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ABSTRACT

Kobayashi, Daigo M.S., Purdue University, May 2020. Exploration of Compressed
Sensing for Satellite Characterization. Major Professor: Carolin Frueh Professor.

This research introduces a satellite characterization method based on its light

curve by utilizing and adapting the methodology of compressed sensing. Compressed

sensing is a mathematical theory, which is established in signal compression and which

has recently been applied to an image reconstruction by single-pixel camera observa-

tion. In this thesis, compressed sensing in the use of single-pixel camera observations

is compared with a satellite characterization via non-resolved light curves. The as-

sumptions, limitations, and significant differences in utilizing compressed sensing for

satellite characterization are discussed in detail. Assuming a reference observation

can be used to estimate the so-called sensing matrix, compressed sensing enables to

approximately reconstruct resolved satellite images revealing details about the specific

satellite that has been observed based solely on non-resolved light curves. This has

been shown explicitly in simulations. This result implies the great potential of com-

pressed sensing in characterizing space objects that are so far away that traditional

resolved imaging is not possible.
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1. INTRODUCTION

The space around the Earth is occupied by 900,000 man-made objects which are 1cm

or larger [1]. Most of them are fragments of unused spacecraft, generated by random

collisions between objects. These fragments can be a new source of collisions and

hence the population growth of small debris is said to be exponential even without

any launches of spacecraft [2]. In order to protect satellites from such a threat, it

is necessary to detect new objects, track the detected objects, and characterize the

tracked objects to predict their locations at any given time. These are the core ideas

of space situational awareness (SSA). As a part of the SSA, this research focuses on

the characterization of unknown space objects around Earth.

The main goal of the characterization is to determine the size, shape and atti-

tude of unknown space objects. There exist some methods to tackle this problem by

using an imaging approach. One of the most acclaimed examples is the FGAN Track-

ing and Imaging Radar (TIRA) [3], which consists of a 34-m parabolic antenna, an

L-band traking radar and a high-resolution Ku-band imaging radar. This Ku-band

radar was used to investigate the cause of the malfunction of the Advance Earth

Observation Satellite (ADEOS) in 1997 and researchers succeeded in finding dislo-

cated solar panels based on the radar image as shown in Figure 1.1 (b). Douglas

et al. [4] suggested an imaging method for space objects under strong atmospheric

turbulence. They modified multi-frame blind deconvolution (MFBD) algorithm for

aperture-diverse data and used a bootstrap approach in post-processing to obtain

high-resolution images of the Hubble Space Telescope (HST) in simulations. The

simulations are implemented by assuming optical observations with and without a

wave front sensor. These methods deal with 10-m size satellites in Low Earth orbit

(LEO). Low Earth orbits have an altitude up to 1000 km above the Earth surface.
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However, in fact, most earth-orbiting objects are too small or remote to be imaged

by even the most state-of-the-art ground-based instrument.

Fig. 1.1.: (a) The TIRA facility, (b) Radar image of ADEOS used in damage

analysis [3], p.130, p.134

On the other hand, light curve-based method can be applied to objects in higher

orbits including geosynchronous orbits with an altitude of 35786 km. The basic idea

is to estimate shape or orientation of an object based on its light curve, which is a

time history of intensity of light reflected on an object. This approach has been used

to characterize celestial objects. M.Kaasalainen ad J.Torppa [5] [6] succeeded in ob-

taining a three-dimensional shape of asteroids including a nonconvex object. Later,

light curve-based approach has also been used for artificial satellites. However, char-

acterization of man-made objects requires additional efforts because of their complex

surface properties, unstable attitudes, and highly concave shapes. Calef et al. [7]

utilized thermal emissions and light curve to recover the three-dimensional shape of

an object, assuming its orientation with respect to the observer is known and the

object is convex. Linares et al. [8] used angles data and light curve to estimate a

most probable shape of an object by using Unscented Kalman Filter. Linares and
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Crassidis [9] obtained shape and surface parameters of a space object by Bayesian

inversion approach. Recently, Furfaro et al. [10] used a deep learning method to clas-

sify the shape of space objects into four categories. Fan, Friedman and Frueh [11]

implemented the light curve inversion considering a fact that real observations are

greatly affected by noise and the conditions to obtain sufficient data for inversion in

realistic settings.

Although much improvement has been made for the light curve inversion problem,

it is still challenging to estimate attitude, shape and surface parameter simultaneously.

Even when concentrating on the shape inversion problem alone, the problem is an

ill-posed problem, which often has multiple solutions and ambiguities. Therefore, this

research proposes an imaging method which reconstructs a resolved image of observed

space objects based solely on the non-resolved light curve data. The method to be

used is based on the so-called compressed sensing. Compressed sensing theory is

capable of reconstructing an image that would be accurate enough to help estimate

shape and surface parameters as engineers did with TIRA. Moreover, since light

curves are available from almost all near-Earth objects, this method would also be

applicable to geosynchronous objects, which cannot be imaged by previous imaging

approaches.

Compressed sensing (CS) is a novel signal compression theory, which is capable

of recovering compressible unknown signals from small number of random measure-

ments even if they are inaccurate and incomplete. It compresses a signal as a linear

measurement by using a so-called sensing matrix and reconstructs it by solving an

optimization problem. The number of measurements required by CS is far fewer than

those required by the traditional Shannon/Nyquist sampling theorem. Thus, it has

given a paradigm shift in signal processing field. In the field of aerospace engineer-

ing, there have been some applications to enjoy this benefit. Aguilera et al. [12] [13]

used CS in a synthetic aperture radar (SAR) tomography to improve the quality of

reconstructions. Daponte et al. [14] used CS framework to design radio frequency

(RF) sensors for localization and tracking of non-cooperative RF emitters. In re-
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mote sensing, CS led to a new onboard instruments called MPST and SPMT camera,

which need less storage space and less power consumption than classical CCD cam-

eras [15] [16]. It is also possible to apply CS to obtain clear pictures from incomplete

measurements [17]. However, there are no examples of CS applications to a light

curve measurement.

Under some assumptions, a light curve of an object can be regarded as an object

image compressed by atmospheric noise, which is considered as a pseudo-sensing

matrix in CS framework. However, the more significant difference from the CS is

that there is no information available about this pseudo-sensing matrix. Thus, the

main interest of this research is how to estimate the original satellite image in the

absence of pseudo-sensing matrix. One possible approach is to estimate a sensing

matrix and a correct image at the same time by dictionary learning technique.

Dictionary learning is a learning method which has drawn a huge attention in

signal processing community in the past ten years. It was first proposed by Olshausen

and Field [18] in the context of studying brain cells. The basic idea is to find a

common basis matrix to sparsely represent millions of images. This matrix is called

a dictionary. The learned dictionary helps remove image noise [19], detect image

edges [20], recognize image patterns [21], compress images [22] [23] or obtain super

resolution [24] in a CS framework. Although these goals appear very different from the

main interest of this research, there is a significant mathematical similarity between

the estimation of the sensing matrix and the dictionary learning problem.

Another possible approach to estimate a sensing matrix and a resolved satellite

image is to utilize a previous or simultaneous observation of a known satellite. This

approach is similar to the technique called adaptive optics [25]. In astronomical ob-

servations, a star is obscured by unwanted wavefront distortions due to atmospheric

turbulence. Adaptive optics technique removes the effect of the distortions by ob-

serving a reference star or an artificial laser-generated reference star [26]. This idea

is also feasible for estimating a sensing matrix.
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The organization of this thesis is as follows. In Chapter 2, light curve and ren-

dering technique are introduced. The purpose of this chapter is to present the basic

concept of light curve along with rendering technique. Using this rendering technique,

satellite synthetic images are generated in Chapter 5. In Chapter 3, the method of

compressed sensing and one specific application, a single-pixel camera are introduced.

The concept of this single-pixel camera is important to understand the similarity be-

tween the compressed sensing and a light curve measurement. In Chapter 4, the

method of dictionary learning is introduced along with one of its applications, de-

noising. The dictionary learning algorithm and the denoising algorithm is used in

Chapter 5. In Chapter 5, the adaptation of the theory to the actual imaging of a

satellite is shown via simulations. First, a simple problem with the knowledge of a

sensing matrix is investigated through two simulations. The difference between these

two simulations is the way of modeling a light curve. The first simulation uses a real-

istic light curve model while the second simulation uses a simpler adapted light curve

model. In the subsequent section, dictionary learning approach is used to estimate

a satellite image in the absence of a sensing matrix under two different assumptions.

In the first simulation, a patch-based method is used to simplify the problem. In

the second simulation, the same simulation is implemented without the patch-based

method. Finally, in the last section, additional assumption is made to estimate a

satellite image. A sensing matrix is still assumed to be unknown but a reference light

curve and corresponding satellite images are assumed to be known.
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2. LIGHT CURVE AND RENDERING

In this chapter, a method for a light curve simulation is introduced, followed by a

result of light curve simulation of a GEO satellite. Subsequently, an overview of

rendering technique is introduced. The light curve simulation and rendering share a

common ground, and light curve can be regarded as an unresolved image of an object.

2.1 Light Curve Simulation

A light curve is defined as a series of brightness measurements of an observed ob-

ject [27]. It is often plotted as magnitude versus time or phase as shown in Figure 2.1.

In this case, the vertical axis shows the magnitude of an asteroid and the horizontal

axis shows a fraction of the assumed period of the asteroid.

