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ABSTRACT 

Effective control of nonpoint source (NPS) pollution is critical for the long-term health of 

freshwater ecosystems. Previous research has focused primarily on the implementation of best 

management practices (BMPs) to reduce NPS pollution from agricultural or urban land uses. 

However, there is a critical need to incorporate landowner willingness to adopt BMPs to more 

accurately quantify the cumulative water quality improvement potential at the watershed scale. 

This project sent out 2866  surveys to ascertain the background knowledge and likely adoption 

levels of various BMP types by residents within the East Branch—Little Calumet River and Trail 

Creek watersheds in Northwest Indiana. The survey divided the population into 5 resident groups 

including urban, suburban, rural residential, row crop agricultural, and pastural. Loads of nitrogen 

(N), phosphorus (P), and sediment generated from these resident groups were quantified with the 

Generalized Watershed Loading Function – Enhanced (GWLF-E) hydrologic model under BMP 

implementation scenarios guided by the survey responses. Results show that row crop agriculture 

and urban land uses generated the greatest amount of N (54-75%) and sediment (37-62%) in these 

watersheds, respectively. Cover crops were the greatest reducer of watershed N (14.4-20.6%) and 

TP (6.0-15.9%) under full implementation. However, application to the likely adoption level 

(27.8%) of cover crops generated only 6.5-9.3% of N and 2.7-7.1% P reduction. Porous pavement 

was the most effective sediment reducing practice (12.0-12.7%), but the low level of likely 

adoption (3.7%) allowed only 0.4-0.5% reduction of watershed sediment. Resident group area, 

loading rates, background knowledge levels, and location within the watershed are shown to be 

important considerations for BMP selection and education efforts by watershed managers to 

improve water quality. 
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1. INTRODUCTION 

The ways that humans interact with the natural and constructed landscapes around them has a 

pronounced effect on the quality of our water resources (USEPA, 2001a). Regions surrounding 

the United States-Canadian Great Lakes, especially the Corn-Belt states, have large metropolitan 

areas adjacent to major water bodies and a high density of surrounding row crop agriculture and 

pastureland. Although the implementation of the Clean Water Act (CWA) and the Great Lakes 

Water Quality Agreement (GLWQA) in 1972 have both effectively combatted point source 

pollution (Botts et al., 2018; Charlton et al., 1993; De Pinto et al., 1986), NPS pollution still 

remains the major driver of water quality problems to rivers, lakes, and coastal regions in the U.S. 

(Baker, 1992; Humenik et al., 1987). Of particular concern with NPS pollution is excess nutrient 

(nitrogen & phosphorus) inputs which fuel eutrophication and can lead to toxic algal blooms, 

oxygen depletion, loss of aquatic biodiversity, degradation of water quality for human use and 

consumption, and various other ecosystem services losses (Carpenter et al., 1998; Scavia et al., 

2014). Approximately 21% of the lakes, ponds, and reservoirs are listed as hypereutrophic while 

18% of the coastal waters (including the Great Lakes) are listed as having poor biological 

conditions (USEPA, 2017). What makes NPS pollution so difficult to treat is the diffuse nature of 

nutrient source locations and the diverse forms of nutrient loading that occur in a watershed. For 

mixed land-usage watersheds in particular, the heterogeneity of land cover throughout the 

watershed makes the tracking of nutrient sources even more difficult (USEPA, 1993, 2001b). 

however, the ability to accurately predict the nutrient and sediment loading from mixed land usage 

watersheds is crucial for effective water resource management.  

The use of watershed models to predict the generation, transport, and loading of NPS pollution 

has been an increasingly common for watershed managers. Previous research with these models 

has focused on the effects of land use (Chiang et al., 2010; Liu et al., 2015c; Soranno et al., 1996) 

and climate change (Bosch et al., 2018; Chang et al., 2001; Liu et al., 2016b) on water quality. To 

combat future NPS pollution, methods for the identification of critical source areas that produce 

disproportional loads have been created for these models (Niraula et al., 2013; Tim et al., 1992) to 

direct the use of stormwater best management practices (BMPs) or agricultural conservation 

practices. 
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The incorporation of BMPs into watershed models has allowed researchers in the Great 

Lakes regions to estimate NPS pollutant mitigation through implementation of these practices 

(Bosch et al., 2013; Scavia et al., 2017). Methods of determining the most effective treatment 

approach in these studies has involved scenario testing of singular or multiple BMPs in different 

combinations or intensity. Optimization tools for determining the most cost-effective treatment 

strategy have also been developed for use in modeling studies (Gitau et al., 2006; J. G. Lee et al., 

2012; Maringanti et al., 2009; Veith et al., 2003). Determination of BMP implementation scenarios 

in these studies were based on physical site characteristics or estimated adoption potential from 

local conservation officials. However, these approaches have failed to account for the landowner 

perspective. While there have been multiple studies into the values or concerns of residents with 

regards to BMP adoption (Brown et al., 2016; Gao et al., 2018; Greiner et al., 2009; Smith et al., 

2007), as well as investigation into the perceived barriers or concerns with the institutions directing 

environmental conservation (Dhakal & Chevalier, 2017; Kalcic et al., 2014; Palm-Forster et al., 

2016a; Roy et al., 2008)there has been limited translation of these factors into watershed modeling 

approaches. Studies that have included resident adoption of BMPs have used conservation 

workshops or conservation (i.e. reverse) auctions to inform implementation scenarios and 

incorporate resident suggestions to more accurately reflect current conditions and guide future 

modeling efforts (Hassanzadeh et al., 2019; Kalcic et al., 2016; Palm-Forster et al., 2016b). The 

results from these studies showed that stakeholder levels of BMP adoption are insufficient to meet 

water quality goals and funding should be directed towards projects that maximize the cost-

effective reduction of NPS pollutants. Determination of the most cost-effective practices needs to 

be made at the field-scale and applied to a high extent to achieve the greatest load reduction for 

the watershed. It is important to allow stakeholders to engage with the model so that current 

practices and field conditions are most accurately reflected in the model. Bidding methods need to 

be conducted in a simple, straightforward manner that prevents landowners from deeming 

themselves ineligible. Once the most cost-effective approaches to NPS mitigation are determined, 

incentives should be given to residents in a manner that has the lowest transaction costs and a well-

defined order of goals is needed to avoid trade-offs from trying to meet multiple objectives. In 

these studies, stakeholder participation was limited and only included farm owners and rural 

residents. 
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Incorporating the willingness of a greater population of residents to adopt conservation 

practices and quantifying the water quality improvements is needed at the watershed scale. There 

is also a need to understand how NPS loads vary amongst different resident groups and how 

familiar different resident groups are with various BMPs. To fill this gap, my research used survey 

and modeling approaches to analyze the effect of land use and best-management practice adoption 

on water quality in two mixed land use watersheds in northwest Indiana. The first goal of this 

research was to identify the current levels of nutrient (N and P) and sediment loads generated 

amongst different resident groups. These resident groups included farmers, rural residents, and 

homeowners living in different types of communities. Secondly, I determined which BMPs 

generated the greatest NPS pollutant reduction for each resident group. Third, I quantified the 

effect that resident willingness to adopt BMPs had on watershed scale reduction and compared it 

to the maximum potential BMP application rate in each resident group to the reduction if BMP 

would only be applied to the level that residents were willing to adopt. Lastly, I utilized the results 

goals to recommend which BMP-resident group relationships should be of focus of education and 

outreach by watershed planners to achieve greater levels of NPS pollutant reduction. 

  



 

 

13 

 

2. REVIEW OF THE LITERATURE 

 Background 

Since the enactment of the Clean Water Act (CWA) in 1972, greater emphasis has been 

placed on the prediction of contaminant transport and delivery into receiving waters. Engineers 

and scientists have increasingly used computer models to predict contaminant fate and transport 

through erosion-deposition processes, rainfall-runoff dynamics, open-channel flow, groundwater 

flow, nutrient sorption/desorption, and biological decay.  With increasing anthropogenic impact 

through modification and deterioration of the natural environment, these models have been used 

to help environmental managers and planners predict changes in contaminant generation, transport, 

and accumulation as well as understanding the effects of management practices on contaminant 

mitigation. The motivating factor behind this research project is compliance with Section 303(d) 

of the CWA which requires designation of impaired water bodies and development of Total 

Maximum Daily Loads (TMDLs) with the goal of reducing contamination in these water bodies 

below acceptable conditions. This review will examine research into modelling efforts to target 

NPS pollution sources, identify the scope of BMP treatment scenarios within hydrologic models, 

the societal acceptance of BMP adoption, and modelling efforts to incorporate resident willingness 

to adopt BMPs. 

 Predicting Watershed Pollutant Loads 

There is a need for modern day water quality modelling methods to direct watershed 

stakeholders and planners with present and future resource allocation. Many recent modeling 

studies have focused on analyzing the effects of humans on the natural environment so that 

stormwater management projects can be focused on the proper types and placement of BMPs. 

With a growing population and migration towards urban environments (Grimm et al., 2008), there 

has been increased efforts to quantify the effects of future land-use change on watershed loading 

(Chiang et al., 2010; Liu et al., 2015c; Soranno et al., 1996; Xu et al., 2013). These studies have 

shown that conversion of forested lands into agricultural or urbanized environments are generating 

greater runoff, sediment, and nutrient loads with impervious features replacing vegetation. The 

effects of greenhouse gas emissions leading to changes in the climate are also prompting experts 
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to predict the effects of changing temperature and rainfall events into watershed loads (Bosch et 

al., 2018; Chang et al., 2001; Liu et al., 2016b). Elevated temperatures, greater precipitation, and 

higher storm intensity are predicted to increase the financial resources required to combatting NPS 

pollution. The need for more effective stormwater management has promoted research into 

identifying critical source areas (CSAs) of NPS pollution. Modelling studies have used various 

tools to divide watersheds into smaller hydrologic response units (HRUs) that have similar site 

characteristics. Calculating the HRUs that have the highest load rates and greatest level of 

hydrologic connectivity have allowed modelers to pinpoint CSAs throughout full watersheds (Giri 

et al., 2016; Niraula et al., 2013; Tim et al., 1992). 

 Quantifying Pollutant Reduction through BMP Implementation 

Several hydrologic and/or water quality models such as SWMM (Rossman, 2015), L-THIA-

LID ( Liu et al., 2016a), GWLF-E (Evans and Corradini, 2016; Haith et al., 1992), STEPL (Tetra 

Tech, 2018) and SWAT (Arnold et al., 2012) have included the capability of quantifying the effects 

of stormwater BMPs and agricultural conservation practices on reducing contaminant loads. Water 

quality and contaminant loading studies using these models have varied in scale from induvial 

sites or fields (Gao et al., 2015; Gitau et al., 2004; Jia et al., 2012; Merriman et al., 2019) up to 

entire watersheds (Bosch et al., 2013; Chaubey et al., 2010; Liu et al., 2015b; Scavia et al., 2017) 

for individual or multiple contaminants of concern. The majority of these watershed-scale studies 

quantify the reduction of either urban or agricultural practices but will typically not model both 

categories outright or to the same level of specificity. For example, some of studies that focus on 

agricultural BMPs will include an assortment of structural or cultural management practices that 

individually or jointly treat cropland regions, but only have a generic point source reduction that 

would include urban areas (Bosch et al., 2013; Scavia et al., 2017).  

