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ABSTRACT 

Glioma is the most common and deadliest form of brain cancer. The highly aggressive nature of 

this disease drives progression toward malignancy and patient overall survival average between 

12-15 months. Standard treatment protocol has minimally changed over the last decade, consisting 

of resection surgery, radiation, and TMZ-based chemotherapy. Sadly, this approach has had 

limited success in bettering patient outcomes, predominantly due to ineffective treatments 

currently available. Therefore, there is a critical need to identify novel therapeutic targets to 

improve on current treatments that will increase patient overall survival. Recent studies have 

shown lipids maintain distinct expression in glioma compared brain, due to metabolic 

reprogramming, and support tumor growth, progression, and drug resistance. This dissertation 

utilized multiple reaction monitoring-mass spectrometry to define lipid profiles in glioma and 

brain around tumor, using three screening methods (M1, M2, and PC) to investigate differences: 

1) by glioma grade, 2) by BAT grade, and 3) between glioma and BAT, to elucidate lipids critical 

to glioma progression that can serve as therapeutic targets. In each study, an integrated workflow 

combining histological analysis, laser capture microdissection, and MRM-MS characterized lipids 

expressed specifically in both glioma and BAT tissue. 

 MRM is a fast, sensitive approach capable of profiling lipids in small sample volumes and 

evaluated lipid alterations across glioma grades I-IV. With each increase in glioma grade, the 

disease becomes more aggressive and untreatable, potentially attributed to lipid composition 

changes. This study identified significant differences in lipid profiles between low- and high-grade 

glioma. Phosphatidylcholine (PC) and sphingomyelin (SM) lipids were differentially expressed as 

glioma undergoes malignant transition. Distinctions in PC and SM saturation and chain length 

relative abundance were shown to be grade specific. Lastly, individual PC and SM were observed 

to possess strong discriminating power in ROC curve analysis to distinguish between low- and 

high-grade glioma. Results suggested lipid composition changes as glioma progresses. 

 BAT profiling by MRM indicated highly distinct lipid composition between BAT exposed 

to different glioma grades. Low-grade BAT expressed greater relative abundances of carnitines, 

TAG, and high unsaturated PC compared to high-grade. Conversely, high-grade BAT maintained 

significantly higher low unsaturated PC vs low-grade. A significant transition from high 

unsaturated PC to low unsaturated PC average sum relative abundance was observed in low- and 
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high-grade respectively. ROC analysis also determined strong discriminating power of PC and SM 

to differentiate between low- and high-grade BAT. This study indicated major PC and SM 

expression changes in BAT proximal to different grades of glioma. 

 In the final study, MRM profiling determined glioma and BAT maintain largely similar 

lipid compositions based on applied MRM-MS methods. Multivariate analysis demonstrated 

proximal localization of clusters between groups, indicating comparable lipid profiles. Cluster 

analysis visualized slight distinction in expression of low unsaturated and high unsaturated PC in 

BAT and glioma respectively. Five PC and SM lipids were significantly different between glioma 

and BAT however, similarity in overall profiles reduced their discriminating power in ROC 

analysis. The results of this study indicate BAT molecular changes predate morphological changes, 

suggesting potential influence of glioma on its surrounding tissue.  

 Taken together, the applied integrative workflow is a powerful tool to comprehensively 

profile distinct lipids in glioma and brain around tumor at small sample volumes. Overall, results 

indicate PC and SM lipid expression are significantly at different stages of progression in glioma 

and BAT tissue. Studies in Chapters 3-5 will highlight the importance of defining lipid profiles in 

glioma and the surrounding brain to identify novel therapeutic lipid targets that both specifically 

target glioma, but also improve overall patient survival.    
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1 INTRODUCTION 

1.1 Objectives 

The overall objective of this project is to define lipid profiles in glioma tumors (grades I-IV) and 

the brain around tumor (BAT) using multiple reaction monitoring (MRM) mass spectrometry to 

identify lipid and pathway candidates for therapeutic targeting. The studies investigated three 

specific aims: 1) identify distinct lipids between glioma grades I-IV; 2) characterize differentially 

expressed lipids in BAT neighboring different glioma grades; and 3) elucidate key lipids between 

glioma and BAT. The study also aimed to highlight the capabilities of combining pathology and 

laser capture microdissection (LCM) with MRM-MS to both comprehensibly profile lipid species 

in a small sample and attribute detected lipids to a specific tissue type. This project incorporated 

diverse areas of biological expertise, through techniques, instrumentation, and statistical analyses 

employed. An overview denoting the expertise utilized in this project is demonstrated in Figure 

1.1.  

 

 

Figure 1.1 Overview of Project 
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1.2 Motivation 

Gliomas are deadliest, most common forms of brain cancer. These tumors of glial lineage, account 

for approximately 80% of diagnosed malignant brain tumors1. In 2019, an estimated 19,000 high 

grade glioma patients will be newly diagnosed. The standard of care for gliomas traditionally 

includes maximum bulk tumor resection, followed by radiation treatment and chemotherapy2. 

Temozolomide (TMZ)-based chemotherapy has been the gold standard treatment since its clinical 

approval in 2005. TMZ is an alkylating agent that seeks to induce DNA damage through guanine 

nucleotide methylation, leading to tumor cell death2. Although clinically approved, TMZ has 

limited success increasing overall patient survival due to the removal of bulky methyl groups by 

O6-methylguanine-DNA methyltransferase (MGMT)3. The highly incurable, invasive nature of 

gliomas has stimulated and emphasis on biomarker-based research to improve patient outcomes.  

 Most low-grade gliomas progress to high-grade and become highly untreatable. Upon 

malignant transition, glioma patient survival plummets from an average of 7 years to 1.25 years4. 

With high-grade glioma (HGG) patients having one of the worst survival rates compared to all 

cancer types, biomarker discovery focused on improving both survival of high-grade patients and 

preventing glioma progression is of utmost importance. Biomarker research has focused primarily 

on genetic and protein-based biomarkers in recent years predominantly for diagnostic and 

prognostic applications. Characterized glioma genetic signatures, utilizing alterations like IDH-

mutations, aid in differentiation in glioblastoma (GBM) subtypes and determination of prognostic 

outlook for each patient5. Similarly, intraoperative applications of protein biomarkers like the 

oncometabolite, 2‑ hydroxyglutarate (2HG), have assisted tumor margin assessment and 

diagnosis6. Despite the various clinical applications of identified protein and genetic biomarkers, 

neither has translated to prolonged patient survival. Therefore, alternative biomolecules must be 

investigated to address the need to identify novel therapeutic targets aimed at promoting clinical 

success. 

Lipids have emerged as promising targets in glioma due to their altered expression in glioma7. 

Studies showed the Warburg effect stimulates biosynthetic pathways driving elevated lipid 

synthesis and support tumorigenesis8. Lipidomic-based biomarker discovery have predominantly 

sought to define altered lipid profiles in glioma for diagnostic applications. The lipid precursor, N-

acetyl aspartate (NAA), has shown early success in differentiating glioma from its surrounding 

brain tissue, but has limited applications in glioma treatment9. To date, there has been a lack of 
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motivation to target lipids therapeutically even though lipid metabolism is critical to glioma 

tumorigenesis. The complexity of glioma lipid profiles and their associated pathways has hindered 

their applicability as targets as they are poorly characterized.   

This project utilizes a comprehensive lipid profiling approach, through MRM-MS, to improve 

on lipid coverage of previous imaging mass spectrometry approaches and address the poor glioma 

lipid composition definition. MRM-MS’ broader lipid coverage employed to investigate 

differentially expressed lipids in glioma and BAT for lipid target identification. The overall 

objective of this project is to better define lipid profiles across glioma grades and their surrounding 

tissue to identify candidate lipid species specific to glioma and are important to low- to high-grade 

progression to utilize, upon future validation, as therapeutic targets. 

1.3 Thesis Overview 

This project utilized a combination of pathology-guided LCM isolation and MRM-profiling of 

glioma (grades I-IV) and BAT tissue to define lipid profiles throughout disease progression and 

investigate distinct lipid species for therapeutic target identification. 

 The first chapter introduces background information about glioma, importance of lipids in 

brain and glioma biology, the role metabolic reprograming in altered lipid composition in glioma, 

MRM lipid profiling in glioma, and the impact of comprehensive lipid profiling in glioma. 

 The second chapter details the novel analytical design and workflow of the project and 

pilot study results validating the applicability of the approach. Pairing LCM with MRM-profiling 

supports tissue specific attribution of detected lipids through its simple, precise, efficient 

workflow. Histological analysis tracing tumor regions on hematoxylin and eosin (H&E) stained 

tissue sections informed LCM isolation of glioma and BAT samples. The simple sample 

preparation for MRM-profiling, not requiring chromatography, minimized sample loss promoting 

comprehensive lipid capture. MRM sensitivity permitted small sample, microscale in size, lipid 

analysis across three distinct methods (embryo and phosphatidylcholine). The chemical-based 

lipid interrogation improves lipid detection sensitivity by reducing lost lipid information driven by 

low abundance and poor ionization10. Statistics applied to MRM output will also be discussed. 

 The third chapter discusses MRM-profiling driven investigation of changes in lipid 

expression across glioma grades I to IV throughout disease progression. Precision glioma grade 

sample isolation by LCM allows for analysis lipid species from tumor regions of interest and 
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attribution of lipids detected by MRM to a particular glioma grade. Studies indicate the level of 

metabolic alterations that occur in glioma increase with tumor grade and lipid compositions 

parallel this phenomenon. The shifts in lipid profiles as metabolic changes that occur throughout 

progression are not well understood. This study will better define distinct lipids in each glioma 

grade with the goal to identify key lipids species relevant to progression-associated tumor 

behaviors. 

 The fourth chapter investigates the changes between lipids profiles of BAT subjected to 

different glioma grades. Lipidomic studies have identified several metabolites that are distinct 

between glioma and BAT, but glioma grade-related impact on BAT lipid expression remains 

unclear. Due to proximity to glioma, BAT is exposed to autocrine signaling factors glioma releases 

to stimulate tumorigenesis. MRM-profiling will elucidate the impact of these interactions on BAT 

lipid expression and provide a better understanding of role glioma aggressiveness has on 

influencing molecular profiles of its surrounding tissue. 

 The fifth chapter will explore differentially expressed lipids between glioma and BAT. 

MRM was performed on LCM-isolated samples of each tissue type to determine distinct lipids 

between them. Imaging mass spectrometry (IMS) studies have identified lipid precursor, NAA, as 

an efficient biomolecule to differentiate tumor and brain. By broadening lipid detection with 

MRM-MS, we will expand our understanding of distinct lipid species between glioma and non-

cancerous brain. Defining these species will not only identify candidate targets, but most 

importantly promote tumor-specific targeting thereby minimizing toxic side-effects. 

 The sixth chapter discusses major conclusions of the project, summarizing experimental 

results. The final chapter will also include future directions and important areas to consider as the 

project progresses toward the long-term goal of lipid pathway targeted therapeutics to improve 

patient survival. 

1.4 Background 

1.4.1 Glioma 

Gliomas are the most common form of primary brain tumor theorized to originate from neuroglial 

stem or brain progenitor cells11. Glioma comprise about 30% of all diagnosed primary brain 

tumors, most of which progress toward malignancy4. Glioma are categorized by the World Health 
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Organization (WHO) in grades by malignancy, from grade I the most benign to grade IV the most 

malignant. By nature, gliomas are highly aggressive, diffusely invading local brain away from the 

original tumor lesion. The infiltrative capabilities of glioma, starting as early as grade II but most 

severely noted in grade IV GBM, makes complete resection impossible while reducing effective 

treatment options11. Surgeons strive to achieve maximal tumor resection as studies have 

determined >90% resection prolongs patient survival12. Gliomas present at any age, with glioma 

grade I-III most commonly occurring in young children (0-19 years) and GBM occurring mainly 

in individuals over 50 years old13. Incidence of glioblastoma presentation is directly related to age, 

prominently seen in older patients. Treatment protocol for glioma patients includes surgery, 

radiation, and alkylating agent-based chemotherapy (TMZ) and has been the consistent treatment 

approach for almost two decades. Although the standard treatment approach has persisted over 

time, it has failed to effective treat glioma patients and prolong survival. As most glioma progress 

toward GBM, these patients have an average survival time post-diagnosis of 12-15 months, and a 

five-year survival rate of about 5%2. The five-year survival rate of GBM (5%) is worse than the 

10-year survival rate of patients with invasive breast cancer (83%)14. The discrepancy in overall 

and disease-free survival between glioma and other types of cancer highlights the critical need for 

better treatments options capable of more than extending patients’ lives. 

 The heterogeneity across glioma grades have been investigated using various proteomic 

and genomic approaches to characterize molecular profiles to identify novel biomarkers aimed to 

address the gap in glioma diagnostics and therapeutics. Genetic modifications occur throughout 

glioma progression and have been applied to diagnose grade based on these parameters. Low grade 

glioma commonly express mutations to both the tumor suppressor gene TP53 and the metabolic 

protein isocitrate dehydrogenase (IDH)15. GBM has been classified by a combination of growth 

factor proteins (EGFR, PDGFRA) and epigenetic modifications to methylation status of MGMT 

and DNA4. To date, the Cancer Genome Atlas has sequenced several hundred distinct human GBM 

tumors to better understand glioma pathobiology. Whole proteome analysis of glioma patient 

tissue and serum have been conducted for biomarker identification16. Several diagnostic and 

prognostic biomarkers have been identified for potential clinical application, however, still lack as 

effective therapeutic targets for glioma patients. Lipids are distinctly expressed in glioma due to 

metabolic protein and genetic alterations noted in systems biology studies17. Lipid species and 

their associated molecular mechanisms driving poor patient outcomes in glioma patients are not 
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well characterized. Therefore, taking a systems biology approach using lipidomics, will provide a 

better understanding of key lipids and pathways involved in glioma progression and aid in 

identification of candidate lipid targets to test for clinical application.  

1.4.2 Importance of lipids in healthy brain 

First, it is important to understand the role and composition of lipids in healthy brain tissue. 

Human brains are comprised of approximately 60% lipids, categorizing it as the fattiest organ in 

the body18. The high lipid content maintained in the human brain highlights the relevance of this 

biomolecule to normal brain function (Figure 1.2). The role of lipids in brain can be grouped in 

several main categories: membrane, structural, and signaling. The two most abundant lipid classes 

expressed in these categories are phospholipids and cholesterol19. Phospholipids are amphiphilic 

lipids predominantly found in cell membranes and can be grouped into several subgroups: 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and 

phosphatidylserine (PS)18. PC and PE comprise a majority of phospholipids within lipid bilayer of 

central nervous system (CNS) cells and work in conjunction with cholesterol to regulate membrane 

fluidity and integrity20,21. Lipid content and composition varies based on type of brain matter. Grey 

matter consists mainly of unmyelinated neural axons and white matter has mostly myelinated 

axons. Raman spectroscopy studies have identified grey matter to maintain a phospholipid to 

cholesterol ratio of 3:1 and a white matter ratio of 2:119. Myelin composition is responsible for this 

distinction as myelin comprised a larger percentage of cholesterol than that found in grey matter 

membranes21,22. Myelination is responsible for accelerating signal transduction in neurons. Proper 

neuronal signaling is critical to maintain normal functioning not only in the brain, but across the 

entire human body. Regulating processes ranging from sensory perception to motor function, it is 

critical to maintain the brain’s lipid composition to prevent dysfunction within the brain. 

Alterations in the brain’s lipid composition have been identified to drive or present in 

neurological and neurodegenerative disorders. Abnormalities in cholesterol homeostasis have been 

detected in Alzheimer’s and Huntington’s disease, contributing to increase in amyloid-beta 

plaques and neuronal excitotoxicity respectively23,24. Degradation of myelin is the main 

characteristic of Parkinson’s disease induces motor dysfunction and tremors in patients25. 

Lipidomic studies have also connected lipid expression changes in normal brain when transitioning 

to neoplastic tissue. Lipid composition acts an indicator of current brain states; effective in 
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distinguishing normal from pathological tissue. Definition of lipids expressed in brain around 

glioma can characterize the state of non-cancerous brain, identifying differentiating lipid species 

as well as the impact glioma has on its expression profile.  

 

 

Figure 1.2 Diverse roles of lipids in normal human brain 

 

1.4.3 Importance of lipids in glioma 

Gliomas are characterized as both a rapid dividing and treatment resistant tumor, especially 

as they progress toward malignant stages. Lipids are involved in diverse cellular mechanisms 

responsible for three fundamental areas of glioma pathobiology: neoplastic transformation, 

tumorigenic development, and glioma progression (Figure 1.3)26. Altered lipid composition in 

these key areas provides increased adaptability, allowing glioma to meet both metabolic, structural, 

and proliferative demands to promote survival. Beginning at early grades, glioma undergoes 

greater levels of cell division compared to surrounding non-cancerous brain5. NMR studies have 

quantified elevated PC species abundance in glioma vs normal brain, which is postulated to address 

alterations to cell turnover rates and membranes27. Gliomas maintain a higher energy demand than 

normal brain due to their high proliferation rate and utilize lipids as an alternative energy source28. 

Triglycerides (TAG), typically not found in healthy brain, was detected in high grade gliomas and 

can act as energy storage, similar to peripheral tissues, and consolidate its fatty acids (FA) for 

energy production through -oxidation29,30. Changes to FA saturation state has also been found to 
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relate glioma invasiveness31,32. Studies determined the most invasive high-grade gliomas 

maintained the greatest levels of FA unsaturation which increases membrane fluidity18,32. A recent 

study has also linked hyperlipidemia to angiogenesis, another characteristic of high-grade 

gliomas33. High levels of free fatty acids and cholesterol detected within glioma would normally 

induce lipotoxicity but is prevented through production of lipid droplets (LD)34. LD act as storage 

vessels for excess lipids to be consolidated when nutritional or environmental cues demand. 

Expression of these structures increase with glioma grade and provide great adaptive flexibility to 

high grade tumors. Components stored in LD can provide sources of energy through FAs, 

structural components for membrane synthesis, and most importantly promote treatment 

resistance.  

To date there have been conflicting findings about lipid concentration differences between 

glioma and normal brain. The metabolic reprogramming needed to meet glioma energetic demands 

drives glycolysis toward lipogenesis, thereby inducing greater lipid expression. Alternatively, 

studies have also noted elevation of specific lipid classes in glioma, not total lipid concentration. 

Comprehensively profiling both glioma and BAT will help to better define the lipid distinctions 

between tissue types that the field is currently debating. 

 

 

Figure 1.3 Diverse roles of lipids in glioma 
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1.4.4 Importance of understanding metabolic reprogramming’s impact on glioma lipid 

profiles  

The aggressive nature of glioma demands high amounts of energy to support continued 

tumor growth28. Gliomas primarily utilize glucose as a source of energy that is metabolized 

through a process called the Warburg Effect35. As a form of anaerobic glycolysis, glucose is 

converted into lactate and yields 10% of the ATP produced in oxidative phosphorylation 

(OXPHOS)36. It remains unclear the advantage choosing a metabolic process less efficient at 

producing energy would be employed in an energy-dependent cancer like glioma, but it indicates 

glioma relies of other mechanisms for energy production. Glucose is a major source of carbons in 

glioma and can be redirected into biosynthetic pathways identified to produce nucleic acids and 

lipids37. These alternative pathways utilize glycolytic intermediates as substrates for biosynthesis. 

Glycolytic intermediates in glioma are more readily available for biosynthesis due to pyruvate 

kinase M2 (PKM2) glycolysis regulation38. The extensive metabolic reprogramming in glioma is 

not fully understood, however, evidence indicates biosynthetic production of nucleic acids and 

lipids appears to maximize the utility of glucose. Being metabolized by biosynthesis instead of 

OXPHOS, glucose can generate energy, nucleic acids for neutralization of reactive oxygen species, 

and lipids that drive tumorigenic behaviors (Figure 1.3).  

 The diverse functions of lipids play an important role in glioma development. Upregulated 

lipogenesis in glioma stimulates elevated and distinct lipid expression from normal brain and 

suggests glioma’s reliance on lipid pathways for survival. Studies have identified several key 

proteins that regulate lipid synthesis, but the exact molecular mechanisms altering lipid profiles in 

glioma are not well described36. There is a critical need to better understand the molecular 

mechanisms utilized to reprogram glioma metabolism towards lipogenesis, the resulting lipid 

produced, and how these lipids contribute to drug-resistance for effective future clinical 

translation. Developed lipid profiling approaches, like MRM-MS, provide the comprehensive 

level of analysis necessary to interrogate complex molecular profiles of glioma for lipid pathway 

characterization.  

1.4.5 MRM-profiling in glioma 

The extensive lipid composition of glioma induced by metabolic alterations requires a 

lipidomics approach with great selectivity and sensitivity to define its profile. MRM-MS is a 
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simple, accelerated strategy formulated to overcome the limitations of other lipidomic approaches. 

Targeted lipidomic approaches cannot investigate the spectrum of lipid classes comprising human 

tissues, severely reducing total lipid species discovery39. MRM addresses this limitation through 

its two analysis phases, discovery and screening. The discovery step utilizes both chemical 

functional groups and molecular features to identify lipids within the samples, applying previously 

acquired chemical information to make the distinction10. Non-reliance on abundance and 

ionization efficiency to detect lipids, like in other lipidomic methods, MRM is suited for small 

sample characterization40. Additionally, MRM is unique as it does not require chromatographic 

separation or dilution of samples prior to analysis to capture lipids in the sample. MRM instead 

interrogates chemical groups of sample lipids by performing precursor (Prec) ion and neutral loss 

(NL) scans41. Upon injection, lipid precursor ions are selected and scanned, sorted by m/z, in Q1 

of the triple-quadrupole (QQQ), fragmented in Q2, and undergo a product ion scan determine the 

neutral loss between Q1 and Q3 (Figure 1.4)42.  

 

Figure 1.4 MRM lipid profiling through precursor and product ion scans 

 

Precursor and production ion transitions acquired can then be employed during the 

screening phase. Information from Prec and NL scans are combined and compared to the LIPID 

MAPS database to inform the MRM screening process41. Tailored methods can then be 

established, using the ion transition output from the discovery step, for the tissue of interest to 

optimize the screening of its molecular profile10. The discovery phase requires a larger number of 

samples to formulate a new method, as a wide range of lipid classes must be interrogated to 

determine those best suited for sample profiling. The screening phase is informed by the captured 

lipid data from the discovery phase, organizing detected ions by molecular features to perform the 

MRM-profiling. Completion of the screening phase produces an output of all detected lipids from 

the chosen interrogation method, which is the converted into relative abundances for statistical 

analysis. Relative abundances are a semi-quantitative metric but has been verified to highly 
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correlate with absolute abundance. Both univariate and multivariate statistical analyses can be 

applied, using acquired relative abundances, to determine distinctions between experimental 

groups. Principal component analysis (PCA), cluster (heatmap) analysis, and receiver operating 

characteristic (ROC), as well as t-test/ANOVA, are common analyses to investigate differentiate 

lipid expression in the sample set. Application of MRM-profiling to analyze glioma and BAT lipid 

composition will accelerate the identification of novel lipid biomarker discovery, and better our 

understanding of lipid mechanisms involved in glioma presentation. Overcoming the limitations 

of previously utilized targeted lipidomic methods will provide a more comprehensive profile of 

lipid expression between tissue types for potential clinical applications upon further validation.  

The rapid and sensitive detection capabilities of MRM has supported its application in 

studies investigating both proteins and lipids in contexts such as the brain, neurodegeneration, and 

cancer. Maintaining high sensitivity, Chang et al. 2014 applied MRM to quantify low abundance 

synaptic proteins from human brain43. MRM has been utilized for proteomics to detect specific 

proteins within complex mixtures, for instance human Parkinson’s disease brain, containing a 

milieu of other unwanted proteins for protein biomarker44. The broad detection range of MRM has 

also been employed in lipidomics studies in various cancers, such as ovarian, colon, and 

endometrial, to identify novel biomarkers aimed at diagnostic applications and better 

characterizing signal transduction altering lipid composition45–47. More recently, MRM was used 

to investigate pharmacokinetics by quantifying drug concentration of sunitinib, an anti-angiogenic 

therapy, in murine brain, plasma and brain tumor tissue48. Despite MRMs previous applications 

interrogating human brain, cancer tissue, and lipids, limited studies are available using this 

approach to profile glioma lipids49. Applying MRM to human glioma tissue would expand on 

previous studies profiling brain tumor lipid composition due to its broad detection range and also 

through its sensitivity to detect low abundance lipids in complex mixtures. 

1.4.6 Impact of comprehensive lipid profiling in glioma 

Glioma biomarker discovery has expanded extensively following the application of mass 

spectrometry (MS) approaches to characterization of molecular profiles. The broad detection range 

of MS to detect lipids within glioma has established that lipids are differentially expressed in 

glioma compared to normal brain. However, the reliance of full-scan MS methods on the 

abundance and ionization efficiency limits the amount of lipid information that can be acquired 
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from this method40. Full-scan MS is less informative when investigating tumor heterogeneity and 

localization of biomolecules maintained in the sample as tumor regions are not specifically isolated 

and lipid abundance may not be sufficient for this approach. Electrospray ionization (ESI)-based 

imaging MS (IMS) overcame the limitations of full-scan MS lipidomic approaches through its 

capabilities to acquire location-based lipid information, defining tumor region heterogeneity, and 

detect lower abundance lipids in small glioma samples. Small molecule, lipid and metabolite, 

spatial information obtained through IMS has aided in the distinction between glioma and brain 

tissue50. IMS has shown promise clinically for diagnostic applications, with great interest in its 

application to intraoperative tumor border discrimination51. Despite overcoming the limitations of 

full-scan MS methods, IMS proportionate a limited lipid coverage compared to other lipidomics 

approaches, detecting one to two magnitude lower number of lipid species. 

 Lipid profiling studies have made great strides over the last four decades, identifying 

differences in brain and glioma lipid composition began as early as the 1960s. Gopal and 

colleagues identified gliomas possessed different percentages of fatty acids and phospholipids; 

gliomas were found to possess a greater percentage of polyunsaturated FAs, lecithin, and lower 

saturated FA than normal brain52. In the late 1990s, Nygren et al. (1997) evaluated cholesterol and 

cholesterol ester concentration in brain tumor and surrounding tissue by chromatography22. It was 

determined cholesterol was higher in surrounding tissue and brain tumors possessed greater 

concentration of cholesterol esters. In the 2000s, multinuclear magnetic resonance spectroscopy 

was applied to non-cancerous brain and gliomas and identified elevated amounts of triglycerides, 

phospholipids, and cholesterol esters in high grade tumors vs normal brain tissue29. More recently, 

mass spectrometry-based approaches have been implemented for brain tumor lipid profiling, 

providing more specific lipid species information than previous studies. Imaging mass 

spectrometry approaches, matrix-assisted laser desorption/ionization (MALDI) and desorption 

electrospray ionization (DESI), were applied by Eberlin and colleagues to both investigate 

distinctions in lipid composition between glioma subtypes as well as differentiate between tumor 

and brain tissue17,53,54. Phospholipids, including sphingomyelins and ceramides, were detected by 

IMS to maintain differential expression in glioma and surround brain matter, both white and grey55. 