Fig. 2.1.: Light curve plot of 4383 Suruga [27], p.3
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The magnitude is a measure of brightness, where the smaller magnitude means

the brighter object. It is often defined relative to the brightness of the Sun. It is

formulated as follows:

mag(t) = magSun − 2.5 log10

{
I(t)

I0

}
(2.1)

where magSun is a magnitude of the Sun (magSun = −26.74), I(t) is the intensity of

light from the object which is a function of time t, and I0 is the intensity of the Solar

intensity.

The intensity of the light curve is observed by collecting the light which is reflected

off the surface of the space object and received by the observer. Therefore, it depends

on the surface properties, such as shape and materials, and attitude of the object. For

example, the satellite covered with aluminum (Al) tends to reflect more intense light

compared to the one covered with silicon carbide (Sic) which absorbs most incoming

light [28]. Moreover, the intensity also depends on astrophysical geometry between

the object, the observer and the Sun since the intensity is determined by direction of

incoming and outgoing light fluxes on the object.

The goal in the light curve simulation is to compute the intensity I(t), which is

a summation of the intensity of the light reflected from all the illuminated surfaces

of the object in the direction of the observer. Figure 2.2 shows the flowchart of this

simulation scheme.

Fig. 2.2.: Simulation Flowchart [28]



8

Fig. 2.3.: Reflection on one mesh

However, before discussing a light reflection on a satellite, it is prudent to start

with a reflection model of one single flat facet. Here this facet is called a mesh and its

light intensity is computed by using BRDF model. Figure 2.3 shows the corresponding

vectors. Its intensity Ii is computed with respect to the solar intensity [29]:

Ii = I0 ·
Ai

(rtopo)2
· pi (2.2)

where I0 is the solar intensity at 1AU which is about 1365W/m2, Ai is the area of

the mesh and rtopo is the topocentric distance to the satellite. The term pi is called

a phase function which is a ratio between the incoming light flux and outgoing light

flux on the mesh. This phase function consists of two terms: Lambertian reflection

term plamb, i and specular reflection pspec,i:

pi = plamb, i + pspec,i (2.3)

Note that the absorption term is neglected assuming the opaque surface. First, the

Lambertian reflection term is computed as:

plamb, i =
Cd
π

(V̄ · N̄i)(S̄ · N̄i) (2.4)
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where Cd is the diffuse reflection parameter, which is the amount of light scattered

equally in all directions. V̄ is the-object-to-the-observer vector, N̄i is the mesh nor-

mal vector and S̄ is the-object-to-the-Sun vector. On the other hand, the specular

reflection is a mirror-like reflection which is concentrated on a particular direction:

pspec,i =
τi Cs (rSun)2

a2
Sun

(2.5)

τi =

1 if |θincoming − θoutgoing| ≤ 0.5◦

0 otherwise

(2.6)

where Cs is the specular reflection parameter, rSun is the solar radius and aSun is the

distance from the object to the Sun. The coefficient τi is either 0 or 1 depending on

the angle between the incoming and outgoing light flux. It becomes 1 when the angle

is within half a degree as shown in Eq.(2.6).

Therefore, the light intensity of the flat mesh is computed by substituting Eq.(2.3),

Eq.(2.4) and Eq.(2.5) into Eq.(2.2):

Ii = I0 ·
Ai

(rtopo)2

{
Cd (V̄ · N̄i)(S̄ · N̄i) +

πτi Cs (rSun(t))2

a2
Sun

}
(2.7)

Based on this reflection model of one mesh, the light curve of a complete satellite

is computed. First, a 3D satellite geometry is constructed by using Solidworks. The

geometry is modeled as a collection of meshes which are small enough to approximate

curved surface. There are some kinds of meshes depending on the applications. In

this research, triangle meshes are chosen since it is a polygon with the smallest num-

ber of edges and hence it can most accurately model a curved surface of parabolic

antenna of a satellite, for example. The 3D satellite geometry is then characterized

using Meshlab. At this stage, directions of normal vectors of each mesh are verified.

Moreover, Lambertian reflection coefficient and specular reflection coefficient of each

mesh are specified depending on its material.

An example of the 3D satellite model is shown in Figure 2.4. Finer meshes help to

get more accurate light curve especially when considering self-shadowing and observer-

shadowing. Both these shadowing effects are considered by solving an intersection
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problem between a mesh and a light flux. A larger mesh is more likely to have the

intersection with the light flux even if some parts of the mesh is actually not in a

shadow. Therefore, the finer meshes are preferable in light curve simulation. This is

in contrast to computer science, where a flat surface would be represented with fewest

possible triangles.

Fig. 2.4.: 3D satellite model made of triangle meshes

Second, orbit and attitude of the satellite are specified. The key information is

the direction of each mesh with respect to the Sun and the observer.

Third, light intensity of each mesh is calculated. Before calculating the values,

the visibility of each mesh is checked based on three conditions. The first condition is

an observer’s local horizon. A satellite has to be above the observer’s local horizon:

−V̄ · r̄obs > 0 (2.8)

where V̄ is an object-to-observer vector and r̄obs is a position vector of the observer

in geocentric frame. If a satellite does not meet this condition at a specific time, its

light curve is not observable. The second condition is a mesh’s local horizon. If the

Sun is ”behind” a mesh, the light does not reach to the mesh, so it is not observable.
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Similarly, if the observer is ”behind” a mesh, the mesh is not observable. In other

words, the observer and the Sun has to be above a mesh’s local horizon:

N̄i · V̄ > 0 and N̄i · {r̄Sun − r̄sat} > 0 (2.9)

where N̄i is the ith mesh normal. r̄Sun is the position vector of the Sun and r̄sat is

the position vector of the satellite in geocentric coordinates. The third conditions are

self-shadowing and observer-shadowing. A mesh must not be hidden by other parts

of the satellite. There are two such cases as shown in Figure 2.5. In (a), a light flux

coming into mesh 2 is obstructed by mesh 1, which is referred to as self-shadowing.

In (b), a light flux coming out from mesh 2 is obstructed by mesh 1, which is referred

to as observer-shadowing.

Fig. 2.5.: Self-shadowing and observer shadowing

Therefore, the light flux coming in and out on the mesh must not have any inter-

sections with any other meshes. In order to check this intersection problem, Moller-

Trumbore intersection algorithm [30] is used.

The Moller-Trumbore intersection algorithm determines whether a light flux com-

ing from point C and the triangle P1P2P3 have the intersection. Eq.(2.10) represents

an arbitrary point on the light flux from point C, and Eq.(2.11) represents a collection

of all the points in the triangle P1P2P3.
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Fig. 2.6.: Moller-Trumbore intersection

P = C + λr̄ where λ ≤ 0 (2.10)

P = P1 + b1(P2 − P1) + b2(P3 − P1)

= P1 + b1ē1 + b2ē2 where 0 ≤ b1 ≤ 1, 0 ≤ b2 ≤ 1, b1 + b2 ≤ 1 (2.11)

Substituting Eq.(2.10) into Eq.(2.11) and rearranging the equation gives:

[
−L̄ ē1 ē2

]
λ

b1

b2

 = C − P1 (2.12)

Therefore, if the solution of Eq.(2.12) satisfies the conditions:

λ ≤ 0, 0 ≤ b1 ≤ 1, 0 ≤ b2 ≤ 1, b1 + b2 ≤ 1 (2.13)

then the light flux has an intersection with the triangle P1P2P3. This algorithm is

used to check both a vector from the Sun to a mesh and a vector from the observer

to a mesh to see whether it has an intersection with any other meshes.

Finally, a light curve is obtained. The meshes satisfying all the three conditions are

regarded as visible. For each of these visible meshes, the light intensity is computed
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by Eq.(2.2). The summation of the intensities of all the visible meshes is the value of

the light curve I(t) at specific time:

I(t) = I0

n∑
i=1

Ai
π(rtopo(t))2

{
Cd (V̄ · N̄i)(S̄ · N̄i) +

πτi Cs (rSun(t))2

a2
Sun

}
(2.14)

By computing this intensity in a discrete time frame, a light curve is obtained.

Turning now to an example of a light curve, it is simulated by the following

procedure. A model in Fig 2.8 is used as a 3D satellite model. This model consists

of 4028 meshes and all the meshes are assumed to have the same surface property:

Cd = 0.2, Cs = 0.8 assuming that the satellite is made of aluminum (Al), which

is one of the most common materials for spacecraft. The reflection property highly

depends on finish but its specular reflection coefficient is often assumed to be around

0.8-0.9 [28]. Its orbit is computed based on the TLE data of Astra 1KR satellite

obtained from Space-track organization website [31]. It is propagated for its orbital

period, 1437 minutes by SGP4 propagator. Figure 2.7 shows the orbit of the satellite

in this simulation. The orange arrow shows the direction of the Sun and the red dot

shows the satellite position at the beginning of this simulation. The motion of the

Sun is considered but its direction hardly changes in this short simulation time.

