieve camera pixel

level spatial resolution with the fundamental assumption that high-quality sinusoidal

fringe patterns can be captured.

There are basically two ways to create sinusoidal fringe patterns [107]: defocus

1-bit binary images and directly use 8-bit sinusoidal images. The latter is straight-

forward in terms of concept and implementation, but has three major limitations:

(1) nonlinear gamma influence of the projector; (2) requirement of a large number

of pixels to represent a accurate sinusoidal profile; (3) precise synchronization re-

quirement between the projector and the camera. Typically, narrower fringe patterns

could produce higher SNR phase and thus better measurement quality. Therefore, it

is desirable to use narrow fringe patterns for 3D shape measurement system. How-
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ever, using multiple level grayscale images to produce sinusoidal patterns may not be

preferable due to the Limitation #2. The binary defocusing technique, in contrast,

can use smaller number of pixels to produce sinusoidal patterns through defocusing,

and thus has been extensively studied for high-quality 3D shape measurement.

Since achieving higher speed and higher measurement resolution is increasingly

needed whilst simultaneously maintaining a large field of view (FOV). It is more

practical to use a smaller camera pixel size in object space because realizing higher

projector resolution is more costly. In a typical DFP system, the projector pixel size

and the camera pixel size are comparable in the object space, the shape of projector

pixel is typically not considered. However, to achieve ultrahigh resolution, the camera

pixel size is much smaller than the projector pixel size (e.g., the camera pixel size is

1/10 of the projector pixel size), the shape of the projector pixel might no longer be

negligible.

There are two types of DMDs developed for DLP projectors: rectangular shaped

pixels and diamond-shaped pixels. Our research found that, when the camera pixel

size is much smaller than the projector pixel size in order to achieve ultrahigh res-

olution 3D shape measurement, the diamond-shaped DMD pixels cannot be used

to achieve high-quality 3D shape measurement. We believe that this is caused by

the sampling effect of mismatched pixel shape from the computer generated pixel to

the projected pixel. This chapter evaluates the performance of the DFP system for

ultrahigh resolution 3D shape measurement using two different types of projectors.

Both simulations and experiments demonstrated that a projector with rectangular

shaped pixels is more suitable for ultrahigh resolution (e.g., camera pixel is 1/5 of

the projector pixel) 3D shape measurement.

Section 2 explains the basic principle of phase-shifting algorithms. Section 3 shows

simulation results. Section 4 presents experimental results. Section 5 summarizes this

chapter.
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7.2 Phase-shifting algorithm

Because of high-speed, high-accuracy, and robustness to noise, phase-shifting al-

gorithms have been extensively adopted for 3D optical metrology [60]. For an N -step

phase-shifting algorithm with equal phase shifts, the k − th fringe pattern can be

mathematically described as,

Ik(x, y) = I ′(x, y) + I ′′(x, y) cos[φ+ 2kπ/N ], (7.1)

where I ′(x, y) is the average intensity, I ′′(x, y) is the intensity modulation, phi(x, y)

is the phase to be solved for, and k = 1, 2, . . . , N . The phase can be calculated as,

φ(x, y) = − tan−1
∑N

k=1 Ik(x, y) sin(2kπ/N)∑N
k=1 Ik(x, y) cos(2kπ/N)

. (7.2)

Due to the use of an arctangent function, the phase value obtained by Eq. 7.2 ranges

from −π to π with 2π discontinuities, which is often regarded as wrapped phase. To

recover a continuous phase map, a phase unwrapping algorithm is required. The

phase unwrapping algorithm adds or subtracts integer multiples of 2π to remove 2π

discontinuities for each pixel. There are two different categories of phase unwrapping

algorithms: spatial phase unwrapping [108,109] and temporal phase unwrapping [4].

