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ABSTRACT

Zhang, Chiyu. PhD, Purdue University, May 2020. Multi-target Tracking and Iden-
tity Management Using Multiple Mobile Sensors. Major Professor: Inseok Hwang.

Due to their rapid technological advancement, mobile sensors such as unmanned

aerial vehicles (UAVs) are seeing growing application in the area of multi-target track-

ing and identity management (MTIM). For efficient and sustainable performance of

a MTIM system with mobile sensors, proper algorithms are needed to both effec-

tively estimate the states/identities of targets from sensing data and optimally guide

the mobile sensors based on the target estimates. One major challenge in MTIM is

that a target may be temporarily lost due to line-of-sight breaks or corrupted sensing

data in cluttered environments. It is desired that these targets are kept tracking

and identification, especially when they reappear after the temporary loss of detec-

tion. Another challenging task in MTIM is to correctly track and identify targets

during track coalescence, where multiple targets get close to each other and could

be hardly distinguishable. In addition, while the number of targets in the sensors’

surveillance region is usually unknown and time-varying in practice, many existing

MTIM algorithms assume their number of targets to be known and constant, thus

those algorithms could not be directly applied to real scenarios.

In this research, a set of solutions is developed to address three particular issues

in MTIM that involves the above challenges: 1) using a single mobile sensor with a

limited sensing range to track multiple targets, where the targets may occasionally lose

detection; 2) using a network of mobile sensors to actively seek and identify targets

to improve the accuracy of multi-target identity management; and 3) tracking and

managing the identities of an unknown and time-varying number of targets in clutter.
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1. INTRODUCTION

1.1 Background and Motivations

Tracking multiple moving targets is an important application of multi-sensor

scheduling in both military and civil contexts, where sensors mainly accomplish two

tasks: state estimation, i.e., the sensors autonomously estimate and predict the states

of the targets; and identity management, i.e., the sensors differentiate the identities of

the targets [1–3]. For example, consider a scenario where hostile targets move together

with decoys in an adversarial environment. In this scenario, sensors, particularly mo-

bile sensors such as unmanned aerial vehicles (UAVs) and cameras/telescopes, need

not only to estimate the target states, but also to identify and track/follow the hostile

targets.

Multi-target state estimation and tracking has been actively studied in the past

few decades [4–6], however, there are still a few practical issues worth further attention

but have not been seriously considered: one issue is that the targets may occasionally

be lost due to the line of sight (LOS) broken by buildings, trees, and other occlusions,

or broken by the targets moving out of the sensor’s detection range; another one is

that under circumstances where the number of targets is large but the number of

sensors is limited, one sensor needs to be able to autonomously follow and keep track

of one or more target(s). One major challenge in multi-target state estimation comes

from the computational cost, especially complex situations such as losing targets are

involved [7,8]. For mobile sensors such as UAVs, it is desirable to develop a low-cost

state estimation algorithm due to the limited computational power [9]; moreover, the

estimation algorithm should be able to provide sufficiently accurate position estimates

of the temporarily-lost targets so that their tracks are not completely lost. Another

challenge regards to the problem of tracking multiple targets with a single mobile
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sensor, where a proper guidance objective function must be constructed for the sensor

to make decisions in a reasonable and efficient manner, e.g., the decision process

is based on minimizing the overall tracking uncertainty; specifically, the objective

function should introduce a tracking performance metric that can be evaluated and

optimized quickly.

Multi-target identity management, on the other hand, is an area with few studies.

However, identity management plays a significant role in a target tracking system;

e.g., an air traffic management system needs to identify all the aircraft to safely man-

age the traffic; and a missile defense system needs to identify the actual missiles from

decoys, etc. The target identification problem may not be a major concern when all

the targets keep broadcasting their identity information, which is an extremely ideal

case. In practice, even in a friendly environment where the targets communicate with

the sensors, the target identity information can be unavailable due to communication

losses; moreover, in a hostile situation, the targets do not communicate with the sen-

sors at all. Then, it falls upon the sensors to actively identify the targets. In practice,

we may receive direct target identity information from sensors. For example, a high

resolution camera can identify a target by observing its color, shape, etc. This target

identity information can be effectively and efficiently incorporated for accurate target

identity management [10,11]. Unfortunately, there is no study in how sensors should

be scheduled to actively and optimally identify the targets. The major challenge lies

within the optimization problem formulation of sensor scheduling. It is necessary

that the optimal solutions computed make realistic senses. For example, seeking to

identify an uncertain target can be considered as a reasonable solution, while trying

to identify a target that is already sufficiently certain cannot. To achieve this, we

need a well-posed objective function to describe our knowledge of the target identi-

ties. If no feasible optimal solution exists, a baseline solution needs to be provided to

prevent the algorithm from terminating abruptly. In addition, when mobile sensors

are considered, the time cost of controlling the sensors poses another challenge. For

instance, if a UAV equipped with a narrow-ranged camera is used to identify targets,
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then it takes time for the UAV to fly close to the target to identify it once the target

is selected. This time cost must be incorporated to the optimization problem in a pre-

dictive manner. Moreover, an additional challenge rises since the prediction error is

almost inevitable during the predictive sensor scheduling process, which can degrade

the tracking performance. For example, consider using a UAV to pursue and identify

targets, it is likely that the target to be identified is not within the UAV’s own sensor

observation range as predicted when the UAV follows the optimal control sequence,

making the optimal solution no longer valid. Then, it is necessary to compensate the

prediction error during the sensor control phase so that the optimal solution from the

optimal sensor scheduling phase keeps its validity.

Another major limit of the current multi-target identity management is the lack

of capability to handle an unknown and time-varying number of targets. In practice,

the number of targets is unknown and time-varying to the tracking systems, as tar-

gets may move in or out in the system (e.g., aircraft takeoff/landing), or lose/regain

detection, etc. Despite the research progress in tracking and estimating an unknown

and time-varying number of targets [12, 13], the current identity management algo-

rithms are not capable of handling this situation for two reasons: first, the state-of-art

multi-target state trackers [13] do not explicitly calculate the target-measurement as-

sociation, therefore they do not provide necessary information of identity management

and cannot be used by the identity management algorithms; and second, the current

mathematical framework of the identity management is incomplete in that it is only

able to process a fixed number of targets.

Motivated by the limits and incompleteness of the current multi-target tracking

and identity management (MTIM) studies, we aim to develop an integrated multi-

sensor algorithm to address the aforementioned issues and challenges.
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1.2 Works and Contributions

In this research, we develop a set of algorithms to solve three particular issues in

tracking multiple moving targets and managing their identities.

Firstly, we consider the problem of tracking multiple targets with temporary loss

of detection due to line-of-sight breaks and limited sensing range. For the problem,

we propose a new multi-target state tracking algorithm which is composed of an esti-

mation algorithm able to track lost targets efficiently and a mobile sensor guidance al-

gorithm for multi-target tracking. The estimation algorithm is based on the Gaussian

sum approximation of multi-variate functions [14–17]. It is proved that multi-variate

functions defined over compact subsets of a real vector space can be approximated

by the weighted sum of a set of Gaussian distributions [14], and such approximation

uniformly converges as the number of Gaussian distributions increases. Led by this

property, we construct a non-linear likelihood function when the ‘no detection’ event

of a target happens; instead of formulating the likelihood function through the prob-

abilistic approach as was used in some previous works [18], we define an event-based

likelihood function which is then approximated by the Gaussian sum. Using a linear

target motion model with Gaussian noise, we show that in the ‘no detection’ case,

the posterior target probability density function (PDF) is also a Gaussian sum, and

thus it is reasonable to consider only the first two moments of this distribution. This

way, our algorithm keeps tracking and estimating the multiple targets regardless of

whether they are lost; instead of numerically computing the posterior and prior tar-

get PDFs, only the mean and covariance matrix need to be calculated and stored,

reducing the computation cost; in addition, the estimator smoothly switches to the

standard Kalman filter once the target is back within the detection range of the sen-

sor. Given the state estimation and prediction of a target, the tracking information

entropy in the future can be viewed as a random variable with the probability of

detection. We construct the guidance objective function based on the expectation of

the information entropy.
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Secondly, the problem of using multiple mobile sensors to actively seek and identify

multiple targets is considered. We develop an algorithm to solve the problem with a

decentralized sensor network composed of two types of sensors: primary sensor and

secondary sensor. The primary sensor, which has a large detection range, tracks the

states of the targets. In reality, the primary sensor can be a stationary long-range

radar, a mobile high-altitude UAV equipped with a wide-angle camera, or a satellite,

etc. The secondary sensor, on the other hand, is assumed to look at only one target

at a time; however, it is able to identify the target by measuring its shape or other

characteristics (consider a stationary telescope, a narrow-ranged camera mounted on a

mobile UAV, etc.). The proposed algorithm involves one primary sensor and multiple

secondary sensors. The primary sensor estimates the states of the targets, and sends

the target state estimates to the secondary sensors; the secondary sensors utilize

the incoming state estimates of the targets to keep track of the targets’ identities.

For each secondary sensor, we develop an optimal sensor scheduling algorithm which

solves an optimization problem of identifying the target to minimize the cumulative

expectation of the uncertainty of the targets’ identities over a given time window.

To prevent the algorithm from terminating abruptly when no feasible solution is

found for the optimization problem, a baseline solution is also calculated and used

whenever necessary. Eventually, the optimal sensor scheduling algorithm selects the

optimal target to be identified according to not only the uncertainty about the target

identities, but also the time cost to identify the target, as well as the corresponding

control sequence of the secondary sensor. The proposed algorithm is a decentralized

one since the secondary sensors do not need to synchronize with each other, and each

secondary sensor solves its own optimization problem.

Thirdly, we study the problem of tracking and managing the identities of an

unknown and time-varying number of targets. For this problem, we propose a gener-

alized MTIM algorithm, called GMPHD-IM algorithm, which extends the capabilities

of the state-of-art MTIM algorithm and is able to track and manage the identities of

an unknown and time-varying number of targets. In order to manage the identities
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of an unknown and time-varying number of targets, we introduce a new mathemat-

ical framework for multi-target identity management. The new framework can keep

track of the identities of an unknown and time-varying number of targets, and up-

date the target identities whenever there is available target identity information so

that the uncertainty in all the target identities is reduced. In addition, we also de-

velop a multi-target state estimator to estimate the states of the targets as well as to

efficiently compute necessary information for multi-target identity management.

In summary, the main contribution of this research is the development of inte-

grated multi-target tracking and identity management algorithms which can address

the limitations in the state-of-art studies. The algorithm framework we propose is

a general solution, i.e., the mathematical formulation does not consider the specific

types of sensors or targets. In real applications where the types of sensors and targets

are given, one can choose the corresponding models for the algorithm.

The rest of this dissertation is organized as follows. In Chapter 2, a multi-target

state estimation and tracking algorithm is proposed and demonstrated by illustrative

simulation results. In Chapter 3, a multi-target identity management algorithm for

a fixed number of targets with mobile-sensors is proposed and demonstrated by sim-

ulation results. In Chapter 4, we propose a new identity management algorithm for

an unknown and time-varying number of targets and demonstrate the algorithm with

simulation results. The conclusions of the work is summarized in Chapter 5.
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2. MULTI-TARGET STATE ESTIMATION AND

TRACKING WITH TEMPORARY LOSS OF DETECTION

2.1 Background

Recursive Bayesian estimation (RBE) [19] forms the theoretical basis of target

state estimation, where the posterior probability density function (PDF) of the target

state is recursively constructed using available information such as measurement data,

and is propagated according to the target motion model. Based on the RBE frame-

work, different estimation algorithms, such as the Kalman filter (and its variants)

and Monte Carlo methods, are developed [20–24]. The conventional RBE framework

requires the target measurement input for each recursion step and does not account

for the situation where the target is lost. To track a lost target, the estimation al-

gorithm should keep running even without the target measurement. Dead-reckoning

(keep propagating the target state until a new measurement is obtained) is simple

and widely used in application and experiments [25,26]. This method relies mainly on

the modeling of target motion, which can differ from the target’s true movement; and

it ignores the information conveyed by the event of ‘no detection’ that the probability

of the target in the observable region can be excluded if no measurement is received

from that area. Led by this idea, unified RBE search and tracking (S&T) techniques

are proposed through the definition of a unified non-linear likelihood function and

objective for both no-detection (search) and detection (tracking) cases [7, 8, 27–29].

All of these approaches construct their target motion PDF on a grid basis; however,

they are either computationally complex or could provide a rough description of tar-

get motion. In addition, although the entire algorithms are non-linear, they usually

yield a near-Gaussian PDF during the detection and tracking processes; those algo-

rithms keep computing the PDF values cell by cell regardless of this near-Gaussian
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characteristics which can be exploited to improve the efficiency. To overcome these

limitations, we develop a new RBE algorithm with a new construction and approxi-

mation of likelihood function for the event of no-detection. Therefore, the proposed

multiple maneuvering target tracking algorithm has a good tracking performance with

great improvement of computation efficiency.

The majority of the research works on the multi-target tracking problem relies on

the assumption that the number of available sensors is greater than or equal to the

number of targets. In this case, the decision-making strategy of the sensors is then

formulated as an area surveillance problem [30–32], where the objective function

usually desires that the sensors cover a large surveillance area [33] or reduce the

tracking error [34]. In situations where there are fewer sensors than targets, it is often

considered that the sensors have a large sensor coverage area such that all the targets

can be covered simultaneously all the time. The guidance objective function is then

formed as a task assignment problem: to allocate regions to the sensors [35], or to find

a target-covering sequence that can be accomplished in minimum time [36]. However,

the circumstance that the number of available sensors is limited and the sensors cannot

cover all the targets at the same time exists, and cannot be ignored. Despite one

proposed strategy [37], where the sensor actively gives up tracking the targets that

are unable to be accurately tracked, research has barely been done in this area. Our

work is motivated by the practical significance and the lack of research efforts in the

problem. The key to the problem is to formulate a proper guidance objective function

that incorporates the tracking performance metrics of both the lost and detected

targets. In the field of multi-target tracking, information entropy (as a representation

of the uncertainty) is widely used to construct tracking objectives [38–42], where the

objective function is usually formulated as to minimize the predicted information

entropy based on the current observation of the targets. However, in the situation of

one range-limited sensor vs. multiple targets, it is inevitable that some targets are

not observed at some point. The possibility that some targets are not detected in

the future needs to be considered when constructing the objective function. One way
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to account for the possibility is to add a multiplier that represents the probability of

detection [43]. Based on our proposed estimation algorithm which has the ability to

track lost targets, we propose the following strategy to track multiple targets with

one range-limited sensor: whenever it is unable to detect all the targets, the sensor

tries to cover the targets alternately, i.e., leave some of the targets lost and cover the

rest of the targets, and go back to the lost targets later.

The main contributions of this chapter lie in the consideration of a specific type of

multi-target tracking problem that is practically significant yet not seriously/widely

considered by the community: there are fewer sensing agents than targets, and the

sensing agents cannot cover all the targets simultaneously; and in the development

of computationally efficient multi-target state estimation and optimal guidance algo-

rithms to solve the problem. Specifically, we develop a new RBE algorithm that is able

to track lost targets more efficiently through the proposed approximation approach.

While most existing RBE algorithms for target tracking assume that the targets are

always detected, i.e., they do not consider the possibility of losing targets [21–24], the

proposed RBE algorithm explicitly considers the event that a target is lost, which

makes the target tracking problem challenging and does not allow to directly apply

the existing algorithms. In this chapter, we formulate the lost-target event as a non-

linear likelihood function. Since the evaluation of this non-linear likelihood function

is complex and computationally demanding, we develop an approximation approach

using Gaussian sum to improve the efficiency of the proposed RBE algorithm. In

addition, by utilizing the output of the proposed RBE algorithm, we formulate an

optimal guidance problem to minimize the uncertainty about the targets’ positions;

the optimal guidance problem enables a single UAV to effectively track multiple tar-

gets which may not be covered by a UAV at the same (i.e., some targets are within

the UAV’s sensing range but others are out of the sensing range), which has not been

seriously studied before.

The rest of this chapter is organized as follows: We first formulate the problem

and briefly introduce the RBE framework and the Gaussian sum approximation in
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Section 2.2. The details of the proposed algorithm are presented in Section 2.3,

including the proposed RBE estimation technique and the optimal guidance law.

The proposed multiple maneuvering target tracking algorithm is demonstrated with

illustrative numerical examples in Section 2.4.

2.2 Problem Formulation

This section formulates the target and the primary sensor models, and the RBE

framework and the Gaussian sum approximation.

The j th target’s motion is described by its state vector xj(t) at time t, whose

discrete-time motion model is given by

xj(t+ 1) = fj(xj(t), uj(t), wj(t)) (2.1)

where uj(t) and wj(t) are the input and the system noise at time t, respectively.

The target’s motion in (2.1) is considered as a memoryless Markov process. In this

chapter, we consider the targets as moving ground vehicles. Thus, for a single target,

its state is a 4-dimensional vector describing the vehicle’s ground position and speed

of two orthogonal directions.

The states of the targets are measured by a primary sensor’s onboard sensor with

a circular detection area whose radius is denoted as r(ps). As long as a target is

within the detection range, it will be detected and localized by the sensor. For the

j th target, its measurement zj(t) at time t is given by:

zj(t) = Hxj(t) + v(t) (2.2)

where v(t) is white noise whose covariance is R. Figure 2.1 provides a visual

description of the target tracking scenario considered.

At the tth time step, the discrete-time motion model of the primary sensor is given

by
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Fig. 2.1.: Multiple Maneuvering Target Tracking Scenario

x(ps)(t+ 1) = f (ps)(x(ps)(t), u(ps)(t)) (2.3)

where x(ps)(t) and u(ps)(t) represent the primary sensor’s state and control input

at time t.

2.2.1 Recursive Bayesian Estimation

For simplicity, in this section we omit the subscript j of xj that denotes the j th

target. Let d(t) be the random variable of observation indicating whether a target is

detected by the sensor at time t, i.e. d(t) ∈ {‘detection’, ‘no detection’}. Denote the

observation history up to time t as D(t) = {d1, d2, · · · , d(t)}. RBE then computes

the target state PDF recursively by two stages: update and prediction.

• Update. The update stage computes the posterior PDF p(x(t)|D(t)) from the

incoming observation d(t), and the last predicted PDF p(x(t)|D(t − 1)) which

is given by the observation history D(t− 1):

p(x(t)|D(t)) = KΛ(x(t)|d(t))p(x(t)|D(t− 1)) (2.4)
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where Λ(x(t)|d(t)) = p(d(t)|x(t), D(t−1)) represents the likelihood of x(t) given

d(t), and K is the normalization factor.

• Prediction. The prediction stage derives the target state PDF of the next time

step p(x(t + 1)|D(t)) from the current estimated PDF p(x(t)|D(t)). Since the

target motion is modeled as a memoryless Markov process, the prediction can

be computed by the Chapman-Kolmogorov equation [44]:

p(x(t+ 1)|D(t)) =

∫

p(x(t+ 1)|x(t))p(x(t)|D(t))dx(t) (2.5)

where p(x(t + 1)|x(t)) is computed by propagating the target’s current state

x(t) to the next state x(t+ 1) with the target’s motion model in (2.1).

2.2.2 Gaussian Sum Approximation

Consider multi-variate function p(x) of vector x, which satisfies the following prop-

erties:

• p(x) is Riemann integrable

•
∫

x

p(x)dx <∞

• ∀x, p(x) ≥ 0

It is proved that p(x) can be approximated by a weighted sum of Gaussian

PDFs [14]:

p(x) ≈
n
∑

i=1

αiN (x;µi, Pi) (2.6)

where N (x;µi, Pi) is a Gaussian distribution whose mean and covariance are µi

and Pi, respectively. µi is selected from the sample space of x, and once it is deter-

mined, the weight αi can be calculated from p(µi).
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2.3 Algorithm Development

In this section, we present in detail the proposed multi-target tracking algorithm,

which is composed of two components: the multi-target state estimation and the

optimal guidance law.

2.3.1 RBE Target State Estimation

In this section, we consider a linear target motion model with Gaussian noise. For

simplicity, the subscript j that denote sthe j th target state is omitted. A likelihood

function of the target state Λ(x(t)|d(t) = ‘no detection’) is constructed, and the RBE

equations are then derived by approximating Λ(x(t)|d(t) = ‘no detection’) using the

Gaussian sum. Specifically, it is shown that if a linear target motion model with

Gaussian noise is applied, the proposed approach can be unified with Kalman filter.

An implementation of the algorithm based on the target position grid is also presented

in this section.

Likelihood Function in No Detection Case and Approximated Estimation

When a target is detected at time t, the likelihood function Λ(x(t)|d(t) = ‘detection’)

in (2.4) can be calculated using the sensor measurement z(t). However, when the tar-

get is not detected and no measurement is received, the likelihood function Λ(x(t)|d(t) =
‘no detection’) is not defined. Therefore, our primary task is to give a definition of

Λ(x(t)|d(t) = ‘no detection’), i.e., the likelihood of a target’s state given the event of

‘no detection’. The definition of Λ(x(t)|d(t) = ‘no detection’) is based on the defini-

tion of the ‘detectable region’. The detectable region is the area within the primary

sensor’s detection range; and a measurement is generated only if the target is in this

detectable region. Given the primary sensor’s state as x(ps)(t), the detectable region is

uniquely determined, and denote the detectable region as XD(x
(ps)(t)). The likelihood
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of the target state when there is no detection is defined as 0 inside the detectable

region and uniformly distributed outside the detectable region:

Λ(x(t)|d(t) = ‘no detection’) =











0 x(t) ∈ XD(x
(ps)(t))

η x(t) ∈ X ∩ X̄D(x
(ps)(t))

(2.7)

where X is the finite operational area and η is a positive constant number. When

the ‘no detection’ event is given, it can be interpreted as the target being unlikely

within the sensor’s coverage, and the above definition in (2.7) is the mathematic

expression of the interpretation. Then, according to equation (2.6), the likelihood

function can be approximated by the Gaussian sum:

Λ(x(t)|d(t) = ‘no detection’) ≈
n
∑

i=1

αiN (x(t);µi, Pi) (2.8)

where µi and Pi denote the mean and covariance of the ith Gaussian PDF, re-

spectively. Considering a linear motion model with Gaussian noise, we assume that

the prior probability p(x(t)|D(t − 1)) is a normal distribution whose mean and co-

variance are x(t|t − 1) and P (t|t − 1), respectively. By denoting µ = x(t|t − 1) and

P = P (t|t− 1), we have

p(x(t)|D(t− 1)) = N (x(t);µ, P ) (2.9)

By (2.4), the update stage of RBE can be approximated as:

p(x(t)|D(t)) ≈ K
n
∑

i=1

αiN (x(t);µi, Pi)N (x(t);µ, P ) (2.10)

To calculate the state estimate and covariance, we introduce the following lemma

which is a well-known conclusion in the Gaussian sum literature [45]:

Lemma 2.3.1 Let x(t), µ, µi ∈ R
q, K,αi ∈ R; and let P, Pi ∈ R

q×q be positive

definite matrices. Then
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K
n
∑

i=1

αiN (x(t);µi, Pi)N (x(t);µ, P ) = K
n
∑

i=1

αiKiN (x(t); µ̂i, P̂i) (2.11)

where

µ̂i = (P−1
i + P−1)−1(P−1

i µi + P−1µ)

P̂i = (P−1
i + P−1)−1

Ki ∈ R

(2.12)

Let βi = K · αiKi be a weight; then the two steps of the approximated RBE are

expressed as follow:

p(x(t)|D(t)) =
n
∑

i=1

βiN (x(t); µ̂i, P̂i)

p(x(t+ 1)|D(t)) =
n
∑

i=1

βi

∫

p(x(t+ 1)|x(t))N (x(t); µ̂i, P̂i)dx(t)

(2.13)

In particular, if a linear target motion model is applied, then the integral in (2.13)

can be evaluated with Kalman filter. Consider the following linear target motion

model:

x(t+ 1) = Ftx(t) + w(t) (2.14)

where Ft is a system matrix and w(t) is white noise whose covariance matrix is

Q(t). Then, the prediction step in (2.13) becomes:

p(x(t+ 1)|D(t)) =
n
∑

i=1

βiN (x(t+ 1);Ftµ̂i, FtP̂iF
T
t +Q(t)) (2.15)

It is still computationally demanding to calculate the exact PDFs in (2.13) and (2.15);

however, it is reasonable to consider only the means and covariance matrices during

the iteration. This is because the first and second moments of a PDF are essentially

projections to the polynomial basis of the inner-product space (denoted as L(2)) of

square integrable functions defined over the following inner-product:
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〈f(x), g(x)〉 =
∫ ∞

−∞

f(x)g(x)dx (2.16)

Therefore, the use of mean and covariance is in fact a second-order approximation

of the PDF in the context of L(2). In fact, considering the existing well-established

Gaussian sum reduction methods based on different approximation criteria [46–48],

our way of approximation essentially can be viewed as a lower-order solution to those

algorithms.