The orientation of the satellite also needs to be defined. Active satellites are tra-

ditionally either spin-stabilized or three-axis stabilized. Here, a three-axis stabilized

satellite is assumed. Since the parabolic antennas always need to be oriented toward

the Earth, one facet of the satellite body (red arrow in Figure 2.8) is fixed to direc-

tion of the geocenter, and another facet (blue arrow in Figure 2.8) is fixed so that

it is always perpendicular to its orbital plane. Therefore, the solar panels are not

always oriented toward the Sun in this simplified simulation. The observer is located

in Berlin and the observation starts at 0 UTC on 1-April-2020. All the parameters

used in this simulation are shown in Table 2.1.
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Table 2.1.: Parameters in the light curve simulation

Name Value / Description

Observer’s location 51.17 N, 10.45 E

Observation duration 0:00:00 am - 11:56:00 pm on 1-April-2020

Lambertian reflection coefficient Cd 0.2

Specular reflection coefficient Cs 0.8

Radius of Earth REarth 6378.136 km

Radius of Sun RSun 695990 km

Irradiance of the Sun at 1AU I0 1365 W/m2

Orbit Astra 1KR (GEO)

Fig. 2.7.: Satellite orbit in the light curve simulation
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Fig. 2.8.: 3D satellite model used for simulation

The result is shown in Figure 2.9. First, the magnitude is around 2.6 but it rapidly

increases. At t = 178 minutes, it decreases sharply but it again starts to increase.

At t = 125 minutes, its change rate becomes slower. At around t = 500 minutes,

the magnitude becomes the largest. At this time step, the satellite almost hides the

Sun from the observer as shown in Figure 2.10 (a). After this, the magnitude gets

smaller and at t = 850 minutes, the magnitude suddenly drops dramatically. At

this time step, the Sun direction is almost perpendicular to the line of sight of the

satellite as shown in Figure 2.10 (b), which means the sunlight is almost parallel to

the solar panel normal. Therefore, before this step, the solar panel does not reflect

sunlight to the observer at all but after this time step, the solar panel starts to reflect

a light to the observer, which explains the sudden drop of the magnitude. Later, the

magnitude gets the smallest around t = 1250 minutes when the solar panel normal is

almost parallel to the sunlight as shown in Figure 2.10 (c).
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Fig. 2.9.: Simulated light curve

Fig. 2.10.: Position of satellite, observer and the Sun at each time step: (a) t = 500

[min], (b) t = 850 [min], (c) t = 1250 [min]
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2.2 Synthetic Image Generation by Rendering Technique

This section introduces a scheme for synthetic image generation using rendering

technique. Rendering technique is used to visualize a 3D object in the form of 2D

image. In contrast to the light curves, a resolved image is simulated. The basic idea

is to set an imaginary image plane consisting of grids, which are referred to as pixels,

in front of the observer. As shown in Figure 2.11, a light from the light source reflects

on the surface of the object, passes through one of the pixels in the image plane,

and reaches to an observer. This observed light intensity is assigned to the pixel it

has come through. This process is repeated for all the light fluxes until all the pixel

values are specified. In the following, these steps will be introduced in details [32].

Fig. 2.11.: Basic idea of the rendering technique

The first step is to consider a reflection of the meshes. In this step, the brightness

of each mesh of a 3D model is computed. This computation is exactly the same with

the light curve simulation introduced earlier. In a computer graphics field, there are

some options for the reflection models to obtain more realistic appearances. However,

from a physical perspective, a specular and Lambertian reflection model is chosen in
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this research. This also ensures consistency with the light curve simulation. The

brightness Ii of the ith mesh is:

Ii = I0 ·
Ai

π(rtopo)2

{
Cd (V̄ · N̄i)(S̄ · N̄i) +

πτi Cs (rSun)2

a2
Sun

}
(2.15)

τi =

1 if |θincoming − θoutgoing| ≤ 0.5◦

0 otherwise

(2.16)

Note that Ai is the area of the mesh, rtopo is the distance between the observer and

the object, V̄ is the object-to-observer vector, S̄ is the object to the Sun vector, N̄i is

the ith mesh normal, rSun is the solar radius and aSun is the distance between the Sun

and the Earth. θincoming and θoutgoing are the angles of incoming and outgoing light

flux with respect to the mesh normal. Cs is a specular reflection parameter and Cd is

a diffuse reflection parameter. Assuming that the satellite is coated with aluminum,

these parameters are set to be Cs = 0.8, Cd = 0.2 for all the meshes.

The next step is a projection of the 3D model onto a 2D plane. In this step,

the geometry of each mesh on the image plane needs to be computed by orthogonal

projection. First, a coordinate transformation matrix is obtained such that an object-

to-viewer vector is parallel to a z-axis in a new Cartesian coordinate. Subsequently, all

the coordinates of the vertices in the 3D model are transformed to this new coordinate.

The z coordinates at this stage are called depths. This will be significant information

in a hidden-surface removal procedure, so it is saved in a certain form. Finally,

the z-coordinates of all the vertices are set to be zero. At this stage, the values of

the coordinates correspond to the satellite dimension, so the values are need to be

stretched to fit into an image. A satellite is considered to be circumscribed by a

rectangle whose edges are parallel to x and y axis. The longer edge is stretched to

the size of one edge of a square image. After this projection step, all the vertices

have been projected regardless of their z-coordinates. This means, even a vertex or

an edge which are supposed to be hidden are displayed in an image. This issue will

be dealt with in a later procedure.
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The third step is a rasterization. In general, an image is expressed on a grid. The

cells of the grid is called pixels and each pixel color is determined by the pixel value.

Therefore, the geometry of the satellite needs to be expressed as a collection of pixels.

This approximation technique is called a rasterization. First, all the coordinate of the

vertices obtained in the previous subsection are rounded to the nearest integers, since

the position of all the pixels in an image is expressed in terms of integer coordinates.

Since all the meshes are triangles consisting of these vertices, the next step is to

rasterize arbitrary triangles.

All triangles are expressed as a collection of line segments. Therefore, it is impor-

tant to know how to rasterize a line segment first. The simplest algorithm for line

segments is known as a DDA (digital differential analyzer) algorithm [32]. Suppose

that a line segment is defined by two points (x1, y1) and (x2, y2) as shown in Figure

2.12, then the slope is given by:

m =
y2 − y1

x2 − x1

=
∆y

∆x
(2.17)

Note that the slope is positive and smaller than 1:

0 ≤ m ≤ 1 (2.18)

Fig. 2.12.: Line segment in image coordinate
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Fig. 2.13.: Pixels generated by DDA before and after revision

Under this assumption, the best y is computed for each x. In each iteration, x is

increased by 1 and the corresponding y value is computed. Since m is a floating-point

number, the result of m∆x needs to be rounded.

y = y1 + round(mx) x = 1, 2, ...,∆x (2.19)

However, if the slope is greater than 1, this algorithm fails to draw a correct line

segment as shown in Figure 2.13 (a). This issue can be solved by swapping the roles

of x and y, and applying the same algorithm. As a result, Figure 2.13 (b) is obtained.

Next, a procedure of rasterizing a triangle is discussed. The simplest algorithm

is known as a scanline algorithm [32]. Consider a triangle shown in Figure 2.14 (a)

with n lines drawn so that they have intersections with the triangle. These lines are

called scanlines. The first scanline has two intersections P11 and P12 with two edges

of the triangle. A group of pixels on the line segment P11P12 is called a span. The

scanline is specified only by x value on the image plane. Once the scanline is specified,

the intersections on the scanline can be specified by y value. Therefore, a bucket is

created for each scanline to save these intersections as shown in Figure 2.14 (b). As

the scan proceeds, the x values of intersections are saved in proper buckets.

Subsequently, this data structure is used to fill the pixels circumscribed by this

triangle. Given the positions of two intersections, the span between the two inter-
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sections is filled by using the DDA algorithm discussed earlier. This procedure is

repeated for all the scanlines and a triangle image is obtained in the image plane.

Fig. 2.14.: Basic idea of scanline algorithm

Next, pixel values are assigned to each pixel based on the brightness of each mesh

obtained in the first step. There are mainly three ways for this so-called shading

technique: flat shading, Gouraud shading, and Phong shading. The Gouraud shading

and Phong shading determines pixel values so that there are some gradations even in

one mesh. This helps objects in an image look more realistic. However, for simplicity,

this research uses a flat shading, which assigns one solid color in a mesh. This also

helps to create consistency with the light curve simulations. One pixel value in a

mesh is obtained by simply dividing the brightness of a mesh by the total number of

pixels contained in the mesh.

The final step is to remove extra pixels from an image, which is done concurrently

with the rasterization. As can be seen in Figure 2.18, the projection of all the vertices

onto an image plane even shows surfaces (meshes) that are supposed to be hidden

behind. A part of the pixels in these meshes are needed to be removed from an image

in a systematic way. The most widely used approach is the z-buffer algorithm.
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The basic idea of the z-buffer algorithm is as follows. In Figure 2.15, a mesh A is

partly hidden by a mesh B. Pixels in the overlap of A and B have two possible values,

pA and pB, where pA is a value obtained by brightness of A, and pB is a value obtained

by brightness of B. However, since z2 > z1, the value pB is chosen. In general, when a

pixel belongs to multiple meshes, a correct pixel value is determined based on a mesh

with the largest z value (depth).

Fig. 2.15.: Z-buffer algorithm

Fig. 2.16.: Bilinear interpolation to compute a depth of an arbitrary point R
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Therefore, the rasterization procedure is slightly modified when considering depths.

When computing the pixel value by DDA algorithm, the depth of the corresponding

point is also computed by bilinear interpolation method. This technique also uses

a scanline. For example, a depth of pixel R is computed as follows. This pixel is

surrounded by a triangle mesh ABC in Figure 2.16. This pixel is on a scanline which

has intersections P and Q with triangle ABC. Since the depths of pixels A and B are

known, the depth of P can be obtained by linear interpolation of these two depths.

The depth of Q can also be obtained in a similar way. Given the depths of P and

Q, the depth of R can be obtained by linear interpolation of the depths of P and Q.