The former can only provide the relative phase information because the algorithm is

typically based on a reference point in the phase map. In contrast, a conventional

temporal phase unwrapping method requires more patterns to determine the proper

number of 2π for each pixel to unwrap the wrapped phase, whilst some recent ge-

ometric constraint based algorithms can also unwrap the phase without temporally

acquiring more images [46,80,84–86,88–90]. In this research, we used the gray-coding

method, which is one of the temporal phase unwrapping algorithms, to obtain the

unwrapped phase map [40]. Once the unwrapped phase is obtained, 3D information

can be recovered if the system is calibrated [110].
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7.3 Simulation

For a 3D shape measurement system employing the binary defocusing method, a

DLP projector is preferable due to its achievable high contrast and high speed [4].

DLP projectors has two types of pixels: the diamond-shaped pixels and the rectan-

gular shaped pixels, as shown in Fig. 7.1(b) and 7.1(a). The rotation axis of the

rectangular pixel is the middle line of the rectangular pixels and the rotation axis of

the diamond-shaped pixel is along the diagonal line. The definition of a projected

image is clear for a projector with rectangular shaped pixels because the one-to-one

mapping is precisely along each row and each column, as shown in Fig. 7.1(c). How-

ever, the definition of a projected image for a projector with diamond-shaded pixels

is not a precisely one-to-one mapping, as shown in Fig. 7.1(d). The different mapping

process could introduce differences during the resampling process when the projected

image is captured by the camera, especially when the camera pixel size is much higher

than the projector pixel size in object space. Therefore, this research endeavors to

study such an influence on ultrahigh resolution 3D shape measurement.

(a) (b) (c) (d)

Fig. 7.1. Illustration of two different types of DLP projectors.
(a) Rectangular shaped pixels and the rotation axis; (b) diamond-
shaded pixels and the rotation axis; (c) row and column definition of
rectangular-shaped pixels; (d) row and column definition of diamond-
shaped pixels.

We first analyzed the phase quality by comparing the phase error between two dif-

ferent pixel shapes with respect to projector-to-camera pixel size ratios. We employed
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the binary defocusing technique with a fringe pitch as 12 and a phase shift number

of 12 (i.e., N = 12). Figure 7.2(a) shows one of computer generated phase-shifted bi-

nary patterns for a projector with rectangular-shaped pixels. Figure 7.2(b) shows one

of computer generated phase-shifted binary patterns for a projector with diamond-

shaped pixels. It is obvious that the diamond-shaped pixels produce a pattern with

saw-tooth edging artifacts, whilst the pattern produced by rectangular-shaped pixels

does not have such artifacts.

(a) (b)

Fig. 7.2. Ideal binary patterns with different projector pixel shapes.
(a) One of the binary patterns for a projector with rectangular-shaded
pixels; (b) one of the binary patterns for a projector with diamond-
shaded pixels.

These phase-shifted patterns were blurred by applying a Gaussian filter with a

size of 5 × 5 pixels then resampled with a much smaller camera pixel size (i.e. one

projector pixel corresponds to many resampled camera pixel). Figure 7.3(a) shows

the resampled image of the blurred pattern shown in Fig. 7.2(a) when the projector

pixel size is 16 times of the camera pixel size. The resampled phase-shifted patterns

are then used to compute the wrapped phase, as shown in Fig. 7.3(c). The wrapped

phase is further unwrapped and compared against the ideal phase to determine the

error. Figure 7.4(b) shows the error map when the projector-camera pixel size ratio

is 16:1. We then calculated the rms value of the error map, 0.123 rad for this case,

to quantify the phase quality.

We employed a similar process to analyze the phase error for the projected image

with a rectangular shaded pixels. Figures 7.3(b) shows the resampled blurred pattern

shown in Fig. 7.2(b) when the projector pixel size is 16 times of the camera pixel

size. Figure 7.3(d) shows the wrapped phase map, and Fig. 7.4(a) shows the error

map with a rms error of 0.167 rad when the projector-camera pixel size ratio is 16:1.
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(a) (b)

(c) (d)

Fig. 7.3. Simulations for ultrahigh resolution captured system. (a)
One of the captured fringe images for the projector with rectangular-
shaped pixels; (b) one of the captured fringe images for the projector
with diamond-shaped pixels; (c) wrapped phase map for the captured
fringe images for the projector with rectangular-shaped pixels; (d)
wrapped phase map for the captured fringe images for the projector
with diamond-shaped pixels.