Since the update and prediction PDFs are both Gaussian sums, their means and

covariance matrices can be analytically calculated. Let x̂(t) and P̂ (t) be the condi-

tional mean and covariance of the posterior PDF p(x(t)|D(t)). Then we have:

x̂(t) ,

∫

x(t)p(x(t)|D(t))dx(t) =
n
∑

i=1

βiµ̂i

P̂ (t) , E
[

(x(t)− x̂(t))(x(t)− x̂(t))T
]

=
n
∑

i=1

βi

[

P̂i + (µ̂i − x̂(t))(µ̂i − x̂(t))T
]

(2.17)

Given the linear target motion model in (2.14), the predicted mean xt+1|k and

covariance P (t+ 1|t) can be obtained from (2.17) using Kalman filter:

xt+1|k = Ftx̂(t), P (t+ 1|t) = FtP̂ (t)F T
t +Q(t) (2.18)

It can be shown that the mean and covariance given in (2.18) are exactly the mean

and covariance of the PDF in (2.15). By the approximation above, the proposed

method can be unified with the standard Kalman filter, since regardless of whether

a target is detected or lost, only the mean and covariance need to be calculated and

stored.

Implementation Based on Position Grid

The main factor that influences the complexity of the proposed algorithm is the

number of Gaussian PDFs we used, which grows exponentially with the dimension of
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the target state space. Although the target state is modeled as a 4-dimensional vector,

we are mainly interested in its position information when giving a tracking command

to the UAV; in addition, when a target is lost, there will be no speed information.

Therefore, it is sufficient to discretize and apply the Gaussian sum approximation to

only the position space, and find alternative ways to update the speed estimate.

When a target is lost, we apply (2.17) to the target position space and let the

position estimate at time t be p̂(t) and its covariance Σ(p̂(t), p̂(t)). Let ∆t be the

sampling time. To obtain the speed estimate v̂(t) at time t, we use the current and

previous position estimate:

v̂(t) =
1

∆t
(p̂(t)− p̂(t− 1)) (2.19)

Then, the covariance matrices Σ(v̂(t), v̂(t)) and Σ(v̂(t), p̂(t)) can be computed as:

Σ(v̂(t), v̂(t)) = E[v̂(t)v̂(t)T ]− E[v̂(t)Ev̂(t)T ]

=
1

∆t2
(

E[(p̂(t)− p̂(t− 1))(p̂(t)− p̂(t− 1))T ]

− E[p̂(t)− p̂(t− 1)]E[(p̂(t)− p̂(t− 1))T ]
)

=
1

∆t2
(

Σ(p̂(t), p̂(t)) + Σ(p̂(t− 1), p̂(t− 1))

− Σ(p̂(t), p̂(t− 1))− Σ(p̂(t), p̂(t− 1))T
)

(2.20)

Σ(v̂(t), p̂(t)) = E[v̂(t)p̂(t)T ]− E[v̂(t)]E[p̂(t)T ]

=
1

∆t

(

E[(p̂(t)− p̂(t− 1))p̂(t)T ]− E[p̂(t)− p̂(t− 1)]E[p̂(t)T ]
)

=
1

∆t

(

Σ(p̂(t), p̂(t))− Σ(p̂(t), p̂(t− 1))T
)

(2.21)

The covariance matrices Σ(p̂(t), p̂(t)) and Σ(p̂(t − 1), p̂(t − 1)) are given directly

from the position update. To obtain Σ(p̂(t), p̂(t − 1)), note that from the previous

section we have:
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x̂(t) =
n
∑

i=1

βiµ̂i =
n
∑

i=1

βiP̂
−1
i (P−1

i µi + P−1
t|t−1xt|t−1)

=
n
∑

i=1

βiP̂
−1
i (P−1

i µi + P−1
t|t−1Fk−1x̂(t− 1))

(2.22)

Since µi is deterministic, the covariance of µi and x̂(t−1) are 0 and the covariance

of x̂(t) and x̂(t− 1) can be computed as:

Σ(x̂(t), x̂(t− 1)) = Σ(
n
∑

i=1

βiP̂
−1
i P−1

t|t−1Fk−1x̂(t− 1), x̂(t− 1))

= PΣΣ(x̂(t− 1), x̂(t− 1))P T
Σ ,

where PΣ =
n
∑

i=1

βiP̂
−1
i P−1

t|t−1Fk−1

(2.23)

where Σ(x̂(t − 1), x̂(t − 1)) = P̂t−1 is the estimate covariance at time t − 1.

Σ(p̂(t), p̂(t − 1)) is then the position components of Σ(x̂(t), x̂(t − 1)). The complete

state estimation and covariance can be obtained by combining the position and speed

components together.

Fig. 2.2.: Overall Estimation Algorithm Structure
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As a result, the overall structure of the proposed estimation algorithm is shown in

Figure 2.2. For each sampling time step, if a target is detected, an estimate of its state

is given by the standard Kalman filter; otherwise the position estimate is calculated

by (2.17) first, and then the speed estimate is updated using the formulas in this

section. In the position estimation of a lost target, the Gaussian PDFs are constructed

on a grid basis, i.e. the 2-dimensional area is discretized to a grid map; and the means

and covariance matrices of the Gaussian PDFs are given by the grid points and sizes,

respectively. Therefore, the grid density implies the number of Gaussian PDFs used

in the algorithm; a higher grid density will lead to more intensive computation, and

vice versa. Whether a target is detected or lost, the mean and covariance of the target

state estimation will always be provided and the standard Kalman filter is applied to

the prediction.

2.3.2 Multi-target Tracking Guidance

In this section, we first formulate a guidance objective function for multi-target

tracking by minimizing the expected information entropy. The objective function

is then transformed by eigenvalue decomposition to improve the computational effi-

ciency. The primary sensor guidance law is eventually formulated as an optimization

problem of seeking the optimal command input subject to the sensor’s kinematic

constraints.

Information Entropy and Objective Function

Information entropy is essentially a metric of the uncertainty of a system: a higher

entropy value means that we have less amount of information about the system [49]. In

the context of target tracking, it is a matter of fact that a large amount of information

is obtained if a target is detected, and is lost if a target is lost. Therefore, minimizing

the predicted information entropy is, in some sense, equivalent to maximizing the

number of detected targets in a predictive manner.
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Let us consider the prediction covariance of the j th target Pj(t + 1|t) . The

predicted update covariance of the j th target is a Bernoulli variable:

Pj(t+ 1|t+ 1) =










Pj(t+ 1|t)− Pj(t+ 1|t)HT (HPj(t+ 1|t)HT +R)−1HPj(t+ 1|t) target j is detected

Pj(t+ 1|t) otherwise

(2.24)

where H and R are the sensor measurement and covariance matrices. The prob-

ability that the j th target is detected π(D,j)(x
(ps)(t+ 1)) is a function of the sensor’s

state and can be calculated according to the prediction of the j th target given in:

π(D,j)(x
(ps)(t+ 1)) =

∫∫

xj∈XD(x(ps)(t+1))

N (xj; xj(t+ 1|t), Pj(t+ 1|t))dxj (2.25)

It should be noted that the integral (2.25) in fact represents the probability that

the j-th target is within the primary sensor’s detectable region, given the sensor’s

position at x(ps)(t+ 1). Then, the expected update covariance is given by:

P̄j(t+1|t+1) = Pj(t+1|t)−π(D,j)(x
(ps)(t+1))Pj(t+1|t)HT (HPj(t+1|t)HT+R)−1HPj(t+1|t)

(2.26)

The information entropy of a Gaussian distribution, regardless of the constants, is

the logarithm of the determinant of the covariance matrix. Hence for the linear target

motion models with Gaussian noise, the expected information entropy from the j th

target can be written as log
∣

∣

∣
P̄j(t + 1|t + 1)

∣

∣

∣
. As a result, the objective function is

formulated as a weighted sum of the expected information entropy of all targets:

J =
N
∑

j=1

Wj log
∣

∣

∣
P̄j(t+ 1|t+ 1)

∣

∣

∣
(2.27)

where N is the number of the targets. The purpose of using the weighted sum

is to increase the priority of the lost targets. The longer a target is lost, the higher
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priority it has. Let tLj be the cumulative time that the j th target has been lost: tLj

starts increasing as the target is lost, and is reset to 0 when the target is re-detected.

The weight term Wj of the j th target is constructed as a function of tLj with the

following properties: (1) Wj(0) = 0; (2) Wj increases as t
L
j increases.

Objective Function Transformation

The evaluation of the objective function (2.27) is mainly the calculation of the

following determinant:

∣

∣

∣
Pj(t+1|t)−π(D,j)(x

(ps)(t+1))Pj(t+1|t)HT (HPj(t+1|t)HT+R)−1HPj(t+1|t)
∣

∣

∣
(2.28)

The computation cost of calculating the determinant can be high especially when

iterative optimization methods are applied, since they usually involve a large num-

ber of function evaluations [50]. In addition, the computation cost grows with the

number of targets. Therefore, it is desirable that (2.28) can be transformed for faster

calculation. For brevity, we consider two matrices P and P̃ and a scalar π in this

section, where P is positive definite, P̃ is semi-positive definite, and π is non-negative.

Then, (2.28) can be written as:

∣

∣

∣
P − πP̃

∣

∣

∣
(2.29)

To transform (2.29), we first introduce the following lemma:

Lemma 2.3.2 Let P ∈ R
q×q and P̃ ∈ R

q×q be two Hermite matrices. Let π ∈ R. If

both P and P̃ are invertible, then

∣

∣

∣
P − πP̃

∣

∣

∣
=
∣

∣

∣
ΛP̃

∣

∣

∣
·
∏

i

(λ∗
i − π) (2.30)

where ΛP̃ ∈ D
q×q is a diagonal matrix and λ∗

i ∈ R.

Proof We first do eigenvalue decomposition to P̃ :
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P̃ = UΛP̃U
T (2.31)

where U is unitary and ΛP̃ is diagonal. Substituting P̃ with its eigenvalue decom-

position, we have:

∣

∣

∣
P − πP̃

∣

∣

∣
=
∣

∣

∣
P − πUΛP̃U

T
∣

∣

∣

=
∣

∣

∣
UTPUΛ−1

P̃
− πI

∣

∣

∣
·
∣

∣

∣
ΛP̃

∣

∣

∣

(2.32)

To evaluate the determinant
∣

∣

∣
UTPUΛ−1

P̃
−πI

∣

∣

∣
, we consider its characteristic equa-

tion:

∣

∣

∣
(λ+ π)I − UTPUΛ−1

P̃

∣

∣

∣
= 0 (2.33)

where λ are the eigenvalues of UTPUΛ−1

P̃
− πI. By denoting the eigenvalues of

UTPUΛ−1

P̃
as λ∗, we have λ = λ∗ − π. Since the determinant of a matrix is the

product of its eigenvalues, we have the following equation:

∣

∣

∣
P − πP̃

∣

∣

∣
=
∣

∣

∣
ΛP̃

∣

∣

∣
·
∏

i

(λ∗
i − π) (2.34)

where λ∗
i is the i th eigenvalue of UTPUΛ−1

P̃
.

Since in (2.29) P is positive definite and P̃ is semi-positive definite, they are

intrinsically Hermite and the lemma can be applied. However, it should be noted

that in Lemma 2.3.2 we assume P̃ to be invertible which may not be the case in

reality. For the non-invertible cases, we add a small perturbation to P̃ before the

eigenvalue decomposition:

P̃ = P̃ + εI (2.35)

where ε is a small positive scalar and I is the identity matrix. It should be noted

that the small perturbation added to P̃ is in fact a tradeoff between stability and

accuracy. Since P̃ is not guaranteed to be invertible, it is likely that the algorithm
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terminates when the inverse of P̃ does not exist. To prevent the algorithm from this

unexpected termination, a small perturbation is added to P̃ only when it is non-

invertible. In addition, the perturbation is only effective in one single optimal guid-

ance step, and does not affect the estimation performance. Then, using Lemma 2.3.2,

the objective function can be converted to a form which can be efficiently evaluated:

J =
N
∑

j=1

Wj

{

log
∣

∣

∣
ΛP̃ ,j

∣

∣

∣
+
∑

i

log
(

λ∗
i,j − π(D,j)(x

(ps)(t+ 1)
)

}

(2.36)

It should be noted that in the original objective (2.27), the matrix determinant is

a function of the optimization variable x(ps)(t+1), and needs to be repeatedly calcu-

lated for different x(ps)(t+1) values within one optimization step. On the other hand,

in the transformed objective function (2.36), the matrix operations can be done before

the optimization iteration starts, since they are not related to x(ps)(t+1); during the

optimization iteration we only need to evaluate the scalar function π(D,j)(x
(ps)(t+1))

instead of the determinants. The efficiency improvement is significant since the op-

timization typically involves a large number of function evaluations. For example,

consider a case that during one optimization step the objective function needs to be

calculated for 100 different x(ps)(t+ 1) values. Then (2.27) requires 100 determinant

calculations, while (2.36) only needs 2 eigenvalue decompositions plus 100 scalar func-

tion evaluations, which is more efficient. Although the computational complexities of

using (2.27) and (2.36) both grow linearly with the number of function evaluations

needed, using (2.36) does improve the optimization efficiency proportionally.

Combining the objective function (2.36) and the primary sensor constraints, we

can formulate a multi-target tracking guidance law as an optimization problem to

find the next waypoint and heading angle command:

min
x(ps)(t+1),θ

N
∑

j=1

Wj

{

log
∣

∣

∣
ΛP̃ ,j

∣

∣

∣
+
∑

i

log
(

λ∗
i,j − πj(x

(ps)(t+ 1))
)

}

s.t. x(ps)(t+ 1) = f (ps)(x(ps)(t), u(ps)(t))

(2.37)
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In summary, the proposed algorithm has two components: the multi-target RBE

state estimation and the optimal primary sensor guidance. At each time step, the

estimation algorithm generates the estimated and the predicted states of the targets,

whether these targets are being detected or not. Then, using the predicted targets

states, the algorithm computes the expected covariance matrices of all the targets,

and a guidance command is calculated to minimize the overall expected informa-

tion entropy, which can be computed from the expected covariance matrices. The

algorithm is executed recursively until the tracking mission is terminated.

2.4 Numerical Examples

This section presents numerical demonstration of the proposed approach with two

illustrative test scenarios, where the targets to be tracked follow randomly generated

trajectories and the sensor measurements are corrupted by random noise.

In the first scenario, only one target is tracked, and some occlusion areas that

block the line of sight (LOS) are added in the map so that the target is bound to be

lost at some point. There are two goals for this test: (1) validate the ability of the

proposed estimation algorithm to track a lost target; and (2) study the techniques of

discretizing the map and construct the Gaussian PDFs. The second scenario applies

the proposed approach to a 3-target tracking mission in an open area (no LOS blocks).

Based on the results in the first scenario, an optimized map discretization scheme is

used to construct the Gaussian PDFs. As a comparison, we also simulate the tracking

mission using the dead-reckoning estimation and the proposed guidance law. The

performance of the proposed multi-target tracking algorithm is demonstrated via this

test. All the simulations are done on a laptop with a i5-3210M CPU. The CPU has

four 2.50GHz computation cores.
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2.4.1 Target and Sensor Modeling

Let xj(t) and yj(t) be the position coordinates of the j th target at time t. The

target trajectory is generated by the following model [27]:

xj(t+ 1) = xj(t) + ∆t · v(t) cos θ(t)

yj(t+ 1) = yj(t) + ∆t · v(t) sin θ(t)
(2.38)

where v(t) and θ(t) are random speed and direction so that they describe a random

motion of the target; and ∆t is a time increment.

For the estimator, we use the constant velocity model [51]:

x(t+ 1) = Fcvx(t) +Gcvw(t) (2.39)

where

Fcv = diag[F1, F1], Gcv = diag[G1, G1]

F1 =





1 Ts

0 1



, G1 =





T 2
s /2

Ts





(2.40)

w(t) ∼ N (0, 1) is unit white noise. Ts is the measurement sampling time and is

set as one second in the tests. Note that the target tracking model differs from the

target’s trajectory generation model in (3.20), because in real applications the real

motion of the target may not necessarily be available to the estimator.

A fixed-wing UAV is used as the sensor to track the targets. The cruise speed of

the UAV is 165 knots (306 tm/h), and its minimum turning radius is 21 m.1 The

simulation time step is set to be 1 s, therefore the turning angle bound per one time

step is 2.02 rad (about 116◦). A video camera with a detection range of 120 m is

mounted on the UAV. The camera is able to provide the position measurements of the

targets subject to unbiased white noise with a covariance of diag(10m, 10m), which

1The UAV specifications are set to simulate high-speed surveillance UAVs such as MQ/Wing Loong
series.



26

means that the state measurement subjects to an standard deviation of 10m in both

directions.
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Fig. 2.3.: Test Scenario 1: Single Target Tracking

The weight term Wj in the guidance objective function is set to be:

Wj = exp(tLj )− 1 (2.41)

where tLj is the cumulative time steps that target j has been lost. Then, as the

j-th target being lost, the priority to find the target grows exponentially. Since

the guidance optimization problem is non-linear, we apply a light-weighted genetic

algorithm to solve it [50].

In the simulation tests, the Gaussian sum terms are constructed as follows: we

first discretize the map into rectangular grids; then, for each grid, a Gaussian sum

term is constructed with its mean value set to be the center of the grid and its

standard deviation set to be the size of the grid. For example, consider a 1-dimensional

case, where a grid [10, 20] is constructed on the x axis; then, the corresponding

Gaussian sum term is N (x; 15, 10). It should be noted that there exist multiple ways

of discretizing the map, and several of them are studied through simulation in the

next section.
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2.4.2 Scenario 1: Single-target Tracking with Blocked LOS

The test scenario is shown in Figure 2.3, where the blue solid line is the random

target trajectory, and the circled magenta lines are the areas where the LOS is blocked.

In this section, we propose and test 3 different ways of discretizing the map and

constructing the Gaussian sum terms. The first way is to discretize the entire map

uniformly. It is the most straightforward and easiest way to implement. A major

drawback in this approach is that the grid points that are far away from the target

have little contribution, since the prior probability values of these points are near-

zero. As an improvement, the second proposed discretization technique only considers

the 5-σ ellipsoid of the target’s last prediction and uniformly discretize the area. In

this method, the algorithm discretizes a dynamic area that changes over time. It

should be noted that if the target is lost for a long time the ellipsoid will grow large

as well as the covariance matrix, and this method will degenerate to discretizing the

entire map area. The third approach still discretizes the entire map area, however,

in contrast to uniform discretization, we derive such a grid that is dense near the

UAV position and sparse far away. This approach pays more attention to the area

close to the UAV, especially at the boundary of the the UAV’s sensor range, where

the likelihood given by (2.7) is discontinuous. Figure 2.4 gives an example of those

different grid structures given the same number of grid points. For the sake of easy

implementation, we use rectangular areas instead of the 5-σ ellipsoid and the sensor

range circle.
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Fig. 2.4.: Examples of Different Grid Structures
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We test these three discretization methods using different grid densities (number of

grid points). For each grid density, 1000 Monte Carlo simulations of the test scenario

have been performed, and the failure rate of the 1000 simulations is calculated. A

failure is defined as: once the target is lost, it is unable to be re-captured till the

end of the simulation. The failure rate is the total number of failures divided by

1000. We also calculate the normalized root-mean-square (RMS) error of the position

estimation. The normalized RMS error is given by:

err = (x̂(t)− x(t))T P̂ (t)−1(x̂(t)− x(t)) (2.42)

where we take the difference of the estimated and the real target positions and

normalize it by the estimation covariance. It should be noted that in the calculation

of average RMS error, only the successful test cases are considered.
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Fig. 2.5.: Performance of Different GS Term Construction Methods

Figure 2.5 presents the average performance of the three proposed discretization

methods with different grid densities. The circles, cross and plus signs correspond to

the data points of the first, second and third methods, respectively. A summary of the

simulation results is given in Table 2.1. It can be observed that with an appropriate

grid density, our estimation algorithm can track a target with an average estimation
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error bounded by the 5-σ ellipsoid, whether the target is detected or lost. In addition,

the failure rate is below 2% with an appropriate grid density.

Table 2.1.: Summarized GSF Simulation Results

Test GS Term Construction # GS Terms RMSE(σ) Failure Rate (%)

1 whole map 25x25 7.7 98

2 whole map 50x50 4.6 1.5

3 whole map 100x100 4.6 0.2

4 5-σ area 25x25 4.6 3.8

5 5-σ area 50x50 4.5 0.9

6 5-σ area 100x100 4.5 0.2

7 alternative density 50x50 4.6 0.8

8 alternative density 100x100 4.5 0.2

As for the comparison of the different discretization methods, the third approach

has excessively high failure rates at low grid densities and therefore their results are

not included. Despite those discarded data points, one can observe that in com-

parison to the first construction method, the second and third methods generally

have comparable precision and reliability improvements when the same grid density

is used because they apply the limited resource to the areas which are more impor-

tant and avoid those areas with negligible effects. In other word, these two methods

can achieve similar performance level with fewer cost. Generally speaking, the sec-

ond method (discretizing the 5-σ area) has the best balance of tracking error and

reliability.