Water quality models that can simulate BMP application are commonly used in scenario-

testing studies where current loading rates and already implemented management practices are 

compared to future scenarios with increased BMP presence. Obtaining information about currently 

implemented practices can be difficult, so many studies have limited practices or assume no current 

application (Her et al., 2016; Scavia et al., 2017). Scenario testing in agricultural regions typically 

include various individual or combined BMP trials that have multiple implementation levels up to 

the full expanse of cropland. Without known BMP locations, studies have tested scenarios with 
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random implementation and targeted implementation into the regions of the watershed that 

generate disproportionally high contaminant loads (Bosch et al., 2013; Scavia et al., 2017; 

Teshager et al., 2017). These targeting approaches show more potential reduction than randomized 

testing and shows the need for careful consideration amongst stormwater managers in funding 

BMP projects throughout their watersheds. Considerations of limited resources and site-specific 

criteria to obtain maximum contaminant reduction has also led to the development of optimization 

tools and procedures for BMP placement (Gitau et al., 2006; J. G. Lee et al., 2012; Maringanti et 

al., 2009; Veith et al., 2003). These optimal implementation scenarios directed to more efficiently 

reduce watershed contamination are limited to factors such as existing NPS load, BMP reduction 

potential, cost of practice, and physical site characteristics. 

 Societal Willingness to Adopt BMPs 

Engaging stakeholders with the goal of managing NPS pollution requires and understanding 

of their current knowledge of BMPs and the factors that motivate or dissuade them from adopting 

the practices. The desire to adopt BMPs stems from a growing sense of environmental stewardship 

and recognition of the benefits of these practices (Gao et al., 2018; Greiner et al., 2009; Kalcic et 

al., 2014; Smith et al., 2007). Although a desire to protect the environment is a shared concern, 

stakeholders in urban and agricultural landscapes can have different factors preventing adoption.  

A major factor opposing the adoption of BMPs in agricultural regions is the monetary risk 

associated with implementation. Replacing or preserving viable cropland or pastureland with a 

conservation practice comes with capital losses (i.e. opportunity costs). Funding conservation 

practices through programs such as EQIP or the CRP are designed to help offset these opportunity 

costs but are not always obtainable to farmers applying for funding. While it has been shown that 

financial assistance is not the decisive factor in the adoption of BMPs, it is viewed an important 

promoter of adoption (Kalcic et al., 2014). Several major risks faced by farmers are concerns with 

improving or maximizing productivity, reducing farm debt, maximizing profitability, intensifying 

production systems in the face of rising input costs, changing environmental regulation, growing 

fear of drought or reduced access to water, and increasing competition (Greiner et al., 2009). In 

such instances the adoption of BMP’s will include a variety of factors including farm size, crop 

type(s), tenure, net income, and level of debt (Clearfield & Osgood, 1986). 
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 Concerns about practice implementation in urban areas centers around a lack of familiarity 

with the different types of available BMPs. In the study performed by Gao et al. (2018), urban 

residents were participated in a social survey aimed at understanding the various concerns and 

motivating factors when considering implementation of rain gardens and rain barrels. This research 

found that amongst those with moderate levels of familiarity the top three concerns about these 

practices were their capacity to install and maintain the practice as well as possessing adequate 

amounts of time to maintain the practice. Along with various aesthetic concerns about these BMPs, 

increased levels of knowledge and familiarity with these practices reduced the level of concern 

and had higher levels of promotion that these practices should be required in new construction 

projects and areas of higher imperviousness. Disruption of property for construction and concerns 

of the suitability of their property have also prevented homeowners from applying for BMP 

adoption (Brown et al., 2016; Gao et al., 2018). 

 The concerns about BMP adoption surrounding individual capacity to properly implement 

these practices is further backed by a concern or distrust of the institutional goals and framework 

for stormwater management. Farmers have expressed concerns over government control and their 

objectives for conservation (Kalcic et al., 2014; Smith et al., 2007). At the institutional level, the 

multiplicity of actors within the realm of stormwater management make the translation of 

conservation knowledge and objectives difficult. Conservation with fragmented responsibilities 

being placed amongst various actors within a single watershed, complex policy and governance 

barriers, and limited extension or outreach hinders integration of conservation knowledge and 

successful implementation (Chaffin et al., 2016; Dhakal & Chevalier, 2017; Roy et al., 2008). 

Supplementing this with overly complicated methods of funding applications and unclarity with 

the selection criteria of governing bodies hinders residents from submitting requests for BMP 

financing (Brown et al., 2016; Palm-Forster et al., 2016a; Palm-Forster et al., 2016b). 

 Current Efforts to Incorporate Resident BMP Adoption in Modeling Studies 

Multiple efforts have been made to incorporate the willingness of stakeholders to adopt 

BMPs into water quality modeling (Hassanzadeh et al., 2019; Kalcic et al., 2016; Palm-Forster et 

al., 2016b). The methods of gathering information about potential BMP adoption from 

stakeholders varied in these studies and comprised of mailing surveys to the public, interviewing 

landowners, meeting with conservation staff, operating conservation workshops, and performing 
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conservation auctions. Each of these tools were then used to generate water quality model 

implementation scenarios in diverse ways. In the research performed by Palm-Forster et al. 

(2016b), conservation (reverse) auctions were used to direct BMP funding and application to bids 

from farmers that had the highest ratio of phosphorus reduction to cost of implementation. The 

practices funded by winning bids were the only modeled management practices in tandem with 

known, existing BMPs. This method received very low participation (around 1%) due the 

perceived complexity of the bid submission, ineligibility due to existing BMPs or rental 

agreements, or incapability of submitting a winning bid. 

The most common method of engaging with the community was to host workshops where 

communication of conservation goals and identification of potential levels of BMP implementation 

would be discussed amongst various stakeholders. The research performed by Kalcic et al. (2016) 

included two sets of workshops with stakeholders to identify the most critical management 

practices, develop implementation scenarios, and alter initial BMP performance before the final 

modeling exercise. The stakeholders engaged in this study included mostly government officials 

or non-government organization officials with a few, presumably large-scale farmers. The expert 

opinion of these stakeholders was used in the designation of desired BMP practices and level of 

implementation, along with practice-implementation combinations that they deemed “feasible”. 

Application of BMPs to these projected feasible degrees never achieved enough water quality 

improvement to meet target levels. Hassanzadeh et al. (2019) built upon this work by focusing on 

engagement with local farmers and rural residents on their perceptions of BMP implementation. 

This research also included a post-model survey in which the stakeholders could identify desired 

manners in which the results BMP modeling studies can be presented to them as well as identifying 

other types of information they would like to see from these studies. In both studies the number of 

participants were limited. 

 Conclusions 

It is apparent that a greater level of inclusion with stakeholders is needed to properly allocate 

stormwater management resources. A management approach where governing bodies identify and 

try to impose management approaches can lead to a high level of resistance from landowners. 

Although local conservation experts may have a general sense of what level of management is 

possible, landowners have a higher level of specific knowledge and dominion with regards to their 
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own property. A bottom-up societal approach where the knowledge and concerns of individual 

stakeholders about BMP implementation would give local officials a better since of the required 

outreach and education needed to mitigate NPS pollution. Combining this with a top-down 

modeling approach where the CSAs with watersheds are identified can direct local officials of the 

specific region-BMP combinations that should be promoted. This modeling approach will need 

the capability to simulate the mitigation potential of BMPs over multiple land uses. Not all 

watersheds are solely comprised of agricultural lands and with increasing urbanization, stormwater 

planners will need to be prepared to manage a variety of concerns and understand the differing 

dynamics of urban and rural NPS pollution. 
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3. MATERIALS AND METHODS 

 Study Areas 

This study was conducted in the East Branch – Little Calumet (HUC 0404000104) and Trail 

Creek (HUC 0404000101) watersheds in northwest Indiana. Both the East Branch-Little Calumet 

(EBLC) River and Trail Creek (TC) watersheds are composed of multiple land uses, have 

agricultural and forested headwaters, and drain into developed regions before ultimately reaching 

the southeastern portion of Lake Michigan (Figure 1). Both watersheds are very similar in size and 

land use distribution (Table 1). In 2004, the TC watershed was issued a TMDL for E. Coli, which 

was soon replicated in 2005 in the Portage-Burns Waterway that lies in the northeastern portion of 

the EBLC watershed. The primary contaminants of concern in both watersheds include E. Coli, 

sediment, and nutrients (N & P). 

 

Table 1. Modified land use distribution of EBLC and TC Watersheds from the 

2011 NLCD dataset. 

Land Uses 
EBLC   TC      

Area (ha) Distribution (%)  Area (ha) Distribution (%) 

Water 118.7  0.6  
 

49.7  0.3  

Forest/Wetland 8,334.9  43.5  
 

7,554.5  49.2  

Pasture 883.1  4.6  
 

710.0  4.6  

Cropland 3,843.6  20.1  
 

2,182.0  14.2  

Suburban 2,470.1  12.9  
 

1,751.6  11.4  

Urban 749.3  3.9  
 

682.2  4.4  

Rural Residential 2,445.3  12.8  
 

2,144.1  14.0  

Industrial 104.0  0.5  
 

154.0  1.0  

Commercial 189.9  1.0  
 

112.6  0.7  

Total 19,138.9  100.0  
 

15,340.6  100.0  
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Figure 1. Location of Trail Creek and East-Branch Little Calumet Watersheds. 

 Model Description 

The Generalized Watershed Loading Function (GWLF) is a continuously-simulating, 

combined distributed and lumped parameter watershed model used to quantify runoff, nutrient (N 

and P), and sediment loads from mixed-land use watersheds. The model is considered distributed 

due to the ability to simulate loads generated from multiple land uses, but also lumped as these 

land uses are considered homogenous units with the same biophysical attributes. There is no spatial 

discretization (i.e. no water or mass routing) within the watershed. GWLF operates on a daily time-

step in which precipitation and temperature are used to calculate water balance. The daily water-

balance consists of precipitation, snowmelt, runoff, evapotranspiration, and both current and 

maximum unsaturated zone storage. The standard SCS-CN approach to calculate runoff generation 

and infiltration (Cronshey, 1986). Accumulation of the daily water balance to the monthly scale is 

used to compute monthly runoff and loads of nitrogen, phosphorus, sediment. Surface nutrient (N 

and P) losses in non-urban areas are calculated with the use of export coefficients for dissolved 

nitrogen and phosphorus as well as a sediment coefficient for calculating particulate N and P. 

Surface nutrient losses in urban areas are assumed to be in the solid-phase and use an exponential 

nutrient accumulation and wash-off function similar to the SWMM model. Sediment loads are 
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calculated using monthly erosion and delivery. Erosion is calculated using the USLE algorithm. 

Sediment yield is determined with a sediment delivery ratio that uses the daily transport capacity 

and available mass of eroded sediment. Subsurface loads are modeled with a lumped parameter 

approach where infiltrating water is multiplied by a groundwater nutrient coefficient. (Haith et al., 

1992). 

The GWLF-E model is an enhanced version of the GWLF model that was used in this study. 

