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ABSTRACT 

This dissertation is devoted to developing a first-of-a-kind uncertainty characterization 

framework (UCF) providing comprehensive, efficient and scientifically defendable methodologies 

for uncertainty characterization (UC) in best-estimate (BE) reactor physics simulations. The UCF 

is designed with primary application to CANDU neutronics calculations, but could also be applied 

to other thermal-spectrum reactor systems. The overarching goal of the UCF is to propagate and 

prioritize all sources of uncertainties, including those originating from nuclear data uncertainties, 

modeling assumptions, and other approximations, in order to reliably use the results of BE 

simulations in the various aspects of reactor design, operation, and safety. The scope of this UCF 

is to propagate nuclear data uncertainties from the multi-group format, representing the input to 

lattice physics calculations, to the few-group format, representing the input to nodal diffusion-

based core simulators and quantify the uncertainties in reactor core attributes.  

The main contribution of this dissertation addresses two major challenges in current 

uncertainty analysis approaches. The first is the feasibility of the UCF due to the complex nature 

of nuclear reactor simulation and computational burden of conventional uncertainty quantification 

(UQ) methods. The second goal is to assess the impact of other sources of uncertainties that are 

typically ignored in the course of propagating nuclear data uncertainties, such as various modeling 

assumptions and approximations.  

To deal with the first challenge, this thesis work proposes an integrated UC process 

employing a number of approaches and algorithms, including the physics-guided coverage 

mapping (PCM) method in support of model validation, and the reduced order modeling (ROM) 

techniques as well as the sensitivity analysis (SA) on uncertainty sources, to reduce the 

dimensionality of uncertainty space at each interface of neutronics calculations. In addition to the 

efficient techniques to reduce the computational cost, the UCF aims to accomplish four primary 

functions in uncertainty analysis of neutronics simulations. The first function is to identify all 

sources of uncertainties, including nuclear data uncertainties, modeling assumptions, numerical 

approximations and technological parameter uncertainties. Second, the proposed UC process will 

be able to propagate the identified uncertainties to the responses of interest in core simulation and 

provide uncertainty quantifications (UQ) analysis for these core attributes. Third, the propagated 

uncertainties will be mapped to a wide range of reactor core operation conditions. Finally, the 
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fourth function is to prioritize the identified uncertainty sources, i.e., to generate a priority 

identification and ranking table (PIRT) which sorts the major sources of uncertainties according 

to the impact on the core attributes’ uncertainties.  In the proposed implementation, the nuclear 

data uncertainties are first propagated from multi-group level through lattice physics calculation 

to generate few-group parameters uncertainties, described using a vector of mean values and a 

covariance matrix. Employing an ROM-based compression of the covariance matrix, the few-

group uncertainties are then propagated through downstream core simulation in a computationally 

efficient manner. 

To explore on the impact of uncertainty sources except for nuclear data uncertainties on the 

UC process, a number of approximations and assumptions are investigated in this thesis, e.g., 

modeling assumptions such as resonance treatment, energy group structure, etc., and assumptions 

associated with the uncertainty analysis itself, e.g., linearity assumption, level of ROM reduction 

and associated number of degrees of freedom employed. These approximations and assumptions 

have been employed in the literature of neutronic uncertainty analysis yet without formal 

verifications. The major argument here is that these assumptions may introduce another source of 

uncertainty whose magnitude needs to be quantified in tandem with nuclear data uncertainties. In 

order to assess whether modeling uncertainties have an impact on parameter uncertainties, this 

dissertation proposes a process to evaluate the influence of various modeling assumptions and 

approximations and to investigate the interactions between the two major uncertainty sources. To 

explore this endeavor, the impact of a number of modeling assumptions on core attributes 

uncertainties is quantified. 

The proposed UC process has first applied to a BWR application, in order to test the 

uncertainty propagation and prioritization process with the ROM implementation in a wide range 

of core conditions. Finally, a comprehensive uncertainty library for CANDU uncertainty analysis 

with NESTLE-C as core simulator is generated compressed uncertainty sources from the proposed 

UCF. The modeling uncertainties as well as their impact on the parameter uncertainty propagation 

process are investigated on the CANDU application with the uncertainty library. 
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 INTRODUCTION 

1.1 Overview and Motivation 

A nuclear reactor is a device to initiate and control a sustained nuclear chain reaction aiming 

at energy produce. The main purpose of reactor simulation is to predict the behaviors of nuclear 

chain reaction systems. A computational model/simulation sequence of a nuclear reactor is a set 

of mathematical representations to describe the theoretical physics of the reactor system, whose 

solutions/responses of interest are used to analyze the performance of the system. With the 

increasing power of scientific computing, the accuracy of reactor calculations has been 

continuously improved by increasing the fidelity of the model and the complexity of the model 

descriptions, which in turn improves the understanding of the physics in nuclear reactor benefiting 

the design, operation and safety assessment. Despite the improvement of prediction accuracy, 

uncertainties are unavoidable in nuclear reactor simulation due to the discrepancies between the 

reality and the models that the simulations are based on. Since the nuclear reactor is a high 

consequence system, uncertainty quantification and understanding of the uncertainty sources is 

indispensable in reactor calculations to ensure the safety and reliability of the reactor designs under 

normal operation and transient scenarios.  

Many nuclear engineering studies and applications have benefited from the noticeable 

growth in the development of uncertainty analysis techniques. For example, spent fuel analysis 

employs uncertainty analysis to estimate uncertainties of the heat load and radiotoxicity resulting 

from the burnt fuel isotopics whose uncertainties are dominated by cross section uncertainties and 

irradiation history. Burnup credit calculations employ uncertainty analysis to assess the degree of 

spent fuel subcriticality. Fuel cycle studies focus on estimating uncertainties in burnup, cycle 

length, concentration of recycled fuel isotopes, etc. Core load follow calculations are concerned 

with the estimation of uncertainties of key core attributes such as the critical eigenvalue, power 

distribution, discharge burnup, etc. For criticality safety studies, measurements of flux, eigenvalue, 

critical size are typically made, and are compared against their predicted values and their 

propagated uncertainties. In similarity studies, employing similarity indices [1] or representativity 

factors [2], one judges the relevance of experiments to given applications based solely on the cross 

sections sensitivities (first order derivatives of key attributes such as the eigenvalue with respect 
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to cross sections) and their prior uncertainties. In Bayesian inference, also referred to as Bayesian 

calibration or cross section adjustment techniques [3-5], the main premise is that cross sections 

may be adjusted within their prior uncertainties to explain the discrepancies between 

measurements and predictions. The implication is that the adjusted cross sections may be used in 

lieu of the original cross sections to improve predictions for a wider range of applications. 

Uncertainty analysis is an essential component of best-estimate (BE) reactor analysis 

calculations as it provides reliable metrics by which the quality of the predictions can be assessed. 

The original nuclear reactor designs for safety analysis require very conservative assumptions to 

meet the design margins [6]. With the U.S. Nuclear Regulatory Commission (NRC)’s shift [7] 

from overly conservative bounding-type analyses to best-estimate plus uncertainty (BEPU) [8, 9], 

the requirements for rigorous, comprehensive and efficient methodologies for uncertainty 

quantification have greatly increased. The concept of safety margins and its relationship with the 

acceptance criterion accepted by the regulatory body are illustrated in Figure 1-1. The safety 

margin can either be measured by the discrepancy between the safety limit and the real value or 

the acceptance criterion. Figure 1-1 also presents the comparison between the two ways to define 

the acceptance criterion, which are the conservative analysis and the BEPU analysis. 

 

Figure 1-1 Concept of safety margins defined in [10] and its comparison to acceptance criterion 
defined in terms of conservative bounds or BEPU. 

Although direct comparison against measurements provides the ultimate evidence that 

simulation predictions are reliable, the true value of any best-estimate simulation lies in its ability 

to analyze reactor conditions for which measurements are not available. Therefore, there is a clear 

need to characterize, i.e., propagate and prioritize, all sources of uncertainties in order to reliably 



 
 

20 

use the results of BE calculations in the various aspects of reactor design, operation, and safety. 

Characterization of uncertainties refers to all engineering analyses conducted to provide 

scientifically-defendable quantities that measure the reliability of the reactor simulation 

predictions. This characterization of uncertainties involves three primary processes. The first 

process, referred to as uncertainty quantification (UQ), propagates all known sources of simulation 

uncertainties in order to understand their impact on the reactor behavior. The second process, 

referred to as sensitivity analysis (SA), acts in conjunction with UQ to help identify the key sources 

of uncertainties. The third process, referred to as uncertainty mapping (UM), represents the 

ultimate value of any uncertainty analysis, that’s to predict the real behavior for a system based on 

the combined use of UQ, SA, and experimental results.  

This thesis work has been focusing on developing an uncertainty characterization framework 

(UCF) to accomplish the three primary processes above as well as a prior process to identify all 

sources of uncertainties including not only nuclear data uncertainties, but also modeling 

assumptions and numerical approximations throughout reactor physics simulations. 

1.2 Challenges and Objectives 

The last two decades have witnessed a huge growth in the number of publications [10-16] 

in the area of uncertainty analysis for reactor physics calculations focusing on neutronic sources 

of uncertainties. The common objective to these developments has been focused on the 

propagation of nuclear data uncertainties starting with the ENDF (Evaluated Nuclear Data Files) 

level and heading downstream to the quantities of interest for the various applications, e.g. core 

simulation [16], criticality safety [17, 18], spent fuel characterization [19], etc. Although methods 

have been developed to propagate other sources of uncertainties, such as those originating from 

boundary/initial conditions, geometry, composition, other non-neutronic physics, the discussion in 

this paper will be limited to what is referred to as “standalone neutronic uncertainty analysis” [10]. 

Most of the literature on standalone neutronic uncertainty quantification has focused on nuclear 

data uncertainties [20], which are classified as parameter uncertainties since nuclear data are the 

input parameters to reactor simulations in this dissertation. The classifications and sources of 

uncertainties are presented in detail in Chapter 2.  

The common assumption in current standalone neutronic uncertainty analyses is that 

modeling uncertainties have minimal impact on the propagated cross section uncertainties and the 
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cross-section adjustments, and if present, they may be treated as independent sources of 

uncertainty. Modeling uncertainties, sometimes referred to as errors or biases are introduced from 

the numerous simplifying assumptions and approximations made throughout the calculations. For 

example, in lattice cell calculations, the assumption of reflective boundary conditions represents a 

source of modeling uncertainties because it ignores the neutron leakage between the assembly and 

its neighbors. The use of flux weighting to collapse cross sections and the various associated 

resonance treatment models are other sources of modeling uncertainties. Each type of deterministic 

solver for radiation transport introduces different type of modeling uncertainties. For example, the 

discrete ordinary method, the method of characteristics, or collision probability method [21], each 

introduces its own assumptions and thus will produce different modeling uncertainties. Use of a 

deterministic solver as compared to a probabilistic particle-tracking solver, e.g., Monte Carlo 

radiation transport, represents another fundamental source of modeling uncertainties.  

The order of magnitude of contributions to the multiplication factor uncertainty from nuclear 

data and other uncertainty sources in a standalone steady-state assembly calculation is discussed 

in table of Ref [22]. The nuclear data uncertainty is the dominant uncertainty source contributing 

to the assembly kinf uncertainty in an order of 500 [pcm] while other uncertainty sources such as 

methods and models are less than 100 [pcm]. Thus, most of the literature has focused on the 

propagation of parameter uncertainties only. However, at the core simulations level, the neutronic 

calculations are performed in a wide burnup range and various local conditions or even transient 

scenarios, giving rise to the significance of impact from other sources of uncertainty, such as 

modeling uncertainties [23]. Despite the unneglectable effect of modeling uncertainties on core 

responses of interest uncertainties, few literatures has included uncertainty sources other than 

nuclear data uncertainties in core-wise uncertainty quantification. Ref. [24, 25] are examples 

evaluating the impact of modeling uncertainties in the boundary conditions and fuel geometries, 

etc., but the uncertainty analysis is still applied at lattice calculation level.  

Therefore, analysis in this thesis work aims at the propagation of all sources related to the 

neutronic modeling to preserve the accuracy and confidence of the uncertainty characterization 

exercise. If comprehensively done, this would include the propagation of the basic ENDF data 

uncertainties, referred to as parameter uncertainties as well as the modeling uncertainties resulting 

from downstream modeling or data processing, including simplifying assumptions/approximations 

associated with radiation transport models, e.g., Monte Carlo continuous cross-section models vs. 
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multi-group deterministic methods, homogenization and/or collapsing procedures employed to 

reduce dimensionality of the cross-sections, resonance self-shielding calculations, etc. Challenges 

here are how to define the modeling uncertainties in neutronic calculations, how to propagate 

modeling uncertainties and evaluate the impact of them on the core responses of interest, and how 

to develop systematic approach for the propagation of modeling uncertainties incorporation with 

parameter uncertainties in the uncertainty analysis.  

Another challenge results from the feasibility and efficiency of propagation of all sources of 

uncertainties. Despite the importance of uncertainties, the existing nuclear simulation codes have 

always lacked an integrated framework for their characterization. This is primarily due to: 

1) The complex nature of nuclear models, i.e., based on a multi-level homogenization 

strategy where a number of models are linked together to account for the wide range 

of physical phenomena involved, the large variations in energy and length scales, 

and the various forms of feedback mechanisms;  

2) The individual simulations codes requiring long execution times and being 

associated with voluminous size of input and output data streams;  

3) The recent advances in uncertainty algorithms have been primarily demonstrated for 

modern software platforms, i.e., new codes; it is however difficult to incorporate 

these advances in some of the legacy codes used extensively in the design and 

regulatory spaces.  

Focusing on neutronics calculations, a nuclear reactor calculations start with basic nuclear 

data which describe cross-sections variations as a function of the incident neutron energy, referred 

to as pointwise continuous cross-sections. Considering the level of heterogeneity of a nuclear core, 

modeling the core using the pointwise nuclear data is a herculean task that is not suitable for day-

to-day engineering analysis. Hence, the primary job of a reactor physicist is to devise recipes by 

which cross-sections can be condensed into small number of groups to render core simulation 

computationally feasible. This is done using customized recipes, referred to as collapsing and 

homogenization techniques, where collapsing refers to reducing the number of energy groups 

require to represent nuclear data, and homogenization refers to reducing the spatial heterogeneity 

that is characteristic of any commercial-size nuclear reactor. For example, in typical core 

simulation, each assembly is replaced by 10-20 axial nodes, where each node represents a 

homogeneous mixture of fuel, coolant, and cladding material that preserves the reaction rates in 
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order to accurately calculate the core eigenvalue as well as the local pin powers. Collapsing relies 

on the use of representative energy-dependent weighting flux to reduce the initial energy 

dependence from the pointwise format down to the multi-group format. This is typically done at 

the pin cell level, which preserves the relative amounts of fuel-to-coolant, representing a key 

quantity in determining the flux spectrum. Homogenization relies on detailed modeling of all fuel 

lattices present in the core (a lattice is a 2D slice of a fuel assembly) to smear away the 

heterogeneous details of a fuel lattice into the so-called few-group parameters. In doing so, the 

few-group parameters develop new dependencies to ensure reactions rates are preserved locally, 

i.e., at the lattice level. Some of these dependencies include fuel composition, fuel temperature, 

coolant temperature or voiding, boron dilution, control rod insertion, reactivity devices, etc. To 

obtain these dependences, lattice physics calculations must be repeated many times to generate the 

few-group parameters at many conditions, which are fitted using polynomial regression, and are 

later interpolated at the local conditions for core-wide simulation. The number of lattice physics 

calculations is typically measured by the number of different fuel lattices times the number of 

burnup steps times the number of branch cases per burnup step, resulting in a high dimensional 

table containing 104-106 parameters. All these parameters are input to downstream core-wide 

simulation either in their raw format or after some preprocessing to facilitate their interpolation for 

core simulation. 

A buffer code is typically used to read all the few-group parameters generated by lattice 

physics and convert them into polynomial coefficients as input parameters to the core simulator, 

such that every few-group parameter, e.g., fast absorption, thermal fission, etc., is written as a 

polynomial in terms of local conditions, such as burnup, fuel temperature, etc. The number of 

polynomial coefficients is approximately the same as the number of raw data. This follows because 

for example to generate a 2nd order polynomial to functionalize a few-group parameter in terms of 

say moderator density, one needs two additional branch cases in addition to the base case to 

estimate three polynomial terms, a constant term representing the value of the cross-section at the 

base case, and a linear and 2nd order terms that are functions of the deviations of the few-group 

parameter from the base case. A base case refer to a depletion of the lattice at multiple time steps 

from zero up to a representative end of life discharge burnup. Branch cases refer to additional flux 

evaluations off of each base case, where only a single condition is changed to estimate the impact 

on the few-group parameters, e.g., an increase or decrease in fuel temperature, coolant density, etc. 



 
 

24 

A core simulator reads the polynomial coefficients directly instead of the raw few-group 

parameters. The implication of this is that an uncertainty analysis procedure must first propagate 

the multi-group cross-section uncertainties to all few-group parameters generated by the lattice 

physics calculations, and then through the buffer code used to generate their equivalent polynomial 

representation, ending with uncertainties for the polynomial coefficients input to the core simulator. 

The uncertainty analysis must be able to propagate the uncertainties in the core simulator’s few-

group parameters to the core attributes of interest. Finally, the core simulator is executed in either 

quasi steady-state mode where one is interested in doing load-follow calculations over a 

representative cycle of depletion, or in transient mode, where one is interested in the solution over 

multiple time steps to trace a certain transient, e.g., rod ejection accident, power manoeuver 

transient, etc. In both cases, the core responses of interest, sometimes referred to as attributes, 

could include the spatially and temporally distributed responses in either transient or steady state 

calculations, e.g., power distribution, and the eigenvalue for steady state calculations. If one is 

interested in distribution-type responses, the number of responses could be in the order of 104-106 

or more, depending on the level of mesh refinement used by the numerical solver. 

Given these challenges, any successful propagation of uncertainties must employ efficient 

techniques to reduce the computational cost required to propagate and prioritize uncertainties, 

which is otherwise intractable with conventional uncertainty analysis techniques.  

Based on the motivations and challenges discussed above, the overarching goal of this UCF 

is to provide a comprehensive and scientifically defendable methodology for characterizing 

uncertainties in all BE reactor analysis calculations including both steady state and transient 

simulations, while balance the accuracy, confidence and efficiency during this process. To achieve 

the ultimate goal, the dissertation will make effort on the following three objectives: 

1. Develop a framework to accomplish four tasks in uncertainty characterization: 

a. Identify all sources of uncertainty in neutronic simulation process;  

b. Propagate all major sources of uncertainty;  

c. Mapping of uncertainties between different operational conditions; 

d. Prioritize the propagated uncertainty sources. 

The first three tasks may be referred to as part of an UQ analysis, while the last one is 

commonly known as sensitivity analysis. These tasks will be discussed in detail in 

Chapter 3. 
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2. Develop a reduced order modeling (ROM)-based uncertainty propagation method to 

ensure computational feasibility of this framework. The employed ROM technique 

should be able to provide a metric to measure/bound the errors introduced by the 

dimensionality reduction of the space of uncertainty sources. The ROM-based 

uncertainty propagation can be implemented to automate the generation of uncertainty 

libraries for existing core simulation code.  

3. Develop a method to evaluate the interaction between the two major uncertainty sources, 

the modeling uncertainty and the parameter uncertainty, in order to develop insight for 

follow-up analysis to reduce cross-section uncertainties using calibration techniques. An 

important objective of the proposed framework is to study the correlations between 

modeling and parameter uncertainties. This is important to support many of the studies 

that focus on improving the quality of reactor physics calculations, focused on the 

removal or reduction of cross-section uncertainties. The idea is that if the modeling errors 

are heavily correlated with cross-section uncertainties, any change to the cross-sections 

using conventional calibration techniques, e.g., Bayesian analysis, could impact the 

quality of the models when extrapolated to other operating conditions. To limit the scope 

for this exploratory study, we will focus on how the discrepancies in the multi-group 

cross-sections, as calculated by different lattice physics codes and/or assumptions, 

correlate with the variations in the multi-group cross-sections due to propagated cross-

section uncertainties. 

1.3 Scope and Layout of Dissertation 

1.3.1 Scope of dissertation work 

The uncertainty characterization exercises can be experimentally-based or code-based [26], 

which is necessary to distinguish between in this context, with the latter being the focus of this 

thesis work.  

An experimentally-based UC exercise involves a direct comparison between simulation 

predictions and real experimental measurements, which typically is referred to as bias. The 

advantage of the experimentally-based UC exercise is that it provides a clear-cut quantification of 

the bias between simulation and the reality. Its disadvantage is that it does not explain how the 
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bias magnitude relates to the various sources of uncertainties inherent in the simulation. This is the 

reason that it is difficult to map this bias to other conditions not covered by the available 

experiments.  

A code-based UC exercise, however, implies a self-assessment of the uncertainty sources, 

i.e., the code propagates its own known uncertainties, and provides them as part of the standard 

output along with best-estimate results. With the code-based uncertainty analysis, one can 

apportion the propagated uncertainties to the various sources of uncertainties, and can devise 

methods for their mapping to other operating conditions. The primary disadvantage of code-based 

UC techniques is that it propagates the “known” sources of uncertainties only, implying that all 

modeling inadequacies that are unknown to the modeler cannot be properly quantified. Ideally, 

one should employ a combination of the two exercises to fully characterize uncertainties and devise 

methods for uncertianty mapping to all operational conditions of interest.  

This thesis work employs a code-based UC and its scope is limited to the propagation of 

nuclear data uncertainties from the multi-group energy structure to the core-wide simulation in 

standalone neutronics calculations. The dissertation represents effort towards the development of 

an integrated framework for UC with primary application to thermal reactor, including both light 

and heavy water reactors, taking both steady-state and transient scenarios in to consideration. 

The envisioned UCF will take into account for a wide range of uncertainty sources in 

uncertainty propagation. The first phase of the UCF focuses on the propagation of parameter 

uncertainties, including all uncertain parameters from lattice physics calculations, such as 

assembly discontinuity factor and delay neutron fraction as well as cross-section uncertainties, to 

responses of interests in core simulation. The uncertainty correlations between different 

simultaneous core conditions and different lattice types are explored. Given the voluminous size 

of few-group parameter uncertainty space and the large number of lattice physics model executions 

required to prepare the few-group parameters, ROM techniques are employed to compress the 

uncertainty space of the few-group parameters. The modeling uncertainties are minimized by 

employing a continuous cross-section Monte Carlo transport model to generate the reference cross-

sections for core-wide calculations in different group formats. In the second phase, the sensitivity 

of the propagated uncertainties are measured by repeating the UQ analysis with different modeling 

assumptions to generate the reference cross-sections. The approach is justified to provide an 

estimate of the impact of modeling uncertainties on the propagated parameter uncertainties.  
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Product of this work is to develop and implement the ROM-based UQ for applications to 

existing computational sequences for nuclear reactor calculations. Specifically, NESTLE [27] and 

NESTLE-C [28] are employed as core simulator for a light water system, the BWR Peach Bottom 

reactor, and a heavy water system, CANDU reactor, respectively. NESTLE is a core simulator 

employing a few-group neutron diffusion representation which is approximated using the Nodal 

Expansion Method (NEM), whose CANDU version is NESTLE-C. It allows both steady state and 

transient calculations. The focus is to estimate both the effective critical eigenvalue and the power 

distribution uncertainties in both scenarios. The few-group parameters are calculated through the 

SCALE’s NEWT [29] code and the SERPENT [30] code as input to NESTLE/NESTLE-C for 

core-wide calculations. 

As the work starts from the multi-group uncertainties, the SCALE’s SAMPLER [31] is 

employed for the propagation of multi-group cross-section uncertainties to few-group parameters 

through NEWT. The SERPENT code is used to generate the reference two-, four-, and eight-group 

libraries, and to verify the reference NEWT models. This is because the NEWT is a deterministic 

neutron transport model which employs a number of standard modeling assumptions, e.g., group 

structure, resonance treatment, etc., while SERPENT is based on a continuous cross-section Monte 

Carlo transport model which is considered a gold standard for neutron transport calculations. By 

employing both models, the impact of modeling uncertainties can be initially assessed on the 

propagated parameter uncertainties.  

The rendering algorithms for ROM as well as uncertainty propagation have been encoded in 

a python script to allow for seamless re-generation of the NESTLE-C cross-section uncertainty 

library. The script is designed for a variable number of few-groups as input to NESTLE, including 

two, four and eight groups. The generated library is tested using a number of representative 

CANDU-6 core models including a reference model at full power, a voided core model to estimate 

the voiding coefficient of reactivity, a toy model excluding thermal-hydraulics feedback, and a 

LOCA transient model. The python script is designed to automate multiple functionalities 

including 

(a) reading the sampled few-group parameters as calculated by NEWT 

(b) processing of the results in a compressed format using ROM techniques 
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(c) generation of a set of NESTLE-C libraries that span the uncertainty space using both 

stochastic and deterministic uncertainty propagations (different uncertainty analysis 

methods will be discussed in Chapter 3). 

1.3.2 Organization of dissertation 

The organization of this dissertation is presented as follows.  

Chapter 2 discusses the uncertainty sources in the processes of neutronics core simulations 

as to identify all sources uncertainties is one of the bases to develop a comprehensive UCF. It first 

provides a review on uncertainty classification and representation in general modeling and 

simulation process. Further, uncertainty sources including parameter uncertainties, modeling 

uncertainties and numerical uncertainties and their contributions in the UQ process are discussed. 

Additionally, the propagation of major uncertainty sources in each stage of neutronics simulation 

is presented from pointwise level, to multi-group level, through few-group level and down to the 

core simulation level.  

Chapter 3 provides a literature review of the related uncertainty quantification methods in 

two aspects, considering in both theoretical uncertainty propagation procedures and efficiency 

improvement made with the methods. Specifically, the stochastic UQ and deterministic (including 

forward and adjoint) UQ method are discussed in detail. The efforts made by practitioners to 

reduce the computational expense of the UQ exercises as well as their advantages and limitations 

are described. Finally, a literature review on background of modeling uncertainty and the status of 

its impact evaluation is provided. 

Chapter 4 describes the methodologies employed and developed in this UCF, including the 

physics-guided coverage mapping (PCM) methodology and the ROM methodology, as well as 

their implementation algorithms. The PCM method is originally designed in support of model 

validation, but is treated as the mapping strategy in this dissertation to accomplish the uncertainty 

mapping task and to perform an initial reduction in the few-group parameters uncertainty space by 

evaluate the correlation between a wide range of core conditions. The ROM approaches and the 

range finding algorithm (RFA) are presented to reduce the parameter space into a manageable 

number of active degrees of freedoms (DOFs). Interpretation of results generated by each 

methodology is described at the end of each subsection. 
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Chapter 5 states the proposed approaches to accomplish the framework. It starts with a 

mathematical description of the uncertainty propagation problem in this framework and the 

process of proposed approaches. The approaches to measure the impact of parameter uncertainties 

and modeling uncertainties are presented respectively in the following two sections. In parameter 

uncertainty propagation, both stochastic and deterministic UQ methods implementation, reduction 

on space of few-group parameter uncertainties under various core conditions and the ROM-based 

UQ process are described in detail. The modeling uncertainty propagation are presented with 

respect to the discussions of modeling assumptions and the proposed approach to evaluate the 

impact of modeling uncertainty propagation on core responses. Furthermore, the sensitivity 

analysis method and the algorithm to prioritize the uncertainty sources from reduced parameter 

uncertainty space are expressed. 

Chapter 6-8 demonstrate the applications of the developed UCF on reactor simulations, 

propagating parameter uncertainties from multi-group cross-sections to core simulation and 

analyzing the modeling uncertainties impact and the interactions with parameter uncertainties on 

core response uncertainties.  

Specifically, Chapter 6 describes the application on a BWR system with implementation 

process and results of the dimensionality reduction on few-group cross-sections in aspects of 

branch conditions, burnup and multiple lattice types, as well as the ROM-based UQ/SA on core 

responses of interest. A priority-ranking table on major few-group uncertainties is provided at the 

end. Numerical results in Chapter 6 imply the nearly perfect correlations between simultaneous 

core conditions indicating that few-group uncertainty space could be reduced by getting rid of the 

branch uncertainties. 

Chapter 7 illustrates the application of ROM-based UQ of parameter uncertainty propagation 

results on a CANDU reactor system. The first section explores the few-group parameter 

uncertainty space by looking into the uncertainty propagated from multi-group cross-section 

uncertainties along burnup, the correlation among burnup-dependent few-group parameters and 

the reducibility of few-group parameter uncertainties of CANDU bundle model. The second 

section presents results of ROM-based uncertainty propagation applied on CANDU core models 

including the steady-state reference core model, coolant-voided core model and a transient LOCA 

core model.  
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Chapter 8 evaluates the impact of modeling uncertainty in the nuclear data uncertainty 

propagation process on the CANDU application. Various modeling assumptions and 

approximations are investigated include those related with the uncertainty propagation method 

employed, e.g., deterministic vs. stochastic, the few-group energy structure employed to represent 

the cross-sections, the resonance treatment in lattice physics calculation, the reference values for 

the cross-section, and the number of samples employed to render ROM compression. Results 

indicate that some of the modeling assumptions could have a non-negligible impact on the core 

responses propagated uncertainties, highlighting the need for a more comprehensive approach to 

combine parameter and modeling uncertainties. 

Finally, Chapter 9 summarizes the dissertation work and provides recommendations for 

future work. 
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 UNCERTAINTY SOURCES IN NEUTRONICS CALCULATIONS 

A theoretical model of an engineering system is a set of mathematical equations and 

conditions to describe the physical phenomena governing the behavior of the engineering system, 

whose solution can be used as a representative of the real performance of the system. It reflects 

the physicists or theoreticians’ knowledge based on the observations and analysis to the reality. 