(a) (b)

(c) (d)

(e) (f)

Fig. 7.4. Representative phase error maps with different projector-
to-camera pixel size ratios. For all images, purely black represents
absolute phase error of 0 rad, and purely white represents absolute
phase error of 0.57 rad. (a) Phase error map for the captured fringe
images for the projector with rectangular-shaped pixels (rms 0.12 rad)
when projector-camera pixel size ratio is 16:1; (b) phase error map
for the captured fringe images for the projector with diamond-shaped
pixels (rms 0.17 rad) when projector-camera pixel size ratio is 16:1;
(c)-(d) phase error maps results when the projector-camera pixel size
ratio is 2:1; (e)-(f) phase error maps results when the projector-camera
pixel size ratio is 1:1.
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Clearly, the phase rms error is much larger than that obtained using the projector

with rectangular-shaped pixels.

We then analyzed the phase error for different camera pixel sizes. We basically

combined m×m pixels of the resampled patterns with the projector pixel size being 16

times of the camera pixel size and recomputed the phase rms error. Figure 7.4 shows

some representative error maps with different projector-to-camera pixel size ratios,

and Fig. 7.5 summarizes the comparing phase rms errors for both types of projectors.

Clearly, when the projector pixel size is similar to that of the camera pixel size, these

two types of projectors do not have significant difference, as expected. However, when

the projector pixel size is much larger than the camera pixel size (e.g., 5 times), the

phase rms error for the projector with rectangular shaded pixels is much smaller than

that for the projector with diamond-shaded pixels. Furthermore, one may notice that

the difference quickly increase when the projector to camera pixel size ratio is between

2 and 5, and then the separation remain quite large when the ratio is larger than 5

or so.

Fig. 7.5. Simulation results of two projector types with different
projector-to-camera pixel ratio with binary patterns.

In addition, we ran simulation on ideal sinusoidal fringe patterns instead of blurred

binary patterns. Figure 7.6(a) shows one of sinusoidal fringe patterns for the projector

with diamond-shaped pixels. Figure 7.6(b) shows one of sinusoidal fringe patterns for

the projector with rectangular shaped pixels. We followed the same process to analyze
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the phase error, and the corresponding phase error maps are shown in Fig. 7.6(c) and

Fig. 7.6(d) respectively.

(a) (b)

(c) (d)

Fig. 7.6. Comparing simulation results when the projected fringe pat-
terns are sinusoidal. (a) One of the captured fringe images for the pro-
jector with rectangular-shaped pixels; (b) one of the captured fringe
images for the projector with diamond-shaped pixels; (c) phase error
map for the captured fringe images for the projector with rectangular-
shaped pixels; (d) phase error map for the captured fringe images for
the projector with diamond-shaped pixels.

Figure 7.7 shows the comparing result when the projector pixel size varies from 1

to 16 times of the camera pixel size. Once again, the projector with diamond shaped

pixels produce significantly larger error than that of the projector with rectangular

shaped pixels when the projector pixel size is much larger than the camera pixel size.

Fig. 7.7. Simulation results of two projector types with different
projector-to-camera pixel size ratios when projected patterns are si-
nusoidal patterns.
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7.4 Experiment

We developed two DFP systems to experimentally evaluate these two type of

projectors. Figure 7.8 shows photographs of the systems: the first system (System

I) used a DLP projector with rectangular-shaped pixels (model: Texas Instrument

LightCrafter 6500), and the second system (System II) used a DLP projector with

diamond-shaded pixels (model: Texas Instrument LightCrafter 4500). The projector

in the first system has a resolution of 912 × 1140 and the projector in the second

system has a resolution of 1920 × 1080. Both systems include the same model camera

