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ABSTRACT

Jaworski, Jackson M. M.S.E., Purdue University, May 2020. Modeling the Transient
Two-Dimensional Temperature Response of Cylindrical Geometry for the Enhance-
ment of Learning Heat Transfer. Major Professors: Hosni I. Abu-Mulaweh and
Donald W. Mueller, Jr, School of Mechanical Engineering.

This thesis considers the topics of heat transfer education, a modern approach to

learning, and understanding one-dimensional verses multidimensional problems. The

physical problem considered is transient conduction in a short cylinder immersed in

an isothermal fluid. Many aspects can be modified, such as the material properties,

but the length and radius are of primary concern. The thesis introduces the concepts

required to develop a numerical method for solving the temperature gradient within

the cylinder. This method is programmed in MATLAB with a graphical user inter-

face allowing for interactive learning by performing iterative tests to discover various

concepts; which can have a significant impact on learning. Many published research

articles detail the effectiveness of incorporating hands-on computer programs into the

heat transfer curriculum. The interaction effects from the inputs are also analyzed

using a design of experiments full factorial method to determine which inputs are the

most significant concerning the error between the one- and two-dimensional solutions.

The main effects are the length and radius by a significant amount followed by the

time, material, initial temperature, and convection coefficient. Finally, the program

is used to develop a chart which given the geometry, material properties, and Fourier

number can tell the user precisely when the one-dimensional assumption for both a

slab and infinite cylinder breaks down.
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1. INTRODUCTION

Engineering is a daunting subject that includes multiple complex sub-disciplines.

One of the more challenging sub-disciplines for mechanical engineering students is

heat transfer which describes how energy is transferred through or between objects

due to a temperature difference. Students are typically introduced to the transient,

or time-varying, conduction heat transfer problems with simple one-dimensional ge-

ometries. While these examples are adequate to introduce concepts, in practice, an

engineer should know when a one-dimensional analysis is applicable or when a multi-

dimensional analysis is required.

One-dimensional models introduced in classes are used to avoid the complex na-

ture of multi-dimensional geometries which often require the development of a nu-

merical method simulation to obtain a solution. Even an analytical solution of a

one-dimensional cylindrical geometry involves complex terms such as Bessel functions

that require computer solutions to quantify the behavior. Having students develop

these types of programs on their own, while useful, would only take time away from

another equally important topic in an introductory heat transfer course.

1.1 Thesis Motivation

The primary motivation of this thesis is to help students grasp engineering topics in

the field of heat transfer and develop better classroom methods and experiments to

aid in their learning. Most topics not only in the field of heat transfer but engineering

in general are taught with a deductive approach. The deductive method of learning

is starting with a general principle or theorem then working out the specifics and

applying the theories to experiments and data. Research suggests that a deductive

teaching style is more effective for short-term learning; however, it gives the learner
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a sense of never being able to come up with the general formula themselves. This

causes a shallow understanding of the material and a lack of confidence since it makes

the material seem straightforward to develop [1].

Another method for learning would be through an inductive approach. An induc-

tive approach involves starting with observations and data from experiments and then

developing the principles. This method works inversely from the deductive method

and is more in line with how the original principles were developed in the first place

and how most research is conducted. Typically this type of learning gives the stu-

dent a hands-on experience with the material allowing for longer retention and deeper

understanding.

Specifically relating to heat transfer, when being introduced to the heat transfer

in cylinders, students are taught of a clear boundary between when to use a particular

type of solution based on the geometry of the cylinder. While this assumption holds

generally, there are more factors which should be considered that determine whether a

one- or two-dimensional solution should be applied; one of the most significant being

the duration of the study. For every case there will be a small amount of time at the

beginning of the study where the results are similar since they will start at ideally

the same conditions. The two studies will quickly differ but depending on all the

considering factors this could be a significant amount of time and useful for practical

applications in large systems.

This leads into the secondary motivation of this thesis which is to develop a

method either graphically or though a computer simulation that can calculate the

exact Fourier number at which a one-dimensional analysis becomes inaccurate and a

two-dimensional analysis is needed. The typical general assumption for conduction in

a cylinder in a heat transfer textbook will list that if the length is at least ten times

larger than the radius, a one-dimensional analysis can be performed [2]. This is due

to the heat transfer through the ends of the cylinder having a negligible effect on the

center point temperature. While being a useful assumption, there is a large amount
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of uncertainty between at what the exact point is where a two-dimensional analysis

must be utilized to reduce the error the assumption will cause.

1.2 Thesis Objectives

This thesis aims to develop an interactive, flexible, and intuitive program for engineer-

ing students to study transient, multi-dimensional conduction heat transfer problems

in cylindrical geometry. This interactivity allows for a better understanding of funda-

mental concepts; specifically, to aid as a demonstration that under certain conditions,

a plane wall or an infinite cylinder can approximate a finite cylinder. The thesis will

focus on the particular case of cylinders initially at a uniform temperature as shown

in Figure 1.1. The primary boundary condition will consist of convection from a

large isothermal fluid body while neglecting buoyancy effects. The development of

this program will be discussed to formulate a general process to follow when develop-

ing complex programs, specifically when trying to create an interface. This interface

is critical to help provide a medium that is approachable for students as to not get

overwhelmed.

Figure 1.1. Geometry of a short cylinder subjected to convection
boundary conditions of a uniform temperature.

The secondary objective of the thesis is to develop a method of determining when

a physical situation requires a two-dimensional simulation. In other words, when does
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the one-dimensional assumption break down for a particular geometry and develop a

clear boundary between the two cases. A graphical element would be the easiest form

to comprehend this data since many charts and graphs currently exist in the field to

determine other properties. This would allow the user to calculate some dimensionless

properties and determine at what length of time a one-dimensional study exceeded a

particular error threshold, i.e., no longer valid.

This thesis will attempt to accomplish the following to satisfy the previously

mentioned objectives:

1. Develop a mathematical model for a cylinder at a uniform initial temperature

subjected to a large fluid body of uniform temperature.

2. Propose a finite difference solution method capable of changing each variable.

3. Develop a user interface that allows the user to learn by changing variables.

4. Utilize the MATLAB software package to implement the proposed solution and

user interface.

5. Develop a single or multiple graphical element(s) that can be used to determine

if a particular cylinder requires a one- or two-dimensional analysis.

1.3 Thesis Organization

The thesis will be organized into a total of six chapters which will cover the back-

ground information on conduction heat transfer, the theory of the developed model,

the simulation and GUI development, the results drawn from the work, and conclu-

sion of the work with future recommendations. A detailed breakdown is structured

into chapters as follows:

1. Introduction. Outline the basic concepts and motivation behind the work de-

scribed in the following chapters.
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2. Background. Existing literature is reviewed to provide all the necessary back-

ground information required to understand the work of this thesis.

3. Theory. Introducing a mathematical model for the problem including the sta-

bility analysis.

4. Model Development. The outline for a computer simulation is presented based

on the mathematical model introduced in the prior chapter. Additionally, in-

troducing general information about GUI development, along with the devel-

opment of the specific GUI for the thesis.

5. Results. The theory from chapter three is analyzed using the model and GUI

from chapter four to conclude one- and two-dimensional assumptions to a finite

cylinder.

6. Conclusion. All work from the previous chapter is brought together, discussing

the significance, limitations of results, and suggesting future work.
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2. BACKGROUND

2.1 Aims

This chapter covers the relevant background information referred to in the rest

of the thesis. The basics of conduction heat transfer will be introduced along with a

review of existing literature on education techniques in heat transfer curriculum.

2.2 Conduction Heat Transfer

Heat transfer is the science which studies how energy is transferred through or

between objects due to a temperature difference. This broad definition is an umbrella

term which covers three modes in which energy, in the form of heat, can be transferred.

This thesis focuses exclusively on conduction heat transfer, which is the transfer of

energy from more energetic particles of a substance to adjacent less energetic particles

due to interactions between these particles [2]. Thus, in the presence of a temperature

gradient, the higher energy particles transfer energy to lower energy particles or in

the direction of decreasing temperature. This type of net transfer of energy between

particles is defined as diffusion, shown visually in Fig. 2.1, which describes the random

molecular motion [3].

Heat conduction is classified as one-dimensional when conduction is significant in

one direction only and negligible in the others, two-dimensional when conduction is

significant in two directions and negligible in the last, and three-dimensional when

conduction is significant in all directions. Most introductory courses in heat transfer

deal primarily with one-dimensional heat problems. If a two-dimensional problem is

proposed, it typically can be reduced into a more straightforward one-dimensional

case.
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Figure 2.1. One-dimensional heat transfer by conduction as outlined
by Fourier’s law, Eq. 2.1, describing the diffusion of energy.

Since heat transfer deals with the transfer of energy between objects, the energy

transfer must occur over some segment of time. A transient or time-varying analysis

describes temperature as a function of time, while an analysis is described as steady-

state if the temperature does not depend on time. This thesis looks at the center

point temperature between one- and two-dimensional models over a period of time;

thus, classifying the work as a transient heat transfer problem.

A fundamental equation that applies to conduction is Fourier’s law, i.e.,

Q̇x = −kA∂T
∂x

(2.1)

which describes the heat rate by conduction through a particular area, in this case,

the x-direction. Dividing by the cross-sectional area is the heat flux

q′′x = −k∂T
∂x

(2.2)

which is the heat transfer rate per area perpendicular to the direction under inves-

tigation. The minus sign in the equation is from the inherent nature of the energy

moving in the direction of decreasing temperature.
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2.3 Heat Conduction in Cylindrical Coordinates

One objective in a conduction analysis is to determine the temperature distribu-

tion for a given medium which can be done by developing a heat diffusion equation.

The heat flux, Eq. 2.2, can be determined at a point or from a surface by the use

of Fourier’s law, Eq. 2.1. It is important to note that the temperature at any point

is a scalar quantity while the heat flux is a vector quantity. When the temperature

distribution within a medium is not uniform, this creates a heat flow where energy

always moves from a region of higher temperature to a region of lower temperature.

Figure 2.2. Differential control volume for heat conduction in the
cylindrical coordinate system (r, θ, z).

Since this thesis primarily is concerned with cylindrical geometry, the resulting

equation well be in the cylindrical coordinate system. The first step in deriving the

differential equation is starting with a stationary cylinder of constant material prop-

erties without heat generation. The process begins by defining a differential control

volume over a medium in which is under investigation. There is energy entering the

differential element from the radial, vertical, and angular directions which will then

leave the element from the opposite respective surface, which can be seen in Fig. 2.2.
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This relation can be written out mathematically by creating an energy balance over

the element as follows:

Ėin − Ėout + Ėgen = ∆Ėst. (2.3)

Assuming that the medium is of constant material properties, no heat generation,

and only in two-dimensions T (r, z, t) the final heat diffusion equation is as follows:

1

r

∂

∂r

(
r
∂T

∂r

)
+
∂2T

∂z2
=

1

α

∂T

∂t
. (2.4)

2.4 Discrete Approximation of Derivatives

Finite difference equations are developed around the Taylor series expansion about

a point, called x, which includes the additional higher-order terms. Looking at the

Fig. 2.3, there is a continuous function which contains points both in a positive

(forward) direction and in a negative (backward) direction. There are three primary

Figure 2.3. Derivative approximation of an arbitrary function u(x).

ways of developing equations to approximate the derivatives to these points being a

forward, backward, and central difference method. Each standard form of the Taylor

series expansion utilizes two of these points to approximate a curve between; however,

there are higher-order Taylor series expansions that utilize more points that will be
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briefly covered at the end of this section. Using the Taylor series expansion in a

forward direction yields

f(x+ ∆x) = f(x) + ∆x
df(x)

dx

∣∣∣∣
x

+
∆x2

2!

d2f(x)

dx2

∣∣∣∣
x

+
∆x3

3!

d3f(x)

dx3

∣∣∣∣
x

+ · · · (2.5)

while in a backward direction yields

f(x−∆x) = f(x)−∆x
df(x)

dx

∣∣∣∣
x

+
∆x2

2!

d2f(x)

dx2

∣∣∣∣
x

− ∆x3

3!

d3f(x)

dx3

∣∣∣∣
x

+ · · · . (2.6)

These two equations are the basic building blocks for developing finite difference ap-

proximations for the first derivative about a point. The downside to using the Taylor

series expansion is that it is an infinite series by definition. Due to the infinite nature

of a Taylor series there will always be truncated terms left out when approximating

a derivative. Looking at Eqs. 2.5 and 2.6, the first derivative to the function can be

solved for while grouping all other higher order terms together. The forward direction

results in
df(x)

dx

∣∣∣∣
x

=
f(x+ ∆x)− f(x)

∆x
+O(∆x) (2.7)

while the backward direction results in

df(x)

dx

∣∣∣∣
x

=
f(x)− f(x−∆x)

∆x
+O(∆x) (2.8)

where O(∆x) is the grouped higher order terms or the truncation error associated

with the finite difference approximation [4]. This error is the difference between the

derivative and the finite difference form which for Eq. 2.7 is represented by

O(∆x) ≡ −∆x

2!

d2f(x)

dx2

∣∣∣∣
x

− ∆x2

3!

d3f(x)

dx3

∣∣∣∣
x

− · · · . (2.9)

2.5 Errors Associated with Finite Differences

While developing a set of algebraic equations to approximate derivatives, errors

begin to propagate in the solution. There are two main types of errors being trunca-

tion error and round-off error. Additionally, there can be stability issues with utilizing
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an explicit scheme causing the resulting solution to be unstable if the step size is not

within a specific bound.