Uncertainties and errors are introduced in this stage because of lack of knowledge. Furthermore, 

in most of the circumstances it is infeasible to obtain an analytical solution for a complicated 

system. With the power of computational science, the equations of the theoretical model are 

manipulated into best-estimate (BE) simulation code to make the model depend on input 

parameters and be able to generate output responses, which can be considered as a measurement 

of the performance of the engineering system. The manipulating process, including assumptions, 

simplifications, discretization, etc., will further introduce uncertainties to the BE prediction. 

Obviously, uncertainties and errors introduced in each modeling and simulation stage will lead to 

discrepancies between the prediction from execution of the BE simulation and the real 

performance of the reality from the measurement, resulting in the definition of uncertainty in 

responses of interest. More discussions on the modeling and simulation phases and the 

uncertainties and errors can be referred to Ref. [1]. 

The most direct way to evaluate the propagated uncertainties is to quantify the discrepancies 

between the BE prediction and reality of the responses of interest which can be measured through 

experiment. Nevertheless, the true value of the response of interest is not always available because 

of insufficient knowledge or limited precision of the measuring experiment. The indirect 

evaluations of the responses of interest uncertainty require more information about the uncertainty 

sources and the proper method to propagate each source of uncertainty. A precise quantification 

of uncertainties provides a reliable metric for the best-estimate reactor analysis simulation by 

evaluating the quality of the predictions. Therefore, this chapter focuses on identifying all major 

sources of uncertainties and propagate these uncertainties properly throughout the reactor 

simulation process. This chapter first discussed the origins of the uncertainties during the modeling 

and simulation sequences and the classifications of the uncertainties. The following subsection 

deals with the identification of uncertainty sources in computational calculations, especially in 

reactor physics calculations. The third subsection will provide a mathematical representation of 
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uncertainties that will be propagated during the calculations and be quantified on the responses of 

interest. Finally, the last subsection will present an overview of the nuclear reactor calculation 

process and deal with the propagation of major uncertainty sources in each step of neutronics 

calculation throughout the core simulations. Contents in this chapter are inspired by insight of Dr. 

Abdel-Khalik [2]. 

2.1 Uncertainty Classification 

Uncertainties are fundamentally classified into two categories, the aleatory and the epistemic 

uncertainty [3, 4]. Aleatory uncertainty, which is also called irreducible uncertainty or stochastic 

uncertainty in the literature, originates from inherent randomness in the physical model, which is 

a property of the system. The aleatory uncertainty is usually described by probability distribution 

as the true value varies from measurement to measurement in a certain range and cannot be 

minimized or reduced with additional measurements. An example of the aleatory uncertainty is 

the number of counts registered in a detector. The number of counts is inherently random - the 

associated standard deviation of the counts will depend on the nature the radiation interactions 

inside the detector volume and therefore cannot be reduced even if the counting experiment is 

repeated an infinite number of times. 

Epistemic uncertainty, which is also referred to as reducible uncertainty or systematic 

uncertainty, is uncertainty raised from lack of knowledge to the system model [5]. The epistemic 

uncertainties are usually considered as biases in the calculations resulting from approximations, 

assumptions, or lack of knowledge about the true value of model input data. For example, if the 

nominal value of v, the neutron fission yield, used in BE calculations is lower than its true value, 

the associated reactor analysis model will consistently under-predict the core’s critical eigenvalue. 

Epistemic uncertainties are reducible in principle with additional measurements. For example, by 

repeating the experiments used to measure v, better estimates of its true value can be evaluated.  

The distinction between the two types is important and must be done carefully. By way of 

an example, in the above detector example, the number of counts measured is subject to an aleatory 

uncertainty; however the mean value of the counts measured over a given time interval suffers 

from an epistemic uncertainty, implying that a better estimate of the mean can be obtained with 

additional measurements. 
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Both aleatory and epistemic uncertainties exist in reactor physics analysis and should be 

quantified carefully. Examples of aleatory uncertainties include the dimensions and compositions 

of the various materials comprising the reactor core, all subject to manufacturing tolerances. This 

follows because any manufacturing process cannot render the exact engineering specifications, 

and hence a level of uncertainty is to be expected. Epistemic uncertainties include nuclear data, 

e.g., microscopic cross-sections, thermal-hydraulics data, e.g., heat transfer coefficients, and 

systematic errors resulting from numerical, e.g., discretization and iterative techniques, and 

modeling approximations, e.g., use of homogenization theory. 

There have been discussion on necessity of distinguishing between uncertainty and error [1], 

as the error is defined as recognizable inaccuracy, either acknowledged or unacknowledged by the 

analyst, which is not caused by lack of knowledge. This distinction is not needed in our context, 

and hence the two terms will be used interchangeably. 

2.2 Uncertainty Representation 

Probabilistic analysis is the most widely used method for representing and describing 

uncertainty in physics systems and models. The uncertainty is usually represented as intervals or 

probability distributions [5-7]. The uncertainty quantification (UQ) process devises a metric that 

is used to measure uncertainties. The measurement process may be thought of as a hypothetical, 

i.e., virtual, experiment that determines all possible outcomes/states/results/values of the 

phenomenon under consideration [8]. An important part of this process is to assign probabilities 

to the various possibilities. 

As described in the uncertainty classification, the aleatory uncertainties are usually described 

by well-defined probability distributions for the physical quantities because of the randomness in 

nature; while the epistemic uncertainties are usually represented by sparse point value or interval 

data, since the true value of quantity is based on the experiments, expert judgment, etc. Despite 

the distinction between the two types of uncertainty, both of them can be represented using the 

likelihood-based probabilistic expression [9]. The combined possibilities and their associated 

probabilities are often described by a probability density function (PDF) or a histogram which may 

be viewed as the metric by which uncertainty are measured, i.e., quantified. The expression for 
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likelihood/probability ( P( )a x b≤ ≤ ) of the uncertain quantity x  with condition K  can be 

described in terms of the conditional PDF ( | )Xf x K  [10]: 

P( ) ( | )
b

Xa
a x b f x K dx≤ ≤ = ∫  

where x  is in a general interval [ , ]a b , and samples of K  can be drawn from the corresponding 

PDF, ( )Kf K , to construct conditional PDF for X , ( | )Xf x K . 

The most common PDF is the normal Gaussian distribution, which is described by a mean 

value representing the nominal value for input parameters used in BE calculations, and a standard 

deviation describing either the modeler’s confidence in the mean value for epistemic uncertainties, 

or the inherent randomness of aleatory uncertainties. With multiple input data, the uncertainty can 

be described in matrix form. The mean values of input parameters can be described by a vector xµ  

such that the ith component [ ]ixµ  is the mean value of the ith input data [ ]ix , and the multivariate 

uncertainty are described by a covariance matrix xC  to characterize the uncertainties and 

correlations between input parameters. For Gaussian parameters, a covariance matrix is sufficient 

to describe all correlations. Its diagonal elements represent the variance (square of standard 

deviation) of the individual input data, and the off-diagonal elements are measures of the 

correlations between two input components. A diagonal matrix with zero off-diagonal elements 

implies a set of input data that are uncorrelated. The covariance matrix is symmetric and of the 

form: 

[ ]ij ij i jρ σ σ=C  

where [*]ij  denotes the element at the intersection of the ith row and jth column. The ijρ  is the 

standard correlation coefficients between the ith and jth input data, whose value ranges from -1.0 

(perfect negative linear correlation) to 1.0 (perfect positive linear correlation); while iσ  is the 

standard deviation of the ith parameter.  
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Based on matrix notations discussed above, the PDF representation of the uncertain 

parameters x  is proportional to: 

11exp[ ( ) ( )]
2

T
xx x x xµ µ

−− − −C  

Other metrics that are functions of the resulting PDF or histogram could also be employed 

to measure uncertainties, such as kurtosis of the PDF or the histogram; and tail probability that is 

the probability to exceed a certain value, commonly referred to as failure probability. 

The covariance matrix may also be decomposed using rank revealing decompositions [11] 

to reduce the effective number of input data, which will be discussed in Chapter 4 as reduced order 

modeling (ROM) techniques to achieve significant dimensionality reduction by identifying all the 

correlations between multiple input parameters. 

2.3 Uncertainty Sources in Computational Modeling and Simulation 

This section presents the uncertainty sources in the UC process and discusses how each 

uncertainty source will be dealt with in this thesis. Three major uncertainty sources are generally 

considered in computational nuclear reactor simulation, parameter uncertainties, modeling 

uncertainties and numerical uncertainties. 

2.3.1 Parameter uncertainties 

The parameter uncertainties originate from uncertainties of input data. All input data to a 

computational model, typically referred to as parameters, could contain uncertainties which 

propagate throughout the model and give rise to response uncertainties. Input data uncertainties 

are unavoidable because input data are either experimentally evaluated or generated using pre-

processor codes. The objective of UQ is to determine all possible variations for the responses of 

interest, often described in the form of a PDF, due to all possible input data variations within their 

known ranges of uncertainties. 

In uncertainty propagation through neutronics calculations, parameter uncertainties emanate 

from the differential cross-section measurements and the subsequent data assimilation against the 

integral experiment measurements, and propagate to each level of simulations. Thermal-hydraulics 

parameters also contain uncertainty information at the core simulator level, but will be excluded 

from discussion since this Ph.D. work focuses on uncertainty propagation in neutronics 
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calculations. The uncertainties of responses due to all possible input data uncertainties can be 

evaluated via either deterministic and stochastic methods and efficiency can be controlled with 

recent advances in ROM techniques, which will be discussed in detail in Chapter 4.  

The parameter uncertainties are the simplest source of uncertainties to quantify via standard 

sampling-based UQ approach, which will be presented in Chapter 3. However, to propagate all 

parameter uncertainties through a sampling-based UQ approach or to prioritize the dominant 

sources of uncertainties through a conventional sensitivity analysis (SA) approach is 

computationally infeasible as the number of input parameters for a reactor model is enormous. 

Fortunately, with the recent advance of ROM algorithms, the dimensionality of input parameter 

uncertainties can be reduced to a manageable size to enable uncertainty propagation and 

prioritization in a computational efficient manner. 

2.3.2 Modeling uncertainties 

The modeling uncertainties, sometimes referred to as modeling errors in this context, 

originate from either the theoretical model deviation from the reality, or the modeling 

simplifications and approximations introduced to achieve computational efficiency.  

The discrepancies between the reality and the physics model rises from incomplete 

knowledge about the physics governing the system. This type of modeling uncertainty is most 

difficult to quantify since it requires one to make quantitative statements about one’s lack of 

knowledge. The resulting uncertainty can only be reduced with improvement of knowledge for the 

system and can only be quantified with access to the experimental data. Since this work focus on 

neutronics phase only, and the physics of neutron behavior in nuclear reactor is well understood 

and described, the uncertainties due to imperfect knowledge will be considered negligible.  

The modeling uncertainties due to the numerous simplifying assumptions and 

approximations made throughout the calculations, such as using diffusion theory instead of 

transport theory, using energy group instead of continuous energy, etc., can be quantified in 

principle. This requires the development of algorithms to capture the effect of the modeling 

simplifications and approximations, as well as how they propagate and interact with other sources 

of uncertainties.  

One of the tasks of this Ph.D. work is to investigate the effects of modeling uncertainties and 

their interaction with parameter uncertainties in the uncertainty propagation process. The common 
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uncertainty analyses assume that modeling uncertainties have minimal impact on the propagated 

cross section uncertainties and the cross-section adjustments, and if present, they may be treated 

as independent sources of uncertainty. For example, in lattice cell calculations, the assumption of 

reflective boundary conditions represents a source of modeling uncertainties because it ignores the 

neutron leakage between the assembly and its neighbors. The use of flux weighting to collapse 

cross sections and the various associated resonance treatment models are other sources of modeling 

uncertainties. Each type of deterministic solver for radiation transport introduces different type of 

modeling uncertainties.  

The focus will be on the modeling uncertainties originating from modeling simplifications 

and approximations only, such as the multi-group approximations, numerical transport solver 

assumptions, etc. The proposed approach to propagate discussed in detail in Chapter 5. 

2.3.3 Numerical uncertainties 

The numerical uncertainties arise from numerical discretization for implementation of 

computational codes to describe the physics models, such as introducing integral and/or 

differential operators, or generating a set of algebraic equations that can be manipulated further by 

computers. In our context of deterministic radiation transport, both the modeling errors and 

numerical uncertainties are considered in modeling uncertainties. There have been great amount 

of research characterizing uncertainties from numerical errors [12]. Furthermore, the numerical 

uncertainties can always get reduced by increasing the computational power. Applications in this 

Ph.D. work are thermal reactors, in which the numerical uncertainties are considered to be 

negligibly small given the short mean free path of the neutrons.  

2.4 Propagation of Uncertainty Sources in Neutronic Simulation Stages 

In reactor physics calculations, uncertainties arise from many sources, including 

uncertainties from basic nuclear parameters, i.e., point-wise cross-sections, manufacturing 

tolerances on geometry, burnt fuel isotopics, etc. Uncertainties also originate from modeling 

approximations and assumptions often introduced to render practical execution, e.g., multi-group 

approximation, reflective boundary conditions assumption in cell lattice calculations, etc. Finally, 
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numerical approximations, resulting from discretizing the continuous equations into algebraic 

forms amenable for computer manipulation, also introduce uncertainties in the simulation results. 

The neutronic computational sequence can be divided into four stages as shown in Figure 

2-1. In this section, a description of each stage and how uncertainties are introduced into each stage

of the neutronic simulation is provided in each of the following subsection.

Figure 2-1 Schematic of neutronics simulation and major uncertainty sources at each stage. 

2.4.1 Uncertainties in pointwise cross-section generation 

The first stage of neutronics simulation is common to calculations of all different types of 

reactors. It is done once by differential cross-section measurement experiments, and is typically 

repeated only when new cross-section measurements become available. The product is an 

Evaluated Nuclear Data Files (ENDF) library that can be used by reactor analysts for all reactor 

types. The raw cross-section measurements are referred to as differential measurements. These 

measurements are fitted to analytical models, which contain a number of undetermined coefficients, 

referred to as nuclear reaction model parameters. An example of nuclear reaction model parameter 

is the resonance width and center when the fitting is done under a resonance. These analytical 
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models are based on nuclear theories such as the R-matrix theory. An example of a code that 

performs these calculations is the SAMMY [13]. The fitting procedure is based on a generalized 

least-squares procedure, also known as Bayesian Estimation, which requires some initial guesses 

for the nuclear reaction model parameters. The measurements are fed in a sequential manner to the 

algorithm, wherein the model parameters determined from a previous iteration (i.e., with a given 

set of measurements) are used as the initial guess for the next iteration (i.e., the next batch of 

measurements). The process is repeated a number of times until all available measurements are 

employed. In doing so, the measurements containing outliers, i.e., measurements with high 

uncertainties that are not consistent with the rest of measurements, will be discarded. An important 

result of the least-squares fitting procedure is the uncertainties (in the form of covariance matrices) 

of the reaction model parameters. 

The uncertainties in this stage originate from two sources, the differential cross-section 

measurements uncertainties, and the nuclear reactor model forms used to describe the continuous 

cross-sections. Given the maturity of nuclear models and the evaluation procedure, the cross-

section fitting results are considered by most practitioners to be satisfactory for all reactor analysis 

calculations. Accordingly, the basic assumption in most neutronic UQ studies is that nuclear 

reaction model parameters represent the main source of uncertainty for all downstream 

calculations.  

2.4.2 Uncertainties in multi-group cross-section generation 

The second stage collapses the pointwise cross-sections into a multi-group format using 

assumed flux shapes. The number of groups are typically selected based on a combination of expert 

judgment and a trial-and-error approach that attempts to resolve all aspects of the flux spectrum, 

expected to affect the integral quantities of interest such as eigenvalue, reaction rates, etc. This 

stage is specific to the flux spectrum expected in the reactor, and hence must be repeated for 

different reactor types. Regarding the uncertainties of the multi-group cross-sections, they can be 

estimated by propagating the uncertainties of the nuclear reaction model parameters using the 

standard sandwich relationship, which will be described in Chapter 5. A typical computer code 

that performs this stage is the PUFF code of the SCALE’s code package, developed by ORNL 

[14]. 
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The multi-group cross-sections contain essentially two different sources of uncertainties, one 

originating from the nuclear reaction parameters used to construct the continuous cross-sections, 

and the other from the assumed flux shape. Most of the current multi-group generation codes 

account only for the first source of uncertainty (under the constraints of linearity assumption), 

implying that the flux shape is assumed to have no uncertainty. This latter source of uncertainty is 

difficult to estimate because the real flux shape is unknown a priori. Therefore, assumed flux shape 

uncertainty must be treated as a source of modeling uncertainty using a decision variable. To 

estimate this source, one must be able to compare the predictions against a high fidelity model that 

directly uses the continuous cross-sections, i.e., without any collapsing. The discrepancies between 

the predictions of the low and high fidelity models can be used estimate the modeling bias, which 

has to be repeated to take into account its dependence on other modeling conditions, such as 

composition, temperature, etc., i.e., control parameters. 

2.4.3 Uncertainties in lattice calculations 

In the third stage, the few-group cross-sections are calculated for the cell lattices expected 

to be loaded in the core simulation. These calculations must be repeated every time a new cell 

lattice design is introduced. Cell lattice calculations start with the multi-group cross sections, and 

calculate the few-group cross-sections for a wide range of core conditions. The product of this 

stage is a very large matrix of few-group cross-sections, which are fitted to polynomial expressions 

to facilitate their interpolation in downstream core-wide calculations. The brute force application 

of the forward-based (sampling-based) UQ approach would prove to be computationally expensive, 

even if one is not interested in capturing sensitivity information. This is because the UQ 

computational cost will be few to several hundred times higher than the cost required to generate 

the reference few-group cross-sections (discussed in Section 3.1.1), which is large considering the 

wide range of conditions that must be captured to properly functionalize cross-sections. 

Since this stage is within the scope of this thesis, an idea about the size of the data streams 

flowing through cell lattice calculations is provided here, considering a typical transport code that 

is used to calculate the few-group cross-sections. The number of few-group parameters 

functionalized in terms of core conditions is roughly the product of (1) the number of burnup steps, 

(2) the number of branch cases required to functionalize cross-section dependence on core

conditions such as fuel and coolant temperature, coolant voiding, boron content, etc., and (3) the
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number of cell lattice types in the core. This product can easily reach the order of 103 for typical 

reactor cores. To propagate uncertainties, the number of model executions is expected to be few 

to several hundred greater than the number of uncertain parameters. This results in in the order of 

105 model executions which is infeasible in practical applications. If Monte Carlo model is 

employed to propagate the uncertainties, e.g., using a Total Monte Carlo approach [15], the cost 

gets multiplied by another factor representing the ratio of the computational cost of executing 

Monte Carlo to that of an equivalent deterministic code. This factor is typically in the order of 100, 

and could be more if responses include space and energy-resolved data. 

Further, an integrated UC process should not only quantify the propagated uncertainties, but 

also identify the dominant contributors to the propagated uncertainties. This is usually done via an 

SA, where the number of model executions is proportional to the number of multi-group 

parameters. For typical multi-group libraries, this number is in the order of 105 for typical lattice 

calculations to account for tracking about 70 isotopes using few hundred energy groups, and two 

to four reactions per nuclide, e.g., fission, absorption, scattering, capture, etc. This increases the 

number of required code runs to be in the order of 106 to 109 executions, which is infeasible despite 

the expected increase in computer power. 

In this stage, two sources of uncertainties are introduced, one from the multi-group cross-

sections propagated from the previous stage, and the other resulting from the modeling 

assumptions, such as the use of reflective boundary conditions, the use of a deterministic transport 

solver, and the use of multi-group instead of continuous cross-sections. The first source is 

straightforward to account for. The computational cost becomes impractical when sensitivity 

information is required, i.e., to understand the contribution of the individual multi-group cross-

sections on the propagated few-group uncertainties. The second source depends on the modeling 

decisions taken and therefore must be treated as a source of modeling errors. First, regarding the 

use of deterministic transport solver and multi-group cross-sections, this source could be identified 

by comparing model predictions against a high fidelity continuous cross-section Monte Carlo 

model. The second source is more difficult to account for because it depends on the type of 

neighboring bundles in the reactor core. To account for that source, one must emulate the impact 

of the neighbors via a super cell lattice calculations. 
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Therefore, similar to the previous stage, the correlations between the multi-group 

uncertainties and the modeling uncertainties from modeling assumptions and approximations are 

to be investigated by the proposed research. 

2.4.4 Uncertainties in core calculations 

The last stage involves the calculation of core-wide power distribution during steady state 

and transient conditions starting with the few-group parameters (cross-section data) as input. For 

typical thermal reactor models, the number of few-group parameters is equal to the number of cell 

lattice executions times the number of few-group parameters generated by a single lattice model 

execution, which is in the order of 10, representing the thermal and fast absorption cross-sections 

as well as the reaction types, such as transport, fission, absorption, prompt neutron yield, and Xe 

and Sm fast and thermal absorption cross-sections, etc. The resulted number is roughly in the order 

of 104.  

The sources of uncertainties in core-wide calculations include:  

(1) Uncertainties from the few-group parameters;  

(2) Uncertainties from the radiation transport model employed (e.g., nodal diffusion theory 

assumptions, and two energy-group cross-section representation); 

(3) Uncertainties from non-neutronic models, e.g., thermal-hydraulics models, and their 

associated correlations used to describe the transfer of the heat from the fuel to the 

coolant, and the corresponding feedback into neutronics calculations, e.g., fuel 

temperature feedback, coolant and moderator temperature and density feedbacks; 

(4) Uncertainties from the control parameters such as the lattice dimensions, fuel 

composition, flowrates, inlet coolant temperatures, etc.  

The first source, i.e., few-group parameter uncertainties, can be treated using a standard 

sampling-based UQ approach as described in Section 5.2.1. The second source, i.e., the radiation 

transport model, can be estimated using the core-wide Monte Carlo models. This will also require 

the mapping algorithm to allow the efficient mapping of uncertainties to the wide range of core 

configurations due to the infeasibility to execute core-wide Monte Carlo simulations for all 

conditions of interest. 
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 LITERATURE REVIEW OF UNCERTAINTY ANALYSIS 
METHODS IN NEUTRONICS CALCULATIONS 

This chapter presents literature review on the uncertainty analysis methods applied in 

neutronics calculations including subjects of uncertainty quantification (UQ) and sensitivity 

analysis (SA). Although there are many different classifications for UQ methods, we select two 

selection criteria for our discussion, each discussed in a following section. The first criterion 

differentiates methods based on the calculation procedure into probabilistic/stochastic or 

deterministic as discussed in the first section. The second section presents development in UQ 

methods classified by the second criterion, comparing methods based on the efficiency achieved 

either via automation or algorithmic improvements. Sensitivity analysis approaches are introduced 

in the following third section to prioritize the uncertainty sources. The presented UQ/SA methods 

in the first three sections focus on propagation and quantification of the parameter uncertainty. The 

final section provides a review on the status of modeling uncertainty impact evaluation. 

The body of uncertainty analysis literature accumulated over the past two decades may be 

categorized into two fundamental groups, one focusing on the development of enabling 

computational tools to automate the propagation of uncertainties, and the other on the development 

of mathematical algorithms to cut down the cost in terms of computer power and storage 

requirements. In the first group, researchers have focused on building automated sequences for 

uncertainty propagation, such as the GRS method developed in Germany [1], the Sampler super-

sequence developed by ORNL [2], the RAVEN environment developed by INL [3], the Total 

Monte Carlo (TMC) methodology developed by the NRG group in the Netherlands [4, 5], and the 

benchmark for uncertainty analysis in modeling (UAM) [6], etc. The other group of researchers 

has focused on improving the performance of existing algorithms by replacing the original models 

with inexpensive surrogate amenable for fast execution [7-9], reducing the dimensionality of the 

uncertainty space [10-12], or by using intelligent sampling strategies [13, 14]. 

To set the stage for the discussion, a high level description of the general procedure to 

propagate uncertainties is first introduced. Any method begins with a best estimate model and a 

set of input parameters along with their prior uncertainties. The model represents the best available 

approximation of reality short of knowledge of the exact values of the parameters, which are 

treated as epistemic sources of uncertainties. The "epistemic" is a Greek-origin adjective denoting 
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lack of knowledge, which is mathematically described using a probability density function (PDF). 

A uniform PDF implies complete lack of knowledge, whereas a PDF peaking around a given value 

indicates a high degree of belief exists that the true value lies at or around the peak location. 

Complete knowledge would be described by a Dirac delta function centered around the true value 

of the parameter.  

The goal of the uncertainty analysis is to estimate the PDFs of the output quantities of interest, 

typically referred to as attributes or responses. A PDF may be used to draw samples or calculate 

moments, and conversely, samples or moments may be used to reconstruct and/or approximate a 

PDF. A moment is a function of a PDF such as the mean and standard deviation. Analogous to a 

Taylor series expansion of a function, any PDF may be described using an infinite series expansion, 

using the so-called moment generating function [15]. Different PDFs require different number of 

moments for their expansion. For example, the exponential PDF, commonly used to describe 

radioactive decay, is expanded using a single moment, the mean value; a Gaussian PDF needs two 

moments, the mean and standard deviation. A PDF may be reconstructed exactly if all its moments 

are known, or approximated using available moments according to E. T. Jaynes [16] to find the 

PDF with maximum entropy whose moments match the available moments. Samples could also 

be used to reconstruct and/or approximate a PDF. Different from using moments, the 

approximation accuracy using samples is inversely proportional to the square of the number of 

samples, with the approximation error going to zero as the number of samples goes to infinity. 

Mathematically, this is described as follows:  

R
C
N

σ =

where the subscript R  is a feature derived from the response PDF, N  is the number of samples, 

and C  is the proportionality constant, and Rσ  is the standard deviation of the response R , 

typically used as a measure of confidence one has in the value of R . The first implication is that 

an order of magnitude improvement in Rσ  requires two orders of magnitude increase in the 

number of samples, N . Second, the constant C  is dependent on the topology of the probability 

space in terms of the model form, i.e., linear vs nonlinear as well as the degree of nonlinearity, and 

the shapes of the prior parameters PDF. If one is interested in rare events, also known as extreme 

quantile estimation, that is the probability of the response exceeding a threshold value, the constant 

C  becomes very small, forcing one to use many samples to reach the sought level of confidence 
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in R . Further, if one is interested in apportioning the variance in R  to each of the n  input 

parameters, the number of samples required becomes dependent on n , which could be 

computationally infeasible to achieve given the high dimensionality of the input parameters for 

most realistic neutronic problems (as discussed in Section 2.4.3 and 2.4.4). 

3.1 Uncertainty Quantification Approaches 

As described in Chapter 2, the uncertainty propagation for standalone core simulation is 

divided in three processes, from pointwise to multi-group level through cell physics, from multi-

group to few-group level through lattice physics, and from few-group to full core level through 

core simulation. The UQ approaches employed in core simulation can be either stochastic or 

deterministic. There are also hybrid methods that combine the advance of the two methods, as two-

step method [17] for example. 

3.1.1 Stochastic methods 

The stochastic methods try to determine the probability distribution of responses by 

executing the model many times with different samples for the uncertain input parameters. In the 

core simulation UQ process, the stochastic approach generates a set of N random few-group 

libraries as input to the core simulator. The statistical quantities, such as mean value, standard 

deviations and higher order moments, of the core responses can be obtained by executing the N 

random samples and collecting the results as PDF or histogram. 

Different stochastic methods can be discussed in five aspects [18]. 

1. Determine the probability distribution to characterize the uncertainty of each input

parameter. The best way to determine the PDF of the uncertainty parameter is to use

measurement data, which, in reality, not available. Thus, the determination on the input

uncertainty distribution is usually based on expert judgement. In reactor core simulations,

the input parameter uncertainties are commonly assigned uniform or normal distribution

[19].  On the other hand, the dependencies between different uncertain input parameters

need to be taken into consideration when applicable. However, the dependencies

information is not always available, so that input parameters are sometimes assumed to

be independent in the sampling methods.
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2. Select the sampling techniques employed to generate random samples of uncertain input

parameters. Several techniques have been proposed to sample the input parameters from

their prior uncertainty such as Simple Random Sampling and the Latin Hypercube

Sampling (LHS) [13]. The resulting difference among different sampling techniques are

not significant, while the LHS technique shows better performance considering the

required number of samples and region coverage in some literature [19, 20].

3. Determine the required number of samples or number of model executions. The

determination method could be parametric or nonparametric. With parametric sampling,

the number of samples depends on the number of uncertain input parameters, resulting

in computational infeasibility with large number of input parameters, which applied in

reactor core simulation. The required number of samples could be greatly reduced with

nonparametric sampling [21] with a statistical confidence. Many researches in UQ of

neutronics calculation employed this nonparametric sampling [1, 22, 23]. However, with

number of samples determined by the nonparametric sampling, the PDF of responses

could not be constructed based on this reduced number of model executions.

4. Determine the representation for the uncertainty analysis results of the responses. Mean

values and standard deviations are common presentation of the response uncertainties.

In spite of reduced information comparing to the PDF and histograms, mean values and

standard deviations do not require large number of random samples.

5. Perform sensitivity analysis to determine how the uncertainty of input parameters affect

the uncertainty of responses. The sampling-based methods enable the global sensitivity

analysis by randomly sampling all the input parameters simultaneously and generating

responses uncertainties according to different sources of uncertainties in the model

parameters [24].