(model: FLIR Grasshopper USB 3.0). The camera was attached with a 25 mm

lens (model: Kowa LM25HC-V) whose resolution was set as that has a pixel size of

3.45 µm×3.45 µm, and the camera resolution was set as 2048 × 1536. The camera

pixel size is 3.45 µm×3.45 µm, the LightCrafter 4500 projector pixel size is 7.64

µm×7.64 µm, and LightCrafter 6500 projector pixel size is 5.5 µm×5.5 µm. Both

systems used the microprocessor (model: Arduino Uno) to synchronize the camera

with the projector. For all experiments, the projector used only green channel and

the projection and capturing speed was set as 20 Hz.

(a) (b)

Fig. 7.8. Photographs of experimental system setups. (a) System I:
system using a projector with diamond-shaped pixels; (b) System II:
system using a projector with rectangular-shaped pixels.
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We carried out experiments to evaluate performance of these two systems with

varying projector-to-camera pixel ratios. We first measured a flat white plane using

12 phase-shifted fringe patterns with a fringe period of 12 pixels. The projector was

slightly defocused to reduce the impact of high order harmonics. The projector was

positioned further away such that each projector pixel is equivalent to approximately

16 camera pixels on the plane. For these experiments, the camera was attached

with 25 mm lenses (model: Kowa LM25HC-V). We captured the phase-shifted fringe

patterns and gray coded patterns for absolute phase retrieval. Figure 7.9(b) shows

one of phase-shifted fringe patterns projected by the projector with diamond-shaped

pixels, and Fig. 7.9(d) shows zoom-in view that clearly depicts the diamond pixel

shape. Figure 7.9(a) shows one of the phase-shifted fringe patterns projected by the

projector with rectangular shaped pixels images, and Fig. 7.9(c) shows zoom-in view

that shows the rectangular pixels.

(a) (b)

(c) (d)

Fig. 7.9. Representative captured images. (a) One of the captured
fringe images from System I; (b) one of the captured fringe images
from System II; (c) zoom-in view of the pattern shown in (a); (d)
zoom-in view of the pattern shown in (b).

We obtained absolute phase map from these captured fringe patterns and then

calculated the phase error map by subtracting the reference plane. The reference
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plane was created by applying a Gaussian filter with a size of 21 × 21 pixels to

the unwrapped phase map. Figure 7.10(b) shows the error map of System I when

the projector pixel size is 16 times of the camera pixel size. Figure 7.10(a) shows

the error map of System II when the projector pixel size is 16 times of the camera

pixel size. Once again, we combine m × m pixels of the camera captured images

to artificially create smaller projector-to-camera pixel size ratios. Figure 7.10 shows

some representative phase error maps.

(a) (b)

(c) (d)

(e) (f)

Fig. 7.10. Phase error analysis for the flat plane experiments. (a)
Phase error map of System I when projector-camera pixel ratio is
16:1; (b) Phase error map of System II when projector-camera pixel
ratio is 16:1; (c)-(d) phase error maps results when the projector-
camera pixel size ratio is 2:1; (e)-(f) phase error maps results when
the projector-camera pixel size ratio is 1:1.
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Figure 7.11 shows phase rms error for both systems with respect to the projector-

to-camera pixel ratio. This once again demonstrated that the DFP system using

a projector with diamond-shaped pixels has lower quality phase than the system

using projector with a rectangular shaped projector when the projector pixel size is

much larger than the camera pixel size. Furthermore, when the projector to camera

pixel size ratio ranges from 1 to 3, the error difference rapidly increases, and remain

relatively large when the ratio is larger than 5.

Fig. 7.11. Experimental result of two projector types with respect to
different projector-to-camera pixel size ratios.

We then measured a sphere with a diameter of 40 mm using both systems.

