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ABSTRACT

Hassan, Salah E., M. S. M. E., Purdue University, May 2020. Soot Mass Estima-
tion from Electrical Capacitance Tomography Imaging for a Diesel Particulate Filter.
Major Professor: Sohel Anwar.

The Electrical capacitance tomography (ECT) method has recently been adapted

to obtain tomographic images of the cross section of a diesel particulate filter (DPF).

However, a soot mass estimation algorithm is still needed to translate the ECT image

pixel data to obtain soot load in the DPF. In this research, we propose an estimation

method to quantify the soot load in a DPF through an inverse algorithm that uses the

ECT images commonly generated by a back-projection algorithm. The grayscale pixel

data generated from ECT is used in a matrix equation to estimate the permittivity

distribution of the cross section of the DPF. Since these permittivity data has direct

correlation with the soot mass present inside the DPF, a permittivity to soot mass

distribution relationship is established first. A numerical estimation algorithm is then

developed to compute the soot mass accounting for the mass distribution across the

cross-section of the DPF as well as the dimension of the DPF along the exhaust

flow direction. Firstly, ANSYS Electronic Desktop software is used to compute the

capacitance matrix for different amounts of soot filled in the DPF, furthermore it also

analyzed different soot distribution types applied to the DPF. The Analysis helped

in constructing the sensitivity matrix which was used in the numerical estimation

algorithm. Experimental data have been further used to verify the proposed soot

estimation algorithm which compares the estimated values with the actual measured

soot mass to validate the performance of the proposed algorithm.
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1. INTRODUCTION

1.1 Overview

One of the challenging issues with diesel engines is its harmful emission to the

environment. It has been estimated that emission from diesel engines accounts for

two-thirds of all particulate matter (PM) emitted from the US transportation sources

and have been reported to be significantly more harmful than those from gasoline

vehicles. Moreover diesel engines are responsible for the release of harmful gasses

such as HC, CO, NOx and particulate matter into the atmosphere. These emissions

affect human respiratory system beside its hazardous effects on environment.

Particulate matter or soot is created during the incomplete combustion of diesel

fuel, which contributes to the problem by releasing particulates directly into the air

and by emitting nitrogen oxides and sulfur oxides, which transform into secondary

particulates in the atmosphere [1]. As emission regulations become more stringent,

diesel engines must be equipped with after-treatment systems to meet emission re-

quirements [1], [2], and according to U.S. Environmental Protection Agency (EPA ),

diesel engine manufacturers are required to meet these regulations .

Modern Diesel Engines have been using a diesel particulate filter (DPF) as shown

in figure [1.1] since the early of 1980s to capture carbon particles with efficiency level

of more than 90%. With this type of after-treatment emission elimination, DPF

retains exhaust gas particles by forcing the gas to flow through the filter. The ac-

cumulation of PM is harmful for the engine as it increases the back pressure on the

engine’s exhaust manifold , exerts more loads on pistons, and produces more emis-

sion than initially has which leads to the decline of engine efficiency .Consequently, it

elevates the temperature, or it creates a temperature bank on the exhaust upstream,
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leading to DPF body cracks and it might cause a damage to other after-treatment

components, as well as the back pressure and high temperature caused by active re-

generation process. These conditions constitute main factor of NOx gas production

One traditional solution for the soot accumulation inside the DPF and its conse-

Figure 1.1.: DPF (Diesel Particulate Filter) [3]

quences on the diesel engine performance is the active thermal regeneration process

which burns the DPF’s accumulated soot using extra fuel injected directly into the

filter intermittently in order to provide a way of removing particulates from the DPF

to restore its function effectively. This cycle of operation can be performed either con-

tinuously (passive regeneration), or periodically (active regeneration), when the soot

trapped inside the DPF. In both cases, when the on-board pre-determined control

parameters met, a cycle of regeneration is performed without operator intervention.

Thermal regeneration of diesel particulate filters is typically employed, where the col-

lected particulates are oxidized by oxygen and/or nitrogen dioxide to gaseous prod-

ucts, primarily to carbon dioxide. Thermal regeneration, schematically represented

in Figure 1-2, consider by far the cleanest and most attractive method of operating

diesel particulate filters [4].



3

Figure 1.2.: Thermal Regeneration Operation [4]

1.2 Problem Statement

Diesel Particulate Filters (DPF) are used in the after-treatment (ATS) configu-

ration for a diesel engine, to primarily capture soot and Particulate Matter (PM).

As fuel burns, the DPF collects and stores up to 98 % of incombustible particles in

the form of ash and soot, which negatively impacts the operation of DPF, and diesel

engine efficiency as well. Moreover, the Environmental Protection Agency (EPA) is

gearing up to significantly tighten air-pollution regulations and standards ,as diesel

engine manufacturers have to reduce emissions of air pollutants, and to improve DPF

soot estimation process in particular, in order, to comply with these standards.

Currently, the most used technology to measure soot is differential pressure ( ∆ P)

sensor. For ( ∆P) sensor, however, it should be emphasized that the pressure drop

signal is not a direct measurement of the soot mass in the filter, and secondly this

method is known to have relatively poor accuracy of soot estimation (50 % from the

true soot load ) [3], specifically at a lower exhaust volumetric flow. Besides, the na-

ture of pulsating airflow of engine exhaust gas, which leads to a significant deviation

in determining the soot load.

Soot mass estimation inaccuracy has a direct effect on the efficiency of the re-

generation process to purge the restrictive soot out,which eventually increases fuel
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consumption. As a result, fuel dosing for active regeneration may not be optimal.

