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ABSTRACT

Renevey, Sylvain Ph.D., Purdue University, May 2020. Spacecraft Formations Using
Relative Orbital Elements and Artificial Potential Functions. Major Professor:
David A. Spencer.

A control methodology to design and establish spacecraft formations is presented.

The intuitive design of complex spacecraft formation geometry is achieved by utiliz-

ing two different sets of relative orbital elements derived from a linearization of the

dynamics. These sets provide strong insights into the shape, size, and orientation of

the relative trajectory and facilitate the design of relative orbits in addition to relative

positions. An artificial potential function (APF) composed of an attractive poten-

tial for goal seeking and a repulsive potential for obstacle avoidance is constructed.

The derivation of a control law from this APF results in a computationally efficient

algorithm able to fully control the relative position and velocity of the spacecraft

and therefore to establish spacecraft formations. The autonomous selection of some

of the design parameters of the model based on fuel minimization considerations is

described. An assessment of the formation establishment accuracy is conducted for

different orbital perturbation as well as various degrees of thrust errors and state

uncertainties. Then, the performance of the control algorithm is demonstrated with

the numerical simulation of four different scenarios. The first scenario is the design

and establishment of a 10-spacecraft triangular lattice, followed by the establishment

of a 37-spacecraft formation composed of two hexagonal lattices on two different rel-

ative planes. The control method is used to illustrate proximity operations with the

visual inspection of an on-orbit structure in the third scenario. Finally, a formation

composed of four spacecraft arranged in a tetrahedron is presented.
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1. INTRODUCTION

Decentralized space architectures are enabling mission concepts that replace the func-

tionalities of a large monolithic spacecraft by the cooperative behavior of a group of

smaller spacecraft. The broad interest that these architectures have gained over recent

years is in part due to their lower cost, distributed risk among several entities, and

versatility. The implementation of these distributed systems has been successfully

demonstrated with the deployment of large scale architectures such as the GPS and

Iridium constellations for instance, and megaconstellations composed of hundreds to

thousands of satellites are being planned and deployed by SpaceX and OneWeb. On

a smaller scale, spacecraft formations composed of a few agents offer resilience for

orbital applications including remote sensing, astronomy and astrophysics, and deep

space exploration. A few missions have been flown using this concept: The Gravity

Recovery and Climate Experiment (GRACE) mission composed of two spacecraft

maps variations in Earth’s gravity field with high accuracy. Scientific application

has also been demonstrated with the Magnetospheric Multiscale Spacecraft (MMS)

in which four spacecraft arranged in a tetrahedron geometry study a phenomenon

known as magnetic reconnection between the Earth’s and Sun’s magnetic fields. The

synthetic aperture radar embarked onboard the two satellites of the TanDEM-X mis-

sion allowed to create a digital elevation model of the Earth, and technology for

autonomous operations has been demonstrated with the PRISMA mission composed

of two spacecraft.

The operation of several satellites in close proximity adds additional challenges

as compared to a single spacecraft. The dynamics of the relative motion of a deputy

spacecraft with respect to a chief spacecraft must be well understood in order to

design trajectories which result in the desired relative motion. Orbital perturbations,

which will tend to disturb the geometry of the formation, must be accounted for
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to obtain precise positioning. Several models have been developed to describe the

relative motion for a wide range of conditions ranging from circular orbits to highly

eccentric ones, inter-spacecraft distances from a few meters to several kilometers, and

presence or absence of various perturbations. The description of the relative motion

using traditional Cartesian coordinates is challenging due to the nonlinear nature of

the system. Different sets of parameters have been developed to provide quantities

which allow the intuitive understanding of the natural evolution of the system and

therefore facilitate the design of relative trajectories. These elements are somewhat

comparable to the classical orbital elements utilized for the description of the absolute

motion and are of great use to design relative orbits as opposed to relative positions.

In addition to these challenges, the risk of collision that comes with operating

spacecraft in close proximity drives the need for real-time collision monitoring and

avoidance systems. The guidance of a group of spacecraft is traditionally based on

numerically integrating the trajectories of the agents and using optimal control to

compute maneuvers to maintain the spacecraft on their nominal orbits. These com-

putationally demanding processes are usually performed on computers on the ground

and the maneuver commands are then uplinked to the spacecraft. In the case of

a close proximity spacecraft formation, the time delay between collision risk detec-

tion and avoidance maneuver incurred by this ground-in-the-loop process can have

catastrophic outcomes. An increased degree of autonomy is thus desired, with the de-

ployment of computationally efficient guidance algorithms able to monitor collisions

in near real-time directly on-board the spacecraft. The artificial potential function

methodology is a computationally lightweight control method which can incorporate

collision avoidance in its formulation. Its analytic nature and modularity makes it an

ideal candidate for space applications.

In this dissertation, the design and precise control of spacecraft formations is

investigated. The challenges mentioned previously are addressed by introducing a

novel algorithm based on relative orbital elements and artificial potential functions.

The methodology enables the intuitive design of geometrically complex formations
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and the safe formation establishment by continuous monitoring for collision risks.

The effects of nonlinearities and orbital perturbations on the performance of the

control methodology are analyzed and the performance and limitations of the control

algorithm are illustrated with the design and numerical simulation of four spacecraft

formations.

In the following sections, the definitions of the different distributed space systems

is provided followed by the state-of-the-art in spacecraft relative motion, relative

orbital elements, and artificial potential functions. The contributions made by this

dissertation are then detailed.

1.1 Distributed Space Systems

A distributed space system (DSS) is defined as a group of spacecraft that cooper-

ate to achieve a common objective. These systems can be implemented using differ-

ent distributed architectures including: constellations, clusters, swarms, fractionated

spacecraft, and federated spacecraft. No global consensus of the exact properties of

each of these architectures exists in the community, yet these terms are widely used

in the literature. Le Moigne [1] defines a constellation as: “A reference to a space

mission that, beginning with its inception, is composed of two or more spacecraft that

are placed into specific orbit(s) for the purpose of serving a common objective [...]”.

Poghosyan et al. [2] describe the architecture as “a traditional approach, when sporad-

ically distributed satellites are used for maximizing the coverage”. Typical examples

of constellations include the GPS constellation, Iridium, and Planet constellation.

Recent years have seen a trend in the development of so called megaconstellations

involving hundreds to thousands of satellites. SpaceX’s Starlink and OneWeb are two

examples of such megaconstellations.

A spacecraft formation is defined as: “Two or more spacecraft that conduct a

mission such that relative distances and 3D spatial relationships [...] are controlled

through direct sensing by one spacecraft of at least one other spacecraft state [...]”
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in [1]. A similar definition is given by Scharf et al. [3]: “a set of more than one

spacecraft whose dynamic states are coupled through a common control law”, which

is also adopted by Alfriend et al. [4]. Poghosyan et al. [2] define formation flight as

“involving some form of tight flight control compared to constellations [...]”. They also

define clusters as “an implementation of the distributed space system featuring two

or more satellites flying in a close formation. Spacecraft in a cluster require accurate

formation knowledge and control [...]” and swarms as “roughly comparable to clusters

except they involve a much larger number of usually smaller and cheaper satellites

[and] do not have as stringent attitude determination and control requirements as

the clusters.” The authors further elaborate that swarms are usually envisioned as

groups of hundreds to thousands nano- to femtosatellites weighting a few grams and

having limited capabilities. These definitions imply that both clusters and swarms

can be classified as spacecraft formations.

Fractionated and federated systems are distributed architectures that have been

proposed more recently. A fractionated architecture consists in disaggregating the

subsystems of a single monolithic spacecraft into several smaller satellites that com-

municate wirelessly [5]. In a federated system, the spacecraft share some of their

resources with other members in the federation [6]. A large spacecraft could, for

instance, store data on behalf of a smaller, less capable satellite.

Based on these definitions, the groups of spacecraft that will be considered in this

research can be classified as spacecraft formations and are composed of up to a few

tens of members.

1.2 Spacecraft Relative Motion

One of the earliest models describing the relative motion between two spacecraft,

still extensively used today, is the one developed by Clohessy and Wiltshire in 1960 [7].

This model makes the assumptions that the reference spacecraft is on a circular orbit

and that the two vehicles are close to each other in order to linearize the dynamics.
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One of the advantages of this model is that a closed-form solution can be derived

under certain assumptions, thus avoiding the need of numerically integrating the

equations of motion. A few years later, De Vries [8] introduces a model to describe

the relative motion for elliptical orbits. The solution is expressed as a power series of

the eccentricity of the chief’s orbit. Tschauner and Hempel [9] generalize the model

introduced by Clohessy and Wiltshire and provide differential equations describing

the relative motion for a chief on an elliptical orbit with any eccentricity. Lawden, who

derived the same equations independently albeit describing the primer vector rather

than the spacecraft [10], proposes a solution with the introduction of an integral term

expressed as a function of the true anomaly of the chief [11]. This integral, however, is

singular whenever the true anomaly is a multiple of π. A modification of this integral

is proposed by Carter [12] to remove the singularity. The independent variable of

the integral term is transformed from true anomaly to eccentric anomaly for elliptical

orbits and hyperbolic anomaly for hyperbolic orbits. The integral can be directly

evaluated for parabolic orbits and has therefore no singularity. The introduction of

eccentric anomaly and hyperbolic anomaly, however, makes the evaluation of this

integral impractical. In the early 2000s, Yamanaka and Ankersen [13] develop a new

solution where the integral term is based on the constant of angular momentum that

can be calculated directly. The authors then propose a state transition matrix that

can be used to compute the state at any time given the initial state without the need

of numerical integration.

All of the solutions mentioned so far are based on the assumption that the relative

position is small with respect to the chief’s orbital radius, thus allowing lineariza-

tion of the gravitational potential using a Taylor series truncated to the first order.

London [14] presents a second-order solution obtained by retaining the second-order

gravitational terms in the differential equations of relative motion. The closed-form

solution is a function of time and provides significant improvement of the numerical

accuracy. Anthony et al. [15] use perturbation techniques to derive a solution that

contains second-order terms in the relative distance and is valid for nearly circular
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orbits. Vaddi et al. [16] study the effect of nonzero eccentricity and nonlinearity per-

turbations. They first derive a model with a quadratic term for the gravitational force

and a model with eccentricity. The solutions to the two models are then combined

into a global solution which is used to generate a set of initial conditions to mitigate

the drift in the along-track direction and keep the relative motion bounded. More

recently, Willis et al. [17] have proposed a model where the second order term in the

Taylor series is kept. The analytical solution that they present extends the range of

validity to larger relative distances while still being valid for any eccentricity.

The effects of orbital perturbations on the relative motion is discussed by Alfriend

et al. [18]. They consider the effect of a nonspherical gravitational potential in addi-

tion to nonlinearity and nonzero eccentricity and express the state of the deputy as

the addition of small changes to the chief’s orbital elements. Humi and Carter [19]

introduce a model that incorporates linear drag. The differential equations they de-

rive can, under certain assumptions, be solved in terms of integrals, thus enabling

representation of the solution of the problem with a state-transition matrix. In [20],

Carter and Humi modify the Clohessy-Wiltshire equations to include quadratic drag.

The differential equations obtained with this additional perturbation can be solved

analytically for specific values of the drag coefficient and geometry of the spacecraft.

Schweighart and Sedwick [21, 22] introduce a linear model that accounts for second

order geopotential perturbations using the time average of the gradient of the J2

potential. The linear differential equations can be solved analytically to describe the

position of the deputy with respect to the chief. A comparison with numerical simula-

tions shows good agreement between the linear model and the difference between the

absolute states with maximum modeling errors of 0.4%. Vadali [23] develops a model

based on the secular drift and short-period variations of the chief’s orbital elements

to incorporate local perturbations and avoid the need of using the time average of the

gradient of the J2 potential. The J2 perturbation affects the orbital elements with

secular drift and short and long period motion, causing the relative motion to vary as

described by Schaub and Alfriend [24]. The authors propose a method to establish
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J2 invariant relative orbits by selecting neighboring orbits which have a similar drift

rate of the longitude of the ascending node. The short-period variations are mitigated

by using the mean orbit elements. Morgan et al. [25] develop a model that account

for J2 and atmospheric drag perturbations and propose guidance strategies to control

spacecraft swarms.

Most of the approaches mentioned above rely on the use of rectangular coordinates

to describe the relative state of one spacecraft with respect to the other, yet the

description of relative trajectories in terms of such coordinates is not intuitive. In

order to remedy these difficulties, several sets of elements providing more insights

into the geometry of the relative motion have been developed and are presented in

the next section.

1.3 Relative Orbital Elements

Several sets of relative orbital elements have been introduced over the past decades.

Schaub and Alfriend [26] present a control strategy where the desired orbit is de-

scribed in terms of orbital element differences and the actual position is given in

terms of Cartesian coordinates. A linear transformation to go from Cartesian coordi-

nates to orbital element differences is derived. Lovell and Tragesser [27] introduce a

set of six elements based on the solution to the Clohessy-Wiltshire equations. These

elements are defined for the projection of the relative trajectory on the Hill frame

and provide strong geometrical insights into the relative motion. Schaub [28] in-

troduces a method to describe the relative orbit in terms of a set of orbit element

differences. The parametrization is valid for any eccentricity and is based on the

assumption that the relative position is much smaller than the chief’s radius vec-

tor. The linear mapping between these elements and the Cartesian coordinates in

the Hill frame breaks down when this assumption is violated. Kasdin et al. [29] use

Hamiltonian mechanics to derive a parametrization of the relative motion in terms

of epicyclic elements. J2-induced perturbations of the relative motion are studied
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using these elements and a method to find J2-invariant orbits is described. D’Amico

and Montenbruck [30] extend the concept of eccentricity/inclination vector separation

originally developed for geostationary spacecraft [31] to spacecraft formations on low

Earth orbits. The spacecraft are assumed to be on near-circular orbits and to have

a close relative distance. The authors provide a control method to target desired

separation vectors which can be used to ensure collision free maneuvring and illus-

trate the control methodology with a reconfiguration of the TanDEM-X/TerraSAR-X

formation. The method has been used to switch positions of the two spacecraft in

the GRACE formation [32]. These elements have also been used in the control al-

gorithm of the PRISMA formation [33]. Wang and Nakasuka [34] use these vector

separations to present a method to design fuel-optimal cluster flight orbits. Two

constrained optimization problems including maximum relative distance and passive

safety are introduced and solved using a genetic algorithm. He and Han [35] derive

a set similar to the one derived by D’Amico and Montenbruck in [30] and present a

velocity impulse control law to control these elements. Han and Yin [36] extend the

vector separation method to eccentric orbits using spherical trigonometry. Yin and

Han [37] compute the state transition matrix for this set of relative orbit elements

and present a method to control formations on elliptical orbits. Lee [38] describes

the unperturbed relative motion with parametric equations of cycloids and trochoids.

The method is applicable to large-scale relative motion such as the GPS constellation

and is well suited to describe constellations having rosette (flowerlike) orbital pat-

terns (see for instance [39]). Yao et al. [40] use the set of elements introduced in [27]

and derive a new parametric angle to describe the relative inclination. The authors

then describe relative trajectories design strategies taking the Sun illumination into

account. Bevilacqua and Lovell [41] develop an on-off thrust guidance methodology

based on the elements developed in [27]. They present an analytic solution to the time

evolution of the relative orbital elements when on-off thrust is applied and is partic-

ularly applicable to small spacecraft such as CubeSats. Lovell and Spencer [42] and

Spencer [43] present a modern derivation of the elements first introduced in [27]. The
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time evolution of these elements is given and the authors study the characteristics of

the unforced motion. Transformations to map relative orbital elements to Cartesian

coordinates are provided. Spencer and Lovell [44] introduce maneuver strategies to

target specific sets of the relative orbital elements developed in [42]. The strategies

are illustrated with several close proximity operations scenarios. Sinclair et al. [45]

provide a geometric interpretation of the Tschauner-Hempel equations. The six in-

dependent fundamental solutions to the differential equations are combined to form

general solutions to the linearized equations. The amplitudes of the fundamental so-

lutions are used as parameters to describe the relative motion and a simple maneuver

scheme to target arbitrary amplitudes is presented. Gaias et al. [46] develop a rela-

tive navigation tool based on angles measurements only where the deputy measures

the azimuth and elevation of the chief in the camera reference frame. Healy and

Henshaw [47] introduce a set of eight elements which have a strong analogy with the

classical orbital elements. This set is based on the solution to the equations derived

by Clohessy and Wiltshire and has some similitudes with the formulation of Lovell

and Tragesser. Bennett and Schaub [48] address the singularities for the two phase

angles in the Lovell and Tragesser formulation that arise in specific relative configura-

tions. The new formulation is based on the use of trigonometric identities to remove

these singularities. The authors then present variational equations for this new set

and study the effect of drag on the relative motion. A comprehensive survey of the

different relative motion dynamics models as well as relative elements sets can be

found in [49].

1.4 Artificial Potential Functions

First introduced by Khatib [50] in the 1970s to control robotic arm manipulators,

artificial potential function (APF) methodology quickly gained broad attention from

the robotics community [51–53]. The methodology is based on the definition of a

potential field that admits a minimum at the location of a desired goal. Obstacles
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can be accounted for by adding a repulsive component to the potential. A controller

is then designed to follow the direction of steepest descent which, under certain as-

sumptions, will bring the robot to the goal while avoiding obstacles. The analytical

nature of the methodology results in a low computational cost and makes it attractive

for real-time, on-board applications. Since their first applications, artificial potential

functions have been used in a variety of fields including autonomous car driving [54],

camera motion tracking [55], or UAV path planning [56].

The first application of APF to spacecraft relative motion can probably be at-

tributed to McInnes [57] in 1993. In [58], the same author uses the control method-

ology to establish a planar ring formation. Lopez and McInnes [59] consider the

terminal rendezvous guidance between a deputy and a chief. A quadratic potential

field is defined for the attractive part and static obstacles are accounted for with

the inclusion of a Gaussian repulsive potential. The linear combination of attractive

and repulsive potential fields might lead to the emergence of local minima. Lopez

and McInnes state that for simple configurations these minima are unstable saddle

points and the spacecraft will therefore converge towards the goal. McQuade and

McInnes [60] use the methodology to do autonomous on-orbit assembly by multiple

robots. They present a control strategy to assemble a large number of beams into a

truss structure by utilizing a potential function that incorporate collision avoidance

between the free-flyers and connection constraints between the beams. Sato [61] intro-

duces a method to compute a potential function based on the solution to the Laplace

equation. A mesh is defined on the state space and the potential is computed at each

mesh node. A linear interpolation method is then used to compute the potential on

the entire space. This Laplace artificial potential function is guaranteed to have a

global minimum and no local minimum. In [62], Roger and McInnes use this Laplace

potential to compute the collision-free trajectory of a free-flyer near the International

Space Station (ISS). The method guarantees convergence towards the goal; however,

the iterative algorithm used to compute the potential is computationally expensive

and makes the method unsuitable for real-time applications.
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Most of the preliminary work on APFs focused on static target and obstacles.

Ge and Cui [63] study the case of moving targets and moving obstacles assuming

constant velocities. They define an APF where both the attractive and repulsive

components depend on the position and velocity of the targets and obstacles and

discuss strategies to avoid local minima. Tatsch and Fitz-Coy [64] and Tatsch [65]

extend the method to targets and obstacles with time-varying velocities and augment

the repulsive potential with a priority index weighting scheme, allowing to account

for several obstacles simultaneously. The authors illustrate their algorithm with au-

tonomous on-orbit servicing simulations. Tatsch [65] also derives an APF to control

the attitude of the spacecraft. The combination of APF and sliding mode control

has been used for terrestrial applications. Gazi [66] and Saaj et al. [67] investigate

the applicability of this method to the guidance and navigation of spacecraft swarms.

Their method is shown to be robust to disturbances. St. John-Olcayto et al. [68]

investigate the use of APF based control for the autonomous operations of a free-flier

near the ISS. They look in particular at the autonomous rendezvous and docking

of the European Automated Transfer Vehicle (ATV) and the Japanese HII Transfer

Vehicle (HTV) and show that the method is robust to perturbations such as residual

atmospheric drag and spacecraft thrust imperfections. In [69], Badawy and McInnes

use a quadratic field which depends on position, velocity, orientation, and angular

velocity for the attractive component of the APF and a superquadric function for the

repulsive component. The superquadric function enables the description of complex

obstacle geometries and the authors illustrate the control law with the autonomous

on-orbit assembly of beams. In [70], they change the attractive field of the APF from

quadratic to hyperbolic to reduce the control intervention and the control method is

applied to the establishment of a spacecraft formation. Another investigation of local

minima is proposed by Mabrouk and McInnes [71] where they introduce internal dy-

namic agent states which manipulate the potential to change stable equilibrium points

into unstable equilibrium points, enabling the spacecraft to escape. In his PhD dis-

sertation, Muñoz [72] develops adaptive artificial potential functions (AAPFs) which
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adapt their coefficients based on the solution to a two points boundary value problem

(TPBVP). A performance index is introduced in the APF formulation that accounts

for the dynamics of the system. The weights of the attractive potential are updated

such that the negative gradient of the potential adapts to the velocity profile of the

TPBVP solution, thus lowering the required control effort. Nag and Summerer [73]

use an APF control methodology to study the gathering and scattering behavior of

a swarm in the presence of an incoming kinetic impacter. In [74], Wahl and Howell

introduce a guidance strategy based on an AAPF using the Yamanaka-Ankersen state

transition matrix along with an auction algorithm for the initial target assignment.

In Wahl [75] and Wahl and Howell [76] a model predictive control (MPC) guidance

scheme is presented along the APF guidance and auction algorithm. Spencer [43,77]

introduces an APF formulation based on the relative orbital elements developed by

Lovell and Tragesser. The methodology allows to target four elements, thus enabling

the targeting of specific relative orbits but not a precise position on that orbit. Static

obstacles are considered with a Gaussian repulsive potential field. Sun et al. [78]

present a control method based on APF and bifurcation theory. The authors design

a static hyperbolic-exponential potential function which presents certain bifurcation

and stability properties and asses the stability of the controller analytically. Wang et

al. [79] use a set of eight dimensionless relative orbital elements derived from the solu-

tion to the Tschauner-Hempel equations to formulate quadratic reconfiguration and

dispersion APFs. The reconfiguration function is used to drive the spacecraft toward

the goal while the dispersion function ensures an even distribution of the spacecraft

on the relative orbit.

1.5 Contributions

The present investigation extends the method first introduced by Spencer with

the formulation of a control algorithm based on relative orbital elements and arti-

ficial potential functions. The algorithm presented in this dissertation allows full
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control of the relative position and velocity of a spacecraft in order to design and

establish spacecraft formations and is able to monitor and prevent collisions between

the formation’s agents. This work extends the state of the art with the following

contributions:

I. Definition of an artificial potential function control method based on relative orbital

elements.

An artificial potential function is formulated in terms of relative orbital elements.

Two methodologies are proposed: the first one is based on the Lovell and Tragesser

[27] formulation and the second one uses the Healy and Henshaw [47] formulation.

In both cases, all elements of the set are taken into account allowing the precise

positioning of the spacecraft on a given relative orbit. The APF is constructed with

an attractive quadratic potential field for goal seeking and an ellipsoidal repulsive

field to ensure collision avoidance during the reconfiguration. The repulsive portion

of the APF is only considered when a collision risk criterion is met. This decoupling

between attractive maneuvers and collision avoidance mitigates the risk of the deputy

being trapped in a local minima. The control law is obtained by following the steepest

descent of the APF in the orbital elements domain to generate a reference trajectory

which is then transformed into Cartesian coordinates and tracked using impulsive

burns.

II. Autonomous selection of the APF parameters.

The construction of APFs involves several parameters to scale and shape the

potentials which are, traditionally, manually selected. Strategies to automatically

select some of these parameters are presented. A sensitivity analysis of the relative

orbital elements with respect to changes in the relative velocity is conducted and used

to select some shaping coefficients of the attractive potential. The shaping coefficients

of the repulsive potential are automatically computed based on the relative velocity
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between the spacecraft and the obstacle. Fuel consumption being strongly impacted

by the scale of the APF, a method to select the scaling coefficient resulting in the

smallest cumulative delta-V while satisfying some maneuvers’ constraints is discussed.

III. Validation of the proposed algorithm in a high-fidelity simulation environment.

The performance of the control algorithm is evaluated with the numerical sim-

ulation of different formation establishments. The simulations are carried out in a

high fidelity six degrees of freedom simulation environment which has originally been

developed for LightSail. This simulator uses a nonlinear model of the dynamics and

accounts for several orbital perturbations. The robustness and limitations of the con-

trol algorithm are assessed.

The three aforementioned contributions have led to conference papers and pre-

sentations at the 29th AAS/AIAA Space Flight Mechanics Meeting [80] and 2019

AAS/AIAA Astrodynamics Specialist Conference [81] as well as a publication in Acta

Astronautica [82].
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2. MATHEMATICAL MODEL

In this chapter, the mathematical model of the control algorithm is developed. A

derivation of the model used to describe the dynamics of the relative motion is first

presented followed by a description of the two sets of relative orbital elements used

in this work. These sets are the Relative Orbital Elements (ROEs) first introduced

by Lovell and Tragesser [27] and the Geometric Relative Orbital Elements (GROEs)

introduced by Healy and Henshaw [47]. The construction of the artificial potential

function is introduced with the definition of the attractive and repulsive portions. The

APF and relative orbital elements methodologies are then merged to build the control

algorithm. Several methods to automatically select the parameters of the APF are

presented and the effects of orbital dynamics on the accuracy of the controller are

studied.

2.1 Relative Motion

We consider two spacecraft in orbit about a central body and we want to describe

the relative motion of one of them, the deputy, with respect to a non-maneuvring

chief. In some cases, a virtual chief will be considered, where there is not a physical

spacecraft at the chief location. The absolute position and velocity of the spacecraft

are described in a body-centered inertial frame with the î axis pointing toward the

vernal equinox, the k̂ axis normal to the mean equator of date at epoch J2000 TDB,

and the ĵ axis completing the triad and such that ĵ = k̂ × î. This frame is com-

monly referred to as J2000 or EME2000 [83,84]. The second reference frame which is

extensively used throughout this work is the local-vertical, local-horizontal (LVLH)

reference frame, also called Hill frame. This frame is centered on the chief and is de-

fined with x̂ pointing away from the central body along the radius vector, ẑ along the
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angular momentum vector, and ŷ in the along-track direction such that ŷ = ẑ × x̂.

In the case of a circular orbit, ŷ is aligned with the velocity vector of the chief. Note

that the definition of this frame is not globally agreed upon and various definitions

can be found in the literature (see for instance [83], [4], and [85]). The Earth-centered

inertial frame and LVLH frame are illustrated on Fig. 2.1.

î ĵ

k̂

x̂
ŷ

ẑ

rc

Figure 2.1: Earth-centered inertial and LVLH reference frames.

Given the inertial position rc and velocity ṙc of the chief, the LVLH frame can be

computed as

x̂ =
rc
‖rc‖

(2.1)

ẑ =
rc × ṙc
‖rc × ṙc‖

(2.2)

ŷ = ẑ × x̂ (2.3)
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The relative position of a deputy spacecraft with respect to the chief can be

expressed as

r = rd − rc (2.4)

where rd is the absolute position of the deputy in the inertial frame (Fig. 2.2).

x̂ŷ

ẑ

rc

rd

r

Figure 2.2: Relative position of the deputy and chief’s LVLH reference frame.

