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ABSTRACT

Guerrero de la Peña, Ana Ph.D., Purdue University, May 2020. Development of
a Framework for Projecting Line-Haul Truck Technology Adoption and Greenhouse
Gas Emissions in the U.S. using a System-of-Systems Methodology. Major Professor:
Neera Jain, School of Mechanical Engineering.

In order to displace diesel fuel consumption and reduce greenhouse gas emissions in

the line-haul freight transportation system, a strong uptake of low and zero emission

vehicle technologies must be incentivized by manufacturers and policymakers alike. A

simulation tool that can project a wide array of future scenarios and predict the effects

of freight transportation system evolution on mixed technology adoption trajectories

is needed. This tool can assist the system stakeholders identify the level of innovation

and policies necessary to increase the economic attractiveness of cleaner technologies

and therefore incentivize the market to reduce system-wide emissions.

In this thesis I present a simulation framework for projecting adoption and uti-

lization of emerging technologies and network-wide emissions in a line-haul freight

transportation system network. A System-of-Systems engineering methodology is

followed to realize the definition, abstraction and simulation of the system. This re-

sults in a framework capable of modeling the evolution of system factors with respect

to time and their influence across a set of representative heterogeneous line-haul fleets

operating on a regional network. A constrained mixed-integer linear program is used

to represent the decision-making process for heterogeneous fleets selecting vehicles

and allocating them on freight delivery routes to minimize total cost of ownership.

The proposed model is parametrized and validated using a Design of Experiments

(DOE) and historical adoption data. The results of this SoS model demonstrate 90%

accuracy in prediction outcome when modeling historical technology adoption across

a set of 12 heterogeneous representative fleets over an 11-year period. The formula-
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tion is then implemented to project alternative powertrain technology adoption and

utilization trends for a set of line-haul fleets. Alternative powertrain technologies

include compressed and liquefied natural gas engines, diesel-electric hybrid, battery

electric, and hydrogen fuel cell. Future policies, economic factors, and availability of

fueling and charging infrastructure are input assumptions to the proposed modeling

framework. Three mixed-adoption scenarios, including BE, HFC, and CNG vehicle

market penetration, are identified by the DOE study to demonstrate the potential

to reduce cumulative CO2 emissions by more than 25% between 2018–2028. Next,

the framework is exercised to project powertrain adoption, utilization, and emissions

from 2019–2035 given a set of assumptions for the impact different levels of autonomy

may have on purchase costs, vehicle efficiency, driver wages, vehicle reliability, and

hours of service regulations. The proposed model formulation, which predicts both

adoption and utilization, can enable stakeholders with a deeper understanding of

how and why different levels of autonomy impact the broader freight transportation

network. Finally, the framework is extended to predict adoption and utilization be-

haviors upon introduction of intra-fleet 2-vehicle platooning. A study on the effects of

platooning fuel efficiency and freight demand on adoption, utilization, and resulting

network emissions is presented.



1

1. INTRODUCTION

In order to displace diesel fuel consumption and reduce greenhouse gas emissions

in the line-haul freight transportation system (FTS), a strong uptake of low and

zero emission heavy-duty Class 8 technologies must be incentivized by policymakers.

Trucks move more than 13 billion tons of freight annually, representing more than

80% of all freight movement by weight in the U.S. [1–3]. Moreover, heavy-duty Class

7 and 8 trucks, those weighing over 26,000 pounds, represent more than 70% of the

vehicle miles traveled by freight transportation trucks in the U.S. [3]. Presently, an

overwhelming majority of these vehicles use diesel internal combustion engines, with

less than 2% using natural gas or other alternative fuels [4]. Since 1990, greenhouse

gas emissions from freight trucking have increased five times faster than emissions

produced from passenger travel. These numbers are expected to increase by more

than 40% by 2040 [2, 3].

Alternative powertrain technologies—compressed (CNG) and liquefied natural gas

(LNG), hybridization, battery electric, and hydrogen fuel cells—have been proposed

for their benefits in terms of energy savings and reduction of greenhouse emissions.

Moreover, autonomous vehicles are similarly anticipated to enter the line-haul seg-

ment as highway routes provide the ideal platform for this type of operation. Au-

tonomous capability is also expected to produce benefits in the fuel economy of Class

8 vehicles. For example, Delorme et al. [5] present fuel savings potential between 3

and 17% for mild-hybrid (starter-alternator configuration with no electric-only mode)

and full-hybrid (series-parallel configuration and electric-only mode) electric diesel ve-

hicles with a 5 to 25 kWh battery capacity over a conventional diesel architecture for

Class 8 long-haul trucks given the hybrid configuration, route type, and route grade.

Zhao et al. [6] present a fuel savings comparison for LNG, hybrid electric, battery

electric, and fuel cell heavy-duty vehicle architectures over a diesel baseline by sim-
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ulating their operation on day, short-haul, and long-haul drive cycles. Their study

demonstrates CO2 emissions reduction between 24-39% for day drive cycles and 12-

29% reduction for short- and long-haul cycles for vehicles with alternative powertrain

configurations. Lammert et al. [7] present fuel consumption reduction of more than

10% for two Class 8 tractor-trailer diesel conventional vehicles operating in platooning

mode at varying gap distances, steady-state speeds, and gross vehicle weight during a

series of track tests. Furthermore Graham et al. [8] compare tailpipe greenhouse gas

emissions produced by diesel, biodiesel, CNG, LNG, and hythane heavy-duty vehicles

over standardized drive cycles. Note, however, that these studies present the poten-

tial reduction of CO2 emissions for a single vehicle operating over a predetermined

drive-cycle.

On the other hand, modeling and projecting the technology adoption trajectories

that result in a targeted reduction in emissions across a network is a complex task.

Emerging technologies may bring revolutionary and unexpected changes to the way

fleet vehicles are operated since their performance (efficiency, range, payload capacity,

etc.) differs from the well-known diesel baseline. Moreover, infrastructure for alter-

native fuels and electric vehicles must proliferate to support the introduction of new

technologies. Finally, future fuel prices and active and new regulatory policies and

incentives will affect the attractiveness of emerging technologies. Ultimately, it is the

economic competitiveness, as perceived by Class 8 line-haul fleets, that will determine

the levels of penetration these technologies will have in the sector. Given that the

evolution of these freight transportation system factors is uncertain, a simulation tool

that can be used to project a wide array of future scenarios and predict the effects on

mixed technology adoption trajectories is needed.

1.1 Background

Given the variation in fleet characteristics and the effect the allocation of fleet ve-

hicles will have on network traffic and route vehicle speeds, adoption and utilization
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behaviors must be cumulatively observed across the set of heterogeneous fleets oper-

ating over the network of interest. A large majority, 86%, of Class 8 tractors used in

line-haul freight transportation are company-owned and operated as a fleet, whereas

only 14% are owner-operator trucks. A heavy-duty vehicle fleet may contain a diverse

range of equipment types, with different operational and usage profiles. This may be

particularly true when different technologies, or fuels, are used within a single fleet.

The engine, chassis, and body of trucks and trailers are often produced by different

manufacturers, and in reality, fuel consumption and economic attractiveness will be

determined by the features of the complete vehicle [6, 9].

Fleets purchase vehicles annually to satisfy demand growth or necessary vehicle

replacement using Total Cost of Ownership (TCO) as the most common purchasing

criteria. The TCO is a function of acquisition price as well as any costs incurred

during operation of the vehicle. An individual fleet owner will not only select the

vehicle architectures it adopts but also control the routes over which its vehicles

operate in order to move freight in a cost-efficient and timely manner. In this way,

the fleet owner can be thought of as exerting centralized control over their fleet.

In the context of the FTS, though, fleets demonstrate operational and managerial

independence as they operate independently of one another over a single regional

network. This decentralized behavior at the network level in turn has significant

impact on the projection of widespread vehicle adoption because vehicle purchase

and allocation decisions are in no way coordinated across fleets. Figure 1.1 shows a

schematic of the structure of the line-haul FTS, in which a regulating authority defines

a set of policies influencing regional fleets, yet does not make decisions for them. This

results in a heterogeneous array of fleets of different size and composition.
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Figure 1.1. : Schematic representing the decentralized structure of the line-haul FTS.

While the search for a strategic transition to cleaner trucks is not new in the

literature, few studies have focused on modeling the way fleets, particularly Class 8

fleets, adopt vehicles based on their perceived utility. A few studies present vehicle

ownership cost minimization models for a single fleet that consider cost of acquisition

and operational costs. Moreover, the literature on this subject is at best limited to

a single fleet’s adoption behaviors, therefore assuming a homogeneity that is not re-

alistic across the FTS. Davis et al. [10] present a TCO optimization model assuming

a commercial delivery fleet is homogeneous; that is, all vehicles of the same type–

diesel or electric–are selected to deliver all freight demand. Feng and Figliozzi [11]

present an ownership cost minimization model for a single mixed-fleet of diesel and

electric delivery vehicles, introducing replacement cycles and vehicle salvage revenue.

Although both studies take into consideration ownership cost sensitivity to vehicle

speed, battery life, and tax incentives, these models do not consider vehicle route
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allocation as a decision metric and instead, predetermined route lengths and daily

energy consumption estimates are imposed. Any effects of system evolution and

operational requirements of different technologies—fueling and charging needs, in-

frastructure changes, traffic, etc.—on vehicle allocation are not taken into account.

Janic [12] presents a model to calculate the reduced total costs of a single intermodal

collection and distribution fleet when heavier and longer vehicles are used. The costs

are based on historical local and global aggregated data, and not on the operational

decisions made at the fleet level.

Although fleets demonstrate operational and managerial independence as they

operate independently of one another, they are influenced by a common environment:

the FTS. The line-haul FTS shows evolutionary development traits. The introduction

of alternative fuels and powertrains, as well as advanced automation capabilities, will

cause both infrastructure and operational policies to evolve in order to support and

regulate the operation of these new technologies. Moreover, the dynamic cost of fuel

and electricity, freight demand, and even technological capabilities will vary with time.

It is precisely the effects of these system dynamics that are generally not captured

by modeling approaches that rely on extrapolation of previous historical trends to

project the effect on adoption and utilization of future generations of technology.

For example, authors in [13–15] project emissions reductions by simply extrapolating

historical trucking data (e.g. projected number of vehicles, annual miles traveled)

and assuming potential market penetration scenarios. They do not provide readers

with an understanding of how to achieve the vehicle adoption rates that are assumed

to be necessary for a significant reduction in emissions.

Furthermore, few studies have focused on modeling the way fleets, particularly

Class 8 fleets, adopt vehicles based on their perceived economic attractiveness as the

freight transportation system (FTS) evolves over time. If we consider the FTS as a

system of systems (SoS), emergent behavior properties may also appear in the SoS

that are not apparent (or predicted) from its constituent systems, but can be observed

at higher levels of the system hierarchy. For example, the combined effects of fuel
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and electricity costs, powertrain performance, and availability of regional charging

infrastructure may reveal new adoption behaviors and traffic trends in the region

of operation. Future trucking metrics and trends, including vehicle miles traveled,

preferred routes, and number of vehicles purchased, should not be assumed to follow

those trends observed in the past. These metrics should not be extrapolated from

historical data, but instead, their evolution should be modeled as a result of dynamic

changes in the FTS.

Table 1.1 summarizes the literature on emerging vehicle technology adoption, in-

dicating that current studies only account for variables within a few domains (e.g.

vehicle performance, single fleet decisions, etc.), while assuming all other FTS consid-

erations, e.g. number of vehicles, vehicle miles traveled and other utilization metrics,

or energy costs, remain indefinitely constant. These assumptions, while at times nec-

essary to manage scalability of the problem, mask the interacting effects of the FTS

evolution on adoption and utilization behaviors across a set of heterogeneous fleets

and can lead to an incomplete study of market adoption and the viability of reduced

network emissions.
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Table 1.1. : FTS Gaps in Literature Summary

Vehicle Fleet Policy effects Heterogeneous Effects of Vehicle allocation

Study cost utility on adoption market composition system & utilization

analysis analysis & emissions & emissions evolution trends

Davis and Figliozzi [10] X X X

Delorme et al. [5] X

Feng and Figliozzi [11] X X X

Fulton and Miller [13] X X

Graham et al. [8] X

Janic [12] X

Kleiner et al. [16] X X

Lammert et al. [7] X

Moultak et al. [15] X X X

Schafer and Jacoby [14] X X

TRB and NCFRP [9] X

Wadud et al. [17] X X

Zhao et al. [6] X X

Greenhouse gases produced by the transportation system are a product of the vehi-

cle composition—diesel, alternative fuel, zero emission, and autonomous vehicles—of

fleets operating in a region, as well as the utilization of the vehicles. As mentioned

before, it is the fleets who adopt vehicles in order to satisfy freight transportation

needs in a cost-efficient manner, and their adoption and utilization behaviors are

a product of their environment. In order to capture the evolutionary dynamics of

the FTS and emerging vehicle adoption and utilization behaviors, it is necessary to

develop parametrized, models of the FTS components. These time-varying models

can then be integrated as the environment of inputs and constraints influencing fleet

behaviors to create a holistic simulation framework. This simulation framework can

determine how changes in the physical and functional characteristics of the vehicles,

fueling and charging infrastructure, and policy components can be modified to target

desirable adoption paths and a significant reduction in emissions in a region of study.
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1.2 Thesis Objective and Contribution

In this thesis, I present a mathematically rigorous framework for projecting adop-

tion and utilization of emerging technologies and network-wide emissions by modeling

the evolution of FTS factors with respect to time and their influence across a set of

representative heterogeneous line-haul fleets. In order to develop this framework, I

make the following contributions:

1. Follow a System-of-Systems engineering methodology to realize the definition,

abstraction, and simulation of the FTS as a complex system of independent and

distributed systems, the set of line-haul fleets, that are collectively influenced

by, and in return impact, the evolution of the FTS.

2. Develop a model for heterogeneous fleet behavior recognizing that fleets inde-

pendently optimize vehicle selection and allocation over the network based on

their own size, budget, cargo demand, etc.

3. Develop parametrized models of the FTS subsystems and fleet characteristics

that consider time-varying fuel and energy costs, technology purchase costs,

vehicle traffic allocation, availability of supporting infrastructure, policy effects,

and freight demand in order to project mixed-composition scenarios of emerging

powertrains and vehicle autonomy.

4. Through integration of the models in items 2 and 3, and simulation and anal-

ysis, determine how changes in the physical and functional characteristics of

the vehicles, fueling and charging infrastructure, and policies and incentives

must be shaped over time to target a desirable market penetration of emerging

powertrain technologies and reduction of CO2 emissions.

In this thesis, I present a model of the behaviors of a fleet selecting vehicles for

purchase and operation as it is influenced by vehicle highway performance, fleet man-

agement considerations, infrastructure availability, and external influences such as
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cost of energy, regional freight demand, and policies. Furthermore, the parametrized

model of the FTS representing the evolution of these factors is integrated with this

fleet behavioral model to comprise a heterogeneous set of line-haul fleets, with varying

characteristics, that together represent the FTS network-wide adoption using trends

of heavy-duty Class 8 vehicle technologies.

1.3 Outline

This dissertation is organized as follows. Chapter 2 describes the System-of-

Systems engineering methodology followed to develop the simulation framework and

the abstraction and implementation of the fleet behavior model. Moreover, this sec-

tion presents the validation of the framework with historical data. Chapter 3 presents

the extension, calibration, and use of the framework to project adoption and utiliza-

tion of diesel and 5 alternative powertrain technologies and the resulting network

emissions. A sensitivity analysis of the framework to different system factors, in-

cluding vehicle performance parameters, fuel costs, infrastructure availability, and

policies, among others is also presented in Chapter 3. Chapter 4 describes the ex-

tended model formulation and key assumptions made regarding the effect of various

autonomy levels on fleet-wide and network-wide operations. An analysis of different

case scenarios in which Levels 2, 4 and 5 of vehicle autonomy are introduced to the

market is also presented in this chapter. Chapter 5 presents the introduction of intra-

fleet 2-vehicle platoons to the formulation, and the resulting effects of platooning

capability and powertrain options on technology adoption and utilization. Finally,

conclusions are stated in Chapter 6, including a discussion of potential future work.
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2. FREIGHT TRANSPORTATION AS A SYSTEM-OF-SYSTEMS

A freight transportation system (FTS) is a critical element of an industrial and glob-

alized economy, but it also imposes a high cost on the environment. In the US

alone—where 60% of freight is moved on highway roads by Class 8 trucks—freight

transportation trucking generates an estimated 450 million tons of CO2 emissions

annually [1]. Presently, an overwhelming majority of heavy-duty Class 8 vehicles use

diesel internal combustion engines, with less than 2% using natural gas or other alter-

native fuels [4]. Adoption of cleaner vehicle technologies in the heavy-duty trucking

segment is regarded as a promising strategy to reduce emissions in the transporta-

tion sector. However, the market penetration levels that these emerging technologies

will ultimately achieve depends on their economic attractiveness as perceived by the

fleets that will acquire and operate them. It is also well known that freight technology

adoption is a function of not only the acquisition price of a given technology or its

performance benefits (e.g. as characterized by an average increase in fuel economy),

but also state and federal policies and incentives, regional fuel costs, fleet operation

strategies, network characteristics, etc. [18]. Moreover, these factors also affect how

a fleet operates the vehicles they purchase given the varied performance capabilities

of said vehicles. More importantly, the decision-making behavior of fleets servicing

the FTS vary as a function of their size, operating strategy, annual growth, vehicle

replacement cycles, etc. Ostensibly, these fleet entities make their acquisition de-

cisions independent of each other, however they operate and interact on a single,

shared transportation network, altogether influenced by the evolution of the FTS en-

vironment. In other words, in order to capture emergent mixed technology adoption

trends in the freight transportation network, its evolution must be modeled across

the heterogeneous mix of fleets that service it.
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The search for a strategic transition to cleaner trucks is not new in the litera-

ture. However, while many researchers and stakeholders are interested in modeling

technology adoption across the freight transportation sector, the literature on this

subject is at best limited to a single fleet’s adoption behaviors, therefore assuming a

homogeneity that is not realistic across the FTS. Davis et al. [10], for example, intro-

duce a series of scenarios for which adoption of electric vehicles offer a reduction in

cost of ownership, when compared to diesel adoption, for a single mixed-composition

delivery fleet over an 11-year period. Feng and Figliozzi [11] present a similar diesel

and electric delivery vehicle adoption model for a single mixed-fleet, additionally in-

troducing replacement cycles and vehicle salvage revenue. Although both studies take

into consideration ownership cost sensitivity to vehicle speed, battery life, and tax

incentives, they impose daily energy consumption estimates and fixed routes, with-

out considering the dynamic effects of the FTS evolution on vehicle utilization. The

aforementioned studies do not consider the availability of charging infrastructure and

route optimization, thereby ignoring the relationship between infrastructure system

evolution and vehicle operation planning. Furthermore, Janic [12] presents a model

to calculate the reduced total costs of an intermodal collection and distribution fleet

when heavier and longer vehicles are used. The costs are based on historical local

and global aggregated data, and not on the operational decisions made at the fleet

level.

Moreover, a majority of the literature on projection of trucking freight technol-

ogy adoption focuses on evaluating the drive-cycle performance of emerging vehicle

technologies and resulting fuel or energy savings as a measure of their economic at-

tractiveness and potential for widespread adoption, rather than the direct effects that

vehicle performance and FTS evolution will have on fleet adoption behaviors [5–7].

Finally, other studies take into account drive-cycle performance and extrapolated his-

torical data—projected number of vehicles, annual vehicle miles traveled, etc.—and

project resulting emissions reduction given different assumed market penetration sce-

narios. For example, Fulton et al. [13] explore high levels of market penetration of
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different low-carbon vehicle technologies, such as alternative fuel architectures and

electric vehicles, and the resulting capability to meet 80% reduction of CO2 emissions

in the U.S. by 2050. Schafer et al. [14] present rates of adoption for different personal

vehicles and heavy-duty Class 8 diesel truck technologies under CO2 emission con-

straints and penalty costs. Finally, Wadud et al. [17] present a qualitative estimate of

changes in energy consumption and carbon impact of light-duty and heavy-duty ve-

hicles given the levels of automation adopted in four assumed scenarios. While these

studies describe projected adoption scenarios and resulting emissions levels, they do

not provide any further understanding on the mechanisms that lead FTS fleets to

exhibit the vehicle adoption behaviors in the proposed scenarios.

The future technology composition of the FTS will likely be mixed as a result of the

many independent fleets that purchase and operate vehicles based on their individual

management and operational strategies; however, these fleets are altogether influ-

enced by, and collectively affect, the dynamics and evolution of their common envi-

ronment. Individual fleets of varying characteristics will maintain their independence

by self-regulating their adoption cycles and vehicle utilization strategies, all the while

contributing and taking resources from other FTS systems (e.g., road network, traffic,

freight demand, policy incentives) [19]. System-of-Systems Engineering (SoSE) [20]

is an emerging and specialized field of research in complex systems that addresses the

capabilities resulting from the interaction and collaboration of large-scale indepen-

dent and distributed systems. A foundational principle of SoSE is that the constituent

systems maintain their independence (e.g., fleets) but contribute to, or take resources

from, other systems (e.g., road network, traffic) for mutual benefit [19]. Any change

in one system, therefore, ultimately impacts other systems and the resultant System-

of-Systems (SoS) capability (i.e., the transportation of freight). SoSE concepts and

methodologies offer significant value to the study of technology adoption rates and

emissions at a large scale, e.g. a line-haul FTS, resulting from the behaviors of the

multiple independent and distributed fleets operating in such a system. Even though

the evidence of an SoS perspective on freight technology adoption is lacking in the
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literature, many researchers are beginning to recognize the value of SoSE methods for

investigating transportation related problems. [21] utilize SoSE concepts to discover

emergent behavior in integrated traffic control problems, while, [22] develop an SoS

model for real-time scheduling of dangerous good transportation to meet regulatory

requirements under business delivery constraints. [23] claim the SoS framework to be

the foundational element for developing innovations for future intelligent transporta-

tion systems because of its ability to accommodate a diverse set of stakeholders and

complex constituent systems.In addition to the transportation related examples, the

SoSE concepts are being applied across diverse application domains where multiple

complex independent systems are integrated, e.g., space applications [24], emergency

management [25], and supply chain management [26], to name a few.

In this chapter, I contribute an approach for modeling the heterogeneity of fleet

vehicle purchase decision-making behaviors by first modeling the FTS as a system-

of-systems and then designing and validating a representative set of fleets to project

technology adoption trends. The SoSE principles allow for the development of a

holistic FTS model that captures the interaction of the multiple complex systems

that compose it. Here, I pose the problem of projecting mixed technology adoption

across the FTS as a cost minimization problem in which I consider how the FTS

affects, and is affected by, the purchase and vehicle allocation decisions of multiple

heterogeneous fleets. The proposed model is parametrized and validated using a

Design of Experiments (DOE) and historical adoption data. The results of this SoS

model demonstrate 90% accuracy in prediction outcome when modeling historical

technology adoption across a set of 12 heterogeneous representative fleets over an

11-year period.

2.1 Background

The U.S. line-haul freight transportation system (FTS) is composed of intercon-

nected systems of vehicles, inter and intra-city highways, and support infrastructure.
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Vehicles—and the technology that forms part of a vehicle’s architecture—are pro-

duced, adopted, operated, and regulated by independent entities with differing objec-

tives. While policy-makers deploy incentives and regulations to improve overarching

system conditions like emissions levels, fleet owners seek to increase the productivity

of their vehicles in a cost-efficient manner to maximize revenue [27].

The increasing complexity of independent systems and the dependability of new

capabilities on the multiple systems, created a need to study the engineering of

systems-of-systems [28–30]. An SoS is defined when multiple interdependent, yet

independently managed and operated, systems collaborate to achieve common goals

[20]. [19], regarded as one of the most influential contributors [29] in the SoS field,

notes that an SoS is formed when the constituents components of a system exhibit op-

erational and managerial independence, meaning that a component has a defined pur-

pose outside its participation in the larger system. Building upon Maier’s work, [31]

have proposed underlying traits of an SoS which can be applied as differentiating

criteria to distinguish an SoS from an otherwise ‘monolithic complex system’. These

traits are summarized in Table 2.1; the more a system exhibits the SoS traits, the

more important it is to view and analyze it as an SoS [32].

Table 2.1. : System-of-System Traits [31]

Trait Description

Operational Independence Elements have their own useful purpose outside the SoS.

Managerial Independence Elements operate independently and are provided unique purposes by owners

and operators.

Geographical Distribution Elements are physically distributed, linked by information.

Evolutionary Development The SoS and its constituent systems are developed over-time.

Emergent Behavior Properties of the whole emerge from the assembly and interaction of elements.