Stochastic methods have found a lot of popularity in engineering applications due to their 

non-intrusive nature, which translates to ease of implementation, and their ability to propagate 

uncertainties without making any assumptions about the shapes of the probability distributions of 

the input parameters, the output response, and the degree of nonlinearity of the model. In fact, one 

can show that the only factor that influences the accuracy of the propagated uncertainties is the 

number of model executions that can be afforded. In addition, if one is interested only in 

confidence intervals for the quantities of interest rather than the full probability distribution, the 



50 

cost of the simulation could be reduced significantly using order statistics, e.g., Wilks formula [21] 

which requires 59 samples to obtain 95/95 confidence interval for the upper limit of the quantities 

of interest, under some minimal assumptions. If one requires the estimation of the sensitivities of 

the various parameters, that’s the contribution of each parameter to the propagated uncertainties, 

the cost of the analysis is no longer dependent on the number of samples only but also on the 

number of input parameters. Typically, one requires an additional factor of 10 times the number 

of parameters to obtain reliable estimates of the various parameters contributions to the propagated 

uncertainties. The sensitivities evaluated are referred to as global sensitivities, because they 

average the model behavior over the range of random samples, hence local sensitivity information 

cannot be identified. In fact, two models with significantly different local behavior but similar 

global behavior will be indistinguishable using stochastic methods.  

3.1.2 Deterministic methods 

Deterministic methods are generally more effective in estimating local sensitivities and less 

effective in estimating the general shape of the responses PDF. This follows because they employ 

local sensitivity information, e.g., first and/or higher order variations, to propagate only select 

moments of the PDFs, e.g., mean and standard deviation. According to Jaynes, the number of 

moments propagated defines the shape of the PDF that can be used to describe the responses 

uncertainties, which may not be an accurate representation of the true PDF. If the true PDFs are 

well-approximated by Gaussian PDFs [16], deterministic adjoint-based methods tend to be more 

effective than stochastic methods when the number of model parameters is large. Prioritization of 

the key contributors to the propagated uncertainties is possible using deterministic methods, when 

the Gaussian assumption is invoked. When general PDFs are involved, stochastic methods are 

more effective in prioritizing key contributors to the propagated uncertainties.  

In the context of reactor physics uncertainty literature, both stochastic and deterministic 

methods, including both forward and adjoint methods, have been developed with hybrid recipes 

thereof representing the most effective approach nowadays. In typical reactor physics problems, 

one has covariance information about the multi-group cross-sections, and wishes to calculate the 

uncertainties in the core responses, e.g., eigenvalue and power distribution. To achieve that, one 

has to calculate the few-group cross-sections uncertainties, which are typically very large in 

dimensionality because they have to be functionalized in terms of a wide range of local conditions, 
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e.g., burnup, fuel and coolant temperature, boron dilution, etc. Many approaches have been 

proposed to achieve this. In one approach, the multi-group cross-sections are propagated through 

lattice physics calculations using a stochastic approach to determine the few-group cross-sections 

uncertainties [23]. To ensure computational efficiency, all major few-group cross-section 

dependencies are dropped to render a small number of lattice physics calculations, i.e., no 

dependence on burnup, fuel temperature, coolant voiding, etc. This results in about 10 few-group 

cross-sections as the whole input parameter space. In another approach, adjoint methods could be 

used to estimate the few-group cross-sections, again by dropping dependencies to ensure only a 

few number of adjoint evaluations [17], since each response requires a single adjoint evaluation. 

The next step is to propagate uncertainties through core calculations which is straightforward using 

either stochastic or deterministic methods since the number of few-group cross-sections is small.  

In another approach, the few-group cross-sections are calculated as a function of burnup 

only, and their effective number is reduced using reduced order modeling (ROM) techniques [12]. 

Although the number of times steps is typically in the order of 30-50 steps, the effective number 

of degrees of freedom (DOFs) across burnup is only in the order of 5, implying an increase in the 

total number of DOFs from ten (without any dependencies as mentioned before) to about 35-50 

(with burnup dependence only).  Earlier work has shown that one can extend this idea to account 

for all other cross-section dependencies [25]. In fact, research has shown that there exists high 

degree of correlation between the branch cases, reaching a value of near perfect correlations for 

all major branch cases, such as increase or decrease of fuel temperature, coolant temperature, and 

void fraction. This idea is employed in existing work to render a reduction in the size of the 

uncertainty space before executing core calculations. This approach represents the most effective 

approach that currently exists for propagating cross-sections uncertainties through lattice physics 

and core calculations.   

3.2 Efficiency-based Uncertainty Propagation Methods 

 As noted earlier, the uncertainty quantification literature may be classified into two groups, a 

group focusing on rendering efficiency via building automated procedures for uncertainty analysis 

and another via design of new algorithms. With regard to the second group, new algorithmic 

developments are deemed necessary when the cost of the uncertainty analysis becomes 
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prohibitively expensive due to the associated cost of repeated model execution. Three prominent 

algorithmic strategies for rendering efficiency are highlighted here.  

3.2.1 Surrogate model 

The first strategy focuses on replacing the forward model with a surrogate model, that is an 

approximate model, whose predictions are close enough to the original model, but can be executed 

as many times as required to reach the desired level of confidence in the quantities of interest. 

There exists a plethora of surrogate construction techniques, wherein the associated cost is 

dependent on the number of input parameters and the degree of model nonlinearity. Adjoint 

methods have also been used to construct surrogate models, based on the estimation of first and/or 

higher order variations. The difference between adjoint and forward models is that one can show 

that the first order variations for a given response can be evaluated using a single adjoint 

calculation, which makes adjoint methods superior when one is interested in few responses only. 

However, when higher order variations are required, the cost of the analysis becomes dependent 

on the number of parameters as well as the number of responses, which renders forward methods 

more effective for general nonlinear models with large number of responses. With first order 

variations estimated either using adjoint or forward methods, one can estimate the standard 

deviation of the responses in terms of the standard deviations of the parameters. This is a popular 

approach in the neutronic community and is typically referred to as the Sandwich equation, 

expressed mathematically later in the discussion. Other surrogate methods could also be employed 

such as the use of lower-fidelity models to serve as surrogates, the use of Gaussian process models 

[26, 27], neural networks [28, 29], and polynomial chaos expansions [8]. The primary challenge 

of surrogate models is that it is difficult to assess the errors resulting from the use of the surrogate 

model over the entire range of parameters variations.  

3.2.2 Dimensionality reduction 

The second strategy employed to reduce the cost of uncertainty analysis beings with an initial 

reduction of the size of the uncertainty space for both the input parameters and output responses. 

The idea here is that most complex models have responses that are highly correlated, implying the 

true number of independent degrees of freedom is much less than the nominal number of responses. 
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Similarly, one can show that the null space of the operator is effectively large, indicating that there 

exists many combination of input parameter variations that produce negligible variations in the 

responses, and hence propagating uncertainties along these directions is of minimal value. 

Dimensionality reduction techniques for both the input parameter and output response spaces have 

been developed in earlier work [12, 30, 31]. Unlike surrogate model construction, the errors 

resulting from discarding the null space components could be accurately estimated using 

randomized range finding algorithms [32].  

3.2.3 Fitting approximation 

The final strategy focuses on the use of intelligent sampling techniques to provide a more 

efficient coverage of the parameter space. Examples include hypercube sampling which attempts 

to spread the samples evenly over the space, proving to be an effective strategy in extreme quantile 

estimation. Adaptive sparse-grid methods [33] cut down the number of samples in areas of the 

parameter space with weak impact on the responses of interest, and trades that for more samples 

in the areas showing higher variations. Quasi Monte Carlo methods [34] employ fixed sequences 

to cover the space which can be shown to result in lower variances for the response of interest. 

Each method comes with its own advantage/disadvantages, but one can show that for models with 

sufficiently high number of parameters, pure Monte Carlo sampling remains the most efficient and 

reliable methodology to cover the uncertainty space. The literature is replete with methods 

attempting to hybridize the above methods. 

3.3 Sensitivity Analysis Approaches 

Sensitivity analysis determines the importance of different uncertainty sources in input data 

contributing to the system response uncertainties. The results of sensitivity analysis are useful in 

providing information of most influential contributors to responses of interest uncertainties . This 

could be used to prioritize the key uncertainty sources contributing to responses uncertainties and 

to render reduction in the parameter uncertainty space with ROM-based UQ in this work. 

Additionally, SA may be used to perform model calibration and model validation [35]. SA 

methods can be classified into local and global methods.  
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Local SA employs one-at-a-time (OAT) methods, which execute the model sample by 

varying the inputs one-at-a time while holding the other inputs fixed. Simplicity of this method 

makes it the most utilized method in practical applications. However, local SA is computationally 

inefficient when the number of input parameters is very large. Moreover, local SA cannot identify 

the correlation between input parameters, as the inputs are never perturbed simultaneously. 

Besides, most of the implementations of this method require linear model assumption and only 

first order derivatives of responses with respect to input parameters are determined. 

Global SA considers the entire range of variation of input parameters with the aim of 

accounting for the entire output uncertainty according to the different sources of uncertainties in 

the model inputs [36]. This method is advantageous because of its ability to obtain detailed (i.e., 

all moments) PDFs for all responses and deal with nonlinear models. The limitation is that 

sensitivity information is more difficult to infer and the number of model executions can be too 

large to render the approach practical for high dimensional models. 

Sensitivity analysis in this work combines the benefits of both local and global SA methods 

while circumventing some of their deficiencies. In principle, the ROM techniques provide the 

means to render simultaneous reduction for both the input parameters space and responses space. 

This is achieved over two steps. In the first step, local methods are employed to identify a subspace 

that captures the dominant parameters and their cross-interactions in order to account for all high 

orders effects inherent in the original nonlinear model. In the second step, global methods are used 

to build a surrogate which restricts the samples to the active subspace only, thereby reducing the 

effective dimensionality of the input parameters space, and rendering the construction of the 

surrogate model computationally feasible. 

3.4 Background and Status in Modeling Uncertainty Propagation 

Despite the notable success in improving the efficiency of propagating uncertainties, most 

of the previous work has focused on propagation of parameter uncertainties only, and very few 

have considered the effects of modeling uncertainties [37].  

The quantification of modeling uncertainties is conceptually more difficult than the 

quantification of parameter uncertainties. This follows because the quantification of parameter 

uncertainties is concerned with characterizing the variations in the responses of interest due to 

variations in the model parameters. This is a straightforward task if one has good estimate of the 
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model parameters prior uncertainties, and can be accomplished via a brute force approach in which 

the model is executed numerous times with different parameter samples. The challenge is typically 

computational in nature, that's how to reduce the cost of the required model runs to obtain full 

PDFs for the responses of interest. Modeling uncertainties however are concerned with 

characterizing the differences between model predictions and real behavior which is unknown, and 

can only be estimated using experimentally-based UQ. Evidently, it is not practical to run 

experiments for all conditions expected during operation, which renders the quantification of 

modeling uncertainties a conceptually difficult endeavor.  

To our knowledge, no work has been reported on the impact of the modeling uncertainties 

on the propagated parameter uncertainties. This work may thus be considered as a first-of-a-kind 

exploration into the impact of modeling uncertainties and their interaction with cross-section 

uncertainties. Alarmingly, results indicate that there exists non-negligible [38], and sometimes 

significant, interaction between the two sources of uncertainties, which calls into question the 

value of uncertainty analysis if this interaction is not properly understood. 
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METHODOLOGIES IN PROPOSED UCF 

This chapter introduces two methodologies employed in the uncertainty characterization 

framework (UCF), the Physics-guided Coverage Mapping (PCM) method and the reduced order 

modeling (ROM) techniques. The first section illustrates the PCM methodology, serving as the 

method for similarity studies and mapping of uncertainties in this UCF. The PCM methodology 

description as well as the implementation algorithms are presented, followed by the interpretation 

of generated joint probability density function (PDF) via PCM. The second section discusses 

dimensionality reduction (DR) via ROM techniques, serving as the compression strategy to reduce 

the dimensionality of few-group parameter uncertainties to make the UCF feasible and efficient. 

The ROM section first provides background of ROM techniques and DR applications. The 

implementation of ROM technique in this UCF relies on the range-finding algorithm (RFA) to 

identify the active subspace, denoted as active degrees of freedoms (DOFs), with a preset error 

bound/tolerance. An interpretation of the DR results following the RFA algorithm is provided at 

the end of this section. 

Part of the PCM descriptions is presented in previous publications [1, 2], as PCM 

methodology has been developed by the research group in support of model validation [3]. A full 

description of PCM is reproduced here for the sake of comprehensive discussion. The ROM 

techniques applied in this UCF have also been published in previous work [4-6]. 

4.1 PCM Methodology 

The PCM methodology is designed to preclude the need for model calibration in support 

of model validation. Nuclear model validation provides a metric to measure the degree to which a 

given model prediction is a true representation of the real reactor behavior in conditions of interest. 

The model validation practice contains two subjects, the experiment and application. The 

“experiment” or “experimental domain” refers to small-scale or separate effects experiments, 

which are employed to calibrate the physics models in order to minimize the discrepancies between 

model predictions and measurements over the range of experimental conditions in model 

calibration. The “application” or “application domain” is the full-scale system such as a reactor 

under operation conditions during normal operation and accident scenarios. The layout of model 
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validation problem setup is depicted in Figure 4-1, where the experiment and application share the 

same prior parameter uncertainties. Both the experiment and application have 

calculation/simulation models providing predictions, while measurements are only available in 

experimental domain. Model validation is concerned with the following question: how can one 

assess the adequacy of a model for a given domain of application when the experimental data are 

only available at a range of conditions that is much smaller than the application domain.  

Figure 4-1 Layout of model validation problem setup. 

Model calibration is one approach that is heavily employed in engineering wherein 

available experimental data are employed to adjust uncertain model parameters in order to reduce 

the discrepancies between the measured and model predictions for the experimental conditions. 

The adjusted parameters are then used to estimate model behavior over the wider domain of 

application. The calibration-based approach has many challenges such as relying on adjustment 

on basic physics parameters, the definition of discrepancy and the criteria used to minimize the 

discrepancies between measurement and predictions of experiment, etc. [1, 3].  

Instead, PCM avoids any calibration of model parameters and directly calculates the biases 

for the responses of interest in the application domain using all available experimental data, and 

physics models for both the experimental and application domains. In doing so, the uncertainty of 

the bias may be evaluated based on an information-theoretic approach [7, 8] that takes into account 

all sources of uncertainties in both the application and experimental domains. The process of PCM 

methodology for uncertainty mapping on reactor application behavior is illustrated in Figure 4-2. 
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The central idea of PCM is to find a pattern or relationship, usually in the form of a PDF, between 

the experimental and application responses, shown as uncertainty mapping in the PCM layout. A 

pseudo response in terms of all available experimental responses which has the highest mutual 

information with the application response of interest will be built [1]. Mutual information is an 

information-theoretic measure that quantifies the degree of correlation between two random 

variables [8]. High mutual information implies that the two variables are highly correlated. To 

provide the best mapping of biases and uncertainties between the experimental and application 

domain, a joint PDF between responses of application and the experiment pseudo response is 

constructed indicating the coverage of uncertainties from experimental domain to application 

domain. The application behavior will be predicted with the measurements of experiment and the 

mutual information, represented as joint PDF, between the experiment and application.  

Figure 4-2 Layout of PCM methodology for uncertainty mapping. 

This idea is employed in this thesis work by assuming that the experimental domain 

represents the uncertainties one can afford to calculate, while the application domain refers to the 

spectrum of conditions which should be evaluated for a comprehensive propagation of 

uncertainties. For example, if one could afford to calculate uncertainties using a single train of 

historical base conditions with no branching. The few-group parameters from this train would 

represent the experimental domain data as defined by PCM. The application domain would 
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represent the cross-sections that should be evaluated at all the other base and branch cases. The 

goal is to use PCM to assess the correlations between the application and experimental conditions, 

and provide means by which the uncertainties and their correlations can be mapped between the 

two sets of conditions.   

4.1.1 PCM problem setup 

Mathematically, the physics models describing the experiment and application are given 

by: 

( ) , exp expy f x u= , and      (4-1) 

( ) , app appy f x v=      (4-2) 

where expy  and appy  refer to the responses, as modeled by in the experiment and application 

domain, respectively; x  are basic physics parameters (such as cross-sections) that are common to 

both the experiment and application domains, while u  and v  are control parameters (such as the 

geometry, and composition specifications, etc.) that are not common to both domains. In our 

context, u  and v  would be used to specify the branch cases differences.  

In the experimental domain, one has access to both measurement, denoting as exp
msry , and 

analysis results, denoting as exp
caly  , whereas in the application domain one has analysis results cal

appy  

only, and one is interested in predicting the expected bias between model predictions and the true 

system behavior for the application. The central idea of PCM is to find a relationship in the form 

of a PDF ( )exp appp y , y  between the experimental and application responses. This PDF is 

subsequently used to map the biases from the experimental to application conditions using any 

number of nonparametric techniques, such as the Kernel Density Estimation (KDE) [9] to be used 

in this work. 

4.1.2 PCM Implementation Algorithm: 

A mathematical description of the steps required to implement PCM is given as follows. 

Assume that one is starting with M different experiments and a single application. Assume each 

experiment comes with a measured value for the response of interest, denoted as ,( )
exp
msr iy , 
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 1,  ,  i M= … . Next, execute the forward models for the application and the M  experiments and 

obtain the reference values for the application response appy  , and that of the experiments ( )
exp
iy , 

 1,  ,  i M= … . The goal is to employ the biases ( ) ,( )
exp exp
i msr iy y− ,  1,  ,  i M= …  to determine a bias 

for the application response. 

1) Identify all sources of uncertainties in the experiments and the application. Let x denote the 

common sources of uncertainties, while ui refers to the sources unique to experiment #i, and v 

the application’s unique sources of uncertainties. For example, x denotes cross-sections; ui 

denotes the fuel to moderator ratio, the geometry of the unit cell, etc., in the experiment #i, and 

v denotes uncertainties in one of the core control parameters in the reactor application, e.g., the 

flow rate. Note that ui and v are independent of one another.  

2) Generate N random samples of x, ui, and v according to their prior distributions. Note that, if v 

and ui do not have any uncertainties, their samples are to be fixed at their reference values.  

3) Execute the application and M experiment computational models N times using the generated 

random samples. This step is essentially an uncertainty analysis done for each of the 

experiments and the application. 

4) Let the N responses from the application and experiment #i be denoted by vectors appy  and 

( )
exp
iy  both of length N, respectively, where i = 1, …, M. 

5) Assimilate all M experimental responses into a new response, referred to as mapping response, 
,( )map i

appy  selected to maximize its mutual information with the application response. This can be 

done using nonparametric estimation techniques, such as alternating conditional estimation. 

The use of nonparametric estimation allows the algorithm to pick the best relationship for the 

mapping response, as compared to parametric methods which constrain the relationship to 

some pre-determined surface, such as linear regression techniques.  

6) Using the N samples for both application response and mapping response, generate a joint PDF, 

( )map
app appp y , y . If the experiments are indeed perfectly representative of the application, one 

would get a contour that relates the two quantities, i.e., a function, or a PDF with zero spread. 

In reality, the scattered points will define a trend which describes the dependence of the 

application on the experiments, and the degree of the scatter will determine the uncertainty of 

this dependence.  



 
 

63 

7) Determine the PDF of map
appy , denoted by ( ),map msr

appp y , using the measured experimental 

responses PDFs, ( )( )
exp
ip y . Note that in Step 5 map

appy  is determined as a function of the 

experimental responses. This function is derived solely from the N samples generated by the 

physics models. However, its PDF is calculated based on the PDFs of the experimental 

response. This step emulates a basic uncertainty propagation exercise, in which input variables 

PDF are propagated through a black-box or a function to get the output PDF. In many situations, 

only the means and standard deviations of the responses are measured/evaluated. In this case, 

one can assume the PDFs for all responses to be Gaussian. Note also that, since the relationship 

between the mapping response and the experimental response will not be generally a linear 

function, the PDF for the mapping response may not be Gaussian, even if all measured 

responses are Gaussian.  

8) Using the joint PDF constructed in step 6, and the PDF determined for the mapping response, 

evaluate the PDF for the application response. 

4.1.3 PCM results interpretation 

As stated above, a joint PDF will be generated between the pseudo/mapping response and 

the calculation values of application as the result of applied PCM method. Note that the calculation 

values in experimental domain can be responses from either a single experiment or a representative 

of several (M) experiments available. An example of the joint PDF built in PCM is given in Figure 

4-3.  

The result can be interpreted as follows: 

(1) Each data point on the scatter plot (on XY-plane) represents a pair of experiment 

response and the corresponding application response sharing the same prior 

parameter uncertainty. Number of model executions is independent on the number 

of parameters or responses, as PCM requires two uncertainty analyses for 

experiment model and application model each, which are forward non-intrusive 

uncertainty analyses. 

(2) The spread of the scatter plot indicates the presence and impact of additional 

sources of uncertainties that are not common to the experiment and application 
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models. The predicted application uncertainty comes from two uncertainty sources, 

the experiment uncertainty and the spread of the scatter plot. 

(3) The correlation between experiment and application responses is implied by the 

spread of the scatter plot. If there is zero or little spread, the correlation between the 

experiment and application will be high, which means the experiment is a perfect 

representative of the application. Conversely, large spread of the scattered points 

indicates loose correlation between experiment and application, response can be 

mapped to predict application with high uncertainty. The scattered points define a 

trend which describes the dependence of the application on the experiments, and 

the degree of spread will determine the uncertainty of this dependence. 

(4) Z-axis represents the probability density value of the PDF whose integral over the 

X-Y range is 1.0. The absolute value in Z-axis will not provide additional 

information.   

 

 

Figure 4-3 Example of joint PDF by mapping uncertainties from the experimental domain to the 
application domain. 
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4.2 Dimensionality Reduction in ROM  

4.2.1 ROM background 

ROM includes any process that reduces the complexity of the analysis models in one or 

more aspects. Uncertainty characterization (UC) exercise usually requires the ROM techniques as 

it requires amount of repeated model executions helping quantify and prioritized various sources 

of uncertainties. In UC of reactor core simulations, the analysis model contains more than ten 

thousand input parameters and detailed equation sets describing behavior of reactor in terms of 

various scales and physics feedback, which requires millions of model executions of complex 

system. The high computational expense makes the UC analysis practically infeasible, which is a 

major challenge in any UCF.  

ROM-based methods achieve computational efficiency in one of two approaches, either by 

reducing the dimensionality of the uncertainty space, or by building a surrogate model that can be 

used in lieu of the original model. On one hand, the computational burden can be reduced by 

reducing the number of uncertainty sources in input parameters, which will reduce the number of 

required model runs. This type of reduction is referred to as dimensionality reduction. On the other 

hand, reducing the complexity helps reduce the cost of the calculations which renders number of 

repeated model executions to be affordable. This type of reduction constructs a model of reduced 

complexity that can be used in lieu of the original model, hence the common terminology of 

surrogate model, which can be used to replace/represent the original model for the sake of 

completing UC analysis.  

The surrogate model construction relies on function approximation techniques, which 

replace the original model in terms of input parameters and responses, with an approximate 

function with lower complexity. Function approximation techniques can be classified into 

mathematical-based and physics-based categories. The mathematical-based function 

approximation attempted to find a relationship between the input parameters and responses in the 

form of a parametric analytic expression with a number of undetermined coefficients. The form of 

the approximate function is determined based on the expert judgement or modeler’s experience. 

And the unknown coefficients are determined by executing the model a number of times. Example 

of the applications are response surface methodologies [10], polynomial chaos expansion [11], 

stochastic collocation techniques [12], etc. The advantage of this ROM approach is that it does not 

require knowledge of the model equations, i.e. the model can be treated as a black-box. However, 
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it introduces two challenges in reactor physics applications. First, the number of model executions 

required to determine the coefficients ensuring the surrogate as a representative of the real model, 

would be unrealistically high. This follows because the number of model executions is a function 

of the number of parameters, which is in the order of 104-106 in reactor core simulations, as well 

as the order of nonlinearity of the model. Second, it is very difficult to assess the quality of the 

surrogate model and quantify the errors resulting from the approximation, as the form of the 

approximate function is based on modeler’s decisions. The physics-based function approximation 

is constructed based solely on the physics of the model. An example of this ROM techniques 

applied to the reactor physics simulations is the exact-to-precision generalized perturbation theory 

(EPGPT) [13] with implementation [14], replacing the transport solver by an analytical expression 

with much lower computational time consuming. The advantage of the physics-based function 

approximation is that the error of the surrogate model can be bounded, which makes quantification 

of modeling discrepancies possible. However, this approach requires intimate knowledge of and 

complete access to the original model, as sometimes the adjoint-solver is required. Therefore, the 

surrogate model techniques are not practically feasible to make this UCF computationally 

affordable.  

Instead of function approximations, the DR approach reduces the effective number of 

degrees of freedom used to describe the input data, so that the original model remains unchanged. 

The advantage of DR techniques is that one can upper-bound with high confidence the errors 

resulting from the reduction, which allows one establish a scientific approach that ensures the 

reliability of the reduced models. DR operates on the assumption that a large part of the uncertainty 

space is discarded completely from the analysis, as it is deemed to be non-influential with respect 

to the quantities of interest. The DR approaches are based on either gradient-based or gradient-free 

reduction algorithms, both of which employ a Range Finding Algorithm (RFA) [15] with 

randomized model executions as snapshots and rank revealing decompositions [16] to identify the 

active DOFs. The DR approach can sometimes combine both gradient-based and gradient-free 

algorithms [17]. The gradient-free reduction is employed in this UCF as the gradient-based 

reductions requires adjoint capability of the neutronics solver to calculate the derivatives of 

responses with respect to nuclear data. 
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4.2.2 DR problem setup and error bounding 

ROM-based DR techniques is employed in this work to provide a rigorous mathematical 

approach by which the uncertainty space can be effectively shrunk into a manageable size to enable 

the practical application of UC techniques. The idea is to identify the active DOFs, which is a 

small subset of effective parameter uncertainty space that can be used to describe the majority of 

the response variations. Inactive DOFs denote directions in the parameter space that have 

negligible impact on the responses of interest. The number of active DOFs in reactor physics 

calculations is in the order of a few tens to hundreds, which is considerably smaller than the 

nominal size of the uncertainty space in the order of millions to billions in various reactor types 

[18-20]. The implication is that one can recast all UC algorithms in terms of the active DOFs which 

renders the process computationally manageable. The construction of ROM-based DR employed 

in this work can be described as follows. 

Consider a model described by a general function (linear or nonlinear) f  with xn  input 

model parameters xnx ∈  generating yn  output responses yny ∈  as: 

( )y f x=       (4-3) 

Description here limits the reduction to the model parameters only to minimize the 

notational cluttering. In principle, the reduction can be applied to all input parameters including 

both model and control parameters in the UCF application when the function is expressed as 

( , , )f x α η  where α  and η  are control parameters and modeling decisions respectively.  

The objective of DR is to identify the active subspace for the input parameter space and 

the response space, denoting by x xn n
x

×∈K   and y yn n
y

×∈K   respectively. The model can be 

rewritten in the following expression:  

( )y xy f x=K K      (4-4) 

The objective of the RFA is to identify two subspaces, one for the input and another for the 

output spaces, denoted respectively by two matrix operators xK  and yK . The matrix zK  (where 

z denotes respectively x and y) is extremely rank-deficient, i.e., its rank is much smaller than its 

dimensions:  

z zn n
z

×∈K    and ( )z z zrank r n=K          (4-5) 
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These matrices are used to restrict the variations of the respective model interface variables, 

i.e., the input parameters and output responses, on hyperplanes, i.e., mathematical subspaces. This 

restriction may be described by a projection operation as follows: 

( )r
xx x= K   and ( )r

yy y= K                                               (4-6) 

where the (r) superscripts denotes that the respective variables are constrained to a subspace. A 

rank-deficient matrix may be written using an orthogonal decomposition as follows:  
T

z z z=K Q Q ,                                                            (4-7) 

where z zn r
z

×∈Q   is a skinny orthonormal matrix (i.e., the number of its columns is much smaller 

than the rows, with the columns being orthogonal and of unit Euclidean length) with zr  columns 

representing a basis for a subspace, denoted hereinafter by the active subspace,  

[ ] [ ] [ ]*1 *2 *
....

z
z z z z r

 =  Q Q Q Q     (4-8) 

where 1
*[ ] zn

z i
×∈Q   is the thi  column of the matrix zQ . An active subspace for the input 

parameter space, by definition, spans all input parameters variations that have dominant impact on 

the output responses. Said differently, the output responses are insensitive to parameter variations 

that are orthogonal to the active parameters subspace.  

The proposed surrogate model takes advantage of this behavior by limiting parameter 

variations to the active parameters subspace. Similarly, an active subspace in the output space 

implies that the majority of the output variations are contained in the active response subspace, 

with the variations in the orthogonal complement of that subspace being very small and can 

therefore be discarded in the construction of the surrogate model.  

Next, we would like to distinguish here between the pre- and post-reduction variables for 

the various models interfaces. Consider for example a generic z interface where the original space 

has dimension zn , implying that z has zn  degrees of freedom. The reduced variable ( )rz  also lives 

in the original space and has zn  components, however its variation is constrained to a subspace of 

dimension zr , implying that there are ( z zn r− ) perfect correlations inside its zn  components. The 

zr  components of z along the active subspace are described by another vector that lives in an zr  

dimensional space, referred to as the active DOFs of the variable z. This smaller vector is important 
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as it will be used to construct the surrogate model. The relationships between these variables are 

described by the following equations: 
( )r

zz z= K , ( )r T
DOF zz z= Q , and ( ) ( )r r

z DOFz z= Q    (4-9) 

The first equation on the LHS implies ( )rz  is the projection (i.e. the orthogonal shadow) of 

z along the active subspace, that is spanned by the columns of the matrix zQ . The second equation 

calculates the zr  components of ( )rz  along the active subspace and aggregates them in a vector 

( )r
DOFz . The last equation describes how one may reconstruct the reduced variables from the active 

DOFs. Note that in this reconstruction ( )r
DOFz  has zr  components, while ( )rz  has zn  components, 

which follows from the fact that zQ  has zn  rows and zr  columns. 

A general matrix m N×∈X   can be written in the form of summation of mutually 

orthogonal outer products via a Singular Value Decomposition (SVD) with r  singular vectors as: 
T=X UΣV      (4-10) 

where both m r×∈U  and r N×∈V   are orthonormal matrices, and r r×∈Σ   is a diagonal matrix. 