Since,it has been shown that fuel penalty caused by regeneration (2.2 % to 5.3 %) is

more than fuel penalty due to back-pressure (1.5 % to 2.0 %) [1]. Other impacts of

inaccurate estimation of differential pressure method is creation of higher tempera-

ture bank on exhaust downstream and after treatment system components, leading

to DPF body rupture and other after-treatment system components such as diesel

oxidation catalyst (DOC) ,and Selective Catalytic Reduction (SCR).

Accuracy of soot load estimation plays a critical role in determining the optimal

conditions of DPF regenerative fuel injection, and increases DPF life span. In addi-

tion, the increasingly stringent environmental regulations for diesel engine emissions

are driving efforts to develop concepts for estimating DPF soot load emissions.

In this research, a method of soot load estimation is developed using electrical

capacitance tomography imaging to improve the accuracy of soot estimation.

1.3 Research Objective

The main objective of this research is to develop a soot estimation methodology

using ECT image.

In this project, ECT image pixel values (gray-level) have been used as founda-

tion to develop an estimation approach. This approach depends on, ECT imaging

reconstruction techniques, along with an estimation algorithm. This Research has

the following specific objectives:

1- To estimate soot load in diesel engine particulate matter (DPF) using electrical

capacitance tomography imaging by :

a − Studying Sensitivity Matrix formation methods ,for ECT image generation.

b − Researching different image reconstruction techniques for ECT, in order to

develop soot estimation algorithm.

2- Develop a finite element analysis (FEA) model to validate experimental results and

perform the following:
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a − Investigate the relationship between capacitance , voltage , and DPF soot

load from experimental and validation data.

b − Develop different soot deposition patterns to analyze and evaluate their ef-

fects on gray-level values/ soot estimation .
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2. ELECTRICAL CAPACITANCE TOMOGRAPHY (ECT)

- LITERATURE REVIEW

Electrical capacitance tomography (ECT) has been developed and used since

late 1980s for visualization and measurement of a permittivity distribution in a cross

section of a pipe carrying fluid using a multi-electrode capacitance sensor [5]. As

one of the electrical process tomography imaging technologies, Electrical Capacitance

Tomography (ECT) is featured upon its advantages over other tomography methods

for lower costs, no-irradiative, and non-invasive methods.Despite, its appealing ad-

vantages, ECT has some major challenges and drawbacks such as processing a low

resolution images, since the ECT system is limited to few measurements per one

measurement cycle, making the image reconstruction problem ill-posed, and under

determined [6].

In the past several years, there have been a lot of focus on addressing the issue of

the measurement of accumulated particular matter inside the DPF. One effective ap-

proach is the Electrical Capacitance Tomography using a multi-electrode capacitance

sensor to estimate the soot load. This method utilizes the measurement of the soot

load permittivity distribution across-section of DPF using a multi-electrode capaci-

tance sensor. The aim of ECT is to calculate and visualize the unknown permittivity

distribution via measuring capacitances between pairs of peripheral electrodes around

samples. The samples under test of ECT are normally dielectric or negligibly con-

ductive, since the conductivity affect’s the measuring of ECT and leads to the failure

of imaging [7].

ECT sensor is widely used in process control for monitoring and control the

quality of an industrial process. It is used as one of non-destructive testing methods

with potential applications in the measurement of flow of fluids in pipes [8]. It has
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been adopted in the industry in wide range of applications such as fluid flow mon-

itoring and other industrial applications, utilizing the basic principles of electrical

capacitance tomography (ECT) of taking multiple measurements at the periphery of

required part of process to be monitored , or pipeline and combining these measured

data to provide a visualized information of the this process using its electrical prop-

erties ,however there are some challenges and limitation regarding ECT such as its

low accuracy and inadequate spatial resolution of its reconstructed images as com-

pared to other methods that are commonly used in image reconstruction [9]. On

other hand, capacitive sensors are very convenient because they only consist of elec-

trodes and are sensitive to the electrical properties of materials and their distribution.

Moreover, they can work at low frequencies with low power consumption [12]. As a

result, it has been observed in industry an increased interest in electrical tomogra-

phy techniques due to their capabilities in the process control and other applications,

inspired by their relatively low cost, speed, and safety. Nevertheless, the relatively

poor reconstructed images, beside their nonlinearity, and the ill pawedness of system

equation [10], [11], [12], [13].

In this research, a novel approach to estimate DPF’s soot load based on its ECT

reconstructed image’s (pixel) gray-level value is presented, utilizes the numerical sum

of the gray level value, as it assumed to be a good indicator for spatial soot load.

This research is an attempt to continue on in previous research of (Development of

a novel sensor for soot deposition measurement in a diesel particulate filter using

electrical capacitance tomography) done by Ragibul Huq [2014], the research focused

on generating digital image, reflecting deposited spatial soot load. On the other hand

this research focus on estimating soot mass from generated digital image as reverse

process of previous project, considering the proportional relationship between the di-

electric soot load filled inside the DPF and the permittivity values calculated using

the measured inter-electrode’s electrical capacitance.This method utilizes sensitivity

matrix as tool to transform soot load distribution (dielectric) into a pixel domain,

while the numerical sum of pixel value as a gauging tool to estimate accumulated
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soot in DPF, from experimental data. This approach assumes voltage measurement

as measure of inter-electrodes capacitance, while on the other hand, validation process

used capacitance data as fill-in of inter-electrode’s measurement as it will be shown

in Ansys Electronic Desktop analysis in chapter 5.
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3. DESIGN OF AN ELECTRICAL CAPACITANCE

TOMOGRAPHY SYSTEM

3.1 ECT Model Design

A basic ECT system normally consists of a capacitance sensor, a measure-

ment unit of capacitance and a computer system for image reconstruction process as

shown in figure 3.1. The sensor hardware in ECT is typically composed of a number

of n electrodes surrounding the wall of the process vessel as illustrated in figure 3.1.