When considered from the perspective of the entire FTS, it is clear that individual

fleet owners demonstrate a level of operational and managerial independence and

geographical distribution. The FTS itself exhibits evolutionary development, as it
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has evolved over many years and will continue to do so in the future. For example,

the introduction of electric and autonomous vehicles will cause both infrastructure

and operational policies to evolve in order to support and regulate the operation of

these new technologies, which will likely operate contemporaneously with the existing

technologies. Furthermore, emergent behavior properties may also appear in the SoS

that are not apparent (or predicted) from the constituent systems, but can be observed

at higher levels of the system hierarchy. For example, the combined effects of fuel

and electricity costs, powertrain performance, and availability of regional charging

infrastructure may reveal new adoption behaviors of fleets operating in the region.

Evolutionary development and emergent behavior of technology adoption, as it is

driven by fleet-owner decision-making, are among the prominent SoS traits that have

not been explored by previous studies in transportation literature.

In order to model fleet-owner decision-making and its effect on the adoption of

freight vehicle technologies, it is important to model the aforementioned traits, along

with system interconnections and the operational and policy constraints that impact

them. Recognizing the need for a holistic methodology to engineer and understand ca-

pabilities that result from the collaboration of multiple systems in the transportation

domain, [33] developed an SoS modeling and analysis methodology. This framework

provides the foundations for building an SoS model that accounts for the evolution-

ary development of the constituent systems and stakeholders decisions relevant to

that SoS. This SoS framework has three main phases: definition, abstraction, and

implementation [34].

The purpose of the definition phase is to decompose the SoS across two dimensions.

The first one spans the breadth of the SoS and includes defining considerations for

the SoS Resources, Operations, Policy, and Economics (ROPE). The second is the

identification of elements and stakeholders at various hierarchical levels across the

ROPE categories, where the α-level is considered the base level of the SoS, and

subsequent levels build on a network/collection of subordinate level entities. Figure

2.1 provides an illustration of the SoS ROPE construct.
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Figure 2.1. : SoS ROPE Construct [adapted from [33]]

The purpose of the abstraction phase is to model the relationships between the

ROPE categories and hierarchical levels, including the stakeholders and the networks,

that define the SoS. The abstraction phase decomposes the SoS into sub-domains

and identifies the sub-models, variables, and parameters which represent them at

an appropriate level of abstraction. Furthermore, this phase also identifies how the

variables are linked by information flows that are responsible for creating dependence

among, and between, ROPE table hierarchical levels and SoS stakeholders. Finally,

the implementation phase realizes all or part of the abstraction within a modeling

and simulation environment. It is in this final phase that specific hypotheses about

the SoS can be proposed and evaluated.

2.2 Heterogeneous Fleet Behavior as a System of Systems

2.2.1 Definition

First I define the scope of the SoS as it currently exists, establish the ROPE

categories and hierarchical levels, and identify the stakeholders (e.g. fleet-owners,

policy makers, technology providers) that, in practice, define the goals, objectives,

and considerations that influence technology attractiveness. The interested reader is

referred to [33] for a detailed description of the ROPE categories.

When considering fleet behavior over the FTS, different powertrain technology

options can be considered an α-level resource, while the integration of different pow-

ertrain and vehicle technologies in the form of a heavy duty class-8 truck can be

considered a β-level resource. A fleet of Class 8 trucks is considered to be the γ-level
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resource, and so on. Similarly, on the policy side, regulations regarding emission re-

strictions can be considered an α-level policy; class-8 vehicle weight limits a β-level

policy; and driver hours of service limits the γ-level policy. In the context of modeling

heterogeneous fleet behavior, the SoS model could be used to analyze how a change in

β-level policy would impact the β-level resources and its constituent α-level resources,

and ultimately economics that drive decision-making at the γ-level. The above in-

formation regarding resources and policy, along with the information pertaining to

the entire SoS ROPE construct, can be organized and represented in the form of the

ROPE Table, which is provided in Table 2.2.

Beginning at the bottom level of the hierarchy, the α-level of the ROPE table

encompasses the powertrain technologies used by heavy-duty Class 8 vehicles at the β-

level. This may not only encompass powertrain technologies such as diesel or hybrid-

electric, but may also be comprised of other vehicle technologies such as advanced

aerodynamic features that enable them to operate with improved efficiency at highway

speeds. At the γ-level, we consider the set of vehicles that comprise a single regional

fleet. The line-haul fleets considered here are comprised of heavy-duty Class 8 trucks

that are operated on regional highway routes shorter than 500 miles. Fleets purchase

vehicles annually to satisfy demand growth or necessary vehicle replacement using

Total Cost of Ownership (TCO) as the most common purchasing criteria. The TCO

is a function of acquisition price as well as any costs incurred during operation of the

vehicle. At this level we observe vehicle adoption behaviors (by fleets) that are in

turn influenced by factors defined at the δ-level—the regional freight transportation

network—such as regional freight demand, network characteristics, and policies. Any

effects that regional policies, network characteristics, infrastructure availability, and

costs may have on the operation of the vehicles should be reflected on the incurred

fleet costs. The ROPE table draws out this important consideration; in other words,

the adoption trends for different vehicle technologies cannot be observed only at the

α− and β−levels as they are dominated by the operations, economics, and policies at

the higher levels. This implies that evaluation of vehicle-level powertrains based on
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their performance alone, and detached from higher SoS levels in the hierarchy, will

be insufficient to observe evolution of market adoption behaviors.

Table 2.2. : Regional Line-Haul Freight Transportation System ROPE matrix

Level Resources Operations Economics Policy

Alpha -Powertrain Type -Powertrain fuel -Cost of fuel -Emission

consumption restrictions

Beta -Heavy duty -Ton-mi/gal efficiency -Cost of fuel -80,000 lb

Class 8 vehicles -Average day consumed -Cost of purchase

-Vehicle operation -Cost of weight limit

architecture -Vehicle life cycle driver/hour

-Cargo load/capacity -Cost of

-Miles driven based maintenance

on selected routes

-Operate at constant

speed over route

-Operator hours

-Vehicle range

Gamma -Vehicles in -Fleet distribution -Total cost of -Driver hours

single regional -Fleet size ownership of service

fleet -Vehicle replacement decision metrics limits

cycles and years of per year

service limits

Delta -4-city network: -Total freight demand -Cost of fuel -Speed limit

cities 1-4 between cities by weight -Cost of using -Regional

-Traffic conditions: infrastructure emissions

vehicles on road, restrictions

road density capacity,

travel time

2.2.2 Abstraction

Based on the above scope and the SoS definition of the FTS, the abstraction

phase identifies the sub-domains of the FTS SoS space as well as the flow of informa-

tion that affects a fleet’s total costs (and therefore the economic attractiveness and

adoption of technologies), as shown in Figure 2.2. Here, for example, we recognize

that fuel consumption over a selected route will be influenced by the vehicle efficiency
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parametrization as well as the network parametrization, including route distance, and

route speed.

Fleet n TCO 
Optimization

Fleet 2 TCO 
Optimization

Network 
Parametrization
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Policies 
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Figure 2.2. : Abstraction of the regional line-haul freight transportation system.

The abstraction model represents the decision process of fleets to purchase and

operate those vehicle architectures that are economically attractive to them given

the architectures’ operational and purchase costs as these metrics are affected by the

SoS environment. Our intent is to estimate and optimize the fleet-wide TCO for

heavy-duty Class 8 trucking highway operation given vehicle highway performance,

fleet management considerations including budget and vehicle replacement periods,

network characteristics, and external influences such as cost of energy, regional freight

demand, and policies regulating the purchase and operation of Class 8 vehicles. This

optimization problem can be abstracted as a mixed-integer linear program.
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Single-fleet TCO Optimization

Here, I describe the objective function, constraints, and associated models used

to construct the mixed-integer linear program representative of a fleet’s adoption

behaviors. New vehicle purchase costs and turnover sales revenue are included as

metrics for vehicle acquisition. Moreover, a system optimal [35] traffic allocation

approach is used to select the routes over which all vehicles in the fleet are allocated

for delivery of freight, therefore estimating the dynamic effects of FTS evolution on

vehicle utilization and fleet-wide operational costs. Fleet management, policies, and

vehicle operational considerations are formulated as constraints. Table 2.3 describes

the decision variables, while Table 2.4 shows the parametrization of the abstracted

model. This program is then used to capture annual adoption behaviors for all fleets

operating in the network, as indicated in the Implementation section.

Table 2.3. : Variable Definition

Decision Variables Description

xsqn Number n of vehicles type q that originate at s per year.

xsqn,ij Vehicle n of type q originating at s, traveling on link (i,j).

yhij Cargo flow between links, originating at h.

xq,new Number of new vehicles of type q purchased per year.

xq,r Number of vehicles of type q sold per year.

usq Intermediate binary variable, 1 if new vehicles are purchased.

vsq Intermediate binary variable, 1 if vehicles are sold.

Objective Function. The objective function represents the TCO criteria commonly

used by fleet owners in order to select vehicles for purchase. In practice, a single fleet

will select the vehicle architectures that reduce purchasing or lifecycle operational

costs, therefore minimizing their TCO. On average, fuel consumption, repair and

maintenance of a vehicle, and driver wages incur the highest percentage of total op-

erational costs on a per mile basis over a vehicle’s lifecycle [36]. Fleets commonly

purchase vehicles on a yearly basis, and therefore this decision-making process is ex-

ercised annually throughout the projection period. The decision variables are defined
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as xsqn, the number of n vehicles of type q that originate at s per year, xsqn,ij, vehi-

cle n of type q originating at s traveling on link (i, j), and yhij, the cargo link flow

originating at h.

Table 2.4. : Model Parametrization

β Level-Vehicle Architecture Parametrization

Operational

ξq Efficiency function of vehicle type q gal
mi

Rq Driving range of vehicle type q mi

Wq Capacity for vehicle type q ton

Eq,co2 CO2 emission rates for vehicle architecture q g
mi

Bq Reliability of vehicle architecture q %trips
year

Economic

CM,q Cost of maintenance per mile $
mi

Cp,q Cost of purchase for vehicle type q $

Cr,q Resale value for vehicle type q $

γ Level-Fleet Management Parametrization

lmin,lmax Vehicle turnover range years

γ Projected fleet’s TCO outlook period years

Cdriver Driver wages $
mi

Bf Fleet’s budget for vehicle purchase $

Cdelay,c Revenue loss due to delay for cargo type c $
hr

δ Level-Network Parametrization

bhi Cargo demand from origin h to destination i ton

dij Length (distance) of link (i, j) mi

hos Hours of service limit hours

Ceq Cost for energy consumed by vehicle type q $

The objective function is defined as follows: Jk = Cop+Cpurch. Here, the subscript

k indicates that the total cost of ownership is computed every year. To simplify the

notation, the subscript k is dropped throughout the formulation with the exception

of cases where required to indicate the use of values from previous years. The cost of

operation includes the cost of energy consumed Cec, cost of driver wages Cwages, cost
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of maintenance CM , and cost of revenue losses CR, as a function of reliability such

that Cop = Cec + Cwages + CM + CR.

Energy consumption costs will vary depending on the vehicle technology used,

given the parametrization of energy costs and vehicle efficiency. The cost of energy

is defined as

Cec = γ
∑
q

∑
(i,j)∈A

xq,ijdijCq,ij (2.1)

where xq,ij =
∑

s

∑
n x

s
qn,ij represents the flow of vehicles of type q over highway link

(i, j) regardless of their origin, and A is the set of city-nodes in the network. The cost

of energy consumed per mile, Cq,ij = ξq(uij)Ceq, is a function of fuel cost and vehicle

efficiency, ξq, which is itself a simple function of average vehicle speed. Operational

costs are computed as a function of the total number of trips in an average operational

day. In order to estimate lifecycle costs, the cost of energy consumed over an average

day is multiplied by γ, the number of years in a fleet’s TCO outlook period.

The total driver wages, Cwages, are computed on a per mile basis, given the total

number of miles traveled by fleet vehicles on an average operational day. Similar to the

energy consumption costs, the driver costs are weighted over the vehicle’s expected

lifecycle:

Cwages = γ
∑
q

∑
(i,j)∈A

xq,ijdijCdriver. (2.2)

The technology type and age of a vehicle often affect its maintenance and repair

costs and are commonly used as a metric by fleet owners to identify the appropriate

turnover age of their vehicles [37]. Maintenance costs are defined as

CM = γ
∑
q

∑
(i,j)∈A

xq,ijdijCM,q. (2.3)

Reliability of cargo delivery may be affected by vehicle or component break-down.

Here, I assume technology reliability issues result in time delays, Td,q, and that

scheduling of a second vehicle for completion of delivery is not necessary. In that
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manner, reliability costs are modeled as losses in revenue due to the incurred delay

and are a function of both vehicle and cargo type:

CR = γ
∑
q

∑
(i,j)∈A

xq,ijBqTd,qCdelay,c. (2.4)

Finally, the cost of purchase includes the cost of buying new vehicles and the

revenue generated by selling used ones: Cpurch = Cnv − Csr. Fleets will purchase

new vehicles 1) to replace those beyond their economic lifecycle or 2) to increase fleet

volumes due to an increase in freight demand. Here I assume that all vehicles are

purchased new, such that

Cnv =
∑
q

xq,newCp,q. (2.5)

The variable xq,new is introduced to represent the vehicles of technology type q newly

adopted in the current year of projection, k. This means there is a surplus of vehicles

q originating at node s that were not allocated in the previous years. These new

vehicles are either needed to satisfy an increase in freight demand or represent a

switch to a more economically attractive technology. The variable xq,new is given by

[xq]k − [xq]k−1, where xq =
∑

s

∑
n x

s
qn. Furthermore, xq,new is positive only if new

vehicles are allocated to origin s, and zero otherwise.

Fleets will sell older vehicles when they are near the end of their economic life—the

age at which maintenance and repair costs increase and the efficiency and performance

are no longer attractive [11,37]. It is at this point that fleets may consider switching

to a newer replacement or to adopt an alternative architecture. The revenue obtained

from a sale is computed as

Csr =
∑
q

xq,rCr,q (2.6)

and then implemented as an offset to the purchasing budget for the current year.

The turnover period, [lmin, lmax], during which a vehicle approaches the end of its

economic life and is considered for replacement, varies by fleet. Here I assume that a

line-haul fleet has a fixed range for vehicle turnover age. In contrast to new vehicles

purchased, the variable xq,r is given by [xq]k−1 − [xq]k and is introduced to represent
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vehicles sold by the fleet. The value is positive if vehicles of type q allocated to origin

s during the current year of projection are less than in the previous year, and zero

otherwise.

In summary, the cost function J to be minimized is defined as the TCO and

computed via a combination of Eqs. (1)-(6) as follows:

J =γ
∑
q

∑
(i,j)εA

xq,ij[dij(Cq,ij + Cdriver + CM,q) +BqTd,qCdelay,c]+

∑
q

xq,newCp,q −
∑
q

xq,rCr,q.
(2.7)

Constraints. The vehicle demand over the network is defined as a function of cargo

demand, bhi , between (h, i) city pairs. Vehicle link flow will be optimized in order to

satisfy cargo demand, vehicle flow balance entering and leaving nodes, and capacity

constraints, as given by Eqs. (2.8a)-(2.8d). The hours of service limit, hos, as shown

in Eq. (2.8e), will also have an effect on the number of vehicle trips taken within the

time constraint and, therefore, the number of vehicles needed for allocation over the

network. An intermediate binary variable, xsqn, is introduced and assigned a value of 1

if the nth vehicle of type q is used over the network. This assists in the computation

of total number of vehicles of type q purchased and allocated to city s, such that

xsqn ≤M
∑

j x
s
qn,ij and Mxsqn ≥

∑
j xqn,ij for all i = s, where M is a sufficiently large

number.

∑
j

yhji −
∑
j

yhij = bhi (2.8a)

∑
h

yhij ≤
∑
s

∑
q

∑
n

xsqn,ijWq (2.8b)

∑
j

xsqn,ji −
∑
j

xsqn,ij ≥ 0, i 6= s (2.8c)

xsqn,ii = 0, yhii = 0 (2.8d)∑
i

∑
j

xsqn,ijtr,ij ≤ hos,∀s, q, n (2.8e)
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An intermediate binary variable, xsqn, is introduced such that xsqn ≤ M
∑

j x
s
qn,ij

and Mxsqn ≥
∑

j xqn,ij for all i = s. This indicates the allocation of the nth vehicle

of type q over the network, assisting in the computation of total number of vehicles

of type q purchased and originating in city s. In order to determine the number

of new vehicles purchased at any given city of origin s during the present year, an

intermediate binary variable, usq is introduced as shown in Equations (2.9a)-(2.9e),

where xsq =
∑

n x
s
qn.

[xsq]k − [xsq]k−1 +M(1− usq) ≥ 0 (2.9a)

[xsq]k − [xsq]k−1 −M(1− usq) ≤ 0 (2.9b)

xsq,new − [xsq]k + [xsq]k−1 +M(1− usq) ≥ 0 (2.9c)

xsq,new − [xsq]k + [xsq]k−1 −M(1− usq) ≤ 0 (2.9d)

xsq,new ≤Musq , xsq,new ≥ 0 (2.9e)

New vehicle purchases, xsq,new, are constrained by a user-defined fleet budget which

is offset by the revenue created from vehicles sales, xsq,r, such that∑
s

∑
q

xsq,newCp,q −
∑
s

∑
q

xsq,rCr,q ≤ Bf . (2.10)

A market penetration constraint,
∑

s x
s
q,new ≤ Qavail for all q ∈ Q, is also added to

represent the availability of vehicle technologies entering the market. The parameter

Qavail can be calibrated to limit the rate of penetration of newer technologies with

lower production rates as existing technologies are phased out. Vehicle resale is also

constrained such that

xsq,new(tyk − lmax) ≤ xsq,r ≤ xsq,new(tyk − lmax) + xsq,new(tyk − lmin). (2.11)

Vehicles older than the maximum allowable age will be sold, while vehicles within

the turnover range may be considered for replacement.
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Traffic Model

Vehicle efficiency will vary with respect to average vehicle speed over a network

route [9]. The solution uij to Greenshield’s macroscopic traffic flow model [38] pro-

vides the average traffic speed based on the number of vehicles qf,ij, both freight and

passenger, introduced to the link and the route characteristics such that

− kij
vf,ij

u2
ij + kijuij −

qf,ij
Nij

= 0. (2.12)

The Greenshield equation incorporates a nonlinear term based on the traffic speed,

uij, which is itself a function of freight traffic flow. In order to facilitate the use

of a linear solver, the traffic speed is solved a-priori as a function of the number of

freight vehicles to travel over each link (i, j) in the previous year. Vehicle efficiency,

ξq,ij is then computed as a function of average vehicle speed over a network route [9].

Finally, route time is computed as tr,ij =
dij
uij

.

2.2.3 Implementation

The mixed-integer linear program proposed in the previous subsection represents

purchasing behaviors of a single fleet given the minimization of their TCO. In order to

predict technology adoption across a heterogeneous mix of fleets, in which each fleet

has different cargo demand targets, annual growth, and fleet management parameters,

we must first calibrate the models described earlier and then solve the MILP as shown

in Figure 2.3. Doing so constitutes the implementation phase of the SoS process. More

specifically, the TCO of each individual fleet is optimized, and the coupled effect of

the total number of vehicles introduced by all fleets to the simulated FTS network

is used to estimate the traffic flow speed conditions for the following year. This

process continues over the duration of the simulation period. The proposed model is

implemented in MATLAB 2016b as shown in Figure 2.3. The YALMIP toolbox [39] is

used to facilitate the definition of optimization variables, constraints, and objectives

in the MATLAB environment and the Gurobi Optimizer 7.5.1 mixed-integer linear
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programming solver [40] is used to find the optimal solution to the TCO minimization

program.

𝑚𝑖𝑛 𝑇𝐶𝑂 𝑘 = 𝐶𝑜𝑝 + 𝐶𝑝𝑢𝑟𝑐ℎ

𝑚𝑖𝑛 𝑇𝐶𝑂 𝑘 = 𝐶𝑜𝑝 + 𝐶𝑝𝑢𝑟𝑐ℎ

• 𝐶𝑜𝑝 = 𝐶𝑒𝑐 + 𝐶𝑤𝑎𝑔𝑒𝑠 + 𝐶𝑀 + 𝐶𝑅

= γ

q



i,j

xq,ij dij Cq,ij + Cdr + CM,q + BqTd,qCdelay

• 𝐶𝑝𝑢𝑟𝑐ℎ = 𝐶𝑛𝑣 − 𝐶𝑠𝑟

= 

q

xq,newCp,q −

q

xq,rCr,q

Constraints: HOS, vehicle capacity, cargo 
demand, fleet budget, vehicle turnover
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Figure 2.3. : Implementation of the mixed-integer linear program to project vehicle

technology adoption across regional fleets.

2.3 Calibration and Validation of the Proposed Model

The future technology composition of a representative FTS will be a result of

the adoption and utilization behaviors of the heterogeneous set of fleets that service

it. To determine whether the proposed model does indeed capture the behavior of
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interest—i.e. adoption of emerging technologies by a heterogeneous mix of fleets op-

erating over a shared FTS—the model must be calibrated and validated. The process

used is outlined in Figure 4. The model is first parameterized using publicly avail-

able data that describes freight demand, route distance and traffic for a representative

freight network in the U.S., vehicle maintenance and driver costs per mile, among oth-

ers [1, 9, 36, 37]. This serves as a baseline for a Design of Experiments (DOE) study

to evaluate the influence of selected factors on the adoption behavior of a single fleet

operating over a small region. Once influential factors are identified, the calibration

of the multi-fleet model is conducted by selecting an appropriate range of values for

these factors, based on a range of values found in publicly available data and litera-

ture. As part of the calibration process, a set of 12 representative fleets of different

sizes and characteristics is proposed and used to simulate adoption behaviors in the

network. This representative set of fleets is needed because the technology adoption

data available for widely adopted Class 8 tractor aerodynamic technologies [37], de-

scribed in Section 2.3.1, does not provide any detailed specifications for fleet size,

vehicle turnover age, cargo demand, geographic routes, or drive cycles corresponding

to the reported adoption levels that can be used for calibration of the model. Finally,

once the model has been calibrated, resulting adoption projections are compared to

the aforementioned technology adoption data, available from 2005 to 2015 [37], to

quantify model error.

Model 
Parametrization

Model 
Sensitivity 
Analysis

Model 
Calibration

Model 
Response 
Validation

Design of Experiments 
to identify influential 
factors
(Torrey and Murray, 2016) 
(TRB and NCFRP, 2010) 
(U.S. DOT BTS, 2016)
(NACFE, 2016)

Selection of appropriate 
values for model factors

Comparison of predicted 
results to historical data
(NACFE, 2016)

Calibration of model 
parameters
(Torrey and Murray, 2016) 
(TRB and NCFRP, 2010) 
(U.S. DOT BTS, 2016)
(NACFE, 2016)

Figure 2.4. : Diagram describing the model validation process.
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2.3.1 Parameterization and Validation Data

Here I describe the publicly available studies and datasets that are used to con-

duct a baseline parameterization of vehicle fuel efficiency, maintenance costs, vehicle

capacity, and network characteristics [1,9,36,37], and ultimate validation of the pro-

posed model [37]. Since 2011, the North American Council for Freight Efficiency

(NACFE) has published an annual report on the adoption of over 60 technologies

and practices for Class 8 tractor-trailers among 15 major fleets operating over 62,000

tractors in the U.S. [37]. As opposed to an individual fleet owner’s purchasing data,

the NACFE data captures aggregate heterogeneous adoption behavior across the FTS;

therefore, this data represents the adoption behaviors we are modeling and seek to

predict. A subset of the technology list captured in the NACFE study is used to val-

idate the line-haul freight transportation model presented in Section II. The selected

technologies, which enhance tractor aerodynamics, offer a significant increase in ve-

hicle fuel efficiency, are directly applicable to the line-haul operation modeled, and

had high levels of adoption throughout the time period of interest (see Figure 2.5).

Other technologies presented as part of the NACFE study—idle reduction, natural

gas powertrain, low-weight chassis and low resistance tire strategies, etc.—are either

outside the scope of highway operation or have negligible vehicle efficiency benefits

and adoption when compared to tractor aerodynamic technologies; for these reasons,

they are not considered for validation.
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Figure 2.5. : Average adoption of tractor aerodynamic technologies [37].

In 2004 the EPA began implementation of SmartWay, a certification program that

specifies a collection of technologies for efficient tractor-trailer combinations to reduce

emission of greenhouse gases [9]. The Smartway certification includes the following

tractor aerodynamic technologies listed by the NACFE study: aerodynamic hoods

and fenders, aerodynamic bumpers, aerodynamic mirrors, full height roof air fairing,

and cab extenders. Most tractor manufacturers offer these technologies as part of

a package, and they are considered as such for this validation. Therefore, I assume

SmartWay adoption to be the average adoption of all technologies contained in the

package, as shown in Figure 2.6.
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Figure 2.6. : Tractor aerodynamic technologies considered for model validation.