This is the depth of the pixel R obtained by a triangle mesh ABC but not necessarily

the true depth of the pixel R. This pixel may belong to other meshes which are closer

to the observer. If it is the case, the mesh ABC is hidden by other mesh. Thus, this

depth value is saved as a candidate solution. This computation is repeated for all

the pixels on the visible meshes, and every time the depth of each pixel is calculated.

If the depth value is larger than the candidate value, this new value is chosen as a

candidate solution, and the DDA algorithm assigns a signal value to the pixel. If

the depth value is smaller than the candidate value, the DDA algorithm does not do

anything. Sweeping through all the meshes, we get the pixel values considering the

right depth values.

By combining all these techniques: reflection, projection, rasterization, shading

and hidden-surface removal, an image of a 3D satellite model is obtained.

Turning now to an example, a satellite image is constructed based on a 3D satellite

model. Figure 2.17 shows the 3D satellite model. The number of meshes are 4028

and the number of vertices are 2016. The red arrow shows the object-to-Sun vector,

L̄, and the blue arrow shows the object-to-observer viewer vector, V̄ . The goal is to

obtain an image when this satellite is seen from a direction of V̄ .

First, the coordinate of the satellite is transformed to a new coordinate so that V̄

is parallel to a z axis in a new coordinate as shown in Figure 2.18 (a). Subsequently,
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the coordinate is stretched so that it fits into an image frame of size 512× 512, and

Figure 2.18 (b) is obtained.

Fig. 2.17.: Example of a 3D model

Fig. 2.18.: Example of coordinate transformation and projection

This is a projection of the 3D model onto the xy-plane (the image plane). Note

that even a hidden mesh is visible in Figure 2.18 (b). This issue is taken care of by

a hidden-surface removal procedure. Figure 2.19 shows a depth of all the pixels of
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the satellite model computed by bilinear interpolation. The brighter pixel has larger

z-coordinate, which means closer to the observer.

Fig. 2.19.: Depth information of the 3D model

Fig. 2.20.: Example of a synthetic satellite image

The result is shown in Figure 2.20. The upper antenna dish is almost not illumi-

nated, which makes sense since it is almost parallel to the incoming light as shown

in Figure 2.17. Moreover, the solar panel looks brighter than the front panel of the

satellite body since the angle between the solar panel normal and the light flux is

smaller than that of the front panel and the light flux.

However, there are some errors in the image. The most remarkable error is a

mosaic pattern in the image. Ideally, all the meshes in the solar panel, for example,
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should be shown in the same color but it is not the case with this image. This is caused

in a conversion from mesh intensity to pixel values. For example, even if the areas and

normal vectors of two meshes are exactly the same, they are not necessarily expressed

by the same number of pixels. As a result, the pixels in the two meshes have different

values. There are some ways to solve this issue. One way would be to use a different

method to assign a value to a pixel. In the current method, the pixel value assignment

is done in a mesh-wise way which causes this issue. This issue may be solved if the

assignment is done in a facet-wise way. If the meshes are regarded to be on the same

facet, the pixel value assignment is done in the facet independently. Another way

would be to make the meshes even smaller so that each mesh correspond to one pixel.

However, the larger number of meshes makes the computation more expensive.

Another important point to note is that the sum of all the pixel values of this

image is approximately the same with the intensity of the light curve of this satellite.

This is because the BRDF model and flat shading are used in the reflection step to

construct this image. This property will be important in the later chapters.
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3. COMPRESSED SENSING

3.1 Compressed Sensing

3.1.1 Overview

Compressed sensing is a mathematical theory proposed by Candes, Romberg,

Tao [33] [34] and Donoho [35] in 2006. It is also sometimes referred to as compressive

sampling or compressed sampling. It has been widely used in signal compression

method such as JPEG, JEPG2000, MPEG and MP3 standards.

Its advantage is often described by comparing it with a classical sampling theory

in the Nyquist-Shannon framework. The classical sampling scheme consists of two

steps. The first step is a sampling, in which infinite-length continuous-time signals

are digitized by a set of uniformly spaced samples. The Nyquist-Shannon theory [36]

states that the signal can be exactly recovered if the sampling rate is larger than a

specific threshold, which is twice the value of Nyquist rate. However, this Nyquist

rate is high, which makes the amount of samples (represented by a vector with N

elements) too large to store in devices efficiently. This issue is addressed in the

second step: compression. The data is represented in the most concise form in an

allowable distortion range. The most popular compression technique is known as

transform coding. A basis of the high-dimensional samples is found so that it can be

represented with only k (� N) coefficients. This overall classical sampling scheme

has a massive redundancy because it needs to sample large amounts of data even

though most of them are discarded in the compression step.

The compressed sensing solves this issue by developing the concept of transform

coding. A signal is sampled directly in a compressed form:

ȳ = Φx̄ (3.1)
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where x̄ ∈ RN is a signal, ȳ ∈ Rm(m < N) is a measurement, and Φ ∈ Rm×N is a

so-called sensing matrix. The sensing matrix compresses the signal by mapping a high

dimensional vector into a lower dimensional vector. This enables us to sample a signal

in a sampling rate which is much lower than that of the classical sampling scheme.

If the signal x̄ is sparse or compressible, which is often the case, and if the sensing

matrix Φ satisfies a certain condition, the signal x̄ is guaranteed to be recovered from

the measurement ȳ. The background theory is discussed in more details.

Signal models

For the success of the compressed sensing, a signal needs to be either sparse or

compressible. A sparse signal is a vector with only k nonzero elements. In other

words, the L0 norm of x̄, or the cardinality of x̄ is k:

x̄ ∈ RN with ‖x̄‖0 = k (� N) (3.2)

However, most signals themselves are not sparse but can be expressed sparsely in

terms of a certain basis. This kind of signal is called a compressible signal, which is

mathematically expressed as follows:

x̄ = Ψγ̄ ∈ RN with ‖γ̄‖0 = k (� N) (3.3)

The matrix Ψ is typically a square matrix and called a sparsifying matrix. With

a closer look at Eq.(3.3), the signal x̄ is expressed as a linear combination of a few

columns of Ψ chosen by γ̄. In a signal processing field, this sparsifying matrix is also

called a dictionary, and its columns are called atoms. Therefore, the signal x̄ is a

linear combination of atoms of the dictionary Ψ.

Equating Eq.(3.1) and Eq.(3.3), a measurement of a compressible signal can be

expressed as follows:

ȳ = ΦΨγ̄

= Dγ̄ with ‖γ̄‖0 (3.4)
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Discrete cosine transform

One of the most well-known dictionaries is a Discrete Cosine Transform (DCT)

matrix. DCT matrix can represent most natural images sparsely and hence it is often

used for image compression.

Atoms of the N ×N DCT matrix are the basis elements of the 2D-DCT and they

are defined as follows [37]:

Ψ2(k, n) =


1√
N
, k = 1, 1 ≤ n ≤ N√

2

N
cos

π(2n− 1)(k − 1)

2N
, 2 ≤ k ≤ N, 1 ≤ n ≤ N

(3.5)

Suppose x̄ ∈ RN is a vectorized form of an image X̄ ∈ Rn×n, it is expressed as a

product between 2D-DCT matrix and a sparse coefficient vector γ̄:

x̄ = Ψ2γ̄ (3.6)

Since 2D-DCT matrix is an orthogonal matrix, the sparse representation can be

obtained by multiplying the transpose of Ψ2:

γ̄ = ΨT
2 x̄ (3.7)

However, this operation is computationally expensive for large images since the size

of Ψ2 is proportional to the square of the image size. The alternative way is first

applying the 1D-DCT matrix Ψ1 to all the columns of an image, then to all the rows

of the result. This operation is much simpler and faster than Eq.(3.6).

Γ = ΨT
1 XΨ1 (3.8)

where Γ is a matrix form of γ̄. The 1D-DCT matrix Φ1 is obtained by arranging all

the basis elements of 1D-DCT in a column-wise way.

The same computational shortcut is also possible for three dimensional signals.

In this case, 1D-DCT is first applied to the columns, then to the rows, and finally to

the width of the signal.
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Sensing matrix

A sensing matrix is a key concept in compressed sensing for a stable reconstruction.

The measurement by a sensing matrix Φ in Eq.(3.4) must not damage the signal.

However, in general, the sensing matrix Φ do damage the signal because it has larger

number of columns than that of rows, which makes Eq.(3.4) an underdetermined

problem with infinitely many solutions.

However, here the sparsity of signals comes into play. In order to evaluate stability

of a solution of Eq.(3.4), a measure called Restricted Isometry Property (RIP) [38] is

often used:

Definition 3.1.1 For a matrix D of size m × N (N > m) with L2-normalized

columns, and for an integer scalar s ≤ m, consider sub-matrices Ds containing s

columns from D. Define δs as the smallest quantity such that

∀c ∈ Rs 1− δs ≤
‖Dsc̄‖2

2

‖c̄‖2
2

≤ 1 + δs (3.9)

hold true for any choice of s columns. Then D is said to have an s-RIP with a

constant δs.

If the matrix D in Eq.(3.4) has a k-RIP with a constant δk, nearly exact reconstruction

is guaranteed. The key idea is that any subset of k columns from D transforms an

arbitrary vector of size k × 1 without almost any loses or gains of information.