The enhancements to the GWLF model included the ability to calculate loads from streambank 

erosion, agricultural tile drainage, and farm animals (including pathogen loads) as well as the 

effects of BMPs on load mitigation. It is also housed in the MapShed tool (Evans and Corradini, 

2012) which allows the user to quickly import watershed boundary, land use, elevation, soils, 

hydrography, and weather data to build an input file and operate the model. Load reductions 

through the use of cropland and pastureland BMPs are calculated using nitrogen, phosphorus, and 

sediment reduction coefficients for the proportion of the area treated. Vegetated buffer strips (i.e. 

grass strips) and other stream practices also use nutrient and sediment reduction coefficients to the 

proportion of stream length treated. Animal waste management reduces nutrient and pathogen 

loads through the use of reduction coefficients applied to the percent of the animal population 

treated. Load reductions through the use of urban BMPs are calculated from the depth of rainfall 

captured (i.e. runoff reduction) per each acre of impervious cover and a dynamic pollutant 

reduction coefficient. The GWLF-E model has also been incorporated into the Stroud Water 

Research Center’s WikiWatershed initiative (https://wikiwatershed.org/model/).    

 Input Data 

3.3.1 Data Collection 

The WikiWatershed’s Model My Watershed web application that contains GWLF-E was used to 

generate the inputs for the visual-basic GWLF-E model from MapShed. The USGS HUC-10 

boundaries for the TC and EBLC watersheds were created from the IndianaMap Layer Gallery 

(https://maps.indiana.edu/layerGallery.html). The Model My Watershed application collected data 

for all of the necessary inputs (e.g. weather, soil, hydrography, land cover, elevation, etc.) and 

additional inputs such as animal populations and point-source discharge from multiple government 

https://wikiwatershed.org/model/
https://maps.indiana.edu/layerGallery.html
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datasets. Once the Watershed Multi-Year Model (i.e. GWLF-E) was run, the GWLF-E input file 

was generated and exported for use in the visual-basic model.  

Multiple datasets were modified and/or replaced with site-specific information, such as 

loads generated from different resident groups or data on land use practices. Daily local weather 

data including precipitation, maximum temperature, and minimum temperature were taken from 

the NOAA National Climatic Data Center (www.ncdc.noaa.gov); 24 years of data (1995-2018) 

were collected from 13 stations in Laporte and Porter counties (reference Appendix A). Hydrologic 

soil group and soil erosivity data for the state of Indiana were from the Soil Survey Geographic 

(SSURGO) database. The National Land Cover Dataset (NLCD) 2011 and a 1:24,000-resolution 

NHD Hydrography dataset were collected from the NRCS Geospatial Data Gateway 

(https://datagateway.nrcs.usda.gov/GDGOrder.aspx). Measured daily streamflow data came from 

the United States Geological Survey (https://waterdata.usgs.gov/nwis) for the Little Calumet at 

Porter gage (Gage #4094000, 1995-2018), Trail Creek at Michigan City Harbor (Gage #4095380, 

1995-2018), Trail Creek at Michigan City (Gage #4095300, 2007-2018). Parcel data for the 

watersheds were from the LaPorte and Porter County GIS departments and orthoimagery was from 

the Indiana Spatial Data Portal (http://gis.iu.edu/). Other GIS data including address points, street 

centerlines, incorporated area boundaries, and the National Agricultural Statistical Service (NASS) 

cropland data layer (CDL) were collected from the IndianaMap Layer Gallery. The monthly 

evapotranspiration cover coefficients, monthly daylight hours, and groundwater recession and 

seepage coefficients were set to match the GWLF model used in the 2003 Trail Creek Escherichia 

Coli TMDL report (TEI, 2003). 

3.3.2 Classification of Resident Groups and Land Uses 

The 2011 NLCD dataset was used to categorize land uses within the two watersheds. The 

land use classes in the NLCD dataset were reclassified in a manner similar to (Liu et al., 2015b) 

for input into the GWLF-E model. Deciduous forest, evergreen forest, mixed forest, and 

shrub/scrub were reclassified as forest. Woody wetlands and emergent herbaceous wetlands were 

reclassified as wetlands. Developed open space and developed low intensity were reclassified as 

low density residential. Developed medium intensity, developed high intensity, and barren land 

were reclassified as high density residential. Grassland/herbaceous was reclassified as open land. 

http://www.ncdc.noaa.gov/
https://datagateway.nrcs.usda.gov/GDGOrder.aspx
https://waterdata.usgs.gov/nwis
http://gis.iu.edu/
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Aerial photographs and OpenStreetMap (https://www.openstreetmap.org) were used to identify 

and demarcate industrial and commercial areas.  

A rural residential land use class was created to model nutrient and water processing in this 

unique land use. This was accomplished by removing all address points from the 2015 Indiana 

Department of Homeland Security GIS address dataset that were within incorporated municipal 

areas (i.e. cities or towns). Address points without an owner record or current address were 

removed. Within each watershed, 60 rural households were selected at random to measure the area 

of human influence (i.e. area that is mowed, enclosed by fence or tree line, house, driveway, etc.) 

(Figure 2). The average over the 60  households in the TC watershed was 1.61 acres and 2.37 acres 

in the EBLC watershed. For consistent classification of rural residential properties, a 2-acre buffer 

was generated around each household in ArcGIS to delineate the area of human influence. The 

undisturbed portion of the property kept its original NLCD classification while the area of human 

influence was reclassified as rural residential. After the model scenarios were run, these land use 

classes were then grouped into 5 resident groups including urban (high-density residential), 

suburban (low density residential), rural residential, cropland, and pastureland to quantify the 

differences in load mitigation from resident knowledge and likely adoption of BMPs. The 

remaining land uses were grouped as forest/wetland (includes open land), water, industrial, or 

commercial (Reference Appendix A). 

 

 

Figure 2. Example delineation of rural residential property 

https://www.openstreetmap.org/
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 Calibration and Validation 

Model calibration was performed using two interior gages, the Little Calumet River at Porter, 

IN (USGS #4094000) gage for the EBLC watershed and Trail Creek at Michigan City (USGS 

#4095300) gage for the TC watershed. Calibration the TC and EBLC watersheds was not 

performed using the gages at the watershed outlets because of inconsistencies at each. The Trail 

Creek at Michigan City Harbor (USGS #4095380) gage had recorded multiple periods of reverse 

flow from Lake Michigan each year on record which lasted for several months. The Portage-Burns 

Waterway at Portage Indiana (USGS #04095090) gage was within a canal that connected the 

EBLC watershed with the adjacent Salt Creek and thereby collected the combined streamflow 

from both watersheds. Calibration was implemented at the interior watersheds before performing 

a parameter transfer to the full watersheds.  Due to an insufficient number of water quality samples, 

calibration was performed based only on streamflow.  

The EBLC watershed was calibrated from 1995-2018 including 2 years of model spin-up 

(1995-1996), 12 years for calibration (1997-2008), and 10 years for validation (2009-2018). The 

Trail Creek watershed gage had a shorter period of record and was run from 2007-2018 including 

1 year of model spin-up (2007), 6 years of calibration (2008-2013), and 5 years of validation (2014-

2018). First a sensitivity analysis was performed on the hydrologic parameters in the GWLF-E 

model. These parameters included the percent impervious cover of urban land uses (% Imp), curve 

number of urban pervious surfaces (CNP), curve number of rural land uses (CNR), the potential 

evapotranspiration cover coefficient (Ket), soil available water capacity (AWC), and groundwater 

recession coefficient (GWR). Sensitivity analysis revealed that Ket and AWC were the most 

sensitive parameters for matching streamflow. Both watersheds were calibrated on an average 

monthly timescale for streamflow by altering the most sensitive parameters in the sensitivity 

analysis (reference Appendix B) to maximize both the coefficient of determination (R2) and Nash-

Sutcliffe Efficiency (NSE).  Calibration and validation results of both the EBLC and TC 

watersheds were determined to be of satisfactory (0.60 < R2 < 0.75; 0.50 < NSE < 0.70) to good 

(0.75 < R2 < 0.85; 0.70 < NSE < 0.80) performance (Moriasi et al., 2015) for both the R2 and NSE 

performance measures as shown in Table 2. 
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Table 2. Calibration performance measures for the TC and EBLC watersheds. 

Watershed Statistic Aim Calibration Validation 

TC 
R2 >0.6 0.83 0.69 

NSE >0.5 0.78 0.61 

EBLC 
R2 >0.6 0.73 0.70 

NSE >0.5 0.71 0.54 

 LaPorte and Porter County Resident Surveys 

In spring 2018, a survey assessing the awareness and likeliness to adopt stormwater BMPs 

was sent to 2,866 residents living within the census block groups of the TC and EBLC watersheds. 

Residents were asked to self-identify which of the resident groups (e.g. Urban, Suburban, 

Agricultural, or Rural Residential) they belong to and then specify the degree of familiarity 

(“knowledge”) as well as how likely (“likely”) they are to adopt each of the 20 management 

practices listed within the next calendar year (reference Appendix C for the survey instrument). 

The 20 BMPs that were mentioned in the resident surveys included practices for the household, 

community, and agricultural (farm and animals) landscapes within both watersheds. Both the 

knowledge and likeliness portions of the survey were constructed with a 4-point Likert Scale 

response. Residents who were deemed knowledgeable or likely to adopt are those who choose the 

responses in green in Figure 3. Those who suggested some familiarity with the BMP were 

considered unknowledgeable they are assumed to have heard of the BMP but have little knowledge 

of the functioning of the practice or the needed considerations for adoption.  

 

 

 

Figure 3. Survey response options and identification framework of residents who a) have 

knowledge of or are b) likely to adopt a BMP. 
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 BMP Implementation Scenarios 

3.6.1 Overview 

The implementation of BMP scenarios within the GWLF-E model was aimed to capture 

potential levels of sediment, pathogen, and nutrient reductions based on local landowner 

knowledge and willingness to adopt BMPs. Only practices that can adopted by individual 

landowners were used in the model. The adoption of community scale practices (e.g. wet ponds, 

wetland basins, etc.) were left out of the model due to the anonymity of the survey preventing us 

from determining if there were enough landowners willing to adopt multi-property within the same 

neighborhood. BMPs applicable to the model were separated into urban practices (rain barrels, 

rain gardens, and permeable pavement) and agricultural practices (composting manure, no-till, 

cover crops, grass strips, and rotational grazing). The model was calibrated by matching observed 

streamflow (i.e. gage records) and modeled discharge at the gage. This calibrated, baseline model 

was generated without currently implemented BMPs. While there are BMPs installed, the majority 

of them are on private property and not easily identifiable. Also, by assuming a baseline with no 

BMPs, I was able to assess relative reductions.  

Records of no-till and cover crops were available from the 2014-2018 Indiana State 

Department of Agriculture tillage transects (https://www.in.gov/isda/2383.htm). The records from 

these transects were used as an additional implementation scenario for cover crops and no-till for 

comparison to potential BMP adoption as noted in the survey. Model scenarios were designed to 

test the benefit of multiple levels of BMP implementation for both a traditional modeling approach 

(i.e. ascending tiers of implementation) and a survey approach (i.e. knowledge and likely adoption 

of BMPs). Each of the practices were then applied to treat 25%, 50%, 75%, and 100% of the 

applicable land area, streambank mileage, or animal population (Bosch et al., 2013). Knowledge 

and likely adoption of BMPs were included as scenarios by applying each practice to a percent of 

land coverage based on the proportion of survey respondents who identified themselves as 

knowledgeable or likely to adopt that BMP. The limitation of this approach is that the proportion 

of respondents is not equal to land area, however the proportional increase is representative of 

landowner preferences. The survey results for both watersheds were aggregated to create a larger 

sample size for BMP adoption. 

https://www.in.gov/isda/2383.htm
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3.6.2 BMP Implementation & Isolated Routine Modification 

Rural BMPs including no-till, cover crop, and rotational grazing practices were 

implemented by recording the percent of cropland or pastureland to which the practice was applied. 