By 2015, full chassis skirts had reached a reported 70% adoption and partial

chassis skirts had achieved 35%; in other words, all fleets had adopted either of the

two technologies with a few fleets potentially reporting use of both. Similarly, we can

see from Figure 2.6 that in 2015, the SmartWay package had achieved nearly 100%

adoption. Therefore, I assume the existence of three vehicle architectures for the

purposes of validation. I define Architecture 1 as a conventional diesel vehicle and

define two additional architectures containing a combination of these aerodynamic

packages. The latter are called Architecture 2 (consisting of the diesel baseline +

SmartWay + full chassis skirts) and Architecture 3 (consisting of diesel baseline +

SmartWay + partial chassis skirts). The conventional diesel package, Architecture 1,

is included as a baseline for the study and represents the “business-as-usual” heavy-

duty Class 8 tractor-trailer without improvements.

As suggested by the NACFE study, the average fuel consumption, in miles per

gallon, of business-as-usual fleets varied throughout the 2005-2015 period due to the

introduction of emissions restrictions affecting engine performance. Figure 2.7 shows

the estimated fuel consumption trends used for Architecture 1. Fuel consumption
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trends for the SmartWay architectures, with full and partial chassis skirts, are derived

by imposing the assumed increase in peak efficiency, shown in Table 3.7, to the

baseline trends. For the SmartWay package, savings in fuel consumption of 7-10%

have been reported for roof fairings alone, while chassis skirts can offer benefits up

to 4% at a $2000 dollar up-charge [9]. In these latter cases, I assume that peak

performance for aerodynamic technologies is achieved at 65 mph. These fuel efficiency

trends, ξq, are an input to the model, where ξq = f(k, ui,j). Table 3.7 shows vehicle

parameter values for peak efficiency, capacity, maintenance costs, and reliability used

throughout the validation study.

Figure 2.7. : Baseline diesel vehicle efficiency, in miles per gallon, as a function of

year of purchase and vehicle speed.

Table 2.5. : Vehicle Architecture Parametrization

Architecture Description Peak Efficiency Capacity Maintenance Cost Reliability

Architecture 1 Base Powertrain 6.3 mpg 20 ton $0.15 ($/mi) 1 % trips/year

+ baseline tractor

Architecture 2 Base Powertrain +13% FE 20 ton $0.158 ($/mi) 1.5% trips/year

+ SW + FCS

Architecture 3 Base Powertrain + 11% FE 20 ton $0.156 ($/mi) 1.3% trips/year

+ SW + PCS
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2.3.2 Model Sensitivity Analysis

A design of experiments (DOE) is used to determine the model parameters that

significantly influence single-fleet adoption of the vehicle architectures listed in Table

3.7. Vehicle efficiency tables, maintenance costs, vehicle capacity, and network char-

acteristics remain fixed as their values are known with high certainty for the period

of study [1,36,37]. Table 2.6 shows the fixed cargo demand values used for evaluation

of single-fleet purchasing behaviors throughout the DOE study.

Table 2.6. : Initial fleet cargo demand for the year 2005

Cargo Demand (tons/day)

O/D City 1 City 2 City 3 City 4

City 1 0 220 200 0

City 2 260 0 180 160

City 3 200 180 0 140

City 4 180 160 120 0

Ten factor parameters are varied as shown in Table 2.7, and a 120 point response

screening DOE was defined with the use of JMP Statistical Analysis software [41]

in order to reduce the number of executions from a full factorial design. Each point

represents an 11-year projection given a set of values for the ten factor parameters.

Figure 2.8 shows the variation in (a) Architecture 1, (b) Architecture 2 and (c) Ar-

chitecture 3 purchases as a response to factor variation. The vehicle purchase values

shown on the x-axis of Figure 2.8 represent the total number of vehicles of type q

acquired throughout the 11-year projection period. Diesel baseline purchases remain

low with a maximum probability that less than 10 vehicles are purchased throughout

the period of study. However, Architectures 2 and 3 have a higher mean value and

larger standard deviation of vehicle purchases as compared to Architecture 1. This

means that diesel conventional vehicles with no aerodynamic technologies remain low

in adoption regardless of the parameter variation introduced, while adoption is mostly

distributed between the two architectures consisting of aerodynamic technologies.
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Table 2.7. : Design of experiment (DOE) factor levels

Turnover Gamma Budget Cargo Ceq Cdriver Cp1 Cp2 Cp3 Depr.

(γ) (Bf ) growth rate

years years $ %/year $/gal $/mi $ $ $ %/year

[1,3] 4 low 2 increase 0.33 90000 97000 93000 0.1

[2,4] 5 medium 4 decrease 0.417 93000 98000 96000 0.2

[2,5] 6 high 99000 97000

[3,6]

The histograms shown in Figure 2.8 quantify response variation due to changes

in the selected parameters. Moreover, the p-values and logworth (defined as -log10(p-

value)) shown in Table 2.8 identify the most influential factors with respect to metric

response variation. A logworth value greater than 2 indicates factor significance.

The JMP software produces a corrected logworth value, also known as the False

Discovery Rate (FDR) logworth [42], by eliminating data outliers. Table 2.8 shows

all factors with an FDR value greater than 1 for each response metric, indicating that

vehicle turnover age, vehicle purchase costs, and γ (the TCO outlook period) are the

factors identified to have an effect on fleet purchase behavior with the highest level

of confidence.

Table 2.8. : FDR LogWorth table for factor influ-

ence on purchasing response.

Y X FDR LogWorth

Architecture 1 Purchases Cp2 2.16

Budget (Bf ) 1.24

Ceq 1.01

Architecture 2 Purchases Turnover age 26.8

Cp3 10

Cp2 4.8

gamma (γ) 2.2

Ceq 1.01

Architecture 3 Purchases Cp3 10.46

Cp1 2.32

Cp2 1.57

gamma (γ) 1.57
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(a) Architecture 1: Diesel Baseline

(b) Architecture 2: SmartWay + Full Chassis Skirts

(c) Architecture 3: SmartWay + Partial Chassis Skirts

Figure 2.8. : Histograms showing distribution of vehicles purchased throughout 11-

year period as a result of the DOE factor variation.

In order to quantify parameter influence on projected adoption, a linear least-

squares regression model is computed from the simulation model response data and

used to determine response sensitivity to the individual factors varied as part of the

DOE study. Figure 2.9 shows the actual model response value on the y-axis and

the linear regression predicted response on the x-axis. Predicted values close to the

diagonal are desirable; the model shows an R2 measure of 0.87. Figure 2.10 shows

the relative effect of factor variation on predicted total number of purchases of Archi-

tecture 2 vehicles throughout the period of study. The factors are ordered vertically

given the size of their effect on response variation from a base value as indicated on

the x-axis. Levels 1-4 indicate the variation levels for each factor shown in Table 2.7.

This tornado chart shows that the predicted response is highly sensitive to variation



36

in turnover range, the purchase costs of Architecture 2 and Architecture 3 (Cp2 and

Cp3), and γ, while the effects of other parameters are negligible in comparison. The

influential factors revealed in this study are a rational result. Turnover age is the age

period of a vehicle when it is considered for replacement, and it is during this time

when a fleet may consider an economically attractive alternative technology. A higher

turnover age may cause the fleet to disregard system changes during that period of

time, including a high variation in fuel cost or changes in vehicle efficiency caused by

introduction of emission restrictions, while a lower turnover age limit may cause fleet

adoption trends to be more sensitive to system changes within the time frame. Fig-

ure 2.10 provides a relevant managerial insight : by introducing shorter turnover ages

(Level 1), fleets are able to adopt Architecture 2 vehicles (SmartWay with full chassis

skirts) at a higher rate. Since these vehicles are more efficient, this also helps fleets

to drive down ownership costs. Similarly, vehicle purchase costs significantly impact

the economic attractiveness of a vehicle architecture. However, for cases in which the

vehicles being evaluated may be using different sources of energy—e.g. diesel, natural

gas, battery-electric, hydrogen fuel—the cost of fuel could also be a significant source

of variation in purchasing trends. Figure 2.11 shows the predicted total number of

purchases of Architecture 2 given the variation in the four most influential factors,

demonstrating, for example, that Architecture 2 purchases vary between 20 and 60

vehicles as turnover age varies.

It is of interest to note that while turnover age has a significant effect on Archi-

tecture 2 purchases, it does not result in a FDR logworth value greater than 2 for

Architecture 1 and Architecture 3 purchases. Adoption of these vehicles is instead

primarily sensitive to purchase costs. Moreover, while Cp2 having a strong effect on

Architecture 1 purchases could indicate that this architecture is losing its competitive

advantage primarily to Architecture 2 vehicles, adoption of Architecture 3 vehicles

depends on their own purchase cost and that of Architecture 1. Figure 2.12 shows

the quality of fit for the regression model used to predict sensitivity of Architecture

3 purchases to factor variation, with the two most influential factor effects, Cp1 and
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Cp3, shown in Figure 2.13. These results suggest that while lower limits on turnover

age enable the purchase of Architecture 2 vehicles throughout the projection period, re-

maining vehicle purchases are then distributed between those architectures with lower

cost albeit a lower efficiency (Architecture 1 and Architecture 3 vehicles), given the

purchasing costs. This reveals a rational managerial insight : fleets will choose inef-

ficient, yet more affordable, vehicles as necessary to satisfy freight demand within a

specified budget.

Figure 2.9. : Summary of regression fit showing mean of response, RMSE, R2, and

overall p-value for the regression model for Architecture 2 purchases.
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Figure 2.10. : Tornado chart of factor effect on number of Architecture 2 (SmartWay

+ full chassis skirts) vehicle purchases.

Figure 2.11. : Prediction profile of factor effect on number of Architecture 2 vehicle

purchases.
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Figure 2.12. : Summary of regression fit showing mean of response, RMSE, R2, and

overall p-value for the regression model for Architecture 3 purchases.

Figure 2.13. : Prediction profile of factor effect on number of Architecture 3 vehicle

purchases.

2.3.3 Calibration of Multi-fleet Adoption Projection

Based upon the FDR logworth table and prediction profiles presented in the pre-

vious section, turnover range, vehicle purchase cost, and TCO outlook (γ) factors

have the highest effect on purchasing trends. Having identified the most influential

factors, the calibration process for multi-fleet adoption projection can now be con-

ducted in order to validate adoption of tractor aerodynamic technologies during the

2005-2015 period. As mentioned earlier, the technology adoption data reported by

NACFE, described in Section 2.3.1, does not provide any detailed specifications on

the characteristics of the specific fleets that were surveyed. Therefore I reproduce the

NACFE technology adoption results by simulating 12 representative line-haul fleets
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operating over a regional highway circuit connecting a 4-city network. The fleets vary

in size depending on the cargo demand. Here I assume three different fleet sizes—

small, medium, and large—and introduce a variation on the annual cargo growth

experienced by each fleet. The Department of Transportation reports an average an-

nual increase in cargo transport, by weight, of 1.3% during the period of study [1],

and therefore this parameter is assumed to be between 0 − 2% per fleet. Similarly,

two budget levels are added at each fleet size to represent annual capital available for

vehicle purchase. An hours of service, hos, value of 11 hours is used throughout the

simulation; this limit is representative of the regulation imposed on property-carrying

drivers by the Federal Motor Carrier Safety Administration in the U.S. [43].

Table 2.9. : Cargo Demand Parametrization

Small Fleet (ton/day)

O/D City 1 City 2 City 3 City 4

City 1 0 120 100 0

City 2 100 0 80 80

City 3 0 0 0 0

City 4 0 0 0 0

Medium Fleet (ton/day)

O/D City 1 City 2 City 3 City 4

City 1 0 160 140 20

City 2 140 0 100 100

City 3 20 20 0 0

City 4 0 0 0 0

Large Fleet (ton/day)

O/D City 1 City 2 City 3 City 4

City 1 0 260 140 20

City 2 180 0 200 100

City 3 40 40 0 0

City 4 0 0 0 0
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Table 2.10. : Network Route Parametrization

Route Distance (mi)

O/D City 1 City 2 City 3 City 4

City 1 0 182 297 470

City 2 182 0 242 289

City 3 297 242 0 309

City 4 470 289 309 0

Finally, the influential parameters identified earlier are calibrated as follows. Ve-

hicle turnover age, reported at an average of 5 to 7 years of age for heavy-duty Class

8 tractors [36,37], is varied among the fleets, with the shortest period between 1 and

3 years of age and the longest period between 5 and 7 years of age. A projected

vehicle life-cycle outlook, γ, of 5 or 6 years was assigned to each fleet. Tables 2.9,

2.10, 3.5, and 2.12 show cargo demand between origin and destination (O/D) pairs,

route distance, fleet parameter values, and vehicle purchase costs, respectively, used

for the validation study.

Table 2.11. : Multi-Fleet Parametrization

Fleet Gamma(γ) Cargo (bhi ) Turnover Budget (Bf ) Cargo growth

years ton years $ %/year

1 5 small [2,4] low 1%

2 5 small [1,3] low 1%

3 5 medium [3,5] high 0

4 5 large [2,4] low 2%

5 6 small [3,5] high 0

6 5 large [1,3] low 1%

7 6 small [2,4] high 1%

8 5 medium [2,4] low 1%

9 5 large [3,5] high 0

10 6 medium [5,7] high 0

11 5 medium [1,3] high 0

12 6 large [5,7] high 2%



42

Table 2.12. : Vehicle Purchase Costs

Architecture Description Purchase Cost

Architecture 1 Base Powertrain + baseline tractor $90,000

Architecture 2 Base Powertrain + SW + FCS $94,000

Architecture 3 Base Powertrain + SW + PCS $93,500

2.3.4 Validation of Multi-fleet Adoption Projection

The adoption data published by NACFE was defined in terms of technology adop-

tion, whereas I am modeling adoption of two different vehicle architectures containing

a combination of said aerodynamic technologies. In order to create a data set for val-

idation purposes, a Monte Carlo simulation is used to estimate the annual adoption,

[Pi]k, of the vehicle architectures under consideration. The following equation is used:

[Pi]k =
[Pi1]k + [Pi2]k + ...+ [Pin]k

Nfleets

, n = {1, 2, ...Nfleets}, (2.13)

where [Pin]k is the annual adoption of vehicle architecture i for fleet n, and [Pin]k ∼

N(µk, σ
2
k). Here, the technology adoption percentages reported by NACFE, shown

in Figure 2.6, are used as the mean values, µk, and a standard deviation of 5% is

used for each fleet adoption curve. The resulting historical adoption trends used to

validate the model response are shown in Figures 2.14 and 2.15 along with error bars

representing the standard deviation. In order to produce the adoption projections,

initial conditions, that is the vehicles purchased and allocated by the fleets in the

year 2005, are imposed on the model by number and vehicle type in order to match

the validation data for the first year of study. The annual average value for the cost

of diesel, as reported by the NACFE study and shown in Figure 2.14, is used. Figure

2.14 shows the architecture adoption trends as estimated by an intermediate step of

the calibration process, compared against NACFE data, over the 11-year projection

period. Here, modeled adoption trends for Architectures 1 and 3 diverge from the

historical data, and the model as calibrated is not able to properly capture adoption

behaviors. The calibration effort is then placed in identifying the appropriate set
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of heterogeneous fleet characteristics that represent the adoption behaviors observed

from 2005 to 2015. Figure 2.15 shows the error reduction in the model projections

as variation in the characteristics of the fleets, particularly short turnover periods

between 1 and 3 years, are introduced as indicated in Table 3.5.
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Figure 2.14. : Comparison of NACFE adoption data estimates and adoption pro-

jections as predicted by the intermediate calibration step. Cost of diesel over the

projection period is labeled on the right y-axis.
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Figure 2.15. : Final comparison of NACFE adoption data estimates and adoption

projections as predicted by the calibrated SoS model once variation in fleet charac-

teristics is introduced. Cost of diesel over the projection period is labeled on the right

y-axis.
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Figure 2.16. : SoS Model prediction error of % Fleet Adoption with respect to NACFE

data mean values.

Figure 2.16 shows the absolute error in the model projections, defined as |y −

ŷ| where y is the mean adoption data shown by the dotted lines in Figure 2.15

and ŷ represents the model’s projections at each year. The model’s prediction of

Architecture 2 (SmartWay plus full chassis skirts) adoption is within one standard

deviation throughout the 11 year period with the exception of the first and last 2 years.
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The Architecture 1 (diesel baseline) and Architecture 3 (SmartWay + partial chassis

skirt) adoption predictions show a higher error; however, both follow the reported

trends, with adoption of Architecture 1 reaching zero at the end of the period as

expected. Figure 2.16 shows that, with the exception of Architecture 3 adoption

in 2011, the error in predicted adoption remains bounded within 10% of the mean

expected value.

It is worth reiterating that detailed fleet calibration data—including budget con-

straints, vehicle turnover age, annual growth, etc.—for the fleets surveyed by NACFE

is not available. Nevertheless, by using a design of experiments, I was able to iden-

tify factors that have a significant effect on the predicted purchasing behaviors and

focus our calibration efforts on these parameters in order to create a model with the

predictive capability demonstrated above. Validation of technology adoption trends

is rarely done in the literature; instead adoption projections are typically focused on

evaluating competitiveness of emerging technologies [11]. Here, the inclusion of fleet

management parameters as well as vehicle and network characteristics in the model

has allowed us to emulate historic adoption trends for widely adopted diesel vehicle

architectures with 10% error.

With confidence in the calibrated model based upon its ability to predict vehicle

adoption, other model outputs can be analyzed, including the impact of the introduc-

tion and adoption of different vehicle architectures on vehicle miles traveled, routes

taken, fuel consumption, and truck loading. Figure 2.17 shows vehicle miles traveled

(VMT) per vehicle type, normalized against the VMT of Architecture 1 in the first

year of the study. Figure 2.18 shows the annual diesel fuel consumption per vehicle

type, again normalized against the annual fuel consumption of Architecture 1 in the

first year of the study, as well as the annual total cargo demand in the network.
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Figure 2.17. : Model projected daily vehicle miles traveled (VMT) per vehicle type.
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Figure 2.18. : Model projected annual fuel consumption per vehicle type. Total

regional cargo demand over the projection period is labeled on the right y-axis.

The VMT values of Architecture 1 (diesel baseline) vehicles increase between 2008

and 2012, while adoption of the architecture decreases. On the other hand, the num-

ber of miles traveled by Architecture 2 vehicles (SmartWay plus full chassis skirt)
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decreases throughout most of the projection period but increase from 2014 to 2015

when the cost of diesel decreases. Figure 2.17 shows that vehicles with SmartWay

plus full chassis skirts are not only the most purchased, but also the most utilized on

a daily basis given their lower fuel consumption costs. Figure 2.18 shows that fuel

consumption trends by vehicle type follow vehicle adoption projections. Fuel con-

sumption by diesel baseline vehicles decreases towards the year 2015 while adoption

and therefore fuel consumption of Architecture 2 vehicles increases. However, anal-

ysis of Figure 2.18 shows that total diesel consumption by all vehicles in the system

does not increase linearly with cargo demand as would be expected, indicating that

underlying dynamics exist due to the adoption and allocation of more efficient vehicle

architectures over the network routes. The VMT and total diesel consumption trends

show interesting behavior, as estimated by the model, that cannot be observed by

the technology adoption trends alone.

2.4 Summary

Recognizing the U.S. freight transportation system (FTS) as a system-of-systems

(SoS), the SoS engineering methodology was used to define, abstract, and simulate the

truck technology adoption behaviors of multiple heterogeneous fleets operating over

the FTS. A constrained mixed-integer linear program was developed to determine

optimal vehicle technology adoption rates based on purchasing and operational costs

of vehicle architectures over a multi-city network with respect to minimization of

total cost of ownership of individual fleets operating over a shared highway network.

A traffic model was used to capture the effect of individual fleet decisions (vehicle

purchases and route allocation) on system-wide technology adoption. The proposed

approach was used to project total adoption trends of 12 line-haul fleets operating

over the same regional network over an eleven-year time horizon.

Vehicle technology adoption depends on the economic attractiveness of different

technologies as perceived by fleets. Here, the SoS methodology enabled the projec-
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tion of technology adoption as it is affected, not only by multiple independent fleet

stakeholders and the vehicles available to them, but by the operational and economic

considerations that affect the system throughout different levels of its hierarchical

structure. More importantly, the proposed framework accounts for the heterogeneity

among fleets—different budgets, vehicle turnover range, etc.—and how this affects

system-wide technology adoption.

Adoption trends were projected for three vehicle architectures: a diesel baseline

vehicle and two architectures with tractor aerodynamic improvements. A design of

experiments study demonstrated sensitivity of modeled adoption response to eco-

nomic parameters and fleet management constraints. Fleet management parameters

(including turnover range, TCO outlook period, and budget) and vehicle costs were

shown to be influential on adoption response. A low turnover range, in particular,

increased the adoption of vehicle architectures with higher fuel efficiency. Given that

fleet management parameters were shown to be influential on adoption, a hetero-

geneous set of 12 fleets was introduced, identifying variation in their management

characteristics, in order to represent adoption for U.S. fleets from 2005 to 2015. The

resulting trends were validated with available adoption data over the same period of

time. The framework was able to reproduce adoption trends for technologies that

improve the performance of diesel conventional vehicles without detailed information

about the actual set of fleets from which the NACFE data was collected. Of equal

importance was the definition of a set of 12 fleets as an outcome of the validation

process. This set of fleets is used to represent the line-haul Class 8 vehicle market for

future studies.

Despite considering a simplified route circuit to represent a line-haul network,

the proposed framework was capable of reproducing adoption trends for technologies

that improve the performance of diesel conventional vehicles. As a result, future

chapters focus on extending the framework to consider the introduction of emerg-

ing technologies—connected and autonomous vehicles, alternative fuel powertrains,

battery electric vehicles, and others.
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3. PROJECTING ADOPTION OF TRUCK POWERTRAIN TECNOLOGIES

AND CO2 EMISSIONS IN LINE-HAUL NETWORKS

In recent decades, introduction of the National Highway Traffic Safety Administra-

tion’s Corporate Average Fuel Economy (CAFE) standards, the EPA GHG emissions

regulations, and incentive programs including SmartWay certification, have resulted

in a reduction in both fuel consumption and CO2 emissions for heavy-duty vehi-

cles [9,27,44]. This has been achieved by requiring manufacturers to increase average

fuel economy of vehicles sold in the U.S. However, an overwhelming majority of the

medium and heavy-duty vehicles in the country use diesel engines today, with less

than 2% using natural gas or other alternative fuels [4]. In 2012, heavy-duty trucks

alone emitted more than 70% of the CO2 emissions in the U.S. freight transporta-

tion system [1, 2] as approximately 22.4 pounds of CO2 are produced per gallon of

diesel fuel combusted [45]. Alternative powertrain technologies, including compressed

(CNG) and liquefied natural gas (LNG) engines, hybridization, battery electric, and

hydrogen fuel cells (HFC), have been proposed for energy savings and emission re-

ductions. These technologies, however, may require significant changes to vehicle

operations and infrastructure. For example, a wide network of hydrogen fueling and

electric charging stations does not presently exist, and vehicle range and payload ca-

pacity may decrease given adoption of alternative powertrain options when compared

to diesel. Moreover, there is uncertainty as to how these emerging technologies will

impact vehicle reliability and what policies will be introduced to regulate or incen-

tivize their adoption. Thus, this framework can be used to understand the effects of

freight system evolution on fleet adoption behaviors and market penetration of new

powertrain technologies and identify the factors that maximize adoption of cleaner

technologies and target desired emissions outcomes.
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In Chapter 2, I developed a model of fleet vehicle purchasing behaviors by mod-

eling the FTS as an SoS and defined a representative set of heterogeneous fleets to

project historical technology adoption trends in the line-haul segment. Here, I build

significantly upon the initial model to capture the evolution of line-haul freight trans-

portation system factors and their influence on the future economic attractiveness of

emerging and alternative vehicle powertrain technologies for freight transportation.

The systematic approach followed in this chapter to extend the definition, abstraction,

and implementation of the model of the FTS is presented in Figure 3.1.

SoSE
Methodology

FTS Model 
Calibration

Design of 
Experiments

Sensitivity 
Analysis

Projection of 
Adoption & 
Emissions

Specialized methodology for modeling complex systems and emerging 

behaviors of system constituents.

Enables the mapping of relevant FTS factors affecting technology adoption.

Enables modeling of complex sub-domain and factor interactions.

Enables reliable projections given real-world assumptions for public 

policies, short- and long-term energy cost trends, freight demand growth, 

and planned development of infrastructure for alternative fuels.

Enables systematic exploration of critical factor variation effects on 

technology adoption and regional emissions.

Enables the quantification of the sensitivity of adoption and regional CO2 

emissions projections to variation in system factor assumptions.

The methodical implementation of previous steps enables the mapping of 

factors and mechanisms that influence adoption of powertrain technologies 

to reduce CO2 emissions in a representative FTS network.