Stability of the solution can be evaluated as follows. As an example, two sparse

vectors, γ̄0 and γ̂ are considered. A vector γ̄0 has a cardinality of k0 and its multipli-

cation with D is equal to ȳ within the error of ε:

‖ȳ −Dγ̄0‖2 ≤ ε (3.10)

On the other hand, a vector γ̂ is a candidate solution of Eq.(3.4). Since the solution

for Eq.(3.4) is obtained as a sparsest solution as it is discussed in the next section,

the vector γ̂ has k0 nonzeros at most. Assume that this solution also satisfies Eq.(3.4)

within the error of ε:

‖ȳ −Dγ̂‖2 ≤ ε (3.11)
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Now the difference between the two sparse vectors is defined: ∆γ̄ = γ̂− γ0. The goal

is to show that L2-norm of ∆γ̄ is small enough to be negligible. It can be readily

shown from Eq.(3.10) and Eq.(3.11) that the product of D and ∆γ̄ is upperbounded

by 2ε:

‖Dγ̄0 −Dγ̂‖2 = ‖D∆γ̄‖2 ≤ 2ε (3.12)

Moreover, ∆γ̄ is a sparse vector with 2k0 nonzeros at most:

‖γ̄0‖0 + ‖γ̂‖0 ≤ 2k0 (3.13)

Since a matrix D satisfies the RIP property, it follows from Eq.(3.9) and Eq.(3.12)

that

(1− δ2k0)‖∆γ̄‖2
2 ≤ ‖D∆γ̄‖2

2 ≤ 4ε2 (3.14)

Therefore, stability of the solution can be evaluated as follows:

‖∆γ̄‖2
2 = ‖γ̂ − γ̄0‖2

2 ≤
4ε2

1− 2δ20

(3.15)

Thus, if the matrix D in Eq.(3.4) satisfies the RIP, the solution is shown to be stable.

The next important point is how to design a matrix D so that it satisfies the RIP.

Unfortunately, it is almost impossible to merely verify that a given matrix satisfies

the RIP because of too many possible choices for the sub-matrices Ds in Eq.(3.9).

Surprisingly, Candes [39] showed that a randomness in the matrix guarantees the

RIP. One of the most common matrices in compressed sensing is a Gaussian matrix

whose entries are independent and identically distributed random variables from a

zero-mean, 1/N -variance Gaussian density. It is useful because if a matrix Φ is a

Gaussian matrix, then the matrix D = ΨΦ is also a Gaussian matrix regardless of

the choice of Ψ. In this respect, hereinafter this research will use a Gaussian matrix

as a sensing matrix Φ.
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Reconstruction

In compressed sensing, a compressible signal x̄ can be reconstructed from its linear

measurement ȳ by seeking the sparsest solution of Eq.(3.4).

γ̂ = argmin‖γ̄‖0 s.t. ȳ = Dγ̄ (3.16)

x̂ = Ψγ̂ (3.17)

This problem is often referred to as a P0 problem. It can be solved by several methods

which will be discussed later.

This P0 problem is the most straightforward way to express compressed sensing

in a nutshell. However, it is not the ideal problem to target in practical cases. First

of all, the equality constraint is too strict in practical cases. If the measurement ȳ is

slightly perturbed by noise, the system ȳ = Dγ̄ will not have a sparse solution at all.

Moreover, the L0 measure is also too strict. Even a slight random perturbation of γ̄

makes the solution not sparse at all.

There is a more robust alternative for this P0 problem:

γ̂ = argmin‖γ̄‖0 s.t. ‖ȳ −Dγ̄‖2
2 ≤ ε2 (3.18)

x̂ = Ψγ̂ (3.19)

This is referred to as a P0-epsilon problem. Although this problem is an approx-

imation of the P0 problem, it has more benefits. This problem allows ε-deviation

between ȳ and Dγ̄, which makes it robust to the perturbation of ȳ. The same term

also absorbs the perturbation of the solution if the norm of the noise vector is less

than 1. This is explained as follows.

Suppose the true solution γ̄0 is perturbed by noise:

γ̄ = γ̄0 + ε ū with ε� 1 and ‖ū‖2 = 1 (3.20)
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Then, the L2 norm of the residual can be evaluated as follows.

‖ȳ −Dγ̄‖2
2 = ‖ȳ −D(γ̄0 + εū)‖2

2

= ‖(ȳ −Dγ̄0)− εDū)‖2
2

= ε‖Dū‖2
2 ≤ ε2 (3.21)

Therefore, this P0-epsilon problem can return the solution even with a slight pertur-

bation. Thus, the ε-deviation solves the both issues of P0 problem.

Reconstruction algorithm: OMP algorithm

There are mainly two methods to solve the P0 problem and the P0-epsilon prob-

lem: greedy methods and relaxation methods. The Greedy methods build a solution

by choosing one nonzero element at a time, while the relaxation methods approximate

the problem as a continuous optimization problem.

Here, the OMP algorithm [23] is introduced as an example of Greedy methods [38].

The biggest advantage of the OMP is that it can solve P0-epsilon problem as well

as P0 problem. There are two types of equivalent forms of the P0-epsilon problem.

One is a sparsity-constraint problem (Eq.(3.22)) and the other is an error-constraint

problem (Eq.(3.23)).

γ̂ = argmin ‖ȳ −Dγ̄‖2
2 s.t. ‖γ̄‖0 = K (3.22)

γ̂ = argmin ‖γ̄‖0 s.t. ‖ȳ −Dγ̄‖2
2 ≤ ε2 (3.23)

The core idea of the OMP algorithm is to approximate the vector ȳ as a linear

combination of the column vectors of D (see Algorithm 1).
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Algorithm 1 Orthogonal Matching Pursuit [23]

Input : Dictionary D, signal ȳ, target sparsity K or target error ε

Output : Sparse representation γ̄ such that y ≈ Dγ̄

Initialization: Set I := (), r̄ := ȳ, γ̄ := 0̄

1 while (stopping criterion not met) do

2 î := argmax ‖d̄Ti r̄‖

3 I := (I, î)

4 γ̄I := (DI)
+ȳ

5 r̄ := ȳ −DI γ̄I

6 end while

First, the OMP finds an atom with the largest inner product between the cur-

rent residual (line 2) and update the indices I (line 3). Subsequently, the signal is

orthogonally projected to the chosen atoms (line 4), and the residual is computed

again (line 5). This process is repeated until either the sparsity goal or the error goal

is met. Note that given a sequence of indices I = (i1, i2, ..., ik) and a matrix M, a

matrix MI is a sub-matrix of M consisting of columns indexed by I. Similarly, for a

vector, v̄I is a sub-vector of a vector v̄.

Reconstruction algorithm: Batch-OMP algorithm

This paper uses a batch-OMP algorithm [23] because of its fast computation time.

This algorithm is a modified version of the OMP algorithm.

The batch-OMP lowers the computational cost of the OMP by utilizing two key

methods. The first method is an implementation of a progressive Cholesky update

process to avoid an explicit computation of an inversion of DT
I DI in line 4 of Algorithm

1. The second method is a pre-computation of ᾱ0 and G. This circumvents an explicit

computation of the residual r̄ in line 5 of Algorithm 1. These modifications give a

substantial improvement in computational complexity. Suppose that a dictionary size
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is N × L and a target sparsity is K, then the complexities of the two algorithms are

as follows:

Tomp = K3 + 2KNL (3.24)

Tb−omp = K3 +K2L+ 2NL (3.25)

For example, if K =
√

(N)/2 and L = 2N , then they are computed as:

Tomp = 2N2.5 (3.26)

Tb−omp = 4.5N2 (3.27)

This computation does not take into account the time required to pre-compute G

but it becomes insignificant as the number of signals increases. Rubinstein points out

that for N = 256, the ratio between the two methods approaches to 7.11 for example:

Tomp
Tb−omp

=
2

4.5

√
N ≈ 7.11 (3.28)
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Algorithm 2 Batch-OMP [23]

Input : ᾱ0 = DT ȳ, ε0 = ȳT ȳ,G = DTD, target error ε

Output : Sparse representation γ̄ such that ȳ ≈ Dγ̄

Initialization: Set I := (), L1; = [1], δ0 := 0, n := 1

1 while εn−1 > ε do

2 k̂ := argmax ‖αn−1
k ‖

3 ḡ := GIn,k̂

4 if n > 1 then

5 w̄ := Solve for w̄ {Ln−1w̄ = ḡIn}

6 Ln :=

Ln−1 0

w̄T
√

1− w̄T w̄


7 end if

8 In := (In−1, k̂)

9 c̄n := Solve for
{
Ln(Ln)T c̄ = ᾱ0

In

}
10 β̄n = GIn c̄

n

11 ᾱn := ᾱ0 − β̄n

12 δn = (c̄n)T β̄nIn

13 εn = εn−1 − δn + δn−1

14 n := n+ 1

15 end while

16 γ̄ := 0

17 γ̄In := c̄n

Reconstruction algorithm: ADMM algorithm

While the OMP and batch-OMP algorithms are categorized into greedy methods,

the ADMM (Alternating Direction Method of Multipliers) algorithm [40] belongs to

the group of relaxation methods.
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In relaxation methods, the P0-epsilon problem is approximated by the L1-minimization

problem:

γ̂ = argmin ‖γ̄‖1 s.t. ‖ȳ −Dγ̄‖2
2 ≤ ε2 (3.29)

The constraint in Eq.(3.29) is often turned into a penalty by using a Lagrange mul-

tiplier λ:

γ̂ = argmin λ‖γ̄‖1 +
1

2
‖ȳ −Dγ̄‖2

2 (3.30)