Manure composting was applied to a percent of both the non-poultry and poultry animal 

populations in the watershed. Vegetated (grass) buffer strips were applied to a specific length of 

streams in agricultural land. The efficiency of agricultural BMPs was set to the default value from 

the MapShed (Evans and Corradini, 2016) or Model My Watershed 

(https://wikiwatershed.org/model/) versions of GWLF-E. Urban BMPs were implemented as a 

retrofit BMP capable of capturing 1 inch of rainfall. For each of the urban BMPs, the reduction 

coefficient was adjusted to match the average recorded contaminant reduction of that practice 

within the International Stormwater BMP Database (Liu et al., 2016b). Rain barrels were applied 

to ¼ (1 downspout) of the rooftop area within the watershed based on an idealized low-density or 

high-density residential unit (Yaoze Liu, Ahiablame, et al., 2015). Rain gardens were designated 

to treat runoff generated from ¾ of rooftop area. Although these practices were not modeled in 

series, rain gardens and rain barrels were designated in a manner in which any resident could adopt 

both practices. Porous pavement was modeled to include impervious areas of the idealized low-

density residential or high-density residential unit. 

The GWLF-E model has multiple routines to simulate loading mechanisms that don’t 

distribute pollutant loads to the individual land uses. These routines include loads from farm 

animals, tile drainage, streambank erosion, groundwater, point sources, and septic systems. To 

understand the full effect of BMP adoption by the resident groups, these routines were attributed 

to the land use classes. Farm animal load was attributed to cropland and pastureland by area- 

weighting the load. Tile drainage was assumed to exist only in cropland regions and load 

reductions from no-till and cover crop practices were assumed to reduce tile-drainage loads. 

Streambank erosion loading was weighted among all land uses by the proportion of flow generated. 

Groundwater loads were area-weighted among all land uses. Point source loads were area-

weighted among the developed land use classes (i.e., urban, suburban, industrial, and commercial). 

Septic systems were assigned to rural residential households. 

  

https://wikiwatershed.org/model/
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4. RESULTS 

 Influence of Land Uses and BMPs on Nonpoint Source Loads 

Cropland regions in the TC and EBLC watersheds generate around 67 kg/ha of nitrogen, 

over 4 times greater than any other land use (Table 3). With cropland comprising ~15-20% of total 

watershed area, farming practices are generating 75% and 54% of the total nitrogen load in the 

EBLC and TC watersheds, respectively (Figure 4). Phosphorus within both watersheds is more 

evenly distributed between non-rural residents (20.2% TC; 29.0% EBLC), rural residents (21.0% 

TC; 18.7% EBLC), pasturelands (31.4% TC; 18.6% EBLC) and cropland (14.2% TC; and 36.1% 

EBLC). Pastureland has the highest total phosphorus (TP) loading rate at 3.7 kg/ha in the EBLC 

and 9.7 kg/ha in the TC watersheds annually, over 2 times and 4 times that of any other land use 

in each watershed, respectively. The primary source of sediment loads varies amongst the two 

watersheds. Cropland regions in the EBLC watershed generate 39.2% of the load and have the 

highest loading rate (1,200 kg/ha). The TC watershed has most of its sediment load (42.2%) 

originating from urban and suburban residents, which generates 2,100 kg/ha/y.  

Adoption of stormwater BMPs had varying levels of effect on reducing the contaminant 

loads based on different BMP-contaminant combinations. With the majority of watershed TN 

loads originating from cropland regions, cover crops (14.4% TC; 20.6% EBLC) and no-till (5.5% 

TC; 7.8% EBLC) showed the greatest TN reduction levels when then were implemented at 100% 

(Figure 4; Table 5). The use of grass filter strips near agricultural streams showed slight (~3%) 

reductions in watershed TN. Urban practices including rain barrels, rain gardens, and porous 

pavement showed almost no watershed TN improvement (< 0.3% reduction). 

Agricultural BMPs also show the greatest potential for TP mitigation. Grass filter strips show 

the greatest TP reduction potential in the TC watershed (8.4%) and second greatest reduction in 

the EBLC watershed (9.6%). Cover crops and no-till are amongst the most effective practices for 

TP mitigation in the EBLC watershed (15.9% & 9.2%, respectively), but were less effective in the 

TC watershed (6.0% & 3.5%, respectively). The remaining practices show <3% reductions of 

watershed TP. 

Urban BMPs were shown to have the greatest sediment reduction potential, especially in the 

TC watershed. Porous pavement (12.0% TC; 12.7% EBLC) and rain gardens (8.2% TC; 8.5% 
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EBLC) are the greatest sediment load reducers. No-till is the most effective agricultural practice 

for sediment mitigation (3.4% TC; 8.3% EBLC). No-till, cover crops, and grass strips have half 

the reduction potential in the TC as compared to the EBLC watershed. Rain barrels are seen to 

have slight (2.7-2.8%) watershed sediment reduction capabilities. 
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Table 3. Baseline annual sediment and nutrient loads from the Trail Creek and East Branch Little Calumet River watersheds. 

Land Uses 

EBLC   TC 

Area 

(ha) 
TN (kg) TP (kg) 

Sediment 

(x10^3 kg) 
 Area 

(ha) 
TN (kg) TP (kg) 

Sediment  

(x10^3 kg) 

Water 118.7 0.0 0.0 0.0  49.7 0.0 0.0 0.0 

Forest/Wetland 8,334.9 27,170.9 1,124.5 2,329.7  7,554.5 37,029.7 968.4 1,969.6 

Developed 3,513.3 19,403.8 3,572.8 3,282.4  2,700.3 26,604.6 6,350.1 5,613.6 

Rural Residential 2,445.3 27,635.7 3,299.5 1,104.0  2,144.1 36,688.9 4,597.8 2,594.1 

Pasture 883.1 13,047.8 3,275.1 579.7  710.0 24,563.3 6,876.3 516.8 

Cropland 3,843.6 257,972.4 6,372.6 4,709.0  2,182.0 145,864.3 3,110.4 2,593.3 

Total 19,138.9 345,230.6 17,644.5 12,004.8   15,340.6 270,750.6 21,903.1 13,287.4 

          

Land Uses 

EBLC   TC 

Area 

(ha) 

TN 

(kg/ha) 

TP 

(kg/ha) 

Sediment 

(x10^3 kg/ha) 
 Area 

(ha) 

TN 

(kg/ha) 

TP 

(kg/ha) 

Sediment (x10^3 

kg/ha) 

Water 118.7 0.0 0.0 0.0  49.7 0.0 0.0 0.0 

Forest/Wetland 8,334.9 3.3 0.1 0.3  7,554.5 4.9 0.1 0.3 

Developed 3,513.3 5.5 1.0 0.9  2,700.3 9.9 2.4 2.1 

Rural Residential 2,445.3 11.3 1.3 0.5  2,144.1 17.1 2.1 1.2 

Pasture 883.1 14.8 3.7 0.7  710.0 34.6 9.7 0.7 

Cropland 3,843.6 67.1 1.7 1.2  2,182.0 66.9 1.4 1.2 

Total 19,138.9 18.0 0.9 0.6   15,340.6 17.6 1.4 0.9 
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Figure 4. Quantification of a) the proportion of loads from each land use and b) the reduction 

capacity of the most effective cropland BMP (cover crops), urban BMP (porous pavement), and 

streambank BMP (grass strips). 
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Table 4. Applicable treatment area for each BMP within the Trail Creek and East Branch Little 

Calumet River watersheds. 

BMP Type 
EBLC       TC            
Land use 

Area (ha) 

Treatment 

Area (ha) 

Fraction of 

Land use   

Land use 

Area (ha) 

Treatment 

Area (ha) 

Fraction of 

Land use 

Rain Barrel 5664.7 268.9 0.05  4577.9 220.5 0.05 

Rain Garden 5664.7 806.6 0.14  4577.9 661.4 0.14 

Porous 

Pavement 5664.7 1301.1 0.23  4577.9 1059.2 0.23 

No-Till 3843.6 3843.6 1.0  2182.0 2182.0 1.0 

Cover Crops 3843.6 3843.6 1.0  2182.0 2182.0 1.0 

Grass Strips 186.1 186.1 1.0  130.7 130.7 1.0 

Rotational 

Grazing 883.2 883.2 1.0  710.0 710.0 1.0 

Manure 

Compost 883.2 883.2 1.0   710.0 710.0 1.0 

 Survey Responses 

From the 2,866 surveys that were mailed to residents within the two watersheds, minus the 

386 invalid addresses, there were 1,066 valid responses received (43% response rate). The results 

show that residents within the two watersheds have a higher knowledge level and likely adoption 

rate for agricultural practices (40-47% knowledge; 18-28% likely) as compared to the individual 

household practices (13-17% knowledge; 4-8% likely) typically seen in urban or suburban areas 

(Figure 5). Urban residents had considerably higher knowledge levels (62.9%) and likely adoption 

rates (26.1%) for rain barrels than for other urban BMPs. Likely adoption of agricultural BMPs 

had two distinguishable groups. Cover crops, no-till and manure composting were more likely 

(27.8-29.7%) to be implemented than grass strips or rotational grazing (15.1-17.7%) 

Several of the BMPs in the survey were excluded from the model scenarios as they either 

required joint adoption amongst multiple residents (community scale), had no discernable input 

method in the GWLF-E model, or had relatively low levels of likely adoption (Figure 6). 

Community scale BMPs such as wet ponds, wetland basins and swale systems had similar levels 

of knowledge (16.8-17.6%) and likely adoption (6.2-10.4%) as rain gardens. Windbreaks were 

another community practice of which residents were highly knowledgeable (46%) and somewhat 

likely to adopt (16%). 
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Figure 5. Survey results showing the resident knowledge and likely adoption level of 18 different 

BMP types. The red line highlights the boundary between those practices in the survey that were 

used (top) and not used (bottom) in the modeling scenarios. 

 

Figure 6. List of BMPs included in resident survey. Practices in bold were used in the GWLF-E 

model. 
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 Load Reduction Effects of BMP Adoption 

When combined with the survey response rates, most BMPs experience a greater than 50% 

drop in pollutant reduction capacity at the current knowledge level and greater than 70% drop at 

the likely adoption level (reference Appendix F). The relatively higher knowledge and likely 

adoption levels for agricultural BMPs generates increased disparity of nutrient load reduction 

capacity. For example, full implementation of cover crops generates 63 times the TN reduction as 

porous pavement in the EBLC watershed. This number increases to 205 times the porous pavement 

reduction level at the current knowledge level and up to 304 times greater at likely adoption levels. 

Applying cover crops at the current knowledge level reduces more TN than no-till agriculture at 

full implementation. No-till practices have over double the TN mitigation as grass filter strips at 

the knowledge level. When the focus changes to how likely residents are to adopt the practice 

within the next year, the TN mitigation of no-till rises to 3.5-4.4 times the potential of grassland 

filter strips while the difference between cover crops and no-till remains relatively similar.  