The number of independent capacitance measurement available in a such a configu-

ration is n(n - 1)/2.

Where n is the number of electrodes around the required imaging region.

Figure 3.1.: ECT sensor diagram [14]

.
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The sensor is made up of n electrodes mounted on the perimeter of the imaging

area [13]. All independent mutual capacitance measurements are measured between

sender electrodes connected to the source signal, and the other receiver electrodes

where connected to the ground. Figure 3.2 shows an ECT sensor with n numbers of

electrodes.

Figure 3.2.: DPF Sensor Components

The capacitance between two pairs of electrodes, i.e. a source electrode and a

detector electrode, is obtained through equation (3.1).

Qi = cij.Vj (3.1)

Qi is the charge quantity on electrode i.

cij represents mutual capacitance between electrodes i and j,

Vj is the voltage applied to electrode j.

3.2 Image Reconstruction

Soot estimation process relies on DPF reconstructed image which mainly

means gray-level value, since Electrical Capacitance Tomography (ECT) system’s

main function is to image cross-sections of objects containing dielectric material,
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which in turn enables ECT to determine the material distribution over the cross-

section using its permittivity distribution [14].

3.2.1 Image Reconstruction using Linear Back Projection

Linear back projection (LBP) was used to process ECT image reconstruc-

tion. In LBP, a multidimensional inverse problem needs to be solved. It has the ad-

vantage of dynamic and flexible process with good capability of image reconstruction,

and it can be expressed as a function of sensitivity matrix as in equation (3.2) [15]:

[C] = [S].[K] (3.2)

[C] = (Mc x 1) normalized electrode matrix.

To determine the permittivity distribution matrix from the measured capacitance

vector, a solution for equation (3.2) should be obtained. Let us consider a recon-

structed square grid image of N pixels, generated by Linear Back Projection (LBP)

algorithm, with known permittivity distribution matrix [S]. The inverse transform

Q can be obtained as shown in (3.3). An approximation of LBP method uses the

transpose of [3.4] in (3.2), to have a pseudo-inverse matrix of the dimensions (N x M)

that can be used in (3.4) where [S]T assumed to be equal to [Q].

[K] = [Q].[C] (3.3)

[K] = [S]T .[C] (3.4)

[C] = M x 1 Vector containing the normalized electrode-pair capacitances (in the

nominal range 0 to 1).

K= N x 1 Vector containing normalized pixel permittivity’s (in the nominal range 0

to 1) .

N is the number of pixels representing the sensor cross-section [1]

S= M x N matrix containing set of sensitivity matrices for each electrode-pair.
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3.2.2 Direct Techniques to Generate Sensitivity Matrix

Direct technique is used to generate sensitivity matrix model by measur-

ing the response of capacitance for permittivity perturbations. The basic idea relies

on the assumption that the sensitivity is independent of permittivity distribution.

The matrix is formed by measuring the capacitances for each pair of electrodes and

constructing array of independent combination of electrodes measurement of high

electrical permittivity in the imaging area of interest. Using high and low permit-

tivity material, measurements can be normalized accordingly, as shown in equation

(3.5) [13]:

Si(N) = (Ci(N) − Ci(emp))/(Ci(full) − Ci(emp)) (3.5)

where Si (N) is the sensitivity matrix element [S],

Ci (N) is the measured capacitance,

Ci (emp) capacitance measurement when the sensor is filled with low permittivity,

Ci (full) capacitance measurement when the sensor is filled with high permittivity.

3.2.3 Soot Load Estimation from Pixel Gray-Level Value

Once normalized capacitance victor is obtained [C], linear back projection (LBP)

algorithm equation (3.4) used to multiply [C] by the transpose of the sensitivity

matrix [S] to produce pixel gray-level, vector[K], or the digital image for all given

experimental deposited soot load samples. The numerical sum of gray-level value,
∑

[K] represents the value of pixel’s gray-level generated from LBP algorithm, which is

found to be well correlated with actual soot load weight.
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4. SOOT MASS ESTIMATION FROM

RECONSTRUCTED IMAGE

As the sensitivity matrix forms a basis set from which image vectors can be

obtained. Basically, each row of [S] represents the response of the sensor system to

a small individual permittivity pixel in a uniform background [16] using direct tech-

niques equation (3.5) and having normalized voltage data in table 4.1 using equation

(3.5), as well as sensitivity matrix which has been built as shown below :

S = 

0.000 0.000 0.000 0.000 0.000 0.000

0.018 0.039 0.058 0.045 0.040 0.044

0.037 0.078 0.116 0.089 0.079 0.087

0.203 0.254 0.237 0.134 0.101 0.114

0.257 0.321 0.251 0.265 0.210 0.197

0.257 0.308 0.388 0.307 0.355 0.409

0.290 0.326 0.419 0.414 0.521 0.452

0.322 0.343 0.450 0.520 0.686 0.495

0.487 0.376 0.475 0.611 0.714 0.541

0.651 0.409 0.500 0.703 0.742 0.587

0.946 0.579 0.542 0.750 0.752 0.600

0.953 0.605 0.545 0.753 0.754 0.613

0.963 0.620 0.559 0.770 0.759 0.614

0.980 0.681 0.608 0.832 0.813 0.687

1.000 1.000 1.000 1.000 1.000 1.000
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Table 4.1.: Inter-Electrode’s Voltage (V) measurements for different samples of soot

mass (grams).