This expression can also be written as summation format: 

1

r
T

i i i
i

s u v
=

= ∑X      (4-11) 

where iu  and iv  refer to the columns of U  and V  respectively and is  are scalars. This 

expression involves a summation of r  outer products, implying that when the matrix X  

multiplies a vector x , only r  degrees of freedom of the vector x  will be projected and rotated by 

the operator X . Since x  lives in an n dimensional space, the implication is that n r−  degrees of 

freedom will be lost upon multiplying x  by X . This represents the basic idea of DR. 

Quantification of reduction errors is an essential requirement of the DR approach employed 

here. As described by Eq. (4-4), the original function remains unchanged, and the reduction errors 

are resulting solely from constraining input parameter variations to the active parameter subspace, 

and the output variations to the active response subspace. Quantification of errors resulting from 

reduction in the input space [21], for reduction errors in the output space [22], and for the 

simultaneous reduction in both input and output space [23] are presented here. It is important to 

mention here that for a given selection of the active subspaces, one can create upper-bounds on 

the errors resulting from the reduction [22, 23]. And for a given upper-bound on the error, one 
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could find an infinite number of active subspaces that satisfy this upper-bound. First, consider the 

errors resulting from the input parameter space reduction, 

( ) ( )   over all x x x xe f x f x x Sε= − ≤ ∈K                                (4-12) 

where xe  describes the errors in the output responses due to a reduction in the input parameter 

space, with xε  representing an upper-bound for all possible x values. The second source of errors 

is due to reduction in the response space: 

( ) ( )   over all y y y xe f x f x x Sε= − ≤ ∈K                                 (4-13) 

This reduction implies that the responses are constrained to an active subspace assumed to contain 

the majority of response variations. Finally, the combined error for two simultaneous reductions 

in both the input parameter and output response spaces is given by: 

( ) ( )   over all xy y x xy xe f x f x x Sε= − ≤ ∈K K                           (4-14) 

where xS  specifies the range of allowable x. 

4.2.3 RFA algorithm for active subspace construction 

To determine the effective rank r , a RFA [15, 18] developed in earlier work, is used to 

identify the best linear transformation with smallest number of active DOFs that can approximate 

the few-group covariance matrix to a preset tolerance. The RFA algorithm is described below for 

generic model receiving xn  input parameters aggregated in a vector x  and produces yn  outputs 

in a vector y . The goal is to find active DOFs for the output response.  

1) Specify the range of allowable x variations, contained in the volume x xS ∈ . In the current 

context, xS  represents the range of parameters variations as defined by the prior uncertainties.  

2) Specify preset tolerance yε , i.e., upper-bound, on the reduction errors for the responses. 

3) Generate sl l+  random samples for x , i.e., { } 1
sl l

i xi
x S+

=
∈ .  

4) Generate sl l+ realizations of y , i.e., { } 1

l
i i

y
=

 and form two matrices 

[ ]1 2 ... yn l
ly y y ×= ∈Y   and 1 2 ... y s

s

n l
s l l l ly y y ×

+ + + = ∈ Y  . 
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5) Update Y and sY  by standardizing the matrices. Standardization implies subtraction and 

division by some reference value, selected in the current context as the mean value over N 

samples. 

6) Use Y to compute orthonormal basis yU  with rank yr . 

7) Use sY  to assess whether yU  satisfies the tolerance yε .  

8) If the desired tolerance is not met, increase l . 

The volume xS  in step 1, defined by the user, identifies the allowable ranges for the 

parameters. This volume can be defined in a number of ways depending on the modeling 

conditions. For example, the simplest approach is to define an interval range for each of the 

parameters. If a parameter represents the concentration of a given material, then the interval can 

be selected to span the expected range of that concentration variation over the envisaged horizon 

of operation. If the parameter represents a technological quantity, i.e., a dimension subject to 

manufacturing uncertainty, then the range may be selected to cover the range of uncertainty 

expected, i.e., two or three standard deviations around its mean value. If the parameter represents 

a physical quantity, e.g., thermal conductivity, subject to a general aleatory or epistemic 

uncertainty, then the associated parameter PDF is to be specified to sample the random parameter 

values in step 3. If the parameters are measured experimentally in a manner that introduces 

correlations between their uncertainties, e.g., nuclear cross-sections, then the covariance matrix 

describing their uncertainties must be used to constraint their sampled values. Similarly, if the 

parameters are calculated from an upstream physics model, correlations between their variations 

are expected, and must be specified to ensure that the samples generated in step 3 are consistent 

with the upstream physics model. 

The y realizations in step 4 may be generated directly using the model function, i.e., 

( )i iy f x= . If the function f is too expensive to evaluate, other approximate approaches may be 

used. For example, a lower fidelity model may be used, e.g., a diffusion model in lieu of a transport 

model, a deterministic in lieu of a probabilistic model. While all these approaches introduce 

additional errors resulting in an increase in the size of the active subspace, it can be shown that the 

associated reduction errors can still be upper-bounded [24]. 

Note that in step 3 two sets of random samples are generated. The first set contains l 

samples which are used for the construction of the active subspace, referred to as the snapshots set. 
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The second set contains sl  samples which are used solely for calculating an upper-bound on the 

active subspace in step 7. This set is referred to as the oversamples set. It is important to distinguish 

between these two sets, because as mentioned earlier, the realizations used for the construction of 

the active subspace, i.e., the snapshots set, could be generated using an approximate model for the 

function f. However, the oversamples set must be calculated using the original function f to ensure 

reliable determination of the upper-bound. Secondly, the size of the snapshots set needs to be at 

least as big as the size of the sought active subspace; however the oversamples set may be set to a 

fixed value (typically less than 10), which are used to specify a probabilistic confidence in the 

estimation of the error upper-bound. Also note that if the snapshots set is too small to meet the 

user-defined tolerance on the reduction errors (step 8), additional snapshots must be added, 

however the oversamples set need not be reevaluated or expanded, as it can be used to test multiple 

active subspaces.  

Step 5 is particularly required when the components of the response y are of different units 

and/or scales. For example if y contains outputs from a typical core simulator such as the critical 

eigenvalue, pin powers, and the fuel isotopic composition, it is important to standardize y by 

centering it around and/or dividing it by the mean values of the samples. This is also important 

because the user-defined tolerance for the different components of the response vectors are 

expected to be different.  

In step 6, an orthonormal basis for the active subspace is calculated. This may be done 

using any rank-revealing decomposition such as the SVD or the Gram-Schmidt QR factorization, 

or any of their numerous variations. This process generates a matrix yQ  with yr  columns. The 

premise is that this matrix can be used to reconstruct the model response realizations for any input 

parameter xx S∈  such that the discrepancies between the original model responses and the 

reconstructed responses are upper-bounded by the user-defined bound yε . This may be written as 

follows: 

( ) ( )T
y yf x ε− ≤I QQ       (4-15) 

where ( ) yrT
y f x ∈Q 

 represents the yr  components of the response along the active subspace 

(referred to as the responses active DOFs), and ( ) ynT
y y f x ∈Q Q 

 is the reconstructed response 

vector in the response space. Note that the vector ( )T
y y f xQ Q  has yn  components just like the 
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original response vector f(x). However, the variations of these yn  components is restricted to an 

yr  active subspace.  

The error upper-bound yε  is calculated in step 8 as follows: 

( )[ ]*1,...,

210 max T
y y y s ii s

ε
π =

= −I Q Q Y , such that ( )( ) 10 s
y yp e x ε −≥ =               (4-16) 

where [ ]*s i
Y  is the thi  column of the matrix sY  and ( )ye x  is the error for any given x as defined 

in Eq. (4-12). This upper-bound is met in a probabilistic fashion, implying that there is a probability 

of 10-s (s the size of the oversamples set) that the actual error ( )ye x  will exceed the bound yε  for 

some parameter value x that belongs to the allowable range of parameter variations xS . This 

probability is denoted as the failure probability, i.e., denoting the failure of the active subspace to 

upper-bound the errors resulting from the reduction. 

4.2.4 DR results interpretation 

Applying the RFA algorithm on the randomized parameter space generates an error vs 

active rank plot as illustrated in Figure 4-4. The maximum error declines with more DOFs involved 

in the reconstruction of the original matrix, i.e. with r  increasing. The active rank can be 

determined with a user-defined preset tolerance. 
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Figure 4-4 Example of maximum error resulting from dimensionality recution vs active rank. 

4.3 References  

1. Huang, D. and H. Abdel-Khalik. Construction of optimized experimental responses in 
support of model validation via physics coverage mapping methodology. in Proceedings 
of PHYSOR. 2016. 

2. Huang, D., et al. Efficient Evaluation of Core Simulator Few-Group Cross-Section 
Uncertainties via PCM. in Proceedings of the 2017 ANS Winter Meeting. 2017. 

3. Abdel-Khalik, H.S., A. Hawari, and C. Wang, Physics-guided Coverage Mapping (PCM): 
a new methodology for model validation. 2015. 

4. Huang, D., et al., Dimensionality reducibility for multi-physics reduced order modeling. 
Annals of Nuclear Energy, 2017. 110: p. 526-540. 

5. Huang, D. and H.S. Abdel-Khalik. Development of Uncertainty Quantification Capability 
for NESTLE. in 2017 25th International Conference on Nuclear Engineering. 2017. 
American Society of Mechanical Engineers Digital Collection. 

6. Huang, D., et al., Further development of few-group cross-section uncertainty 
quantification techniques for core simulation. 2018. 

7. Athe, P. and H. ABDEL-KHALIK, Mutual Information: A Generalization of Similarity 
Indices. Trans. Am. Nucl. Soc, 2014. 111: p. 751. 

8. Cover, T.M. and J.A. Thomas, Elements of information theory. 2012: John Wiley & Sons. 
9. Trumpler, R.J. and H.F. Weaver, Statistical astronomy. 1953: Univ of California Press. 
10. Box, G.E. and N.R. Draper, Empirical model-building and response surfaces. 1987: John 

Wiley & Sons. 
11. Choi, S.-K., et al., Polynomial chaos expansion with latin hypercube sampling for 

estimating response variability. AIAA journal, 2004. 42(6): p. 1191-1198. 



 
 

75 

12. Eldred, M. Recent advances in non-intrusive polynomial chaos and stochastic collocation 
methods for uncertainty analysis and design. in 50th AIAA/ASME/ASCE/AHS/ASC 
Structures, Structural Dynamics, and Materials Conference 17th AIAA/ASME/AHS 
Adaptive Structures Conference 11th AIAA No. 2009. 

13. Wang, C. and H.S. Abdel-Khalik, Exact-to-precision generalized perturbation theory for 
eigenvalue problems. Nuclear Engineering and Design, 2013. 256: p. 130-140. 

14. Mertyurek, U., et al., CRANE: A Prototypic SCALE Module for Reduced Order Modeling. 
Transactions of the American Nuclear Society, Reno NV, 2014. 

15. Halko, N., P.-G. Martinsson, and J.A. Tropp, Finding structure with randomness: 
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM 
review, 2011. 53(2): p. 217-288. 

16. Meyer, C.D., Matrix analysis and applied linear algebra. Vol. 71. 2000: Siam. 
17. Wang, C., J. Hite, and H.S. Abdel-Khalik, Intersection subspace method for uncertainty 

quantification. Transactions of the American Nuclear Society, 2014. 111: p. 1384-1387. 
18. Bang, Y., H.S. Abdel‐Khalik, and J.M. Hite, Hybrid reduced order modeling applied to 

nonlinear models. International Journal for Numerical Methods in Engineering, 2012. 
91(9): p. 929-949. 

19. Abdel-Khalik, H.S., P.J. Turinsky, and M.A. Jessee, Efficient subspace methods-based 
algorithms for performing sensitivity, uncertainty, and adaptive simulation of large-scale 
computational models. Nuclear science and engineering, 2008. 159(3): p. 256-272. 

20. Jessee, M.A., Cross-section adjustment techniques for BWR adaptive simulation. 2008. 
21. Abdo, M.G. and H.S. Abdel-Khalik, Propagation of error bounds due to active subspace 

reduction. Transactions of American Nuclear Society, Summer, 2014. 
22. Abdo, M.G. and H.S. Abdel-Khalik. Probabilistic error bounds for reduced order 

modeling. in Proceedings of International Conference on Mathematics and Computations 
in Nuclear Science and Engineering, Nashville, TN. 2015. 

23. Abdo, M.G. and H.S. Abdel-Khalik. Development of multi-level reduced order modeling 
methodology. in ANS Annual Meeting. 2015. 

24. Abdo, M.G.M.M., Multi-level reduced order modeling equipped with probabilistic error 
bounds. 2016: North Carolina State University. 

 

  



 
 

76 

 PROPOSED UNCERTAINTY CHARACTERIZATION 
APPROACHES 

This chapter discusses a number of algorithms to propagate uncertainties in an efficient 

manner, as well as algorithms to verify the validity of the linearity assumption, and assess the 

impact of modeling uncertainties. The first section describes the approached employed in the 

proposed uncertainty quantification (UQ) process, providing an integral picture. The section 

discusses the algorithms employed to propagate parameter uncertainties using both deterministic, 

e.g., sandwich equation, and stochastic approaches as well as how reduced order modeling (ROM) 

techniques and Physics-guided Coverage Mapping (PCM) methodology can be used to cut down 

the cost of uncertainty propagation. The next section discusses assumptions in modeling 

uncertainty propagation and exercises to check the validity of the linearity assumption, followed 

by how to quantify the impact of modeling errors. The final section presents the sensitivity analysis 

(SA) approach and the prioritization of the uncertainty sources. 

The PCM methodology and the ROM-based dimensionality reduction (DR) approaches are 

presented in Chapter 4 of this dissertation. Part of the uncertainty propagation algorithms has been 

published in [1]. 

5.1 Proposed Uncertainty Propagation Approaches 

The proposed approaches rely on two basic strategies to evaluate the assumptions of 

uncertainty propagation and the active degrees of freedom (DOFs) of uncertainty space in core 

simulation process. The first is the PCM methodology [2], recently introduced to support model 

validation, to identify the similarities between two courses of domains, which reduces the 

computational cost required for the preparation of the few-group cross-sections, while maintaining 

all the dependency details of the few-group cross-sections. The overarching goal is to render 

computational efficiency while maximizing the insight that can be obtained from the uncertainty 

characterization exercise. The second is the range finding algorithm (RFA) developed in reduced 

order modeling (ROM) techniques, employed as compression approach to identify the best linear 

transformation with smallest number of active DOFs that can approximate the covariance matric 

for core simulation to a preset tolerance [3]. Details of the PCM methodology and the ROM 
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techniques can refer to Chapter 4. The sensitivity analysis will be done based on the active DOFs 

identified by RFA. Besides, the impact of multiple lattice models on uncertainty space will also be 

based on the PCM strategy. 

Earlier research has employed ROM techniques [3] to demonstrate how efficiency can be 

attained in uncertainty propagation exercises by exploiting correlations between variables at each 

model-to-model interface. In the current context, the few-group parameters represent the interface 

between lattice physics and core-wide calculations. ROM is manifested by finding another set of 

variables, referred to the active DOFs, which can be used to calculate to near-exact (within a preset 

tolerance) estimates of the few-group parameter variations resulting from the multi-group 

uncertainties. The implication is that instead of propagating the uncertainties of the few-group 

parameters, one only needs to propagate the uncertainties of the active DOFs, thereby significantly 

reducing the cost of the uncertainty propagation exercise. Research has shown that the active DOFs 

are related to the original variables, e.g., few-group parameters, by simple linear transformations 

which can be obtained using matrix decomposition techniques. Further, past research has 

developed numerous methods for the identification of the DOFs under different scenarios. For 

example, adjoint methods can be used to identify the active DOFs at the input model parameters 

levels, forward methods can be used to identify the active DOFs at the output response level, and 

hybrid adjoint-forward methods can be used to determine the minimum number of active DOFs 

for general nonlinear models. Intersection methods have also been developed to calculate the 

intersection of the active DOFs at the interface between two different codes in a multi-physics 

code sequence. In our work, we focus on the use of forward methods only due to the lack of the 

adjoint capability for the majority of reactor physics tools currently being used for production 

calculations. In this approach, one can perform ROM at the intersection between two codes, where 

the reduction is first determined by the upstream code. The identified active DOFs can be further 

reduced using a sensitivity analysis through the downstream code. This sensitivity analysis is 

typically affordable because the number of active DOFs determining by the upstream code is small.  

Except from ROM-based dimensionality reduction, we show PCM methodology can be 

used to perform an initial reduction of the number of responses, representing the few-group 

parameters at a wide range of conditions required for few-group parameter functionalization for 

downstream core-wide calculations. This method is superior to ROM in our context, because ROM 

expects one to generate all responses from a single code execution, and then performs multiple 
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randomized executions to find the active DOFs. In our context, the responses from lattice physics 

calculations include all raw few-group parameters at a large number of conditions, which requires 

many executions of the lattice physics calculations for a single randomized realization by the ROM 

approach, which makes the computations unreasonably taxing. Hence, PCM is used instead 

because it allows one to perform initial correlation analysis between the different conditions used 

for the generation of the cross-sections. Results indicate the raw few-group parameters exhibit 

near-perfect correlations between the different conditions used for few-group parameters 

functionalization, which significantly reduces the computational overhead of executing lattice 

physics calculations as shown in the applications in Chapter 6.  

Figure 5-1 shows the layout of the proposed uncertainty propagation process, including the 

variables associated therewith, and the methods (PCM, ROM, SA) employed for UQ and DR.  

The starting point for the proposed uncertainty analysis will be the multi-group cross-section. 

It will be assumed that cross-section uncertainties are available at the multi-group level, implying 

that they have already been propagated from ENDF level through the given collapsing procedure. 

This work has already been demonstrated by others, see Oak Ridge National Laboratories’ (ORNL) 

work on estimating the covariance matrix of the multi-group cross-sections, available in generic 

group structure that is suitable for a wide range of reactor types [4]. As pointed out earlier, the 

collapsing procedures introduces its own assumptions and associated errors which are expected to 

impact the quality of the multi-group cross-sections, however this is considered outside the scope 

of this manuscript. Thus, our focus will be on propagating the multi-group cross-sections to the 

few-group parameter and ultimately to core responses of interest. The multi-group cross-section 

uncertainties are propagated to the lattice physics solver through stochastic UQ process, generating 

a set of N few-group parameter samples. The MGσ  denotes the multi-group cross-sections input to 

lattice physics calculations. 

The few-group uncertainties are propagated to core simulator after compression to obtain 

the uncertainties of core responses of interest. The first reduction step employs PCM to assess the 

degree of correlations between the various conditions used for few-group parameters 

functionalization to perform an initial reduction in the number of few-group parameters, whose 

uncertainties is to be propagated through downstream core-wide calculations. The ROM technique 

is then employed to compress the few-group parameter uncertainties into a compressed few-group 

covariance matrix as well as the few-group mean values. A set of samples for few-group parameter 
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library are generated based on the compressed covariance and the reference values of few-group 

parameters and then propagated to core simulator to obtain the core response uncertainties through 

either a stochastic or deterministic UQ process. When the stochastic method is employed to 

propagate the compressed few-group uncertainties, the samples refer to randomly perturbed 

samples following Eq. (5-30) and Eq. (5-31) while the deterministic UQ is used, the samples refer 

to the reference values perturbed by the active DOFs of the few-group uncertainties, following the 

expression of Eq. (5-28). 

The resulting few-group parameters are denoted as raw
FGσ , which are processed into a format 

suitable for core simulation, denoted by CS
FGσ . Sensitivity information will be generated through UQ 

process to further reduced using the results of a sensitivity analysis. Finally, a priority ranking is 

performed to determine the important sources of uncertainties. The end result is to calculate the 

uncertainties for y, the core responses of interest. The uncertainties are described using standard 

deviations yσ  for the responses y. 
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Figure 5-1 Layout of proposed uncertainty propagation process with compressed sources of 
uncertainties starting from multi-group uncertainty to responses of core simulation. 



 
 

81 

5.2 Propagation of Parameter Uncertainties 

This section provides a generic discussion of stochastic and deterministic UQ, applied to a 

generic model with m input parameters and n output responses. This generic representation can be 

used to describe the propagation of uncertainties through lattice physics and core-wide calculations. 

In our implementation, stochastic UQ is used for the lattice physics calculations, and both the 

deterministic and stochastic approaches are allowed for core-wide calculations.  

5.2.1 Uncertainty propagation algorithms 

Consider the model’s input parameters uncertainties to be defined using normal distribution 

which is fully determined by ( )0 , σσ C  , where 0
mσ ∈  represents the best estimate values for the 

model parameters, i.e., cross-sections, and m m
σ

×∈C   the covariance matrix, and m denotes the 

number of input parameters. This representation is used for both the multi-group and few-group 

parameters.  

Let the forward model relating responses and parameters for a given model, i.e., lattice 

physics or core-wide calculations, be given by:  

( )y f σ=       (5-1) 

where y is a vector representing the model’s responses, i.e., few-group cross-sections in lattice 

calculations, and core responses in core-wide calculations. The σ is a vector representing the 

model’s input parameters, i.e., multi-group cross-sections for lattice physics calculations, and the 

few-group parameters for core-wide calculations.  

The core attributes uncertainties are expressed with mean values and corresponding 

covariance matrices for both approaches, denoted by ( , yyµ C ), although the stochastic approach is 

able to provide the probability density distribution of the responses. Uncertainties can be 

propagated stochastically by drawing N samples of the parameters from their prior distributions, 

calculating the corresponding responses by executing the forward model, and condensing the 

results in the form of mean and covariance matrix for the responses as follows: 

1

1 N

i
i

y y
Nµ

=

= ∑ , ( )( )
1

1
1

N T

y i i
i

y y y y
N µ µ

=

= − −
− ∑C     (5-2)                            
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Since one has N recorded samples for each response, one can histogram the samples to 

approximate the true PDF of the response. This can be done using both parametric and 

nonparametric techniques. A common approach employed is the kernel density estimation [5], 

which approximates the responses PDF as the sum of kernel functions, each centered around the 

sampled values. The width of each kernel function is a user-selected parameter to control the 

smoothness of the resulting PDF - recipes exist for its optimum selection [6]. 

( )
1

N
i

i
i i

y yp y h
δ=

 −
=  

 
∑      (5-3) 

In our implementation, although the few-group parameters uncertainties will be propagated 

through lattice physics using stochastic approach, a simple normal distribution representation will 

be used, as measured by a vector of means and a covariance matrix. The adequacy of this 

representation will not be questioned in the current work. Future work could investigate the value 

for propagating other higher order moments of the distribution, e.g., skewness and kurtosis.  

In a deterministic treatment, only few moments of the model parameters uncertainty 

distributions are propagated. With normal distribution, one propagates only the vector of mean 

values and covariance matrix. Under the assumption of model linearity within the range of 

parameter variations, the resulting responses mean values and covariance matrix can be calculated 

as follows:  

( )0y fµ σ= ,   T
y σ=C SC S      (5-4)                                                 

where n m×∈S   is the sensitivity matrix of the model, representing the first order derivatives of 

the n responses with respect to the m model parameters. The S matrix can be evaluated using either 

adjoint or forward methods. If adjoint methods are employed, one requires n adjoint executions of 

the adjoint code, wherein each execution, the right hand side of the equations is updated using the 

respective response definition. This approach is considered ineffective when one is interested in 

propagating uncertainties for models with many responses, e.g., estimating uncertainties of nodal 

power distribution, estimating uncertainties of the few-group parameters with all their 

dependencies taken into account. If forward approach is employed, on needs to execute the forward 

model m times, wherein each time one parameter is perturbed to calculate via finite differencing 

one column of the S matrix. In many engineering applications, one expects n m  as there are 

usually a significant number of input parameters, and relatively few responses of interest. However, 
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this may not be the case when distribution-type data are treated as responses, e.g. power 

distribution. 

Note that the first equation of Eq. (5-2) implies that the mean value is obtained by simply 

executing the forward model using the reference (also assumed to be the mean) value for the input 

parameters. If the linearity assumption is not adequate, one would expect discrepancies in the mean 

values and the covariance matrices as calculated by the stochastic and deterministic approaches. 

Applying the process above to the different layers of the calculational sequence shown in 

Figure 5-1. The first layer is described as follows: 

( )raw
FG MGσ σ= Π      (5-5) 

The second layer, representing the buffer code to the core simulator is described by: 

( )CS raw
FG FGσ σ= Ω      (5-6) 

The third layer, representing the core simulator is described by: 

( )CS
FGy σ= Π       (5-7) 

The uncertainties are initially available at the multi-group cross-section level in the form 

of mean values and covariance matrix denoted by: ( ,MG µσ , MGC ). The goal is to quantify the core 

responses uncertainties in terms of their mean and covariance matrix, denoted by: ( y , yC ). In 

doing so, one must go through the few-group parameters, hence one must be able to approximate: 

( ,
raw
FG µσ , raw

FGC ) and ( ,
CS
FG µσ , CS

FGC ). To render computational efficiency, our goal is to represent the 

few-group parameters uncertainties in a suitable compressed format, denoted by:  

,
raw raw
FG FG ROM ε− ≤C C  and ,

CS CS
FG FG ROM ε− ≤C C      (5-8) 

where ε  is a very small tolerance, e.g., 410ε −=  or smaller if one wishes.  

In standard deterministic approach, the uncertainties in the core responses can be related 

to the multi-group cross-sections as follows:  

T
y MG=C SC S       (5-9) 

where S  is the so-called sensitivity matrix, containing the first order derivatives of the responses 

with respect to the multi-group cross-section. One can easily show that this matrix may be re-

written using the chain rule of differentiation as follows:  
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raw raw CS CS
T T T T

MG FG FG FG FG y− − −
=S S S S     (5-10) 

where each of these matrices is associated with one of the three layers denoted above, i.e., one 

evaluates the derivatives of the raw few-group parameters with respect to the multi-group cross-

sections, another evaluates the sensitivities resulting from the polynomial fitting buffering for the 

core simulation, and the last contains the derivatives of the core responses with respect to the 

polynomial coefficients that are input to the core simulator.  

Regarding the first term, rawMG FG−
S , it can be evaluated either using finite differencing 

techniques or adjoint techniques. In the former, one will have to execute the lattice physics code a 

number of times equal to the number of multi-group cross-sections, typically in the order of 104 

times, representing about 100-300 energy groups times 5-10 reactions per group times at least ten 

isotopes times the number of times required to fully functionalize the few-group parameters in 

terms of local conditions as discussed earlier. This is clearly computationally intractable. In adjoint 

setting, the number of code runs would be proportional to the number of responses, representing 

the few-group parameters which are also too many to render the process feasible. Earlier work has 

shown that a combined use of forward and adjoint methods could be used to reduce the cost 

required to approximate this matrix. This work has shown that one needs an order of r forward and 

r adjoint model runs, with r being in the order of 100, which renders the process computationally 

feasible [7]. Regarding the third derivative term, CSFG y−
S , this matrix is also very big in size, 

rendering both forward and adjoint methods computationally infeasible for its full evaluation. 

5.2.2 Branch uncertainty representation and reduction 

The correlations between the few-group cross-sections as evaluated over the range of 

conditions typically used for their functionalization.  

A buffer code is typically used to read all the few-group parameters generated by lattice 

physics and convert them into polynomial coefficients, such that every few-group parameter, e.g., 

fast absorption, thermal fission, etc., is written as a polynomial in terms of local conditions, such 

as burnup, fuel temperature, etc. The number of polynomial coefficients is approximately the same 

as the number of raw data. This follows because for example to generate a 2nd order polynomial to 

functionalize a few-group parameter in terms of say moderator density, one needs two additional 

branch cases in addition to the base case to estimate three polynomial terms, a constant term 
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representing the value of the cross-section at the base case, and a linear and 2nd order terms that 

are functions of the deviations of the few-group parameter from the base case.  

A base case refer to a depletion of the lattice at multiple time steps from zero up to a 

representative end of life discharge burnup. Branch cases refer to additional flux evaluations off 

of each base case, where only a single condition is changed to estimate the impact on the few-

group parameters, e.g., an increase or decrease in fuel temperature, coolant density, etc. A core 

simulator reads the polynomial coefficients directly instead of the raw few-group parameters.  

Both the historical and instantaneous effects of these conditions must be investigated. This 

follows because, for example, the thermal fission cross-section evaluated at a given burnup would 

depend on both the instantaneous fuel temperature as well as the average fuel temperature that was 

used to deplete the fuel. Thus our goal is to investigate the correlations between the different 

instantaneous conditions and the historical conditions. A typical example of the conditions used to 

functionalize cross-sections are as follows:  

1) Generate multiple depletion trains, each from zero burnup, until end of life, as measured in 

burnup units, e.g., 70 GWD/MTU. Each train is defined by historical parameters, including 

fixed fuel temperature, coolant voiding, and boron concentration. These parameters are 

kept constant during depletion. These cases are referred to as historical base cases. There 

are typically three base cases to cover the historical fuel temperature variations, three 

voiding base cases, to simulate low, intermediate, and high historical voiding, controlled 

depletion, that’s a depletion with control rod inserted throughout depletion. In this study, 

we will investigate the impact of burnup on the few-group cross-sections, that’s the 

correlations between the cross-section uncertainties at different burnup values.  

2) Branching off of each burnup step, instantaneous branch cases are developed, where in 

each case one parameter is changed at a time, e.g., increase or decrease in fuel temperature, 

change voiding from the historical value, insertion of control rod in a non-controlled 

historical case, etc. This is done while keeping the isotopic concentrations fixed, i.e., no 

depletion. In this study, we will illustrate the impact of fuel temperature, control rod 

insertion, and voiding branches on the correlations between the few-group parameters. 