Agricultural practices remain more effective at reducing TP than household practices at 

current knowledge and likely adoption levels, but not to the same degree of disparity. The current 

knowledge of grass strips reduces TP to similar levels as no-till in the EBLC watershed but 

becomes the most effective TP mitigator in the TC watershed. As with TN, the lower level of likely 

adoption reduces the TP mitigation potential of grass strips. Manure composting in pastureland 

also shows noticeable benefit compared to urban BMPs when applied at the current knowledge 

level or likely adoption level in the EBLC. This same trend is noticed to a greater extent when 

analyzed for the TC watershed. 

Urban BMPs have greater potential sediment reduction at current knowledge levels, but the 

lower level of likely adoption makes them less effective than agricultural practices (reference 

Appendix F). Model results show that in urban landscapes, rain barrels produce the greatest 

amount of TN, TP, and sediment reduction when applied at the level to which landowners are 

likely to implement. This level of reduction is reached despite having 1/3 the potential treatment 

area of rain gardens and roughly 1/5 that of porous pavement (Table 4). For sediment reduction in 

the EBLC watershed, likely adoption of rain barrels (86.47 x 103 kg reduction) reduces more than 

rain gardens (75.02 x103 kg) and porous pavement (54.30 x103 kg). The trend of rain barrel 

reduction > rain garden > porous pavement exists amongst TN, TP, and sediment where 



 

 

35 

landowners are likely to adopt. The order of effectiveness for urban BMP at the knowledge level 

varies amongst TN (RB > RG > PP), TP (PP > RB > RG), and sediment (RB > PP > RG). 

 Improving Level of Adoption 

Cover crops are the only practice to show over 5% reduction of any nutrient (5.7% TN in 

EBLC) when applied at the likely adoption level (Table 5). Higher levels of adoption are required 

to see notable reduction capacities. Raising the level of likely adoption for cover crops, no till, and 

grass strips (15.1-28.4%) to the current knowledge level (40.4-45.0%) would bring the reduction 

of these 3 practices up to 2.7-7.2% of annual TN and 1.7-4.5% of annual TP in the TC watershed. 

This additional 0.7-2.5% TN reduction and 0.6-2.2% of TP reduction would require 17-25% 

increase in the number of likely adopters. Urban BMPs such as porous pavement and rain gardens 

would reduce an additional 3.5-5.5% of sediment in the TC watershed with an increase in adoption 

from the likely level (3.7-7.5%) to the knowledge level (13.3-17.4%). This additional 10% of likely 

adoption would increase the sediment reduction up to only 4.1-6.0% of the annual watershed load. 

Increasing likely BMP adoption to 50% for most agricultural practices would require 

doubling the number of adopters. Likely adoption of rain gardens and porous pavement would 

need to increase 6.7 and 13.5 times over, respectively. This level of adoption would reduce 

contaminants up to an additional 3-5% at the watershed scale for a select few BMP-contaminant 

relationships. These would include cover crops reducing TN (+4.57% EBLC; +3.2% TC), grass 

strips reducing TP (+3.37% EBLC; +3.21% TC), rain gardens reducing sediment (+3.6% EBLC: 

+3.5% TC) and porous pavement reducing sediment (+5.8% EBLC, +5.5% TC). Over 75% 

adoption would be needed for any BMP-contaminant relationship to add an additional 10% 

reduction at the watershed scale. Reduction of TN by cover crops would achieve this additional 

reduction (up to 15.5%) if another 47.2% of resident agreed to adopt the practice.
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Table 5. Percent reduction of watershed nitrogen, phosphorus, and sediment loads across multiple treatment levels 

EBLC 

 Full Implementation 75% Implementation 50% Implementation Knowledge Likely 

 TN(%) 

TP 

(%) 

Sed 

(%) TN(%) 

TP 

(%) 

Sed 

(%) TN(%) 

TP 

(%) 

Sed 

(%) TN(%) 

TP 

(%) 

Sed 

(%) TN(%) 

TP 

(%) 

Sed 

(%) 

No-Till 7.8 9.2 8.3 5.9 6.9 6.2 3.9 4.6 4.1 3.5 4.1 3.7 2.2 2.6 2.4 

Cover Crops 20.6 15.9 7.2 15.5 11.9 5.4 10.3 7.9 3.6 9.3 7.1 3.3 5.7 4.4 2.0 

Grass Strips 3.3 9.6 6.4 2.5 7.2 4.8 1.7 4.8 3.2 1.4 3.9 2.6 0.5 1.4 1.0 

Rotational Grazing 0.1 0.3 0.2 0.1 0.2 0.2 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.0 

Manure Compost 0.4 1.6 0.0 0.3 1.2 0.0 0.2 0.8 0.0 0.2 0.7 0.0 0.1 0.5 0.0 

Rain Barrel 0.1 0.5 2.8 0.1 0.4 2.1 0.0 0.2 1.4 0.0 0.3 1.7 0.0 0.1 0.7 

Rain Garden 0.3 1.5 8.5 0.2 1.2 6.3 0.1 0.8 4.2 0.0 0.3 1.4 0.0 0.1 0.6 

Porous Pavement 0.3 2.5 12.7 0.2 1.8 9.4 0.2 1.2 6.2 0.0 0.3 1.6 0.0 0.1 0.5 

                

TC 

 Full Implementation 75% Implementation 50% Implementation Knowledge Likely 

 TN(%) 

TP 

(%) 

Sed 

(%) TN(%) 

TP 

(%) 

Sed 

(%) TN(%) 

TP 

(%) 

Sed 

(%) TN(%) 

TP 

(%) 

Sed 

(%) TN(%) 

TP 

(%) 

Sed 

(%) 

No-Till 5.5 3.5 3.4 4.1 2.6 2.5 2.7 1.7 1.7 2.4 1.6 1.5 1.6 1.0 1.0 

Cover Crops 14.4 6.0 3.0 10.8 4.5 2.2 7.2 3.0 1.5 6.5 2.7 1.3 4.0 1.7 0.8 

Grass Strips 2.9 8.4 2.1 2.2 6.5 1.6 1.5 4.5 1.1 1.2 3.5 0.9 0.4 1.3 0.3 

Rotational Grazing 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

Manure Compost 1.0 2.7 0.0 0.7 2.0 0.0 0.5 1.3 0.0 0.5 1.3 0.0 0.3 0.8 0.0 

Rain Barrel 0.1 0.4 2.7 0.1 0.3 2.0 0.0 0.2 1.3 0.0 0.2 1.7 0.0 0.1 0.7 

Rain Garden 0.3 1.2 8.2 0.2 0.9 6.1 0.1 0.6 4.1 0.1 0.2 1.4 0.0 0.1 0.6 

Porous Pavement 0.3 2.0 12.0 0.3 1.5 9.0 0.2 1.0 6.0 0.0 0.3 1.6 0.0 0.1 0.4 



 

 

37 

5. DISCUSSION 

 Targeting of different land uses to reach mitigation goals 

Limiting the watershed load of nitrogen will require a focus on agricultural BMP 

implementation. Annual nitrogen loads generated from cropland regions are more than half of the 

watershed load due to the high level of dissolved N transported through tile drains, which 

contribute 47% and 65% of the total nitrogen load in the TC and EBLC watersheds, respectively. 

The EBLC watershed generates higher tile nutrient loads because it has a higher proportion of flow 

redistributed to tile drains. Tile effluent in the GWLF-E has a consistent nutrient (N and P) 

concentration throughout the watershed and tile flow consists of 50% of the groundwater and 

runoff discharge in the fields in which they are installed (Evans and Corradini, 2012). With the 

majority of soils in the EBLC having moderate infiltration (34.3% hydrologic soil group B) and 

the majority of TC watershed soils having high infiltration (28.3% hydrologic soil group A), 

greater levels of runoff are seen in EBLC.  Planting of non-legume cover crops would be one of 

the more effective approaches to reducing nitrogen loads as they scavenge excess soil nitrogen and 

absorb infiltrated water that would quickly transport dissolved nitrogen into tile drains (SAN,  

2007). Although not included in this study, nutrient management could also be effective in concert 

with other BMPS to decrease excess tile TN loads and has been shown to considerably reduce 

nutrient loads in modeling studies in the Great Lakes region (Bosch et al., 2013; Scavia et al., 

2017). 

Mitigation of phosphorus will require similar, yet slightly varied approaches. Although 

both watersheds generate relatively equal levels of agricultural and urban TP, the EBLC watershed 

has a greater proportion of the load originating from row crop agriculture compared pasture in the 

TC. Animal waste is the greatest source of TP in the TC watershed (30.3% of annual TP load), but 

less of a source in the EBLC watershed (16.6% of annual TP load). With over twice the TP load 

coming from manure in the TC watershed (6,631 kg/yr.) as compared to the EBLC watershed 

(2,922 kg/yr.) despite having 20% less pastureland, manure management strategies are needed in 

the TC watershed. Manure composting proved relatively ineffective at mitigating these loads due 

to high levels of manure generated from non-grazing animals and manure applied to row crop 

agriculture. In the GWLF-E model, mitigation of loads from animal waste management systems 
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(i.e. manure composting) is quantified through the use of a nutrient reduction coefficient to a 

percent of the grazing animal or poultry manure managed (Evans and Corradini, 2012). 

Quantifying the nutrient reduction effects and management of manure for composting is complex 

and would require significant alterations in the model. Manure from pigs, the predominant source 

of manure TP (74-82%) in both watersheds, is more difficult to properly compost as compared to 

other livestock (NRCS, 2009). As pigs are considered non-grazing animals in the model, 

composting isn’t an applicable practice for their waste. Carbon-to-nitrogen ratios common in 

compost vary from different animals and compost is typically applied to meet crop N demands, 

without managing P levels (Augustin & Rahman, 2016). Manure also needs to be protected in 

compost piles and applied in a manner where nutrients won’t leach to nearby waterbodies. With 

the high levels of animal manure in these watersheds, manure compost could be an effective way 

to manage nutrients, but limitations of the model may not of properly reflected their importance. 

Urban landscapes and rural residential households within the TC and EBLC watersheds 

combined to generate relatively equal levels of phosphorus (39-50% of watershed TP) as cropland 

and pastureland combined (46-55% of TP). Management of urban pollutant sources thus requires 

equal levels of attention as agricultural practices. Point source loads from wastewater treatment 

facilities, industrial areas, and trailer parks generate 8.2-14.1% of watershed TP and is a greater 

contributor of phosphorus (3089 kg/yr.) than row crop agriculture (2632.29 kg/yr.) in the TC 

watershed. Other modeling studies that have quantified the benefits of BMP implementation at the 

watershed scale have typically focused on the use of only row crop agriculture or livestock 

management practices (Chiang et al., 2010; Merriman et al., 2019; Van Liew et al., 2013) including 

those in the Great Lakes region (Bosch et al., 2013; Scavia et al., 2017). In the research performed 

by Bosch et al. (2013), the Maumee River watershed had limited (11%) urban cover, but only a 

general level of point source reduction (25% of effluent rates) was considered. The Great Lakes 

region still has a high level of combined sanitary and stormwater sewerage (EPA 2004), so 

nutrients from stormwater runoff is a component of wastewater treatment point sources. The use 

of urban BMPs could further reduce point source discharge but are not applied in these studies. 