To date, lipid profiling studies have established relevant lipid classes to the glioma disease model, 

and more recently, individual lipid species to help pathologists and surgeons determine tumor 

border. Although progress has been made in profiling glioma lipids, findings have been geared 
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mainly toward diagnosis. Looking ahead, using lipids as therapeutic targets would be the next 

logical application of findings from lipid profiling studies. 

 The lack of motivation to target lipids may be related to two important aspects, the ability 

to confidently attribute detected lipids to tumor and the limited lipid coverage capabilities of 

approaches that can analyze specifically glioma or brain tissue. Development of a workflow that 

integrates the specific tissue analysis of IMS and the comprehensive lipid characterization of full-

scan MS is essential to identify glioma-specific lipids to target. The vital nature of lipids in healthy 

brain demands precision targeting of glioma-specific lipids to avoid potentially lethal side effects. 

This project addressed these limitations by combining pathology with LCM to distinctly isolate 

glioma and BAT for comprehensive MRM-profiling. Glioma tumors maintain an asymmetric 

shape in the brain; therefore, resected tissue may contain tumor and non-tumor cells. Integrating 

histological analysis with LCM informs the tissue extraction, localizing tumor and BAT cells that 

would normally indistinguishable in unstained tissue. Extracted lipids from each individual tissue 

type can now be comprehensively profiled using MRM and detected lipids are confidently 

attributed to either glioma or BAT. The more informative output of MRM will provide a better 

understanding of lipid species differentially expressed in each tissue type and critical lipid 

pathways contributing to alterations in expression. 

1.4.7 Role of lipid chain length and saturation state in glioma 

Lipid saturation type has long been understood to be distinct between glioma and healthy 

brain tissue31. In glioma, saturation status has been identified to influence membrane fluidity, 

supporting tumor invasion and progression. Fatty acids, a major lipid component and expressed at 

greater abundances in glioma, maintain either saturated or unsaturated compositions and are 

differentiated by number of double bonds37,56. In glioma, unsaturated fatty acids are found at higher 

levels than surrounding brain57. Lipids with fatty acids containing one or more double bond 

increases cell membrane fluidity, elevating the infiltrative capacity of tumor cells. Polyunsaturated 

fatty acids were identified to be most prominent in high-grade gliomas, though their role in tumor 

progression is not yet known32. Hindered tumor growth was noted when desaturation reactions in 

glioma were inhibited, highlighting the importance of unsaturated lipids58. Lipid chain length has 

also been associated with pathology development. Long-chain ceramides positivity correlated with 

Alzheimer’s disease and cystic fibrosis severity59. In bladder cancer, long-chain polyunsaturated 
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phospholipids and TAG were expressed at higher levels than other saturation types60. In glioma, 

studies characterizing lipid chain length profiles and their impact of tumor aggressiveness, to the 

best of our knowledge, have not been conducted. Based on findings in other pathologies, long-

chain lipids appear to be more prominent in disease states. The comprehensive MRM-profiling 

employed in this project will detect lipids of various saturation states and chain lengths to 

investigate their relative abundances in both glioma and BAT.  
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2 ANALYTICAL DESIGN OF NOVEL LIPIDOMICS WORKFLOW 

COMBINING PATHOLOGY, LASER CAPTURE MICRODISSECTION, 

AND MULTIPLE REACTION MONITORING FOR GLIOMA AND BAT 

LIPID PROFILING 

2.1 Introduction 

Lipids have become increasingly important biomolecule in determination of disease state 

in the brain, including gliomas. Despite understanding the importance of lipids in glioma biology, 

there are no clinically approved lipid biomarkers for therapeutic use. Various mass spectrometry-

based lipidomics approaches have been applied to profile glioma and its neighboring brain 

lipidomes and have proven useful in diagnostics. Current findings improving areas of diagnostics, 

however, have not translated to therapeutics to better glioma patient overall survival. Limitations 

present in previously utilized MS approaches have not been able to both comprehensively define 

lipid profile and addressing glioma heterogeneity. Full-scan MS has extensive lipid 

characterization capabilities but fails to probe for tumor heterogeneity. IMS can investigate tumor 

heterogeneity but lacks the broader detection capabilities of full-scan MS. In addition, lipids are 

vital to normal brain functioning, therefore identifying lipids that are distinct to glioma tissue is 

paramount to avoid toxic side effects during use as targets. Therefore, it is critical to employ a 

workflow method capable of distinguishing glioma and BAT tissue and comprehensive lipid 

definition. The workflow in this project integrates several instrumental techniques to address 

limitations of previous MS approaches. Pathology-guided LCM precisely isolates glioma and BAT 

tissue and MRM-MS sensitivity captures the broad range of lipids expressed in small samples. 

This workflow’s output will provide detailed characterization of lipids in each tissue type 

supporting identification glioma-specific lipids and their associated pathways. 

2.1.1 Histological Assessment 

Initial glioma diagnoses are performed through magnetic resonance imaging (MRI), with 

final determination being conducted by histology following bulk resection surgery61. Pathologists 

regularly utilize hematoxylin and eosin (H&E) staining to differentiate cellular components and 

features maintained within resected tissue to confirm a diagnosis62. The H&E stain adds contrast 

to tissue for pathologists to visualize tumor cell nuclear and cytoplasmic elements. Glioma grade 
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diagnosis is based on the WHO histological criteria (Table 2.1)61. Criterion for glioma grading 

increases in number as the disease progresses and the tissue must possess each feature to establish 

a final diagnosis. Additionally, the phenotypic guidelines listed in Table 2.1 were utilized to 

distinguish and trace tumor vs non-tumor boundary outlined in section 2.2.3. Cells containing 

morphological features, defined in the table below, were designated as tumor and the neighboring 

cells lacking these criteria were considered BAT. These parameters were implemented to 

determine tumor border. 

Table 2.1 Histological criteria for glioma tumor pathological assessment 

WHO Grade Tumor Type Histological Criteria 

I   

II Grade 2 Astrocytoma Nuclear atypia 

III Grade 3 Astrocytoma Mitoses and nuclear atypia 

IV Grade 4 Astrocytoma 

Mitoses, nuclear atypia, 

microvascular proliferation 

and/or necrosis 

 

2.1.2 Laser Capture Microdissection 

LCM is a powerful isolation tool first developed by the NIH to investigate cell subgroups 

contained within cell or tissue samples63. LCM utilizes a combination of infrared (IR) and 

ultraviolet (UV) lasers to extract regions of interest within a sample64. Application of each laser 

confers several key advantages to sample capture: 1) speed of extraction, typically held to a few 

seconds but is proportionate to size of intended isolation; 2) precision, IR laser adheres cells to 

capture cap while maintaining morphology and UV precisely dissects the region of interest to 

avoid unwanted contamination; and 3) versatility, the simple isolation protocol can be applied to 

diverse tissue types and downstream applications65. The expedient, non-damaging nature of LCM 

has supported its integration into MS workflows investigating both lipids and proteins (Table 

2.2)66–70. Using these technologies in conjunction promotes better characterization of tissue 

heterogeneity by combining precision sample collection of LCM with the broad detection range 

and sensitivity of mass spectrometry. Consolidating on these capabilities, this project utilizes LCM 
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with MRM-MS to investigate glioma and BAT lipid profiles from sectioned human tumor samples, 

which have not yet been analyzed by this workflow. 

Laser capture microdissection functions by applying infrared and/or ultraviolet lasers to sectioned 

tissue on membrane slides to collect cell populations within the sample. The tissue is first 

visualized using the LCM microscope connected to a computer, followed by laser control 

adjustment to parameters suitable for tissue type and research interest. Based on downstream 

application, laser thickness can be reduced to 7.5𝜇m for single cell dissection or increased to 15𝜇m 

or 30𝜇m for isolation of a group of cells. Once the region of interest in the tissue is designated on 

the computer, the LCM cap containing transfer film is placed on the selected tissue area. Upon 

placement of the LCM cap, IR laser can be applied for begin sample extraction. The IR laser 

originates from above the membrane slide containing the tissue section, and is critical as 

photochemical effects on molecular integrity are avoided due to absorption by cap and membrane, 

and the IR laser melts transfer film on cap that allows cells to adhere for extraction. Following IR 

laser utilization, the UV laser from beneath the tissue sample is applied. The stronger UV provides 

more precise dissection, being a narrower beam, reducing dissection and adherence of unwanted 

cells to the LCM cap. Combining the IR laser to adhere cells of interest to the transfer cap from 

the membrane slide, and UV laser to dissect only selected cells, LCM provides quick, precise 

isolation of samples for further downstream molecular profiling applications. 
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Table 2.2 Review of studies integrating LCM into mass spectrometry molecular profiling 

 

2.1.3 Multiple Reaction Monitoring 

As mentioned, MRM is a simple, expedient, and sensitive MS technique able to detect a broad 

range of lipids within a given sample. Not restricted by abundance to detect lipids present in 

samples, MRM was capable profiling lipids in samples as few as 16 oocytes, acquiring over 1,500 

MRMs across 10 methods41. This approach directly injects sample into the ion source, avoiding 

chromatographic dilution sample loss, and captures lipid information based on Prec and NL 

scans10. Output of Prec and NL scans during the discovery step informs creation of methods to 

apply during the screening step. Recent MRM-profiling of glioma lipids identified 

phosphatidylcholine and sphingomyelin MRM transitions to be distinct in glioma tissue leading to 

the formulation of the PC method utilized in this project49. Due to the small sample size and 

volume, supervised discovery of Prec and NL scans could not be performed and a unique method 

for this sample set was not created. In lieu of this limitation, two embryo methods (M1 and M2), 

in addition to the PC method, were employed as glioma taken on a stem-like phenotype, similar to 

those in embryonic cells, due to the presence of cancer stem cells71. The M1 and M2 methods were 

formulated through the multistep MRM-profiling workflow. The MRM approach consists of two-

steps: first, the discovery phase that interrogates functional groups of lipids contained within the 

Publications Tissue Analyzed LCM Method
Lipid Extraction 

Method
MS Method Lipids Screened

Xu et al. 2002

﻿Invasive mammary 
carcinoma and 
normal breast 

epithelium

﻿PixCell II LCM N/A
MALDI 

(proteins)
N/A

Hebbar et al. 
2014

﻿Drosophila 
neurons

AutoLPC
(Zeiss)

On-Column 
Extraction (C18)

LC-MSn

PE, PE-O, PC, PI, 
PG, Cer, PS, CerPE, 
LPC, LPE, TAG (~51 

lipids)

Dilillo et al. 
2017

﻿C57BL/6 Brain
AutoLPC
(Zeiss)

N/A
AP MALDI-MSI, 
MALDI-MS, LC-

MS/MS
N/A

Nyalwidhe et al. 
2017

Human 
Pancreatic Beta 

Cells
﻿ArcturusXT LCM N/A

LC-MS/MS 
(proteins)

N/A

Knittelfelder O, 
Traikov S, 

Vvedenskaya O, 

et al. 2018

Murine Liver,
Human Plasma

AutoLPC
(Zeiss)

﻿MTBE/MeOH

• LC-MS/MS 
(Orbit trap, 
proteins 
[1355 found])

• FT-MS & t-
SIM (lipids)

Glycerolipids, PA, 
PI, PS, PG, PE, PC, 

PE O-, LPA, LPI, 
LPC, LPE, Cer, SM, 

Chol, CE (~200 
lipids)
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experimental sample, and second, the screening phase that detects selected MRMs based on 

findings during the discovery phase. Bovine embryos at various stages of embryonic development 

were evaluated during the discovery phase to identify important MRMs to test for during the 

following screening phase. Lipid functional group information, using the m/z molecular ion data 

contained within the LipidMaps database, were consolidated to create a list of MRMs to interrogate 

for during the discovery phase. About 1,500 MRMs were initially chosen to interrogate the bovine 

embryos and were comprised of phospholipids, free fatty acids, and triacylglycerol lipid classes. 

Selected MRMs were divided into 10 methods for multiple scans to be conducted on each 

individual MRM, to increase confidence in reliability of identified MRMs of interest. MRMs were 

chosen for the tailored M1 and M2 methods based on ion intensity of transitions. MRMs with 

absolute ion intensities of transitions greater than the blank were included for the newly formulated 

methods. At the conclusion of the discovery phase, 383 MRMs maintained absolute intensities 

compared to the blank, and were combined into the M1 and M2 methods utilized in these studies. 

Embryonic cells have increased relevancy when considering glioma and disease management due 

to the presence of glioma stem cells. Embryonic cells, early in development, are totipotent, 

possessing the ability to divide and differentiate into any cell type in the body. Glioma stem cells, 

while not maintaining the broad differentiation capacity of embryonic cells, can differentiate into 

cell types native to the brain being multipotent72. The multipotency of glioma stem cells provide 

glioma increased adaptability to cytotoxic stimuli, like chemotherapy and hypoxia, through 

maintenance of high therapeutic resistance and differentiation into cell types to combat oxidative 

stress. Interrogating glioma, which maintains increased stem-like qualities, using M1 and M2 

embryonic methods supports the identification of lipids found in embryonic cells, that would not 

be detected in non-stem cells, that could potentially be specifically targeted therapeutically41. 

Taken together, MRM is uniquely suited for small sample volume analysis, characteristic of LCM 

isolations, because chemical information and molecular features determine capture of sample lipid 

information. Lipids screened in each of the three MRM methods are outlined in Appendix A (Table 

A.1-A.3). Of note, not all lipids in the outlined chain length and saturation parameters for each 

method were screened and is a limitation in each study. In these studies, lipids from glioma and 

BAT cells, isolated by pathology-guided LCM, were analyzed using three distinct MRM-profiling 

methods to define lipid profiles between different tumor grades and tissue types. 
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2.2 Analytical design 

2.2.1 Sample selection 

Human glioma samples analyzed in this project were provided by the Indiana University Simon 

Cancer Tumor Bank. Prior to sample selection, patient gliomas were sorted into groups by WHO 

tumor grades I-IV. Next, samples were assigned a random number to replace the sample 

identification information. The blinded samples were then chosen by an impartial third party to 

guarantee an entirely random and blind selection process. Four numbers, corresponding to a 

specific sample, were selected from each group, with the exception of grade I due to the possession 

of one sample at this grade. The random, double-blind nature sample selection ensured sample 

analyzed would be chosen in a non-biased manner. 13 samples selected are detailed in Table 2.3. 

Patient clinical and demographic information of selected samples in Appendix A (Table A.4). 

 

Table 2.3 Descriptive Information for Selected Human Glioma Samples 

 
  

Sample 

Grade
Sample Name Pathological Classification

I M-HBT 364
Dysembbryoplastic neuroepithelial 

tumour (DNET)

II

M-HBT 203 Mixed Oligoastrocytoma

M-HBT 237 Oligoastrocytoma

M-HBT 300 Oligoastrocytoma

M-HBT 305 Oligoastrocytoma

III

M-HBT 172 Anaplastic Oligodendroglioma

M-HBT 190 Mixed Oligoastrocytoma

M-HBT 385 Anaplastic Astrocytoma

M-HBT 387 Complex Anaplastic Astrocytoma

IV

M-HBT 292 Glioblastoma

M-HBT 322
Glioblastoma w/large PNET-like 

components

M-HBT 319
Glioblastoma w/Oligodendroglial

component

M-HBT 370 Glioblastoma w/ IDH-wildtype
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2.2.2 Sample sectioning and staining 

13-flash frozen human glioma samples, grades I-IV, were cryosectioned using a Leica cryostat at 

10C at a thickness of 5m for histological analysis and laser capture microdissection. Sequential 

tissue sections were cut onto charged glass slides and PEN membrane framed slides 

(Thermofisher) in preparation for staining and LCM respectively. To reduce potential day-to-day 

LCM isolation variability, samples from each grade were sectioned onto a single slide, creating 4 

groups with up to four tumor sections per slide (Figure 2.1). A total of 26 glioma sections, 13 per 

slide type, were cut for tissue analysis and extraction. Glioma tissue sectioned on charged glass 

slides were formalin fixed and stained with hematoxylin and eosin (H&E) using a Leica integrated 

workstation. Unstained glioma sectioned on PEN membrane slides were stored in a -80C freezer 

until LCM sample isolation. Following tumor region identification, described below, samples not 

containing both glioma and BAT cells underwent a second round of sectioning. Sequential sections 

were cut at 5m thick, with adjacent sections cut every 25m to aid in surveying tumor for each 

tissue type. Four sections of each sample placed onto the same slide for analysis and isolation.  

 

Figure 2.1 Design of sectioned glioma samples for pathology and LCM isolation. A) H&E 

stained glioma sections on charged glass slides. B) Unstained glioma sections on PEN 

Membrane Frame Slides. C) Assigned group number. D) Patient samples per group. G = grade. 

 

2.2.3 Tumor region identification 

To identify the localization to tumor within sectioned glioma, histological analysis was performed 

on H&E stained tissue. Tumor region identification followed WHO histological criteria applied 
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during patient diagnosis (Table 2.1). Following H&E staining in the Leica CV5030 workstation, 

coverslips (Leica 24mm x 50mm with Leica Surgipath MM24 mounting medium) were placed 

onto glass slides to prepare for digital scanning. H&E stained sections were scanned using the 

Aperio Versa slide scanner (Leica Biosystems, CA) at a 40x magnification for histological 

analysis. Tumor and brain around tumor localization were identified and traced using Aperio 

Imageworks software by a licensed pathologist (Figure 2.2). 

 

 

 

Figure 2.2 Pathological assessment of H&E stained glioma for tumor region identification. Areas 

outlined in blue indicate tumor regions in scanned H&E stained glioma sections. 

 

2.2.4 Laser capture microdissection: glioma and BAT isolation 

Unstained tissue slides were removed from -80C freezer and dried using a desiccator for 15 

minutes to remove moisture from the sectioned samples prior to LCM isolation. Sample collection 

was conducted over 4 isolation periods, capturing glioma and BAT tissue from one group per 

session to avoid heat-driven sample degradation. Sample isolations were performed using the 

ArcturusXTTM Laser Capture Microdissection System (Thermofisher, USA). Tissue was captured 

using IR and UV lasers, guided through comparison of microscopy scanned pathology slides and 

LCM microscope images (Figure 2.3). Samples collected were measured, using the LCM software 

measurement tool, to be approximately 400m x 950m  30m, in each direction, in area. Laser 

dissected samples were captured onto CapSure® LCM Caps (Thermofisher, USA). Sample caps 

were placed in 0.5l microfuge tubes containing 100l of ultra-pure water (UP-H2O) and stored 



37 

on ice until all the samples were collected within the group (Figure 2.4). Samples were stored in a 

-80C freezer following isolation until all experimental samples were collected and prepared for 

lipid extraction. Glioma and BAT samples collected and analyzed were evaluated using the same 

pathology grading standards, and the grade label used in each project matched these parameters. 

This approach contained several limitations of note. First, lack of a coverslip reduced optimal 

visualization of distinct morphological characteristics of cells within the section. Pairing LCM 

with histological analysis, tracing of tumor region, performed by a licensed pathologist was 

utilized to address this drawback. Second, LCM requires considerable time to isolate samples. To 

prevent temperature-driven tissue degradation, samples were collected in smaller groups, limiting 

time exposed to ambient temperatures, preserving molecular composition of the tissue.    

 

Figure 2.3 Pathology-guided isolation of tissue by LCM. A) Pathology (left) and LCM (right) 

microscope images used for guided sample isolation. B) Region selected for LCM extraction. C) 

Diagram representing combined IR and UV laser-based sample isolation. 

 

 

Figure 2.4 Lipid collection from LCM-isolated glioma and BAT tissue. A) Example grade I 

tumor section post-LCM glioma and BAT sample isolation. B) Image of small sample volume 

collected for analysis. C) Example of lipid release into solution by UP-H2O driven cell lysis.   
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2.2.5 Lipid extraction 

59 LCM isolated samples were removed from the -80C freezer and underwent lipid extraction 

following the Bligh-Dyer protocol that had been adapted for small sample volumes73. Lipids were 

initially collected from cells by inverting microfuge tubes containing 100l UP-H2O, allowing the 

UP-H2O to contact the sample causing cell lysis by difference in osmolarity pressure (Figure 2.4). 

The solution was then transferred to a separate extraction tube. The sample cap was washed a 

second time with 225l methanol to collect any residual lipids in the sample and in the original 

microfuge tube. Following the transfer to the extraction tube, 125l chloroform was added to the 

solution and vortexed for 10 seconds to mix and form a 1-phase solution. Additional methanol, in 

50l increments, were added to the UP-H2O-methanol-chloroform solution until a single phase 

was present. The extraction tube was incubated at 4C for 15 minutes to allow the lipids to go into 

solution. 125l UP-H2O and 125l chloroform was then added to the extraction tube to initiate a 

biphasic solution. The biphasic solution underwent centrifugation at 16,000 x g for 10 minutes at 

room temperature drive phase separation. In the biphasic solution, the upper phase is the polar 

phase, the lower phase is the organic phase containing lipids, and the layer between phases contains 

proteins. Solution for both phases were collected, avoiding the intermediate protein layer, and 

transferred to a new microtube. Solvent in the microtubes were vacuum dried by speedvac with a 

nitrogen stream. Dried lipid extracts were then stored in a -80C freezer until all lipid extraction 

was completed in all samples. Lipid extraction was conducted over three sessions, randomly 

assigning samples to groups for extraction, to avoid potential errors impacting samples from a 

single group or tumor grade (Figure 2.5).  

 

Figure 2.5 Outline of lipid extracted samples for MRM-profiling 
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2.2.6 MRM-MS profiling 

Dried lipid extracts were resuspended 30l of internal standard solvent containing acetonitrile: 

methanol: ammonium acetate, at 3: 6.65: 0.35 v/v/v, to prepare for injection. Samples were injected 

for MRM-profiling into the Agilent 6460 triple quadrupole (QQQ) mass spectrometer (Agilent 

Technologies, CA) with a jet stream electrospray ionization source equipped. Samples were sent 

directly to the ESI ionization source using the micro-autosampler (G1377A) to avoid need for 

chromatographic separation.  

Three previously established lipid screening methods were utilized to profile samples 

lipids: M1, M2, and PC. M1 and M2 methods were formulated to evaluate embryonic samples and 

the PC method was generated to investigate GBM lipid composition specifically49. The discovery 

step was bypassed due to small sample volume preventing the establishment of new screening 

methods. Each sample (n=59) was interrogated using these three screening methods and scanned 

for lipids described in Table 2.4. Several limitations were experienced using MRM-MS. The 

discovery phase was not performed in these studies due to limited sample volume. Utilizing 

relevant, previously tailored methods on extracted lipids was applied to address this drawback. 

Additionally, isomers of detected lipids were not interrogated through this method. Previous 

studies have combined liquid chromatography (LC) with ion mobility spectrometry to determine 

lipid isomers, but applying to the workflow could result in loss of sample which is significant due 

to the small sample volume analyzed in these studies74. It is important to note, comparisons of 

sample lipid compositions within the three projects were based on 583 lipids included in each of 

the three applied screening methods. Conclusions were made based on relative abundances of these 

lipids and were not an interrogation of all lipid species contained within the assessed lipid classes.  

 

Table 2.4 Screening methods applied for MRM-profiling of glioma and BAT lipids  

Screening Method Lipid Classes Detected 

Method 1 (M1) 
Phosphocholines, Carnitines, 

Sphingomyelins, Triglycerides, Cholesterols 

Method 2 (M2) 

Free Fatty Acids, Phosphoinositols, 

Cholesterol Esters, Campesteryl ester, 

Phosphoglycerols, Phosphoserines, 

Phosphoethanolamines,  

Method 3 (PC) Phosphocholines, Sphingomyelins 
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2.2.7 Data processing and statistics analysis 

Raw MRM-profiling screening step data output for each method was converted Excel format using 

an in-house script for relative abundance calculations. Initial calculations determined lipids with 

ion intensities greater than 1.3 times the blank. Lipids below this threshold were filtered out of the 

data. Ion intensity comparison between the blank and experimental samples were calculated by 

taking the maximum value of each lipid and dividing it by the blank ion count for the lipid. Lipid 

relative abundance was calculated by dividing the ion intensity for the individual lipid in a single 

sample by the sum ion intensity of all lipids in that sample. Sample relative abundances were then 

sorted, based on tissue type and tumor grade, to investigate comparisons of 

interest. MetaboAnalyst 4.0 (www.metaboanalyst.ca), a web-based metabolomics suite with 

comprehensive data analysis capabilities including statistical, functional, and visual interpretations 

of omics datasets, was utilized to process data75.  

 The data was auto-scaled, more specifically mean-centered and divided by the standard 

deviation of each variable, prior to statistical testing Several statistical and visualization analyses 

were performed to examine the data. Principal component analysis (PCA) is a multivariate 

approach applied to visualize and discriminate groups within the dataset to identify overall lipid 

profile differences76. Partial least squares discriminant analysis (PLS-DA) was utilized to both 

calculate variance of important in projection (VIP) for each lipid species to determine which lipids 

were most important to the model and visualize relative abundance differences between groups. 

Lipids with a VIP score >1.0 were considered important to the model and were applied to further 

sort the dataset for better PCA discrimination. Significant differences in lipid relative abundance 

was determined by t-test or ANOVA with  = 0.05. Discrimination of lipid profiles was visualized 

in a heatmap through cluster analysis; the number of lipids included in the heatmap was adjusted 

to identify the best group clustering. Receiver operating characteristic (ROC) was performed to 

determined lipids capable of differentiating between tissue types. Lipids that maintained area under 

the curve (AUC) of >0.8 were considered and selected to test for tissue type attribution testing. 

 For lipid chain length and saturation analysis, lipids were first sorted based on size of 

molecule and saturation type. Lipids were divided into three chain length groups, short, medium, 

and long. To determine chain length group, the number of carbons in the largest and smallest lipids 

were subtracted and divided by three to evenly divide groups. Saturation groups were also divided 

into three groups: saturated, low unsaturated, and high unsaturated. Saturated lipids contained no 

http://www.metaboanalyst.ca/
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double bonds, low unsaturated lipid maintained 1-2 double bonds, and high unsaturated lipids had 

3+ double bonds. Following sorting based on these guidelines, the sum relative abundance of lipid 

in each sample were calculated and then averaged for the group being compared. Statistical 

analyses were performed using JMP® Pro 14. Equal variance was calculated using Bartlett’s test. 