Weight-Grams A-B A-C A-D B-C B-D C-D

0 3.63 3.71 3.68 3.75 3.79 3.68

9.35 3.60 3.67 3.61 3.70 3.74 3.64

18.7 3.58 3.62 3.54 3.64 3.69 3.59

37.4 3.34 3.43 3.38 3.59 3.66 3.57

56.3 3.27 3.35 3.37 3.43 3.53 3.49

65.8 3.27 3.36 3.28 3.40 3.44 3.38

84.8 3.27 3.37 3.19 3.37 3.35 3.28

94.2 3.22 3.35 3.15 3.24 3.14 3.24

112 3.17 3.33 3.11 3.11 2.93 3.19

132 2.94 3.29 3.08 3.00 2.90 3.15

151 2.71 3.25 3.05 2.88 2.86 3.10

172 2.30 3.07 3.00 2.82 2.85 3.09

192 2.29 3.04 2.99 2.82 2.85 3.08

210 2.27 3.02 2.98 2.80 2.84 3.08

220 2.25 2.95 2.91 2.72 2.78 3.01

232 2.22 2.60 2.42 2.51 2.54 2.70

FULL 2.22 2.60 2.42 2.51 2.54 2.70

EMPTY 3.63 3.71 3.68 3.75 3.79 3.68

After normalized capacitances [C] are obtained, MATLAB software was used to

generate pixel gray-level matrix [K] (ECT image) for all given experimental soot

load measurements. Figures 4.1, 4.2, and 4.3 show the ECT images for soot masses

of 56.6, , 172.2 and 112.6 grams respectively.
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Figure 4.1.: ECT Image for a soot mass of 56.6 grams.

Figure 4.2.: ECT Image for a soot mass of 172.2 grams.
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Figure 4.3.: ECT Image for a soot mass of 112.6 grams.
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4.1 Soot Mass Estimation

From the capacitance measurements obtained from inter-electrode data, as

shown in table 4.1. It has been observed from the experimental data that, change

in material deposited in sensor results in variations in the sensor measured voltage,

an inversely proportional relationship formed as a result, between material deposited

inside the DPF and voltage readings. This indicates that the more soot weight de-

posited, the more voltage reduction developed. In linear back projection method, it

was explained in section 3.2.1 , that in equation (3.4) , the direct contributions of

pixels (gray-level) [K] are the product of S and C matrices.

Digital image’s pixel data which represented in gray-level value [K], arranged in nu-

merical sum, it was explained in sample 172.2 grams later on this section. Table 4.2

shows that in the second column the sum of gray-level value, a proportional relation-

ship clearly seen, as well, these results are plotted as shown in figure 4.4. A polynomial

curve of the 6th degree was fitted between soot mass weight and summation of gray

level value as follows :

y = a1x
6 + a2x

5 + a3x
4 + a4x

3 + a5x
2 + a6x+ a (4.1)

Where y represents estimated soot mass weight, x is the gray level value. Using

curve fitting tools in excel a1, a2, a3, a4, a5, and a6 can be located respectively as

below:

a1=−1.05E − 13, a2=1.68761E − 10, a3=−9.85783E − 08

a4=2.5877E − 05, a5=−0.002829359, a6=0.401355946

a = 0
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Figure 4.4.: Estimated Weight Polynomial Curve

y = −(5E−14)x6+(8E−11)x5−(4E−08)x4+(1E−05)x3−0.0011x2+0.3312x. (4.2)

An estimated weight y can be obtained from the polynomial equation by substituting

gray-level value x at equation right hand as shown in table 4.2. This direct relation-

ship between gray-level value [K] and actual weight [WA] deposited inside the DPF

can be computed from equation (3.4) in section 3.2.1, where

Cα
∑
K.

This is based on this proportional relationship between measured voltage, and corre-

sponded gray-level value of generated pixel. An example calculation can be done to

estimate soot mass deposited into the DPF is shown below.

[K172.2] = [S]T .[C172.2]
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Where [K172.2] is gray -level value of 172.2-gram pixel matrix.

[S]T is transpose of Sensitivity Matrix .

[C172.2] is normalized 172.2-gram victor.

y = −(5E−14)x6+(8E−11)x5−(4E−08)x4+(1E−05)x3−0.0011x2+0.3312x. (4.3)

[K172.2]=


30.73 29.75 29.75 29.75

29.75 31.16 30.90 31.17

29.75 30.90 31.68 30.82

30.73 31.17 30.82 30.55



∑
[K172.2] = 489.369

The gray-level of pixel 172.2 gram is multiplied by coefficient of 45 and applied to

all other weight samples , in order to obtain more contrast in gray scale level which

eventually will have no effect in the polynomial curve plot.

By substituting
∑

[K172.2]for x in equation (4.2). The Estimated weight is assumed

a y = 186.35 gram.

The difference between actual and estimated weight (Error) is given by:

Error = (WE - WA) /WA

= (186.35 − 172.2)/172.2 = 8.22%

Using equation (4.2) to calculate all other weight samples as shown in table (4.2) as

follows:
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Table 4.2.: Estimated weights using nonlinear polynomial equation.

Actual Weight Gray-Level Value Estimated Soot Mass Error1 %

0.00 0.000 0.00 0.00

9.35 30.241 9.18 -1.80

18.70 60.481 17.87 -4.44

37.40 126.032 37.95 1.46

56.30 180.111 56.28 -0.03

65.80 213.169 67.87 3.15

84.80 246.227 79.49 -6.26

93.80 293.962 96.24 2.60

112.60 341.697 113.54 0.83

132.00 384.331 130.55 -1.10

151.90 426.964 150.35 -1.02

172.20 489.369 186.35 8.22

191.60 495.969 190.67 -0.49

210.50 503.527 195.71 -7.03

220.50 542.391 222.93 1.10

232.00 720.000 231.81 -0.08
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4.2 Computational Results and Discussion

As it is observed from inter-electrodes voltages measured from experiment,

lower weights in grams resulted in higher voltage measurement, the gray-level [K], or

pixel value, computed from the LBP which is proportional to deposited soot as well.