At each burnup step from the previous trains, change one parameter at a time and re-evaluate 

the flux, and all associated few-group cross-sections. For example, increase or decrease the fuel 

temperature, and re-evaluate the cross-sections. This is done while keeping all isotopic 
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concentrations constant. These evaluations are referred to as branch cases. For example, for non-

controlled depletion base cases, the control rod is inserted as an instantaneous effect. Another 

example is the change in voiding. If the base voiding is at low, two instantaneous changes towards 

intermediate and high voiding will be made. In this study, we will illustrate the impact of fuel 

temperature, control rod insertion, and voiding branches on the correlations between the few-group 

cross-sections. 

Regarding the second term of Eq.(5-10), CSFG y−
S , it is expected to a be a square matrix, 

where the number of polynomial coefficients is often selected to be the same as the number of raw 

data employed to generate the fits, e.g., a 2nd order polynomial is described by three coefficients 

which requires three raw points for their evaluation. As currently implemented in NESTLE, all 

polynomials contain a constant term plus higher order terms, thus one can write: 

, ,

, ,
raw CS raw CS

CS raw
FG ZO FG BaseCS raw

FG FGCS rawFG FG FG FG
FG HO FG Branch

σ σ
σ σ

σ σ− −

   
= = =   

   
S S     (5-11) 

This representation implies that the raw few-group parameters can be split into two blocks 

of data, one representing the base cross-sections at different depletion steps, and branch cross-

sections calculated as multiple perturbations off of the base cross-sections. On the left hand side, 

the polynomial coefficients can be split into two blocks, one representing the Zero Order (ZO) 

terms, representing the constant terms for the polynomials and the Higher Order (HO) terms 

representing the 1st, 2nd, 3rd, etc. order terms. This representation proves useful when leveraging 

the correlation between the base and branch cases as shown next.  

PCM can expose the perfect correlations between the branch and base case cross-sections. 

For example, consider the thermal fission cross-section evaluated at two different fuel 

temperatures to be represented by two random variables, one representing a base and the other a 

branch cross-section, and both are expected to be impacted by the uncertainties of the multi-group 

cross-sections. If these two variables are perfectly correlated, the implication is that the uncertainty 

for one variable can be used to infer the other. This observation may be leveraged to significantly 

reduce the cost of uncertainty propagation by redefining the raw few-group parameters as follows:  

, ,

, ,

raw raw
FG Base FG Baseraw

FG raw raw
FG Branch FG Branch

σ σ
σ

σ σ
   

= =   ∆   
Η       (5-12) 
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where the second block contains cross-section differences due to the different changes introduced 

for the branch cases, e.g., fuel temperature increase or decrease, coolant temperature increase or 

decrease, etc. The H  operator is a simple matrix operator to convert the raw cross-sections into 

two sets, one representing the base cross-sections, and the other the branch cases’ differences. One 

can easily show that: 2 =H I , the identity matrix, which renders the conversion between the two 

formats seamless via a multiplication by the H  matrix, demonstrated below for a pair of cross-

sections, say the fast fission at one reference fuel temperature and a branch case thereof, denoted 

respectively by: ( ),
fast
f f BaseTσ  and ( ),

fast
f f BranchTσ . A simplified version of Eq. (5-12) for this pair 

of cross-sections reduces to: 

( )
( )

( )
( )

( )
( )

( )
( )

, ,

, ,

, ,

, ,

1

1 0
1 1

1 0
1 1

1 0
1 1

fast fast
f f Base f f Base

fast fast
f f Branch f f Branch

fast fast
f f Base f f Base

fast fast
f f Branch f f Branch

T T

T T

T T

T T

σ σ

σ σ

σ σ

σ σ

−

       =  −   ∆     
       =  −   ∆    

 
= =  − 

H H

   (5-13) 

With the assumption of perfect correlation between base and branch case uncertainties, the 

uncertainties in the differences can be set to zero, resulting in a covariance matrix of the form: 

, 0
0 0

raw
raw FG Base
FG

 
=  

 

C
C          (5-14) 

According to the definition of covariance matrix, the few-group covariance matrix can be 

generated with the following expression: 

1 ,
1

T m N
FG N

×= ∈
−

C XX X 
    (5-15) 

where FGC  denotes for the general expression of few-group covariance matrix, either for raw few-

group parameters generated by lattice physics calculation or after being processed by a buffer code 

for core simulation; X  contains the relative difference of all few-group parameters, i.e. after 

subtracting and dividing by the mean value for each respective parameter. Via a Singular Value 

Decomposition (SVD) of X  shown in equation below, the few-group uncertainty space can be 

represented with r singular vectors: 
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,1 ,2 ,... , ,rel rel rel T m r r r
FG FG FG Nσ σ σ × × = = ∈ ∈ X UΣV U Σ        (5-16) 

The corresponding decomposition for the covariance matrix is given by: 

2 2 ,

1

0
0 0 0 0

Traw Base Base Base Baser
T T raw FG Base FG FG FG FG

i i i FG
i

s u u
=

     
= = =     

     
∑ C U Σ U Σ

UΣ U C   (5-17) 

where iu  and is  refer to the singular vector and singular value of the covariance matrix from the 

SVD respectively. The ROM-based approximation covariance matrix is defined by retaining only 

the first r singular vectors to meet a user-preset tolerance as implied by Eq. (5-8), where  

2
,

1

r
T

FG ROM i i i
i

s u u
=

= ∑C . 

Next, these few-group parameters are processed through the buffer code to generate the 

cross-section library in the format required by the core simulator. As stated in the scope of this 

work (Section 1.3.1), NESTLE and its CANDU version, NESTLE-C, are employed in this 

framework as the core simulator. NESTLE/NESTLE-C employs polynomial fitting and stores the 

coefficients of the polynomials as input to the core simulator. The expression of macroscopic 

cross-section of reaction type x and energy group g in the core simulator format is shown in the 

following equation [8]:  

2 2 2

1 ( 1) ( 3) ( 5)
1 1 1

2 2 2

( 7) ( 9) ( 11)
1 1 1

ˆ ( ) ( ) ( )

( ) ( ) ( )

xg xg xg xg eff

xg xg xg

n n n
xg n c n c n F

n n n

n n n
n c n m n sp

n n n

a a a T a T

a P a P a N

ρ+ + +
= = =

+ + +
= = =

Σ = + ∆ + ∆ + ∆

+ ∆ + ∆ + ∆

∑ ∑ ∑

∑ ∑ ∑
  (5-18) 

where 
xgja  are the polynomial coefficients apply to a specific core condition defined by coolant 

density ( cρ ), coolant temperature ( cT ), fuel temperature (
effFT ), coolant purity ( cP ), moderator 

purity ( mP ), and soluble poison number density ( spN ). The macroscopic cross-section with 

notation ˆ
xgΣ  could be part of the few-group lattice parameters for core simulation, denoted as CS

FGσ . 

In this circumstance, 1xg
a  coefficients are the zero order terms while  , 2

xgja j ≥  coefficients are 

the higher order terms.  

One can re-write Eq. (5-11) in terms of the differences between the branch and base cases 

as follows: 
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, ,

, ,

raw raw
FG ZO FG BaseCS

FG raw raw
FG HO FG Branch

σ σ
σ

σ σ
   

= =   ∆   
Η      (5-19) 

This suggests that the few-group parameters for the core simulation can be written in terms 

of the few-group raw parameter from the base calculation and the difference from the branch 

calculations:  

,, ,

, ,,

CS
ZO

raw CS

CS
HO

raw raw
FG Base FGFG ZO FG BaseCS raw

FG FGraw raw FG FG
FG HO FG BranchFG Branch FG

σ σ
σ σ

σ σ
−

∆ −
−

    
 = = =   ∆     

I
S

Θ
 (5-20) 

where  

,

,

CS
ZO

raw CS

CS
HO

FG Base FG

FG FG
FG Branch FG

−

∆ −
−

 
 =
  

I
S

Θ
  

represents the transformations through the buffer code. 

Since the ,
raw
FG Branchσ∆  have zero uncertainties, one can easily show that the higher order 

polynomial terms will also have zero uncertainties, thus confining the uncertainties to the zero-

order terms only, which greatly simplifies the analysis. 

5.2.3 ROM-based implementation 

The ROM technique takes advantage of the correlations that may be present in the 

parameters and/or the responses. The employed ROM-based implementation is demonstrated here 

for parameter correlations only. For full discussion on taking advantage of all correlations, consult 

an earlier publication [12, 21]. This can be achieved by first decomposing the covariance matrix 

as follows: 

2 2

1

m
T T

i i i
i

u uσ ξ
=

= = ∑C UΣ U      (5-21)                                                  

The iu  are referred to as the singular vectors of the covariance matrix and they are selected 

to be orthonormal. The iξ  are the singular values ordered from high to low. This decomposition 

is exact if the summation is extended to m. One can however show that the matrix can be 

approximated to a high degree of accuracy with very few components, such that:  
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2

1

r
T

i i i
i

u uσ ξ ε
=

− =∑C      (5-22) 

where ε is a very small preset tolerance. This can be shown to be attributed to the sharp decline in 

the singular values of the matrix σC  . This idea has been explored by many researchers. In the 

context of ROM, earlier work has shown that it can be generalized for both linear and nonlinear 

models [3], single and multi-physics models [9]. One can trace its roots to the Karhunen Loeve 

expansion or the principal component analysis approaches [10, 11], both typically involving the 

use of singular value decomposition approach. The distinct differences between these different 

approaches is considered outside the scope of this article. Reader is recommended to consult the 

noted references for more details.  

The implication of this decomposition is that the true number of DOFs in the uncertainty 

space, can be reduced from m down to r, and iξ  represents the standard deviation of the ith DOFs. 

Each DOF is defined by one of the singular vector of the covariance matrix, iu . Another 

interpretation of this decomposition is that while the original space contains m uncertain generally 

correlated parameters, one could find a smaller number r of uncertain uncorrelated parameters via 

a linear transformation, U , where each of the new parameters is referred to as an active DOF, 

defined by ( )0 0
T
iu σ σ σ− . The active DOFs covariance matrix is diagonal and equal to 2Σ .   

With the active DOFs determined, one can recast the stochastic and deterministic 

algorithms in the previous subsections in terms of the active DOFs. These data may be used to 

update the stochastic and deterministic rendition of the previous uncertainty algorithms in terms 

of the active DOFs. 

With regard to the stochastic approach, the samples are now rendered as follows:  

0
1

, , ,1 1
r

i
i j j j

j
i Nuσ σ α ξ

=

 
= + 


= …


∑     (5-23)                                       

where ξ  is a random variable sampled from a normal distribution (0,1) , i.e., zero mean and 

unit standard deviation. For the deterministic algorithm rendition, a forward-based sensitivity 

analysis is employed to perturb the model parameters along each of the singular vectors as follows:  

( )0 1i iuσ σ β= + , 

where β is an arbitrary scalar, to form the ith column of the matrix US : 
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[ ] ( ) ( )( )0*
, for 1,...,U ii

y y i rσ σ β= − =S    (5-24) 

The responses samples, obtained after running the code, are combined in the same way for the 

stochastic approach to calculate the responses PDF or their covariance matrix. For the 

deterministic approach, the results are combined as follows: 

( )( ) [ ] [ ]* *
1

r
TTT T

y U U U Ui i
i

σ
=

= = = = ∑C SC S SUΣ SUΣ S S S S   (5-25) 

Eqs.  

[ ] ( ) ( )( )0*
, for 1,...,U ii

y y i rσ σ β= − =S    (5-24)  

and  

( )( ) [ ] [ ]* *
1

r
TTT T

y U U U Ui i
i

σ
=

= = = = ∑C SC S SUΣ SUΣ S S S S   (5-25) 

imply that for r active degrees of freedom, the forward model need only be executed r+1 times to 

evaluate the covariance of the responses, assuming the model behaves linearly in the range of 

cross-section uncertainties. 

With ROM techniques implemented, the covariance matrix of core responses can be 

described with: 

, ( )( )CS T T
y FG ROM= =C SC S SUΣ SUΣ     (5-26) 

where the variance of responses (the diagonal elements of yC ) resulting from uncertainties in the 

r active DOFs of the few-group parameters can be calculated as: 

2 2 2
0

1

1( ) [ ( ) ( )]
1

r

y i i
i

r y y s
N

σ σ σ
=

= −
− ∑     (5-27) 

where each i refers to a code execution with the few-group parameters perturbed as follows: 

0 (1 )i iuσ σ= +       (5-28) 

The implication from Eq. (5-27) is that the response uncertainties can be determined with 

r+1 executions of the core simulation based on the r active DOFs from lattice parameter 

uncertainty space, thus emulating a deterministic forward-based approach for uncertainty 

propagation. 

The stochastic approach can also be used to propagate the uncertainties from lattice level 

by generating N random samples of the few-group parameters consisting with the few-group 
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covariance matrix and provides mean and covariance matrix for response by executing the core 

simulation for N times. The resulting response uncertainties can be calculated with: 

( )( )
1 1

1 1,
1

N N T

i y i i
i i

y y y y y y
N Nµ µ µ

= =

= = − −
−∑ ∑C    (5-29) 

where iy  contains responses from the ith perturbation. Each random perturbation of the few-group 

parameters can be designed as follows: 

0
T zσ σ= + A       (5-30) 

where TA  is the upper triangular matrix by Cholesky decomposition of the few-group parameters 

covariance matrix, and z is a random vector drawn from unit normal distribution.   

Based on the compressed uncertainty space of lattice parameters described in this context, 

the ith random perturbation can be represented as: 

0
1

(1 )
r

i i j j
j

z s uσ σ
=

= + ∑      (5-31) 

where 1r
iz ×∈  is the ith  random variable. 

5.3 Propagation of Modeling Uncertainties  

In order to elucidate the possible interactions between modeling and parameter uncertainties, 

the salient features of the general procedure employed to propagate uncertainties are first 

highlighted along with some of the assumptions commonly made in regarding to modeling 

uncertainties. Recalling the second classification of uncertainty methods, one can propagate 

uncertainties either in terms of the parameter samples used to execute the forward model or by 

directly propagating certain moments of the parameters PDF. In the first case, a response’s PDF is 

approximated using the available samples with the bottleneck being the number of samples that 

can be afforded to accurately describe the PDF. If, however, the moments are propagated using 

deterministic methods, the resulting shape of a response’s PDF is fixed per Jaynes maximam 

entropy principle [12]. For example, if one propagates the first and second moments only, the 

resulting output PDF can only be described using Gaussian distribution. If the model employed 

exhibits linear behavior meaning response variations around some reference point in the response 



 
 

93 

space are linear with respect to parameter variations, then input parameters with Gaussian PDF 

will transform into Gaussian PDF for the output responses.  

In the ENDF library, only mean values and covariance information are available for the cross 

sections. The implication is that one can only describe their PDFs using Gaussian distribution to 

satisfy Jaynes’ maximum entropy principle. Coupling that with the fact that the standard deviations 

for most important cross sections are within fraction to few percent of their nominal values, most 

researchers have justified the use of Gaussian distributions for output responses. This is based on 

the belief that neutronic quantities of interest are expected to behave linearly over the relatively 

small range of cross section variations due to prior uncertainties. For example, the nu, thermal 

absorption and fast transport cross sections have standard deviations in the order of 0.05%, 0.5%, 

and 5%, respectively, of their nominal values. This belief to our knowledge has never been 

assessed rigorously but is entirely based on observation/experience with one-at-a-time parametric 

studies in which one parameter is adjusted by small amounts to test linearity assumption. We 

believe this approach is not rigorous enough and can be misleading when there are high order 

interaction terms between the parameters that cannot be captured using one-at-a-time approaches. 

For example, a model of the form appears passes the one-at-a-time linearity check: 

a b c= + +z x y xy  

where x, and y represent uncertain model parameters, and z  is the response. A direct consequence 

of the linearity assumption is that if one propagates cross section moments around two different 

reference points that are close to each other in the parameter space, the output PDFs are expected 

to be very similar. The differences in the reference values could be due to the use of different cross 

section libraries or different energy/spatial homogenization strategies. The implication is that 

modeling assumptions, which introduce some variations in the reference cross sections, are not 

expected to impact the propagated cross section uncertainties. This assumption is tested in this 

study using a number of verification exercises described in the next section. 

5.3.1 Linearity verification exercises 

A function is considered linear if its first order derivatives with respect to its parameters 

do not change if evaluated at multiple points in the parameter space, e.g., a quadratic function 

changes its slope at different points hence is not linear. Thus, a simple check for linearity is to re-

evaluate the local derivatives at different reference points. Further, since the deterministic and 
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stochastic approaches for propagating uncertainties both rely on the evaluation of the function at 

multiple points around a reference point, one should expect the results of these analyses to be the 

same if the reference point changes, assuming the function is indeed linear. Let the reference point 

be changed as follows 1 0 dσ σ σ= + . If the model is linear then: 

( ) ( )
( ) ( )
( ) ( )

1 1

0 0

0 0

   

   

  

i i

i

i

d y d

y d d y d

y

y

d y

σ σ σ σ

σ σ σ σ σ

σ σ σ

+ − =

= + + − +

= + −

S

 

If this condition is not satisfied, the implication is that the higher order derivatives are not 

negligible. Therefore, it is the goal of this study to employ rigorous tests for linearity to assess 

whether modeling assumptions introduce negligible variations on the propagated cross section 

uncertainties.  

Typical linearity tests employ the one-at-a-time approach. This approach could be 

misleading, depending on the type on nonlinear terms available. For illustration, consider the 

following simple parametric models 
2 2

1 2 1 2y ax bx cx dx e= + + + +  and 1 1 2 2y ax bx x cx e= + + +  

The first model will show nonlinear behavior if one variable is kept constant and the other 

is changed, however the second model will always display linear behavior. To avoid this, we 

propose another approach in which a random direction in the parameter space is selected and the 

model response variation along this direction is analyzed. The process is repeated multiple times. 

If the model has any nonlinearity, it will be discovered by analyzing the model behavior along one 

or more of these random directions. To explore the effect of the reference point, another random 

vector is selected to randomize the selection of the reference point around which linearity is tested. 

Mathematically, this is described as follows: 
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For 1,..., ii N= ,  

Select idσ ,  

For 1,..., jj N= ,  

Select jdz ,  

For 1,..., kk N= ,  

Select kα , 

0 0( ) ( )i k j iy d dz y dσ σ σα σ+ + − + ;  

End;  

End;  

End. 

 

The outermost loop selects iN  random reference point. The second loop selected jN  

random directions along which the model behavior is to be analyzed. The innermost loop, for a 

given reference point, performs kN  point evaluation of the function along the selected direction, 

with each point determined using a different scalar kα . This produces a total of i jN N⋅  scatter 

plots. If any of them shows appreciable nonlinear behavior based on some preset error tolerance, 

then the model is judged to be nonlinear. Further analysis of these plots could help identify the 

source of nonlinearity. However, this will be considered outside scope of this work, as our goal is 

to establish whether the linearity assumption is valid. 

5.3.2 Evaluation of modeling uncertainty impact 

The quantification of modeling uncertainties is conceptually more difficult than the 

quantification of parameter uncertainties in general. This follows because the quantification of 

parameter uncertainties is concerned with characterizing the variations in the responses of interest 

due to variations in the model parameters. This is a straightforward task if one has good estimate 

of the model parameters prior uncertainties, and can be accomplished via a brute force approach 

in which the model is executed numerous times with different parameter samples. The challenge 

is typically computational in nature, that's how to reduce the cost of the required model runs to 
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obtain full PDFs for the responses of interest. Modeling uncertainties however are concerned with 

characterizing the differences between model predictions and real behavior which is unknown, and 

can only be estimated using experimentally-based UQ. Evidently, it is not practical to run 

experiments for all conditions expected during operation, which renders the quantification of 

modeling uncertainties a conceptually difficult endeavor.  

Fortunately, neutronic modeling is extremely well-understood using both probabilistic and 

deterministic treatments, i.e., respectively the Monte Carlo particle tracking and the integro-

differential Boltzmann equation. For example, the Monte Carlo method employing Continuous 

Cross-sections (denoted for short by MC) has been well validated against real measurements, and 

is considered by the neutronic community to be the gold standard for radiation transport for a wide 

range of applications, e.g., reactor and shielding calculations, criticality safety, etc. The implication 

is that one can rely on MC to estimate modeling uncertainties for a given radiation transport model, 

e.g., multi-group SN method, by simply comparing the given model predictions against those 

estimated by MC. This represents the rationale of our approach. Our focus will be on reactor core-

wide simulation, where the input parameters represent the few-group parameters determined via 

homogenization of the cross-sections at various local core conditions using lattice physics 

calculations. The idea is to use an MC model to calculate reference values for the few-group 

parameters.  

The impact of modeling uncertainties can then be assessed by propagating parameter 

uncertainties using different reference values as calculated by deterministic models with various 

modeling assumptions, e.g., using different group structure, different resonance treatment model, 

etc. This approach, while rudimentary and straightforward, has not been attempted before in the 

literature; it will serve to develop the initial insight required to assess the impact of modeling 

uncertainties on the propagated nuclear data uncertainties, and help develop the best strategy for 

the simultaneous propagation of both sources of uncertainties.  

Modeling assumptions in few-group parameter uncertainty propagation 

The following modeling assumptions will be explored to provide an initial estimate of their 

impact on the propagated cross-sections uncertainties.  

Firstly, the UQ approach itself introduces some assumptions, whose impact on the 

propagated uncertainties has not been documented in the literature. Just like modeling radiation 
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transport, uncertainties can also be propagated using either probabilistic (stochastic) or 

deterministic approach. The stochastic approach relies on a brute force random sampling of the 

parameter values and repeating code execution to build the PDF of the responses of interest. In the 

deterministic treatment, the goal is to calculate features of the PDF rather than the entire PDF, with 

features representing key statistical metrics, such as mean values and standard deviation and 

covariance information. Each of the two treatments comes with its own assumptions, of which two 

assumptions are relevant to our context.  

The second assumption is related to the choice of the mean values of the few-group 

parameters. Since we will employ a stochastic approach for the propagation of the multi-group 

cross-sections to the few-group parameters, one expects to get many samples of the few-group 

parameters. These samples have to be condensed into a vector of mean values and a covariance 

matrix, which can later be used to propagate uncertainties through downstream core-wide 

calculations. The vector of mean values for the few-group parameters will not generally be equal 

to the reference values generated without perturbations. This implies that even with the same lattice 

physics code, the use of deterministic vs. stochastic approaches for uncertainty analysis is expected 

to give rise to variations in the mean values of the few-group parameters. Note that with 

deterministic techniques, the mean values are taken to be equal to the reference values and one 

only propagates the second moment of the distribution using the so-called sandwich equation. The 

sandwich equation employs the derivatives of a model response with respect to the model 

parameters to estimate the standard deviation of the response as a function of the parameters 

covariance matrix sandwiched between the so-called sensitivity vector which contains the 

derivatives of the response.  

The third approximation is a result of the uncertainty algorithm employed. This follows 

because each algorithm has its own assumptions and thus is expected to generate different results. 

For example, the deterministic uncertainty algorithm, commonly used in the neutronic community, 

propagates only the second moment, i.e., covariance matrix, of the PDF using first-order 

approximations. This can be done using either the adjoint or forward differencing to calculate the 

derivatives of the quantities of interest with respect to sources of uncertainties. If the model 

exhibits nonlinearities, the propagated uncertainties will be impacted. Stochastic uncertainty 

algorithms do not enforce the linearity assumption if one can execute the original model for all the 

random samples. Thus, it is important to compare the propagated uncertainties using both the 
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deterministic and stochastic algorithms, assuming one uses the same code, the same mean values, 

and the same covariance matrix to isolate the impact of the uncertainty algorithm. 

Further, the reference values are expected to differ based on the lattice physics models 

employed for their calculation, i.e., MC versus a deterministic model and its inherent assumptions. 

Another interesting situation is when the computer code used to propagate uncertainties is different 

from the code used for BE calculations. The implication is that the reference values calculated by 

the two codes will give rise to a discrepancy term which may have an impact on the propagated 

uncertainties. This may happen if the discrepancy term is large enough to be outside the linear 

range of response variations with cross-section, thereby giving rise to nonlinear effects.  

The discrepancies in the reference values for the few-group parameters as calculated by two 

different codes originate from different modeling assumptions and numerical approximations 

made by the different codes, e.g., one code may use a deterministic multi-group radiation transport 

solver, while the other relies on continuous cross-section Monte Carlo particle transport 

methodology. While it is possible to avoid this issue completely by employing the same code, this 

approach may not always be feasible. This is because the code used to generate the reference cross-

sections may be a legacy code or a black-box that is not be amenable for propagation of 

uncertainties, which requires the introduction of perturbations to a code’s inputs. Also the BE code 

may be too expensive to execute repeatedly for propagating uncertainties, forcing the analyst to 

use another more efficient fast-executing code.  Another reason is that the BE code is validated 

and qualified in tandem with its own cross-sections, forcing the analyst to set the mean values 

equal to the best-estimate code cross-sections. Thus, it is important to assess the impact of the 

choice of the mean values as described by the modeling discrepancy vector on the propagated 

uncertainties. This is achieved by repeating the propagation of uncertainties using the same 

computer code, the same uncertainty propagation algorithm, the same covariance matrix, and 

varying the selection of the mean values based on estimates of the modeling discrepancy vector. 

Different sources for the modeling discrepancies can be analyzed, e.g., the choice of the energy 

group structure, the resonance treatment, etc.  

5.4 Sensitivity Analysis and Priority Ranking  

A sensitivity study is performed to assess the key contributors to core responses uncertainties 

and determine the minimum rank r needed. This sensitivity analysis is useful because it provides 
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guidance on the key sources of uncertainties. Given the small number of active DOFs at the few-

group level, one can employ a one-at-a-time approach to complete the sensitivity analysis, where 

in each code execution, one increases the number of active DOFs by one to measure their 

individual impact. This is equivalent to re-evaluating Eq. (5-27) with different r values to identify 

the impact of each active DOF. 

To characterize the importance of contributions from the uncertainty sources to core 

responses, the impact of each active DOF is prioritized and ranked to generate a table containing 

the prioritization of the uncertainty sources. 
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 APPLICATION TO BWR CORE UNCERTAINTY PROPAGATION 
AND SENSITIVITY ANALYSIS 

This chapter exemplifies the application of the proposed uncertainty characterization 

framework based on a boiling water reactor (BWR) system. Multi-group cross-section 

uncertainties are propagated to the few-group cross-sections through lattice calculations and down 

to core responses, including the multiplication factor and the power distribution in steady state 

core calculations. In this chapter, the first section propagates cross-section uncertainty at BWR 

lattice level and discusses the compression strategies applied on the few-group cross-section 

uncertainties; the second section presents the results of uncertainty quantification and sensitivity 

analysis on propagating the compressed few-group cross-section uncertainties to BWR core 

simulation, followed by a priority ranking of the propagated few-group uncertainties.  

Part of the numerical results presented in this chapter are also published in [1-5]. 

6.1 Dimensionality Reduction of Few-Group Cross-Section Uncertainties 

The Physics-guided Coverage Mapping (PCM) methodology [6] discussed in Chapter 4 

serves as the strategy of similarity study, which investigates the possibility of an initial reduction 

on the few-group uncertainty at a wide range of core conditions by exploring the uncertainty 

correlation structure among various branch models and the base model. The impact of uncertainties 

introduced by isotope number densities during depletion is also evaluated and discussed via PCM 

method. The Reduced Order Modeling (ROM) techniques [7, 8] discussed in Chapter 4 are 

employed to determine a reduced set, referred to as active Degrees Of Freedom (DOFs), of the 

few-group parameter uncertainties resulting from the multi-group covariance with a preset 

tolerance [9]. Both PCM and ROM techniques are used to condense the generated samples into a 

few-group covariance matrix which is later propagated through core simulation. 

The BWR model contains five different lattices which represent the axial variations of a fuel 

assembly, the focus will be on demonstrating the strong correlations existing between the base and 

the branch cases. As discussed in Chapter 5, branch cases are required for the functionalization of 

the few-group parameters in terms of local core conditions. Using initially a single lattice model, 

the first subsection will show the near perfect correlations existing between the base and branch 
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cases, which is leveraged using PCM methodology to perform an initial reduction of the number 

of few-group parameters whose uncertainties need to be propagated. The implication is that the 

uncertainties of the branch cases are perfectly correlated with the base cases and hence need not 

be evaluated separately. Next, the BWR model numerical experiment is used to determine the 

number of active DOFs of the few-group parameters and the sensitivity of this number to the 

number of lattices. This is possible using a BWR model since it contains five different lattice types, 

representing the natural uranium, dominant, and power shaping lattices, used over the length of 

the assembly.  

The lattice solver will provide two-group assembly-wise homogenized macroscopic cross-

section, which serve as cross-section library of NESTLE [10] through Triton-to-NESTLE (T2N) 

utility. Five types of cross-section reactions including absorption, fission, transport, nu-fission and 

kappa-fission are collected. 

6.1.1 BWR lattice model setup 

The single lattice study on branch correlations employs a 10 10×  representative BWR lattice 

model [3, 11] illustrated in Figure 6-1, starting with fresh fuel, consisting of 92 UO2 fuel pins with 

4.0% initial enrichment, 14 out of which contain 5.0% gadolinium, surrounded by coolant, and all 

of which are included in a channel box.  