Explicit finite difference solutions are subject to stability issues due to the forward

difference in the time dimension. If the time step is not less then or equal to the

associated terms, it causes the solution to oscillate between arbitrary values. This

topic is discussed in more specific details in chapters 3 and 4 relating to the stability

criteria. The stability issue can overall be avoided by utilizing a difference scheme

such as the Crank-Nicolson or the DuFort-Frankel methods [5].

2.6 Total Heat Transfer

The total heat transfer from a body is a particularly interesting quantity to study

and is useful in many engineering applications in the field of HVAC. The total heat

transfer is usually calculated by running a steady-state analysis on the object in

question; however, it can be useful to determine the instantaneous heat transfer at a

given time or the total transfer up until a particular point. There are two primary

ways of calculating this value, it can be calculated by looking at the heat flux between

the boundary nodes of the object over time, or through analytical calculations if the

geometry is of relative simplicity such as a cube or cylinder. In this thesis, the nature

of cylindrical geometry will allow for use of the later method for simplicity and will

be discussed further in chapter 4.

2.7 Average Temperature

A useful temperature to know within a solid body is the average temperature

of the body. This temperature is difficult to calculate in cylindrical and spherical

geometries since the small differential elements that make up a mesh have different

volumes and must be weighted differently. A small piece on the inside should not

have as large as an effect as a large piece on the outside. In order to calculate the
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mean temperature, the average of the local instantaneous temperatures is taken for

an infinite slab
T

Ti
=

1

x

∫ x

0

Tdx (2.10)

and for an infinite cylinder
T

Ti
=

1

πr2
1

∫ r

0

2πrTdr (2.11)

where T is the current temperature and Ti is the initial temperature [6]. So for the in-

finite cylinder and infinite slab, each differential piece is averaged for its corresponding

amount of length. The first and last pieces in the lines are special because they may

involve a differential piece half the size since the temperatures are at the center-line

and edge of the body. These will have a slightly smaller length compared to other

pieces, and the center node will need to be located off-axis slightly to avoid a zero in

the calculation for the location.

For the two-dimensional study where there are both a radial and length directions,

the weighted average was taken for both directions. Eq. 2.10 is used to calculate the

average temperature in the length direction since the pieces are of equal volume while

Eq. 2.11 is used to calculate the average temperature in the radial direction since the

pieces increase in volume as there is an increase in r. These two average temperatures

are then averaged to get the mean temperature of the two-dimensional cylinder.

2.8 Characteristic Length and Geometry Ratio

The characteristic length is defined as the primary direction in which heat travels.

Most heat transfer textbooks suggest this as a ratio of the volume of the object to

its area [2, 3, 7]. This method works fine when dealing with a single type of analysis

being an infinite cylinder, infinite slab, or a two-dimensional study; however, since

this thesis will be comparing the results from all three examples, a characteristic

length must be chosen that represents all three analyses. Table 2.1 presents is the

various ways, derived conservatively, the characteristic length can be represented.
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Table 2.1. Different ways to represent characteristic length.

Type Equation

Volume to Area Ratio: Lc =
V

A
=

r0

2 + 4r0/L

Volume Ratio: Lc =
3√
V =

3
√
πr2

oL/2

Area Ratio: Lc =
√
A =

√
2πr0(L/2 + r0)

Magnitude: Lc =
√
r2

0 + (L/2)2

Infinite Slab: Lc = L/2

Infinite Cylinder: Lc = r0

A technical approach can be applied by scaling the coordinates of the Laplacian in

the heat equation

∇2T = ∆T

[
1

r

∂

∂r

(
r
∂Θ

∂r

)
+
∂2Θ

∂z2

]
= ∆T

[
1

r̂r2
0

∂

∂r̂

(
r̂
∂Θ

∂r̂

)
+

4

L2

∂2Θ

∂ẑ2

]
(2.12)

where r̂ = r/ro, ẑ = z/(L/2), and Θ = (T (r, z, t) − Tmin)/∆T [8]. This results in

two extreme possibilities for the specific problem. Either the radius is much less then

the length of the cylinder, or the length is much less then the radius of the cylinder.

Performing an order of magnitude analysis on the former results in

∇2T =

(
∆T

r2
0

)[
1

r̂

∂

∂r̂

(
r̂
∂Θ

∂r̂

)
︸ ︷︷ ︸

O(1)

+
4r2

0

L2︸︷︷︸
�1

∂2Θ

∂ẑ2︸︷︷︸
O(1)

]

≈
(

∆T

r2
0

)[
1

r̂

∂

∂r̂

(
r̂
∂Θ

∂r̂

)]
. (2.13)
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Thus the Laplacian is on the order of magnitude of ∆T/r2
0 and negligible in the length

direction. A similar analysis can be performed on the length direction resulting in

∇2T =

(
4∆T

L2

)[
L2

4r̂r2
0︸︷︷︸

�1

∂

∂r̂

(
r̂
∂Θ

∂r̂

)
︸ ︷︷ ︸

O(1)

+
∂2Θ

∂ẑ2︸︷︷︸
O(1)

]

≈
(

4∆T

L2

)[
∂2Θ

∂ẑ2

]
. (2.14)

Thus the Laplacian is on the order of magnitude of 4∆T/L2 and negligible in the

radius direction.

This type of analysis is useful to see the exact scaling along a particular axis.

While useful, the goal is to develop a robust program which can work in both the

one-dimensional cases as well as the two-dimensional case. The specific directional

characteristic lengths also miss the heat flux at the corners of objects as the order of

magnitude would be of the same order. As explained earlier in the section the typical

way to define a characteristic length is through a volume to area ratio. This only

provides a crude result which essentially is an average of the heat flux throughout the

entire solid. From the review of literature and consideration for the specific problem

the characteristic length in this thesis is chosen to be from the magnitude of the

length and the radius of the cylinder. This is the most conservative with the corner

error while converging to a specific direction if sufficiently larger then the other. This

is an area of potential improvement and further research should be conducted on the

matter.

A term used frequently in chapters 4 and 5 is the ratio between the length and

radius. Since the program will primarily be working with center temperature and

using a quarter of the cylinder, the length is divided in half resulting in

R =
L

2r0

. (2.15)

This ratio allows a direct comparison between the length and radius and is useful for

defining the final chart generated in chapter 5.
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2.9 Design of Experiments

With the rise of continuous improvement techniques in industry and manufac-

turing, much research has been focused into the six-sigma field of optimizing the

processes to eliminate waste and boost productivity. A useful tool used to discover

significant variables in a process has been developed from the field of statistics termed

a design of experiments (DoE). It is a branch of applied statistics which looks at plan-

ning, conducting, analyzing, and interpreting experiments to evaluate all the factors

of a parameter or group of parameters [9].

When performing tests in an engineering environment, it is often tempting to

keep all variables constant while changing a single parameter and seeing how that

parameter affects the simulation. While this is a useful test, it neglects the interaction

effects of multiple parameters when varied together. Varying multiple inputs together

at different levels allows the interaction effects between parameters to be calculated by

forming a statistically based approach of developing tests to view interaction effects.

There are two main types of DoE’s, full factorial and fractional factorial in which the

former is presented in chapter 5.

2.9.1 Full Factorial

There are four essential features when it comes to creating a DoE: the number of

input parameters, number of levels for which to set the inputs, the output(s) of the

system, and the number of experiments needed to investigate the all the interaction

effects between the inputs. The reason this particular type of DoE is called a ’full

factorial’ design is that every response of every combination of inputs and input levels

are studied. The results of the system can indicate which input parameters have a

significant effect on the output and help the operator achieve optimized results.
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2.9.2 Fractional Factorial

The other primary type of DoE is a fractional factorial experiment in which only

a fraction of experiments is conducted instead of every possible combination. This

method could be useful in an extensive system with many inputs where it is not

feasible to look at every type of experiment. The fractional factorial design uses the

same procedure as the full factorial, but only specific experiments are run in which

the operator believes will generate significant results. While this type of analysis may

be seen as inefficient, many interactions past three inputs tend to be negligible while

the interact effects of a single input on the output are typically visible. This type

of analysis reduces the number of experiments and tries to focus on tests which will

generate significant results.

There are a few advantages of this type of experiment, the foremost being that

most results tend to be significant. Since only a selected few studies are run in which

significant results will most likely be generated, the interactions can be found right

away without having to perform dozens if not hundreds of tests. This method can

lead to an immediate impact on the system since the results can be implemented

right away without the need for analyzing a large amount of data from a full factorial

experiment. This method is less time consuming and will lead to less downtime on a

particular system or machine. If there is only a certain amount of time dedicated to

these types of studies in the workplace, a fractional factorial could easily be performed

during a maintenance hour or break shift.

The distinct disadvantage of this type of experiment is that not every interaction is

analyzed. Since the experiments are ultimately cherry-picked, meaningful interactions

could be missed. With possible significant interactions missing, it could lead to the

process or system not being as efficient as possible. With the experiments hand-

chosen, there is always the possibility insignificant runs are chosen which do not

produce interesting results wasting time spent on the study.
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2.10 Literature Review

Analyzing associated error of applying a one-dimensional assumption to a finite

geometry in transient conduction has not been researched in recent literature. The

causes of this error are outlined in many textbooks and papers; however, there is a lack

of a comprehensive model defining thresholds of error for specific conditions. There

have been multitudes of papers published on engineering education and a surprising

amount in the field of heat transfer education. The following is a historical perspective

of published papers in engineering education.

2.10.1 Learning and Teaching Styles in Engineering Education

There are two primary ways of conveying information to students in a lecture

setting: just giving the students the information they need through formulas and

theorems, or having the students develop the fundamentals through observing phe-

nomena and data. The former method referred to as a deductive method of teaching,

while the latter is referred to as an inductive method of teaching. While both meth-

ods convey the same information, the ”best” method below the graduate school level

is induction [10]. Felder’s paper is the earliest publication that outlines the teaching

and learning styles of professors and students. While many styles are discussed and

evaluated, the authors go on to outline teaching techniques to best address all learn-

ing styles, such as following the scientific method, applauding creative solutions, and

using computer-assisted instruction.

2.10.2 Non-Use of Computers in Undergraduate Engineering

Published a decade after the Felder’s paper regarding learning and teaching styles

in engineering education, Jones takes an informal look at the lack of computer use

in engineering classrooms [11]. While most of his data collection is preliminary, the

commentary on professor hesitation to implement computer and simulations into the
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classroom is repeatedly seen in most responses. Unfortunately, Jones never pub-

lished a follow-up paper with scientifically rigorous methods applied to the data. The

fundamental problem stems from teachers failing to implement new technology into

lectures and continuing the way it was taught to themselves originally. While learning

software packages and putting together new lectures is time-consuming, this can be

simplified by utilizing what the teacher already knows how to use, such as excel, word,

and some programming language to name a few. Computers are meant to enhance

students learning and re-enforce fundamental principles.