In addition, we show that our proposed estimation approach is more efficient

and reliable than the grid-based direct numerical RBE [27]. Figure 2.6 compares the

estimation time cost and failure rate of our algorithm using uniform map discretization

to those of the numerical RBE. Table 2.2 summarizes the simulation results. As can

be seen, our unified algorithm is overall more efficient and more reliable. For example,
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Fig. 2.6.: Comparison of the Proposed Estimation and the Numerical RBE

Table 2.2.: RBE/GSF Simulation Results

Test Algorithm # of Grid/GS Terms 1-Step Time Cost(s) Failure Rate (%)

1 RBE 25x25 0.2 95

2 RBE 30x30 0.25 92

3 RBE 50x50 0.3 48

4 RBE 80x80 0.4 38

5 RBE 150x150 1.2 30

6 GSF 25x25 0.02 98

7 GSF 30x30 0.04 5.5

8 GSF 50x50 0.1 1.5

9 GSF 80x80 0.18 0.2

10 GSF 160x160 0.42 0

if we require the tracking failure rate below 30%, the numerical RBE needs about

80×80 grids, which leads to the average estimation time cost of 0.4s per step; on the

other hand, our proposed approach only needs about 30×30 GS terms, resulting the

average estimation time cost of less than 0.05s per step. Further discussion can be

found in our previous work.
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Fig. 2.7.: Test Scenario 2: Multi-target Tracking

2.4.3 Scenario 2: Multi-target Tracking

Figure 2.7 shows the multi-target tracking scenario; the figure illustrates the target

trajectories as well as the sensor range. As a common situation in the context of multi-

target tracking [43], although the targets move toward a similar direction, they can

be distant during the mission. In our scenario, the maximum separation range of the

targets is about 260m. Two algorithm are tested in this scenario. The first one applies

our proposed estimation and guidance algorithms. As a performance benchmark, the

second one uses the dead-reckoning estimation and the proposed guidance law. Based

on the study in the previous section, in the first test algorithm, we discretize the 5-σ

area to a 50× 50 grid space whenever a Gaussian sum needs to be constructed.

The test results of the first algorithm are presented in Figure 2.8. The UAV’s

trajectory is given by the dashed red line in Figure 2.8(a). From the trajectory it can

be observed that whenever the UAV is unable to cover all the 3 targets, it tries to

cover 2 of them first and then search for the lost one. A more quantified description

of the UAV’s behavior can be obtained from Figure 2.8(b), where the information

entropy of the targets are given. The information entropy of the j th target at time t

is a linear function of the logarithm of the determinant of its estimation covariance:

entropy = log
∣

∣

∣
Pj(t)

∣

∣

∣
+ b (2.43)
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Fig. 2.8.: Test Results of Algorithm 1: Proposed State Estimation Algorithm and

Guidance Law

where b is constant. As a target being lost, its information entropy increases

quickly; once the target is re-detected, its information entropy drastically drops. In

Figure 2.8(b) one can observe the alternate loss of targets 1 and 2 from the rises

and falls of the information entropy values. To better illustrate this point, Figure 2.9

shows the motions of the UAV and the targets at multiple time steps of the simulation

result in Figure 2.8(a). The black dashed lines in the figures represent the sensor

detection range. As can be seen, the targets move away from each other so that the

sensor cannot cover all of them simultaneously; however, the UAV follows the desired

tracking strategy such that it minimizes the uncertainty by tracking as many targets

as possible (two targets in the scenario), and goes back for the lost target from time

to time.

Figure 2.10 shows the optimization time costs of using the original objective func-

tion (2.27) and the transformed objective function (2.36) w.r.t the number of function

evaluations. The data points are collected from the 3-target simulation case. As can

be seen, typically one step of optimization involves hundreds of times of function

evaluations; although the time cost grows linearly for both objective functions as we
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Fig. 2.9.: Trajectories of Targets and the Tracking UAV
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discussed previously, the transformed objective function that we propose is signifi-

cantly more efficient.
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Fig. 2.11.: Test Results of Algorithm 2: Dead-reckoning and the Proposed Guidance

Law

Figure 2.11 shows the test results of the second algorithm. The UAV’s trajectory

in Figure 2.11(a) indicates that it still follows the desired tracking strategy since it

uses the proposed guidance law. However, the second algorithm does not track the

targets as effectively as the first algorithm does, since the dead-reckoning estimation

introduces higher estimation errors, especially when a target is lost. The information

entropy has lower values in the second algorithm, however, this does not indicate that

the second algorithm is more certain about the targets’ location and thus better. The

low information entropy values are due to the fact that the proposed Gaussian sum

estimation introduces more uncertainty than the dead-reckoning estimation when a

target is lost. In fact, given the large estimation error the dead-reckoning method

has, it actually provides a highly optimistic estimation with a much smaller confidence

area than the actual situation, which shows ineffective tracking performance.

Figure 2.12 and Table 2.3 compares the normalized RMS error of all the targets

of the two estimation methods. The dead-reckoning estimation produces excessively

high errors especially when a target is lost, therefore the tracking can be considered

as ‘failure’ at those points. On the other hand, the proposed estimation algorithm

produces a relatively low estimation error, even in the cases that a target is lost.
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Fig. 2.12.: RMS error comparison

Table 2.3.: Multi-target Tracking Simulation Results

Test # of Targets Algorithm # of Grid/GS Terms Max. Error(σ)

1 3 GSF 50x50 9

2 3 Dead-reckoning N/A 40



36

3. MULTI-TARGET IDENTITY MANAGEMENT WITH

MOBILE SENSORS

3.1 Background

In this chapter, we propose a new sensor scheduling algorithm to actively and op-

timally seek target identity information for multi-target identity management (MIM).

Managing multiple target identities is essentially associating the target position es-

timates with their identities over time. In the past decades, approaches such as

Multiple Hypothesis Tracking (MHT) [52, 53], Joint Probabilistic Data Association

(JPDA) [6, 54, 55], and the Markov Chain Monte Carlo (MCMC) approach [56–58]

were applied to the identity association problem. While the conventional data asso-

ciation techniques try to assign the target estimates to tracks, they do not explicitly

tell whether different tracks belong to the same target identity, and thus may give

incorrect identity association results especially, when targets get close to each other

within the sensor’s resolution range or cross their paths (known as track coalescence);

in addition, the exponential complexity in associating the target estimates with the

target identities is another problem of the above data association approaches. Re-

cent years have seen studies addressing the above issues, which result in techniques

of tracking labeled targets [59–62] and approximations to keep the computational

complexity in check [63–67]. However, these general data association approaches do

not consider a unique feature in the context of identity management: the local tar-

get identity information. This information may be available at any time during the

identity management; it can be an observation of the target’s shape or color from the

sensors, or an transmission from an aircraft’s identity transponder, etc. In the iden-

tity management scenarios, it is desired that this target identity information can be

facilitated for multiple target tracking and identity management, whenever available.
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As a solution to the identity management problem, the identity belief matrix,

which stores and updates the probabilistic distributions of the target identities, was

introduced [68]. Based on the concept, the Multiple-Target Tracking and Identity

Management (MTIM) algorithm framework has been proposed to not only associate

and manage the target identities efficiently over time with polynomial complexity,

but also incorporates the local identity information whenever available [10, 69–72].

The local information incorporation plays a significant role in identity management,

especially during the track coalescence cases. Almost all of the current studies assume

that the local information is obtained frequently; it has not been seriously considered

how the local information should be acquired efficiently when multiple sensors are

available, which can be achievable due to the rapid development of sensor networks in

the field of target tracking [73,74]. Specifically, let’s consider a sensor that can identify

the targets once they are within its surveillance range, and then, the problem of ‘how

to acquire the local information’ becomes a sensor scheduling problem of which target

the sensor should identify next and how to control the sensor to identify the selected

target, so that all the targets can be identified and their identities tracked correctly

and efficiently over time. The sensor scheduling problem for MTIM is composed of two

key elements: optimal sensor scheduling (to decide which target to be identified next)

and sensor control (to drive the sensor to identify the selected target). The target

to be identified should be selected optimally based on the current knowledge of the

target identities; for example, identifying a target whose identity is already known is

meaningless and wasting available resources, while identifying a target whose identity

is most unclear could be an optimal decision.

In summary, the main contribution of this chapter is to develop an MIM frame-

work with a robust closed-loop sensor scheduling algorithm, which, for the first time,

considers actively seeking the target identity information so that the targets’ identi-

ties (along with the target states) are effectively and efficiently tracked and managed

over time. The algorithm framework we propose is a general solution, i.e., the math-

ematical formulation does not consider the specific types of sensors or targets. In
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real applications where the types of sensors and targets are given, one can choose the

corresponding models for the algorithm.

The rest of this chapter is organized as follow: We present the mathematical defi-

nitions used in the chapter and introduce the basic concepts of identity management

in Section 3.2. In Section 3.3, we first formulate the MIM algorithm with one sec-

ondary sensor, and then extend it to a decentralized network of multiple secondary

sensors. The performance of the algorithm is demonstrated in Section 3.4.

3.2 Preliminaries

In this section, we present the mathematical notations and definitions of the prob-

lem used in the chapter. We also give a brief introduction of the basics of identity

management, including the identity belief matrix, and its propagation and update

procedures.

3.2.1 Sensor and Target Models

In this chapter, the primary sensor is assumed to be stationary and able to keep

track of targets within its sensing range. The secondary sensors, on the other hand,

are assumed to be mobile (e.g., UAVs). We denote the state of the m-th secondary

sensor at time t as xs
m(t), and its equations of motion as:

xs
m(t+ 1) = f s

m(x
s
m(t), um(t)) (3.1)

where um(t) is the control input to the sensor at time t. It should be noted that

the motion model of the secondary sensor (3.1) can be either a kinematic model or a

dynamic model, depending on the actual application. For example, consider that we

use a UAV equipped with a camera as the secondary sensor, then we may either use

the dynamic equations for (3.1), with um(t) being the dynamic input such as throttle,

or assume that the lower level controller is already available and use the kinematic

equations for (3.1), with um(t) being the waypoint commands.
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Denote the state of the j-th target at time t as xj(t), j = 1, 2, ...N , where N is

the number of targets which is assumed to be known and fixed. In this chapter, we

use the kinematic models for target state tracking [51]:

xj(t+ 1) = fj(xj(t), wj(t)) (3.2)

where wj(t) is white noise. The state estimates of the targets are provided by the

primary sensor at each time step. The estimate of the j-th target at time t is denoted

as x̂j(t).

3.2.2 Identity Management Basics

Identity Belief Matrix

The identity belief matrix B(t) at the t-th time step is defined as an N × N

doubly-stochastic matrix (a non-negative matrix whose row and column sums are 1),

where N is the number of targets (columns) and the number of possible identities

(rows). The entry of B(t), denoted as bij(t), represents the probability that the j-th

target estimate x̂j(t) has the i-th identity. The j-th column of B(t), denoted as bj(t),

is then the probability distribution of x̂j(t)’s identity.

As time goes on, the identity belief matrix can be propagated with the new target

estimates. This is accomplished by introducing the mixing matrix M(t), which is

also an N × N doubly-stochastic matrix. Its entry mij(t) represents the probability

of x̂j(t) being originated from x̂i(t−1), i.e., the estimates x̂j(t) and x̂i(t−1) belong to

the same target identity. 1 The mixing matrix M(t) is a collection of marginal asso-

ciation probabilities per se, and in theory can be calculated from the joint association

probability [75]. In practice, however, to avoid the intensive calculation of the joint

association probability, heuristic approaches can be applied by utilizing the dynamic

1Note that at different times t1 and t2, M(t1) and M(t2) are assumed to be statistically independent
with each other.
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information of the targets [68]. The propagation of the identity belief matrix can be

described as:

B(t+ 1) = B(t)M(t+ 1) (3.3)
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Fig. 3.1.: State Estimates for Two-target Example

For example, consider the two-target identity management example shown in Fig-

ure 3.1. In this example, we assume that target 1’s ID is ‘A’ and target 2’s ID is ‘B’.2

At time t, the target state estimates are given by x̂1(t) and x̂2(t), respectively, and if

we assume that the probability of ‘target 1’s ID is B’ is 0.2, then the belief matrix is:

B(t) =





0.8 0.2

0.2 0.8





At time t+ 1, the target estimates x̂1(t+ 1) and x̂2(t+ 1) get close to each other

within the resolution range of a sensor so that they are almost equally likely to be

originated from either of the previous estimates. For instance, suppose that there is

a 60% probability that the target state estimates x̂1(t) and x̂1(t + 1) belong to the

same target, then, the mixing matrix is:

2In practice, ID can be a flight number such as ‘BA2490’, or an aircraft model such as ‘Boeing 747’,
or friend or foe, depending on the application
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M(t) =





0.6 0.4

0.4 0.6





Then, the belief matrix B(t+ 1) at time t+ 1 can be updated as:

B(t+ 1) = B(t)M(t) =





0.56 0.44

0.44 0.56





In summary, one can recursively compute the identity belief matrix at each time.

However, as shown in the example, the update procedure in (3.3) does not reduce the

uncertainty about the target identities [68]. Therefore, local information about the

targets’ identities is needed to reduce the uncertainty in the target identities.

Local Information Update

As we previously stated, local information is the information about the target

identities obtained from sensors. To clearly explain the idea, let us consider a 3-

target system with 3 possible IDs: ‘A’, ‘B’ and ‘C’, and initially we have a uniform

belief of the identity (i.e., we do not know who is who):

B =











1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3











Suppose that at some instant, it is identified that the 3rd target’s ID is ‘C’, then

the local information is represented as a column vector
[

0 0 1
]T

, and the prior

identity belief matrix with the incoming local information becomes:

B =











1/3 1/3 0

1/3 1/3 0

1/3 1/3 1











This prior belief matrix violates the doubly-stochastic property, and therefore it

should be logically scaled to:
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B =











1/2 1/2 0

1/2 1/2 0

0 0 1











Note that the above matrix is the updated belief matrix using the local informa-

tion. As the example shows, the local information on a target can change the global

information on all the targets’ identities. Thus, the identity management of all the

targets can be effectively and efficiently performed. Although quite trivial in this

case, updating an arbitrary belief matrix is no easy task. The Sinkhorn scaling [76]

is applied to scale any prior belief matrix to satisfy the doubly-stochastic property.

The computational efficiency of the scaling procedure can be improved by taking

polynomial approximation [72].

3.3 Multi-target Identity Management Algorithm

In this section, we first introduce the proposed MIM algorithm with one primary

sensor and one secondary sensor to better illustrate the proposed algorithm. Then,

we extend the MIM algorithm to multiple secondary sensors.

The overall structure of the proposed algorithm with one secondary sensor is shown

in Figure 3.2. The primary sensor performs the multi-target tracking and the multi-

target identity management tasks; the secondary sensor, on the other hand, tracks

and identifies the targets through the sensor optimization and control processes. Each

of the rectangular blocks inside the sensor blocks in Figure 3.2 represents an algorithm

component.

3.3.1 Primary Sensor

Without loss of generality, in this chapter we assume the primary sensor to be

stationary and have a sufficiently large detection range to detect all the targets. We
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Fig. 3.2.: Overall Algorithm Structure

assign the primary sensor to perform the multi-target state estimation and identity

management tasks.

At each time step, the primary sensor measures the states of the targets and assigns

the measurements using the information provided by the identity management block

to generate the state estimates of the targets. The state estimates provide necessary

information for the primary sensor to perform the identity management task. In

addition, the state estimates are also transmitted to the secondary sensor for its

optimization and control. The primary sensor is able to generate the target estimates

at each time step via the state estimation block. Since the algorithms running on the

primary sensor are not the major concern of this chapter, we do not discuss them in

detail. The algorithm architecture we propose is a general framework, therefore, any

suitable multi-target tracking and measurement association algorithms [1,13,20,21,77]

can be applied to the state estimation block. In practice, one may also use multiple

primary sensors to jointly track multiple targets [78–81]. However, the primary goal

of this chapter is to demonstrate the connection between the primary sensor and the

secondary sensor, and therefore we only consider a single primary sensor for better

illustration of the proposed method.

The identity management block stores an N×N identity belief matrix B(t) where

N is the number of targets and their identities, and updates it overtime. At each
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time step, the identity management block first calculates the target state mixing

matrix M(t) using the target state estimates. The calculation of M(t) is essentially

associating measurements to the target estimates, and various approaches have been

developed [68, 69, 71] and can be applied directly. Then, the belief matrix B(t) is

updated with the mixing matrix M(t) via the update equation (3.3).

In addition to updating B(t) with M(t) at each time, the identity management

block also accepts the local information provided by the secondary sensor whenever

the secondary sensor is able to identify a target, and updates B(t) with the local

information as previously explained.

3.3.2 Secondary Sensor: Overview

The secondary sensor is assumed to be able to identify one target at a time when-

ever the target is within its sensor range. It is also assumed that the secondary sensor

is able to estimate its own states.

Whenever the secondary sensor is un-occupied (e.g., after initialized or previous

tasks completed), the sensor optimization block obtains the target state estimates and

the identity management results from the primary sensor to find an optimal solution

composed of the target to be identified next and a sequence of control inputs for the

secondary sensor to capture the selected target. Once a solution is found, the sensor

control block applies not only the control inputs from the sensor optimization block,

but also the correction inputs calculated from the target state estimates provided by

the primary sensor. The secondary sensor keeps pursuing the selected target until

the control input sequence is completly executed (regardless of whether the target is

identified or not at the end), before it starts a new sensor optimization operation.

Whenever a target is identified, the secondary sensor sends the corresponding local

information to the primary sensor, in the form of a column vector as introduced

in Section 3.2.2. The design of the secondary sensor algorithm blocks is the major

content of this chapter, and is thoroughly discussed below.
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3.3.3 Secondary Sensor: Sensor Optimization

The sensor optimization block collects the target state estimates and the identity

management information from the primary sensor, and solves an optimization prob-

lem to find the next target to be identified as well as the corresponding control input

sequence. If no feasible optimal solution is found, the sensor optimization block pro-

vides a baseline solution. As we are considering only one secondary sensor for now,

the superscript m denoting the m-th secondary sensor is omitted in this section.

Optimization Problem Formulation

In probabilistic target tracking scenarios, the concept of minimizing the expecta-

tion of a statistical cost function which represents the uncertainty level is a widely

adopted information-driven approach [82–85]. Since the identity belief matrix B(t) is

essentially a matrix of probability distributions, one can calculate the uncertainty lev-

els of the distributions (e.g., information entropy) and use them to quantify the knowl-

edge of the target identities. In this chapter, we adopt the similar information-driven

idea to formulate the optimization problem. By using the Shannon entropy [86], we

define the total information entropy of the identity belief matrix B(t) as:

H[B(t)] =
N
∑

j=1

−bj(t)T log bj(t) =
N
∑

j=1

N
∑

i=1

−bij(t) log bij(t) (3.4)

where bj(t) represents the j-th column of B(t) and bij(t) is the i-th entry of bj(t).

It should be noted thatH[B(t)] represents the overall identity uncertainty of the entire

system composed of N targets: the larger H[B(t)] means that we are more uncertain

about the target identities. Furthermore, if we know all the target identities, then

H[B(t)] reaches to its lower bound 0. Then, the sensor optimization problem is to

find the next target to be identified such that the expectation of H[B(t)] given that

the target is identified is minimized. To express the expectation of H[B(t)], we first

define a random matrix B(t|j, i) as the identity belief matrix B updated by the local
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information that ‘the ID of the j-th target has the i-th identity’ at time t. Then, the

expectation of H[B(t)] given that the j-th target is identified, can be written as:

E

[

H[B(t)]
∣

∣j

]

=
N
∑

i=1

bij(t)H[B(t|j, i)] (3.5)

i.e., the sum of all possible Shannon entropies from the j-th target being identified,

weighted by the probability that the ID of the j-th target has the i-th identity.

To formulate the optimization problem, it also needs to be considered that the time

gap between an optimal control sequence being found and the control sequence being

completely executed, since it takes time for the secondary sensor to move and identify

the selected target. The idea we use in this chapter is to treat the sensor motion as a

constraint of the optimization problem, and investigate the cumulative performance

of the objective function (3.5). Such idea is well developed and commonly adopted in

the area of optimal control [87–89]. Specifically, we formulate the sensor optimization

problem as below:

find j, u(t), u(t+ 1), ..., u(t+ T − 1)

min J =
T−1
∑

τ=0

E

[

H[B(t+ τ)]
∣

∣j

]

s.t. xs(t+ τ + 1) = f s(xs(t+ τ), u(t+ τ))

u(t+ τ) ∈ [uinf, usup]

x̂i(t+ τ + 1) = fi(x̂i(t+ τ), wi(t+ τ))

B(t+ τ + 1) = B(t+ τ)M(t+ τ + 1)

M(t+ τ + 1) = fM(x̂i(t+ τ), x̂i(t+ τ + 1))

i = 1, 2, ..., N

τ = 0, 1, ..., T − 1

(3.6)

The optimization problem in (3.6) aims to find a target to be identified and the

corresponding sensor control sequence to minimize the cumulative expectation of the

Shannon entropy over a given time window T . The sensor motion is constrained by
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its motion model and control input limits. It should be noted that one can use ei-

ther kinematic models or dynamic models as the sensor constraints, as discussed in

Section 3.2.1. The prediction of the target states is also addressed as the constraints

of the optimization problem. The target state prediction is necessary for the opti-

mization problem to calculate the expected identity belief matrix. Since the actual

dynamics of the target motion is generally unknown, we use the kinematic propaga-

tion models to predict the target states [51]. The identity belief matrix B(t+ τ + 1)

and the mixing matrix andM(t+τ) are propagated using the target states prediction.

We first propagate the mixing matrix M(t + τ) by associating the predicted target

states x̂i(t+τ +1) with the previous target states x̂i(t+τ); the mixing matrix is then

used to propagate the identity belief matrix B(t + τ + 1), from which the Shannon

entropy is calculated.

The mixed-integer optimization problem (3.6) is, however, not well posed, since

the problem is to find a set of continuous variable u(t), u(t + 1), ... and an integer

index j which represents the j-th column of a matrix, and it is difficult to optimize

a matrix index [50]. To make the problem better posed, we first introduce a set

of binary variables Yjτ ∈ {0, 1}, where j = 1, 2, ..., N and τ = 0, 1, ..., T − 1. The

expression Yjτ = 1 represents the j-th target is identified by the secondary sensor at

time τ , and Yjτ = 0 indicates that the j-th target is not identified by the secondary

sensor. Then, the objective function in (3.6) can be written as:

J =
T−1
∑

τ=0

(

YjτE

[

H[B(t+ τ)]
∣

∣Yjτ = 1

]

+ (1−
N
∑

j=1

Yjτ )H[B(t+ τ)]

)

(3.7)

The term (1 −
N
∑

j=1

Yjτ )H[B(t + τ)] in (3.7) represents the cost function when no

target is identified at time τ : when Yjτ = 0, ∀j, the Shannon entropy of the belief

matrix given that no target is identified is calculated; and when Yjτ = 1, ∃j, the
term is 0. To mathematically describe the definition of Yjτ , additional constraints are

included in the optimization problem:
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Yjτ ∈ {0, 1}, ∀j, τ (3.8)

N
∑

j=1

Yjτ ≤ 1, ∀τ (3.9)

f (Y )(Yjτ , x̂j(t+ τ), xs(t+ τ)) ≤ 0, ∀τ (3.10)

The constraint (3.8) is the definition of the binary variable Yjτ , and the con-

straint (3.9) represents the assumption that at most one target at a time can be

identified by the secondary sensor. The constraint (3.10) is a function of Yjτ , and

the target and secondary sensor states such that the target should be identified by

the sensor whenever Yjτ = 1. For example, assume a target is identified as long

as it is within the sensor range, and denote the sensor range as rs, and then the

constraint (3.10) can be expressed as:

Yjτ

(

||x̂j(t+ τ)− xs(t+ τ)||2 − r2s
)

≤ 0, ∀j, τ (3.11)

It should be noted that the inequality (3.11) is an example of how the inequal-

ity (3.10) can be formulated, and the definition of (3.10) does not require that the

sensor can always perfectly identify the targets. In fact, when the sensor missed/false

detection is considered, the constraint (3.10) can be constructed accordingly by in-

troducing corresponding factors such as the probability of detection, etc. With the

additional variables and constraints, the optimization problem (3.6) can be rewritten

as:
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find S = {Yjτ , u(t), u(t+ 1), ..., u(t+ T − 1)}

min J(S) =
T−1
∑

τ=0

(

YjτE

[

H[B(t+ τ)]
∣

∣Yjτ = 1

]

+

(1−
N
∑

j=1

Yjτ )H[B(t+ τ)]

)

s.t. xs(t+ τ + 1) = f s(xs(t+ τ), u(t+ τ))

u(t+ τ) ∈ [uinf, usup]

x̂j(t+ τ + 1) = fj(x̂j(t+ τ), wj(t+ τ))

B(t+ τ + 1) = B(t+ τ)M(t+ τ + 1)

M(t+ τ + 1) = fM(x̂j(t+ τ), x̂j(t+ τ + 1))

Yjτ ∈ {0, 1}
N
∑

j=1

Yjτ − 1 ≤ 0

f (Y )(Yjτ , x̂j(t+ τ), xs(t+ τ)) ≤ 0

∀j ∈ {1, 2, ..., N} and τ ∈ {0, 1, ..., T − 1}

(3.12)

where S denotes the set of all optimization variables. The problem (3.12) is

a dynamic programming problem with constraints, and numerical methods can be

applied to solve the problem in practice [90].