The lattice calculations are completed with SCALE 6.2beta2 code package, inside which 

TRITON [12] is employed to deplete the fuel from 0 to 70.5 GWD/MTU in 33 burnup steps, and 

NEWT [13] is employed to solve neutron transport calculations. Multi-group cross-section library 

for this model follows a 238-group energy structure. Three hundred random samples for the base 

case and each branch case are generated by SAMPLER [14] to propagate cross-section 

uncertainties from the multi-group level to few-group level based on the 56-group covariance 

library [15] included in SCALE. The 56-group covariance library contains uncertainty information 

for 402 nuclides, assumed to represent the best state of knowledge about the cross-sections. These 

covariance library is propagated from the point-wise continuous cross-sections in the ENDF/B-

VII.1 library. This covariance library is considered by current practitioners to be adequate for 

thermal reactors, and is used as the basis for criticality safety and benchmarking of reactor physics 

models [15]. It is however important to remark here that the quality of the uncertainties in the 56-

group covariance library is expected to impact the reliability of any uncertainties propagated 
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through downstream calculations, e.g., core-wide calculations. For example, if the uncertainties of 

the ENDF/B data are only available at few temperatures, the uncertainties of the multi-group data 

will be impacted by how these measurements are employed to characterize uncertainties at the 

wide range of temperatures expected in real reactor operation. Our goal in this thesis is to focus on 

the computational tasks required to propagate uncertainties from the multi-group representation, 

under the reservation that the multi-group cross-sections represent an acceptable measure of 

uncertainties. Future work should look into the impact of this assumption of the propagated 

uncertainties. For example, Section 6.1.2 shows that there exists huge correlation between the base 

and the fuel temperature branch cases. This could be because the uncertainties in the ENDF library 

are only available at few temperatures. With new ENDF/B evaluations, further analysis could be 

used to reveal the impact of new measurements on the reliability of the propagated uncertainties. 

This is however considered outside the scope of this research. 

Five types of reaction, absorption, fission, transport, nu-fission and kappa-fission cross-

sections are recorded. To investigate the correlations among burnups, 11.25, 34.5 and 58.5 

GWD/MTU are selected as representative of low, medium, and high burnup respectively. 

 

Figure 6-1 BWR lattice model layout by NEWT. 

The BWR model contains multiple lattice which provides the means to investigate any 

possible dependencies. Two BWR lattice models are selected to complete this study. The two 
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lattices are based on 7 7×  fuel designs from Peach Bottom Unit 2 cycle 1, 2, 3 [4, 16].  Figure 6-2 

and Figure 6-3 depict the layout of Type 3c lattice model and Type 1 lattice model as generated 

by NEWT. Type 3c lattice consists of 2.50 wt % UO2 fuel pins with Gd2O3 in 5 rods and Type 1 

lattice is made up of 1.10 wt % UO2 fuel pins without Gd2O3.  

Both lattices are depleted to 70 GWD/MTU using 32 burnup steps, and the calculations are 

repeated 96 times using 96 randomized multi-group libraries as generated by SAMPLER. The 

responses selected for the uncertainty analysis are still the assembly-wise homogenized two-group 

macroscopic parameters, including the fast and thermal absorption, fission, transport, nu-fission 

and kappa-fission cross-sections. 

 

Figure 6-2 Layout of Peach Bottom Type 3c lattice model by NEWT. 
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Figure 6-3 Layout of Peach Bottom Type 1 lattice model by NEWT.  

6.1.2 Branch models impact on few-group uncertainty space 

Based on the PCM methodology, the experimental domain will represent the base depletion 

at a single reference historical condition, and the application domain will represent both the 

experimental conditions plus branching thereof in terms of moderator voiding, fuel temperature 

variations and control rod states in this case study. PCM will find a relationship between the 

experimental (base) and application (one branch condition) responses in the form of Probability 

Density Function (PDF) for the subsequent mapping of bias.  

First, we analyze the correlations between the instantaneous conditions (i.e., branch cases) 

and the base cases at an intermediate base burnup value with historical 50% voided coolant and 

950 K fuel temperature. The responses selected for the uncertainty analysis are the assembly-wise 

homogenized two-group macroscopic parameters. Although any response can be generated at 

relatively low cost, only the results of macroscopic fission cross-sections are presented as 

representative in this manuscript.  

Figure 6-4 contains 3D plots of the PCM-determined joint PDFs of the fission cross-sections 

at the branch cases and those at the base cases. Two representative results of PCM evaluation are 

shown in Figure 6-4 (a) and (b) at high temperature thermal group branch and high void fast group 
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branch respectively. All PDFs are centralized around zero by subtracting and dividing by their 

corresponding mean values, which are listed in Table 6-2. The z-axis represents the value of the 

PDF whose integral over the uncertainty range is equal to 1.0. Correlations can be visually seen 

by looking at the scatter plots, which are projections of joint PDF on the x-y plan. Table 6-3 lists 

the standard linear correlation coefficient between the branch and base cases, whose values vary 

from 0.89 to 0.99. The linear/Pearson correlation coefficient measures the linear correlation 

between two variables, ranging from -1 to 1, where 1 indicates perfect positive linearity, 0 presents 

no linear correlation, and -1 is perfect negative linearity.  

Figure 6-4 and Table 6-3 suggest that the branches are perfectly correlated with the base 

case, implying that the uncertainties for the base cases can be used to predict uncertainties for the 

branch cases. The indication is that the few-group uncertainties at branch core conditions will not 

affect the uncertainty propagation in core simulations based on Eq. (5-18), as the branch 

uncertainties will not increase the uncertainty of the few-group parameter while will only change 

the reference point. This implication is limited to the tested branch conditions, which applied in 

the corresponding core simulation, and cannot be extended to prove that all feedbacks have no 

impact on core simulations. The fuel temperature branch shows fewer variations than coolant void 

fraction, and cross-sections of a fast group exhibit larger variation than those of thermal group, but 

the correlation coefficients against base case are all sufficiently close to 1.0.  

Table 6-1 List of branch cases at 34.5 GWD/MTU. 

Branch Name Coolant Void (%) Fuel Temperature (K) Control Rod Insertion 
Base 50 950 Out 

High Void 80 950 Out 
Low Void 20 950 Out 

High Temperature 50 1100 Out 
Low Temperature 50 810 Out 
Control Rod Out 50 950 Out 
Control Rod In 50 950 In 
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Table 6-2 Mean values for samples in branch and base calculations. 

Branch Name Mean (cm-1) - Group 1 Mean (cm-1) - Group 2 

Base – Medium Burnup 0.00157831 0.0351079 

High Temperature - Medium Burnup 0.00157656 0.0351144 

High Void - Medium Burnup 0.00146860 0.0344346 

Control Rod In – Medium Burnup 0.00102106 0.0201783 

Base – Low Burnup 0.00229137 0.0427334 

Base – High Burnup 0.00122762 0.0271401 

Table 6-3 Correlation coefficients of branch vs. base cases. 

Correlation Coefficients of Fast Group Fission Cross-Section 

Correlation 

Coefficient 
Base 

High 

Void 

Low 

Void 

High 

Temperature 

Low 

Temperature 

Control 

Rod In 

Base 1.0000 0.9952 0.9979 1.0000 1.0000 0.8909 

High Void 0.9952 1.0000 0.9868 0.9954 0.9948 0.8669 

Low Void 0.9979 0.9868 1.0000 0.9976 0.9981 0.9020 

High Temperature 1.0000 0.9954 0.9976 1.0000 0.9999 0.8900 

Low Temperature 1.0000 0.9948 0.9981 0.9999 1.0000 0.8917 

Control Rod In 0.8909 0.8669 0.9020 0.8900 0.8917 1.0000 

Correlation Coefficients of Thermal Group Fission Cross-Section 

Correlation 

Coefficient 
Base 

High 

Void 

Low 

Void 

High 

Temperature 

Low 

Temperature 

Control 

Rod In 

Base 1.0000 0.9993 0.9995 1.0000 1.0000 0.9639 

High Void 0.9993 1.0000 0.9977 0.9994 0.9992 0.9616 

Low Void 0.9995 0.9977 1.0000 0.9994 0.9996 0.9646 

High Temperature 1.0000 0.9994 0.9994 1.0000 1.0000 0.9640 

Low Temperature 1.0000 0.9992 0.9996 1.0000 1.0000 0.9637 

Control Rod In 0.9639 0.9616 0.9646 0.9640 0.9637 1.0000 
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(a) High Temperature Branch vs. Base – Group 1 

 
(b) High Temperature Branch vs. Base – Group 2 

 
(c) High Void Branch vs. Base – Group 1 

 
(d) High Void Branch vs. Base – Group 2 

 
(e) Control Rod In vs. Base – Group 1 

 
(f) Control Rod In vs. Base – Group 2 

Figure 6-4 Joint PDFs of fission cross-section - branch vs. base. 
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6.1.3 Burnup impact on few-group uncertainty space 

The correlations between few-group parameters uncertainties evaluated at different 

burnups are investigated. Here the PCM-designated experimental domain is still the base case at a 

given burnup, while the application domain is represented by other burnup values. This must be 

carefully done because the current trend is to perform a single train of depletion and off of that 

uncertainties in the few-group cross-sections can be evaluated using standard techniques. In doing 

so, the isotopic concentrations are kept constant as evaluated by the base depletion. In reality, 

isotopics have their own uncertainties, and they are expected to be correlated across burnup. To 

illustrate this scenario, we perform two experiments. In the first experiment, the correlations are 

investigated by assuming the isotopics have no uncertainties, with their values fixed at those 

predicted by the base depletion. In the second experiment, we include the uncertainties resulting 

from the isotopics.  

Figure 6-5 and Figure 6-6 present the result of the first experiment in a similar manner to 

the previous figures/tables. The results suggest the uncertainties are correlated however loosely 

with correlation coefficients in the order of 0.5. The conclusion from this study is that one must 

evaluate the uncertainties at all these burnup values since their correlations are not as high as the 

branch cases. Figure 6-6 shows the results of the second numerical experiment with isotopics 

uncertainties included. Interestingly, the correlations increase notably by 50%, which highlights a 

very important remark that is while simplification is typically introduced to reduce the 

computational cost, they can change the correlation structure, thereby affecting the reliability of 

uncertainty analysis. Moreover, absent these assumptions, and via a correct implementation of 

ROM techniques, designed to exploit the high correlations, one can reduce the computational cost 

without making any assumptions.  

Table 6-4 Correlation coefficients of high vs. low burnup cases. 

Correlation Coefficient without Isotopics Uncertainties with Isotopics Uncertainties 

Group 1 0.4793 0.7502 

Group 2 0.4832 0.5150 
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(a) High Burnup vs. Low Burnup - Group 1 

 
(b) High Burnup vs. Low Burnup - Group 2 

Figure 6-5 Joint PDFs of cross-sections of high burnup vs. low burnup. 

 
(a) High Burnup vs. Low Burnup - Group 1 

 
(a) High Burnup vs. Low Burnup - Group 2 

Figure 6-6 Joint PDFs of cross-sections of high burnup vs. low burnup – with isotopics 
uncertainties. 
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6.1.4 Dimensionality reduction on few-group cross-section uncertainty space 

To investigate the reducibility and correlation over burnup steps, ROM techniques are 

applied to the few-group cross-sections. The BuY  matrix can be constructed as: 

,Bu1,1 ,Bu1,2 ,Bu1,200

,Bu 2,1 ,Bu 2,2 ,Bu 2,200 33 200

,Bu33,1 ,Bu33,2 ,Bu33,200

xg xg xg

xg xg xg

xg xg xg

×

Σ Σ Σ 
 
Σ Σ Σ  ∈ 

 
Σ Σ Σ  

R





  



    

where subscript x denotes a certain reaction type, 1, 2g =  is group number, Bui  represents the 

burnup step number, 1, 2, ,33i =   since there are 33 depletion steps. Figure 6-7 depicts the results 

after applying RFA algorithm on the standardized BuY  matrix. We choose homogenized 

macroscopic absorption and fission cross-section respectively as representatives of certain reaction 

types and present in the plots. Maximum errors in the figures are calculated by the absolute-value 

norm of the standardized error matrix ( ,Bu Bu r−Y Y ). These figures indicate the relationship between 

errors resulting from the dimensionality reduction and the rank, i.e. reduced dimension, used to 

reconstruct the model. For a preset user-defined tolerance, the corresponding size of active 

subspace needed to describe the original space can be obtained from the figure. 

Take the absorption cross-section in thermal group as an example to compare with the original 

dimension of covariance matrix. Consider burnup dependence only, where reaction type and 

energy group are fixed, dimension of original covariance matrix for NESTLE cross-section library 

is 33 33× , while the reduced dimension is 33 5×  for rU  and 5 5×  for rΣ  with the preset 

tolerance ε  is 0.01% as shown in Figure 6-7 (a). Similar behaviors are also indicated from other 

combination of reaction types and energy groups, suggesting capability of dimensionality 

reduction in covariance matrix of cross-section library for NESTLE. 
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(a) Absorption Cross-Section- Fast Group 

 
(b) Absorption Cross-Section- Thermal Group 

 
(c) Fission Cross-Section- Fast Group 

 
(d) Fission Cross-Section - Thermal Group 

Figure 6-7 Error reduction vs. active rank throughout depletion - fixed reaction type and energy group. 

The RFA is next applied across burnup steps and all reaction types to investigate the 

reducibility with fixed energy group. Results of effective rank are shown in Figure 6-8 (a) and (b) 

for fast group and thermal group cross-sections respectively. The Y  matrix can be presented as: 
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sweeping with loops for every 200 random samples: 

For each burnup step; 

 For each reaction type. 

For a preset criteria of 0.01%ε = , compared with the original dimension of 

33 ( ) 5 ( ) 165burnup steps reaction types× = , active dimension of cross-section for fast group 

can be reduced to 5, and for thermal group can be reduced to 14. 

 
(a) Fast Group 

 
(b) Thermal Group 

Figure 6-8 Error reduction vs. active rank throughout depletion - fixed energy group. 
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The final investigation on reducibility of cross-section library includes all dependencies on 

burnup steps, reaction types and energy groups. Results are presented in Figure 6-9. The matrix 

structure sweeps with loops: 

    For each burnup step; 

For each reaction type; 

For each energy group. 

Figure 6-9 indicates that the effective rank is less than 40 with prior criteria 0.01%ε =  

considering all dependencies over depletion. Compared to the original parameter dimension of 

33 ( ) 5 ( ) 2 (groups) 330burnup steps reaction types× × = , the record size has been 

decreased apparently. 

 

Figure 6-9 Error Reduction vs. Active Rank throughout Depletion – All Reaction Types and 
Energy Groups Included 

6.1.5 Multiple lattices impact on few-group uncertainty compression 

In order to find the reducibility and correlation across the burnup range, the few-group 

homogenized macroscopic cross-sections of both Type 3c and Type 1 lattice in all reaction types 

and energy groups among all burnup steps are collected with the same arrangement, storing in 
320 96

3 1,Type c Type
×∈Y Y R  respectively. The loop sweeps as: 



 
 

114 

For each burnup step; 

For each reaction type;                  

For each energy group.  

The response matrix of multiple lattices 640 96
Multiple

×∈Y R  is the combination of 3Type cY  and 

1TypeY . Apply RFA algorithm on uncertainties of both  3Type cY  and 640 96
Multiple

×∈Y R , results of the 

maximum error resulting from the dimensionality reduction and the rank, i.e. reduced dimension, 

used to reconstruct the model are depicted in Figure 6-10. With a preset tolerance of relative error 

0.1%, the uncertainty space of single lattice is reduced to 21r = , while of multiple lattices is 

reduced to 24r = . This indicates that the size of uncertainty space of few-group cross-sections can 

be significantly reduced to propagate the uncertainties, and introducing different lattice types will 

add in only few DOFs to describe the variations of uncertainties. This indicates that the size of 

uncertainty space of few-group parameters is not significantly impacted due to the introduction of 

other lattices. 

 

Figure 6-10 Plot of error reduction vs.  rank across depletions – all reaction types and energy 
groups included. 
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6.2 Uncertainty Quantification and Sensitivity Analysis on Core Simulation 

Uncertainty quantification (UQ) and sensitivity analysis (SA) results of propagating cross-

section uncertainties from the multi-group level to core simulations are presented in this section. 

The UQ approach employed here is the ROM-based uncertainty propagation implementation.  

6.2.1 BWR core model setup 

The BWR full-core 3D neutronics is modeled by NESTLE, which is a core simulator with 

few-group neutron diffusion equations spatially discretized utilizing the Nodal Expansion Method 

(NEM) [10]. Since the full core model is quarter-core symmetry, the model is reduced to quarter 

its actual size with cyclic inner boundary conditions. 24 axial slices are modeled for the core 

attributes. There are five BWR assembly layers to model this representative BWR core, Upper 

Natural, Vanishing, Dominant, Power Shaping and Lower Natural layers from top to bottom. In 

this preliminary numerical study, we only investigate on the impact of Dominant fuel assembly 

(Type 3c) layer. 

The few-group cross-section library needed for NESTLE core simulation is provided by the 

TRITON lattice physics calculations. By depleting the lattice model to 70.5 GWD/MTU, all the 

required cross-sections are available for the quarter-core model. NESTLE reads the 2-group 

homogenized macroscopic cross-sections output by TRITON in the form of polynomial 

coefficients as function of each branch cases. The macroscopic cross-section library for NESTLE 

in a given fuel color, burnup and control rod state can be described in terms of coolant density, 

coolant temperature, effective fuel temperature and soluble poison number density [10]: 
2 3

1 ( 1) 4 5 ( 5)
1 1

ˆ ( ) ( )
xg xg xg xg eff xg

n n
xg n C C F n sp

n n
a a a T a T a Nρ+ +

= =

Σ = + ∆ + ∆ + ∆ + ∆∑ ∑  

where x  and g  represent the reaction type and energy group respectively, and 
xgja  are Taylor 

series expansion coefficients. The definitions of the parameters could be referred to Eq. (5-18). 

6.2.2 UQ and SA results on BWR core simulation 

Analysis in Section 6.1.4 on dimensionality reduction of the few-group cross-section library 

shows that the active DOFs of uncertainty space is 19 with prior criteria of 0.1% when taking into 

consideration of all reaction types and energy groups. In the following step, a sensitivity analysis 
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has been done on the active subspace to determine the importance of each dominant directions on 

uncertainty analysis. The first 19 iu  vectors are sent through NESTLE respectively and executed 

by scaling their corresponding singular values by the largest singular value, making the sensitivity 

analysis on each dominant direction in the same linear range.  

Figure 6-11 to Figure 6-14 show the partial or integral uncertainties of representative core 

attributes, k-effective and axial power shape, versus the burnup. Here “partial” means the 

contribution to core attributes uncertainty by each individual direction; while “integral” represents 

the summed contribution to uncertainty by up to the first k iu  vectors. 

Figure 6-11 shows the uncertainty of k-effective that each iu  vector will add in, from which 

we can tell that the individual iu  vector will add in no more than 20 pcm (1/5 of the grid) 

uncertainty after the first 5 dominant directions. Figure 6-12 indicates that the integral uncertainty 

of k-effective will change within 10 pcm with more than 10 dominant directions. 

In Figure 6-13 and Figure 6-14, sensitivity analysis on axial power shape uncertainties are 

presented with representatives in bottom, middle and top layer respectively in (a), (b) and (c). 

Larger power shape uncertainties are detected in top layers. These figures suggest that around 13 

dominant directions might be important to uncertainty analysis on axial power shape. 
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Figure 6-11 Partial uncertainty of k-eff along burnup. 

 

Figure 6-12 Integral uncertainty of k-eff along burnup.  
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(a) Axial Zone 6 (Bottom Layer) 

 
(b) Axial Zone 15 (Middle Layer) 

 
(c) Axial Zone 25 (Top Layer) 

Figure 6-13 Partial uncertainty of axial power shape along burnup.  
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(a) Axial Zone 6 (Bottom Layer) 

 
(b) Axial Zone 15 (Middle Layer) 

 
(c) Axial Zone 25 (Top Layer) 

Figure 6-14 Integral uncertainty of axial power shape along burnup. 
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6.2.3 Priority ranking on major few-group uncertainty sources 

To characterize the individual importance of each iu  vector to different responses, the 

impact of each direction is prioritized and ranked. There are 24 axial nodes in the NESTLE model, 

numbered from 4 to 27. Thus, the responses are uncertainties of k-effective as well as these 24 

axial powers. Table 6-5 provides a summary of ranked importance of first 19 iu  vectors. Rank “1” 

represents “the most important”, and rank “19” represents “the least important”. The table indicates 

that the first 14 directions are important, and we might be able to get rid of the 11th to 13th U vectors 

when doing uncertainty analysis on k-effective and axial power shape. 

Based on all the results above, we conclude that 14 vectors are important to constrain a 0.1% 

uncertainty in core simulation. 
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Table 6-5 Priority ranking for individual iu  vector to k-eff or axial power shape uncertainties. 

 k_eff Node 4 Node 5 Node 6 Node 7 Node 8 Node 9 Node 10 Node 11 
Node 

12 

Node 

13 

Node 

14 

Node 

15 

Effect of U1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Effect of U2 5 2 3 3 3 3 3 4 4 5 5 5 5 

Effect of U3 4 4 4 4 4 6 7 8 7 4 4 4 4 

Effect of U4 2 3 2 2 2 2 2 2 2 2 2 2 2 

Effect of U5 3 5 5 6 5 4 4 3 3 3 3 3 3 

Effect of U6 15 8 8 8 8 8 6 5 5 7 7 7 7 

Effect of U7 12 9 10 9 9 10 10 11 12 12 12 12 11 

Effect of U8 7 6 6 7 7 7 9 9 10 9 9 8 8 

Effect of U9 8 10 11 10 10 9 8 6 6 6 6 6 6 

Effect of U10 6 7 7 5 6 5 5 7 8 8 8 10 12 

Effect of U11 10 12 13 12 11 11 11 10 9 10 10 11 10 

Effect of U12 11 13 12 13 12 12 12 12 11 11 11 9 9 

Effect of U13 19 16 17 17 18 18 16 14 13 13 13 14 14 

Effect of U14 9 11 9 11 13 13 13 13 14 14 14 13 13 

Effect of U15 13 14 14 14 15 16 17 17 17 17 18 18 18 

Effect of U16 14 15 15 15 14 14 14 15 15 16 17 17 16 

Effect of U17 17 17 16 16 16 15 15 16 16 15 15 15 15 

Effect of U18 16 19 18 19 19 19 19 19 18 19 19 19 19 

Effect of U19 18 18 19 18 17 17 18 18 19 18 16 16 17 
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Table 6-5 continued 

 Node 16 Node 17 Node 18 Node 19 
Node 

20 

Node 

21 

Node 

22 

Node 

23 

Node 

24 

Node 

25 

Node 

26 

Node 

27 

Effect of U1 1 1 1 1 1 1 1 1 1 1 1 1 

Effect of U2 5 5 3 2 5 5 5 5 5 5 5 5 

Effect of U3 4 4 4 9 4 4 4 4 4 4 4 4 

Effect of U4 2 2 2 4 2 2 2 2 2 2 2 2 

Effect of U5 3 3 5 6 3 3 3 3 3 3 3 3 

Effect of U6 8 11 12 10 8 8 8 7 7 8 8 8 

Effect of U7 11 9 8 7 12 12 12 12 12 12 12 12 

Effect of U8 6 6 7 8 9 9 9 9 8 7 7 7 

Effect of U9 7 12 13 5 7 6 6 6 6 6 6 6 

Effect of U10 12 7 6 3 6 7 7 8 9 9 9 10 

Effect of U11 10 10 11 12 11 11 11 10 10 10 10 9 

Effect of U12 9 8 10 13 10 10 10 11 11 11 11 11 

Effect of U13 15 15 17 18 16 15 14 14 14 14 14 14 

Effect of U14 13 13 9 11 13 13 13 13 13 13 13 13 

Effect of U15 18 16 15 14 17 17 17 17 17 17 17 17 

Effect of U16 14 14 14 15 14 14 15 15 15 15 15 15 

Effect of U17 16 18 16 16 15 16 16 16 16 16 16 16 

Effect of U18 19 19 19 19 18 18 18 18 18 18 18 18 

Effect of U19 17 17 18 17 19 19 19 19 19 19 19 19 
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6.3 Conclusions 

To overcome the computational expense of uncertainty propagation due to cross-sections in 

core simulation, this chapter investigates the correlations among branch and base calculations 

throughout depletion for lattice physics calculations.  

Results show near perfect correlations between the branch cases, and weaker correlation 

across burnup. Interestingly, the results of uncertainty mapping between different burnup states 

indicate that ignoring burnup correlations which may be attempted to simply the uncertainty 

representation (i.e., assuming uncertainties are independent across burnup) over-estimates the true 

number of degrees of freedom across burnup. In reality, burnup introduces correlations in the 

cross-sections which should be exploited for further reduction of the computational cost.  

ROM techniques are further employed to investigate the true dimension of few-group cross-

section library for core simulator. Results indicate that the dimension can be reduced without 

making adhoc assumptions about cross-sections dependencies.  

The sensitivity analysis for core attributes with respect to the few-group cross-sections 

suggests further reduction for the true dimension of the uncertainty space is possible. For a 

representative BWR core, these results indicate that only a handful of parameters could be used to 

describe uncertainties of the dominant lattice.  

Furthermore, the case study on impact of multiple lattice models on uncertainty propagation 

in core simulation imply that introducing more lattice types will not result in significant increase 

of the few-group cross-section uncertainty space. 
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  APPLICATION TO CANDU CORE UNCERTAINTY 
PROPAGATION 

This chapter exemplifies the application of the proposed uncertainty characterization 

framework based on a CANDU heavy water reactor system. The scope is limited to the propagation 

of the nuclear data uncertainty starting with the multi-group cross-section covariance matrix and 

down to core responses, including the eigenvalue and power distribution in both steady state and 

transient core wide calculations. The focus of this chapter is to demonstrate how to employ the 

reduction technique to compress the few-group uncertainty space of CANDU reactor into a very 

small number of active Degrees Of Freedoms (DOFs) which renders the overall process 

computationally feasible.  

A CANDU-6 model containing single type of lattice is employed as case study. Different 

from the BWR application with only the few-group cross-section uncertainties propagated, the 

CANDU application propagates all few-group parameter uncertainties, including the cross-

sections, Assembly Discontinuity Factors (ADFs), neutron velocities, and transient parameters. 

Based on the results from the BWR study, the branch cases are taken to be perfectly correlated 

with the base depletion case, which allows one to considerably reduce the size of the few-group 

parameters uncertainty space. Over burnup, the correlations are strong, however not high enough 

to allow one assume perfect correlation. Thus, ROM techniques are employed to condense the 

uncertainty space as described in Section 5.2.3. The compressed few-group parameters covariance 

matrix is propagated to the steady state CANDU-6 core simulation in both deterministic and 

stochastic manners to compare both approaches. 

The first section explores the dimensionality reduction of few-group parameters uncertainty 

space in terms of the correlations in a wide range of core conditions and across burnup, as well as 

the ROM-based compression results on the few-group parameter uncertainty space. The second 

section reports the uncertainty quantification results on core responses of interest, i.e. core 

multiplication factor, core coolant void reactivity (CVR) and core power distribution, with 

uncertainty propagation from the compressed few-group parameter uncertainties in both steady-

state and transient scenarios. 

Part of the numerical results presented in this chapter are also published in [1]. 
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7.1 Dimensionality Reduction of Few-Group Parameter Uncertainties 

CANDU-6 has a single lattice type which considerably simplifies the analysis as compared 

to a Light Water Reactor (LWR) core model which could contain up to a few dozen lattice types. 

For this phase-one project, the focus will be on estimating the k-eff and the channel power 

distribution as calculated by the NESTLE-C core simulator [2]. The UQ exercise begins with the 

uncertainties at the multi-group level, specifically a 56-group format as processed by a previous 

study conducted by ORNL [3], wherein a 56-group covariance library is generated based on a 

representative thermal reactor spectrum. One could question the validity of this covariance matrix 

for CANDU analysis since its production involves a number of modeling assumption and 

approximation as well, e.g., the choice of the flux weighting used to condense the cross-sections 

from continuous to multi-group format. This however will be considered outside the scope of this 

phase-one project.  

Lattice physics calculations are employed to propagate the multi-group uncertainties to the 

few-group uncertainties using the SCALE NEWT and SAMPLER codes. The SERPENT [4] code 

is also used to model the CANDU-6 lattice to satisfy two objectives. First, it will serve to verify 

the accuracy of the NEWT reference cross-sections, since it is based on a probabilistic solution 

methodology utilizing Monte Carlo radiation transport with continuous cross-sections which 

represents the gold standard for neutronic calculations. Second, it will provide the means to assess 

the impact of modeling assumptions on the propagated cross-sections uncertainties, serving to 

provide initial guidance for the following phases of the project, expected to expand the UCF 

framework to account for other sources of uncertainties. Also, the few-group cross-sections 

calculated by earlier studies, using HELIOS [5], will be used as a basis for assessing the impact of 

modeling errors for the two-group case only.  

Finally, the covariance of the few-group cross-sections will be calculated in a condensed 

format to facilitate its propagation through core simulation using the NESTLE-C code. The 

reference cross-sections for 

7.1.1 CANDU-6 lattice model setup 

CANDU-6 lattice contains 37 fuel elements containing natural uranium [5] with heavy water 

serving as both coolant and moderator, albeit at different temperatures. The heavy water inside the 
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pressure tubes serves as the coolant at a temperature of 563 K, and the heavy waters outside the 

pressure tubes acts as moderator at a temperature of 341 K. The CANDU-6 lattice is modeled 

using SERPENT, KENO-CE [6], and NEWT codes to provide initial estimates of the modeling 

errors, representing the discrepancies in the estimated few-group cross-sections resulting from 

different modeling assumptions/approximations.  

SERPENT is a Monte Carlo Radiation Transport code with depletion capabilities; it uses the 

ENDF cross-sections in ACE format, and has a capability to collapse the cross-sections into user-

specified energy-group format. For this study, we employ a representative two-group energy 

boundaries, with the thermal boundary extending to 0.625 eV, and the fast group to 20 MeV. 

Layout of the lattice is shown in Figure 7-1 as generated by the SERPENT geometry engine. Figure 

7-2 shows a similar layout as produced by NEWT. 

 
(a) XY-Plane                                                 (b) XZ-Plane 

Figure 7-1 Lattice layout by SERPENT geometry engine. 
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Figure 7-2 Lattice layout by NEWT geometry engine. 