Table 4.2 shows estimated soot mass computed using equation (3.3), and nonlinear

polynomial equation (4.2). It also shows the percentage error based on the actual

soot mass for the given tomographic image. Figure 4.5 shows the estimated vs actual

soot masses . Figure 4.6 plots relative soot’s estimation errors. Higher than nor-

mal percentage errors were observed at three data points 7th, 12th, and 14th which

can be attributed to the low voltage and weight measurement accuracy during the

experiment. Estimated soot mass errors varies between ±5% for the given DPF’s

tomographic images, as a result this range of errors reflects a close match between

estimated and actual soot mass as shown in figure 4.5.

Figure 4.5.: Actual soot mass vs Estimated soot mass.
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Figure 4.6.: Soot mass estimation accuracy
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5. VALIDATION OF SOOT ESTIMATION USING FINITE

ELEMENT ANALYSIS

5.1 ANSYS Electronic Maxwell 3D Model

ANSYS Electronic Maxwell 3D is used to perform the validation analysis, since

it has the capabilities of simulating electrical capacitance, with a wide range of ma-

terial selection, by selecting the electrical physical properties, such as permittivity.

A Maxwell capacitance matrix provides the relation between voltages on a set of

conductors . For example, for a set of conductors, the following relation is valid:

Q = C.V (5.1)

where C is the Maxwell capacitance matrix, V and Q are voltage and charge vectors

respectively.

The mutual and auto capacitance are shown at the following four conductors set

layout: [17]

Q1 = C11.V1 + C12.(V1 − V2) + C13.(V1 − V3) + C14.(V1 − V4) (5.2)

and 5.2 can be arranged as:

Q1 = V1.(C11 + C12 + C13 + C14) − V2.C12 − V3.C13 − V4.C14

the first row of the Maxwell capacitance vector C is

[
C11 + C12 + C13 + C14 −C12 −C13 −C14

]
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Figure 5.1.: Four Conductors’ Mutual Capacitance [16]

By repeating the same derivation for Q 2, Q3, Q4, the full matrix has the form



C11 + C12+ −C12 −C13 −C14

C13 + C14

−C21 C21 + C22+ −C23 −C24

C23 + C24

−C31 −C32 C31 + C32 −C34

+C33 + C34

−C41 −C42 −C43 C31 + C32+

C33 + C34
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5.2 Geometric Model

A geometric model of the DPF assumed to be similar to the one used at

the experimental modeling which was a cylindrical body of 6 inches diameter x 6

inches height, filter inner screen assumed to be a group of holes of 0.5 inch diameter

for its design convenience, holes distribution on the DPF’s cross-section matched

pixels layout to be reconstructed as shown at the figure 5.3 , four copper electrodes

of thickness 0.2 inches fixed around the DPF circumference, as illustrated at figure

5.2 , however the DPF design is different ,but the simulation in Ansys Electronic

assumed to be radial , and there is negligible affects.

Figure 5.2.: Diesel Particulate Filter (DPF)
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Figure 5.3.: Pixels and Holes Distribution

5.3 Material Selection

For the DPF body a permittivity of 4.0 assigned to match the original cordierite

permittivity, for the four electrodes, copper material has been assigned, and it has a

relative permittivity of 1, a permittivity of 16.5 assigned to the soot which assumed

to be a carbon black, and air of 1.0 permittivity assigned to empty holes

Table 5.1.: Material

DPF Sensor Component Material Relative Permittivity

1 DPF body Cordierite 4

2 Electrodes Copper 1

3 Soot Carbon Black 16.5

4 Empty Holes Air 1
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5.4 Electrodes Voltage and Solution Matrix

In case of two conducting plates , a common form is a parallel-plate

capacitor, which consists of two conductive plates insulated from each other, usually

sandwiching a dielectric material, capacitance is approximately proportional to the

surface area of the conductor plates and inversely proportional to the separation

distance between the plates. However, the definition C = Q / V does not apply

when there are more than two charged plates, or when the net charge on the two

plates is non-zero. To handle this case, Maxwell introduced his coefficients of

potential as it explained earlier in section 5.1

A charge of 5 volts applied to one of the four electrodes (source) while other

three electrodes assigned (sink) and assumed to be (0 volts) one at a time, while the

Maxwell Matrix of solution configured to be in Farads as shown in figure 5.4. A

solution matrix set up determined at Ansys pre-determined parameter to select

solution format as shown in table 5.2 and figure 5.5 respectively in capacitance

(Farad)

Figure 5.4.: Voltage of 5 Volts applied to Electrode 1
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Table 5.2.: Maxwell solution matrix set-up

Voltage 1 Voltage 2 Voltage 3 Voltage 4

Voltage 1 x x x x

Voltage 2 x x x x

Voltage 3 x x x x

Voltage 4 x x x x

Figure 5.5.: Capacitance Solution Matrix in pF

5.5 Voltage Distribution Simulation

Voltage is the difference in electric potential between two points, is explicitly

related to the permittivity and capacitance in general as defined by equation :

C = Q / V
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while Capacitance is the ratio of the change in an electric charge in a system to the

corresponding change in its electric potential, low permittivity, or low ability to hold a

charge, high permittivity materials are good at holding charge, they are the preferred

dielectric for capacitors.Voltage simulation shows in figure 5.6 energized electrode or

sender, voltage signal declined as it move away countered by deposited soot.