It should be noted that although the problem (3.12) is posed in a simple yet illus-

trative environment, it can be extended to complex real environments. To consider

practical situations, such as sensor positioning limits, field of view limits, line of sight

blocks, etc., one simply need to formulate these conditions as additional constraints

to the optimization problem. To study the solution properties of the optimization

problem (3.12), we first introduce the following lemma:

Lemma 3.3.1 Given an arbitrary identity belief matrix B(0) with its j-th row denoted

as bj, and a local information vector lj0 which identifies the j0-th target, i.e., lTj0 =

[0, ..., 0, 1, 0, ..., 0]T . Denote B(2) as the identity belief matrix updated from B(0) with
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lj0, then the Shannon entropy of the updated belief matrix B(2) is no greater than that

of the original belief matrix B(0):

H[B(2)] ≤ H[B(0)]

and the equality holds if and only if the j0-th target is already identified before the

local information is incorporated.

Proof To prove the lemma, we separately discuss the 2 cases that the j0-th target

is identified or un-identified before lj0 is obtained.

Case 1 The j0-th target is already identified. In this case, the incorporation

of lj0 does not change the identity belief matrix, thus we have B(2) = B(0) and

H[B(2)] = H[B(0)].

Case 2 The identity of the j0-th target is unknown. We first denote the belief

matrix that replaces the j0-th column of B(0) with lj0 as B(1), where B(1) is the

unscaled version of the updated belief matrix B(2) such that B(1) violates the row

sum and column sum constraints of the identity matrix. Then, it is obvious that

H[B(1)] < H[B(0)], since −lTj0 log lj0 < −bTj0 log bj0 when the j0-th target’s identity is

unknown a priori.

According to the Sinkhorn scaling algorithm [76], for all entries of the matrices

B(1) and B(2) (denoted as b
(1)
ij and b

(2)
ij , respectively), we have the following equation:

b
(2)
ij = d1ib

(1)
ij d2j

where d1i and d2j are scaling factors. Furthermore, specifically for the local infor-

mation incorporation in this chapter, we have d1i > 1 and d2j > 1 for all i and j. This

is because the scaling factors are in fact the ratios of the desired row/column sums

(which are 1) to the actual row/column sums of B(1) (which are less than 1 since the

local information substitutes some of the entries of B(1) for 0) [76]. Therefore, by

defining tij = d1id2j, we have:
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H[B(2)] =
N
∑

j=1

N
∑

i=1

−b(2)ij log b
(2)
ij =

N
∑

j=1

N
∑

i=1

−kijb(1)ij log(tijb
(1)
ij )

=
N
∑

j=1

N
∑

i=1

−kijb(1)ij log b
(1)
ij − kijb

(1)
ij log kij

<

N
∑

j=1

N
∑

i=1

−b(1)ij log b
(1)
ij

= H[B(1)]

The inequality holds since tij > 1 and the term tijb
(1)
ij log kij is strictly positive.

This completes the proof as we have H[B(2)] < H[B(1)] < H[B(0)], when the identity

of the j0-th target is unknown a priori.

Combining Cases 1 and 2, the lemma is proved.

Intuitively, Lemma 3.3.1 indicates the fact that identifying a target reduces the

uncertainty of the identity belief matrix, thereby the uncertainty of the entire system

composed ofN targets. With Lemma 3.3.1, we now define two sets of feasible solutions

to the optimization problem (3.12): S0 = {S|Yjτ = 0, ∀j, τ} and S1 = {S|Yjτ =

1, ∃j, τ}. S0 represents the set all feasible solutions such that no target is identified

during the optimal control sequence, and S1 represents the set of all feasible solutions
such that at least one target is identified at some instance. Then, we have the following

theorem:

Theorem 3.3.2 Let S∗ be the optimal solution to the problem (3.12), and let S0 and

S1 defined as above. If S1 6= ∅, then S∗ ∈ S1.

Proof If S0 = ∅, the theorem holds. Otherwise, let S0 and S1 be two feasible

solutions to the problem (3.12), where S0 ∈ S0 and S1 ∈ S1. Moreover, without loss

of generality, we assume that ∀Yjτ ∈ S1, Yj0τ0 = 1 and Yjτ = 0, ∀jτ 6= j0τ0. Then, by

the definition of the cost function (3.7), we have:

J(S1)− J(S0) = E

[

H[B(t+ τ)]
∣

∣Yj0τ0 = 1

]

−H[B(t+ τ)]
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since all the other terms in the cost functions J(S1) and J(S0) are identical and

can be canceled out. By Lemma 3.3.1, it can be deduced that:

E

[

H[B(t+ τ)]
∣

∣Yj0τ0 = 1

]

< H[B(t+ τ)] (3.13)

Therefore, we have J(S1) < J(S0). The inequality means that any feasible solu-

tions from the set S1 is better than all the feasible solutions from the set S0, which
concludes the proof.

Theorem 3.3.2 indicates the optimality of the problem (3.12): as long as it is

feasible, solving the optimization problem (3.12) always yields to the identification

of a target at some point within the given time window to minimize the Shannon

information entropy of the targets’ identities.

Robustness and Convergence

When no feasible solution exists for the optimization problem (3.12), we apply the

following baseline strategy as a robustness safeguard to prevent the algorithm from

abruptly terminating: pursue the target that is currently most uncertain (greedy op-

timization), i.e., at time t, the secondary sensor starts to pursue the j-th target with

the highest −bj(t)T log bj(t). In fact, the strategy is equivalent to minimizing the

objective function (3.7) with the time window of T = 0, regardless of the constraints

and the control inputs, and perform the pursuit control separately. The pursuit con-

trol, however, is not the major concern of this chapter, and various pursuit strategies

have been solidly developed and can be applied to a range of kinematic/dynamic

objects [91, 92].

It can be shown that the performance of applying the proposed optimization

strategy along with the robustness safeguard is guaranteed under the following as-

sumptions:

(a) No prior information about the target identities is initially available.
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(b) The targets do not get close within the sensor’s resolution limit after the al-

gorithm begins.

(c) The effect of M(t) is negligible (i.e., M(t) can be considered as a unit matrix).

Assumptions (b) and (c) in fact consider an ideal case where the targets do not

interact with each other. In practice, however, whenever two targets interact with

each other, e.g., get close within the sensor’s resolution limit, it can be considered as

a ‘re-initialization’ of the algorithm, and the assumptions will hold until the targets

start to interact again. Then, under the assumptions, we have the following theorem:

Theorem 3.3.3 Given assumptions (a), (b) and (c), the identity belief matrix B(t)

updated by the secondary sensor converges to the true identity in at most N optimiza-

tion steps, where N is the number of targets.

Proof By Lemma 3.3.1, once the j-th target is identified, it will not be revisited

given the assumptions, since identifying any other uncertain targets results in a lower

cost function value, making it a better solution to problem (3.12) than re-identifying

the j-th target. Note that the previous statement holds whether the solution is found

from the optimization problem (3.12) or from the robustness safeguard. Either way,

all targets will be visited exactly once in N optimization steps, i.e., all the target

identities will be certain in at most N optimization steps.

Note that Theorem 3.3.3 assumes the perfect identification of a target. In the cases

where the target identification is not perfect, i.e., the local information generated

by the secondary sensor is a belief of the target’s identities which is uncertain to

some extent, the true identity belief is no longer achievable. However, the identity

belief matrix still converges to a minimum uncertainty level based on the ‘quality’

(uncertainty) of the local information within N optimization steps, as can be seen in

the simulation results.
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3.3.4 Secondary Sensor: Sensor Control

If there is no feasible solution to the optimization problem (3.12), the sensor con-

trol block pursues the target given by the robustness safeguard. Whichever the pursuit

strategy is used, the control block uses the target state information provided by the

primary sensor to pursue the target. On the other hand, if a solution to the optimiza-

tion problem (3.12) is found, denoted as S∗ = {u∗(t + τ), Y ∗
jτ}, where j = 1, 2, ..., N

and τ = 0, 1, ..., T − 1, the sensor control block applies the control inputs until any

target is identified, and once there is a target identified, the algorithm loops back to

the sensor optimization block. To interpret the control strategy mathematically, we

first define:

τ0 = inf{τ
∣

∣Y ∗
jτ = 1}

j0 ∈ {j
∣

∣Y ∗
jτ0

= 1}
Then, the control strategy can be described as: whenever an optimal solution S∗ is

given, the sensor control block applies the control sequence u∗(t), u∗(t+1), ..., u∗(t+τ0)

and identifies the j0-th target at time t+ τ0. The above control strategy requires the

j0-th target needs to be identified by the secondary sensor at time k + τ0, which

is generally not guaranteed due to the imprecise target motion prediction. Thus,

additional control inputs are required so that the prediction error can be compensated

during the sensor control. The control strategy we apply is to keep the relative

position between the j0-th target and the secondary sensor as planned, i.e., feed the

prediction error of the j0-th target to the secondary sensor to calculate correction

control inputs in addition to the planned control input sequence. Let u∗(ts), ts =

t, t + 1, ..., t + τ0 be the control inputs in the optimal solution S∗, and u(ts) be the

actual control inputs applied in the sensor control block. Then, the proposed idea is

essentially calculating the correction control inputs uc(ts) from the prediction error

such that:

u(ts) = u∗(ts) + uc(ts)
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This way, the control inputs obtained from solving the optimization problem (3.12)

are still applied, along with a sequence of correction terms. Next, we show that the

prediction error can be compensated by calculating u(ts)
c from appropriate feed-

back controllers, if the linear sensor motion models are used for the secondary sen-

sor optimization/control. Denote the actual state of the secondary sensor at time

ts, (ts = t, t + 1, ..., t + τ0) as x
s(ts), the predicted secondary sensor state generated

by the optimal control input u∗(ts) at time ts as xs∗(ts), and the deviation between

them as ds(ts), i.e.,:

xs(ts + 1) = f s(xs(ts), u(ts))

xs∗(ts + 1) = f s(xs∗(ts), u
∗(ts))

xs(ts) = xs∗(ts) + ds(ts)

(3.14)

Similarly, let the actual and the predicted states of the j0-th target, and the

deviation between them at time t be xj0(ts), xj0∗(ts), and dj0(ts), respectively. Then,

we also have:

xj0(ts) = xj0∗(ts) + dj0(ts) (3.15)

Let dsp(ts) and dp,j0(ts) be the position components of ds(ts) and dj0(ts), re-

spectively. Then, the proposed strategy is then in fact controlling the deviation

dsp(ts)→ dp,j0(ts) through the inputs u(ts) = u∗(ts)+uc(ts). Particularly, if the linear

motion model is used for the secondary sensor, i.e.,:

xs(ts + 1) = Asxs(ts) + Bsu(ts)

Then, combining the equations in (3.14), we have the propagation equation of the

deviation between the actual and the predicted states of the secondary sensor:

ds(ts + 1) = Asds(ts) + Bsuc(ts) (3.16)

Then, the proposed strategy is equivalent to controlling the linear system (3.16)

with an input to the position components. As long as the system (3.16) is stablizable,
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the goal can be achieved by designing appropriate feedback controllers, e.g., PID con-

trollers or other feedback controllers for linear systems for uc(ts) [93]. Furthermore,

we would like to make a few additional remarks: (1) the proposed control strategy

only requires the motion model of the secondary sensor to be linear, and the tar-

get motion prediction model makes no difference to the conclusion; (2) the proposed

strategy can be extended to nonlinear sensor motion models through proper lineariza-

tion procedures, as has been extensively studied in the area of nonlinear systems and

control [94]; and (3) in practice, the ‘actual’ target and sensor states used by the

feedback controller are generally the estimates of the states when the measurements

are corrupted by noise.

3.3.5 Extension to Multiple Secondary Sensors

In practice, a single secondary sensor may have limited mobility and operation

range, which could make our algorithm’s performance degrade in scenarios with a large

operation area and numerous targets. To improve the proposed algorithm’s capabil-

ity and practicality for larger-scale applications, we extend the algorithm to multiple

secondary sensors. Generally, managing multiple sensors involves selecting/assigning

sensors to their tasks, and let the sensors plan their works independently (for decen-

tralized networks) [95,96]. In this section, we propose a strategy of secondary sensor

selection and independent planning.

Assume the operation area is bounded and known a priori, we divide it into mul-

tiple sectors. Each secondary sensor is assigned to a sector: the sensor assigned to

a sector can identify the targets within the sector. Whenever a secondary sensor is

un-employed, it obtains the state and identity information of all the targets within its

assigned sector from the primary sensor. Figure 3.3 shows the modified algorithm ar-

chitecture of the primary/secondary sensors. The newly added ‘target selection’ block

performs the task of selecting and sending the target information to the secondary

sensor. The communication strategy is identical between the primary sensor and
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each secondary sensor, and the secondary sensors operate independently, as shown in

Figure 3.4.

Fig. 3.3.: Algorithm Structure and Sensor Communication Strategy

Fig. 3.4.: Multiple Secondary Sensor Operation Structure

After a secondary sensor obtains the target information, it solves an optimization

problem to find the next target to be identified. We extend the optimization prob-

lem (3.12) with additional constraints to address the setup that the secondary sensor

is assigned to a sector. The optimization problem solved by them-th secondary sensor

is formulated as follow:
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find S = {Ym,jτ , um(t), um(t+ 1), ..., um(t+ T − 1)}

min J(S) =
T−1
∑

τ=0

(

Ym,jτE

[

H[Bm(t+ τ)]
∣

∣Ym,jτ = 1

]

+

(1−
Nm
∑

j=1

Ym,jτ )H[Bm(t+ τ)]

)

s.t. xs
m(t+ τ + 1) = f s

m(x
s
m(t+ τ), um(t+ τ))

um(t+ τ) ∈ [uinf
m , usup

m ]

gsm(x
s
m(t+ τ), um(t+ τ)) < 0

x̂j(t+ τ + 1) = fj(x̂j(t+ τ), wj(t+ τ))

Bm(t+ τ + 1) = Bm(t+ τ)Mm(t+ τ + 1)

Mm(t+ τ + 1) = fM(x̂j(t+ τ), x̂j(t+ τ + 1))

Ym,jτ ∈ {0, 1}
Nm
∑

j=1

Ym,jτ − 1 ≤ 0

f (Y )
m (Ym,jτ , x̂j(t+ τ), xs(t+ τ)) ≤ 0

∀j ∈ {1, 2, ..., Nm} and τ ∈ {0, 1, ..., T − 1}

(3.17)

where Nm is the number of targets within the m-th secondary sensor’s assigned

sector. Bm is the identity belief matrix of the Nm targets, which is not square but

N × Nm. Mm is the Nm × Nm mixing matrix of the Nm targets. In addition to the

sensor’s motion model and control input limits, its motion is also constrained by the

assigned sector which is defined by the function gsm(·). The problem (3.17) solved

by the m-th secondary sensor only optimizes its own (instead of global) information

entropy within its assigned sector, since the secondary sensors are independent of

each other and therefore have no information from each other.

Whenever the optimization problem is solved, the secondary sensor follows the

same control strategy proposed in Section 3.3.4 to identify the target. The extended
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algorithm is decentralized in that the secondary sensors do not need to synchronize

with each other, and each secondary sensor solves its own optimization problem.

It should be noted that the mathematical guarantees we obtained in Section 3.3.3

may not hold when the targets keep jumping between sectors. However, we show

in simulation that the algorithm performs well in the scenarios with common target

motion patterns.

3.4 Numerical Examples

In this section, we demonstrate the performance of the proposed algorithm, with

single and multiple secondary sensors, via illustrative numerical examples. The tar-

gets in the simulation scenarios are assumed to be ground targets (e.g., ground vehi-

cles). In some test scenarios, the targets are set to be non-maneuvering and move with

constant speeds, while in other test scenarios the targets are maneuvering and their

trajectories are randomly generated. As a benchmark, we also run the simulation

cases without the secondary sensors to identify the targets, i.e., only the multi-target

state estimation and the identity belief matrix propagation are performed. Since the

primary sensor still performs tracking and data association, these benchmark cases

are similar to the conventional multi-target tracker, where local identity information

is not incorporated.

3.4.1 Sensor Modeling

We use a stationary sensor with a detection area that covers the entire map (about

1km×1km) as the primary sensor, and fast-moving UAVs equipped with fixed narrow-

ranged sensors as the secondary sensors.

At each time step, the primary sensor measures all the target positions with the

measurement noise covariance:
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



(10)2 0

0 (10)2





which means the standard deviation of the position error is 10m in both dimen-

sions. Since the multi-target tracking block of the primary sensor is not the major

concern of the chapter, we use the standard Kalman filter [20] to track the targets,

with the constant velocity target state propagation model [51]:

x(t+ 1) = Fcvx(t) +Gcvw(t) (3.18)

where

Fcv = diag[F1, F1], Gcv = diag[G1, G1]

F1 =





1 Ts

0 1



, G1 =





T 2
s /2

Ts





w(t) ∼ N (0, 1) is unit white noise, and Ts is the measurement sampling time

which is set to be 1s. The constant velocity target propagation model (3.18) is also

used by the optimization problem (3.12).

Each secondary sensor (UAV) flies at a constant cruise speed of 65tts (about

30m/s) with a minimum turn radius of 21m.3 It is assumed that the UAV has a

closed-loop position controller so that given a waypoint command input, the UAV

is able to fly to the waypoint. Then, the sensor (UAV) motion model used in the

optimization can be written as the following kinematic model:

xs(t+ 1) = Asxs(t) + u(t)

where As = diag(1, 1) is the unit matrix. The input u(t) is the essentially the

relative position (regarding to the UAV’s current position) of the next waypoint; u(t)

is bounded since the waypoint should be reachable by the UAV in 1 time step. It

should be noted that the kinematic model is only used for the optimization, and the

3This is a common setup for a large variety of UAVs, e.g., see http://drones.cnas.org/drones/.
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simulation of the UAV trajectory uses a line-of-sight waypoint guidance model [97].

For the sensor control, the correction input uc(t) is given by the following feedback

controller:

uc(t) = K(dp,j0(t)− dsp(t)) (3.19)

where K is the control gain and its value is set to be 0.9 in this section. The

detection range of the sensor mounted on the UAV is set to be 30m, i.e., the UAV is

able to identify one target within 30m at each time. Due to the short detection range

of the sensor, the UAV needs to move close to a target in order to identify it, as will

be shown in the results.

3.4.2 Single Secondary Sensor and Non-maneuvering Targets

The test scenario is shown in Figure 3.5, where 5 targets move at different yet

constant velocities so that their motion can be predicted accurately. The time du-

ration of the scenario is 100s. We use this scenario to test the performance of the

algorithm under both the perfect and partial target identification conditions.

Case 1: Perfect Target Identification

In this case, the secondary sensor’s target identification is assumed to be perfect

such that the true target identity can be detected. We test the proposed algorithm

with different optimization time windows T in the problem (3.12). In addition, two

different initial conditions are applied to the simulation tests: (1) the worst case, i.e.,

the identities of all the targets are initially unknown so that the probability of the

target identities are uniformly distributed at the beginning; and (2) the best case,

i.e., all the targets’ identities are initially known.

Figure 3.6 shows the trajectories of the targets and the secondary sensor (UAV)

at multiple time instances during the scenario with an optimization time window of

T = 15s, given the worst case initial condition. The trajectory of the tracking UAV
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Fig. 3.5.: Target Trajectories of the Test Scenario

is given by the red dashed line. Figure 3.6 shows that the secondary sensor always

moves to and identify the targets that get too close (thereby losing their identities).

Moreover, between the time instances t = 50 and t = 80, the 2nd target (given by the

orange trajectory) and the 5th target (given by the green trajectory) start to move

close to each other, although they are still far away and differentiable between the

time instances. However, the algorithm is able to predict the behavior of those two

targets and commands the UAV to start to move to the area where the two targets

possibly get close.

To study the performance of the algorithm, we first quantify the performance

using the KL divergence [98]. Namely, let I be the true identity matrix, which is

essentially an identity belief matrix whose entries are composed of only 0s and 1s.

We study the KL divergence between the true identity I and the identity belief matrix

B:

DKL(I||B) = −
N
∑

j=1

N
∑

i=1

Iij log
Bij

Iij

It should be noted that a small KL divergence DKL(I||B) indicates that our

identity belief matrix is close to the true identity (and hence certain), and vice versa.

Furthermore, DKL(I||B) = 0 means all the targets are correctly identified. Figure 3.7

shows the KL divergence DKL(I||B) over time corresponding to the simulation result
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Fig. 3.6.: Trajectories of the Targets and the Tracking UAV

shown in Figure 3.6. As shown by the red line, the KL divergence starts high and

drops every time a target is identified. In addition, the KL divergence converges to

0, i.e., all the targets are correctly identified after the secondary sensor performs 4

identifications, as predicted by Theorem 3.3.3. In addition, Figure 3.7 also presents

the identity management result without using the proposed secondary sensor iden-

tification algorithm, given the worst case initial condition. As shown by the blue

line, the KL divergence does not decrease from the start, i.e., the targets’ identities

can not be differentiated. However, the proposed algorithm using a secondary sensor

can reduce the uncertainty of the targets’ identities, and eventually all the targets’

identities are correctly identified and maintained.

Figure 3.8(a) gives the probabilities of each target having each of the identities

along the test duration, in the test case using the proposed secondary sensor algo-

rithm. One can observe a mixing of the probabilities of targets 3 and 4 between

the time instances t = 20 and t = 30, corresponding to the peak value of the red

line in Figure 3.7. However, the identity belief is restored by the algorithm quickly
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Fig. 3.8.: Probabilities of the Targets’ Identities with the Worst Initial Condition

after the mixing of the probabilities appears, as the secondary sensor identifies the

uncertain targets. Moreover, it should be noted that the probability mixing rarely

happens even though the targets get close at multiple time instances. This is because

for most of the mixing situations, the algorithm successfully predicts them and keeps

identifying the targets when they start to have even the slightest uncertainties, and

the correct identity belief matrix is able to be maintained. On the other hand, as

shown by Figure 3.8(b), the probabilities of the targets’ identities remain uniformly

distributed in the test case without using the proposed algorithm, which corresponds

to the non-decreasing KL divergence in Figure 3.7.