This phenomena couldn’t be quantified in the GWLF-E model as urban BMP reductions didn’t 

route through the stormwater network and point sources were considered a fixed load. Septic tanks 

in the TC and EBLC watersheds generated 10.8-16.6% of the total TP load. The effects of septic 

tanks, which we allocated to rural residents, on watershed scale nutrient loading has not been 



 

 

39 

included in other BMP studies. While there are no BMPs to treat septic tanks effluent from faulty 

systems, it is an important factor for nutrient and pathogen loads. The Trail Creek Watershed 

Management Plan (ASI, 2007) included goals for maintenance and eventual replacement of septic 

tanks with sanitary sewers with an expected 55% TN reduction.  

 Reducing sediment loads within both watersheds will require a more integrated approach 

that primarily focuses on BMPs in urban, suburban, and rural residential landscapes as well as row 

crop agriculture. Porous pavement and rain gardens generating the greatest sediment reduction 

(8.2-12.7%) shows the importance of urban BMPs in watershed scale treatment. Most urban BMP 

modeling studies have focused site scale treatment (Gao et al., 2015; Jia et al., 2012). In the 

research performed by Liu et al. (2016b), quantification of the nutrient and sediment reduction 

from only the use of urban practices for the TC watershed was performed. This research suggesting 

that 41% of TKN, 36% of TP, and 57% of TSS loads could be mitigated from optimized practice 

implementation. Our research builds upon this previous work by modeling BMP treatment in both 

urban and agricultural land uses to determine the most effect treatment approaches.  

The majority of sediment loads in the EBLC (76.6%) and TC (88.7%) watersheds come 

from streambank erosion. Because the quantification of streambank erosion in the GWLF-E model 

is generated from an isolated routine and not land use dependent (Evans et al., 2003), sediment 

loads were allocated to land uses based on runoff volume generation. The capacity of urban 

practices to capture runoff allows for greater sediment mitigation than cropland practices. Since 

the TC watershed has a greater proportion of developed landscapes and lower amount of cropland 

runoff than the EBLC watershed, urban BMPs were of greater importance in sediment mitigation 

at the watershed scale. Using runoff volume to allocate streambank erosion to individual land uses 

might not be reflective of actual watershed conditions. This approach assumes that runoff in each 

land use has the same streambank erosion potential. The lack of runoff reduction quantified in the 

GWLF-E model limits the ability of agricultural BMPs to limit streambank erosion. For example, 

cover crops can promote infiltration and absorb shallow groundwater, which would reduce the 

amount of runoff that would erode the stream (SAN, 2007). Streambank erosion is dependent on 

factors such as stream width, bank height, bank slope, soil bulk density, and bank cover (NRCS, 

1996). Headwaters in the TC and EBLC watershed are primarily in forest or row crop agricultural 

land uses. Forested streams have high levels of vegetated riparian cover that would lower 

streambank erosion (Wynn et al., 2004). Agricultural streams in these watersheds are primarily 
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drainage ditches that would receive flow from tile drains. With little vegetative cover and steep 

banks, rapid response to storms in these ditches can lead to bank failures (Little et al., 1982). 

Downstream reaches in these watersheds are primarily urban, so the streams are wider and 

armored. Urban development has covered natural streams with impervious material and replaced 

them with storm sewerage. High levels of runoff rapidly transported to streams through sewerage 

creates bank-full flow that can lead to large amounts of stream erosion (Walsh et al., 2005; Dunne 

and Leopold, 1978). 

 Effects of Resident Knowledge and Likely Adoption Levels on BMP Performance 

The implementation of BMPs at current knowledge and likely adoption levels substantially 

decreased watershed scale nutrient and sediment loads as compared to full implementation. Rural 

BMPs reached 40% of their potential reduction while urban practices only reach 20% of their full 

implementation reduction potential when applied at knowledge levels. Likely adoption of BMPs 

reduced rural and urban BMPs to 30% and 8% of their reduction potential. Only rain barrels had 

high enough resident knowledge and likely adoption levels to reach 50% of its maximum reduction 

capacity.  

Although rain barrels are a relatively inexpensive and easily available form of stormwater 

capture, limited treatment areas and high degree of user management have rendered this practice 

relatively ineffective (Jennings et al., 2013; Roy et al., 2014). The high level of acceptance for rain 

barrels made them more effective at reducing nutrient and sediment loads than rain gardens and 

porous pavement in most categories despite having only a fraction of their reduction potential. 

This shows that a critical need for educating residents about urban practices other than rain barrels. 

Several of the neighborhood practices such as wet ponds, wetland basins, and swale systems can 

treat larger areas of land and had more favorable feedback in our survey than rain gardens and 

porous pavement. Inclusion of these community practices should be the focus of future work in 

these watersheds. 

The use of cover crops showed the greatest level of nutrient mitigation when both knowledge 

and likely adoption were considered. In their modeling study, Bosch et al. (2013) also showed that 

cover crops had the greatest nutrient reduction potential of any individual agricultural practice 

when implemented at feasible (25% implementation) and full adoption levels in the Western Lake 

Erie Basin. No-till practices were shown to have the greatest level of sediment reduction potential 
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at both full implementation and resident adoption levels. While both cover crops and no-till both 

received around 28% levels of likely adoption and 45% knowledge levels, tillage transects from 

the Indiana State Department of Agriculture showed 67% and 58% no-till implementation and 

only 9% and 19% cover crop implementation in the EBLC and TC watersheds, respectively. The 

low levels of knowledge and likely adoption in the survey compared to estimated transect data 

may suggest that farmers who already employ no-till practices responded as unlikely to adopt or 

were unable to adopt the practice. Cover crops would experience this confliction differently as 

those likely to adopt would be in excess of those currently implementing the practice. If tillage 

transects hold true to field conditions, no-till would be much closer to its theoretical maximum 

adoption level and adoption of cover crops would be of increased importance in both watersheds. 

Although farm owners were able to identify the practices that they currently implement, or those 

that they will likely implement, there was no information collected pertaining to the acreage that 

the farmer operates, the fraction of cropland treated, or the type(s) of cover crops implemented. 

Without this information, all farmers were assumed to operate equal areas of cropland and the 

same composition of cover crops were used (Evans and Corradini, 2012). This data can be used to 

quantify the effects of BMP treatment in relation to disproportional contaminant loads seen across 

agricultural landscapes.  

BMPs that show higher levels of load reduction when applied beyond likely adoption levels 

will be of more importance. With the level of likely adoption showing little reduction capability, 

it seems more apparent that increased education and assistance for adopting BMPs are needed to 

see tangible reductions. Raising the levels of likely adoption up to the knowledge level for any 

individual BMP was shown to have limited effect at the watershed scale. The additional TN 

reduction of 3.6% (cover crops), TP reduction of 2.7% (cover crops) and sediment reduction of 

1.2% (porous pavement) resulting from the increase in likely adoption shows that improving 

beyond current knowledge levels is needed. Raising adoption of cover crops or porous pavement 

to the point where over 10% reduction of TN, TP, and sediment can be achieved would require 

implementation to 75% of the treatable area. An additional 47-71% of residents agreeing to adopt 

these practices for a 10% increase in contaminant reduction would be an unlikely and relatively 

inefficient course of action. Increasing the adoption of any BMP is expected to become more 

difficult as the practice, or practices with the same treatment area, become more prevalent. 
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Expanding the current level of adopters will require engagement with landowner to identify 

joint conservation goals and resolve concerns they have with BMP adoption. Farmers and 

landowners have shown more desire to protect the natural environment (i.e. stewardship) and more 

recognition of the benefits of BMPs, but limited amounts of adoption are still being seen (Smith 

et al. 2007; Greiner et al. 2009; Kalcic et al. 2014; Gao et al. 2018). Concerns have been shown to 

differ amongst rural and urban residents. Farmers are worried about maximizing the productivity 

and profitably of their farming practices while combating rising input costs, increasing 

environmental regulation, and increased competition (Greiner et al., 2009). Adopting practices 

such as cover crops will require input cost and practices such as grass strips or converting 

agricultural land to grassland requires capital losses (i.e. opportunity costs). Funding exist for these 

types of projects through programs such as EQIP or CRP and while they are not the primary 

motivating factor, it is an important way of promoting BMP adoption (Kalcic et al., 2014). Urban 

residents are concerned with being able to adopt and maintain practices. Homeowners in 

residential neighborhoods have shown concerns about practice adoption breaking homeowner 

association’s regulation and the suitability of their property for implementing the practice (Brown 

et al., 2016; Gao et al., 2018). Furthermore, the research performed by Gao et al. (2018) showed 

that landowners were unsure if they had the time and capacity to install and maintain the practice. 

Farmers and homeowners also both showed concern with government control and objectives of 

conservation programs as well as their ability to deal the complex barriers that limit BMP adoption 

and hinder integration of conservation knowledge (Chaffin et al., 2016; Dhakal & Chevalier, 2017; 

Roy et al., 2008). While the anonymity of the survey in this project was meant to encourage 

landowners in responding without fear of being isolated as a high contributor of contaminants, 

research has also shown that citizens are supportive in identifying and funding treatment of these 

disproportionally higher load generating properties if it means improving water quality regionally 

(Kalcic et al., 2014). Working with this information would better direct our stormwater modelling 

efforts in directing BMP implementation to obtain the greatest level of treatment with limited 

resources. 

This research adds to the field of water quality modeling by incorporating the willing adoption 

of homeowners to implement BMPs to a large extent across a watershed scale. While we couldn’t 

delve to the levels of social norms and values due to the physical capacity of models to incorporate 

this field of research, identifying likely adoption and knowledge levels of the individual residents 
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gives us a more practical sense of our current capacity and future limitations of meeting water 

quality goals. The results show that combinations of BMPs across multiple land uses that both 

target the primary contaminants of concern and are supported by the local community will be 

needed to meet watershed TMDL goals (Scavia et al., 2017). TMDL planners will need to consider 

the level of concern for each contaminant when it comes to BMP selection as well as the tradeoffs 

and likelihood of adoption for each BMP-contaminant combination. In the TC and EBLC 

watersheds, sediment pollution is more of a current concern than nutrient pollution, so prioritizing 

adoption of residential practices (e.g. porous pavement and rain gardens) as well as no-till 

agriculture will yield the most benefit. Although there would be a greater sediment reduction from 

choosing no-till agriculture over cover crops, this would come at the cost of reducing potential TN 

and TP mitigation by half if only one of the BMPs could be implemented in full. If nutrient 

mitigation became more of an issue, selecting BMPs such as cover crops and grass strips in 

agricultural areas and porous pavement and rain gardens for households would provide the most 

benefit at the watershed-scale, but may not for the individual resident group. 
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6. CONCLUSIONS 

Meeting water quality goals will require a high level of BMP implementation that applies 

effective conservation practices to high pollutant source areas across the watershed. Landowners 

play a key role in meeting watershed goals through the implementation of BMPs. Incorporating  

resident willingness to adopt BMPs is thus a critical component in watershed modeling efforts to 

identify the water quality improvement potential of these practices. This project combined the 

results of a BMP adoption survey with the GWLF-E watershed model to quantify nutrient and 

sediment loads in Trail Creek and East-Branch Little Calumet River watersheds as well as the 

effectiveness of multiple practices in reducing NPS loads amongst different resident groups. Row 

crop agriculture was the primary source of watershed TN (53.9-74.7% of annual) while urban and 

rural residents generated the most sediment (36.5-61.8%). Phosphorous loads were more equally 

distributed amongst multiple land uses. Full implementation of individual BMPs showed only 

limited effectiveness in combatting NPS loads. Cover crops were shown to be the most effective 

practice at reducing watershed TN (14.4-20.6%) and TP (6.0-15.9%) loads. The greatest level of 

annual sediment load reduction was seen with porous pavement adoption (12.0-12.7%). 