Multiple comparison testing was performed using the non-parametric Dunn’s test ( = 0.05). 

2.3 Pilot study  

2.3.1 Pilot study parameters 

A pilot study was completed to validate the applicability of this workflow to detect differentially 

expressed lipids in small volume samples. Implementing techniques described in the analytical 

design sections above, MRM-profiling was performed on glioma (n = 3) and BAT (n = 3) samples 

isolated by LCM from grade I glioma sections. Lipids were screened using the M2 embryo method 

and data was analyzed using MetaboAnalyst 4.0. PCA and cluster analysis were employed to 

identify distinctions between glioma and BAT. Total MRM signal was monitored to establish if 

adequate lipid signal was acquired based on the amount of tissue isolated by LCM. Ideal lipid 

signal is greater than 1 x 105, and larger sample volumes can be isolated to address potential low 

signal.   

2.3.2 Principal component analysis demonstrated distinct lipid profiles between grade I 

glioma and brain around tumor tissue 

MRM-profiling of triplicate grade I glioma and BAT samples identified distinct clusters in the 

PCA plot (Figure 2.6). The multivariate analysis noted discrimination of tissue types, based on 

differential expression free fatty acids and species within the phosphatidylserine lipid class, 

scanned for during the screening step. Several lipid species distant clustering of grade I glioma 

and BAT included free fatty acids tetratriacontanoic acid (C34:0), dodecanoic acid (C12:0), and 

dotriacontanoic acid (C32:0); and phosphatidylserines PSp 40:6, PSo 20:0, and PS 14:1. The PCA 

plot also showed that distinctions can be made in small sample volumes by multivariate analysis, 

providing initial support for this workflow. 
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Figure 2.6Principal component analysis showed discrimination of grade I glioma and BAT 

clusters indicating distinct lipid profiles, according to PC1 and PC2. 

 

2.3.3 Cluster heatmap analysis indicated separate clusters of grade I glioma and brain 

around tumor based on difference in top 50 lipids. 

Cluster analysis identified glioma and BAT maintained distinct lipid profiles. Top 50 lipids 

visualized in the heatmap to cluster glioma and BAT groups and showed the tissue types could be 

distinguished based on three classes: free fatty acids, cholesterol esters, and phosphatidylserines. 

Brain around tumor possessed higher relative abundances of free fatty acids like acids 

tetratriacontanoic acid (C34:0), dodecanoic acid (C12:0), and dotriacontanoic acid (C32:0) and 

cholesterol esters species compared to grade I glioma. Additionally, grade I glioma expressed 

phosphatidylserine species PSp 40:6, PSo 20:0, and PS 14:1 at greater relative abundances. 

Successful clustering noted in the heatmap validated the capability of the workflow to detect a 

broad range of lipid species across several lipid classes in small volume samples and apply 

captured lipid profiles to distinguish between glioma and brain around tumor. 
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Figure 2.7 Heatmap cluster analysis demonstrates BAT have elevated relative abundances of free 

fatty acids and cholesterol-related lipids compared to grade I glioma. Grade I glioma maintained 

greater phosphatidylserine relative abundance. 

2.4 Discussion 

With the lack of improvement in glioma patient overall survival over the last decade, it is critical 

to find new approaches to identify new glioma biomarkers for therapeutic target identification. 

Doing so would provide valuable insight into potential formulation of novel treatment strategies 

or the repurposing of current FDA approved drugs toward better patient outcomes. Previous 

studies have shown differences in glioma and non-cancerous brain lipid composition through IMS 

methods, and have translated into improvements to diagnostics, not treatment50,77. Lipids are a 

highly complex, diverse biomolecule, despite having few structural components78. Maintenance 

of lipid composition in both healthy brain and glioma are essential to their functioning and survival, 

therefore, for clinically safe and effective application of lipid targeted therapies, comprehensive 

lipid profiling of both tissue types is required. 

 With our workflow, we hypothesized that we could profile a broad range of lipids using 

MRM-MS from small sample volume by LCM, through pathology-informed isolation, to 

interrogate heterogeneity between glioma tumor and neighboring brain. First, we have 
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demonstrated histological analysis can be applied to LCM to isolate discrete regions within 

sectioned glioma tissue. Sequential sections, 5m apart, maintain a highly similar morphology, 

thus pathology-traced tumor regions are representative of that in unstained tissue.54 Next, we 

established a sample dehydration process for LCM capable with lipidomics. Dehydration of 

samples is vital for successful LCM collection; proteomics and genomics workflows permit the 

use of ethanol for drying tissue, but not with lipidomics as lipids would be lost79. Desiccator-based 

dehydration was able to both adequately dry the tissue and preserve the lipids in the sample. Most 

notably, we verified LCM can be integrated with MRM-profiling to screen for lipids in small 

sample volumes. Consistent with previous lipidomics studies utilizing LCM, lipids were preserved 

in isolated tissue67,70. IR and UV laser pulses were non-damaging to the tissue morphology and 

molecular features. High ion signal was also detected during the screen step, indicating adequate 

sample was collected and MRM-MS is compatible with this workflow. 

 Our pilot study identified distinctions between grade I glioma and BAT samples using the 

M2 screening method. Metabolic reprogramming in glioma supports aberrant proliferation, 

concurrent with elevated lipid metabolism. Production of membrane lipids is important throughout 

proliferation to maintain membrane biosynthesis26,80. Grade I glioma maintained 

phosphatidylserine (PS), the most abundance anionic cell membrane lipid, a potential indicator of 

increased membrane synthesis81. PS are predominantly localized on the inner leaflet of the cell 

membrane in normal cells and translocate extracellularly when under oxidative stress69. Glioma, 

and other cancers, more commonly express PS on the outer leaflet of the membrane due to low 

flippase activity82. Recent studies have begun investigating PS as a potential imaging and 

therapeutic biomarker of this lipid class in glioma mouse models81,83. Free fatty acids were also 

found to maintain increased relative abundance in BAT compared to grade I glioma. This directly 

contrasts previous studies that have demonstrated unsaturated fatty acids were elevated in high 

grade gliomas31,32. Fatty acids are essential lipid building blocks; therefore, the decrease in free 

fatty acids could be explained by increased utilization of free FAs in lipid metabolism. The 

turnover rate of FAs in glioma could potential describe the lower expression compared to BAT.  

This study validated the integration of diverse biological techniques to molecularly profile 

glioma and brain around tumor tissue for lipid abundance changes. Application of this workflow 

has potential to define differentially expressed lipids in glioma for therapeutic target identification. 

Current treatments fail to improve patient quality of life and overall survival, thus, there is a critical 
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need to identify lipid biomarkers to serve as targets. Our approach combines comprehensive lipid 

analysis with the capability to investigate tissue heterogeneity; two important features to elucidate 

glioma-specific lipids to further validate for clinical application. 

2.5 Conclusions 

The project’s workflow supports the interrogation of lipid heterogeneity between glioma and BAT 

through the combination of diverse instrumental techniques. The pilot study validated the 

applicability of our integrated workflow to characterize glioma and BAT lipid profiles and perform 

statistical analysis to identify differentially expressed lipids. Preliminary data indicated, glioma 

and BAT groups maintained distinct lipid composition, noted by cluster localization differences 

on the PCA plot (Figure 2.6). Additionally, the two tissue types in the cluster analysis were clearly 

differentiated from one another, visually represented in the heatmap (Figure 2.7). PS, free fatty 

acids, and cholesterol esters were important lipids to distinguish between glioma and BAT. Initial 

findings highlight the potential importance of membrane-related lipids to the glioma disease state 

with elevated PS relative abundance. Lipid profiles will be further investigated, using the workflow 

established in the pilot study, in 13 patient samples across tumor grades I-IV to identify the extent 

of their alterations as glioma progresses towards malignancy. Changes to BAT lipid composition 

will also be examined to elucidate the influence of tumor grade on lipid expression. Lastly, this 

approach will be utilized to distinguish between glioma and BAT tissue, to discover glioma-

specific lipids for future validation as a therapeutic target. 
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3 GLIOMA GRADE LIPID PROFILE ANALYSIS USING MULTIPLE 

REACTION MONITORING MASS SPECTROMETRY 

3.1 Introduction 

Glioma is a rapidly progressing form of brain cancer. The aggressiveness of this tumor increases 

with each grade, noted by aberrant proliferation, diffuse infiltration, and drug resistance. Migration 

of glioma cells from the original lesion makes complete tumor resection impossible, raising the 

likelihood of further progression and recurrence. Additionally, targeted radiotherapy 

stereotactically localized at the tumor lesion site fails to impact invading neoplastic cells in deeper 

in the brain. The invasiveness of glioma has been identified as early as grade II tumors; an attribute 

commonly attributed to higher grade tumors84. Taken together with the propensity of low-grade 

gliomas to undergo malignant transformation, failure to resect and treat glioma at early stages 

inclines patients toward eventual presentation of the deadliest form of glioma, GBM. Targeting 

glioma at lower grades is an appealing strategy as the tumor does not possess many of the attributes 

which make higher grade gliomas largely untreatable. Low grade glioma patients live, on average, 

7 years after diagnosis compared to 15 months with GBM patients. Maintaining glioma at less 

aggressive grades has the potential to better both response to treatment and patient overall survival. 

However, characterization of low-grade glioma molecular profiles remains largely undefined. 

Rapid progression of gliomas has limited the availability of datasets investigating lower grade 

gliomas, like grades II and III, as patients predominantly present with GBM the most common 

high-grade glioma85. Therefore, it is critical to address the gap by profiling lipids across all glioma 

grades to identify lipids vital to the progression progress and use as potential targets to prevent 

malignant transition, improving patient outcomes. 

 In this research, tissue from glioma grades I-IV were isolated to define lipid profiles 

throughout stages of the disease to identify key lipid classes driving malignant progression. 

Throughout progression, cancer cells reprogram their metabolism toward lipid biosynthesis to 

support proliferation, migration, and metastasis86. Lipid concentration was found to increase with 

tumor grade when quantified by proton magnetic resonance spectroscopy highlighting the 

importance of this biomolecule to disease pathology87. Despite this understanding, the diverse 

glioma lipidome remains to be unutilized therapeutically in the clinic. This can be attributed to 
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multiple factors including lack of comprehensive definition of glioma lipids, their associated 

synthesis pathways, and glioma-specific lipid biomarkers to serve as targets. 

Lipidomic approaches using imaging mass spectrometry have recently been utilized to 

characterize glioma lipid composition for subtype discrimination, noting distinctions in sulfatides, 

PS, and PI lipid classes51,88. The capability of IMS to interrogate the lipid distribution in a 

heterogeneous sample, like glioma, providing relevant tumor-specific molecular information to 

support lipid biomarker identification. IMS has made great strides in areas of diagnostics and 

intraoperative applications through its rapid, non-damaging classification of tissue, while also 

providing the groundwork for future mass spectrometry-based lipidomic approaches to investigate 

glioma lipids6. This project seeks to build off of these findings by applying a MS approach with a 

broader detection range to more expansively define distinct lipid species within each grade of 

glioma, while also probe for heterogeneity in glioma tissue. 

To analyze lipids across grades of glioma, laser capture microdissection (LCM) was 

integrated with multiple reaction monitoring-mass spectrometry (MRM-MS) to better understand 

and profile glioma lipid heterogeneity. LCM has previously been combined with liquid 

chromatography-mass spectrometry (LC-MS) to perform lipidomics on both brain and liver 

tissue67,70. Application of LCM supports specific acquisition of glioma tissue within sectioned 

tissue. Glioma grows asymmetrically in the brain, therefore, resected tissue commonly maintains 

a level of non-cancerous brain89. The non-damaging, precision excision of samples will preserve 

molecular features in the tissue while isolating regions of interest for analysis. MRM-MS is a rapid 

profiling approach suited for comprehensive lipid analysis in small sample volume. Detection 

relies on chemical components and molecular features of the molecular, rather than abundance, 

supporting MRM-MS application possible with just a few to several hundred cells41. MRM can 

profile lipids of most classes through established methods tailored for a specific tissue type to 

identify lipids implicated in glioma progression. This is critical as lipid metabolism and species 

produced throughout glioma malignant transition is not well understood. 

In this study, MRM-MS was used to comprehensively define lipid profiles across glioma 

grades, broadening the range of detected lipids, to better understand lipid composition at each stage 

of progression. Results revealed distinctions in lipid profiles between low- and high-grade glioma, 

indicating several lipids species potentially promoting disease progression. 
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3.2 Methods 

The methods employed for sample selection, histological analysis, LCM, lipid extraction, MRM-

profiling, and data processing for glioma samples in this experiment are outlined in Section 2.2 

Analytical design. A total of 32 tumor samples were analyzed from glioma grades I-IV: grade I 

(n=5), grade II (n =12), grade III (n = 9), and grade IV (n = 6). Sample information is provided in 

Table 2.3. Glioma samples and lipids were extracted and profiled concurrently with BAT lipids, 

which are discussed in Chapter 4. Following lipid data acquisition, relative abundances from tumor 

samples were sorted separately from BAT, and analyzed by Metaboanalyst 4.0 

(https://www.metaboanalyst.ca/). Three methods were applied to profile lipids, M1 and PC are 

detailed in Results below. The M2 method results are included in Appendix B.  

3.3 Results 

3.3.1 Lipid profiles by glioma grade 

Principal component analysis (PCA) 

Distinct clusters between glioma grades lipid composition profiled by MRM were indicated in 

PCA plots filtered for lipids with VIP scores  1 (Figure 3.1). PC method showed greater 

discrimination of tumor grade clusters compared to the two embryo methods M1 and M2 (Figure 

3.1B). Grade I glioma clusters (red) in both methods localized separately to higher grade groups 

indicating differential lipid expression. Cluster separation between grade I and grade IV groups 

were also strong in each method demonstrated by separate areas of the plot. Distinctions, albeit 

slight, between grade II and grade III glioma were noted using the PC method indicated by the 

shift in the plot. There was a notable trend of small glioma grade cluster localization shifts in the 

PC method plot. Slight shifts in localization of the grade clusters suggests more specific, rather 

than general, changes to the lipid profile. Overall, PCA plots demonstrate PC and SM lipids 

detected using the PC screening method were effective lipid classes to discriminate changes in 

glioma grade lipid profiles.  

 

https://www.metaboanalyst.ca/
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Profiling Method PC1 (%) PC2 (%) 

M1 Method 44.2 18.2 

PC Method 48.5 16.9 

Figure 3.1 PCA plots indicated distinctions in glioma lipid profiles according to PC1 and PC2 in 

two MRM screening methods. A) M1 method. B) PC method C) PC1 and PC2 scores for both 

screening methods. 

Analysis of variance (ANOVA) 

ANOVA analysis determined three significantly different lipids in M1 method and ten lipids in 

PC method between grades of glioma (Table 3.1). PC and SM lipids, across both methods, 

comprised the majority of differentially expressed lipids in tested tumor samples. High unsaturated 

PC species, PC 36:5 and PC 38:5, were significantly greater in grade I tumor samples compared 

to other grades, a trend that was noted in both methods. Several grade-specific lipids were 

identified in the samples. PC 34:2, PC 36:3, and SM d16:1/24:0 maintained significantly higher 

relative abundances in grade IV samples compared to the three lower grades. PC 36:1 and SM d 

18:0/22:0 relative abundances was significantly greater in grade III samples vs other grades. 

Lastly, grade II possessed significantly higher SM d18:0/18:0 relative abundance to other grades. 

Greater expression of several PC and SM species in grade III and IV samples indicate potential 

critical lipids species to high grade tumor progression. Conversely, greater PC 36:5, PC 38:5, and 

SM d18:0/18:0 expression in grades I and II highlight species that are distinct to low grade glioma 

and could potentially serve as targets to disrupt progression. Significant lipids shared between M1 

and PC methods are further described in Appendix B Figure B.3. 

A) B)

C) 
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Table 3.1 ANOVA computation of lipids with significantly different relative abundances 

between glioma grades.  

 

Cluster analysis (Heatmap) 

Cluster analysis visualized distinctions between glioma grade groups (Figure 3.2). The heatmap 

for M1 of the top 13 indicated separation between lower two grades (I & II) and higher grades (III 

& IV) based two factors, carnitines and differences in PC saturation. Most grade I and II samples 

possessed greater relative abundances of carnitine and high unsaturated PC lipids species, 

clustering to the right of the plot, compared to grades III and IV. Conversely, distinction between 

higher grade samples was determined by greater expression of low unsaturated PC 36:1 and 

saturated SM d18:0/22:0. Grades III and IV, clustered to the left of the plot expressed low relative 

abundance of carnitine and high unsaturated PC species which distinguished them from the lower 

grades. The PC heatmap was separated into three clusters based off the top 5 lipids displayed. 

Grade I, clustered together in the center, maintained consistently higher relative abundance of PC 

36:5 and PC 38:5. Grade II expressed low levels of each of the five lipids in the plot and clustered 

to the right. Grades III and IV had greater relative abundances for PC and SM species PC 36:2, 

Lipid Species f.value p.value -log10(p) FDR Fisher's LSD

M1

PC 38:5 13.637 1.14E-05 4.9425 0.0010845 Grade 1 - Grade 2; Grade 1 - Grade 3; Grade 1 - Grade 4

PC 36:5 10.995 6.06E-05 4.2177 0.0028776 Grade 1 - Grade 2; Grade 1 - Grade 3; Grade 1 - Grade 4

O-17-
carboxyheptadec

anoylcarnitine
9.2628 0.00020327 3.6919 0.0064369 Grade 1 - Grade 2; Grade 1 - Grade 3; Grade 1 - Grade 4

PC

PC 38:5 52.306 1.34E-11 10.874 1.35E-09 Grade 1 - Grade 2; Grade 1 - Grade 3; Grade 1 - Grade 4

PC 36:5 21.905 1.66E-07 6.7793 8.39E-06 Grade 1 - Grade 2; Grade 1 - Grade 3; Grade 1 - Grade 4

PC 36:2 12.86 1.83E-05 4.7381 0.00061531
Grade 2 - Grade 1; Grade 3 - Grade 1; Grade 4 - Grade 1; Grade 3 - Grade 2; 

Grade 4 - Grade 2

SM d16:1/24:0 12.062 3.02E-05 4.5207 0.00076135 Grade 4 - Grade 1; Grade 3 - Grade 2; Grade 4 - Grade 2; Grade 4 - Grade 3

SM d18:0/22:0 10.991 6.07E-05 4.2166 0.0012267 Grade 3 - Grade 1; Grade 4 - Grade 1; Grade 3 - Grade 2; Grade 3 - Grade 4

PC 36:1 10.463 8.69E-05 4.0608 0.0014633 Grade 2 - Grade 1; Grade 3 - Grade 1; Grade 3 - Grade 2; Grade 3 - Grade 4

PC 36:3 9.6165 0.00015742 3.8029 0.0022714 Grade 3 - Grade 1; Grade 4 - Grade 1; Grade 4 - Grade 2; Grade 4 - Grade 3

SM d18:0/18:0 8.7164 0.00030444 3.5165 0.0035485 Grade 2 - Grade 1; Grade 2 - Grade 3; Grade 2 - Grade 4

PC 36:8 8.6659 0.0003162 3.5 0.0035485 Grade 1 - Grade 2; Grade 1 - Grade 3; Grade 4 - Grade 2

PC 34:2 5.6289 0.00378 2.4225 0.038178 Grade 4 - Grade 1; Grade 4 - Grade 2; Grade 4 - Grade 3
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SM d16:1/24:0, and SM d18:0/22:0, clustering both grades to the left. Taken together, PC and SM 

lipid species can aid in distinguishing lower-grade and higher-grade gliomas. 

 

Figure 3.2 Heatmap cluster analysis indicated PC and SM lipids distinguished between lower 

grade (I & II) and higher grade (III & IV) gliomas. A: M1 method. B: PC method. 

 

3.3.2 Low grade vs high grade lipid profiles 

PCA 

Principal component analysis of low- and high-grade glioma lipids, with a VIP score 1, indicated 

discrimination between tissue type lipid profiles in the PC method (Figure 3.3). The M1 method, 

comprised of mainly of PC, SM, TAG, and carnitines, showed negligible separate between tumor 

grades, suggesting embryo method lipids were unable to differentiate between groups. The PC 

method, comprised entirely of PC and SM species, demonstrated a trend of discrimination between 

low- and high-grade glioma groups based on lipids in these two classes (Figure 3.3B). Proximity, 

but not overlap, of points on the PC method PCA plot suggests comparable lipid profile with the 

A)

B)
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exception of a few lipid species. Similar lipid profiles were noted between grades II and grade III 

tissue, based on lipids included in the PC method, when comparing samples by grade, and could 

account for the similar localization of groups in the PC PCA plot.  

 

Profiling Method PC1 (%) PC2 (%) 

M1 Method 43.1 17.1 

PC Method 35.5 25.3 

Figure 3.3 PCA plot revealed low- and high-grade glioma discrimination trend using PC and SM 

detected in the PC screening method. A) M1 method. B) PC method. C) PC1 and PC2 scores for 

both screening methods. 

T-test 

T-test analysis of lipid relative abundance distinctions between low- and high-grade glioma 

samples revealed four significantly differentially expressed lipids (Table 3.2). Significant lipids 

consisted entirely of PC and SM class lipids, similar to that seen in by grade analysis (Table 3.1). 

Each of the four lipids were significantly higher in high-grade samples compare to low grade. 

Differentially expressed PC lipids shared similar composition, having the same number of carbons 

and are both unsaturated. Significant SM species also shared similar structural features, being both 

saturated and long chain SMs. Taken together, unsaturated PC lipids and long, saturated SM 

highlight distinct lipids species as glioma transitions from low to high grade, indicating lipid 

species and their compositional features that could be indicative of malignant glioma.  

  

A) B)

C) 
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Table 3.2 Significant PC method screened lipids between low- and high-grade glioma 

 
 

Cluster analysis (Heatmap) 

Cluster analysis identified distinctions between low- and high-grade tumor groups in both M1 and 

PC MRM-screening methods (Figure 3.4). Discrimination between tumor groups in the M1 

method was driven by differential expression of two lipid classes, phosphatidylcholines and 

carnitines (Figure 3.4A). The top 5 distinguishing lipids indicated PC and carnitine species 

maintained higher relative abundance in low-grade tumor compared to high-grade tumor. As tumor 

progresses, a diminished expression pattern was noted for these lipids; suggesting several 

outcomes, the species are being converted into different lipid species not screened for in this 

method and/or lipid biosynthesis is altered to produce different lipid species or classes. Low- and 

high-grade tumor groups were also discriminated in the PC screening method due to relative 

abundances distinctions of two lipid classes, PC and SM (Figure 3.4B). Top 5 lipids used to cluster 

glioma groups maintained higher relative abundances in high-grade tumors vs low-grade. PC lipids 

differentially expressed in high-grade tumors were all classified as unsaturated (one or more 

double bonds) and maintained identical 36-carbon chain length structure. Additionally, 

differentially expressed SM species possessed similar structural features. The SM species were 

classified as saturated and long-chain length lipids, based on the chain length parameters set in this 

study. Taken together, the result highlight PC and SM species maintain distinct relative abundance 

between low- and high-grade gliomas. Even further, alterations to lipid chain length and saturation 

could also be a factor during high grade glioma transition.   

 

Lipid Species t.stat p.value -log10(p) FDR

PC 36:2 5.1283 1.62E-05 4.79 0.0016379

SM d16:1/24:0 4.4889 9.82E-05 4.0079 0.0038268

SM d18:0/22:0 4.4366 0.00011367 3.9444 0.0038268

PC 36:3 3.7143 0.00083184 3.08 0.021004
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Figure 3.4 Heatmap analysis showed distinctions between low- and high-grade gliomas clusters 

by differential expression of PC, SM, and carnitine lipid species. A) M1 method. B) PC method. 

Lipid chain length and saturation analysis 

Lipid chain length and saturation analysis identified distinction between low- and high-grade 

glioma based on these chemical features. Of note, PC and SM lipid classes were the only lipid 

classes found to be maintained at significantly different average sum relative abundances between 

tumor groups. PC lipids showed a shift in saturation status as the disease progressed from low- and 

high-grade. Low-grade glioma expressed significantly higher saturated average sum PC relative 

abundance (Figure 3.5A, p  0.05). Additionally, high-grade gliomas were comprised of 

significantly greater low unsaturated average sum PC relative abundance (Figure 3.5B, p  0.05), 

determined by the non-parametric Dunn’s test. High-grade gliomas also maintained significantly 

higher of two types of SM. Low unsaturated SM were found to have a significantly greater 

expression in high-grade vs low-grade glioma (Figure 3.5C, p  0.05). Lastly, long-chain SM were 

the most differentially expressed lipid subtype between low- and high-grade gliomas of all the 

lipids sampled (Figure 3.5D, p < 0.0001). In summary, PC and SM saturation state and chain length 

were important chemical features to consider when classifying progression of glioma as 

distinctions in relative abundances were identified.  

 

A)

B)
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Figure 3.5 Chain length and saturation analysis identified significantly different PC and SM 

relative abundances between low- and high-grade glioma. A) Saturated PC, B) low unsaturated 

SM, C) low unsaturated PC, D) long chain SM. *p 0.05, ***p 0.0001 

Receiver operating characteristic (ROC) 

To determine the diagnostic ability of MRM-profiled lipids to distinguish between low- and high-

grade glioma, ROC curve analysis was performed (Figure 3.6). Across both methods, five lipids 

were identified to maintain an area under the curve (AUC)  0.8. The AUC above 0.8 is a threshold 

standard set to be considered potentially clinically applicable upon further validation. Each of the 

five lipids had greater relative abundances in high grade tumors. Three PC lipids, PC(36:1), 

PC(36:2), and PC(36:3), possessed an AUC  0.8; sharing similar chemical characteristics as each 

are 36-carbons in length and are unsaturated (Figure 3A-C). Additionally, two SM species, SM 

d(16:1/24:0) and SM d(18:0/22:0) were identified with AUC  0.8. Both SM species were 

saturated and long chain in structure. Four of the five lipids with an AUC  0.8 maintained 

significantly different relative abundances, with the exception of PC(36:1). To conclude, ROC 

curve analysis showed discrimination between low- and high-grade glioma based on higher 

relative abundance of five PC and SM species. 
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Figure 3.6 Univariate ROC curves for PC method screened lipids identified differential 

expression of PC(36:1, 36:2, and 36:3) and SM(d16:1/24:0 and d18:0/22:0) between low- and 

high-grade glioma groups. 