Figure 3.1. : Methodology presented to define, abstract, and implement a model of a

regional FTS to project adoption of powertrain technologies for line-haul vehicles.

3.1 Modeling Emerging Powertrain Technology Adoption

The ROPE matrix is extended to focus on those factors and considerations of the

FTS that affect the adoption trends of powertrain technologies, and is shown in Table

3.1. The different powertrain options considered—diesel, CNG, LNG, hybrid electric
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diesel, battery electric, and hydrogen fuel cell—are introduced as the α level resources

of the SoS. The engine, chassis, and body of the trucks are often produced by different

manufacturers but are integrated as a single vehicle. As such, fuel consumption

and economic attractiveness must be determined by the features of the complete

vehicle architecture [6,9]. For this reason, the next level of the hierarchy, the β-level,

represents the heavy-duty Class 8 vehicle architectures encompassing the powertrain

technologies introduced. Moreover, the δ-level, the regional freight transportation

network, now must also consider the infrastructure necessary to support the operation

of different powertrain options in the network.

Finally, it is by inclusion of operational, economic and policy factors at the δ

level that we can observe the collective impact of individual and isolated decisions

in the SoS. The particular set of policies that are active in the region, whether to

regulate or to provide economic incentives for cleaner technologies will influence the

attractiveness of the powertrain technologies introduced and fleet adoption behaviors

in a particular manner.
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Table 3.1. : Regional Line-Haul Freight Transportation System ROPE matrix

Level Resources Operations Policy Economics

Alpha -Powertrain Type: -Powertrain fuel -Emission -Cost of fuel

Diesel consumption restrictions -Cost of energy

Natural gas (CNG,LNG) -Powertrain reliability -GHG regulations -Cost of

Hybrid electric -Maintenance maintenance

Battery electric

Hydrogen fuel cell

Beta -Heavy duty Class 8 -Ton-mi/gal efficiency -80,000 lb weight -Cost of fuel,

vehicles -Average day operation limit energy consumed

-Vehicle architecture -Vehicle life cycle -Tax or purchase -Cost of driver

-Cargo load/capacity incentives per hour

-Miles driven based on -Cost of maintenance

selected routes -Cost of purchase

-Operate at constant -Cost of equipment

speed over route

-Vehicle range

-Fueling/charging time

Gamma -Vehicles in single -Freight distribution -Driver 11 hours of -Total cost of

regional fleet -Fleet size service limits ownership decision

-Vehicle replacement cycles -14 hr window of metrics per year

and years of service limits operation -Tax and cash

-Operator hours incentives

-Fuel/charging stops -Cost to use/own

-Return-to-base operation infrastructure

Delta -Regional highway network: -Total freight demand -Route speed limit -Cost of fuel,

Cities 1-4 between cities by weight -Regional emissions electricity

Distribution centers 1, 2 -Traffic conditions: vehicles restrictions -Charges for use

Highways, roads and on road, road density -Regional incentive of infrastructure

supporting infrastructure capacity, travel time programs

-Availability of fueling

and charging stations

-Available on-road charging



53

3.1.1 Extended Fleet TCO Optimization for Powertrain Considerations

Table 3.2. : Variable Definition

Decision Variables Description

xsqn Number n of vehicles type q that originate at s per year

xsqn,ij Vehicle n of type q originating at s, traveling on link (i,j).

yhij Cargo flow between links, originating at h.

xq,new Number of new vehicles of type q purchased per year.

xq,r Number of vehicles of type q sold per year.

eq,ij Feasibility of travel for vehicle type q over route (i,j).

ΦBS Binary variable, 1 if battery-electric vehicles use battery swap stations.

ΦCR Binary variable, 1 if battery-electric vehicles travel on charging roads.

Φqn,c Number of times vehicle n of type q stops to fuel, charge, or perform a battery swap.

Energy consumption costs will vary depending on the powertrain technology used,

as a result of fuel and electricity costs and vehicle efficiency. In the case of diesel,

natural gas, and hydrogen fuel cell vehicles, the use of conventional fueling stations

is assumed. The primary differentiator between these fueling stations is the time

required to fuel the different powertrains. In the case of battery electric vehicles, (BE),

however, three different methods of charging are considered: fast-charging stations,

battery swap stations, and on-road charging. The fast-charging stations are analogous

to conventional fueling stations. Under the battery swap model, service providers own

the vehicle batteries and supply users with access to battery swap infrastructure in

exchange for a service fee. This option could possibly reduce vehicle upfront costs and

battery replacement costs with a predictable annual fee, while expanding BE vehicle

range without jeopardizing time spent at the station [46,47].
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Table 3.3. : Parameter Definition

Parameters Description

γ Estimated vehicle life-cycle period in years

η Hours of service window of operation

Ψttq,q Tank-to-wheel (tailpipe) CO2 emissions in kg per energy consumption

Ψwtt,q Well-to-tank CO2 emissions in kg per energy consumption

ξq Efficiency function of vehicle type q gallons or kWh per mile

Bcap Battery capacity in kWh

Bf Fleet’s annual budget for vehicle purchase

bhi Cargo demand from origin h to destinationi in tons

Bq Reliability of vehicle architecture q, % trips delayed per year

Cdriver Cost of driver per mile

Cdelay,c Revenue loss due to delay for cargo type c

Ceq,b Cost of electricity used by battery electric vehicles in dollars per kWh

Ceq,f Cost of fuel consumed by vehicle type q in dollars per gallon

CkWh Cost of battery in $/kWh

CM,q Cost of maintenance per mile for vehicle architecture q

Cp,q Cost of purchase for vehicle type q

Cr,q Resale value for vehicle type q

dij Length (distance) of link (i,j) in miles

Eq Fuel or Battery charge gained at fueling, charging or battery swap station in kWh

ECR Battery charge gained when traveling on charging road in kWh

Fq,i Availability of infrastructure for vehicle type q in city node i

hos Hours of service driving limit

lmax Max number of years until replacement for fleet vehicles

lmin Min number of years until replacement for fleet vehicles

M A sufficiently large number

Rq Driving range of vehicle type q in miles

Sf Annual service fee, per vehicle, for use of battery swap service

tr,ij Travel time over route (i,j) in hours

TCR Toll, in $, for use of on-road charging

Td,q Average length of time delay for vehicle architecture q

uij Vehicle steady-state speed on link (i,j) in miles per hour

UCR Vehicle upcharge cost for wireless road charging capability

Wq Capacity for vehicle type q in tons
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On the other hand, charging roads, also known as inductive, contactless, or dy-

namic wireless power transfer systems, can charge battery electric vehicles (BEs)

without any physical interconnection. These systems can be installed on roadways

in order to charge the vehicles while driving and extend the range or decrease the

battery size [48, 49]. However, the power transfer capabilities of on-road charging

systems are limited and may not be sufficient to fully recharge the large batteries

required for line-haul operation. For simplicity, it is assumed that all BE vehicles in

a single fleet will use only one mode of charging operation.

Objective Function. The cost of energy for daily operation of a heterogeneous fleet

is defined as Cec = Cec,f + Cec,b where

Cec,f =
∑
q

∑
(i,j)∈A

xq,ijdijξq,ijCeq , (3.1a)

Cec,b =
∑

(i,j)∈A

xq,ijdijξq,ijCeq(1− ΦBS) + xqnSfΦBS + ΦCRTCR
∑

(i,j)∈G

xq,ij . (3.1b)

Here, Cec,f is the cost of fuel consumed by diesel, natural gas, and hydrogen-powered

vehicles. For BE vehicles, a subscription model is assumed if battery swap stations

are used (ΦBS = 1), in which case the fleet will pay an annual fee per vehicle, Sf ,

to the service provider. If on-road charging infrastructure is used (ΦCR = 1), fleets

will alternatively incur charges for the electricity consumed and associated tolls, Tf ,

per trip. No additional fees, other than the cost of energy, are assumed for the use

of conventional charging stations. As a result, the cost Cec,b includes the cost of

electricity consumed by battery electric vehicles and associated tolls or fees for use

of charging infrastructure. The variable xq,ij =
∑

s

∑
n x

s
qn,ij represents the flow of

vehicles of type q over highway link (i, j) regardless of their origin. The sets A and G

represent the set of city-nodes in the network and the set of road links with wireless

charging capability, respectively. The efficiency of a vehicle using technology type q,
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ξq, is a function of average vehicle speed over a route (i, j) such that ξq,ij = ξq(uij).

Other operational costs are computed as follows:

Cwages =
∑
q

∑
(i,j)∈A

xq,ijdijCdriver , (3.2)

CM =
∑
q

∑
(i,j)∈A

xq,ijdijCM,q , (3.3)

CR =
∑
q

∑
(i,j)∈A

xq,ijBqTd,qCdelay,c . (3.4)

The cost of purchase is defined as in Chapter 2, comprising the cost of buying new

fleet vehicles and offset by the revenue generated by vehicle turnover sales: Cpurch =

Cnv−Csr. Fleets will purchase new vehicles 1) to replace those beyond their optimal

economic lifecycle, or 2) to address an increase in freight demand by increasing fleet

volumes. It is assumed that all vehicles are purchased new, such that the purchase

costs of a mixed-adoption fleet are given by Cnv = Cnv,f + Cnv,b where

Cnv,f =
∑
q

xq,newCp,q , (3.5a)

Cnv,b = xq,new(Cp,q −BcapCkWhΦBS + ΦCRUCR) . (3.5b)

Similarly, as with operational costs, a subscription model is assumed for the use of

battery swap stations. Contrary to direct ownership, the service provider owns the

battery and thus upfront vehicle costs are reduced given the battery capacity, Bcap,

and assumed battery cost, CkWh. If on-road charging is selected, electric vehicles must

have pick-up winding equipment installed [48], incurring an up-charge cost, UCR. A

traditional direct ownership model is assumed for all other vehicle types. Fleet sales

of older vehicles are implemented as in Chapter 2.

In summary, the cost function J , defined as the extended TCO, is computed as

follows:
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J =γ
∑
q

∑
(i,j)εA

xq,ij[dij(ξq,ijCe,q + Cdriver + CM,q) +BqTd,qCdelay,c]

+ γΦBS(xq,nSf −
∑

(i,j)∈A

xq,ijdijξq,ijCe,q) + γΦCRTCR
∑

(i,j)∈G

xq,ij

+
∑
q

xq,newCp,q + xq,new(ΦCRUCR −BcapCkWhΦBS)−
∑
q

xq,rCr,q .

(3.6)

Vehicle Fueling and Charging Constraints. The method and equations in-

troduced by [50] are implemented to determine feasibility of travel, esij, for vehicles

originating at s over link (i, j), given the vehicle range and location of fueling and

charging stations, as shown in Equations (3.7a)-(3.7f). As summarized by Zheng et

al., the variable Lsqj is incremented by the (i, j) link’s distance dij, as shown in Equa-

tion 3.7a, if node i does not have fueling or charging infrastructure as identified by

the parameter Fqi. The variable esq,ij will then have a value of 1 if the total distance

Lsi is within the vehicle’s range limits. The location of stations is not optimized in

our formulation; it is instead defined as a network parameter. Therefore the status,

Fqi, of a node as a fueling or charging station is an input to the MILP.

Lsqj ≥ Ls
′

qi + dij −M(1− eq,ij) (3.7a)

Lsqi ≤ Rq (3.7b)

Ls
′

qi ≥ Lsqi −MFqi, Ls
′

qi ≤ Lsqi +MFqi, Ls
′

qi ≤M(1− Fqi) (3.7c)

xsqn,ij ≤Meq,ij ∀n, q εQ (3.7d)

Lsqi ≥ 0, Ls
′

qi ≥ 0 (3.7e)

eq,ij ∈ {0, 1}, Fqi ∈ {0, 1}, Fqi =

 1 i ∈ C

0
(3.7f)

As stated earlier, fleet owners seek to increase the productivity of their vehicles

in a cost-efficient manner to maximize revenue. Hours of service (HOS) rules limit

both the driving time of commercial drivers to 11 hours and their time on-duty to 14

hours per day with a minimum 30 minute break every 8 hours [43]. As a result, any
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activity that causes downtime for the driver, and vehicle, within hours of operation

will negatively impact productivity and, potentially, revenue. The inconvenience

of lower vehicle range and longer fueling or charging stops when compared to the

diesel baseline, along with time constraints to complete a day’s driving, may limit

adoption of alternative technologies. Equations (3.8a)-(3.8b) show the daily vehicle

miles traveled (VMT) range constraints given fuel or battery energy content, Eq,

number of fuel or charging stops, Φqn,c, and energy transfer during on-road charging

in the case of battery electric vehicles. It is assumed that a vehicle leaves its city of

origin s with a full fuel tank or charged battery. Equation 3.9 limits total operational

time, that is driving plus fueling or charging stops, to remain within HOS limits, η,

while range-extending stops are limited to those nodes with station availability as

specified by Equation 3.10.

∑
(i,j)∈A

xsqn,ijdijξq,ij ≤ Eq(1 + Φqn,c) (3.8a)

∑
(i,j)∈A

xsqn,ijdijξq,ij ≤ Eq(1 + Φqn,c) + ΦCR

∑
(i,j)∈G

ECR,ijx
s
qn,ij ∀q, n (3.8b)

∑
(i,j)∈A

xsqn,ijtr,ij + Φqn,cten,q ≤ η (3.9)

0 ≤ Φqn,c ≤
∑
i

∑
j

xsq,jiFq,i (3.10)

Here, tr,ij is the time spent driving, ten,q is the time needed to charge or fuel, η is

the total window of operation, and Φqn,c is the number of times a vehicle n of type q

stops to fuel or charge.

The wireless power transfer system for on road charging includes long primary

windings installed under the road and secondary pick-up windings installed below the

chassis of the electric vehicle [48]. The power transferred can recharge the battery

while the vehicle is moving; the transfer of energy is proportional to the power of

the system and the time the vehicle is above the primary winding. Energy transfer,
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ECR,ij, for a given charging road depends on the speed of the vehicle, uij, and the

length, Lij, of the route conditioned with windings, such that

ECR,ij = PCR,ijLCR,ij
1

uij
. (3.11)

Well-to-Wheel Emissions. In order to adequately project global emissions given

adoption and utilization of vehicle technologies, the analysis must determine the emis-

sions resulting from transportation, production, distribution, and burning of the fuels.

A well-to-wheel analysis provides an estimate of the emissions involved from extrac-

tion of the source of energy (well) throughout its point of utilization (wheels) [51].

Here, I distinguish between the well-to-tank, Ψwtt,q, emissions resulting from produc-

tion, transportation, and distribution of fuel, and the tank-to-wheel values, Ψttw,q,

emissions resulting from the burning of the fuel. Both parameters have units of

kgCO2

EN
, where EN represents the gallons of fuel or kWh of energy consumed. The

annual regional emissions produced by vehicles of type q, CO2,q, is computed as

CO2,q =
∑

(i,j)∈A

xq,ijdijξq,ij(Ψwtt,q + Ψttw,q). (3.12)

3.2 Powertrain Adoption Scenario

In this section I consider a single powertrain adoption scenario to demonstrate the

predictive capabilities of the model under status quo assumptions; I will refer to this

as powertrain adoption scenario A. Section 3.2.1 describes the calibration of the model

to capture current public policies, short-term energy cost projections, freight demand

growth, and limited availability of infrastructure for alternative fuels, over a period

of 11 years, when evaluated policies are assumed to remain in effect. In Section 3.2.2

the model is used to project adoption and utilization strategies for emerging vehicle

technologies as well as the potential to reduce CO2 emissions under the assumptions

presented in Section 3.2.1. Policies include daily hours of service (HOS) restrictions,

GHG Phase 2 regulations, and economic incentives for the use of alternative fuels.
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3.2.1 Scenario Definition

The model is calibrated to project adoption of six vehicle architectures with con-

ventional and emerging powertrain technologies—diesel, CNG, LNG, hybrid electric

diesel (HEVD), battery electric (BE), and hydrogen fuel cell (HFC)—by line-haul

fleets operating over a small hypothetical regional network given a set of assump-

tions for the evolution of the FTS. The network is defined as a representative set

of line-haul highway corridors, each under 500 miles long, connecting 4 city nodes

and 2 distribution centers, as shown in Figure 5.1. In this scenario, it is assumed

that availability of fueling stations for CNG, LNG, and hydrogen, as well as charging

stations capable of servicing heavy-duty Class 8 BE vehicles, will be limited in the

near future. LNG, hydrogen, and charging stations are only assumed for city 1, while

CNG stations are located in cities 1 and 2 and diesel stations are modeled in all city

nodes. Fueling and charging times are assumed as follows: 1) 0.2 hours for a diesel

or hybrid-diesel vehicle, 2) 1.5 hours for a CNG vehicle, 3) 0.25 hours for an LNG

vehicle, 4) 3 hours for a BE vehicle, and 5) 0.4 hours for a HFC vehicle.

The U.S. Department of Energy, through its Alternative Fuels Data Center (AFDC),

and the U.S. Energy Information Administration (EIA) provide reports of historical

as well as short and long-term projections for retail prices of diesel and alternative

fuels [52, 53]. Future fuel and energy cost trends indicated by the EIA are used to

project costs of diesel and electricity from 2018-2028. For simplicity, historical prices

for CNG and LNG, as published by the AFDC, are assumed for this projection sce-

nario, given their retail price stability relative to diesel fuel costs. In the case of

hydrogen fuel, stations servicing transit line heavy-duty buses in California report

costs between $8.00 and $8.60 per kg of hydrogen dispensed for owning and main-

taining stations as well as dispensing hydrogen to buses [54]. Therefore, a constant

cost of $8.00 per kg is assumed for the representative region modeled throughout the

projected period of time for this adoption scenario. All fuel and energy costs over the

projected time period are shown in Figure 3.3.
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The following current policies are assumed to be in effect throughout the period

of study: 1) Hours-of-Service (HOS) regulations limiting the driving time and opera-

tional time per day for property-carrying drivers [43], 2) GHG Phase 2 fuel efficiency

standards for heavy-duty trucks [55], 3) 12% refundable fuel tax credits on compressed

natural gas consumed based on those offered in the state of Indiana, and 4) $30,000

tax credit on CNG and LNG fueling equipment based on that currently offered in

the state of Indiana [56]. GHG Phase 2 regulations are assumed to have an effect

on fuel efficiency and cost of diesel and natural gas vehicles; therefore the effects of

the policy are modeled accordingly as indicated in Table 3.4 and Figure 3.4. Policies

providing incentives for alternative fuel vehicles in the form of tax credits, such as

those modeled here for CNG and LNG fuels, are not available in every state in the

U.S. Fleets operating over a cross-state regional network will only get reimbursed for

the fuel purchased where the subsidy exists. In order to model this effect, natural gas

credits are assumed to be limited to City 2 in this adoption scenario.

Route Distance Between Node Pairs (mi)

City 1 City 2 City 3 City 4 D1 D2

City 1 - 182 297 470 148 91

City 2 182 - 242 289 - 91

City 3 297 242 - 309 148 -

City 4 470 289 309 - - -

D1 148 - 148 - - -

D2 91 91 - - - -

Figure 3.2. : Representative line-haul network with 4 city nodes and 2 distribution

centers. All direct routes between nodes are less than 500 miles.
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Figure 3.3. : Assumed fuel (in diesel gallon equivalent) and electricity (shown on the

right axis) costs for the period of time evaluated.

Table 3.4. : Summary of GHG-2 Expected Fuel Savings and

Price for HD Vehicles

MY 2021 MY 2024 MY 2027

Maximum Tractor Fuel Savings (%) 13 20 25

Increase in Typical Tractor Price (%) 6 10 12

Values obtained from [55]

The authors have previously identified a representative set of 12 line-haul fleets op-

erating over a 4-city network and varying in size (number of vehicles), budget, annual

growth, TCO outlook, and vehicle turnover periods [57]. The selected fleet man-

agement parameter values, shown in Table 3.5, were identified by emulating historic

adoption trends for widely available Class 8 diesel vehicles with enhanced aerodynamic

technologies. Results showed that the parameterized model predictions matched his-

torical adoption trends within an error of 10%. The same set of representative fleets

is therefore used here to capture heterogeneous fleet behavior to project adoption of

emerging Class 8 powertrain technologies given the set of assumptions for the evolu-

tion of the FTS described. Cargo demand, by weight, is parameterized to represent

three fleet sizes as indicated in Table 3.6. The freight demand ratio between all 4

cities is equivalent to that between Chicago (1), Indianapolis (2), St. Louis (3), and
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Nashville (4), a representative network of high-traffic freight corridors in the U.S.

Midwest [58].

Table 3.5. : Multi-Fleet Parametrization [57]

Fleet Gamma(γ) Cargo (bhi ) Turnover Budget (Bf ) Cargo growth

years ton years $ %/year

1 5 small [2,4] low 1%

2 5 small [1,3] low 1%

3 5 medium [3,5] high 0

4 5 large [2,4] low 2%

5 6 small [3,5] high 0

6 5 large [1,3] low 1%

7 6 small [2,4] high 1%

8 5 medium [2,4] low 1%

9 5 large [3,5] high 0

10 6 medium [5,7] high 0

11 5 medium [1,3] high 0

12 6 large [5,7] high 2%

Fuel vehicle efficiencies for the alternative powertrain technologies are estimated

in a diesel gallon equivalent based on fuel energy content, while BE vehicle efficiency

is expressed in kWh/mi. Payload capacity is an important factor for freight vehicles

and can be a metric upon which vehicle owners discriminate between technologies.

CNG tanks are approximately 2-2.5 times heavier than diesel ones for the same energy

capacity, while LNG vehicle tanks are almost 50% heavier [4]. These weight effects are

introduced into the model as a vehicle payload capacity parameter, shown in Table

3.7, where it is assumed natural gas vehicles have a decreased capacity as compared

to diesel vehicles.
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Table 3.6. : Cargo Demand (bhi ) Parametrization

Small Fleet (ton/day)

O/D City 1 City 2 City 3 City 4 D1 D2

City 1 0 90 60 20 20 20

City 2 100 0 15 10 0 20

City 3 55 10 0 5 20 0

City 4 15 10 5 0 0 0

D1 20 0 20 0 0 0

D2 20 20 0 0 0

Medium Fleet (ton/day)

O/D City 1 City 2 City 3 City 4 D1 D2

City 1 0 150 100 30 20 20

City 2 160 0 25 15 0 20

City 3 90 20 0 10 20 0

City 4 0 15 10 0 0 0

D1 20 0 20 0 0 0

D2 20 20 0 0 0

Large Fleet (ton/day)

O/D City 1 City 2 City 3 City 4 D1 D2

City 1 0 235 160 50 50 50

City 2 260 0 40 25 0 50

City 3 140 30 0 20 50 0

City 4 0 25 10 0 0 0

D1 50 0 50 0 0 0

D2 50 50 0 0 0

In the case of BE vehicles, Mareev et al. [59] estimate that the engine, fuel tank,

exhaust aftertreatment system, and diesel exhaust fluid (DEF) tank that become

obsolete on a vehicle with a battery electric powertrain weigh approximately 3700

lb. This estimate, along with the added weight of a 600 kWh battery, assuming a

0.15-0.2 kWh/kg energy density, causes a decrease between 1 and 2 tons in payload

capacity for a Class 8 BE vehicle with respect to the diesel baseline. BE vehicles

are therefore assumed to have a payload capacity of approximately 2 tons lower than
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that of a diesel vehicle, as shown in Table 3.7. Finally, a pre-transmission parallel

hybrid electric with diesel engine (HEVD) vehicle architecture is assumed as modeled

by Zhao et al. [60] and an average increase in fuel efficiency is imposed over the diesel

vehicle, also reflected in the vehicle parameterization table.