Taking the time derivative of Eq. (2.4) twice in the inertial frame results in the

relative acceleration of the deputy spacecraft:

I r̈ = r̈I d − r̈I c (2.5)

where superscript I indicates quantities in the inertial frame. In order to describe

the relative motion in the LVLH frame, we need to compute the relative acceleration

in that frame. Let

r = xx̂+ yŷ + zẑ (2.6)
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the relative position of the deputy with respect to the chief in the LVLH frame. The

velocity in the inertial frame is given by

ṙI =
d

dt

I

r =
d

dt

R

r + ωI R × r (2.7)

where superscript R indicates that the derivative is computed in the rotating LVLH

frame and ωI R = ωẑ is the angular velocity of the LVLH frame with respect to the

inertial one. The acceleration in the inertial frame can be computed by taking the

time derivative of the above equation:

r̈I =
d

dt

I (
ṙI
)

=
d

dt

R (
ṙI
)

+ ωI R ×
(
ṙI
)

=
d2

dt2

R

r +
d

dt

R

ωI R × r + ωI R × d

dt

R

r + ωI R ×
(

d

dt

R

r + ωI R × r
)

=
d2

dt2

R

r +
d

dt

R

ωI R × r + 2 ωI R × d

dt

R

r + ωI R ×
(
ωI R × r

)
(2.8)

where the different cross products yield

d

dt

R

ωI R × r =


−ω̇y
ω̇x

0

 (2.9)

ωI R × d

dt

R

r =


−ωẏ
ωẋ

0

 (2.10)

ωI R ×
(
ωI R × r

)
=


−ω2x

−ω2y

0

 (2.11)



19

Therefore, the relative acceleration can be expressed as

r̈I =


ẍ− ω̇y − 2ωẏ − ω2x

ÿ + ω̇x+ 2ωẋ− ω2y

z̈

 (2.12)

Using Newton’s second law ∑
i

F i = m r̈I c,d (2.13)

we can compute the acceleration of the chief and the deputy respectively. In the two-

body, unperturbed problem, the only force acting on the chief is the gravitational

force

F g(rc) = −µmc

r3
c

rc (2.14)

where µ is the standard gravitational parameter of the central body and rc = ‖rc‖.
The acceleration of the chief is thus

r̈I c = f g(rc) = − µ
r3
c

rc (2.15)

where lowercase f denotes force per unit mass. For the deputy spacecraft, however,

additional external forces such as thrust must be considered. The total force applied

on that spacecraft is

F g(rd) + F ext = −µmd

r3
d

rd + F ext (2.16)

where rd = ‖rd‖, resulting in an acceleration

r̈I d = f g(rd) + f ext = − µ
r3
d

rd + f ext (2.17)

The relative acceleration in the inertial frame (Eq. 2.5) can therefore be expressed in

terms of force per unit mass as follows:

r̈I = f g(rd)− f g(rc) + f ext (2.18)
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If we now express the position of the chief and the deputy in the LVLH frame as

rc = rcx̂ (2.19)

rd = rc + r = (rc + x)x̂+ yŷ + zẑ (2.20)

Eq. (2.18) can be rewritten using Eqs. (2.15) (2.17) as:

r̈I =


− µ
r3d

(rc + x) + µ
r2c

+ fx

− µ
r3d
y + fy

− µ
r3d
z + fz

 (2.21)

Finally, equating Eq. (2.12) with Eq. (2.21) results in

ẍ− ω̇y − 2ωẏ − ω2x = − µ
r3
d

(rc + x) +
µ

r2
c

+ fx (2.22)

ÿ + ω̇x+ 2ωẋ− ω2y = − µ
r3
d

y + fy (2.23)

z̈ = − µ
r3
d

z + fz (2.24)

This system of equations describes the exact relative motion of the deputy with respect

to the chief in the LVLH reference frame when considering a two-body, unperturbed

system. These nonlinear equations cannot be solved analytically and numerical meth-

ods must be used instead. In order to derive a close-form solution describing the

relative motion, the following assumptions which allow linearization of the system

are made:

1. The chief is on a circular orbit.

2. The distance between the deputy spacecraft and the chief is much smaller than

the distance between the central body and the chief: ‖r‖ � ‖rc‖.
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The first assumption implies that the orbital velocity of the chief is constant. Since

the LVLH frame is fixed to the chief, its angular rate will also be constant and thus

ω̇ = 0 (2.25)

Furthermore, for a circular orbit, the angular velocity corresponds to the mean motion

and we have

ω = n =
2π

Pc
=

√
µ

a3
c

=

√
µ

r3
c

(2.26)

where Pc is the orbital period of the chief and ac the semi-major axis of its orbit.

These two equations allow simplification of Eq. (2.12) to

r̈I =


ẍ− 2nẏ − n2x

ÿ + 2nẋ− n2y

z̈

 (2.27)

We now express the gravitational force on the deputy spacecraft as a function of the

relative position. Since rd = rc + r, f g(rd) becomes

f g(rd) = f g(rc + r) = − µ

[(rc + x)2 + y2 + z2]3/2


rc + x

y

z

 (2.28)

The second assumption made previously allows us to expand this expression into a

Taylor series about r = 0:

f g(rd) = f g(rc) + J|r=0 r +O(2) (2.29)
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where J is the Jacobian matrix of f g and O(2) denotes higher order terms. The

Jacobian matrix can be computed as

Ji,j =
∂fi
∂xj

=


3µx2i

[(rc+x)2+y2+z2]5/2
− µ

[(rc+x)2+y2+z2]3/2
if i = j

3µxixj
[(rc+x)2+y2+z2]5/2

if i 6= j

(2.30)

which, when evaluated at r = 0, becomes

J|r=0 =


2µ
r3c

0 0

0 − µ
r3c

0

0 0 − µ
r3c

 (2.31)

When plugging this expression back into Eq. (2.29) and neglecting the higher order

terms, we get

f g(rd) =


− µ
r2c

+ 2µx
r3c

−µy
r3c

−µz
r3c

 (2.32)

This equation along with Eqs. (2.15) and (2.27) is used in Eq. (2.18) which, after

rearranging, finally becomes [7]:

ẍ− 2nẏ − 3n2x = fx (2.33)

ÿ + 2nẋ = fy (2.34)

z̈ + n2z = fz (2.35)

These equations are known as the Clohessy-Wiltshire (CW) or Hill-Clohessy-Wiltshire

(HCW) equations and are a linear approximation of the exact equations of relative

motion described by Eqs. (2.22) - (2.24). A closed-form, analytical solution to these

equations can be derived if we assume that no external force aside from gravity acts
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on the system, i.e. fx,y,z = 0. If we take the Laplace transform of Eqs. (2.33)-(2.35)

with this assumption, we obtain

L{ẍ} − 2nL{ẏ} − 3n2L{x} = 0 (2.36)

L{ÿ}+ 2nL{ẋ} = 0 (2.37)

L{z̈}+ n2L{z} = 0 (2.38)

where we used the linearity of the Laplace transform. Moreover, the transforms of

the first and second order derivatives of a function satisfy [86]:

L{f ′} = sL{f} − f(0) (2.39)

L{f ′′} = s2L{f} − sf(0)− f ′(0) (2.40)

With these properties, Eqs. (2.36)-(2.38) can be rewritten as

s2L{x} − sx0 − ẋ0 − 2nsL{y}+ 2ny0 − 3n2L{x} = 0 (2.41)

s2L{y} − sy0 − ẏ0 + 2nsL{x} − 2nx0 = 0 (2.42)

s2L{z} − sz0 − ż0 + n2L{z} = 0 (2.43)

where 0 subscripts indicate initial values at time t0. This linear system of equations

can be solved to get

L{x} =

(
4x0 +

2ẏ0

n

)
1

s
−
(

3x0 +
2ẏ0

n

)
s

s2 + n2
+
ẋ0

n

n

s2 + n2
(2.44)

L{y} =

(
y0 −

2ẋ0

n

)
1

s
− (6nx0 + 3ẏ0)

1

s2
+

2ẋ0

n

s

s2 + n2

+

(
6x0 +

4ẏ0

n

)
n

s2 + n2

(2.45)

L{z} =z0
s

s2 + n2
+
ż0

n

n

s2 + n2
(2.46)
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Applying an inverse Laplace transform on these equations finally results in [4]:

x(t) =

(
4x0 +

2ẏ0

n

)
−
(

3x0 +
2ẏ0

n

)
cos[n(t− t0)] +

ẋ0

n
sin[n(t− t0)] (2.47)

y(t) = y0 −
2ẋ0

n
− (6nx0 + 3ẏ0)(t− t0) +

2ẋ0

n
cos[n(t− t0)]

+

(
6x0 +

4ẏ0

n

)
sin[n(t− t0)]

(2.48)

z(t) = z0 cos[n(t− t0)] +
ż0

n
sin[n(t− t0)] (2.49)

Similar equations for the relative velocity can be obtained by taking the first derivative

of these equations:

ẋ(t) = (3nx0 + 2ẏ0) sin[n(t− t0)] + ẋ0 cos[n(t− t0)] (2.50)

ẏ(t) = − (6nx0 + 3ẏ0)− 2ẋ0 sin[n(t− t0)] + (6nx0 + 4ẏ0) cos[n(t− t0)] (2.51)

ż(t) = − nz0 sin[n(t− t0)] + ż0 cos[n(t− t0)] (2.52)

These equations describe the relative position and velocity of the deputy at any time

t given the initial relative position and velocity of the spacecraft at time t0 under the

assumptions that the chief is on a circular orbit and that the deputy is close to the

chief.

2.1.1 Accuracy of the Clohessy-Wiltshire Equations

In order to assess the range of validity of the CW equations, a comparison between

the linearized model and the exact one is made for different chief’s eccentricities and

different distances between the deputy and the chief. It is assumed that the deputy

has an initial relative position

r =
[
50 −200 −30

]T
m
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and velocity

ṙ =
[
0.4 −0.1 0.5

]T
m/s

with respect to the chief and that the chief is on an orbit with semi-major axis

a = R⊕ + 700 km = 7078.1366 km

The exact relative motion, rexact, is obtained by numerically integrating the equations

describing the absolute motion of both spacecraft, computing the difference, and

rotating the relative position into the LVLH reference frame, i.e. rexact = R(rd −
rc) with R the rotation matrix from J2000 to LVLH. The linear approximation of

the motion is computed using the CW equations (Eqs. (2.47)-(2.52)) and the error

between the two models is given by

err = rCW − rexact (2.53)

Fig. 2.3 shows the time evolution of the error in the x, y, and z directions of the

LVLH frame between the linearized relative motion and the exact relative motion for

different eccentricities of the chief’s orbit. As can be seen on this figure, the error

is reasonably small for small eccentricities but grows as the eccentricity grows. We

see that the amplitude of the error grows with time in the x and y directions but

stays more or less constant in the z direction. Periodic oscillations in the positive

and negative directions are visible for x and z and a steady increase is observed for y.

These results show that if the chief is on an eccentric orbit with e = 0.1 for instance,

and the CW equations are used to describe the relative motion of a deputy, then after

4.5 hours an error of about 200 meters will have accumulated in the x direction, 1

kilometers in the y direction, and -50 meters in the z direction. In order to relate these

eccentricities to injection errors, we compute the differences between the apsides for a

given eccentricity and the radius of a circular orbit. We assume that the semi-major

axis of the elliptic orbit corresponds to the radius of the desired circular orbit. With
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Figure 2.3: Error introduced by the linearization for different chief’s eccentricity along
the x, y, and z directions of the LVLH frame.

this assumption, the difference between both apsides will be the same as illustrated

in Fig. 2.4.

⊕∆ra ∆rp

r

×

r

Figure 2.4: Circular and elliptic orbits.
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For a given semi-major axis a and eccentricity e, the distance of the apoapsis and

periapsis from the central body are respectively

ra = a(1 + e) (2.54)

rp = a(1− e) (2.55)

Hence, if the desired radius of the circular orbit is r = a, the difference between the

radius and the apoapsis and periapsis is

∆ra = |r − ra| (2.56)

∆rp = |r − rp| (2.57)

Since ∆r := ∆ra = ∆rp, we have

∆r = |a− rp| = |a− a(1− e)| = |ae| = ae (2.58)

which corresponds to half the distance between the two focii. This quantity allows

us to compute the eccentricity of the orbit after an injection error of ∆r, assuming

that the elliptical orbit has a semi-major axis corresponding to the radius of the

circular orbit. Similarly, given an eccentricity, we can compute the injection error

that would result in such an orbit under the same assumption. Table 2.1 shows the

injection errors resulting in elliptic orbits with eccentricities presented in Fig. 2.3 for

a targeted 700 km altitude circular orbit.

These results show that in order to achieve a perfectly circular orbit, a perfect

injection is required. We then see that even a large injection error of about 70

kilometers results in a relatively small eccentricity of 0.01. Note that the elliptical

orbit with e = 0.1 would have a perigee below the Earth surface for this specific case.

Some launch vehicles have an injection accuracy that falls within a few kilometers for

LEO. The Delta IV launch vehicle, for instance, has a 3-σ accuracy of ±11 km for the

perigee altitude and ±12 km for the apogee altitude for a 500 km circular orbit at 90◦



28

Table 2.1: Injection errors resulting in the specified eccentricities.

Eccentricity Error (km)

0 0

0.01 70.78

0.02 141.56

0.05 353.91

0.07 495.97

0.1 707.81

inclination [87]. These errors could result in an maximum eccentricity of e = 0.0017.

This level of accuracy would allow to inject a chief spacecraft on an orbit for which

the eccentricity would be in close agreement with the circular orbit assumption used

in the derivation of the CW equations.

We now look at how the distance between the deputy and the chief affects the

accuracy of the linear model. Let us consider a deputy spacecraft slightly ahead of the

chief, on the same orbit. In the linear model, the relative position can be expressed

in the LVLH frame as

rLVLH =
[
0 yLVLH 0

]T
(2.59)

In reality, due to the curvature of the orbit, the true relative position of the deputy

expressed in the LVLH frame is

rtrue =
[
xtrue ytrue 0

]T
(2.60)

Fig. 2.5 illustrates the errors introduced by the linearization on both the x and y

directions for a chief spacecraft on a circular orbit with radius r. The length of the

blue segment and the length of the blue arc are identical. Since the length of the arc

is given by rθ, we have

rθ = yLVLH (2.61)
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Figure 2.5: Error between the true position and the LVLH position.

and therefore

θ =
yLVLH

r
(2.62)

The true position of the spacecraft can thus be computed as

xtrue = −(r − r cos θ) = −r
(

1− cos
yLVLH

r

)
(2.63)

ytrue = r sin θ = r sin
yLVLH

r
(2.64)

The errors correspond to the difference between the true position and the linear

approximation and yield

δx = |xtrue − xLVLH| =
∣∣∣−r (1− cos

yLVLH

r

)∣∣∣ (2.65)

δy = |ytrue − yLVLH| =
∣∣∣r sin

yLVLH

r
− yLVLH

∣∣∣ (2.66)

Table 2.2 below shows the errors for different relative distances between the deputy

and the chief for a 700 km altitude orbit about the Earth.
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Table 2.2: Errors for different relative distances in the along-track direction.

yLVLH (m) δx (m) δy (m)

10 7.06e-6 3.33e-12

100 7.06e-4 3.33e-9

500 1.77e-2 4.16e-7

1,000 7.06e-2 3.33e-6

5,000 1.77 4.16e-4

10,000 7.06 3.33e-3

50,000 176.60 0.42

We see from this table that the errors stay reasonably small for small yLVLH and

then significantly grow when yLVLH reaches distances in the order of several kilometers.

We can also observe that the error in the x direction is much larger than the one in

the y direction. For instance, at a distance of 1 km, the error in the x direction is 7.06

cm whereas the error in the y direction is 3.33 µm. These results show that at that

altitude, the linear approximation of the relative motion can be used for spacecraft

formations with a baseline of a few hundred meters but care must be taken when

designing more distributed formations. For a given relative distance, the errors will

become less significant at higher altitudes and more significant at lower altitudes.

The LVLH Cartesian coordinates used with the CW equations do not offer much

intuition into the relative trajectory followed by the deputy. In order to gain a

better understanding of the time evolution of the deputy spacecraft’s relative motion,

several sets of elements have been developed over the past decades. Two different

formulations which are used in this work are described in the following sections.

2.1.2 Lovell and Tragesser Formulation

The first set of relative orbital elements used in this work has first been introduced

by Lovell and Tragesser [27]. The set consists of six elements derived from the solution

to the CW equations which represent quantities associated with the projection of the
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instantaneous relative orbit in the x-y plane and x-z plane. The first four elements

are defined with respect to the projection of the instantaneous relative orbit in the

chief’s orbital plane, that is in the x-y plane of the LVLH frame. The relative motion

in that plane is given by Eqs. (2.47)-(2.49). We see from Eq. (2.47) that the motion

along the x axis is described by the harmonic motion about a constant center. The

position of this center is given by

xr = 4x0 +
2ẏ0

n
(2.67)

The motion along the y axis is described by the combination of a constant, a secular

term, and trigonometric terms as can be seen in Eq. (2.48). The combination of these

expressions result in an harmonic motion about a center which has a secular drift.

The position of that center is given by

yr(t) = y0 −
2ẋ0

n
− (6nx0 + 3ẏ0)(t− t0) (2.68)

These two quantities define the first two ROEs and describe the position of the instan-

taneous center of motion of the relative orbit. After some trigonometric manipulations

and rearranging, Eqs. (2.47) and (2.48) can be combined into

(x− xr)2(
3x0 + 2ẏ0

n

)2
+
(
ẋ0
n

)2
+

(y − yr)2

4
[(

3x0 + 2ẏ0
n

)2
+
(
ẋ0
n

)2
] = 1 (2.69)

which can be readily identified as the equation of an ellipse. This ellipse has a semi-

minor axis

Ax =

√(
3x0 +

2ẏ0

n

)2

+

(
ẋ0

n

)2

(2.70)

and semi-major axis

Ay = 2

√(
3x0 +

2ẏ0

n

)2

+

(
ẋ0

n

)2

(2.71)
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It follows from these quantities that the semi-major axis of an unforced relative orbit

will always have a length twice that of the semi-minor axis, and therefore a single

quantity can be defined to describe the shape of the ellipse. Hence, the third ROE is

the relative semi-major axis defined as

ar =

√(
6x0 +

4ẏ0

n

)2

+

(
2ẋ0

n

)2

(2.72)

If the Harmonic Addition Theorem [88] is now applied to Eqs. (2.47) and (2.48), and

xr, yr, and ar are substituted back, we get

x(t) = xr −
1

2
ar cos

[
n(t− t0) + atan2

(
2ẋ0

n
, 6x0 +

4ẏ0

n

)]
(2.73)

y(t) = yr(t) + ar sin

[
n(t− t0) + atan2

(
2ẋ0

n
, 6x0 +

4ẏ0

n

)]
(2.74)

where atan2 is the 2-argument arctangent and returns a value in the range (−π, π].

The argument of the sine and cosine being identical, the fourth ROE is defined as

Er(t) = n(t− t0) + Er0 (2.75)

with

Er0 = atan2

(
2ẋ0

n
, 6x0 +

4ẏ0

n

)
(2.76)

This element is called the relative eccentric anomaly and describes the position of the

deputy spacecraft on the relative orbit. It is a measure of the angle from the position

of the periapsis to the projection of the spacecraft on an auxiliary circle of radius ar.

A geometric interpretation of these four ROEs is shown in Fig. 2.6.
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Figure 2.6: Projection of the relative trajectory in the x-y plane of the LVLH frame.
P denotes the position of the periapsis. Reproduced from [42].

Using these four ROEs, the relative position and velocity of the deputy spacecraft

in the x-y plane can be expressed as

x(t) = xr −
1

2
ar cosEr(t) (2.77)

y(t) = yr(t) + ar sinEr(t) (2.78)

and

ẋ(t) =
n

2
ar sinEr(t) (2.79)

ẏ(t) = −3

2
nxr + nar cosEr(t) (2.80)

The last two elements are defined in the projection on the x-z plane. Applying

the Harmonic Addition Theorem to Eq. (2.49) results in

z(t) =

√
z2

0 +

(
ż2

0

n

)2

sin

[
n(t− t0) + atan2

(
z0,

ż0

n

)]
(2.81)
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We see from this equation that the amplitude of the relative cross-track motion of

the spacecraft is

Az =

√
z2

0 +

(
ż0

n

)2

(2.82)

which defines a fifth ROE. Additionally, the argument of the sine in Eq. (2.81)

provides a sixth element defined as the phase angle of the cross-track motion

ψ(t) = n(t− t0) + ψ0 (2.83)

with

ψ0 = atan2

(
z0,

ż0

n

)
(2.84)

This phase angle is measured from the negative x direction to the projection of the

spacecraft on an auxiliary circle of radius Az. Fig. 2.7 shows the projection of the

relative trajectory together with the two ROEs in the cross-track plane.

z

x

Az

ψ

Auxiliary circle
Position of the
spacecraft

Projection

Figure 2.7: Projection of the relative trajectory in the x-z plane of the LVLH frame.
Reproduced from [42].

With the definition of these two ROEs, the position along the z axis can be

expressed as

z(t) = Az sinψ(t) (2.85)
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and the velocity

ż(t) = nAz cosψ(t) (2.86)

It follows from the definition of the ROEs that three elements, yr, Er, and ψ are

time-dependent. In order to replace one of them with a constant value, the differ-

ence between the phase angle in the cross-track projection and the relative eccentric

anomaly is defined and is used instead of ψ:

γ = ψ(t)− Er(t) (2.87)

The set of ROEs thus becomes {xr yr ar Er Az γ} and fully describes the rel-

ative position and velocity of the deputy spacecraft with respect to the chief. With

the definition of γ, Eqs. (2.85) and (2.86) become

z(t) = Az sin(Er(t) + γ) (2.88)

ż(t) = nAz cos(Er(t) + γ) (2.89)

The equations describing the ROEs derived so far involve knowledge of the initial

condition of the deputy spacecraft. It is sometimes convenient to compute the ROEs

in terms of instantaneous LVLH Cartesian coordinates rather than initial conditions.

This can be achieved with the following set of equations [42]:

xr = 4x+
2ẏ

n
(2.90)

yr = y − 2ẋ

n
(2.91)

ar =

√(
6x+

4ẏ

n

)2

+

(
2ẋ

n

)2

(2.92)

Er = atan2

(
2ẋ

n
, 6x+

4ẏ

n

)
(2.93)

Az =

√
z2 +

(
ż

n

)2

(2.94)
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γ = atan2

(
z,
ż

n

)
− atan2

(
2ẋ

n
, 6x+

4ẏ

n

)
(2.95)

Finally, these equations can be inverted to express the LVLH coordinates in terms of

ROEs as:

x(t) = xr −
1

2
ar cosEr(t) (2.96)

y(t) = yr(t) + ar sinEr(t) (2.97)

z(t) = Az sin(Er(t) + γ) (2.98)

ẋ(t) =
n

2
ar sinEr(t) (2.99)

ẏ(t) = −3

2
nxr + nar cosEr(t) (2.100)

ż(t) = nAz cos(Er(t) + γ) (2.101)

2.1.3 Healy and Henshaw Formulation

Another set of relative orbital elements called geometric relative orbital elements

(GROEs) has been derived by Healy and Henshaw [47]. This set, also based on the

solution to the CW equations, comprises eight parameters and is the geometric analog

to the classical orbital elements for relative orbits. The derivation of this set is based

on the observation that Eqs. (2.47)-(2.52) can be rewritten in terms of six parameters:

x = xc + κ sin τ (2.102)

y = yc −
3

2
xc(τ − τ0) + 2κ cos τ (2.103)

z = κη sin(Ξ + τ) (2.104)

ẋ = nκ cos τ (2.105)

ẏ = −3

2
nxc − 2nκ sin τ (2.106)

ż = nκη cos(Ξ + τ) (2.107)
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where

Ξ = atan2(nz, ż)− atan2(−3nx− 2ẏ, ẋ) (2.108)

η =

√
n2z2 + ż2

ẋ2 + (3nx+ 2ẏ)2
(2.109)

κ =
1

n

√
ẋ2 + (3nx+ 2ẏ)2 (2.110)

xc = 4x+
2ẏ

n
(2.111)

yc = y − 2ẋ

n
+

3

2
xc(τ − τ0) (2.112)

τ = atan2(−3nx− 2ẏ, ẋ) (2.113)

The first parameter, Ξ, represents a phase angle and is the difference between the

phase in the cross-track plane and in the fundamental plane. The second parameter,

η, corresponds to the ratio of the amplitudes of the cross-track and in-plane motions.

κ describes the semi-minor axis of the projected ellipse in the x-y plane. The fourth

and fifth parameters describe the location of the center of motion of the instantaneous

relative orbit. Finally, τ is a phase angle in the x-y plane that evolves according to

τ = τ0 + nt where τ0 is the value of τ at t = 0. Out of these six parameters, yc and τ

are time-varying whereas the other ones are constant. These parameters are closely

related to the ROEs and can be transformed with the following equations:

Ξ = γ − π

2
η =

2Az
ar

κ =
ar
2

xc = xr yc = yr τ = Er +
π

2

The eight GROEs are based on these parameters. Similarly to the ROEs, the first two

GROEs, xc and yc, describe the position of the instantaneous center of motion. Using
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these two elements, the time-varying position and velocity of the center of motion in

the LVLH frame can be defined:

ρc =


xc

yc − 3
2
ntxc

0

 (2.114)

ρ̇c =


0

−3
2
nxc

0

 (2.115)

which correspond to the constant and secular terms in Eqs. (2.102)-(2.104). The

relative position and velocity of the deputy can then be shifted with respect to the

position and velocity of the center of motion to obtain the relative state in what is

defined as the centered LVLH or cLVLH frame:

scLVLH = r − ρc = κ


sin τ

2 cos τ

η sin(Ξ + τ)


cLVLH

(2.116)

ṡcLVLH = ṙ − ρ̇c = nκ


cos τ

−2 sin τ

η cos(Ξ + τ)


cLVLH

(2.117)

A new coordinate system, the apocentral coordinates, is now defined with two of its

axes lying in the plane of the relative orbit. The X̂ axis is defined as the direction of

maximum excursion of the deputy in the half-plane with y ≥ 0. The Ẑ axis is defined

along the relative orbit’s plane normal. The third axis, Ŷ , is chosen to be orthogonal

to the first two axes and completes the triad: Ŷ = Ẑ × X̂. Fig. 2.8 illustrates the

apocentral coordinates system in the LVLH frame.
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ŷ ẑ

x̂

ρc

Ŷ

Ẑ

X̂

Figure 2.8: Apocentral coordinates and LVLH frame.

The rotation matrix to go from apocentral to cLVLH can be computed as:

R =


X sin$
Z

X cos$
Z

2η cos Ξ
Z

2 cos$
X
− η2 sin 2Ξ sin$

XZ
−2 sin$

X
− η2 sin 2Ξ cos$

XZ
η sin Ξ
z

4η cos Ξ sin$
XZ

+ η sin Ξ cos$
X

4η cos Ξ cos$
XZ

− η sin Ξ sin$
X

− 2
Z

 (2.118)

with

X =

√
4 + η2 sin2 Ξ (2.119)

Z =
√

4 + η2(1 + 3 cos2 Ξ) (2.120)

$ = arctan

(
Z sin τa

X2 cos τa + η2 sin Ξ cos Ξ sin τa

)
(2.121)

τa =

τext if η2 cos 2(Ξ + τext) ≤ 3 cos 2τext

τext + π
2

otherwise

(2.122)

τext =
1

2
atan2(η2 sin 2Ξ, 3− η2 cos 2Ξ) (2.123)



40

A derivation of these equations is presented in [47]. The relative position in apocentral

coordinates can be obtained by multiplying Eq. (2.116) by RT

sapoc = RTscLVLH (2.124)

Since the instantaneous relative orbit is an ellipse, we can also express sapoc as

sapoc =


a cos c

b sin c

0


apoc

(2.125)

where a is the semi-major axis of the ellipse, b the semi-minor axis, and c = τ−τa the

central anomaly measured from X̂ to the projection of the deputy on an auxiliary

circle of radius a. If we compute the first component of Eq. (2.124) and evaluate at

τ = τa, we get

a =
κ

X
([4 cos τa + η2 + sin Ξ sin(Ξ + τa)] cos$ + Z sin τa sin$) (2.126)

and similarly for the second component evaluated at τ = τa + π/2

b =
κ

X
([4 sin τa − η2 sin Ξ cos(Ξ + τa)] sin$ + Z cos τa cos$) (2.127)

The eccentricity of the relative orbit can then be computed as

e =

√
1−

(
b

a

)2

(2.128)

The semi-major axis of the relative orbit, a, and its eccentricity, e, are used as third

and fourth GROEs. The fifth element is the central anomaly, c, that describes the

in-plane motion of the deputy. These three elements describe the size and shape of

the ellipse as well as the location of the spacecraft. The last three ones describe the



41

orientation of the relative orbit in the LVLH frame. The slant, σ, is the analog to the

inclination and is defined as the angle from ẑ to Ẑ:

σ = arccos

(
− 2

Z

)
(2.129)

Since Z ≥ 0, the slant is defined within [π
2
, π]. Similar to the ascending node, the

sinilaterating node is defined as the point where the relative orbit crosses the chief’s

orbital plane in the direction from −ẑ to ẑ. The angle between the sinilaterating node

direction n̂ and the positive x direction is denoted Υ and is called the colatitude of

the sinilaterating node:

Υ = atan2(2 cos Ξ,− sin Ξ) (2.130)

Finally, the last element of the set is the argument of pericenter, ω, which is an angle

measured from the direction of the sinilaterating node to the X̂ axis and is the analog

of the argument of periapsis:

ω = $ + atan2(Z sin Ξ, 4 cos Ξ) (2.131)

This element completes the set of eight GROEs:

{xc yc a e c σ Υ ω} (2.132)

Fig. 2.9 illustrates the GROEs in the chief’s LVLH frame.

The equations described so far allow to transform from LVLH Cartesian coordi-

nates to GROEs. The inverse transformation from GROEs to LVLH coordinates is

obtained by first computing the phase difference

Ξ = atan2(−2 cos Υ, sin Υ) (2.133)
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ŷ
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Major axis

Orbital plane of the chief

a

Figure 2.9: Representation of the geometric relative orbital elements (GROEs).

and the relative amplitude

η = − 2 tanσ√
1 + 3 cos2 Ξ

= −
√

1 + 3 cos2 Υ tanσ (2.134)

These quantities allow us to compute Eqs. (2.119)-(2.123) and the rotation matrix

R. The relative position and velocity in LVLH Cartesian coordinates can then be

computed as

r = ρc +R


a cos(c0 + nt)

b sin(c0 + nt)

0


apoc

(2.135)

ṙ = ρ̇c + nR


−a sin(c0 + nt)

b cos(c0 + nt)

0


apoc

(2.136)
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where ρc and ρ̇c are given by Eqs. (2.114) and (2.115). Note that if the GROEs are

known, the rotation matrix R can be obtained from the composition of rotations of

−ω about ẑ, −σ about x̂, and −Υ about ẑ, that is

R = Rz(−Υ)Rx(−σ)Rz(−ω) (2.137)

whereRx andRz are the standard rotation matrices along the 1st and 3rd dimensions.