Application of BMPs to current knowledge levels reduced the effectiveness of these practices 

down to 6.5-9.3% TN and 2.7-7.1% TP reduction for cover crops and 1.6% sediment reduction. 

Likely adoption of cover crops generated 4.0-5.7% TN and 1.7-4.4% TP reduction, while porous 

pavement showed only 0.4-0.5% watershed scale sediment reduction. 

Improving resident knowledge and likely adoption of BMPs will be needed to meet water 

quality goals. Farmers had moderate levels of knowledge (40-47%) and with practice such a no-

till, cover crops, manure composting or rotational grazing. Urban residents were less familiar with 

BMPs as only 13-18% identified having knowledge of porous pavement, rain gardens, or wet 

ponds. Likely adoption of these practices was low amongst farmers (15-30%) and extremely low 

for urban residents (4-8%). Watershed planners will need to understand the motivations and 

concerns that affect landowner decision-making process to apply these practices with the goal of 

increasing adoption to levels that generate needed water quality benefits. Clarity with the funding 

allocation process as well as presenting clear watershed goals to the community will yield 

increasing adoption. Rain barrels are a simple, low-cost BMP that are commonly used by local 

officials to present stormwater management to the community. With this outreach, urban residents 
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were more knowledgeable (63%) and likely to adopt (26%) rain barrels than any other urban 

practice. This higher willingness to adopt made rain barrels more effective than porous pavement 

at knowledge and likely adoption levels, despite being a relatively ineffective practice. Educating 

the community about practices other than rain barrels will hopefully yield similar results with more 

effective practices. 

Future work in this research should be directed at engaging with the local community to both 

inform citizens about sustainable stormwater management and approaches to improve current 

conditions. Collecting more information about the locations of current and potential BMP adoption 

is also important to quantify specific, field-scale benefits that can collectively reduce watershed 

scale NPS loads. With the quantification of field scale benefits, calculating the cost-effectiveness 

of BMPs will also help with allocating funds to help residents adopt these practice. This can help 

watershed planners to direct funds to the practices that would best improve water quality in Lake 

Michigan. 
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APPENDIX A.  GWLF-E INPUT DATA 

Land Use Reclassification 

 Small and large agricultural landscapes were aggregated by first identifying parcels owned 

by the same individual or company. If the sum of all their properties categorized as hay/pasture 

and cropland was less than 50 acres then those properties were labeled as small agricultural, and 

vice versa for large agricultural. 

 

 

Figure 7. Reclassification of NLCD Land Uses for model input and quantification of resident 

group pollutant loads. 
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Landscape Imperviousness and Soil Properties 

The Watershed Multi-Year Model (WMYM) in the Model My Watershed (MMW) is a 

web application that exists as part of the Stroud Water Research Center’s WikiWatershed. The 

WMYM runs using the GWLF-E platform and generates all required inputs for the model from an 

array of data sources (https://modelmywatershed.org/) and was used to generate an initial input 

file for the TC and EBLC watersheds. The physical data required for determining water transport 

included soil hydrology, soil loss (USLE), curve number, soil water capacity, tile drainage and 

crop growing seasons were initially created from this dataset. The soil erosivity (K) factor for the 

USLE was modified by calculating an area-weighted K factor for each land use through the use of 

the SSURGO soil database layer and soil reports from the counties encompassing the watersheds 

and their adjacent counties (NRCS, 2004; SCS, 1972, 1981, 1982). 

The available water capacity in the top 150 cm of the subsurface for each soil group was 

also calculated by taking a watershed area-weighted value from the SSURGO soil database. The 

curve number (CN) in GWLF-E is separated into 3 categories, the CN of impervious surfaces 

(CNI) in urban areas, the CN of pervious (CNP) surfaces in urban areas, and the CN of rural areas 

(CNR). The CNI and CNP were set to 98 and 79, respectively, as is standard for developed areas 

in the USDA’s TR-55 Manual (Cronshey, 1986). An area-weighted CNR for each rural land use 

was calculated with the use a CN look-up table to generate a CN grid with the use of HEC-

GeoHMS for ArcGIS v. 10.4.  The hydrologic soil group (HSG) data for the lookup table use 

hydrologic soil group (HSG) data from the SSURGO soil database, with any unlabeled soil groups 

being reclassified (Table 6) based on the reports for adjacent counties. The percent of impervious 

cover was calculated from the 2011 NLCD impervious surfaces layer and area-weighted for the 

urban land-uses. 

The potential evaporation cover coefficient (Ket) and growing season months were 

determined using the 2003 Trail Creek Escherichia Coli TMDL Report (TEI, 2003). The TMDL 

modelers had used the GWLF-E model in conjunction with the Water Quality Analysis Simulation 

Program (WASP) to determine E. Coli loads into Lake Michigan. The percent of agricultural land 

that is artificially drained by tiles was assumed to be 50% based on estimates from Purdue 

Extension (Lee et al., 2005). 

https://modelmywatershed.org/
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Table 6. Classification of unidentified hydrologic soil groups in SSURGO database. 

 

 

 

 

 

 

 

 

 

 

Rural Runoff and Tile Drainage Concentrations 

The GWLF-E model uses the standard SCS-CN approach (Cronshey, 1986) for 

determining runoff from rural land uses along with an export coefficient for determining nutrient 

yield. Dissolved nitrogen (DN) and dissolved phosphorus (DP) runoff coefficients for hay/pasture 

and cropland were changed based on the literature from similar landscapes to northwest Indiana 

(Table 7). The nitrogen and phosphorus concentrations within agricultural tile drains were also 

changed to reflect conditions similar to northwest Indiana. All other dissolved runoff conditions 

were left as default from MMW. 

Table 7. Runoff and Tile Drainage Export Coefficients. 

Land Use Nutrient 

Concentration 

(mg/L) Reference 

Agricultural DRP 0.15 

(Gentry et al., 2007; King et al., 2016; King et al., 

2015) 

Agricultural DN 2.79 (David et al., 1997; D. R. Smith et al., 2008) 

Hay/Pasture DN 0.8 (Yaoze Liu, Ahiablame, et al., 2015) 

Tile DRP 0.15 

(Gentry et al., 2007; King et al., 2016; King et al., 

2015) 

Tile DN 10.91 (King et al., 2016) 

  

Initial Soil Type 

(muname) 

Initial 

HSG 

Reclassified HSG 

(GWLF-E) 
Notes 

Water Null D No Infiltration 

Udorthents, xxx Null 
A (Trail Creek) 

B (Little Calumet) 

Match to most dominant 

soil HSG 

Fluvaquents Null B/D 
Matched to Fluvaquents, 

Loamy (B/D) 

Urban Land-xxx Null D Impervious Surfaces 

Duneland Null A 
High Sand Content, 

Nearby sandy soils are A 

Pit Null D 
Mining areas with 

compacted soil 

Urban Area Any D Impervious Surfaces 



 

 

49 

Septic System Populations and Failure Rates 

The GWLF-E septic system routine consists of septic populations, a daily per capita 

production rate for nitrogen and phosphorus, and a daily per capita pathogen production rate 

(Evans and Corradini, 2012). Households with septic tanks were assumed to only be those 

classified as rural residential, as they lie outside incorporated regions and presumably stormwater 

sewerage. From the identified rural residential households, the rural residential population by 

multiplying the number of addresses by the average household size (2.5 ppl/household) based on 

the U.S. Census summary for Indiana (https://www.census.gov/quickfacts/IN). It is estimated that 

approximately a quarter of the septic systems in Indiana are failing or inadequate (Lee et al., 2005), 

so one quarter of the rural residential population were assumed to be living with failure in the 

model. Of the 25% of the population living with inadequate septic, half were assumed to have 

experienced “ponding” (surface failures) and the other half with “short-circuiting” (subsurface 

failure) (https://wikiwatershed.org/). 

 

Urban Land Runoff and Wash Off 

Urban land in GWLF-E is also modeled with the SCS-CN method but differs from rural 

landscapes with the addition of exponential accumulation and wash-off functions for nutrient 

loading. Nutrients are assumed to be in the solid phase and accumulate on the pervious or 

impervious surfaces until stormwater washes off the nutrients. The accumulated nitrogen and 

phosphorus export coefficients for pervious landscapes were modified to 0.1337 kg/Ha/day and 

0.3334 kg/Ha/day respectively to account for urban lawn fertilization. Fertilization was assumed 

to be performed once per year with a 16:4:8 (N:P:K) ratio, applied at 1 lb. N/1000 ft (Polomski & 

Shaughnessy, 2019). All other MMW model inputs were left at the default values. 

 

Animal Data 

Daily loads of nitrogen, phosphorus, and fecal coliform bacteria from farm animals are 

modeled in GWLF-E with the current animal population of 8 different animal species and their 

average weight. Loads are then calculated by a coefficient relating the proportion of N, P, or F. 

Coliform bacteria per 1000 pounds of each species (Evans and Corradini, 2012). The current 

animal population was calculated with the use of the 2012 Census of Agriculture for the state of 

Indiana (USDA, 2019). For each animal species, the current population for each watershed was 

https://www.census.gov/quickfacts/IN
https://wikiwatershed.org/
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determined by proportioning the animal population to the portion of each county’s hay/pastureland 

existing within the watersheds. The average weight, daily loading rates, and manure spreading 

rates and nutrient loss rates for grazing and non-grazing animals were left as default. 

 

BMP Data 

Due to low adoption and high percent of privately-owned BMPs within the two watersheds, 

only cover crops and no-till practices were included in the current conditions of the model before 

scenario-testing. The percent of cropland applied to these practices was estimated from the mean 

of the 2014-2018 Indiana State Department of Agriculture tillage transect data 

(https://www.in.gov/isda/2383.htm). The amount of cropland with active cover crops and no-till 

are recorded for corn, soybeans, specialty crops and small grains, individually. The amount of 

cropland falling into the four crop types within each watershed was calculated using the 2011 

NASS CDL and proportioned from the county to obtain watershed treatment levels. The length of 

streams within the watershed was also updated to improve upon the NHDplus v2 medium 

resolution stream network used in WMYM. A 1:24,000-resolution NHD Hydrography dataset was 

used for finer resolution in calculating streambank management practice effectiveness. 

GWLF-E calculates the effectiveness of BMPs applied to rural land uses through a 

pollution reduction coefficient for nitrogen, phosphorus, sediment, and fecal coliform bacteria.  

The pollutant reduction coefficients for rural BMPs were left as default with the exception of 

conservation tillage. The conservation tillage reduction coefficient was changed to reflect the 

WMYM default for no-till practices since the ISDA tillage transect data was recorded for no-till. 

Urban BMP’s in GWLF-E also reduce loads through a pollution reduction coefficient, but also 

includes a runoff capture component unlike its rural counterpart. The default urban reduction 

coefficients were based on the “Performance Standard” approach used by Chesapeake Bay 

Watershed Program, which lumps all urban BMPs into two categories and assigns the same 

reduction coefficient for all BMPs within each category based on the amount of runoff treated. 