65

0 10 20 30 40 50 60 70 80 90 100

time

0

0.2

0.4

0.6

0.8

1

1.2

K
L 

di
ve

rg
en

ce

without the proposed algorithm
with the proposed algorithm

Fig. 3.9.: Quantified Performance Measured in KL Divergence
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Fig. 3.10.: Probabilities of the Targets’ Identities with the Best Initial Condition

We also run the simulation scenario with and without the proposed algorithm

given the best case initial condition, where the targets’ identities are known from the

start. As shown by the blue line in Figure 3.9, when the proposed secondary sensor

identification algorithm is not used, the KL divergence increases and converges to a

non-zero value, i.e., even though the target identities are initially known, they can be

mixed due to the interactions between the targets and cannot be recovered without the

secondary sensor identifying them. On the other hand, as shown by the red line, the

targets’ identities can be accurately tracked over time when the proposed secondary

sensor identification algorithm is applied. The probabilities of the targets’ identities
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Fig. 3.11.: Performance with Different Optimization Time Window

given the best case initial condition are shown in Figure 3.10. Similar to those in

the worst case, there is a mixing of the probabilities of targets 3 and 4 between the

time instances t = 20 and t = 30 as the two targets cross their tracks, even though

their identities are initially known. The mixing of the probabilities corresponds to the

rapid increase of the KL divergence in Figure 3.9. As Figure 3.10 shows, the mixing of

the probabilities can be successfully recovered by the secondary sensor identification.

By calculating the KL divergence DKL(I||B), Figure 3.11 compares the perfor-

mance of the algorithm run with different optimization time windows T , given the

worst case initial condition. It should be noted that the case of T = 0 means that

the algorithm does not solve the optimization problem (3.12) and only applies the

baseline pursuit strategy (i.e., pursuit the currently most uncertain target). As the

figure shows, the proposed algorithm always converges in certain time steps as de-

scribed by Theorem 3.3.3. However, the actual number of time steps needed for

convergence varies depending on the choice of T . Applying only the baseline pursuit

strategy takes more time steps to converge, since the control inputs generated by the

baseline strategy are not guaranteed to be as optimal as those obtained from solving

the optimization problem (3.12). Furthermore, the test result shows that increasing

the time window T does not necessarily improve the performance. This is because

the prediction error still occurs in this scenario due to the sensor measurement noise,
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and therefore the larger time window T is, the more the prediction error will be cu-

mulated, thereby degrading the performance. On the other hand, smaller T values

may cause the algorithm less likely to find the feasible optimal solutions and apply

the baseline pursuit strategy more often, and results in reduced performance.

Table 3.1.: Average Usage of the Baseline Pursuit

T Baseline Pursuit Usage (%)

0 100

3 65

5 46

10 12

15 9

Table 3.1 shows the usage of the baseline pursuit strategy when different time

windows T are used. The usage is defined as the number of time steps during the

scenario that the UAV applies the control inputs generated from the baseline pursuit

strategy. In the table, we present the usage as a percentage of the number of time

steps out of the total time steps of the test scenario. In addition, we study the

average percentage of 100 Monte-Carlo tests due to the random measurement noise

we introduced in the simulation. The baseline pursuit usage of the algorithm with

T = 0 is 100%, as the algorithm does not apply the optimization technique at all.

Moreover, for smaller time windows T , larger percentages of baseline pursuit usage

are resulted, validating our claim that the optimal solutions are less likely to be found

in those cases.

Case 2: Partial Target Identification

This case demonstrates the robustness and sensitivity of the proposed algorithm

w.r.t. imperfect local information. In this case, the secondary sensor identification is
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assumed to be partial. Each time the secondary sensor identifies a target, it returns

a belief p to the targets’ true identity, i.e., the local information is in the form of

[(1− p)/N, ..., (1− p)/N, p, (1− p)/N, ..., (1− p)/N ]T . The simulations are done with

the worst case initial condition, i.e., the probabilities of the targets’ identities are

uniformly distributed from the start. The optimization window for the tests of the

scenario is set to be T = 10s.
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Fig. 3.12.: Performance Under Partial Target Identification

Figure 3.12 shows the performance of the algorithm with p = 0.8. The KL di-

vergence converges in 5 optimization steps. Although the KL divergence does not

converge to 0 (where all the targets’ identities are certainly obtained), it converges to

a minimum value such that each target has a probability of 0.8 to be its true identity,

which is the best achievable result given the target identification condition.

The performance of the algorithm for different p values, measured in KL diver-

gence, is shown in Figure 3.13. In all of the cases, the algorithm converges within no

more than 5 optimization steps. In addition, the value to which the KL divergence

converges depends on the value of p. A larger p value (i.e., more accurate sensor)

leads to a smaller final KL divergence, which means the algorithm always performs

better with more accurate target identifications.
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Fig. 3.13.: KL Divergence Given Different p Values

3.4.3 Single Secondary Sensor and Maneuvering Targets

In this scenario, 5 maneuvering targets are to be tracked, whose trajectories are

shown in Figure 3.14. The targets move along randomly generated trajectories given

by [27]:

xj(t+ 1) = xj(t) + ∆t · v(t) cos θ(t)

yj(t+ 1) = yj(t) + ∆t · v(t) sin θ(t)
(3.20)

where v(t) and θ(t) are the random speed and direction so that they describe a

random motion pattern that cannot be perfectly predicted by the target propagation

models. ∆t is a time increment. The duration of the test scenario is 100s. For

the scenario, we test and compare the results of the algorithm with and without the

proposed feedback correction control input u(ts)
c. The simulations are done with

the worst case initial condition, i.e., the probabilities of the targets’ identities are

uniformly distributed at the start. The optimization window for the tests of the

scenario is set to be T = 10s. The target identification is assumed to be perfect in

this scenario.

We first present the trajectory of the tracking UAV in Figure 3.15 to illustrate the

performance of the complete algorithm (i.e., with the proposed feedback control) in

the test scenario. As can be observed, the proposed algorithm can track and identify
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Fig. 3.14.: Target Trajectories of the Test Scenario

the targets accurately, especially when the targets heavily clutter together between

time instances t = 50 and t = 70, in the case that the target motion cannot be

accurately predicted.
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Fig. 3.15.: Trajectories of the Targets and the Tracking UAV (with the Feedback

Control)
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In Figure 3.16, we compare the performance of the algorithm with and without the

proposed feedback correction. Figure 3.16(a) presents the KL divergence DKL(I||B)

over the test duration. Although the algorithm converges in both cases with and

without the feedback correction, it takes more time for the case without the feedback

to converge. The reason behind is that in the case without the feedback, it occasion-

ally happens that the target to be identified moves away from the predicted position

when the tracking UAV arrives at that position, so that the target is in fact not

identified. In the test scenario, the ‘missed identification’ situation happens around

the time instance t = 20, where DKL(I||B) of the without feedback case even slightly

increases due to the interaction of two targets. Figure 3.16(b) shows the distance

between the tracking UAV and the target to be identified (which is not consistent

as the algorithm outputs different targets to be identified from time to time). The

black dashed line indicates the detection range of the sensor on the tracking UAV,

i.e., a target is identified only if its distance to the tracking UAV is shorter than the

detection range. Throughout the test duration, the peaks of the distance occur as a

new target needs to be identified (which is usually far away from the tracking UAV’s

current position), and ideally the distance should decrease until it is smaller than the

sensor detection range, as constrained by the optimization problem (3.12). However,

in the case without feedback (shown by the red line), a few local minimum points of

the distance are over the sensor range. This fact indicates that a target is not actually

identified when an optimal control sequence is fully executed, especially around the

time instance t = 20, which explains the non-converging behavior of DKL(I||B) in

Figure 3.16(a).

A more illustrative explanation is given in Figure 3.17, where we show the targets

and the UAV trajectories of both the with and without feedback cases up to the

time instance t = 20. As can be observed, close to t = 20, the 2nd target (orange)

starts to maneuver toward the 4th target (purple), which is not predicted accurately

by the algorithm. In the case without the feedback correction (Figure 3.17(a)), the

tracking UAV keeps moving according to the plan and misses the targets, and thus
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Fig. 3.16.: Performance with/without the Feedback Correction
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Fig. 3.17.: Targets and UAV Trajectories up to t = 20

their identities. On the other hand, in the case with the feedback (Figure 3.17(b)),

the tracking UAV changes its course accordingly and is able to identify the targets.

3.4.4 Multiple Secondary Sensor and Non-maneuvering Targets

As shown in Figure 3.18, in this scenario, the map is divided into 4 sectors, and

each sector is assigned to a secondary UAV (i.e., each UAV stays in its sector and

identifies targets within the sector). The 4 secondary sensors are used to track 7
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moving targets. The time duration of the scenario is 100s. The identities of the

targets are initially unknown so that the probabilities of the target identities are

uniformly distributed at the beginning. The optimization window for the tests of the

scenario is set to be T = 10s. The target identification is assumed to be perfect in

this scenario.

0 200 400 600 800 1000 1200 1400

x(m)

0

200

400

600

800

1000

1200

1400

y(
m

)

target1

target2

target3

target4

target5

target6

target7

uav

Fig. 3.18.: Target Trajectories of the Test Scenario

Figure 3.19 shows the trajectories of the targets and the secondary sensors (UAVs)

at multiple time instances during the scenario. The trajectories of the tracking UAVs

are given by the red dashed lines. Initially, there are no targets in the low-right sector,

and the UAV assigned to the sector loiters until a target comes in (about t = 60).

Whenever targets move close, for example, target 2 (the orange trajectory) and target

5 (the green trajectory) between the time instances t = 60 and t = 80, the tracking

UAVs assigned to the sectors where the targets are commanded to move and identify

them.

Figure 3.20(a) shows the KL divergence DKL(I||B) over time. Starting with no

initial identity knowledge, all targets are correctly identified at t = 25 as the KL

divergence converges to 0. The target identities become mixed again at t = 70 since

some targets get close at the time; however, they are re-identified soon after and the

KL divergence converges back to 0 again.
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Fig. 3.19.: Trajectories of the Targets and the Tracking UAVs
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Fig. 3.20.: Algorithm Performance

Figure 3.20(b) presents the probabilities of each target having each of the identities

along the test duration. One can observe a mixing of the probabilities of targets 2

and 5 between the time instances t = 70 and t = 90, corresponding to the increase of
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the KL divergence in Figure 3.20(a), which happens as the two targets get close while

cross the sector boarder. However, the identity belief is restored by the algorithm

quickly as the secondary sensors identify the uncertain targets.

3.4.5 Multiple Secondary Sensor and Non-maneuvering Targets: Large

Scale Application

The test scenario is shown in Figure 3.21, where 24 targets (trajectories are given

by the black dash-dot lines) move at different yet constant velocities. Same to scenario

1, the map is divided into 4 sectors as shown by the black dashed lines, and each sector

is assigned to a UAV. The initial positions of the UAVs are shown by the red circles.

The time duration of the scenario is 100s. The identities of the targets are initially

unknown so that the probability of the target identities are uniformly distributed at

the beginning. The optimization window for the tests of the scenario is set to be

T = 10s. The target identification is assumed to be perfect in this scenario.
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Fig. 3.21.: Target Trajectories of the Test Scenario

The test results are demonstrated in Figure 3.22, which shows the KL divergence

between the identity belief matrix computed by our proposed algorithm and the true

identity. As the tracking UAVs move to identify the targets, the KL divergence,
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Fig. 3.22.: Quantified Identity Tracking Performance Measured in KL Divergence

starting from a high value at the beginning since no initial knowledge on the target

identities is available, converges to 0 as time proceeds. Occasionally the target iden-

tities get mixed again after they have been already identified, however, the sensors

are able to re-identify them. The results show that the proposed algorithm is able

to effectively handle the scenarios with a large operation area and numerous targets,

provided the targets do not jitter between the sector boundaries. Figure 3.23 shows

the trajectories of the targets and the secondary sensors (UAVs) at multiple time

instances during the scenario. The trajectories of the tracking UAVs are given by the

red dashed lines.

3.4.6 Multiple Secondary Sensor and Maneuvering Targets

As shown in Figure 3.24, in this scenario, 4 secondary sensors are used to track

7 constantly-maneuvering targets. The target trajectories are generated through the

same way in Section 3.4.3. The time duration of the scenario is 100s. The optimization

window for the tests of the scenario is set to be T = 10s. Similar to the previous

simulation settings, the identities of the targets are initially unknown, and the target

identification is assumed to be perfect.
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Fig. 3.23.: Trajectories of the Targets and the Tracking UAVs
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Fig. 3.24.: Target Trajectories of the Test Scenario

Figure 3.25 shows the trajectories of the targets and the secondary sensors (UAVs)

at multiple time instances during the scenario. The trajectories of the tracking UAVs

are given by the red dashed lines.
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Fig. 3.25.: Trajectories of the Targets and the Tracking UAVs

Figure 3.26(a) shows the KL divergence DKL(I||B) over time. Starting with no

initial identity knowledge, all targets are correctly identified at t = 40 as the KL

divergence converges to 0. Figure 3.26(b) presents the probabilities of each target

having each of the identities along the test duration. One can observe the interaction

of the identity probabilities between targets 2, 3, and 4 around t = 30, which is

recovered quickly after.

The simulation result shows that the multi-sensor version-ed algorithm is also

able to handle the disturbance in the target state estimate/prediction. However, our

test results indicate that the algorithm’s performance still relies on a decent target

state estimation model. For example, the algorithm no longer works properly if the

constant velocity motion model is applied in a scenario where targets constantly

perform turnings with varying turning rates, as the algorithm is unable to provide

accurate target state estimate/prediction; in this case, one need to select a more

appropriate target motion model according to [51].
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Fig. 3.26.: Algorithm Performance
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4. MULTI-TARGET IDENTITY MANAGEMENT OF

UNKNOWN AND TIME-VARYING NUMBER OF

TARGETS

4.1 Background

In practice, the number of targets is unknown and time-varying because targets

may move into and/or out of the surveillance region of the tracking system (e.g., air-

craft takeoff/landing), or the tracking system can lose or regain targets due to clutter

or occlusion, etc., making the task of multi-target tracking and identity management

even more challenging. Despite the substantial development in sensing and track-

ing techniques, there is no algorithm available for simultaneous target tracking and

identity management for an unknown and time-varying number of targets; it is this

chapter’s emphasis to fill the gap in the area of study. In this chapter, we propose

a new multi-target identity management algorithm, named GMPHD-IM algorithm,

which can keep track of an unknown and time-varying number of targets and their

identities simultaneously in a cluttered environment.

While joint probabilistic data association filters (JPDAF) have been tradition-

ally used for scenarios where the number of targets is assumed to be known and

fixed [1, 77, 99], recent research interests have been leaning to tracking an unknown

number of targets, which leads to the probability hypothesis density (PHD) filter

and its approximated implementation with linear-model assumptions, the Gaussian

mixture probability hypothesis density (GMPHD) filter [12, 13]. In general, how-

ever, multi-target tracking algorithms do not explicitly keep track of the identities

of different targets. More recent algorithms attempt to perform track association or

labeled-target tracking [62, 100]; while these algorithms effectively associate the es-

timated target states with tracks/labels, they still do not explicitly tell how target
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identities should be assigned to tracks or labels, and thus could give incorrect identity

management results. For example, these algorithms could generate multiple tracks

for one target, or assign the same label to multiple targets, especially in the case of

track coalescence. Another missing piece in the implicit identity management per-

formed by traditional multi-target tracking algorithms is the incorporation of target

identity information (e.g., transmissions from an aircraft identity transponder, an ob-

servation from sensors such as camera, etc.), which may occasionally be available in

real tracking scenarios, especially with the emerging application of (heterogeneous)

sensor networks in multi-target tracking [74,101].

To simultaneously keep tracking both targets’ states and identities, the multi-

target tracking and identity management (MTIM) algorithms have been proposed

based on JPDAF and identity belief matrix [10, 69, 71]. The MTIM algorithms use

an identity belief matrix to probabilistically represent the identities of all the tar-

gets. They use JPDAF to track multiple targets in clutter and calculate the target-

measurement association information, which is used to propagate the identity belief

matrix over time. The target identity information (i.e., local information) on some

targets can also be incorporated whenever available to reduce uncertainties in the

identities of all the targets within the sensor’s surveillance range. Despite the re-

search progress in tracking an unknown and time-varying number of targets with

the GMPHD filter, the current MTIM algorithms are not capable of handling this

situation for two reasons: first, the GMPHD filter does not explicitly calculate the

target-measurement association and therefore cannot be directly applied to provide

necessary information for identity management; and second, the current mathemat-

ical framework of the identity management is incomplete in that it is only able to

process a known and fixed number of targets.

In this chapter, we propose a new multi-target identity management algorithm,

called GMPHD-IM algorithm, which is able to simultaneously track and manage

the identities of an unknown and time-varying number of targets. We introduce a

generalized mathematical framework of identity management which can deal with
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an unknown and time-varying number of targets. Within the proposed mathemati-

cal framework, the GMPHD-IM algorithm can actively manage the identities of the

targets over time by maintaining the target identity belief (i.e., the probability distri-

butions of the targets’ identities) through a recursive propagation-update procedure.

The target identity belief is propagated with the target-measurement association out-

put from multi-target tracking algorithms. In this chapter, we use the modified-

covariance GMPHD (MC-GMPHD) filter from [102] for better tracking performance,

and develop a method to calculate the target-measurement association probabilities

from the weights of the Gaussian mixture terms without introducing additional com-

putational complexity. Whenever there is available target identity information on

some targets, the algorithm updates the target identity belief with the information

such that the uncertainties in the identities of all the targets are reduced. The uncer-

tainties in the identities is calculated from the statistical entropy of the identity belief

matrix. The target identity belief, together with the target state estimates generated

by the MC-GMPHD filter, forms the output of the proposed algorithm. One major

application of the proposed algorithm is to track and identify aircraft in air traffic

control (ATC), or unmanned aircraft in UAS traffic management (UTM), which can

help improve the safety while decreasing the human operator’s workload.

The rest of this chapter is organized as follow. We first present the preliminary

concepts and the overall architecture of the proposed GMPHD-IM algorithm in Sec-

tion 4.2. Then, in Section 4.3, we give the mathematical formulation of the new

identity management framework. The details of the GMPHD-IM algorithm compo-

nents are presented in Section 4.4. The performance of the algorithm is demonstrated

with illustrative numerical examples in Section 4.5.
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4.2 Preliminaries and Algorithm Overview

In this section, we first present the preliminaries of the basic multi-target identity

management concepts. Then, an overview of the proposed GMPHD-IM algorithm is

given.

4.2.1 Identity Management Basics

An identity belief vector of a target is a column vector which represents the prob-

ability distribution that the target having a particular identity. Naturally a target

has only one identity, therefore the sum of all elements in the identity belief vector

should be 1. Suppose we consider the same identity sample space for all targets in

the surveillance system, i.e., the identity belief vectors of all targets have the same

dimension. Then, the identity belief vectors can be combined as one identity belief

matrix. For example, let us consider two target estimates x̂1(t) and x̂2(t) at time t,

and three identities ‘A’, ‘B’ and ‘C’. Then, the identity belief matrix is in the form:











0.8 0.1

0.2 0.7

0.0 0.2











where the first column is the identity belief vector of x̂1(t), which is the probability

distribution that x̂1(t) having ID ‘A’, ‘B’ and ‘C’, receptively. The main task of multi-

target identity management is to propagate the identity belief matrix over time and

update it whenever there is available target identity information on some targets.

Propagation: The identity belief matrix is propagated using the association infor-

mation between the current and previous target estimates. The association informa-

tion is in the form of a mixing matrix, whose element represents the probability that

a current target estimate is originated from a previous target estimate. For example,

let us consider three target estimates x̂1(t), x̂2(t) and x̂3(t) at time t, and two target
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estimates x̂1(t − 1) and x̂2(t − 1) at time t − 1. Then, the mixing matrix is in the

form:





0.8 0.1 0.01

0.1 0.8 0.01





In this example, the entry at (1, 1) means that the probability that x̂1(t) is origi-

nated from x̂1(t− 1) is 0.8.

Update: The identity belief matrix should be updated with target identity in-

formation on some targets to reduce uncertainties in the identities of all the targets

within the sensor’s surveillance region, whenever such information is available. Tar-

get identity information usually comes from transmissions from an aircraft identity

transponder, an observation from sensors such as camera, etc. Such target identity

information on a target can be represented as an identity belief vector, i.e., a column

vector which is defined as local information.

The formal mathematical definitions of the identity belief matrix and mixing ma-

trix, along with the propagation and update equations, are presented in Section 4.3.

4.2.2 GMPHD-IM Algorithm Overview

In this chapter, we propose the GMPHD-IM algorithm to manage the identities

of an unknown and time-varying number of targets as well as estimate their states.

Figure 4.1 shows the multi-target identity management algorithm structure for each

time step. As mentioned previously, the identity management recursively propagates

and updates the identity belief matrix.

The identity belief matrix propagation requires the mixing matrix, which con-

tains the target association information and is in general obtained from multi-target

tracking and estimation algorithms. In this chapter, we use the MC-GMPHD filter

from [102] for target state estimation, and augment it to calculate the mixing ma-

trix during the estimation process. Figure 4.2 shows the steps of the MC-GMPHD

filter and mixing matrix building. The MC-GMPHD filter applies the standard GM-
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Fig. 4.1.: GMPHD-IM Algorithm Architecture

PHD prediction, pruning and extraction processes; however, for the measurement

update, the MC-GMPHD uses a modified-covariance equation which explicitly con-

siders the origin of the measurement (i.e., whether the measurement is a true target

measurement or clutter). As the MC-GMPHD filter updates the target states with

new measurements, we construct the mixing matrix using the information from the

MC-GMPHD update process. The mixing matrix is then pruned as the MC-GMPHD

performs its own pruning process.

After the identity belief matrix propagation, if there is available local information,

we update the identity belief matrix such that the overall uncertainty level is reduced.

The identity belief matrix, after update and/or local information incorporation, along

with the target state estimates are the output of the proposed algorithm. The details

of the GMPHD-IM algorithm are presented in Section 4.4

4.3 Mathematical Framework of Identity Management

In this section, we propose a mathematical framework of managing the identities of

an unknown and time-varying number of targets. Consider the following problem. At

time t, there are Nt targets whose states are estimated by the target tracking system.
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Fig. 4.2.: MC-GMPHD and Mixing Matrix Building

Meanwhile, there are Lt possible identities for theNt targets considered by the identity

management system. For each target whose identity is unclear, the possible identity

shall theoretically have infinitely many candidates; however, it is only tractable if

the identity management system considers a finite number of more-likely candidates

and ignore the less-likely ones. The number of identity candidates considered for one

target is generally more than one, and therefore we have Lt ≥ Nt. The goal of multi-

target identity management is to maintain and update the target identity information

over time and incorporate local information when available. It should be noted that

for the scenario in which Lt = Nt = N is constant, the framework proposed in this

section becomes identical to the current identity management algorithm [68], making

the latter a special case.