Figure 5.6.: Voltage Distribution

5.6 Sensitivity Matrix

Since the sensitivity matrix forms the foundation of the Linear Back projection

(LBP) algorithm, it should be reconstructed first, instead of Direct Techniques

method, an approach of pixel manually filling, initiated by first pixel and then

transferred to the second, and so forth until reach the 16th pixel as shown in
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following table. In this reconstruction mode, only a single measurement data is used

independently to implement sensitivity reconstruction matrix. While in first section

study a Direct Techniques, method implemented to reconstruct the sensitivity

matrix which essentially a normalization for the capacity data took from the

inter-electrode measurement.

Table 5.3.: Sensitivity Matrix in 10−12 Farads (pF)

Pixels/Electrodes 1- 2 1- 3 1- 4 2- 3 2- 4 3- 4

1 4.8057 0.80506 4.7921 4.7349 0.75515 4.7666

2 4.9272 0.93281 5.7308 4.71 0.68944 4.6839

3 4.6799 0.69847 5.5612 4.7206 0.88917 4.9204

4 4.7357 0.75482 4.7886 4.7507 0.80433 4.8377

5 5.7558 0.93443 4.912 4.6552 0.68784 4.7379

6 4.8442 0.91986 4.8699 4.6532 0.84478 4.7209

7 4.6692 0.84448 4.8599 4.6764 0.91994 4.9127

8 4.6473 0.68803 4.9383 4.6243 0.92913 5.7154

9 5.7398 0.68844 4.6378 4.9259 0.93282 4.7327

10 4.8412 0.84467 4.6807 4.8318 0.91927 4.6792

11 4.6089 0.91778 4.6356 4.7651 0.83963 4.8024

12 4.5688 0.9272 4.5379 4.8032 0.68039 5.6469

13 4.8036 0.75627 4.7169 4.8025 0.80369 4.7663

14 4.9248 0.68909 4.6928 5.7536 0.93247 4.6807

15 4.6549 0.93333 4.6919 5.7558 0.68721 4.9516

16 4.7363 0.8047 4.7169 4.8034 0.7553 4.8306

Empty DPF 4.7466 0.77929 4.7275 4.8119 0.77768 4.8153

Full DPF 8.1929 1.8334 8.1873 8.3072 1.8309 8.3224
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5.7 Capacitance Data Collection

Two methods were adapted to obtain capacitance data from the inter-electrode

excitation, the first was the random distribution and the other was circumferentially

distributed soot inside DPF, where 3 holes filled initially from the center of DPF,

and then incremented by 3 holes in spiral order until the DPF was fully filled, as we

know the fundamental of ECT known as: different materials with different permit-

tivities. If the concentration and the composition of the components are changed,

the permittivity will change cross the DPF sensor, as a result this contrast in per-

mittivity will cause a change of the capacitance measurements, for this reason, a

randomly distributed soot inside the filter basically will test the real-life scenario,

moreover, simulation data will give more opportunities to explore and analyze results

and method.
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Table 5.4.: Random Filling Distribution in 10−12 Farads (pF)

No. of holes filled/Electrodes 1 − 2 1 − 3 1 − 4 2 − 3 2 − 4 3 − 4

3 4.6337 0.75532 4.8746 4.605 0.80653 4.9252

6 4.7519 0.77502 5.6992 4.6337 0.81404 4.8839

9 4.8962 0.8525 5.8664 4.6646 0.75152 4.9086

12 4.9844 0.96563 6.2696 4.5743 0.78424 4.8546

15 5.002 0.93488 7.5725 4.5257 0.81393 4.9051

18 5.1038 0.91989 8.1212 4.5741 0.88125 5.0862

21 5.2064 1.0035 8.2019 4.5123 0.98415 5.3704

24 5.1749 1.0413 8.4071 4.4809 1.1035 5.8656

27 6.2277 1.1204 8.5123 4.4509 1.1089 5.835

30 7.2335 1.1769 8.4064 4.4942 1.3098 5.9442

33 7.2661 1.3763 8.3062 4.6056 1.3314 7.2451

36 7.2107 1.5684 8.2823 4.7106 1.4247 7.3622

39 7.1944 1.7966 8.155 4.9452 1.3844 7.9849

42 7.957 1.6654 8.028 5.1722 1.5803 7.9456

45 8.0791 1.7069 7.9668 5.671 1.7318 7.9229

52 8.1929 1.8334 8.1873 8.3072 1.8309 8.3224
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Table 5.5.: Normalized Sensitivity Matrix

0.98 0.98 0.98 1.02 1.02 1.01

0.95 0.85 0.71 1.03 1.08 1.04

1.02 1.08 0.76 1.03 0.89 0.97

1.00 1.02 0.98 1.02 0.97 0.99

0.71 0.85 0.95 1.04 1.09 1.02

0.97 0.87 0.96 1.05 0.94 1.03

1.02 0.94 0.96 1.04 0.86 0.97

1.03 1.09 0.94 0.00 0.86 0.74

0.71 1.09 1.03 0.97 0.85 1.02

0.97 0.94 1.01 0.99 0.87 1.04

1.04 0.87 1.03 1.01 0.94 1.00

1.05 0.86 1.05 1.00 1.09 0.76

0.98 1.02 1.00 1.00 0.98 1.01

0.95 1.09 1.01 0.73 0.85 1.04

1.03 0.85 1.01 0.73 1.09 0.96

1.00 0.98 1.00 1.00 1.02 1.00
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5.8 Circumferential Distributed Soot

Soot filled in DPF with one pattern, starting from the center and increasingly

by three holes at a time spirally toward the DPF external circumference. This

distribution will give more insights to explore dielectric distribution behavior and its

contribution to the determining the mutual capacitance and eventually its effects on

the gray-level value.