2.10.3 An Inductive Approach to Teaching Heat and Mass Transfer

The first paper to take Felder’s work and implement some of the specific styles

to develop a curriculum for their heat transfer classes [1]. Farrell and Hesketh take

the inductive learning approach by adding a studio component to their classes where

students get to work and play with models, both physical and virtual, to learn new

topics. They start with seeing what is happening, and then they get to infer the

governing principles behind what is occurring. This method helps make the informa-

tion more relative since the students help derive the information themselves. Many

of these principles were discovered initially, making the formulas seem less abstract.

2.10.4 Application of the Studio Model to Teaching Heat Transfer

Ribando is another academic that has been developing models and creating a

studio model for his heat transfer courses. In his first published paper on the issue, he

discusses his approach to constructing the studio model, which is similar but slightly

differs from Farrell and Hesketh [12]. Physical laboratory experiments are excellent

for teaching students but can be expensive, hard to develop, and hard to implement.

Ribando’s theory is to replace many outdated techniques such as looking at Heisler

charts and convection tables and turning them into lookup tables and spreadsheets

on a computer. Even a simple computer solution such as this can make a topic much
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more approachable and more comfortable to learn if one does not have to spend time

learning the tools to begin to solve a problem. The approach is to design a specific

program that looks at and solves a particular problem to avoid the learning curve of

general simulation software.

2.10.5 New Roles for Engineering Faculty

While not directly related to engineering education, Smerdon takes a look at how

engineering faculty skill-sets are utilized within engineering departments and how to

better utilize facuulty to increase the education process of engineering students [13].

Smerdon’s main remark is to increase the efficiency of teaching and learning to re-

engineer the engineering degree to help students succeed. Many students drop in the

freshmen and sophomore years due to the difficulty and lack of excitement. Students

need some hook that gets them into the program and excited to jump into the field of

engineering. With students excited about the field, when their courses get tough, they

are more resilient and less likely to drop out of the program. Computers and hands-

on experiments are fun and allow students to see what is going on in an engineering

problem.

2.10.6 “Hands-on” Approach to Teaching Undergraduate Heat Transfer

Published three years after his first paper, Ribando [14] provides an update on

the status of his studio component for heat transfer classes. The first paper was

more of an outline of how Ribando and colleagues implemented the studio portion.

The updated paper introduces how and why the program was implemented but also

provided observations and assessments on how the program performaned. Visually, all

program are simple with charts and graphs to view and a variety of options to change

intuitively with buttons and sliders. From the feedback given during assessment, the

programs were highly successful and helped students better understand the lecture
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material, with the only complaint being that partners for the studio were randomly

assigned.
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3. THEORETICAL WORK

3.1 Aims

This chapter covers the development of a mathematical model governing the con-

duction heat transfer within a cylindrical geometry at a uniform initial temperature

subject to a fluid at a uniform temperature. Firstly, developing a mesh for the two-

dimensional simplification and then deriving the mathematical equations from the

mesh at the corresponding nodes. The mesh has four edges and four corners along

with interior nodes requiring a total of nine equations to define the mesh fully.

3.2 Mesh Development

Figure 3.1. Location of simplified mesh within cylindrical geometry.

A critical factor that the finite difference equations are derived from is the mesh

which governs the geometry. An advantage of cylindrical geometry under the given

boundary conditions is the symmetric nature created allowing for simplification of

the mesh as shown in Fig. 3.1. Since the top, side, and bottom boundary conditions
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are assumed to be exactly the same, this creates an axis of symmetry about the mid-

plane of the cylinder. The temperature distribution will be identical on the top and

bottom halves, meaning that the bottom half can be ignored for simplification.

Figure 3.2. Mesh developed which includes nodes on the centerline
and outside surfaces for a quarter of the cylinder.

A similar boundary of symmetry can be developed by utilizing the adiabatic center

of the cylinder. The geometry has an axis of symmetry down the center-line meaning

that due to the boundary conditions, the radial direction will be identical for every

cross section. This allows the mesh to only need to cover a quarter cross-section of

the cylinder which will cover the entire temperature distribution of the cylinder. A

visualization of the mesh can be seen in Fig. 3.2.

3.3 Revised General Equation

The two-dimensional general conduction heat equation in cylindrical coordinates

developed in the previous chapter, Eq. 2.4, works well for analytical cases; how-
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ever, this form of the heat equation is difficult to translate into a system model.

The difficulty arises due to the radius being within a second order partial derivative

with respect to radius causing the issue of not being able to apply any numerical

method. Rearranging the equation using the product rule on the partial derivative of

temperature with respect to radius results in

1

r

∂

∂r

(
kr
∂T

∂r

)
=

1

r

[
r
∂k

∂r

∂T

∂r
+ k

∂

∂r

(
r
∂T

∂r

)]
. (3.1)

This new form of the general heat equation is still not ideal for working with and

can be further simplified by applying the product rule once more. Application of the

product rule eliminates the radius from within the partial derivative yielding

1

r

∂

∂r

(
kr
∂T

∂r

)
=
∂k

∂r

∂T

∂r
+
k

r

[
∂T

∂r
+ r

∂2T

∂r2

]
=
∂k

∂r

∂T

∂r
+
k

r

∂T

∂r
+ k

∂2T

∂r2
. (3.2)

The result from Eq. 3.2 simplifies the partial radius term in the general heat equation

which is much easier to translate into finite difference equations. Notice that the

thermal conductivity is a function of at least the radius where the partial derivative

with respect to the radius is applied. The thermal conductivity is treated as constant

since this thesis deals with uniform material properties causing the partial derivative

of thermal conductivity to be zero resulting in

1

r

∂

∂r

(
kr
∂T

∂r

)
=
k

r

∂T

∂r
+ k

∂2T

∂r2
. (3.3)

Eq. 3.3 can be substituted back into the general heat equation in cylindrical coordi-

nates, Eq. 2.4, which results in a new revised equation:

k

r

∂T

∂r
+ k

∂2T

∂r2
+ k

∂2T

∂z2
= ρcp

∂T

∂t
. (3.4)

3.4 Left Edge

In order to develop the finite difference equation at the center-line of a cylinder,

the revised general equation needs to be modified [15]. The additional modification
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Figure 3.3. Element used for each node on the left edge defined by Eq. 3.8.

from the undefined case is a result from the zero radii at the center-line of the cylinder

being in the denominator of the Eq. 3.4. The geometry of the left edge can be seen in

Fig. 3.3. Solving Eq. 3.4 requires applying L’Hospital’s rule on the first order partial

derivative of temperature with respect to the radius and the associated multiplied

terms shown in

lim
r→0

(
1

r

∂T

∂r

)
=
∂2T

∂r2
. (3.5)

The resulting equation is no longer subject to an undefined case and is substituted

back into the revised general equation, Eq. 3.4, with the thermal conductivity con-

stant divided through the result yielding

2
∂2T

∂r2
+
∂2T

∂z2
=

1

α

∂T

∂t
(3.6)

where α is the thermal diffusivity of the cylinder. Eq. 3.6 covers the limiting case

where the radii are zero which allows the development of a finite difference form of

the solution for the center-line temperatures. The finite difference form is derived

using an explicit forward difference method to look at small increments in time and

nodal spacing as follows:

1

α

T p+1
m,n − T p

m,n

∆t
= 2

[
T p
m,n+1 − 2T p

m,n + T p
m,n−1

∆r2

]
+

[
T p
m+1,n − 2T p

m,n + T p
m−1,n

∆z2

]
(3.7)
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with a truncation error of order O(∆t) +O(∆r2 + ∆z2). Note that T p
m,n−1 = T p

m,n+1

due to symmetry about the z-axis. This equation can be further simplified and put

into standard form while neglecting the truncation error resulting in

T p+1
m,n = For

[
4T p

m,n+1 +
∆r2

∆z2

(
T p
m+1,n + T p

m−1,n

)]
+ T p

m,n

[
1− 4For − 2Foz

]
(3.8)

where Fo(r,z) is the nodal Fourier number.

3.5 Top Edge

The top edge of the cylinder is defined as the last row of the mesh spanning from

the second column node to the N − 1 column node as shown in Fig. 3.4.

Figure 3.4. Element used for each node on the top edge defined by Eq. 3.14.

To develop the finite difference equation at the top edge of a cylinder, the revised

general equation, Eq. 3.4, should be used. The top edge involves the case where

z = L/2, noting that the cylinder is L long, and has a convection boundary condition

such that

k
∂T

∂z

∣∣∣∣
z=L

2

= h(T∞ − T p
m,n) (3.9)

where h is the heat transfer coefficient of the fluid. In order to apply the boundary

condition to the revised general equation, the application of a backward Taylor series
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expansion must be performed on the boundary condition to approximate the second

partial derivative of temperature with respect to length yielding

k
∂T

∂z

∣∣∣∣
z=L

2
−∆z

= k
∂T

∂z

∣∣∣∣
z=L

2

−∆z

[
∂

∂z

(
k
∂T

∂z

)]
z=L

2

+O(∆z2) (3.10)

which can be simplified to

k
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∂z2
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z=L

2

=
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∂T

∂z
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z=L

2

− k

∆z

∂T

∂z

∣∣∣∣
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2
−∆z

+O(∆z2) (3.11)

where ∆z is the incremental spacing between nodes andO(∆z2) is the error associated

with truncating the rest of the expansion. The convection boundary condition, Eq.

3.9, and the Taylor series expansion, Eq. 3.11, are substituted into the revised general

equation, Eq. 3.4, while dividing by the thermal conductivity to produce

1
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∂r
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2
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=
1

α

∂T

∂t
. (3.12)

The following equation can be converted to finite difference form using a backward

difference technique as an approximation for first order partial derivative in the z-

direction. A central difference technique approximates the first order partial deriva-

tive in the r-direction and the second order partial spacial derivative by application

of the Taylor series expansion to each derivative. The evaluation of the first order

partial time derivative uses a forward difference technique through another Taylor

series to get the next temperature at an increased time-step resulting in

1
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3T p
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2∆z
(3.13)
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with a truncation error of order O(∆t)+O(2∆r2+∆z2). This equation can be further

simplified and put into standard form while neglecting the truncation error resulting

in

T p+1
m,n = For

[
T p
m,n+1

(
1 +

∆r

2ri

)
+ T p

m,n−1

(
1− ∆r

2ri

)

+
∆r2

∆z2

(
− 3

2
T p
m−1,n + 2T p

m−2,n −
1

2
T p
m−3,n + BizTo

)]

+ T p
m,n

[
1− 2For − FozBiz

]
(3.14)

where Biz is the nodal Biot number in the z-direction.

3.6 Right Edge

The right edge of the cylinder is defined as the last column of the mesh spanning

from the second row node to the M − 1 row node as shown in Fig. 3.5.

Figure 3.5. Element used for each node on the right edge defined by Eq. 3.20.

To develop the finite difference equation at the right edge of a cylinder, the revised

general equation, Eq. 3.4, should be used. The right edge involves the case where

r = ro and has a convection boundary condition such that

k
∂T

∂r

∣∣∣∣
z=ro

= h(T∞ − T p
m,n). (3.15)
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In order to apply the boundary condition to the revised general equation, the ap-

plication of a backward Taylor series expansion must be performed on the boundary

condition to approximate the second partial derivative of temperature with respect

to radius yielding

k
∂T

∂r

∣∣∣∣
r=ro−∆r

= k
∂T

∂r

∣∣∣∣
r=ro

−∆r

[
∂

∂r

(
k
∂T

∂r

)]
r=ro

+O(∆r2) (3.16)

which can be simplified to

k
∂2T

∂r2

∣∣∣∣
z=ro

=
k

∆r

∂T

∂r

∣∣∣∣
r=ro

− k

∆r

∂T

∂r

∣∣∣∣
r=ro−∆r

+O(∆r2) (3.17)

where ∆r is the incremental spacing between nodes andO(∆r2) is the error associated

with truncating the rest of the expansion. The convection boundary condition, Eq.