4.3.1 Identity Management Formulation

At time t, consider the set of target state estimates X̂ (t) = {x̂j(t)|j = 1, 2, ..., Nt},
and the set of possible enumerated target identities I(t) = {1, 2, ..., Lt}. The core
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idea of the identity management is to calculate the possibility that a target whose

state estimate is x̂j(t) ∈ X̂ (t) has identity i ∈ I(t).
To formulate the multi-target identity management problem, we start by defining

the identity belief matrix B(t).

Definition 4.3.1 The identity belief matrix B(t), whose entry bij(t) represents the

probability that x̂j(t) ∈ X̂ (t) has identity i ∈ I(t), is an Lt ×Nt non-negative matrix

satisfying the following properties:

1.
Lt
∑

i=1

bij(t) = 1, i.e., column stochastic.

2.
Nt
∑

j=1

bij(t) ≤ 1, i.e., the row sums are no greater than one.

The j-th column bj(t) of B(t) is called the identity belief vector of x̂j(t).

B(t) = [b1(t), b2(t), ..., bNt
(t)] ∈ [0, 1]Lt×Nt

where

bj(t) =

















p(x̂j(t)’s ID is 1)

p(x̂j(t)’s ID is 2)
...

p(x̂j(t)’s ID is Lt)

















∈ [0, 1]Lt×1

Indeed, if we consider x̂j(t)’s ID as a random variable, its sample space is infinitely

large. The column stochastic property in Definition 4.3.1 represents the idea that only

a finite number of identities are being considered and all other less-likely candidates

are ignored. The row sums, on the other hand, are generally no greater than one since

each target has only one identity and Lt ≥ Nt. Note that in the case where Lt = Nt,

the row sums are also constrained to one, and thus B(t) becomes doubly-stochastic.

We denote the ‘residue’ vector of the row sums of B(t) as b̄(t):
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b̄(t) = [b̄1(t), b̄2(t), ..., b̄Lt
(t)]T

where b̄i(t) = 1 −
Nt
∑

j=1

bij(t) represents the probability that x̂j(t)’s ID is not i,

∀x̂j(t). Next, we define the mixing matrix M(t).

Definition 4.3.2 The mixing matrix M(t) is an Nt−1×Nt non-negative matrix whose

entry mij(t) represents the probability of x̂j(t) being originated from x̂i(t − 1). The

matrix M(t) satisfies the following properties:

1.

Nt−1
∑

i=1

mij(t) ≤ 1.

2.
Nt
∑

j=1

mij(t) ≤ 1.

i.e., both row and column sums of M(t) do not exceed one.

Conceptually, M(t) is a matrix of association probabilities of all target estimates

between two adjacent time instances. It should also be noted that in general M(t) can

be calculated from measurement association during multi-target tracking [10]. The

constraint that the row sums of M(t) do not exceed one essentially means that each

target at time t − 1 has a possibility of being disappeared from the target tracking

system at time t. The column sums of M(t) are also required not to be greater than

one because it represents the possibility that targets at time t could be new targets

that are not originated from any targets at time t−1. Note that when Nt−1 = Nt = N

is constant over time, the matrix M(t) also becomes doubly-stochastic. We denote

the ‘residue’ vector of the column sums of M(t) as m̄(t):

m̄(t) = [m̄1(t), m̄2(t), ..., m̄Nt
(t)]T

where m̄j(t) = 1−
Nt−1
∑

i=1

mij(t) represents the probability that x̂j(t) is not originated

from x̂i(t− 1) ∀x̂i(t− 1), i.e. x̂j(t) represents a new target.
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The main body of the multi-target identity management is to recursively update

the targets’ identity information. When new target estimates come at time t+1, the

first step is to associate these new estimates with the prior identity set I(t). By the

law of total probability, ∀x̂j(t+ 1) ∈ X̂ (t+ 1), x̂k(t) ∈ X̂ (t) and i ∈ I(t), we have

p(x̂j(t+ 1)’s ID is i) =

Nt
∑

k=1

p(x̂j(t+ 1) is originated from x̂k(t)) · p(x̂k(t)’s ID is i)+

p(x̂j(t+ 1) is a new target) · p(the new target’s ID is i)

(4.1)

On the left hand side of (4.1), p(x̂j(t + 1)’s ID is i) is by definition bij(t + 1).

On the right hand side, the first term can be expressed as
Nt
∑

k=1

bik(t)mkj(t + 1). In

addition, the term p(x̂j(t + 1) is a new target) is by definition m̄j(t + 1). The term

p(the new target’s ID is i), on the other hand, cannot be readily expressed. However,

we do know that the probability that a new target at time t+1 whose ID is i is related

to the probability that no current target at time t has ID i, which, by definition, is

b̄i(t). Therefore, we model p(x̂j(t + 1) is a new target) as λM b̄i(t), where λM is a

modeling parameter which can be viewed as a ‘rate of occurrence’ of the event that a

new target has a specific ID. Then, the propagation equation (4.1) can be written as

bij(t+ 1) =
Nt
∑

k=1

bik(t)mkj(t+ 1) + λM b̄i(t)m̄j(t+ 1) (4.2)

and we have

B(t+ 1) = B(t)M(t+ 1) + λM b̄(t)m̄(t+ 1)T (4.3)

In the case of the number of targets being constant, one can set the modeling

parameter λM = 0 and the propagation equation (4.3) becomes identical to the prop-

agation equation used by the current identity management algorithm [68].

The belief matrix B(t + 1) by now only has target identity information of the

prior identity set I(t). Next, we need to update the identity set as well as the
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belief matrix correspondingly. In this section, we introduce the general idea of this

updating process. A detailed description of the algorithm implementation is presented

in Section 4.4.

The identity set and the identity belief matrix are updated in a way of removing

IDs that are unlikely to appear in the current targets and adding/assigning new IDs

to the current targets. The update of the belief matrix and the identity set takes a

three-step procedure. First, ∀i ∈ I(t), we check the i-th row sum b̄i(t+1) of the belief

matrix B(t+ 1). If the row is sufficiently small (i.e., less than a threshold), it means

that the probability that x̂j(t+1)’s ID is i is negligible ∀x̂j(t+1) ∈ X̂ (t+1), i.e., ID

i is unlikely to appear. Therefore, we remove ID i from the prior identity set I(t),
and correspondingly remove the i-th row in B(t + 1). Next, ∀x̂j(t + 1) ∈ X̂ (t + 1),

we check the j-th column sum of B(t + 1). If the column sum is sufficiently small

(i.e., less than a threshold), it means that the probability that x̂j(t + 1)’s ID is in

the prior identity set I(t) is negligible. Therefore, we expand the identity set with a

new ID assigned to x̂j(t+1) and correspondingly, a new row is appended to B(t+1).

After the above two steps, we check the latest identity belief matrix to see whether

the number of rows is smaller than that of columns. Since each target must have one

identity, this case means that there are new targets whose IDs are not assigned in the

system, but we do not know which of the targets are the new ones. Therefore, we

expand the identity set with new IDs and assign the probability of these new IDs to

all x̂j(t+ 1) ∈ X̂ (t+ 1). Correspondingly, new rows will be appended to the identity

belief matrix so that the number of rows and columns are even. Figure 4.3 shows

illustrative examples of updating the identity set and the identity belief matrix by

removing, adding and assigning identities.

The identity belief matrix B(t + 1) now contains the target identity information

of the updated identity set I(t+1). However, after the above updating process, there

is no guarantee that the new B(t + 1) satisfies the row and column sum constraints

in Definition 4.3.1, especially the column-stochastic constraint. The statistical reason

behind is that the probability that an ID does not belong to any current targets is not



91

(a) Remove an Identity (b) Add an Identity

(c) Assign New Identities

Fig. 4.3.: Examples of Updating Identity Belief Matrix and Identity Set

strictly 1 as we remove the ID and the corresponding matrix row during the update.

Consequently, the sample space of x̂j(t + 1)’s ID is not complete, and the column

sums of the identity belief matrix are usually less than 1. However, in the proposed

identity management framework, we are ignoring this sufficiently small probability

and considering the current target identity set I(t + 1) as a complete sample space

(which is being updated over time). Thus, it is both statistically necessary and

reasonable to rescale the matrix B(t+1) to meet the row and column sum constraints.

In this chapter, we develop a matrix rescaling approach that rescales any non-negative

matrix to a matrix satisfying the constraints in Definition 4.3.1. The details of the

rescaling approach is described in later sections.

4.3.2 Local Information Incorporation

In practice, the local information may come from different sources, such as manual

actions from a human operator, transmissions from the targets, observations from

sensors [103], or calculation from the target dynamic behaviors [69], and it can be

incorporated to update the identity belief matrix.
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In the multi-target identity management framework, the local information is ex-

pressed as an identity belief vector whose entry represents the marginal probability

of the target’s identities. Consider an example of two targets and two identities ‘A’

and ‘B’ at time t. Then, the set of target state estimates is X̂ (t) = {x̂j(t)|j = 1, 2},
and the identity set I(t) = {1, 2} where 1 and 2 are the enumerated identities of ‘A’

and ‘B’, respectively. Suppose the identity belief matrix at time t is

B(t) =





0.6 0.4

0.4 0.6





Note that B(t) is doubly-stochastic in this example since it is square. The local

information for target 2 (corresponding to the 2nd column of B(t)) may arrive in the

form

l2(t) =





0.1

0.9





which means target 2 has ID ‘B’ with a probability of 0.9. Theoretically, this

information can be used to update B(t) through Bayesian normalization. In practice,

however, the normalization approach is infeasible due to its exponential complex-

ity [68]; and as an alternative, it is proposed to replace the corresponding column

in the belief matrix with the local information and then rescale the matrix to meet

the row/column sum requirements [68]. It should be noted that this process can

be viewed as an approximation of the Bayesian update. In the example above, the

updated and rescaled belief matrix is

B(t) =





0.9 0.1

0.1 0.9





The local information may not necessarily contain only the information for the

identities in the current target identity set, but also contain the information for the

identities that are not included at present. Following the example above, the local
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information for target 2 (corresponding to the 2nd column of B(t)) may also arrive

in the form

l2(t) =











0.0

0.8

0.2











which means target 2 has a new ID (neither ‘A’ nor ‘B’) with a probability of 0.2.

To incorporate this information, the target identity set needs to be first expanded.

Then, the column of B(t) is replaced by the local information and becomes











0.6 0.0

0.4 0.8

0.0 0.2











In general, it is not trivial to rescale an arbitrary non-negative matrix (e.g., the

one above). The rescaling approach we develop in this chapter is also applied to the

local information incorporation.

4.3.3 Rescaling of Identity Belief Matrix

The matrix rescaling problem has been much studied by mathematicians in the

past decades [104–106]. The most common case in the matrix rescaling problem,

known as Sinkhorn rescaling [76] which aims to rescale a non-negative square matrix

to a doubly-stochastic one, is widely seen in various statistical applications including

the current identity management algorithms. In this chapter, however, a more general

problem occurs which is to rescale a non-negative rectangular matrix to a column

stochastic one with inequality row sum constraints. To make the chapter concise

and easy-to-follow, in this section we only present the conclusions and our approach

to solve the matrix scaling problem. The detailed mathematical justifications are

included in Section 4.6.1.
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In general, rescaling an arbitrary L×N non-negative matrix B is to find a matrix

B′ = δD1BD2, where δ is a positive scalar, D1 is L × L and D2 is N ×N , both are

diagonal matrices, and B′ satisfies the prescribed row and column sum constraints.

One measure to describe how ‘statistically close’ the two matrices B′ and B are is

the Kullback-Leibler (KL) distance [98]:

DKL(B
′||B) =

N
∑

j=1

L
∑

i=1

b′ij log
b′ij
bij

(4.4)

The following convention is used throughout this chapter: 0 log 0 = 0, 0 log 0
0
= 0,

and b log b
0
= ∞ if b > 0 [69]. We show that for an arbitrary identity belief matrix

B(t) whose dimension is Lt × Nt, finding the rescaling matrix which satisfies the

constraints in Definition 4.3.1 is the same as solving a convex optimization problem

of minimizing the KL distance:

Theorem 4.3.1 The solution to the optimization problem (4.5), if exists, rescales

the Lt ×Nt matrix B(t) to a column-stochastic matrix.

find b′ij(t)

min
Nt
∑

j=1

Lt
∑

i=1

b′ij(t) log
b′ij(t)

bij(t)

s.t.
Nt
∑

j=1

b′ij(t) ≤ 1

Lt
∑

i=1

b′ij(t) = 1

b′ij(t) ≥ 0 if bij(t) > 0

b′ij(t) = 0 if bij(t) = 0

∀i ∈ I(t), ∀j ∈ {1, 2, ..., Nt}

(4.5)

The formal definition of ‘rescaling a matrix’, along with a mathematically rigorous

expression of Theorem 4.3.1 and its proof, are given in Appendix 4.6.1. Note that

the problem (4.5) is convex and can be solved efficiently by optimization approaches
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such as interior-point method [107]. Particularly, for the special case where Lt = Nt,

it is easy to show that the row sum inequality constraints in problem (4.5) converge

to the equality constraints. The converged optimization problem, which is considered

as the belief matrix rescaling problem in the current identity management algorithm,

is proved to be the same as Sinkhorn rescaling [72].

4.4 GMPHD-IM Algorithm

A detailed explanation of the GMPHD-IM algorithm is presented in this section.

As shown in Figure 4.1, the multi-target identity management algorithm comprises

two stages: propagation and update. The propagation of the identity belief matrix

requires the mixing matrix which is computed from the multi-target tracking and

estimation. In this chapter, we use the MC-GMPHD filter [102] to perform the

multi-target tracking and estimation. The MC-GMPHD filter is a GMPHD variant

with a modified covariance update equation, and it generates Nt current target state

estimates at time t. We augment the MC-GMPHD filter so that it simultaneously

computes an Nt−1×Nt mixing matrix using the state estimates of Nt−1 targets from

the previous time step and Kt cluttered measurements from the current time step.

The update stage checks whether the system needs to remove existing IDs or assign

new IDs, and updates the identity belief matrix accordingly. In addition, the identity

belief matrix is also updated whenever there is local identity information available.

Eventually, the GMPHD-IM algorithm outputs the identity belief matrix as well as

the current target estimates.

4.4.1 Identity Belief Matrix Propagation

At time t, given the previous set of target state estimates X̂ (t−1) = {x̂j(t−1)|j =
1, 2, ..., Nt−1} and the current set of measurements Z(t) = {zk(t)|k = 1, 2, ..., Kt},
we use the MC-GMPHD filter to provide the current set of target state estimates

X̂ (t) = {x̂j(t)|j = 1, 2, ..., Nt}. In the mean time, we also develop a method to
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compute the mixing matrixM(t) within the MC-GMPHD framework. While the MC-

GMPHD filter recursively updates a Gaussian mixture (a weighted sum of Gaussian

components), from which the target state estimates can be extracted, the mixing

matrix is constructed meanwhile using the weights of the Gaussian mixture.

Over time, the MC-GMPHD filter updates itself with new measurements, and

performs pruning and extraction to select a number of Gaussian distributions from

the Gaussian mixture [13], each of which represents the distribution of a target state.

As the MC-GMPHD filter performs the pruning and extraction processes, similar

actions are taken by the mixing matrix as well. After the processes, the mixing matrix

is normalized by rescaling. Eventually, for each target state estimate computed by

the MC-GMPHD filter, its association probabilities with all the previous target state

estimates are also given in the form of mixing matrix M(t), which is passed to the

identity management propagation.

Original GMPHD Filter

The GMPHD filter is theoretically based on the finite set statistics (FISST) [12,

108]. Provided the random finite set (RFS) of the multi-target state X (t) and the

RFS of the measurement Z(t), FISST gives the recursive Bayesian filtering of the

multi-target prior density f(X (t)|Z1:t−1) and posterior density f(X (t)|Z1:t) as:

f(X (t)|Z1:t−1) =

∫

f(X (t)|X (t− 1))f(X (t− 1)|Z1:t−1)δX (t− 1)

f(X (t)|Z1:t) =
f(Z(t)|X (t))f(X (t)|Z1:t−1)

∫

f(Z(t)|X (t))f(X (t)|Z1:t−1)δX (t)
(4.6)

where Z1:t = {Z(1),Z(2), ...,Z(t)} is the sequence of the measurement RFS his-

tory and f(X (t)|X (t − 1)) is the state transition density. To make the problem

computationally tractable, the GMPHD filter propagates and updates the posterior

intensity, which is the first order statistical moment of the posterior multi-target state.
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Given the previous RFS of multi-target state X (t − 1), the current-time multi-

target state RFS X (t) is given by the union of surviving targets S(X (t−1)), spawned

targets B(X (t− 1)), and spontaneous births Γ(t):

X (t) = S(X (t− 1)) ∪ B(X (t− 1)) ∪ Γ(t) (4.7)

Assume that X (t) is a Poisson process, i.e., the cardinality of X (t) is subject to
a Poisson distribution and the elements x(t) ∈ X (t) are independent and identically

distributed, the prior intensity I(x(t)|Z1:t−1) and the posterior intensity I(x(t)|Z1:t)

can be recursively calculated as follow [109]:

I(x(t)|Z1:t−1) = γ(x(t)) +

∫

pSf(x(t)|x(t− 1))dx(t− 1)

+

∫

β(x(t)|x(t− 1))I(x(t− 1)|Z1:t−1)dx(t− 1)

I(x(t)|Z1:t) = (1− pD)I(x(t)|Z1:t−1)

+
∑

zk(t)∈Z(t)

pDp(zk(t)|x(t))I(x(t)|Z1:t−1)

λc(zk(t)) +
∫

pDp(zk(t)|η(t))I(η(t)|Z1:t−1)dη(t)

(4.8)

where pD is the probability of detection, pS is the probability that a target still

exists, β(x(t)|x(t−1)) and γ(x(t)) represent the intensities of target spawn and birth,

respectively, and λc(zk(t)) is the intensity of measurement clutter, described by the

Poisson distribution. The GMPHD filter assumes linear Gaussian models for both

target dynamics and measurement, i.e.,

f(x(t)|x(t− 1)) ∼ N (x(t);Ft−1x(t− 1), Qt−1)

p(zk(t)|x(t)) ∼ N (zk(t);Htx(t), Rt)

where N (·;m,P ) denotes a normal distribution with mean m and covariance ma-

trix P . Ft−1 is the state transition matrix; Qt−1 is the process noise covariance; Ht

is the measurement matrix and Rt is the measurement noise covariance. In addition,

the target spawn and birth intensities are assumed in the form of Gaussian mixture:
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γ(x(t)) =

Jγ,t
∑

i=1

ω
(i)
γ,tN (x(t);m

(i)
γ,t, P

(i)
γ,t )

β(x(t)|x(t− 1)) =

Jβ,t
∑

j=1

ω
(j)
β,tN (x(t);F

(j)
β,t−1x(t− 1) + d

(j)
β,t−1, Q

(j)
β,t−1)

(4.9)

where Jγ,t, ω
(i)
γ,t,m

(i)
γ,t and P

(i)
γ,t are given model parameters that determine the shape

of the birth intensity; similarly, Jβ,t, ω
(j)
β,t, F

(j)
β,t−1, d

(j)
β,t−1 and Q

(j)
β,t−1 are parameters

determining the shape of the spawn intensity of a target given its previous state

x(t − 1). It is shown [13] that with the above assumptions, the prior and posterior

intensities in (4.8) can also be expressed in the form of Gaussian mixture. Let the

posterior intensity at time t− 1 be:

I(x(t− 1)|Z1:t−1) =

Jt−1
∑

i=1

ω
(i)
t−1N (x(t− 1);mi(t− 1), Pi(t− 1))

which has Jt−1 Gaussian components. Then, the prior intensity I(x(t)|Z1:t−1) is

given by:

I(x(t)|Z1:t−1) = γ(x(t)) + IS,t|t−1(x(t)) + Iβ,t|t−1(x(t)) (4.10)

where IS,t|t−1(x(t)), Iβ,t|t−1(x(t)) and γ(x(t)) represent the intensities of target

survival, spawn and birth, respectively, all of which can be written in the form of

Gaussian mixture:

IS,t|t−1(x(t)) = pS

Jt−1
∑

i=1

ω
(i)
t−1N (x(t);Ft−1mi(t− 1), Qt−1 + Ft−1Pi(t− 1)F T

t−1) (4.11)

Iβ,t|t−1(x(t)) =

Jt−1
∑

i=1

Jβ,t
∑

j=1

ω
(i)
t−1ω

(j)
β,tN (x(t);m

(i,j)
β,t|t−1, P

(i,j)
β,t|t−1)

m
(i,j)
β,t|t−1 = F

(j)
β,t−1mi(t− 1) + d

(j)
β,t−1

P
(i,j)
β,t|t−1 = Q

(j)
β,t−1 + F

(j)
β,t−1Pi(t− 1)[F

(j)
β,t−1]

T

(4.12)
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and γ(x(t)) given in (4.9). The prior intensity can be re-written in the form of

Gaussian mixture:

I(x(t)|Z1:t−1) =

Jt|t−1
∑

i=1

ω
(i)
t|t−1N (x(t);mi(t|t− 1), Pi(t|t− 1)) (4.13)

The posterior intensity at time t, updated with the measurement set Z(t), is also
in the form of Gaussian mixture:

I(x(t)|Z1:t) = (1− pD)I(x(t)|Z1:t−1) +
∑

zk(t)∈Z(t)

ID(x(t)|zk(t)) (4.14)

where ID(x(t)|zk(t)) is the intensity updated by measurement zk(t) and is calcu-

lated as follow:

ID(x(t)|zk(t)) =
Jt|t−1
∑

i=1

ω
(i,k)
t N (x(t);mi,k(t), Pi(t))

ω
(i,k)
t =

pDω
(i)
t|t−1p(zk(t)|mi(t|t− 1))

λc(zk(t)) +
∑Nt|t−1

j=1 pDω
(j)
t|t−1p(zk(t)|mj(t|t− 1))

p(zk(t)|mi(t|t− 1)) = N (zk(t);Htmi(t|t− 1), HtPi(t|t− 1)HT
t )

mi,k(t) = mi(t|t− 1) +Ki(t)(zk(t)−Htmi(t|t− 1))

Pi(t) = (I −Ki(t)Ht)Pi(t|t− 1)

Ki(t) = Pi(t|t− 1)HT
t (HtPi(t|t− 1)HT

t +Rt)
−1

(4.15)

To obtain target estimates from the cluttered measurements and reduce the com-

putational cost, the GMPHD filter performs pruning and extraction processes after it

updates the posterior intensities. The GMPHD pruning process reduces the number

of Gaussian components propagated to the next time step, preventing the number

of Gaussian components from increasing infinitely over time. During the pruning

process, the Gaussian components that are close to each other are merged to a single

Gaussian; in addition, the Gaussian components with weak weights are discarded.

The extraction process selects Nt Gaussian components from the Jt remaining Gaus-

sian components after the pruning process based on their weights, whose means are
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used as the target state estimates. In this chapter, we use the same pruning and

extraction processes as those of the original GMPHD filter [13].