 

 

The capacity of the five PC method screened lipids with AUC  0.8 to distinguish between tumor 

groups was evaluated and showed strong discrimination power (Figure 3.7). This analysis is 

performed by testing lipids with AUC  0.8 together in the model, and through use the combination 

of lipids species, determine the ability of the lipids to distinguish between glioma groups. The 

tester analysis combining lipid information yielded an AUC of 0.932. Utilization of these five lipid 

species highlighted their sensitivity in distinguishing tissue types as each was differentially 

expressed in high-grade glioma tissue.  

  

A) B) C)

D) E)
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Figure 3.7 Strong discrimination power of most differentially expressed lipids to distinguish 

between glioma groups.  

3.3.3 Glioma grade 2 vs grade 3 

PCA 

Principal component analysis identified a trend of discrimination between grade II and III clusters 

(Figure 3.8). Twenty-six lipids possessed a VIP score  1 in this model and were considered in the 

plot. M1 and PC methods displayed a slight shift in point localization on the plot suggesting a 

change in lipid profiles between glioma grades. Clusters were proximal to one another indicating 

the distinctions in lipid composition were isolated to specific lipid species rather than more general 

expression. To conclude, multivariate analysis showed more minute changes to lipid species 

expression were present between grade II and III glioma. 
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Profiling Method PC1 (%) PC2 (%) 

M1 Method 32.4 26.5 

PC Method 38.1 20.2 

 

Figure 3.8 Discrimination of grade II and grade III glioma by M1 and PC screening methods in 

PCA plot. A) M1 method, B) PC method, C) PC1 and PC2 scores for both screening methods. 

Cluster analysis (Heatmap) 

Cluster analysis identified distinctions between grade II and grade III glioma groups in both M1 

and PC screening methods (Figure 3.9). M1 method discriminated gliomas grades with differential 

expression of three lipid classes: PC, SM, and carnitines. The heatmap of the top 12 lipids 

demonstrated grade II gliomas were clustered together based on increased relative abundance of 

carnitine species and low unsaturated PC relative abundance (Figure 3.9A). Grade III glioma 

clustered based on elevated relative abundance of unsaturated PC species PC(36:8) and PCo(34:1 

and 36:1) and low relative abundance of carnitine species. Discrimination between grades II and 

III was noted in the PC heatmap based on differential expression of PC and SM species (Figure 

3.9B). Grade II glioma clustered together due to elevated relative abundance of medium chain SM, 

which contain between 17 to 21 carbons in their structure. Grade III glioma were distinguished by 

higher relative abundance of low unsaturated PC(36:1, 36:2, and 38:2) and long chain 

SM(d18:1/24:0, d16:1/24:0, d18:1/24115z, and d18:0/22:0). Taken together, grade II and grade III 

were distinctly clustered based on differential expression of low unsaturated PC and long chain 

SM lipids. 

   

A) B)

C) 
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Figure 3.9 Heatmap analysis demonstrated distinct grade II and II clusters based on differential 

expression of PC, SM, and carnitines across two MRM-profiling methods. A) M1 method, B) PC 

method. 

  

A)

B)
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Receiver operating characteristic (ROC) 

ROC curve analysis evaluated discriminating capacity of MRM-profiled lipids and identify lipids 

with an AUC  0.8. Six lipids were determined to be above the standard AUC threshold indicating 

applicability to differentiating glioma grades in this model (Figure 3.10). Five of six species 

expressed greater relative abundances in grade III glioma compared to grade II. Discrimination 

between glioma grades was based on differential expression of lipids in PC and SM classes. Two 

unsaturated PC(36:1 and 36:2) species were identified as discriminant. Additionally, four SM were 

found to be strong discriminating factors. Long chain SM(d18:1/24:0, d16:1/24:0, d18:1/24115z, 

and d18:0/22:0) were discriminant lipids with higher expression in grade III tumors. 

SM(d18:0/18:0), classified as a medium chain SM, was the only lipid expressed higher in grade 

II. In summary, low unsaturated PC and long-chain SM were discriminant species to identify grade 

III vs grade II, indicating a shift in PC and lipid structure between grades. 

 

 

Figure 3.10 Individual ROC curves of PC and SM species with distinct relative abundances that 

discriminate between grade II and III glioma. 

 

 

The combined discriminating capacity of lipids with AUC  0.8 to discern different tumor grades 

was also evaluated. Combining lipid information of these six lipids possessed strong distinguishing 

ability, achieving an AUC score of 0.987. Applying the combination of six lipids to sample 

A) B) C)

D) E) F)
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prediction yielded no incorrect labeling of glioma grade highlighting the high accuracy when 

discriminating between groups.   

 

Figure 3.11 Strong discriminating capacity of PC and SM species with AUC  0.8 to correctly 

label between glioma grades II and III. 

3.4 Discussion 

Due to the importance of lipids to supporting glioma growth, driven by metabolic reprogramming 

toward lipid biosynthesis, it is critical to investigate changes in lipid profiles as the disease 

progresses. In this study, 32 glioma samples across all four grades were screened by three MRM-

profiling methods, M1 and M2 (embryo) and PC (phosphatidylcholine and sphingomyelin), to 

detect distinctions in lipid composition through malignant transition. Profiling data was processed 

to analyze lipid differences between individual grades, low- and high-grade, and grade II and III 

that are relevant to glioma progression. Significant distinctions in lipid profiles as glioma 

progresses to higher grades were observed. 

 Lipid profiles between individual glioma grades were observed to express significantly 

different compositions of phospholipid species. Phospholipids are integral structural components 

of cell membranes and have been linked to cellular processes like signaling and proliferation90. 

Literature has also identified altered expression of phospholipids in glioma tumors91. 

Phosphatidylcholine, a class of phospholipid comprised of a choline head group, 

glycerolphosphoric acid, and fatty acids, species were observed to effectively differentiate between 

glioma grades92. Constantin and colleagues determined choline metabolites within the PC 
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synthesis pathway were effective in distinguishing between low grade glioma and higher grades 

III and IV, noting a grade-related increase in level of these species93. Elevated total 

phosphatidylcholine and associated metabolites, due to aberrant phospholipid metabolism, were 

identified to be hallmarks of cancer cell molecular profiles. Increased expression of choline-

containing phospholipids has been purported to be connected to malignant transformation in 

cancer94. Studies targeting phosphatidylcholine-specific phospholipase C (PC-PLC) produced 

lower total PC content, loss of mesenchymal phenotype, and diminished migration in cancer 

cells95. Previous studies demonstrating the importance of PC lipids to aggressive cancer 

phenotypes warrants further characterization of phospholipid metabolism for therapeutic 

application. 

 Multivariate analysis indicated slight shifts in glioma grade clusters suggesting subtler 

changes to lipid profiles occur during disease progression. Grade I glioma clustered most 

discriminately from other grades due to expression of grade-specific lipids PC(36:5 and 38:5). 

Being the most benign form of glioma and least likely to progress, patient outcomes are favorable 

when presenting with this tumor4,12. Relative abundances of PC(36:5 and 38:5) were observed to 

decrease with each increase in tumor grade. Diminished relative abundance of these two PC 

species differs from the trend denoted in literature that PC concentration is greater in malignant 

glioma stages, as this perspective does not account for alterations to individual species within this 

lipid class. Instead, our findings support the trend that changes to PC species distinct between 

glioma grades is concurrent with increase in total PC concentration. This study identified several 

unsaturated, grade-specific PC species highlighting these alterations (Table 3.1). Elevated levels 

of unsaturated membrane phospholipids, like PC, were identified to promote membrane fluidity 

and tumor invasion, an acknowledged aggressive characteristic of glioma32,96. Increased 

expression of unsaturated PCs in glioma are maintained due to aberrant levels of unsaturated free 

fatty acids present in malignant glioma cells31,97. Acetyl-CoA carboxylase (ACC) and fatty acid 

synthease (FAS) regulate fatty acid synthesis and are overexpressed in GBM tumor, driving 

aberrant FA synthesis98. Targeted inhibition of these proteins was observed to hinder cancer cell 

growth, effectively lowering available free fatty acids99. As high-grade glioma in this study 

maintained differential expression of unsaturated PC species, focusing on altering lipid saturation 

status presents as an appealing strategy to impede glioma progression and invasion in the brain. 
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Shift in lipid saturation indicates cells are adapting to current microenvironmental as well 

as intracellular conditions. In the context of cancer, altering lipid saturation incurs benefits in 

aspects of drug and oxidative stress resistance as well as cell motility86. Due to gliomas high 

metabolic demands and proliferation rate, elevated levels of reactive oxygen species (ROS) are 

produced. Accumulation of ROS can result in oxidative-stress induced cell death, therefore, cancer 

cells alter FA saturation to limit this outcome100. Cancer increases resistance to oxidative stress, 

induced by factors such as hypoxia, lipid peroxidation, and metabolic reprogramming, by 

increasing levels of saturated and monounsaturated fatty acids101. These two FA saturation types 

provide greater resistance to ROS-induced stress than poly-unsaturated FAs, and cancer increases 

de novo fatty acid synthesis if conditions are suitable to adapt to cytotoxic conditions. Cancer also 

becomes more drug resistant by modulating membrane lipid saturation101. Increasing membrane 

saturated fatty acid concentration alters membrane dynamics; reducing the fluidity of the 

membrane by more densely packing lipids decreases drug uptake, thereby diminishing treatment 

efficacy. Lipid unsaturation in cancer promotes increased membrane fluidity allowing for greater 

mobility102. Therefore, migrating cancer cells will likely express greater concentration of poly-

unsaturated lipids within the membrane compared to non-migratory cancer cells. Altering lipid 

saturation provides glioma with flexibility to adapt to traditionally cytotoxic stressors, allowing 

cancer to survive the suboptimal condition and eventually further progress the disease by migrating 

deeper into tissue. Modulating lipid saturation state could be an attractive aspect to explore as a 

therapeutic target as maintaining proper lipid saturation type is crucial for glioma survival. 

 Analysis also detected differential expression of sphingomyelin species between grades. 

Similar to PC lipids, SM are responsible for modulating membrane fluidity and structure, but also 

are a component of lipid rafts103. Lipid rafts are microdomains that coordinate signal transduction 

in the membrane and increased expression were found in tumors104,105. SM species contained in 

lipid rafts are predominantly classified as long-chain and saturated106. Our results observed 

saturated, long-chain SM maintain greater relative abundances in high-grade glioma, suggesting 

potentially greater lipid raft expression in malignant glioma. Glioma tumors have highly 

deregulated signaling pathways that support growth, and elevated lipid raft expression could be 

promoting this pro-tumorigenic behavior107. Receptor-mediated signaling initiated at lipid rafts 

have been implicated to stimulate both ACC and FAS for production of fatty acids later used to 

generate phospholipids7,105,108. Therapeutics targeting lipid rafts are currently in development; 
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simvastatin, a cholesterol-lowering drug, treated glioma cells targeting this microdomain 

suppressed tumor migration109,110. Cholesterol is important not only to normal brain functioning 

and composition, but for glioma as well. In healthy brain, cholesterol is predominantly localized 

within both brain neural and glial cell plasma membranes and as a structural component of neuron 

myelin sheaths24. Glioma maintain high demand for cholesterol sustain oncogenic processes such 

as elevated proliferation, survival, and cell signaling108. As a membrane component, cholesterol 

supports formation of lipid rafts previously identified to be critical for driving tumorigenesis111. 

Studies have identified elevated lipid raft expression in several cancer types, highlighting a viable 

therapeutic target to consider. Current statin trials postulate reducing the available cholesterol 

within glioma cells will decrease lipid rapid formation, thereby hindering various oncogenic 

signaling initiated at these sites and inhibit further tumor growth110. In-vitro studies have shown 

treating glioma cells with simvastatin, a clinically approved statin capable of crossing the blood 

brain barrier, reduced proliferation and migration, while also inducing apoptosis112. Modulating 

cholesterol within glioma produced anti-tumor effects, highlighting a vulnerability to target. 

Further research has discovered glioma relies on exogenous sources of cholesterol to satisfy 

demands, due to their inability to perform de novo cholesterol synthesis, implicating the 

surrounding brain in supporting tumor growth113,114. In this study, broader lipid profiling of both 

glioma and surrounding brain will elucidate additional lipid classes, supplemental to cholesterol, 

that are potentially provided by brain around tumor to support tumor growth. Profiling lipid classes 

such as phospholipids and sphingolipids, two components of lipid rafts, will highlight potential 

novel biomarkers to target and dysregulate oncogenic signaling that supports tumorigenesis in 

glioma. Further investigation into effective targeted approaches to disrupt lipid rafts is needed, and 

our results highlight long-chain SM as an additional lipid classes to consider as targets. 

 This study demonstrated that membrane lipids PC and SM were differentially expressed 

across glioma grades. Distinct lipids detected by MRM-profiling improved the understanding of 

lipid profile changes throughout glioma progression. Better definition of glioma lipid composition 

at each glioma grade elucidates potential therapeutic biomarkers to target and hinder malignant 

transition. Preventing high-grade progression can improve overall survival and clinical outcomes 

for glioma patients, which are aspects that current therapeutics fail to achieve. MRM-profiling 

provides both the sensitivity and comprehensive lipid analysis needed to identify targetable lipid 
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pathways. This study introduces several lipids species to investigate further for therapeutic 

application. 

3.5 Conclusions 

MRM-profiling identified differential expression of PC and SM species throughout glioma 

progression. Subtle, rather than general, changes to lipid composition were observed between 

tumor grades. 11 individual PC and SM species were found to be significantly different between 

grades, 8 of which were grade specific (Table 3.1). PC and SM saturation and chain length 

differences were also identified, with high grade possessing greater low unsaturated PC and long-

chain SM (Figure 3.5). Lastly, ROC curve analysis indicated significant PC and SM maintained 

strong discriminating power to distinguish between low- and high-grade groups and also grade II 

and grade III. In summary, MRM-profiling elucidated phospholipids PC and SM, especially those 

with unsaturated composition, as critical lipid species during glioma progression. This study 

provided insight into critical lipids to further investigate to validate for therapeutic application.        
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4 BRAIN AROUND TUMOR LIPID PROFILE ANALYSIS USING 

MULTIPLE REACTION MONITORING MASS SPECTROMETRY 

4.1 Introduction 

With increased understanding of the importance of lipids in glioma and the impact changes in 

composition has throughout disease progression, emphasis must be focused on the influence of 

tumors on surrounding non-cancerous brain, also reliant on lipids for proper functioning. Studies 

have found healthy brain parenchyma surrounding tumor becomes compromised due to the 

aggressive nature of glioma115. Additionally, patient assessments determined between 86-89% of 

those with primary brain tumor displayed impairments to neurocognitive functioning (NCF)116. 

Increased intracranial pressure, caused by hydrocephalus, has been observed to negatively impact 

cognitive processes; however, improvement to Karnofsky Performance Score (KPS), a patient 

impairment test, was noted following ventriculoperitoneal shunt surgery117. Alleviation of 

intracranial pressure failed to completely restore cognitive deficits in patients suggesting additional 

factors contributing to patient deficits. 

 Brain lipid composition maintenance, especially phospholipid and cholesterol species, is 

essential for normal brain functioning21,118. Dysregulation of these lipid classes in the brain have 

been implicated in neurodegenerative and neuropathological disease development119,120. Motor 

and cognitive impairments, characteristic of neurodegenerative diseases like Parkinson’s and 

Alzheimer’s diseases, are comparable to symptoms present in glioma patients. However, unlike 

these diseases, there is limited evidence defining the contribution of lipid profile alteration in brain 

surrounding tumor, compromised by glioma-related factors, to NCF and disease development. 

Proximity to tumor exposes non-cancerous cells to paracrine and autocrine signaling factors 

identified to support cancer proliferation, motility, and invasion121. In a study comparing molecular 

characteristics of normal and breast cancer tissues, non-cancerous myoepithelial cells within the 

tumor microenvironment exhibited significantly different gene expression patterns to normal 

breast cells122. Another study identified glioma cells manipulate astrocytes to release matrix 

modifying factors to facilitate invasion123. Evidence suggests glioma not only influences 

surrounding brain leading to cognitive impairments, it also manipulates molecular expression to 

support tumorigenesis. Therefore, it is critical to investigate brain around tumor lipid profiles 
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throughout glioma progression to identify both the impact of tumor grade on BAT lipid expression 

and species that potentially could contribute to tumor growth.   

 In this study, glioma grade-related influence of brain around tumor lipid composition was 

evaluated by MRM-profiling. Previous lipidomics studies have evaluated brain surrounding 

glioma for diagnostic purposes, using lipids to differentiate from glioma, and not to discover 

glioma manipulation of lipid composition9,54. Weiss et al. 2016 demonstrated glioma are unable to 

produce cholesterol through de novo synthesis and rely on an exogenous source for cholesterol to 

meet metabolic demands113. Healthy brain possesses two methods to generate cholesterol, de novo 

synthesis and preformed cholesterol uptake, highlighting a lipid metabolism mechanism glioma 

can control to acquire essential lipids119. Taken together, it is critical to further investigate lipid 

profiles in BAT exposed to glioma of all grades to elucidate additional lipid pathways that are 

manipulated by tumor to support growth. This study evaluates twenty-seven BAT samples from 

glioma grades I-IV isolated by laser capture microdissection. MRM-MS was used to profile 

expression changes and determine grade-related differences in BAT lipid composition. 

4.2 Methods 

Brain around tumor were profiled using selection, tissue isolation, lipid extraction and analysis, 

and statistical processing methods described in Analytical Design section 2.2. In this study, 27 

BAT samples neighboring glioma grades I-IV were analyzed: BAT grade I (n = 3), BAT grade II 

(n = 9), BAT grade III (n = 6), and BAT grade IV (n = 9). Information regarding tumor influencing 

BAT lipid profiles are provided in Table 2.3. Brain around tumor samples were processed and 

profiled simultaneously with tumor samples, previously described in Chapter 3, to maintain 

consistent experimental conditions during analysis. Captured lipid composition data from three 

screen methods (M1, M2, and PC) were converted into relative abundances, following MRM-

profiling, and statistical analysis was performed using Metaboanalyst 4.0 

(https://www.metaboanalyst.ca/). Results will focus on data output from M1 and PC screening 

methods, M2 data is outlined in the Appendix C. 

  

https://www.metaboanalyst.ca/
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4.3 Results   

4.3.1 Brain around tumor by grade 

Principal Component Analysis (PCA) 

Multivariate analysis identified distinct clusters between BAT grades based on lipid composition 

profiled by MRM-MS (Figure 4.1). Lipids included in this plot had a VIP score  1.0. Strong 

discrimination between BAT group clusters were noted in both M1 (embryo) and PC 

(phosphatidylcholine and sphingomyelin) screening methods. Distinct cluster localization of BAT 

groups using the M1 method was influenced by differential expression of carnitine, TAG, and PC 

lipid species (Figure 4.1A). BAT grade clusters were distinguished in the PC PCA plot due changes 

in PC and SM chain length and saturation (Figure 4.1B). Complete separation of BAT clusters was 

not noted in the plots; however, localization shifts in points as the glioma progressed was observed. 

Clusters in adjacent BAT grades were largely separate from one another indicating a significant 

change in lipid composition. Overall, M1 and PC PCA plots identified distinctions in lipid profiles 

in BAT tissue suggesting proximity to microenvironments of different glioma grades has a role in 

their lipid expression patterns.   

 

 

Profiling Method PC1 (%) PC2 (%) 

M1 Method 41.8 66.5 

PC Method 12.2 9.8 

Figure 4.1 PCA plot indicated discrimination in BAT grade lipid compositions in two screening 

methods according to PC1 and PC2. A) M1 method, B) PC method, C) PC1 and PC2 scores for 

both screening methods. 

A) B)

C) 
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ANOVA 

Significance testing by ANOVA determined significant differences in individual expression 

between BAT grades in both M1 and PC methods. The M1 screening method identified 40 

significantly different lipids species between BAT groups; table detailing level of significance and 

comparison of groups with differential expression using Fisher’s LSD noted in the Appendix Table 

B.1. Additionally, the PC screening method detected 75 individual lipid species with significant 

differences between BAT grades Appendix Table B.2. Significant lipid species in the M1 method 

included PC, SM, carnitines, and triglycerides. PC method lipids with significantly different 

expression were predominantly unsaturated PC, as well as short and long chain SM. ANOVA 

highlighted notable lipid composition changes BAT undergoes while under the influence of 

different glioma grades. Significant lipids shared between M1 and PC methods are further 

described in Appendix C Figure C.3. 

Cluster analysis (Heatmap) 

Cluster analysis demonstrated distinct grouping of each BAT grade across M1 and PC screening 

methods (Figure 4.2). The M1 heatmap clustered groups based on differential expression of PC, 

SM, carnitine, and TAG class lipids (Figure 4.2A). Lower BAT grades (I and II) were grouped 

based on elevated relative abundance of carnitine and TAG lipids, especially grade I BAT. BAT 

exposed to higher grade glioma (III and IV), lower expression of lipids in these classes were 

observed. Grade III BAT were distinguished by increased expression of low unsaturated PCs and 

long chain SMs. Grade IV BAT lipid expression patterns were mixed, maintaining an intermediate 

level of lipids used to differentiate between lower and higher-grade BAT groups. Similar trends in 

group clustering were noted in the PC heatmap (Figure 4.2B). Grade I BAT was distinguished by 

high relative abundance of PC(30:0, 36:5, 38:5) in addition to high unsaturated PC lipids which 

clustered grade II BAT. Grade III BAT clustered due to elevated low unsaturated PC and long 

chain SM species. Comparable to M1, grade IV maintained intermediate levels of both low and 

high unsaturated PCs. Overall, heatmaps display distinct lipid profiles between BAT grades. 
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Figure 4.2 Cluster analysis demonstrated lipid composition distinctions in two MRM methods 

between BAT influenced by glioma grades I-IV. A) M1-top 45 lipids, B) PC-top 44 lipids. 

4.3.2 Low grade v high grade brain around tumor 

PCA 

PCA plots for M1 and PC screening methods identified discrimination trends in clusters between 

low- and high-grade BAT groups (Figure 4.3). Lipids with VIP score  1.0 were considered in the 

PCA plot. Both plots shared localization of several points within the group cluster, indicating a 

certain level of overlap in lipid expression. However, distinctions between groups were noted, 

especially in the PC method plot (Figure 4.3B). PC method cluster separation was determined by 

differential expression of unsaturated PC lipid species between groups. M1 also exhibited 

discrimination in low- and high-grade BAT clusters (Figure 4.3A). Relative abundances 

differences in carnitine and TAG species were observed to distinctly cluster these two BAT groups. 

In summary, PCA plots demonstrate distinctions in low- and high-grade BAT lipid composition.  



71 

 

Profiling Method PC1 (%) PC2 (%) 

M1 Method 49.9 79.6 

PC Method 8.8 5.1 

Figure 4.3 PCA plots indicate distinct lipid profiles between low- and high-grade BAT points 

through discriminate group clustering. A) M1 method, B) PC method, C) PC1 and PC2 scores 

for both screening methods.  

T-test 

T-test analysis for significantly different relative abundances between groups identified a total of 

75 distinct lipids across both methods. The M1 method had 23 differentially expressed lipids 

between low- and high-grade BAT samples, statistical analysis data are noted in Appendix Table 

B.3. Primarily carnitines and TAGs comprised lipids maintaining distinct expression, but also 

included several PC and SM species. The PC screening method observed 52 lipids with 

significantly different expression between BAT types and are described in Appendix Table B.4. 

Unsaturated PC species largely were differentially expressed between low- and high-grade BAT, 

most notably high unsaturated PC in low grade BAT. Taken together, t-tests demonstrate the 

markedly distinct lipid compositions maintained between BAT manipulated by low- and high-

grade glioma. Significant lipids shared between M1 and PC methods are further described in 

Appendix C Figure C.6. 

  

A) B)

C) 
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Cluster analysis (Heatmap) 

Cluster analysis demonstrated distinct grouping between low- and high-grade BAT groups in both 

M1 and PC screening methods (Figure 4.4). The heatmap for M1, displaying the top 55 lipids 

profiled, indicated the separation of BAT types by differential expression of three lipid classes: 

PC, TAG, and carnitines (Figure 4.4A). Low-grade BAT expressed greater relative abundances of 

carnitine and TAG class lipids compared to the high-grade group. Conversely, SM and unsaturated 

PC species were observed at elevated relative abundances in high-grade BAT with lower levels of 

carnitines and TAGs. The M1 heatmap displayed a shift from carnitine and TAG dominant 

composition in low-grade BAT to PC and SM dominant in high-grade BAT highlighting a shift in 

lipid composition. Distinctions between BAT types were also visualized in the PC heatmap (Figure 

4.4B). Low-grade BAT expressed higher relative abundance of high unsaturated PC than high-

grade BAT. High-grade BAT displayed two noticeable lipid patterns; low relative abundances of 

high unsaturated PCs with elevated levels of low unsaturated PCs, or intermediate levels of high 

unsaturated PCs and low relative abundance of low unsaturated PCs. Taken together, cluster 

analysis identified carnitine, TAG, and high unsaturated PC relative abundances to be distinctly 

expressed in low-grade BAT, and short and low unsaturated PCs distinct in high-grade BAT, 

elucidating changes in lipid composition BAT undergoes during glioma malignant transition.  

 

Figure 4.4 Heatmap analysis indicates distinct low- and high-grade BAT clustering based on 

distinctions in PC, carnitine, and TAG relative abundance in M1 and PC methods. A) M1- top 55 

lipids, B) PC- top 38 lipids.  
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Lipid chain length and saturation analysis 

Lipid chain length and saturation analysis identified distinctions in total lipid relative abundances 

between low- and high-grade BAT based on chemical characteristics (Figure 4.5). PC and SM 

were the only two lipid classes with significantly different expression between tissue types. Level 

of PC saturation was observed to shift between low- and high-grade BAT. Low-grade BAT 

maintained significantly greater average sum relative abundance of high unsaturated PC (Figure 

4.5C, p0.01). Conversely, high-grade BAT expressed greater average sum relative abundance of 

low unsaturated PC than low-grade BAT (Figure 4.5A, p0.01). Short PC average sum relative 

abundance was also significantly elevated in high-grade BAT (Figure 4.5B, p0.05). A change in 

SM chain length was observed to change during BAT types exposed to glioma during malignant 

transition. Average sum relative abundance of short chain SM were significantly higher in low-

grade BAT (Figure 4.5D, p0.0001). Lastly, as glioma transitioned to high-grade, medium chain 

SM were expressed at significantly higher average sum relative abundance (Figure 4.5E, p0.01). 