It is important to note that since the GROEs are derived from six parameters, the

eight elements are not independent. In fact, σ, Υ, and ω, are parameterized by the

phase difference Ξ and the relative amplitude η. In addition to these two parameters,

a and e also depend on κ. This means that all combinations of GROEs are not valid

representations of relative orbits and fixing σ, Υ, and τ for instance will determine

ω, a, and e.

2.1.4 Circular Relative Orbits

Circular relative orbits (CROs) are of particular interest to design specific geome-

tries that will be illustrated in Chapter 3. In this sub-section, the sets of ROEs and

GROEs describing a CRO are derived. The derivation is first conducted for the ROEs

and is based on the assumption that the distance between the spacecraft and the in-

stantaneous center of relative motion is constant. This distance can be expressed

as

d(t) =
√

(x(t)− xr(t))2 + (y(t)− yr(t))2 + z(t)2 (2.138)

or similarly as

d(t)2 = (x(t)− xr(t))2 + (y(t)− yr(t))2 + z(t)2 (2.139)

where the rectangular coordinates (x, y, z) denote the relative position of the space-

craft in the LVLH frame at time t and the first two ROEs, xr(t) and yr(t), describe
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the position of the center of motion. For a CRO of radius r, this distance is constant

and therefore

(x(t)− xr(t))2 + (y(t)− yr(t))2 + z(t)2 = r2 (2.140)

Using Eqs. (2.96) and (2.98), the rectangular coordinates can be expressed in terms

of ROEs which yields

[
−1

2
ar(t) cosEr(t)

]2

+ [ar(t) sinEr(t)]
2 + [Az(t) sin(Er(t) + γ(t))]2 = r2 (2.141)

Replacing the time dependant terms by

ar(t) = ar0 (2.142)

Er(t) = Er0 + n(t− t0) (2.143)

Az(t) = Az0 (2.144)

γ(t) = γ0 (2.145)

we get

1

4
a2
r0 cos2(Er0 +n(t− t0))+a2

r0 sin2(Er0 +n(t− t0))+A2
z0 sin2(Er0 +n(t− t0)+γ0) = r2

(2.146)

Let ϕ(t) = n(t− t0) and substitute in the above equation:

1

4
a2
r0 cos2(Er0 + ϕ(t)) + a2

r0 sin2(Er0 + ϕ(t)) +A2
z0 sin2(Er0 + ϕ(t) + γ0) = r2 (2.147)

This expression is now evaluated at three distinct times such that ϕ(t1) = π
2
− Er0,

ϕ(t2) = −Er0, and ϕ(t3) = −Er0 − γ0 which results in, respectively

a2
r0 + A2

z0 cos2 γ0 = r2 (2.148)

1

4
a2
r0 + A2

z0 sin2 γ0 = r2 (2.149)

1

4
a2
r0 cos2 γ0 + a2

r0 sin2 γ0 = r2 (2.150)
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where sin(θ + π
2
) = cos(θ) has been used in Eq. (2.148). Subtracting Eq. (2.149)

from Eq. (2.148) yields
3

4
a2
r0 + A2

z0 cos(2γ0) = 0 (2.151)

Since the relative semi-major axis ar0 and the amplitude of the cross-track motion

Az0 are non negative values, the phase angle must satisfy cos(2γ0) ≤ 0 and therefore

π

4
≤ γ0 ≤

3π

2
(2.152)

Eq. (2.150) is now substituted in Eqs. (2.148) and (2.149) to eliminate r2, which

gives

a2
r0 + A2

z0 cos2 γ0 =
1

4
a2
r0 cos2 γ0 + a2

r0 sin2 γ0 (2.153)

1

4
a2
r0 + A2

z0 sin2 γ0 =
1

4
a2
r0 cos2 γ0 + a2

r0 sin2 γ0 (2.154)

Summing and subtracting these two equations yields respectively

5

4
a2
r0 + A2

z0 =
1

2
a2
r0 cos2 γ0 + 2a2

r0 sin2 γ0 (2.155)

3

4
a2
r0 + A2

z0(2 cos2 γ0 − 1) = 0 (2.156)

Solving for Az0 in Eq. (2.155) and plugging back into Eq. (2.156) results in

3

4
a2
r0 +

[
1

2
a2
r0 cos2 γ0 + 2a2

r0 sin2 γ0 −
5

4
a2
r0

]
[2 cos2 γ0 − 1] = 0 (2.157)

which can be reduced to

3a2
r0 cos2 γ0(1− cos2 γ0) = 0 (2.158)

Since the relative semi-major axis ar0 is strictly positive, it follows that

cos2 γ0(1− cos2 γ0) = 0 (2.159)



46

which admits γ0 = 0, γ0 = π
2
, γ0 = π, and γ0 = 3π

2
. It has been found however that

π
4
≤ γ0 ≤ 3π

2
(Eq. (2.152)) and therefore a CRO is characterized by

γ0 = ±π
2

(2.160)

If this value is plugged back into Eq. (2.151), the amplitude of the cross-track motion

becomes

Az0 =

√
3

2
ar0 (2.161)

Finally, substituting Eqs. (2.160) and (2.161) into Eq. (2.148) results in

ar0 = r (2.162)

These results indicate that for the unforced motion and for any given radius, only two

circular relative orbits exist in the linear approximation of the unperturbed relative

motion. Fig. 2.10 illustrates these two orbits in the LVLH reference frame.

ŷ
ẑ

x̂

Figure 2.10: Circular relative orbits in the LVLH reference frame. The orientation of
the relative orbits planes is defined by γ = 90◦ (green) and γ = −90◦ (blue).
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The natural motion of the deputy on these CROs is determined by the orbital

velocity of the spacecraft. When the deputy is at a higher altitude, its velocity will

be smaller than the velocity of the chief, thus resulting in the deputy drifting in the

negative y direction. When on a lower orbit, the deputy will have a larger velocity

than the chief, resulting in a drift in the positive y direction.

If n̂r is the unit vector normal to the relative orbit plane along the relative angular

momentum vector, an additional element, the relative inclination, can be defined as

the angle between ẑ and n̂r [42]:

ir = cos−1

(
−ar√

4A2
z sin2 γ + A2

z cos2 γ + a2
r

)
(2.163)

This value is identical to the slant σ defined in the context of GROEs. For a CRO,

the relative inclination is found by substituting Eqs. (2.160) and (2.161) into Eq.

(2.163) and yields

ir =
2π

3
or 120◦ (2.164)

This angle is illustrated in Fig. 2.11.

ẑ

ŷ

x̂
n̂r

ir

Figure 2.11: Relative inclination angle for a circular relative orbit.
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We now show that for a CRO, an angular separation of ν in the orbital plane

corresponds to a relative eccentric anomaly difference of ν in the x − y plane. This

relation will be used in Chapter 3 to design formation geometries where the spacecraft

are equally distributed on the CRO. Fig. 2.12 shows the portion of relative orbit swept

out by an angle ν in the relative orbit plane along with the projection on the x-y

plane.

ν

∆Er

A

B

C

D

ar

ar

Auxiliary circle

Figure 2.12: Relation between the angular separation in the relative orbit plane ν
and the relative eccentric anomaly ∆Er.

As can be seen in Fig. 2.12, the segment BC can be computed by trigonometry

as

BC = ar cos ν (2.165)

Noting that AD = BC, we have

cos ∆Er =
AD

ar
= cos ν (2.166)

and therefore, for a CRO, an angular separation of ν in the relative orbit plane

corresponds to an angular separation ∆Er = ν in relative eccentric anomaly.
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The set of GROEs leading to a CRO is now derived. The relations between the

intermediate parameters used in the derivation of the GROEs and the ROEs are used

to describe these elements. Based on the values of the ROEs describing a CRO, these

parameters become

Ξ = 0, π η =
√

3 κ =
r

2

These quantities allow to compute X and Z (Eqs. (2.119) and (2.120)):

X = ±2 Z = ±4

It follows that the slant is

σ = cos−1

(
− 2

Z

)
= cos−1

(
±1

2

)
=
π

3
or

2π

3
(2.167)

and since its value is defined within [π
2
, π], the slant must be

σ =
2π

3
(2.168)

The colatitude of the sinilaterating node becomes

Υ = atan2(2 cos Ξ,− sin Ξ) =

atan2(2, 0) if Ξ = 0

atan2(−2, 0) if Ξ = π

(2.169)

Hence,

Υ = ±π
2

(2.170)

Also, τext = 0, τa = 0, and $ is undefined if the the relative motion is circular. With

these expressions, the relative semi-major and semi-minor axes are

a = b = r (2.171)
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and finally the eccentricity is

e =

√
1−

(
b

b

)2

= 0 (2.172)

The argument of apocenter ω is undefined for circular relative orbits. In the case

of GROEs, an angular separation ν in the orbital plane corresponds to an angular

separation ∆c of the central anomaly for CROs.

2.2 Artificial Potential Function

The APF methodology consists in defining a scalar potential field on the phase

space that admits a minimum at the location of a desired goal and design a controller

to follow the steepest descent of the gradient of the potential. In order for the method

to converge, candidate functions must satisfy Lyapunov’s second method for stability.

That is, for a scalar potential function φ(x) such that φ(0) = 0, if

φ(x) > 0, ∀x 6= 0 (2.173)

φ(x)→∞, as x→∞ (2.174)

φ̇(x) < 0, ∀x 6= 0 (2.175)

then the origin is an equilibrium point and is globally attractive. If the potential is

constructed such that it satisfies the first two conditions and the third one is enforced

by the definition of a suitable control law, then the spacecraft will converge to the

global minimum and thus to the goal. A typical control definition found in the

literature consists in following the steepest descent of the gradient of the potential

(see for instance [59,68,77]):

∆V =

−∇xφ− ẋ if φ̇ ≥ 0

0 if φ̇ < 0

(2.176)
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Obstacles present in the state space can be accounted for by constructing a re-

pulsive potential which admits local maxima at the position of each obstacle. The

total artificial potential is then the linear combination of the attractive and repulsive

portions. This superposition may give rise to local minima which may create conver-

gence issues as discussed in Chapter 1, as well as shift the location of the goal. A

strategy to mitigate these issues will be discussed in Section 2.3.

2.2.1 Attractive Potential Field

The attractive potential field used in this work is a quadratic function of the form

φa(x) =
1

2
kax

TQax (2.177)

where ka is a scaling parameter which determines the height of the potential and

Qa is a shaping matrix. Fig. 2.13 shows quadratic potentials of two variables with

a global minimum at the origin for different shaping matrices and ka = 10−4. The

first potential, Fig. 2.13a, has a symmetric shaping matrix Qa = [ 1 0
0 1 ]. In that case,

the convergence rate of a controller following the steepest descent of the gradient

along the x and y coordinates will be identical. The second potential, Fig. 2.13b,

has a shaping matrix Qa = [ 2 0
0 10 ] leading to a faster convergence rate along the y

coordinate than the x coordinate. Adding off-diagonal terms in the shaping matrix

leads to a distortion of the potential as illustrated in Fig. 2.13c. This potential has

been obtained with Qa = [ 3 −2
−3 6 ].

The APF is now defined in terms of element sets rather than Cartesian coordinates.

If ρ is the set of ROEs or GROEs and ρt the set of target elements, then the attractive

potential field is

φa(ρ) =
1

2
ka(ρ− ρt)TQa(ρ− ρt) (2.178)
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Figure 2.13: Quadratic attractive potential for different shaping matrices.

This potential will take a minimum value of zero whenever the set of elements has

reached the target. If we assume that the shaping matrix is diagonal and if we expand

Eq. (2.178) for the ROEs, we get

φa(ρ
ROEs) =

1

2
ka[Qa1(xr − xrt)2 +Qa2(yr − yrt)2 +Qa3(ar − art)2

+Qa4(Er − Ert)2 +Qa5(Az − Azt)2 +Qa6(γ − γt)2]

(2.179)
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where subscript t denotes targeted quantities. Similarly, for the GROEs, we obtain

φa(ρ
GROEs) =

1

2
ka[Qa1(xc − xct)2 +Qa2(yc − yct)2 +Qa3(a− at)2

+Qa4(e− et)2 +Qa5(c− ct)2 +Qa6(σ − σt)2

+Qa7(Υ−Υ)2 +Qa8(ω − ωt)2]

(2.180)

Based on the definition of the ROEs, targeting a constant value of the relative eccen-

tric anomaly, Er, would require continuous actuation in order to counter its natural

motion. Therefore, it is more practical to target an angular separation with respect

to a moving reference, referred to as a virtual leader. If we assume that this virtual

leader has a relative eccentric anomaly given by

E
′

r(t) = E
′

r0 + n(t− t0) (2.181)

where E
′
r0 is the initial value at t0, then the angular separation between a deputy and

that leader is

∆Er = Er(t)− E
′

r(t) (2.182)

Hence, if we target a fixed angular separation ∆Ert, the targeted relative eccentric

anomaly at time t is

Ert(t) = ∆Ert + E
′

r0 + n(t− t0) (2.183)

A similar computation for the central anomaly leads to

ct(t) = ∆ct + c
′

0 + n(t− t0) (2.184)

The use of a virtual leader instead of an actual spacecraft is based on fuel considera-

tions. If the deputy were to follow an actual spacecraft, whenever that leader maneu-

vers to move toward its target or performs a collision avoidance maneuver, the follower

will react by performing a maneuver to adjust its relative eccentric anomaly. By uti-
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lizing a virtual leader instead, no collision avoidance maneuver will be performed by

the leader and therefore a chain reaction is avoided, thus saving propellant.

The APF defined in Eq. (2.179) is used to generate a reference trajectory by

following the steepest descent of the gradient. Let ρ0 the initial set of ROEs or

GROEs and ρ̃ the reference such that ρ̃(t0) = ρ0. The reference trajectory is then

generated according to the update rule

ρ̃(ti+1) = ρ̃(ti)−∇ρφa|ρ̃(ti+1 − ti) (2.185)

where it is assumed that ti+1 − ti is small. That is, at each time step, the reference

trajectory is updated by taking a small step in the direction of steepest descent of

the gradient of the attractive potential. For the quadratic potential defined in Eq.

(2.178), the gradient is given by

∇ρφa = kaQa(ρ− ρt) (2.186)

If we develop the expression of Eq. (2.185) for the ROEs, we get

x̃r(ti+1) = x̃r(ti)−
∂φa
∂xr

∣∣∣∣
x̃r

(ti+1 − ti) (2.187)

ỹr(ti+1) = ỹr(ti)−
∂φa
∂yr

∣∣∣∣
ỹr

(ti+1 − ti) (2.188)

ãr(ti+1) = ãr(ti)−
∂φa
∂ar

∣∣∣∣
ãr

(ti+1 − ti) (2.189)

Ẽr(ti+1) = Ẽr(ti) + n(ti+1 − ti)−
∂φa
∂Er

∣∣∣∣
Ẽr

(ti+1 − ti) (2.190)

Ãz(ti+1) = Ãz(ti)−
∂φa
∂Az

∣∣∣∣
Ãz

(ti+1 − ti) (2.191)

γ̃(ti+1) = γ̃(ti)−
∂φa
∂γ

∣∣∣∣
γ̃

(ti+1 − ti) (2.192)
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The additional term in Eq. (2.190) comes from the fact that an angular separation

is targeted. The update rule for ∆Er would be

∆Ẽr(ti+1) = ∆Ẽr(ti)−
∂φa
∂∆Er

(ti+1 − ti) (2.193)

Using Eqs. (2.181) and (2.182), this equation can be expanded into

Ẽr(ti+1)− Ẽ ′r(ti+1) = Ẽr(ti)− Ẽ
′

r(ti)−
∂φa
∂∆Er

(ti+1 − ti) (2.194)

Ẽr(ti+1)− (Ẽ
′

r(ti) + n(ti+1 − ti)) = Ẽr(ti)− Ẽ
′

r(ti)−
∂φa
∂∆Er

(ti+1 − ti) (2.195)

Ẽr(ti+1) = Ẽr(ti) + n(ti+1 − ti)−
∂φa
∂∆Er

(ti+1 − ti) (2.196)

From Eq. (2.182), ∂Er
∂∆Er

= 1. Hence,

∂φa
∂∆Er

=
∂φa
∂Er

∂Er
∂∆Er

=
∂φa
∂Er

(2.197)

and

Ẽr(ti+1) = Ẽr(ti) + n(ti+1 − ti)−
∂φa
∂Er

∣∣∣∣
Ẽr

(ti+1 − ti) (2.198)

Computing the partial derivatives of Eq. (2.179) and replacing into Eqs. (2.187)-

(2.192) finally results in

x̃r(ti+1) = x̃r(ti)− kaQa1(x̃r(ti)− xrt)(ti+1 − ti) (2.199)

ỹr(ti+1) = ỹr(ti)− kaQa2(ỹr(ti)− yrt)(ti+1 − ti) (2.200)

ãr(ti+1) = ãr(ti)− kaQa3(ãr(ti)− art)(ti+1 − ti) (2.201)

Ẽr(ti+1) = Ẽr(ti) + n(ti+1 − ti)− kaQa4(Ẽr(ti)− Ert(ti))(ti+1 − ti) (2.202)

Ãz(ti+1) = Ãz(ti)− kaQa5(Ãz(ti)− Azt)(ti+1 − ti) (2.203)

γ̃(ti+1) = γ̃(ti)− kaQa6(γ̃(ti)− γt)(ti+1 − ti) (2.204)
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These equations allow the definition of waypoints which converge to the minimum

of the potential. Once the reference trajectory is computed in terms of ROEs, it

is transformed into LVLH Cartesian coordinates using Eqs. (2.96)-(2.101). The

computation of reference waypoints leading to a CRO is illustrated in Fig. 2.14. The

initial set of ROEs is

ρ0 =
[
30 m 600 m 400 m 210◦ 40 m 30◦

]T
and the target set

ρt =
[
0 m 0 m 50 m n/a 43.30 m −90◦

]T
where the relative eccentric anomaly is not targeted in this example. The value for

the scaling parameter of the potential is ka = 10−3 and the shaping matrix is the

identity matrix Qa = I5. Each waypoint of the trajectory is separated by 180 seconds

(i.e. ti+1−ti = 180) and the reference trajectory is propagated for 4 hours. The mean

motion of the chief is assumed to be n = 0.0011 rad/s.

A similar derivation can be carried on for the GROEs and results in the following

equations:

x̃c(ti+1) = x̃c(ti)− kaQa1(x̃c(ti)− xct)(ti+1 − ti) (2.205)

ỹc(ti+1) = ỹc(ti)− kaQa2(ỹc(ti)− yct)(ti+1 − ti) (2.206)

ã(ti+1) = ã(ti)− kaQa3(ã(ti)− at)(ti+1 − ti) (2.207)

ẽ(ti+1) = ẽ(ti)− kaQa4(ẽ(ti)− et)(ti+1 − ti) (2.208)

c̃(ti+1) = c̃(ti) + n(ti+1 − ti)− kaQa5(c̃(ti)− ct(ti))(ti+1 − ti) (2.209)

σ̃(ti+1) = σ̃(ti)− kaQa6(σ̃(ti)− σt)(ti+1 − ti) (2.210)

Υ̃(ti+1) = Υ̃(ti)− kaQa7(Υ̃(ti)−Υt)(ti+1 − ti) (2.211)

ω̃(ti+1) = ω̃(ti)− kaQa8(ω̃(ti)− ωt)(ti+1 − ti) (2.212)
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Figure 2.14: Reference waypoints computed using the attractive APF based on the
ROEs.

These update equations are used to compute the reference waypoints shown in

Fig. 2.15. The initial set of GROEs is

ρ0 =
[
−50 m −1200 m 2100 m 0.02 60◦ 120◦ 45◦ 70◦

]T
and the target set

ρt =
[
0 m 0 m 800 m 0.7 n/a 130◦ 75◦ 90◦

]T
The central anomaly is not targeted in this example and the same values for the

parameters of the APF as in the ROEs example are used.
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Figure 2.15: Reference waypoints computed using the attractive APF based on the
GROEs.

2.2.2 Repulsive Potential Field

Obstacle avoidance is enforced by defining a repulsive potential function that

admits local maxima at the locations of the obstacles. A common choice for the

repulsive APF is a Gaussian function of the form

φr(x) = kr exp

(
−(x− xobs)TQr(x− xobs)

σ2

)
(2.213)

where kr is the scaling parameter, Qr the shaping matrix, σ the standard deviation

of the Gaussian, and xobs the position of the obstacle. If several obstacles are present

in the phase space, the linear combination of the repulsive potentials is constructed.

For N obstacles, this function becomes

φr(x) =
N∑
i=1

kr exp

(
−(x− xobs

i )TQri(x− xobs
i )

σ2
i

)
(2.214)
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where each parameter can be specific to the obstacle. Fig. 2.16 shows the Gaussian

repulsive potential for two obstacles located at [50, −20] and [−15, 50]. The first

repulsive potential (Fig. 2.16a) has a standard deviation σ = 10 and the second one

(Fig. 2.16b) σ = 25. The scaling parameter for both potentials is kr = 0.8 and the

shaping matrix is the identity matrix, Qr = I2.
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Figure 2.16: Gaussian repulsive potential fields of different widths for two obstacles.

The gradient of the Gaussian repulsive potential is

∇xφr(x) =
N∑
i=1

kr

(
−2Qri(x− xobs

i )

σ2
i

)
exp

(
−(x− xobs

i )TQri(x− xobs
i )

σ2
i

)
(2.215)

It can be seen from this equation that when the spacecraft is at the exact position

of an obstacle, the contribution of that obstacle to the gradient of the total repulsive

potential field will be zero. In the situation where the spacecraft is very close to the

obstacle, following the direction of steepest descent of the gradient will result in the

spacecraft moving away very slowly since the slope of the gradient will be relatively

gentle near the obstacle. In order to remedy this potentially risky situation, a new

ellipsoidal repulsive potential field is introduced:

φr(r) =
α

rβ
(2.216)
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where r is the distance between the spacecraft and the obstacle, α the value of the

potential at r = 1, and β the negative of the inverse of the slope evaluated at r = 1

when α = 1. Fig. 2.17a shows the influence of α on the potential for a fixed value of

β = 0.5 and Fig. 2.17b the influence of β on a potential with fixed α = 1.
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(a) Fixed β = 0.5.
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Figure 2.17: Shape of the ellipsoidal potential for different values of α and β.

As can be seen on these Figures, the potential goes to infinity as the distance be-

tween the spacecraft and the obstacle approaches zero. The derivative of the potential

will tend toward negative infinity in the vicinity of the obstacle and the controller

will thus move the spacecraft away from the obstacle.

The two parameters α and β can be computed by selecting four quantities as-

sociated with the obstacle. The first two quantities are the radius of a sphere that

encompasses the obstacle and which can be seen as the surface of the obstacle, rs,

and the value of the potential on that surface, kr. Then, the radius of the sphere of

influence around the obstacle is defined, rSOI, as well as the value of the potential at

that distance expressed as a ratio p of kr. Fig. 2.18 illustrates these four quantities.
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Figure 2.18: Shape of the repulsive potential used for collision avoidance.

The relation between α, β and these four quantities can be derived from Eq.

(2.216). Evaluating the potential at rs and rSOI yields

φr(rs) = kr (2.217)

φr(rSOI) = pkr (2.218)

and using Eq. (2.216), the coefficients α and β can be computed:

β =
log10 p

log10

(
rs
rSOI

) (2.219)

α = rβs kr (2.220)

If the function is expanded to three dimensions and when N obstacles are in the

neighborhood of the spacecraft, the repulsive potential becomes

φr(x) =
N∑
i=1

αi[
(x− xobs

i )TQri(x− xobs
i )
]βi/2 (2.221)

where αi and βi are specific to each obstacle and are computed using Eqs. (2.220)

and (2.219), and Qri is a shaping matrix. Fig. 2.19 shows four isosurfaces of a three-

dimensional ellipsoidal potential for an obstacle located at the origin of the frame.
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The obstacle is characterized by a radius rs = 1 m, a sphere of influence rSOI = 15 m,

Figure 2.19: Isosurfaces of the three-dimensional ellipsoidal potential.

a potential value at the surface kr = 10−4, and a fraction p = 0.01 of kr at the surface

of the sphere of influence, resulting in α = 10−4 and β = 1.7005. The shaping matrix

is chosen such that the ellipsoid is an ellipsoid of revolution, or spheroid, with minor

axes of one third the length of the major axis, and oriented such that the major axis

is along the y axis:

Qr =


9 0 0

0 1 0

0 0 9


In Fig. 2.20, the two-dimensional ellipsoidal potential fields created by two ob-

stacles located at [50, −20] and [−10, 50] for two sets of parameters are illustrated.

Both obstacles in Fig. 2.20a are assumed to have a radius of rs = 1, a sphere of influ-

ence of rSOI = 30, a potential value at the surface of kr = 1, and a fraction p = 0.01

of kr at the surface of the sphere of influence. These parameters lead to α = 1 and

β = 1.3540. The potential field in Fig. 2.20b is obtained with rs = 3, rSOI = 50,

kr = 1, and p = 0.05 resulting in α = 3.2214, and β = 1.0648. It is assumed that

the shaping matrix is the identity matrix, Qri = I2 in both examples. We see in this
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Figure 2.20: Repulsive ellipsoidal potential fields for two obstacles.

figure that the slope of the repulsive potential increases as the distance to the obstacle

decreases and the potential goes to infinity at the exact location of the obstacle.

The gradient of the ellipsoidal repulsive potential can be computed as

∇xφr(x) =
N∑
i=1

−αiβi
2

Qri(x− xobs
i )

[(x− xobs
i )TQri(x− xobs

i )]
βi+2

2

(2.222)

In order to assess how the gradient of the repulsive potential behaves at the location

of an obstacle j, the limit when x goes to xj is computed for each component of the

gradient individually. For the x coordinate and assuming that Qrj is diagonal, this

limit is

lim
(x,y,z)→(xj ,yj ,zj)

−αjβj
2

Qrj1(x− xj)
[Qrj1(x− xj)2 +Qrj2(y − yj)2 +Qrj3(z − zj)2]

βj+2

2

(2.223)

Even though this limit takes on an indeterminate form and cannot be evaluated

directly, since p < 1 and rSOI > rs, it follows that log10 p < 0 and log10
rs
rSOI

< 0.

From Eq. (2.219), the beta coefficient must be strictly positive, β > 0, and therefore

β
2

+ 1 > 1. The degree of the polynomial on the numerator is thus lower than the

degree of the polynomial on the denominator and consequently this limit will go
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toward −∞ when the spacecraft approaches the obstacle. This reasoning also applies

to the y and z coordinates of the gradient. Hence, for an ellipsoidal potential and

contrarily to the Gaussian potential, the gradient will become infinitely negative as

the spacecraft approaches the obstacle and thus preventing it from being “trapped”

at the location of the obstacle.

The control algorithm presented in the next section uses a combination of this re-

pulsive potential with the attractive potential. It is therefore necessary to express the

gradient of this potential in terms of relative orbital elements. The partial derivatives

of the ellipsoidal repulsive potential with respect to the ROEs can be computed for

each obstacle using the chain rule and are given by:

∂φr
∂xr

=
∂φr
∂x

(2.224)

∂φr
∂yr

=
∂φr
∂y

(2.225)

∂φr
∂ar

= −1

2
cosEr

∂φr
∂x

+ sinEr
∂φr
∂y

(2.226)

∂φr
∂Er

=
1

2
ar sinEr

∂φr
∂x

+ ar cosEr
∂φr
∂y

+ Az cos(γ + Er)
∂φr
∂z

(2.227)

∂φr
∂Az

= sin(γ + Er)
∂φr
∂z

(2.228)

∂φr
∂γ

= Az cos(γ + Er)
∂φr
∂z

(2.229)

where the partial derivatives with respect to the Cartesian coordinates are obtained

from Eq. (2.222). The derivatives of the repulsive potential with respect to the

GROEs can be computed in a similar way using the chain rule and Eqs (2.135) and

(2.137).

2.3 Control Methodology

The traditional formulation of an APF-based control algorithm relies on the defi-

nition of a total APF that linearly combines both attractive and repulsive potential

functions together with the derivation of a control law from the gradient of this APF.
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This approach has two disadvantages: the superposition of the two potentials leads

to a shift of the location of the targeted minimum and local minima may arise. In the

presence of local minima, the spacecraft can become trapped at an undesired position

and if this local minima requires constant actuation from the spacecraft, its resources

will eventually deplete and uncontrolled behavior will ensue. The combination of the

quadratic attractive potential illustrated in Fig. 2.13a with the repulsive ellipsoidal

potential in Fig. 2.20a is shown in Fig. 2.21.
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Figure 2.21: Combination of the quadratic attractive and ellipsoidal repulsive poten-
tials.