For these experiments, the camera was attached with 25 mm lenses (model: Kowa

LM25HC-V). We configured both systems to ensure that the the projector pixel size is

approximately 8 times of the camera pixel size. Figure 7.12(a) shows the photograph

of the sphere captured by System I. Figure 7.12(b) shows one of the captured fringe

patterns. We then employed the phase-shifting algorithm to obtain absolute phase

map, and the absolute phase map is further converted 3D geometry by using the

reference plane based method [111]. Figure 7.12(c) shows the final 3D reconstruction.

To better visually compare the measurement results, we generated a close-up view of

the 3D reconstruction, as shown in Fig 7.12(d). Figure 7.12(e)-7.12(h) respectively

shows the photograph of the object captured by System II, one of the fringe patterns,

and the corresponding 3D reconstruction, and the close-up view of 3D reconstruction.



101

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7.12. Experimental result of a sphere. (a) Photograph captured
by the first system; (b) one of the fringe images captured by System
I; (c) 3D result by System I; (d) zoom-in view of (c); (e) photograph
captured by System II; (f) one of the fringe images captured by System
II; (g) 3D result by System II; (h) zoom-in view of (g).

We measured a statue with more complex 3D surface geometry when the projector

pixel size is approximately 16 times of the camera pixel size. Figure 7.13 shows the

measurement results. Figure 7.13(a) shows photograph statue captured by System

I. Figure 7.13(b) shows 3D reconstruction, and Fig. 7.13(c) shows the corresponding

close-up view. Similarly, we measured the same statue with System II, and the

corresponding results are shown in Fig. 7.13(d) and Fig. 7.13(e).

Lastly, we reconfigured the system with different projector-to-camera pixel size

ratios (approximately 2:1 and 1:1), and measured two complex 3D objects. For the

1:1 ratio systems, the camera was attached with a 8 mm lens (Model: Computar

M0814-MP2), and for the 2:1 ratio systems, the camera was attached with a 16

mm lens (Model: Computar M1614-MP2). Figure 7.14 shows the corresponding
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(a) (b) (c) (d) (e)

Fig. 7.13. Experimental results of a statue. (a) Photograph captured
by System I; (b) one of the fringe images captured by System I; (c) 3D
result with System I; (d) zoom-in view of (c); (e) photograph captured
by System II; (f) one of the fringe images captured by System II; (g)
3D result with System II; (h) zoom-in view of (g).

results. The comparing data shows that when the projector-to-camera pixel ratio is

approximately 2:1, the result obtained from System I is better than that obtained

from System II; whilst the data quality is similar when the projector-to-camera pixel

size ratio is approximately 1:1. All the simulation and experimental results confirmed

that (1) when the camera pixel is much smaller than the projector pixel in object

space, 3D shape measurement quality obtained from a system using a projector with

rectangular shaped pixels is much higher than that obtained from a system using

a projector with diamond-shaped pixels; (2) the projector-camera pixel size ratio

has less influence on measurement quality for a DFP system using a projector with

rectangular shaped pixels than using a projector with diamond shaped pixels; and

(3) overall, the DFP system using a projector with rectangular pixels produces much

smoother 3D geometry with higher measurement accuracy.

7.5 Summary

This chapter evaluated the performance of DLP projectors with two different

shaped pixels for ultrahigh-resolution 3D shape measurements. Our simulation and
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7.14. Experimental results of complex 3D objects with different
projector-to-camera pixel size ratios. (a) Photo of the object mea-
sured with projector-to-camera pixel size ratio of 2:1; (b) 3D result
with System I; (c) 3D result with System II; (d) close-up view of
(b); (e) close-up view of (c); (f) Photo of the object measured with
projector-to-camera pixel size ratio of 1:1; (g) 3D result with System
I; (h) 3D result with System II; (i) close-up view of (g); (j) close-up
view of (h).

experimental results demonstrated that if the camera pixel size is similar to the pro-

jector pixel size, the pixel shape has negligible influence on measurement quality.

