
AUTOMATED SORTING OF PEGS USING COMPUTER VISION

by

Taylor W Hubbard

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science

School of Engineering Technology

West Lafayette, Indiana

December 2018

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Suranjan Panigrahi, Co-Chair

School of Electrical Engineering Technology

Mr. James Jacob, Co-Chair

School of Electrical Engineering Technology

Mr. Bradley Harriger, Committee Member

School of Mechanical Engineering Technology

Approved by:

Dr. Duane D. Dunlap

 Chair of SOET Graduate Program

iii

ACKNOWLEDGMENTS

 I would like to express my gratitude towards Dr. Suranjan Panigrahi, my advisor, for his

support and guidance throughout my thesis. I would also like to thank my committee members

Mr. James Jacob and Mr. Bradley Harriger for their support and technical insight and guidance.

 I would like to thank both Terry Echard and Lafayette Instruments for their monetary and

technical support throughout the project.

iv

TABLE OF CONTENTS

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

LIST OF ABBREVIATIONS ... x

GLOSSARY .. xi

ABSTRACT .. xii

 INTRODUCTION .. 1

1.1 Scope ... 1

1.2 Significance... 2

1.3 Research Question .. 2

1.4 Assumptions .. 2

1.5 Limitations .. 3

1.6 Delimitations ... 3

1.7 Organization .. 4

 REVIEW OF LITERATURE ... 5

2.1 Current System Designs .. 5

2.1.1 Mechanical and Electrical Hardware ... 5

2.1.2 Vision Inspection System .. 7

2.1.3 Software Processing Algorithms ... 9

2.1.3.1 Preprocessing .. 9

2.1.3.2 Edge Detection ... 10

2.1.3.3 Classification .. 12

2.2 Alternative Methods.. 13

2.2.1 Statistical Analysis ... 14

2.3 Summary ... 15

 RESEARCH METHODOLOGY .. 16

3.1 Initial System Design .. 18

3.1.1 Hopper ... 18

3.1.2 Conveyor .. 19

3.1.3 Camera System .. 20

v

3.1.4 Bin Selector ... 20

3.1.5 Bin Carousel .. 21

3.2 Preliminary Design Software Control ... 21

3.2.1 Image Acquisition Module .. 22

3.3 Revised System Design... 22

3.3.1 Rotating Hopper ... 23

3.3.2 Conveyor .. 24

3.3.3 Camera System .. 25

3.3.3.1 Lighting Enclosure ... 26

3.3.3.2 Camera, Len and Filter ... 26

3.3.3.3 Peg Detection .. 27

3.3.4 Bin Selector ... 27

3.3.5 Bin Carousel .. 28

3.3.6 Software Control .. 29

3.3.7 Image Acquisition Module .. 30

3.3.8 Sorting System PLC Control ... 32

3.3.9 Power Requirements .. 33

3.3.10 Summary ... 33

 RESULTS ... 34

4.1 Mechanical Build .. 34

4.1.1 System Frame .. 34

4.1.2 Hopper Subassembly ... 35

4.1.3 Conveyor .. 36

4.1.4 Lighting Enclosure and Camera System .. 37

4.1.4.1 Lighting Enclosure Body .. 37

4.1.4.2 Camera System and Enclosure Top .. 38

4.1.5 Bin Selector ... 39

4.1.6 Bin Carousel .. 40

4.1.7 Microcontrollers and PLC ... 41

4.1.7.1 Overall Assembly ... 44

4.1.7.2 Electronics Wiring .. 44

vi

4.2 Non-Conforming Peg Modification .. 44

4.2.1 PLC Software ... 45

4.3 Imaging System .. 46

4.3.1 Jetson TX1 System Setup .. 46

4.3.1.1 Jetson TX1 Libraries .. 46

4.3.1.2 Jetson TX1 and Image Processing Code .. 47

4.3.1.3 Camera Calibration ... 50

4.4 Arduino Code .. 52

4.5 Mechanical Post Build Revisions ... 53

4.5.1 Revised Reject Collection Method and Reject Bin ... 53

4.5.2 Revised Bin Carousel .. 54

4.5.3 Revised Hopper Separator Plate .. 55

4.5.4 Revised Flipper .. 57

4.6 Test Results and Analysis ... 58

4.6.1 Testing Procedure .. 58

4.6.2 Vision System Statistical Analysis Methods ... 59

4.6.3 Small Peg Results .. 60

4.6.4 Medium Peg Test Results .. 62

4.6.5 Keyed Peg Test Results ... 64

4.7 Post Build and Testing Conclusion ... 66

 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 68

5.1 Mechanical Recommendations ... 68

5.2 Software Recommendations ... 69

5.3 Summary ... 69

APPENDIX A. SUBASSEMBLY EXPLODED DRAWINGS ... 70

APPENDIX B. SUBASSEMBLY DRAWINGS WITH DIMENSIONS 76

APPENDIX C. CUSTOM PART DRAWINGS WITH DIMENSIONS...................................... 82

 APPENDIX D: EMBEDDED SYSTEMS AND PLC CODE ... 96

APPENDIX E: TESTING RESULTS .. 120

LIST OF REFERENCES .. 135

vii

LIST OF TABLES

Table 3-1: Comparison of Development Boards .. 30

Table 4-1: Theoretical Non-Conforming Peg Size and Cut Peg Size ... 45

Table 4-2: Calibration Table of Measured Peg Dimension to Pixel Length................................. 50

Table 4-3: Test Results of Different Components of System with Small Pegs 60

Table 4-4: Test Results of Different Components of System with Medium Pegs 62

Table 4-5: Test Results of Different Components of System with Keyed Pegs 64

Table 4-6: Prediction Accuracy of Individual Peg Types ... 67

viii

LIST OF FIGURES

Figure 3-1: Preliminary Sorting System Electrical Block Diagram ... 16

Figure 3-2: Preliminary Sorting System Mechanical Block Diagram .. 17

Figure 3-3: Final Sorting System Electrical Block Diagram .. 17

Figure 3-4: Final Sorting System Mechanical Block Diagram .. 18

Figure 3-5: Preliminary Assembly Model of Sorting System .. 19

Figure 3-6: Revised Assembly Model of Sorting System .. 23

Figure 3-7: Hopper Assembly for Isolation of Pegs ... 24

Figure 3-8: Conveyor Assembly for Transportation of Pegs ... 25

Figure 3-9: Overall Camera System ... 25

Figure 3-10: Selector for Peg Sorting ... 28

Figure 3-11: Carousel with Bins for Containment of Sorted Pegs ... 29

Figure 3-12: Overall Imaging System Flowchart ... 31

Figure 3-13: PLC Logic Flowchart .. 33

Figure 4-1: System Frame Subassembly .. 35

Figure 4-2: Hopper Subassembly ... 36

Figure 4-3: Conveyor Subassembly ... 37

Figure 4-4: Camera Enclosure Top .. 38

Figure 4-5: Camera Enclosure Subassembly ... 39

Figure 4-6: Bin Selector Subassembly ... 40

Figure 4-7: Bin Carousel Subassembly .. 41

Figure 4-8: Electronics Mount Subassembly ... 42

Figure 4-9: PLC and Din Rail Subassembly ... 43

Figure 4-10: HMI Interface Subassembly .. 43

Figure 4-11: Segmentation Image of Each Peg Type .. 49

Figure 4-12: Graph of Trendlines for Calibration Equations of Three Peg Types 52

Figure 4-13: Revised Reject Bin and Reject Slide ... 54

Figure 4-14: Revised Bin Carousel .. 55

Figure 4-15: Metal Separator Plate with Agitator .. 56

Figure 4-16: Medium and Keyed Separator Plate .. 57

ix

Figure 4-17: Revised Flipper for Selection Servo .. 58

Figure 4-18: Small Peg Linear Regression Model ... 61

Figure 4-19: Medium Peg Regression Model .. 63

Figure 4-20: Keyed Peg Regression Model ... 65

Figure 4-21: Assembled System with Post Build Revisions .. 66

Figure 5-1: HMI and Emergency Stop Button ... 69

x

LIST OF ABBREVIATIONS

REQUIRED SECTION

BOM Bill of Materials

CAD Computer Aided Design

ROI Region of Interest

CCD Charge Coupled Device

CMOS Complementary Metal Oxide Semi-Conductor

GPIO General Purpose Input/Output

HMI Human Machine Interface

DC Direct Current

PWM Pulse Width Modulation

xi

GLOSSARY

Computer-aided design or CAD – Computer technology used in design of 2D or 3D diagrams that

can be viewed from any angle, often facilitating the manufacturing process ("What is

Computer-Aided Design (CAD)? ").

Computer vision – Science or technology using methods of acquiring, processing, analyzing, and

understanding images from the real world, producing a numerical or symbolic output

("Translations for computer vision").

Extrusion – For metal, a piece is forced through a die of smaller cross-sectional area producing a

metal piece with a new cross-sectional profile (“Metal Extrusion”).

SolidWorks – 3D CAD software created by Dassault Systemes delivering simulation and design

validation. Currently using Solidworks 2017 Student Edition ("Packages").

xii

ABSTRACT

Author: Hubbard, Taylor, W. MS

Institution: Purdue University

Degree Received: December 2018

Title: Automated Sorting of Pegs using Computer Vision

Committee Chair: Suranjan Panigrahi

The thesis covered the creation and testing of a low cost and modular sorting system of pegs used

in products by Lafayette Instruments. The system is designed to check peg dimensions through

use of computer vision while sorting out nonconforming parts and counting ones that are

conforming. Conforming parts are separated into bins of predetermined quantities so that they do

not need manual counting. The developed system will save engineers and technicians at Lafayette

instruments many man hours from manually sorting and counting the roughly 160,000 pegs a year.

The system will be able to sort and count at a speed comparable to a human operator while

achieving an overall average accuracy of 95% or higher.

1

 INTRODUCTION

Lafayette Instruments is currently counting and sorting small diameter metal pegs

by hand and visually inspecting length to ensure they have met specifications. The process

of automating this task of sorting and counting is described in the following thesis.

1.1 Scope

Engineers have developed skills that allow them to excel in their field of design,

CAD, manufacturing, or other mentally challenging tasks. Engineers progress can be

hindered by the requirement to do tedious and repetitive tasks. The automation of laborious

and monotonous human work is becoming more common in today's workplace so that

human time can be spent elsewhere. Duties that are highly repetitive and time consuming

for a worker can now be carried out by a machine designed for that specific task. Not only

does automating processes decrease the unnecessary labor hours, it also increases the

reliability and repeatability of the product being manufactured, assembled or sorted.

At Lafayette Instruments, pegs are produced by a cutting and extrusion

manufacturing process. The pegs are counted and bagged to be shipped with pegboards.

Smaller pegs, or stubs, create issues with counting the quantity and ensuring that the

specified number of pegs with correct lengths are shipped to the customer. The counting

process is currently a weight based measurement. According to Lafayette Instruments, a

total of roughly 160 thousand pegs are purchased each year. Pegs are currently visually

inspected. Visual inspection can lead to overlooked stubs left in with the conforming pegs.

Moreover, the stubs may be counted as a peg in the counting process leaving the customer

short of the pegs necessary to fully assemble a pegboard.

Computer vision is a method that can be used in automating the human visual

inspection process. In many cases such as the sorting of grommets, the computer vision

process requires a large machine that is not easily moved and requires expensive parts and

software. The software alone in this instance costs over 130 thousand dollars (Regazzoni,

2017). The creation of an inexpensive and portable option is needed for smaller

2

environments that still require the increased accuracy and the reduced man hours of

accomplishing this tedious and monotonous task.

1.2 Significance

Many computer vision-based sorting systems have been developed for industrial

environments. These systems are able to sort parts at greater speed and with higher

accuracy than that of a human visual inspector. No system has been developed that is both

portable and inexpensive for small metal parts in smaller industries. The system developed

in this study will help a local company increase reliability in the sorting and counting of

metal pegs while reducing the time engineers and technicians must spend on the task.

1.3 Research Question

The research will be conducted to determine how to develop an inexpensive and portable

integrated automatic peg sorting system using computer vision techniques.

1.4 Assumptions

The following assumptions were inherent in this study:

1. Pegs of only three different dimensions are sorted and counted in this study.

2. Pegs of only one type are placed in the hopper at a time and are not mixed with any of

the other two types of pegs.

3. Pegs have all correct dimensions with the exception of peg length before introduction

into the system.

3

1.5 Limitations

The following limitations were inherent in this study:

1. The study is limited to the sorting of the three peg dimensions given by Lafayette

Instruments without appropriate modifications to the hopper and software parameters.

2. Statistical analysis is limited by the number of pegs given by Lafayette Instruments.

3. The study accuracy is limited by the accuracy and tolerance of some 3D printed and

laser cut custom fabrications.

4. Although modular, only one of the systems will be built for the sorting of pegs. Given

time and resources, several could be made to handle each type of peg individually.

1.6 Delimitations

The following delimitations were inherent in this study:

1. The study will not be tested on pins or pegs outside of the three specified by Lafayette

Instruments.

2. The study does not use neural networks or machine learning to accomplish the task.

These techniques along with mild adjustments may be used to increase the number of

objects able to be sorted by the system.

4

1.7 Organization

This thesis contains five major chapters and multiple appendices. Chapter 2

provides an overview of current sorting system used in industry and in research. It begins

with current system designs focusing on the electrical and mechanical hardware used. It

then discusses computer vision algorithms and techniques and concludes with a summary

of the statistical analysis used in the studies reviewed.

 Chapter 3 presents an overview to the methodology and framework within the

study. The chapter provides a preliminary and revised design of the sorting system in

detail along with computer-aided design or CAD representations.

 Chapter 4 discusses the results of the study. These results include post build

revisions, testing procedures that are applied for each type of peg and a detailed analysis

of the performance of each peg type though the sorting system. The results are analyzed

and evaluated against the performance criteria for the sorting system.

 Chapter 5 provides a summary and conclusions of the overall study. The chapter

also discusses the recommendations to further the design and accuracy of the system.

5

 REVIEW OF LITERATURE

The goal of developing a system to fully automate a human process is one that must

incorporate both electrical and mechanical devices. Automation also requires software to

control the system. The literature review presented is focused on current designs used for

automation of the sorting processes. Sorting may require dimensioning of the object, color

detection or searching for other visual characteristics. The following section breaks the

research down into the electrical and mechanical hardware, as well as, the software

currently in use in developed autonomous sorting and vision systems.

2.1 Current System Designs

The design of developed machine vision systems consists of an array of mechanical

hardware, electrical hardware and software. Working together, the hardware and software

are able to sort objects based on color, area, curvature or circularity as well as object

deformation. Machine vision systems are abundant in all industrial applications.

2.1.1 Mechanical and Electrical Hardware

This section consists of mechanical and electrical hardware directly used in the

sorting process. Hardware used in common sorting machines includes motors, actuators,

conveyors, hoppers and other electromechanical devices.

There are a multitude of sorting machines and systems that can result in a product

being properly sorted or categorized. Each system consists of an array of different

hardware that must work in coalition to achieve the sorting process. In many sorting

operations a crucial precursor to the vision system is the individual feed of objects into the

system. Carrots for example, can be characterized by their color and weight. Through

these two features, carrots can be assigned a grade and be sorted into graded bins prior to

being delivered to the customer. In a study presented by Hong Wei Du, the task of

individually feeding the carrots into a vision system used a hopper in conjunction with a

grid staggered belt. The spacing of the grid staggered belt ensured that only one carrot was

6

carried from the hopper tray at a time (Du, 2015). Once classified into grades by the

computer vision system, a number of linear actuators were used to remove the carrots from

the conveyor and push them down chutes into their designated bins (Du, 2015). Systems

have also been developed to sort walnuts based on grade and deformations. The walnut

sorting system also used a hopper in order to individually feed into the sorting system.

Once characterized, servos attached to pushing plates were used to push the walnuts from

the conveyor and into designated bins based on grade (Tran, Nguyen, Pham, 2016). From

research of sorting machines, a hopper appears to be the common segregation mechanism

for the objects of interest. In a study on classification of ceramic substrates, pneumatics

were used for the individual sorting of the substrates and suction was used to move the

substrate from the stack and to a conveyor. Once classified, pneumatics were used to place

the substrates into the designated class boxes. (Li-na & Li-jun, 2012)

 Conveyors come in several different variations. In some cases, the conveyor

consists of belts and pulleys while others use rollers which rotate the object along the

sorting line. In the use of a vision system, rollers can be especially important as they allow

pictures to be taken of all sides of the object with a single camera as the object is rolled

past. This method is presented in a study on the sorting of apples conducted by Sofu et al.

(2016). In order to check the entire surface of apples for scabs, stains and rotting, multiple

pictures had to be taken of the apple as it passed. The rollers were used to rotate the object

of interest as it traveled down the sorting line. Algorithms were then used to organize the

images and analyze for the deformations (Sofu, Kayacan & Cetisli, 2016).

 In a study performed by ElMasry et al. (2012), the roller conveyor method was

again used when visually inspecting the exterior characteristics of potatoes for color, shape

and defects. A second option for conveying the segmented object is a chain driven

conveyor. In Hong Wei Du's carrot sorting machine, the main conveyor was driven by a

motor, chain and reducer gear. A secondary motor drive chain was used to drive the

staggered belt for the hopper (Du, 2015). Conveying can also be accomplished by the use

of a motor and a belt. In the sorting of Tamarind, a pod shaped fruit, a white conveyor was

used to create contrast between the brown pod of the fruit and its background. This was

acceptable as the objects are often curved and would remain stationary without the need

for ridges or a staggered grid belt (Jarimopas & Jaisin, 2008).

7

 After the object is classified by a detector or computer vision system, the objects

must be physically removed from the conveyor. As discussed earlier, this can be

accomplished by the use of pneumatics and electromechanical hardware. Li-na and Li-Jun

(2008) developed a system that used pneumatics in the sorting of ceramic substrates. A

nozzle was used to create suction to the ceramic substrate so that it could be lifted and

transported. In other cases such as in the sorting of walnuts, carrots or sweet tamarind,

servos and actuators are used to push the object from the conveyor and into classified

containers. In sorting sweet tamarind, the tamarind was pushed into containers using a

pneumatic actuator with a plate attached. The plate ensured that all of the tamarind was

slid across the conveyor (Jarimopas & Jaisin, 2008).