MC-GMPHD Filter

A well-known issue of the GMPHD filter is the loss of target estimates, especially

in heavily-cluttered circumstances. As there is no explicit data association, the GM-

PHD filter does not explicitly tell the origin of a measurement (i.e., whether it comes

from a target or clutter). More specifically, at each time step, the GMPHD filter

generates Gaussian components with the same estimation covariance for each indi-

vidual measurement, regardless of its origin. As a result, the weight of a previously

extracted Gaussian component is likely to decrease and the GMPHD filter prefers a

spawn or birth Gaussian component (which may in fact come from clutter) to the

previously extracted target. Such issue not only results in inaccurate target state

estimates, but also leads to incorrect identity management results as the extracted

spawn or birth Gaussian components are considered as new targets and are likely to

be assigned with new identities.

Fig. 4.4.: Illustrative Example of the GMPHD Issue

Figure 4.4 illustrates the GMPHD issue with a single-target tracking example.

Suppose at time t + 1, two measurements are obtained, where z1(t + 1) is an actual
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target measurement and z2(t + 1) is a false measurement (clutter). In this example,

the GMPHD filter tends to extract the Gaussian component updated by the false

measurement z2(t + 1) at time t + 1 since it has a higher weight. One main reason

is that the GMPHD filter does not weigh z1(t + 1) over z2(t + 1) according to the

prediction of the Gaussian components, as no explicit data association is involved.

Eventually, this leaves an inaccurate target estimate; in addition, the mixing matrix

M(t+ 1) is 0 in this case and a new identity will be falsely assigned to the target.

The GMPHD issue has recently caught research interests and various improve-

ments to the GMPHD filter have been proposed, such as the refined GMPHD fil-

ter [110], the improved GMPHD filter [111] and the Gaussian mixture cardinalized

PHD [112]. These methods are either heuristic approaches or suffer heavy computa-

tional loads. In this chapter, we use a modified-covariance GMPHD (MC-GMPHD)

filter that we proposed in our recent work [102], in which the origin uncertainty of

a measurement (whether the measurement is originated from a target or clutter) is

explicitly considered when updating the Gaussian components. For brevity, we only

show the conclusions and essential equations in this section. The detailed formulation

and mathematical justification can be found in Section 4.6.2 and [102].

We first define the following events for the k-th measurement zk(t) ∈ Z(t) at time

t:

• Ek
T,t: the event that zk(t) is originated from a target.

• Ek
F,t: the event that zk(t) is originated from a false measurement (i.e., clutter).

The events are assumed to be time-independent, i.e., Ek
T,t1

and Ek
T,t2

are independent

for all t1 6= t2, and the same applies to Ek
F,t. In addition, we assume that the false

measurements are uniformly distributed in the surveillance region, and the number

of false measurements K is subjected to a Poisson distribution with density λ:

µF (K) =
(λVG)

K

K!
e−λVG (4.16)
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where VG is the volume of the surveillance region. The pedestal of the MC-

GMPHD filter is to calculate the probability p(Ek
T,t), given the Kt measurements and

the Jt|t−1 predicted Gaussian components. To describe the condition of the predicted

Gaussian components, we define the random variable Di,k(t), which is the normalized

distance square (NDS) between the k-th measurement and the i-th predicted Gaussian

component at time t:

Di,k(t) = νT
i,k(t)S

−1
i (t)νi,k(t) (4.17)

where νi,k(t) = zk(t)−Htmi(t|t−1) whose covariance Si(t) = HtPi(t|t−1)HT
t +Rt.

Then, the conditional probability of Ek
T,t can be defined and calculated as:

pi,k(t) = p(Ek
T,t|Di,k(t), Kt) =

f(Di,k(t), E
k
T,t, Kt)

f(Di,k(t), Ek
T,t, Kt) + f(Di,k(t), Ek

F,t, Kt)
(4.18)

where f(Di,k(t), E
k
T,t, Kt) and f(Di,k(t), E

k
F,t, Kt) are the joint probability density

functions (pdf) whose expressions are given in Appendix 4.6.2. By the law of total

probability, it is shown [102, 113] that when the measurement origin uncertainty is

explicitly considered, the GMPHD covariance update in (4.15) is given by:

Pi,k(t) = pi,k(t)Pi(t|Ek
T,t) + (1− pi,k(t))Pi,k(t|Ek

F,t)

+ pi,k(t)(1− pi,k(t))Ki(t)νi,k(t)ν
T
i,kK

T
i (t)

(4.19)

where Pi(t|Ek
T,t) = (I−Ki(t)Ht)Pi(t|t−1) is the conditioned covariance given Ek

T,t

and is the same as the standard Kalman filter covariance update; and Pi,k(t|Ek
F,t) is

the conditioned covariance given Ek
F,t and is given by:

Pi,k(t|Ek
F,t) = Pi(t|t− 1) + (αi,k(t)− 1)Ki(t)Si(t)K

T
i (t) (4.20)

where the expression of parameter αi,k(t) is given in Appendix 4.6.2. It should

be noted that (4.19) is essentially conditioned by the NDS Di,k(t). That being said,

instead of treating all measurements indifferently, the new covariance update (4.19)

checks the probability that a measurement is originated from a target according to
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the predicted Gaussian components. As a result, the Gaussian components updated

by the true target measurements are likely to have higher weights, and hence more

accurate target sate estimates and mixing matrices.

Mixing Matrix Construction

The mixing matrix is essentially a collection of the normalized association scores

between the current Nt target estimates and the previous Nt−1 estimates, and is

used to propagate the identity belief matrix over time. One approach to obtain the

mixing matrix is to calculate it during the multi-target tracking/data association pro-

cess and feed it to the identity management process [68, 69]. This approach attaches

the multi-target tracking algorithms to the identity management algorithms and for-

mulates a systematic and simultaneous solution to both multi-target tracking and

multi-target identity management problems. The existing algorithms that can deal

with only a known and constant number of targets calculates the mixing matrix in

three steps [69]. Suppose at time t, there are Kt new cluttered measurements, i.e.,

Z(t) = {z1(t), z2(t), ..., zKt
(t)}. The multi-target tracking/data association process

such as JPDAF first calculates the association scores between the Kt measurements

and the previous Nt−1 target estimates; these association scores form an Nt−1 × Kt

matrix. Then, as the multi-target tracking algorithm selects the measurements and

updates Nt target estimates from the measurements, the corresponding elements are

selected from the Nt−1×Kt matrix, forming an un-normalized Nt−1×Nt association

matrix, i.e., it does not necessarily satisfy the row and column sum constraints (note

that Nt−1 = Nt = N in the conventional identity management case). Finally, the

mixing matrix is obtained by rescaling the un-normalized association matrix.

Whereas no explicit data association is involved in the GMPHD framework, the

similar idea of constructing the mixing matrix can still be adopted. The starting point

is that the calculated weights during the GMPHD update, as described by (4.15), can

be viewed as an analogy to the association scores between the new measurements and
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the previous Gaussian components; then, as the GMPHD extraction process selects

the target estimates from the Gaussian components, the corresponding weights can be

extracted as the association scores between the current and previous target estimates

and form the un-normalized association matrix, from which the mixing matrix can

be acquired by rescaling. One major advantage of this approach of constructing the

mixing matrix is that it preserves the GMPHD filter’s computational efficiency by

avoiding explicit data association, while dealing with the unknown and time-varying

number of targets in clutter.

To construct the mixing matrix, we start with the prior intensity I(x(t)|Z1:t−1).

By (4.10), the prior intensity can be divided into three separate cases: the predictions

of the target birth γ(x(t)), the target spawn Iβ,t|t−1(x(t)) and the target survival

IS,t|t−1(x(t)). Since the prior intensity is a linear combination of Gaussian components

from all the three cases, the posterior intensity updated by the new measurements

can also be separated into the same three cases:

ID(x(t)|Z(t)) = Iγ,D(x(t)|Z(t)) + Iβ,D(x(t)|Z(t)) + IS,D(x(t)|Z(t))

I·,D(x(t)|Z(t)) =
Kt
∑

k=1

I·,D(x(t)|zk(t))
(4.21)

where the Gaussian mixtures Iγ,D(x(t)|Z(t)), Iβ,D(x(t)|Z(t)) and IS,D(x(t)|Z(t))
are the updated intensities of the three cases: target birth, target spawn and target

survival, respectively. Let Gγ , Gβ and GS be the sets of the Gaussian components

of Iγ,D(x(t)|Z(t)), Iβ,D(x(t)|Z(t)) and IS,D(x(t)|Z(t)), respectively. Each Gaussian

component in the update (4.15) belongs to one of the three sets.

By definition, the mixing matrix only concerns the association information with

the previous target estimates, therefore, only the Gaussian components in GS need to

be considered for the construction of the mixing matrix. Following (4.15), the inten-

sity IS,D(x(t)|zk(t)), as the intensity of target survival updated by the measurement

zk(t), can be calculated as:
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IS,D(x(t)|zk(t)) =
Jt−1
∑

i=1

ω
(i,k)
t N (x(t);mi,k(t), Pi,k(t))

ω
(i,k)
t =

pDω
(i)
t|t−1p(zk(t)|mi(t|t− 1))

λc(zk(t)) +
∑Nt|t−1

j=1 pDω
(j)
t|t−1p(zk(t)|mj(t|t− 1))

p(zk(t)|mi(t|t− 1)) = N (zk(t);Htmi(t|t− 1), HtPi(t|t− 1)HT
t )

mi,k(t) = mi(t|t− 1) +Ki(t)(zk(t)−Htmi(t|t− 1))

Ki(t) = Pi(t|t− 1)HT
t (HtPi(t|t− 1)HT

t +Rt)
−1

(4.22)

where Pi,k(t) is the modified covariance update of MC-GMPHD which is given

by (4.19). Note that the Gaussian components N (x(t);mi,k(t), Pi,k(t)) correspond

uniquely to those in (4.15) that form the set GS, only with a different way of indexing,

i.e., there exists an index mapping f
(I)
t (·) : [1, Jt]→ [1, Jt−1]× [1, Kt] such that

f
(I)
t (j) =











(i, k) if N (x(t);mj(t), Pj(t)) ∈ GS

Ø otherwise

(4.23)

Each index pair (i, k) essentially represents the Gaussian approximation of the

association hypothesis such that the i-th surviving Gaussian component is associated

with the k-th measurement in the FISST framework1 [13, 108]. Therefore, it is rea-

sonable to consider the weight ω
(i,k)
t as an association score of the hypothesis, which

is analogous to the association probability between the zk(t) and N (x(t− 1);mi(t−
1), Pi(t− 1)), and construct the following matrix of association scores:

W (t) = [wik(t) = ω
(i,k)
t ] ∈ [0, 1]Jt−1×Kt (4.24)

As the MC-GMPHD filter performs the pruning and extraction processes, similar

actions to W (t) are necessary. When the pruning process merges or discards the

updated Gaussian components, it is essentially the association hypotheses that are

1which is the emulating idea of conventional data association in FISST to avoid the combinatorial
calculation of association probabilities.
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merged or discarded, and therefore the corresponding association scores in W (t) also

need to be changed. Similarly, the extraction process in fact selects the association

hypotheses as it extracts the Gaussian components, and the association scores need

to be extracted accordingly.

The MC-GMPHD pruning process has two outcome cases: discard and merge.

For the discard case, if a Gaussian component N (x(t);mi,k(t), Pi,k(t)) from the set

GS is discarded, it conveys the idea that the hypothesis that zk(t) is associated with

N (x(t − 1);mi(t − 1), Pi(t − 1)) is discarded; therefore, in the association score ma-

trix W (t), the corresponding score wik is set to 0. As for the merge case, assume

the Gaussian components in the set GS with indices (im, km) ∈ Lm ⊂ L, where

L = {(i, k)|i ∈ {1, 2, ..., Jt−1}, k ∈ {1, 2, ..., Kt}}, are merged with any Gaussian com-

ponents in the sets Gγ and Gβ into a single Gaussian component, then the multiple

association hypotheses represented by all (im, km) ∈ Lm are considered to be a sin-

gle one. In the context of identity management, however, if the merged Gaussian

component is eventually extracted as a target estimate, it may be originated from

any of the Gaussian components indexed by (im, km) ∈ Lm and therefore share the

same ID with these Gaussian components. In order to represent the idea above in the

mixing matrix, the following procedure is adopted. Let the set of merged Gaussian

components be GM , and the number of merged Gaussian components JM = |GM |.
Then, for the merged Gaussian components, we define the following matrix:

W̃ (t) = [w̃1, ..., w̃jm , ..., w̃JM ] (4.25)

where jm ∈ {1, 2, ..., JM}, w̃jm = [w̃ijm ]
T ∈ {0, ω(jm)

t /JM}Jt−1×1 is a column vector,

ω
(jm)
t is the merged weight of the jm-th Gaussian component, and

w̃ijm =











ω
(jm)
t /JM if ∃k s.t. (i, k) ∈ Lm

0 otherwise

(4.26)
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i.e., the association score is evenly distributed among all the truncated Gaussian

components. Note that by the definitions above, there exists an index mapping

f
(M)
t (·) : [1, Jt]→ [1, Jm] such that

f
(M)
t (j) =











jm if N (x(t);mj(t), Pj(t)) ∈ GM

Ø otherwise

(4.27)

Eventually, two association matricesW (t) and W̃ (t) are created after the GMPHD

update and pruning. The step-by-step procedure of constructing the two association

matrices is shown in Algorithm 1.

As the MC-GMPHD filter performs the extraction process and selects Gaussian

components, the corresponding weights are also selected from either W (t) or W̃ (t) to

form the mixing matrix M(t). The extraction process may extract Gaussian compo-

nents from either of the four sets Gγ , Gβ, GS and GM . If a Gaussian component in

either Gγ or Gβ as a target state estimate, by definition, the estimate should have 0

association probability with any previous estimates. Therefore, a column of all 0s is

added to M(t). On the other hand, if a Gaussian component in GS or GM is extracted,

one needs to find its association probability with the previous target state estimates,

i.e., the previously extracted Gaussian components. Note that at time t, the GMPHD

extraction process in fact creates an index mapping f
(E)
t (·) : [1, Jt]→ [1, Nt]:

f
(E)
t (i) =











j if mi(t) = x̂j(t)

Ø otherwise

(4.28)

Then, if the j∗-th Gaussian component in GS is extracted as the j-th target es-

timate x̂j(t), we extract a sub-column from the matrix W (t) as the j-th column of

M(t) (denoted as mj(t)):

mj(t) = [wik]
T , ∀i s.t. f (E)

t−1(i) 6= Ø (4.29)
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Algorithm 1 Construct association matrices at time t

Given: sets of Gaussian components Gγ, Gβ and GS, and the posterior intensity

I(x(t)|Z1:t)

for j in 1 : Jt do

if f
(I)
t (j) 6= Ø then

(i, k)← f
(I)
t (j)

wik(t)← ω
(i,k)
t

end if

end for

Perform GMPHD pruning and obtain the set GM
//update Gaussian component sets

GS ← GS − GS ∩ GM
Gγ ← Gγ − Gγ ∩ GM
Gβ ← Gβ − Gβ ∩ GM
for j in 1 : Jt do

if f
(M)
t (j) 6= Ø then

jm ← f
(M)
t (j)

Construct w̃jm according to (4.26)

end if

if f
(I)
t (j) 6= Ø and N (x(t);mj(t), Pj(t)) is discarded by pruning then

(i, k)← f
(I)
t (j)

wik(t)← 0

end if

end for

W̃ (t)← {w̃jm}
return W (t), W̃ (t)
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where k is obtained from the mapping f
(I)
t (j∗). Similarly, if the j∗-th Gaussian

component in GM is extracted as the j-th target estimate, we extract a sub-column

from the matrix W̃ (t):

mj(t) = [w̃ik]
T , ∀i s.t. f (E)

t−1(i) 6= Ø (4.30)

where k = f
(M)
t (j∗). Algorithm 2 describes the steps of extracting the mixing

matrix M(t) at time t.

Remark 1 By (4.22), the column sum of W (t) is less than 1. Therefore, a good

extraction weight threshold, e.g., 0.5 as the most general case [13], guarantees that

only at most one Gaussian component corresponding to each column of W (t) will be

extracted. This essentially indicates that each measurement is generated by at most

one target.

Remark 2 Since the mixing matrix M(t) is obtained from the weights of Gaussian

components, the proposed algorithm does not involve any additional computational

complexity from explicit data association.

The extracted mixing matrix M(t) is Nt−1 ×Nt whose element mij(t) essentially

represents the association score between x̂i(t− 1) and x̂j(t), calculated by the proce-

dure described above. However, M(t) may not necessarily satisfy its row and column

sum constraints and needs to be re-scaled. For this, we first augment the current

M(t) matrix with its ‘residue’ of column sums:

M (1)(t) = [M(t); m̄(t)T ], m̄(t) = [m̄1(t), m̄2(t), ..., m̄Nt
(t)]T

m̄j(t) =























0, if

Nt−1
∑

i=1

mij(t) > 1

1−
Nt−1
∑

i=1

mij(t), otherwise

(4.31)

Then, the augmented (Nt−1 + 1) × Nt matrix M (1)(t) is rescaled to a column

stochastic matrix by solving the following optimization problem that we derived in

this work:
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Algorithm 2 Extract mixing matrix M(t) at time t

Given: matrices W (t) and W̃ (t), and the posterior intensity I(x(t)|Z1:t)

for j in 1, 2, ..., Jt−1 do

if f
(E)
t−1(j) 6= Ø then

j0 ← [j0, f
(E)
t−1(j)]

end if

end for

Perform GMPHD extraction and update the mapping f
(E)
t (·)

for j in 1, 2, ..., Jt do

if f
(E)
t (j) 6= Ø then

if f
(I)
t (j) 6= Ø then

(i, k)← f
(I)
t (j)

m← wj0k

else if f
(M)
t (j) 6= Ø then

k ←= f
(M)
t (j)

m← w̃j0k

else

m← 0

end if

M(t)← [M(t) | m]

end if

end for

return M(t)
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find m
(2)
ij (t)

min
Nt
∑

j=1

Nt−1+1
∑

i=1

m
(2)
ij (t) log

m
(2)
ij (t)

m
(1)
ij (t)

s.t.
Nt
∑

j=1

m
(2)
ij (t) ≤ 1

Nt−1+1
∑

i=1

m
(2)
ij (t) = 1

m
(2)
ij (t) ≥ 0 if m

(1)
ij (t) > 0

m
(2)
ij (t) = 0 if m

(1)
ij (t) = 0

∀i ∈ {1, 2, ..., Nt−1 + 1}, ∀j ∈ {1, 2, ..., Nt}

(4.32)

The reason that we rescale the augmented matrix M (1)(t) to a column stochastic

matrix is that the objective function in problem (4.32) represents the KL distance

only if the column stochastic constraint is satisfied. Only then, the rescaled matrix

M (2)(t), as the solution to problem (4.32) is ‘closest’ to M (1)(t) from a statistical

perspective. The rescaled mixing matrix M(t) is then the first Nt−1 rows of M (2)(t).

The identity belief matrix is then propagated over time using the mixing matrix

following the propagation equation (4.3).

4.4.2 Identity Belief Matrix Update

After the propagation of the identity belief matrix, it is determined whether an

existing ID needs to be removed (i.e., delete a row from the identity belief matrix) or

new IDs need to be added (i.e., add rows to the belief matrix). If the i-th row sum

of B(t), denoted as
∑

j bij, is smaller than a threshold, we remove ID i by deleting

the i-th row from B(t). On the other hand, if the j-th column sum of B(t), denoted

as
∑

i bij, is smaller than a threshold, we add a new ID by appending the matrix

B(t) with a new row whose entries are set to 0 except that the j-th entry is set as

1−∑i bij. After the above steps, if the number of rows of B(t) is less than the number
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of columns, we add more new IDs by appending multiple rows to B(t) to make the

matrix square. The new belief matrix is then rescaled to meet the row and column

sum constraints.

Following the definitions and notations in Section 4.3, and let Lt and Nt be the

number of rows and columns of the identity belief matrix B(t), respectively, Algo-

rithm 3 describes the procedure of updating the identity belief matrix.

In addition, the identity belief matrix can also be updated when there is available

local information on the identities of some targets. The purpose of updating the iden-

tity belief matrix with local information is to reduce the uncertainties in the identities

of all the targets within the sensor’s surveillance range as identity management keeps

track of all the targets’ identities. As described in Section 4.3, the local information

is in the form of a probability distribution vector of the identities, and can be used

to update the identity belief matrix by replacing the corresponding column in the

identity belief matrix and then rescale the matrix. However, not every local informa-

tion is necessarily useful (i.e., is able to reduce the uncertainties in the identities) and

should be used to update the identity belief matrix. To determine the ‘usefulness’ of

local information, we use the statistical entropy of a probability distribution vector

f ∈ [0, 1]N , defined as

H[f ] =
N
∑

i=1

−fi log fi (4.33)

as an uncertainty measure of f . Then, the uncertainty in the identities of all

targets is defined by the average statistical entropy of the identity belief matrix B(t):

H̃[B(t)] =
1

Nt

Lt
∑

j=1

H[bj(t)] (4.34)

which is used as an uncertainty measure in the identity. Since the purpose of local

information incorporation in the identity management is to reduce the uncertainties in

the targets’ identities, a piece of local information should be considered as ‘useful’ only

if it is able to reduce the statistical entropy of the identity belief matrix. Therefore,
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Algorithm 3 Update identity belief matrix B(t) at time t

Given: propagated identity belief matrix B(t) = B(t− 1)M(t) + λb̄(t− 1)m̄(t)T

for i in 1:Lt do

if
∑N

j=1 bij ≤ row thres then

Remove i-th row from B(t)

end if

end for

for j in 1:Nt do

if
∑L

i=1 bij ≤ col thres then

new row ← [0, ..., 0, 1−∑L
i=1 bij, 0, ..., 0]

B(t).append(new row)

end if

end for

if Lt < Nt then

rows needed ← N − L

new row ← [1−∑L
i=1 bi1, ..., 1−

∑L
i=1 bij , 1−

∑L
i=1 biN ]

new row ← new row/rows needed

for i in 1:rows needed do

B(t).append(new row)

end for

end if

B(t)← rescale B(t) by solving optimization problem (4.5)

return B(t)
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a piece of local information will be used to update the identity belief matrix only if

the resulting identity belief matrix B′(t) has smaller statistical entropy, i.e.:

H̃[B′(t)] < H̃[B(t)] (4.35)

The procedure of updating the identity belief matrix B(t) with local information

is shown in Algorithm 4.

Algorithm 4 Update B(t) with local information at time t

Given: matrix B(t), local information lj about target j

B′(t)← [b1(t), ..., bj−1(t), lj, bj+1(t), ..., bNt
(t)]

B′(t)← rescale B′(t) by solving optimization problem (4.5)

if H̃[B′(t)] < H̃[B(t)] then

B(t)← B(′t)

end if

return B(t)

4.5 Numerical Examples

In this section, we demonstrate the performance of the GMPHD-IM algorithm

with illustrative numerical simulations. Three test scenarios are studied in this sec-

tion. In the first test scenario, we use the GMPHD-IM algorithm to manage the

identities of several targets, some of which may appear or disappear during the multi-

target tracking mission. We show the GMPHD-IM algorithm’s capability of managing

the identities as well as estimating the states of an unknown and time-varying number

of targets. The second and third test scenarios address two particularly challenging

cases in multi-target identity management: scenario 2 presents a case of two-target

coalescence, while scenario 3 shows a case where a new target spawns from the current

target. With the two scenarios we demonstrate the GMPHD-IM algorithm’s capa-

bility of managing the identities and updating the identity beliefs whenever there is
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available local information. In the two test scenarios, we assume that there is avail-

able local information at specific time instances. The targets in all test scenarios

are assumed to be 2D targets, i.e., only the positions and velocities in the x and y

directions are considered.