However, if a single projector pixel corresponds to a lot more camera pixel, the dia-

mond shaped projector pixels introduce measurement artifacts that reduces measure-

ment quality. Therefore, in general, it appears when employed in a DFP system, the

projector with rectangular pixels outperforms that with diamond-shaped pixels .
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8. SUMMARY AND FUTURE DIRECTIONS

8.1 Summary of Contributions

In unstructured environments, it is difficult for robots to acquire accurate 3D

data based on electromagnetic tools because they are exposed to many disturbances.

To overcome the environmental limitations, this research has made the following

contributions:

• Developed a novel method to enhance the robustness of conven-

tional the two-frequency phase-shifting method by using geometric

constraints.

A multi-frequency phase-shifting method is one widely used method for tem-

poral phase unwrapping. Two-frequency phase-shifting is commonly used for

high-speed 3D sensing, but it is sensitive to noise. On the other hand, three- or

more-frequency phase-shifting algorithms are preferred for accurate 3D results.

The limitation of the conventional two-frequency method is that the fringe order

for absolute phase is calculated after multiplying a scaling factor to the phase.

Therefore, to cover the whole projection range and obtain high-accuracy results,

a large scaling factor is used. However, because this scaling factor also affects

the noise with the same ratio as the valid data, using the two-frequency method

for high-accuracy has been undesirable. This research proposed a method that

utilizes the geometric constraints of the DFP system and unwraps the phase

within a certain phase range to reduce the noise substantially without addi-

tional patterns. If we set an artificial depth range where the object can be

placed, the absolute phase on the object does not exceed the phase range based

on the artificial depth range. Then, the fringe order of the phase can be de-

termined by the difference between the retrieved phase and the artificial phase
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map. This research has been published in Applied Optics and was discussed in

Chapter 3.

• Developed a novel method to retrieve 3D absolute phase by reducing

the number of patterns for one 3D image.

The proposed research suggests reducing the number of patterns to do high-

speed 3D sensing. The number of patterns is an important factor to determine

the speed of 3D reconstruction because the patterns are captured sequentially

by a camera, which means that the number of patterns is proportional to the

time taken to capture a set of images for one 3D image. By integrating texture

image of the object with a phase coding method, a total of five binary patterns

including three fringe patterns are used to get an absolute phase map for 3D

reconstruction. Specifically, three dense binary dithered patterns are used to

compute the wrapped phase, and the average intensity is combined with two

additional binary patterns to determine fringe order pixel by pixel in phase

domain. In addition, geometric constraints are used to reduce the noise in the

patterns. By doing experiments with a high-speed camera, the sensing system

captured 3,333 images per second and about 666 three-dimensional data of the

object achieved in a second. This research has been published in Optics and

Lasers in Engineering and was introduced in Chapter 4.

Other research presents a method that reconstructs absolute 3D shape using

three binary patterns: one DC, one low-frequency, and one high-frequency fringe

pattern. The procedures are to (1) take the difference between the sinusoidal

fringe patterns and the DC pattern, (2) apply Hilbert transform to the difference

images to generate two phase maps, (3) employ the geometric constraint-based

phase unwrapping method to unwrap the low-frequency phase map, (4) unwrap

the high-frequency phase map using the unwrapped low-frequency phase map,

and (5) reconstruct 3D shape. We developed a prototype system that can cap-

ture 2D images at 6,000 Hz, achieving 2,000 Hz 3D shape measurement speed.
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This research has been published in Optical Engineering and was introduced in

Chapter 5.

• Developed a custom-designed mechanical projector for high-speed

and high-accuracy 3D surface measurement and broad-light spec-

trum.

A DLP projector, which is widely used in fringe analysis, has DMD to project

a pattern(s) pixel by pixel. Micro mirrors inside the DLP projector are made

of silicon-based material, which reflects only a specific range of light spectrum.