3.15, and the Taylor series expansion, Eq. 3.17, are substituted into the revised

general equation, Eq. 3.4, while dividing by the thermal conductivity to produce

h(T∞ − T p
m,n)

kR
+
h(T∞ − T p

m,n)

k∆r
− 1

∆r

∂T

∂r

∣∣∣∣
r=ro−∆r

+
∂2T

∂z2

∣∣∣∣
r=ro

=
1

α

∂T

∂t
. (3.18)

The following equation can be converted to finite difference form using a backward

difference technique using three nodes as an approximation for first order partial

derivative in the r-direction. A central technique technique approximates for second

order partial derivative in the z-direction. The evaluation of the first order partial

time derivative uses a forward difference technique using another Taylor series to get

the next temperature at an increased time-step resulting in

1

α

T p+1
m,n − T p

m,n

∆t
=

h

kR

(
To − T p

m,n

)
+

h

k∆r

(
To − T p

m,n

)
− 1

∆r

3T p
m,n−1 − 4T p

m,n−2 + T p
m,n−3

2∆r
+
T p
m+1,n − 2T p

m,n + T p
m−1,n

∆z2
(3.19)
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with a truncation error of order O(∆t)+O(∆r2 +∆z2). This equation can be further

simplified and put into standard form while neglecting the truncation error resulting

in

T p+1
m,n = For

[
BirTo

(
1 +

∆r

ro

)
− 3

2
T p
m,n−1 + 2T p

m,n−2 −
1

2
T p
m,n−3

+
∆r2

∆z2

(
T p
m+1,n + T p

m−1,n

)]

+ T p
m,n

[
1− For

[
1 + Bir

(
1 +

∆r

R

)]
− 2Foz

]
(3.20)

where Bir is the nodal Biot number in the r-direction.

3.7 Bottom Edge

The bottom edge of the cylinder is defined as the first row of the mesh, spanning

from the second column node to the N − 1 column node as shown in Fig. 3.6.

Figure 3.6. Element used for each node on the bottom edge defined by Eq. 3.26.

To develop the finite difference equation at the bottom edge of the cylinder, the

revised general equation, Eq. 3.4, should be used. The bottom edge involves the case

where z = 0 and has and adiabatic boundary condition such that

k
∂T

∂z

∣∣∣∣
z=0

= 0. (3.21)
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In order to apply the boundary condition to the revised general equation, the ap-

plication of a backward Taylor series expansion must be performed on the boundary

condition to approximate the second partial derivative of temperature with respect

to length yielding

k
∂T

∂z

∣∣∣∣
z=0−∆z

= k
∂T

∂z

∣∣∣∣
z=0

−∆z

[
∂

∂z

(
k
∂T

∂z

)]
z=0

+O(∆z2) (3.22)

which can be simplified to

k
∂2T

∂z2

∣∣∣∣
z=0

=
k

∆z

∂T

∂z

∣∣∣∣
z=0

− k

∆z

∂T

∂z

∣∣∣∣
z=0−∆z

+O(∆z2) (3.23)

where O(∆z2) is the error associated with truncating the rest of the expansion. The

adiabatic boundary condition, Eq. 3.21, and the Taylor series expansion, Eq. 3.23,

are substituted into the revised general equation, Eq. 3.4, while dividing by the

thermal conductivity to produce

1

ri

∂T

∂r

∣∣∣∣
z=0

+
∂2T

∂r2

∣∣∣∣
z=0

− 1

∆z

∂T

∂z

∣∣∣∣
z=0−∆z

=
1

α

∂T

∂t
. (3.24)

The following equation can be converted to finite difference form using a central differ-

ence technique as an approximation for first order partial derivative in the r-direction.

A central technique technique approximates the second order partial derivative in the

z-direction. A forward difference technique using three nodes approximates the first

order partial derivative in the z-direction. The evaluation of the first order partial

time derivative uses a forward difference technique using another Taylor series to get

the next temperature at an increased time-step resulting in

1

α

T p+1
m,n − T p

m,n

∆t
=

1

ri

T p
m,n+1 − T

p
m,n−1

2∆r
+
T p
m,n+1 − 2T p

m,n + T p
m,n−1

∆r2

+
1

∆z

3T p
m−1,n − 4T p

m,n + T p
m+1,n

2∆z
(3.25)
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where T p
m+1,n = T p

m−1,n due to symmetry and with a truncation error of order O(∆t)+

O(2∆r2 + ∆z2). This equation can be further simplified and put into standard form

while neglecting the truncation error resulting in

T p+1
m,n = For

[
T p
m,n+1

(
1 +

∆r

2ri

)
+ T p

m,n−1

(
1− ∆r

2ri

)
+

∆r2

∆z2

(
2T p

m+1,n

)]

+ T p
m,n

[
1− 2For − 2Foz

]
. (3.26)

3.8 Interior Nodes

The interior nodes of the cylinder are defined as the second through M − 1 rows

spanning the second through N − 1 columns which can be seen in Fig. 3.7.

Figure 3.7. Element used for each node on the left edge defined by Eq. 3.28.

To develop the finite difference equation for the interior of the cylinder, the revised

general equation, Eq. 3.4, should be used. Application of the Taylor series expansion

to the revised general equation while dividing by the thermal conductivity results in

1

α

T p+1
m,n − T p

m,n

∆t
=

1

ri

T p
m,n+1 − T

p
m,n−1

2∆r
+
T p
m,n+1 − 2T p

m,n + T p
m,n−1

∆r2

+
T p
m+1,n − 2T p

m,n + T p
m−1,n

∆z2
(3.27)
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with a truncation error of order O(∆t)+O(∆2r2+∆z2). This equation can be further

simplified and put into standard form while neglecting the truncation error resulting

in

T p+1
m,n = For

[
T p
m,n+1

(
1 +

∆r

2ri

)
+ T p

m,n−1

(
1− ∆r

2ri

)

+
∆r2

∆z2

(
T p
m+1,n + T p

m−1,n

)]
+ T p

m,n

[
1− 2For − 2Foz

]
. (3.28)

3.9 Top Left Corner Node

The top left corner nodes of the cylinder is defined as the node within the first

column in the last row or at the M row and at the n = 1) column as shown in Fig.

3.8.

Figure 3.8. Element used for each node on the top left corner defined by Eq. 3.37.

To develop the finite difference equation at the top left corner node of the cylinder,

the revised general equation, Eq. 3.4, should be used. The top left corner involves
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the case where r = 0 and z = L/2 which involves an adiabatic boundary condition

and convection boundary condition on the respective faces such that

k
∂T

∂z

∣∣∣∣
z=L

2

= h(T∞ − T p
m,n) (3.29)

and

k
∂T

∂r

∣∣∣∣
r=0

= 0. (3.30)

In order to apply the boundary conditions to the revised general equation, the appli-

cation of a backward Taylor series expansion must be performed on each boundary

condition to approximate both the second order partial derivatives of temperature

with respect to r or z. Applying the expansion to Eq. 3.29 yields

k
∂T

∂z

∣∣∣∣
z=L

2
−∆z

= k
∂T

∂z

∣∣∣∣
z=L

2

−∆z

[
∂

∂z

(
k
∂T

∂z

)]
z=L

2

+O(∆z2) (3.31)

which can be rewritten as

k
∂2T

∂z2

∣∣∣∣
z=L

2

=
k

∆z

∂T

∂z

∣∣∣∣
z=L

2

− k

∆z

∂T

∂z

∣∣∣∣
z=L

2
−∆z

+O(∆z2) (3.32)

where O(∆z2) is the error associated with truncating the rest of the expansion. Ap-

plying the expansion to Eq. 3.30 yields

k
∂T

∂r

∣∣∣∣
r=0−∆r

= k
∂T

∂r

∣∣∣∣
r=0

−∆r

[
∂

∂r

(
k
∂T

∂r

)]
r=0

+O(∆r2) (3.33)

which can be rewritten as

k
∂2T

∂r2

∣∣∣∣
r=0

=
k

∆r

∂T

∂r

∣∣∣∣
r=0

− k

∆r

∂T

∂r

∣∣∣∣
r=0−∆r

+O(∆r2) (3.34)

where O(∆r2) is the error associated with truncating the rest of the expansion.

The convective boundary condition, Eq. 3.29, adiabatic boundary condition, Eq.

3.30, and both the respective Taylor series expansions, Eqs. 3.32 and 3.34 are sub-

stituted into the revised general equation, Eq. 3.4, while dividing by the thermal

conductivity to produce

− 2

∆r

∂T

∂r

∣∣∣∣
r=0−∆r

+
h(T∞ − T p

m,n)

k∆z
− 1

∆z

∂T

∂z

∣∣∣∣
z=L

2
−∆z

=
1

α

∂T

∂t
. (3.35)
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The following equation can be converted to finite difference form using a back-

ward difference three node technique as an approximation for the first order partial

derivative in the r-direction. Another backward difference three node technique ap-

proximates the first order partial derivative in the z-direction. The evaluation of the

first order partial time derivative uses a forward difference technique using another

Taylor series to get the next temperature at an increased time-step resulting in

1

α

Tm, np+1 − T p
m,n

∆t
= − 2

∆r

3T p
m,n−1 − 4T p

m,n−2 + T p
m,n−3

2∆r
+

h

k∆z

(
To − T p

m,n

)
− 1

∆z

3Tm− 1, np − 4T p
m−2,n + T p

m−3,n

2∆z
(3.36)

where T p
m,n−1 = T p

m,n+1, T p
m,n−2 = T p

m,n+2, and T p
m,n−1 = T p

m,n+1 due to symmetry and

with a truncation error of order O(∆t)+O(∆r2 +∆z2). This equation can be further

simplified and put into standard form while neglecting the truncation error resulting

in

T p+1
m,n = For

[
− 3T p

m,n+1 + 4T p
m,n+2 − T

p
m,n+3

+
∆r2

∆z2

(
− 3

2
T p
m−1,n + 2T p

m−1,n −
1

2
T p
m−3,n + BizTo

)]

+ T p
m,n

[
1− FozBiz

]
. (3.37)

3.10 Bottom Left Corner Node

The bottom left corner node of the cylinder is defined as the node within the first

column n = 1 and the first row m = 1 as shown in Fig. 3.9. To develop the finite

difference equation at the bottom left corner node of the cylinder, the revised general

equation, Eq. 3.4, should be used. The bottom left corner involves the case where

r = 0 and z = 0 which involves two adiabatic boundary conditions on the respective

faces such that

k
∂T

∂z

∣∣∣∣
z=0

= 0 (3.38)
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Figure 3.9. Element used for each node on the bottom left corner
defined by Eq. 3.46.

and

k
∂T

∂r

∣∣∣∣
r=0

= 0. (3.39)

In order to apply the boundary conditions to the revised general equation, the appli-

cation of a backward Taylor series expansion must be performed on each boundary

condition to approximate both the second order partial derivatives of temperature

with respect to r or z. Applying the expansion to Eq. 3.38 yields

k
∂T

∂z

∣∣∣∣
z=0−∆z

= k
∂T

∂z

∣∣∣∣
z=0

−∆z

[
∂

∂z

(
k
∂T

∂z

)]
z=0

+O(∆z2) (3.40)

which can be rewritten as

k
∂2T

∂z2

∣∣∣∣
z=0

=
k

∆z

∂T

∂z

∣∣∣∣
z=0

− k

∆z

∂T

∂z

∣∣∣∣
z=0−∆z

+O(∆z2). (3.41)

where O(∆z2) is the error associated with truncating the rest of the expansion. Ap-

plying the expansion to Eq. 3.30 yields

k
∂T

∂r

∣∣∣∣
r=0−∆r

= k
∂T

∂r

∣∣∣∣
r=0

−∆r

[
∂

∂r

(
k
∂T

∂r

)]
r=0

+O(∆r2) (3.42)

and

k
∂2T

∂r2

∣∣∣∣
r=0

=
k

∆r

∂T

∂r

∣∣∣∣
r=0

− k

∆r

∂T

∂r

∣∣∣∣
r=0−∆r

+O(∆r2) (3.43)
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where O(∆r2) is the error associated with truncating the rest of the expansion.