The total potential does not have any local minima in that specific case but two

saddle points emerge near the locations of the obstacles. As can be seen from a

top-down view of this potential, Fig. 2.22, the addition of the two repulsive APFs

to the quadratic potential results in the global minimum being slightly shifted from

[0 0] (white dot in Fig. 2.22) to [−0.82 − 0.84] (red dot in Fig. 2.22). This shift

means that even though the origin is specified as the target location, the algorithm,

by following the steepest descent of the gradient, will eventually converge toward the

shifted global minimum thus resulting in an error with respect to the target. The

amplitude of the error depends on the parameters of the repulsive potential as well
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as the location of the obstacles: the closer to the global minimum they are, the larger

the error will be.
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Figure 2.22: Surface plot of the total potential. The global minimum is shifted from
the origin (white dot) to the lower left quadrant (red dot) in the presence of two
obstacles (bright dots).

In order to mitigate this shift, the repulsive potential can be ignored if the space-

craft satisfies some safety conditions with respect to collision risk. The algorithm

proposed in this work thus decouples the attractive and repulsive maneuvers compu-

tations.

2.3.1 Maneuvers Decoupling

The control algorithm is based on the attractive quadratic potential of Eq. (2.178)

and the repulsive ellipsoidal potential of Eq. (2.221). In order to decouple their com-

putation, two parameters are defined: Tm corresponds to the time interval between

two maneuvers, or time of flight, computed using the attractive portion only and

typically ranges from a few minutes to a few hours, and Tc corresponds to the time

interval between two collision checks typically of the order of a few seconds. These

two parameters determine the frequency at which a maneuver is performed to target

an attractive waypoint, that is a waypoint generated using the attractive potential
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only, and a repulsive waypoint, that is a waypoint generated using a combination of

attractive and repulsive APFs.

The control algorithm is initialized by computing the initial value of the reference

trajectory as the current state of the deputy expressed in terms of ROEs or GROEs:

ρ̃(t0) = ρ0. The control loop is then started and operates with a frequency of 1/Tc

(it is assumed that Tc < Tm). At the beginning of the loop, the risk of collision with

another agent in the formation is assessed. A spacecraft is considered at risk when

its distance to the obstacle is less than the sphere of influence of the obstacle, rSOI.

The risk of collision is assessed with respect to all other agents in the formation and

if a risk is detected, a collision avoidance maneuver (CAM) is initiated. A collision

avoidance waypoint is first computed using a combination of the repulsive potential

and the attractive one. This combination is used to ensure that the spacecraft will

move away from the obstacle while at the same time converge toward the target. A

proper selection of the APFs parameters ensures that collision avoidance is prioritized

over goal targeting and will be discussed in section 2.3.4. The repulsive waypoints

are computed using the following equation:

ρ̃(ti + Tc) = ρ(ti)−
(
∇ρφa|ρ +

1

N

N∑
i=1

∇ρφri|ρ
)
Tc (2.230)

where ρ is the set of elements corresponding to the current relative state and N is

the number of obstacles presenting a risk of collision. The gradient of the attractive

potential is computed using Eq. (2.185) and is evaluated at the current state, and

the gradient of the repulsive potential is obtained with Eqs. (2.224)-(2.229) for the

ROEs or as described in section 2.2.2 for the GROEs. The sum of the gradients of the

repulsive potentials is scaled by the number of obstacles contributing to the CAM to

get the mean magnitude. This is done to prevent having excessively large avoidance

maneuvers if several spacecraft contribute to the repulsive potential. The impulsive

burn required to track this waypoint is then computed using a linear targeter that will

be introduced in section 2.3.3. When a CAM has been performed and if the spacecraft
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is no longer at risk of collision, the distances to the previous obstacles are computed.

If each of these distances is larger than a threshold, a maneuver is executed to put

the spacecraft back on a trajectory that intercepts the next attractive waypoint. This

check is carried out to avoid having the spacecraft be at risk right after a CAM just

occurred. If the recovery maneuver saturates, the process is repeated in the next

control iteration, until the magnitude of the desired delta-V falls within the allowed

bounds, which indicates that the next attractive waypoint has been successfully tar-

geted. Fig. 2.23 shows the flow chart of the spacecraft mode and maneuvers when a

collision avoidance maneuver occurs.
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Figure 2.23: Flow chart of the collision avoidance maneuver and recovery control
logic.
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If, at the beginning of the control loop, no risk of collision is detected and if a

duration of Tm has elapsed since the last attractive waypoint has been computed,

then the next waypoint is computed using the attractive potential. These waypoints

are computed using Eqs. (2.199)-(2.204) for the ROEs or Eqs. (2.205)-(2.212) for

the GROEs. Lastly, the maneuver to track this waypoint is computed and executed.

The control algorithm is summarized in Algorithm 1 below.

Algorithm 1: APF-based control algorithm.

Input : current time, Tm, Tc, last reference waypoint

Output: desired delta-V

1 check for collisions;

2 if risk of collision then

3 compute next collision avoidance waypoint;

4 compute delta-V to target that point;

5 else if no risk of collision and CAM occurred at previous time step or

previous recovery maneuver saturated then

6 check distances with previous obstacles;

7 if distances > threshold then

8 if current time greater than last computed attractive waypoint then

9 compute next attractive waypoint;

10 end

11 compute delta-V to target the next attractive waypoint;

12 end

13 else if no risk of collision and Tm has elapsed since the last attractive

waypoint targeting then

14 compute next attractive waypoint;

15 compute delta-V to target the next waypoint;

16 end

When the attractive reference trajectory is computed in the control loop, the

partial derivatives of the attractive potential φa with respect to the ROEs or GROEs
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are evaluated. Partial derivatives being local quantities, the step taken in the direction

of steepest descent, i.e. Tm, must be small in order for the attractive waypoints to

converge to the target. If the step is too large, the reference trajectory will take

longer to converge or will even diverge. Fig. 2.24 illustrates the convergence of the

reference value ãr computed using the attractive potential to a target value art = 0.2

km starting from ãr = 1.5 km for different time steps Tm.
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Figure 2.24: Convergence properties of the reference relative semi-major axis toward
a target value art = 0.2 km for different time steps.

As can be seen in Fig. 2.24, the attractive waypoints converge toward the target

value when the step size is relatively small. The reference value starts to diverge

when the time step is somewhere between 1800 s and 2700 s in this example. We

also see that the larger the time step is, the longer it takes for the reference value to

stabilize at the minimum. Therefore, if the time interval between two maneuvers, Tm,

is large, the next attractive waypoint can not be computed in a single step but must

be computed iteratively instead, using a smaller time step. This iterative process

incurs an additional computational cost that can be avoided by deriving a set of

recursive relations.
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2.3.2 Recursive Relations

When updating the reference trajectory using the update equations, the step taken

in the direction of steepest descent must be small for the algorithm to converge, as

seen in the previous section. One way of doing this is to split Tm into smaller time

intervals and iteratively compute the waypoint at t0+Tm. Algorithm 2 below describes

the steps required to iteratively compute the attractive waypoint in terms of ROEs

at time t0 + Tm given the current reference waypoint ρ̃(t0), the target elements set,

and the parameters of the quadratic potential.

Algorithm 2: Iterative computation of the attractive waypoint at t0 + Tm
Input : ρ̃(t0), ρt, t0, Tm, ka, Qa, n

Output: ρ̃(t0 + Tm)

1 dt← min(10, Tm);

2 k ← dTm/dte ; // number of iterations

3 ρ̃← ρ̃(t0);

4 for i← 1 to k do

5 Ert ← ∆Ert + E
′
r0 + n(t0 + idt) ; // update the targeted Er

6 x̃r ← x̃r − kaQa1(x̃r − xrt)dt;
7 ỹr ← ỹr − kaQa2(ỹr − yrt)dt;
8 ãr ← ãr − kaQa3(ãr − art)dt;
9 Ẽr ← Ẽr + ndt− kaQa4(Ẽr − Ert)dt;

10 Ãz ← Ãz − kaQa5(Ãz − Azt)dt;
11 γ̃ ← γ̃ − kaQa6(γ̃ − γt)dt;
12 end

13 ρ̃← [x̃r, ỹr, ãr, Ẽr, Ãz, γ̃];

14 return ρ̃

As can be seen on line 1, the time step used to update the reference is the minimum

between Tm and 10 seconds. Based on Fig. 2.24, 10 seconds is small enough for the

algorithm to converge. Since the targeted angular element, (Ert for the ROEs or ct
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for the GROEs), is time-varying, it needs to be updated at each iteration, before the

reference is computed (line 5). Many mathematical operations are involved in this

algorithm making it computationally inefficient. In order to improve the computation

speed, a set of recursive relations which can be evaluated in a single step is derived.

The following derivation is carried out for the ROEs but similar equations can be

obtained for the GROEs. From the definition of the attractive APF, the equation

used to update the first ROE has been defined as (Eq. (2.199)):

x̃r(ti+1) = x̃r(ti)− kaQa1(x̃r(ti)− xrt)(ti+1 − ti) (2.231)

which can be rewritten as

x̃r(k + 1) = x̃r(k)− kaQa1(x̃r(k)− xrt)dt (2.232)

where dt is the time interval between step k and k+1. This equation can be rearranged

into

x̃r(k + 1) = x̃r(k)(1− kaQa1dt) + kaQa1xrtdt (2.233)

Evaluating this expression at k = 0 and k = 1 results in

x̃r(1) = x̃r(0)(1− kaQa1dt) + kaQa1xrtdt (2.234)

and

x̃r(2) = x̃r(1)(1− kaQa1dt) + kaQa1xrtdt (2.235)

Substituting Eq. (2.234) into Eq. (2.235) yields

x̃r(2) = x̃r(0)(1− kaQa1dt)
2 + kaQa1xrtdt [(1− kaQa1dt) + 1] (2.236)

Hence, by recursion:

x̃r(1) = x̃r(0)(1− kaQa1dt) + kaQa1xrtdt (2.237)
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x̃r(2) = x̃r(0)(1− kaQa1dt)
2 + kaQa1xrtdt [(1− kaQa1dt) + 1] (2.238)

x̃r(3) = x̃r(0)(1− kaQa1dt)
3 + kaQa1xrtdt

[
(1− kaQa1dt)

2 + (1− kaQa1dt) + 1
]

(2.239)

x̃r(4) = x̃r(0)(1− kaQa1dt)
4 + kaQa1xrtdt

[
(1− kaQa1dt)

3 + (1− kaQa1dt)
2

+ (1− kaQa1dt) + 1]
(2.240)

...

x̃r(k) = x̃r(0)(1− kaQa1dt)
k + kaQa1xrtdt

k−1∑
i=0

(1− kaQa1dt)
i (2.241)

The sum in the last equation can be identified as a geometric sum and can be simplified

to
k−1∑
i=0

(1− kaQa1dt)
i =

1− (1− kaQa1dt)
k

1− (1− kaQa1dt)
=

1− (1− kaQa1dt)
k

kaQa1dt
(2.242)

Substituting in Eq. (2.241) yields

x̃r(k) = x̃r(0)(1− kaQa1dt)
k + xrt

[
1− (1− kaQa1dt)

k
]

(2.243)

which, after rearranging, becomes

x̃r(k) = (x̃r(0)− xrt)(1− kaQa1dt)
k + xrt (2.244)

Similar equations can be derived for the other ROEs except for Er which needs more

considerations. From Eq. (2.202), the relation used to update this element is

Ẽr(ti+1) = Ẽr(ti) + n(ti+1 − ti)− kaQa4(Ẽr(ti)− Ert(ti))(ti+1 − ti) (2.245)

which can be rewritten as

Ẽr(k + 1) = Ẽr(k) + ndt− kaQa4(Ẽr(k)− Ert(k))dt (2.246)
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Since an angular separation rather than a fixed relative eccentric anomaly is targeted,

Ert is time-varying. At step k, the targeted relative eccentric anomaly is thus:

Ert(k) = ∆Ert + E
′

r0 + n(t0 + kdt) (2.247)

Plugging Eq. (2.247) into Eq. (2.246) yields

Ẽr(k + 1) = Ẽr(k)− kaQa4

[
Ẽr(k)− (∆Ert + E

′

r0 + n(t0 + kdt))
]
dt+ ndt

= Ẽr(k)(1− kaQa4dt) + kaQa4

[
∆Ert + E

′

r0 + n(t0 + kdt)
]
dt+ ndt

(2.248)

and by recursion

Ẽr(1) =Ẽr(0)(1− kaQa4dt) + kaQa4

[
∆Ert + E

′

r0 + nt0

]
dt+ ndt (2.249)

Ẽr(2) =Ẽr(0)(1− kaQa4dt)
2

+
[
kaQa4(∆Ert + E

′

r0 + nt0)dt+ ndt
]

(1− kaQa4dt)

+ kaQa4

[
∆Ert + E

′

r0 + n(t0 + dt)
]
dt+ ndt

(2.250)

Ẽr(3) =Ẽr(0)(1− kaQa4dt)
3

+
[
kaQa4(∆Ert + E

′

r0 + nt0)dt+ ndt
]

(1− kaQa4dt)
2

+
[
kaQa4(∆Ert + E

′

r0 + n(t0 + dt))dt+ ndt
]

(1− kaQa4dt)

+ kaQa4

[
∆Ert + E

′

r0 + n(t0 + 2dt)
]
dt+ ndt

(2.251)

...
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Ẽr(k) =Ẽr(0)(1− kaQa4dt)
k +

k−1∑
i=0

[
kaQa4(∆Ert + E

′

r0 + n(t0 + (k − 1− i)dt))dt

+ndt] [1− kaQa4dt]
i

=Ẽr(0)(1− kaQa4dt)
k +

[
kaQa4(∆Ert + E

′

r0 + n(t0 − dt))dt+ ndt
]

k−1∑
i=0

(1− kaQa4dt)
i + kaQa4ndt

2

k−1∑
i=0

(k − i)(1− kaQa4dt)
i

(2.252)

The two sums in Eq. (2.252) are geometric sums and can be rewritten as

k−1∑
i=0

(1− kaQa4dt)
i =

1− (1− kaQa4dt)
k

1− (1− kaQa4dt)
=

1− (1− kaQa4dt)
k

kaQa4dt
(2.253)

k−1∑
i=0

(k − i)(1− kaQa4dt)
i =

(1− kaQa4dt)
k+1 − (1− kaQa4dt) + kkaQa4dt

(kaQa4dt)2
(2.254)

Hence, substituting into Eq. (2.252) results in

Ẽr(k) = Ẽr(0)(1− kaQa4dt)
k

+
[
kaQa4(∆Ert + E

′

r0 + n(t0 − dt)) + n
] 1− (1− kaQa4dt)

k

kaQa4

+ n
(1− kaQa4dt)

k+1 − (1− kaQa4dt) + kkaQa4dt

kaQa4

(2.255)

and after simplification, it follows that

Ẽr(k) =

[
Ẽr(0)− (∆Ert + E

′

r0 + n(t0 − dt))−
n

kaQa4

]
[1− kaQa4dt]

k

+ (∆Ert + E
′

r0 + n(t0 − dt))

+
n

kaQa4

[
(1− kaQa4dt)

k+1 + (k + 1)kaQa4dt
] (2.256)

This equation along with equations similar to Eq. (2.244) for the other ROEs allows

to compute the attractive waypoint at time t0 + Tm in a single evaluation. The
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computation of the attractive waypoint at time t0 + Tm using the recursive relations

is described in Algorithm 3.

Algorithm 3: Recursive computation of the attractive waypoint at t0 + Tm
Input : ρ̃(t0), ρt, t0, Tm, ka, Qa, n

Output: ρ̃(t0 + Tm)

1 dt← min(10, Tm);

2 k ← dTm/dte ; // number of steps

3 ρ̃← ρ̃(t0);

4 x̃r ← (x̃r − xrt)(1− kaQa1dt)
k + xrt;

5 ỹr ← (ỹr − yrt)(1− kaQa2dt)
k + yrt;

6 ãr ← (ãr − art)(1− kaQa3dt)
k + art;

7 Ẽr ← Eq. (2.256);

8 Ãz ← (Ãz − Azt)(1− kaQa5dt)
k + Azt;

9 γ̃ ← (γ̃ − γt)(1− kaQa6dt)
k + γt;

10 ρ̃← [x̃r, ỹr, ãr, Ẽr, Ãz, γ̃];

11 return ρ̃

In contrast to Algorithm 2, this algorithm does not contain any iterative loop and

the amount of elementary mathematical operations is therefore greatly reduced which

results in a significant speed up, especially for large values of Tm. The computational

efficiency of the recursive method is compared to the iterative method in Fig. 2.25.

The elapsed real time presented in that figure is the average of 5000 runs for

each Tm. The computations have been done on an 2.6 GHz 6-Core Intel Core i7 in

Matlab. We see in that figure that for small Tm, the elapsed real time is roughly

similar for both methods. When Tm increases, the difference becomes significant:

for Tm = 7200s, the recursive method is about 660 times faster than the iterative

one with an elapsed real time of 0.58 ms for the iterative method and 0.87 µs for

the recursive method. An important observation is that the algorithm using the

recursive method has a constant time complexity (O(1)) whereas the algorithm using
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Recursive

Iterative

Figure 2.25: Comparison of the computation time between the iterative and recursive
methods.

the iterative method has a linear time complexity (O(n)). The recursive equations

therefore allow to compute the attractive waypoints using an arbitrarily large Tm

efficiently. In general, the time interval between two collision checks, Tc, is of the

order of a few seconds and therefore the computation of the repulsive waypoints does

not need to rely on recursive relations but can be computed directly.

When the reference waypoint has been generated, an impulsive maneuver is exe-

cuted to track it. The linear targeter designed to compute the maneuver is presented

next.
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2.3.3 Reference Tracking

So far, the reference trajectory is computed in terms of relative orbital elements.

In order to track it, it is first converted into LVLH Cartesian coordinates using Eqs.

(2.96)-(2.101) for the ROEs or the procedure described in section 2.1.3 for the GROEs:

ρ̃→ s̃ =

r̃
˙̃r

 (2.257)

Once the reference is expressed in terms of LVLH coordinates, a linear targeter is

designed using the CW equations. From Eqs. (2.47)-(2.52), the time evolution of the

LVLH state is

s(t) = A(t, t0)s0 (2.258)

with

A(t, t0) =



4− 3cnτ 0 0 1
n
snτ

2
n
(1− cnτ ) 0

−6nτ + 6snτ 1 0 2
n
(cnτ − 1) −3τ + 4

n
snτ 0

0 0 cnτ 0 0 1
n
snτ

3nsnτ 0 0 cnτ 2snτ 0

6n(1− cnτ ) 0 0 −2snτ −3 + 4cnτ 0

0 0 −nsnτ 0 0 cnτ


(2.259)

where τ = t − t0, cnτ = cos(n(t − t0)), and snτ = sin(n(t − t0)). If the current time

is t0 and the next reference waypoint has been computed for time t1, then the error

between the reference s̃(t1) and the relative position of the deputy resulting from the

unforced relative motion at time t1, s(t1), will be

e(t1) = s̃(t1)− s(t1) (2.260)

The targeter is based on the computation of a small perturbation, δs0, which, when

added to the initial conditions at t0, cancels out this error and results in the spacecraft
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reaching the reference state at time t1. That is, a perturbation term δs0 is computed

such that

A(t1, t0)(s0 + δs0) = s̃(t1) (2.261)

Developing this equation gives

A(t1, t0)s0 + A(t1, t0)δs0 = s̃(t1) (2.262)

s(t1) + A(t1, t0)δs0 = s̃(t1) (2.263)

A(t1, t0)δs0 = s̃(t1)− s(t1) (2.264)

A(t1, t0)δs0 = e(t1) (2.265)

δs0 = A−1(t1, t0)e(t1) (2.266)

Since the initial position is fixed and assuming that only the relative position is

targeted, the initial perturbation becomes

δṙ0 = A−1
12 (t1, t0)(r̃(t1)− r(t1)) (2.267)

where A−1
12 (t1, t0) is the inverse of the top right block of matrix A(t, t0) evaluated at

t1 given by

A−1
12 (t1, t0) =


3n2τ−4nsnτ

8(cnτ−1)+3nτsnτ

2n(1−cnτ )
8(cnτ−1)+3nτsnτ

0

2n(cnτ−1)
8(cnτ−1)+3nτsnτ

−nsnτ
8(cnτ−1)+3nτsnτ

0

0 0 n
snτ

 (2.268)

This perturbation in initial velocity is created by applying a delta-V of the same

magnitude, assuming an impulsive burn:

∆V 1 = A−1
12 (t1, t0)(r̃(t1)− r(t1)) (2.269)
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Applying this delta-V will bring the spacecraft to the position of the waypoint at

time t1. In order to align the relative velocity with the reference velocity, a second

delta-V can be applied at time t1. This second maneuver can be computed with:

∆V 2 = ˙̃r(t1)− ṙ−(t1) (2.270)

where ṙ−(t1) is the velocity that the spacecraft will have when it reaches the reference

relative position r̃(t1). The velocity at that position is given by

ṙ−(t1) = A∗(t1, t0)

s0 +

 0

∆V 1

 (2.271)

where A∗(t1, t0) is the lower half of A(t, t0) evaluated at t1. Fig. 2.26 illustrates the

two-burn scheme used to target a relative state. The blue quantities are associated

with the targeting of the relative position and the orange quantities with the targeting

of the relative velocity. The first maneuver, ∆V 1 is performed at time t0 and the

second one, ∆V 2 at time t1. The dashed blue arc corresponds the the natural motion

of the deputy and the solid blue arc corresponds to the trajectory after the first burn

has been applied.

r(t0)

r̃(t1)

r(t1)

e(t1)

∆V 1

˙̃r(t1)

ṙ−(t1)

∆V 2

Figure 2.26: Two-burn scheme used to target a reference waypoint.
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In practice, the second burn is not applied. Since at time t1 a new delta-V will

be computed to target the reference position at time t2, applying both ∆V
(1)
2 and

∆V
(2)
1 , where superscript i denotes quantities associated with the targeting sequence

i, might result in an overlap between the two maneuvers effectively cancelling parts

of each other and therefore wasting propellant. Fig. 2.27 illustrates the combination

of the two maneuvers into a single one, resulting in a lower fuel consumption. We

see on that figure that applying the second maneuver of the first targeting sequence

∆V
(1)
2 and then the first maneuver of the second targeting sequence ∆V

(2)
1 might

result in a larger delta-V than applying the combination of both in one burn, ∆V (2).

r̃(t1)

˙̃r(t1)

ṙ−(t1)

∆V
(1)
2

r(t2)

r̃(t2)

∆V
(2)
1

˙̃r(t1) + δṙ(t1) ∆V (2)

Figure 2.27: Combination of two subsequent maneuvers into a single one.

A consequence of this control scheme is that even though the spacecraft will follow

the reference relative position, the relative velocity will not be tracked. Computing

the ROEs or GROEs from a measurement of the relative state at time t will therefore

result in a different elements set than the reference waypoint at that time. For this

reason, it is important to store the reference trajectory into memory and compute

the next waypoint from that trajectory rather than a measure of the relative state to

ensure convergence of the reference waypoints toward the target.

The magnitude of delta-V that a spacecraft can deliver is limited by the physical

properties of the propulsion system. Accordingly, the impulsive maneuvers computed
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using the linear targeter are bounded between a minimum ∆Vmin and maximum

∆Vmax value. These bounds are enforced by discarding the computed maneuver if it

is smaller than ∆Vmin, and rescaling it if it is larger than ∆Vmax. That is, the desired

delta-V is

∆V d =


0 if ‖∆V ‖ < ∆Vmin

∆V if ∆Vmin ≤ ‖∆V ‖ ≤ ∆Vmax

∆V
‖∆V ‖∆Vmax if ‖∆V ‖ > ∆Vmax

(2.272)

When the magnitude of the maneuvers is trimmed, the targeter might not be able to

follow the reference trajectory and therefore the algorithm might fail to converge to

the target relative orbit. One way to mitigate this risk is by choosing a small scaling

factor ka for the quadratic potential such that the attractive waypoints can be tracked

without violating the delta-V’s upper limit. A method to automatically select this

parameter will be presented in the next section.

Fig. 2.28 shows the tracking of a reference trajectory composed of attractive

reference waypoints which have been generated using different Tm values. The initial

LVLV Cartesian state used for this example is

s0 =
[
−200 m 1500 m −1200 m 0.2 m/s 0.2 m/s 0.1 m/s

]
and the set of target ROEs is

ρt =
[
0 m −100 m 200 m 0◦ 100 m 60◦

]
An angular separation of ∆Ert = 0◦ with respect to a virtual leader with E

′
r0 = 0◦

is targeted. The reference trajectories have been generated using a scaling factor

ka = 10−3 and a shaping matrix Qa = I6. The amplitude of the maneuvers used to

track the reference are bounded between 2 cm/s and 5 m/s. We see on Fig. 2.28a

that for Tm = 1 minute, the reference waypoints are very close to each other. The

spacecraft follows the steepest slope of the gradient very closely and needs a lot of
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Figure 2.28: Reference waypoints tracking for different Tm.

maneuvers to reach the target relative orbit. The total delta-V required to track the

reference in this case is 6.50 m/s. In Fig. 2.28b, a time interval of 5 minutes between

each maneuver is used. The deputy follows the reference trajectory slightly more

loosely and less maneuvers are required to reach the target. The total delta-V in this

case is 5.98 m/s. The trajectory in Fig. 2.28c uses a Tm of 15 minutes resulting in a

delta-V of 4.24 m/s. Finally, a time interval of 60 minutes is used in Fig. 2.28d. In

this last case, a single maneuver brings the spacecraft directly on the desired relative

orbit and subsequent maneuvers ensure that it stays on it. The total delta-V is 4.14

m/s.
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This example shows that the time interval between two maneuvers has an impact

on the total delta-V required to reach a desired relative orbit. As can be seen in Fig.

2.29, some values of Tm yield a lower total delta-V than others. We also see that

the targeter fails to track the reference trajectory when Tm is close to 3000 s and

6000 s as indicated by the very high total delta-V. In these specific cases, the initial

maneuver executed to track the first reference waypoint results in a trajectory which

goes very far away from the origin in the cross-track direction. When the spacecraft

reaches the first waypoint, its very large velocity in the z direction must be countered

and results in a delta-V that exceeds the maximum delta-V, ∆Vmax. This trend of

having a very large excursion in the cross-track direction when Tm is close to 3000 s

can already be observed in Fig. 2.28d above. In this case the targeter is still able to

track the reference.
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Figure 2.29: Total delta-V required to track the reference as a function of the time
interval between two maneuvers.

Even though the total delta-V has periodic local minima, a longer Tm generally

results in a lower targeting accuracy as will be shown in section 3.1.3. The convergence

properties of this linear targeter in the perturbed, nonlinear environment will be

assessed in section 2.4.2.
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2.3.4 Autonomous Coefficients Selection

The definitions of the attractive and repulsive potentials introduced some param-

eters that must be manually selected. A summary of these parameters is presented

in Table 2.3.

Table 2.3: Summary of the parameters of the attractive and repulsive potentials.

Attractive potential Repulsive potential

ka: scaling parameter rs: radius of a sphere circumscribing the obstacle

Qa: diagonal shaping matrix rSOI: radius of the sphere of influence

kr: value of the potential at rs

p: potential at rSOI as a fraction of kr

Qr: diagonal shaping matrix

The shaping matrix Qa will contain six elements for the ROEs and eight for

the GROEs. Hence, a minimum of fourteen parameters are required for the ROEs

and sixteen for the GROEs. If the repulsive field of each obstacle is characterized by

different parameters, then many more parameters may be required. In order to reduce

the number of parameters that must be manually tuned, some considerations on the

fuel minimization leading to the autonomous selection of some of these coefficients

are presented.

The selection of the coefficients of the shaping matrix Qa is first considered. These

coefficients define the shape of the attractive potential and therefore impact the con-

vergence rate of each element. Since the slope of the gradient affects the total delta-V

required to bring a spacecraft to the target, a judicious choice of the shaping coeffi-

cients might lead to a reduction of the total delta-V and therefore a reduction of the

fuel consumption. The following analysis is done for the ROEs but a similar approach

can be followed for the GROEs. A relation between a maneuver expressed in terms
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of LVLH Cartesian coordinates and a change of ROEs is sought. Looking at a small

perturbation in the LVLH frame, this relation can be expressed as

δρ(t) = Φ(t, t0)δs0 (2.273)

where Φ(t, t0) is the state transition matrix given by

Φ(t, t0) =



∂xr
∂x0

∂xr
∂y0

∂xr
∂z0

∂xr
∂ẋ0

∂xr
∂ẏ0

∂xr
∂ż0

∂yr
∂x0

∂yr
∂y0

∂yr
∂z0

∂yr
∂ẋ0

∂yr
∂ẏ0

∂yr
∂ż0

∂ar
∂x0

∂ar
∂y0

∂ar
∂z0

∂ar
∂ẋ0

∂ar
∂ẏ0

∂ar
∂ż0

∂Er
∂x0

∂Er
∂y0

∂Er
∂z0

∂Er
∂ẋ0

∂Er
∂ẏ0

∂Er
∂ż0

∂Az
∂x0

∂Az
∂y0

∂Az
∂z0

∂Az
∂ẋ0

∂Az
∂ẏ0

∂Az
∂ż0

∂γ
∂x0

∂γ
∂y0

∂γ
∂z0

∂γ
∂ẋ0

∂γ
∂ẏ0

∂γ
∂ż0


(2.274)

and describes the sensitivity of the ROEs to a perturbation in the LVLH coordinates.