4.5.1 Target and Sensor Models

In the simulation cases, a fixed-position sensor (e.g., a Radar station) is used to

track and manage the identities of all targets. The sensor is assumed to cover the

entire surveillance area and is able to detect targets in the area with a probability

of detection of 0.98. At each time step, the sensor provides cluttered target position

measurements with noise covariance:





(10)2 0

0 (10)2





i.e., the standard deviation of the target position measurement error is 10m in

both x and y directions. The measurement clutter is generated randomly per time

instance. At time t, the target state vector in the MC-GMPHD filter is given by x(t) =

[px, py, ṗx, ṗy]
T , where px and py represent the positions in the x and y directions,

respectively. The MC-GMPHD filter uses the constant velocity model for target

state propagation [51]:

x(t+ 1) = Fcvx(t) +Gcvw(t) (4.36)

where

Fcv =

















1 0 Ts 0

0 1 0 Ts

0 0 1 0

0 0 0 1

















, Gcv =

















T 2
s /2 0

0 T 2
s /2

Ts 0

0 Ts
















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w(k) ∼ N (0, σ) is a white noise, and Ts is the measurement sampling time which

is set to be 1 second. The rest of the MC-GMPHD filter and identity management

parameters are given as follows. The truncation and merge thresholds in the pruning

process are set as 10−5 and 4, respectively. The weight threshold of extraction is set

to 0.5. The probability of target survival is 0.99, and the weight of the spawned and

birth target are both 0.1. Note that the above parameters are a common setup in the

GMPHD studies [13]. The threshold to add a new identity, as described in Section 4.3

and Algorithm 3, is set to 0.2. The threshold to remove an identity from the set of

identities is set to 0.02.

4.5.2 Scenario 1: An Unknown and Time-varying Number of Targets

The scenario contains four targets that may appear/disappear during the simula-

tion, so that the number of targets is unknown and time-varying. Hence, the existing

identity management algorithm [69] is unable to handle the case. The purpose of this

test scenario is not only to show the proposed GMPHD-IM’s capability of managing

the identities of an unknown and time-varying number of targets, but also to study

the performance/limits of the algorithm in practice (i.e., various measurement clutter

levels). Therefore, we run the proposed algorithm with two different clutter densities:

the average number of clutters at each time instance is set to 40 and 100, respectively.

The trajectories of the targets are shown in Figure 4.5. The total simulation time

is set to 55 seconds. Initially, there are only targets 1 and 2. Target 3 appears at

time 22 and disappears at time 52, while target 4 appears at time 32 and remains

until the end of simulation.

Figure 4.6 shows the algorithm output with an average clutter number per time

step set at 40. The MC-GMPHD filter outputs two ghost targets (false alarms) at time

39 and 47, respectively, and mis-detects target 1 at time 40, as shown in Figure 4.6(a).

Figure 4.6(b) shows the target identity beliefs calculated by the GMPHD-IM algo-

rithm, where the four plots correspond to the identity beliefs of target 1 to target
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Fig. 4.5.: Target Trajectories and Clutter of Scenario 1

4 from top to bottom. Initially, there are only two targets and the identity belief

matrix B(t) is 2 × 2, where the identities of targets 1 and 2 are known as ‘A’ and

‘B’, respectively. As target 3 appears at time 22, a new ID ‘C’ is assigned to the

target and added to the identity set I(t) and the dimension of B(t) becomes 3 × 3.

Similarly, ID ‘D’ is assigned to target 4 when it appears at time 32 and the dimension

of B(t) becomes 4 × 4. Two identities ‘E’ and ‘F’ are assigned to the ghost targets

briefly when they appear at time 39 and 47, respectively. The two identities are re-

moved right after the ghost targets disappear in one time step. At time 52, target 3

disappears; however, ID ‘C’ is kept in I(t) and the dimension of B(t) becomes 4× 3

since then. Regardless, the identities of targets 1, 2 and 4 are still correctly tracked.

Figure 4.7 shows the identity management output with an average clutter number

per time step set at 100 (i.e., a more difficult case). In general, the targets are more

likely to get mis-detected due to the higher clutter density. In this example, target 1 is

temporarily undetected at time 13, 20 and 40, and target 2 is not detected at time 46,

which results in the frequent change of number of estimated targets in Figure 4.7(a).

When target 1 is re-detected at time 14 and 21, it is assigned to new IDs (‘C’ and

‘D’). On the other hand, the same ID was preserved when target 1 and target 2 are

re-detected at time 41 and 47, respectively. It should be noted that whether a target
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Fig. 4.6.: Identity Management Results from GMPHD-IM for Scenario 1 (Avg. Clut-

ter Number=40)

is assigned a new ID or its previous ID upon re-detection depends on various factors

such as the density of measurement clutters, how close the clutters are to the real

target, etc. However, the GMPHD-IM algorithm can keep track of the ID assigned to

the re-detected target, as shown in Figure 4.7(b). Therefore, when local information

about the re-detected target is available, the GMPHD-IM algorithm is able to update

itself with the correct target ID. Figure 4.7(c) demonstrates a case in which the system

receives local information at time 42 (shortly after the re-detection of target 1) such

that the probability of target 1 having ID ‘A’ is 0.99. The GMPHD-IM algorithm

correctly updates the target identity beliefs, removing the redundant IDs ‘C’ and ‘D’,

and keeps track of the correct IDs.

4.5.3 Scenario 2: Two-Target Coalescence

This scenario contains two targets that coalesce with each other and then separate.

The trajectories of the targets are shown in Figure 4.8. The total simulation time is

set to 55 seconds, and the average number of measurement clutters per time step is

set to 40. Initially, the two targets start at positions (3000,−2000) and (3000, 2000)
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Fig. 4.7.: Identity Management Results from GMPHD-IM for Scenario 1 (Avg. Clut-

ter Number=100)

(right side of the figure) and move toward the directions shown by the black arrows,

respectively. The two targets get close around t = 20 and separate again around

t = 40. During the coalescence period, the two targets are too close to be distinguished

and the MC-GMPHD filter returns only one target estimate. Therefore, this scenario

has challenges from both target coalescence and the time-varying number of targets.

We use this scenario to show the GMPHD-IM algorithm’s capability of managing the

identities of the coalesced targets and more importantly, updating the identity beliefs
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of the coalesced targets whenever there is available local information. We assume that

at time 40, the system receives local information on target 1 such that the probability

of target 1 having ID ‘A’ is 0.99.

In addition to running the simulation with the proposed GMPHD-IM algorithm,

we also run the simulation with the MC-GMPHD tracker [100, 102] for comparison.

The MC-GMPHD tracker adds a data association process to the MC-GMPHD filter

to obtain the tracks of the targets.

Fig. 4.8.: Target Trajectories and Clutter of Scenario 2

We first present the MC-GMPHD tracker’s output for this scenario. Figure 4.9(a)

shows the target state estimates computed by the MC-GMPHD tracker, colored by

the track IDs assigned to them. At first, the two targets are well separated and two

IDs are correctly assigned to their estimates, respectively. When the two targets

coalesce, the MC-GMPHD tracker returns only one target estimate from time 27

through time 38, and only one track ID is assigned to the target (‘B’ in this case)

without considering the possibility that the target estimate may as well come from

the other track. As a result, when the two targets separate again, both targets are

assigned with the same track ID. Moreover, the MC-GMPHD tracker is unable to

update the track IDs with local information, when it information comes in the form

of probability measurements (e.g., ‘the probability of target 1 having ID ‘A’ is 0.99’).
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Fig. 4.9.: Target Tracking and Labeling from MC-GMPHD Tracker for Scenario 2

The output of the proposed GMPHD-IM algorithm for this test scenario is shown

in Figure 4.10. Initially, the two targets are well-separated and detected, and are

correctly assigned their IDs ‘A’ and ‘B’. A ghost target appears near the starting

location of target 1 at time 26, and a new ID ‘C’ is temporarily assigned to the target

which is immediately removed after the ghost target disappears. The new ID does not

affect the identity belief of the two real targets since the ghost target is far away from

the two targets. The two targets start to merge around time 20, and their identity

beliefs mingle with each other. It should be noted that even though there is only

one target estimate between time 27 and 38, the GMPHD-IM algorithm preserves

both IDs and indicates that the target estimate has a 0.5 probability of being each of

the IDs, which is a correct representation of track coalescence. Then, when the local

information ‘the probability of target 1 having ID ‘A’ is 0.99’ is available at time

40, the GMPHD-IM algorithm incorporates the information and correctly updates

the identity beliefs immediately, as shown in Figure 4.10(a). The uncertainties in

the identities of all targets, as defined by (4.34), is shown in Figure 4.10(b). The

uncertainty increases rapidly when the target coalescence starts. As the GMPHD-IM

algorithm updates with the local information, the uncertainty rapidly decreases to a

lower level, however, it does not reduce to 0 since the local information itself is not

certain about target 1’s identity.
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Fig. 4.10.: Identity Management Results from GMPHD-IM for Scenario 2

4.5.4 Scenario 3: Target Spawn

In this scenario, we demonstrate the GMPHD-IM algorithm’s capability of manag-

ing and updating the identity beliefs with available local information in the situation

where a new target spawns from the current target. Figure 4.11 shows the target

trajectory of the scenario. The total simulation time is set to 55 seconds, and the

average number of measurement clutters per time step is set to 40. Initially, there

is only one target (target 1). At time 37, a new target (target 2) spawns from the

original target. Since the spawned target is extremely close to the original target, it

is hard to be distinguished. We assume that at time 42, the system receives local

information such that the probability of target 1 having ID ‘A’ is 0.99. This scenario

has particular practical significance such as a missile or a small unmanned aircraft

detached from a large aircraft. Again, we run the simulation with both the proposed

GMPHD-IM algorithm and the MC-GMPHD tracker for comparison.

Figure 4.12(a) shows the target estimates by the MC-GMPHD tracker, colored

by the track IDs assigned to them. After the spawned target is detected by the

MC-GMPHD tracker, it is incorrectly assigned with the same track ID as that of the
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Fig. 4.11.: Target Trajectories and Clutter of Scenario 3

original target since the two targets are too close, disregarding the fact that one of

the two targets is a new one and should be assigned with a new ID.
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Fig. 4.12.: Target Tracking and Labeling from MC-GMPHD Tracker for Scenario 3

The output of the GMPHD-IM algorithm for the test scenario is shown in Fig-

ure 4.13. When the spawned target appears, the algorithm correctly assigns a new

ID to it. However, without any additional information, the identity beliefs of the

two IDs are almost even. When the local information is available at time 42, the

GMPHD-IM algorithm is then able to incorporate the information and update the

identity beliefs correctly, as shown in Figure 4.13(a). Figure 4.13(b) shows the uncer-

tainties in the identities of all targets. A sudden increase in the uncertainty appears
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when the new target spawns since the two targets are hardly distinguishable. The

GMPHD-IM algorithm then can drastically reduces the uncertainty with the local

information incorporation.
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Fig. 4.13.: Identity Management Results from GMPHD-IM, Scenario 3

4.6 Proofs and Equations

4.6.1 Matrix Rescaling

The matrix rescaling problem aims to rescale a positive matrix (i.e., all elements

are non-negative, and there are no rows or columns of zeros) with prescribed row

and column sum constraints. As the most commonly applied case, the Sinkhorn

algorithm [76] rescales a positive square matrix to a doubly-stochastic matrix (all

row and column sums are 1). The general case is to rescale an arbitrary-dimensional

rectangular matrix with inequality row and column sum constraints, which has been

well studied by mathematicians [105, 106]. In this section, we show that the general

matrix rescaling problem is equivalent to solving a particular optimization problem,

which can be applied to our identity management problem.

Although the term ‘rescaling’ makes an intuitive sense, it is still desired to have

a mathematical definition of ‘rescaling’, i.e., what it means to say one matrix is
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proportional to another. To begin with, we let x > 0, for x being either a vector or a

matrix, which means that every component of x is positive, while x ≥ 0 means every

component of x is non-negative, and M = 1, 2, ..., i, ...,m and N = 1, 2, ..., j, ..., n

A problem is defined as a pair (p,σ), where p = {pij} ≥ 0 is an m × n matrix

containing no rows or columns of zeros, and σ = (r−, r+, c−, c+, h) is a vector with

two m-vectors r− = {r−i } ≥ 0 and r+ = {r+i } > 0, two n-vectors c− = {c−j } ≥ 0 and

c+ = {c+j } > 0, and a positive scalar h. The set of allocation R(σ) is defined as

R(σ) = {f = {fij} ≥ 0 :

r−i ≤ fiN ≤ r+i , i ∈M ; c−j ≤ fMj ≤ c+j , j ∈ N ; fMN = h}
where fMN =

∑

M×N fij. Moreover, we have two subsets of R(σ) such that

R+(p,σ) ⊂ R0(p,σ) ⊂ R(σ), where

R0(p,σ) = {f ∈ R(σ) : fij = 0 if pij = 0}

R+(p,σ) = {f ∈ R(σ) : fij = 0 if and only if pij = 0}
The ‘proportional rescaling’ of a matrix is defined through the following. Let δ

be a scalar, λ = {λi}, µ = {µj} and p = {pij}. Then, δλpµ represents the matrix

{δλipijµj}. A matrix f is said to be a fair share matrix for a problem (p,σ) if

f = δλpµ,f ∈ R(σ)

for some δ > 0,λ > 0, and µ > 0 satisfying:

• λi > 1 implies fiN = r−i , and λi < 1 implies fiN = r+i .

• µj > 1 implies fMj = c−i , and µj < 1 implies fMj = c+j .

An axiomatic justification is provided in [105] to show that the above definition

is a reasonable method of describing the proportional matrix rescaling. In addition,

it is shown that such a fair share matrix uniquely exists if and only if R+(p,σ) 6= ∅.
Given a matrix p ≥ 0, let S be the set of index (i, j) for which pij > 0, and S̄ be

its complement. Consider the following optimization problem:
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find xij

min
N
∑

j=1

M
∑

i=1

xij log
xij

pij

s.t. r−i ≤ xiN ≤ r+i

c−j ≤ xMj ≤ c+j

xMN = h

xij ≥ 0, ∀(i, j) ∈ S

xij = 0, ∀(i, j) ∈ S̄

(4.37)

Then, the following theorem holds:

Theorem 4.6.1 The solution to the optimization problem (4.37) is the fair share

matrix of problem (p,σ).

Proof The solution to the optimization problem (4.37), denoted as f , minimizes

the Lagrangian:

L(x,α−,α+,β−,β+, ν) =
∑

S

xij log
xij

pij
+
∑

M

α−
i (r

−
i − xiN)

+
∑

M

α+
i (xiN − r+i ) +

∑

N

β−
j (c

−
j − xMj)

+
∑

N

β+
j (xMj − c+j ) + ν(h− xMN)

(4.38)

where the non-negative Karush-Kuhn-Tucker (KKT) multipliers α−,α+ for the

row constraints, β−,β+ for the column constraints, and ν for the constraint of the

sum of all matrix entries. By the first order conditions, we have

fij = pij exp{α−
i − α+

i + β−
j − β+

j + ν − 1} for (i, j) ∈ S

fij = 0 for (i, j) ∈ S̄

Let λi = exp{α−
i −α+

i }, µj = exp{β−
j −β+

j i}, and δ = exp{ν−1}. Then, we have
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fij = δλipijµj

If λi > 1, then necessarily α−
i > 0, which implies fiN = r−i by the KKT condi-

tions; if λi < 1, α+
i > 0 and fiN = r+i . The column constraints can be interpreted

analogously. Therefore, by definition, f is a fair share matrix.

Moreover, since the objective function of optimization problem (4.37) is strictly

convex, the fair share matrix f is a unique solution.

In the context of identity management, we aim to find the colum stochastic fair

share matrix of an L × N positive matrix. Correspondingly, in the optimization

problem (4.37), we have r−i = 0, r+i = 1, c−j = c+j = 1, and natrually h = N . If the

matrix is square, i.e., L = N , it is obvious that the fair share matrix must also satisfy

the row stochastic constraint, and the optimization problem (4.37) is equivalent to

Sinkhorn rescaling.

4.6.2 GMPHDCovariance Update with Measurement Origin Uncertainty

We first define some commonly-used notations for this section:

n dimension of the target state

Kt number of measurements at time t

pD probability of detection

VD volume of an ellipsoid whose gate size is
√
D

VG the size of surveillance area

Define the following events for the k-th measurement zk(t) ∈ Z(t) at time t:

• Ek
T,t: the event that zk(t) is originated from a target.

• Ek
F,t: the event that zk(t) is originated from a false measurement (i.e., clutter).

Assume the number of false measurements K is subjected to a Poisson distribution

with density λ:
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µF (K) =
(λVG)

K

K!
e−λVG (4.39)

Let Di,k(t) be the normalized distance square (NDS) between the k-th measure-

ment and the i-th predicted Gaussian component at time t:

Di,k(t) = νT
i,k(t)S

−1
i (t)νi,k(t) (4.40)

where νi,k(t) = zk(t)−Htmi(t|t−1) whose covariance Si(t) = HtPi(t|t−1)HT
t +Rt.

It can be shown that Di,k(t) is subjected to the following Gaussian distribution:

N(Di,k(t)) =
1

√

(2π)n|Si(t)|)
e−

Di,k(t)

2 (4.41)

Then, the conditional probability pi,k(t) = p(Ek
T,t|Di,k(t), Kt) is given by:

pi,k(t) =
f(Di,k(t), E

k
T,t, Kt)

f(Di,k(t), Ek
T,t, Kt) + f(Di,k(t), Ek

F,t, Kt)
(4.42)

The joint distribution f(Di,k(t), E
k
T,t, Kt) is calculated as:

f(Di,k(t), E
k
T,t, Kt) =

(

Kt − 1

k − 1

)(

Di,k(t)

VG

)
n
2
(k−1)

(

1−
(

Di,k(t)

VG

)
n
2

)Kt−k

µF (Kt − 1)
nVDi,k(t)

2Di,k(t)
N(Di,k(t))U(Di,k(t); (0, VG])pD

(4.43)

where U(x;S) is a unit step function such that:

U(x;S) =











1 if x ∈ S

0 otherwise

(4.44)

The joint distribution f(Di,k(t), E
k
F,t, Kt) is calculated as:

f(Di,k(t), E
k
F,t, Kt) = (1− pD)fck(Di,k(t)|Kt)µF (Kt)

+ pD(1− pR(Di,k(t)))fck(Di,k(t)|Kt − 1)µF (Kt − 1)

+ pDpR(Di,k(t))fck−1
(Di,k(t)|Kt − 1)µF (Kt − 1)

(4.45)
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where pR(Di,k(t)) is the probability that a target exists in the region with size
√

Di,k(t) [114]. The conditional distribution fck(Di,k(t)|Kt) is given by:

fck(Di,k(t)|Kt) =
nKt

2Di,k(t)

(

Kt − 1

k − 1

)(

Di,k(t)

VG

)
nk
2

(

1−
(

Di,k(t)

VG

)
n
2

)Kt−k

(4.46)

Provided the probability pi,k(t) in equation (4.42), we can get the new GMPHD

covariance update as:

Pi,k(t) = pi,k(t)Pi(t|Ek
T,t) + (1− pi,k(t))Pi,k(t|Ek

F,t)

+ pi,k(t)(1− pi,k(t))Ki(t)νi,k(t)ν
T
i,kK

T
i (t)

(4.47)

where Pi(t|Ek
T,t) = (I −Ki(t)Ht)Pi(t|t − 1) is the same as the standard Kalman

filter covariance update; Pi,k(t|Ek
F,t) is given by:

Pi,k(t|Ek
F,t) = Pi(t|t− 1) + (αi,k(t)− 1)Ki(t)Si(t)K

T
i (t) (4.48)

where

αi,k(t) =

λ(1− pDCT )VDi,k(t)(VG − VDi,k(t)) + pDCT (1− pR(Di,k(t))

(Kt − k)VDi,k(t) + pDpR(Di,k(t))CT (k − 1)(VG − VDi,k(t))

λ(1− pD)VDi,k(t)(VG − VDi,k(t)) + pD(1− pR(Di,k(t))

(Kt − k)VDi,k(t) + pDpR(Di,k(t))(k − 1)(VG − VDi,k(t))

CT =

∫ Di,k(t)

0
qn/2e−q/2dq

n
∫ Di,k(t)

0
qn/2−1e−q/2dq

(4.49)

The proof of equations (4.43), (4.45) and (4.49) are established in our previous

work [102].
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5. SUMMARY

In this research, we studied problems in the multi-target tracking and identity man-

agement (MTIM) area. Particularly, we proposed solutions to three MTIM issues and

demonstrated our solutions with illustrative numerical examples.

First, for the problem of tracking multiple targets with a limited sensor range and

occasional target loss, we developed a new multi-target state estimator for mobile

sensors which considers the information gain/loss from lost targets. A guidance ob-

jective function is formulated to minimize the tracking uncertainty of all the targets.

The objective function is essentially following such strategy that whenever it is unable

to cover all the targets, the sensor tries to cover some of the targets while leaving

the rest lost, and goes back to track the lost target(s) later. To keep track of the

lost targets, the proposed algorithm uses a Gaussian-sum based estimation technique.

The estimation technique is able to provide relatively accurate position estimates for

lost targets at a low computational cost. It was shown that the proposed tracking

algorithm can be unified with the standard Kalman filter if a linear target motion

model is applied.

Second, for the problem of seeking target identity information in MTIM, we pro-

posed a decentralized sensor scheduling algorithm which selects targets to identify

by solving an optimization problem to reduce the identity information uncertainty.

We developed an algorithm for the secondary sensor to efficiently identify the targets

while considering the time cost for the secondary sensor to reach the selected tar-

get for identification. The sensor optimization and control of the secondary sensor,

namely, which target to be identified and how to control the sensor to identify the se-

lected target, are formulated as an optimization problem to minimize the uncertainty

of the target identities subject to the sensor assignments and dynamics constraints.

In addition, the control of the secondary sensor is designed to be robust to abrupt
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algorithm termination due to the nonexistence of an optimal solution and state es-

timation error. Moreover, the proposed algorithm is a general solution regardless of

the types of targets or sensors.

Third, we proposed a new identity management algorithm, called GMPHD-IM al-

gorithm, which is able to simultaneously track and manage identities of an unknown

and time-varying number of targets in clutter. The GMPHD-IM algorithm can ac-

tively manage the identities of the detected targets over time by maintaining the target

identity belief through a recursive propagation-update procedure. The propagation

of the target identity belief requires the target-measurement association output from

multi-target tracking algorithms. For this, we used a modified-covariance GMPHD

(MC-GMPHD) filter and developed a method to calculate the target-measurement

association from the weights of the Gaussian mixture terms without introducing ad-

ditional computational complexity. Whenever there is available target identity in-

formation (i.e., local information) on some targets, the algorithm updates the target

identity belief with the information such that the uncertainties (represented by the

statistical entropy) in the identities of all the targets are reduced. The target identity

belief, together with the target state estimates generated by the MC-GMPHD filter,

forms the output of the algorithm.
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