In conclusion, alteration to PC saturation status and SM chain length were trends observed in BAT 

influenced by glioma tissue, exposing a potential lipid composition change that may be relevant to 

malignant glioma progression. 
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Figure 4.5 Chain length and saturation analysis indicated distinct alterations to PC saturation and 

SM chain low- and high-grade BAT undergo during malignant transition. A) Low unsaturated 

PC, B) short chain PC, C) high unsaturated PC, D) Short chain SM, and E) Medium chain SM. 

*p0.05, **p0.01, ***p0.0001 

ROC Curve 

ROC curve analysis was performed to determine discrimination power of detected lipids, in M1 

and PC methods, to correctly label BAT type. 17 individual lipids captured in the M1 screening 

method maintained an AUC greater than 0.8 Appendix Table B.5. The top 5 AUC scores consisted 

of three TAG species and two PC species (Figure 4.6). Comparison of low- and high-grade BAT 

showed discriminant PC, TAG, and carnitine lipids for these groups. TAGs were predominantly 

expressed in low-grade BAT, supporting their discrimination capacity for this tissue type (Figure 

4.6A-C). Additionally, several low and high unsaturated PCs possessed an AUC greater than 0.8; 

differential expression of these lipid types demonstrated their applicability to distinguish between 

high- and low-grade BAT respectively.  
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Figure 4.6 ROC curve analysis of top 5 lipids discriminant lipids detected by M1 method to 

distinguish between low- and high-grade BAT. 

 

 

ROC analysis identified 24 lipids from the PC method containing an AUC >0.8 Appendix Table 

B.6. The top 5 most discriminant lipids consisted of saturated and low unsaturated PC, as well as, 

short and long chain SM. Short chain SMs, like SM d(18:0/12:0) and SM d(18:0/16:0), were 

observed to be most discriminant in low-grade BAT (Figure 4.7 A-B). In addition, low unsaturated 

PC, PC(36:1), and long chain SM, SM d(18:0/22:0), were showed differential expression in high-

grade glioma (Figure 4.7 C, E). In summary, ROC curve analysis showed 41 lipids, across two 

MRM-profiling methods, to effectively discriminate between low- and high-grade BAT tissue. 

A) B) C)

D) E)
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Figure 4.7 Individual ROC curves of top 5 most discriminant lipids from PC method to 

differentiate between low- and high-grade BAT. 

 

 

Combined discrimination power of lipids with greater than 0.8 AUC from M1 and PC methods 

were evaluated, and sufficient attribution of tissue type was reached (Figure 4.8). Tester analysis 

identified merging data from the 17 discriminant M1 lipids resulted in an AUC of 0.846 (Figure 

4.8A). Additionally, pooling the 24 individual PC lipids produced an AUC of 0.832 (Figure 4.8B). 

Both tests were greater than the 0.8 AUC threshold indicating their potential diagnostic capacity.  

 

Figure 4.8 Discrimination capacity of combined differentially expressed lipids to distinguish 

between low- and high-grade BAT. A) M1 method, B) PC method. 

  

A) B)
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4.3.3 Grade II v. grade III brain around tumor 

PCA 

Principal component analysis demonstrated distinct clusters between grade II and grade III BAT 

groups (Figure 4.9). Lipids with VIP score  1.0 were included in this multivariate analysis. Robust 

grade II and grade III BAT cluster separation was observed in both M1 and PC plots.  Distinction 

of the grade II cluster in the M1 PCA plot was produced by predominantly by carnitine and TAG 

lipid differential expression (Figure 4.9A). Even further, the grade III cluster was distinguished by 

elevated relative abundances of unsaturated PC and long chain SM. Even greater cluster separation 

was noted in the PC PCA plot. Grade II BAT points were separate from grade III due to increased 

expression of high unsaturated PC species in their lipid profile (Figure 4.9B). Also, low 

unsaturated PC and long chain SM were discriminating lipid species in grade III BAT, localizing 

the cluster distinctly in the plot. Taken together, multivariate analysis indicated grade II and grade 

III BAT possess highly distinct lipid profiles from one another. Lipid composition changes suggest 

potential influence of glioma progression on expression of PC, SM, carnitine, and TAG lipid 

classes. 

 

Profiling Method PC1 (%) PC2 (%) 

M1 Method 40.5 67.8 

PC Method 13.1 11.1 

Figure 4.9 PCA plots identified grade II and III BAT expressed distinct lipid profiles in two 

screening methods. A) M1 method, B) PC method, C) PC1 and PC2 scores for both screening 

methods. 

T-test 

A) B)

C) 
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Statistical testing to determine significantly different relative abundances between groups, t-test, 

identified a total of 114 lipids with distinct expression between screening methods. The M1 

screening method detected 44 differentially expressed lipids between grade II and grade III BAT 

groups Appendix Table B.7. Significant M1 lipids primarily consisted of unsaturated PC and 

carnitine species. The PC method identified 70 lipid species with distinct expression between grade 

II and III BAT Appendix Table B.8. Unsaturated PC as well as short and long chain SM were 

significant discriminant lipids between BAT groups. Significance testing has indicated BAT 

expresses highly distinct lipid profiles when exposed to tumor undergoing low- to high-grade 

transition, based on PC, SM, TAG, and carnitine expression. Significant lipids shared between M1 

and PC methods are further described in Appendix C Figure C.9. 

Cluster analysis (Heatmap) 

Cluster analysis identified distinct clustering of grade II and III BAT groups in both M1 and PC 

MRM methods (Figure 4.10). Top 50 lipids were visualized in the M1 heatmap, and separation of 

grade II and III BAT based on PC, TAG, and carnitines were observed (Figure 4.10A). Carnitines 

and TAG maintained greater relative abundance in grade II BAT vs grade III BAT. Additionally, 

grade III BAT expressed higher relative abundance of unsaturated PC and long chain SM. A 

marked decrease in TAG and carnitine relative abundance in grade III BAT indicating a decreased 

reliance on these lipid types. Grade II and grade III BAT groups were also discriminated using the 

top 50 lipids profiled in the PC method (Figure 4.10B). Saturation and chain length of PC and SM 

lipids were distinguishing factors in clustering BAT groups. Grade II BAT demonstrated elevated 

relative abundance of both high unsaturated PC and short chain SM species compared to grade III 

BAT. Greater relative abundance of low unsaturated PC and long chain SM were noted in grade 

III BAT with generally low expression of high unsaturated PC lipids. Overall, M1 and PC 

heatmaps showed two notable trends. First, a decrease in TAG and carnitine species in BAT tissue 

indicates a transition from low-grade tumor to high-grade tumor, represented in BAT lipid 

composition. Also, the shift from high unsaturated PC to low unsaturated PC is another indicator 

of glioma high grade transition.  
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Figure 4.10 Cluster analysis of top 50 lipids from M1 and PC methods differentiating between 

grade II and grade III BAT. A) M1 method, B) PC method. 

ROC Curve 

ROC curve analysis was utilized to evaluate differentially expressed lipids profiled by M1 and PC 

methods to discriminate between grade II and III BAT. 49 lipid species were determined to possess 

an AUC greater than 0.8 from the M1 profiling method Appendix Table B.9. The 5 most 

discriminant lipids from the M1 method consisted of PC, SM, and TAG species, maintained a 1.0 

AUC (Figure 4.11). Low unsaturated PC and long chain SM, like PC(36:1) and SM d(18:0/22:0) 

respectively, were distinctly expressed in grade III BAT and is noted in its high discriminating 

power (Figure 4.11 A, C). TAG species, like TAG50:3_FA18:2 and TAG58:2_FA18:1, were 

elevated in grade II BAT, thus improving diagnostic capability (Figure 4.11 D-E). Additionally, 

carnitine species were also found to possess great discriminating power, due to their differential 

expression in grade II BAT, as 12 species have an AUC  0.8. 
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Figure 4.11 ROC curve analysis of top 5 discriminate lipids identified in the M1 profiling 

method. 

 

ROC curve analysis also identified 76 lipids from the PC method to maintain an AUC  0.8 

Appendix Table B.10. The analysis also determined the top 19 lipids had an AUC of 1.0. The top 

5 most discriminant lipids consisted entirely of low unsaturated PC and long chain SM (Figure 

4.12). Low unsaturated PC lipids, i.e. PC(36:1) and PCo(34:1) as well as long chain SMs, like SM 

d(18:0/22:0) were observed in grade III BAT to be maintained at significantly higher relative 

abundances than in grade II BAT (Figure 4.12 A-C). Additionally, high unsaturated PCs, like 

PC(36:5), were characteristic of grade II BAT, as it is expressed at significantly higher relative 

abundances than in grade III BAT. To conclude, ROC curve analysis revealed 114 individual 

lipids, from M1 and PC profiling methods, with strong discriminating capacity to differentiate 

between grade II and grade III. 

 



81 

 

Figure 4.12 ROC curve analysis of top 5 lipids detected by the PC screening method with robust 

capacity to discriminate between grade II and grade III BAT. 

 

Integration of information from individual lipids with AUC  0.8 were combined to determine 

discriminating power and ROC curve analysis identified strong distinguishing capacity (Figure 

4.13). An AUC of 1.0 was observed when combining the 49 lipids with AUC  0.8 (Figure 4.13A).  

Similarly, an an AUC of 1.0 was also achieved when integrating all 70 lipid data pointes from the 

PC screening method (Figure 4.13B). Both tests indicated the strong discriminating capacity PC, 

SM, TAG and carnitine lipids have in distinguishing between grade II and grade III BAT. 

 

Figure 4.13 PCA plots integrating all discriminant lipids indicated robust distinguishing capacity 

of grade II and grade III BAT. A) M1 method, B) PC method. 
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4.4 Discussion 

Given the evidence that glioma tumors compromise the surrounding brain tissue, there are 

concerns about the manipulation of brain around tumor lipid profiles by glioma throughout 

progression to support tumorigenesis. Lipidomics studies evaluating tumor-adjacent brain tissue 

lipid composition are currently limited in the literature. In this study, we report significant 

alterations to BAT lipid profiles as the neighboring glioma undergoes malignant transition. In two 

MRM-screening methods, M1 and PC, expression patterns of PC, SM, TAG, and carnitine lipid 

species were significantly different between low-grade and high-grade BAT groups. 

 Carnitine relative abundance was observed to decrease in high-grade BAT tissue from 

levels detected in low-grade glioma tissue. In healthy brain, carnitine is expressed at high levels, 

especially in neurons124. Physiologically, carnitines in the brain assist in facilitation of fatty acid 

transport across mitochondrial membranes for utilization in -oxidation125. The brain has high 

energy demands, and 20% of the energy produced in the brain is generated through -oxidation, 

demonstrating the importance of carnitine expression in healthy brain126. Carnitine deficiency has 

been connected to several neurodegenerative disorders, like Parkinson’s and Alzheimer’s disease, 

due to mitochondrial dysfunction127. Diminished carnitine relative abundance was detected in 

high-grade BAT samples, mimicking trends in carnitine expression characteristics of other 

neuropathologies. Studies have determined excess carnitine levels induces senescence in GBM 

cells128. Interestingly, the adverse effects of carnitine expression in glioma directly opposes the 

beneficial impact it has in healthy brain cells. The results indicate low-grade BAT expresses 

greater levels of carnitine lipids, more similar to that seen in healthy brain, and high-grade BAT 

maintains lower carnitine relative abundance, which is representative of a diseased brain. Carnitine 

expression patterns demonstrates not only that high-grade glioma could be manipulating BAT lipid 

composition, but also though histologically considered non-cancerous brain, molecularly high-

grade BAT is presenting similar to diseased brain. 

 In addition to carnitines, TAGs were also observed to be differentially expressed between 

low- and high-grade BAT groups. Triglycerides function as common cell membrane structural 

components and for energy storage in the body129. However, unlike in the periphery, studies have 

found healthy brain to be devoid of TAG29. The same study also showed high-grade brain tumors 

possessed greater TAG than lower grade neoplasms. BAT showed the opposite trend in this study 

as low-grade BAT was identified to express greater levels of TAG than high-grade BAT. While 
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the role of TAG expressed in BAT has not been explored, TAG are understood to be a source of 

unsaturated fatty acids, containing three per molecule, that are characteristic of high-grade 

glioma32. Lipid transport occurs frequently in the brain to regulate neurological functioning130. 

TAG are commonly packaged in the lipoprotein-based vessel, due to their hydrophobic nature, and 

target cells can uptake these molecules for their fatty acid content131. As low-grade glioma has 

lower metabolic demands than high-grade gliomas, TAG shuttling from BAT to glioma is not 

necessary and could account for greater TAG abundance in low-grade BAT. The opposite could 

also be occurring, high-grade gliomas have great energy demands, while also maintaining greater 

composition of unsaturated fatty acids31. High-grade BAT may be transporting produced TAG to 

glioma to support growth, accounting for lower TAG levels in surrounding BAT tissue. To date, 

the role of TAGs in glioma, nor the surrounding brain, have not been explored132. This study 

demonstrated change in TAG expression between low- and high-grade BAT that have potential 

implications that BAT can support glioma progression. 

 Significant differences in phosphatidylcholine saturation state were also present in low- 

and high-grade BAT tissue. PC lipids are essential membrane structural components and influence 

the membrane fluidity based on the saturation level. Low-grade BAT expressed greater high 

unsaturated ( 3 double bonds) PC than high-grade BAT. Polyunsaturated fatty acids 

(PUFAs), docosahexaenoic acid (DHA) and arachidonic acid (ARA), are the most common fatty 

acids in the brain and are predominantly esterified to plasma membrane phospholipids133. PC lipids 

containing DHA or ARA, which have 6 and 4 double bonds respectively, produce high membrane 

fluidity within normal brain cells. PC lipid desaturation pattern in low-grade BAT suggested 

greater membrane fluidity, similar to healthy brain, than high-grade BAT. Conversely, low 

unsaturated PC (1-2 double bonds) were elevated in high-grade BAT. Studies observed membrane 

fluidity was a critical factor in determining resistances to treatment134. A decrease in membrane 

fluidity, due to lower PC saturation, in high-grade BAT parallels the PC expression patterns of 

high-grade glioma tissue (Section 3.3.2.3). High-grade gliomas are highly resistant to treatment, 

contributed to by the maintained level of membrane fluidity. Brain surrounding high-grade gliomas 

having a similar degree of membrane fluidity indicates a potential role in high drug resistance 

present in malignant gliomas. Osuka et al. demonstrated drug resistant glioma persist in the brain 

paraenchyma surrounding the tumor following treatment, and stated targeting cells proximal to the 

tumor lesion would be essential to prevent recurrence135. Lipid desaturation has been shown to be 
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a critical factor in cancer development and targeted approaches increasing the saturation of lipids 

has induced lipotoxicity within cancer cells99,136. Supported by this study, PC desaturation in BAT 

emerges as a potential influencing factor in glioma drug resistance and highlights a mechanism to 

further study to improve treatment efficacy. 

 Lastly, sphingomyelin species were differentially expressed between low- and high-grade 

BAT based on chain length. More specifically, short- and long-chain SM were maintained at 

significantly greater relative abundance in low-grade and high-grade BAT respectively. Similar to 

phosphatidylcholine, sphingomyelin lipids are integral membrane lipids as well as a major 

component of myelin sheaths coating neuronal axons. The SM chain length shift observed in this 

study between low- and high-grade BAT indicates not only a change in membrane fluidity, but 

also lipid raft expression. Diminished expression of short-chain SM in high-grade BAT indicates 

a more rigid cell membrane is present137. A similar trend toward membrane rigidity was also noted 

with greater low unsaturated PC expression. Literature has shown increased focus on targeting 

brain surrounding tumor to sensitize glioma toward therapeutic intervention, however the increase 

in membrane rigidity would diminish their efficacy138. Higher long-chain SM relative abundance 

also suggests increased levels of lipid rafts localized in the membrane. Lipid rafts in tumors are 

comprised largely of long-chain SM and induce a variety of aggressive tumor behaviors by 

reinforcing signal transduction108. Studies reported increased lipid rafts in BAT acts as an indicator 

of disease brain139. Elevated lipid rafts also provide a mechanism glioma can utilized to manipulate 

BAT. However significant research investigating this potential mechanism is required. 

 Based on these findings, there is decreased confidence describing BAT as non-cancerous 

as BAT possesses highly similar lipid composition of screened lipids with glioma tissue. On the 

micro level, the BAT lipidome, does not match the analysis on the macro level, BAT morphology. 

According to pathological parameters, BAT maintains a distinct morphology compared to glioma, 

thus it would be expected BAT lipid profiles would follow this pattern. However, molecular 

changes present within BAT cells, shifting their profiles toward a more cancer-like composition, 

are not recognized by current histological guidelines. These findings reduce our confidence in 

classifying BAT as non-cancerous and raises several important questions to further investigate. 

First and foremost, should molecular profiles be considered when performing pathology on 

resected tissue to improve patient diagnosis? Studies have shown the BAT is influenced by tumor, 

manipulating the surrounding brain to support tumor progression140–142. Taken together with these 
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findings, BAT appears to be more than simply an uninvolved party in the glioma paradigm. It is 

unclear if BAT cells manipulated by glioma eventually transform into brain cancer cells, thus 

further investigation is needed to confirm this outcome. However, recent findings suggest BAT 

acts as a supportive player in glioma development and survival to a greater degree than previously 

acknowledged140–142. Reevaluation of classification methods defining BAT as non-cancerous may 

be necessary. It is possible BAT may need to be considered pre-cancerous, though current 

guidelines mainly consider morphological characteristics observable under a microscope to 

determine this change. Pre-cancerous cells are considered abnormal cells that don’t necessarily 

become cancer or invade tissue143. Under the influence of glioma, BAT has become abnormal in 

terms of lipid profile. This study indicates a change to one characteristic within BAT, lipid 

composition, but does not consider the multitude of other factors that could be altering glioma 

biology. It is critical to investigate if this continual influence by glioma eventually transforms BAT 

cells into cancer cells and also if the BAT cells can revert back to molecular profiles in non-

cancerous brain. To conclude, BAT should be considered as an important factor in the glioma 

system and as a potentially target therapeutically to disrupt glioma growth. 

4.5 Conclusions   

The above study identified significant changes to lipid profiles of brain around tumor tissue 

proximal to glioma grades I-IV. TAG, carnitine, high unsaturated PC, and short-chain SM relative 

abundances were significantly higher in low-grade BAT, an indicator of greater membrane 

fluidity, and changed as surrounding glioma progressed. Low unsaturated PC and long-chain SM 

were distinctly expressed in high-grade BAT, similar to high-grade glioma, compared to low-grade 

BAT. ROC curve analysis demonstrated that low- and high-grade BAT can be discriminated based 

on the expression of these species in BAT lipid profiles. Taken together, focus should be given to 

brain around tumor as this study indicated manipulation of their molecular profile by tumor that 

may benefit glioma growth, worsening patient outcomes. 
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5 COMPARISION ANALYSIS OF GLIOMA AND BRAIN AROUND 

TUMOR LIPID PROFILES USING MULTIPLE REACTION 

MONITORING MASS SPECTROMETRY 

5.1 Introduction 

Glioma is the most common, deadliest form of brain cancer1. Due to the heterogeneous 

composition of glioma tumors, current clinically approved therapeutics available fail to improve 

patient quality of life and overall survival144. Treatment options for glioma patients have developed 

minimally over the last two decades since TMZ, the standard therapy, was approved in the early 

2000’s. Patient survival, at its highest tumor grade, remains a dismal average of 12-15 months 

following diagnosis, one of the lowest among all cancer types2. Knowing that most low-grade 

glioma eventually progress to high-grade tumor that are highly untreatable, it is important to 

identify novel therapeutic targets specific to glioma tumors that will expand current treatment 

options and improve patient outcomes. 

 Recently, lipids have received increased focus as metabolic reprogramming in glioma 

shifted toward lipid metabolism145. Instead of breaking down glucose fully through glycolysis, 

glycolytic intermediates are shuttled in biosynthesis pathways, generating most prominently 

lipids36. Studies have determined glioma maintain a higher concentration of lipids compared to 

surrounding brain tissue, which processes glucose through OXPHOS for ATP production146. Even 

further, imaging mass spectrometry studies have observed differential expression of membrane 

phospholipids, such as phosphatidylcholine, phosphoethanolamine, and ceramides, between grey 

and white brain matter and glioma tumors9. Taken together, gliomas still are largely untreatable, 

differences in total lipid concentration and lipid profiles have been observed, but the application 

of lipids clinically has been primarily geared toward diagnostics, and not on treatment. Lipids have 

potential as therapeutic targets, based on previous evidence in the literature detailing importance 

of lipids and lipid metabolism to glioma development, progression, and survival. Despite this 

understanding, limited evidence is available denoting effective lipid species and pathways to target 

in glioma.  

Lipid diversity and complexity of lipid synthesis pathways poses a major challenge to the 

field; and must be characterized using a lipidomics, with a broad detection range, to capture the 

extensive lipid profiles contained in both glioma and BAT78. Additionally, lipids are essential to 
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healthy brain functioning, and therefore requires the precise targeting of glioma-specific lipids to 

avoid potentially severely toxic side effects in patients147. Brain pathologies have been connected 

to altered expression of lipids, therefore, it is critical to define glioma-specific lipids and their 

associated pathways to elucidate targets to further validate for potential clinical application23,24,148. 

In this study, multiple reaction monitoring-mass spectrometry was utilized to comprehensively 

characterize lipid profiles in glioma and BAT. Microdissected glioma and BAT tissue was 

analyzed by three screening methods, M1 and M2 (embryo) and PC (PC and SM lipids) to identify 

distinct lipids between tissue types. Lipid classes profiled in this work includes 

phosphatidylcholines, sphingomyelins, triglycerides, carnitines, and fatty acids. Lipid profiles 

between glioma and BAT were compared at low-grade, high-grade, and overall tumor vs BAT to 

observe notable distinctions in lipid expression throughout glioma progression. Results showed 

glioma and BAT maintained highly similar lipid profiles, with the exception of a few individual 

lipids, across lipids evaluated three screening methods indicating potential influence of glioma on 

neighboring brain’s molecular profile. 

5.2 Methods 

Glioma and BAT lipid profiles were characterized in this study utilizing the methods of samples 

selection, histological analysis, LCM isolation, MRM-MS, and statistical analysis outlined in the 

Analytical Design section 2.2. A total of 59 samples, 32 glioma samples, grades I-IV, and 27 BAT 

surrounding each of the four tumor grades were profiled in this study. Sample size for each glioma 

grade included grade I (n=5), grade II (n =12), grade III (n = 9), and grade IV (n = 6). Additionally, 

BAT grade I (n = 3), BAT grade II (n = 9), BAT grade III (n = 6), and BAT grade IV (n = 9) 

comprised the BAT group. Sample processing for both groups in this experiment happened 

concurrently to maintain consistent experimental conditions. Lipid composition in glioma and 

BAT groups were defined by three MRM-MS screening methods: M1 and M2 (embryo) and PC 

(phosphatidylcholine and sphingomyelin). Detected lipids within each sample group were 

converted into relative abundances for statistical analysis. Lipid relative abundance data was 

processed using Metaboanalyst 4.0 (https://www.metaboanalyst.ca/) to determine significant 

differences in expression between glioma and BAT. Relative abundance data was also utilized for 

chain length and saturation analysis, significant differences in expression was performed using 

https://www.metaboanalyst.ca/
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JMP® Pro 14. Results in this chapter will focus on output from M1 and PC methods, M2 method 

results will be included in the Appendix D.  

5.3 Results 

5.3.1 Low-grade glioma v. low-grade BAT 

Principal component analysis (PCA) 

Multivariate analysis of low-grade glioma and BAT showed slight distinction in clusters by PCA 

plot (Figure 5.1). Lipids included in the PCA plot possessed VIP score  1.0. Similar localization 

of low-grade glioma and BAT clusters were noted in both plots for M1 and PC MRM-profiling 

methods. Proximal clustering in the M1 plot indicates comparable composition of PC, SM, TAG, 

and carnitine species within both groups (Figure 5.1A). Additionally, close clustering of points 

within the PC PCA plot indicates similar expression patterns of PC and SM species between tissue 

types (Figure 5.1B). Overall, plots for both M1 and PC plot demonstrate low-grade glioma and 

BAT share similarities in their lipid profiles.  

 

 

Profiling Method PC1 (%) PC2 (%) 

M1 Method 43.7 19.5 

PC Method 36.7 25.0 

Figure 5.1 PCA plots of M1 and PC screening method indicated similar lipid profiles between 

low-grade glioma and BAT. A) M1 method, B) PC method, and C) PC1 and PC2 scores for both 

screening methods. 

 

B)A)

C) 



89 

T-test 

Statistical analysis determined significantly different expression of the SM species SM 

d(18:1/24:0) between low-grade glioma and BAT (Figure 5.2). Low-grade BAT maintained 

elevated relative abundance of this long-chain SM species at a p-value < 0.001. The PC method 

was employed to identify this distinction. 

 

Figure 5.2 Differential expression of long-chain sphingomyelin species between low-grade 

glioma and BAT. A) SM d(18:1/24:0) concentration graph, B) statistical output. 

Cluster analysis (heatmap) 

Cluster analysis showed distinctions in lipid profiles between low-grade glioma and BAT across 

both MRM-screening methods (Figure 5.3). The heatmap for the M1 method displaying the top 14 

lipids, displayed low-grade glioma and BAT were clustered based on differential expression of PC 

and SM species (Figure 5.3A). Low-grade BAT expressed greater relative abundance of low 

unsaturated PC, like PCo(32:1, 34:1, and 36:1), as well as short- and long-chain SM, i.e. SM 

d18:1/16:0 and SM d(18:1/24:0) respectively. Conversely, low-grade glioma were distinguished 

by higher relative abundance of saturated PC species, PC(30:0 and 32:0), and diminished 

expression of low unsaturated PC. The M1 cluster plot demonstrated a transition from low 

unsaturated PC to saturated PC between low-grade BAT and low-grade glioma. The PC heatmap 

of top 60 lipids demonstrated several distinct clusters within the plot (Figure 5.3B). More 

specifically, BAT and glioma samples clustered more closely with their neighboring tissue rather 

than clustering by tissue type. Grade I glioma and BAT (364) primarily grouped to the left in the 

plot based on elevated expression of high unsaturated PC. Grade II glioma samples (203, 237, 300, 

and 305) also clustered predominantly with their adjacent BAT tissue Grade II glioma and BAT 

Lipid t.stat p.value -log10(p) FDR
SM 

d18:1/24:0
3.9619 0.00048944 3.3103 0.049434

B)

A)
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were distinguished from one another based on differential expression of low unsaturated PC 

species. Overall, cluster analysis indicates two patterns based on profiling method employed; the 

M1 method showed distinction between glioma and BAT groups driven by low unsaturated PC. 

The PC method displayed low-grade glioma and BAT clustered together, and distinctions were 

induced by heterogeneity between patients. 