2.1.2 Vision Inspection System

 The food and automotive industry are examples of where the visual inspection of a

product is a common verification technique or sorting technique incorporated into the

quality control process. The visual inspection of the product can be automated by use of a

computer vision system. Several important factors of the acquisition of a defined image

include the background, lighting, camera type, camera resolution and camera actuation.

 The background of an image plays an important role in gaining defined edges for

an object. It is important for the background to create a high contrast to the object in front

of it. Background contrast was expressed in a vision system by Probuwono et al. (2006),

which checked the tops of bottles and determined if the cap was properly installed. The

contrast of the image was maximized by the white light reflected from the bottle and the

black background. From the image the edges were determined to evaluate if the cap was

missing or installed improperly (Probuwono, Sulaiman, Hamdan & Hasniaty, 2006). In

the identification and sorting of sweet tamarind, the tamarind was analyzed for curvature.

The curvature of the tamarind was determined by analyzing the image. Image analysis was

performed by an algorithm that looked at pixels, starting from outside the object and

searching inward until the first black pixel was found. This was done in a radial pattern to

defined the outside of the tamarind (Jarimopas & Jaisin, 2008).

8

 Lighting is another crucial factor of the environment and the object. Lighting has

the ability to increase the contrast between the object and background. Improper and non-

uniform lighting can create shadows which decreases the abilities of algorithms such as

edge detection. There are a number of ways lighting systems can be designed in a machine

vision system. In a study for the sorting of potatoes, 16 40-watt daylight compact

fluorescent tubes were mounted to the sides and tops of the system lighting chamber. The

purpose of the high number of bulbs was to "provide homogenous lighting on the inspected

tubers as they passed below the camera." (ElMasry, Subero, Molto & Blasco, 2012).

Emphasis was placed on the lighting system in this study as directional light over the

potatoes had the ability to create spots and specular reflections on the surface. Reflections

on the surface can mask underlying deformities. Cross polarized filters were also used

over the fluorescent tubes to reduce reflections (ElMasry, Subero, Molto & Blasco, 2012).

Other translucent material can be used to disperse the lighting in a process known

as diffusion. In the automated measurement and dimensioning of basil seeds, two

fluorescent lamps were placed behind a translucent white seed holder. The diffusion of the

light around the seeds reduced shadows and increased the contrast between the seed and

the background. This lighting option is known as back lighting (Razavi, Bostan & Rezaie,

2010).

 Camera type is an important camera selection criterion as each type has their own

advantages and disadvantages. Two types of cameras are typically used, charge-coupled

devices (CCD) and complementary metal oxide semiconductor (CMOS). According to

Practical Image and Video Processing Using MATLAB (Marques, 2011), CCD cameras

have become the camera of choice for vision systems as they do not suffer from geometric

distortions and have a linear response to reflected light. The geometric distortion found in

other cameras is caused when the object is moving too fast for a frame to be fully and

accurately captured. However, with high intensity lighting, CCD cameras can suffer from

the effect known as blooming. Blooming occurs if the light intensity over-saturates one of

the photosites. Photosites are the cells inside the CCD camera which convert light into

voltage. The saturated photosite begins to overflow into the neighboring photosites

(Marques, 2011). In a study classifying mechanical bearings, two separate CCD cameras

were used for image acquisition. The images were then processed to find edges and overall

9

contour (Pop, Grigorescu & Davidescu, 2017). A study used high intensity lighting and a

CMOS camera to acquire an image of a non-moving ceramic substrate. The resolution of

the camera was 3000x2208 equating to a calibration of 0.04mm/pixel. The pixel resolution

was still too low and interpolation algorithms had to be run to satisfy the resolution

accuracy of 0.008mm/pixel (Li-na & Li-jun, 2012). The important factor in measuring the

substrate dimensions was the camera's resolution.

 Camera actuation is the act where a device or piece of hardware determines when

the camera will acquire an image. In ElMasry et al.'s study sorting potatoes, a Matrox

Meteor frame grabber was actuated by an encoder connector to the conveyor. The encoder

was designed to send out three pulses/mm. Knowing that an image was needed every

80mm, the frame grabber was told to take a picture every 240 pulses (ElMasry, Subero,

Molto & Blasco, 2012). An encoder was also used in the study sorting apples based on

their external appearance (Sofu, Kayacan & Cetisli, 2016).

2.1.3 Software Processing Algorithms

Software processing is the part of the process where the image is altered, enhanced

and analyzed to extract specific data. A variety of algorithms are used in image processing.

This section will go into detail on several currently in use systems and the different

algorithms that are used to extract the desired information.

2.1.3.1 Preprocessing

 The first step after image acquisition is preprocessing. Preprocessing enhances the

overall image to better suit the algorithms that will later be performed. Preprocessing can

solve many issues such as noise which may have a negative impact on later algorithms.

According to Practical Image and Video Processing Using MATLAB (2011),

preprocessing algorithms include erosion, dilation, segmentation and many others. Erosion

is the shrinking of object in an image while dilation is the growing of object in the image.

Sementation is the process of increase contrast between the background and the object

(Marques, 2011). In a study inspecting metal parts moving on a conveyor, a preprocessing

segmentation technique was used (Haider, Anton & Abdullah, 2011). The Otsu

10

binarization technique evaluates the image and creates a threshold value between the object

pixel values and the background pixel values. The technique then changes all pixel values

above the threshold to 255 and all below the threshold to 0. On a binary scale this is similar

to a 1 or 0. Other mathematical preprocessors were used to enhance the object including

erosion, dilation and other 3x3 matrix operators (Haider, Anton & Abdullah, 2011). In the

study sorting sweet tamarind, the image acquired was enhanced by changing the RGB

intensities of the image. The image was broken into its RGB components and plotted on a

histogram to show each colors overall intensity. The color spectrum of the image was then

standardized by using a scaling factor derived from the histograms on each color. All red

pixels were multiplied by 0.299, green pixels by 0.587 and blue pixels by 0.114. By adding

up the RGB components of each pixel, a gray-scaled image was created. Further

segmentation of the object was performed using Bayesian discriminant analysis (Jarimopas

& Jaisin, 2008).

2.1.3.2 Edge Detection

 The next process of most vision systems is the exacting of the boundary of the

object being sorted. Boundary extraction is often performed using edge detection

algorithms.

 In a study analyzing and classifying small mechanical parts such as nuts, bolts,

washers and screws, several edge detection algorithms were performed. Edge detection is

a method that is used to extract the boundaries of an object. It is accomplished by finding

the position at which the pixel values change abruptly. Edge detection was presented in a

study by You and Zhang as being accomplished by two separate algorithms. The first is

by the rank grads operator which uses the derivative to find the sudden change in pixel

values. In calculus, this is presented as finding the partial derivative along both the x and

y axes. In computer vision, these two partial derivatives are expressed by the equations

shown in equation 2.1 (You & Zhang, 2008).

 ∆𝑦𝑓 = (i, j) − f(i, j − 1)

 ∆𝑦𝑓 = (i, j) − f(i, j − 1) (2.1)

11

Methods must be combined in the analysis of a 2D image as the program begins

searching in a grid fashion known as correlation or convolution. Three separate grad

operators were described which go through each pixel of the image and look for differences

in the neighboring pixels. These operators described were Roberts, Prewitt and Sobel (You

& Zhang, 2008). The second method of edge detection is known as the Laplacian operator.

The Laplacian operator starts by taking a grid of pixels, in this case a three by three square.

The operator then multiplies the center pixel value by eight and subtracts the summation

of the pixel values around it. The center pixel is then saved into a new image where edge

locations are represented by higher pixel values. This operation is performed to all non-

border pixels of the original image. Once the edges are defined, the program goes onto

another algorithm focusing on contour tracking. Contour tracking is described as "to

acquire the outer contour features of the image" or find the boundaries of the object (You

& Zhang, 2008). The algorithm searches line by line in the image until finding the first

black pixel. It then looks around that pixel for another black pixel and so on (You & Zhang,

2008).

 The study by Haider et al., which inspected metal parts on a moving conveyor, the

Otsu thresholding method and the 4-connected component labeling method were used as

boundary definition search techniques. The 4-connected component labeling method found

a pixel opposing to the background (in this case one with value 255) and then looked at its

neighbors to see if they are the same value. It then moved to the next 255 value pixel and

continued this process until the entire object of interest had a defined border (Haider, Anton

& Abdullah, 2011).

 The Canny method is another form of edge detection. In a study presented in the

Robotics and Computer-Integrated Manufacturing journal, broken inserts of edge profiles

in milling heads where identified. Canny's method was used along with a Hough transform

to obtain the milling inserts borders. The Canny method finds edges by looking at the local

maximum of the gradient. In this application, it computed the gradient after clearing image

noise through use of a Gaussian filter. The Canny algorithm is preferred to Sobel, Prewitt

or Roberts as its more complex workings were necessary in this study (Fernandez-Robles,

Azzopardi, Alegre & Petkov, 2017). The Canny method was applied in conjunction with

hysteresis thresholding. Hysteresis thresholding is creating low and high threshold values

12

and then removing possible edges that do not reach the minimum threshold value.

Hysteresis thresholding then keeps some of the weaker edges (those between the high and

low threshold) that are connected to the strong edges above the higher threshold value

(Fernandez-Robles, Azzopardi, Alegre & Petkov, 2017).

2.1.3.3 Classification

 Boundaries of the objects are now defined and must be assigned numerical

characteristics. The objects are then checked to see what criteria those numerical

characteristics fall under. In the study performed by You and Zhang (2008), on the sorting

of mechanical parts such as nuts, bolts and washers, a program calculated the area and

circularity of each object. The area was calculated by counting the number of pixels inside

the boundaries of the object. The circularity is calculated using the equations shown in

Equation 2.2 and Equation 2.3 (You & Zhang, 2008).

 C =
𝜇ℛ

𝛿ℛ

(2.2)

where 𝜇ℛ represents the average distance from the center of gravity to edge point. 𝛿ℛ is

the mean square error of distance.

𝜇ℛ =
1

𝐾
∑ || (𝑥𝑘, 𝑦𝑘) − (𝑥, 𝑦)||

𝐾−1

𝑘=0

𝛿ℛ =
1

𝐾
∑[||(𝑥𝑘 , 𝑦𝑘) − (𝑥, 𝑦)|| − 𝛿ℛ]

2
𝐾−1

𝑘=0

(2.3)

 Finally, after the algorithms classified each object with an area and a circularity

value, the values were compared to a predefined table of ranges. For example, if the

circularity fell 0.26-0.28 and the area 57000-59000 then the object was classified as a bolt

and sorted accordingly. In the study performed, all objects (two washers, two screws, three

nuts and a bolt) were able to be identified and classified correctly (You & Zhang, 2008).

13

Although this study was successful in a single test, the article did not discuss additional

testing to prove the reliability of the algorithms used.

 The classification techniques used by Haider et al. (2011) in sorting small metal

parts on a conveyor were very similar to that of sorting the nuts and bolts. First,

classification rules were created under which each component had a specific range for

circularity and area. After calculation of both area and circularity of each object, the object

properties were compared to the predefined rules. Objects were then able to be sorted based

on the range they fit in. This process was described in the study as forward chaining. The

overall accuracy of this system and use of algorithms was very positive at 99.25% for

singular parts. The system drops in accuracy to 91.5% for a group of parts (Haider, Anton

& Abdullah, 2011). Although the system was able to sort parts with acceptable reliability

in singular settings, the system possessed no actuation method to sort the parts.

2.2 Alternative Methods

 An alternative method presented by Hou (2001) disregarded using edge detection

and classification to identify an object. Instead, Hou's study used a method called template

matching. In a vision system developed for the inspection of IC leads, template matching

consisted of comparing an image taken with an image previously stored in the database.

The images were compared to each other by use of equation 2.4 to calculate a correlation

coefficient which ranged from 0 to 1.

r(s, t) =

∑𝑥∑𝑦[𝑓(𝑥, 𝑦) − 𝑓(̅𝑥, 𝑦)][𝑤(𝑥 − 𝑠, 𝑦 − 𝑡) − 𝑤̅]

(∑𝑥∑𝑦[𝑓(𝑥, 𝑦) − 𝑓(̅𝑥, 𝑦)]2[𝑤(𝑥 − 𝑠, 𝑦 − 𝑡) − 𝑤̅]2)
1
2

(2.4)

The correlation algorithm found the ends of each lead along the IC and through a

Euclidean distance equation, calculating the pitch for the IC lead. Pitch of an IC is the

distance between the center of one pin to another. This distance value tells if the IC leads

are skewed or bent (Hou, 2001).

14

The object of interest does not need to be fully analyzed in specific applications.

In the case of popcorn kernels presented by Pearson (2009) in the Journal of Computers

and Electronics in Agriculture, the vision system is looking for blue-eye damage. Blue-

eye damage is expressed as a dark spot on the outside of the kernel. When processing the

image, a total of only 24 pixels aligned horizontally were analyzed. Plotted as a histogram

with the pixel values, the blue-eye damage was represented by a dip in pixel values.

Conditions were created such as "At least three pixels between pixels 10 and 14 of the 24

pixel set must have an intensity level less than a preset threshold level" to sort out those

with blue-eye damage (Pearson, 2009). This condition captures the dip that is presented in

the histogram. Analysis where only parts of the image are analyzed greatly speeds up

processing times and does not require the many algorithms necessary to find the boundary

and edges of the object.

Another alternative to the standard image processing techniques was presented in a

system by Mario Regazzoni (2017). The system presented by Regazzoni focuses on high

speed sorting of small parts using multiple cameras. The program used for image

processing is Retina with a Squeezebrains AI library. In supervised machine learning or AI

systems, the program is presented with a multitude of images of the object being analyzed.

A human operator then goes through each picture and decides if that part is good or bad.

The computer learns from the operator’s decision and formulates rules and criteria to

classify the pictures taken of the actual parts. The more pictures classified by the operator,

the more accurate the system can become (Regazzoni, 2017).

2.2.1 Statistical Analysis

Several statistical methods are often used to present the accuracy of a sorting or

vision system. Haider, Anton & Abdullah (2011) used two different equations to represent

sorting accuracy. Individual accuracy of any type of part was given by the summation of

correct classification of images divided by the number of objects classified. Group

accuracy was represented by the number of images of which all parts were identified

correctly divided by the total number of classified images. Both individual and group

accuracy methods produce a number between 0 and 1. In the method introduced by Hou

(2001) using template matching for finding the co-planarity and skew of IC leads, a

15

statistical analysis was performed. The results of the new algorithm were compared to that

of the traditional algorithm by comparing the mean and standard deviation and then

calculating a standard value based on the mean plus the standard deviation multiplied by

three. The standard value was compared versus the standard algorithm and the specified

minimum for co-planarity of IC leads. Next, a confidence interval was calculated of

99.87% and the Type I error was found. Type I error refers to the detection of false

positives. The value of the Type I error was not given.

2.3 Summary

This chapter provided a review of the literature relevant to existing automated

sorting machines used in industrial applications. The vision system physical setups were

shown with lighting and camera options, conveyors and backgrounds. The algorithms used

for edge detection, boundary definition, object classification and alternative methods were

discussed. The systems in practice were in many cases expensive, heavy and required zero

movement once constructed. The systems lacked modularity and in many cases an

actuation method to sort the objects of interest. The next chapter provides the framework

and methodology to create a small package, inexpensive sorting machine.

16

 RESEARCH METHODOLOGY

This chapter provides the framework and methodology to be used in the research

study. The purpose of this study is to design a system which is able to classify and sort

pegs based on physical length and place them into bins in predetermined quantities. The

system consists of an electromechanical system, camera interface, embedded controller and

PLC. The preliminary electrical block diagram is presented in Figure 3.1 and the

preliminary systems mechanical block diagram is presented in Figure 3.2. All 3D modeling

and design was completed using Solidworks 2017. Post proposal, a sum of money was

acquired by Purdue from Lafayette Instruments in return for completion of the sorting

system. Due to increased monetary resources, the design was improved to be better suited

for an industrial environment. The revised systems electrical block diagram can be found

in Figure 3.3 and the revised systems mechanical block diagram in Figure 3.4.

Figure 3-1: Preliminary Sorting System Electrical Block Diagram

17

Figure 3-2: Preliminary Sorting System Mechanical Block Diagram

Figure 3-3: Final Sorting System Electrical Block Diagram

18

Figure 3-4: Final Sorting System Mechanical Block Diagram

3.1 Initial System Design

The system described in the following section is the initial plan and design for the

sorting system. The construction was primarily made of acrylic and 3D printed parts for

use in a low budget and non-industrial scenario. Figure 3.5 is an image of the overall

system design. The initial design consisted of several different sections. Broken down

these were the rotating hopper, conveyor, camera system, bin selector, bin carousel and

system controls through an embedded system.

3.1.1 Hopper

The rotating hopper was based off a design by Christopher Robinson (Robinson,

2013) and was used to orientate and separate the pegs. The design was altered to be 3D

printed with a larger hopper and a separator plate that would sort pegs instead of bolts and

screws. In the initial design, an acrylic plate possessed cutouts slightly larger than the

diameter and length of the pegs with a thickness slightly larger than the pegs. The pegs

would be captured in the acrylic plate’s cutouts and then as the plate rotates by use of DC

19

motor, they were transported individually to the top of the hopper. They were released

through a small cutout in the hopper, falling through a slide onto the conveyor below. The

hopper design was kept in the final system design.

Figure 3-5: Preliminary Assembly Model of Sorting System

3.1.2 Conveyor

 The conveyor was belt driven by a mounted DC gear motor. A staggered timing

belt and a pulley with teeth were used in the design and the belt attached between the

conveyor pulleys and the DC motor. Friction between the belt and pulley were used to

ensure the conveyor was driven by the DC motor. The conveyor itself was made up of two

rollers supported by quarter-inch acrylic pulley mounts. The conveyor belt was 3.28 inches

across and approximately 12.5 inches long. The conveyor was used to transport the pegs

under a camera system. Once the system had decided whether the peg possessed

20

conforming dimensional characteristics, the peg was moved to the end of the conveyor belt,

falling off into the bin selector.

3.1.3 Camera System

 Located above the conveyor system was the vision system to determine if the pegs

passing on the assembly line would be placed in the conforming or non-conforming bin.