The partial derivatives can be computed using the definitions of the ROEs in terms

of initial conditions given in section 2.1.2, resulting in

Φ =



4 0 0 0 2
n 0

−6n(t− t0) 1 0 − 2
n 0 0

6(6x0+4ẏ0/n)
ar

0 0 4ẋ0

n2ar

4(6x0+4ẏ0/n)
nar

0

−12nx0

(6nx0+4ẏ0)2+(2ẋ0)2
0 0 12nx0+8ẏ0

(6nx0+4ẏ0)2+(2ẋ0)2
−8ẋ0

(6nx0+4ẏ0)2+(2ẋ0)2
0

0 0 z0√
z2
0+(ż0/n)2

0 0 ż0/n
2√

z2
0+(ż0/n)2

12nẋ0

(6nx0+4ẏ0)2+4ẋ2
0

0 nż0
ż2
0+n2z2

0

−12nx0−8ẏ0

(6nx0+4ẏ0)2+4ẋ2
0

8ẋ0

(6nx0+4ẏ0)2+4ẋ2
0

−nz0
ż2
0+n2z2

0


(2.275)
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Since the impulsive maneuvers only perturb the initial velocity and not the position,

the right-hand half of this matrix is considered and the Cartesian coordinates are

substituted by their ROEs counterparts:

Φ =



0 2
n

0

− 2
n

0 0

2 sinEr
4
n

cosEr 0

2 cosEr
nar

−4 sinEr
nar

0

0 0 cos(γ+Er)
n

−2 cosEr
nar

4 sinEr
nar

− sin(γ+Er)
nAz


(2.276)

Hence, the response of the ROEs to a perturbation in the relative velocity in the

LVLH frame can be expressed as:

δxr

δyr

δar

δEr

δAz

δγ


=



0 2
n

0

− 2
n

0 0

2 sinEr
4
n

cosEr 0

2 cosEr
nar

−4 sinEr
nar

0

0 0 cos(γ+Er)
n

−2 cosEr
nar

4 sinEr
nar

− sin(γ+Er)
nAz




δẋ0

δẏ0

δż0

 (2.277)

Several observations can be made from this relation:

1. The response of the center of motion of the instantaneous relative orbit described

by xr and yr is not sensitive to the location where the maneuver is applied.

These two ROEs are only affected by maneuvers applied along the y and x

directions respectively and the response is inversely proportional to the mean

motion n of the chief.

2. The response of the relative semi-major axis ar, depends on the position of the

deputy on the relative orbit through the relative eccentric anomaly Er. If the

spacecraft has a relative eccentric anomaly close to π/2 or 3π/2 a maneuver
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along the x axis will be the most effective while a maneuver along the y axis

will be most effective for a relative eccentric anomaly close to 0 or π. It is also

interesting to note that, since n � 1 for LEOs, the response to a maneuver

along the y axis will be much stronger than that to a maneuver along the x axis

in general.

3. The relative eccentric anomaly is more sensitive to a variation along the x axis

when Er is close to 0 or π and to a variation along the y axis when Er is close

to π/2 or 3π/2. Since the response of that element is inversely proportional to

ar, a maneuver performed when ar is small will have a greater impact.

4. The amplitude of the cross-track motion only responds to a variation in the

z direction. The response is stronger when γ + Er is close to 0 or π, which

happens when the spacecraft is close to the x axis, i.e. z ≈ 0.

5. Finally, γ is the only ROE sensitive to a perturbations in all directions. Its

response to a perturbation along the x and y axis is opposite to the response of

Er. A perturbation along the z axis will have more effect if γ + Er is close to

π/2 or 3π/2 which happens when the spacecraft is furthest from the x axis. It

is also inversely proportional to Az.

The third observation tends to indicate that setting the value of Qa4 based on ar

could result in a lower fuel consumption. In order to minimize the cost of targeting a

specified Er, the weight associated with this ROE, Qa4, can be automatically tuned

based on the value of ar. Since Er is most sensitive to a maneuver when ar is small,

if the current relative semi-major axis is larger than the target value, it is best to

wait until the actual ar decreases before performing the maneuver. This behavior is

obtained by defining Qa4 as an exponentially decaying function of ar as shown in Fig.

2.30.
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Figure 2.30: Desired behavior of Qa4, assuming that the initial value of ar is larger
than the target value.

This function is obtained by defining:

Qa4(ar; β) =

 exp
(
−β ar−art

|ar0−art|

)
, if ar > art

1, if ar ≤ art
(2.278)

where β is a parameter that defines the rate of the exponential decay. A large value

of β means that the targeting of Er will become significant only when ar is very close

to the target value art.

In order to assess the efficiency of this autonomous tuning, a Monte Carlo simula-

tion has been conducted. The initial state of the deputy is randomly generated with

relative position within ±1 km of the origin of the LVLH frame and velocity within

±10 cm/s. A target relative orbit centered on the origin of the frame is created with

art and Azt drawn from a uniform distribution bounded between 0 and 400 m, and

∆Ert and γ from a uniform distribution bounded between −π and π. The controller

uses a time interval Tm = 15 min between two maneuvers and the scale of the at-

tractive potential is ka = 10−3. For each pair of initial state and target orbit, the

formation establishment is performed with β = 0 and β = 5 and the total delta-V’s

are compared. The process is repeated 50,000 times. Out of the 50,000 runs, 24,426

of them have a lower total delta-V with the adaptive Qa4 (i.e. when β = 5). For

the 24,426 cases with lower delta-V, the mean of the total delta-V obtained with
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constant coefficient Qa4 = 1 is 7.01 m/s and the mean with the adaptive coefficient is

5.56 m/s. That is, for these cases, the adaptive selection of Qa4 resulted in an average

total delta-V which is 20.68% smaller than the total delta-V obtained with a fixed

coefficient Qa4 = 1. The process has been repeated for different values of β to assess

which value yields the best improvement. The results are presented in Fig. 2.31.
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Figure 2.31: Average reduction of the total delta-V for different values of β.

We see in that figure that the reduction increases up to about 21% when β is

larger than 3. The best improvement has been obtained for β = 7 with an average

reduction of 21.39% as compared to a fixed Qa4 coefficient.

In order to identify when the autonomous selection results in a lower delta-V and

when it doesn’t, the correlations between the initial state and the target elements are

computed. Figures 2.32 and 2.33 show the correlation coefficients between the LVLH

initial coordinates and target ROEs for cases when a fixed Qa4, respectively adaptive

Qa4 result in a lower delta-V. These correlation matrices clearly show that there is a

negative correlation between the targeted angular separation ∆Ert and the initial x

coordinate for fixed Qa4 and a positive correlation for adaptive Qa4. We can also see

a weaker correlation between ∆Ert and y0; however, after examination of the relation

between these two coordinates and which method yields the lower total delta-V, no

causality has been found.
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Figure 2.32: Correlation matrix for cases when a fixed Qa4 coefficient results in a
lower total delta-V consumption.
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Figure 2.33: Correlation matrix for cases when an adaptive Qa4 coefficient results in
a lower total delta-V consumption.

The correlations observed in the two figures suggest a relation between ∆Ert, x0,

and whether the fixed or adaptive coefficient yields a lower delta-V. This relation

is illustrated in Fig. 2.34. Blue dots corresponds to (x0,∆Ert) pairs for which the

adaptive Qa4 results in a lower delta-V and red dots denote pairs for which the fixed

Qa4 yields a lower delta-V. We see in this figure that the adaptive coefficient works
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Figure 2.34: Relation between the initial x component and the targeted angular
separation for the fixed and adaptive Qa4. Blue dots denote pairs for which the
adaptive method results in a lower cumulative delta-V and red dots pairs for which
the fixed coefficient results in a lower delta-V.

best if the deputy is initially on a lower orbit than the chief and targets a negative

angular separation or if it is above the chief and targets a positive angular separation.

Similarly, a fixed coefficient results in a lower total delta-V if the spacecraft is under

the chief and targets a positive angular separation or if it is above and targets a

negative angular separation. The behavior is not well defined if the spacecraft is close

to x0 = 0. For this reason, the adaptive Qa4 defined by Eq. (2.278) is used with

β = 7 if x0 < −150 m and ∆Ert < 0◦ or x0 > 150 m and ∆Ert > 0◦. If these

conditions are not satisfied, a constant coefficient Qa4 = 1 is used instead. The other

observations made from Eq. (2.277) do not lead to the straightforward derivation of

autonomous coefficient selection methods for the other shaping parameters for the

current formulation. For this reason, the other coefficients of the shaping matrix for

the attractive potential are all set to one.

As seen in section 2.2.2, the selection of the shaping matrix Qr for the repulsive

potential determines the size and orientation of the ellipsoid. Since the imminence of

a collision is higher if the relative velocity between the spacecraft and the obstacle
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is high, the ellipsoid is oriented such that its main axis is aligned with the relative

velocity vector. The relative velocity of the obstacle as seen by the spacecraft is

δṙ = ṙobs − ṙ (2.279)

Assuming that the major axis of the ellipsoid is along the first dimension, the rotation

axis is

â =
ê1 × δṙ
‖ê1 × δṙ‖

(2.280)

with ê1 =
[
1 0 0

]T
, and the rotation angle is given by

θ = cos−1

(
δṙ · ê1

‖δṙ‖

)
(2.281)

These two quantities allow to construct the rotation matrix

R = cos θI3 + sin θ[â]× + (1− cos θ)ââT (2.282)

where I3 is the 3-by-3 identity matrix and [â]× is the cross-product matrix of â given

by

[â]× =


0 −â3 â2

â3 0 −â1

−â2 â1 0

 (2.283)

If υ is the ratio between the major and minor axes, then the shaping matrix is

computed as

Qr = R


1 0 0

0 υ2 0

0 0 υ2

RT (2.284)

Fig. 2.35 illustrates the orientation of the repulsive ellipsoidal potential when a

spacecraft encounters a static obstacle on its trajectory.
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Figure 2.35: Orientation of the repulsive ellipsoidal potential based on the relative
velocity between the spacecraft and the obstacle.

When the spacecraft first reaches the sphere of influence of the obstacle (gray

sphere), the relative velocity (red arrow) is mostly in the direction of the negative

y axis. After a first collision avoidance maneuver is performed, the relative velocity

points in the positive x and negative z directions leading to a rotation of the repulsive

ellipsoidal potential. The green ellipsoid in the figure has a semi-major axis rSOI = 20

m and corresponds to an isosurface of φr = 10−5kr. In this example, the spacecraft

“bounces” on the sphere of influence. In the simulations that will be presented in

Chapter 3, the threshold to trigger a recovery maneuver after a CAM has been per-

formed is set to three times the sphere of influence, thus reducing the likelihood that

the spacecraft will perform several CAMs in a row. This feature has been deactivated

in this example for illustration purpose.

The motivation for the computation of ka is to minimize fuel consumption while

ensuring that the maneuvers will not exceed ∆Vmax. For given sets of initial ROEs

and target ROEs, an attractive potential function is constructed with a given ka. The

reference trajectory is created using this attractive potential only and the maneuver

required to track the first waypoint is computed. The relative state of the spacecraft is

then propagated for a duration Tm using the CW equations and this new state is used
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to compute the maneuver to reach the next waypoint. The reference tracking is carried

on for a given duration τc. Once this duration is reached, the total delta-V required

to track the trajectory is recorded along the amplitude of the largest maneuver that

occurred. The process is repeated for different values of ka. Once these different

values have been computed, the ka value for which the maximum delta-V does not

exceed ∆Vmax and that results in the lowest total delta-V is selected. In addition to

these constraints, the Euclidean distance between the final position of the spacecraft

and the target position is calculated to ensure that the trajectory has converged and

a ka value such that this metric is smaller than a threshold dc is chosen. If no value

satisfies the constraint, a fallback value of 10−3 is used. Fig. 2.36 shows the output

of the ka search algorithm for a spacecraft with initial relative state

s0 =
[
−70 m 800 m −300 m 0.09 m/s 0.08 m/s 0.08 m/s

]T
and corresponding ROEs

ρ0 =
[
−129.1 m 630.2 m 206.9 m 124.8◦ 309.3 m 159.3◦

]T
The targeted relative orbit is in the x-y plane and is described by

ρt =
[
0 m −100 m 100 m 60◦ 0 m 0◦

]T
The controller uses a time interval of Tm = 3600 s between two maneuvers. In this

example, the trajectory is propagated for a duration τc = 4.8 hours and the search

space for ka contains 33 values ranging from 10−5 to 10−1 which are logarithmically

spaced. We see in Fig. 2.36 that for small values of ka the total delta-V (green

line) required to track the reference trajectory is high. The high error (orange line)

indicates that the trajectory did not converge at the end of the 4.8 hours. The shaded

area corresponds to values of ka for which the largest delta-V (blue line) is larger than

the maximum delta-V allowed (red dashed line), set to 1 m/s in this example, and are
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Figure 2.36: Autonomous computation of the optimal ka value.

therefore not feasible. The minimum delta-V satisfying the constraints is ka = 0.0133

as shown by the violet line. The threshold on the metric has been set to dc = 3

meters for this example, that is, the algorithm has selected a value such that the

spacecraft is at most 3 meters away from the target at the end of the 4.8 hours of

propagation. Fig. 2.37 shows the trajectories for a selection of ka values. If the value

is too small, we see that the trajectory does not converge to the target relative orbit.

The trajectory resulting from the selected ka is shown in red. The two trajectories

for larger values of ka are superimposed with the optimal trajectory.

The amplitude of the repulsive potential, kr, can also be selected automatically.

Since the controller is based on the minimization of the potential field, the value

of the attractive potential field monotonically decreases over time. Hence, if the

spacecraft is initially not at risk of colliding with another agent, by the time a risk

of collision is detected the value of the attractive potential will be lower than the

initial value. Setting kr = φa(t0), that is, the value of the repulsive potential field at

the surface of the obstacle corresponds to the initial value of the attractive potential,

results in a potential at the surface of the obstacle higher than the current potential
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Figure 2.37: Trajectories for different values of ka.

of the spacecraft. That way, by following the steepest descent of the gradient, the

spacecraft will never reach the surface of the obstacle, assuming an appropriate time

step between two control cycles has been chosen.

The different methods proposed in this section led to the automatic selection of

several parameters of the APFs, thus reducing the number of parameters that must

be manually tuned. The methods described to compute these parameters are based

on fuel minimization considerations for some, while others are based on convergence

considerations. Out of the fourteen parameters initially required when working with

the ROEs, eleven of them can be automatically computed using methods based on

the definition of three parameters which have an intuitive interpretation. Hence, the

six parameters summarized in Table 2.4 need to be manually selected.

2.4 Orbital Dynamics

The space environment in which spacecraft evolve is nonlinear and several effects

from physical phenomenon impact the translational and rotational motion of the ve-

hicles. A common approach to numerically propagate spacecraft trajectories is to
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Table 2.4: Summary of the parameters of the attractive and repulsive potentials that
must be manually selected.

Attractive potential Repulsive potential

τc: convergence time for the
computation of ka

rs: radius of a sphere circumscribing the obstacle

rSOI: radius of the sphere of influence

dc: convergence threshold p: value of the potential at rSOI as a fraction of kr

υ: ratio between the semi-major and semi-minor
axes of the ellipsoid

consider a two-body system where a trajectory evolves due to the spherical poten-

tial created by a central body. Equations of motion describing the dynamics of the

spacecraft are then derived from this spherical potential and numerically integrated.

In order to obtain a higher fidelity model of the space environment, orbital perturba-

tions must be accounted for. One way of doing this is to add them to the two-body

acceleration:

a = a2-body + ageo + adrag + a3-body + aSRP + aother (2.285)

where a2-body is the acceleration resulting from the spherical potential and the fol-

lowing terms are the perturbations created by the geopotential field, atmospheric

drag, third-body effects, solar radiation pressure, and other sources respectively. The

equations of motion are then formed with

r̈I = a(t, r, ṙ) (2.286)

and numerically integrated. This method is sometimes referred to as Cowell’s formu-

lation. In the following section, the trajectories have been propagated by integrating

Eq. (2.286) using a Runge-Kutta-Fehlberg integrator of order 8 with error estimation

of order 7. The absolute and relative tolerances have been both set to 10−12. The
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initial state of the chief in terms of classical orbital elements used for the propagation

is

a = R⊕ + 500 km e = 0 i = 45◦ Ω = 0◦ ω = 0◦ M = 0◦

and the initial state of the deputy in terms of ROEs is

ρ0 =
[
0 m 0 m 300 m 90◦ 100 m −45◦

]T

2.4.1 Perturbations

Several perturbations act on spacecraft in the vicinity of the Earth. Non-spherical

potential, atmospheric drag, third-body perturbations, and solar radiation pressure

are external forces that perturb the ideal orbit computed from the two-body approx-

imation. The gravitational potential field generated by the uneven mass distribution

within the Earth can be described using spherical harmonics [89]:

U(r) =
µ⊕
r

∞∑
n=0

n∑
m=0

Rn
⊕

rn
P nm(sinφ)(Cnm cos(mλ) + Snm sin(mλ)) (2.287)

where µ⊕ is the standard gravitational parameter of Earth, R⊕ the radius of the

planet, P nm(·) the normalized associated Legendre polynomial of degree n and order

m, φ the geocentric latitude, and λ the longitude. The normalized coefficients Cnm

and Snm are obtained fromCnm

Snm

 =

√
(n+m)!

(2− δ0m)(2n+ 1)(n−m)!

CnmSnm

 (2.288)
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with

Cnm =
2− δ0m

M⊕

(n−m)!

(n+m)!

∫
sn

Rn
⊕
Pnm(sinφ

′
) cos(mλ

′
)ρ(s)d3s (2.289)

Snm =
2− δ0m

M⊕

(n−m)!

(n+m)!

∫
sn

Rn
⊕
Pnm(sinφ

′
) sin(mλ

′
)ρ(s)d3s (2.290)

where δ is the Kronecker delta, M⊕ the mass of the Earth, (·)′ denotes quantities

associated with s, and ρ(s) is the mass density at s. Coefficients with m = 0,

m < n, and m = n are called zonal, tesseral, and sectorial coefficients respectively.

Since the precise mass distribution is not known, these coefficients can’t be computed

directly but have instead been measured from satellite tracking, surface gravimetry,

and altimeter data [89]. If the mass distribution is assumed to be symmetric with

respect to the axis of rotation, then only the zonal terms, commonly referred to as

Jn terms, contribute to the geopotential. The acceleration due to the non-spherical

potential is obtained from the gradient of Eq. (2.287):

ageo = ∇U(r) (2.291)

The effect of the geopotential on the inertial motion is a secular drift of the right

ascension of the ascending node, argument of perigee, and mean anomaly [83]. For

relative motion, this perturbation results in the rotation of the relative orbit as seen

in the LVLH reference frame. Fig. 2.38 shows the relative orbit in the two-body

approximation (blue) and in a perturbed environment with geopotential expansion

up to degree six, i.e. including J2 to J6 (orange). The trajectory has been propagated

for 48 hours.

We see in that figure that the relative orbit shifts along the y axis and is distorted.

The magnitude of the geopotential perturbations averaged on one orbit of this simu-
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Figure 2.38: Relative orbit in the LVLH frame in the two-body approximation (blue)
and under the influence of geopotential perturbations (orange).

lation is acgeo = 1.158493 · 10−5 km/s2 for the chief and adgeo = 1.158504 · 10−5 km/s2

for the deputy, leading to a differential acceleration of

∆ageo =
∣∣adgeo − acgeo

∣∣ = 1.0348 · 10−10 km/s2 (2.292)

Atmospheric drag results from the friction of air on the spacecraft’s surfaces.

This force acts in a direction opposite to the velocity vector relative to the rotating

atmosphere. The acceleration induced by atmospheric drag is

adrag = −cDAρ
2m
‖vrel‖2 vrel

‖vrel‖
(2.293)
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where m is the mass of the spacecraft, cD the drag coefficient, A the exposed cross-

sectional area, ρ the atmospheric density, and vrel the relative velocity vector, com-

puted with

vrel = ṙI − ω⊕ × rI (2.294)

where ω⊕ is the Earth angular velocity vector. The drag coefficient as well as the

cross-sectional area depend on the geometry of the vehicle and precise values can only

be obtained when a detailed CAD model of the spacecraft is available. Several models

exist to estimate the atmospheric density. The exponential model is widely used for

first order approximations due to its computational efficiency. This model assumes

an exponentially decaying atmospheric density as altitude increases and provides

tabulated data that can be used to retrieve the density at a specific altitude. More

accurate models have been developed to account for time, temperature, solar activity,

and geomagnetic activity such as GRAM and NRLMSIS-00 among others. Fig. 2.39

illustrates the effect of the drag on the relative orbit using EarthGRAM2016. For

this example, both the leader and the deputy have the same physical properties. The

spacecraft have a mass of 10 kg, a cD of 2.2, and a cross-sectional area of 0.25 m2.

The trajectories have been propagated for 48 hours with no perturbation (blue) and

with atmospheric drag (orange). It can be seen in that figure that the effect of the

drag is purely in the along-track direction, resulting in the relative orbit drifting in

the negative y direction. The total drift after 48 hours is about 6.6 meters. The

magnitude of the perturbing acceleration from the atmospheric drag averaged on one

orbit is acdrag = 2.901504 · 10−9 km/s2 for the chief and addrag = 2.901510 · 10−9 km/s2

for the deputy, resulting in a differential acceleration of

∆adrag =
∣∣addrag − acdrag

∣∣ = 5.9379 · 10−15 km/s2 (2.295)
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Figure 2.39: Relative orbit in the LVLH frame in the two-body approximation (blue)
and under the effect of atmospheric drag (orange).

A third source of perturbations that act on the spacecraft is the third-body effect,

caused by the gravitational field of celestial bodies other than the central body. For

Earth-bound satellites, the acceleration induced by a third body is [83]:

a3-body = µ3

(
rs/c-3

‖rs/c-3‖3
− r⊕-3

‖r⊕-3‖3

)
(2.296)

where µ3 is the standard gravitational parameter of the third body, rs/c-3 the position

vector from the spacecraft to the third body, and r⊕-3 the position vector from the

Earth to the third body. When rs/c-3 ≈ r⊕-3, both terms on the right hand side

of the equations will be very small and the difference will be even smaller. The

precision required to accurately compute this difference might be very high and lead

to rounding errors. To remedy this difficulty, several authors have proposed different
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approximations of this equation. One of these approximations has been proposed by

Long et al. [90] and uses Legendre functions:

a3-body = −µ3

(−rs/c-3(3B + 3B2 +B3) + r⊕-s/c

‖r⊕-3‖3

)
(2.297)

with

B =
∞∑
j=1

Pj[cos ζ]hj

where Pj are Legendre functions, h = ‖r⊕-s/c‖/‖r⊕-3‖, and ζ is the angle between the

third body and the satellite and can be computed with

‖rs/c-3‖2 = ‖r⊕-s/c‖2 + ‖r⊕-3‖2 − 2‖r⊕-s/c‖‖r⊕-3‖ cos ζ

Using Eq. (2.296), the magnitude of the perturbation from the Moon and the Sun

on a spacecraft on a 500 km altitude circular orbit about the Earth can be estimated.

It is assumed that the spacecraft is located between the Earth and the third body.

The different position vectors used for the computation of the perturbation from the

Moon are illustrated in Fig. 2.40.

⊕ $
r⊕s/c rs/c$

r⊕$
x̂

Figure 2.40: Position vectors between the Earth, the spacecraft, and the Moon.

The constant values for the different bodies and distances are shown in Table 2.5.

Table 2.6 shows the magnitude and direction of the different terms of Eq. (2.296)

when considering the Moon and the Sun individually. The first term on the right

hand side of the equation is the direct perturbing term, the second one is the indirect

perturbing term, and the difference is the net perturbing acceleration. We see from
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Table 2.5: Physical constants used for the computation of third-body perturbations
[91–94].

R⊕ = 6378.1366 km

µ$ = 4902.800066 km3/s2

µ� = 132, 712, 440, 041.939400 km3/s2

r⊕$ = 384, 400 km

r⊕� = 149.6 · 106 km

Table 2.6: Direct, indirect, and net perturbations for the Moon and the Sun.

Moon Sun

Magnitude (km/s2) Direction Magnitude (km/s2) Direction

Direct perturbation 3.44 · 10−8 +x̂ 5.9306 · 10−6 +x̂

Indirect perturbation 3.3180 · 10−8 −x̂ 5.9301 · 10−6 −x̂
Net perturbation 1.22 · 10−9 +x̂ 5.0000 · 10−10 +x̂

this table that the direct perturbing acceleration is larger than the indirect term for

both bodies, and the net perturbation from the Moon is one order of magnitude larger

than that of the Sun. In both cases, the net perturbation is in the positive x̂ direction,

that is, pulling the spacecraft away from the Earth in this simplified situation.

Numerical simulations using JPL’s ephemerides to retrieve the Moon and Sun

position have been run for the same spacecraft physical properties as before. The

average magnitude of the net perturbing acceleration from the Moon and the Sun

acting on the chief is ac3-body = 7.731217 · 10−10 km/s2 and the effect on the deputy is

ad3-body = 7.731230 · 10−10 km/s2 resulting in a differential acceleration of

∆a3-body =
∣∣ad3-body − ac3-body

∣∣ = 1.3626 · 10−15 km/s2 (2.298)

Lastly, the perturbation induced by the solar radiation pressure (SRP) are con-

sidered. The perturbing acceleration created by this pressure is [83]:

aSRP = −pSRPCRA�
m

rs/c�
‖rs/c�‖

(2.299)



106

where pSRP is the solar pressure, CR the radiation pressure coefficient, A� the area

exposed to the Sun, m the mass of the spacecraft, and rs/c� the position vector from

the spacecraft to the Sun. In the vicinity of the Earth, the solar flux is approximately

constant with SF = 1367 W/m2 leading to a solar radiation pressure of pSRP =

4.57 ·10−6 N/m2. Thus, considering a spacecraft with CR = 1.5, A� = 0.25 m2, and a

mass m = 10 kg, the magnitude of the acceleration due to SRP is aSRP = 1.7138·10−10

km/s2. Since the solar flux varies very slowly at the distance of the Earth, it can be

assumed constant for LEOs and therefore the differential SRP acceleration between

a deputy and a chief with the same physical properties will be approximately zero,

except when one of the two spacecraft enters or exits eclipse before the other one. The

magnitude of the perturbing acceleration created by solar radiation pressure averaged

on one orbit of the trajectory propagated using the initial conditions described before

is acSRP = 1.354493 · 10−10 km/s2 for the chief and adSRP = 1.354486 · 10−10 km/s2 for

the deputy. The difference between these two accelerations results in a differential

acceleration of

∆aSRP =
∣∣adSRP − acSRP

∣∣ = 6.3870 · 10−16 km/s2 (2.300)

Table 2.7 summarizes the differential perturbing accelerations acting on the rela-

tive motion for a formation with the chief on a 500 km altitude circular orbit.

Table 2.7: Orders of magnitude of the perturbing accelerations.

Perturbation Differential acceleration (km/s2)

Geopotential 1.0348 · 10−10

Atmospheric drag 5.9379 · 10−15

Third-body 1.3626 · 10−15

Solar radiation pressure 6.3870 · 10−16

As can be seen in Table 2.7, the magnitude of the perturbations induced by

the non-spherical geopotential is the largest by several orders of magnitude. The

atmospheric drag, third-body, and SRP perturbations all contribute to a lesser extend

to the perturbation of the relative motion of the deputy. Since the atmospheric drag
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and solar radiation pressure depend on the physical properties of the spacecraft,

having very different vehicles acting as chief and deputy might result in significantly

higher differential accelerations for these two perturbing terms.

Other sources of orbital perturbations such as tides, the albedo, and the magnetic

field exist but are not considered in this work due to their lower impact on relative

motion. In the next section, the effect of nonlinear dynamics and orbital perturbations

on the linear targeter is presented.