 

Figure 5.3 Cluster analysis identified lipid profile distinctions between low-grade glioma and 

BAT in M1 and PC MRM-profiling methods. A) M1 method, and B) PC method. 

ROC curve 

ROC Curve analysis identified one discriminant lipid species between low-grade glioma and BAT 

across M1 and PC profiling methods. SM d(18:1/24:0) was identified to be distinctly higher in 

low-grade BAT using the PC method (AUC= 0.897). 

  

B)A) B)
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Figure 5.4 ROC Curve identified discriminant SM species between low-grade glioma and BAT. 

 

5.3.2 High-grade glioma v. high-grade BAT 

PCA 

Principal component analysis demonstrated similar clustering of high-grade glioma and BAT 

points in plots for both M1 and PC screening methods (Figure 5.5). Lipids included in this 

multivariate analysis maintained a VIP score  1.0. Proximal localization of points was observed 

in M1 and PC plot, indicating similar lipid composition between tissue types. The M1 plot suggests 

comparable relative abundances of PC, SM, TAG, and carnitine species screened for in this method 

(Figure 5.5A). In addition, PC and SM relative abundances detected in the PC method were also 

maintained at similar levels in both high-grade glioma and BAT tissue (Figure 5.5B). The plots 

demonstrate high-grade glioma and BAT possess highly comparable lipid composition. 
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Profiling Method PC1 (%) PC2 (%) 

M1 Method 55 14.4 

PC Method 77.3 7.3 

Figure 5.5 PCA analysis of M1 and PC profiling methods indicate similar lipid profiles between 

high-grade glioma and BAT. A) M1 method, B) PC method, and C) PC1 and PC2 scores for both 

screening methods. 

T-test 

Statistical analysis identified the medium-chain, SM d(18:1/18:0) to be maintained at significantly 

different relative abundance between high-grade glioma and BAT (Figure 5.6). The PC screening 

method detected SM d(18:1/18:0) at greater relative abundance in high-grade BAT (Figure 5.6B, 

p-value < 0.001). 

 

 

Figure 5.6 Differential expression of medium-chain SM species detected between high-grade 

glioma and BAT. A) SM d(18:1/18:0) concentration graph, B) statistical output. 

A) B)

Lipid t.stat p.value -log10(p) FDR

SM 
d18:1/18:0

4.1757 0.00026189 3.5819 0.026451

B)

A)

C) 
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Cluster analysis (heatmap) 

Cluster analysis displayed distinctions in high-grade glioma and BAT groups in both M1 and PC 

screening methods (Figure 5.7). The M1 heatmap of the top 28 lipids identified glioma and BAT 

groups were distinguished based on differential expression of PC, SM, and carnitines (Figure 

5.7A). High-grade BAT expressed greater relative abundance of low unsaturated PC species, such 

as PC(36:1 and 36:2) in addition to medium- and long-chain SM, like SM d(18:1/18:0) and SM 

d(18:1/24:0). Conversely, high-grade glioma comprised higher relative abundance of carnitine 

species concurrent with lower PC and SM expression. The PC method also denoted distinct 

clusters between high-grade glioma and BAT lipid profiles. The top 50 lipids in the PC heatmap 

displayed clustering due to PC saturation state (Figure 5.7B). High-grade glioma maintained 

elevated relative abundance for both saturated, i.e. PCo(38:0 and 40:00 and high-unsaturated PC, 

like PC(42:10 and 44:10), compared to high-grade BAT. Conversely, high-grade BAT expressed 

greater relative abundance of low unsaturated PC, PC(32:1 and 36:1), to distinguish from high-

grade glioma. Taken together, cluster analysis demonstrated differences in PC saturation, SM, and 

carnitine relative abundance can discriminate between high-grade glioma and BAT. 

 

 

Figure 5.7 Cluster analysis indicates distinction between high-grade glioma and BAT lipid 

profiles through different PC, SM, and carnitine relative abundance. A) M1 method, B) PC 

method.  

 

A) B)
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ROC curve 

ROC curve analysis of lipids profiled by M1 and PC MRM-screening methods identified three 

lipids with discriminating power (Figure 5.8). From the M1 method, SM d(18:1/18:0) was 

determined to maintain an AUC of 0.849, and was expressed at higher relative abundance in high-

grade BAT (Figure 5.8A). Two lipids were identified from the PC method to be distinct between 

tissue types, PC(32:1) and SM d(18:1/18:0), retaining AUC of 0.827 and 0.88 respectively (Figure 

5.8B). Both PC(32:1) and SM d(18:1/18:0) were detected at higher relative abundance in high-

grade BAT compared to high-grade glioma. In summary, ROC curve analysis suggests SM 

d(18:1/18:0), consistent across two screening methods, and PC(32:1) are discriminant lipid species 

between high-grade glioma and BAT. 

 

Figure 5.8 ROC curve analysis identified two discriminant PC and SM lipid species between 

high-grade glioma and BAT. A) M1 method, B-C) PC method. 

5.3.3 Glioma v. BAT 

PCA 

PCA plots comparing lipid profiles of glioma and BAT profiled by M1 and PC screening methods 

demonstrated similar clustering within the plot (Figure 5.9). Multivariate plots include lipids from 

A) B)

C)
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each method with a VIP score  1.0. Glioma and BAT sample clusters in both M1 and PC plots 

located closely, indicating comparable lipid composition between tissue types. Sharing lipid 

profiles in the M1methods suggests similar relative abundances of PC, SM, TAG, and carnitine 

species between glioma and BAT (Figure 5.9A). Even further, PC and SM lipids profiled in the 

PC method were maintained at similar levels between tissue types (Figure 5.9B). Overall, both 

screening method plots indicate glioma and BAT share general lipid composition, with possible 

differences in individual lipid species.  

 

Profiling Method PC1 (%) PC2 (%) 

M1 Method 49.2 15.5 

PC Method 60.1 14.1 

Figure 5.9 Multivariate analysis suggest similar lipid profiles between glioma and BAT in two 

screening methods. A) M1 method, B) PC method, and C) PC1 and PC2 scores for both 

screening methods. 

T-test 

Statistical analysis identified five individual lipids with significantly different relative abundances 

between glioma and BAT (Figure 5.10) All lipids determined to be differentially expressed in BAT 

were detected in the M1 profiling method. Three PC species were observed to maintain distinct 

expression between tissue types: PC(36:8) and PCo(34:1 and 36:1) (Figure 5.10A, p-value: 

0.0001<p<0.01). In addition, two SM were detected at greater relative abundances in BAT, SM 

d(16:1/24:0) and SM d(18:1/24:0) (p-value: 0.001<p<0.01). To conclude, significance testing 

suggested low unsaturated PC and long-chain SM were critical lipid species to distinguish between 

glioma and BAT tissue. 

A) B)
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Figure 5.10 Differential expression of PC and SM species between glioma and BAT detected 

using the M1 profiling method. A) Significant lipid concentration graphs, B) statistical output. 

Lipid chain length and saturation analysis 

Lipid chain length and saturation analysis identified significant differences in total lipid relative 

abundances between glioma and BAT based on these chemical characteristics (Figure 5.11). PC 

and SM were the two lipid classes that maintain discriminant expression due to chain length and 

saturation. A shift in PC saturation type between glioma and BAT was noted in the analysis. 

Glioma maintained significantly greater relative abundance of saturated PC than BAT (Figure 

5.11A, p<0.01). Additionally, BAT comprised significantly greater low unsaturated PC compared 

to glioma (Figure 5.11B, p<0.05). Conversely to saturated PC, saturated SM had significantly 

higher relative abundance in BAT than glioma (Figure 5.11C, p<0.05). Lastly, BAT possessed 

significantly greater short- and long-chain SM vs glioma tissue (Figure 5.11D-E, p<0.05). Taken 

together, PC and SM chain length and saturation were differentiating factors between glioma and 

BAT groups.  

Lipid t.stat p.value -log10(p) FDR

PCo36:1 3.9753 0.00020021 3.6985 0.013162

PCo34:1 3.8758 0.0002771 3.5574 0.013162

SM 
d18:1/24:0

3.3125 0.0016094 2.7933 0.047797

PC 36:8 3.2098 0.0021828 2.661 0.047797

SM 
d16:1/24:0 3.1613 0.0025156 2.5994 0.047797

A)

B)
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Figure 5.11 Significant differences in PC and SM chain length and saturation detected between 

glioma and BAT tissue. A-C) PC method, D-E) M1 method. * p0.05, ** p0.01. 

Cluster analysis (heatmap) 

Cluster analysis indicated a trend toward distinction between glioma and BAT groups (Figure 

5.12). The M1 heatmap visualizing the top 10 lipids displayed a mild clustering trend based on 

low unsaturated PC lipids (Figure 5.12A). BAT expressed greater relative abundance of low 

unsaturated PC, supporting two distinct clusters within the plot. Low to intermediate expression 

levels of low unsaturated PC was observed in glioma samples, grouping them into two main 

clusters. Overall, the M1 plot demonstrated fairly comparable levels of both PC and SM relative 

abundances between groups with the exception of species like PCo(34:1) and PC(30:1 and 38:2). 

The PC heatmap of the top 35 lipids demonstrated clearly clustering of BAT and glioma groups 

due to differential expression of low and high unsaturated PC respectively (Figure 5.12B). 

Elevated expression of low unsaturated PC lipids, such as PC(36:1, 36:2, and 38:2) distinguished 

the BAT cluster from glioma. Additionally, glioma maintained greater relative abundance of high 

unsaturated PC, like PC(36:6 and 38:7), to differentiate from the BAT sample cluster. In summary, 
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cluster analysis suggests differences in membrane lipids, predominantly phosphatidylcholines, 

saturation state is a discriminating factor between glioma and BAT tissue. 

 

 

Figure 5.12 Cluster analysis identified PC saturation state as important distinguishing factor in 

differentiating between glioma and BAT. A) M1 method, B) PC method. 

5.4 Discussion 

With the minimal efficacy of currently approved therapeutics available to treat glioma patients, 

there continues to be an urgency to identify a novel therapeutic target to improve patient outcomes 

and overall survival. Recent lipidomics studies have detected distinctions in several lipid classes 

between glioma and brain that are currently being validated for diagnostic applications. However, 

A)

B)
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comprehensive molecular profile changes, specifically involving lipids, between glioma and the 

surrounding brain remains limited in the literature. To address this gap, in this study, we profiled 

glioma and BAT tissue across grades I-IV using MRM-MS to better define distinction in lipid 

composition between tissue types. Here, we observed similar lipid profiles, based on lipids 

evaluated within three screening methods, in each comparison group investigated: low-grade 

glioma vs low-grade BAT, high-grade glioma vs high-grade BAT, and glioma vs BAT. In addition, 

distinctions between tissue types were noted in several individual PC and SM species as well as 

changes in saturation type. 

 Glioma are characteristically highly aggressive tumors that undergo metabolic 

reprogramming to meet the energetic demands to sustain growth and survival36. Recent evidence 

supports increased reliance on biosynthetic pathways, especially lipid metabolism, to drive 

tumorigenesis149. Elevated lipid metabolism in glioma is distinct from healthy brain and was 

observed to generate distinct lipid concentration between tissue types7,31. Even further, IMS studies 

noted emphasis on lipid metabolism in glioma produced differential expression of lipid species 

from brain matter6,9. However, the findings in this study contrast this evidence as we report similar 

lipid compositions, based on interrogated lipids in each method, between glioma and BAT. 

Morphologically, glioma and BAT in this study were distinct, as WHO histological criteria 

differentiated between the tissue types in the sections, but clear molecular profile distinction was 

not detected. Studies investigating molecular profiles in breast cancer and its surrounding tissue 

observed a similar trend, molecular changes in tissue surrounding tumor occurred prior to 

morphological alterations14,122. Identifying this trend suggests paracrine- and autocrine-based lipid 

profile modulation in cells surrounding glioma, though possible mechanisms are not well 

understood.  

One potential mechanism altering lipid composition involves glioma’s manipulation of 

neuronal activity. Glioma’s relationship with neurons has long been understood150. Neurons were 

identified to stimulate glioma growth through the release of neuroligin-3, a post-synaptic adhesion 

molecule found primarily in excitatory synapses, inducing the PI3K-mTOR signaling pathway151. 

Additionally, glioma can also stimulate neurons through the release of glutamate, an excitatory 

neurotransmitter152,153. Glioma glutamate release has been linked to epileptic seizures commonly 

occurring in glioma patients, but also to engaging in similar synaptic behaviors seen between 

neurons, oligodendroglial cells, and astrocytes142. The neuron-glioma relationship is both 
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bidirectional and cyclical; neurons are consistently stimulated by glioma glutamate release and 

produce neuroligin-3 that induces glioma growth, proliferation, and glutamate production to 

continue this cycle141. Inhibition of neuroligin-3 cleavage and NMDA glutamate binding 

individually abrogated the benefits of this glioma-neuron interaction, effectively reducing tumor 

growth and progression153,154. Despite these studies not directly studying lipids, it is conceivable 

that lipid composition is altered, during neuronal-glioma bidirectional stimulation, as lipids 

provide critical metabolic intermediates to meet high energetic demands of both tumor growth and 

neuron activity. However, further study characterizing lipid profile changes through this 

mechanism is needed.  

Lipid profile similarities between glioma and BAT may also been explained through 

mechanisms glioma regulates in glial cells proximal to the tumor microenvironment (TME). 

Studies have recognized crosstalk between glioma, astrocytes, and microglia play an important 

role in progression155,156. Anti-inflammatory cytokine release from glioma induced phenotypic 

changes in both astrocytes and microglia157,158. Microglia possessing this anti-inflammatory 

phenotype were identified to release factors, like TGF-, which support glioma growth and 

invasion159. Others demonstrated transcriptional profiles of microglia exposed to glioma had 

distinct gene expression compared to non-TME microglia158. The same study identified tumor-

manipulated microglia also induced differential gene expression in astrocytes compared to 

astrocytes in epilepsy patients158. A recent study found anti-inflammatory astrocytes stimulate 

glioma migration and invasion through IL-6-mediated membrane type 1 matrix metalloproteinase 

release160. Henrik Heiland et al158 determined glioma manipulate microglia and astrocytes through 

the JAK/STAT pathway. Inhibiting this pathway stimulated upregulation of pro-inflammatory 

cytokines in the TME, effectively reversing the anti-inflammatory phenotype in microglia and 

astrocytes. Like the neuronal mechanisms discussed above, these studies did not specifically 

measure lipid composition of cells regulated by glioma. Although, these mechanisms highlight the 

strong influence glioma has to alter genetic profiles and secreted protein factors in surrounding 

cells. Taken together, it is reasonable to hypothesize glioma utilizes mechanisms like those 

discussed to change lipid profiles in surrounding tissue comparable to that detected in this study. 

Advantages of lipid composition changes in glioma are multifaceted. Glioma, like other 

cancers, possess high energetic demands to drive tumorigenic processes146. Metabolic 

reprogramming shifts glycolysis toward biosynthetic processes, such as lipid synthesis, to generate 
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alternative sources of energy37. Elevated lipid synthesis and metabolism supports increased glioma 

proliferation105. Synthesized lipids, like phospholipids, are consolidated for plasma membrane 

formation in current and newly divided glioma cells132. Lipids also protect glioma cells from 

oxidative stress stimulated by reactive oxygen species generated from aberrant metabolic 

processes100. Taken together, lipid composition changes provide aid to several key tumorigenic 

processes that initiate cancer development and maintain cancer progression. The extensive 

capacity for adaptation cancer possesses also supports the perspective lipid composition changes 

could be a result of cancerous changes. Abnormal cell signaling, characteristic of cancer, has been 

identified to modulate lipid synthesis161. In conclusion, lipid composition is an important factor to 

core processes within various forms of cancer, but compositional changes could be influenced 

based on other cancerous changes. This perspective is similar to the “chicken or the egg” scenario; 

signaling processes support lipid synthesis while the inverse is also true, as lipids provide energy 

to power cell signaling in cancer. The mutualistic relationship between lipids and cell signaling 

makes identifying whether lipid compositional changes being core to cancer or a result of 

cancerous changes difficult to discern. 

This study demonstrated that tumor manipulation of BAT lipid composition occurs as early 

as low-grade glioma. Most studies investigating glioma-brain crosstalk utilized high-grade glioma, 

thus elucidating an interaction potentially critical to glioma progression. General similarity in lipid 

profile between glioma and BAT, across the three comparison groups, was also detected in studies 

investigating medulloblastoma (MB) and breast cancer. Paine et al found healthy grey matter 

around maintained a comparable lipid profile to MB with the exception of several individual 

phospholipid species162. Azordegan et al14 demonstrated the marginal tissue surrounding breast 

cancer represented a transitional state between normal tissue and tumor, possessing similar 

phospholipid composition to tumor. In line with these studies, the reported results suggest BAT 

may be part of the problem, as the altered molecular profiles appear to support tumorigenic 

behaviors in glioma. Understanding this puts increased emphasis on better understanding the 

mechanisms glioma employs to regulate lipid composition in surrounding brain to support growth 

and how to potentially target BAT to hinder glioma progression. Evidence in both of these aspects 

remains limited, however, and requires additional study. 
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5.5 Conclusions 

The above study identified that glioma and the neighbor brain tissue share highly comparable lipid 

composition to one another. MRM-profiling demonstrated that the alterations to BAT lipid profiles 

is influenced by glioma as early as grades I and II. High-grade glioma and BAT showed similar 

trends as low-grade samples, with subtle distinctions between tissue types based on PC lipid 

relative abundance. Cluster analysis, in low- and high-grade samples, showed differentiation 

between tissue types due to PC lipid saturation state. Low-grade BAT maintained higher relative 

abundances of low unsaturated PCs vs low-grade glioma tissues. Additionally, high-grade glioma 

was found to possess greater levels of high unsaturated PC compared to high-grade BAT that had 

more relative abundance of low unsaturated PC. Significant differences in average sum PC and 

SM, based on chain length and saturation, was also determined in glioma vs BAT. Brain around 

tumor maintained significantly higher low unsaturated PC as well as saturated, short- and long-

chain SM compared to glioma. Also, glioma was comprised of significantly greater average sum 

saturated PC relative abundance than BAT. In conclusion, this study emphasizes the potential 

relevance of BAT to glioma growth and progression indicated by high similarity in lipid profiles. 

Future studies should focus on the mechanisms glioma employs to manipulate cells, proximal to 

the TME that could lead to poor patient outcomes as these pathways influencing lipid composition 

are currently unknown.  
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6 CONCLUSIONS AND FUTURE WORK 

In the presented work, we highlighted the efficacy of our workflow, integrating pathology, laser 

capture microdissection, and multiple reaction monitoring-mass spectrometry, to analyze lipid 

composition in human glioma and brain around tumor samples. Utilizing this approach, we 

investigated lipid profile changes in glioma grades I-IV, the surround brain, and distinctions 

between tissue types to better define lipid expression throughout glioma progression. The overall 

goal of this project was to comprehensively define lipid profiles in glioma and BAT to identify 

novel lipid targets, that were glioma-specific, to be validated further for clinical translation. Below 

is an overview of each study, corresponding future work and limitations. 

6.1 Glioma grade lipid profiling 

Current clinically approved treatments for glioma, especially high-grade, are generally ineffective 

in prolonging patient survival, remains an average of 12-15 months2. Even further, therapeutic 

approaches targeting low-grade gliomas are limited in their ability to prevent tumor progression 

as 80% eventually progress to grade IV within a decade13. Knowing this merits investigation into 

alterations lipid profiles undergo at each glioma grade to elucidate key lipid species driving tumor 

progression. Exploring these molecular changes, through comprehensive MRM-profiling, will 

define lipids that can serve as potential targets to hinder glioma malignant transition. Glioma was 

identified to maintain an embryonic phenotype, due to expression of cancer stem cells, as well as 

elevated levels of membrane phospholipids; thus, two embryonic methods (M1 and M2) and a 

phosphatidylcholine method was used to screen samples32,163. This approach identified distinctions 

between glioma grades, predominantly in the PC method. PC and SM lipids were discriminant 

species based on their chain length and saturation state. ANOVA and cluster analysis indicated 

high unsaturated PC, PC(36:5 and 38:5), were differentially expressed in grade I glioma. 

Additionally, low unsaturated PC and long-chain SM maintained greater relative abundance in 

high grade glioma. Grade-based significant differences was also identified as PC(36:1) and 

PC(34:2 and 36:3) were distinct in grade III and IV respectively. ROC curve analysis demonstrated 

individual, as well as combined, low unsaturated PC and long-chain SM possessed strong 

discriminating power between low- and high-grade glioma suggesting alterations in chain length 
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and saturation during glioma progression. Several limitations were noted in this study. First, low 

sample size for each glioma grade group were tested in this study; grade I (n=1) and grades II-IV 

(n=12, 4 per grade). Human brain tumor samples are invaluable, but to increase the power and 

validity of reported results, additional tumor samples must be investigated to compare and support 

our findings. Second, blind and random selection limited bias in samples chosen for analysis but 

introduced variability in glioma subtypes in each tumor grade. Glioma maintains multiple subtypes 

that are comprised of difference concentrations of cell types. Diverse oligodendrocyte and 

astrocyte levels could vary the lipid composition detected in isolated samples, due to their distinct 

functioning, and glioma subtypes were not considered in this study164,165. To address this 

limitation, future studies can specifically select samples, based on subtype, for analysis to 

determine glioma subtype-related differences in lipid profile. Lastly, this study did not consider 

all lipid classes during analysis. Ceramides and phosphatidylserines were found to be distinct in 

glioma tissue, therefore, future studies profiling these and other lipid classes in glioma would better 

define lipid profiles and pathways to identify novel lipid targets to improve patient outcomes. 

6.2 Brain around tumor lipid profiling 

Brain around glioma is understood to be highly compromised compared to healthy brain115. 

Compromised brain can be attributed, partly, to factors released by glioma into the tumor 

microenvironment, altering the genetic and protein expression of surrounding tissue. Despite this 

understanding however, limited evidence is available defining the influence of glioma-related 

factors on BAT lipid profiles. Even further, it is unclear how lipid alteration in BAT could promote 

glioma growth. Noting this gap, it was critical to investigate BAT lipid profiles at each grade of 

glioma to better understand alterations in composition throughout disease progression. 

Comprehensively profiling lipids in BAT by grade will identify distinct lipid species at each stage 

of glioma progression that could contribute to malignant transition. 13 BAT patient samples from 

grades I-IV were analyzed using the three profiling methods applied to screen glioma samples, 

M1, M2, and PC. Significant changes to lipid composition were identified between BAT exposed 

to different glioma grades. Multivariate analysis in both M1 and PC screening methods displayed 

distinct clusters between BAT groups indicated overall lipid profile changes as glioma progresses. 

Discrimination between BAT groups was driven by differential expression of PC, SM, carnitine, 

and TAG species. Low-grade BAT was distinguished based on elevated relative abundance of 
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carnitine and TAG in the M1 method and high unsaturated PC in the PC method. Distinction of 

high-grade BAT was determined by elevated relative abundance of low unsaturated PC in both 

M1 and PC methods. Significance testing, by t-test and ANOVA, identified TAG, carnitine, high-

unsaturated PC, and short-chain SM were significantly higher in low-grade glioma, supporting 

cluster analysis findings. In addition, low unsaturated PC relative abundance were significantly 

greater in high-grade glioma. ROC curve analysis indicated significant lipid composition changes 

between grade II and grade III BAT, also considered the low- to high-grade transition. 

Discrimination of grade II from grade III was determined by distinct TAG, carnitine, and high 

unsaturated PC expression. Transition to grade III comprised increased low unsaturated PC and 

long-chain SM. This transition could indicate a significant alteration in BAT that supports glioma 

growth. Taken together, significant lipid profile changes were detected between BAT grades. 

Composition changes could potentially be due to glioma manipulating BAT lipids through 

autocrine and paracrine factors released into the TME. There were several limitations of note in 

this study. Similar to the glioma profiling study, there was a small sample size. 13 patient samples, 

BAT grade I (n=1) and BAT grades II to IV (n=12, 4 per grade). Further validation of our results 

will be needed to confirm findings by testing additional BAT samples under the same experimental 

parameters. H&E staining utilized in this study also did not distinguish between grey and white 

matter in brain. White matter contains myelin, comprised highly of sphingolipids and cholesterol, 

making its lipid composition distinct from grey matter. To further evaluate distinctions in BAT 

groups or in comparisons against glioma, additional staining differentiating grey and white matter 

will need to be conducted to guide LCM isolation to evaluate as separate tissue types. Future work 

should focus on investigating non-tumor compromised together with glioma and BAT to fully 

characterize the alterations in lipid profiles that occur in this disease. Studies have identified tissue 

around tumor as a transition state between healthy and tumor tissue and including healthy brain 

into the analysis would highlight the impact glioma has on neighboring brain tissue. 

6.3 Glioma vs brain around tumor lipid profiling 

Metabolic reprograming in glioma has increased importance lipid metabolism to meet energetic 

demands and sustain development, growth, and survival104. Imaging mass spectrometry studies 

have detected distinctions between glioma and surrounding brain tissue, possibly due to metabolic 

alterations in tumor9. Observed lipid differences have benefitted diagnostics but has not been 
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translated towards improving therapeutics. Lipids, and their associated synthesis pathways, are 

highly diverse and limited characterization of each is currently available. This study addressed this 

gap by comprehensively profiling both glioma and BAT lipid composition to better understand 

distinct glioma lipids and pathways to potentially utilize as therapeutic targets. A total of 59 

samples, 32 glioma and 27 BAT, were analyzed from 13 human glioma tumors using M1, M2, and 

PC MRM-methods. Comparison testing of low-grade, high-grade, and overall glioma and BAT 

groups indicated that glioma and the surrounding brain have highly similar lipid profiles, based on 

lipids detected in the M1, M2, and PC screening methods. These findings were supported by 

minimal cluster separation in PCA, few significantly different lipids determined by t-test, and 

minimal discriminant lipids through ROC curve analysis. Comparable molecular profiles observed 

in this experiment preceded morphological changes in BAT as histological analysis distinguished 

these cells from glioma by H&E staining. These findings suggest BAT is subject to TME factors 

released by glioma to influence molecular profile alterations. Studies have shown glioma 

manipulates neighboring cell types through release of cytokines, neurotransmitters, and growth 

factors to promote tumor growth, migration, and proliferation151,155,156,166. Though not specifically 

investigated in this study, we postulate that lipid composition profiled in BAT were influenced by 

secreted glioma factors in the TME. The reported findings support future investigation of 

mechanisms glioma exploits to alter BAT lipid profiles and the implications of inhibiting these 

interactions on glioma growth and survival. Additionally, it would be important to establish a new 

screening method specifically tailored for evaluating glioma and BAT lipid composition. Due to 

small sample volume, generating a novel method was not feasible. In addition, it would be 

important to increase the sample size of both glioma and BAT groups to increase the power of 

these findings. Lastly, these findings suggest a shift in focus, expanding the perspective when 

investigating therapeutic options to include BAT into the equation, as recent evidence indicates 

cells proximal to the tumor could be part of the problem. 