As was discussed in the review of literature section, proper lighting is a very important

element of the machine vision system. In the system designed for the sorting of pegs, six

white LEDs were placed behind the camera. In order to reduce shadows as well as

reflections off the highly reflective surface of the pegs, additional mechanisms were used

to diffuse the light inside the chamber. The light was diffused through an eighth-inch

frosted acrylic sheet before emitting onto the conveyor surface.

 The camera being used in this design was an Arducam OV5647, 5 Megapixel

camera. Attached to the camera was a CS Mount lens with integral IR filter. The camera

resolution allowed for a still frame picture of 2592x1944 pixels to be acquired. The camera

was actuated by a combination of a 650nm laser diode and a photo-resistor. The laser diode

emits across the top of the conveyor belt and onto the photo-resistor on the opposite side.

When a peg was moved to a position interrupting the emitting laser, a signal would have

been sent actuating the camera within the system to acquire an image. This actuation

system would have decreased overall image processing by reducing the need for real time

image acquisition. The overall function of the camera system was to measure the

dimensions of each peg passing on the conveyor belt. The pegs would have been sorted

later in the process. The machine vision system was also responsible for the counting of

the total number of conforming and non-conforming pegs passed to ensure a predetermined

number were allowed into each bin.

3.1.4 Bin Selector

 The bin selector was based on a design presented by Prodieco (2016), which was

used to determine which container the pegs falling from the conveyor will land in. The

peg decision was based on given dimensional criteria and classification as conforming or

21

non-conforming. The bin selector sat at an angle to the conveyor and used a quarter-inch

acrylic selector to redirect the falling pegs. The selector was driven by an MG995 Servo

controlled by the central micro-controller.

3.1.5 Bin Carousel

 The pegs would have been divided into predetermined quantities to later be placed

in bags manually. The bin carousel rotated the bins into the proper position to catch the

conforming pegs. The bin carousel consisted of ten separate 3D printed containers. The 3D

printed containers were smaller at their base allowing them to remain vertical while also

having effortless removal for pouring the pegs into their bags. A DC motor and a rotating

plate which was keyed to hold the containers would have been used to spin the containers

and properly position them under the end of the bin selector. The micro-controller would

have then decided when bins were full and when to turn to the next empty bin.

3.2 Preliminary Design Software Control

The system was developed on two separate communicating platforms. The

Raspberry Pi was used for image acquisition as well as image analysis and calculation of

peg length. Communication with an embedded system such as a Beaglebone allowed for

control of motors and actuators based on image data.

 The overall sorting system would have been controlled by software to dictate peg

location, time and overall decision making and actuation of the electromechanical

components. For the device controlling the overall system, a Beaglebone was used. The

Beaglebone's code would have been written to control the pegs from the time it is separated

to the bin it ended in.

 The first step in the software was initialization of all the electromechanical devices.

Initialization consisted of turning on the motors for the separator and conveyor as well as

setting the servo position and turning on the laser system. The Beaglebone was in charge

of doing multiple different processes at the same time. The first process was to watch the

separator plate to know a peg had gotten stuck. This would have been completed by

watching the voltage of the DC motor. If the voltage dropped sharply, the motor would

22

have been stuck. The motor would have then back stepped and then continued forward

again. The Beaglebone was also responsible for watching the laser detection module. If

the laser was interrupted, it would temporarily disable the module, send instructions to the

Raspberry Pi, actuating the camera system and then re-enable the laser after image

acquisition. Based on the data received from the camera system, the Beaglebone would

have decided the servo location to sort the conforming and non-conforming pegs. All

conforming pegs that were sorted would have been counted until the predetermined

container capacity had been met. Once met, the motor which controlled container location

would have been activated to move the next container to the proper location. Once all ten

containers had been filled, the system would shut down until reset by human interaction.

3.2.1 Image Acquisition Module

 The image system was be driven by a Raspberry Pi 3 Model B. The image would

have first been acquired through the Arducam camera. The actuation of the camera would

have been from the laser system above the conveyor. Once acquired, the image was stored

and saved. The image went through preprocessing, processing and classification before

determining if the peg conformed to the specified dimension range.

3.3 Revised System Design

The system described in the follow section was for the revised design of the sorting

system. The construction and frame material were primarily extruded aluminum with an

industrial grade camera and conveyor system. Figure 3.6 is an image of the overall system

design. The system consisted of several different sections. Broken down these were the

rotating hopper, conveyor, camera system, bin selector, bin carousel and system controls

through communicating embedded system and PLC.

23

Figure 3-6: Revised Assembly Model of Sorting System

3.3.1 Rotating Hopper

The rotating hopper was based from a design by Christopher Robinson (2013)

which was used to orientate and separate the pegs. The design was modified using a larger

hopper, agitator and peg specific separator plate. The hopper was made up of a rotating

plate, agitator, hopper housing and a slide. The plate was designed with specifically

dimensioned cutouts that allowed pegs of a specific size and orientation to be carried

around the hopper. Once inside the cutouts, the pegs were carried to the top where a cutout

was placed in the hopper housing. The plate was turned by a mounted 24V DC gear motor.

The pegs would have then fell from the hopper and dropped onto the conveyor belt. The

hopper included an agitator which orientated pegs that were not parallel to the cutouts in

the rotating plate. The agitator was made from quarter-inch acrylic and followed the

rotation of the rotating plate. The agitator extruded above the separator plate to orientate

and push the pegs at the bottom of the hopper. The plate was made from sixteenth-inch

acrylic and required a swap with other plates depending on which of the three pegs was

being sorted. This was necessary as larger pegs would not have fit in the cutouts in the

rotating plate. The plate for the small pegs was revised post build to account for the

24

diameter of the small pegs. The front section of the hopper was bowed outwards. This

allowed a very large number of pins to be placed in the hopper at a single time to decrease

overall human interruption in the process.

Figure 3-7: Hopper Assembly for Isolation of Pegs

3.3.2 Conveyor

 The conveyor, shown in Figure 3-8 was designed and produced by QC Industries

LLC and purchased through Neff Automation (Neff Automation). The operation was to

carry the pegs from the hopper, through the lighting enclosure so that an image may be

acquired of each individual peg. The conveyor was six inches in width and 36 inches in

length which was the shortest length conveyor that is produced by QC Industries. The

conveyor belt that was used had a black dimple top cut resistor belt for high contrast to the

metal pegs. The dimple top helped to hold the pegs and keep them from rolling during

transportation under the camera system. The conveyor had a flip up tail allowing for easy

removing and replacement of the belt. The conveyor was driven by an Oriental Motors

USM540 40-watt single phase 120-volt AC motor connected to a 30:1 gear reducer. The

configuration allowed for a speed of 13 to 26 feet per minute. This would have allowed a

25

theoretical sorting speed of 120 pegs per minute. This calculation is allowed one inch of

space between each peg at a conveyor rate speed of 20 ft/min. The aluminum frame came

with raised side mounts allowing the conveyor to be connected above an aluminum t-slot

frame.

Figure 3-8: Conveyor Assembly for Transportation of Pegs

3.3.3 Camera System

 The camera system is shown in Figure 3-9. This section of the system is responsible

for camera actuation and image acquisition.

Figure 3-9: Overall Camera System

26

3.3.3.1 Lighting Enclosure

 The lighting enclosure was made of one-inch t-slot aluminum rails by 80/20 Inc.

The enclosure was 4.9" x 9" x 12.3" and had a 0.95" gap between the enclosure and the

conveyor belt. Enclosure size was determined by the focal length of the camera and lens

combination. At the top of the enclosure were a set of Ecolocity RL-SC-RSU24-T-W-10

LEDs to simulate all RGB components of natural light for a total of 36 LEDs. The LEDs

were to produce 372 lumen per foot. These LEDs were arranged in a square pattern to

ensure equal distribution of light on the conveyor belt. A diffusion layer made from eighth-

inch frosted acrylic was also added between the LEDs and the conveyor to minimize direct

reflections of the LEDs on the metallic surface of the pegs.

3.3.3.2 Camera, Len and Filter

 The puA1280-54uc camera was selected from the Basler Pulse camera series. The

puA1280-54uc was a color camera with USB3.0 data connection and a resolution of 1280

x 960 pixels. It came with holes for mounting of the camera onto a plate. The camera

possessed a global shutter which was ideal for moving objects. The camera had a frame

rate of 54 frames per second. It was able to be connected to a C-Mount Lens. The camera

was compared to similar products from both the Dart and Pulse series. The camera was

chosen from the pulse series as it allowed a USB 3.0 connection unlike the ACE series.

The Dart series was constructed with an open back allowing the PCB to be visible. The

Pulse series was fully enclosed and was one-third the price of a similar ACE series camera.

 The lens was chosen according to the desired region of interest. The region of

interest was determined by taking the size of a peg and adding two inches to the width and

height to allow for the background to be included in the image. The ROI was determined

to be 3.000in x 2.063in as a minimum. The equation presented in Equation 3.1 was used

to determine the magnification factor and Equation 3.2 to determine the lens focal length

required (Alper, 2011).

 Magnification = 𝑆𝑒𝑛𝑠𝑜𝑟𝑆𝑖𝑧𝑒/𝐹𝑖𝑒𝑙𝑑𝑜𝑓𝑉𝑖𝑒𝑤(𝑤𝑖𝑑𝑡ℎ)

Magnification = 6𝑚𝑚/(3 ∗ 25.4)𝑚𝑚

Magnification = 6mm/76.2mm

Magnification = 0.0787

(3.1)

27

 Focal Length = Magnification ∗ WorkingDist/(1 + Magnification)

Focal Length = 0.0787 ∗ 133.35mm/(1 + 0.0787)

Focal Length = 9.73mm

(3.2)

The focal length was calculated to be 9.73mm, so the Basler C125-0818-5M lens

was chosen which has a focal length of 8mm. The field of view was recalculated through

the machine vision store's online entrocentric lens calculator that the new field of view was

3.15"x2.36" (Machine Vision Store, 2018). The 3.15" (80mm) was then divided by total

pixels (1280) to get a resolution of 0.0625mm/pixel.

3.3.3.3 Peg Detection

 A fiber optic sensors were used for peg detection. Fiber optics were chosen as the

method for detection of the object as the beam width was narrow and could be completely

blocked by 0.063" diameter pegs unlike other light and proximity sensors. When a peg

traveled underneath the camera, it broke the fiber optic beam and triggered the camera to

take a picture. The fiber optic cable chosen was the CF-TB2-20 along with the DFP-AN-

1A amplifier. The fiber optic system was able to be used at a range of 700mm or lower and

had an amplifier input voltage of 24V to communicate directly to the PLC.

3.3.4 Bin Selector

 Due to concerns from the initial system design that the pegs may have bounced off

the bin selector. The selector had been moved above the conveyor as seen in Figure 3-10.

The flipper was attached to a servo motor driven by the Jetson TX1. The flipper was used

to move the pegs so that they would fall either in the reject container or the conforming

bins and counted. The selected servo was the TGY-1270HV by Turnigey. This servo

possessed metal internal gears as well as metal teeth to create a press fit with the flipper.

The servos flipper was designed to rest on the conveyor belt to ensure a peg cannot travel

underneath the servo.

28

Figure 3-10: Selector for Peg Sorting

3.3.5 Bin Carousel

 The pegs were divided into predetermined quantities to later be placed in bags

manually. The bin carousel shown in Figure 3-11, was used to rotate the bins into the

proper position to catch the conforming pegs. The bin carousel consisted of five separate

3D printed containers. The 3D printed containers were smaller at their base allowing them

to remain vertical while also having effortless removal for pouring the pegs into their bags.

A DC motor and a rotating plate which was keyed to hold the containers were used to spin

the containers and properly position them under the end of the bin selector. The carousel

sat on top of a frame with a circular cutout on top. The circular cutout was to hold up the

rotating plate while only touching under the outside of the plate. The minimal contact

ensured smooth rotation by the DC motor. The micro-controller was used to decide when

bins were full and when to turn to the next empty bin.

29

Figure 3-11: Carousel with Bins for Containment of Sorted Pegs

3.3.6 Software Control

 The following section outlines the overall software and algorithms to be used for

control of the mechanical system. The system was developed on two separate

communicating platforms. The Jetson TX1 was used for image acquisition as well as

image analysis and calculation of peg length. Communication with a Click PLC was used

for overall system control. The PLC controlled the motors and steppers to ensure proper

system functionality. A comparison was made between similar platforms for the image

analysis processing in Table 3-1.

30

Table 3-1: Comparison of Development Boards

 Jetson TX1 Jetson TK1 Zyng 7000 STM32F7

GPU 256 Cuda Cores 196 Cuda Cores N/A N/A

CPU ARM Cortex A15 ARM Cortex

A57

ARM Cortex

A9

ARM Cortex M7

Bluetooth Yes No No No

Wi-Fi Yes No No Expandable

Ethernet Yes Yes Yes No

HDMI Yes Yes Yes No

SD Slot Yes Yes Yes No

USB Yes Yes Yes Expanable

Price $499.00 $129.00 $895.00 $38.22

The Nvidia Jetson TX1 was chosen as the image processing tool of choice. While

the STM32F7 was cheaper, it did not possess many external peripherals. The STM32F7

lacked ethernet not allowing it to connect to a network and the lack or HMDI and USB

would have made programming and testing more difficult. The ZynQ-7000- also lacked

several important features. The SOC only possessed an ARM Cortex A9 which was

substantially slower than the A15 and the A57 processors. It also lacked the functionality

of Bluetooth and Wi-Fi. This came at a high price of $895 compared to the below $500

price of all other development boards.

The Nvidia Jetson TX1 and Nvidia Jetson TK1 were very comparable in operation.

Both came with dedicated GPUs with CUDA cores and quad core processors. The price

was higher for the TX1, however, the Bluetooth and Wi-Fi peripherals were important

features to the customer for data transfer and connectivity as well as ease of development.

3.3.7 Image Acquisition Module

 The image system was to be driven by a Nvidia Jetson TX1. The flowchart

presented in Figure 3-12 shows the logic for the overall imaging system. The image was

first be acquired through the Basler Camera. The actuation of the camera was from the

fiber optic system across the conveyor. Once acquired, the image was be stored and saved.

The image went through preprocessing, processing and classification before determining

if the peg conformed to the specified dimension range.

31

Figure 3-12: Overall Imaging System Flowchart

Preprocessing of the image was an important step to ensure the image would be

ready for edge detection and feature extraction. The first algorithm that was used is the

averaging filter. The averaging filter took the original image and averaged 3x3 matrices

of all non-border image pixels, saving them into a new image. The image was converted

to gray-scale by taking the value of each RGB color, dividing by three and adding them all

together. The new gray-scaled image was then ready for segmentation. Segmentation was

used with a threshold to create a binary image. All pixel values above the threshold were

to be set to 255 and all below the threshold were set to zero. Segmentation was important

to create a clear boundary between the object and its background.

The next step was to process the image and set a boundary around the peg in the

image allowing for determination of the overall length of the peg. First, a convolution

method was used. An example of a possible algorithm would be the Laplacian operator.

This operator operates by defining the boundary of the object by use of another 3x3 matrix

operation. The center pixel is multiplied by eight and then decreased by the summation of

32

all the surrounding pixel values. This method allows for all areas of change (edges) in the

image to be captured and all other areas set to zero. With all edges defined, the next step

was to find the major and minor axis. In the image, the major axis represented the length

of the peg and the minor axis represented the width or diameter of the peg. The major and

minor axis dimensions were saved to be later used. The peg was sorted based on criteria

predetermined by the objects designed dimensions. For example, a 1"x0.063" may be

desired. A tolerance of ±0.05” was then applied and a range of acceptable values were

created. In this example, pegs that had a length between 0.95 and 1.05 inches were

classified as conforming. Pegs with values outside of this range were classified as non-

conforming and were separated. The decision was sent to the PLC through onboard GPIOs

or general-purpose input/output pins.

3.3.8 Sorting System PLC Control

The overall sorting system had to be controlled by software to dictate peg location,

time and overall decision making and actuation of the electromechanical components. A

C0-00DR-D Click PLC was used for overall system control. The PLC code was written to

control the pegs from the time they were separated to the bins they ended in. A flowchart

of the code is shown in Figure 3-13. The Click PLC was connected to a C-more EA1-

S3MLW-N three inch monochrome human machine interface (HMI). The HMI allowed

for the operator to enter what peg was being sorted and the quantity that was needed to be

counted to for each sorted bin.

The Click PLC included a free download of the CLICK Programming software.

This software was used to code the PLC for operation.

33

Figure 3-13: PLC Logic Flowchart

3.3.9 Power Requirements

 The overall system contained several different parts that required power. The

Jetson TK1 operated from an included 12V DC supply. The rest of the system ran on 24V.

The current requirements were 120mA at 24V for the PLC, 220mA at 24V for the HMI,

200mA max at 24V for the fiber optic amplifiers, 450mA max at 24V for the LEDs, and

200mA at 24V for the DC motor. This created a requirement of 1.2A at 24V. The CO-

01AC was chosen for its capabilities of 24V at 1.3A continuous and 1.6A before

overprotection.

3.3.10 Summary

This chapter provided the framework and methodology of the study. The 3D model

and flow charts used represented the overall operation of the system in the sorting of pegs.

34

 RESULTS

The following section guides through the mechanical assembly of the sorting

system along with revisions and development of code for the various embedded systems

utilized in the study. The sorting system requires the integration of both mechanical and

electrical hardware. Revisions to the design were made during assembly and preliminary

testing to provide proper functionality.

4.1 Mechanical Build

The mechanical build of the system allowed for the framework and

electromechanical devices to work together to accomplish a common goal. Revisions were

made to the design throughout the build process. The revisions were to account for

tolerances, intersections of multiple parts and the addition of parts necessary to ensure

devices and sections of the frame were securely mounted in place.

4.1.1 System Frame

The system frame was constructed from extruded aluminum procured from 80/20

Inc. All aluminum rails were one inch by one inch with a t-slot design on all four sides and

a smooth finish. Figure 4-1 represents a fully assembled model of the aluminum frame.

The exploded view with the bill of material (BOM) for the subassembly can be found in

Appendix A. The drawing of the frame with dimensions is found in Appendix B. Two, 48-

inch rails ran the length of the system and allowed all other parts and subassemblies to be

mounted to them. The width between the bars was ensured by installing seven-inch rails

secured between the 48-inch rails using M6 bolts, corner brackets and slide in t-nuts. All

other parts of the aluminum frame were considered part of the other subassemblies.