On the other hand, the ADMM algorithm deals with the following type of opti-

mization problem:

x̂ = argmin f(x̄) + g(x̄) (3.31)

where the two functions f(x̄) and g(x̄) are easy to minimize individually but the func-

tion f(x̄)+g(x̄) is difficult to deal with. This problem can be restated by introducing

a new variable v̄:

x̂ = argmin f(x̄) + g(v̄) s.t. x̄ = v̄ (3.32)

Introducing a Lagrangian multiplier vector ū and turning the constraint into penalty,

the Augumented-Lagrangian can be formed as follows:

L(x̄, v̄, ū) = f(x̄) + g(x̄) +
1

2
‖x̄− v̄‖2

2 + ūT (x̄− v̄) (3.33)

= f(x̄) + g(x̄) +
1

2
‖x̄− v̄ + ū‖2

2 (3.34)

Using this Augumented-Lagrangian, Eq.(3.32) can be expressed as a set of optimiza-

tion problems as follows:

x̄k = argmin f(x̄) +
1

2
‖x̄− v̄k−1 + ūk−1‖2

2 (3.35)

v̄k = argmin g(v̄) +
1

2
‖x̄k − v̄ + ūk−1‖2

2 (3.36)

ūk = ūk−1 + x̄k − v̄k (3.37)
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Therefore, using Eq.(3.35), (3.36) and (3.37), the problem (3.30) can be written

as follows:

γ̄k = argmin ‖γ̄‖1 +
1

2
‖γ̄ − v̄k−1 + ūk−1‖2

2 (3.38)

v̄k = argmin
1

2
‖ȳ −Dγ̄‖2

2 +
1

2
‖γ̄k − v̄ + ūk−1‖2

2 (3.39)

ūk = ūk−1 + γ̄k − v̄k (3.40)

In this way, the problem (3.30) becomes much easier to solve.

First, Eq.(3.38) has a simple quadratic form which has a closed form solution:

γ̄k = (DTD + Ī)−1(DT b̄+ v̄k−1 − ūk−1) (3.41)

Since a matrix DTD + Ī is a symmetric positive-definite matrix, Eq.(3.38) can be

easily computed by Cholesky-factorization. On the other hand, it is known that the

problem (3.39) is solved by an algorithm called soft-thresholding [40].

v̄k = Sλ(γ̄k + ūk−1) (3.42)

=


γ̄k + ūk−1 + λ γ̄k + ūk−1 ≤ −λ

0 ‖γ̄k + ūk−1‖ < λ

γ̄k + ūk−1 + λ γ̄k + ūk−1 ≥ λ

(3.43)

Therefore, the overall structure of the ADMM algorithm is described in algorithm 3.

Algorithm 3 ADMM [40]

Input : Signal set ȳ, Dictionary D, number of iterations n

Output : Sparse representation γ̄ such that ȳ ≈ Dγ̄

Initialization: Set γ̄0 := 0, v̄0 := 0, ū0 := 0, k := 0

1 for k = 1, . . . , n do

2 γ̄k = (DTD + Ī)−1(DT b̄+ v̄k−1 − ūk−1)

3 v̄k = Sλ(γ̄k + ūk−1)

4 ūk = ūk−1 + γ̄k − v̄k

5 end for
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3.1.2 Simulation

Now some examples of the compressed sensing are shown. In this simulation, an

image is compressed and then reconstructed by the batch-OMP algorithm. Figure

3.1 shows the image used for this simulation. This image is called Barbara, which is

often used as a benchmark in image processing field [38]. The size of the image is

128×128. The sensing matrix is a Gaussian matrix with mean 0 and variance 1/1282,

and the compression ratio is 64%. The quality of the reconstructed image is evaluate

based on PSNR (Peak Signal-to-Noise-Ratio) which is defined as follows:

PSNR = 10 · log10

{
imsize2 · d2

‖x̂− x̄0‖2
2

}
(3.44)

where imsize is an edge length of a square image and d is a dynamic range, which is a

difference between the maximum value and the minimum value in the original image.

x̄0 is the original image vector and x̂ is the reconstructed image vector. The PSNR

is a measure for the clearness of images.

Fig. 3.1.: Image Barbara
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Fig. 3.2.: Compressed image and two reconstructed results (Result 1:

sparsity-constraint with K = 4000, Result 2: error-constraint with ε = 1)

The reconstruction result is shown in Figure 3.2. The leftmost image shows the

compressed image y in a matrix form. Given this compressed image and a sensing

matrix Φ, two images are reconstructed. Result 1 shows a solution of a sparsity-

constraint problem (Eq.(3.22)) with K = 4000 and Result 2 shows a solution of an

error-constraint problem (Eq.(3.23)) with ε = 1. The calculation time is 358.8 seconds

for Result 1 and 1718.6 seconds for Result 2. The simulations have been performed

on a Dell Precision Tower 5810 computer equipped with an Intel Xeon E5-1650 and

16 GB of RAM running a 64-bit version of Windows 7.

The PSNR value of the result depends on the threshold K or ε. The K value

is chosen so that the PSNR value becomes the maximum. Figure 3.3 shows the

relationship between the value K and the PSNR of the result. This figure shows that

the PSNR has become the maximum value when K ≈ 4, 000 and it gets saturated. On

the other hand, the smaller ε results in better PSNR value and longer computation

time. The value of ε is chosen so that the computation time is within 30 minutes.
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Fig. 3.3.: Relationship between the sparsity threshold and the PSNR of the result

The PSNR value of the result also depends on the compression ratio. Of course,

a higher compression ratio improves the PSNR value of the result but also increases

the computation time. Figure 3.4 shows the relationship between the compression

ratio and the PSNR value. Empirically, the PSNR value needs to be greater than

∼ 20dB for an image to be recognizable. Therefore, the compression ratio needs to

be at least around 50%.

Fig. 3.4.: Relationship between the compression ratio and the PSNR/computation

time (under sparsity constraint with K = 4, 000)
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3.2 Single-Pixel Camera

3.2.1 Overview

A single-pixel camera is one of the applications of compressed sensing suggested

by Takhar et.al [41]. Figure 3.6 [41] shows a block diagram of a single-pixel camera.

It has been used in a wide variety of fields including three-dimensional imaging [42]

(Figure 3.5) and remote sensing technique [15].

Fig. 3.5.: Three-dimensional imaging by a single-pixel camera [42]

Mathematical background

Prior to delving into the specifics of a single-pixel camera, it is prudent to reca-

pitulate the measurement process in the compressed sensing framework in detail. As

discussed in the previous section, an image vector x̄ ∈ Rn2
is measured as a product

of a sensing matrix Φ ∈ Rm×n2
:

ȳ = Φx̄ (3.45)
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where n is a size of one edge of a square image. The kth element of ȳ is expressed as

an inner product between a vector x and a kth row of Φ:

yk = Φ̄T
k x̄ =

[
φk1 . . . φkn2

]
x1

...

xn2

 =
n2∑
l=1

φklxl (3.46)

These vectors Φ̄k and x̄ both have a length of n2, and they are reshaped into matrices,

Φ̃k and X respectively:

Φ̃k =


φk1 . . . φk(n2−n+1)

...
. . .

...

φkn . . . φkn2

 , X =


x1 . . . xn2−n+1

...
. . .

...

xn . . . xn2

 (3.47)

Since the size of the two matrices are the same, their element-wise product can be

computed. The summation of the element-wise product between these two matrices

are the same with the value of yk:

yk =
∑
all

Φ̃k �X (3.48)

Therefore, the measurement vector ȳ in Eq.(3.45) can be obtained by getting the

element-wise product m times. This idea is practiced in a single-pixel camera.

Mechanism of a single-pixel camera

Fig. 3.6.: Single-pixel camera diagram [41], p.5
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Fig. 3.7.: (a) Schematic of two mirrors of DMD. (b) A portion of an actual DMD

array with an ant leg for scale [43], p.89

The mechanism of the camera can be explained as follows. First, an incident light

field from the image of interest is collected by the first convex lens. This light field

corresponds to a matrix X in Eq.(3.47). Subsequently, the light field is focused onto

a digital micro-mirror device (DMD) consisting of millions of micro mirrors (Figure

3.7). The light flux from each pixel of the image reflects on a particular mirror of the

DMD in a pixel-wise way. Each mirror can be oriented in two directions: −10o or 10o.

If a light flux is reflected on a mirror orienting in 10o, the light flux can be collected

by the second lens but otherwise, the light cannot be collected. Therefore, these two

directions of the mirror correspond to 0-output and 1-output respectively. All the

light fluxes from the lens 1 are reflected on DMD with an output of either 0 or 1, and

they are collected by lens 2. The total intensity of the light is measured by a single

photo-diode, processed by A/D converter. This measurement process is repeated m

times and the vector ȳ is obtained. Finally, given ȳ, the image x̄ is reconstructed by

compressed sensing scheme.
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Comparison with compressed sensing

These procedures correspond to compressed sensing. The DMD array corresponds

to the matrix Φ̃k in Eq.(3.45) and the measurement of the total intensity of light in

the single photo-diode corresponds to the calculation in Eq.(3.48). Each mirror in

the DMD returns a product between a pixel value and either 0 or 1. The summation

of all the products equals to the kth element of ȳ. By repeating this measurement m

times, the all elements of ȳ can be obtained.