2.4.2 Accuracy of the Linear Targeter

The targeter derived in Section 2.3.3 is based on the CW equations which are

derived from a linear approximation of the dynamics. Since spacecraft evolve in a

nonlinear, perturbed environment, it is important to assess the convergence proper-

ties of the targeter when used in that environment. Being mostly interested in the

effects of nonlinearity and orbital perturbations, the magnitude of the maneuvers is

assumed to be unbounded in this section. The accuracy of the targeter is assessed

by conducting Monte Carlo simulations. An initial position is randomly generated

within a distance ±d from the chief and zero initial velocity is set. A target position

is generated within that same distance and the maneuver required to reach it within

a specified duration Tm is computed using the linear targeter. Once the delta-V has

been computed, it is added to the initial LVLH state which is then converted into

inertial coordinates. The absolute inertial states of the chief and the deputy are

propagated using the Cowell formulation presented in section 2.4 with the four per-

turbing accelerations described previously. The final relative state is computed as the

difference between the two inertial states and transformed into LVLH Cartesian coor-

dinates. The norm of the difference between the target position and the final position

is used as an indicator of the accuracy of the targeting. For these simulations, both

spacecraft are assumed to have the same physical properties, summarized in Table

2.8. It is also assumed that the chief is on a circular orbit with a 30◦ inclination and
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Table 2.8: Physical properties of the spacecraft

m = 20 kg

cD = 2.2

A = 0.16 m2

Cr = 1.8

A� = 0.16 m2

0◦ right ascension of the ascending node, argument of periapsis, and true anomaly.

The simulations are performed for different chief’s altitudes, distances d, and time of

flight Tm to reach the target. For each case, 5000 runs have been performed and the

mean, standard deviation, minimum, 25th percentile, 75th percentile, and maximum

values of the error are computed. Table 2.9 presents the results of these simulations.

Several observations can be made from Table 2.9. In general, the error resulting

from initial conditions and target which are far away is smaller when the chief is on

a high altitude orbit than when it is on a low altitude orbit. Not surprisingly, for all

three altitudes, the error is smaller when the initial conditions and target are close

to each other, i.e. for small d values. A short duration also improves the accuracy

of the targeter. For a short time interval, the spacecraft will travel in a more direct

way than for a long time interval resulting in a shorter path and shorter exposure

to perturbations and nonlinear effects thus leading to a higher targeting accuracy.

These results indicate that the waypoints of the reference trajectory should be within

a few hundred meters apart and the time interval between two of them should be

reasonably small if a precise tracking is desired.
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Table 2.9: Monte Carlo simulations of the targeter accuracy.

Error

Case alt d Tm mean std min p25 p75 max

(km) (km) (min) (m) (m) (m) (m) (m) (m)

1

300

1

15 1.70 0.73 0.04 1.12 2.20 4.40

2 30 7.31 3.56 0.28 4.58 9.51 22.23

3 60 19.67 9.18 0.47 12.90 24.90 61.72

4

5

15 8.57 3.90 0.72 5.57 10.97 23.26

5 30 38.36 19.82 0.98 23.57 49.54 134.87

6 60 104.55 53.19 4.89 65.74 134.10 373.73

7

10

15 18.05 8.77 0.96 11.53 23.23 57.16

8 30 84.31 49.47 2.02 49.12 108.21 365.60

9 60 246.60 140.46 3.19 144.61 320.48 918.18

10

500

1

15 1.46 0.63 0.05 0.98 1.88 3.78

11 30 6.20 2.94 0.17 3.90 8.13 17.52

12 60 18.71 9.07 0.69 11.90 24.21 58.87

13

5

15 7.36 3.37 0.56 4.81 9.49 20.90

14 30 32.25 16.27 1.63 19.80 41.96 110.39

15 60 99.85 55.02 3.25 60.52 126.09 415.94

16

10

15 15.61 7.64 0.47 10.03 19.73 50.34

17 30 71.14 40.43 2.31 42.01 92.27 279.15

18 60 242.81 152.18 8.99 136.43 311.97 1103.16

19

700

1

15 1.28 0.55 0.01 0.87 1.65 3.47

20 30 5.32 2.49 0.30 3.39 6.94 15.36

21 60 18.88 9.70 0.70 11.65 24.54 63.21

22

5

15 6.43 2.88 0.27 4.27 8.22 16.97

23 30 27.59 13.39 0.57 17.51 35.53 102.70

24 60 104.14 63.28 4.84 60.47 130.88 447.35

25

10

15 13.66 6.77 0.42 8.72 17.47 45.50

26 30 59.67 33.16 2.46 35.00 77.41 237.73

27 60 264.01 188.36 2.66 132.95 341.71 1342.48
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3. NUMERICAL SIMULATIONS

In this chapter, the performance of the control algorithm is demonstrated through

numerical simulations of the establishment of different formation geometries. The six

degrees of freedom simulator is first introduced and uncertainties are described. An

assessment of the accuracy of formation establishment followed by the results of the

numerical simulation of four different scenarios are then presented.

3.1 Orbital Propagation

The numerical simulations presented in this chapter have been run using a six

degrees of freedom Matlab/Simulink orbital propagator originally designed for Light-

Sail [95,96]. The simulator has been modified to accommodate spacecraft formations.

The orbital perturbations taken into account include non-spherical geopotential with

expansion up to degree six, atmospheric drag using the 2001 United States Naval

Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Exosphere

(NRLMSIS-00) atmospheric model, solar radiation pressure, third-body effects from

the Moon and the Sun, and gravity gradient. The equations of motions are integrated

using a fourth-order Runge-Kutta method with a fixed time step of one second. In

the simulator, modifications of the translational motion are obtained by commanding

the propulsion system to apply a specific force. In order to convert the commanded

delta-V computed using the control algorithm into a force, the assumption that the

force is delivered over one second is made. Hence, the commanded force is

F c = ma = m
∆V c

∆t
= m∆V c (3.1)
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Using the rocket equation, the mass of the spacecraft after the maneuver is

mf = m0 exp

(
− Fa
m0Ispg0

)
(3.2)

where m0 is the mass before the maneuver, Fa the amplitude of the actual force that

is applied (i.e. the commanded force with the addition of errors), Isp the specific

impulse, and g0 the gravitational constant. In order to increase the fidelity of the

simulations, uncertainties in the relative state knowledge as well as thrust errors have

been added to the model.

3.1.1 Relative State Estimation Uncertainties

Ferguson et al. [97] have studied the relative state estimation for the Orion-

Emerald mission, a three-spacecraft formation flying mission originally planned in

the early 2000s but later cancelled. The method is based on carrier-phase differential

GPS which provides a direct measure of the relative states between the agents of the

formation, and has been tested on the Formation Flying Testbed at NASA Goddard

Space Flight Center. For a close range formation, the method achieves an accuracy

of about 2 cm for the relative position determination and less than 0.5 mm/s for

the relative velocity. The mean values and standard deviations for the position and

velocity in the radial, along-track, and cross-track directions for a purely in-plane

formation with a 1 km baseline is shown in Table 3.1.

Table 3.1: Relative state estimation accuracy for an in-plane formation with a 1 km
baseline [97].

Position (cm) Velocity (mm/s)

Mean Std Mean Std

Radial 0.25 0.45 0.032 0.156

Along-track 1.06 0.66 0.001 0.275

Cross-track 0.16 0.29 0.017 0.107



112

Similarly for an out-plane elliptic formation with a 1 km baseline, the maximum

mean and standard deviation along the three directions is shown in Table 3.2. Based

Table 3.2: Relative state estimation accuracy for an out-plane formation with a 1 km
baseline [97].

Position (cm) Velocity (mm/s)

Mean Std Mean Std

Out-plane 1.03 0.54 0.04 0.34

on these results, the state estimation used to compute the maneuvers in the formation

establishments presented in Section 3.2 assumes an accuracy characterized by the

means and standard deviations shown in Table 3.3. The same values are used for the

three dimensions.

Table 3.3: Relative state estimation accuracy used for the numerical simulations.

Position (cm) Velocity (mm/s)

Mean Std Mean Std

1.1 0.7 0.04 0.4

3.1.2 Thrust Errors

The desired delta-V computed by the control algorithm described in Section 2.3.3

results, if applied with no perturbation, in the spacecraft moving to the next reference

waypoint. When commanding an impulsive maneuver, however, the actual delta-V

delivered by the thrusters will slightly differ from the commanded one due to errors

in magnitude and direction coming from misalignment, time to ramp up and down,

timing offsets, etc, therefore adding uncertainties to the model. This thrust error can

be mitigated by using a method introduced by Chioma and Titus [98] to command a

delta-V which is slightly different than the desired one. A summary of their analysis

is provided hereafter.
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The analysis of the thrust errors is computed in a reference frame where one of

the axes is aligned with the commanded impulse. The V-frame is defined with

x̂V =
∆V c

‖∆V c‖
(3.3)

ŷV =
x̂V × ê3

‖x̂V × ê3‖
(3.4)

ẑV = x̂V × ŷV (3.5)

where ê3 = [ 0 0 1 ]T . The axes ŷV and ẑV can be oriented arbitrarily as long as

the triad forms an orthogonal reference frame. Fig. 3.1 illustrates the definition of

the V-frame along with the actual and commanded delta-V’s.

x̂V

ŷV

ẑV

φ θ

∆V a

∆V c ex

ey

ez

M

Figure 3.1: Definition of the V-frame. Reproduced from [98].

The maneuver’s amplitude error is represented by M and the pointing error by

the angles φ and θ. The projection of the actual delta-V on the V-frame is thus

∆V a =


(∆Vc +M) cos θ

(∆Vc +M) sin θ cosφ

(∆Vc +M) sin θ sinφ

 (3.6)

with ∆Vc = ‖∆V c‖. It is now assumed that M follows a Gaussian distribution with

mean µM = 0 and standard deviation σM , φ a uniform distribution between 0 and
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π, and θ a Gaussian distribution with mean µθ = 0 and standard deviation σθ. The

corresponding probability density functions are

pM(M) =
1√

2πσ2
M

exp

(
− M2

2σ2
M

)
, −∞ < M <∞ (3.7)

pθ(θ) =
1√

2πσ2
θ

exp

(
− θ2

2σ2
θ

)
, −∞ < θ <∞ (3.8)

pφ(φ) =


1
π
, 0 ≤ φ ≤ π

0, elsewhere

(3.9)

Using these functions, the expected value of the actual delta-V, Eq. (3.6), can be

computed [98]:

E{∆V a} =


∆Vc exp

(
−σ2

θ

2

)
0

0

 (3.10)

Since the exponential term in the above equation is always smaller than one, this

result shows that whenever a delta-V is commanded, the actual impulse provided

by the thrusters tends to undershoot the commanded value. Hence, if the desired

delta-V is

∆V d =


∆Vd

0

0

 (3.11)

a slightly larger burn of

∆V c =


∆Vd exp

(
σ2
θ

2

)
0

0

 (3.12)
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should be commanded such that the expected value of the actual delta-V delivered

by the thrusters corresponds to the desired amplitude:

E{∆V a} =


∆Vd

0

0

 (3.13)

In the simulations presented in this chapter, the desired delta-V is determined using

Eq. (2.272) and the commanded burn is computed from Eq. (3.12). The actual delta-

V used for the orbital propagation is obtained by adding random perturbations to

the magnitude and direction of the commanded value, each perturbation being drawn

from its respective distribution function (Eqs. (3.7)-(3.9)). Algorithm 4 details the

computation process to get the commanded delta-V as well as the actual delta-V used

for the simulations.

Algorithm 4: Commanded and actual delta-V’s
Input : ∆V d, σM , σθ
Output: ∆V c, ∆V a

/* Compute the V-frame transformation matrix */

1 ê3 ←−
[
0 0 1

]T
2 x̂V ←− ∆V d/‖∆V d‖
3 ŷV ←− (x̂V × ê3)/‖x̂V × ê3‖
4 ẑV ←− x̂V × ŷV

5 C←−

 x̂V ŷV ẑV


/* Generate random numbers */

6 M ←− N (0, σM )

7 θ ←− N (0, σθ)

8 φ←− U(0, π)

/* Compute outputs */

9 ∆V c ←− C
[
‖∆V d‖ exp(σ2

θ/2) 0 0
]T

10 ∆V a ←− CR1(φ)R3(θ)
[
‖∆V c‖+M 0 0

]T
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In the scenarios presented in Section 3.2, the standard deviation of the amplitude

errors is set to σM = 1 mm/s and the pointing error to σφ = 2 deg.

The relative state knowledge uncertainties and the thrusting errors introduced in

this section impact the accuracy with which formations can be established. In the fol-

lowing section, the accuracy is assessed for different magnitudes of these uncertainties

as well as the different parameters of the control algorithm.

3.1.3 Formation Establishment Accuracy

The accuracy of formation establishment depends on many factors. Orbital per-

turbations, time interval between two waypoints, bounds on the maneuvers’ ampli-

tude, relative state knowledge uncertainties, and thrust errors all influence how close

a spacecraft can track the reference trajectory. In order to assess the accuracy with

which a formation can be established and maintained, the distance between the true

position and the target position is computed:

err(t) = ‖rLVLH(t)− rLVLH

t (t)‖ (3.14)

where the true position rLVLH is the difference between the inertial state of the chief

and the inertial state of the deputy obtained via numerical propagation and trans-

formed into the LVLH frame, and the target position rLVLH
t is obtained by converting

the set of target ROEs into LVLH Cartesian coordinates:

ρt(t) =
[
xrt yrt art E

′
r0 + ∆Ert + nt Azt γt

]T
→ rLVLH

t (t) (3.15)

For this analysis, the target relative orbit is a 50 m radius CRO centered on the chief

and the deputy targets an angular separation ∆Ert = −50◦ with respect to a virtual

leader with E
′
r0 = 0◦. The set of ROEs describing this relative orbit is

ρt(0) =
[
0 m 0 m 50 m −50◦ 43.3 m −90◦

]T
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The physical properties of the spacecraft are the same as in Section 2.4.2 and are

described in Table 2.8. The initial conditions of the chief in terms of classical orbital

elements are

a = R⊕ + 500 km e = 0 i = 30◦ Ω = 0◦ ω = 0◦ M = 0◦

and the deputy’s initial conditions are

ρ0 =
[
−100 m −500 m 1400 m −20◦ 200 m 130◦

]T
The trajectory followed by the deputy is shown in Fig. 3.2 for a duration of 12 hours.
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Figure 3.2: Relative trajectory followed by the deputy.
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The effect of the orbital perturbation on the accuracy of the formation establish-

ment is first analyzed. For this case, it is assumed that the maneuvers are unbounded,

the spacecraft has perfect knowledge of its relative state, and no thrust errors occur.

The time interval between two maneuvers is set to 30 minutes. Fig. 3.3 shows the

time evolution of the accuracy of the formation establishment when the different or-

bital perturbations act on the spacecraft. We see in Fig. 3.3 that the error between

0 2 4 6 8 10 12
0

500

1,000

Time (hours)

Er
ro

r
(m

)

No perturbations
Third-body (Moon and Sun)
Drag
SRP
Geopotential
Combined effects

Figure 3.3: Accuracy of the formation establishment when different orbital perturba-
tions act on the spacecraft.

the actual state and the target state quickly decreases during the first three hours of

simulation, and the impact of the orbital perturbations is barely visible at that scale.

A close up view of the accuracy between 4 and 12 hours is presented in Fig. 3.4.

As can be seen in Fig. 3.4, the dominant effect comes from the non-spherical

geopotential with an error oscillating between about 10 and 70 centimeters. This

result agrees with the significantly higher order of magnitude of the differential ac-

celeration found in Section 2.4.1. The effect of the other perturbations is negligible

since the resulting error is similar to the error without perturbations.

The accuracy for different time intervals between the maneuvers, Tm, is considered

next. The same assumptions as before are made and the trajectories are propagated

using the fully perturbed model. Fig. 3.5 shows the time evolution of the error for
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Figure 3.4: Zoom on the accuracy of the formation establishment when different
orbital perturbations act on the spacecraft.

different Tm. At the beginning of the simulation, the spacecraft moves toward the
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Figure 3.5: Accuracy of the formation establishment for different time intervals be-
tween the attractive maneuvers.

target orbit thus reducing the error. We see that for the two largest time intervals, the

error grows considerably during the coast between two maneuvers. After two hours,
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however, the error has significantly decreased but still fluctuates before stabilizing

around 4 hours. Looking at Fig. 3.6, we see that the accuracy with which the deputy

is able to track the reference varies with Tm. Even with a relatively long time interval

of two hours, the error lies within 20 cm to 3.8 m. A sub-meter accuracy is reached

for intervals of 30 minutes and shorter. For Tm = 5 minutes, the deputy stays within

10 cm of the target and this value falls below the centimeter mark for Tm = 1 minute.
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Figure 3.6: Zoom on the accuracy of the formation establishment for different time
intervals Tm.

The influence of the lower bound on the maneuvers’ amplitude is now studied.

For this case, perfect knowledge of the relative state is assumed with no thrust errors

and Tm = 30 minutes. We see in Fig. 3.7 that at the beginning of the simulation,

the error is similar for all bounds. Since the spacecraft is quite far from the target,

larger maneuvers are required which are not impacted by the lower bound. When the

spacecraft is closer to the targeted CRO, smaller maneuvers are commanded to finely

adjust its relative position and the lower bound on the magnitude prevents some

maneuvers to be executed. A closer look at the error between 4 and 12 hours reveals

that this parameter has a significant impact on the accuracy that can be reached,
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Figure 3.7: Accuracy of the formation establishment for different lower bounds on
the maneuvers’ amplitude.

Fig. 3.8. As can be seen in this figure, the error for ∆Vmin = 2 cm/s and ∆Vmax = 5

cm/s is very large and goes as high as 150 m. In Fig. 3.9, the two largest ∆Vmax

have been removed for a better view of the smallest bounds. We see in both Fig. 3.8

and 3.9 how the error builds up before the maneuver required to reduce it becomes

larger than the lower bound and is thus applied.

The analysis of the effect of relative state knowledge on the accuracy is conducted

by assuming that the relative velocity is known exactly and varying the mean µ of

the relative position. The standard deviation of the uncertainties on the position is

set to σ = 0.7 cm. We see in Fig. 3.10 that when the uncertainties have a large

mean value of 1 m, the error oscillates between 5 and 8 meters. It is slightly lower for

µ = 50 cm and oscillates around 3 meters. For smaller µ values, the error between

the actual position and the target position falls within one meter.

If perfect knowledge of the relative position is now assumed and the mean of the

uncertainties on the relative velocity is varied, the error evolves as shown in Fig. 3.11.

The standard deviation of the relative velocity has been set to σ = 0.4 mm/s. The

violet line reveals that a mean uncertainty of 5 mm/s leads to an error of the relative



122

4 5 6 7 8 9 10 11 12
0

50

100

150

Time (hours)

Er
ro

r
(m

)

1 mm/s
2 mm/s
5 mm/s
1 cm/s
2 cm/s
5 cm/s

Figure 3.8: Zoom on the accuracy of the formation establishment for different lower
bounds on the maneuvers’ amplitude.
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Figure 3.9: Accuracy of the formation establishment after four hours of simulation
for a selection of ∆Vmin values.

position with respect to the target between 20 and 30 meters. If the relative velocity

is known with greater accuracy, the error falls within 10 meters. It oscillates around

6 meters for µ = 1 mm/s and becomes as low as about 2 meters for 0.05 and 0.01
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Figure 3.10: Accuracy of the formation establishment after four hours of simulation
for different values of the mean error on the relative position determination.
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Figure 3.11: Accuracy of the formation establishment after four hours of simulation
for different values of the mean error on the relative velocity determination.

mm/s. These results indicate that a precise determination of the relative velocity is

required to get a low error.

Finally, a study of the effect of thrust errors on the formation establishment ac-

curacy is presented. For this analysis, perfect knowledge of the relative state and
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unbounded maneuvers amplitude are assumed. The effect of the magnitude error

is first assessed in Fig. 3.12 for zero pointing error. As can be seen in that figure,

4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

Time (hours)

Er
ro

r
(m

)

1 mm/s
2 mm/s
5 mm/s
1 cm/s

Figure 3.12: Accuracy of the formation establishment after four hours of simulation
for different values of the standard deviation of the maneuvers amplitude errors.

a standard deviation of 1 cm/s for the error on the amplitude results in a tracking

error that goes as high as 50 meters. If that standard deviation is reduced by half,

the error falls to within 30 meters. For a propulsion system capable of delivering

a delta-V with a standard deviation of 1 or 2 mm/s, the spacecraft is able to stay

within 10 meters of the target. The effect of the pointing error is shown in Fig. 3.13.

Interestingly, the formation establishment accuracy is not very sensitive to the thrust

pointing errors. The error stays below two meters when a standard deviation of 10

degrees is considered and falls below one meter for smaller standard deviations. This

indicates that even when a relatively large pointing error is present, a good targeting

accuracy can be achieved.

This concludes the analysis of the formation accuracy for different perturbations,

uncertainties and errors introduced in the model. Based on these results, the propul-

sion system plays an important role in the accuracy that can be reached especially

with the smallest delta-V that can be delivered and the error on the maneuvers’ am-
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Figure 3.13: Accuracy of the formation establishment after four hours of simulation
for different values of the standard deviation of the thrust pointing errors.

plitude. A proper selection of the parameters of the model results in an accuracy of a

few meters for this specific set of chief’s orbit, initial conditions, and target elements

as shown in Fig. 3.14. This result was obtained with Tm = 900 s, ∆Vmin = 2 mm/s,

σM = 1 mm/s, σθ = 2◦, and the state uncertainties of Table 3.3, and demonstrates

that the algorithm is capable of accurately tracking the reference trajectory.
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Figure 3.14: Accuracy of the reference tracking for a given set of parameters.
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3.2 Scenarios

The establishment of four formations using the control algorithm introduced in

this work is now presented. The first two formations contain a large number of agents

and are designed using the ROEs. The third formation design illustrates the use of the

GROEs for the visual inspection of an on-orbit structure, and in the last simulation,

results of the establishment of a formation where one agent has a fixed position in

the cross-track plane are presented.

3.2.1 Triangular Lattice

In this first scenario, the establishment of a 10-spacecraft triangular lattice is

considered. This formation is characterized by two concentric CROs containing six

and three spacecraft respectively and one spacecraft positioned at the origin of the

LVLH frame. The radius of the inner CRO defines the inter-spacecraft distance and is

the only design parameter of the formation. Fig. 3.15 illustrates the desired formation

geometry.

r1

r2

A

B

Figure 3.15: Triangular lattice geometry.
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If the radius of the inner orbit A is r1, then in order to have a similar distance

between every adjacent spacecraft, the radius of the outer orbit B must be

r2 =
√

3r1 (3.16)

For this simulation, a radius r1 = 100 m has been chosen, leading to the following

sets of ROEs:

Table 3.4: Target ROEs for the triangular lattice.

Orbit xr (m) yr (m) ar (m) Az (m) γ (◦)

Origin 0 0 0 0 n/a

A 0 0 100 86.6 -90

B 0 0 173.21 150 -90

The phase angle γ has been arbitrarily set to −90◦ but could have been set to 90◦

as well. The angular separation between the agents is enforced by targeting relative

eccentric anomaly differences with respect to a virtual leader. For orbit A, each

spacecraft targets a separation which is a multiple of 60◦ with respect to a virtual

leader characterized by an initial relative eccentric anomaly E
′
r0 = 0◦. For orbit B, a

multiple of 120◦ is targeted by each agent with respect to a leader initially located at

E
′
r0 = 30◦.

The spacecraft are assumed to be released along a hypothetical launch trajectory

passing in the vicinity of the origin of a chief on a 500 km altitude circular orbit with

a 30◦ inclination. The initial position of the agents has been randomly generated

within a spheroid centered on x = −100 m, y = 800 m, and z = −300 m. The

ellipsoid of revolution is oriented such that its major axis is aligned with the launch

trajectory and has a length of 200 meters. The minor axis has a length of 60 meters.

The initial velocities have been drawn from a Gaussian distribution with mean 5

cm/s and standard deviation 0.2 cm/s in the direction along the trajectory and mean

2 cm/s and standard deviation 0.5 cm/s in the direction orthogonal to the launch
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trajectory. The initial positions of the spacecraft are generated such that the agents

are guaranteed to be at least 20 meters apart. The initial conditions of each agent

are listed in Table A.1 in the appendix and illustrated in Fig. 3.16.
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Figure 3.16: Initial conditions for the triangular lattice geometry along with the
launch trajectory. Velocities are not to scale.

The controller is designed with the parameters shown in Table 3.5. The time

Table 3.5: Parameters of the controller for the establishment of the triangular lattice.

Tm = 15 min

τc = 4 h

dc = 5 m

Tc = 5 s

rs = 0.35 m

rSOI = 20 m

p = 0.01

υ = 3

interval between two maneuvers is 15 minutes and has been chosen based on the

accuracy analysis of Section 3.1.3. The autonomous computation of ka assumes a

convergence time of four hours and convergence threshold of five meters. Collision

checks are preformed every five seconds and the obstacles are assumed to fit within a
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sphere of radius 0.35 m. The sphere of influence around the obstacle has a radius of

twenty meters and the value of the potential on its surface is one percent the values

at rs. Lastly, the semi-major axis of the repulsive ellipsoid is three times as large as

the semi-minor axis.

All spacecraft are assumed to be identical and are characterized by the physical

properties printed in Table 3.6. For this scenario, the thrust is bounded between

Table 3.6: Spacecraft properties for the triangular lattice.

mwet = 30 kg A = 0.16 m2

Cd = 2.1 A� = 0.16 m2

Cr = 1.5 Isp = 220 s

Fmax = 60 N and Fmin = 0.06 N. From Eq. (3.1), these bounds correspond to

∆Vmax = 2 m/s and ∆Vmin = 2 mm/s at the beginning of the simulation. As

propellant is used and the mass of the spacecraft decreases, ∆Vmax and ∆Vmin will

slightly increase over time. The standard deviations of the magnitude and pointing

errors are set to σM = 0.06 N and σθ = 2◦. The time evolution of the formation

establishment is shown in Fig. 3.17 for five hours1.

The spacecraft are released slightly ahead of the chief (Fig. 3.17a) and start

moving in the positive x and negative y direction (Fig. 3.17b). They quickly converge

toward the origin of the LVLH frame (Fig. 3.17c) and establish a loose formation (Fig.

3.17d and 3.17e). The precise positioning of each agent is attained within five hours

of deployment (Fig. 3.17f).

The delta-V used by each spacecraft is printed in Table 3.7. With a minimum of

1.58 m/s for agent B1 and a maximum of 13.82 m/s for agent A1, we see that the

delta-V needed by each spacecraft varies considerably if collision avoidance maneuvers

are performed.

1An animation of the formation establishment is available at https://purr.purdue.edu/

publications/3389/1.

https://purr.purdue.edu/publications/3389/1
https://purr.purdue.edu/publications/3389/1
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Figure 3.17: Formation establishment of the triangular lattice.

The time history of the maneuvers applied by spacecraft A6 is shown in Fig. 3.18.

We see in that figure that most maneuvers are applied at the beginning of the simu-
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Table 3.7: Delta-V consumption for the triangular lattice establishment.

Spacecraft Delta-V (m/s) Spacecraft Delta-V (m/s)

Central 2.08 A5 9.09

A1 13.82 A6 11.34

A2 1.87 B1 1.58

A3 10.39 B2 6.19

A4 2.34 B3 8.37

Mean: 6.71 m/s Std: 4.53 m/s

0 1 2 3 4 5
−2
−1
0
1
2

∆
V
x

(m
/s

)

0 1 2 3 4 5
−2
−1
0
1
2

∆
V
y

(m
/s

)

0 1 2 3 4 5
−2
−1
0
1
2

∆
V
z

(m
/s

)

0 1 2 3 4 5
0

1

2

Time (hours)

∥∆
V
∥

(m
/s

)

Figure 3.18: Delta-V history of spacecraft A6.

lation, suggesting that some CAMs occur during the first minutes after deployment.

It can be seen from the last plot in this figure that the amplitude of the maneuvers

decreases over time and becomes very small when the spacecraft has reached its tar-

get. A closer look (Fig. 3.19) reveals that maneuvers of a few centimeters per second
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are applied in order to counter the perturbations and maintain the spacecraft on its

relative orbit.
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Figure 3.19: Zoom on the small maneuvers applied to maintain the spacecraft on its
relative orbit.

Fig. 3.20 shows the positions and trajectories of the spacecraft 30 minutes after

deployment, along with some collision avoidance maneuvers (red boxes). The sharp
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Figure 3.20: Positions, trajectories, and collision avoidance maneuvers 30 minutes
after deployment.

changes in trajectory visible in the right red box indicates that many CAMs occur

at the beginning of the simulation as previously suggested by the delta-V history of

spacecraft A6. At that time, the spacecraft are relatively close to each other. The

first attractive maneuver that they perform is likely to make them enter the sphere of

influence of another spacecraft which might trigger a CAM. The left box highlights

another CAM that occurs between two spacecraft later in the simulation, when the
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two agents are coasting toward the next attractive waypoint. At least two CAMs are

performed by spacecraft A6 (orange trajectory), which explain the high delta-V that

this agent requires to track its reference.

The minimum distance between each pair of spacecraft is displayed in Table 3.8.

Table 3.8: Minimum distance between each pair of spacecraft, in meters.