35

Figure 4-1: System Frame Subassembly

4.1.2 Hopper Subassembly

The hopper subassembly was constructed using a combination of extruded

aluminum, various sizes of laser cut acrylic and 3D printed black PLA. The hopper casing

was printed using a Lulzbot Taz 6 3D printer supplied by Purdue University. The acrylic

and laser, also supplied by Purdue University, were used to construct the three types of

separator plates, the agitator, and the pin positioner plates. The subassembly drawings and

subassembly drawings with dimensions are found in Appendix A and B respectively. The

24-volt DC motor was first connected to the separator casing using four M3 machine

screws. The separator casing was connected to the five-inch aluminum rails using M6

screws. A flat surface under the separator plate was created by countersinking the screws

into the back of the separator casing to hide each screws head. The five-inch aluminum

rails were joined together by right angle pivot joints and another five-inch rail. The pivot

joints were installed on a seven-inch rail which connected to two 9.75-inch rails

perpendicular to the frame. During initial testing, the small pegs were able to fall between

the gaps of the outside of the separator plate and get stuck beneath the plate. A reduction

of the occurrence of stuck pegs was implemented by designing and installing a separator

back plate between the separator plate and the separator casing.

The pin positioners were used to center the pegs before entering the lighting

enclosure. Initial testing showed that the small pegs got stuck on the side of these and

36

rolled several times before straightening and continuing along the length of the conveyor.

The peg positioners were revised to have a much larger radius to no longer give the pegs a

linear surface to roll against. An assembled view of the hopper subassembly is shown in

Figure 4.2. Drawings for all custom parts can be found in Appendix C.

Figure 4-2: Hopper Subassembly

4.1.3 Conveyor

An exploded view of the conveyor subassembly can be found in Appendix A and a

subassembly drawing with dimensions in Appendix B. The conveyor was delivered in

several different parts, unassembled from the distributor, Neff Automation. The conveyor

required the motor and gearbox to be attached along with the drive belt. The conveyor

mounts were attached to the sides of the conveyor with the M6 bolts supplied. The length

of the bolts supplied required an external washer between the mount and the head of the

bolt to ensure the bolt did not bottom out within the conveyor rails. The conveyor was then

mounted to the frame of the system using M6 screws and the supplied t-nuts.

 Fiber optic sensors were located along the conveyor to locate each peg during its

travel. A set was installed inside the lighting enclosure to actuate the camera and image

processing algorithms. The fiber optic mounts were created by laser cutting from quarter

inch acrylic. The fiber optic mounts were attached to the conveyor using a set of roll-in t-

nuts and M6 bolts. A second set of fiber optic cables were used at the end of the conveyor

to ensure the system knew when each peg had fallen into its designated container. The

37

second set of fiber optic sensors allowed the PLC to know when the containers were full

and when the last peg had fallen. The system then rotated to the next bin. The secondary

set of fiber optic mounts were 3D printed and were meant to latch onto the conveyor. The

design was different from the other fiber optic mounts since there is no rail to mount to at

the end of the conveyor. The conveyor subassembly is shown in Figure 4.3.

Figure 4-3: Conveyor Subassembly

4.1.4 Lighting Enclosure and Camera System

The lighting enclosure and camera system were critical sections in determining

whether a peg was passing through the system and had conforming dimensions. The

following section describes the assembly of the lighting enclosure body as well as the

camera system which includes the enclosure top.

4.1.4.1 Lighting Enclosure Body

The lighting enclosure frame was constructed with aluminum t-slot rails. An

exploded view of the enclosure and camera can be found in Appendix A. The sides of the

enclosure were made from black PVC plastic to block out external light. The initial design

proposed used several 2491 panel mounts (80/20 Inc.) to ensure that all side panels

38

mounted properly. During assembly it was realized that the panel mounts were not

necessary as the top t-slot rails held the side panels firmly in place.

4.1.4.2 Camera System and Enclosure Top

The enclosure top was also ordered with a PVC plastic panel. The PVC was to be

laser cut to create the holes for the camera and screws. Due to a chlorine gas that would

have been released when cutting PVC with a laser, the PVC was replaced by quarter-inch

acrylic. The enclosure top slides between the rails and was held in place when all four rails

of the top of the enclosure were connected. The camera mount was designed to hold the

camera still and was 3D printed in black PLA. Holes were drilled in the acrylic to mount

the camera to the enclosure top. With the frame of the lighting enclosure constructed and

the camera mounted, the Ecolocity LEDs were cut with three LED sections per side. This

totaled to 36 LEDs at 150mW each. Each strip was mounted with the adhesive supplied

on the LED strips. The orientation and length of the LEDs are shown in Figure 4-4.

Figure 4-4: Camera Enclosure Top

 The camera and lens shown in Figure 4-4 were ordered initially with an adapter

ring between the detector and the lens along with another adapter that would allow the

attachment of a neutral density filter. Initially, images were taken by using the Basler’s

software development kit (SDK). These images showed that the adapter ring degraded the

39

image quality by effecting distance between the lens and the detector. Initial testing showed

no desire for a neutral density filter. With the lens installed in front o the camera, the lens

focal point was adjusted to the maximum distance using the two focusing rings on the

outside of the lens.

A diffusion layer was added next for the diffusion of light and the elimination of

shadows. The layer was cut from eighth-inch acrylic and was given three uniform layers

of a frosted spray paint coating on each side. The frosted diffusion layer was then mounted

to the enclosure top. A handle and hinges were installed, connecting the enclosure top and

camera to the lighting enclosure. A fully assembled view of the camera enclosure is shown

in Figure 4-5.

Figure 4-5: Camera Enclosure Subassembly

4.1.5 Bin Selector

An exploded view of the bin selector can be found in Appendix A and a view with

dimensions in Appendix B. The bin selector was connected between two standing t-slot

rails and the camera enclosure subassembly. A mounting plate for the selector servo was

cut from quarter-inch acrylic and the servo was connected to the bottom of the mounting

40

plate using 4-32 machine screws and nuts. The flipper was cut from quarter-inch acrylic

and press fit to the servo head.

Figure 4-6: Bin Selector Subassembly

4.1.6 Bin Carousel

The bin carousel was important in collecting the sorted pegs into the predetermined

quantities for the operator. An overall view of the bin carousel can be found in Figure 4-

7. The bin selector was built on t-slot rails and a quarter-inch acrylic platform. A Quimat

nema-17 stepper motor was connected via a six-millimeter mounting hub to the carousel

plate. The plate was then populated with five bins for the conforming pegs. A reject bin

was also populated into the carousel supporting plate to collect the non-conforming pegs.

All bins were 3D printed with black PLA.

41

Figure 4-7: Bin Carousel Subassembly

4.1.7 Microcontrollers and PLC

The Jetson TX1 is located beneath the conveyor and lighting enclosure, mounted on

a quarter-inch acrylic sheet. The added Arduino Mega 2560, discussed in future sections,

was also located on the acrylic sheet along with the stepper motor driver and a relay bank

PCB which allows communication between the 24V PLC and the microcontrollers. The

Arduino, Jetson TX1, and relay PCB were mounted using quarter-inch standoffs to avoid

solder joint damage from the joints being pressed into the acrylic. An array of

miscellaneous screws and nuts were used which were supplied by Purdue University.

A Quimat TB6600 stepper motor driver was attached using a custom designed and

3D printed mount allowing the motor drivers heatsink to sit away from the acrylic. The

microcontroller subassembly can be found in Appendix A along with a drawing with

dimensions in Appendix B. Figure 4-8 displays the overall electronics mount.

42

Figure 4-8: Electronics Mount Subassembly

The PLC was previously to be mounted to the plate underneath the conveyor as

well. Due to height constraints, the Click PLC, power supply and fiber optic amplifiers

were all mounted to a DIN rail on the back of the lighting enclosure. Wiring the multitude

of components of the system to the PLC required common ground and 24V supply rails.

To solve this issue DIN rail terminal strips were mounted and installed allowing five

external 24V connections and five external ground connections.

During testing of the hopper subassembly, it became clear that an adjustable speed

of the rotating separator plate would be necessary to create proper system timing. A DC-

DC converter was used to reduce the 24V from the PLC and was mounted in a custom

designed and 3D printed DIN rail mountable enclosure. The PLC subassembly can be

found in Appendix A along with a drawing with dimensions in Appendix B. Figure 4.8

shows the overall PLC and DIN rail subassembly.

43

Figure 4-9: PLC and Din Rail Subassembly

 A C-more EA1-S3MLW-N human machine interface (HMI) was mounted along

with an emergency stop button (non-functional) to the front of the system allowing for user

input and control. The HMI consisted of five pushbuttons which allowed navigation

through setup screens and programming of the quantity of conforming pegs to be sorted

into each bin. The HMI and emergency stop button were mounted to quarter-inch acrylic

with cutouts for both parts. The subassembly was then mounted to the front of the lighting

enclosure. The HMI subassembly can be found in Appendix A along with a drawing with

dimensions in Appendix B. Figure 4-10 shows the overall HMI Interface subassembly.

Figure 4-10: HMI Interface Subassembly

44

4.1.7.1 Overall Assembly

The overall system was assembled as described in the previous subsections. The

overall assembly is found in Appendix A along with a drawing with dimensions of the

overall system in Appendix B.

4.1.7.2 Electronics Wiring

Custom wiring harnesses were used throughout the electronics assembly. These

were created by using both male and female crimp connectors and inserting them into

single row blank header sockets. All wires used were 20-guage stranded to allow for the

wire to bend easily between connections.

The fiber optics were cut to the desired length using the cutting tool supplied with

the fiber optic transmitter and receivers. The optic cable was fed through the cutting tool

and the blade pressed down on the cable to make a clean cut. The wires were then inserted

into the fiber optic amplifiers. No consideration of reciever and transmitter was required

when installing the optical cables.

 Communication between the PLC and HMI was transmitted through an RJ12

networking cable. The RJ12 cable also supplied power to the HMI. During programming

of the PLC, the HMI was disconnected from the PLC’s port number one and reconnected

after programming.

4.2 Non-Conforming Peg Modification

Non-conforming pegs were not given to Purdue University by Lafayette Instruments.

Simulation of the shortened pegs was created by shortening pegs of each group by the use

of a rotary tool with a metal cutting wheel. Ten pegs were shortened from each type of peg

group. Two of each of the small and medium pegs were marked to be shortened at 0.9, 0.8,

0.7, 0.6, and 0.5 inches. The keyed pegs were marked to be cut, two of each, at 1.1, 1.0,

0.9, 0.8, 0.7 and 0.6 inches. The table below shows the pegs desired cut length versus the

actual length cut with error coming from hand cutting the pegs.

45

Table 4-1: Theoretical Non-Conforming Peg Size and Cut Peg Size

Peg # Small Medium Keyed

 Theoretical

(Inches)

Actual

(Inches)

Theoretical

(Inches)

Actual

(Inches)

Theoretical

(Inches)

Actual

(Inches)

1 0.500 0.492 0.500 0.497 0.600 0.598

2 0.500 0.496 0.500 0.537 0.600 0.625

3 0.600 0.563 0.600 0.571 0.700 0.739

4 0.600 0.615 0.600 0.600 0.700 0.723

5 0.700 0.688 0.700 0.655 0.800 0.785

6 0.700 0.714 0.700 0.655 0.800 0.818

7 0.800 0.788 0.800 0.773 0.900 0.906

8 0.800 0.837 0.800 0.757 0.900 0.926

9 0.900 0.867 0.900 0.895 1.000 0.975

10 0.900 0.867 0.900 0.865 1.000 0.943

4.2.1 PLC Software

The PLC was used as the central hub for communication and control of the overall

system. The PLC was responsible for the fiber optics, activating the camera and transferred

communication between the Jetson TX1 and the Arduino. The connection to the HMI

allowed for selection of peg quantities along with visual display of current container fill

status to the operator. The PLC code was based on ladder logic which was a series of

singular lines controlling the overall system. The PLC was programmed through a “Click

Koyo” programming software (Click Programming Software Ver 2.20). Programming

involved the use of an RJ-45 ethernet cable connected from the PLC port 1 to a serial to

USB converter and into the PC. The ladder logic can be found in Appendix D.

The HMI provided a user interface for the operator. The HMI was coded through

“C-more Micro Programming Software” and was sent directly into the HMI by RJ-45 cable.

The purpose of the user interface was to allow the operator to select the number of pegs

that were going into each bin and know the progress as the bins were filled. The user

interface also allowed the operator to stop the system by turning on and off the hopper.

The HMI screens and database are found in Appendix D.

46

4.3 Imaging System

The imaging system was designed around the Jetson TX1 for its capabilities with

image processing, analysis and GPU speeds. The Jetson TX1 required an initial flash to

install the correct operating system and software, Pylon5 and libraries needed to be

installed and functional code needed be written for the image processing and analysis.

4.3.1 Jetson TX1 System Setup

The Jetson TX1 required installation of Ubuntu 16.04 and OpenCV 3.3.1 through

use of the installation package Jetpack 3.2.1. The install guide located within the Jetpack

3.2.1 release notes was followed (NVIDIA Corporation, 2018).

To install the new operating system, OpenCV and dependencies, a Linux machine

was required. Using a Surface Pro 4 as the host computer with Oracle VM VirtualBox

5.2.11 installed, a virtual machine running Ubuntu 16.04 LTS was created. An account

was created with Nvidia via their website and Jetpack was installed onto the virtual

machine. Through the terminal the program was then unpacked, given admin rights using

the chmod command and ran. OpenCV was selected as an additional option during the

flashing of the Jetson TX1 with the Ubuntu operating system.

Once installed, a USB cable was connected between the Surface Pro 4 and the Jetson

TX1’s USB micro-B recovery port. The installation required that the Jetson TX1 was

connected directly through Ethernet to the same network as the host computer. Once all

connections were made, the Jetson TX1 was put in recovery mode by holding the reset and

recovery push buttons simultaneously, then releasing the reset push button and three

seconds later releasing the recovery push button as described in the release notes. The

installation resumed once the host machine found the IP address of the Jetson TX1 and

OpenCV along with dependencies were pushed to the Jetson TX1.

4.3.1.1 Jetson TX1 Libraries

Upon completion of the Jetpack program’s installation, the Jetson TX1 was restarted

to ensure functionality. The OpenCV package was then unzipped and installed through the

47

terminal window. This allowed the OpenCV libraries to now be used from the C++

program. The JetsonGPIO library by JetsonHacks was also used for easy access to the

GPIO pins located on GPIO header J21 of the Jetson TX1 Development board. The

JetsonGPIO library was downloaded and installed from the github repository (JetsonHacks,

2015).

The Pylon 5 API was installed from the Basler website (Basler AG, 2018). The

Pylon 5 API comes with all the libraries and functions necessary to operate the Pulse

camera using C++. The Pylon API proved difficult to run with C++ and Basler Support

was contacted for assistance. Basler support was able to provide a sample file which is

included in Appendix D (Basler Support, 2018). The Basler sample code actuated the Pulse

camera taking an image and displaying it to the user. The sample code was expanded on

and altered using the pylon libraries to match the necessary functions of the overall system.

4.3.1.2 Jetson TX1 and Image Processing Code

The image processing code was developed from the flowchart in Figure 3-12. The

OpenCV functions in this section were based on examples which were found in the

OpenCV 2.4.13.7 documentation (OpenCV Dev Team). Development of the image

processing system involved several iterations and checks along the way. In the initial

system, the camera was initialized by creating an instant camera object using the Pylon 5

API function library. A pointer was created to grab the data from the frame buffer after

actuation. The camera was then actuated by the PLC switching an output pin to a logic

high. The Jetson GPIO library (JetsonHacks, 2015) was used to read the digital input and

start the program. An image was acquired and saved using the imwrite() function. The

saved image then went through a variety of filters and image processing algorithms. The

OpenCV functions were used to convert the image to grayscale using the cvtColor()

function. The image was passed through medianBlur() to get rid of random noise and then

a threshold was applied to the overall image using the OpenCV function threshold(). The

contours were found using the findContours() function. The function found the bodies or

objects represented as white in the image and identified them as contours.

The contour data was passed to a function which finds the outlines of the contours

and can approximate length and width in pixels. The initial method consisted of using the

48

boundingRect() function to find height and width in pixels. The boundingRect() function

was unable to account for the angle of the peg which made the height decrease and width

increase proportionately to the angle of the peg within the ROI. Accounting for angle

involved switching to the minAreaRect() function to analyze the contours and then using

the RotatedRect class to pull the correct length and width from the contour data.

A conforming or non-conforming decision was based on the conversion of the

length in pixels by use of a calibration equation. The calibration equations used were

specific to each peg type. The calibration equation was extracted from the calibration data

and the number of pixels was converted to inches. Formulation of the calibration equations

is described in later sections and extracted from the graphs in Figure 4-12. The length

dimension was compared to a stored tolerance for that individual peg type and a decision

was made. The decision was transferred to the PLC by sending a GPIO pin to a digital low.

The decision was passed to the Arduino for control the selection servo. The pseudo code

along with the C++ code for the keyed pegs is located in Appendix D.

The code was replicated for each peg type changing the camera calibration equation.

The keyed peg code was altered for the number of contours allowed in each image before

rejecting the pegs. Small and medium pegs were rejected if more than one peg was detected.

A shadow along the key side of the keyed peg created two different contours for a single

peg. Keyed pegs were rejected if three peg sized contours were found. The largest contour

found in the keyed peg image was used in calculating the overall length. Images of each

peg type are shown in Figure 4-11 post segmentation.

49

(a) Segmentation of Small Peg

(b) Segmentation of Medium

(c) Segmentation of Keyed Peg

Figure 4-11: Segmentation Image of Each Peg Type

50

4.3.1.3 Camera Calibration

The camera calibration was conducted for each of the three peg types. Individual

calibrations were necessary to account for the diameter which affects the distance from the

top of the peg to the camera. A picture was taken of each peg placed directly beneath the

camera and parallel with the conveyor. During testing with a moving conveyor small blur

was observed in images and the calibration was performed again with the pegs on the

moving conveyor. The length of the peg in pixels using a moving peg was outputted from

the program and written into a table in excel. The pixel count was then compared to the

actual length of the pegs using a scatter plot. The trendline created from the scatterplot

gives the equation of length=0.0023*pixels-0.0325. The equation was applied to all new

peg images to determine the length of incoming pegs in inches. The following procedures

were applied to each peg type. The calibration equation for the medium pegs was

length=0.0022*pixels–0.0029 and the calibration equation for the keyed pegs was

length=0.0023*pixels-0.0447. Table 4-2 displays the pegs size versus the pixel count.