To study the impact of the number of few-groups on the propagated core uncertainties, three 

representative few-group structures, two-, four- and eight-groups are employed, collapsed from 

238-group structure in NEWT, and from continuous energy format in SERPENT. The choice of 

the group boundaries in NEWT suffers from one limitation -- shown in Table 7-1 and compared 

to SERPENT boundaries -- that the few-group boundaries must be a subset from the multi-group 

boundaries. SERPENT does not suffer from this limitation since the collapse is done from 

continuous energy structure. All energy group structures have a lower limit of 0.1 eV and an upper 

limit of 20 MeV.  
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Table 7-1 Energy boundaries in few-group structure. 

Few-Group Structure Boundaries [MeV] in SERPENT Boundaries [MeV] in NEWT 

Two-group (2G) 6.25E-7 6.25E-7 

Four-group (4G) 6.25E-7 6.25E-7 

 1.3007E-4 1.22E-4 

 1.8316E-1 2.00E-1 

Eight-group (8G) 1.1157E-7 1.00E-7 

 6.2506E-7 6.26E-7 

 1.3007E-4 1.22E-4 

 9.1188E-3 9.50E-3 

 1.8316E-1 2.00E-1 

 8.2085E-1 9.50E-1 

 2.2313 2.3540 

7.1.2 CANDU few-group parameter uncertainties 

The SAMPLER routine is executed to propagate the multi-group uncertainties using the 

NEWT lattice model. SAMPLER is distributed with 1000 randomly-generated multi-group 

libraries that are consistent with the multi-group covariance library. The few-group cross-sections 

covariance matrix may be generated in a brute force manner from these runs using the following 

expression: 

1

1 1 1
1

T
N

i i
FG

iN µ µ

σ σ
σ σ=

  
= − −    −   

∑C     (7-1) 

and 
1

1 N

i
iNµσ σ
=

= ∑  

where iσ  is a vector of all few-group cross-sections generated using the ith randomly-generated 

multi-group cross-section library, and N is the number of samples, which is 300 in this case study. 

In matrix algebra, one cannot divide two vectors, but this abusive notation is used to simplify 

notation denoting that the covariance is produced in relative units by simply dividing by the mean 

values of the few-group cross-sections. 
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Figure 7-3 shows representative set of few-group parameters and their uncertainties as 

directly calculated by SAMPLER in two-group format. The lines in gold color represent the burnup 

dependent few-group parameter of the individual samples from NEWT execution, while the red 

curve is the standard deviation of the corresponding parameter as calculated over all the samples. 

Note that in general there are three types of matrices that are typically used to describe the 

second moments of the responses PDF, referred to as covariance matrices. The first matrix, 

denoted Type-I, has the square of the units of the response, as it describes the absolute values for 

the response variances (i.e., square of standard deviations) and covariances thereof. The ith and jth 

element of this matrix can be written in the form:  

[ ]Type I
ij i jij
std stdρ− =C  , 

where istd  is the standard deviation of the ith response (this non-conventional notation is used to 

avoid confusion with the cross-section), and ijρ  is the standard correlation coefficient between the 

ith and jth responses, with values between -1 and 1.  The second matrix, denoted Type-II, is unit-

less, typically referred to as correlation matrix, and is defined by:  

[ ]
[ ]Type I

Type II ij
ijij

i jstd std
ρ

−

− = =
C

C  , 

such that all its diagonal elements are equal to 1.0, and the off-diagonal elements are between -1 

and 1. This matrix represents a normalized version of the Type-I matrix. Normalization could also 

be rendered by dividing by the mean values of the responses, resulting in a Type-III matrix, which 

is the choice selected for our analysis as in Eq. (7-1): 

[ ]
[ ]Type I

Type III ij
ij

i jmean mean

−

− =
C

C  

where imean  and jmean  are the mean values for the ith and jth responses, respectively. This 

representation is very convenient when working with responses of different units and different 

ranges. It allows one to design the random samples and/or perturbations as multipliers to the 

quantities of interest, and provides a meaningful way to compare uncertainties for different 

responses resulting from different error sources as will be shown later in the discussion. 
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(a) Transport – Group 1 

 
(b) Absorption – Group 2 

 
(c) Nu-Fission – Group 2 

 
(d) Nu – Group 2 

 
(e) Fission Yield of Pm-149 

 
(f) Beta – Group 3 

Figure 7-3 Burnup-dependent few-group parameter – parameter values of reference and 
random samples from SAMPLER. 
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7.1.3 Correlation among few-group parameters along burnup 

The next set of results investigate the correlations between different few-group burnup-

dependent parameters. The correlation coefficients between each few group parameter at a given 

burnup and all other burnup-dependent parameters are calculated. Representative results are shown 

in Figure 7-4 for the correlation between the zero burnup value for the parameter with all other 

parameters. The total number of parameters is equal to 37 (the number of burnup steps) times the 

number of individual parameters types. The few-group parameters are organized in blocks of 37, 

where each block represents the correlations of the zero-burnup value of the parameter with its 

values across burnup. The parameters types are ordered as follows: Tr1, Tr2, Ab1, Ab2, NF1, NF2, 

KF1, KF2, Nu1, Nu2, ADF1, ADF2, 1 2 3 4 5 6
1 2

1 1, , , , , , ,
v v

β β β β β β  respectively. For example, 

Figure 7-4 (a) shows the correlation between the zero burnup values of the fast transport cross-

section with all few-group parameters. The first 37 elements along the x-axis show the correlations 

with the burnup dependent values for the fast transport cross-sections. These results indicate that 

the zero-burnup fast transport cross-section is perfectly correlated with all its values across burnup, 

and approximately 0.73 correlation with the thermal transport cross-section, and near zero 

correlation with the thermal prompt neutron fraction and all six delayed neutron fractions. Figure 

7-4 (d) shows that the delayed neutron fractions are near independent of all the other cross-section 

types, and their individual correlations across burnup are strongly varying. The implication is that 

one can treat the delayed neutron fractions are independent, but must account for their burnup 

dependence when doing transient analyses. These results provide great level of insight to the 

analyst to make additional simplifying assumptions for their particular application.    
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(a) Transport Cross-Section – Group 1  

 
(b) Absorption Cross-Section – Group 2 

 
(c) Nu-Fission – Group 1 

 
(d) Delayed Neutron Fraction – Group 2 

Figure 7-4 Correlation coefficients among lattice parameters across burnup. 

7.1.4 Compressed CANDU few-group uncertainty space 

In practice, the size of the vector iσ , denote it by m, is very large because as it contains 

cross-sections at all conditions required for proper cross-section functionalization. This includes 

all burnup steps (in the order of several tens) to get the cross-section dependence on burnup, and 

all branch cases, evaluated at each burnup step (in the order of few tens per burnup step) to 

calculate cross-section corrections due to changing local conditions such as fuel temperature, and 

coolant temperature, and device cross-sections to calculate corrections resulting from insertion of 



 
 

134 

reactivity devices. The matrix FGC  will thus be extremely large if calculated directly using the 

expression in Eq. (7-1). Instead, we rely on an ROM approach, which constructs a compressed 

representation for the FGC  as follows: 

[ ]

( )( )

1 2 ... , ,
1, ( ) ( )

1

m N T m r r r
N

T
FG diag diag

N

σ σ σ σ× × ×∋ = = ∈ ∈

= =
−

X USV U S

C UΣ UΣ Σ S

  

  (7-2) 

This approach implies an initial SVD decomposition of the matrix containing the N 

realizations of the few-group cross-sections, denoted by σX , which determines the effective rank 

of the FGC  matrix. One can easily show that the U  matrix calculated from the decomposition of 

σX is the same as that obtained from the decomposition of FGC  matrix, and the singular values are 

related by simple scalar relationship as shown in Eq. (7-2). Thus, the FGC  matrix is never 

constructed, but represented in a compressed form with a compression factor of ( ) 21  /m r m+ . 

Typical values for m and r for CANDU reactor core models employing macroscopic depletion are 

in the order of 104, and 10, respectively, implying a compression factor of approximately 0.001. If 

microscopic depletion models are employed, m is expected to increase by a factor equal to the 

number of tracked isotopes. Earlier LWR-based work has however shown that r only slightly 

increases due to the significant inherent correlations between the tracked isotopes.  

The results of this ROM-based compression on the two- (2G), four- (4G) and eight-group 

(8G) lattice parameters uncertainties are shown in Figure 7-5, which shows the decline of the 

maximum errors resulting from the compression as a function of the first r singular vectors in the 

sense of equation below: 

2

1

r
T

i i i
i

u uσ ξ ε
=

− =∑C  

where ε  is a very small preset tolerance. This can be shown to be attributed to the sharp decline 

in the singular values of the matrix σC . 

The sharp decline of the errors indicate that one can significantly compress the uncertainty 

space, as described by the covariance matrix, while keeping a reasonable reconstruction accuracy. 

The implication is that the number of active DOFs required to propagate uncertainties downstream 

through core calculations is significantly reduced. In our context, an active DOF refers to one 
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column of the U  matrix, which determines how the few-group parameters are perturbed in a 

manner that respects their correlations. If r is sufficiently small, the implication is that there exist 

many directions in the few-group parameters uncertainty space which have very small uncertainty, 

and hence need not be sampled for downstream core-wide calculations.  

One can also plot the singular values of the covariance matrix, which show the same type of 

decline with the rank. Different from the maximum error plot in Figure 7-5, the singular values 

have a physical meaning: the standard deviation associated with each of the active DOFs. Figure 

7-6 shows a representative set of singular values graphs, plotted for different cross-section types. 

As noted, each cross-section type shows a different rate of decline, which can be used to provide 

insight into the relative sources of uncertainties for the various cross-sections. The covariance 

matrix for each parameter is generated based on all the samples of the corresponding parameter 

across burnup. Singular values in Figure 7-6 are normalized with the maximum singular value 

among all parameters, which is 7.0648 in this case belonging to the delayed neutron fraction 

covariance.  

Comparison of singular values among all parameters indicates that the delayed neutron 

fractions (Betas) have relatively large uncertainty comparing to other parameters, up-scattering to 

the fast group (MacroScatt1) and product of fission cross-section and number of neutrons per 

fission in thermal group also have larger uncertainties. The uncertainties in fission product yields 

are two to four orders of magnitude less than the Beta uncertainties, while other parameter 

uncertainties are one to two orders of magnitude lower than Beta uncertainties.  
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Figure 7-5 ROM-based maximum reconstruction errors of few-group parameter uncertainties. 
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Figure 7-6 Normalized singular values of few-group parameter uncertainties. 

7.1.5 CANDU branch and device uncertainties 

In regard to the branch and device calculations, the figures below show representative 

sampled lattice parameters’ values depicting the strong correlations with the base values. For 

example, the first subplot in Figure 7-7 shows the lattice k-eff values (measured as deviation from 

the reference unperturbed value) at a representative base case versus the k-eff value at the fuel 

temperature increase branch case (also measured as deviation from the reference branch case 

value). The base fuel temperature is 950 K, whereas the branch value is 1673 K. Results indicate 
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near correlation between these two conditions. Similar results are shown for representative lattice 

parameters in the other two subplots.  

For the device calculations, deviation of the lattice parameters from their reference values 

are scatter-plotted in Figure 7-8. The x-axis represents the variations in the lattice parameters at 

the base case at an intermediate burnup value without the inclusion of the device, whereas the y-

axis shows the variations at the same burnup when the device is inserted. Data points shown in 

both Figure 7-7 and Figure 7-8 are percentage discrepancies from the unperturbed calculation 

values. With NESTLE-C reading the incremental change in the parameters due to device insertion 

at a single intermediate burnup value, these results indicate that the device incremental values will 

have very small uncertainties due to the observed near perfect correlation of the lattice parameters 

at the two conditions, i.e., the base case and the case with device insertion.  

 

 

Figure 7-7 Correlations between few-group parameters of base and branch cases. 
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Figure 7-8 Correlations between base and device cross-sections. 

These results are employed to justify the use of a single active DOF to describe the 

correlations between the branch, devices, and base cross-sections. The implication of this 

assumption for the NESTLE-C library is as follows. First with regard to the branch cross-sections, 

NESTLE-C does not employ the raw branch cross-sections directly. Instead it relies on  

preprocessing in which the cross-sections (base and branch) are fitted to polynomials, and the 

resulting polynomial coefficients are stored in NESTLE-C input cross-section library. One can 

then calculate the uncertainties in the polynomial coefficients based on the uncertainties in the raw 

cross-sections. Simple algebra shows that if the raw cross-sections for the branch cases are 

perfectly correlated with the base cross-sections, then the uncertainty in all higher order 

polynomial coefficients (except the concept term) will be zero. With regard to the device cross-

sections, a similar situation is encountered, where NESTLE-C reads the differences between the 

device cross-sections and the base cross-sections (without the devices inserted). Again, if the two 

are perfectly correlated, the difference will have zero uncertainty. The implication is that for 

NESTLE-C one needs to perturb only the zero-order (constant) term in the polynomial fit and 

leave the higher order coefficients as well as the device incremental cross-sections unperturbed. 

This was considered an appropriate approximation during phase-one of this project, given that 

other terms are found to have more pronounced impact on the propagated uncertainties such as 

group structure, and resonance treatment, etc. 
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7.2 ROM-based Uncertainty Propagation Results on CANDU Core Simulation 

7.2.1 CANDU-6 core model setup 

The NESTLE-C core model requires a standard set of few-group parameters filed in a cross-

section data input script (referred to as cross-section library in this context), as listed in Table 7-2, 

to calculate core-wide behavior.  

The few-group parameter names and their aliases in the context are provided in first and 

second columns of Table 7-2 respectively. Parameters in fuel region are burnup dependent, while 

in reflector region they are assumed burnup-independent. 

The third column (number of parameters per burnup step) indicates whether the few-group 

parameter is energy-dependent, where ‘NumFG’ represents number of energy groups in the few-

group structure. The fission yield data and delayed neutron fractions are not energy-dependent. 

Most of the few-group parameters are functionalized in terms of a wide range of core 

conditions, e.g., fuel burnup, fuel temperature, coolant and moderator density, etc., in order to 

capture impact of local neutronic/thermal-hydraulic feedback. This dependence is indicated in the 

fourth column (core conditions). 

Moreover, to capture the impact of reactivity device insertions, some of the cross-sections 

are modified by incremental amounts, which are denoted in the fifth column (device increments). 

The last column indicates whether the respective parameter is included in this framework. 

The buckling uncertainty is supposed to be zero in the uncertainty study, and the prompt fission 

spectrum shows no uncertainty in two-group structure from the lattice calculation, and trivial 

uncertainty in four- and eight-group structure. Thus, they are not included in this uncertainty study. 
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Table 7-2 List of all types of few-group parameters required in NESTLE-C. 

Parameter Type Alias #/ Burnup 
Step 

Core 
Conditions 

Device 
Increments 

Included 
in UQ 
Study 

Transport Cross-Section Tr NumFG Yes Yes Yes 
Absorption  Ab NumFG Yes Yes Yes 

Nu*Fission  NF or 
NuFiss NumFG Yes Yes Yes 

Kappa*Fission KF or 
KappaFiss NumFG Yes No Yes 

Nu Nu NumFG Yes No Yes 

Scattering Scatt NumFG* 
(NumFG-1) Yes Yes Yes 

Buckling N/A NumFG No No No 
Prompt Fission Spectrum N/A NumFG No No No 
Discontinuity Factors ADF NumFG No Yes Yes 
Neutron Velocity nVel NumFG No No Yes 
Sm-149 Absorption MicroAbSm NumFG Yes No Yes 
Xe-135 Absorption MicroAbXe NumFG Yes No Yes 
I-135 Fission Yield FissYieldI 1 No No Yes 
Xe-135 Fission Yield FissYieldXe 1 No No Yes 
Pm-149 Fission Yield FissYieldPm 1 No No Yes 
Delayed Fractions (beta) Beta 6 No No Yes 

 

The CANDU core contains 380 horizontal channels, each loaded with 12 fuel bundles. The 

CANDU core model is analyzed using the NESTLE-C core simulator. The core specifications are 

given in Table 7-3. For reference, the channel burnup and power distribution calculated by 

NESTLE-C are shown in Figure 7-9 and Figure 7-10 respectively. 
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Table 7-3 Parameters of core configurations. 

Parameter Dimension 

Lattice pitch (square) 28.575 cm 

Length of bundle 49.53 cm 

Core length 594.36 cm 

Core radius 379.7 cm 

Channel count 380 

Fuel bundles per channel 12 

Fuel type Natural Uranium 

Fuel bundle type 37-element 

Heavy Water Moderator Purity 99.97 wt% D2O 

Heavy Water Coolant Purity 99.20 wt% D2O  

# LZCs  14 

# SORs  28 

# ARs 21 

# MCA  0 
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Figure 7-9 Radial core channel burnup distribution. 
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Figure 7-10 Radial core channel power distribution. 

The analyzed NESTLE-C core models include three steady-state CANDU-6 models and one 

LOCA (loss-of-coolant accident) transient model, whose specifications are described in Figure 

7-11 and Table 7-4. One of the steady-state models represents the reference core model at full 

power. Another steady-state model has all its coolant voided to facilitate the calculation of the 

coolant-voiding reactivity (CVR) coefficients. This is done by changing the coolant density to 10-

4 g/cm3. The third steady-state model is referred to as a toy model as it employs many simplifying 

assumptions, e.g., constant fuel, coolant, and moderator temperature throughout the core, all fuel 

is fresh, no thermal-hydraulic feedback, and no reactivity device insertion.  

For reference, the core effective multiplication factor, k-eff, for each core model and cross-

section library combination is listed in Table 7-4. The differences in k-eff are shown in Table 7-4, 
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∆ k-eff, in units of milli-k (mk), are the k-eff values deviating from the k-eff of the corresponding 

reference core model, except that the k-eff of the reference models are compared to the HELIOS-

2G reference model. For the coolant-voided cases, the CVR values are calculated with the Eq. (7-

3), and the results are also presented in Table 7-4. The CVR values are around 16 [mk] for all 

reference cross-section libraries, while the HELIOS-based CVR is slightly higher than CVRs of 

SERPENT-base libraries. 

, ,

, ,

1000 [ ]eff cvr eff ref
cvr ref

eff cvr eff ref

k k
mk

k k
ρ ρ ρ

−
∆ = − = ×     (7-3) 

Table 7-4 Reference k-eff and comparison in various core models. 

Core Model Core k-eff CVR ( ρ∆ ) [mk] 

H2G_ref 0.9995891  

S2G_ref 0.9706204  

S4G_ref 0.9712535  

H2G_cvr 1.0161754 16.33 

S2G_cvr 0.9858744 15.94 

S4G_cvr 0.9863787 15.79 

H2G_toy 1.000664  

S2G_toy 0.9677108  

NEWT_2G_ref 0.9821152  

NEWT_4G_ref 0.982553  

  

Representative results for the steady-state cases using two-group models are shown in 

Figure 7-11 (a) (b) and (c) representing, respectively, the radial channel power distribution for the 

reference, coolant voided and toy core models, all evaluated using the HELIOS-based reference 

cross-sections. Similar results are obtained using the SERPENT and NEWT-based libraries as 

shown in Figure 7-12 comparing the core power distribution in four-group energy structure. 

Finally, representative uncertainty results for the channel power distribution are shown in Figure 

7-13 for the reference steady-state core model.  
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(a) Reference Core Model 

 
(b) Coolant Voided Core Model 

 
(c) Toy Core Model 

Figure 7-11 Channel power distributions in three steady-state core models w/ HELIOS-based 
cross-section library. 
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(a) Four-Group SERPENT-based 

 
(b) Four-Group NEWT-based 

Figure 7-12 Reference channel power distribution w/ SERPENT- or NEWT-based cross-section 
library in four-group energy structure. 

 

 
 

(a) HELIOS-based (b) SERPENT-based 
Figure 7-13 Reference channel power uncertainty distribution w/ HELIOS-based or SERPENT-

based cross-section library in two-group energy structure. 
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7.2.2 ROM-based few-group uncertainty propagation results on CANDU core responses 

The next set of figures depict the uncertainties for both the core k-effective and the mesh-

based power distribution, calculated using the deterministic approach. The goal is to study the 

impact of r on the propagated uncertainties. Figure 7-14 depicts the uncertainty in k-effective as a 

function of the number of active DOFs as done before with the results indicating that only 10 active 

DOFs are required to accurately calculate the k-effective uncertainty. Similar trend is shown in 

Figure 7-15 for the mesh-based power, shown for three representative mesh nodes throughout the 

core, in the center of the core (a), on the periphery of the core (b) and a random selected node (c). 

The results indicate that at most 20 active DOFs are required. 

 

Figure 7-14 ROM-based core k-eff uncertainty.
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(a) Power Uncertainty in the Center (b) Power Uncertainty on the Periphery 

 
(c) Power Uncertainty at a Random Position 

Figure 7-15 ROM-based core channel power uncertainty at certain channel. 

Next, the results of the stochastic uncertainty propagation approach are shown. Plots in 

Figure 7-16 are histograms of effk∆  and difference of power distribution between the mean values 

of random samples and the reference values, denoting as meanP∆ . In this CANDU-6 core model, 

the number of mesh nodes forming the power distribution is in order of 20,000. The effk∆  values 
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from N=1000 random samples follow a Gaussian distribution, with mean value almost zero and 

the standard deviation 7.3 milli-k as shown in Figure 7-15 (a). The k-eff results from the sampling 

approach is consistent with the deterministic approach (ROM-based), where the uncertainty of k-

eff saturates at 7.2 milli-k due to the first ten singular vectors of lattice parameters uncertainties. 

Note that the mean values of the deterministic executions and the reference values are assumed the 

same due to the linearity assumption. Table 7-5 summarizes some statistics on the k-effective and 

mesh-based power distribution mean and reference values. The meanP∆  from the random samples 

slightly deviates from the Gaussian distribution, the mean value is close to zero and the standard 

deviation is 0.153% according to Figure 7-15 (b) and Table 7-5. Table 7-5 also lists the average of 

standard deviation of each nodal power distribution, where the power average standard deviation 

is 0.491% with the deterministic approach and is 0.486% with stochastic approach. The standard 

deviation of the difference between mean and reference power distribution is about 1/3 of the 

average standard deviation for all the mesh-based power values.  
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(a) Histogram of k-eff deviation from reference k-eff 

 
(b) Histogram of Difference between Mean and Reference Power Distribution 

Figure 7-16 Histograms of core attributes via stochastic approach. 
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Table 7-5 Deterministic- vs. stochastic-based uncertainty. 

 Deterministic Stochastic 
Reference k-eff 1.0050826 1.0050826 
Mean - k-eff 1.0050826 1.0054366 
Standard deviation - k-eff 7.2 mk 7.3 mk 
Standard deviation of average – difference between 
mean and reference power distribution 0 0.1531% 

Average of standard deviation – power distribution 0.491% 0.486% 
   

7.2.3 sUncertainties propagation results in Core CVR 

This section calculates the core CVR uncertainties resulting from the few-group parameter 

uncertainty and compares its value using both the deterministic and stochastic UQ approaches. 

This can be achieved by running both the “ref” and “cvr” models N times, where N represents the 

number of samples. The core CVR calculation follows the expression in Eq. (7-3), which is given 

by for the ith run as follows: 

, , , ,
, ,

, , , ,

1000 [ ]eff cvr i eff ref i
i cvr i ref i

eff cvr i eff ref i

k k
mk

k k
ρ ρ ρ

−
∆ = − = ×  

For the deterministic approach N is selected to be the number of active DOFs and the 

uncertainty is aggregated whereas in the stochastic approach N represents the number of random 

samples employed, and the uncertainty is represented by the standard deviation calculated over the 

samples. Figure 7-17 shows the results of the deterministic approach using different number of 

active DOFs on the x-axis. These results indicate that approximately 50 active DOFs is sufficient 

to calculate the uncertainty and this number is insensitive to the group structure or the reference 

NESTLE-C library employed. These results are compared to those obtained using the stochastic 

approach in Table 7-6. As shown earlier with the k-eff results, the CVR results further confirm the 

consistency between the deterministic- and stochastic-based uncertainties. 
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Figure 7-17 ROM-based core CVR uncertainty. 

Table 7-6 Core CVR uncertainties via deterministic vs. via stochastic approaches. 

Core CVR ( ρ∆ ) [mk] Deterministic Stochastic 

Reference Cross-section Library Mean Value Uncertainty Mean Value Uncertainty 

HELIOS_2G 16.33 0.50 16.32 0.54 

SERPENT_2G 15.94 0.50 15.96 0.54 

SERPENT_4G 15.79 0.61 15.76 0.59 

     

7.2.4 Uncertainty Propagation Results in LOCA Core Model 

This section presents the uncertainty analysis results for the transient LOCA core model. 

The total number of NESTLE-C samples employed is 1000. The reference NESTLE-C cross-

section library employed is HELIOS_2G. Figure 7-18 shows two of the core attributes versus time 

as calculated by the reference transient model. Figure 7-19 plots the percentage discrepancies 

between each sample of the stochastic approach and the reference execution (golden plots), as well 

as the resulting core power level uncertainties along time (shown as light blue envelope around 
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reference solution). The few-group parameter uncertainties result in a maximum core power 

uncertainty of 15% around 0.9 [sec] when the core power reaches a maximum. Figure 7-20 

contains the histograms of core relative power from the 1000 samples at four representative time 

steps during the transient. It is noted that the few-group parameter uncertainties propagated follow 

a normal distribution, however, the resulting core relative power distributions are not always 

normal. Shifting from normal distribution around the peak location indicates nonlinearity in the 

model in the transient time period. 

 

(a) Core Relative Power 

 

(b) Core Reactivity 

Figure 7-18 Reference core attributes in LOCA core model. 
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Figure 7-19 Uncertainty of transient core power. 
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Figure 7-20 Uncertainties of core power at selected time steps. 
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7.3 Conclusions 

This chapter reports the few-group parameter uncertainties propagated from multi-group 

covariance, as well as the uncertainty analysis results through the core simulations based on the 

ROM-based compression of the few-group uncertainties. Both deterministic method and stochastic 

method are applied in core uncertainty propagation based on the compressed cross-section 

uncertainty libraries. Results are based on various few-group structures and core models in both 

steady-state and transient scenarios. The resulted core uncertainties are, in general, consistent with 

different reference cross-section libraries, energy structures and uncertainty analysis methods. The 

nuclear data uncertainty (parameter uncertainties) results in 7 to 8 [mk] (700-800 [pcm]) 

uncertainty in the core multiplication factor and 1% channel power uncertainty in the steady-state 

core simulations, and 15% maximum core relative power uncertainty in LOCA core simulations 

based on the compressed uncertainty libraries. 

However, discrepancies and nonlinearity exist in some cases, such as reference power 

uncertainty shown in Figure 7-13 depicting different distributions, and the mean value of nodal 

power via stochastic UQ method slightly different from the reference nodal power in deterministic 

UQ method, indicating the necessity to further investigate the impact on uncertainty analysis with 

different modeling assumptions and approximations (modeling uncertainties). 
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 MODELING ERROR IN CANDU CORE UNCERTAINTY 
PROPAGATION 

A comprehensive uncertainty analysis should characterize all sources of uncertainties in a 

computationally-feasible and scientifically-defendable manner. This dissertation employs a well-

established reduced order modeling (ROM) based uncertainty quantification methodology to 

propagate uncertainties throughout neutronic calculations. ROM relies on recent advances in 

randomized data mining techniques applied to large data streams. In our proposed implementation, 

the nuclear data uncertainties are first propagated from multi-group level through lattice physics 

calculation to generate few-group parameters uncertainties, described using a vector of mean 

values and a covariance matrix. Employing an ROM-based compression of the covariance matrix, 

the few-group uncertainties are then propagated through downstream core simulation in a 

computationally efficient manner. This straightforward approach, albeit efficient as compared to 

brute force forward and/or adjoint-based methods, often employs a number of assumptions that 

have been unquestioned in the literature of neutronic uncertainty analysis. This dissertation argues 

that these assumptions could introduce another source of uncertainty referred to as modeling 

uncertainties, whose magnitude need to be quantified in tandem with nuclear data uncertainties.  

This chapter explores the interactions between these two uncertainty sources in order to 

assess whether modeling uncertainties have an impact on parameter uncertainties. To explore this 

endeavor, the impact of a number of modeling assumptions on core attributes uncertainties is 

quantified. The study employs a CANDU reactor model, with SERPENT and NEWT as lattice 

physics solvers and NESTLE-C as core simulator. The modeling assumptions investigated include 

those related with the uncertainty propagation method employed, e.g., deterministic vs. stochastic, 

the few-group energy structure employed to represent the cross-sections, the resonance treatment 

in lattice physics calculation, the reference values for the cross-section, and the number of samples 

employed to render ROM compression. Results indicate that some of the modeling assumptions 

could have a non-negligible impact on the core responses propagated uncertainties, highlighting 

the need for a more comprehensive approach to combine parameter and modeling uncertainties. 

The numerical study is based on the simulation and uncertainty propagation of a CANDU 

reactor model, which develops two steps integrated in an automated manner for the NESTLE-C 

[1] simulator with uncertainties propagated through the SCALE’s NEWT [2] code for lattice 
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physics calculations. The first step is to generate an uncertainty library for all neutronic data that 

are input to NESTLE-C, automating the processing and generation of NESTLE-C uncertainty 

library. The second step is to evaluate the impact of modeling uncertainties during the process of 

uncertainty propagation through the core simulation. With regard to the first step, this will be 

accomplished using the SERPENT [3] and SCALE’s NEWT codes for the calculation of the few-

group parameters, NESTLE-C for core-wide calculations, and SCALE’s SAMPLER [4] for the 

propagation of multi-group cross-section uncertainties using NEWT. The SERPENT code is used 

to generate the reference tow-group and four-group libraries, and to verify the reference NEWT 

models. This is because the NEWT is a deterministic neutron transport model which employs a 

number of standard modeling assumptions, e.g., group structure, resonance treatment, etc., while 

SERPENT is based on a continuous cross-section Monte Carlo transport model which is 

considered a gold standard for neutron transport calculations. By employing both models, the 

impact of modeling uncertainties can be initially assessed on the propagated cross-sections 

uncertainties. 