Therefore, only a limited-light spectrum can be used for 3D sensing. Besides, a

DLP projector has a speed limitation for projecting gray-scale patterns needed

for fringe analysis. Although standard stereo vision can reconstruct 3D images

using a single image from each camera [99], the resolution and accuracy is

much lower than with DFP techniques. This research proposed a new custom-

designed projector, which projects fringe patterns using a rotating wheel with

equally spaced ON/OFF structures in lieu of silicon-based projectors, such as a

DLP or LCD projector. By making the light source for projection independent

of the projector mechanism, users can easily replace it with another one, which

has a specific light spectrum. To acquire high-speed 3D sensing, two high-speed

cameras and one mechanical projector need to be synchronized precisely. We

used a high-performance microprocessor to synchronize the optical devices in

microseconds. As a result, the system can capture 3D images at a speed up to

10,000 Hz. With the proposed refinement algorithm, we can achieve sub-pixel

level accuracy of 3D images. This research has been published in Optics Express

and was introduced in Chapter 6.

• Developed a custom-designed mechanical projector for high-speed

and high-accuracy 3D surface measurement and broad-light spec-

trum.
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The state-of-art 3D shape measurement with digital DFP techniques assume

that the influence of projector pixel shape is negligible. However, this research

reveals that, when the camera pixel size is much smaller than the projector pixel

size in object space (e.g., 1/5), the shape of projector pixel can play a critical

role in ultimate measurement quality. This research evaluated the performance

of two shapes of projector pixels: rectangular and diamond shaped. Both simu-

lation and experimental results demonstrated that, when the camera pixel size

is significantly smaller than the projector pixel size, it is more advantageous for

an ultrahigh resolution 3D shape measurement system to use a projector with

rectangular shaped pixels than the projector with diamond-shaped pixels. This

research was introduced in Chapter 7.

These researches were funded by the National Science Foundation (NSF) under

Grant No. CMMII-1531048, IIS-1637961 and National Institute of Justice (NIJ)

under Grant No. 2016-DN-BX-0189.

8.2 Future directions

8.2.1 Phase-based feature detection for global mapping

To generate a 3D model of a large object with the 3D sensor, each 3D frame

should be stitched to other 3D frames captured at different times. With the release

of a low-cost 3D scanner, people can obtain the 3D model of an object, as well as

the texture image. Even if researchers easily obtain the 3D geometries sequentially,

the stitching algorithms are mainly based on the texture image by calculating the

correlation between sequentially captured images. As stated above, processing the

data in intensity domain of texture image could be unstable , depending on lighting

conditions or surface reflectivity. In addition, if there are not enough feature points on

the surface of the object, such as a room surrounded by white walls, it is more difficult

to calculate the correlation to stitch the 3D models. Instead of using texture variation

for feature points, we can utilize the phase information as feature points for stitching
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separate 3D images and get an accurate 3D global map. As mentioned before, because

phase information is more robust to noise and has high-spatial resolution, we can

obtain a number of feature points to reconstruct one large 3D model.

8.2.2 Customized 3D scanning system for maintenance of infrastructures

The customized mechanical projector introduced in Chapter 6 suggested a new

projector utilizing the phase information directly without a back-and-forth computa-

tional framework. It broadens the light spectrum for projection and achieves super-

fast projection speed, which the DLP projector finds difficult to achieve. Even if the

configuration of optical devices is very simple, the size of the sensing system is not

optimized for a mobile platform or a robotic arm. In addition, because the projector

is designed with a rotating wheel for fringe patterns and only a small part of the

wheel is used for projection, the field of view is too small to measure the surrounding

environments and map the 3D data. Still, a mechanical projector has advantages in

projection speed and light spectrum. By rotating a circular tube with fringe pat-

terns—which is similar to praxinoscope—we can retrieve the phase information of

the object. Because this circular projection device can project the fringe patterns

in all directions, depending on the direction of light source, we can determine the

projection area. Additionally, we can put multiple light emitters inside the tube,

which means that it is possible to work as multiple projectors to scan surrounding

environments. By using these multiple projection system, the customized system can

capture a 360-degree 3D image at a time and the image can be used to inspect narrow

tunnels of bridges and water pipes.
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