Figure 4-12 displays the three peg type graphs with trendline for each calibration. The

trendline plots were created using Microsoft Excel ("Office 365. Excel", 2016).

Table 4-2: Calibration Table of Measured Peg Dimension to Pixel Length

Peg # Small Medium Keyed

 Measured

(inches)

Pixel

Count

Measured

(inches)

Pixel

Count

Measured

(inches)

Pixel

Count

1 0.497 236.950 0.492 224.557 0.603 285.925

2 0.490 231.409 0.570 264.948 0.720 336.021

3 0.563 264.189 0.661 299.812 0.789 368.490

4 0.615 287.696 0.759 352.460 0.908 418.863

5 0.688 317.110 0.867 400.176 0.945 433.221

6 0.711 331.232 1.004 459.212 1.119 512.387

7 0.786 360.673 1.003 459.874 1.115 517.404

8 0.837 387.685 1.005 461.780 1.118 508.820

9 0.867 397.890 1.004 461.790 1.120 510.189

10 0.867 401.636 1.003 467.850 1.121 512.876

51

(a) Vision System Calibration Trendline

(b) Vision System Calibration Trendline

Figure 4-12: Graph of Trendlines for Calibration Equations of Three Peg Types

y = 0.0023x - 0.0325
R² = 0.9992

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500

Le
n

gt
h

 (
In

ch
es

)

Length (Pixels)

Small Peg Calibration

y = 0.0022x + 0.0029
R² = 0.9988

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500

Le
n

gt
h

 (
In

ch
es

)

Length (Pixels)

Medium Peg Calibration

52

(c) Vision System Calibration Trendline

Figure 4-13 Continued: Graph of Trendlines for Calibration Equations of Three Peg

Types

4.4 Arduino Code

Programming of the Jetson TX1 for pulse width modulation (PWM) outputs was

tedious and required deeper understanding of the Jetson environment. A solution was

developed for simplicity and time restrictions to enable PWM functionality controlled by

the Jetson TX1. An Arduino Mega 2560 was added to the design with communication

through the GPIO headers to the Jetson TX1.

 The Arduino was responsible for controlling the servo to decide if a peg entered a

conforming or a non-conforming bin. The Arduino was also responsible for turning the

bin carousel when each bin was filled to the predetermined quantity. The Arduino code

contained a series of if statements based on an input voltage reading. An interrupt activated

on the rising and falling edges of that digital pin began the processing of the if statements.

The decision on peg conformality was passed by the PLC. Present peg quantity in the

carousel bin was tracked by the PLC and the decision to rotate to the next bin was passed

to the Arduino in order to control the stepper motor. The PLC communication was based

on grounding digital pins D4 and D5 of the Arduino which were attached to pullup resistors

through software. The Arduino pseudo code is found in Appendix D along with the

Arduino IDE code.

y = 0.0023x - 0.0447
R² = 0.9989

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 100 200 300 400 500 600

Le
n

gt
h

 (
In

ch
es

)

Length (Pixels)

Keyed Peg Calibration

53

4.5 Mechanical Post Build Revisions

The following section discusses the mechanical revisions after full assembly of the

sorting system. These revisions were made based on developmental testing of each section

of the overall system.

4.5.1 Revised Reject Collection Method and Reject Bin

Developmental testing exposed an issue in counting the correct number of pegs in

the conforming bins. The fiber optics located at the end of the conveyor were responsible

for detecting when a peg fell into a carousel bin or the reject bin. To count correctly, the

PLC had to know the decision of the camera system and be able to correlate the decision

to which peg was currently falling into the reject bin. To decrease the probability of

counting a non-conforming peg as conforming, a mechanical revision was made to ensure

that no non-conforming pegs would be able to pass through the fiber optics.

The reject bin was removed from the drop-off area at the end of the conveyor. The

reject bin was then redesigned to be fixed to the side of the conveyor. A reject slide was

cut from quarter-inch acrylic and mounted to the aluminum frame. The reject slide would

guide the non-conforming pegs into the revised reject bin. The additional space necessary

for the reject slide was accounted for by attaching the servo support plate to the camera

enclosure. This also minimized the distance between the camera system and the flipper. A

smaller distance eliminates the requirement for a delay of the camera system waiting to

communicate to the servo to rotate the flipper. Figure 4-13 displays the revised reject bin

and additional reject slide.

54

Figure 4-14: Revised Reject Bin and Reject Slide

4.5.2 Revised Bin Carousel

Pegs falling from the end of the conveyor during developmental testing were

observed missing the conforming bins and falling out of the system. Pegs bouncing out of

the bins was also observed during system development. A revision of the bin carousel was

made to solve both issues. The revised carousel bins were created which were wider to

accommodate movement of the peg during transportation. The carousel plate, which

confines the containers, was redesigned to accommodate the larger size of the new carousel

bins. The revised bin carousel assembly is shown in Figure 4-14.

55

Figure 4-15: Revised Bin Carousel

4.5.3 Revised Hopper Separator Plate

Testing of the hopper assembly with the small peg separator often led to the release

of two bundled pegs at one time onto the conveyor belt. Although the camera system was

able to calculate the height of both pegs simultaneously, the fiber optics were not capable

of counting two pegs when they fell into the carousel bins. A temporary solution of

rejecting both pegs in order to ensure correct counting was initially implemented. A

revision to the hopper was necessary to fix the root cause of bundled pegs on the conveyor.

Two pegs were able to seat together into a single slot of the separator plate. Thickness of

the separator plate was the root cause. A thinner acrylic plate would have been fragile under

the weight of hundreds of pegs. Lafayette Instruments supplied 31mil sheet metal for

separator plate fabrication. The metal was cut with a waterjet with the same design as the

acrylic separator plate. Testing showed the 31mil sheet to be the correct thickness for

allowing only one peg to release on the conveyor at a time (Echard, 2018) A new issue

arose when pegs were stuck beneath the metal separator plate. Warp in the sheet metal

created voids between the agitator and the separator plate allowed pegs to slip between the

two. J-B Weld Qwikweld metal bonding epoxy was used in order to adhere the acrylic

56

agitator into the cuts of the separator plate creating a flush and strong connection. The

combined piece allowed the pegs to be release one at a time without pegs slipping

underneath the plate. Figure 4-15 shows the agitator and separator plate assembly.

Figure 4-16: Metal Separator Plate with Agitator

 A second agitator and separator plate were to be used for the larger peg types. The

separator plate for the medium and keyed peg type was cut from 62mil acrylic. The agitator

was then adhered to the separator plate. The separator plate and agitator are shown in

Figure 4-16.

57

Figure 4-17: Medium and Keyed Separator Plate

4.5.4 Revised Flipper

Testing of the small pegs had no issue sliding the peg the correct direction using

the flipper. Medium and keyed pegs that were slightly rotated often got stuck against the

side of the flipper for several seconds before continuing to the carousal bins. A new flipper

was designed and cut from quarter-inch acrylic which decreased the possibility of the pegs

getting stuck against the flipper. The new flipper design is shown in Figure 4-17.

58

Figure 4-18: Revised Flipper for Selection Servo

4.6 Test Results and Analysis

The following section discusses the testing results of each peg type through the

system. The results were then analyzed, and a statistical analysis was given to evaluate the

overall accuracy and reliability of the sorting system.

4.6.1 Testing Procedure

Testing was performed in a modular fashion. The results were broken down into

the performance of each individual section of the system and then an overall performance

measurement was deduced from the results.

 The pegs were hand fed into the hopper to ensure that they were caught by the

rotating slots. The clearance between the slot and the hopper wall allowed pegs to sit

without being captured and carried to the top of the hopper. A single conforming peg was

first tested through the system to allow the auto exposure function to calibrate without

affecting the test results.

The performance of the individual sections was broken down as follows. The

hopper was evaluated based its ability to rotate a peg to the top and successfully drop the

59

peg onto the conveyor without it bouncing off. The conveyor is evaluated by its ability to

transport the peg from the hopper to the carousel without the peg falling or rolling from the

predetermined path. The camera system was evaluated for its ability to make the correct

decision for the pegs, conforming or non-conforming. The selection servo was assessed

by its ability to properly respond to the camera systems decision and its ability to position

the peg the correct direction along the conveyor. The reject and carousel bins were assessed

by successful peg deposition into the containers. Correct rotation of the bin carousal was

noted based on successfully rotating after five pegs were collected in each bin. Rotation

should occur twice per test.

 The test was performed with a conveyor speed of 16.84 feet per second and with a

hopper rotation speed of 7.58 revolutions per minute. These measurements were visually

calculated with a stop watch. Measurements of conveyor speed and hopper rotation speed

were each taken three times and then averaged.

The test for each peg type consisted of a total of twenty pegs being inserted into the

system. First, five conforming pegs were inserting into the hopper slots to be sorted by the

system. Next, five of the non-conforming pegs were randomly selected and inserted into

the hopper slots. The methodology was repeated with five more conforming pegs and then

the five final non-conforming pegs. Each peg was measured prior to entry into the hopper

and recorded. The test was repeated five times for each peg type. The test results for each

peg type are provided in Appendix E.

4.6.2 Vision System Statistical Analysis Methods

Statistical analysis was performed on the vision system using Microsoft Excel

("Office 365. Excel", 2016). Linear regression models were created for each type of peg

based on all data points representing peg length collected from the vision system. The 𝑅2

value was a critical factor in analyzing how well a system would predict future instances.

An 𝑅2 score of one means that the system was a perfect predictor (Collins-Thompson,

2018).

 The pegs were also analyzed based on mean and standard deviation as obtained

from the vision system peg data. The arithmetic mean of the error was used. A mean

evaluates the accuracy of the model. The standard deviation represents the spread of values

60

around the mean (Gravetter & Wallnau, 1991). A smaller standard deviation value

represented a higher precision system.

 Finally, a paired difference t-test was performed for the vision system. The paired

difference t-test evaluated the null hypothesis as no significant difference between the

predicted and actual length of the pegs. The alternative hypothesis stated there was a

significant difference between predicted and actual peg length. A t-statistic was calculated

for a paired differential t-test. The t-statistic was determined using equation 4.1 (Gravetter

& Wallnau, 1991).

𝑡 =
𝐷̅−µ𝐷

𝑠𝐷̅
 (4.1)

The calculated t-statistic was compared to the t-statistic of the confidence interval to accept

or reject the null hypothesis.

4.6.3 Small Peg Results

The small pegs were tested first. The combined results from the five tests are

provided in Table 4-3. The system was successful in sorting of the 100 total pegs. An

anomaly occurred in test four when a non-conforming peg was analyzed incorrectly. The

peg was analyzed as 0.37 inches shorter in length than the actual value. The peg was a

non-conforming peg and was still analyzed as a non-conforming peg. The anomaly had no

impact on the successful sorting results.

Table 4-3: Test Results of Different Components of System with Small Pegs

Pegs # Hopper Conveyor Camera
Selection
Servo Container Rotation

20 20 20 20 20 20 2

20 20 20 20 20 20 2

20 20 20 20 20 20 2

20 20 20 19 20 20 2

20 20 20 20 20 20 2

61

A linear regression model is given in Figure 4-18 showing the ability of the model

to predict future peg lengths. A 𝑅2 value of 0.9651 was found using the length of the

100 pegs. The 𝑅2 value was close to the value of one which showed a very high

prediction accuracy of the camera system. The outlier affected the overall results and the

𝑅2 value. The 𝑅2 value after removal of the outlier is 0.9991 which shows that the

camera system was a good predicter of peg length.

Figure 4-19: Small Peg Linear Regression Model

 The mean value (average) for the difference of the predicted and measured peg

length was found to be 0.0161 inches. The standard deviation was found to be 0.040 inches.

The mean displayed an offset of the pegs predicted value from the actual value. The mean

plus the standard deviation were within the ±0.05 inch tolerance of the system. The low

standard deviation shows that the camera system was very consistent in measurements.

 A paired difference t-test was performed at a 95% confidence level to evaluate the

camera systems performance. The null hypothesis was defined as H0: µ = 0. The

R² = 0.9651

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

P
re

d
ic

te
d

 L
en

gt
h

 (
In

ch
es

)

Actual Length (Inches)

Small Peg Regression Model with Outlier

62

alternative hypothesis was expressed as Ha: µ ≠ 0 . The t-statistic was calculated (equation

4.1) and was found to be 4.03. The t-statistic was also found using a t-distribution table

which was 1.984. The null hypothesis was rejected and the alternative hypothesis that there

was a difference between the predicted and actual length of the peg was accepted. The null

hypothesis was rejected, however, all conforming pegs predicted test values still fell within

the tolerances of a conforming peg.

4.6.4 Medium Peg Test Results

The medium pegs were tested next. The overall test results are displayed in

Table 4-4. The system was 97% successful in the correct sorting of the 100 pegs. A non-

conforming peg became wedged between the two positioning plates on the conveyor prior

to entry into the lighting enclosure. The peg was manually centered between the plates to

not affect the next pegs. A separate peg did not make it through the camera system as it

bounced from the conveyor when landing from the hopper. A final peg actuated the vision

system but was analyzed improperly resulting in a value of zero inches. This peg was

moved to the reject container.

Table 4-4: Test Results of Different Components of System with Medium Pegs

Pegs # Hopper Conveyor Camera
Selection
Servo Container Rotation

20 20 20 19 20 20 2

20 20 19 20 20 20 2

20 20 20 20 20 20 2

20 20 20 20 20 20 2

20 20 19 20 20 20 2

A linear regression model is given in Figure 4-19. A 𝑅2 value of 0.9987 was

found using the length of the 98 pegs which went through the vision system. The 𝑅2

value was close to the value of one which represented a very high prediction accuracy of

the vision system.

63

Figure 4-20: Medium Peg Regression Model

The mean value (average) for the difference of predicted and actual peg length was

calculated as 0.0029 inches. The standard deviation was found to be 0.0066 inches. The

mean was near zero representing a high accuracy of the vision system while the standard

deviation was small, meaning the error between predicted and actual length was

consistently small.

 A paired difference t-test was performed at a 95% confidence interval. The null

hypothesis was defined as H0: µ = 0. The alternative hypothesis was defined as Ha: µ ≠ 0.

The t statistic was calculated (equation 4.1) and was found to be 4.4. Looking up the t-

statistic using a t-distribution table gave a value of 1.984. The null hypothesis was rejected

and the alternative hypothesis that there was a difference between the predicted and actual

length of the peg was accepted. The null hypothesis was rejected, however, all conforming

pegs predicted test values fell within the tolerances of a conforming peg and no issues

occurred in testing due to the predicted peg dimensions being out of the conforming range.

R² = 0.9987

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

P
re

d
ic

te
d

 L
en

gt
h

 (
In

ch
es

)

Actual Length (Inches)

Medium Peg Linear Regression Model

64

4.6.5 Keyed Peg Test Results

The keyed pegs were tested next. The overall test results are displayed below in

Table 4-3. The system was 99% successful in the sorting of the 100 pegs. A non-

conforming peg became wedged between the two positioning plates on the conveyor during

test four. The peg forced the next peg out of order and this was noted as to not affect the

statistical analysis or the mean difference.

Table 4-5: Test Results of Different Components of System with Keyed Pegs

Pegs # Hopper Conveyor Camera
Selection
Servo Container Rotation

20 20 20 20 20 20 2

20 20 20 20 20 20 2

20 20 20 20 20 20 2

20 20 19 20 20 20 2

20 20 20 20 20 20 2

A linear regression model is given in Figure 4-20. A 𝑅2 value of 0.9964 was

found using the length of the 100 pegs which went through the vision system. The 𝑅2

value was close to the value of one which represented a very high prediction accuracy of

the vision system. Small and symmetrical deviation was found along the regression line.

65

Figure 4-21: Keyed Peg Regression Model

The mean value (average) for the difference of predicted and actual peg length was

calculated as 0.0151 inches. The standard deviation was found to be 0.0145 inches. The

mean was near zero representing a high accuracy of the vision system while the standard

deviation was very small, meaning the error between predicted and actual is consistently

low.

 A paired difference t-test was performed at a 95% confidence interval. The null

hypothesis was defined as H0: µ = 0. The alternative hypothesis was defined as Ha: µ ≠ 0.

The t statistic was calculated (equation 4.1) and was found to be 10.44. Looking up the t

statistic using a t-distribution table was 1.984. The null hypothesis was rejected and the

alternative hypothesis that there was a difference between the predicted and actual length

of the peg was accepted. The t-value was higher in this test than desired, however, the

R² = 0.9964

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

P
re

d
ic

te
d

 L
en

gt
h

 (
In

ch
es

)

Actual Length (Inches)

Keyed Peg Linear Regression Model

66

error had no effect on the camera systems ability to correctly identify the pegs during

testing.

4.7 Post Build and Testing Conclusion

The post build revisions were necessary to ensure proper functionality and accuracy

of the sorting system. The revised reject bin placement and reject slide ensured proper

counting of conforming pegs. The revised bin carousal and carousal bins ensured pegs

were properly captured from the conveyor. Finally, the new separator plates with adhered

agitators ensured that pegs fell individually onto the conveyor. The overall revised system

is shown in Figure 4-19.

Figure 4-22: Assembled System with Post Build Revisions

Testing of the three peg types showed a 99% full system functionality for the small

pegs, 97% for the medium pegs and 99% for the keyed pegs. All three tests met the

requirement for 95% reliability. The testing also showed that no pegs entered the

conforming bins to manipulate the final peg count per carousal bin.

The accuracies for the prediction of each peg type are broken down in Table 4-6.

The results concluded average accuracies above 95% for all peg types. The average

accuracy was 97.71% for small pegs, 99.27% for medium pegs and 98.15% for keyed pegs.