6.4 Concluding Remarks 

In closing, the integrated workflow applied in this project can be used to profile distinct lipids in 

glioma and BAT at small sample volumes. The work demonstrated distinctions in PC and SM 

species as glioma progressed from low- and high-grade. Analysis of BAT indicated lipid profiles 

differences between grades most likely due to glioma grade-related factors. Lastly, we identified 
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glioma and BAT have similar lipid profiles based on screened lipids. Future work should focus on 

furthering goals of each study to identify a novel lipid target to improve glioma patient survival.   
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APPENDIX A. CHAPTER 2 SUPPLEMENTAL FIGURES 

Table A.1 Lipid classes and species information screened in the M1 MRM-profiling method. 

 
 

 

  

Lipid Class
Chain Length (# of 

Carbons)
Saturation (# of Double 

Bonds)

PC 30 - 40 0 - 8

PCo 32 - 40 0 - 6

PCp 36 - 42 5 - 6

SM 16 - 24 0 - 1

TAG 48 - 60 0 - 9

Carnitine n = 26
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Table A.2 Lipid classes and species information screened in the M2 MRM-profiling method. 

 

 

 

 

Lipid Class
Chain Length (# of 

Carbons)
Saturation (# of Double 

Bonds)

C 12 - 34 0 - 6

PE 18 - 40 0 - 9

PEo 34 - 40 1 - 6

PEp 36, 40 6 - 7

PG 16 - 40 0 - 8

PGo 20 0

PGp 38 6

PI 14 - 40 1 - 7

Pio 38 1 - 2

PIp 42 6

PS 14 - 40 1-7

PSo 16 - 20 0

PSp 16, 40, 42 0, 6

Steryl Ester 12 - 24 0 - 6
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Table A.3 Lipid classes and species information screened in the PC MRM-profiling method.  

 

 

Table A.4 Clinical and demographic information of patient samples screened by MRM-profiling 

across the three studies.   

 
  

Lipid Class
Chain Length (# of 

Carbons)
Saturation (# of Double 

Bonds)

PC 30 - 52 0 - 12

PCo 32 - 44 0 - 6

PCp 32 - 42 4 - 6

SM 12 - 26 0 - 1

Patient ID Case Comments Body Site
Specific 

Site
Pathology 

Status
Histologic Type

Grade (final 
path)

Grade System 
(final path)

Ethnicity Race Gender Subject Age Specify other past Hx Treatment
Resection 

Date
Survival 
Status

M-HBT 364
MH consent; tentative dx = low 

grade glioma
HN-BRAIN

BRAIN, 
NOS

cancer-
primary

GLIOMA, NOS I WHO N/A N/A N/A N/A

final path this sx (Dysembbryoplastic neuroepitheliat tumour (DNET), WHO grade 
I, the glial componet is markedly hypercellular in some areas, occasional atypical 

glial cells and rare mitoses are also present. In DNETs, such changes do not 
suggest a worse biological behavior for these tumors).

N/A N/A N/A

M-HBT203
MH consent; final dx = mixed 

oligoastrocytoma, WHO II
HN-BRAIN

BRAIN, 
NOS

benign OLIGOASTROCYTOMA II WHO
Non-

Hispanic
White M 29 N/A Chemo 4/24/17

Alive as of 
5/15/2019

M-HBT237
MH consent; final dx = 

oligoastrocytoma, WHO II
HN-BRAIN

BRAIN, 
NOS

benign OLIGOASTROCYTOMA II WHO
Non-

Hispanic
White F 36 2009 - oligodendroglioma, crani + chemo Radiation, Temodar N/A

Alive as of 
5/16/2019

M-HBT300
MH consent; final path dx = 

oligoastrocytoma, IDH-1 mutated, 
WHO grade II

HN-BRAIN
BRAIN, 

NOS
benign OLIGOASTROCYTOMA II WHO

Non-
Hispanic

White F N/A N/A N/A N/A
Alive as of 
12/12/14

M-HBT305
MH consent; final path dx = 

oligoastrocytoma, WHO grade II
HN-BRAIN

BRAIN, 
NOS

benign OLIGOASTROCYTOMA II WHO
Non-

Hispanic
White F N/A N/A

Temodar, 
temozolomide, 

radiation
N/A

Alive as of 
5/16/2019

M-HBT172
MH consent; final dx = anaplastic 

oligodendroglioma, WHO III
HN-BRAIN

BRAIN, 
NOS

cancer-
primary

OLIGODENDROGLIOMA, 
NOS

III WHO
Non-

Hispanic
White M N/A N/A N/A N/A

Deceased 
2013

M-HBT190
MH consent; final dx = Crani -

mixed oligoastrocytoma, WHO III
HN-BRAIN

BRAIN, 
NOS

cancer-
primary

OLIGOASTROCYTOMA III WHO
Non-

Hispanic
White F 28 N/A N/A N/A

Alive as of 
5/17/2019

M-HBT 385
MH consent; tentative dx = low 

grade glioma
HN-BRAIN

BRAIN, 
NOS

cancer-
primary

GLIOMA, NOS III WHO N/A N/A N/A N/A final path this sx (anaplastic astrocytoma, WHO Grade III) N/A 8/4/17
Alive as of 
5/20/19

M-HBT387
MH consent

tentative dx = low grade glioma
HN-BRAIN

BRAIN, 
NOS

cancer-
primary

GLIOMA, NOS III WHO N/A N/A N/A N/A final path this sx (complex anaplastic astrocytoma, IDH-mutant, WHO Grade III)
Radiation, 

temozolomide
N/A

Alive as of 
5/13/19

M-HBT 292
final dx=brain-oligoastrocytoma, 

IDH-1 mutated, WHO II (per path), 
malignant glioblastoma (per QC)

HN-BRAIN
BRAIN, 

NOS
cancer-
primary

GLIOBLASTOMA, NOS IV WHO
Non-

Hispanic
White M N/A N/A N/A N/A

Alive as of 
4/19/19

M-HBT319
MH consent; final path dx = 

glioblastoma w/oligodendroglial
component

HN-BRAIN
BRAIN, 

NOS
cancer-
primary

GLIOBLASTOMA, NOS IV WHO
Non-

Hispanic
White M N/A N/A

seizure, radiation, 
temozolomide, 

multiple resections 
since 2003

multiple 
resections 
since 2003

Deceased 
2017

M-HBT322
MH consent; final path dx = 

glioblastoma w/large PNET-like 
components

HN-BRAIN
BRAIN, 

NOS
cancer-
primary

GLIOBLASTOMA, NOS IV WHO
Non-

Hispanic
White N/A N/A N/A

radiation, 
temozolomide

N/A
Alive as of 
11/15/16

M-HBT370
MH consent, tentative dx = 

oligodendroglioma
HN-BRAIN

BRAIN, 
NOS

cancer-
primary

OLIGODENDROGLIOMA, 
NOS

IV WHO N/A N/A N/A final path this sx (Glioblastoma, IDH-wildtype, WHO grade IV) N/A N/A
Alive as of 

7/7/16
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APPENDIX B. CHAPTER 3 SUPPLEMENTAL FIGURES 

Lipid profiles by glioma grade 

 

 
Figure B.1 M2 method PCA plot indicated similar lipid composition between glioma grades. 

 

 
 

Figure B.2 M2 method cluster analysis of top 25 lipids demonstrated indiscriminate differences 

between glioma grades. 
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Figure B.3 Lipids with significantly different relative abundance by method between glioma by 

grade. 

 

Low grade v. high grade lipid profiles 

 
Figure B.4 Multivariate analysis identified comparable lipid profiles between low- and high- 

grade glioma using the M2 screening method. 
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Figure B.5 Heatmap analysis visualization of top 10 lipids showed slight clustering trend 

between low- and high-grade glioma based on distinct C(14:0, 16:0, and C18:0) relative 

abundance in M2 method. 

 

Glioma grade 2 v grade 3 

 

 
 

Figure B.6 PCA plot indicated similar lipid profiles between grade II and grade III glioma 

through the M2 profiling method. 
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Figure B.7 Top 20 lipids in cluster analysis demonstrated subtle clustering trend due to 

differential expression of PE lipids in M2 method. 
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APPENDIX C. CHAPTER 4 SUPPLEMENTAL FIGURES 

Brain around tumor by grade 

 
 

Figure C.1 PCA plot indicated similar lipid profiles between BAT grades according to the M2 

screening method. 

 

 

 
Figure C.2 Cluster analysis of top 25 M2 profiled lipids demonstrated limited distinction 

between BAT grade clusters. 
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Table C.1 Significant lipid species identified between BAT grades by ANOVA (M1 method) 

 

Lipid f.value p.value -log10(p) FDR Fisher's LSD 

PC 36:5 137.5 7.89E-15 14.103 7.50E-13 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 38:5 128.21 1.69E-14 13.773 8.01E-13 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT 

PC 36:1 50.514 2.80E-10 9.5535 8.85E-09 

Grade 3 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 3 BAT - Grade 4 BAT 

SM 

d18:0/22:0 
43.055 1.34E-09 8.8727 3.18E-08 

Grade 3 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 3 BAT - Grade 4 BAT 

PC 38:2 18.882 2.12E-06 5.674 4.02E-05 

Grade 3 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 3 BAT - Grade 4 BAT 

PCo34:1 14.843 1.37E-05 4.8644 
0.000216

34 

Grade 3 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 3 BAT - Grade 4 BAT 

TAG58:2_

FA 18:1 
13.525 2.70E-05 4.5694 

0.000365

77 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 36:2 13.02 3.54E-05 4.4516 
0.000419

78 

Grade 3 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 3 BAT - Grade 4 BAT 

TAG58:3_

FA 18:1 
12.463 4.80E-05 4.3185 

0.000507

02 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 4 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 40:5 12.232 5.47E-05 4.262 
0.000519

72 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT 

SM 

d18:1/24:1

15Z 

10.594 
0.0001432

4 
3.8439 0.001237 

Grade 3 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 3 BAT - Grade 4 BAT 

TAG50:3_

FA 18:2 
9.7631 

0.0002409

4 
3.6181 

0.001907

5 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 
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PC 36:0 

PCp38:6 
9.3149 

0.0003221

7 
3.4919 

0.002215

3 

Grade 3 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 3 BAT - Grade 4 BAT 

TAG54:2_

FA 18:2 
9.2947 

0.0003264

7 
3.4862 

0.002215

3 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PCo38:5 8.9547 
0.0004090

3 
3.3882 0.002547 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 3 BAT 

PCo36:1 8.8095 
0.0004509

9 
3.3458 0.002547 

Grade 1 BAT - Grade 4 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 3 BAT - Grade 4 BAT 

SM 

d18:1/24:0 
8.7939 

0.0004557

8 
3.3412 0.002547 

Grade 3 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 3 BAT - Grade 4 BAT 

SM 

d18:0/20:0 
8.1504 

0.0007098

3 
3.1488 

0.003746

3 

Grade 3 BAT - Grade 1 BAT; 

Grade 4 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 3 BAT - Grade 4 BAT 

PC 38:6 8.0118 
0.0007826

3 
3.1064 

0.003787

8 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 4 BAT - Grade 2 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 34:1 7.9853 
0.0007974

3 
3.0983 

0.003787

8 

Grade 3 BAT - Grade 1 BAT; 

Grade 4 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 3 BAT - Grade 4 BAT 

TAG54:5_

FA 18:2 
7.8813 

0.0008586

2 
3.0662 

0.003884

2 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

SM 

d16:1/24:0 
7.7815 

0.0009221

5 
3.0352 0.003982 

Grade 3 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 3 BAT - Grade 4 BAT 

PCo42:6 7.5717 0.0010728 2.9695 
0.004431

3 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 3 BAT 

PC 36:8 7.4341 0.0011861 2.9259 
0.004695

1 

Grade 1 BAT - Grade 4 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 3 BAT - Grade 4 BAT 

TAG56:8_

FA 18:1 
7.3121 0.0012974 2.8869 

0.004930

2 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 
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Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

O-

arachidono

ylcarnitine 

7.1266 0.0014889 2.8271 
0.005440

3 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 3 BAT 

TAG58:6_

FA 18:1 
6.8896 0.0017793 2.7497 

0.006260

5 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 3 BAT 

TAG58:1_

FA 18:1 
6.8414 0.0018457 2.7338 

0.006262

2 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 3 BAT 

PC 30:0 6.5901 0.0022374 2.6503 
0.007329

4 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT 

Palmitoylc

arnitine, 

5Z-13-

carboxytrid

ec-5-

enoylcarnit

ine 

6.32 0.0027613 2.5589 
0.008744

1 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

TAG60:4_

FA 18:1 
5.9357 0.0037486 2.4261 0.011488 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 4 BAT 

Arachidyl 

carnitine, 

O-9Z-17-

carboxyhep

tadec-9-

enoylcarnit

ine 

5.8467 0.0040281 2.3949 0.011958 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

SM 

d18:1/16:0 
5.611 0.0048834 2.3113 0.014058 

Grade 2 BAT - Grade 4 BAT; 

Grade 3 BAT - Grade 4 BAT 

TAG60:0_

FA 20:0 
5.5708 0.0050479 2.2969 0.014104 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT 

TAG58:5_

FA 18:1 
5.2766 0.0064506 2.1904 0.017509 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

TAG56:1_

FA 18:2 
5.0412 0.0078767 2.1037 0.020786 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT 

PC 34:0 4.8758 0.0090819 2.0418 0.023318 

Grade 3 BAT - Grade 1 BAT; 

Grade 4 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 4 BAT - Grade 2 BAT 
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PC 30:1 4.5666 0.011901 1.9244 0.029752 
Grade 2 BAT - Grade 4 BAT; 

Grade 3 BAT - Grade 4 BAT 

PCp40:6 4.0028 0.019783 1.7037 0.048123 
Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT 

O-

oleoylcarni

tine, 

Elaidic 

carnitine 

3.9768 0.020262 1.6933 0.048123 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

 

Table C.2 Significant lipid species identified between BAT grades by ANOVA (PC method) 

 

Lipid f.value p.value 

-

log10(p

) 

FDR Fisher's LSD 

PC 38:5 153.55 2.37E-15 14.625 2.39E-13 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT 

PC 36:5 84.84 1.38E-12 11.859 6.99E-11 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 36:1 74.695 5.24E-12 11.281 1.76E-10 

Grade 3 BAT - Grade 1 BAT; 

Grade 4 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 4 BAT - Grade 2 BAT; 

Grade 3 BAT - Grade 4 BAT 

SM 

d18:0/22:0 
42.856 1.40E-09 8.8532 3.54E-08 

Grade 3 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 3 BAT - Grade 4 BAT 

PCo34:1 13.645 2.53E-05 4.597 
0.0005109

3 

Grade 3 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 3 BAT - Grade 4 BAT 

PC 40:6 12.914 3.75E-05 4.4264 
0.0005271

4 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 36:2 12.729 4.15E-05 4.3823 
0.0005271

4 

Grade 3 BAT - Grade 1 BAT; 

Grade 4 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 3 BAT - Grade 4 BAT 

PCo44:3 12.636 4.36E-05 4.3601 
0.0005271

4 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 
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Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

SM 

d18:1/24:1

15Z 

12.504 4.70E-05 4.3282 
0.0005271

4 

Grade 3 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 3 BAT - Grade 4 BAT 

SM 

d18:1/24:0 
12.123 5.82E-05 4.2354 

0.0005873

8 

Grade 3 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 2 BAT - Grade 4 BAT; 

Grade 3 BAT - Grade 4 BAT 

PC 34:1 11.89 6.64E-05 4.1776 
0.0006100

2 

Grade 2 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 1 BAT; 

Grade 4 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 3 BAT - Grade 4 BAT 

SM 

d18:0/20:0 
11.629 7.72E-05 4.1122 

0.0006102

5 

Grade 2 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 1 BAT; 

Grade 4 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 3 BAT - Grade 4 BAT 

PC 38:6 11.558 8.05E-05 4.0942 
0.0006102

5 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 2 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 42:10 11.473 8.46E-05 4.0727 
0.0006102

5 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 30:0 9.438 
0.0002972

5 
3.5269 0.0018884 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT 

PCo38:5 9.4282 
0.0002991

5 
3.5241 0.0018884 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 44:10 9.071 0.0003785 3.4219 0.0022487 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PCo42:3 8.8639 
0.0004347

6 
3.3617 0.0023734 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 
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Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 36:6 8.8244 
0.0004464

9 
3.3502 0.0023734 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 40:7 8.123 
0.0007236

4 
3.1405 0.0036544 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

SM 

d18:1/12:0 
8.0461 

0.0007639

2 
3.117 0.0036741 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

SM 

d18:0/12:0 
7.7939 

0.0009139

4 
3.0391 0.0041958 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

SM 

d16:1/24:1 
7.3586 0.0012537 2.9018 0.0054642 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PCo32:0 7.2669 0.0013415 2.8724 0.0054642 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 38:2 7.2558 0.0013525 2.8689 0.0054642 

Grade 3 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 3 BAT - Grade 4 BAT 

PC 32:2 7.1989 0.0014109 2.8505 0.0054808 

Grade 4 BAT - Grade 1 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PCo34:0 6.9133 0.0017477 2.7575 0.0063653 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 34:6 6.9006 0.0017646 2.7533 0.0063653 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 40:5 6.7788 0.0019357 2.7132 0.0067415 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 3 BAT 

PCo44:5 6.5896 0.0022383 2.6501 0.0075356 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PCo42:6 6.4994 0.0024002 2.6198 0.00782 
Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 
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Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

SM 

d18:2/14:0 
6.2166 0.0029956 2.5235 0.0094548 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

SM 

d16:1/24:0 
6.0023 0.0035533 2.4494 0.010875 

Grade 3 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 3 BAT - Grade 4 BAT 

PCo36:5 5.9029 0.0038493 2.4146 0.011435 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

SM 

d18:2/18:1 
5.7872 0.0042276 2.3739 0.012034 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PCo38:2 5.7694 0.0042893 2.3676 0.012034 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PCo34:2 5.6547 0.004711 2.3269 0.012608 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 42:1 5.6304 0.0048059 2.3182 0.012608 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

SM 

d18:0/16:0 
5.6147 0.0048683 2.3126 0.012608 

Grade 2 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 4 BAT 

PCo40:4 5.5395 0.00518 2.2857 0.013079 
Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT 

PC 42:2 5.4264 0.00569 2.2449 0.013339 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 4 BAT 

PCp40:6 5.4196 0.0057224 2.2424 0.013339 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 4 BAT 

PCo32:2 5.4097 0.0057696 2.2389 0.013339 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PCo40:6 5.3799 0.0059152 2.228 0.013339 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 44:2 5.3742 0.0059433 2.226 0.013339 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 42:5 5.225 0.0067372 2.1715 0.014793 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 
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PCo36:3 5.1716 0.0070491 2.1519 0.015056 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PCo40:5 5.154 0.0071553 2.1454 0.015056 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PCo36:4 5.0966 0.0075133 2.1242 0.015163 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 38:9 5.0595 0.0077549 2.1104 0.015163 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 30:2 5.0514 0.0078088 2.1074 0.015163 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 32:0 5.0408 0.00788 2.1035 0.015163 

Grade 1 BAT - Grade 2 BAT; 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 4 BAT - Grade 3 BAT 

PCo36:0 5.0135 0.008066 2.0933 0.015163 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 3 BAT 

PCo38:6 5.0076 0.0081068 2.0912 0.015163 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 36:3 4.9375 0.0086105 2.065 0.015812 

Grade 2 BAT - Grade 1 BAT; 

Grade 4 BAT - Grade 1 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

SM 

d18:1/14:0 
4.8965 0.0089206 2.0496 0.016089 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 3 BAT 

PC 36:7 4.8032 0.0096719 2.0145 0.017138 

Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 3 BAT 

PC 36:0 

PCp38:6 
4.7013 0.010571 1.9759 0.018102 

Grade 3 BAT - Grade 1 BAT; 

Grade 3 BAT - Grade 2 BAT; 

Grade 3 BAT - Grade 4 BAT 

PC 38:0 4.701 0.010574 1.9757 0.018102 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 34:0 4.6681 0.010883 1.9632 0.01832 

Grade 3 BAT - Grade 1 BAT; 

Grade 4 BAT - Grade 1 BAT; 

Grade 4 BAT - Grade 2 BAT 
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PCo40:3 4.6061 0.011493 1.9396 0.01903 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

SM 

d18:1/16:0 
4.5773 0.011789 1.9285 0.019204 

Grade 1 BAT - Grade 4 BAT; 

Grade 2 BAT - Grade 4 BAT; 

Grade 3 BAT - Grade 4 BAT 

SM 

d16:1/18:1 
4.5235 0.012365 1.9078 0.019823 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PCo32:3 4.3382 0.014587 1.836 0.022987 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PCo40:0 4.3225 0.014794 1.8299 0.022987 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 42:6 4.2702 0.015508 1.8094 0.023732 
Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT 

SM 

d18:1/26:0 
4.1129 0.017886 1.7475 0.026963 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT 

PC 40:8 4.0965 0.018157 1.741 0.026968 
Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT 

PC 40:4 3.6858 0.026563 1.5757 0.038882 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

SM 

d18:0/26:0 
3.6676 0.027021 1.5683 0.038988 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT 

PCo38:0 3.6251 0.028126 1.5509 0.04001 
Grade 1 BAT - Grade 3 BAT; 

Grade 1 BAT - Grade 4 BAT 

SM 

d18:1/18:1

9Z 

3.5273 0.030855 1.5107 0.043283 
Grade 4 BAT - Grade 1 BAT; 

Grade 4 BAT - Grade 3 BAT 

SM 

d18:0/14:0 
3.437 0.033629 1.4733 0.045931 

Grade 1 BAT - Grade 3 BAT; 

Grade 2 BAT - Grade 3 BAT; 

Grade 4 BAT - Grade 3 BAT 

SM 

d18:1/20:0 
3.4363 0.033652 1.473 0.045931 

Grade 4 BAT - Grade 1 BAT; 

Grade 4 BAT - Grade 2 BAT; 

Grade 4 BAT - Grade 3 BAT 

PC 30:1 3.4205 0.034163 1.4664 0.046006 
Grade 2 BAT - Grade 4 BAT; 

Grade 3 BAT - Grade 4 BAT 
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Figure C.3 Lipids with significantly different relative abundance by method between BAT by 

grade. 

 

 

 

Low grade v. high grade brain around tumor 

 

 
 

Figure C.4 Multivariate analysis of M2 method lipids demonstrated comparable lipid profiles 

between low- and high-grade BAT. 
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Figure C.5 Heatmap of top 20 lipids displayed indiscriminate separate of low- and high-grade 

BAT clusters based on M2 method screened lipids. 

 

 
Figure C.6 Lipids with significantly different relative abundance by method between low- and 

high-grade BAT. 