Central A1 A2 A3 A4 A5 A6 B1 B2

A1 34.93

A2 47.55 46.7

A3 30.57 14.18 27.14

A4 28.19 26.57 75.59 39

A5 24.96 23.85 36.5 17.52 47.21

A6 36.13 15.9 61.63 42.01 26.49 35.74

B1 89.46 59.86 29.61 51.81 97.14 45.48 72.21

B2 67.83 31.88 29.41 39.72 73.72 12.28 38.93 32.22

B3 60.1 24.69 44.57 34.69 51.79 34.51 20 49.41 38.49

As can be seen in that table, a minimum distance of 12.28 m is reached between

spacecraft A5 and B2. In order to increase this distance, a larger sphere of influence

could be set or the repulsive potential could be tuned by modifying the p coefficient

which influences the magnitude of the repulsive potential at rSOI. The computation

of the collision avoidance by each agent is performed using state estimates and the

uncertainties that come with these estimates should be kept in mind when designing

the repulsive potential.

The time evolution of the ROEs of spacecraft A6 is shown in Fig. 3.21. The

ROEs move quickly toward the target value at the beginning of the simulation and

then slowly adjust to closely align with the desired value. The CAM that occurs

shortly after deployment is also visible with jitters occurring for each element.

The oscillations of the relative eccentric anomaly that happen during the first hour

of reconfiguration can be explained by looking at the position of the spacecraft with

respect to the instantaneous center of motion. Fig. 3.22 shows the time evolution of
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Figure 3.21: Time evolution of the relative orbital elements of spacecraft A6 together
with the target values (red, dashed).

the in-plane position of the spacecraft and the position of the instantaneous center of

motion (xr, yr). During the initial phase of the reconfiguration, the radial component

of the spacecraft, x, is higher than the xr component of the instantaneous center

of motion while the along-track component y and yr are very close. This results in



135

0 1 2 3 4 5

−4,000

−2,000

0

Time (hours)

x
(m

)

x
xr

0 1 2 3 4 5

0

1,000

Time (hours)

y
(m

)

y
yr

Figure 3.22: Time evolution of the in-plane position of spacecraft A6 and the position
of the instantaneous center of motion.

the spacecraft being located directly above the instantaneous center of motion which

leads to a relative eccentric anomaly of about 180◦. After about an hour, xr is much

closer to x and the targeting of Er becomes more effective.

The accuracy of the formation establishment is computed and displayed in Fig.

3.23. The error between the true position and the target position rapidly decreases

during the first two hours of reconfiguration and stabilizes between 0 and 5 meters.

A better accuracy could be attained by having a smaller Tm, allowing lower minimal

delta-V’s, or increasing the precision of the relative state estimate and thrust vector.

The results obtained with the APF-based controller are now compared with the

formation establishment using a model predictive control (MPC) method that tracks

a reference trajectory rref while minimizing the fuel consumption. The cost function

for the MPC accounts for the error between the actual state and the reference as well

as the delta-V consumption and is defined as

J =
N−1∑
κ=k

[
(r(κ)− rref(κ))TQ(r(κ)− rref(κ)) + u(κ)TRu(κ)

]
+ (r(N)− rref(N))TP(r(N)− rref(N))

(3.17)
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Figure 3.23: Accuracy of the triangular lattice formation establishment.

where k is the current time step and N is the horizon. Three weight matrices need

to be defined: Q contains the weights which reflect the relative importance of closely

following the reference, R the weights penalizing the use of large control inputs, and

P the weight coefficients which reflect the relative importance of being close to the

reference at the horizon. r(κ) is the relative state at step κ expressed in LVLH

coordinates and the design variable u(κ) is the control input corresponding to an

impulsive delta-V in this case. The reference trajectory is generated from the set of

target ROEs. The relative eccentric anomaly targeted by each spacecraft is computed

using Eq. (2.183):

Ert(t) = ∆Ert + E
′

r0 + n(t− t0) (3.18)

The set of target ROEs is then converted into the corresponding LVLH state using

Eqs. (2.96)-(2.101). At each time step, the optimal control resulting from the min-

imization of the cost function, u∗, is applied and the state is propagated using the

fully perturbed, nonlinear model of the dynamics. The time interval between two



137

impulsive maneuvers is the same as before: Tm = 15 minutes. The parameters of the

cost function have been set to

N = 10 Q = 10−4 · I6 R = 102 · I6 P = 104 · I6

where I6 denotes the 6-by-6 identity matrix. These parameters have been tuned to

get a convergence time of the same order as the one obtained with the APF-based

controller. The simulation was run with no collision avoidance and with the same

bounds on the maneuvers’ amplitude as previously (i.e. ∆Vmin = 2 mm/s, ∆Vmax = 2

m/s) which are enforced by setting the control input to:

u∗ =


0 if ‖u∗‖ < ∆Vmin

u∗ if ∆Vmin ≤ ‖u∗‖ ≤ ∆Vmax

u∗

‖u∗‖∆Vmax if ‖u∗‖ > ∆Vmax

(3.19)

Choosing to enforce the bounds by clipping the control input rather than adding

constraints to the optimization problem together with the utilization of a linearized

model for the state propagation within the MPC enables the computation of an

explicit solution without relying on iterative numerical methods (see for instance [99]).

The total delta-V’s used by each spacecraft to establish the triangular lattice using

the MPC controller are displayed in Table 3.9. In comparison, Table 3.10 shows

the total delta-V required when the APF-based controller is used without collision

avoidance.

As can be seen from these Tables, the mean delta-V resulting from the use of the

MPC controller is about 2.39 times smaller than the one obtained with the APF-

based controller which highlights the sub-optimality of the APF controller. The

computational efficiency of both methods has been measured on a 2.6 GHz 6-Core

Intel Core i7 in Matlab. The elapsed real time needed to compute a single control

input using the MPC controller is 0.91 ms whereas the time needed by the APF-based
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Table 3.9: Delta-V consumption for the triangular lattice establishment using an
MPC controller.

Spacecraft Delta-V (m/s) Spacecraft Delta-V (m/s)

Central 0.99 A5 1.14

A1 0.99 A6 1.15

A2 0.90 B1 0.95

A3 0.93 B2 0.99

A4 1.06 B3 1.35

Mean: 1.05 m/s Std: 0.14 m/s

Table 3.10: Delta-V consumption for the triangular lattice establishment using the
APF-based controller with no collision avoidance.

Spacecraft Delta-V (m/s) Spacecraft Delta-V (m/s)

Central 2.15 A5 3.33

A1 1.78 A6 3.29

A2 1.88 B1 1.65

A3 2.20 B2 2.23

A4 2.42 B3 4.17

Mean: 2.51 m/s Std: 0.82 m/s

controller is 0.22 ms. Hence, the computation using the APF method is about 4.16

times faster than the computation using the MPC method. It must also be noted

that when constraints such as collision avoidance are added to the MPC formulation,

no explicit solution can be computed but instead the optimization problem must

be solved using iterative methods which will result in a higher computation time.

The inclusion of collision avoidance in the APF formulation through the addition of

a repulsive portion to the potential, however, results in a very slight increase and

yields an elapsed real time of 0.32 ms. We therefore see that the APF controller

with collision avoidance is still about 3 times faster than the MPC controller without

collision avoidance in this specific test case.
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3.2.2 Hexagonal Lattices

The second scenario is the establishment of a 37-node formation composed of two

hexagonal lattices on two different planes. Six concentric CROs need to be defined for

this geometry, three per lattice. Fig. 3.24 illustrates the desired hexagonal pattern of

one of the lattices along with the position of the agents. Six spacecraft are placed on

the innermost orbit (A), six on the intermediate orbit (B), and six on the outermost

orbit (C). Each agent has an angular separation of 60◦ with its neighbors on all three

orbits. The spacecraft located at the center of the formation is “shared” between the

two lattices.

r1

r2

r3 A

B

C

Figure 3.24: Hexagonal lattice geometry.

The only design parameter of this formation is the inter-spacecraft distance, which

corresponds to the radius of the innermost CRO, r1. An identical distance between

each adjacent spacecraft is obtained by defining the radius of the intermediate orbit

as

r2 =
√

3r1 (3.20)
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and the one of the outermost orbit as

r3 = 2r1 (3.21)

Two such hexagonal lattices are constructed and oriented on two different planes

such as to obtain the formation illustrated in Fig. 3.25. The formation is centered on

the origin of the LVLH frame and the different orientations are obtained by defining

different phase angles γ for each lattice. The first lattice, L1, is characterized by

γ = 90◦, and the second one, L2, by γ = −90◦.

x̂

ŷ

ẑ
L1

L2

Figure 3.25: Formation composed of two hexagonal lattices.

The motion of the spacecraft on their respective relative orbit is imposed by orbital

dynamics. A higher x coordinate means a higher altitude and therefore a lower orbital

velocity in the along-track direction. The spacecraft with a positive x component will

thus move in the negative y direction and vice versa for spacecraft at lower altitude.

In this scenario, an inter-spacecraft separation of 200 meters is chosen. The sets

of relative orbital elements that describe the six relative orbits are shown in Table

3.11.

The angular separation between the agents is enforced by having each of them

target a specific relative eccentric anomaly. For the first lattice, a virtual leader
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Table 3.11: Relative orbital elements describing the CROs of the hexagonal lattices.

Orbit xr (m) yr (m) ar (m) Az (m) γ (◦)

Central 0 0 0 0 n/a

A 0 0 200 173.21 ±90

B 0 0 346.41 300 ±90

C 0 0 400 346.41 ±90

with initial relative eccentric anomaly E
′
r0 = 0◦ is set and the agents target angular

differences

∆E
(A

(1)
k )

rt = (k − 1) · 60◦, k = 1, .., 6 (3.22)

where A
(1)
k denotes spacecraft k of orbit A in lattice 1. Similar virtual leader and

angular separations are used for the spacecraft on orbit C. For orbit B, the leader is

characterized by E
′
r0 = 30◦ instead, and similar angular separations are targeted. As

can be seen in Fig. 3.25, if the same initial values for the virtual leaders are used for

both lattices, the spacecraft will reach the intersection of the two orbital planes at the

same time, thus leading to many collision avoidance maneuvers. In order to prevent

this from happening, the virtual leaders of the three CROs in the second lattice are

shifted by 30◦. Hence, a virtual leader with E
′
r0 = 30◦ is used for obits A and C of

L2 and E
′
r0 = 60◦ for orbit B. Even with this phase angle of 30◦, the agents on the

innermost orbit might come very close to each other depending on the radius of the

CRO.

An expression to compute the minimum distance between two spacecraft targeting

the same relative orbit and angular separation but on different lattices is now derived.

This distance will be helpful to select an appropriate value for the sphere of influence

in the design of the repulsive potential. It is assumed that the spacecraft are on two

CROs with radius r and phase angle γ = 90◦ and γ = −90◦. Using Eq. (2.96)-(2.98)
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and assuming that the orbits are centered on the chief, the LVLH relative position

can be expressed in terms of ROEs as

r =


−1

2
ar cosEr

ar sinEr

Az sin(γ + Er)

 (3.23)

Hence, the relative position of the spacecraft on lattice L1 is

r1 =


−1

2
r cosEr

r sinEr
√

3
2
r sin(π

2
+ Er)

 (3.24)

and the position of the one on L2:

r2 =


−1

2
r cos

(
Er + π

6

)
r sin

(
Er + π

6

)
√

3
2
r sin

(
−π

2
+ Er + π

6

)
 (3.25)

Taking the square of the norm of the difference results in

s = ‖r1 − r2‖2 =
4 +
√

3

2
r2 − 3r2 sinEr sin

(
Er +

π

6

)
(3.26)

Computing the derivative of this equation with respect to Er and setting it equal to

zeros yields
ds

dEr
= −3r2 sin

(
2Er +

π

6

)
, 0 (3.27)

which admits

Er =
(6n− 1)π

12
, n = 0, 1, 2, . . . (3.28)

as solutions. Since a minimum is sought, the second derivative must be strictly

positive
d2s

dE2
r

= −6r2 cos
(

2Er +
π

6

)
> 0 (3.29)
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and therefore

Er =
(6n− 1)π

12
, n = 1, 3, 5, . . . (3.30)

The evaluation of Eq. (3.26) at the minimum results in

smin =
2−
√

3

4
r2 (3.31)

and it follows that the minimum distance between the two spacecraft is

dmin =

√
2−
√

3

2
r ' 0.2588r (3.32)

For a relative orbit radius of 100 meters, this distance would be dmin = 25.88 meters

and for the selected radius of 200 meters, dmin = 51.76 meters. This result indicates

that the baseline of the formation must be relatively large in order to avoid the

spacecraft to come too close to each other when they cross the intersection of the

two planes. This also means that if the radius of the sphere of influence is defined

to be larger than dmin, every time a spacecraft on the innermost orbit reaches the

intersection of the two planes, a collision avoidance maneuver will be performed.

This would lead to unnecessary high propellant consumption and it is therefore best

to select a value such that rSOI < dmin.

For this scenario, the same initial conditions as before are used for the chief and

it is assumed that the spacecraft are released in two batches of 19 and 18 spacecraft

respectively. The first batch is released around x = −100 m, y = 800 m, and z = −300

m within an ellipsoid of revolution with semi-major axis 100 m and semi-minor axis

25 m and oriented along the launch trajectory. The second batch is released within an

identical ellipsoid but centered at x = 200 m, y = 1200 m, and z = 100 m. The initial

distance between each spacecraft is at least 40 meters. The velocities are drawn from

a Gaussian distribution with mean 5 cm/s and standard deviation 2 mm/s for the

component along the trajectory and mean 2 cm/s and standard deviation 5 mm/s for

the orthogonal component. The initial conditions are illustrated in Fig. 3.26 and are
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printed in Table A.2 in the appendix. The spacecraft released at the first location

will target lattice L1 (green) and the ones released at the second location will target

lattice L2 (violet).

−500
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1,500

0

500

z (m) y (m)

x
(m

)

Figure 3.26: Initial conditions of the 37 spacecraft.

The parameters of the controller used to establish this formation are shown in

Table 3.12. For this scenario, the same time intervals between attractive maneuvers

Table 3.12: Parameters of the controller for the hexagonal lattices.

Tm = 15 min

τc = 4 h

dc = 5 m

Tc = 5 s

rs = 0.35 m

rSOI = 20 m

p = 0.001

υ = 3

and collision checks as before are used. The duration to obtain convergence in the

autonomous computation of ka is set to 4 hours with a threshold of 5 meters. The

obstacles are defined with a radius of 0.35 meters and a 20 meters radius sphere of

influence. The value of the repulsive potential at rSOI is 0.1 percent its value at rs

and the semi-major axis of the ellipsoid is three times the semi-minor axis.
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The same physical properties (Table 3.6) and maneuvers bounds as in the previous

scenario are used. The formation reconfiguration is simulated for 6 hours. Fig. 3.27

shows the establishment of the two hexagonal lattices formation2. The 37 spacecraft

are released in two batches slightly ahead of the chief (Fig. 3.27a). The spacecraft first

disperse and move toward the origin of the frame (Fig. 3.27b). Collision avoidance

maneuvers occur at the beginning of the simulation, which result in one of the agents

being slightly behind the rest of the spacecraft as seen in Fig. 3.27c and 3.27d (violet

dot at the top). One hour after deployment, a loose formation is already established

(Fig. 3.27e) and the spacecraft continue to adjust their relative position during the

following hours until they reach their final state as seen in Fig. 3.27f.

The total delta-V used by each spacecraft is presented in Table 3.13. We see in

this table that the delta-V required to establish the formation ranges from 0.95 m/s

for spacecraft L2A6 to 15.98 m/s for spacecraft L2B5 with a mean of 3.08 m/s and

standard deviation of 2.81 m/s. If the simulation is run without collision monitoring,

the mean delta-V is 2.26 m/s and the standard deviation 1.43 m/s. This shows that

collision avoidance maneuvers account for a significant fraction of the total delta-V

required to establish the formation. When the two batches are considered individually,

a mean of 2.72 m/s for the establishment of lattice L1 and a mean of 1.75 m/s for the

establishment of lattice L2 are obtained. This difference of about 1 m/s between the

two lattices can be explained by the different release locations of the two batches. The

spacecraft targeting the first lattice are released on a lower orbit than the chief with

a velocity pointing in the positive y direction. Their natural tendency is therefore

to move away from the chief and a higher delta-V is required to bring them back

toward the origin of the LVLH frame. The spacecraft targeting the second lattice are

released slightly above the chief, making them naturally moving along the negative

y direction, toward the chief. The amount of delta-V required to bring them toward

the origin of the frame is therefore lower than for the first batch. Fig. 3.28 shows

2An animation of the formation establishment is available at https://purr.purdue.edu/

publications/3389/1.

https://purr.purdue.edu/publications/3389/1
https://purr.purdue.edu/publications/3389/1
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Figure 3.27: Formation establishment of the two hexagonal lattices.

the natural motion resulting from the propagation of the initial conditions over 30

minutes.
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Table 3.13: Delta-V consumption for the establishment of the two hexagonal lattices
formation.

Spacecraft Delta-V (m/s) Spacecraft Delta-V (m/s)

Central 2.37 L2A1 1.03

L1A1 1.84 L2A2 1.23

L1A2 2.04 L2A3 2.36

L1A3 2.27 L2A4 1.98

L1A4 2.78 L2A5 2.67

L1A5 2.86 L2A6 0.95

L1A6 2.53 L2B1 1.21

L1B1 1.49 L2B2 1.41

L1B2 1.75 L2B3 7.70

L1B3 2.75 L2B4 1.48

L1B4 3.24 L2B5 15.98

L1B5 3.92 L2B6 1.09

L1B6 6.35 L2C1 6.01

L1C1 1.76 L2C2 1.50

L1C2 1.45 L2C3 2.29

L1C3 6.45 L2C4 3.29

L1C4 3.12 L2C5 1.43

L1C5 3.25 L2C6 1.01

L1C6 7.08

Mean: 3.08 m/s Std: 2.81 m/s

The difference between the lowest and largest delta-V’s observed in Table 3.13 is

mainly due to collision avoidance maneuvers. Fig. 3.29 and 3.30 show the delta-V

history of spacecraft L2A6 and L2B5 respectively.

As can be seen in Fig. 3.29, no collision avoidance maneuver occurs for spacecraft

L2A6. The only maneuvers are to target attractive waypoints and follow the reference

trajectory. The amplitude of the maneuvers decreases rapidly and two hours after

deployment very small maneuvers of a few millimeters per second are sporadically

applied to correct for orbital perturbations and maintain the spacecraft on its target

orbit. In contrast, Fig. 3.30 shows that agent L2B5 performs many CAMs and
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Figure 3.28: Free motion resulting from the initial conditions propagated for a dura-
tion of 30 minutes.

recovery maneuvers during the first hour after deployment. A few maneuvers saturate

at the beginning of the simulation. We see that the spacecraft reaches its target orbit

within two hours and small maneuvers are applied to maintain it on its orbit for

the remainder of the simulation. Fig. 3.31 and 3.32 show the trajectory followed

by each of these spacecraft together with the attractive (green circles) and repulsive

(red circles) waypoints. As suggested by the delta-V history, agent L2A6 does not

perform any collision avoidance maneuver during the reconfiguration and therefore

only attractive waypoints are visible in Fig. 3.31. We see, however, that many CAMs

occur for agent L2B5 (Fig. 3.32). The spacecraft performs four avoidance maneuvers

early on in the reconfiguration process at t = 120 s, t = 125 s, t = 130 s, and t = 140
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Figure 3.29: Delta-V history of spacecraft L2A6.

s. A fifth and last CAM is performed at t = 28.75 min. If we compare these five

CAMs with the time history of the delta-V’s (Fig. 3.30), we see that many maneuvers

are applied to recover from these CAMs and place the spacecraft back on an arc that

intercepts the next attractive waypoint. After the last avoidance maneuver has taken

place, the agent follows the reference trajectory by targeting the attractive waypoints

and reaches its target orbit within about 2 hours.

In this simulation, the closest approach between two agents is 15.40 meters and oc-

curs between spacecraft L2B5 and L2C4. Table 3.14 shows the five closest approaches

that happen during the formation establishment. These five closest approaches hap-

pen early on in the simulation, when the spacecraft have just been released and after

they have performed a few maneuvers to target the first attractive waypoints. It is

apparent from this table that no collision avoidance occurs when the second lattice

“traverses” the first lattice after about 30 minutes. Spacecraft L2B5 being slightly
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Figure 3.30: Delta-V history of spacecraft L2B5.

Table 3.14: Five closest approaches happening during formation establishment.

Distance (m) Time (sec) Spacecraft pair

15.40 135 L2B5 - L2C4

17.31 125 L2B5 - L2C1

18.34 60 L1B6 - L1C3

19.86 1720 L2A5 - L2B5

20.57 80 L2B2 - L2B5

behind the group at that time, the CAM performed by this agent at 28.75 min is not

caused by the encounter of the two lattices.

Fig. 3.33 and 3.34 show the time evolution of the ROEs of spacecraft L2A6 and

L2B5. The oscillations of the ROEs resulting from CAMs are clearly visible for all

six elements for deputy L2B5 in Fig. 3.34. The value of xr and ar goes very far from

the target value when maneuvers are executed. The time evolution of the ROEs also
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Figure 3.31: Trajectory and attractive waypoints for spacecraft L2A6.

shows that both agents have converged to their respective target orbit in about two

hours. Since out of the six ROEs only yr and Er are time-varying, it is expected

that in an unperturbed, linear environment, the value of the four other ROEs should

remain constant between two maneuvers. The small variations that can be observed,

especially in Fig. 3.33, are produced by nonlinearities and orbital perturbations.

It is interesting to note that even though the reference trajectory is computed by

following the steepest descent of the APF, the ROEs do not monotonically decrease.

This is due to the fact that only the relative position and not the relative velocity

is tracked. In this case, since the unforced motion results in the targeted relative

orbit, the relative velocity will converge to the velocity of the relative orbit by the

only action of targeting the relative position. If the target orbit does not correspond
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Figure 3.32: Trajectory, attractive waypoints (green), and repulsive waypoints (red)
for spacecraft L2B5.

to the unforced motion, this will not be the case and the relative velocity of the

deputy will not match that of the targeted relative orbit. When an unstable relative

orbit is targeted, a small time interval between two attractive maneuvers must be

selected to closely follow the reference trajectory and prevent the spacecraft to drift

too far away. This behavior will be illustrated with the use of the GROEs in the next

scenario. Fig. 3.35 shows the time evolution of the LVLH coordinates of agent L2B5

together with the LVLH coordinates of the target. We see that at the beginning of the

reconfiguration, the velocity does not follow the target. Yet when the deputy reaches

the targeted position, the velocity also closely aligns with the relative velocity of the

target orbit.
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Figure 3.33: Time evolution of the relative orbital elements (blue) together with the
target values (dashed red) of spacecraft L2A6.

The accuracy of the formation establishment is assessed by looking at the error

between the true position of the spacecraft and the target position. Fig. 3.36 shows

the time evolution of this error for each agent. As can be seen in that figure, the error
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Figure 3.34: Time evolution of the relative orbital elements (blue) together with the
target values (dashed red) of spacecraft L2B5.

quickly decreases during the first two hours of simulation before stabilizing within 5

meters. The error for one of the spacecraft, L2B3, takes slightly longer to decrease
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Figure 3.35: Time evolution of the LVLH coordinates (blue) and target orbit (dashed
red) of spacecraft L2B5.

than the other ones. This is due to the combination of initial conditions and value of

ka for that specific agent.

3.2.3 Visual Inspection

In this third scenario, the visual inspection of a on-orbit structure by a spacecraft

is simulated. The desired relative trajectory is to first establish a circular relative

orbit at one end of the structure and then spiral along the main axis of the cylinder.

The relative trajectory is illustrated in Fig. 3.37.
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Figure 3.36: Accuracy of the two hexagonal lattices formation establishment.
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Figure 3.37: Desired trajectory for the visual inspection.

It is assumed that the structure is a 50 m long, 10 m radius cylinder with a fixed

orientation along the y axis of the LVLH frame, and that it is on a near-polar orbit.

The classical orbital elements describing the orbit of the structure (i.e. the chief) are

a = R⊕ + 700 km e = 0 i = 85◦ Ω = 45◦ ω = 0◦ M = 60◦
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If the circular relative orbit at the end of the structure is described in terms

of ROEs, xr and ar should be set to zero which implies that x will always be null

resulting in the spacecraft oscillating about the origin along the z-axis. This trajectory

therefore cannot be described with ROEs and is designed with a set of GROEs instead.

As a reminder, these elements are defined as

ρ =
[
xc yc a e c σ Υ ω

]T
where xc and yc denote the position of the center of motion of the instantaneous

relative orbit, a is the semi-major axis of the relative ellipse, e its eccentricity, c the

central anomaly measuring the position of the spacecraft on the relative orbit, σ the

slant, Υ the colatitude of the sinilaterating node, and ω the argument of pericenter,

which is undefined for a CRO and can be set arbitrarily in this case.

The first part of the targeted trajectory is a circular relative orbit of radius 20

meters at the end of the structure located at y = −25 m. The location of the deputy

on this relative orbit is arbitrarily set to target an angular separation of ∆ct = 0◦

with respect to a virtual leader with c
′
r0 = 0◦. Hence, the set of elements describing

this relative orbit is

ρt =
[
0 m −25 m 20 m 0 0◦ 90◦ 0◦ 0◦

]T
where the fifth entry corresponds to ∆ct. Once the spacecraft has reached this CRO

and stabilized, the y component of the instantaneous center of motion, yc, is increased

with time such that the spacecraft will start to spiral around the structure. If the

spacecraft starts to spiral three hours after deployment and reaches the other end of

the structure in four hours, yct can be defined as a function of time as follows:

yct(t) =

−25 m if t < 3 h

55 m
4 h

(t− 3 h)− 25 m if t ≥ 3 h

(3.33)
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Since the deputy will be targeting a moving target, it will be trailing slightly behind

yct at all time, and a larger final value is thus targeted to ensure that the spacecraft

reaches the end of the structure by the final time. Hence, yct(t = 7 h) = 30 m whereas

the end of the structure is located at y = 25 m. Note that the pitch of the helix can be

adjusted by selecting a different duration for the helix portion of the trajectory. Also,

the target set of GROEs in this example results in a left-handed helix. A right-handed

helix can be obtained by setting Υt = 180◦ instead of Υt = 0◦.

It is assumed that the spacecraft is released behind the structure and slightly

above it. The initial state is

s0 =
[
100 m −200 m 10 m −20 cm/s −20 cm/s −10 cm/s

]T
and is illustrated in Fig. 3.38.

−200 −100
0

−100
0100

−100

0

100

y (m)z (m)

x
(m

)

Figure 3.38: Initial state for the visual inspection. The velocity is not to scale.

Once the relative trajectory described by the GROEs is reached, the unforced

motion of the spacecraft will result in a different relative orbit than the desired one.

In order to maintain the spacecraft on the reference trajectory, frequent maneuvers

are therefore required. For this reason, the time interval between two maneuvers is
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set to Tm = 5 minutes. Collisions between the spacecraft and the structure are not

monitored in this example.

It is assumed that the spacecraft is a 3U CubeSat with the properties listed in

Table 3.15.

Table 3.15: Physical properties of the 3U CubeSat used for the visual inspection.

mwet = 3 kg

Cd = 2.1

Cr = 1.21

A = 0.03 m2

A� = 0.03 m2

Isp = 220 s

For this scenario, the amplitude of the maneuvers is bounded between ∆Vmin = 2

mm/s and ∆Vmax = 40 cm/s. The scaling coefficient for the attractive potential is

automatically computed using the process described in section 2.3.4. The result of

the coefficient search is plotted in Fig. 3.39 where the selected value is ka = 10−3

(violet line).

The trajectory followed by the deputy spacecraft for a duration of 7 hours is

shown in Fig. 3.403. We see in that figure that the spacecraft first establishes the

CRO at the end of the structure. Three hours after deployment and after about one

orbit on the CRO, the y coordinate of the instantaneous center of motion, yc, starts

increasing, resulting in the helix trajectory. The total delta-V used to establish this

relative trajectory is 2.76 m/s and the time history of the maneuvers is illustrated in

Fig. 3.41. As can be seen in the figure, the amplitude of the first maneuver is close

to the saturation limit of 40 cm/s. The subsequent maneuvers quickly decrease in

magnitude and are mostly along the x and y components. Compared to the previous

scenarios, the magnitude of the delta-V stays in the range of a few centimeters per

second during the entire simulation. This shows that constant thrusting is necessary

3An animation of the formation establishment is available at https://purr.purdue.edu/

publications/3389/1.

https://purr.purdue.edu/publications/3389/1
https://purr.purdue.edu/publications/3389/1
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Figure 3.39: Autonomous ka search for the visual inspection. The violet line corre-
sponds to the selected value

to closely follow the desired relative trajectory. The spikes visible on the helix portion

of the trajectory in Fig. 3.40 are also an indication of the frequent maneuvers.

The relative trajectory with the attractive waypoints is plotted in Fig. 3.42.