67

Table 4-6: Prediction Accuracy of Individual Peg Types

 Small Peg Medium Peg Keyed Peg

Average (%) 97.71 99.27 98.15

Minimum (%) 95.74 92.85 95.70

Maximum (%) 99.92 100.00 99.96

68

 SUMMARY, CONCLUSIONS AND

RECOMMENDATIONS

The following section describes recommendations and improvements for increasing

the overall reliability and accuracy or the sorting system. These improvements are deduced

from the testing results and observations.

5.1 Mechanical Recommendations

The hopper is currently driven by a DC gearmotor and a DC to DC converter to

change its speed. Relying on voltage to control the motor speed allows the hopper speed

to be affected by the weight of the pegs. A future recommendation is to replace the

gearmotor with a motor which operates with a feedback loop. This would allow for the

hopper to not be affected when a large number of pegs is inserted at a single time.

Testing proved the issue of non-conforming pegs being able to get stuck between the

positioner plates. New plates should be designed to not allow a gap small enough for these

pegs to get stuck between. Another solution would be to offset the plates pushing pegs all

the way to one side of the conveyor before they run into the next plate. The next plate

would then center the peg prior to entering the lighting enclosure.

Calibration of the fiber optics was very sensitive prior to testing. Caution was used

to ensure the pegs were caught without catching the dimples of the conveyor as well. The

falloff optic mount opposite did not slide correctly over the conveyor and was held on by

tape during testing. This part should be redesigned to latch securely to the conveyor side.

Both optic mounts were to slide tightly onto the conveyor sides. The PLA material was

susceptible to warping over time and the optic sensor had to be calibrated before testing.

Another material such as aluminum or ABS plastic may overcome to potential warping of

the falloff optic mounts.

 Finally, although an emergency stop button is present in the system as shown in

Figure 5-1, it is currently nonfunctional. A recommendation would be to wire the

emergency stop button to the PLC to allow full system shutdown if a problem occurs. The

PLC code should be altered to accommodate the additional emergency stop button.

69

Figure 5-1: HMI and Emergency Stop Button

5.2 Software Recommendations

Currently the HMI is used to turn on and off the hopper as well as allow peg count

selection with communication to the PLC. A recommendation for future improvement of

the user interface would be to make the peg type selection menu fully functional and

communicate with the Jetson TX1 to determine which program needs to be ran. The PLC

would be used for the communication side and could pull one of several GPIO pins low on

the Jetson to identify which peg type is being sorted. A single Jetson Code file could then

be used for all peg types.

5.3 Summary

The automated sorting system for pegs using computer vision techniques was

designed, constructed and tested in this study. The system results verified reliability of the

small pegs at 99%, medium pegs at 97% and keyed pegs at 99%. The overall system was

portable, inexpensive and the results show that the sorting system met the 95% reliability

requirement.

70

APPENDIX A. SUBASSEMBLY EXPLODED DRAWINGS

A.1 Frame Exploded Subassembly

71

A.2 Hopper Exploded Subassembly

A.3 Conveyor Exploded Subassembly

72

A.4 Enclosure and Camera Exploded Subassembly

A.5 Bin Selector Exploded Subassembly

73

A.6 Bin Carousel Exploded Subassembly

A.7 Electronic Plate Exploded Subassembly

74

A.8 Din Rail PLC Exploded Subassembly

A.9 HMI Interface Exploded Subassembly

75

A.10 Overall Exploded Assembly

76

APPENDIX B. SUBASSEMBLY DRAWINGS WITH DIMENSIONS

B.1 System Frame

77

B.2 Hopper Subassembly

B.3 Conveyor Subassembly

78

B.4 Lighting Enclosure and Camera System

B.5 Bin Selector Subassembly

79

B.6 Bin Carousel Subassembly

B.7 Electronics Plate Subassembly

80

B.8 Din Rail PLC Subassembly

B.9 HMI Interface Subassembly

81

B.10 Overall Subassembly

82

APPENDIX C. CUSTOM PART DRAWINGS WITH DIMENSIONS

This section contains drawings with dimensions for all parts that were cut from acrylic,

3D printed, or a model was not available from the supplier of the part. 3D models are not shown

for parts where a supplier has provided a model.

C.1 Separator Small Peg Plate

83

C.2 Separator Medium and Keyed Peg Plate

C.3 Agitator

84

C.4 Separator Casing

C.5 Separator Back Plate

85

C.6 DC Motor

C.7 Pin Positioner

86

C.8 Pin Positioner Opposite

C.9 Lighting Enclosure Fiber Optic Mounts

87

C.10 Falloff Optic Mount

C.11 Falloff Optic Mount Opposite

88

C.12 Enclosure Top

C.13 Diffusion Plate

89

C.14 Enclosure Front

C.15 Enclosure Side

90

C.16 Servo Support

C.17 Flipper

91

C.18 Carousel Bin

C.19 Reject Bin

92

C.20 Reject Slide

C.21 Carousel

93

C.22 Carousel Support Platform

C.23 Eight Relay Board

94

C.24 Stepper Driver Mount

C.25 Electronics Mount

95

C.26 DC Converter

C.27 DC Converter Holder

96

C.28 HMI Mounting Plate

C.29 Emergency Stop Button

97

APPENDIX D: EMBEDDED SYSTEMS AND PLC CODE

D.1 Arduino Pseudo Code

/*Initialize Variables*/

 myservo /*object to control servo*/

 toggle /*variable to toggle servo*/

i /*variable to count carousel stepper pulses*/

 /*Initialize digital Pins*/

 Pin 9 /*attached servo object*/

 Pin 9 /*set servo to non-conforming position*/

 Pin 2 /*stepper decision input with pullup*/

 Pin 3 /*servo decision input with pullup*/

 Pin 3 /*set pin as interrupt and initialize as rising*/

 Pin 5 /*ENA- output to stepper motor driver*/

 Pin 6 /*DIR- output to stepper motor driver*/

 Pin 7 /*PUL- output to stepper motor driver*/

 --Loop:

 Reset Variable i

 If Pin 2 goes high

 While i less than 320

 Toggle pin 7 with 2ms delay

 Increment i

 --Interrupt

 Set toggle to Pin 3 value

 If toggle is high

 Turn servo for conforming peg

 Set interrupt for falling edge

 If toggle is low

 Turn servo for non-conforming peg

 Set interrupt for rising edge

98

D.2 Arduino IDE Code

#include <Servo.h>

Servo myservo; // create servo object to control a servo

int toggle = 0; //create varaible to toggle servo

int i = 0; //Variable to count carousel stepper pulses

void setup() {

 //Serial.begin(9600); //turn on serial communication for debugging

 myservo.attach(9); // attaches the servo on pin 9 to the servo object

 pinMode(2, INPUT_PULLUP); // set pin to stepper input with pullup

 pinMode(3, INPUT_PULLUP); // set pin to servo input with pullup

 pinMode(5, OUTPUT); //set pin ENA-(ENA) as output

 pinMode(6, OUTPUT); //set pin DIR-(DIR) as output

 pinMode(7, OUTPUT); //set pin PUL-(PUL) as output

 digitalWrite(5, HIGH); //turn on stepper driver

 digitalWrite(6, HIGH); //set stepper driver direction

 attachInterrupt(digitalPinToInterrupt(3), pin3_ISR, RISING); //wait for conforming peg

 myservo.write(120); //sets the servo for non-conforming

}

void loop() {

 i = 0;

 if(digitalRead(2) == HIGH){

 //rotate carousel to next bin 72deg

 while(i < 320){

 digitalWrite(7, HIGH); //move stepper one pulse

 delay(2);

99

 digitalWrite(7, LOW); //reset stepper pulse pin

 delay(2);

 i++;

 }//end while

 while(digitalRead(2) == HIGH){

 //wait until pin goes low again

 }//end while

 }//end if

}//end main

void pin3_ISR() {

 toggle = digitalRead(3);

 //Serial.print(toggle); //print servo decision to serial monitor

 if(toggle == 1){

 myservo.write(70); // sets the servo position according to the scaled value

 //toggle = 1;

 attachInterrupt(digitalPinToInterrupt(3), pin3_ISR, FALLING);

 }

 else{

 myservo.write(120); // sets the servo position according to the scaled value

 //toggle = 0;

 attachInterrupt(digitalPinToInterrupt(3), pin3_ISR, RISING);

 }

}//end interrupt

100

D.3 Basler Provided Sample Code

/* openCVGrab: A sample program showing to convert Pylon images to opencv MAT.

 Copyright 2017 Matthew Breit <matt.breit@gmail.com>

 Licensed under the Apache License, Version 2.0 (the "License");

 you may not use this file except in compliance with the License.

 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software

 distributed under the License is distributed on an "AS IS" BASIS,

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied.

 See the License for the specific language governing permissions and

 limitations under the License.

 THIS SOFTWARE REQUIRES ADDITIONAL SOFTWARE (IE: LIBRARIES)

IN ORDER TO COMPILE

 INTO BINARY FORM AND TO FUNCTION IN BINARY FORM. ANY SUCH

ADDITIONAL SOFTWARE

 IS OUTSIDE THE SCOPE OF THIS LICENSE.

*/

// Include files to use OpenCV API.

#include <opencv2/core/core.hpp>

#include <opencv2/highgui/highgui.hpp>

// Include files to use the PYLON API.

#include <pylon/PylonIncludes.h>

101

// Use sstream to create image names including integer

#include <sstream>

// Namespace for using pylon objects.

using namespace Pylon;

// Namespace for using GenApi objects

using namespace GenApi;

// Namespace for using opencv objects.

using namespace cv;

// Namespace for using cout.

using namespace std;

// Number of images to be grabbed.

static const uint32_t c_countOfImagesToGrab = 1000;

int main(int argc, char* argv[])

{

 // The exit code of the sample application.

 int exitCode = 0;

 // Automagically call PylonInitialize and PylonTerminate to ensure the pylon runtime

system

 // is initialized during the lifetime of this object.

 Pylon::PylonAutoInitTerm autoInitTerm;

 try

 {

102

 // Create an instant camera object with the camera device found first.

 cout << "Creating Camera..." << endl;

 CInstantCamera camera(CTlFactory::GetInstance().CreateFirstDevice());

 // or use a device info object to use a specific camera

 //CDeviceInfo info;

 //info.SetSerialNumber("21694497");

 //CInstantCamera camera(CTlFactory::GetInstance().CreateFirstDevice(info));

 cout << "Camera Created." << endl;

 // Print the model name of the camera.

 cout << "Using device " << camera.GetDeviceInfo().GetModelName() << endl;

 // The parameter MaxNumBuffer can be used to control the count of buffers

 // allocated for grabbing. The default value of this parameter is 10.

 camera.MaxNumBuffer = 10;

 // create pylon image format converter and pylon image

 CImageFormatConverter formatConverter;

 formatConverter.OutputPixelFormat= PixelType_BGR8packed;

 CPylonImage pylonImage;

 // Create an OpenCV image

 Mat openCvImage;

 // Start the grabbing of c_countOfImagesToGrab images.

 // The camera device is parameterized with a default configuration which

 // sets up free-running continuous acquisition.

 camera.StartGrabbing(c_countOfImagesToGrab);

 // This smart pointer will receive the grab result data.

 CGrabResultPtr ptrGrabResult;

103

 // Camera.StopGrabbing() is called automatically by the RetrieveResult() method

 // when c_countOfImagesToGrab images have been retrieved.

 while (camera.IsGrabbing())

 {

 // Wait for an image and then retrieve it. A timeout of 5000 ms is used.

 camera.RetrieveResult(5000, ptrGrabResult, TimeoutHandling_ThrowException);

 // Image grabbed successfully?

 if (ptrGrabResult->GrabSucceeded())

 {

 // Access the image data.

 cout << "SizeX: " << ptrGrabResult->GetWidth() << endl;

 cout << "SizeY: " << ptrGrabResult->GetHeight() << endl;

 const uint8_t *pImageBuffer = (uint8_t *) ptrGrabResult->GetBuffer();

 cout << "Gray value of first pixel: " << (uint32_t) pImageBuffer[0] << endl <<

endl;

 // Convert the grabbed buffer to pylon imag

 formatConverter.Convert(pylonImage, ptrGrabResult);

 // Create an OpenCV image out of pylon image

 openCvImage= cv::Mat(ptrGrabResult->GetHeight(), ptrGrabResult-

>GetWidth(), CV_8UC3, (uint8_t *) pylonImage.GetBuffer());

 // Create a display window

 namedWindow("OpenCV Display Window",

CV_WINDOW_NORMAL);//AUTOSIZE //FREERATIO

 // Display the current image with opencv

 imshow("OpenCV Display Window", openCvImage);

 // Define a timeout for customer's input in ms.

104

 // '0' means indefinite, i.e. the next image will be displayed after closing the

window

 // '1' means live stream

 waitKey(1);

 }

 else

 {

 cout << "Error: " << ptrGrabResult->GetErrorCode() << " " << ptrGrabResult-

>GetErrorDescription() << endl;

 }

 }

 }

 catch (GenICam::GenericException &e)

 {

 // Error handling.

 cerr << "An exception occurred." << endl

 << e.GetDescription() << endl;

 exitCode = 1;

 }

 // Comment the following two lines to disable waiting on exit.

 cerr << endl << "Press Enter to exit." << endl;

 while(cin.get() != '\n');

 return exitCode;

}

105

D.4 Vision System Pseudo Code

/Initialization/

Include Files

Include Namespaces

/*Variable Declarations*/

C_counterOfImagesToGrab //stores captured pylon image

i //loop counter

status //comparison decision

dimensionsSwap //variable for swapping height and width dimensions

heightAngled //stores height of pegs

widthAngled //stores width of pegs

scale //stores equation to convert pixels to inches

image //OpenCV image

camera_t //USB instant camera

/*GPIO declaration*/

servoControl //servo control pin to Arduino

stepperControl //stepper control to Arduino

imageActuation //Camera Fiber optic input

/*Function Declarations*/

actuationInput() //waits for camera actuation

imageAnalysis () //Analyze image and returns peg height

comparison() //Compares peg height to criteria

stepperServo() //sends decision to Arduino

--main:

Set camera parameters

while{

106

 actuationInput()

 Grab image

Convert to OpenCV image

imageAnalysis()

comparison()

stepperServo()

}//End while loop

--actuationInput:

 Wait for GPIO pin to go HIGH

--imageAnalysis:

 Convert image to black and white

Apply median filter

Apply binary threshold

Find contours

For{

 Sort images in order by area

 Save number of contours with area over 1000 pixels

}

Find length and width of largest contour

Swap dimensions if width > height

Convert height from pixels to inches

Return height

 --Comparison:

 If (height within range){

 Return 1

 }Else{

 Return 2

}

107

 --stepperServo:

 If(input==1){

 Send high to Arduino

 }Else{

 Send low to Arduino

}

D.5 Vision System C++ Code

//Include files and dependencies to use JETSON GPIO

#include <jetsonGPIO.c>

#include <jetsonGPIO.h>

//Include misc. dependencies

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <termios.h>

#include <time.h>

#include <sys/time.h>

#include <iostream>

#include <string>

#include <unistd.h>

// Include files to use OpenCV API.

#include <opencv2/core/core.hpp>

#include <opencv2/highgui/highgui.hpp>

#include "opencv2/imgproc/imgproc.hpp"

#include "opencv2/features2d/features2d.hpp"

// Include files to use the PYLON API.

108

#include <pylon/PylonIncludes.h>

#include <pylon/usb/PylonUsbIncludes.h>

// Include sstream to create image names including integer

#include <sstream>

// Namespace for using pylon objects.

using namespace Pylon;

// Settings for using Basler USB cameras.

#include <pylon/usb/BaslerUsbInstantCamera.h>

typedef Pylon::CBaslerUsbInstantCamera Camera_t;

using namespace Basler_UsbCameraParams;

// Namespace for using GenApi objects

using namespace GenApi;

// Namespace for using opencv objects.

using namespace cv;

// Namespace for using cout.

using namespace std;

//Function Declarations

void actuationInput();

double imageAnalysis();

int comparison (double height);

void stepperServo(int status);

//Variable Declaration

static const uint32_t c_countOfImagesToGrab = 3;

109

int i = 0;

int status = 0;

double dimensionSwap = 0; //initialize variable to swap dimensions

double heightAngled = 0; //stores height of pegs

double widthAngled = 0; //stores width of pegs

double scale = 0; //equation to convert pixels to inches

Mat image;// Create an OpenCV image

jetsonTX1GPIONumber servoControl = gpio219; // Servo cntrl to Arduino

jetsonTX1GPIONumber stepperControl = gpio186; // Stepper cntrl to Arduino

jetsonTX1GPIONumber imageActutation = gpio38; // Camera Fiber optic signal (pulled

up)

typedef Pylon::CBaslerUsbInstantCamera Camera_t;

using namespace Basler_UsbCameraParams;

int main(int argc, char* argv[])

{

 // The exit code of the sample application.

 int exitCode = 0;

 //set up GPIO

 gpioExport(servoControl);

 gpioExport(stepperControl);

 gpioSetDirection(servoControl,outputPin);

 gpioSetDirection(stepperControl,outputPin);

 PylonInitialize();

 namedWindow("Display window", WINDOW_AUTOSIZE);// Create a window

for display.

 // create pylon image format converter and pylon image

 CImageFormatConverter formatConverter;

110

 formatConverter.OutputPixelFormat= PixelType_BGR8packed;

 CPylonImage pylonImage;

 // Create an instant camera object with the camera device found first.

 //cout << "Creating Camera..." << endl;

 Camera_t camera(CTlFactory::GetInstance().CreateFirstDevice());

 //cout << "Camera Created." << endl;

 CGrabResultPtr ptrGrabResult; // pointer for receiving grab result data

 INodeMap& nodemap = camera.GetNodeMap();

 //cout << "Collected Node Map" << endl;

 camera.Open();

 //set camera parameters

 // Set the exposure time ranges for luminance control

camera.AutoExposureTimeLowerLimit.SetValue(camera.AutoExposureTimeLowerLimit

.GetMin());

 // Access the enumeration type node GainAuto.

 CEnumerationPtr gainAuto(nodemap.GetNode("GainAuto"));

 if (IsWritable(gainAuto))

 {

 gainAuto->FromString("Off");

 }

 // Check to see which Standard Feature Naming Convention (SFNC) is used by the

camera device.

 if (camera.GetSfncVersion() >= Sfnc_2_0_0)

 {

111

 // Access the Gain float type node. This node is available for USB camera devices.