Table 3.7. : Vehicle Architecture Parameterization

Vehicle Vehicle Eff. (mi/EN) Range Capacity Maint. Cost Reliability Emissionsg (kg CO2/EN)

Type Cost ($) (@55 mph) (mi) (ton) ($/mi) (% trips/year) Well-to-tank Tank-to-wheel

Diesela 145,000 6 1000 25 0.15 1 9.45 10.16

CNGb 172,000 5.1 600 23 0.165 2 2.23 7.11

LNGc 190,000 5.25 1000 23 0.165 2 2.56 7.73

HEVDd 175,000 6.3 1100 24 0.158 5 9.45 10.16

BEe 210,000 0.39 300 23 0.175 5 0.63 0

HFCf 250,000 11 450 24 0.175 5 17.6 0

Vehicle cost, efficiency, range, and payload capacity values based on a range of sources for HD Class 8 tractors

a Approximate range assumed for a conventional diesel tractor with 200 gal fuel tank capacity [4, 6, 13]

bApproximate range and payload capacity values based on a 140 dge fuel tank capacity [4, 13]

cApproximate range and payload capacity values assumed for a 270 dge fuel tank capacity [4, 6, 13]

d Purchase cost, efficiency, range and payload capacity values assumed for a hybrid electric diesel tractor with

200 gal fuel capacity and 15 kWh battery capacity [6, 13]

ePurchase cost, range, and payload capacity values assumed for a conventional tractor with a 600 kWh battery

capacity. [6, 13,59]

f Payload capacity and range assumed for a 65 kg fuel tank capacity and 11 mpg efficiency in diesel gallon

equivalent [6, 13,61,62]

g Values based on US electricity mix, hydrogen produced by natural gas central reforming [13,51]

Figure 3.4 shows the efficiency for vehicles with diesel, BE, and HFC powertrain

technologies. Vehicle efficiency ξq,ij is defined as a function of vehicle technology

and route speed. In the case of diesel and natural gas vehicles, it is assumed that

efficiency will increase given the model year of the vehicle purchased, as indicated

by the expected impact of GHG Phase 2 regulations. Moreover, CNG vehicles are

assumed to have a loss of 15% efficiency relative to the diesel baseline, while a 12%

loss is assumed for LNG vehicles [4, 63]. Therefore, the same trends in diesel vehicle

efficiency with respect to speed and year of purchase are used for CNG and LNG, but
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with the assumed lower efficiency. BE and HFC vehicle efficiency curves are assumed

to remain the same throughout the period of study, regardless of the year the vehicles

are purchased.

(a) Diesel vehicle efficiency in mpg. (b) BE vehicle efficiency in mi/kWh.

(c) HFC vehicle efficiency in miles per diesel

gallon equivalent.

Figure 3.4. : Vehicle efficiency as a function of vehicle speed.

3.2.2 Simulated Results

Following the assumptions and the model parameterization described in the pre-

vious subsection, I project displacement of diesel vehicles, adoption of alternative

technologies, and CO2 reduction over an 11 year period. This period of time was

selected to identify the immediate effects of current and planned policies including

GHG Phase 2 regulations, tax credits for alternative fuels, and hours of service (HOS)

restrictions. The model is initialized with a 98% composition of diesel and 2% CNG

vehicles across all fleets [4], with an assumption that all initially owned vehicles are

either 1 or 2 years old. In order to quantify the potential in CO2 reduction given the
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introduction and market penetration of alternative technologies, a baseline scenario is

simulated assuming no changes in the current composition of the line-haul segment.

That is, 98% of all vehicles used throughout the period of study are powered by diesel

fuel, with only 2% of the vehicles operated using CNG. The CO2 emissions produced

in the baseline scenario are plotted as a dotted red line in Figure 3.5 for comparison.

Interesting effects can be observed with respect to adoption, traffic allocation,

and most significantly, CO2 emissions. Figure 3.5 shows the market penetration in

the modeled region for all 6 vehicle architectures introduced. Given the assumed

fuel costs, vehicle costs, limited infrastructure availability for alternative fuels, and

continued effects of currently active tax credit incentives, diesel vehicles are primarily

displaced, up to 80% in 2028, by CNG vehicles. There is limited adoption, less than

5% as shown in Figure 3.6, of LNG, BE, and HFC vehicles. There is no adoption

of HEVD vehicles in this scenario. This analysis demonstrates a rapid reduction in

CO2 in both the baseline and mixed adoption scenarios by the year 2021 due to the

fuel efficiency impacts of GHG Phase 2 regulations, and an approximate reduction of

30% in CO2 emissions (by mass) in 2028 once 80% of all vehicles used are powered

by CNG fuel. In this case, however, the immediate emissions reduction between 2018

to 2021 is higher, by comparison, in the mixed adoption scenario.
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Figure 3.5. : Total percent vehicle adoption throughout period of study across all

regional fleets modeled. The red dotted line shows regional emissions for a baseline

scenario with 98% diesel and 2% CNG fleet composition (see right y-axis). The black

dotted line shows regional CO2 emissions resulting from the projected adoption of

the six vehicle architectures as shown on the same plot.
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Figure 3.6. : Adoption of LNG, BE, HFC, and HEVD vehicles throughout the scenario

period.

As shown in Figure 3.5, the adoption rate for CNG reaches a plateau in the period

2023-2027, at which point we observe adoption of LNG and BE vehicles; this can be

seen more closely in Figure 3.6. However, GHG Phase 2 regulations are assumed to

cause a further increase in fuel efficiency of diesel and CNG vehicles in 2027, causing

an immediate increase in CNG adoption. BE vehicles are no longer economically

attractive to those few fleets that had adopted them and are therefore sold. Figures

3.7 and 3.8 show total daily vehicle utilization for all truck types and allocation over



69

the freight routes. Figure 3.8 demonstrates a net increase in utilization of CNG

vehicles along all routes over the period of study shown as adoption increases, with

the exception of the longest route between city 1 and city 4 (Figure 3.8e), which sees

a decrease in vehicle traffic throughout the period of study.
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Figure 3.7. : Daily total vehicle miles traveled (VMT) by all vehicle types.

Figure 3.8. : Total number of trips per day between selected cities, showing trips for

all vehicle types adopted.
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A higher adoption of CNG vehicles, which have a shorter range than diesel vehi-

cles, could cause a shift in traffic corridors as observed in this evaluation scenario.

This effect is shown in Figure 3.8. Here, the increase in adoption and utilization of

CNG vehicles, which have a significantly shorter range as compared to diesel, causes

a redistribution of vehicles transporting freight on the direct route from city 1 to 4

(Figure 3.8e) to reallocate through city 2 (Figure 3.8f) and city 3 (Figure 3.8g). At

the beginning of the study period, 10 diesel vehicles travel from city 1 to 4; however,

by 2021 and throughout 2028, fewer vehicles are taking this route. Alternatively, the

routes between city 2 and city 4, and city 3 and city 4 see an equivalent increase in

CNG vehicles after the year 2021. The route between city 2 to city 4 sees a small

increase in LNG and HFC vehicle allocation after the year 2021.

3.3 Sensitivity Analysis

In this section, the proposed model is used to quantify the sensitivity of vehi-

cle adoption and regional CO2 emissions projections to variation in system factor

assumptions such as future policies, fuel costs, proliferation of fueling/charging in-

frastructure, and technology design. Furthermore, I identify the mechanisms and

adoption trajectories that result in the maximum reduction in regional CO2 emis-

sions.

3.3.1 Design of Experiments

The results presented in the previous section assumed a specific scenario, which

I called powertrain adoption scenario A, for the evolution of the FTS, based upon

a continuation of existing policies. However, a powerful use of the proposed model

is for understanding how the adoption of emerging powertrain technologies, and the

resulting line-haul system emissions, will be affected if the cost of fuel, policy incen-

tives, or availability of fueling infrastructure varies from the status quo. Are there

any vehicle design factors—efficiency, range, payload capacity—that can be improved
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to enhance adoption of cleaner technologies? Is there a required level of infrastruc-

ture proliferation necessary to drive adoption of alternative powertrain technologies?

What incentives are necessary to improve the economic output of fleets as they adopt

cleaner technologies, and how must they be introduced over a chosen timeline to in-

fluence adoption? Moreover, how is viability of adoption affected if several of these

factors vary concurrently from the status quo scenario? To answer these questions, a

design of experiments (DOE) is used to identify the factors that significantly influence

multi-fleet adoption of the powertrain technologies and to quantify the variation of

market penetration under different scenarios. Fifteen system parameters are varied

as shown in Tables 3.8-3.11. A 180 point design of experiments (DOE) is defined

with the JMP Statistical Analysis software [41] in order to reduce the number of exe-

cutions from a full factorial design to screen the response and produce a satisfactory

regression model for sensitivity analysis.

Line-haul fleets are generally concerned with a vehicle’s productive capability, i.e.

the amount of freight it will be able to transport in a given day, particularly when

considering a new technology over the well-known capabilities of a conventional diesel

vehicle [37]. The perceived uncertainty in fuel economy, range, and payload capacity,

particularly for alternative heavy-duty technologies—CNG, LNG, HFC, and BE—

causes what is known as “range anxiety” [6]. Variation in these vehicle-level pa-

rameters is introduced, as shown in Table 3.8. As heavy-duty Class 8 BE and HFC

vehicles are yet to be introduced to the market, there is also perceived uncertainty

on the future availability of fueling and charging stations, and their capabilities, to

service line-haul trucks in a timely manner. Therefore, parameters affecting infras-

tructure are also considered as shown in Table 3.9. As of 2016, the only examples of

hydrogen stations servicing heavy-duty vehicles are those in California for transit city

buses, charging a vehicle with a capacity of 50 kg in approximately 10 minutes [54].

Given the expected tank capacity for a Class 8 truck to be above 60 kg for a range

of 450 miles [62], higher fueling times are introduced as shown in Table 3.9. In the

case of BE vehicles, exploratory fast-charging values of half an hour are introduced.
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However, given that based on current technology projections, fast charging stations

with the capability to charge a 600-900 kWh battery pack will likely take more than

1 hour, values greater than 1 hour are introduced as well.

Table 3.8. : DOE Vehicle Parameter Levels

Truck Type Efficiencya (mi/dge) Range (mi) Payload Capacity (ton)

Level 1 Level 2 Level 1 Level 2 Level 1 Level 2 Level 3

Diesel 5.35 5.85 1000 1000 25 25 25

CNG 4.5 5 600 600 23 24 23

LNG 4.65 5.2 1000 1000 23 24 23

HEVD 5.6 6.2 1100 1060 24 24 24

BEb 2.6 2.2 500 300 23 24 25

HFC 7.2 10 750 450 24 24 24

a Efficiency shown at a vehicle speed of 65 mph

b BE efficiency is defined in units of kWh
mi

Table 3.9. : DOE Infrastructure Parameter Levels

Truck Type Charging Time (hr) Infrastructure Availability

Level 1 Level 2 Level 3 Level 4 Level 5 Level 1 Level 2

Diesel 0.2 0.2 0.2 0.2 0.2 all cities all cities

CNG 1.5 1.5 1.5 1.5 1.5 city 1 all cities

LNG 0.25 0.25 0.25 0.25 0.25 city 1 all cities

HEVD 0.2 0.2 0.2 0.2 0.2 all cities all cities

8BE 0.5 1 2 3 3 city 1 all cities/roads

HFC 0.25 0.25 0.25 0.4 0.5 city 1 all cities

As stated earlier, three range-extending infrastructure modes have been proposed

in support of BE vehicles: 1) charging stations, 2) battery swap stations, and 3) on-

road charging. Therefore, the infrastructure type available in the region is imposed

as a factor of variation in order to understand the effects on adoption of BE vehicles.

Due to uncertainty in related costs to build, maintain, and service the infrastructure,

variation is also introduced to the user fees modeled, particularly the fees and tolls

related to the use of battery swap stations and on-road charging, as well as the increase
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in cost of purchase assumed for wireless power transfer capability. These values are

shown in Table 3.10.

Table 3.10. : DOE Battery Electric Vehicle Considerations

Battery Battery Infra. Swap Station Charg. Rd. Charg. Rd. Charg. Rd. Charg. Rd.

Capacity Cost Mode Fee Toll Power Length Veh. Upcharge

(kWh) ( $/kWh) Φ ($/month) ($/trip) (kW) (%) ($)

Level 1 900 50 0 1500 10 50 0.2 1000

Level 2 600 100 1 3000 20 100 1 5000

Level 3 200

Finally, as shown in Table 3.11, a natural gas fuel tax credit is applied to both

CNG and LNG fuel. A new economic incentive is also introduced; a voucher, valid at

the time of purchase, is made available for hybrid and zero emission vehicles (BE and

HFC) similar to the ones provided by the California Air Resources Board Voucher

Incentive Project (CARB HVIP) and currently available in the state of California [64].

Table 3.11. : DOE Regional Policies and Economic Factor Levels

Truck Type Cost of Fuel ($/ENa) Policies

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 1 Level 2

Diesel Decreaseb 2.8 Increasec Increase Increase Increase None None

CNG 2.17 2.17 2.17 2.17 2.17 2.17 None 12% fuel tax rebate

LNG 2.57 2.57 2.57 2.57 2.57 2.57 None 12% fuel tax rebate

HEVD Decrease 2.8 Increase Increase Increase Increase None $20,000 voucher

BE Increased Increase Increase 0.11 Increase Increase None $45,000 voucher

HFC 6 6 6 6 4 2 None $45,000 voucher

a EN is expressed in units of fuel (gal or diesel gallon equivalent) or electricity (kWh) consumed

b Cost of diesel fuel is linearly decreasing between $2.7-$2.2 per gallon during period of study

c Cost of diesel fuel is linearly increasing between $2.7-$3.2 per gallon during period of study

d Cost of electricity is linearly increasing between $0.1-$0.14 per kWh during period of study
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Figure 3.9 shows the total number of purchases, plotted by vehicle type, across all

180 experiments evaluated as part of the DOE study. Each experiment represents the

total number of vehicle purchases across all fleets in the region throughout the 2018-

2028 period, shown in descending order with respect to the total number of vehicles

purchased. On average, approximately 500 new vehicles are purchased throughout

the period of study for every DOE case evaluated. However, it can be observed

that the total number of vehicles purchased in the region increases with the number

of battery electric vehicles adopted, as these vehicles have a shorter range than the

diesel baseline, while total freight demand in the region remains the same across all

DOE cases. This effect is particularly true in the cases where battery swap stations

are available and a service fee model is followed instead of direct ownership of BE

vehicles, thereby reducing the total cost of ownership.
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Figure 3.9. : Number of purchases of each vehicle type throughout period of study

across all DOE points evaluated.

Figure 3.9 shows that all cases evaluated result in mixed adoption scenarios of

diesel, CNG, BE, HFC, and, to a lower extent, HEVD vehicles. There is negligible

adoption of LNG vehicles given the factor values assumed for the DOE. Variation

of individual adoption metrics to the factor levels evaluated are quantified in the
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appendix, showing a wide distribution of diesel, CNG, BE, HEVD, and HFC vehicle

purchases. Furthermore, CO2 emissions vary approximately between 2.62 Gg to 5 Gg

across the different system evolution scenarios evaluated, as shown in Figure 3.10.

P
ro

b
ab

ili
ty

Cumulative CO2 emissions (kg)

Figure 3.10. : Histogram showing distribution of cumulative CO2 emissions, in kg,

produced throughout the 2018-2028 period as a result of the DOE factor variation.

Cumulative emissions value for the baseline case (98% diesel adoption) is indicated

by the blue dotted line.

In order to quantify sensitivity of vehicle adoption metrics to variation in individ-

ual factors, a regression model is computed from the DOE data and used to predict

factor influence. The quality of fit for each regression model computed is shown in

Table 3.12, indicating root mean square error and coefficient of determination (R2)

values. The R2 values for diesel, CNG, HEVD, BE, and HFC purchase predictions,

excluding LNG vehicles due to negligible adoption projections, are all above 0.87.

Figure A1, shown in the Appendix, demonstrates the quality of fit of the regression

models. The regression models are therefore a good representation of vehicle pur-

chase projections, and here they are utilized to predict adoption sensitivity to factor

variation. The effects are quantified in Figures 3.11–3.16.
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Table 3.12. : Summary of Regression Fit

Truck Type R2 RMSE

Diesel 0.87 31.6

CNG 0.9 22.

HEVD 0.97 6.86

BE 0.91 22.88

HFC 0.94 16.9

Tornado charts show individual effects of system factor variation, as indicated by

the factor levels evaluated, in total number of vehicle purchases for each architec-

ture. Recall that parameter values for individual factors are listed in Tables 3.8-3.11.

Response sensitivity, shown on the y-axes of Figures 3.11-3.14, is computed as the de-

viation in vehicle purchases from the predicted mean as single factor levels are varied

and all other factors are held constant.

In the case of diesel and CNG vehicles, as shown in Figure 3.11 and 3.12 respec-

tively, cost of diesel fuel is the most influential factor on projected adoption. This is

indicated by the positive effects of Levels 1-2 and negative effects of Levels 3-4 on

diesel purchases. For this study, variation is introduced only for the cost of diesel,

electricity, and hydrogen; exploratory values for the cost of natural gas were not con-

sidered given its stable price relative to the cost of diesel [52]. Cost of electricity and

hydrogen fuel are expected to vary regionally or with time as production efficiency

progresses [53, 65]. Furthermore, although hydrogen as a transportation fuel is ex-

pected to remain high in cost in the near future, exploratory low cost values (Levels 5

and 6) are included in the study and also have a negative effect on diesel vehicle pur-

chases. Moreover, an increase in payload capacity of alternative fuel vehicles—from

23 to 24 tons for CNG, LNG, and BE vehicles as indicated by Levels 1 and 2—has

a negative effect on adoption of diesel vehicles while increasing the economic attrac-

tiveness of the alternatives (see Figures 3.13 and 3.14). In the case of CNG (Figure

3.12), the availability of battery swap stations (Level 2 of ΦBS parameter) means that

market penetration will be shared with battery electric vehicles (see Figure 3.14).
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Figure 3.11. : Tornado chart of factor effect on number of diesel vehicle purchases,

shown as the deviation from the overall predicted mean of 317 diesel vehicle purchases.
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Figure 3.12. : Tornado chart of factor effect on number of CNG vehicle purchases,

shown as the deviation from the overall predicted mean of 86 CNG vehicle purchases.

Figures 3.13, 3.14, and 3.15 summarize factor effects on HEVD, BE, and HFC ve-

hicle purchases, respectively. From Figure 3.13 we see that incentives are the primary

factor influencing adoption of HEVDs, with a positive net effect if a voucher reducing

cost of purchase by $20,000 is provided (see Level 2). Moreover, the availability of

battery swap stations also causes a decrease in fleet preference of HEVDs, an effect

also observed on adoption of CNG vehicles. Finally, Figure 3.14 corroborates the

positive effect of battery swap station availability on the attractiveness of BE vehicles
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(see Level 2). As mentioned before, under this model, batteries are owned by service

providers and a battery swap is assumed to take only 25 minutes. These assumptions

significantly lower vehicle purchase costs, as fleet owners are in turn paying an annual

flat service fee, as well as decrease the downtime associated with range-extending

stops. Figure 3.14 also shows that variation in charging time, in the case where the

use of charging stations is assumed, has a considerable effect on BE adoption. Specif-

ically, faster charging times, 1 or 2 hours (Levels 1 and 2), have a positive effect on

adoption as compared to the 3-hour baseline (Levels 3 and 4). The imposition of

on-road charging as the range-extending mode for electric vehicles appears to have a

negative effect on BE vehicle adoption, as indicated in Figure 3.14, particularly when

compared to the cases where battery swap stations are available. This is due to the

low power transfer capacity assumed possible, with a maximum value of 100 kW, not

providing enough energy to fully charge the large battery packs necessary for Class 8

vehicles. In the case of HFC vehicles, Figure 3.15 shows the positive effect of a low

cost of hydrogen fuel, demonstrating that values under $4 per diesel gallon equivalent

are necessary for adoption of HFC vehicles.
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Figure 3.13. : Tornado chart of factor effect on number of hybrid electric diesel vehicle

purchases, shown as the deviation from the overall predicted mean of 19 HEVD vehicle

purchases.
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Figure 3.14. : Tornado chart of factor effect on number of battery electric vehicle

purchases, shown as the deviation from the overall predicted mean of 74 BE vehicle

purchases.

-50

0

50

100

150

200

C
o

st
 f

u
el

R
an

ge

C
o

st
 b

at
te

ry

B
at

te
ry

 s
iz

e

V
e

h
ic

le
 E

ff
ic

ie
n

cy

P
ay

lo
ad

 C
ap

ac
it

y

In
ce

n
ti

ve
s

Fu
e

l/
ch

ar
ge

 t
im

e

In
fr

as
tr

u
ct

u
re

Factor Effects on HFC Purchases

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Figure 3.15. : Tornado chart of factor effect on number of hydrogen fuel cell vehi-

cle purchases, shown as the deviation from the overall predicted mean of 70 HFC

purchases.

Due to the significant positive effect of battery swap station availability on BE

adoption under these assumed scenarios, it is of interest to further inspect the effects

of other parameters when this charging model is followed. This case is evaluated by

setting ΦBS = 1 which imposes the use of battery swap stations according to the
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defined availability of infrastructure. In this case, as shown in Figure 3.16, battery

swap stations maximize the adoption of BE vehicles, provided that they are widely

available. As expected, adoption is also dependent on the service fee charged. Future

work could focus on identifying an appropriate range in service fees, considering the

costs of owning and operating a battery swap station for heavy-duty vehicles with

large battery packs, to estimate the likelihood of such large positive effects on BE

vehicle adoption.

Figure 3.16. : Tornado chart of factor effect on number of battery electric vehicle

purchases when battery swap stations are used.

Finally, the direct effects of emerging vehicle penetration on regional CO2 emis-

sions are quantified in Figure 3.17. Here, perhaps most surprisingly, we observe

that an increased adoption of HEVD trucks has a negative impact on CO2 emissions,

causing an increase of almost 2 Gg of CO2 between the zero adoption and maximum

adoption scenarios as indicated in Figure 3.17c. This happens particularly due to the

higher vehicle utilization of HEVDs when adopted, an effect that is more pronounced

when purchase vouchers are provided for this vehicle type. Here, it is important to

note that only diesel-hybrid powertrains were considered. Future work could focus

on exploring the effects on network wide emissions if other hybrid alternatives are

introduced, for example, CNG-hybrid vehicles.

Moreover, cumulative CO2 emissions in the region decrease as the number of

CNG and BE trucks purchased throughout the period of study increases, as shown
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in Figures 3.17b and 3.17d. As each of these vehicles reaches a volume of more than

200 vehicles adopted throughout the period of study, there is a potential reduction

of approximately 20% in cumulative emissions from the baseline case (98% diesel

adoption).
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Figure 3.17. : Cumulative CO2 regional emissions, in kg, throughout the 2018-2028

period of study as a function of vehicle purchases. Cumulative emissions for the

baseline case (98% diesel adoption) are indicated by the dotted line.

3.3.2 Paths towards lowering CO2 emissions

Finally, I explore the mixed adoption trajectories, as identified by the DOE pre-

sented in section 3.3.1, that minimize CO2 emissions over the period of study in order

to identify the mechanisms necessary to do so. Figure 3.18 shows the cumulative CO2

emissions for all DOE points evaluated as a function of diesel vehicle purchases. As

indicated previously by the sensitivity analysis, cases in which hybrid-diesel vehicles

are heavily adopted result in high emission scenarios due to their over-utilization.
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Figure 3.18. : Cumulative CO2 regional emissions shown for all DOE points, in kg,

throughout the 2018-2028 period of study as a function of diesel vehicle purchases.

Cumulative emissions for the baseline case (98% diesel adoption) are indicated by the

dotted line.

Moreover, the three lowest CO2 points are identified corresponding to significantly

varying diesel and emerging technologies adoption scenarios, as shown in Figure 3.19

(a)-(c). Here, BE+HFC mix, primary HFC mix, and BE+CNG mix adoption cases

are identified with similar low cumulative emission values. This indicates that more

than one future mixed-adoption scenario can be targeted in order to achieve a desirable

reduction in emissions. Table 3.13 shows the parameter levels corresponding to the

three mixed-adoption cases; recall that factor levels are described in Tables 3.8-3.11.

All three cases correspond to a wide availability of infrastructure, as indicated by Level

2 parameterization (Table 3.9). Moreover, the single difference in parameterization

between cases 1 and 2 is the availability of incentives. However, case 2, in which

incentives are not provided, shows that adoption of BE vehicles has instead been

displaced by HFC and CNG adoption and a visible decrease in CO2 emissions in

2028, as shown in Figure 3.19 (b). This indicates that case 2, as defined by the future

parameter values, shows robustness to the removal of voucher incentives with respect
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to the capability to achieve a large reduction in cumulative emissions. Furthermore,

cases 1 and 2 both show high adoption of HFC vehicles and correspond to the low cost

assumption for hydrogen fuel of $2 per diesel gallon equivalent. This suggests that

although voucher incentives may not be necessary, a fuel subsidy may be required in

the future in order to achieve such a low cost for hydrogen fuel. It is cases 1 and 2, as

shown in Figure 3.19 (d) and (e), that observe the highest reduction in total energy

costs for all fleet types, as compared to the case 3 with mixed diesel, BE, and CNG

adoption shown in Figure 3.19 (f).

Table 3.13. : Low CO2 Point Parameters

Efficiency Range Payload Cost of Policies Fuel/Charge Infrastructure CO2 Emissions

Capacity Fuel Time Availability Reduction

Case 1 Level 1 Level 1 Level 3 Level 6 Level 1 Level 1 Level 2 25.3%

Case 2 Level 1 Level 1 Level 3 Level 6 Level 2 Level 1 Level 2 25.8%

Case 3 Level 2 Level 2 Level 2 Level 3 Level 2 Level 4 Level 2 25.9%
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(a) Mixed adoption case 1
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(b) Mixed adoption case 2
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(c) Mixed adoption case 3
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(d) Fuel cost case 1
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(f) Fuel cost case 3

Figure 3.19. : Low CO2 cases identified by the DOE study.