8.1 Modeling Assumptions Setup 

All reference NESTLE-C libraries are based on either the HELIOS or SERPENT-based 

models. For the two-group case, both HELIOS and SEPRENT-based libraries are available. For 

four and eight group models, only SERPENT-based NESTLE-C libraries are available. The 

NESTLE-C core models and the reference cross-section libraries applied in this study are listed in 

Table 8-1. All the core simulations in this section are executed with NESTLE-C version 3.0.0, 

made available through Canadian Nuclear Laboratories (CNL).  
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Table 8-1 Core models and reference cross-section libraries with abbreviations in the thesis 
context. 

Core Model Alias Reference NESTLE-C Library Abbreviation 

Reference model ref 

Two-group HELIOS H2G_ref 

Two-group SERPENT S2G_ref 

Four-group SERPENT S4G_ref 

Coolant voided model cvr 

Two-group HELIOS H2G_cvr 

Two-group SERPENT S2G_cvr 

Four-group SERPENT S4G_cvr 

Toy model toy 
Two-group HELIOS H2G_toy 

Two-group SERPENT S2G_toy 

LOCA model loca Two-group HELIOS H2G_loca 

 

For reference, the core effective multiplication factor, k-eff, for each core model and cross-

section library combination is listed in Table 7-4. The differences in k-eff are shown in Table 7-4, 

effk∆ , in units of milli-k (mk), are the k-eff values deviating from the k-eff of the corresponding 

reference core model, except that the k-eff of the reference models are compared to the HELIOS-

2G reference model. For the coolant-voided cases, the core coolant void reactivity (CVR) values 

are calculated with the Equation (3), and the results are also presented in Table 7-4. The CVR 

values are around 16 [mk] for all reference cross-section libraries, while the HELIOS-based CVR 

is slightly higher than CVRs of SERPENT-base libraries. 

8.2  Modeling Uncertainties in CANDU Lattice Modeling 

The CANDU-6 lattice contains 37 fuel elements composed of natural uranium [26] with 

heavy water serving as both coolant and moderator. The heavy water inside the pressure tubes 

serves as the coolant at a temperature of 563 K, and the heavy water outside the pressure tubes acts 

as moderator at a temperature of 341 K.  The CANDU-6 lattice is modeled using SERPENT, 

KENO-CE, and NEWT codes to provide initial estimates of the modeling uncertainties, 

representing the discrepancies in the estimated few-group parameters resulting from different 

modeling assumptions/approximations. SERPENT is a Monte Carlo Radiation Transport code 
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with depletion capabilities; it uses the ENDF cross-sections in ACE format, and has a capability 

to collapse the cross-sections into user-specified energy-group format. 

As shown in Figure 8-1, comparison of k-eff between SERPENT and KENO-CE, both based 

on the same solution strategy and same cross-sections, is within 1 [mk], which is considered 

reasonable for most practical reactor calculations. Regarding NEWT, it appears to slightly under-

predict k-eff as compared to SERPENT, with the discrepancies being acceptable in magnitude. 

These initial results indicate that the models all provide reasonable approximation of neutronic 

behavior at the lattice level.  

 

Figure 8-1 Discrapencies in CANDU bundle k-eff generated by different lattice calculation 
codes. 

Figure 8-2 plots a number of representative few-group parameters’ burnup-discrepancies as 

calculated by SERPENT and NEWT. The nomenclature is as described in Table 7-2 with the 

subscripts indicating the group number. These results show a wide range of discrepancies, with 

the fast absorption being the most different, followed by the fast transport and fast fission times 

prompt neutron fraction. The thermal absorption and fission tend to have the same bias, and kappa 

times sigma fission is four times smaller than sigma fission, implying that kappa values must have 

similar but opposite discrepancies to render much smaller errors for the product of kappa and 
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fission cross-section. This was verified by detailed analysis of the kappa and fission cross-section 

values. Finally, the delayed neutron fraction tends to have the smallest discrepancies as would be 

expected being the most important quantity for k-eff.  

 

 

Figure 8-2 SERPENT vs. NEWT few-group cross-section modeling discrepancies. 
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Next, in support of assessing the impact of modeling errors on the propagated uncertainties, 

Figure 8-3 compares the standard deviations for a representative set of few-group parameters 

versus the discrepancies (also referred to as modeling errors) in their reference values as calculated 

by two different codes. Specifically, the modeling errors in Figure 8-3 are based on the differences 

of two-group parameters from SERPENT or NEWT calculations comparing to HELIOS data as 

reference. Note that both modeling errors and the cross-section standard deviations are unit-less as 

they are both normalized using the mean values of the few-group cross-sections, thereby providing 

a convenient way for their comparison. Results indicate that the modeling errors can be much 

bigger in magnitude than the cross-section uncertainties.  
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(a) Absorption Cross-Section 

 
(b) Nu-Fission Cross-Section 

Figure 8-3 Burnup-dependent modeling and cross-Section uncertainties. 
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8.3 Modeling Assumptions Impact during Parameter Uncertainty Propagation 

This section describes the details of the propagation of the multi-group cross-sections 

through the NEWT code to evaluate the few-group parameter uncertainties for NESTLE-C 

downstream core calculations with particular emphasis on the various assumptions made and how 

they impact the propagated uncertainties. First, the performance of both the deterministic and 

stochastic approaches for UQ are compared. Next, the UQ results are assessed against the impact 

of different modeling approximations. This study is done to provide an initial assessment of the 

impact of modeling errors for potentially expanding the scope of the study for future work. In 

particular, the assessment will explore the impact of the few-group structure, the resonance 

treatment, the number of uncertainty source basis and the impact of the reference values for the 

few-group parameters. 

Regarding the first source of modeling error, the CANDU-6 bundle model is built with 

NEWT code employing two different treatments for resonance self-shielding calculation, denoted 

by MULTIREGION and LATTICECELL unit cell definitions, referred to hereinafter as ‘_Mul’ 

and ‘_Lat’, respectively. As another source of modeling error, the few-group parameters are 

generated in both two- and four-group structures. Also, the impact of the number of samples used 

to generate the covariance matrix is analyzed using a small and moderate number of samples, e.g., 

50 and 300, respectively. Different combinations of these assumptions are employed to analyze 

the singular and combined effects of the various sources of modeling errors considered as shown 

in Table 8-2.  

Table 8-2 Few-group uncertainties generation in group structure and number of samples through 
NEWT calculation. 

Resonance treatment MULTIREGION LATTICECELL 

Group structure 2G 4G 2G 4G 

# of samples completed 300 50 50 50 

 

Figure 8-4 (a) and (b) show the power distribution discrepancy between different reference 

values of few-group parameters within the same group structure, while (c) and (d) show the power 

distribution discrepancy between using two-group structure data and using four-group structure 

data. 
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(a) NEWT_2G vs. SERPENT_2G 

 

 
(b) NEWT_4G vs. SERPENT_4G 

 
(c) NEWT_2G vs. NEWT_4G 

 
(d) SERPENT_2G vs. SERPENT_4G 

Figure 8-4 Percentage discrepancy of channel power between different reference cross-section 
libraries. 
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8.3.1 Assessing impact of uncertainty propagation method 

This section discusses the impact of the uncertainty propagation method -- including 

deterministic vs. stochastic, and the associated number of samples used to generate the covariance 

matrix -- on the core responses uncertainty. To achieve that, the few-group parameter uncertainties 

are propagated through NESTLE-C core models using both deterministic and stochastic 

approaches. With regard to the deterministic approach, the conventional sandwich-based equation 

is used, where the core response to the uncertainties is assumed to be linear. This can be done by 

executing the code r times, with each time corresponding to a perturbation of the cross-sections 

along the rth singular vector of the few-group covariance matrix. The resulting response variations 

are compounded together using the sandwich equation formula as shown below:  

( ) ( ) 2
0 02

1

[1 ]1
1

r
i

y i
i

f u f
s

N
σ β σ

σ
β=

+ − 
=  −  

∑     (8-1) 

This representation assumes that the singular vectors are in relative units, i.e., consistent with 

the covariance matrix, also generated in relative units. While in the stochastic approach, N=1000 

randomly-generated NESTLE-C libraries are first constructed, in the same way SAMPLER 

generates its random libraries, where each library is a perturbation off of the reference library with 

the perturbation selected to be consistent with the few-group covariance matrix. The core attribute 

uncertainties are represented by the standard deviations of the random samples execution results. 

These two approaches tend to give similar results if the model responds linearly to the 

perturbations. Comparison of the core attribute uncertainties calculated by the stochastic and 

deterministic approaches, as done in Table 8-3 and Figure 8-5, serves as another measure of the 

validity of the linearity assumption.  

Table 8-3 records the mean values and uncertainties of resulting core k-eff with both 

deterministic and stochatic approaches. Note that the mean value with the deterministic method is 

the reference value, while with the stochastic method it is the sample mean. Results in Table 8-3 

indicate that the core k-eff uncertainties are very close -- within 0.3 [mk] -- as compared to the 

actual uncertainty and the reference value for k-eff for all cases analyzed. In Figure 8-5 scatter-

plots are shown of the channel power uncertainties as calculated by both the deterministic and 

stochastic approaches using both the HELIOS- and SERPENT-based cross-section data libraries 

in two-group structure for the three steady-state models analyzed. Each point on these scatter plots 
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represents the uncertainty of a given channel power as calculated by both the deterministic and 

stochastic approaches. Ideally, all points should lie on a 45-degree line if the two approaches 

produce exactly the same results. Results indicate that the data generally show this trend with small 

deviations, possible at high and low levels of uncertainties.  The toy model shows the least amount 

of deviations from the 45-degree line indicating that local conditions have an impact, albeit small 

in the cases analyzed, on the propagated uncertainties.  
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Table 8-3 Core k-eff uncertainty quantification through deterministic vs. stochastic approach. 

 k-eff Deterministic Stochastic 

H2G_50U_Mul 
Mean value 0.99959 0.99976 

Uncertainty [mk] 8.7 8.8 

H2G_300U_Mul 
Mean value 0.99959 0.99941 

Uncertainty [mk] 7.4 7.5 

S2G_50U_Mul 
Mean value 0.97062 0.97131 

Uncertainty [mk] 8.4 8.1 

S2G_300U_Mul 
Mean value 0.97062 0.97063 

Uncertainty [mk] 7.2 7.3 

S4G_50U_Mul 
Mean value 0.97125 0.97104 

Uncertainty [mk] 8.4 8.4 

H2G_ref_Lat 
Mean value 0.99959 0.99975 

Uncertainty [mk] 8.9 8.9 

S2G_ref_Lat 
Mean value 0.97062 0.97053 

Uncertainty [mk] 8.6 8.5 

S4G_ref_Lat 
Mean value 0.97125 0.97183 

Uncertainty [mk] 8.4 8.3 

H2G_cvr_Lat 
Mean value 1.01618 1.01632 

Uncertainty [mk] 8.7 8.7 

S2G_cvr_Lat 
Mean value 0.98587 0.98579 

Uncertainty [mk] 8.5 8.3 

S4G_cvr_Lat 
Mean value 0.98638 0.98695 

Uncertainty [mk] 8.2 8.1 

H2G_toy_Lat 
Mean value 1.00066 1.00020 

Uncertainty [mk] 9.2 8.9 

S2G_toy_Lat 
Mean value 0.96771 0.96759 

Uncertainty [mk] 8.9 8.7 
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(a) HELIOS_2G_ref 

 
(b) SERPENT_2G_ref 

 
(c) HELIOS_2G_cvr 

 
(d) SERPENT_2G_cvr 

 
(e) HELIOS_2G_toy 

 
(f) SERPENT_2G_toy 

Figure 8-5 Scatter plot of channel power uncertainty quantified via deterministic vs. stochastic 
approach. 
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8.3.2 Assessing impact of modeling approximations 

Next, we compare the impact of using a different number of SAMPLER runs to approximate 

the few-group covariance matrix. Specifically, two sets of samples are employed, as shown in 

Table 8-2. In one resonance treatment, 300 samples are generated in two-group structure and 50 

samples are generated in four-group structure, denoted as “300U” and “50U” respectively. Note 

that when 300 samples are used, the covariance matrix will have up to 300 singular values, 

however for the 50 samples case, only the first 50 singular values will be non-zero. This study 

allows one to assess whether the number of samples has a strong impact on estimating the most 

dominant singular values, captured by ROM techniques. The NESTLE-C libraries are then 

generated based on these two sets of samples and around different reference values for the few-

group parameters. Figure 8-6 (a) and (b) show some of these typical results for core k-eff 

uncertainty for the two noted resonance treatment methodology, i.e., Mul and Lat, respectively. 

Each figure shows the results of investigation of a number of core models with a different number 

of group structure and different number of samples, and different reference libraries. Considering 

the huge number of combinations that one can envision, only representative set of results are 

displayed.  

Both figures show that, regardless of the number of samples, or the choice of the reference 

library or the resonance treatment method, one needs no more than 25 dominant directions to 

capture the uncertainty space. Results imply that number of vectors used to represent the few-

group uncertainty space provides the largest impact on the core k-eff uncertainty, in order of 2 [mk] 

based on comparison between HELIOS_2G_50U (yellow markers) and HELIOS_2G_300U (pink 

markers) or between SERPENT_2G_50U (light blue) and SERPENT_2G_300U (green). The 

group structure shows no impact on core k-eff uncertainty based on comparison of 

SERPENT_2G_50U (light blue) and SERPENT_4G_50U (dark blue), but the number of active 

DOFs differs in the two group structures. Moreover, using different reference cross-section 

libraries generates about 0.2 [mk] difference in core k-eff uncertainty comparing the 

HELIOS_2G_50U and SERPENT_2G_50U results. 



 
 

172 

 
(a) Reference Libraries and # of Uncertainty 

Basis Comparison 

 
(b) Reference Libraries and Core Models 

Comparison 
Figure 8-6 Comparison of core k-eff uncertainty under different modeling assumptions and 

approximations, including impact of few-group structures, number of basis from ROM-based 
compression, core models, and reference cross-section libraries. 

Figure 8-7 compares the channel power uncertainties using two different group structures 

for two different core conditions. Each point represents the uncertainty for a given channel power 

calculated using two-group and four-group covariance matrices The reference few-group 

parameter values are calculated by SERPENT. Results indicate that the group structure has some 

influence on the calculated uncertainties, which is more pronounced for the lower channel power. 

The impact is less -- as measured in terms of the total uncertainty -- to channels with higher power.  
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(a) Reference Core Model 

 
(b) Coolant Voided Core Model 

Figure 8-7 Scatter plot of channel power uncertainty based on two-group vs. four-group few-
group energy structures. 

In Figure 8-8 the power uncertainties are compared in a similar manner to the previous figure, 

but now to assess the impact of modeling the resonances, with the x-axis representing the Mul 

treatment and the y-axis the Lat treatment, defined in Table 8-3, and with two different references 

values for the cross-sections as shown in subplots (a) and (b). Results indicate that the impact of 

modeling errors is similar in magnitude to the impact of group structure, and the reference values 

for the cross-section appear to have less impact on the propagated uncertainties.  

 
(a) HELIOS_2G-based 

 
(b) SERPENT_2G-based 

Figure 8-8 Scatter plot of channel power uncertainty based on LATTICECELL vs. 
MULTIREGION resonance treatment. 
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Next, Figure 8-9 compares the uncertainties as generated based on two different number of 

SAMPLER runs, specifically, 50 and 300 runs. The core model used here is the reference core 

model, and subplot (a) and (b) compare the uncertainties using both HELIOS and SERPENT 

libraries in two-group format.  

 
(a) HELIOS_2G-based 

 
(b) SERPENT_2G-based 

Figure 8-9 Scatter plot of channel power uncertainty based 300 vs. 50 few-group uncertainty 
source basis. 

The results indicate that the use of 50 samples slightly under-predicts the uncertainties. 

However, the trend observed is still very close to the 45-degree line, indicating that one can get a 

fairly reasonable estimate of uncertainties with relatively small number of samples which is useful 

for scoping studies. 

8.4 Modeling Uncertainties Interaction with Parameter Uncertainties 

To study the impact of the ROM-based compression on the propagated uncertainties, Figure 

8-10 (a) shows the individual k-eff variations resulting from one-at-a-time perturbations along the 

singular vectors, representing the differences in the curly bracket in Eq. (8-1) with the arbitrary 

constant β=1. For three different cases, wherein each case, the reference NESTLE cross-sections, 

denoted as ‘RefXS’, are selected as follows:  
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0 1 NEWT SERPENT
NESTLE

SERPENT

σ σσ σ
σ

 −
= + 

 
, 0 NEWTσ σ= , 0 SERPENTσ σ= . 

In the first case, the reference NESTLE cross-section (generated using HELIOS [5]) are 

perturbed by the discrepancies found between NEWT and SERPENT, which is denoted as 

‘ModErr’ in the figure subtitles. In the second and third cases, respectively, NEWT and SERPENT 

cross-sections are used directly as the reference cross-sections for NESTLE model. Regarding 

cross-section uncertainties, these figures clearly show that one only needs no more than ten 

singular vectors to propagate the few-group uncertainties (recall that the singular vectors ordering 

follows the singular value spectrum according to Eq. (5-21).  

Regarding Figure 8-10 (b)-(d), they are designed to investigate the impact of cross-section 

modeling errors. Each case is generated with different reference cross-section. Results indicate 

two things. First, the modeling errors do not impact the number of required singular vectors, and 

the propagated uncertainty show few percent discrepancies due to the modeling errors. Note that 

in this experiment, we expect the reference k-eff to change due to a change in the reference cross-

sections, however if the linearity assumption is valid, the propagated uncertainties should be 

similar.  

Another important result of Figure 8-10 (a) is that most of the singular vectors have strong 

impact on k-eff, i.e., k-eff is sensitive to variations along the singular vectors; however only the 

first ten singular vectors are shown to contribute to the propagated k-eff uncertainty. This is 

because the singular values of the few-group cross-section drop very quickly with the singular 

value index. The implication is that singular vectors beyond the tenth vector have very small 

uncertainties and hence they cannot impact core responses’ uncertainties, even if they have strong 

sensitivities. This situation is interesting when considering modeling errors, because it is not clear 

how much correlation exists between modeling errors and the singular vectors of the cross-sections 

covariance matrix. To explore this correlation, one can project the vector of the modeling errors, 

representing the differences between two different codes, onto the singular vectors of the 

covariance matrix.  
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(a) RefXS = NESLTE + ModErr 

 
(b) RefXS = Serpent 

 
(c) RefXS = NESTLE + ModErr 

 
(d) RefXS = NEWT 

Figure 8-10 ROM-based core k-eff uncertainty with selected reference cross-section libraries. 

The procedure may be described as follows:  

- Let the modeling discrepancies, say between NEWT and SERPENT, be described by a 

vector ( )m NEWT SERPENT SERPENTσ σ σ σ∆ = − . The division is to ensure all errors are in 

relative units as done with the cross-sections covariance matrix.  

- Project this vector along the first r singular vectors of the covariance matrix, such that the 

ith component of mσ∆  along the iu   vector is given by: ( )T
i mu σ∆ .  

- Aggregate the first j components of mσ∆  in a vector ( )
1

j
j T

m i m
i

uσ σ
=

∆ = ∆∑ .  
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- Plot the norms of the vectors j
mσ∆  and j

m mσ σ∆ − ∆  as functions of j in Figure 8-11.  

Figure 8-11 shows that the modeling error vector can be described using the singular vectors 

of the covariance matrix. Interesting though, one needs more than ten vectors to fully describe it. 

This implies that some of the modeling error components are collinear with cross-section 

uncertainties, i.e., the first ten components, and the remaining components are orthogonal to the 

cross-section uncertainties, i.e., independent. The contributions of each singular vector to the total 

propagated uncertainty, it is instructive to create a similar graph for the modeling errors 

components. This is done in Figure 8-12, which shows the change in core k-eff due to the first j 

components of the vector of the modeling errors. This can be achieved by running the NESTLE-

C model with the perturbation: 
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Figure 8-11 Relationship between modeling and parameter uncertainties. 
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Figure 8-12 Decomposition of modeling errors along parameter uncertainties. 

Figure 8-12 shows three sets of figures, each corresponding to one of the three cases 

mentioned earlier for the modeling errors. Each case shows two graphs that are closely related, 

one generated by executing the NESTLE-C code to calculate the impact of the modeling errors, 

and one generated by using linearity approximation, obtained from the previous set of runs used 

to generate the cross-sections uncertainties. Recall that to propagate cross-section uncertainties, 

the NESTLE-C code was executed r times, wherein each time the cross-sections were perturbed 

along one of the iu  directions. One can thus use these runs to estimate, assuming linearity, the 

impact on k-eff for a general modeling errors vector. Results indicate that the linearity assumption 

is adequate for most of the components, with the exception of a few jumps. More interesting, the 

graphs show that the first ten components have huge impact on the k-eff, which is much larger 

than the actual discrepancy calculated using the entire modeling errors vector. For example, for 

the SERPENT-NEWT discrepancies, the first ten components create a big swing in k-eff which is 
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then canceled out by the remaining components, resulting in a total of 5 [mk] modeling error. The 

NEWT cross-sections introduce a bigger initial swing in the negative direction, up to 40 [mk] then 

recover back to 25 [mk]. The SERPENT cross-sections introduce an initial drop of 30 [mk] 

followed by almost no additional change due to the rest of the components. To further understand 

this behavior, the modeling errors components are further separated into components based on key 

cross-section types, e.g., fast and thermal absorption and fission cross-sections. Figure 8-13 shows 

the results of this exercise for the modeling errors representing discrepancies between NEWT and 

SERPENT which gives rise to 5mk error in the core k-eff. Results indicate that there exists a great 

deal of error compensation between the different cross-section types.  

 

Figure 8-13 Decomposition of modeling errors based on reaction type of few-group parameters. 

Next, Figure 8-14 plots the mesh-based nodal power distribution uncertainties using 

different reference cross-sections for core calculations.  For example, the top left graph compares 

the uncertainties calculated by NESTLE using both NESTLE and NEWT as reference cross-

sections. To understand the impact of different cross-section types, the right three graphs compare 

the uncertainties when the reference cross-sections are perturbed by the modeling errors from a 
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single type of cross-section. For example, the bottom right graph compares the uncertainties when 

the reference NESTLE cross-sections are modified by the thermal nu-fission cross-sections and 

the thermal absorption cross-sections. These results indicate strong sensitivity of the propagated 

uncertainties to the modeling errors. 

 

Figure 8-14 Scatter plot of percentage power distribution uncertainties between selected 
(indicated in the axis label) reference cross-section libraries, implying the impact of modeling 

uncertainties by switching the reference values.  
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8.5 Conclusion 

This chapter provides a detailed discussion on major sources of uncertainties in uncertainty 

propagation on reactor core calculations, the nuclear data uncertainty and key modeling 

approximations and assumptions that are generally made during process of neutronics simulation. 

The proposed ROM-base uncertainty propagation method is applied to deal with the enormous 

few-group uncertainty space due to wide range of reactor core conditions. Based on the insight on 

the modeling uncertainties during nuclear data uncertainty propagation, we have found non-

unneglectable impact of modeling uncertainties on standalone neutronics uncertainty 

quantification to evaluate the uncertainties of main core attributes, i.e., core multiplication factor 

and core power distribution. The various modeling assumptions include propagation methods, few-

group structures, number of ROM-based uncertainty basis, etc. An algorithm via replacing the 

reference cross-section library (setting different reference points) is proposed to evaluate the 

impact of different modeling assumptions. The proposed algorithm is flexible in all the 

applications and could be extended with other modeling assumptions and approximations. 
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 CONCLUSION AND FUTURE WORK 

This dissertation has developed an ROM-based uncertainty quantification process to reduce 

the dimensionality of large parameter uncertainty source in neutronics core simulations, which 

makes the uncertainty analysis computationally feasible. A comprehensive discussion of the 

uncertainty sources in each stage of neutronics calculations is provided in order to promote the 

importance of propagating and prioritizing all sources of uncertainties in the uncertainty 

characterization process. A literature review on uncertainty propagation methods, including 

stochastic and deterministic methods, as well as the efforts made to increase the efficiency of 

uncertainty analysis, is provided in detail. Also, the status of development in uncertainty 

characterization framework and the modeling uncertainty evaluation is also presented in the 

literature review. 

The proposed uncertainty characterization process, including the propagation of parameter 

uncertainties in a compressed format and modeling uncertainties in form of modeling assumptions 

and approximations, is illustrated with PCM methodology and ROM techniques implemented. The 

impact of a number of modeling assumptions and approximations on the resulting uncertainty in 

core attributes is evaluated. The interactions between the two major sources of uncertainties, the 

nuclear data uncertainty and the modeling uncertainty, are investigated and assessed. The 

implication is that one must take into account of modeling uncertainty when propagating 

uncertainties in uncertainty analysis on nuclear reactor calculations. 

This Ph.D. work manages to create the first comprehensive library of nuclear data 

uncertainties for reactor physics calculations in CANDU reactor application. This UCF can be 

extended to other types of reactors or multi-physics uncertainty analysis. Further, the UCF can 

also be extended to include other sources of uncertainties, such as thermal physics uncertainties. 


	LIST OF TABLES
	LIST OF FIGURES
	NOMENCLATURE
	ABSTRACT
	1. INTRODUCTION
	1.1 Overview and Motivation
	1.2 Challenges and Objectives
	1.3 Scope and Layout of Dissertation
	1.3.1 Scope of dissertation work
	1.3.2 Organization of dissertation

	1.4 References

	2. UNCERTAINTY SOURCES IN NEUTRONICS CALCULATIONS
	2.1 Uncertainty Classification
	2.2 Uncertainty Representation
	2.3 Uncertainty Sources in Computational Modeling and Simulation
	2.3.1 Parameter uncertainties
	2.3.2 Modeling uncertainties
	2.3.3 Numerical uncertainties

	2.4 Propagation of Uncertainty Sources in Neutronic Simulation Stages
	2.4.1 Uncertainties in pointwise cross-section generation
	2.4.2 Uncertainties in multi-group cross-section generation
	2.4.3 Uncertainties in lattice calculations
	2.4.4 Uncertainties in core calculations

	2.5 References

	3. LITERATURE REVIEW OF UNCERTAINTY ANALYSIS METHODS IN NEUTRONICS CALCULATIONS
	3.1 Uncertainty Quantification Approaches
	3.1.1 Stochastic methods
	3.1.2 Deterministic methods

	3.2 Efficiency-based Uncertainty Propagation Methods
	3.2.1 Surrogate model
	3.2.2 Dimensionality reduction
	3.2.3 Fitting approximation

	3.3 Sensitivity Analysis Approaches
	3.4 Background and Status in Modeling Uncertainty Propagation
	3.5 References

	4. METHODOLOGIES IN PROPOSED UCF
	4.1 PCM Methodology
	4.1.1 PCM problem setup
	4.1.2 PCM Implementation Algorithm:
	4.1.3 PCM results interpretation

	4.2 Dimensionality Reduction in ROM
	4.2.1 ROM background
	4.2.2 DR problem setup and error bounding
	4.2.3 RFA algorithm for active subspace construction
	4.2.4 DR results interpretation

	4.3 References

	5. PROPOSED UNCERTAINTY CHARACTERIZATION APPROACHES
	5.1 Proposed Uncertainty Propagation Approaches
	5.2 Propagation of Parameter Uncertainties
	5.2.1 Uncertainty propagation algorithms
	5.2.2 Branch uncertainty representation and reduction
	5.2.3 ROM-based implementation

	5.3 Propagation of Modeling Uncertainties
	5.3.1 Linearity verification exercises
	5.3.2 Evaluation of modeling uncertainty impact
	Modeling assumptions in few-group parameter uncertainty propagation


	5.4 Sensitivity Analysis and Priority Ranking
	5.5 References

	6. APPLICATION TO BWR CORE UNCERTAINTY PROPAGATION AND SENSITIVITY ANALYSIS
	6.1 Dimensionality Reduction of Few-Group Cross-Section Uncertainties
	6.1.1 BWR lattice model setup
	6.1.2 Branch models impact on few-group uncertainty space
	6.1.3 Burnup impact on few-group uncertainty space
	6.1.4 Dimensionality reduction on few-group cross-section uncertainty space
	6.1.5 Multiple lattices impact on few-group uncertainty compression

	6.2 Uncertainty Quantification and Sensitivity Analysis on Core Simulation
	6.2.1 BWR core model setup
	6.2.2 UQ and SA results on BWR core simulation
	6.2.3 Priority ranking on major few-group uncertainty sources

	6.3 Conclusions
	6.4 References

	7.  APPLICATION TO CANDU CORE UNCERTAINTY PROPAGATION
	7.1 Dimensionality Reduction of Few-Group Parameter Uncertainties
	7.1.1 CANDU-6 lattice model setup
	7.1.2 CANDU few-group parameter uncertainties
	7.1.3 Correlation among few-group parameters along burnup
	7.1.4 Compressed CANDU few-group uncertainty space
	7.1.5 CANDU branch and device uncertainties

	7.2 ROM-based Uncertainty Propagation Results on CANDU Core Simulation
	7.2.1 CANDU-6 core model setup
	7.2.2 ROM-based few-group uncertainty propagation results on CANDU core responses
	7.2.3 sUncertainties propagation results in Core CVR
	7.2.4 Uncertainty Propagation Results in LOCA Core Model

	7.3 Conclusions
	7.4 References

	8. MODELING ERROR IN CANDU CORE UNCERTAINTY PROPAGATION
	8.1 Modeling Assumptions Setup
	8.2  Modeling Uncertainties in CANDU Lattice Modeling
	8.3 Modeling Assumptions Impact during Parameter Uncertainty Propagation
	8.3.1 Assessing impact of uncertainty propagation method
	8.3.2 Assessing impact of modeling approximations

	8.4 Modeling Uncertainties Interaction with Parameter Uncertainties
	8.5 Conclusion
	8.6 References

	9. CONCLUSION AND FUTURE WORK