 // USB camera devices are compliant to SFNC version 2.0.

 CFloatPtr gain(nodemap.GetNode("Gain"));

 double newGain = gain->GetMin() + ((gain->GetMax() - gain->GetMin()) / 2);

 gain->SetValue(newGain);

 cout << "Gain (50%) : " << gain->GetValue() << " (Min: " << gain->GetMin()

<< "; Max: " << gain->GetMax() << ")" << endl;

 }

 camera.AutoTargetBrightness.SetValue(0.2);

//camera.AutoExposureTimeUpperLimit.SetValue(camera.AutoExposureTimeLowerLim

it.GetMax());

camera.AutoExposureTimeUpperLimit.SetValue(10000);//set exposure time limit to

eliminate blur of moving images

 camera.ExposureAuto.SetValue(ExposureAuto_Once);

 // The current configuration is set to software trigger

 camera.RegisterConfiguration(new CSoftwareTriggerConfiguration,

RegistrationMode_ReplaceAll, Cleanup_Delete);

while (i<10000)

 {

 actuationInput();

 camera.StartGrabbing(c_countOfImagesToGrab);

 while(camera.IsGrabbing())

 {

 camera.ExecuteSoftwareTrigger();

 camera.RetrieveResult(5000, ptrGrabResult,

TimeoutHandling_ThrowException);

112

 }//end while

 // Convert the grabbed buffer to pylon image

 formatConverter.Convert(pylonImage, ptrGrabResult);

 // Create an OpenCV image out of pylon image

 image = cv::Mat(ptrGrabResult->GetHeight(), ptrGrabResult->GetWidth(),

CV_8UC3, (uint8_t *) pylonImage.GetBuffer());

 //imwrite("Image1.jpg", image);

 double height = imageAnalysis();

 cout<<height<<endl;

 status = comparison(height);

 stepperServo(status);

 usleep(100000);

 i=i+1;

}

 gpioUnexport(servoControl); // unexport the Servo Pin

 gpioUnexport(stepperControl); // unexport the Stepper Pin

 gpioUnexport(imageActutation); // unexport the fiber optic input

 PylonTerminate();

 return exitCode;

}

void actuationInput()

{

 unsigned int value = low;

 gpioExport (imageActutation);

 gpioSetDirection(imageActutation,inputPin);

 usleep(2);

113

 /*while(value =! low){ //wait for previous peg to clear optics

 usleep(2);

 gpioGetValue(imageActutation, &value);

 }*/

 while(value == low){ //wait for peg to enter optics

 usleep(2);

 gpioGetValue(imageActutation, &value);

 }

 gpioUnexport(imageActutation);

}

double imageAnalysis()

{

 Mat medianFilter;

 Mat bwImage;

 Mat grayImage;

 RotatedRect rectAngled;

 int largest_area = 0;

 int largest_contour_index = 0;

 int pegCount = 0;//counts pegs per image

cvtColor(image, grayImage, CV_BGR2GRAY);

//imwrite("GreyImage2.jpg", grayImage);

medianBlur(grayImage, medianFilter, 1);

threshold(medianFilter, bwImage, 170, 255, THRESH_BINARY);

//imshow("Display window", bwImage); // Show our image inside it.

//namedWindow("Display window2", WINDOW_AUTOSIZE);// Create a

window for display.

//imshow("Display window2", image); // Show our image inside it.

waitKey(1000);

114

vector<vector<Point> > contours;

vector<Vec4i> hierarchy;

 // Find contours

 findContours(bwImage, contours, hierarchy, CV_RETR_CCOMP,

CV_CHAIN_APPROX_SIMPLE);

 //Sort countours base on size

 for (int contourSize = 0; contourSize<contours.size(); contourSize++){

 double area = contourArea(contours[contourSize],false);

 if(area>1000){

 pegCount= pegCount+1;

 }

 //save index of largest contour to be used for length

 if(area>largest_area){

 largest_area = area;

 largest_contour_index = contourSize;

 rectAngled=minAreaRect(contours[contourSize]);

 }

 }

//Section to find dimensions using boundingRect function

//Rect rect = boundingRect(contours[0]);

//double heightPixels = rect.height;

//Find dimensions using minAreaRect which accounts for objects at an angle

heightAngled = rectAngled.size.height;//extract height in pixels

widthAngled = rectAngled.size.width;//extract width in pixels

//Switch height and width if they are flipped from .size.width and .size.height

if(heightAngled < widthAngled)

115

{

 dimensionSwap = heightAngled;

 heightAngled = widthAngled;

 widthAngled = dimensionSwap;

 }

 //calibration equation, changes for each peg type

 double heightInch = heightAngled*0.0023-0.0447;//convert from pixels to inches

 //Display height and width of pegs

 //cout << "Width in pixels: " << widthAngled << endl;

 cout << "Height in pixels: " << heightAngled << endl;

 cout << "Height in inches: " << heightInch << endl;

//contours allowed in each image before rejection, for small and medium pegs, pegCount

cannot greater than 1

if(pegCount>2){

 heightInch = 3;

}

return heightInch;

}

int comparison (double height)

{

 cout << height << endl;

 if (height <= 1.17 && height >= 1.07)

 {

 cout << "Conforming" << endl;

 return 1;

 }

 else

 {

116

 cout << "Non-Conforming" << endl;

 return 0;

 }

}

void stepperServo(int status)

{

 if(status == 1)

 {

 gpioSetValue(servoControl, 1);

 usleep(50); // off for 50us

 //cout<< "Servo: 1" <<endl;

 }

 if(status == 0)

 {

 gpioSetValue(servoControl, 0);

 usleep(50); // off for 50us

 //cout<< "Servo: 0" <<endl;

 }

 return;

}

117

D.6 HMI Screens

(a) Monitor and Navigation Menu

(b) Peg Type Selection Menu

118

(c) Pegs Count Selection Menu

119

D.7 PLC Ladder Logic

120

APPENDIX E: TESTING RESULTS

E.1 Small Peg Testing Data Test 1

Test 1:

Peg # Pixel
Predicted Length
(Inches)

Actual Length
(Inches) Decision

Error
(Inches)

1 460.300 1.026 1.001 Conforming -0.025

2 461.339 1.029 1.001 Conforming -0.028

3 461.281 1.028 1.002 Conforming -0.026

4 461.932 1.030 1.000 Conforming -0.030

5 461.281 1.028 1.001 Conforming -0.027

6 316.941 0.696 0.668 Non-Conforming -0.028

7 282.963 0.618 0.615 Non-Conforming -0.003

8 226.546 0.489 0.496 Non-Conforming 0.007

9 359.726 0.795 0.788 Non-Conforming -0.007

10 402.430 0.893 0.867 Non-Conforming -0.026

11 456.884 1.018 1.001 Conforming -0.017

12 464.430 1.036 1.001 Conforming -0.035

13 460.434 1.027 1.002 Conforming -0.025

14 461.661 1.029 1.001 Conforming -0.028

15 463.211 1.033 1.002 Conforming -0.031

16 403.514 0.896 0.867 Non-Conforming -0.029

17 263.577 0.574 0.563 Non-Conforming -0.011

18 386.375 0.856 0.837 Non-Conforming -0.019

19 328.832 0.724 0.714 Non-Conforming -0.010

20 230.786 0.498 0.492 Non-Conforming -0.006

121

E.2 Small Peg Testing Data Test 2

Test 2:

Peg # Pixel
Predicted Length
(Inches)

Actual Length
(Inches) Decision

Error
(Inches)

1 460.136 1.026 1.002 Conforming -0.024

2 459.391 1.024 1.001 Conforming -0.023

3 462.395 1.031 1.001 Conforming -0.030

4 462.407 1.031 1.001 Conforming -0.030

5 460.302 1.026 1.002 Conforming -0.024

6 359.430 0.794 0.778 Non-Conforming -0.016

7 314.077 0.690 0.688 Non-Conforming -0.002

8 398.116 0.883 0.867 Non-Conforming -0.016

9 399.996 0.887 0.867 Non-Conforming -0.020

10 233.958 0.506 0.492 Non-Conforming -0.014

11 463.614 1.034 1.000 Conforming -0.034

12 458.782 1.023 1.002 Conforming -0.021

13 462.885 1.032 1.001 Conforming -0.031

14 461.788 1.030 1.001 Conforming -0.029

15 460.715 1.027 1.001 Conforming -0.026

16 384.941 0.853 0.837 Non-Conforming -0.016

17 232.222 0.502 0.492 Non-Conforming -0.010

18 324.304 0.713 0.714 Non-Conforming 0.001

19 265.295 0.578 0.563 Non-Conforming -0.015

20 284.047 0.621 0.615 Non-Conforming -0.006

122

E.3 Small Peg Testing Data Test 3

Test 3:

Peg # Pixel
Predicted Length
(Inches)

Actual Length
(Inches) Decision

Error
(Inches)

1 461.807 1.030 1.001 Conforming -0.029

2 459.785 1.025 1.003 Conforming -0.022

3 463.728 1.034 1.001 Conforming -0.033

4 460.177 1.026 1.001 Conforming -0.025

5 461.025 1.028 1.001 Conforming -0.027

6 385.615 0.854 0.837 Non-Conforming -0.017

7 264.995 0.577 0.563 Non-Conforming -0.014

8 329.298 0.725 0.714 Non-Conforming -0.011

9 229.264 0.495 0.492 Non-Conforming -0.003

10 361.631 0.799 0.788 Non-Conforming -0.011

11 458.074 1.021 1.000 Conforming -0.021

12 458.073 1.021 1.001 Conforming -0.020

13 463.379 1.033 1.001 Conforming -0.032

14 462.891 1.032 1.001 Conforming -0.031

15 460.639 1.027 1.001 Conforming -0.026

16 404.460 0.898 0.867 Non-Conforming -0.031

17 285.770 0.625 0.615 Non-Conforming -0.010

18 319.181 0.702 0.688 Non-Conforming -0.014

19 401.614 0.891 0.867 Non-Conforming -0.024

20 236.741 0.512 0.496 Non-Conforming -0.016

123

E.4 Small Peg Testing Data Test 4

Test 4:

Peg # Pixel
Predicted Length
(Inches)

Actual Length
(Inches) Decision

Error
(Inches)

1 459.350 1.024 1.000 Conforming -0.024

2 460.092 1.026 1.002 Conforming -0.024

3 463.674 1.034 1.001 Conforming -0.033

4 463.060 1.033 1.001 Conforming -0.032

5 460.909 1.028 1.001 Conforming -0.027

6 326.683 0.719 0.714 Non-Conforming -0.005

7 230.171 0.497 0.492 Non-Conforming -0.005

8 315.376 0.693 0.688 Non-Conforming -0.005

9 286.549 0.627 0.615 Non-Conforming -0.012

10 234.370 0.507 0.496 Non-Conforming -0.011

11 461.945 1.030 1.002 Conforming -0.028

12 460.030 1.026 1.003 Conforming -0.023

13 462.805 1.032 1.000 Conforming -0.032

14 463.248 1.033 0.999 Conforming -0.034

15 458.071 1.021 1.001 Conforming -0.020

16 264.184 0.575 0.563 Non-Conforming -0.012

17 399.409 0.886 0.867 Non-Conforming -0.019

18 367.042 0.812 0.788 Non-Conforming -0.024

19 384.816 0.853 0.837 Non-Conforming -0.016

20 400.922 0.890 0.867 Non-Conforming -0.023

124

E.5 Small Peg Testing Data Test 5

Test 5:

Peg # Pixel
Predicted Length
(Inches)

Actual Length
(Inches) Decision

Error
(Inches)

1 460.682 1.027 1.000 Conforming -0.027

2 458.260 1.022 1.002 Conforming -0.020

3 459.775 1.025 1.001 Conforming -0.024

4 462.039 1.030 1.002 Conforming -0.028

5 458.075 1.021 1.000 Conforming -0.021

6 98.751 0.195 0.563 Non-Conforming 0.368

7 286.942 0.627 0.615 Non-Conforming -0.012

8 234.134 0.506 0.496 Non-Conforming -0.010

9 231.561 0.500 0.492 Non-Conforming -0.008

10 397.016 0.881 0.867 Non-Conforming -0.014

11 461.373 1.029 1.001 Conforming -0.028

12 461.343 1.029 1.002 Conforming -0.027

13 460.435 1.027 1.000 Conforming -0.027

14 462.919 1.032 0.999 Conforming -0.033

15 460.975 1.028 1.002 Conforming -0.026

16 318.219 0.699 0.688 Non-Conforming -0.011

17 383.738 0.850 0.837 Non-Conforming -0.013

18 325.672 0.717 0.714 Non-Conforming -0.003

19 399.859 0.887 0.867 Non-Conforming -0.020

20 364.897 0.807 0.788 Non-Conforming -0.019

125

E.6 Medium Peg Testing Data Test 1

Test 1:

Peg # Pixel
Predicted Length
(Inches)

Actual Length
(Inches) Decision

Error
(Inches)

1 457.571 1.004 1.005 Conforming 0.001

2 456.586 1.002 1.006 Conforming 0.004

3 457.547 1.004 1.004 Conforming 0.000

4 462.199 1.014 1.004 Conforming -0.010

5 457.381 1.003 1.005 Conforming 0.002

6 306.382 0.671 0.655 Non-Conforming -0.016

7 273.605 0.599 0.600 Non-Conforming 0.001

8 220.036 0.481 0.497 Non-Conforming 0.016

9 352.828 0.773 0.773 Non-Conforming 0.000

10 301.865 0.661 0.655 Non-Conforming -0.006

11 459.723 1.008 1.005 Conforming -0.003

12 460.281 1.010 1.006 Conforming -0.004

13 458.439 1.006 0.999 Conforming -0.007

14 460.205 1.010 1.006 Conforming -0.004

15 458.394 1.006 1.005 Conforming -0.001

16 0.000 0.000 0.571 Non-Conforming 0.571

17 247.132 0.541 0.537 Non-Conforming -0.004

18 414.796 0.910 0.895 Non-Conforming -0.015

19 347.599 0.762 0.757 Non-Conforming -0.005

20 398.978 0.875 0.865 Non-Conforming -0.010

126

E.7 Medium Peg Testing Data Test 2

Test 2:

Peg # Pixel
Predicted Length
(Inches)

Actual Length
(Inches) Decision

Error
(Inches)

1 456.420 1.001 1.003 Conforming 0.002

2 461.240 1.012 1.003 Conforming -0.009

3 460.816 1.011 1.005 Conforming -0.006

4 457.337 1.003 1.004 Conforming 0.001

5 458.776 1.006 0.999 Conforming -0.007

6 301.480 0.660 0.655 Non-Conforming -0.005

7 264.015 0.578 0.571 Non-Conforming -0.007

8 407.679 0.894 0.895 Non-Conforming 0.001

9 246.292 0.539 0.537 Non-Conforming -0.002

10 277.529 0.608 0.600 Non-Conforming -0.008

11 455.040 0.998 1.005 Conforming 0.007

12 457.493 1.004 1.005 Conforming 0.001

13 455.455 0.999 1.003 Conforming 0.004

14 458.670 1.006 1.006 Conforming 0.000

15 458.209 1.005 1.005 Conforming 0.000

16 351.407 0.770 0.757 Non-Conforming -0.013

17 354.176 0.776 0.773 Non-Conforming -0.003

18 396.943 0.870 0.865 Non-Conforming -0.005

19 304.676 0.667 0.655 Non-Conforming -0.012

20 227.270 0.497 0.497 Non-Conforming 0.000

127

E.8 Medium Peg Testing Data Test 3

Test 3:

Peg # Pixel
Predicted Length
(Inches)

Actual Length
(Inches) Decision

Error
(Inches)

1 454.669 0.997 1.006 Conforming 0.009

2 461.086 1.011 1.004 Conforming -0.007

3 459.045 1.007 1.004 Conforming -0.003

4 459.332 1.008 1.004 Conforming -0.004

5 455.954 1.000 1.005 Conforming 0.005

6 264.801 0.580 0.571 Non-Conforming -0.009

7 410.957 0.901 0.895 Non-Conforming -0.006

8 211.085 0.461 0.497 Non-Conforming 0.036

9 354.082 0.776 0.773 Non-Conforming -0.003

10 300.559 0.658 0.655 Non-Conforming -0.003

11 458.260 1.005 1.003 Conforming -0.002

12 459.404 1.008 1.004 Conforming -0.004

13 460.825 1.011 1.006 Conforming -0.005

14 458.215 1.005 1.003 Conforming -0.002

15 458.399 1.006 1.003 Conforming -0.003

16 348.400 0.764 0.757 Non-Conforming -0.007

17 275.235 0.603 0.600 Non-Conforming -0.003

18 245.931 0.538 0.537 Non-Conforming -0.001

19 394.502 0.865 0.865 Non-Conforming 0.000

20 303.349 0.664 0.655 Non-Conforming -0.009

128

E.9 Medium Peg Testing Data Test 4

Test 4:

Peg # Pixel
Predicted Length
(Inches)

Actual Length
(Inches) Decision

Error
(Inches)

1 456.240 1.001 0.999 Conforming -0.002

2 460.144 1.009 1.003 Conforming -0.006

3 455.178 0.998 1.004 Conforming 0.006

4 459.812 1.009 1.003 Conforming -0.006

5 458.938 1.007 1.003 Conforming -0.004

6 299.813 0.657 0.655 Non-Conforming -0.002

7 356.723 0.782 0.773 Non-Conforming -0.009

8 341.743 0.749 0.757 Non-Conforming 0.008

9 411.415 0.902 0.895 Non-Conforming -0.007

10 274.291 0.601 0.600 Non-Conforming -0.001

11 456.644 1.002 1.006 Conforming 0.004

12 457.546 1.004 1.006 Conforming 0.002

13 455.266 0.999 1.004 Conforming 0.005

14 460.349 1.010 1.005 Conforming -0.005

15 461.088 1.011 1.006 Conforming -0.005

16 304.044 0.666 0.655 Non-Conforming -0.011

17 264.421 0.579 0.571 Non-Conforming -0.008

18 247.386 0.541 0.537 Non-Conforming -0.004

19 225.904 0.494 0.497 Non-Conforming 0.003

20 396.215 0.869 0.865 Non-Conforming -0.004

129

E.10 Medium Peg Testing Data Test 5

Test 5:

Peg # Pixel
Predicted Length
(Inches)

Actual Length
(Inches) Decision

Error
(Inches)

1 462.903 1.015 1.004 Non-Conforming -0.011

2 457.688 1.004 1.003 Conforming -0.001

3 456.433 1.001 1.002 Conforming 0.001

4 458.647 1.006 1.002 Conforming -0.004

5 460.195 1.010 1.003 Conforming -0.007

6 265.905 0.582 0.571 Non-Conforming -0.011

7 396.540 0.869 0.865 Non-Conforming -0.004

8 410.020 0.899 0.895 Non-Conforming -0.004

9 Missing Missing 0.757 Non-Conforming #VALUE!

10 303.935 0.666 0.655 Non-Conforming -0.011

11 459.169 1.007 1.006 Conforming -0.001

12 459.831 1.009 1.006 Conforming -0.003

13 461.405 1.012 1.003 Conforming -0.009

14 460.304 1.010 1.003 Conforming -0.007

15 458.838 1.007 1.000 Conforming -0.007

16 228.059 0.499 0.497 Non-Conforming -0.002

17 272.227 0.596 0.600 Non-Conforming 0.004

18 248.821 0.545 0.537 Non-Conforming -0.008

19 302.181 0.662 0.655 Non-Conforming -0.007

20 356.261 0.781 0.773 Non-Conforming -0.008

130

E.11 Keyed Peg Testing Data Test 1

Test 1:

Peg # Pixel
Predicted Length
(Inches)

Actual Length
(Inches) Decision

Error
(Inches)

1 519.726 1.151 1.122 Conforming -0.029

2 514.395 1.138 1.119 Conforming -0.019

3 509.214 1.126 1.119 Conforming -0.007

4 513.042 1.135 1.120 Conforming -0.015

5 520.384 1.152 1.124 Conforming -0.028

6 455.623 1.003 0.975 Non-Conforming -0.028

7 427.245 0.938 0.943 Non-Conforming 0.005

8 285.732 0.612 0.625 Non-Conforming 0.013

9 367.832 0.801 0.785 Non-Conforming -0.016

10 346.915 0.753 0.739 Non-Conforming -0.014

11 519.754 1.151 1.118 Conforming -0.033

12 520.313 1.152 1.122 Conforming -0.030

13 507.249 1.122 1.121 Conforming -0.001

14 519.602 1.150 1.119 Conforming -0.031

15 520.312 1.152 1.118 Conforming -0.034

16 375.230 0.818 0.818 Non-Conforming 0.000

17 337.181 0.731 0.723 Non-Conforming -0.008

18 419.526 0.920 0.926 Non-Conforming 0.006

19 426.117 0.935 0.906 Non-Conforming -0.029

20 274.980 0.588 0.598 Non-Conforming 0.010

131

E.12 Keyed Peg Testing Data Test 2

Test 2:

Peg # Pixel
Predicted Length
(Inches)

Actual Length
(Inches) Decision

Error
(Inches)

1 512.523 1.134 1.121 Conforming -0.013

2 505.384 1.118 1.119 Conforming 0.001

3 512.000 1.133 1.120 Conforming -0.013

4 516.470 1.143 1.118 Conforming -0.025

5 511.761 1.132 1.120 Conforming -0.012

6 346.282 0.752 0.739 Non-Conforming -0.013

7 431.914 0.949 0.926 Non-Conforming -0.023

8 455.268 1.002 0.975 Non-Conforming -0.027

9 433.572 0.953 0.943 Non-Conforming -0.010

10 279.489 0.598 0.625 Non-Conforming 0.027

11 505.014 1.117 1.120 Conforming 0.003

12 522.861 1.158 1.121 Conforming -0.037

13 513.576 1.137 1.119 Conforming -0.018

14 511.584 1.132 1.120 Conforming -0.012

15 510.077 1.128 1.115 Conforming -0.013

16 454.967 1.002 0.975 Non-Conforming -0.027

17 280.297 0.600 0.598 Non-Conforming -0.002

18 356.620 0.776 0.785 Non-Conforming 0.009

19 286.687 0.615 0.625 Non-Conforming 0.010

20 430.400 0.945 0.926 Non-Conforming -0.019

132

E.13 Keyed Peg Testing Data Test 3

Test 3:

Peg # Pixel
Predicted Length
(Inches)

Actual Length
(Inches) Decision

Error
(Inches)

1 522.308 1.157 1.119 Conforming -0.038

2 509.847 1.128 1.118 Conforming -0.010

3 519.711 1.151 1.120 Conforming -0.031

4 521.422 1.155 1.118 Conforming -0.037

5 521.110 1.154 1.120 Conforming -0.034

6 376.702 0.822 0.818 Non-Conforming -0.004

7 425.264 0.933 0.906 Non-Conforming -0.027

8 449.846 0.990 0.975 Non-Conforming -0.015

9 427.609 0.939 0.926 Non-Conforming -0.013

10 431.760 0.948 0.943 Non-Conforming -0.005

11 519.781 1.151 1.119 Conforming -0.032

12 521.422 1.155 1.121 Conforming -0.034

13 513.101 1.135 1.121 Conforming -0.014

14 513.198 1.136 1.120 Conforming -0.016

15 512.980 1.135 1.119 Conforming -0.016

16 354.854 0.771 0.785 Non-Conforming 0.014

17 279.545 0.598 0.598 Non-Conforming 0.000

18 347.066 0.754 0.739 Non-Conforming -0.015

19 339.679 0.737 0.723 Non-Conforming -0.014

20 293.280 0.630 0.625 Non-Conforming -0.005

133

E.14 Keyed Peg Testing Data Test 4

Test 4:

Peg # Pixel
Predicted Length
(Inches)

Actual Length
(Inches) Decision

Error
(Inches)

1 513.273 1.136 1.119 Conforming -0.017

2 521.897 1.156 1.118 Conforming -0.038

3 521.898 1.156 1.122 Conforming -0.034

4 520.389 1.152 1.121 Conforming -0.031

5 513.126 1.135 1.119 Conforming -0.016

6 276.347 0.591 0.598 Non-Conforming 0.007

7 427.917 0.940 0.926 Non-Conforming -0.014

8 324.479 0.702 0.723 Non-Conforming 0.021

9 288.805 0.620 0.625 Non-Conforming 0.005

10 519.346 1.150 1.119 Conforming -0.031

11 512.348 1.134 1.120 Conforming -0.014

12 421.204 0.924 0.906 Non-Conforming -0.018

13 521.000 1.154 1.120 Conforming -0.034

14 511.173 1.131 1.119 Conforming -0.012

15 520.604 1.153 1.121 Conforming -0.032

16 369.595 0.805 0.785 Non-Conforming -0.020

17 456.478 1.005 0.975 Non-Conforming -0.030

18 347.467 0.754 0.739 Non-Conforming -0.015

19 381.752 0.833 0.818 Non-Conforming -0.015

20 439.894 0.967 0.943 Non-Conforming -0.024

134

E.15 Keyed Peg Testing Data Test 5

Test 5:

Peg # Pixel
Predicted Length
(Inches)

Actual Length
(Inches) Decision

Error
(Inches)

1 508.545 1.125 1.120 Conforming -0.005

2 510.739 1.130 1.116 Conforming -0.014

3 512.203 1.133 1.124 Conforming -0.009

4 520.247 1.152 1.121 Conforming -0.031

5 520.294 1.152 1.120 Conforming -0.032

6 370.127 0.807 0.785 Non-Conforming -0.022

7 326.212 0.706 0.723 Non-Conforming 0.017

8 283.209 0.607 0.598 Non-Conforming -0.009

9 420.274 0.922 0.906 Non-Conforming -0.016

10 426.292 0.936 0.926 Non-Conforming -0.010

11 515.313 1.141 1.120 Conforming -0.021

12 515.100 1.140 1.120 Conforming -0.020

13 509.000 1.126 1.121 Conforming -0.005

14 515.756 1.142 1.122 Conforming -0.020

15 522.000 1.156 1.122 Conforming -0.034

16 378.187 0.825 0.818 Non-Conforming -0.007

17 293.818 0.631 0.625 Non-Conforming -0.006

18 343.209 0.745 0.739 Non-Conforming -0.006

19 456.525 1.005 0.975 Non-Conforming -0.030

20 440.767 0.969 0.943 Non-Conforming -0.026

135

LIST OF REFERENCES

Alper, G. (2011, December 8). Basics of Lens Selection for Machine Vision Cameras. Retrieved

March 9, 2018, from http://info.adimec.com/blogposts/bid/73803/basics-of-lens-

selection-for-machine-vision-cameras

Basler AG. (2018). Software Download | Basler. Retrieved May 23, 2018, from
https://www.baslerweb.com/en/sales-support/downloads/software-

downloads/#type=pylonsoftware;version=5.1.0;os=linuxarm;series=baslerpulse;model=all

Collins-Thompson, K. (2018). Regression Evaluation - Module 3: Evaluation. Retrieved

November 12, 2018, from https://www.coursera.org/lecture/python-machine-

learning/regression-evaluation-iKS4j

Du, H. (2015). Research on carrot automatic sorting machine. Applied Mechanics and Materials,

741, 66-69. doi:https://www.scientific.net/AMM.741.66

Echard, T. (2018). [Verbal Communication].

ElMasry, G., Subero, S., Molto, E., & Blasco, J. (2012). In-line sorting of irregular potatoes by

using automated computer-based. Journal of Food Engineering, 112(1-2), 60-68.

Retrieved October 30, 2017, from

http://www.sciencedirect.com/science/article/pii/S0260877412001690

Fernandez-Robles, L., Azzopardi, G., Alegre, E., & Petkov, N. (2017). Machine-vision-based

identification of broken inserts in edge profile milling heads. Robotics and Computer-

Integrated Manufacturing, 44, 276-283. Retrieved October 30, 2017, from

http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S073658451530

0806

Golnabi, A., & Asadpour, A. (n.d.). Design and application of industrial machine vision systems.

Robotics and Computer-Integrated Manufacturing, 23(6), 630-637. Retrieved October 30,

2017, from

http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S073658450700

0233

Gravetter, F. J., & Wallnau, L. B. (1991). Essentials of Statistics for the Behavioral Sciences. St.

Paul, MN: West Publishing Company.

https://www.baslerweb.com/en/sales-support/downloads/software-downloads/#type=pylonsoftware;version=5.1.0;os=linuxarm;series=baslerpulse;model=all
https://www.baslerweb.com/en/sales-support/downloads/software-downloads/#type=pylonsoftware;version=5.1.0;os=linuxarm;series=baslerpulse;model=all
https://www.coursera.org/lecture/python-machine-learning/regression-evaluation-iKS4j
https://www.coursera.org/lecture/python-machine-learning/regression-evaluation-iKS4j
http://www.sciencedirect.com/science/article/pii/S0260877412001690

136

Haider, S. H., Anton, S. P., & Abdullah, N. H. (2011). Metal Parts Visual Inspection Based on

Production Rules. Applied Mechanics and Materials, 110-116, 4091-4095. Retrieved

October 30, 2017, from https://search-proquest-

com.ezproxy.lib.purdue.edu/docview/1443265506?rfr_id=info%3Axri%2Fsid%3Aprimo.

Hou, T. (n.d.). International Journal of Production Research. Automated vision system for IC

lead inspection, 39(15), 3353-3367. Retrieved October 30, 2017, from

http://web.b.ebscohost.com.ezproxy.lib.purdue.edu/ehost/detail/detail?vid=0&sid=4f4094

d6-4f92-4c96-8b53-

840789ff2e61%40sessionmgr120&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#AN=

6532461&db=bth

Jarimopas, B., & Jaisin, N. (2008). An experimental machine vision system for sorting sweet

tamarind. Journal of Food Engineering, 89(3), 291-297. Retrieved October 30, 2017,

from https://www.sciencedirect.com/science/article/pii/S0260877408002173

JetsonHacks. (2015, September 17). Jetsonhacks/jetsonGPIO. Retrieved from

https://github.com/jetsonhacks/jetsonGPIO

Kahn Academy. (n.d.). The idea of spread and standard deviation. Retrieved November 12, 2018,

from https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-

spread-distributions/a/introduction-to-standard-deviation

Li-na, T., & Li-jun, Z. (2012, August 28). Research of ceramic substrate automatic sorting

system. Retrieved October 20, 2017, from http://ieeexplore.ieee.org/document/6324555/

Machine Vision Store. (2018). Machine Vision Store. Retrieved March 3, 2018, from

https://machinevisionstore.com/Design/ExEntocentricCalculator

Marques, O. (2011). Practical image and video processing using MATLAB. Hoboken: Wiley-

IEEE Press. (Marques, 2011)

Metal Extrusion. (n.d.). Retrieved February 12, 2018, from

http://thelibraryofmanufacturing.com/extrusion.html

Neff Automation. (n.d.). NEFF | Industrial Automation Distributor. Retrieved February 12, 2018,

from https://neffautomation.com/

https://search-proquest-com.ezproxy.lib.purdue.edu/docview/1443265506?rfr_id=info%3Axri%2Fsid%3Aprimo
https://search-proquest-com.ezproxy.lib.purdue.edu/docview/1443265506?rfr_id=info%3Axri%2Fsid%3Aprimo
https://www.sciencedirect.com/science/article/pii/S0260877408002173
https://github.com/jetsonhacks/jetsonGPIO
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/a/introduction-to-standard-deviation
https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/a/introduction-to-standard-deviation
http://ieeexplore.ieee.org/document/6324555/
https://machinevisionstore.com/Design/ExEntocentricCalculator
http://thelibraryofmanufacturing.com/extrusion.html

137

NVIDIA Corporation. (2018). JetPack 3.2.1 Release Notes. Retrieved April 15, 2018, from

https://developer.nvidia.com/embedded/jetpack-3_2_1

Office 365. Excel [Computer software]. (2016). Retrieved from https://products.office.com/en-

us/excel

OpenCV and Pylon [E-mail to the author]. (2018, July 18).

OpenCV Dev Team. (n.d.). Imgproc. Image Processing¶. Retrieved from

https://docs.opencv.org/2.4/modules/imgproc/doc/imgproc.html

Packages. (n.d.). Retrieved February 12, 2018, from http://www.solidworks.com/sw/products/3d-

cad/packages.htm?scid=hp_tab_products_3d

Pearson, T. (2009, July 18). Hardware-based image processing for high-speed inspection of

grains. Retrieved October 22, 2017, from

http://www.sciencedirect.com/science/article/pii/S0168169909001021 (Pearson, 2009)

Pop, C., Grigorescu, S., & Davidescu, A. (2012). Robot Vision Application for Bearings

Identification and Sorting. Applied Mechanics and Materials, 162, 523-530. Retrieved

October 30, 2017, from https://www.scientific.net/AMM.162.523.pdf.

Prabuwono, A., Sulaiman, R., Hamdan, A., & Hasniaty, A. (2006, November 17). Development

of Intelligent Visual Inspection System (IVIS) for Bottling Machine. Retrieved October

30, 2017, from http://ieeexplore.ieee.org/document/4142152/authors?ctx=authors

Razavi, S., Bostan, A., & Rezaie, M. (2010). IMAGE PROCESSING AND PHYSICO-

MECHANICAL PROPERTIES OF BASIL SEED (OCIMUM BASILICUM). . Journal

of Food Process Engineering, 33(1), 51-64. Retrieved October 30, 2017, from

http://web.b.ebscohost.com/ehost/detail/detail?vid=0&sid=f1dbf262-f403-404c-85a2-

c3384194e293%40sessionmgr102&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#AN=

47716052&db=bth

Sofu, M. M., Kayacan, M. C., & Cetisli, B. (2016). Design of an automatic apple sorting system

using machine vision. Computers and Electronics in Agriculture, 127, 395-405. Retrieved

October 31, 2017, from

http://www.sciencedirect.com/science/article/pii/S0168169916304513?via%3Dihub

https://developer.nvidia.com/embedded/jetpack-3_2_1
https://products.office.com/en-us/excel
https://products.office.com/en-us/excel
https://docs.opencv.org/2.4/modules/imgproc/doc/imgproc.html
http://www.solidworks.com/sw/products/3d-cad/packages.htm?scid=hp_tab_products_3d
http://www.solidworks.com/sw/products/3d-cad/packages.htm?scid=hp_tab_products_3d
https://www.scientific.net/AMM.162.523.pdf
http://ieeexplore.ieee.org/document/4142152/authors?ctx=authors
http://web.b.ebscohost.com/ehost/detail/detail?vid=0&sid=f1dbf262-f403-404c-85a2-c3384194e293%40sessionmgr102&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#AN=47716052&db=bth
http://web.b.ebscohost.com/ehost/detail/detail?vid=0&sid=f1dbf262-f403-404c-85a2-c3384194e293%40sessionmgr102&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#AN=47716052&db=bth
http://web.b.ebscohost.com/ehost/detail/detail?vid=0&sid=f1dbf262-f403-404c-85a2-c3384194e293%40sessionmgr102&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#AN=47716052&db=bth

138

Tran T., Nguyen T., Nguyen M., Pham T. (2017) A Computer Vision Based Machine for

Walnuts Sorting Using Robot Operating System. In: Akagi M., Nguyen TT., Vu DT.,

Phung TN., Huynh VN. (eds) Advances in Information and Communication Technology.

ICTA 2016. Advances in Intelligent Systems and Computing, vol 538. Springer, Cham

Translations for computer vision. (n.d.). Retrieved February 12, 2018, from

https://www.definitions.net/definition/computer%20vision

What is Computer-Aided Design (CAD)? - Definition from Techopedia. (n.d.). Retrieved

February 12, 2018, from https://www.techopedia.com/definition/2063/computer-aided-

design-cad

You, F., & Zhang, Y. (2008). A Mechanical Part Sorting System Based on Computer Vision.

Computer Science and Software Engineering. Retrieved October 30, 2017, from

http://ieeexplore.ieee.org/abstract/document/4721885/

https://www.definitions.net/definition/computer%20vision
https://www.techopedia.com/definition/2063/computer-aided-design-cad
https://www.techopedia.com/definition/2063/computer-aided-design-cad
http://ieeexplore.ieee.org/abstract/document/4721885/