Both adibatic boundary conditions, Eqs. 3.38 and 3.39 along with both the re-

spective Taylor series expansions, Eqs. 3.41 and 3.43 are substituted into the revised

general equation, Eq. 3.4, while dividing by the thermal conductivity to produce

− 2

∆r

∂T

∂r

∣∣∣∣
r=0−∆r

− 1

∆z

∂T

∂z

∣∣∣∣
z=0−∆z

=
1

α

∂T

∂t
(3.44)

The following equation can be converted to finite difference form using a forward dif-

ference three node technique as an approximation for the first order partial derivative

in the r-direction. Another forward difference three node technique approximates the

first order partial derivative in the z-direction. The evaluation of the first order par-

tial time derivative uses a forward difference technique using another Taylor series to

get the next temperature at an increased time-step resulting in

1

α

T p+1
m,n − T p

m,n

∆t
=

2

∆r

3T p
m,n−1 − 4T p

m,n + T p
m,n+1

2∆r

+
1

∆z

3T p
m−1,n − 4Tm, np + T p

m+1,n

2∆z
(3.45)

where T p
m,n−1 = T p

m,n+1 and T p
m−1,n = T p

m+1,n due to symmetry and with a truncation

error of order O(∆t) + O(∆r2 + ∆z2). This equation can be further simplified and

put into standard form while neglecting the truncation error resulting in

T p+1
m,n = For

[
4T p

m,n−1 +
∆r2

∆z2

(
2T p

m−1,n

)]
+ T p

m,n

[
1− 4For − 2Foz

]
. (3.46)

3.11 Top Right Corner Node

The top right corner node of the cylinder is defined as the node within the last

column m = M and the last row or at n = N as shown in Fig. 3.10. To develop

the finite difference equation at the top right corner node of the cylinder, the revised

general equation, Eq. 3.4, should be used. The top right corner involves the case

where r = 0 and z = 0 which involves two convective boundary conditions on the

respective faces such that
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Figure 3.10. Element used for each node on the top right corner
defined by Eq. 3.55.

k
∂T

∂z

∣∣∣∣
z=L

2

= h(T∞ − T p
m,n) (3.47)

and

k
∂T

∂r

∣∣∣∣
r=ro

= h(T∞ − T p
m,n). (3.48)

In order to apply the boundary conditions to the revised general equation, the appli-

cation of a backward Taylor series expansion must be performed on each boundary

condition to approximate both the second order partial derivatives of temperature

with respect to r or z. Applying the expansion to Eq. 3.47 yields

k
∂T

∂z

∣∣∣∣
z=L

2
−∆z

= k
∂T

∂z

∣∣∣∣
z=L

2

−∆z

[
∂

∂z

(
k
∂T

∂z

)]
z=L

2

+O(∆z2) (3.49)

which can be rewritten as

k
∂2T

∂z2

∣∣∣∣
z=L

2

=
k

∆z

∂T

∂z

∣∣∣∣
z=L

2

− k

∆z

∂T

∂z

∣∣∣∣
z=L

2
−∆z

+O(∆z2) (3.50)

where O(∆z2) is the error associated with truncating the rest of the expansion. Ap-

plying the expansion to Eq. 3.48 yields

k
∂T

∂r

∣∣∣∣
r=ro−∆r

= k
∂T

∂r

∣∣∣∣
r=ro

−∆r

[
∂

∂r

(
k
∂T

∂r

)]
r=ro

+O(∆r2) (3.51)
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which can be rewritten as

k
∂2T

∂r2

∣∣∣∣
r=ro

=
k

∆r

∂T

∂r

∣∣∣∣
r=ro

− k

∆r

∂T

∂r

∣∣∣∣
r=ro−∆r

+O(∆r2) (3.52)

where O(∆r2) is the error associated with truncating the rest of the expansion.

Both convective boundary conditions, Eqs. 3.47 and 3.48 along with both the

respective Taylor series expansions, Eqs. 3.50 and 3.52 are substituted into the revised

general equation, Eq. 3.4, while dividing by the thermal conductivity to produce

h(T∞ − T p
m,n)

kro
+
h(T∞ − T p

m,n)

k∆r
− 1

∆r

∂T

∂r
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− 1

∆z

∂T
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z=L

2
−∆z

=
1

α

∂T

∂t
(3.53)

The following equation can be converted to finite difference form using a backward dif-

ference three node technique as an approximation for the first order partial derivative

in the r-direction. Another backward difference three node technique approximates

the first order partial derivative in the z-direction. The evaluation of the first order

partial time derivative uses a forward difference technique using another Taylor series

to get the next temperature at an increased time-step resulting in

1

α

T p+1
m,n − T p

m,n

∆t
=

h

kro

(
T∞ − T p

m,n

)
+

h

k∆r
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)
− 1

∆r

3T p
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m,n−2 + T p
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2∆r
+

h

k∆z
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T∞ − T p

m,n

)
− 1

∆z

3T p
m−1,n − 4T p

m−2,n + T p
m−3,n

2∆z
(3.54)

with a truncation error of order O(∆t)+O(∆r2 +∆z2). This equation can be further

simplified and put into standard form while neglecting the truncation error resulting

in

T p+1
m,n =For

[
To
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Bir

(
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∆r
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)
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2
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+ T p
m,n

[
1− ForBir

(
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− FozBiz

]
. (3.55)
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3.12 Bottom Right Corner Node

The bottom right corner node of the cylinder is defined as the node within the

last column n = N and the first row (m = 1) as shown in Fig. 3.11.

Figure 3.11. Element used for each node on the bottom right corner
defined by Eq. 3.64.

To develop the finite difference equation at the top right corner node of the cylinder,

the revised general equation, Eq. 3.4, should be used. The top right corner involves

the case where r = 0 and z = 0 which involves an adiabatic boundary condition and

a convective boundary condition on the respective faces such that

k
∂T

∂z

∣∣∣∣
z=0

= 0 (3.56)

and

k
∂T

∂r

∣∣∣∣
r=ro

= h(T∞ − T p
m,n). (3.57)

In order to apply the boundary conditions to the revised general equation, the appli-

cation of a backward Taylor series expansion must be performed on each boundary

condition to approximate both the second order partial derivatives of temperature

with respect to r or z. Applying the expansion to Eq. 3.56 yields

k
∂T

∂z

∣∣∣∣
z=0−∆z

= k
∂T

∂z

∣∣∣∣
z=0

−∆z

[
∂

∂z

(
k
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)]
z=0

+O(∆z2) (3.58)
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which can be rewritten as

k
∂2T

∂z2

∣∣∣∣
z=0

=
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∂z
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z=0

− k

∆z

∂T

∂z
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z=0−∆z

+O(∆z2) (3.59)

where O(∆z2) is the error associated with truncating the rest of the expansion. Ap-

plying the expansion to Eq. 3.57 yields
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which can be rewritten as
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+O(∆r2) (3.61)

where O(∆r2) is the error associated with truncating the rest of the expansion.

The adiabatic boundary condition, Eq. 3.56, convective boundary condition, Eq.

3.57, and both the respective Taylor series expansions, Eqs. 3.59 and 3.61 are sub-

stituted into the revised general equation, Eq. 3.4, while dividing by the thermal

conductivity to produce

h(T∞ − T p
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. (3.62)

The following equation can be converted to finite difference form using a backward dif-

ference three node technique as an approximation for the first order partial derivative

in the r-direction. Another backward difference three node technique approximates

the first order partial derivative in the z-direction. The evaluation of the first order

partial time derivative uses a forward difference technique using another Taylor series

to get the next temperature at an increased time-step resulting in
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(3.63)



41

with a truncation error of order O(∆t)+O(∆r2 +∆z2). This equation can be further

simplified and put into standard form while neglecting the truncation error resulting

in

T p+1
m,n = For

[
BirTo

(
1 +

∆r

ro

)
− 3

2
T p
m,n−1 + 2T p

m,n−2 −
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− 3

2
T p
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1

2
T p
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+ T p
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[
1− ForBir

(
1 +

∆r

ro

)]
. (3.64)

3.13 Stability Criteria

Since the technique used to develop the two-dimensional cylindrical solution in-

volves an explicit method, there is a stability condition governing the time step in

order for the solution to be numerically stable and converge to a given value. This

condition requires that the secondary part of each of the prior derived equations in-

volving the temperature at the current node be one or less as shown in 3.1. If the

solution is greater than one, the solution is unstable and well oscillate between ar-

bitrary values. For completeness, all derived equations are checked for stability by

solving the time component of the equation greater than zero. The specific numerical

implications of the stability criteria are discussed further in chapter 4.
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Table 3.1. Summary of stability criteria equations.

Location Equation

Internal 1 ≥ 2For + 2Foz (3.65)

Left Edge 1 ≥ 4For + 2Foz (3.66)

Top Edge 1 ≥ 2For + FozBiz (3.67)

Right Edge 1 ≥ ForBir

(
1 +

∆r

ro

)
+ 2Foz (3.68)

Bottom Edge 1 ≥ 2For − 2Foz (3.69)

Top Left Corner 1 ≥ FozBiz (3.70)

Bottom Left Corner 1 ≥ 4For − 2Foz (3.71)

Top Right Corner 1 ≥ ForBir

(
1 +

∆r

ro

)
(3.72)

Bottom Right Corner 1 ≥ ForBir

(
1 +

∆r

ro

)
(3.73)
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4. MODEL DEVELOPMENT

4.1 Aims

This chapter covers the development of a computer simulation based on the equa-

tions developed in chapter 3. The simulation was developed in Matlab for its conve-

nience and multitude of built-in functions. The coding structure is introduced along

with the development of the GUI for users to interface with the program.

4.2 Program Overview

The goal of the program is to take a variety of inputs from the user and show

the resulting center point temperature, average temperature, and heat transfer over

time. It is meant to be used as a teaching aid in an introductory college-level heat

transfer course to show the difference between a one- and two-dimensional solution.

The ultimate goal is to see at what Fourier number a two-dimensional solution must

be used. A one-dimensional solution can be used for small Fourier numbers up to a

particular point in which this work intends to develop a method for finding.

The inputs to the program include initial cylinder temperature, fluid tempera-

ture, duration of the simulation, convection coefficient, material selection, radius,

and length. More advanced options are available for experienced users such as the

nodes used in both the radial and length directions, the number of roots used to solve

the one-dimensional solutions for a cylinder and slab, along with adjusting the time

axis in terms of seconds or Fourier number.

Another significant consideration when designing the program is the speed at

which a solution is developed. Since the program is intended to be used as a teaching

tool, it should run quickly without sacrificing accuracy to provide the user(s) with

solutions to compare in a relatively short time. The program has been developed
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with this in mind and can complete most calculations within thirty seconds. The

only situation the program takes a significant amount of time is when the additional

settings are increased to include more nodes in the mesh or more roots for the one-

dimensional solutions. The use of some built-in Matlab functions are also minimized

due to long processing time, such as the Bessel function.

The main graphical outputs of the program are the center temperature, average

temperature, and heat transfer with the respective errors from the one-dimensional

solutions. The program additionally supports a feature to print all calculated values

to an excel spreadsheet to allow the user to save particular data sets.

4.3 Control Panel

The master function of the program is the control panel which takes in all the user

inputs, calculates important parameters used for analysis, and runs subroutines to

calculate the outputs. The program runs linearly, as shown in Fig. 4.1 to calculate the

required outputs. Through the utilization of subroutines, the speed is dramatically

increased due to Matlab prioritizing them. Subroutines are used for the following

calculations:

1. Stability criteria

2. 1D cylindrical center point temperature

3. 1D slab center point temperature

4. 2D cylindrical center point temperature.

The control panel was originally designed as the main backbone of the program.

It would gather inputs from the user, run the subroutines required to calculate all

the necessary components, and then generate an output. The GUI was added to the

program to allow the user to easily interface with the program without needing a

strong background in Matlab to operate. Since the addition of the GUI interface file,
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Figure 4.1. Linear progression of the control panel program showing
the order of operation for each subroutine.
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the control panel has become a redundant function that could be integrated directly

to the GUI file. The separation of the GUI file and control panel file still exists

mainly for Matlab’s priority of subroutines and to keep the GUI file clutter-free only

containing the data handling structures and graphing.

4.4 Stability Criteria

Since the technique used to develop the two-dimensional cylindrical solution in-

volves an explicit method, there is a stability condition governing the time step in

order for the solution to be numerically stable and converge to a given value. For

completeness, each individual node is checked for stability by solving the time com-

ponent of the equation greater than zero. Checking each node has minimal impact

on the program performance and is used primarily for debugging. The value for the

time step is then floored to two significant figures which always ensures stability is

met. The last step of the program is to divide the specified duration of the study by

the time step to find the total number of time steps required to run the simulation.