  



142 

Table C.3 Significant lipid species identified between BAT low-grade v high-grade by t-test (M1 

method) 

 

Lipid t.stat p.value -log10(p) FDR 

TAG58:3_FA 18:1 -4.4775 0.00014437 3.8405 0.013715 

PC 34:0 3.7857 0.0008573 3.0669 0.030746 

TAG60:4_FA 18:1 -3.6111 0.0013349 2.8746 0.030746 

TAG58:6_FA 18:1 -3.5697 0.001482 2.8292 0.030746 

TAG56:1_FA 18:2 -3.39 0.0023243 2.6337 0.030746 

PC 36:1 3.3774 0.0023981 2.6201 0.030746 

TAG58:1_FA 18:1 -3.3732 0.002423 2.6156 0.030746 

TAG54:2_FA 18:2 -3.3465 0.0025892 2.5868 0.030746 

TAG50:3_FA 18:2 -3.2682 0.0031422 2.5028 0.031049 

PCo42:6 -3.2512 0.0032765 2.4846 0.031049 

TAG58:2_FA 18:1 -3.196 0.0037529 2.4256 0.031049 

O-arachidonoylcarnitine -3.178 0.003922 2.4065 0.031049 

2-ethylacryloylcarnitine, 

Tiglylcarnitine 
-3.0851 0.0049176 2.3082 0.035936 

TAG58:5_FA 18:1 -3.047 0.0053923 2.2682 0.036591 

SM d18:0/22:0 2.9953 0.0061069 2.2142 0.038036 

PCo38:5 -2.9753 0.0064061 2.1934 0.038036 

TAG54:5_FA 18:2 -2.9398 0.0069742 2.1565 0.038973 

PC 34:1 2.8939 0.0077799 2.109 0.041061 

2E-hexenedioylcarnitine, 

O-octanoylcarnitine 
-2.843 0.008776 2.0567 0.043801 

O-13-

carboxytridecanoylcarnitine 
-2.822 0.0092212 2.0352 0.043801 

11Z-eicoseneoylcarnitine -2.7827 0.010112 1.9952 0.044054 

PCp40:6 -2.7789 0.010202 1.9913 0.044054 

SM d18:0/20:0 2.7187 0.01174 1.9303 0.04849 

 

Table C.4 Significant lipid species identified between BAT low-grade v high-grade by t-test (PC 

method) 

 

Lipid t.stat p.value -log10(p) FDR 

PC 36:1 3.873 0.00068597 3.1637 0.01824 

SM d18:0/12:0 -3.828 0.00076968 3.1137 0.01824 

SM d18:0/16:0 -3.7158 0.0010239 2.9897 0.01824 

PC 36:6 -3.6857 0.0011052 2.9566 0.01824 

PC 34:0 3.6524 0.0012025 2.9199 0.01824 

PCo44:3 -3.493 0.0017969 2.7455 0.01824 

PCp40:6 -3.4712 0.0018976 2.7218 0.01824 

PCo42:6 -3.4682 0.0019118 2.7186 0.01824 

PCo40:4 -3.4049 0.0022392 2.6499 0.01824 

PC 42:2 -3.368 0.0024548 2.61 0.01824 
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SM d18:0/20:0 3.3677 0.0024566 2.6097 0.01824 

PC 34:1 3.3435 0.0026087 2.5836 0.01824 

PC 44:10 -3.3296 0.0027003 2.5686 0.01824 

PC 42:10 -3.2993 0.00291 2.5361 0.01824 

PCo38:5 -3.2934 0.0029531 2.5297 0.01824 

PC 44:2 -3.2546 0.0032494 2.4882 0.01824 

PCo38:2 -3.2546 0.0032496 2.4882 0.01824 

SM d18:0/22:0 3.2452 0.0033258 2.4781 0.01824 

PC 42:1 -3.2325 0.0034313 2.4645 0.01824 

PCo36:5 -3.1861 0.0038443 2.4152 0.019414 

SM d18:1/14:0 -3.1421 0.0042804 2.3685 0.020587 

PCo32:2 -3.071 0.0050874 2.2935 0.023356 

PCo42:3 -3.0353 0.0055458 2.256 0.024353 

PC 36:2 3.011 0.0058799 2.2306 0.024745 

SM d18:2/14:0 -2.9464 0.0068652 2.1633 0.025826 

PCo44:5 -2.9444 0.0068986 2.1612 0.025826 

PC 42:6 -2.9441 0.006904 2.1609 0.025826 

PCo40:6 -2.9218 0.0072801 2.1379 0.02626 

SM d18:1/26:0 -2.8838 0.0079675 2.0987 0.026275 

PCo40:3 -2.8519 0.0085927 2.0659 0.026275 

PC 40:8 -2.8509 0.0086124 2.0649 0.026275 

SM d18:0/26:0 -2.8495 0.0086416 2.0634 0.026275 

PC 34:6 -2.8392 0.0088554 2.0528 0.026275 

PC 40:7 -2.8368 0.0089039 2.0504 0.026275 

PCo34:2 -2.8273 0.0091053 2.0407 0.026275 

SM d18:1/16:0 -2.81 0.0094845 2.023 0.02631 

PC 36:7 -2.8031 0.0096383 2.016 0.02631 

PC 36:5 -2.784 0.010081 1.9965 0.026401 

PC 42:5 -2.7792 0.010195 1.9916 0.026401 

PCo38:6 -2.7621 0.010611 1.9743 0.026778 

SM d18:2/18:1 -2.748 0.010964 1.96 0.026778 

PCo36:3 -2.7414 0.011135 1.9533 0.026778 

PCo36:4 -2.7249 0.011571 1.9366 0.027178 

PC 38:9 -2.7141 0.011863 1.9258 0.027232 

SM d18:1/12:0 -2.697 0.012342 1.9086 0.027702 

PCo36:0 -2.6229 0.014639 1.8345 0.032143 

PCo32:0 -2.5693 0.016543 1.7814 0.035066 

PC 30:2 -2.566 0.016665 1.7782 0.035066 

PCo40:1 -2.5494 0.017306 1.7618 0.035671 

PCo32:3 -2.4549 0.021395 1.6697 0.043217 

PC 40:1 -2.4015 0.024088 1.6182 0.04695 

PC 40:4 -2.3999 0.024172 1.6167 0.04695 
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Table C.5 Discriminant individual lipids between low-grade and high-grade BAT identified by 

ROC curve analysis (M1 method) 

 

Lipid AUC Pval FC clusters 

TAG58:3_FA 18:1 0.88888889 0.00014437 -0.028847 2 

TAG58:6_FA 18:1 0.87222222 0.00148195 -0.0377835 2 

PC 36:1 0.86111111 0.00239809 0.29662813 2 

PC 34:0 0.85555556 0.0008573 0.17624053 2 

TAG60:4_FA 18:1 0.85 0.00133485 -0.0190851 2 

O-arachidonoylcarnitine 0.83888889 0.00392203 -0.0400148 2 

O-13-

carboxytridecanoylcarnitine 
0.83333333 0.00922118 -0.020713 2 

TAG58:1_FA 18:1 0.82777778 0.00242299 -0.0282681 2 

PCo42:6 0.82777778 0.00327645 -0.0189318 2 

PC 36:5 0.81666667 0.01337718 -0.0530289 2 

TAG58:2_FA 18:1 0.81666667 0.00375286 -0.0112177 2 

TAG54:2_FA 18:2 0.81666667 0.00258917 -0.0135851 2 

PCo38:5 0.81111111 0.00640614 -0.0157643 2 

TAG50:3_FA 18:2 0.80555556 0.00314216 -0.0138982 2 

PC 34:1 0.8 0.00777992 0.69821818 5 

2-ethylacryloylcarnitine, 

Tiglylcarnitine 
0.8 0.00491761 -0.1434069 2 

TAG56:1_FA 18:2 0.8 0.00232425 -0.019696 2 

 

Table C.6 Discriminant individual lipids between low-grade and high-grade BAT identified by 

ROC curve analysis (PC method) 

 

Lipid AUC Pval FC clusters 

SM d18:0/16:0 0.92222222 0.0010239 -0.1919695 4 

PC 36:1 0.9 0.00068597 0.55944658 5 

PC 34:0 0.86666667 0.00120253 0.2540185 5 

SM d18:0/12:0 0.86666667 0.00076968 -0.0939628 4 

SM d18:0/22:0 0.85 0.00332578 0.2478778 5 

PC 36:6 0.84444444 0.00110519 -0.0556481 4 

PC 44:10 0.83888889 0.00270032 -0.0591855 4 

PC 34:1 0.82777778 0.0026087 0.72367954 1 

SM d18:0/20:0 0.82777778 0.00245665 0.53290821 2 

PCo42:6 0.82777778 0.0019118 -0.0645083 4 

PCo38:2 0.82777778 0.00324965 -0.0524443 4 

PCo40:6 0.82222222 0.00728006 -0.1032962 4 

PCo36:5 0.82222222 0.00384428 -0.0590017 4 

PCo44:3 0.82222222 0.00179692 -0.0598652 4 

PCp40:6 0.82222222 0.00189757 -0.0470806 4 

PC 34:6 0.81111111 0.00885545 -0.0589162 4 

PC 42:6 0.81111111 0.00690399 -0.0512104 4 
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PCo42:3 0.81111111 0.00554582 -0.0559515 4 

PC 42:2 0.81111111 0.00245476 -0.0438227 4 

PC 42:10 0.80555556 0.00291 -0.0641397 4 

PCo34:2 0.80555556 0.00910529 -0.0443703 4 

PC 36:2 0.8 0.00587992 0.16461272 5 

PC 36:5 0.8 0.01008057 -0.1555464 4 

PCo40:4 0.8 0.00223915 -0.0685826 4 

 

 

 

Grade II v. grade III brain around tumor 

 

 
 

Figure C.7 M2 screening method PCA plot of grade II and grade III BAT identified minimal 

separation between clusters. 
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Figure C.8 Cluster analysis showed minor trend in cluster separation between grade II and III 

groups in top 20 lipids profiled with the M2 method. 

 
Figure C.9 Lipids with significantly different relative abundance by method between grade 2 an 

grade 3 BAT. 
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Table C.7 Significant lipid species identified between BAT grade II and III by t-test (M1 method) 

 

Lipid t.stat p.value -log10(p) FDR 

PC 36:1 -10.579 9.33E-08 7.0303 8.86E-06 

SM d18:0/22:0 -8.8715 7.08E-07 6.1497 3.36E-05 

PC 38:2 -5.2402 0.00015956 3.7971 0.0032146 

PC 36:2 -5.2054 0.00016949 3.7708 0.0032146 

PC 34:0 -5.1925 0.00017335 3.7611 0.0032146 

TAG58:2_FA 18:1 5.102 0.00020303 3.6924 0.0032146 

TAG50:3_FA 18:2 4.828 0.00032987 3.4817 0.0044768 

TAG54:5_FA 18:2 4.534 0.00056127 3.2508 0.0062191 

PCo34:1 -4.501 0.00059624 3.2246 0.0062191 

SM d18:2/24:1 -4.4303 0.00067872 3.1683 0.0062191 

PC 36:5 4.3982 0.00072011 3.1426 0.0062191 

TAG58:3_FA 18:1 4.3021 0.00085992 3.0655 0.0068077 

PC 34:1 -4.1364 0.0011706 2.9316 0.0078488 

TAG54:2_FA 18:2 4.1084 0.0012335 2.9089 0.0078488 

PCo36:1 -4.1059 0.0012393 2.9068 0.0078488 

TAG58:6_FA 18:1 4.0696 0.0013265 2.8773 0.0078764 

PCp40:6 4.0237 0.0014462 2.8398 0.0080816 

PC 36:8 -3.9791 0.0015729 2.8033 0.0083014 

SM d18:1/24:115Z -3.7848 0.0022721 2.6436 0.010389 

PC 384 -3.7839 0.0022757 2.6429 0.010389 

SM d18:0/20:0 -3.7792 0.0022964 2.6389 0.010389 

SM d16:1/24:0 -3.7244 0.0025488 2.5937 0.010601 

TAG56:8_FA 18:1 3.7207 0.0025666 2.5906 0.010601 

PC 36:0 PCp38:6 -3.6519 0.0029269 2.5336 0.011544 

PCo38:5 3.6324 0.0030379 2.5174 0.011544 

O-oleoylcarnitine, Elaidic 

carnitine 
3.5175 0.0037847 2.422 0.013829 

PCo42:6 3.4898 0.0039913 2.3989 0.014043 

TAG58:1_FA 18:1 3.444 0.0043584 2.3607 0.01449 

TAG58:5_FA 18:1 3.4363 0.0044232 2.3543 0.01449 

PCo40:6 3.3658 0.0050645 2.2955 0.015949 

TAG60:4_FA 18:1 3.3516 0.0052046 2.2836 0.015949 

O-arachidonoylcarnitine 3.2472 0.0063621 2.1964 0.018887 

Palmitoylcarnitine, 5Z-13-

carboxytridec-5-

enoylcarnitine 

3.1765 0.0072898 2.1373 0.020986 

TAG56:1_FA 18:2 3.1314 0.0079509 2.0996 0.022216 

2E-hexenedioylcarnitine, O-

octanoylcarnitine 
3.0541 0.0092271 2.0349 0.025045 

Arachidyl carnitine, O-9Z-17-

carboxyheptadec-9-

enoylcarnitine 

2.952 0.011228 1.9497 0.02963 
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SM d18:1/24:0 -2.9316 0.011677 1.9327 0.029982 

12-Hydroxy-12-

octadecanoylcarnitine, 3-

hydroxyoctadecanoylcarnitine 

2.8667 0.013228 1.8785 0.033069 

PCo38:6 2.786 0.015438 1.8114 0.037606 

PC 38:1 -2.6603 0.019624 1.7072 0.045874 

PCo34:2 2.6556 0.019798 1.7034 0.045874 

TAG58:2_FA 18:2 2.6382 0.020466 1.689 0.046293 

PC 30:2 2.5964 0.022156 1.6545 0.04895 

Stearoylcarnitine, 

hexadecanedioic acid mono-

L-carnitine ester 

2.5809 0.022818 1.6417 0.049267 

 

Table C.8 Significant lipid species identified between BAT grade II and III by t-test (PC method) 

 

Lipid t.stat p.value -log10(p) FDR 

PC 36:1 -14.605 1.92E-09 8.7171 1.94E-07 

SM d18:0/22:0 -8.7103 8.71E-07 6.0602 4.40E-05 

PCo34:1 -6.0857 3.87E-05 4.4124 0.001002 

PC 32:2 6.07 3.97E-05 4.4014 0.001002 

PC 34:0 -5.2761 0.00014992 3.8241 0.0030285 

SM 

d18:1/24:115Z 
-4.9143 0.00028281 3.5485 0.0047606 

PC 36:2 -4.7331 0.00039117 3.4076 0.005644 

SM d16:1/24:1 4.4792 0.00062053 3.2072 0.0078342 

SM d18:1/24:0 -4.3235 0.00082654 3.0827 0.0079392 

PC 34:6 4.2988 0.00086518 3.0629 0.0079392 

SM d18:1/14:0 4.2027 0.0010344 2.9853 0.0079392 

SM d18:1/12:0 4.1949 0.0010495 2.979 0.0079392 

SM d18:0/12:0 4.1553 0.0011299 2.947 0.0079392 

PC 34:1 -4.1412 0.0011602 2.9355 0.0079392 

PCo40:6 4.1325 0.0011791 2.9285 0.0079392 

PCo34:2 4.0517 0.001372 2.8626 0.0081623 

PC 36:6 4.0152 0.0014694 2.8329 0.0081623 

SM d18:0/20:0 -4.0012 0.0015087 2.8214 0.0081623 

PC 36:5 3.9918 0.0015355 2.8138 0.0081623 

PCo38:2 3.9241 0.0017447 2.7583 0.0086774 

SM d16:1/18:1 3.8692 0.0019358 2.7131 0.0086774 

SM 

d18:1/18:19Z 
3.8273 0.002096 2.6786 0.0086774 

PC 40:7 3.8135 0.0021515 2.6673 0.0086774 

PCo44:5 3.8101 0.0021653 2.6645 0.0086774 

PC 42:2 3.7803 0.0022914 2.6399 0.0086774 

PCo38:5 3.7697 0.0023382 2.6311 0.0086774 

SM d16:1/24:0 -3.7505 0.0024252 2.6153 0.0086774 
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PC 44:10 3.7138 0.0026006 2.5849 0.0086774 

PC 38:9 3.6874 0.0027347 2.5631 0.0086774 

PC 42:1 3.6849 0.0027478 2.561 0.0086774 

PCo36:5 3.6739 0.0028062 2.5519 0.0086774 

PC 42:10 3.6566 0.0029006 2.5375 0.0086774 

PC 38:2 -3.6357 0.0030189 2.5202 0.0086774 

PCo36:3 3.6232 0.0030914 2.5099 0.0086774 

PC 44:2 3.601 0.0032259 2.4914 0.0086774 

PC 38:0 3.5957 0.0032588 2.4869 0.0086774 

PCo36:4 3.5636 0.0034649 2.4603 0.0086774 

SM d18:0/14:0 3.5623 0.0034738 2.4592 0.0086774 

SM d18:2/14:0 3.5468 0.0035781 2.4464 0.0086774 

PCo38:6 3.5397 0.0036271 2.4404 0.0086774 

PCo42:6 3.5276 0.0037124 2.4303 0.0086774 

PCo32:3 3.5195 0.0037702 2.4236 0.0086774 

PCo44:3 3.5182 0.0037795 2.4226 0.0086774 

PCp40:6 3.5118 0.0038261 2.4172 0.0086774 

PCo42:3 3.5064 0.0038662 2.4127 0.0086774 

PCo32:0 3.4502 0.0043067 2.3659 0.009456 

PC 36:7 3.3801 0.0049271 2.3074 0.010436 

PC 30:2 3.3767 0.0049599 2.3045 0.010436 

PCo32:2 3.3515 0.005206 2.2835 0.010731 

SM d18:2/18:1 3.3227 0.0055016 2.2595 0.011113 

PC 36:0 

PCp38:6 
-3.2293 0.006586 2.1814 0.013043 

SM d18:1/26:0 3.1924 0.0070706 2.1505 0.013733 

PCo40:4 3.0924 0.0085707 2.067 0.016333 

PCo34:0 3.0582 0.0091546 2.0384 0.017122 

PCo40:0 3.0037 0.010167 1.9928 0.01867 

PC 40:8 2.968 0.010889 1.963 0.019638 

PCo40:5 2.926 0.011804 1.928 0.020916 

PCo40:3 2.8925 0.012589 1.9 0.021922 

PC 42:5 2.8825 0.012831 1.8917 0.021965 

PC 32:0 2.8009 0.015003 1.8238 0.025254 

PC 40:4 2.7768 0.015713 1.8038 0.026016 

PC 42:6 2.7668 0.016015 1.7955 0.026088 

SM d18:0/26:0 2.7185 0.017563 1.7554 0.028156 

PC 38:8 2.6808 0.018873 1.7241 0.029785 

PC 36:3 2.6591 0.019667 1.7063 0.03056 

SM d18:0/16:0 2.6401 0.020393 1.6905 0.031207 

PC 40:6 2.6131 0.021466 1.6682 0.03236 

PC 38:6 2.6045 0.02182 1.6612 0.032409 

PCo36:0 2.5721 0.023202 1.6345 0.033962 

PC 34:2 2.4619 0.028565 1.5442 0.041215 
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Table C.9 Discriminant individual lipids between grade II and grade III BAT identified by ROC 

curve analysis (M1 method) 

 

Lipid AUC Pval FC clusters 

PC 36:1 1 9.33E-08 -0.5923702 4 

PC 34:0 1 0.00017335 -0.18422 3 

SM d18:0/22:0 1 7.08E-07 -0.2847099 3 

TAG58:2_FA 18:1 1 0.00020303 0.02040612 3 

TAG50:3_FA 18:2 1 0.00032987 0.02387643 3 

O-17-

carboxyheptadecanoylcarnitine 
0.98148148 0.16033204 0.37128493 4 

PCo34:1 0.98148148 0.00059624 -0.1487147 3 

TAG58:6_FA 18:1 0.98148148 0.00132655 0.04397609 3 

TAG58:3_FA 18:1 0.98148148 0.00085992 0.04107039 3 

TAG54:5_FA 18:2 0.98148148 0.00056127 0.01821155 3 

PC 34:1 0.96296296 0.00117058 -0.9484361 2 

PC 36:2 0.96296296 0.00016949 -0.1753969 3 

PC 38:2 0.96296296 0.00015956 -0.1407551 3 

PC 36:5 0.96296296 0.00072011 0.02256771 3 

SM d18:1/24:115Z 0.94444444 0.00227206 -0.290211 3 

PC 38:4 0.94444444 0.00227571 -0.056862 3 

PC 36:0 PCp38:6 0.94444444 0.0029269 -0.0413937 3 

PCo36:1 0.94444444 0.00123929 -0.0355572 3 

PCo40:6 0.94444444 0.00506448 0.0403421 3 

O-oleoylcarnitine, Elaidic 

carnitine 
0.94444444 0.00378468 0.03347772 3 

PCo42:6 0.94444444 0.00399128 0.02198831 3 

PCo38:5 0.94444444 0.00303792 0.01711376 3 

TAG58:5_FA 18:1 0.94444444 0.00442322 0.02859936 3 

TAG54:2_FA 18:2 0.94444444 0.00123347 0.01751857 3 

SM d16:1/24:0 0.92592593 0.0025488 -0.0773322 3 

PC 36:8 0.92592593 0.0015729 -0.0318124 3 

Palmitoylcarnitine, 5Z-13-

carboxytridec-5-enoylcarnitine 
0.92592593 0.00728981 0.04943576 3 

TAG60:4_FA 18:1 0.92592593 0.00520456 0.02697514 3 

PCp40:6 0.92592593 0.00144618 0.01530671 3 

SM d18:0/20:0 0.90740741 0.00229641 -0.5417386 4 

O-arachidonoylcarnitine 0.90740741 0.00636209 0.03626597 3 

TAG56:8_FA 18:1 0.90740741 0.00256659 0.03831534 3 

TAG58:1_FA 18:1 0.90740741 0.00435842 0.0338615 3 

SM d18:2/24:1 0.90740741 0.00067872 -0.0246492 3 

3-hydroxylinoleoylcarnitine, 0.88888889 0.02880589 0.11913938 4 

TAG58:2_FA 18:2 0.88888889 0.02046628 0.02995858 3 

2E-hexenedioylcarnitine, O-

octanoylcarnitine 
0.88888889 0.00922711 0.04267855 3 
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TAG56:1_FA 18:2 0.88888889 0.00795092 0.02538176 3 

O-13-

carboxytridecanoylcarnitine 
0.88888889 0.03249303 0.02412591 3 

Arachidyl carnitine, O-9Z-17-

carboxyheptadec-9-

enoylcarnitine 

0.87037037 0.0112283 0.25139577 1 

Stearoylcarnitine, 

hexadecanedioic acid mono-L-

carnitine ester 

0.87037037 0.02281827 0.14312151 4 

PCo34:2 0.87037037 0.01979834 0.01208886 3 

PC 38:1 0.85185185 0.01962378 -0.0349871 3 

11Z-eicoseneoylcarnitine 0.85185185 0.03530399 0.03587902 3 

2-ethylacryloylcarnitine, 

Tiglylcarnitine 
0.83333333 0.05483043 0.1628239 3 

SM d18:1/24:0 0.83333333 0.01167738 -0.072484 3 

PC 30:2 0.83333333 0.02215631 0.01385544 3 

PCo38:6 0.83333333 0.01543824 0.01179582 3 

7Z,10Z,13Z,16Z-

docosatetraenoylcarnitine 
0.81481481 0.04970208 0.10985594 4 

 

Table C.10 Discriminant individual lipids between grade II and grade III BAT identified by ROC 

curve analysis (PC method) 

 

Lipid AUC Pval FC clusters 

PC 36:1 1 1.92E-09 -1.018044 1 

SM d18:0/22:0 1 8.71E-07 -0.4968263 1 

PCo34:1 1 3.87E-05 -0.2142536 1 

PC 36:5 1 0.00153548 0.09437974 4 

PC 32:2 1 3.97E-05 0.07814507 4 

PCo40:6 1 0.00117909 0.15656852 4 

PC 34:6 1 0.00086518 0.08992179 4 

SM d18:1/12:0 1 0.00104947 0.10950238 4 

PC 44:10 1 0.00260063 0.07586034 4 

PC 38:0 1 0.00325875 0.06230506 4 

PCo42:3 1 0.00386617 0.07228324 4 

PCo44:3 1 0.00377952 0.07154516 4 

PCo34:2 1 0.00137201 0.07657632 4 

PCo36:3 1 0.00309135 0.07875678 4 

PCo38:2 1 0.00174473 0.08215937 4 

SM d18:2/14:0 1 0.00357808 0.08445028 4 

SM d16:1/18:1 1 0.00193581 0.09085165 4 

PCo32:2 1 0.00520597 0.07604357 4 

SM d18:2/18:1 1 0.0055016 0.07278475 4 

PC 34:1 0.98148148 0.00116024 -0.7663815 2 

PC 34:0 0.98148148 0.00014992 -0.2033641 1 
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PC 36:2 0.98148148 0.00039117 -0.2664549 1 

SM d18:0/12:0 0.98148148 0.00112989 0.12334921 4 

PCo38:5 0.98148148 0.00233825 0.07698982 4 

PC 40:7 0.98148148 0.00215145 0.07829333 4 

PC 42:10 0.98148148 0.00290056 0.07848621 4 

PC 36:6 0.98148148 0.00146939 0.0737693 4 

PC 42:2 0.98148148 0.00229141 0.06641848 4 

PCo44:5 0.98148148 0.00216535 0.078803 4 

PCo36:4 0.98148148 0.00346487 0.07278511 4 

SM d18:0/20:0 0.96296296 0.0015087 -0.6230478 5 

SM d16:1/24:1 0.96296296 0.00062053 0.08219016 4 

PCo40:0 0.96296296 0.0101671 0.05944492 4 

PCo42:6 0.96296296 0.00371236 0.08812952 4 

PC 42:5 0.96296296 0.01283084 0.0935307 4 

PCo38:6 0.96296296 0.00362711 0.09005429 4 

PCo36:5 0.96296296 0.00280617 0.09041068 4 

PC 30:2 0.96296296 0.00495991 0.08298255 4 

SM 

d18:1/24:115Z 
0.94444444 0.00028281 -0.5427728 1 

SM d16:1/24:0 0.94444444 0.0024252 -0.1194502 1 

SM d18:0/16:0 0.94444444 0.02039252 0.23131656 4 

PCo40:5 0.94444444 0.01180401 0.10103093 4 

PCo32:3 0.94444444 0.00377017 0.09590602 4 

PCp40:6 0.94444444 0.00382613 0.06910364 4 

PC 38:9 0.94444444 0.00273474 0.06980517 4 

PC 44:2 0.94444444 0.00322589 0.07304576 4 

PCo40:3 0.94444444 0.01258871 0.06373731 4 

PCo34:0 0.92592593 0.00915455 0.06835228 4 

SM d18:1/14:0 0.92592593 0.00103442 0.07870205 4 

SM d18:0/14:0 0.92592593 0.00347385 0.07844069 4 

SM d18:1/26:0 0.92592593 0.00707061 0.06405059 4 

PC 42:1 0.92592593 0.0027478 0.07296382 4 

SM 

d18:1/18:19Z 
0.90740741 0.00209599 0.08407234 4 

SM d18:1/24:0 0.90740741 0.00082654 -0.0884811 4 

PC 40:4 0.90740741 0.01571265 0.06684785 4 

PC 42:6 0.90740741 0.01601468 0.06647987 4 

PC 36:7 0.90740741 0.00492709 0.0587545 4 

PCo40:4 0.90740741 0.00857073 0.0944088 4 

PC 40:8 0.90740741 0.01088866 0.06238907 4 

SM d18:0/26:0 0.90740741 0.01756255 0.06660565 4 

PC 38:6 0.88888889 0.02181963 0.09749179 4 

PC 36:0 

PCp38:6 
0.88888889 0.006586 -0.1303805 1 

PCo32:0 0.88888889 0.00430669 0.07596468 4 
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PC 40:1 0.88888889 0.03625944 0.04705262 4 

PC 32:0 0.87037037 0.01500255 0.27580876 3 

PC 38:2 0.87037037 0.00301888 -0.1887198 4 

PCp42:6 0.87037037 0.04907868 0.21611401 1 

PCo40:1 0.87037037 0.03798415 0.04220499 4 

PC 36:3 0.85185185 0.01966718 0.07833136 4 

PCo36:0 0.85185185 0.02320203 0.05247886 4 

PC 40:0 0.83333333 0.04643559 0.20230737 1 

PCp36:5 0.83333333 0.05603771 0.10657919 4 

PC 40:6 0.83333333 0.0214664 0.05434046 4 

PC 38:8 0.83333333 0.01887349 0.04843102 4 

PCo38:0 0.81481481 0.07365033 0.33532636 3 

PC 40:2 0.81481481 0.04390634 0.03701403 4 
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APPENDIX D. CHAPTER 5 SUPPLEMENTAL FIGURES 

Low-grade glioma v. low-grade BAT 

 
 

Figure D.1 Multivariate analysis identified similar lipid composition between low-grade glioma 

and low-grade BAT in the M2 method. 

 

 
Figure D.2 Cluster analysis of top 25 lipids indicated indiscriminate separation between low-

grade glioma and BAT groups in the M2 method.  
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High-grade glioma v. high-grade BAT 

 

 
Figure D.3 M2 method PCA plot comparing high-grade glioma and BAT identified limited point 

separation suggesting comparable lipid composition between groups.  

 

 

 
 

Figure D.4 M2 method heatmap of top 25 lipids displayed minimally distinct clusters between 

high-grade glioma and BAT groups. 
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Glioma v. BAT 

 
 

Figure D.5 PCA plot indicated highly similar lipid profiles in glioma and BAT noted by 

proximal clustering within the plot. 

 

 
 

Figure D.6 Cluster analysis of top 25 lipid demonstrated glioma and BAT shared comparable 

relative abundances of M2 screened lipids. 
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