3.4 Risk Aversion to Emerging Technologies

There are several factors that can limit, and even hinder, the adoption of alter-

native and fuel efficient technologies. These factors are best indicated by the low

adoption of natural gas powertrains, despite their availability in the Class 8 market

for the last decade 2.5. The line-haul trucking sector has shown itself to be a slow

adopter of revolutionary technologies in the past. Instead, fleet owners tend to opt

for the well-known capabilities of conventional diesel vehicles [66]. Natural gas ve-
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hicles, primarily CNG, observed an increase in adoption after the cost of diesel fuel

increased in 2011. However, their penetration level in the market was much lower than

that of diesel vehicles. Furthermore, as the cost of diesel fuel declined and the cost

advantage of operating natural gas vehicles disappeared, the sales of CNG vehicles

declined. Less availability of natural gas vehicles across fleet-preferred manufactur-

ers and the lack of fueling infrastructure may have been influential factors limiting

their uptake. However, it is reasonable to hypothesize that a higher demand could

itself entice manufacturers to make natural gas vehicles available in higher volumes,

perhaps a more influential factor could be the market aversion exists to technologies

that have not been as demonstrated in the field as the diesel baseline. In particular,

new maintenance processes, new fueling safety requirements, and a lack of experience

with high-pressure fuel systems [66] may have negatively influenced the perceived

reliability of CNG powertrains and deterred fleets and their operators from adopting

them. A decreased performance due to reliability issues may cause vehicle downtime

and increase delivery times, ultimately affecting operational costs.

In the proposed fleet behavior model, reliability costs are taken into account in

order to compute the fleet TCO on an annual basis (Equation 3.6). Here I explore the

effects of perceived reliability on adoption of compressed natural gas by introducing

variation in percent reliability, Bq, and downtime, Td,q for CNG powertrains and com-

paring the resulting adoption to historical data. Figure 3.20 shows the sensitivity of

CNG adoption to variation in reliability and downtime, demonstrating that perceived

reliability can be used as a factor to represent risk aversion to emerging technologies

and therefore limit their projected uptake once they are introduced to the market.
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Figure 3.20. : Sensitivity of CNG adoption to variation in reliability and downtime.

Selecting values of Bq = 50 and Td,q = 5 for reliability and downtime causes

adoption of CNG to achieve only a 34 percent adoption by 2028, observed in Figure

3.21a, as compared to the adoption observed in Figure 3.5. Further increasing the cost

associated with perceived reliability, by increasing the values for these two parameters,

causes adoption of CNG to achieve a maximum of 30% throughout the period, shown

in Figure 3.21b. Given the lower effect of increasing Bq from 50 to 70% and Td,q from

5 to 8 hours on CNG adoption, values of Bq = 50 and Td,q = 5 are chosen for further

studies. All other parameters were maintained the same as in Section 3.2.2.
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(b) Resulting adoption scenario assuming Bq = 50 (percent) and

Td,q = 5 (hours) for CNG and LNG vehicles.

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

Year

0

10

20

30

40

50

60

70

80

90

100

%
 A

do
pt

io
n 

of
 V

eh
ic

le
s 

T
yp

e 
q

0

0.5

1

1.5

2

2.5

3

3.5

4

C
O

2 E
m

is
si

on
s 

(k
g)

105Diesel CNG LNG BEV Hydrogen Hybrid CO
2
 baseline CO

2
 mixed adoption

(c) Resulting adoption scenario assuming Bq = 70 (percent) and

Td,q = 8 (hours) for CNG and LNG vehicles.

Figure 3.21. : Powertrain adoption projections given introduction of autonomy levels.

The black dotted line shows regional CO2 emissions resulting from the projected

adoption shown.
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3.5 Summary

In this chapter, the model formulation was extended to predict the adoption and

utilization of diesel and alternative powertrain technologies in the line-haul network

modeled. This was achieved by taking into consideration the powertrain efficiency

and performance characteristics as well as factors of the FTS—availability of fueling

and charging infrastructure, fuel and electricity costs, and economic incentives—that

influence the economic attractiveness of the technologies and the fleet adoption be-

haviors. The framework was then exercised to project adoption of diesel, low and

zero emission alternative powertrain options and resulting CO2 emissions across a

line-haul network.

A powertrain adoption scenario demonstrated the potential for CNG vehicles to

displace diesel by up to 80% by 2028, assuming current public policies and tax credit

incentives, short term energy and vehicle cost projections, and limitations of infras-

tructure availability for alternative fuels remain in effect. Furthermore, the analysis

demonstrated that the continuation of GHG Phase 2 regulations could cause a rapid

reduction in CO2 in both the baseline (98% diesel adoption) and a mixed adoption

scenario by the year 2021. Furthermore, a sensitivity analysis quantified the in-

fluence of fuel costs, fueling and charging times, availability of infrastructure, and

perceived reliability on adoption of low and zero emission powertrain technologies,

including BE and HFC vehicles. Finally, the simulation analysis suggested that more

than one future mixed-adoption scenario can be targeted in order to achieve a desir-

able reduction in emissions. Three adoption cases—a BE+HFC mix, primary HFC

mix, and BE+CNG mix—were identified with similar low cumulative emission values,

and an approximate reduction of 25% from the current line-haul market composition

of 98% diesel vehicles.

This chapter focused on the introduction of emerging powertrain technologies

to the line-haul network and their ability to reduce CO2 emissions through their

increased adoption and utilization. For this purpose, the influence of FTS factors,
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including infrastructure availability and policies, on alternative powertrain adoption

was studied. The chapters that follow will focus on the introduction of various levels of

vehicle autonomy, and the effect of these technologies on network-wide CO2 emissions

given combined adoption with alternative powertrain options.
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4. VEHICLE AUTONOMY FOR FREIGHT TRANSPORTATION

Many stakeholders—manufacturers, policy-makers, and fleets—are involved in the

development and introduction of autonomous vehicle technologies in the heavy-duty

commercial vehicle sector. Automated trucks could enable energy savings, lower

vehicle emissions, reduce traffic and congestion, increase road safety [67], and address

the shortage of professional drivers in the freight industry [68]. Moreover, vehicle

autonomy, coupled with the emergence of low and zero emission powertrain options,

could greatly impact emissions produced by the freight transportation system.

Level 1 autonomous technologies [69], including advanced driver assist systems

(ADAS), are already commercially available options on Class 8 trucks. These Level 1

features offer drivers assistance with control of steering or acceleration under limited

conditions to reduce inefficient or unsafe driver behaviors [70]. Level 2 autonomous

features partially automate driving tasks and are capable of controlling both steering

and acceleration temporarily. The impact of Level 1 and 2 features result in on-

road safety improvements and a limited increase in vehicle fuel efficiency. However, a

skilled driver is still needed and must remain engaged and prepared to assume control

of driving tasks at all times. As higher levels of autonomy are introduced, the driver’s

responsibilities and operation of the trucks may be significantly altered. Level 3, de-

fined as conditional automation, enables the vehicle system to monitor the driving

environment and control most driving functions, but may require drivers to take con-

trol in the event of an emergency [70]. Level 3 is believed to be unsafe as drivers may

be quick to trust the autonomous system and unlikely to remain engaged in monitor-

ing and intervention activities [68]. Level 4 autonomous technology, categorized as a

high level of automation, enables the vehicle system to control all driving functions

under certain conditions and limited environments without the need for the driver to

monitor or assume control. Moreover, full automation, Level 5, is expected to handle
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all driving tasks under all conditions without the need for a driver present. With this

level of autonomy, the vehicle can be guaranteed to maximize energy efficiency and

safety for an extended period of time. Highly autonomous or driverless trucks could

in turn have a disruptive impact on the role of truck drivers.

The timing of introduction, and rate of acceptance, of autonomous trucks is still

uncertain [68]. However, their disruptive potential on the freight trucking sector is

of great interest to the aforementioned stakeholders. As lower levels of autonomy are

initially introduced, drivers may need incentives to utilize features that modify their

driving behaviors. Higher levels of autonomy present the possibility of dramatically

reducing driver costs for fleet owners and relaxing the driving time restrictions [71].

This would increase vehicle productivity and therefore deliver an economic benefit

for freight fleet stakeholders [72]. Moreover, decreased downtime, improved fuel ef-

ficiency and driving range, and reduced operational costs of autonomous vehicles

could enable the adoption of more costly low or zero emission powertrain technolo-

gies. A tool that can assist manufacturers and policy-makers to understand how the

future state of the freight transportation system will affect the market penetration

of autonomous trucking technologies and their interaction with powertrain adoption

is necessary. Manufacturers and policy-makers can then envision the introduction of

products, incentives and regulations to shape adoption, social impacts, and overall

energy efficiency of the line-haul freight transportation system.

At present, a wide array of research studies are focused on eliminating the techno-

logical barriers for commercial readiness of automated heavy-duty trucks [7,73–77]. A

majority of these studies are reasonably aimed on the design, improvement, and eval-

uation of autonomous vehicle control performance and robustness over specified drive

cycles. While such research is necessary to develop the technology readiness of au-

tonomous trucks, it does not address the effect that autonomous capability will have

on the larger operations and energy efficiency of the freight transportation network

nor the economic attractiveness to users in the sector.
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Projecting the evolution of the freight transportation system with respect to en-

ergy costs, freight demand, availability of policies and incentives, infrastructure, and

technology performance is a difficult task, as is the identification of a direct link be-

tween these factors, adoption, and the social and environmental impact of new tech-

nologies. Despite current barriers, researchers and industry stakeholders have made

predictions about the commercial availability and uptake of autonomous trucks. Sev-

eral studies explore the big-picture benefits and drawbacks of predefined adoption

scenarios for autonomous vehicles in the transportation sector [68], but do not pro-

vide a quantitative understanding of how those adoption scenarios can be achieved.

For example, the authors of [17] consider the potential impact of introduction of lev-

els of automation on travel demand, congestion mitigation, highway speeds, crash

avoidance, and GHG emissions from light-duty and heavy-duty vehicles in the U.S.

by exploring illustrative, pre-defined scenarios and energy impact data published in

the literature. In [70], the authors qualitatively explore the effects of large-scale intro-

duction of automated road freight transport on professional truck drivers and make

recommendations to help governments ensure a just transition. Researchers in [78]

present a simulation study on resulting traffic stream behavior for pre-defined mar-

ket penetration rates of connected and autonomous vehicles, suggesting substantial

throughput increases under high penetration scenarios.

In this chapter, the model formulation is used to project the effects of auton-

omy features on heavy duty vehicle technology (powertrain and autonomy) adoption

and utilization for multiple heterogeneous fleets operating in a regional freight trans-

portation network. The focus here is to identify, through simulation, the technology

characteristics, freight transportation system (FTS) factors, and vehicle autonomy

assumptions that impact fleet operations and adoption behaviors. Consequently, the

impact on total adoption of alternative, low emission powertrains and cumulative

CO2 emissions is captured across the regional fleets modeled. In Sections 2.2 and 2.3,

a model of heterogeneous fleet vehicle purchasing behaviors and regional technology

adoption over a line-haul freight transportation network was presented and validated.
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This was done by modeling the FTS as a system-of-systems [33] and defining a rep-

resentative set of fleets to capture the evolution of line-haul freight transportation

system and the future economic attractiveness of emerging powertrain technologies.

Here, I extend that framework to include the introduction of vehicle autonomy lev-

els as a technology option in the heavy-duty Class 8 freight transportation sector.

Autonomy is considered as the capability of the vehicle system to control its mo-

tion during highway operation with decreased driver input. Vehicle-to-vehicle, or

vehicle-to-infrastructure connectivity and cooperation is therefore not modeled.

4.1 Extended Fleet TCO Optimization for Introduction of Autonomous

Vehicles

In the previous chapters, the model formulation was limited to factors only per-

taining to different powertrains and modeled constraints such as driver hours of ser-

vice, vehicle range of travel, etc. Here, I briefly describe the variables, parameters,

objective function, and constraints defined to construct the mixed-integer linear pro-

gram and predict a single fleet’s powertrain technology adoption and utilization be-

haviors. Please refer to Tables 3.2 and 3.3 for variables and parameters not defined

in text.

The objective function represents the TCO criteria commonly used by fleet owners

to select vehicles for purchase. Fuel consumption, repair and maintenance of a vehicle,

and driver wages incur the highest percentage of total operational costs on a per mile

basis over a vehicle’s lifecycle [36]. In summary, the cost function J is defined as the

TCO and was computed in Section 3.1 as follows:
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J =γ
∑
q

∑
(i,j)

xq,ij[dij(ξq,ijCe,q + Cdriver + CM,q)

γ
∑
q

∑
(i,j)

xq,ijBqTd,qCdelay,c + γΦCRTCR
∑

(i,j)∈G

xq,ij

+ γΦBS(xq,nSf −
∑
(i,j)

xq,ijdijξq,ijCe,q)

+
∑
q

xq,newCp,q −
∑
q

xq,rCr,q

+ xq,new(ΦCRUCR −BcapCkWhΦBS)

(4.1)

where xq,ij =
∑

s

∑
n x

s
qn,ij and G is the set of route links with wireless charging

capability.

In the optimization problem, constraints are enforced on vehicle purchase, resale,

and operation. Operational constraints are imposed on vehicle allocation over the

routes based on cargo demand, vehicle capacity, hours of service limits, vehicle range,

and availability of charging and fueling stations or on-road charging. Moreover, vehi-

cle purchases are constrained by a user-defined fleet budget and the revenue created

from the sale of vehicles being replaced. Vehicles are only maintained as part of

the fleet until their maintenance costs are no longer optimal or their turnover age has

been reached. The objective function, constraints, and associated models used to con-

struct the MILP, used to predict a single fleet’s technology adoption and utilization

behaviors, is described in detail in Section 3.1.

4.1.1 Introduction of autonomy levels to MILP formulation

In this chapter, I introduce new variables, parameters (Table 4.1), and math-

ematical structure to the framework described in Chapter 3 to accommodate the

introduction of autonomy levels. By considering autonomy to be independent from

the powertrain itself, I am able to capture the possibility of levels of autonomy to be

vehicle agnostic.
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In Chapter 3, the cost of energy for daily operation of a heterogeneous fleet is

used as a component to compute TCO, and is defined as

Cec,q =
∑
n

∑
(i,j)

xqn,ijdijξq,ijCe,q, ∀ q. (4.2)

Here, Cec,q is the cost of fuel consumed by vehicles of type q, i.e. diesel, natural gas,

battery electric (BE), and hydrogen-powered vehicles. In order to compute the effect

on energy consumption and costs due to the adoption of autonomous technologies,

the fuel cost equation is modified as follows:

Cec,q =
∑
n

∑
(i,j)

xqn,ijdijξq,ijCe,q(1− paΦqn,a), ∀ q (4.3)

where pa represents the efficiency increase as indicated by the level of autonomy,

and Φqn,a indicates if vehicle n of type q has autonomous capability. Here, the term∑
n

∑
(i,j) xqn,ijdijξq,ijCeqΦqn,a is non-linear, and therefore intermediate integer vari-

ables yqn and zqn are introduced, such that

yqn =
∑
(i,j)

xqn,ijdijξq,ijCe,q (4.4)

and

0 ≤ zqn ≤MΦqn (4.5a)

zqn ≤ yqn (4.5b)

zqn ≥ yqn −M(1− Φqn,a), (4.5c)

where M is a sufficiently large number. Then, the energy cost (4.3) can be updated

such that

Cec,q =
∑
n

∑
(i,j)

xqn,ijdijξq,ijCe,q − pazqn. (4.6)
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Table 4.1. : Extended Variable and Parameter Definition

Decision Variables Description

Φqn,a Binary variable, indicates autonomous capability of vehicle n of type q

yqn Intermediate variable used to linearize the cost of fuel equation

zqn Intermediate variable used to linearize the cost of fuel equation

Parameters Description

∆η Hours of service extension in hours

pa Increase in vehicle efficiency, in %, given level of autonomy

pd Increase in driver costs, in %, given level of autonomy

Ua Upcharge cost given level of autonomy

Moreover, it is expected that the driver’s responsibilities will be impacted by the

introduction of higher levels of vehicle autonomy:

Cwages =
∑
q

∑
n

∑
(i,j)

xqn,ijdijCdriver(1− pdΦqn,a). (4.7)

Equation (4.7) also introduces a nonlinear term, which is linearized in a similar man-

ner to (4.4)-(4.5). Other operational costs including maintenance costs, CM , and

costs associated with technology reliability, CR, are computed as described by [79]

such that

CM =
∑
n

∑
(i,j)

xqn,ijdijCM,q, ∀ q (4.8)

CR =
∑
n

∑
(i,j)

xqn,ijBqTd,qCdelay,c, ∀ q. (4.9)

Next, it is assumed that an upcharge is added upon selection of autonomous

capability for a purchased vehicle. Therefore, the purchasing cost is updated to

include this upcharge, Ua, such that

cnv =
∑
q

xq,newCp,q +
∑
q

xq,anewUa, (4.10)

where xq,anew is the number of new autonomous vehicle purchases made in year k.
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Higher levels of autonomy present the possibility of relaxing the driving time

constraints as driver exhaustion and drowsiness is reduced. Therefore, a calibrated

parameter, ∆η is added to extend the hours of service constraints, such that∑
(i,j)

xsqn,ijtr,ij+ ≤ hos + ∆ηΦqn,a, (4.11)

and ∑
(i,j)

xsqn,ijtr,ij + Φqn,cten,q ≤ η + ∆ηΦqn,a. (4.12)

Here, ∆η can be calibrated to zero for lower levels of autonomy where drivers must

remain engaged throughout the period of operation. In such cases, the 11 hours of

driving regulation (hos) and 14 hours window of operation (η) will remain in effect.

4.2 Simulated Case Study and Sensitivity Analysis

In this section, 3 case scenarios are evaluated in which Levels 2, 4, and 5 of au-

tonomy are introduced to the market in an individual and sequential manner. Level

3 may not be introduced to market by commercial vehicle manufacturers as it is as-

sumed to have negative effects on traffic and safety [68], and is therefore not considered

for this study. A design of experiments and sensitivity analysis are performed and

used to quantify the effects of L5 autonomy factor variation on powertrain adoption

projections.

4.2.1 Powertrain and Autonomy Adoption Scenarios

Here, levels 2, 4 and 5 of vehicle autonomy are introduced to the heavy-duty Class

8 vehicle market in order project the effects of autonomy on powertrain adoption,

vehicle utilization, and CO2 emissions between 2019 and 2035. For this purpose, the

effects of vehicle autonomy are compared to a baseline case in which vehicle autonomy

is not introduced to the market.

In Section 3.2, a representative regional network of line-haul highway corridors

with pre-defined freight demand between six node pairs was defined. A set of active
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policies, incentives and regulations, and a representative set of 12 line-haul fleets

operating in the region were also introduced. The same network is used for this

study. Moreover, I assume that fueling and charging infrastructure is available on all

six network nodes. Fueling and charging times are shown in Table 5.4. Six powertrain

options (diesel, compressed and liquified natural gas, diesel-hybrid, battery electric,

and hydrogen fuel cell) are considered, as indicated in Table 5.3. The vehicle efficiency,

range, payload capacity, and purchase costs for the baseline, i.e. no autonomous

capability, vehicles are given in Table 5.3. Fuel vehicle efficiencies for powertrain

technologies are estimated in a diesel gallon equivalent based on fuel energy content,

with the exception of battery electric (BE) vehicle efficiency expressed in kWh/mi.

Moreover, the efficiencies of the baseline vehicle options are assumed to increase

throughout the period of time based on EPA GHG Phase II estimates, as defined in

Section 3.2.

Table 4.2. : Baseline FTS Parametrization

Vehicle Type Policy Fueling Time (hr)

Diesel GHG Phase II 0.2

CNG 12% fuel tax rebate 1.5

GHG Phase II

LNG 12% fuel tax rebate 0.25

GHG Phase II

HEVD $20k voucher at purchase 0.2

BE $45k voucher at purchase 2

HFC $45k voucher at purchase 0.25

Three levels of vehicle autonomy not yet commercially available are introduced in

the simulation. These include Level 2 (L2), Level 4 (L4), and Level 5 (L5). Assump-

tions are made with respect to the year of introduction—the year autonomous vehicles

of a specific level are available for purchase—and the upcharge costs of the added au-

tonomous capability as shown in Table 5.5. Moreover, assumptions are made on the

impact that each level of autonomy will have on vehicle efficiency, reliability, driver

costs, and extension of the hours of service restrictions. The L2 package includes
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Table 4.3. : Baseline Vehicle Parametrization

Vehicle Efficiency Range Payload Vehicle

Type (mi/EN @55 mph) (mi) Capacity (ton) Cost ($)

Diesel 6.4 1000 25 145

CNG 5.5 600 23 172

LNG 5.7 1000 23 200

HEVD 6.88 1100 24 185

BE 0.42 450 23 220

HFC 11 450 24 250

Table 4.4. : Level of Autonomy Factors

Autonomy Feature Year of Upcharge Efficiency Reliability Driver Cost HOS

Level Intro Cost ($) Incr. (%) Incr. (%) Decr. (%) Extension (hrs)

Level 2 ACC+LKA+AEB 2025 15 5 10 10 0

Level 4 High automation 2028 20 10 20 20 2

Level 5 Full automation 2030 30 20 50 70 Unlimited

adaptive cruise control (ACC), lane keep assist (LKA), and automatic emergency

braking (AEB). Since L2 capability only allows these features to be active under

specific and limited circumstances, effects on vehicle reliability will be low compared

to higher levels of autonomy [68]. However, a considerable benefit in fuel efficiency

can be expected for L2 autonomy as several studies have demonstrated the capability

of features, including ACC and acceleration and lateral assisted vehicle control, to

reduce fuel consumption by 2% or more during highway operation [80]. As L2 vehicle

drivers must remain engaged at all times, hours of service for L2 vehicles may not be

extended; however, wages may vary if driver skill requirements are reduced [70].

On the other hand, vehicle efficiency benefits could be much higher for L4 and L5

vehicles as inefficient driving behaviors are reduced or eliminated. Moreover, hours

of service restrictions could be extended (L4) or eliminated (L5) as driver exhaustion

may no longer be a concern. However, personnel costs, in the case of L4 and L5

autonomy, are not completely eliminated as operators may be needed for other tasks
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including loading or fueling. Table 5.5 summarizes the parametrization assumed for

this case scenario analysis.

Following the assumptions and the model parameterization described above, I

project adoption of diesel and alternative powertrain vehicles and CO2 reduction

over a 17 year period, shown in Figure 4.1, for 4 case scenarios: 1) No autonomy, 2)

L2 versus Baseline, 3) L4 versus L2, and 4) L4 versus L5. Figure 4.1(a) shows the

powertrain adoption projection for Case 1, in which no vehicle autonomy is introduced

to the market. Figure 4.1(b) (Case 2) shows the effect on powertrain adoption and

CO2 emissions projections once L2 autonomy is introduced in 2025, providing fleet

owners the option to purchase a vehicle with L2 features over one with no autonomy.

Figure 4.1(c) shows powertrain adoption and CO2 projections for Case 3 in which L4

autonomy is introduced to the market in 2028. In this case, it is assumed that L2

autonomy will observe a high market penetration upon introduction; therefore, all

vehicles are modeled with a fuel efficiency increase of 5% after the year 2025. Fleet

owners then have the option to purchase a L4 vehicle over a L2 baseline beginning

in 2028, until 2035. Figure 4.1(d) shows powertrain adoption and CO2 projections

for Case 4 in which L5 autonomy is introduced to the market in the year 2030. It

is assumed that all vehicles are at L4 in 2028. This is modeled by increasing vehicle

efficiency by 10% in 2028. Fleet owners then have the option to purchase a L5 vehicle

over a L4 baseline beginning in 2030, until 2035.

Case 2, shown in Figure 4.1(b), demonstrates that adoption of diesel vehicles in-

creases after the year 2025, at the expense of a decrease in CNG adoption. Moreover,

adoption of BE vehicles remains nearly stable once L2 autonomy has been intro-

duced. On the other hand, Case 3 shown in Figure 4.1(c), causes an increase in diesel

and CNG vehicle adoption, while BE vehicle adoption decreases after 2028. Finally,

as with the previous cases, introduction of L5 autonomy, shown in Figure 4.1(d),

increases adoption of diesel vehicles. In Case 4, however, adoption of BE vehicles

decreases to zero after 2030, while adoption of CNG vehicles increases beyond that of

diesel by 2035. In all cases, it is shown that adoption of diesel vehicles increases upon
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introduction of the different levels of autonomy as compared to a decreased adoption

shown in Figure 4.1(a) in which autonomy is not introduced. This indicates the ra-

tio of fuel efficiency and operational cost benefits to total purchase cost of adopting

a diesel autonomous vehicle outweighs that of vehicles with alternative powertrain

technologies, particularly as vehicle utilization (VMT) decreases once autonomy is

adopted.
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(a) Powertrain adoption projection given no

introduction of vehicle autonomy.
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(b) Powertrain adoption projection given in-

troduction of L2 autonomy in 2025.
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(c) Powertrain adoption projection given in-

troduction of L4 autonomy in 2028.