This step is essential as it gives the other subroutines a stopping point at which they

need to stop summing individual time steps.

If an implicit numerical method is used, then checking for stability criteria is not

required. Due to the nature of an implicit method looking at the current step and

the last step to update, rather than the explicit method of using the current step and

next step to update is why a stability criterion is not required. Since the problem

is two-dimensional, the Fourier and Biot number become direction-dependent. To

specify which direction is under consideration, each dimensionless parameter is given

a subscript to the corresponding direction.

4.5 1D Cylindrical Center Point Temperature

In order to compare a one-dimensional analysis to the two-dimensional, all the

values must first be calculated using a one-dimensional analysis. Since the geometry
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is in the cylindrical coordinate system, the use of Bessel functions are needed in order

to solve the differential equation. Matlab has a built-in Bessel function which outputs

the value for a given order and input. The subroutine has four main components which

calculate the various outputs of the function:

1. Solve cylindrical transcendental roots

2. Solve coefficient values for the 1D solution

3. Solve 1D solution using roots and coefficients

4. Calculate average temperature and heat transfer.

The transcendental roots are solved by using

0 = ζnJ1(ζn)− BiJ0(ζn) (4.1)

where the Bessel functions are of the first kind. A root is found every increment of

π, so solving for the root requires the use of Newton’s method through the built-in

fzero function in Matlab which solves for a zero within a given range. The roots are

continuously solved until the number of roots specified by the user have been solved.

The Bessel function is generated by using the Bessel function in Matlab. The use

of this particular function is minimized due to the long processing time accumulated

over the execution of the subroutine.

The coefficient values are calculated independently to reduce processing time in the

one-dimensional solution loop. Calculating these separately additionally allows the

user to double-check the accuracy of the roots to published data. While programming

this subroutine, it was useful to have these values stored to double-check if needed for

debugging proposes. The coefficient values are calculated using the following equation

Cn =
2

ζn

J1(ζn)

J2
0 (ζn) + J2

1 (ζn)
(4.2)

where the Bessel functions are of the first kind.
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Now that the roots have been solved for and the coefficient values of the equation

have been solved, it is possible to calculate the temperature distribution within the

cylinder. The dimensionless temperature can be found by using the following equation

Θ =
∞∑
n=1

Cn exp (−ζ2
nFo)J0(ζnr

∗) (4.3)

where r∗ is the dimensionless location from 0 to 1 within the cylinder [2]. Eq. 4.3

sums the solutions from all the roots that were solved for in Eq. 4.1 for iterative steps

of Fourier number until the desired time set by the user is reached. Additionally,

the heat transfer from the center point is being calculated within this loop to save

processing time.

The average temperature is calculated by multiplying the temperature at each

node by a weighting factor based on the geometry. Since the geometry of the body

is a cylinder, the weighting factors change with each differential volume element in

the radial direction. The first and the last volume elements are modified slightly

since their lengths are only half. Additionally, these nodes need to be placed off-axis

slightly due to their half-size; therefore, a smaller half-length element is taken at half

the node spacing away from the centerline and edge of the cylinder at the center of

the node. This method does not affect the overall calculation since the width of the

end element extends to the full radius of the cylinder.

The last component of the subroutine is to calculate the heat transfer from or to

the cylinder. To calculate the heat transfer, look at how much energy enters or leaves

a particular point, in this case, the center of the cylinder. The dimensionless total

heat transfer can be found by using the following equation

Q

Q0

= 1− 2Θ0

ζ1

J1(ζ1) (4.4)

where Θ0 is the dimensionless centerline temperature. By taking a summation of

equation Eq. 4.4, it results in the instantaneous heat transfer at the particular point

in time for the cylinder.

All these values are stored to large matrices that account for the center tempera-

ture, average temperature, and heat transfer for each time step. The raw values are
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available from the GUI through the print button. This technique can be a useful tool

not only for debugging a program but as an in-depth analysis while studying these

equations.

4.6 1D Slab Center Point Temperature

The analysis for the slab center point temperature is nearly identical to the one-

dimensional cylinder beside the equations. While the geometry is in the cylindrical

coordinate system, it makes more sense to think of a cross-section similar to a plane

wall since most of the heat transfer is in the vertical direction if the slab is laying

down. The subroutine has four main components which calculate the various outputs

of the function:

1. Solve slab transcendental roots

2. Solve coefficient values for the 1D solution

3. Solve 1D solution using roots and coefficients

4. Calculate average temperature and heat transfer

The transcendental roots are solved by using

0 = ζn tan ζn − Bi. (4.5)

A root is found every increment of π/2, so solving for the root requires the use of

Newton’s method through the built-in fzero function in Matlab which solves for a

zero within a given range. The roots are continuously solved until the number of

roots specified by the user have been solved.

The coefficient values are calculated independently to reduce processing time in the

one-dimensional solution loop. Calculating these separately additionally allows the

user to double-check the accuracy of the roots to published data. While programming
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this subroutine, it was useful to have these values stored to double-check if needed for

debugging proposes. The coefficient values are calculated using the following equation

Cn =
4 sin ζn

2ζn + sin(2ζn)
. (4.6)

With the roots and the coefficient values solved, it is possible to calculate the

temperature distribution within the slab. The dimensionless temperature can be

found by using the following equation

Θ =
∞∑
n=1

Cn exp (−ζ2
nFo) cos(ζnx

∗) (4.7)

where x∗ is the dimensionless location from 0 to 1 within the wall [2]. Eq. 4.7 sums

the solutions from all the roots that were solved for in equation 4.5 for iterative steps

of Fourier number until the desired time set by the user is reached. Additionally,

the heat transfer from the center point is being calculated within this loop to save

processing time.

Summarily to the average temperature of the one-dimensional cylinder, the av-

erage slab temperature is calculated by multiplying the temperature at each node

by a weighting factor based on the geometry. The geometry of the body is a slab;

therefore, the weighting factors do not change with each differential volume element.

It is best, for consistency, to calculate the average temperature for each node. The

first and the last volume elements are modified slightly since their lengths are only

half of what the typical node spacing will be. Additionally, these nodes need to be

placed off-axis slightly due to their half-size; therefore, a smaller half-length element

is taken at half the node spacing away from the centerline and edge of the cylinder

at the center of the node. This process does not affect the overall calculation since

the width of the end element extends to the full radius of the cylinder.

The last component of the subroutine is to calculate the heat transfer from or

to the wall. This method can be done by looking at how much energy in the form
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of heat enters or leaves a particular point; in this case, the center of the slab. The

dimensionless total heat transfer can be found by using the following equation

Q

Q0

= 1− sin ζ1

ζ1

Θ0 (4.8)

where Θ0 is the dimensionless centerline temperature. By taking a summation of

equation Eq. 4.8, it results in the instantaneous heat transfer at the particular point

in time for the slab.

All these values are stored to large matrices that account for the center tempera-

ture, average temperature, and heat transfer for each time step. The raw values are

available from the GUI through the print button. This method can be a useful tool

not only for debugging a program but as an in-depth analysis while studying these

equations.

4.7 2D Cylindrical Center Point Temperature

The main equations for this subroutine are derived in detail in chapter 3. The

function begins by allocating memory to matrices to store values, mainly the tem-

perature distribution field. The function is broken up into a total of three main

components being:

1. two-dimensional temperature distribution

2. average temperature distribution

3. and heat transfer from the solid.

The first objective is to make a temperature field consisting of the initial temper-

ature of the solid. Once completed the function updates each edge of the field with

the corresponding equation. The corners of the field require separate equations due

to having an additional boundary condition and are handled after the edge nodes.

Finally, the internal nodes are evaluated to create an updated temperature field. This

matrix is then stored as the previous time matrix, and the process continues for the
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next time step. The center point temperature is saved to a file since that is the main

focus of the thesis.

The heat transfer is calculated by looking at the energy flow at the boundaries of

the cylinder. This value can easily be calculated with Newton’s law of cooling/heating

dQ̇

dt
= h∆T

∂A

∂r
(4.9)

where ∆T is the change in temperature between the boundary nodes and the ambient

fluid temperature.

Figure 4.2. Differential elements representing the heat loss from the
nodes along the top surface of the cylinder.

Note that in Fig. 4.2, the area in the r-direction is not constant. To compensate,

the radius from the centerline to the center of each node is used along with the dr

spacing to calculate the area of the piece. Additionally, the first node needs to be

slightly modified since it is on the centerline. It has half the radial length of a common

element being dr/2. The radius is taken at the centroid of the piece since taking the

radius at the actual position will cause the piece not to be counted due to a zero

radius..

The heat transfer along the surface edge is slightly easier to calculate since the

area will be the same for each piece besides the top and bottom elements, which can

be seen in Fig. 4.3. Summarily to the radial heat transfer, heat transfer along the

side of the cylinder requires that the element is of half the size on the top and bottom.

These pieces are taken at the overall radius of the cylinder.
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Figure 4.3. Differential elements representing the heat loss from the
nodes along the side surface of the cylinder.

While Newton’s law of cooling/heat will work for this application, the form of the

equation is not particularly useful since the solution is being solved numerically. This

equation can be rewritten into the form

∆Q = hA∆T∆t (4.10)

by replacing the derivative terms with small changes and A is the area of the differ-

ential piece.

The total heat transfer can be found by summing the differential pieces along the

top and multiplying by 2π

QTop =
N∑

n=1

2π∆Q. (4.11)
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While the total heat transfer from the side can be found by summing the differential

pieces along the side and multiplying by 4π as seen in

QSide =
M∑

m=1

4π∆Q. (4.12)

That allows for the total heat along the top and the bottom of the cylinder to be

calculated; however, the total heat transfer from the cylinder would then be

QTotal = 2QTop +QSide (4.13)

due to there being both a top and a bottom to the cylinder plus the outside connecting

the top and bottom caps.

The average temperature for the two-dimensional model is done by calculating the

average temperature among the length of slab directions and the radial or cylindrical

directions. In two-dimensional space there will be multiple rows and columns of nodes

in each direction, the average temperature for each of these rows and columns is then

averaged among there the corresponding method. These two values are then averaged

one more time to provide the final average temperature of the entire cylinder itself.

4.8 GUI Development

The development of an interface is critical for ease of access to the program allow-

ing it to be utilized with very little knowledge of programming. The software package

Matlab, which was used to code all the equations, has a built-in GUI development

kit. While this add-in is robust and works fantastic for quickly creating a GUI, it

lacks intuitive instructions and online tutorials on how to develop a functioning in-

terface. A quick overview will be provided of how the package works followed by a

more detailed view of the GUI created for the heat transfer program.

When creating an interface, the design is straightforward. Drag and drop compo-

nents one wishes to have into the editing area. Upon double-clicking components, a

sub-menu pops up called the inspector that displays the control options for the spe-

cific component. The most useful is the name or tag component and the string which
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displays words on the component. The tag of the component is used to reference the

element while the string can be modified and set to a default value.

Once components have been placed into the interface editing area, the figure can

be saved which creates a Matlab file. This .m file contains all the code necessary to

run the program. The user interface grabs inputs from the user and saves them to the

handles structure in Matlab, allowing them to be accessed outside of various functions.

Typically, the program should have some push-button allowing it to start. This is

where all the operating code would be stored. Upon completion of the operating

code, the information can then be posted to the interface through text or a graphical

figure.

The last important feature of the GUI development package is the use of callbacks

which govern if a function is run while in the GUI. In order to have a button work, it

must have a callback specified in the .m file. When a button is pressed or command

activated, the function for the callback is run. By default, the GUI file creates many

callback functions even if the buttons have no purpose, they can be deleted to save

pre-processing time.

4.8.1 Application of GUI to Heat Transfer Code

Since the goal of the program is to be easily accessible for students to pick up

and use, it is necessary to create an easy way to interface with the code. There are

several ways to interface with a sophisticated program such as creating an input file,

the function command line, or through some GUI to name a few examples. Each has

advantages and disadvantages which will be discussed in detail.

So which form of interfacing would be best for this particular heat transfer ap-

plication? Since most engineering students enrolled in a heat transfer course should

have at least a minimum working knowledge of computer languages, that means any

method discussed prior should be adequate. However, the depth at to which this

knowledge extends should not be a limiting factor when operating the program. Due
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to this, using the Matlab command line to input variables is clunky and should be

avoided. An excel file would be an excellent option, but it would treat the Matlab

program as a middle man who would add to computation time to read in specific val-

ues from a file. The GUI element is the ideal choice since it is created within Matlab

itself, looks better than a standard excel sheet, and can export graphical elements

directly to the interface. Additionally, the data from the program can be stored at

the end of computation and printed to a file if the user wishes to interface with the

data.