If we look at the first and third waypoints, the effect of the orbital perturbations,

state uncertainties, and thrust errors are clearly visible. We see that the spacecraft

does not pass exactly through these waypoints but rather within a few meters of

them. It can also be noticed that the distance between each waypoint decreases as

the spacecraft approaches the target trajectory, yet the time interval between each of

them is identical (Tm = 5 minutes). Fig. 3.43 shows the time evolution of the GROEs

computed from the true LVLH state of the spacecraft. As expected, the GROEs

computed from the actual state of the deputy do not converge to the targeted values.

This is due to the fact that the designed trajectory requires frequent maneuvers and

only the relative position is tracked but not the relative velocity. Thus, when the

GROEs are computed from the actual LVLH coordinates of the deputy, they do not

match with the target values. Fig. 3.44 shows the time evolution of the LVLH

coordinates of the spacecraft along with the evolution of the LVLH coordinates of
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Figure 3.40: Relative trajectory of the deputy spacecraft.

the reference waypoints. As can be seen in that figure, the x, y, and z coordinates

converge to the targeted values. The velocity however oscillates about the desired

value and is constantly adjusted.

The accuracy of the tracking is shown in Fig. 3.45. The error between the ac-

tual position and the targeted one quickly decreases during the initial phase of the

simulation. After two hours, the spacecraft is on the CRO and the error is lower

than 2 meters, thanks to the short time interval between two maneuvers. When the

position of the center of motion, yc, starts to increase after three hours, the error

slightly increases due to the fact that the spacecraft now tracks a moving target and

is slightly trailing behind it. The error nevertheless stays below 6 meters.
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Figure 3.41: Delta-V history of the structure inspection.

The choice of the target value for the angular separation has been chosen arbitrar-

ily for this example but the total delta-V required to track the reference trajectory

can significantly vary depending on this value. Fig. 3.46 shows the dependency of the

total delta-V in the targeted angular separation ∆ct. We see from this figure that the

total delta-V ranges from 2.71 m/s for ∆ct = −21.6◦ to 4.16 m/s for ∆ct = −36◦. We

also see that there is a large discontinuity between ∆ct = −28.8◦ and ∆ct = −21.6◦.

If we compute the GROEs corresponding to the initial Cartesian state, we get

ρ0 =
[
22.7 m 177.3 m 408.6 m 0.84 156.54◦ 155.70◦ 98.27◦ 9.72◦

]T
Hence, the initial central anomaly is c0 = 156.54◦. One of the difficulties in targeting

angular values is that since angles are cyclic, they can be targeted from above by

decreasing the current value or below by increasing the current value. Fig. 3.47
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Figure 3.42: Relative trajectory and attractive waypoints.

illustrates this property for an initial angle of 120◦ and a target angle of −100◦. The

current implementation of the controller selects the path with the smallest angular

separation. That is, when computing the gradient of the artificial potential with

respect to the angle (Er or c), the difference between the initial angle α0 and target

αt is computed as

∆α = [(αt − α0 + π) mod 2π]− π (3.34)

where mod denotes the modulo operation and where α0 and αt must lie within [−π, π).

The initial central anomaly and the values next to the discontinuity in Fig. 3.46 are

displayed in Fig. 3.48. We see in that figure that the path followed when angular

separations of ∆ct = −21.6◦ and ∆ct = −28.8◦ are targeted is different. In the first

case, the difference between the initial value and the target is shorter in the clockwise
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Figure 3.43: Time evolution of the GROEs (blue) together with the target values
(dashed red).
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Figure 3.44: Time evolution of the LVLH coordinates of the spacecraft (blue) along
with the LVLH coordinates of the reference waypoints (red).

direction, resulting in the algorithm decreasing the value of the central anomaly. In

the second case, the path is shorter going counterclockwise, resulting in the central

anomaly being increased to move toward the target.

Fig. 3.49 shows the two relative trajectories followed by the spacecraft when an

angular separation of −21.6◦ respectively −28.8◦ is selected. The relative trajectory

followed to reach the CRO at the beginning of the reconfiguration differs significantly

between the two values. For ∆ct = −21.6◦, the central anomaly decreases over time,

leading to a relatively direct trajectory. For ∆ct = −28.8◦, the central anomaly
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Figure 3.45: Accuracy of the reference trajectory tracking for the visual inspection.
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Figure 3.46: Total delta-V as a function of the targeted angular separation.

increases over time. The resulting trajectory leads the deputy to move on a lower

altitude orbit that brings it ahead of the chief and then on a higher altitude orbit to

move back to the extremity of the structure, on the targeted CRO. We also notice

that the cross-track excursion is much larger for this trajectory. Once the spacecraft

is on the CRO and spirals around the structure, both trajectories are very similar.

Hence, we see that even if the desired angular separations are very close to each other,
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the path selected by the algorithm results in two very different relative trajectories,

one of them requiring a significantly higher total delta-V than the other.
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Figure 3.49: Relative trajectory for different ∆ct.

3.2.4 Tetrahedron

In this scenario, a tetrahedral formation composed of four spacecraft is designed.

This geometry has been used for the Multiscale Magnetospheric Spacecraft (MMS)

formation which collects data to study a process known as magnetic reconnection

between the Earth’s and the Sun’s magnetic fields. The mission was launched in

2015 and is still operating as of 2020 [100]. The mission is divided in two phases: In

Phase I, the formation evolves on a highly eccentric orbit characterized by a perigee of

rp = 1.2R⊕ and apogee ra = 12R⊕ resulting in an eccentricity of 0.8182. The distance

between each agent lies between 10 to 160 km. In that phase, science measurements

are taken when the formation is further than 9R⊕ from Earth and is within 30◦ of

the Earth-Sun line on the sunward side. For Phase II, an orbit with rp = 1.2R⊕ and
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ra = 25R⊕ is designed, resulting in an eccentricity of 0.9084, and the distance between

each deputy is between 30 to 400 km. Science is conducted when the formation is

at least 15R⊕ away from the Earth and within 30-40◦ of the Earth-Sun line on the

shadow side [101]. In both phases, the agents of the formation form a nearly perfect

tetrahedron when they reach the apogee.

Since the control methodology is based on the circular orbit assumption, it is

assumed that the chief is on a circular orbit for this scenario and a tetrahedron

with a side length of one kilometer is maintained over the entire orbit. The desired

formation geometry is shown in Fig. 3.50.

ẑ
ŷ

x̂

A2

A1

A3

B

Figure 3.50: Tetrahedral geometry.

This geometry is designed by equally distributing three spacecraft on a CRO and

positioning the fourth one in the x-z plane to complete the tetrahedron and such

that all agents are equidistant to each other. The three spacecraft on the CRO

will naturally stay on the relative orbit while the fourth one will require frequent

maneuvers to maintain its fixed position. This formation is designed using ROEs
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with a single design parameter, d, corresponding to the inter-spacecraft distance. For

the CRO, a distance d between the spacecraft is obtained if the semi-major axis is

set to

a =
1√
3
d (3.35)

The position of the individual node, B, can be computed geometrically from Fig.

3.51.

ẑ
ŷ

x̂

d

a h x

z

A2

A1

A3

B

Figure 3.51: Position of the individual node B.

The distance between the vertex and the origin of the frame is given by

h =
√
d2 − a2 =

√
d2 − 1

3
d2 =

√
2

3
d (3.36)



171

and the position of the vertex in the LVLH frame is then

x = h cos
π

6
=

1√
2
d (3.37)

y = 0 (3.38)

z = −h sin
π

6
= − 1√

6
d (3.39)

Since the spacecraft has to maintain a fixed position, its relative velocity must be

null. This set of six LVLH Cartesian coordinates can be converted into the equivalent

ROEs representation. For an inter-spacecraft separation of d = 1 km, the ROEs are

ρt =
[
2.83 km 0 km 4.24 km 0◦ 0.41 km −90◦

]T
Hence, the sets of target elements for the CRO and the individual node are as dis-

played in Table 3.16. In addition to these elements, the agents on the CRO target

Table 3.16: Sets of target ROEs for the tetrahedron formation.

Orbit xr (km) yr (km) ar (km) Az (km) γ (◦)

CRO 0 0 0.58 0.5 -90

Individual node 2.83 0 4.24 0.41 -90

angular separations of ∆Ert = 0◦,±120◦ and the individual node targets a constant

relative eccentric anomaly of Ert = 0◦. Since the individual node targets a fixed

value for Er, the recursive relations used to compute the attractive waypoints must

be updated for that spacecraft. Eq. (2.256) defined in section 2.3.2 thus becomes

Ẽr(k) = (Ẽr(0)− Ert)(1− kaQa4dt)
k + Ert (3.40)

It is assumed that the spacecraft are released behind the chief on a slightly lower

orbit. The initial states are listed in Table 3.17 and printed in Fig. 3.52.
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Table 3.17: Initial states for the tetrahedron formation establishment.

Spacecraft x0 (m) y0 (m) z0 (m) ẋ0 (cm/s) ẏ0 (cm/s) ż0 (cm/s)

A1 -496.6 -2077.3 664.3 -8.76 22.65 15.89

A2 -412.3 -2195.2 491.9 -9.22 28.04 -3.07

A3 -705.9 -1754.4 690.8 -29.29 35.26 10.35

B -322.5 -2409.2 517.8 -9.37 41.13 7.89
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Figure 3.52: Initial relative positions and velocities (not to scale) for the tetrahedron
formation establishment.

The four spacecraft in the formation are identical and have an octagonal shape

of width 3.5 m and height 1.2 m. Their wet mass is 1,250 kg and they are equipped

with 12 thrusters sized to be used for small orbit maintenance maneuvers as well as

large reconfiguration maneuvers [100]. Based on these values, the physical properties

shown in Table 3.18 along with maneuver’s amplitude bounds of ∆Vmin = 2 mm/s

and ∆Vmax = 5 m/s are assumed for the simulation.

The APFs are designed with the set of parameters shown in Table 3.19. The rel-

atively small time interval between two attractive maneuvers is required to maintain

the fixed relative position of spacecraft B.
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Table 3.18: Spacecraft properties for the tetrahedron formation.

mwet = 1250 kg

Cd = 1.8

Cr = 1.5

A = 6.85 m2

A� = 6.85 m2

Isp = 220 s

Table 3.19: Parameters of the APF used for the tetrahedron formation establishment.

Tm = 5 min

τc = 6 h

dc = 5 m

Tc = 5 s

rs = 2 m

rSOI = 100 m

p = 0.01

υ = 3

The initial conditions of the chief expressed in terms of classical orbital elements

are

a = R⊕ + 1500 km e = 0 i = 28◦ Ω = 0◦ ω = 0◦ M = 0◦

The trajectories are propagated for 8 hours and are shown in Fig. 3.534.

We see in Fig. 3.53 that spacecraft B (violet) follows a rather direct trajectory,

approaching its target from behind and from a higher altitude than the chief. Since

the natural motion for a spacecraft above the chief would be to move in the negative

y direction, we expect the delta-V used by spacecraft B to be large. The cumulative

delta-V used by each agent is printed in Table 3.20. As can be seen in that table,

the delta-V used by spacecraft B is much larger than the delta-V used by the other

4An animation of the formation establishment is available at https://purr.purdue.edu/

publications/3389/1.

https://purr.purdue.edu/publications/3389/1
https://purr.purdue.edu/publications/3389/1
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Figure 3.53: Trajectories of the tetrahedron formation establishment with the posi-
tions 8 hours after deployment (dots).

Table 3.20: Delta-V consumption for the tetrahedron formation establishment.

Spacecraft Delta-V (m/s)

A1 7.66

A2 3.27

A3 5.81

B 59.25

Mean: 19.00 m/s Std: 26.89 m/s

spacecraft. This can be explained by the approach trajectory followed during the

initial phase of the reconfiguration as well as the requirement to constantly thrust to

maintain a fixed relative position. This position being in the positive x and z planes,

the natural tendency would be to move in the negative x and z directions, which must

be counteracted. Fig. 3.54 shows the time history of the maneuvers performed by

agent B. Many maneuvers are applied in the negative x direction in order to counter
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the natural drift in the negative y direction and bring the spacecraft back to its target

position.
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Figure 3.54: Time history of the maneuvers performed by spacecraft B.

The relative trajectory together with the waypoints computed for spacecraft B is

displayed in Fig. 3.55. The first waypoint is nearly missed by the spacecraft due to

the nonlinearities and orbital perturbations. A closer look at the target position (Fig.

3.56) reveals that the spacecraft has to constantly adjust its position to stay near the

target. Even if the waypoints are not reached, the spacecraft stays within about 20 m

from the target. Looking at the time evolution of the ROEs in Fig. 3.57, we see that

the variations observed in Fig. 3.56 mostly translate into oscillations of the yr and ar

elements around the target value. Since these two elements are the only time-varying

ROEs, it is expected that they would drift if the deputy was not controlled.

The error between the actual position and the target position is printed in Fig.

3.58. The difference between the actual position and target position indicates that
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Figure 3.55: Projection of the relative trajectory together with the attractive way-
points of spacecraft B.

the three spacecraft on the CRO achieve a good accuracy with an error of a few

meters only. For agent B, however, the error is larger and stays within 20 meters

as previously suggested in Fig. 3.56. This metric gives an information on how well

each agent is individually located but doesn’t provide any insight into the “quality”

of the tetrahedron. In order to assess this quality, two metrics called Glassmeier and

Robert-Roux metrics [102–104] are used. The first parameter developed by Glassmeier

is given by

QG =
V

Videal
+

A

Aideal
+ 1 (3.41)

with V the volume of the tetrahedron, Videal the volume of a regular tetrahedron

with edge length equal to the average of the six distances between the vertices, A the
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Figure 3.56: Zoom on the target position of spacecraft B.

surface area of the tetrahedron, and Aideal the surface area of a regular tetrahedron

with edge length equal to the average of the six distances. This parameter describes

the dimensionality of the tetrahedron and takes a value between 1 and 3. A value

of QG = 1 indicates that all four vertices are collinear, QG = 2 that all four vertices

are coplanar, and QG = 3 that the four vertices form a regular tetrahedron. If ri,

i = 1, . . . , 4 are the coordinates of the four vertices of the tetrahedron (i.e. the LVLH

relative positions of the four spacecraft), then the volume of the tetrahedron is

V =
1

6
|(r1 − r4) · [(r2 − r4)× (r3 − r4)]| (3.42)
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Figure 3.57: Time evolution of the ROEs (blue) and target values (dashed red) of
spacecraft B.

The volume of the ideal tetrahedron is obtained by computing the average distance

between the vertices:

d̄ =
1

6

3∑
i=1

4∑
j=i+1

‖ri − rj‖ (3.43)
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Figure 3.58: Targeting errors of the tetrahedron formation establishment.

and using this value to compute the ideal volume results in

Videal =
d̄3

6
√

2
(3.44)

The surface area of the tetrahedron is computed using Heron’s formula. For a triangle

with sides of lengths a, b, and c, the surface area is given by

S =
√
s(s− a)(s− b)(s− c) (3.45)

where s = 1
2
(a+ b+ c) is the semi perimeter of the triangle. This formula is used to

compute the surface area of each of the four faces which are then summed up to get

the total surface of the tetrahedron:

A =
4∑
i=1

Si (3.46)
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Lastly, the surface area of the ideal tetrahedron is computed with

Aideal =
√

3d̄2 (3.47)

The second parameter, the Robert-Roux parameter, measures the regularity of

the tetrahedron and is given by

QR = N
(

V

Vsphere

) 1
3

(3.48)

where N is a normalization factor to make QR = 1 for a regular tetrahedron, V the

volume of the tetrahedron given by Eq. (3.42), and Vsphere the volume of a sphere that

circumscribes the tetrahedron, with all four vertices on the surface. The circumscribed

sphere is found by computing the location of the point which is equidistant to all four

vertices of the tetrahedron. If ro is the center of the sphere, and r its radius, then

(ri − ro) · (ri − ro) = r2, i = 1, 2, 3, 4 (3.49)

or equivalently

x2
i + y2

i + z2
i + ax+ by + cz + d = 0, i = 1, 2, 3, 4 (3.50)

with a = −2x0, b = −2y0, c = −2z0, and d = x2
0 + y2

0 + z2
0 − r2. This system can be

solved for a, b, c, and d using Cramer’s rule. The radius of the circumscribed sphere

is then

r =
1

2

√
a2 + b2 + c2 − 4d (3.51)

and its volume

Vsphere =
4

3
πr3 (3.52)
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For a regular tetrahedron of side length l, the volume is V = l3

6
√

2
and the volume of

the sphere Vsphere = 4
3
π
(√

6
4
l
)3

. Since QR , 1 for a regular tetrahedron, Eq. (3.48)

is solved for N which yields

N =

(
9π

2
√

3

) 1
3

(3.53)

and therefore

QR =

(
9π

2
√

3

V

Vsphere

) 1
3

=
1

r

(
9
√

3

8
V

) 1
3

(3.54)

Fig. 3.59 shows the time evolution of these two metrics for the establishment of

the tetrahedron formation. We see that the initial configuration of the formation is
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Figure 3.59: Glassmeier and Robert-Roux parameters for the tetrahedron formation
establishment.

between collinear and coplanar. After the initial maneuvers, the spacecraft almost

reach a coplanar configuration, go into a more disorganized state and then briefly

transition into a coplanar configuration before reaching a tetrahedral arrangement

about four hours after deployment. The regularity of the tetrahedron, QR, stays

close to zero during the first hour of reconfiguration and then reaches a value close to
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1 after about 4 hours. A closer look at these two metrics reveals oscillations of the

metrics near the optimal values of QG = 3 and QR = 1, Fig. 3.60.
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Figure 3.60: Oscillations of the dimensionality and regularity of the tetrahedron near
the optimal values.

These oscillations are mostly due to the position of spacecraft B that requires

constant actuation. If a larger time interval between the maneuvers, Tm, is used, the

regularity of the tetrahedron will be lower. These results show that with the selected

set of parameters, the control algorithm is able to maintain the formation in a nearly

perfectly regular tetrahedron. A limitation of the control methodology when used

with relative orbits that require frequent maneuvers is also illustrated with the high

delta-V requirement to maintain spacecraft B on its target orbit.
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4. CONCLUSIONS

In this work, a new control methodology has been presented to design and control

spacecraft formations based on relative orbital element and artificial potential func-

tion formalisms. Different sets of relative orbital elements are used to describe the

relative motion and enable the intuitive design of geometrically complex spacecraft

formations. The computational efficiency of the artificial potential function method-

ology is leveraged to introduce a control algorithm able to continuously monitor the

risk of collisions.

The formulation of an APF based on relative orbital element sets is introduced,

enabling full control of the relative position and velocity of spacecraft. The inclusion

of angular quantities in the formulation allows the targeting of specific positions

on given relative orbits, thus allowing the control and establishment of spacecraft

formations. The introduction of a total APF as the linear combination of an attractive

quadratic potential for goal seeking and an ellipsoidal repulsive potential for obstacle

avoidance results in autonomous collision detection and avoidance suitable for on-

board applications. Any convergence issues that may be caused by the emergence of

local minima and shift of the global minimum of the APF are mitigated by decoupling

the maneuvers performed to target a goal from those performed to avoid collisions.

Different methods to automatically select the parameters of the model are pre-

sented. Considerations on fuel minimization allow the derivation of rules to compute

the scaling parameters and some of the shaping coefficients of the attractive potential,

and contribute to a significant reduction of the average delta-V consumption. These

methods also replace some parameters with quantities having a stronger physical

interpretation, thus facilitating intuitive tuning of the control algorithm.

The performance and limitations of the control algorithm are assessed using nu-

merical simulations of four scenarios in a high-fidelity simulation environment that
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accounts for geopotential perturbations, atmospheric drag, solar radiation pressure,

and third-body effects. In the first scenario, a 10-spacecraft triangular lattice is de-

signed and established. The cumulative delta-V of the formation establishment and

the computational cost of the method are compared with a model predictive control

algorithm. The sub-optimal nature of the APF methodology results in a cumulative

delta-V which is about two and a half times larger for the APF-based method than

for the MPC method. However, the computational efficiency of the method proposed

in this work results in a computation time which is about four times shorter than

the time required by the MPC method, demonstrating the suitability of the method

for on-board applications. Next, the establishment of a formation composed of 37-

spacecraft is presented. Two hexagonal lattices on two different relative orbital planes

are designed with the definition of target relative orbits in terms of ROEs. The perfor-

mance of the collision avoidance system is stressed with the high density of spacecraft

in close proximity and preventive measures on the design of the formation are pro-

posed to reduce the number of collision avoidance maneuvers. The convergence of

the control algorithm is demonstrated and collision avoidance maneuvers happening

during the reconfiguration are successfully handled. The third scenario illustrates the

visual inspection of an on-orbit structure by a single spacecraft. The use of GROEs

is illustrated and a method to target time-varying elements is proposed to create a

helix trajectory around the structure. This simulation shows the successful targeting

of a relative trajectory that requires frequent maneuvers and illustrates the flexibility

of the control algorithm developed in this work. A limitation of the algorithm is also

highlighted with the way angular values are targeted in the current implementation.

Finally, in the last scenario, a tetrahedral geometry is established with a 1 km side

length. The design of this formation requires one of the agents to maintain a fixed

out-of-plane position, resulting in a large cumulative delta-V.

In summary, the control methodology introduced in this work enables the intu-

itive design and efficient control of spacecraft formations. The use of two different

relative orbital element sets providing insight into the relative motion enables the
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intuitive design of complex formation geometries. The formulation of an artificial

potential function in terms of these elements allows the targeting of relative orbits

and the straightforward integration of collision avoidance within the method. A com-

putationally efficient algorithm is obtained as a result of the analytic nature of the

control methodology and can be run on-board spacecraft to monitor collision risks in

near real-time. The autonomous computation of several parameters of the algorithm

developed in this manuscript facilitates the application of the method to different

scenarios and contributes towards an increased level of autonomy in the control of

spacecraft formations.
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5. FUTURE WORK

The development of robust algorithms able to autonomously control spacecraft forma-

tions operating in a wide range of different situations still presents many challenges.

The following paragraphs discuss several suggestions to improve the algorithm pre-

sented in this work.

The numerical simulation of the structure on-orbit visual inspection presented in

section 3.2.3 illustrates some challenges of targeting angular values. The periodicity

of these quantities makes it possible to target a value from above by decreasing the

current angle or from below by increasing it. In the current implementation, the

direction is selected such that the difference between the two angles is minimum.

This direction, however, is not guaranteed to follow the natural time-evolution of

the parameter and might therefore result in larger maneuvers than what would be

achieved if the angle were moved in the direction of its natural time-evolution. Further

investigation of the optimal angular targeting direction based on the relative state

of the spacecraft and targeted value should be conducted to find a method that

consistently results in a lower fuel consumption.

In the formulation of the quadratic function used for the attractive portion of the

artificial potential, terms representing distances are summed up with terms represent-

ing angles. The addition of quantities having different dimensions should be avoided

in order to keep a meaningful quantity but it is not harmful in this case since the

components of the gradient of the APF still have the correct dimensions. Nonetheless,

it would be interesting to investigate how the different scales of these values impact

the convergence rate of the algorithm. The distances can take values from a few

hundred of meters or even kilometers down to a few centimeters whereas the angles

are bounded within 2π radians. Normalizing these quantities might help by having
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each element converge at the same rate and equally contribute to the decrease of the

artificial potential, which might result in a lower fuel consumption.

The analysis of the autonomous computation of the shaping coefficients for the

attractive potential, Qa, led to a method to automatically select the coefficient asso-

ciated with the relative eccentric anomaly. One of the difficulties in deriving rules to

automatically compute these coefficients in the current formulation is that they are

coupled through the relative velocity in the three directions. For instance, delaying

the targeting of one of them might impact the convergence of some of the other ele-

ments which could result in the algorithm to diverge. A further investigation of the

autonomous computation of the other coefficients might yield a method to further

reduce the fuel consumption of formations establishment. It is important to realize

that the trade-off between time of convergence and fuel minimization is most often

driven by mission requirements and therefore at least one parameter reflecting this

design decision will be required in the formulation of the control methodology.

The control algorithm presented in this work uses the ROEs and GROEs which

are derived from the CW equations as well as a linear targeter also derived from the

CW equations. Since the derivation of these equations is based on the assumption

that the chief is on a circular orbit, the control methodology introduced in this work

is limited to this assumption. Investigating the possibility to use a set of relative

orbital elements valid for eccentric orbits together with the design of a targeter based

on the Tschauner-Hempel or Yamanaka-Ankersen equations for instance, may result

in the generalization of the proposed algorithm to eccentric orbits.

Finally, if the shape of the obstacle cannot be approximated as a point or a

sphere such as in the example of visual inspection of a structure (Section 3.2.3), using

a superquadric function for the repulsive potential might prove useful. This family

of functions allows to represent various parametric geometries using relatively simple

mathematical expressions, and can be incorporated within the APF methodology

without increasing the computational cost too much. The formulation of an APF

using superquadric functions for the repulsive potential has been studied in [69,70] but
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it would be interesting to include it in the ROEs-based APF methodology presented

in this work.
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A. INITIAL CONDITIONS

Table A.1: Initial conditions for the triangular lattice.

Spacecraft x0 (m) y0 (m) z0 (m) ẋ0 (cm/s) ẏ0 (cm/s) ż0 (cm/s)

Central -65.94 830.92 -281.46 5.18 4.97 3.32

A1 -87.53 791.89 -279.53 3.46 2.24 4.98

A2 -98.31 786.77 -325.81 7.44 7.74 5.97

A3 -92.63 808.55 -310.50 6.36 8.34 6.19

A4 -91.89 832.43 -255.54 3.37 6.50 7.62

A5 -78.47 819.82 -300.79 3.90 4.10 1.54

A6 -90.95 808.28 -268.52 5.12 6.49 8.57

B1 -119.77 766.37 -323.95 5.75 5.59 8.36

B2 -96.79 770.05 -301.67 5.36 3.87 6.58

B3 -116.90 799.61 -287.39 3.56 6.51 7.54

Table A.2.: Initial conditions for the two hexagonal lattices.

Spacecraft x0 (m) y0 (m) z0 (m) ẋ0 (cm/s) ẏ0 (cm/s) ż0 (cm/s)

Central -229.09 744.47 -355.97 5.94 3.74 3.70

L1A1 -171.28 775.84 -291.87 6.91 4.58 6.00

L1A2 -241.75 807.97 -310.07 2.05 4.59 3.67

L1A3 -167.98 828.54 -285.93 5.22 4.58 1.89

L1A4 -290.28 688.22 -400.57 4.00 1.56 2.84

L1A5 -223.81 837.34 -280.41 5.29 8.71 7.72

L1A6 -178.41 783.14 -343.84 7.66 6.02 4.87

L1B1 -180.37 825.20 -324.28 7.09 7.33 5.17

continued on next page
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Table A.2.: continued

Spacecraft x0 (m) y0 (m) z0 (m) ẋ0 (cm/s) ẏ0 (cm/s) ż0 (cm/s)

L1B2 -117.88 862.34 -263.48 9.17 7.78 5.97

L1B3 -283.27 732.25 -367.20 5.01 7.36 7.44

L1B4 -198.50 796.69 -260.82 4.46 4.11 7.19

L1B5 -82.66 899.87 -188.69 9.32 6.25 8.26

L1B6 -232.39 768.16 -272.56 6.40 6.42 8.43

L1C1 -268.00 780.27 -334.79 1.85 5.29 4.21

L1C2 -150.74 842.11 -225.44 2.45 1.99 4.06

L1C3 -251.39 736.07 -321.39 6.09 5.12 8.41

L1C4 -108.75 857.35 -218.60 5.02 2.73 4.35

L1C5 -251.08 704.22 -360.46 4.17 2.14 3.74

L1C6 -183.13 870.58 -267.57 1.85 4.20 2.53

L2A1 190.68 1199.48 143.21 5.06 5.54 7.87

L2A2 207.75 1208.59 71.43 5.43 5.48 2.90

L2A3 223.01 1227.45 144.48 5.39 5.85 7.61

L2A4 232.42 1242.24 82.26 8.29 8.81 5.62

L2A5 289.60 1297.62 175.08 8.45 9.55 6.45

L2A6 217.90 1268.87 156.38 4.34 7.68 6.86

L2B1 211.14 1149.58 86.75 7.61 4.25 6.28

L2B2 142.43 1148.30 60.42 6.19 6.87 8.28

L2B3 259.60 1240.08 133.26 9.68 7.66 6.96

L2B4 148.59 1176.68 93.04 4.64 6.67 7.85

L2B5 166.97 1174.22 19.17 6.22 6.58 3.88

L2B6 168.56 1221.16 68.02 5.94 7.88 5.92

L2C1 155.21 1126.83 25.47 6.88 4.04 3.90

L2C2 268.56 1238.94 172.24 8.06 6.04 8.31

continued on next page
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Table A.2.: continued

Spacecraft x0 (m) y0 (m) z0 (m) ẋ0 (cm/s) ẏ0 (cm/s) ż0 (cm/s)

L2C3 255.33 1200.72 112.16 6.20 3.75 4.27

L2C4 108.38 1134.61 20.20 1.91 4.17 2.92

L2C5 181.10 1179.14 65.55 8.54 8.27 6.41

L2C6 199.23 1158.37 124.89 6.03 4.10 7.24
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