The only difference from the compressed sensing is that the elements of the sensing

matrix is limited to either 0 or 1. However, by getting a random mirror pattern, this

sensing matrix also satisfies the RIP condition and hence the reconstruction of an

image is guaranteed. The most simple pattern that can be generated by DMD is a

Rademacher pattern:

φij =

1 p = 1/2

−1 p = 1/2

(3.49)

where p is a probability. Baraniuk [44] showed that a sensing matrix generated by

this pattern satisfies the RIP condition with high probability. Although the DMD

returns only 0 or 1, the Rademacher pattern can be realized by a simple calculation:

0 1 0 1 1 1 0 0 1

↓ ×2

0 2 0 2 2 2 0 0 2

↓ −1

-1 1 -1 1 1 1 -1 -1 1

First, an image is measured by using a sensing matrix whose element is 1 by proba-

bility of 1/2 and 0 by probability of 1/2. Subsequently, the result of the measurement

is multiplied by 2. An image is again measured by a sensing matrix whose elements

are all 1. By substituting the second result from the first result, an image can be

measured by the Rademacher pattern [45].
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It is also possible to get a Gaussian matrix on the mirror patterns by using a

similar technique called Pulse-width modulation (PWM). Before implementing the

PWM, all the elements in the Gaussian matrix needs to be modified to minimize

the numerical error as much as possible. First, all the values are offset so that the

minimum value becomes zero. Subsequently, they are stretched so that the maximum

value becomes one. Now everything is ready for the PWM. This technique enables

to approximately get an arbitrary value between 0 and 1. In each time sequence, the

mirror can only return 0 or 1. However, by adjusting the number of outputs during

a certain time frame, it gets a decimal value as an average. For example, in Figure

3.8, during a time frame of 5t, a mirror returns an output of 1 for only t period of

time. In this case, the average signal value during this time frame is 0.2. Therefore,

this method enables us to measure an image by a sensing matrix whose elements

are between 0 and 1. After all the measurements are obtained, they are modified so

that they become equivalent with being measured by a Gaussian matrix. Since the

measurement is a linear operation, the modification is done easily.

Fig. 3.8.: How to express a positive value less than 1 by PWM

One problem of this approach is a trade-off between an accuracy and an exposure

time. The accuracy of the approximation increases with longer digits of the decimal

number, which needs a longer time frame. Suppose a signal value needed is 0.1234

and let np denote the number of measurements to approximate this value. If np = 102,

12 times out of 102 times are the output of 1 and a signal value obtained is 0.12. On
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the other hand, if np = 104, a signal value obtained is 0.1234, which is by far more

accurate but takes longer time. Since measurement time increases by an order of 10n

to get n-times more accurate results, it is necessary to consider how much round-off

error is allowed in this measurement process.

3.2.2 Simulation

Algorithm

As mentioned earlier, the only difference between the compressed sensing and

single-pixel camera in a simulation is a way to obtain the measurement. Here, the

mathematical expression for a single-pixel camera and its relationship with com-

pressed sensing are discussed. The goal is to approximate the measurement vector ȳ

which can be obtained by:

Goal:


y1

y2

...

ym


︸ ︷︷ ︸

ȳ

=


φ11 φ12 . . . . . . φ1N

φ21 . . .
...

φm1 φm2 . . . . . . φmN


︸ ︷︷ ︸

Φ


x1

x2

...

xN


︸ ︷︷ ︸

x̄

(3.50)

where Φ is a Gaussian matrix and x̄ is a vector form of the observed image. First,

all the elements of matrix Φ are offset by its smallest element φmin. Subsequently,

all the elements are stretched by coefficient k = 1/φmax, where φmax is the largest

element after the offset. As a result, a matrix ΦDMD whose elements are between 0

and 1 is obtained:

ΦDMD =


k(φ11 − φmin) . . . . . . k(φ1N − φmin)

k(φ21 − φmin) . . .
...

k(φm1 − φmin) . . . . . . k(φmN − φmin)

 ≡

φ̃11 . . . . . . φ̃1N

φ̃21 . . .
...

φ̃m1 . . . . . . φ̃mN


(3.51)
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The next step is to approximate the elements of ΦDMD by PWM. Each element

φ̃ij (1 ≤ i ≤ m, 1 ≤ j ≤ N) is expressed as a time average of mirror sequences. Let

ρtij denote a mirror value corresponding to an element φ̃ij at time t. Its value is either

zero or one.

ρtij = 0 or 1, (3.52)

φ̃ij '
1

p

tp∑
t=t1

ρtij (3.53)

For example, if φ̃ij = 0.2 is a target value of the element and p = 5, then the target

mirror pattern is
{
ρt1ij , ρ

t2
ij , ρ

t3
ij , ρ

t4
ij , ρ

t5
ij

}
= {0, 0, 0, 0, 1}.

In a single-pixel camera, an image or scene is measured m times and each measure-

ment corresponds to the ith row of ΦDMD in Eq.(3.51). From Eq.(3.51) and Eq.(3.53),

the ith measurement obtained by DMD is expressed as follows:

yDMD(i) =
1

p

N∑
j=1

tp∑
t=t1

ρtij xi (3.54)

'
N∑
j=1

φ̃i,j xi (3.55)

However, this value cannot be directly used for reconstruction algorithm and needs

modification because of the offset and stretch operation which is done earlier. From

Eq.(3.51), the relationship between the true Gaussian element and the stretched ele-

ment is given as follows:

φ̃ij = k(φij − φmin) (3.56)

Substitution of Eq.(3.56) into Eq.(3.55) gives

yDMD(i) =
N∑
j=1

k(φij − φmin) xi (3.57)

= k
N∑
j=1

φijxi − φmin
N∑
j=1

xi (3.58)
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From Eq.(3.50), the ith element of the true measurement is expressed as

y(i) =
N∑
j=1

φijxi (3.59)

Therefore, equating Eq.(3.58) and Eq.(3.59), the true measurement is expressed in

terms of the DMD measurement as follows:

y(i) =
1

k
yDMD(i) + φmin

N∑
j=1

xi (3.60)

Therefore, in a simulation of a single-pixel camera, a measurement of an image by

DMD is simulated by using Eq.(3.54). Subsequently, the obtained value is modified

to a correct value by Eq.(3.60).

Simulation setup and Results

Based on this mathematics, single-pixel camera observation is simulated by using

two different mirror patterns: the Rademacher pattern and the Gaussian pattern. In

both mirror patterns, the Barbara image (Figure 3.1) of size 100× 100 is sensed by a

sensing matrix of size 6400× 10000. In compressed sensing, this is directly computed

as a product between the image vector and the sensing matrix. However, in a single-

pixel camera, the image is measured by each row of the sensing matrix independently.

Each row is approximated by nd mirror sequences and this is repeated for 6400 times.

Therefore, a required exposure time in the measurement process can be estimated by

the following formula:

tex = tu × np × 6400 (3.61)

Note that tu is an exposure time for one mirror pattern, which is assumed to be 1µs.

The value of np depends on a kind of mirror pattern and a level of approximation. If

the Rademacher pattern is chosen, it always follows that

np = 1 (3.62)
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since only one mirror pattern corresponds to each row of the sensing matrix. On the

other hand, if the Gaussian pattern is chosen, the value of np depends on how well

the element of the sensing matrix is approximated:

np = 10d (3.63)

where d is a number of significant digits guaranteed by PWM. The image is recon-

structed by batch-OMP algorithm under sparsity constraint where K = 4, 000.

Fig. 3.9.: Images reconstructed by single-pixel camera based on different mirror

patterns or exposure time (See Table for more details)

Table 3.1.: Mirror patterns and parameters in Figure 3.9

Result (a) Result (b) Result (c)

Mirror pattern Rademacher Gaussian Gaussian

Required exposure time 6.4× 10−3 min 64 min 640 min

Figure 3.9 shows the results reconstructed under different mirror patterns and

exposure times described in Table 3.1. Clearly, the Rademacher pattern has an ad-

vantage in the exposure time. However, the Gaussian pattern gives better PSNR

values with longer exposure time because of the better approximation of the sensing

matrix.
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4. DICTIONARY LEARNING

4.1 Background

In a sparse-land model [38], it is assumed that most signals are represented by a

simple linear system:

x̄ = Dγ̄ with ‖γ̄‖0 = k (� npixel) (4.1)

where x̄ is a signal vector of length npixel, D is a matrix and γ̄ is a sparse vector. In

this model, the signal x̄ is represented by a linear combination of only k columns of

D. Therefore, ”one can consider D as the periodic table of the fundamental elements

in chemistry to describe the signal [38]”. In this case, the matrix D is called a

dictionary of the signal x̄ and its columns are called atoms. For examples, a discrete

cosine matrix Ψ is a most common dictionary for natural images as already discussed

in section 3.1:

x̄ = Ψγ̄ with ‖γ̄‖0 = k (� N) (4.2)

In this case, DCT helps to compress the image signal x̄.

The main focus of attention in an image processing community is how to design a

dictionary to better describe images accurately with the sparsest possible coefficients.

One of the most straightforward approaches is to choose a pre-constructed dictionary

that best fits a signal of interest. There exist some well-known dictionaries including

Fourier, DCT, Hadamard [46], Wavelet [47], Curvelet [48] and Contourlet [49], most of

which correspond to an inverse transform. Another approach is to adjust parameters

of a certain adaptable dictionaries to fit into the signal. The most famous examples

are Wavelet packets [50] and bandlets [51]. However, these dictionaries are restricted

to a certain type of images. A dictionary which adapts to any kinds of images can be
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found by introducing a new aspect, learning. This is a basic motivation of dictionary

learning.