2020 2025 2030 2035

Year

0

20

40

60

80

100

%
 A

do
pt

io
n 

of
 

V
eh

ic
le

s 
of

 T
yp

e 
q

1.6

1.8

2

2.2

2.4

2.6

2.8

3

C
O

2
 E

m
is

si
on

s 
(k

g)

105Diesel CNG LNG BE Hydrogen Hybrid CO
2

(d) Powertrain adoption projection given in-

troduction of L5 autonomy in 2030.

Figure 4.1. : Powertrain adoption projections given introduction of autonomy levels.

The black dotted line shows regional CO2 emissions resulting from the projected

adoption shown.

Consequently, the increase in diesel adoption due to introduction of vehicle auton-

omy causes an increase in CO2 emissions in the regional network modeled as compared

with Case 1 shown in Figure 4.1(a). It is important to note here that the projections

achieved in these case scenarios are a result of the assumptions made with respect to

the future state of the FTS factors, the timed and progressive introduction of vehicle

autonomy levels, and assumed cost and performance characteristics of powertrain and
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autonomous technologies. Variation in future factor values and assumptions for the

state of the FTS could result in variation of the adoption projections. Nonetheless,

the cases presented here demonstrate the proposed model’s capability to identify the

effects of introduction of different levels of autonomy on powertrain adoption under

a given set of assumptions.

The total number of diesel, CNG, and BE vehicles used annually, and number

of autonomous vehicles of each type, are shown in Figure 4.2 for each case. The

analysis is focused on these 3 powertrain options as they were the most highly adopted

throughout the period of evaluation. Figures 4.2(a)–4.2(c) demonstrate the growth

in total number of diesel vehicle purchases once levels of autonomy are introduced,

compared to Case 1 projected in black. The dotted curves in Figures 4.2(a)–4.2(c)

highlight the adoption of the autonomy for each different powertrain option; only in

Figure 4.2(b) do we see that even by 2035, there are still CNG powertrains without

autonomy being used. Adoption of autonomous capability happens rapidly under

the assumptions presented; nearly all vehicles have adopted the available level of

autonomy merely 5 years after it is introduced to the market. In the case of L5

autonomy introduction, this implies that, by 2035, no drivers are required in the

regional network modeled.
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(a) Adoption projection of diesel powertrain option for cases 1-4 (C1–

C4).
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(b) Adoption projection of CNG powertrain option for cases 1-4 (C1–

C4).
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(c) Adoption projection of BE powertrain option for cases 1-4 (C1–

C4).

Figure 4.2. : Powertrain and autonomy adoption projections for diesel, CNG, and BE

given introduction of autonomy levels.
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(a) VMT projection given no introduction of

vehicle autonomy.
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(b) VMT projection given introduction of L2

autonomy in 2025.
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(c) VMT projection given introduction of L4

autonomy in 2028.
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(d) VMT projection given introduction of L5

autonomy in 2030.

Figure 4.3. : VMT projections per powertrain given introduction of autonomy levels.

Figure 4.3 shows the total vehicle miles traveled per day for each type of vehicle

powertrain option. This demonstrates the effect the introduction of vehicle auton-

omy levels could have, not only on vehicle technology adoption, but on overall vehicle

utilization as well. Figures 4.3(a)–4.3(d) show that total VMT decreases once auton-

omy is introduced in each case scenario, when compared to Case 1. This indicates

that vehicle autonomy has an impact on allocation of the vehicles over the network,

resulting in considerably less overall heavy-duty Class 8 vehicle traffic by 2035.
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4.2.2 Sensitivity Analysis

The results presented in the previous section assumed a specific set of values

for vehicle autonomy factors. However, there is uncertainty associated with these

assumptions since L2, L4, and L5 vehicles have not been commercially released. In

this section, the proposed model is used to quantify the sensitivity of vehicle adoption

projections to variation in L5 autonomy factor assumptions including upcharge costs,

increase in vehicle efficiency, and impact on driver costs. A design of experiments

(DOE) is performed, and exploratory values are introduced for each of the L5 factors

selected for this study. Each experiment is defined by varying a single factor between a

high and low value, while maintaining all other factors fixed at their nominal values.

Table 4.5 shows the factor values evaluated. A similar DOE can be conducted to

evaluate sensitivity of vehicle adoption projections for lower levels of autonomy or to

introduce variation in other factors presented in Table 5.5.

Table 4.5. : Level 5 Autonomy DOE Parameter Values

Parameter Nominal High Low

Upcharge Cost $30k $40k $20k

Efficiency Increase 17% 20% 15%

Driver Cost Decrease 70% 100% 50%

Figure 4.4 shows the effects of L5 factor variation on the total number of vehicles

purchased, per powertrain option, from 2030–2035 (the period in which L5 autonomy

is available). The figures demonstrate the deviation in the number of purchases per

powertrain option, shown on the y-axes of Figures 4.4(a)–4.4(d), from those resulting

from the evaluation of nominal values. Here, the reader can identify the most influ-

ential factors and the effects on adoption of each powertrain option. For example,

as shown in Figure 4.4(a), the high factor value of 100% for ‘driver cost decrease’

results in the highest positive effect on adoption of diesel vehicles at the expense of

CNG, LNG, and HFC vehicles. In other words, complete elimination of driver wages

would be disruptive with respect to adoption of alternative powertrain options. On
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the other hand, this assumption has no effect on the already low adoption of HEVD

and BE vehicles as shown in Figures 4.4(d) and 4.4(e).

Moreover, diesel adoption shows the highest sensitivity to L5 autonomy factor

variation as shown in Figures 4.4(a)–4.4(f). As an example, changes in upcharge and

driver cost cause a fluctuation of approximately 40 diesel vehicle purchases from the

nominal value. However, the total fluctuation in purchases of all other powertrains

caused by varying these factors is much lower. This indicates that even as fewer diesel

vehicles are being purchased, for example, they are not replaced by vehicles with al-

ternative powertrain technologies. Instead, the total number of vehicle purchases

during the last 5 years of the period is increasing or decreasing with the number of

diesel vehicles adopted in the network. Since the freight demand is the same across

all DOE experiments, the vehicle utilization or vehicle replacement periods must be

fluctuating to account for the variation in total vehicle purchases. Finally, the in-

troduction of L5 autonomy, given the factor variation assumed here, appears to have

little effect in promoting the adoption of BE and HFC vehicles. The upcharge costs

associated with the alternative powertrains are sufficiently high such that diesel au-

tonomous vehicles become more cost effective than an alternative powertrain with an

equivalent efficiency benefit. However, values introduced for upcharge cost, efficiency

increase, and decrease in driver costs demonstrate a positive effect on the adoption

of HEVD vehicles.
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Figure 4.4. : Factor effect on number of vehicle purchases from 2030-2035 given

introduction of L5 autonomy.



108

4.3 Summary

In this chapter, the model formulation was extended to predict how the introduc-

tion of different levels of autonomy affects fleet vehicle adoption and utilization in a

regional freight transportation network. The constrained MILP was defined to repre-

sent the decision-making process for line-haul fleets selecting vehicles with different

powertrain options and autonomous capability and allocating them on freight delivery

routes to minimize TCO. The influence of FTS policies, network and infrastructure

characteristics, route traffic, costs, and vehicle efficiency was considered.

The model was simulated to project powertrain adoption, utilization, and emis-

sions from 2019–2035 given a set of assumptions for the impact different levels of

autonomy may have on purchase costs, vehicle efficiency, driver wages, vehicle relia-

bility, and hours of service regulations. A case scenario analysis showed that adoption

of diesel vehicles increased upon introduction of levels 2, 4 and 5 of vehicle autonomy,

causing an increase in CO2 emissions in the network modeled. This result indicates

that a more intensive set of policies incentivizing adoption of cleaner powertrain op-

tions or penalizing emissions must follow after introduction of vehicle autonomy to

the market. Moreover, adoption of the different levels of vehicle autonomy followed

rapidly after their introduction under the case scenarios presented.

In this chapter, model considerations were limited to levels 2, 4, and 5 of vehicle

autonomy. Although vehicle platooning can be considered level 1 or 2 of autonomy,

depending on the lateral and longitudinal control capabilities of the system, it was

excluded from the analysis presented in this chapter as the operation of platooning

vehicles differs from that of other autonomous vehicles. Adoption and utilization of

intra-fleet vehicle platooning autonomy will be defined, formulated, and studied in

the next chapter.
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5. INTRA-FLEET 2-VEHICLE PLATOONING

Platooning vehicles must travel in a formation of 2 or more vehicles for the au-

tonomous capability to be enabled and realize fuel efficiency benefits. As operation

of platooning vehicles differs from that of other autonomous vehicles, the impact of

platooning introduction on model formulation and future projection scenarios is pre-

sented independently in this dedicated chapter. Platooning vehicles make use of

a cooperative adaptive cruise control approach [81] where the trailing vehicle safely

follows a leading vehicle with a reduced distance while matching the acceleration

profile. Vehicles traveling in a platoon formation are therefore expected to achieve

significant fuel savings due to the reduction of aerodynamic drag. Turri et al. [76]

demonstrate, by means of simulation, average fuel savings of up to 7% for a 2-vehicle

platoon by introducing a topography look-ahead control approach. Authors in [7]

and [81] demonstrate the robustness of a Class 8 2-vehicle platooning system, in-

cluding implementation of vehicle-to-vehicle (V2V) communication and cooperative

adaptive cruise control (CACC), to variation in vehicle speed, trailing distance, and

mass, for fuel consumption certification cycles on a test track. Similarly, Alam et

al. [77] demonstrate the capability of a Class 8 platooning system considering both

a CACC and topography look-ahead approach to achieve fuel consumption savings

across a 3-vehicle formation. These authors demonstrate a level of maturity of the

technology and confidence in the fuel savings potential across leading and following

vehicles in controlled conditions and experimental drive cycles. However, as platoon-

ing capability is still not yet commercially available in the Class 8 market, there is

uncertainty with respect to the level of adoption and utilization this autonomous

technology will achieve under real world scenarios. In particular, the fuel economy

benefits and reduction in fleet-wide operational costs must be sufficient to overcome
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the need for allocation of more than one vehicle over the same route in order to

increase adoption and utilization of intra-fleet vehicle platooning technology.

In this chapter, I describe the variables, parameters, objective function, and con-

straints defined to extend the mixed-integer linear program and predict a single fleet’s

powertrain technology adoption and utilization behaviors upon introduction of intra-

fleet 2-vehicle platooning capability. Moreover, a case scenario is presented to project

adoption and utilization of platooning and powertrain technologies in a regional net-

work. Finally, a study on the effects of platooning fuel efficiency and freight demand

on adoption and utilization of platooning vehicles is also presented.

5.1 Introduction of Platooning to MILP Formulation

In this chapter, new variables, parameters (Table 5.1), and mathematical structure

are introduced to the framework to accommodate the introduction of intra-fleet 2-

vehicle platoons—platoon formations are only allowed for vehicles belonging to the

same fleet. In order to compute the effect on energy consumption and costs due to the

adoption of platooning capability, the computation of the fuel cost, Ce,q is modified

as follows:

Cec,qij = Ceq(
∑
n

xqn,ij − Pq,ijpa)ξq,ijdij ∀q, (i, j) (5.1)

where pa represents the efficiency increase if the vehicle is traveling in a platoon, and

Pq,ij indicates the number of platoons per technology type q traveling on link (i, j).

Moreover, Pq,ij is computed such that

Pq,ij ≤
∑
n

xqn,ijΦqn,a ∀q, (i, j) (5.2)

and ∑
q

Pq,ij = 2Pij ∀(i, j) (5.3)

where Φqn,a is a binary variable representing the platooning capability of vehicle

xqn. Equation 5.4a) establishes the number of 2-vehicle platoons Pij, regardless of
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powertrain technology type, to be lower than the total number of platoon-capable

vehicles traveling on link (i, j).∑
q

∑
n

xqn,ijΦqn,a ≥ 2Pij ∀(i, j) (5.4a)

Pii = 0, Pij ≥ 0. (5.4b)

This enables platoon-capable vehicles to travel alone over any given link (i, j) in

regular operational mode without incurring any fuel efficiency benefits.

Next, it is assumed that an upcharge cost, Ua, is added upon selection of platoon-

ing capability for a purchased vehicle. Therefore, the purchasing cost is updated such

that

cnv =
∑
q

xq,newCp,q +
∑
q

xq,anewUa, (5.5)

where xq,anew is the number of new platooning vehicle purchases made in year k.

Table 5.1. : Extended Variable and Parameter Definition

Decision Variables Description

Φqn,a Binary variable, indicates platooning capability of vehicle n of type q

Pij Number of platoons of all technology types traveling on link (ij)

Pq,ij Number of vehicles of type q traveling in a platoon formation on link (i, j)

Parameters Description

pa Increase in vehicle efficiency, in %

pd Increase in driver costs, in %

Ua Upcharge cost given platooning capability

5.2 Simulated Platooning Case Studies and Analysis

In this section we introduce 2-vehicle platooning capability to the line-haul net-

work across six powertrain options—diesel, compressed and liquefied natural gas,

diesel-hybrid, battery electric, and hydrogen fuel cell. A nominal case scenario is

presented in Section 5.2.1 in order to evaluate the combined adoption of powertrain

technologies and platooning capable vehicles and effect on vehicle utilization and re-

sulting CO2 emissions in the network. Next, the impact of variation in fuel efficiency
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benefits for platooning vehicles is presented in Section 5.2.2, followed by a study on

effects of traffic demand increase on platooning vehicle adoption and utilization in

the network in Section 5.2.3. Finally, Section 5.2.4 presents the impact of a carbon

tax, modeled as an increase in the cost of fuel and electricity, on adoption of low and

zero emission powertrains and platooning vehicles.

5.2.1 Combined effects of platooning capability and powertrain options

on technology adoption

In previous chapters, a representative regional network of line-haul highway corri-

dors with predefined freight demand between six node pairs was introduced, as shown

in Figure 5.1. Moreover, the freight demand satisfied by each fleet is assumed to in-

crease between 0-2% annually, therefore causing an annual increase in freight demand

over the network of study [79]. It is assumed that a representative set of 12 heteroge-

neous line-haul fleets operate in the region. Each fleet independently optimizes their

total cost of ownership by selecting the number of vehicles, vehicle technology types,

and routes over which each vehicle in the fleet is allocated to satisfy freight demand

in the region. In Chapters 3 and 4, six powertrain options–diesel, compressed and

liquified natural gas, diesel-hybrid electric, battery electric, and hydrogen fuel cell, as

indicated in Table 5.3–and levels 1, 2, 4 and 5 of vehicle autonomy were introduced.

The combined effects of powertrain technologies and autonomous capabilities on re-

sulting technology adoption, vehicle utilization, and regional CO2 emission trends

were projected. This section focuses on the introduction of platooning vehicles, con-

sidered within level 2 autonomous capability. The vehicle efficiency, range, payload

capacity, and purchase costs for the baseline vehicles, i.e. no autonomous capability,

are given in Table 5.3. Vehicle fuel efficiencies for powertrain technologies are esti-

mated in a diesel gallon equivalent based on fuel energy content, with the exception

of battery electric (BE) vehicle efficiency expressed in kWh/mi. Moreover, the effi-

ciencies of the baseline vehicle options are assumed to increase throughout the period
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of time considered based on EPA GHG Phase II estimates, as defined in Section 3.2.

In Section 4.2, it was assumed that fueling and charging stations are available in all

network nodes, this same assumption is applied in this section. Fueling and charging

times are shown in Table 5.4. Moreover, policies, incentives, and regulations regard-

ing the vehicle efficiency, tailpipe emissions, and utilization of diesel and alternative

powertrain options are introduced as shown in Table 5.4. No further restrictions or

incentives are considered with regard to vehicle autonomy.

Total Freight Demand Between Node Pairs (tons)

City 1 City 2 City 3 City 4 D1 D2

City 1 0 1880 1280 400 360 360

City 2 2080 0 320 200 0 360

City 3 1120 240 0 160 360 0

City 4 80 200 120 0 0 0

D1 360 0 360 0 0 0

D2 360 360 0 0 0 0

Figure 5.1. : Representative line-haul network with 4 city nodes and 2 distribution

centers. All direct routes between nodes are less than 500 miles.

Table 5.3. : Baseline Vehicle Parametrization

Vehicle Efficiency Range Payload Vehicle

Type (mi/EN @55 mph) (mi) Capacity (ton) Cost ($)

Diesel 6.4 1000 25 145

CNG 5.5 600 23 172

LNG 5.7 1000 23 200

HEVD 6.88 1100 24 185

BE 0.42 450 23 220

HFC 11 450 24 250

In this chapter, as in chapter 4, level 2 of vehicle autonomy is introduced to the

market. However, the focus here is placed on the introduction of platoon-capable

autonomous features for vehicles of all powertrain options as aerodynamic drag re-

duction and collision mitigation are achieved equally [68]. It is also assumed that
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Table 5.4. : Baseline FTS Parametrization

Vehicle Type Policy Fueling Time (hr)

Diesel GHG Phase II 0.2

CNG 12% fuel tax rebate 1.5

GHG Phase II

LNG 12% fuel tax rebate 0.25

GHG Phase II

HEVD $20k voucher at purchase 0.2

BE $45k voucher at purchase 2

HFC $45k voucher at purchase 0.25

platooning benefits with respect to increase in vehicle fuel efficiency and reliability

are the same across all powertrains. Assumptions are also made with respect to the

year of introduction—the year platooning vehicles are available for purchase—and

the upcharge costs of the added autonomous capability. Drivers are required to re-

main actively engaged while driving non-fully autonomous vehicles. Therefore, it is

not expected that hours of service will be extended upon introduction of platooning

vehicles, nor will the driver costs be affected. Table 5.5 summarizes the parametriza-

tion assumed for platooning scenario analysis. Vehicle travel in a platoon provides

reduction of aerodynamic drag, resulting in fuel efficiency benefits for both the front

and following vehicles. Authors [7], [77], and [81] demonstrate 2-vehicle platoon fuel

savings between 3.7%-10% as a function of operational factors including gap distance,

steady-state speed, route grade, and gross vehicle weight. Accordingly, a nominal 7%

fuel efficiency increase is assumed for each vehicle traveling in a platoon formation.

Table 5.5. : Platooning Parameters

Year of Upcharge Efficiency Reliability Driver Cost Hours of Service

Introduction Cost ($) Increase (%) Increase (%) Decrease (%) Extension (hrs)

2025 20k 7 10 0 0
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Adoption trends for the six powertrain technologies and platooning vehicles are

demonstrated for the nominal case in Figure 5.2. Adoption is defined as the percent

penetration of each technology across all 12 fleets modeled, computed as a function

of vehicle purchases on an annual basis. Here, as a result of the introduction of

platoon-capable autonomy and the assumptions listed in this section, diesel adoption

decreases from nearly 80% in 2019 to approximately 25% in 2035. It can be noted that,

while diesel adoption decreases monotonically between 2019-2025, it increases for one

year after the introduction of platooning capability before again decreasing almost

monotonically throughout the remaining time period considered. On the other hand,

adoption of hydrogen vehicles is first observed in 2025, increasing monotonically and

achieving 26% adoption in 2035. Moreover, as platooning vehicles reach 50% adoption

in the network by the end of the period of study, a mixed adoption scenario results

with respect to the powertrain options.

The penetration of platooning capability per powertrain option is shown in Fig-

ure 5.3. Here, the subfigures indicate the total number of vehicles of each powertrain

technology purchased in the network, shown in black, and the number of those ve-

hicles that have platooning capability, shown in blue. In this nominal case scenario,

platooning adoption increases in the case of all powertrain options throughout the end

of the period. It can be observed that although diesel adoption follows a decreasing

trend, as shown in Figure 5.2, the absolute number of annual diesel vehicle purchases

remains nearly stable after the introduction of platooning capability. Moreover, nearly

66% of diesel vehicles have platooning capability by 2035.
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Figure 5.2. : Powertrain and platooning adoption trends throughout period of study

given an assumption of 7% increase in fuel efficiency for platooning vehicles.
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Figure 5.3. : Number of vehicles used per type throughout period of study given an

assumption of 7% increase in fuel efficiency for platooning vehicles.

Finally, the allocation of 2-vehicle platoons on each route is shown in Figure 5.4

for this nominal case scenario. Here, the number of 2-vehicle platoons departing all
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6 nodes is indicated for every year throughout the period of study. A large volume of

platoons are allocated on route (1,2) departing from city 1, and route (2,1) departing

from city 2, which correspond to the origin-destination node pairs with the highest

freight demand in the network.
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Figure 5.4. : Number of platoons traveling on route (i,j) throughout period of study

given an assumption of 7% increase in fuel efficiency for platooning vehicles.

5.2.2 Effects of platooning vehicle fuel efficiency on technology adoption

and utilization

Reduced air drag, and therefore increased fuel efficiency, is the most prominent

benefit for the adoption of platooning-capable vehicles; other benefits including re-

duced congestion and improved safety. However, the fuel economy benefits and re-

duction in operational costs must be sufficient to overcome obstacles that hinder the

allocation of 2-vehicle platoons over the same route. In order to understand the im-

pact of fuel economy benefits on the adoption and utilization of platooning-capable
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vehicles of all powertrain technologies, I introduce variation in the fuel savings as-

sumed.

In a network where vehicle autonomy is not incentivized[AG]—purchase or up-

charge costs are not subsidized in any way—and carbon output is not penalized,

platooning capability must be economically attractive on its own for fleets to adopt

and utilize their vehicles in a platoon formation. In other words, the fleet-wide fuel

savings gained by the allocation of more than one vehicle over the same route must

be enough to overcome the upcharge costs of the added autonomous capability. Fig-

ures 5.5(a)-5.5(c) show the network-wide total cost of ownership, purchasing costs,

and fuel and energy consumption costs, respectively, for all 12 fleets operating in the

network. Although the network-wide cost of purchase is higher for the platooning

case scenarios (Figure 5.5(b)), as compared to the non-platooning baseline shown in

black, Figure 5.5(c) indicates that energy consumption costs are significantly reduced

as platooning capability is introduced to the market in 2025 for all fuel efficiency as-

sumptions. Moreover, the lowest network-wide fuel and energy consumption costs are

consistently achieved for the 10% fuel efficiency benefit scenario between 2025-2035.

This considerable reduction in fuel costs results in a lower total cost of ownership for

the high efficiency platooning scenario, as observed in Figure 5.5(a). The resulting

adoption trends for powertrain technologies and platoon-capable vehicles are shown

in Figure 5.6. Table 5.6 summarizes powertrain and platooning adoption and result-

ing emissions for the network in the year 2035 for the nominal case, a 4%, and 10%

assumed fuel efficiency increase for platooning vehicles.
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Figure 5.5. : Figure a) shows the network-wide total cost of ownership (TCO) as

a function of fuel efficiency benefits for platooning vehicles. Figure b) shows the

network-wide purchasing costs, after considering vehicle resale value and available

incentives, as a function of fuel efficiency benefits. Figure c) shows network-wide

total fueling and charging costs as a function of fuel efficiency benefits for platooning

vehicles.
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(b) 10% increase in fuel efficiency

Figure 5.6. : Powertrain and platooning adoption trends throughout period of study

given an assumption of 4% and 10% increase in fuel efficiency for platooning vehicles.

Table 5.6. : Powertrain and Platooning Adoption and Network Emissions in 2035

Platoon Eff. Platoon Diesel CNG LNG Hybrid BEV Hydrogen CO2 Emissions

Increase Adoption (%) Adoption (%) (%) (%) (%) (%) (%) (kg)

4% (Low) 14 20 37.5 3 8 8 24 174,000

7% (Nominal) 50 25 22 3 10 15 26 180,000

10% (High) 60 27.5 25 4 7 14 23 182,000

Higher fuel efficiency benefits for platooning vehicles—10% increase—results in

faster adoption and higher penetration of platooning vehicles in the network, as shown

in Figure 5.6(b), as compared to the nominal and low efficiency case scenarios. More-

over, the summary of adoption of all technologies in the last year of the period of

study, shown in Table 5.6, indicates that as fuel efficiency benefits increase, so does the

adoption of platooning and diesel technologies, resulting in higher CO2 emissions by

2035. This outcome demonstrates an undesired result, namely that the achievement

of better fuel economy for platoon-capable vehicles translates into lower adoption

of cleaner powertrain options. This could indicate that the introduction of highly

efficient platoons to the line-haul network must be followed by policies designed to

incentivize the adoption of low and zero emission powertrain technologies.
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Figure 5.7. : Number of vehicles used per type throughout period of study given an

assumption of 4%, 7%, and 10% increase in fuel efficiency for platooning vehicles.