Table 5.6.: Circumferential Filling Distribution in 10−12 Farads (pF)

No. of holes filled/Electrodes 1- 2 1- 3 1- 4 2- 3 2- 4

3 4.7083 0.89101 4.7439 4.7136 0.87617

6 4.7974 0.97461 4.7242 4.7812 0.9763

9 4.9498 1.0765 4.9358 4.7293 1.0347

12 4.8856 1.1408 5.0349 4.74 1.1398

15 4.8929 1.2666 4.9736 4.8953 1.1947

18 5.2454 1.2224 4.9132 5.0942 1.3672

21 5.7754 1.4039 5.136 5.0117 1.2818

24 5.9007 1.5096 5.4308 4.9748 1.2499

27 5.8096 1.3856 5.8374 4.9049 1.4571

30 5.7559 1.5113 5.8226 5.0007 1.4741

33 5.6825 1.723 5.4704 5.4099 1.3925

36 5.9799 1.6304 5.6709 5.9733 1.5897

39 7.713 1.5962 5.6622 6.1422 1.713

42 8.2973 1.8194 6.492 6.0499 1.5411

45 8.1707 1.6566 7.9332 5.9806 1.7671

52 8.1929 1.8334 8.1873 8.3072 1.8309
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6. ANSYS’S IMAGES AND COMPUTATIONAL

RESULTS

6.1 Soot Estimation Method using ANSYS Images

Based on chapter 5 material, ECT images were generated from ANSYS

modeling using LBP.The following images represent randomly filled holes of the

DPF. As it can be observed from figure 6.1.a which has 36 filled holes, 6.1.b has 18

filled holes, 6.1.c has 12 filled holes, and 6.1.d has 3 filled holes. Gray-level varied

from 36 filled holes down to 3 filled holes.

(a) 36 filled holes. (b) 18 filled holes.

(c) 12 filled holes. (d) 3 filled holes.

Figure 6.1.: Randomly Distributed and filled holes.
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6.2 Images (Gray-Level)- Circumferential Distributed Soot

From the simulation results a numerical sum of vector [K] obtained as shown in

LBP equation:

[K] = [S]T .[C]

While filled soot amount inside the DPF (Maxwell model) calculated using carbon

black physical, and geometrical properties. Similar calculation method explained at

section (3.1), a numerical sum of the gray-level [K] vector assumed to be related to

the deposited soot. The numerical sum of [K] represents the gray-level value used

to estimate the filled soot, for both Random and circumferential soot filling

arrangement, a non-linear polynomial equation derived using excel curve fitting

tools, polynomial equation (4.1)

y = a1x
6 + a2x

5 + a3x
4 + a4x

3 + a5x
2 + a6x+ a

Using curve fitting tools in MS Excel a1 , a2 , a3 , a4 , a5 , and a6 can be located

respectively as below:

1− Random Distribution

y = (−5E − 07)x5 + (6E − 05)x4 − 0.0028x3 + 0.0502x2 − 0.5295x+ 17.406

where y estimated number of holes filled, and x is gray level value. Polynomial

equation coefficients a1, a2, a3, a4, a5, and a6 are :

a1 = 1.52118E − 05 , a2 = −0.000550069 , a3 = 0.003228188

a4 = 0.076203506, a5 = −1.078575735, a6 = 1.616596238

2− Circumferential Distribution:

y = −0.0002x6 + 0.0109x5 − 0.2395x4 + 2.5302x3 − 12.891x2 + 23.73x + 51.998

Polynomial equation coefficients a1, a2, a3, , a4, a5, anda6are :

a1 = −0.000191585, a2 = 0.010889287, a3 = −0.239540012

a4 = 2.530212898, a5 = −12.89055524, a6 = 23.72970661

a = 0
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Figure 6.2.: Randomly Distributed Soot

Figure 6.3.: Circumferential Distributed Soot
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Table 6.1.: Nos. of filled holes vs Gray-Level Random Distribution

Gray-Level Value Actual Weight Estimated Weight Error %

No of Filled Holes (No of holes)

1 16.15794723 3 2.907553055 -3.081564835

2 15.5001599 6 6.847677051 14.12795085

3 15.21758948 9 8.498537666 -5.571803715

4 14.74457232 12 11.16428706 -6.964274527

5 13.94898682 15 15.29055728 1.93704853

6 13.23313331 18 18.56450207 3.136122635

7 12.58396253 21 21.17123573 0.815408251

8 11.8198292 24 23.84135302 -0.661029066

9 10.94508015 27 26.47594141 -1.94095774

10 9.650045982 30 29.88222004 -0.392599871

11 8.154963213 33 33.69012893 2.091299794

12 7.36324128 36 35.8512668 -0.413147777

13 6.310931613 39 38.96986668 -0.077264935

14 5.473303797 42 41.63196323 -0.876278023

15 4.376593173 45 45.20785969 0.461910421

16 0 52 51.996 -0.007692308
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Table 6.2.: Circumferential Distribution Estimated Weight

Gray-Level Value Actual Weight No of Filled Error %

Holes

1 15.691 3 3.06 1.908

2 15.187 6 6.07 1.203

3 14.666 9 8.89 -1.249

4 14.146 12 11.61 -3.250

5 13.511 15 14.97 -0.224

6 12.814 18 18.74 4.132

7 12.271 21 21.70 3.336

8 11.926 24 23.55 -1.878

9 11.408 27 26.22 -2.887

10 10.607 30 29.97 -0.092

11 9.859 33 32.90 -0.296

12 8.632 36 36.42 1.168

13 7.130 39 39.41 1.056

14 6.318 42 41.24 -1.812

15 5.159 45 45.25 0.559

16 0.000 52 52.00 -0.004
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Table 6.3.: Random vs Circumferential Distribution (Errors)