Before creating a GUI element within Matlab, it is recommended already have a

working program or function within Matlab or a complex project. The GUIDE feature

in Matlab can be challenging to debug and add functionality to elements. Dealing

with the difficulties of the GUI tool and having to write a sophisticated program will

add unnecessary stress to creating these types of features. Once a program has been

developed, ensure it is easy to input the variables into the function and receive the

outputs. A primary backbone function is easiest to run from the GUI which branches

off into others instead of working in the GUI file directly.

Creating the Interface

Note that the GUI was created using the Matlab R2015b build. Utilizing other

builds may cause various steps and processes to be different in the future or prior

builds of the software. For this particular version of Matlab, the easiest way to begin

a GUI is through the GUIDE figure creator which can be accessed by typing ’guide’

in the command window. This process will open the GUIDE quick start menu shown

in Fig. 4.4, which will have a few templates and allows the user to open any existing

GUI figures to edit. The GUI created for heat transfer program is highly specific in

operation, so a custom GUI was created from the blank template.

Once open, an untitled figure window appears that can be edited with various

options for adding to the GUI window shown in Fig. 4.5. The left side of the window
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Figure 4.4. GUIDE quick start menu in Matlab R2015b for the
creation of GUI and figure elements.

has the buttons, menus, figures, text boxes, and so on that can be dragged and

dropped into the window. It is recommended to put in panel elements first, then put

the other options within the panel elements which have a couple of advantages. The

panel elements allow for a clean and organized look of the final GUI window allow

specific elements to be addressed for manipulation later, such as a hidden options

menu. The specific panels can be named, allowing for buttons or options to be

grouped together under a specific category.

The size of the GUI window can be adjusted by moving the black square in the

bottom right of the window. The grid spacing and snap to the grid can be adjusted by

using the Grid and Rulers button under the Tools menu option. The last important

feature of the figure window itself is the green play button which will save the current

configuration of the window and generate the corresponding GUI figure. Pressing this

button the first time will additionally generate the .m file that will be manipulated

in the next section to grab the inputs from the user.

When an element is dragged into the figure area, upon double-clicking, the prop-

erty inspector window is displayed, as shown in Fig. 4.6. Many options can be

adjusted from this menu from the appearance, position, alignment, and so on. The

most important options in this menu are the tag, string, and callback components.
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Figure 4.5. Blank GUI template from the GUIDE quick start menu.

Tag is the name of the element and is how to reference the element within the .m file

to get the GUI element to perform an action. The string is text that will appear on

the element in the window and can be converted to a value for calculations within

Matlab. The callback is how a function for the element is created within the .m file,

which will run when the element experiences a change of state.

The development of the GUI for the heat transfer program required the use of

ten edit text elements, a drop-down list, two buttons, a checkbox, a radio button, six

graphical panel elements, and static text which updates with live information from

the program which can be seen in Fig. 4.7. The GUI is broken up into seven main

components being the initial and boundary conditions panel, the material selection

panel, the geometry panel, static program panel, control panel, advanced settings

panel, and output graphical elements section. Each component is made up of edit

boxes, text boxes, and graphical elements. The advanced settings menu is hidden
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Figure 4.6. Property inspector window where details of an element
of the GUI can be manipulated. This specific window shows the
properties for the Edit Text menu option.

upon launch, and once the advanced settings box has been check, displays the panel

for more advanced users to tweak the settings.

An important note is to include the default units the programmer wishes the users

to work with while inputting data. This process could be more robust by including

a menu to change the unit system, but for simplicity, the units are kept in a single

standard. The default setting for each input has two main advantages: allowing
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Figure 4.7. Complete GUI for the transient cylindrical heat conduc-
tion program with default run case pre-programmed into text boxes.

the programmer to quickly run a series of tests for debugging and giving the user a

baseline for beginning to use the interface with changing variables and settings.

Getting Input Data

A function should be created which will convert the string data stored in the

text fields into a double using the str2double command which can then be stored

in the handles structure within Matlab. Creating a substructure within the handles

structure is useful to categorize the values which can be done by putting a period

after the word handles then a name such as data then another period and the name

one wishes to give the stored data. Each element that was put into the GUI interface

has a tag stored in the handles structure. If the tag is referenced, then any of the

interface options can then be accessed. An example of how to grab the data might

look like “handles.data.Radius = str2doulble(get(handles.Radius,’String’));”. This

process is then be repeated as many times as there are inputs and will be run when
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the getpara(handles) function is run, which will update the handles structure with

the input data.

This data does not exist in the programs memory until the function is run to

acquire the data. To achieve this, when the run button is pressed, the function to

grab the input data is run then is passed into a separate function which runs the

background calculations for the program. Once completed, the program exits the

background calculations function back to the run button press function and saves all

the output data to the handles structure for if the user wishes to print the data.

Running the interface

The user will first input data and select any settings or choose to go with the

default options. When the run button is pressed, the function which reads the input

data is run and stored to the handles structure. The conduction program is then

run, which will first update the program into the running state so the user can see

the program in operation. The GUI then passes all the input data and runs through

the control panel procedure outlined in Fig. 4.1. Once completed, the output data is

then passed to the graphical elements for a display to the user. Finally, the data is

stored into the handles structure in case the user wishes to print the raw data values

later.

Output Data

The output data is stored into the handles structure but not in a straightforward

way. There is not an easy way to store data from a function once the run function

has completed. This has to do with how MATLAB was coded and the scope of

functions. Getting around this problem involves storing the data into the UserData

tag of the print button itself acting as temporary storage of the data until the user

decides to print or run another case. This method allows the data to be passed out
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of a completed function into the handles function without losing the information due

to leaving the function scope.

If the user decides to print the data, the results will be printed into an Excel file

with the data columns labeled for easy identification along with the simulation time

and date for archival purposes. Matlab has a variety of functions for writing data to

an Excel file which were utilized to print the data. If a file already exists it is deleted

so if the previous data set already run is valuable it should be renamed or moved to

another location.
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5. RESULTS

5.1 Aims

This chapter covers the potential impact of the program to be used as an edu-

cational tool, the design of experiments performed on the main problem inputs, and

develops graphs to determine the exact point at which a two-dimensional analysis

must be performed. The program has a graphical user interface that could be in-

tegrated into an introductory heat transfer course or lab component where students

discover the general principles by changing various inputs of the system. An overview

of all the main variables is analyzed using a design of experiments method to deter-

mine which of the parameters and there interactions have the largest impact on the

overall simulation. Lastly, some graphs are developed to help determine when ex-

actly a two-dimensional analysis must be applied for a specific geometry and Fourier

number.

5.2 Potential Education Applications

Think back to any classroom environment during an advanced engineering course.

The class was most likely taught with an old book containing information derived

many years ago. The students learn the basics of the subject moving from general

theorem to more specific details and guided examples; then homework is assigned

over the material to challenge the students and extrapolate on the material to solve

problems [16]. While this method is adequate, there is a large gap between practicing

guided examples and solving complex problems; moreover, this method follows a linear

pattern with little outside thought required of the students besides the problem sets.

The information from another section is then taught often only relatively related
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to the prior section, where the students lose the ability to perform those types of

problems until reviewed again.

This entire process has been used in the engineering curriculum for ages and has

not changed with advancing technology and computer access. This form of deductive

learning causes students to learn information while it is needed then move onto the

next section. General principles are introduced and memorized but not looked at in

detail or derived in an intuitive way for the learner. With the rise of technology and

the ability to perform more educational opportunities through the use of a computer,

there are better ways to introduce the material to students. Additionally, a large

amount of industry outside of academia uses computers and simulations to run tests

and develop new products. In order to provide a well-rounded education for engineer-

ing students, it has become necessary to introduce computers and simulations into

the classroom environment to better prepare students for a career.

While having students develop computer simulations would be a fantastic way

to deepen detailed learning, get hands-on experience, and familiarity with computer

software, it would be impractical for a core engineering course to focus so heavily

on computer implementation. Many students may struggle with coding and lack the

necessary background to develop robust simulations. This type of activity would be

an excellent activity for a semester group project. Instead, introducing students to

already existing software or pre-written programs would only require an introductory

knowledge of the software or program which can be developed as part of the fresh-

men engineering curriculum or quickly introduced at the start of the lecture. These

guided labs would focus on a particular aspect or general concept within the course,

but students would have to discover the general principles from looking at data and

graphs. This inductive form of learning has been shown to have a deeper level of

understanding, and students can recall the information for a much more extended

period when compared to a deductive learning style [1], [14].

While hands-on experience is fantastic at preparing students for homework sets

and industry, the theoretical topics should not be ignored. The inductive style should



65

supplement the instruction of students breaking up a tedious classroom environment

lecture.

5.2.1 Applications to Heat Transfer Education

In order to provide an example of what this type of learning environment could

look like in a specific classroom setting, a program has been developed to be used

in a heat transfer course or laboratory setting. The program covers the topic of

conduction and looks at the differences between using a one- and two-dimensional

transient analysis on a cylinder or slab which is placed in an isothermal fluid.

The instructor would need to introduce the concepts of a one-dimensional analysis

and explain that the assumption is valid since the error will be insignificant when

compared to a two-dimensional or three-dimensional analysis. The students can then

utilize the program to run a few sample simulations to see how closely the one-

and two-dimensional simulations match when the length is of significant magnitude

greater than the radius.

Once students become comfortable with the program and the basic concepts at

work, they should be encouraged to experiment with changing parameters and see

how that affects the center point temperature, average temperature, heat transfer,

and the associated errors between the one- and two-dimensional outputs. Students

should write down what type of experiments they wish to perform and note any

observations on each run. Currently, the program runs using the general theories of

conduction heat transfer and does not include any statistical variation that would

occur in a real laboratory setting; therefore, if two groups run the same experiment,

they should see the same results from the simulation.

When completed, the students should share any notable observations from various

simulations and try to develop the background theory and potential applications.

From this activity, the instructor can then elaborate in further detail on the one-

dimensional assumption and explain the usefulness. The most substantial benefit
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being the computation time for the computer to simulate if it is known the error is

small.

The experiment has the potential to be used in a more advanced heat transfer

course by utilizing the advanced settings option menu. Students that are more famil-

iar with programming, two-dimensional simulations, and numerical analysis would

benefit from changing settings that affect the computational time and accuracy of

the simulations. The simulations can be run with higher accuracy but at the cost of

having to wait a significant amount of time longer for the computer to calculate to a

much higher degree of accuracy. This process would lead to the topic of round-off vs.

truncation error and how by just increasing the nodes does not necessarily mean the

simulation is more accurate.

For a sample of an experiment that could be run for a laboratory class, please

refer to Appendix (A).

5.3 Design of Experiments for Heat Transfer Program

Applying the design of experiments to the entirety of the developed heat transfer

program would require a significant amount of time due to the sheer amount of

inputs and variables; however, if the inputs are limited to the seven standard inputs

as shown in Table 5.1, then the process becomes manageable. The standard inputs

were developed and given high and low values of operation. Since the program is

not statistically based, each run will produce similar results, so the order of the

experiments does not matter. A complete list of the experiments run with the two

investigated outputs being maximum cylinder error and maximum slab error is shown

in Appendix B.

Once completed, the average values for each interaction were calculated for the

cylinder error approximation. Interaction plots were developed for every combination

of two inputs, as shown in Fig. 5.1. It is interesting to note that besides the interaction

of the initial and fluid temperature, which produced identical lines, every pair of
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Table 5.1. High and low levels for the standard inputs of the heat
transfer program.

Input -1 Level +1 Level

Initial Temperature (A): 373.15 423.15

Fluid Temperature (B): 273.15 323.15

Time (C): 3000 4000

Convection Coefficient (D): 350 450

Radius (E): 0.1 1.0

Length (F): 0.2 1.0

Material/Alpha (G): Aluminum Copper

inputs interact with one another to affect the maximum cylinder error output. It is

hard to tell the significance of the interaction from this plot; however, due to the

inconsistant scaling on the subplots to compare the interactions.
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Figure 5.1. All possible interaction effects between any two given
inputs for cylinder error.