Figure 5.7 shows the total number of purchases for all powertrain options, and the

number of vehicles that are platoon-capable as variation in fuel economy benefits is

introduced. A low fuel benefit assumption, 4%, results in low platoon-capable vehicle

purchases for all powertrain options, and specifically no platooning adoption for BEV

and HFC vehicles. In the case of CNG vehicles, shown in Figure 5.7(b), although

there is nearly no adoption of CNG platooning vehicles by 2035 for the low fuel

efficiency assumption case, overall CNG purchases increase for this case in 2032-2035.

Moreover, approximately all diesel vehicles purchased are platoon-capable by the end

of the period of study in the case of the nominal and high fuel efficiency assumptions.
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Purchasing trends for BEV and HEVD vehicles appear to be negatively affected by the

introduction of platooning capability in the year 2025 in all fuel efficiency scenarios,

while purchasing trends for HFC vehicles continue to monotonically increase until

2035. Adoption of LNG vehicles begins to decrease before platooning is introduced in

2025 and otherwise maintains a low, yet steady, level of adoption after. It therefore

can be assumed that the decrease in LNG adoption is instead caused by an uptake

of BE and HEVD vehicles.
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Figure 5.8. : Variation in number of platoons traveling on route (i,j) throughout

period of study given an assumption of 4% increase in fuel efficiency for platooning

vehicles, compared to a baseline of 7%.

A reduced fuel efficiency assumption—4% case—results in reduced allocation of

platoons over all routes by 2035, as shown in Figure 5.8, when compared to the nom-

inal case presented in Figure 5.4. Routes (1,2) and (2,1) show the highest reduction

in platoon utilization, approximately a 50% reduction, as these routes observe the

highest flow of freight and platoons in the nominal case. Platoon allocation is re-

duced by approximately 100% over route (3,1). An opposite result is observed for
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the high fuel economy case scenario, shown in Figure 5.9. Here, a higher volume of

platoons is allocated on nearly every route, particularly on routes (1,2) and (2,1).

However, an increase in fuel economy benefits, up to 10%, causes only an increase of

approximately 25% of platoons allocated on these routes by the year 2035.

2020 2025 2030 2035
Year

-5

0

5

10

15
Departing City 1

(1,1)
(1,2)
(1,3)
(1,4)
(1,5)
(1,6)

2020 2025 2030 2035
Year

-5

0

5

10

15
Departing City 2

(2,1)
(2,2)
(2,3)
(2,4)
(2,5)
(2,6)

2020 2025 2030 2035
Year

-5

0

5

10

15

V
ar

ia
tio

n 
in

 N
um

be
r 

of
 P

la
to

on
s 

on
 (

i,j
) 

pe
r 

da
y

Departing City 3

(3,1)
(3,2)
(3,3)
(3,4)
(3,5)
(3,6)

2020 2025 2030 2035
Year

-5

0

5

10

15

V
ar

ia
tio

n 
in

 N
um

be
r 

of
 P

la
to

on
s 

on
 (

i,j
) 

pe
r 

da
y

Departing City 4

(4,1)
(4,2)
(4,3)
(4,4)
(4,5)
(4,6)

2020 2025 2030 2035

Year

-5

0

5

10

15
Departing D1

(D1,1)
(D1,2)
(D1,3)
(D1,4)
(D1,5)
(D1,6)

2020 2025 2030 2035

Year

-5

0

5

10

15
Departing D2

(D2,1)
(D2,2)
(D2,3)
(D2,4)
(D2,5)
(D2,6)

Figure 5.9. : Variation in number of platoons traveling on route (i,j) throughout

period of study given an assumption of 10% increase in fuel efficiency for platooning

vehicles, compared to a baseline of 7%.

This analysis shows the impact of platooning autonomy introduction on the adop-

tion and utilization of different powertrain options, and therefore the resulting emis-

sions, in a line-haul network. These results show that there is a high correlation

between platooning capability, platooning efficiency, and adoption of powertrain tech-

nologies in the region. Moreover, for this type of network where adoption and uti-

lization behaviors are purely based on economic attractiveness—carbon emissions are

not penalized—high efficiency platooning results in higher CO2 output due to the

reduced network-wide fuel and energy consumption costs achieved in this scenario.
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5.2.3 Effects of increased freight demand on platooning vehicle adoption

and utilization

The need for a fleet to allocate more than one vehicle over a single route must

exist for vehicle platooning to be economically attractive. Therefore it is hypothesized

that an increase in freight demand over a single route can cause an increase in the

adoption and allocation of platoons. In order to evaluate this hypothesis, the nominal

total freight demand between city pairs (1, 2), (2,1), and (3,4), shown in Figure

5.1, was incremented independently for the year 2019. Each fleet will accommodate

an additional annual increase in freight demand according to their parametrization,

shown in Table 3.5.

Figures 5.10-5.12 show the resulting variation in total number of trips and pla-

tooning vehicles allocated over each direct route between nodes where freight demand

is increased. For this study, freight demand is increased between the three selected

city pairs such that a resulting variation in vehicle trips can be observed over the

direct routes. Figure 5.10(a) shows the resulting variation in overall vehicle trips and

platooning vehicles allocated on route (1,2) as freight demand increases from 1880 to

2500 tons between cities 1 and 2. Here, it is shown that the increase in freight demand

results in more vehicles allocated on this direct route, specifically an increase between

45 to 150 trips, between 2020-2035. However, the variation in platooning vehicles is

only positive between 2028-2030 and 2033-2035, reaching a maximum value of 18.

Moreover, Figure 5.10(b) shows that although a higher number of platooning vehicles

are allocated over the route during those years, the percent utilization of platooning

vehicles is lower on this route than the nominal freight scenario. That is, the number

of allocated platoons does not increase proportionally to the number of increasing

trips. Therefore, a majority of the vehicles allocated to satisfy the increase in freight

demand are of non-platooning capability or traveling as a single vehicle. Figure 5.11

shows a similar result for the case where freight demand increases from city 2 to city

1 from 2080 to 2500 tons. Similar to the previous case, although more platooning
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vehicles are allocated between 2027-2028 and 2033-2035, the percent utilization of

platoons over the direct route is still lower than the nominal case. Here, again, a

higher number of non-platooning vehicles are allocated on route (2,1) to satisfy the

freight demand.
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Figure 5.10. : Variation in number of vehicle trips given an increase in freight demand

from city 1 to city 4.
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Figure 5.11. : Variation in number of vehicle trips and platoons given an increase in

freight demand from city 2 to city 1.
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The increase in freight demand from city 3 to city 4 shows a different outcome,

as observed in Figure 5.12. The allocation of platooning vehicles on the direct route

(3,4) is originally low in the nominal case, with 4 or less platooning vehicles allocated

to the route as freight demand is initially low (Figure 5.1). Here, as freight demand

is increased from 160 to 450 tons, between 4 and 8 more platooning vehicles are

allocated in the periods between 2026-2028 and 2030-2035. This results in a higher

platooning utilization on route (3,4), between 10-20%, once platooning capability is

introduced, except for the year 2029.
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Figure 5.12. : Variation in number of vehicle trips given an increase in freight demand

from city 3 to city 4.

Routes (1, 2) and (2, 1) originally observe the highest allocation of vehicle trips

as freight demand is high between these city nodes. Moreover, as fleets originate in

cities 1 and 2, most vehicles must be allocated to these two routes to start or end their

daily operation, therefore contributing to the high number of trips. In the nominal

freight demand scenario, these routes also observe the highest number of platoon

trips. Surprisingly, however, although the increase in freight demand between these

city nodes results in a much higher number of vehicle trips on routes (1, 2) and (2, 1),

the increase in number of platoons is relatively low. This indicates the number of



127

allocated platoons does not increase proportionally to the number of vehicle trips

resulting from an increase in freight demand. Interestingly, the opposite effect is

observed when freight demand is increased from city 3 to city 4. Although trip

allocation is originally low given that nominal freight demand is low on this route,

an increase in freight demand between these cities results in a higher percentage of

platooning utilization on this direct route. These results suggest that the relationship

between freight demand and platoon utilization is not obvious. Here, only intra-fleet

platooning capability is evaluated, but different platooning utilization results may be

observed for inter-fleet platooning capability. Therefore, this relationship warrants

additional study and evaluation.

5.2.4 Effects of Carbon Tax on Network CO2 Emissions

Policies to de-carbonize transportation must focus on reducing or eliminating both

tailpipe and well-to-tank emissions. This means that any carbon-pricing policies must

not only increase the adoption of low and zero emission vehicles, but the upstream

emissions during production and transportation of the fuel or electricity consumed

must also be reduced. Hybrid, fully electric and hydrogen fuel cell vehicles are con-

sidered low and zero emission vehicles as they reduce or completely eliminate tailpipe

emissions [13]. However, regions like the U.S. Midwest are currently highly dependent

on coal as a source of electricity production, and hydrogen fuel is primarily sourced

from natural gas reforming [51]. A carbon tax for the U.S. has been proposed as

an effective approach to complement the number of federal, state, and local policies

already in effect to reduce carbon output in the transportation sector [82–84]. A

carbon tax would assign a social cost to carbon emissions and impose a fee on fuels

or energy sources, including coal, natural gas, and oil produced domestically or im-

ported, based on how much carbon they emit. This approach would help to reduce

”upstream” carbon emissions, that is the well-to-tank CO2 produced before the fuel is

burned by the freight transportation vehicle. Moreover, fuel and electricity suppliers
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Table 5.7. : Well-to-Wheel CO2 emissions for various fuel types [51]

Vehicle Well-to-tank Tank-to-Wheel Units

Diesel 9.45 10.16 kg CO2/gal

CNG 2.23 7.11 kg CO2/dge

LNG 2.56 7.73 kg CO2/dge

HEVD 9.45 10.16 kg CO2/gal

BE 0.63 0 kg CO2/kWh

HFC 17.6 0 kg CO2/dge

would be free to pass the added cost of the tax ”downstream” to consumers at the

pump or point of distribution. This policy could incentivize freight transportation

fleets to drive fewer miles and to adopt cleaner vehicle technologies. The carbon tax

could be increased or modulated as needed based on the market response and the

resulting emission trends over a period of time.

In 2018, the Congressional Budget Office produced a study evaluating the eco-

nomic impact of a carbon tax including a $25/metric ton of CO2 and $50/metric ton

of CO2 rate and their likelihood to achieve the GHG emissions reduction targeted

under the International Paris Agreement [84]. Authors in [85] found that a constant

tax rate of $43/metric ton of CO2 imposed in 2019 would be enough to achieve the

Paris Agreement target set for 2025. Here, we present a study to evaluate the impact

of a carbon tax on technology adoption and resulting emissions under the assumption

that the cost of the tax will be passed to consumers at the pump or point of charg-

ing. For this purpose, we introduce a carbon tax between $15 to $120 per metric

ton of CO2, taking into account the well-to-wheel emissions created during produc-

tion, transportation, and combustion of the various fuels and electricity as shown in

Table 5.7. The carbon tax is introduced in the year 2025 and is assumed constant

throughout the period of study. A 7% increase in fuel efficiency is assumed for vehicles

traveling in a platoon.

The first scenario evaluated assumes well-to-tank CO2 emissions for BE vehicles

based on the U.S. electricity mix [51]. Figures 5.13(a)-(d) show the resulting adoption
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of the different powertrain technologies and platooning vehicles, as well as network-

wide CO2 emissions for four carbon tax values introduced to the network. Table

5.8 summarizes the increase in fuel and electricity costs based on the carbon tax

assumed, the resulting cumulative emissions throughout the period of study, and

the emissions produced in 2035, the last year in the period of study. The figures

show that the carbon tax, in all instances, does not negatively affect adoption of

platooning-capable vehicles. However, the highest adoption of platooning-capable

vehicles is observed in the $30 and $45 per metric ton of CO2 scenarios shown in

Figures 5.13(b)-(c). Moreover, these two carbon tax scenarios result in the highest

reduction in cumulative and end-of-period emissions due to lower adoption of diesel

vehicles, while a tax of $60/metric ton of CO2 unexpectedly results in the highest

cumulative and end-of-period emissions. These results indicate that a carbon tax

between $30-$45 per metric ton of CO2 may be ideal for the network considered here.

However, it is important to note that in this case, all powertrain options, not only

those using petroleum fuels, are affected by the carbon tax, which in turn is reflected

as an increase in their cost of operation. In other words, a high carbon tax may be

more effective in achieving a transition to cleaner vehicle technologies if the source of

energy has lower well-to-tank emissions.
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(a) Carbon tax of $15 per ton of CO2.
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(b) Carbon tax of $30 per ton of CO2.
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(c) Carbon tax of $45 per ton of CO2.
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(d) Carbon tax of $60 per ton of CO2.

Figure 5.13. : Technology adoption and network emission trends given carbon tax

assumptions. Note that right-hand y-axis provides scale for CO2 emissions.

Table 5.8. : Carbon tax parameters and resulting network emissions

Carbon Tax Diesel Cost CNG Cost LNG Cost Electricity Cost Hydrogen Cost Cumulative Emissions

($/ton CO2) Incr. ($/gal) Incr. ($/dge) Incr. ($/dge) Incr. ($/kWh) Incr. ($/kg) Emissions (ton) 2035 (ton)

15 0.17 0.13 0.16 0.0095 0.26 3,729,900 185,090

30 0.34 0.26 0.32 0.019 0.52 3,717,000 183,040

45 0.51 0.39 0.48 0.0285 0.78 3,699,600 182,250

60 0.68 0.52 0.64 0.038 1.04 3,755,300 187,380

In the second scenario, we assume electricity is sourced from clean sources in the

region of study, thereby eliminating well-to-tank emissions for BE vehicles. Here,

five different levels are introduced for the carbon tax. Table 5.9 summarizes the

increase in fuel and electricity costs based on the carbon tax values assumed, the
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resulting cumulative emissions throughout the period of study, and the emissions

produced in the year 2035. The cost of electricity does not increase over the period of

study, and therefore, operational costs of BE vehicles are not affected by the carbon

tax imposed. As expected, given that there is no well-to-tank penalty associated

with powertrains driven by electricity, adoption of BE vehicles increases with the

introduction of higher carbon taxes to the network, as shown by Figures 5.14(a)-

(e). Both cumulative and end-of-period emissions decrease with higher carbon taxes,

reaching the lowest value with an imposed tax of $120/metric ton of CO2. This is

approximately a 15% reduction from the baseline scenario (Figure 5.2) in which no

carbon tax is introduced. Like the first scenario, introduction of the carbon tax does

not negatively affect adoption of platoon-capable vehicles.
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(a) Carbon tax of $15 per ton of CO2.
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(b) Carbon tax of $30 per ton of CO2.
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(c) Carbon tax of $45 per ton of CO2.
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(d) Carbon tax of $60 per ton of CO2.
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(e) Carbon tax of $120 per ton of CO2.

Figure 5.14. : Technology adoption and network emission trends assuming zero-carbon

output for production of electricity.

This analysis suggests that a carbon tax alone, without any other policies focused

on reducing the upstream emissions released during production and distribution of fuel

or electricity, may not be enough to cause a transition to cleaner vehicle technologies.

As such, the carbon tax alone would not be enough to counteract the increase in
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Table 5.9. : Carbon tax parameters and emissions for zero-carbon output for produc-

tion of electricity

Carbon Tax Diesel Cost CNG Cost LNG Cost Electricity Cost Hydrogen Cost Cumulative Emissions

($/ton CO2) Incr. ($/gal) Incr. ($/dge) Incr. ($/dge) Incr. ($/kWh) Incr. ($/kg) Emissions (ton) 2035 (ton)

15 0.17 0.13 0.16 0 0.26 3,586,700 177,160

30 0.34 0.26 0.32 0 0.52 3,645,700 184,230

45 0.51 0.39 0.48 0 0.78 3,554,600 176,590

60 0.68 0.52 0.64 0 1.04 3,444,300 170,640

120 1.36 1.04 1.28 0 2.08 3,261,800 154,700

diesel adoption, and therefore CO2 emissions, observed upon introduction of higher

efficiency vehicle platooning.

5.3 Summary

In this chapter, the MILP formulation was extended to capture the particular

operational behavior of platooning autonomous vehicles as they achieve fuel savings

while traveling in formation. Moreover, the framework was used to project adoption

and utilization of powertrain technologies and vehicle platooning capability, and re-

sulting CO2 emissions, upon introduction of this autonomous feature to the regional

network. The impact of fuel efficiency variation and increase in freight demand on

adoption and utilization of platooning vehicles was also studied.

The studies in this chapter demonstrate that higher fuel efficiency benefits for

platooning vehicles result in faster adoption and higher penetration and utilization

of platooning capability. Moreover, as fuel efficiency benefits increase, so does the

adoption of diesel powertrain technology, resulting in higher CO2 emissions in 2035.

Additionally, approximately all diesel vehicles adopted by 2035 are platoon-capable

in the high fuel efficiency case scenarios. These results indicate that for this type

of regional network where carbon emissions are not penalized, policies incentivizing

adoption of low and zero emission powertrain options may be necessary upon intro-
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duction of platooning technology to the market. Finally, the analysis in this chapter

indicates that platooning utilization does not increase proportionally to vehicle traf-

fic resulting from an increase in freight demand between city nodes. Therefore,the

impact of higher platooning efficiency on platooning utilization is more pronounced

than the effect observed given an increase in freight demand.
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6. CONCLUSIONS

6.1 Summary of Research Contributions

Projecting the technology adoption trajectories that result in targeted reductions

in emissions in a region is a complex task. New technologies introduced to the mar-

ket can cause significant changes to the way fleets operate their vehicles since their

performance will differ from the well-known diesel baseline. Moreover, fuel prices, in-

troduction of supporting infrastructure for alternative fuels and electric vehicles, and

active and new regulatory policies and incentives will affect the economic attractive-

ness of emerging technologies. Ultimately, adoption behaviors of Class 8 fleets will

respond to dynamic changes in these critical freight transportation system factors.

A simulation framework that can be used to project future scenarios and predict the

effects on mixed technology adoption trajectories is necessary.

In this thesis, I presented the development of a parametrized model of the de-

cision utilities (total cost of ownership) and behaviors for a fleet to emulate their

selection process based on the operational and acquisition costs of the vehicles. This

parametrized fleet behavioral model was used to project a mixed fleet composition,

including multiple types of powertrains and other vehicle technologies. More impor-

tantly, I modeled the effects of the evolving freight transportation environment on

vehicle route allocation and operational costs. I developed parametrized models of

the FTS components (network of cities and highway routes, vehicle performance, fuel

costs, and active regional policies) that capture their time-varying characteristics. Fi-

nally, I integrated the FTS component models to represent the environment of inputs

and constraints influencing the adoption behaviors of a set of 12 heterogeneous fleets

operating in a regional network. This simulation framework was calibrated and vali-
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dated against historical data, demonstrating its capability to project adoption trends

of Class 8 vehicle technologies.

I used this simulation framework to project adoption trajectories for diesel con-

ventional, diesel electric hybrid, CNG, LNG, battery electric, and hydrogen fuel cell

heavy-duty Class 8 vehicles and resulting CO2 emissions in a line-haul network. More-

over, the framework was also used to predict how the introduction of different levels

of autonomy, including intra-fleet 2-vehicle platooning, affects fleet adoption and uti-

lization of low and zero emission technologies. I achieved this by extending the vali-

dated framework to include the effects of new technologies on purchase and operation

costs, while maintaining the structure of the MILP and integrated framework. I also

performed a design of experiments to determine factor variation effects on adoption

and utilization trends of powertrain options and levels of vehicle autonomy, therefore

quantifying the response in network-wide emissions. The studies and analysis pre-

sented in this thesis demonstrated that the framework, which predicts both adoption

and utilization, can empower stakeholders with a deeper understanding of how and

why the introduction of new technologies and evolution of the FTS factors impacts

the broader freight transportation network. This in turn renders the framework a

more effective tool for policymaking and strategic decision-making for a variety of

stakeholders.

6.2 Future Research Direction

Future research could further develop this framework to concurrently model re-

gional freight transportation to determine penetration of powertrain technologies for

Class 6, Class 7, and Class 8 vehicles. These vehicles are commonly operated over

shorter routes and closer to urban areas. This would then allow future research to

project adoption in a regional network that would not only focus on Class 8 vehi-

cles and highway operation, but also on applications that operate on drive cycles

with higher variation in vehicle speed and vehicle performance. The same policies,
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fuel and energy costs, well-to-tank emissions, and location of fueling and charging

stations would influence adoption and operation of all vehicles (Class 6 to Class 8).

This extended formulation would then increase the breadth of the scope, without the

need to add more factors with respect to policies and economic considerations in

the ROPE matrix. Extending the formulation for this purpose would require adding

more nodes and links to the network in order to discretize the routes into a finite

number of segments with different parametrization and represent urban road links of

varying traffic characteristics and vehicle speeds. An increase in number of nodes and

links would increase computational requirements by raising the number of decision

variables regarding vehicle travel on link (i, j). Therefore, future work should focus

on reducing the complexity of the MILP formulation by defining traffic assignment

in terms of path travel rather than link travel [35].

Moreover, network discretization will enable future researchers to project the ef-

fects of shorter route distances and varying traffic flow speeds on adoption and uti-

lization of those vehicle architectures with limited range and those that benefit from

operation at lower speeds (e.g. battery electric vehicles). For this purpose, this phase

of future research could implement advanced macroscopic traffic models—Lighthill-

Whitham model and others [86]— calibrated to explore different traffic streams over

urban and rural highways and arterial streets. The framework could then be used

to identify if any niches in the market exist; for example, higher utilization of BEVs

closer to the city vs. higher utilization of diesel or LNG on longer line-haul routes.

This level of discretization may show an effect on regional–line-haul and urban–fleet

composition and vehicle utilization, therefore resulting in different CO2 emission tra-

jectories. Furthermore, this will allow future researchers to consider the emergence of

a higher number of distribution hubs and fueling or charging stations on those nodes

introduced. Again, an effect on adoption and utilization of vehicles with shorter range

may emerge, as these vehicles will be able to deliver freight over shorter urban routes

and benefit from the close availability of fueling or charging stations.
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Another future research direction could focus on developing the framework to

minimize the reduction in CO2 emissions by optimizing the policies active in different

regions of the U.S., including voucher incentives and carbon taxes. In this extended

framework, fleets would still optimize their total cost of ownership at the lower level

of the framework. However, at a higher level, the voucher amount offered per vehicle

and the carbon tax per kilogram of CO2 produced would be defined as decision vari-

ables, instead of user inputs. This would create a closed-loop approach by optimizing

incentives and penalties to achieve minimum carbon emissions in the network. The

studies I presented in this thesis are representative of a network in the U.S. Midwest.

Network traffic, freight demand between nodes, route distance, traffic speeds, poli-

cies, and well-to-tank emissions, among other factors, are dependent on the region

or state where the network is located. The enhanced framework could then be used

to project expected adoption and emissions across different regions in the country,

and identify the networks that would benefit the most from the introduction of new

programs incentivizing adoption of low and zero emission technologies, such as the

programs already active in the state of California. Moreover, a map of optimal car-

bon tax values and incentives could be differentiated per region or state by using this

enhanced framework.

Finally, another future research direction can introduce parametric uncertainty to

the model and identify how innovation factors—technology performance and policies—

can be designed, adapted, and controlled to minimize the uncertainty of desired emis-

sion outcomes. Some influential parameters come with a high degree of uncertainty,

and it is difficult to identify how likely it is that the scenarios assumed in this thesis

will happen. Therefore, future research can introduce uncertainty to those param-

eters that have shown volatility in the past (e.g. fuel prices) or which values are

uncertain but expected to have a direct effect on economic attractiveness of vehicles

(e.g. vehicle purchase costs and battery costs). Future researchers could then per-

form a Monte Carlo analysis to quantify uncertainty in vehicle adoption and resulting

CO2 emissions outcomes. This approach will further help policymakers identify the
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likelihood of projected outcomes in the regional segment—line-haul and urban—of

the freight transportation system.
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Figures 1 and 2 support the sensitivity analysis presented in Section 3.2.2. The

quality of fit for the regression models computed in Section 3.2.2 are shown in Figure

1, indicating root mean square error and coefficient of determination (R2) values for

predicted vehicle purchases. Figure 2 shows the variation in vehicle purchases given

the factor levels introduced in the sensitivity study.
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(a) Diesel Baseline (b) CNG

(c) HEVD (d) BE

(e) HFC

Figure 1. : Summary of regression fit showing mean of response, RMSE, and R2 for

predicted vehicle purchases throughout period of study.
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(a) Diesel Purchases (b) CNG Purchases (c) HEVD Purchases

(d) BE Purchases (e) HFC Purchases (f) LNG Purchases

Figure 2. : Histograms showing distribution of vehicles purchased throughout 11-year

period as a result of the DOE factor variation.