Estimated Weight Estimated weight Circular-Error % Random - Error %

Circular Random

3.06 2.91 1.91 -3.08

6.07 6.85 1.20 14.13

8.89 8.50 -1.25 -5.57

11.61 11.16 -3.25 -6.96

14.97 15.29 -0.22 1.94

18.74 18.56 4.13 3.14

21.70 21.17 3.34 0.82

23.55 23.84 -1.88 -0.66

26.22 26.48 -2.89 -1.94

29.97 29.88 -0.09 -0.39

32.90 33.69 -0.30 2.09

36.42 35.85 1.17 -0.41

39.41 38.97 1.06 -0.08

41.24 41.63 -1.81 -0.88

45.25 45.21 0.56 0.46

52.00 52.00 0.00 -0.01

6.3 Ansys Validation and Results and Discussion

Capacitance measurements obtained from inter-electrode data, forms a direct

relationship between capacitance and material deposited inside the DPF, this form

exhibits proportional relationship, in-line with the assumption of more soot deposited

results in more capacitance,although,The capacitance of a set of charged parallel

plates is increased by the insertion of a dielectric material. The capacitance is in-

versely proportional to the electric field between the plates, and the presence of the
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dielectric reduces the effective electric field. on other hand capacitance is following

direct proportional of soot mass contribution at the time capacitances were measured.

In Validation process two pattern of soot mass deposition implemented, random

soot distribution,and circumferential soot distribution,in order to explore and ob-

serve the behavior of simulation results, from the charts there were slight difference,

the errors in circumferential tends to be less than ±5%, while random distribution’s

exceeded errors acceptable range in three points, these spikes attributed to some lim-

itation in Ansys electronic desktop where no feature to electrically ground electrodes,

besides, the difficulty of transforming DPF circular shape into square pixel domain.

Results as illustrated in figures circumferential distribution showed the best re-

sults, however in real time estimation method should apply for all situation.

Figure 6.4.: Random Distribution Error%

The estimation errors for the case with DPF holes filled randomly are plotted in

figure 6.4.; a maximum error of 14% is observed.
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Figure 6.5.: Circumferential Distribution -Actual Nos of holes filled vs Estimated

.

The estimation errors for the case with DPF holes filled circumferentially as shown

in figure 6.5; estimation errors were in the acceptable range of maximum 4%.

Figure 6.6.: Random vs Circumferential Distribution

Soot weight estimation patterns were plotted as shown in figure 6.6. A close match

between random and circumferential distribution, based on the number of filled

holes was observed.
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Figure 6.7.: Random vs Circumferential Distribution Errors

Figure 6.7 shows the soot estimation errors for soot distributed randomly and

circumferentially.
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7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

The aim of the presented work was to estimate soot mass from generated ECT

image’s data. Sensitivity matrix for an ECT image forms a basis set from which

image pixel data can be obtained. In this research, an approach is presented to es-

timate the soot mass in a Diesel Particulate Filter from an ECT image utilizing its

permittivity (capacitance) data, and then making use of pixel’s gray-level data for

estimation process .MATLAB software was used as a tool for processing the digital

image data, and generating numerical values, for both experimental and validation

portions. The proposed approach was evaluated for its accuracy against actual soot

mass and its corresponding tomographic images data. The results obtained by com-

bining the pixel value with soot load physical properties (weight) and permittivity

parameters (capacitance) through nonlinear relationship showed reasonable accuracy

in estimating the actual soot mass. Moreover it has been observed from the ex-

perimental data and validation results , soot estimation computation and analysis

showed that voltage is proportional to deposited soot weight, while capacitance data

used in simulation displayed inversely proportional relationship between number of

holes filled with soot. This results coincide with the basic definition of relationship

between charge ,voltage , and capacitance , and proves that experimental and val-

idation results are on the right track, however there are small estimation errors in

the results but they are controllable by enhancing sensor electrode and procedures in

experimental data collection.
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(a) Voltage vs Estimated Soot. (b) Capacitance vs Estimated Soot.

Figure 7.1.: Voltage fill-in data vs Gray-Level (Experimental), and Capacitance fill-in

data vs Gray-Level (validation).

7.2 Future Work

Controlling the soot mass deposition / emission level in the diesel engines ex-

haust system is a crucial process for manufacturers and environmental regulators.

Several studies have been conducted to figure out this problem using experimental,

analytical, and numerical approaches, however there are some challenges still need

further investigations. Based on the conclusions drawn from the study performed

herein, the following concerns can be basis for future work to advance improvement

in this area.

1- The ANSYS software used in this study to create a finite element model of the

diesel particulate filter (DPF) does not include a function for the electrical ground

system. This resulted in spikes on capacitance reading which impacted the accuracy

and linearity of the field distribution. Technically, the negligence of the electrical

ground system leads to residual accumulation and flow of the electrical field which

eventually impacts sensor’s electrodes mutual capacitance .

2- The sensitivity matrix used in this study as tools /techniques to quantify the soot

mass accumulation can be improved by weighing more geometric models capable of

transforming circular cross-section of the filter outer shell into square pixel grid , as it
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assumed a full size of the outer pixels during the data transformation into a sensitivity

matrix. This assumption slightly affects the accuracy of the sensitivity’s matrix .

3- Two approaches implemented to generate sensitivity matrix , Direct technique and

Manual deposition , other approaches could be tried to improve the quality of the

images generated as well.
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