However, since these BMPs don’t normally provide the same level of pollutant reduction, 

individualized nitrogen, phosphorus, and sediment reduction coefficients were selected from the 

literature (Table 8). 

 

https://www.in.gov/isda/2383.htm
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Table 8. Nutrient, Sediment, and Pathogen Reduction Coefficients for selected BMPs. 

BMP N P Sed 

F. 

Coli Source 

Cover Crops 0.29 0.50 0.35 n/a (Evans and Corradini, 2012) 

No-Till 0.11 0.29 0.40 n/a https://wikiwatershed.org/model/ 

Grass Strips 0.41 0.4 0.53 0.70 (Evans and Corradini, 2012) 

Rotational Grazing 0.30 0.30 0.38 n/a (Evans and Corradini, 2012) 

Composting Manure 

(Livestock) 0.75 0.75 n/a 0.85 (Evans and Corradini, 2012) 

Composting Manure (Poultry) 0.14 0.14 n/a 0.14 (Evans and Corradini, 2012) 

Rain Barrels 0.00 0.00 0.00 n/a (Liu et al., 2016a) 

Rain Garden 0.28 0.21 0.78 n/a (Liu et al., 2016a) 

Porous Pavement 0.00 0.43 0.80 n/a (Liu et al., 2016a) 

 

Weather Data 

Daily weather data was prepared to match MapShed 1.5.1 formatting. MapShed 1.5.1 is 

designed to create a weather input for GWLF-E as the average of all the weather stations located 

with the watershed or the average of the two stations nearest to the centroid of the watershed if no 

stations are located within the watershed. Of the stations listed in Table 9, only 4 lie within the 

boundaries of the two watersheds (US1INPT0091, US1INLP0050, USC00124244, USC00128992) 

and of these 4, only the latter two have a record of more than 10 years. To generate a full weather 

record spanning from 1995-2018, a geometric centroid of each watershed was generated in ArcGIS 

with this “gage” being composed of an inverse-distance weighted (IDW) record of all 13 stations.  

The equation for the IDW was applied to precipitation, maximum temperature, and minimum 

precipitation; 

𝑧𝑝 =
∑ (

𝑧𝑖
𝑑𝑖
𝑝)

𝑛
𝑖=1

∑ (
1

𝑑𝑖
𝑝)

𝑛
𝑖=1

   

Where zp is the IDW calculated precipitation or temperature, n is the number of weather 

stations, zi is the measured value at each station, dip is the distance of each station to the centroid. 

To make the centroid more representative of closer stations, a power of p=2 was used in the IDW 

formula. The IDW calculation was setup so that any stations with a gap in record were excluded 

from the daily calculation for the missing days, which means an altered number of stations (n) 

were used each day. The IDW values were then converted from imperial units (inches, °F) to 
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metric (centimeters, °C) and the average daily temperature was then calculated from the maximum 

and minimum daily temperature and placed into the model input. 

 

Table 9. List of weather stations used for constructing precipitation and temperature record used 

in GWLF-E. 

GHCND Station ID Begin Date End Date Precipitation(Y/N) Temperature (Y/N) 

US1INLP0028 2008-05-01 2019-04-03 Y N 

US1INLP0007 2006-12-02 2019-04-02 Y N 

USC00124613 1998-11-01 2018-01-12 Y N 

US1INLP0050 2012-01-15 2019-01-08 Y N 

USC00124837 1897-04-01 2019-04-02 Y Y 

USC00124244 1989-06-01 2019-04-02 Y Y 

USC00129222 1961-01-01 2019-04-03 Y Y 

US1INPT0032 2006-09-06 2018-12-10 Y N 

US1INPT0063 2007-09-26 2019-04-01 Y N 

USC00128999 1893-03-01 2005-03-31 Y Y 

USC00128992 2003-08-01 2014-05-14 Y Y 

US1INPT0091 2009-11-22 2019-04-03 Y N 

USW00004846 1997-12-01 2019-04-01 Y Y 
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APPENDIX B. SENSITIVITY ANALYSIS & 

CALIBRATION/VALIDATION 

The watershed areas draining to the gages were delineated for the two selected USGS gages 

with the use of ArcHydro Tools for ArcGIS v. 10.4. The 1:24,000-resolution NHD Hydrography 

dataset was “burned” into a 10-meter resolution digital elevation model (DEM) of the landscape, 

and then the DEM was used for delineation from the stream gages (Figure 8). 

 

Figure 8. Map of gages used (USGS Gages #4095300 and #4094000) and unused (USGS Gages 

#4095380 and #04095090) for watershed calibration. 

 

The identified hydrologic parameters in GWLF-E included the percent of urban impervious 

cover (% Imp), urban pervious curve number (CNP), rural curve number (CNR), potential 

evapotranspiration cover coefficient (Ket), available water capacity (AWC), and groundwater 

recession coefficient (GWR). Sensitivity analysis revealed that Ket and AWC were the most 

sensitive parameters for calibrating streamflow (Figure 9). 



 

 

54 

 

Figure 9. Sensitivity of GWLF-E parameters including a) percent impervious cover, b) available 

water capacity, c) rural land use curve numbers, d) groundwater recession coefficient, e) urban 

pervious land use curve number, and f) potential evapotranspiration cover coefficient. 

 

The goodness of fit for the calibrated GWLF-E models can be seen with the simulated 

hydrographs for the EBLC and TC watersheds. The EBLC watershed had a 2-year spin-up (1995-

1996), a 12-year calibration period (1997-2008), and a 10-year validation period (2009-2018). The 

TC watershed had a 1-year spin-up (2007), a 6-year calibration period (2008-2013), and a 5-year 

validation period (2014-2018). The calibration was performed on an average monthly timescale 

for streamflow by altering the most sensitive parameters to maximize both the R2 and NSE 

parameters (Figure 10; Table 10). The results for the calibration and validation periods in both 
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watersheds were determined to be of satisfactory to good performance (Moriasi et al., 2015) for 

both the R2 and NSE performance measures.

 

Figure 10. Hydrographs showing goodness-of-fit between observed and simulated streamflow. 
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Table 10. List of calibrated parameters in GWLF-E model. 

Parameter Note 
Initial-

LC 

Initial-

TC 
Step 

Lower 

Limit 

Upper 

Limit 

Final-

LC 

Final-

TC 

% Impervious 

Cover 
LD-Mixed 0.04 0.09 10% 0.01 0.15 0.06 0.11 

% Impervious 

Cover 
MD-Mixed 0.63 0.75 10% 0.40 0.98 0.88 0.90 

% Impervious 

Cover 
HD-Mixed 0.62 0.75 10% 0.40 0.98 0.87 0.90 

% Impervious 

Cover 

LD-

Residential 
0.23 0.23 10% 0.15 0.35 0.32 0.28 

% Impervious 

Cover 

HD-

Residential 
0.51 0.57 10% 0.35 0.75 0.71 0.68 

CN-Rural Hay/Pasture 69 65 5(CN) 50 84 74 63 

CN-Rural Cropland 80 78 5(CN) 61 91 85 76 

CN-Rural Forest 64 55 5(CN) 30 77 69 53 

CN-Rural Wetland 73 69 5(CN) 54 88 78 67 

CN-Rural Open Land 72 65 5(CN) 50 87 77 63 

Ket Jan 0.5 0.5 10% 0.35 0.55 0.49 0.52 

Ket Feb 0.5 0.5 10% 0.35 0.55 0.49 0.52 

Ket Mar 0.5 0.5 10% 0.35 0.55 0.49 0.52 

Ket Apr 0.9 0.9 10% 0.63 0.99 0.88 0.94 

Ket May 0.9 0.9 10% 0.63 0.99 0.88 0.94 

Ket Jun 0.9 0.9 10% 0.63 0.99 0.88 0.94 

Ket Jul 0.9 0.9 10% 0.63 0.99 0.88 0.94 

Ket Aug 0.9 0.9 10% 0.63 0.99 0.88 0.94 

Ket Sep 0.9 0.9 10% 0.63 0.99 0.88 0.94 

Ket Oct 0.9 0.9 10% 0.63 0.99 0.88 0.94 

Ket Nov 0.5 0.5 10% 0.35 0.55 0.49 0.52 

Ket Dec 0.5 0.5 10% 0.35 0.55 0.49 0.52 

Groundwater 

Recession 
n/a 0.024 0.016 100% 0.004 0.072 0.013 0.008 

Available 

Water 

Capacity 

n/a 22.02 16.67 25% 4.17 38.54 15.20 20.83 
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APPENDIX C. LAPORTE AND PORTER COUNTY RESIDENT SURVEYS 

 

Figure 11. Copy of the resident survey used in this study 
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Figure 11. Continued 
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Figure 11. Continued 
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Figure 11. Continued 
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APPENDIX D. SURVEY RESPONSE SIMPLIFICATION 

All responses where a resident group was not identified were excluded from the results. 

Blank responses for individual practices were treated as unanswered for that specific BMP but 

allowing room for a response to other BMP types open, so not all BMPs have the same number of 

respondents. Any respondent who self-identified as an urban or suburban resident but responded 

the rural residential BMP portions of the survey, were left as unanswered responses for only the 

rural BMPs. To simplify the modeling scenarios, the permeable pavement (individual property 

scale) and porous pavement (community scale) were combined into one porous pavement BMP. 

Similarly, due to the difficulty in distinguishing the level of treatment observed between 

conservation tillage and no-till practices for cropland, the two were combined and treated as no-

till for the modeling scenarios. Once these changes were made, the likeliness or adoption of BMPs 

for the landowners were aggregated based on the BMP, not by resident class. This was done to 

better represent watershed-scale effectiveness of BMPs and prevent misidentification of resident 

classes from affecting modeled contaminant mitigation. Several of the BMP types had to be 

excluded from the modeled adoption scenarios as they cannot be properly represented within the 

GWLF-E model (i.e. windbreaks, woods preservation) or the level of potential adoption was 

deemed too low to be adopted at a large scale (i.e. green roofs, riparian buffers). Neighborhood 

BMPs were removed from the analysis due to the anonymity of the survey preventing our team 

from being able to determine if there were enough positive responses in any particular community 

to warrant adopting such a BMP. 
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APPENDIX E. LOAD DISTRIBUTION IN WATERSHED 

 

Figure 12. a) Nitrogen, b) phosphorus and c) sediment reduction from full implementation of 

BMPs within the Trail Creek watershed. d) Nitrogen, e) phosphorus and f) sediment reduction 

from full implementation of BMPs within the East Branch Little Calumet River watershed. 
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Figure 12. Continued 
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APPENDIX F. BMP LOAD REDUCTION CAPACITY  

 

Figure 13. Load reduction of a) nitrogen, b) phosphorus, and c) sediment in the Trail Creek 

watershed as well as e) nitrogen, e) phosphorus, and f) sediment reduction in the East Branch-

Little Calumet River Watershed.
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Figure 13. Continued 
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APPENDIX G. LOAD REDUCTION SCATTER PLOTS 

  

Figure 14. Load reductions for nitrogen (left), phosphorus (middle), and sediment (right) achieved by 

implementation of (from top to bottom) rain barrels, porous pavement, cover crops, and rotational 

grazing in the a) Trail Creek and b) East Branch -Little Calumet river watershed. 
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Figure 14. Continued 
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