69

It becomes easier to see the effects when the interactions are ranked from highest

to lowest and graphed in a Pareto chart, as seen in Fig. 5.2. Since there is a total

of 127 different interaction effects on the maximum cylinder error result, only the

significant effects, over 0.5, are shown. The significant visible effect is the length

interaction on the error. Since the result was negative, it means that by increasing

the length the error should be expected to go down, which matches both the theory

and the test results. In order to more clearly see the other interaction effects, the

graph is redrawn in Fig. 5.3 without the length interaction to view the other effects.

Figure 5.2. Pareto chart for the significant variables on the resulting cylinder error.

The second most important factor towards the maximum error is time. Under

short time spans the error is small but rises quickly as the end effects of the cylinder

begin to affect the center temperature. An interesting result is an effect on the ini-

tial temperature, and convection coefficient had on maximum error. It appears that

as these values increase the maximum error will increase as well since the tempera-

ture gradient becomes large with an increased ability to transfer heat away from the

cylinder.
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Figure 5.3. Pareto chart, excluding length, for the significant vari-
ables on the resulting cylinder error.

The average values for each interaction were then calculated for the slab error

approximation. Interaction plots were developed for every combination of two inputs,

as shown in Fig. 5.4. It is interesting to note that besides the interaction of the initial

and fluid temperature, which produced identical lines, every pair of inputs interact

with one another to affect the maximum slab error output. This interaction can

additionally be seen between the initial temperature and the length along with the

fluid temperature and length. It is hard to tell the significance of the interaction

from this plot; however, due to the inconsistent scaling on the subplots to compare

the interactions.
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Figure 5.4. All possible interaction effects between any two given
inputs for slab error.
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Since there is a total of 127 different interaction effects on the maximum slab error

result, only the significant effects, over 0.5, are shown in Fig. 5.4. The noticeable

significant effect is the radius interaction on the error. Since the result was negative,

it means that by increasing the length the error should be expected to go down, which

matches both the theory and the test results. In order to more clearly see the other

interaction effects, the graph is redrawn in Fig.5.6 without the length interaction to

view the other effects.

Figure 5.5. Pareto chart for the significant variables on the resulting slab error.

In contrast to Fig. 5.3, Fig. 5.6 has a pairing of effects where with the addition

of the radius causes an almost equal but slightly lesser effect. This effect can be seen

with the second strongest interaction on the output being the material properties.

Upon considering the interaction effect between the material properties with the

radius, it produces an almost equivalent effect to just the material property itself.

This is seemingly mirrored for each new variable. This effect needs to be studied

in more detail to reveal the significance of this result fully. The main interaction

effects involving the output of the slab error are the material property, the duration
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of the study, and the convection coefficient along with the effects from the radius

interaction.

Figure 5.6. Pareto chart, excluding radius, for the significant vari-
ables on the resulting slab error.

5.4 Error Graphs

While the program developed is useful as a heat transfer education tool, the

information provided from the interface could be utilized in other ways to conclude

the temperature gradients within cylinders. One such application involved looking at

the error between the center temperature of the two-dimensional simulation with the

one-dimensional slab and cylinder results.

The idea is to create a graph which will tell the user when a specific cylinder

or slab will require a two-dimensional analysis. Ideally, the graph should depend on

the geometry, material, and length of the simulation, and the user can determine

how long a one-dimensional analysis would suffice within a five percent error margin.
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While the interface developed can display the results from a single simulation, it is

not sufficient for storing large amounts data from multiple cases.

When initially investigating this idea, the main issue which arose was trying to

limit the number of inputs required in order to simplify the graphic explicitly having

the ratio between the cylinder length and radius on one axis while having to deal with

the characteristic length from the Fourier number on the other axis. The workaround

for this came from multiplying the Fourier number by the square of the Biot number;

this eliminates the characteristic length from that axis while taking into account the

material properties of the cylinder.

The other issue that arises is the volume of the cylinder under investigation.

Cylinders with the same length to radius ratio can have widely differing errors at

the same Fourier number due to the difference in volume. The fix for this is simple

since the volume can be held constant. If the ratio is substituted into the volume of

a cylinder equation, the radius can be calculated

r0 =

(
V

2πR

) 1
3

(5.1)

along with the length

L = 2r0R (5.2)

meaning that only the volume and the ratio need to be inputs for the system. With

these isolated, a script was written that cycles through ratios at a given volume and

saves the error values. These error values can then be plotted into a contour plot as

shown for the cylinder error in Fig. 5.7. This graph, while useful, is not easy to use

since multiple would have to be created at different volumes and trying to interpolate

between graphs would be inconvenient.

The answer is to choose an error ratio, such as five percent instead, then run

another case and stack the contour plots on top of one another using the hold feature

in MATLAB. The same thing can be done for the slab error with an inverse effect

along the ratio axis. This final graph was split into two different entities, one for long

time durations and another for a short time durations. In order to better understand
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Figure 5.7. First attempt at creation of an error graph for the one-
dimensional cylinder approximation.

what the final graphs represent a simple graph is constructed in Fig. 5.8 to explain

how to utilize the graph.

Figure 5.8. Example graph on how to read the contour plot.
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Fig. 5.8 shows the five percent error thresholds for the cylinder and slab results

for a volume of two meters squared. Anything below the cylinder error line represents

where a one-dimensional cylinder analysis can be run. Anything below the slab error

line represents where a one-dimensional slab analysis can be run. Anything below

both the cylinder and slab error lines can be run with a cylinder or slab analysis.

Finally, anything above both the cylinder and slab error lines must be run with a

two-dimensional analysis.

Upon stacking the contour plots on top of one another, it generates the final

graph in Fig. 5.9. Each line represents the respective cylinder or slab five percent

error threshold where each line has an associated geometry volume. Any result above

specific line for the analysis will require a two-dimensional solution to reduce the error

from a one-dimensional approximation. This graph covers more extended duration

tests from cylinders of larger volumes where the short duration tests from smaller

volumes are shown in Fig. 5.10.
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Figure 5.9. Long duration, large volume (in m3) chart to determine
when a one-dimensional approximation becomes inaccurate
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Figure 5.10. Short duration, small volume (in m3) chart to determine
when a one-dimensional approximation becomes inaccurate



79

6. CONCLUSIONS

6.1 Aims

This chapter covers the conclusions drawn from the research conducted throughout

the thesis. All objectives are analyzed and summarized to describe all that was

learned. Potential applications of the findings are discussed with recommendations

for implementing into a classroom setting. Finally, some possible future directions of

the work are discussed to continue the initial research into formal studies to gauge

student interactions with the teaching style and implementation.

6.2 Accomplishment of Objectives

1. Develop a mathematical model for a cylinder at a uniform initial temperature

subjected to a large fluid body of uniform temperature.

The model was developed using finite difference techniques, as shown in chapter 2

of this thesis. The mesh represents a cross-sectional view of a quarter slice within a

cylinder which allows for much faster processing when computing the solution of the

temperature field.

2. Propose a finite difference solution method capable of changing each variable.

A variety of inputs to the model can be manipulated including the initial temperature,

ambient temperature, convection coefficient, material property, geometry, and length

of simulation along with more complicated mesh and specific solution parameters.

3. Develop a user interface that allows the user to learn by changing variables.

A user interface was created utilizing the MATLAB software packing through the

GUIDE add-in feature. This process allowed relatively easy creation of a GUI through
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the built-in tools of the software program rather then programming a GUI from the

ground up.

4. Utilize the MATLAB software package to implement the proposed solution and

user interface.

The solution method has been coded in the MATLAB environment along with the

GUI. The program is capable of being stored in a small file that can be run and saved

to the program apps within MATLAB for a specific computer that will allow the user

to run the program.

5. Develop a single or multiple graphical elements that can be used to determine

if a particular cylinder requires a one- or two-dimensional analysis.

A graph has been developed that allows the user to determine whether a one- or

two-dimensional study should be run based off of the geometry, length of time, and

material properties. The user needs to find the corresponding curve on the graph and

select anything below the curves for an error less than five percent.

6.3 Thesis Summary

In chapter 2, the basics of heat transfer were introduced, which are the primary

features of the program in which a student would need to learn and discover from use

of the program and through traditional lectures. These concepts are relatively simple

taken one at a time, and most can be discovered at face value from the program

after a few trials run. The basic concepts involving the design of experiments are

additionally introduced, which are used later in the thesis to determine the interaction

effects between the inputs to discover the significance of each on the center point

temperature error.

The equations used to develop the model are derived in chapter 3. There are

nine equations in total for the top, left, right, and bottom faces, top-left, top-right,

bottom-left, bottom-right corners, and the interior nodes. The equations for the
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stability criteria are also covered since the equations are derived with an explicit

method. These equations will allow teachers and students to follow the methods

used, which are scattered about many textbooks, and help aid in the creation of new

models.

In chapter 4, the basic layout of the program developed in MATLAB is discussed

explaining the various components which make up the model. The general structure

consists of a GUI master function which leads to a control panel which computes

the outputs from the given inputs. These inputs are passed into the control panel

and are manipulated into general dimensionless parameters if possible for simple

calculations. The stability criteria is determined, which allows the one-dimensional

cylinder and slab approximations to the center point temperature to be calculated

along with the average temperature and instantaneous heat transfer. Then the two-

dimensional simulation is calculated for the center point temperature along with

the average temperature and instantaneous heat transfer. These outputs are then

exported back into the GUI where the error values are processed and plotted to the

output interface in which the user can see the results.

In chapter 5, the merits of the program are discussed regarding education in a

heat transfer classroom along with introducing a chart in which one can determine

when a two-dimensional study must be run. The program has significant potential

implications in a classroom or laboratory environment since students can discover the

concepts of general problems themselves instead of through a traditional textbook or

lecture. This inductive approach of learning is shown to have a significant impact

on learning and topic retention, which can better prepare students for exams and

real-life applications. The use of computer programs in the classroom allows students

to work hands-on with models and simulations which make up a large portion of

industry practices. The chart developed is significant in how the differences between

a one- and two-dimensional analysis are handled. The chart is easy to use since the

user only needs to know the geometry, material properties, and length of time of

the simulation to use the graphic. Most sources state a rough approximation as the
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length being ten times the radius as a significant threshold. While valid for most

cases, from the graph, this can be seen to be potentially a high-end estimate for most

cases depending on the length of time required for an experiment.

6.4 Limitations

The conclusions regarding the effectiveness in the classroom are based entirely on

research showing the benefits of inductive learning being incorporated in the class-

room. The program has been tested with mostly colleagues and professors instead

of students learning the material for the first time. Further, since there has been

minimal feedback regarding the function of the program, there are most likely im-

provements needed for ease of use regarding the program and intuitiveness of the GUI

interface.

6.5 Suggestions for future work

While the program developed has potential significant applications in the field

of engineering education, it would be interesting to see data conducted in a study

seeing the effectiveness of a program such as this in a classroom or laboratory setting.

Additionally, the program is static at the moment and will produce identical results

given the same inputs. Developing some statistical variety through a Monte Carlo

simulation involving the material properties or with the surrounding temperature

would be interesting to incorporate to mimic a laboratory experiment.
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A. SAMPLE LABORATORY EXPERIMENT

Transient Heat Conduction: One- vs Two-dimensional Error Analysis

Objective: The objective of this experiment is to examine the error between

performing a one-dimensional analysis and a two-dimensional

analysis on a cylinder or slab by utilizing a computer program.

Procedure:

1. Log-in to the computer and open the Matlab software environment.

2. Download the Matlab program from the course website. (The instructor will

provide a link).

3. Open the file entitled Transient Conduction and a GUI should appear.

4. Run the simulation using the default settings and ensure you get the same output

as shown by the instructor to verify the program is working.

5. Develop a test to run by manipulating the various parameters in the program.

Be sure to write down the parameters used for each test and make notes and

observations for each.

6. If the test is particularly interesting, save the file for review later using the print

button.

7. Repeat steps 5 and 6 until at least ten different tests have been run for analysis.

Observations:

a) Record parameters for each test.

b) Record all observations noticed on the data sheet during the experiment.

c) Save test files and interesting graphs.
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