The dictionary learning starts with a training database of images of interest

{x̄i}Ni=1. This training database can be totally different types of images, similar type

of images [52] or cropped patches of one image. Based on this database, a common

dictionary D is found so that it describes all the images in the database as accurately

as possible:

x̄i = Dγ̄i + v̄i with ‖γ̄i‖0 = k0, ‖v̄i‖2 ≤ ε, i = 1, ..., N (4.3)

where v̄i is a representation error vector of the ith image and ε is an upper bound

of the representation error. This learning objective can be formulated as one of the

following optimization tasks:

{D̂, γ̂i} = argmin ‖γi‖0 s.t. ∀i, ‖x̄i −Dγ̄i‖2 ≤ ε (4.4)

{D̂, γ̂i} = argmin ‖x̄i −Dγ̄i‖2 s.t. ∀i, ‖γ̄i‖0 ≤ T (4.5)

Note that the training database and its sparse representation are also represented in

matrices form, X and Γ whose columns are x̄i and γ̄i respectively. Using this matrix

representation, Eq.(4.4) and Eq.(4.5) are expressed as follows:

{D̂, Γ̂} = argmin ‖γi‖0 s.t. ‖X−DΓ‖2
F ≤ ε (4.6)

{D̂, Γ̂} = argmin ‖X−DΓ‖2
F s.t. ∀i, ‖γ̄i‖0 ≤ T (4.7)

This optimization problem is clearly not a well-posed problem since a permutation

of atoms in D̂ does not affect the solution if the corresponding elements in γ̂i are also

permuted. Moreover, the scale between D and γ̄i is not defined. In many cases, this

issue is fixed by setting a constraint such that D has a normalized atoms:

diag
{
DTD

}
= I (4.8)

where diag{·} represents diagonal elements of a matrix and I is an identity matrix.
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4.2 Algorithms

There have been large number of algorithms for solving this dictionary learning

problem. Here, the KSVD (K-singular value decomposition) algorithm [23] [53] and

its modified version, sparse-KSVD algorithm [19] are introduced. Both of these al-

gorithms are in the sparse-land model framework and one of the most fundamental

algorithms used for image compression, image denoising and image deblurring. In

both algorithms, the basic idea is to estimate the dictionary D and the sparse co-

efficient matrix Γ are updated alternately. While one of them is fixed, the other is

updated. This cycle is repeated until the stopping criterion is satisfied.
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4.2.1 KSVD Algorithm

Algorithm 4 KSVD [23]

Input : Signal set X, initial dictionary D(0), target sparsity T , number of

iterations k

Output : Dictionary D ∈ Rm×n and sparse coefficient matrix Γ ∈ Rn such

that X ≈ DΓ

Initialization: Set D := D(0)

1 for n = 1 . . . k do

2 ∀i : γ̄i := argmin ‖x̄i −Dγ̄i‖2 s.t. ‖γ̄‖0 ≤ T

3 for j = 1 . . . n do

4 Dj := 0̄

5 I := {indices of the signals in X whose representations use d̄j}

6 E := XI −DΓI

7 {d̄, ḡ} := argmin‖E− d̄ḡT‖2
F s.t. ‖d̄‖2 = 1

8 Dj := d̄

9 Γj,I := ḡT

10 end for

11 end for

The algorithm 4 shows the pseudo-code of the KSVD algorithm [23]. In the line 2,

the ith column of the matrix Γ is updated by minimizing the residual under sparsity

constraint. This problem can be solved by any greedy algorithms but in this research,

the batch-OMP algorithm is used. The most innovative part of the KSVD algorithm

is the line 5 and the subsequent lines. The basic idea is to update one particular
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column of D and its corresponding row of Γ while keeping the rest of the matrices

maintained:

‖X−DΓ‖2
F =

∥∥∥∥∥X−
m∑
j=1

d̄j γ̄
T
j

∥∥∥∥∥
2

F

(4.9)

=

∥∥∥∥∥
{

X−
∑
k 6=`

d̄kγ̄
T
k

}
− d̄`γ̄T`

∥∥∥∥∥
2

F

= ‖E` − d̄`γ̄T` ‖2
F (4.10)

where d̄` is the `th column of D and γ̄T` is the `th row of Γ. The minimization of

the right hand side of Eq.(4.10) seems to easily be done by rank-1 approximation via

SVD decomposition while E` is fixed:

{d̄`, γ̄`} := argmin ‖E` − d̄`γ̄T` ‖2
F s.t. ‖d̄`‖2 = 1 (4.11)

However, in fact, a solution of this optimization problem is not the correct solution.

Because of the nature of the SVD, this optimization suggests a dense solution for γ̄`

although it needs to be a sparse vector.

To obtain the sparse solution by SVD, the update step requires a little ingenuity.

Instead of using all the signals in X, the update step uses only the columns in X

whose sparse representations use the current atom. Let I denote a set of indices of

the signals in X which use the `th atom of the dictionary D, and XI and ΓI denote

the sub-matrix of X and Γ whose indices are specified by I. Using this notation,

Eq.(4.9) can be modified as:

‖XI −DΓI‖2
F =

∥∥∥∥∥XI −
m∑
j=1

d̄j γ̃
T
j

∥∥∥∥∥
2

F

(4.12)

=

∥∥∥∥∥
{

XI −
∑
k 6=`

d̄kγ̃
T
k

}
− d̄`γ̃T`

∥∥∥∥∥
2

F

= ‖Ẽ` − d̄`γ̃T` ‖2
F

= ‖E− d̄ḡT‖2
F (4.13)
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Note that γ̃Tj is the jth row of the matrix ΓI . For simplicity, the following notations

are used: E = Ẽ` = XI−
∑

k 6=` d̄kγ̃
T
k , d̄ = d̄` and γ̄ = γ̄`. Therefore, the minimization

of the right hand side of Eq.(4.13) is formulated as [53]:

{d̄, ḡ} := argmin ‖E− d̄ḡT‖2
F s.t. ‖d̄‖2 = 1 (4.14)

This problem can be solved simply by rank-1 approximation via SVD. Although ḡT

is obtained as a dense solution, the sparsity of the matrix Γ is not ruined since ḡT is

merely a sub-vector of γ̄Tj .

There is an alternative method for SVD to implement rank-1 approximation. Ru-

binstein et.al. [23] suggests a faster iterative process to approximate this computation.

When d̄ is fixed, Eq.(4.14) is expressed as a following problem, which has a closed-form

solution:

ḡT = argmin ‖E− d̄ḡT‖2
F =

d̄TE

d̄T d̄
= d̄TE (4.15)

On the other hand, when ḡ is fixed, Eq.(4.14) is expressed as a following problem,

which also has a closed-form solution:

d̄ = argmin ‖E− d̄ḡT‖2
F =

Eḡ

ḡT ḡ
(4.16)

The iterative computation of Eq.(4.26) and Eq.(4.16) for a few rounds gives an accu-

rate result for Eq.(4.14).

4.2.2 Sparse KSVD Algorithm

Difficulties of Dictionary learning

The dictionary learning algorithm is a powerful tool but it has some major prob-

lems by its nature. In the following, two of these problems are introduced.

The first problem is a long computational time. In KSVD for example, the mul-

tiplication DΓI by using explicit matrix requires nm operations if the size of the

dictionary D is n×m. This computation is repeated for m iterations, which results
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in a long computation time. On the other hand, a structured matrix such as a sepa-

rable DCT matrix requires less computation time as already discussed in subsection

3.1. Suppose the dictionary D is separable and expressed as

D = Dsep ⊗Dsep (4.17)

where ⊗ represents a Kronecker product and the size of the separable dictionary Dsep

is
√
n ×
√
m. This is a property of 2D-DCT matrix. If this property holds, the

multiplication DΓI is equivalent with the following operation:

DT
sepΓ

′

IDsep (4.18)

where Γ
′
I is a matrix obtained by reshaping ΓI into a size of

√
m ×

√
m. This

computation requires only 2n
√
m operations. Therefore, if this kind of separable

property can be exploited, this problem can be reduced.

The second problem is that the images of the learning data is restricted to a

small size and a low dimension. Empirically, the KSVD algorithm can only deal with

n < 1000 [38] where the size of the dictionary D is n×m, which means the maximum

image size of the learning data is around 30 × 30. The large size of the dictionary

results in a too long computation time and over-fitting problem due to too many free

variables. One way to circumvent this problem is to apply the dictionary learning to

small image patches instead of a whole image.

Structured dictionary: Double sparsity model

One of the approaches to resolve the difficulties is to assume a certain structure of

a dictionary. The simplest model of such a structured dictionary is a double sparsity

model. In this model, the dictionary is assumed to be written as follows:

D = D0A with ∀i, ‖āi‖0 = T0 � n (4.19)

where D0 is a fixed base-dictionary with a fast deployment such as a separable DCT.

Moreover, A is a sparse dictionary representation whose columns āi are all sparse.
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This idea is inspired by the fact that a dictionary of an image also looks like an image

and hence it must have a sparse representation.

This double sparsity model has a number of benefits. First of all, this model makes

the computation faster. Since the deployment of D0 is fast and multiplication by a

sparse matrix A is fast, the multiplication by D is also fast. Moreover, the number

of free variables of D is much smaller because of its sparsity. As a result, this model

enables to deal with a larger, higher dimension signals.

Algorithm

Sparse KSVD algorithm [19] is a developed form the KSVD algorithm using the

double sparsity model. It solves the following problem:

{Â, Γ̂} = argmin ‖X−D0AΓ‖2
F s.t. ∀i, ‖āi‖0 ≤ T0, ‖γ̄i‖0 ≤ T1 (4.20)

Rubinstein [19] uses this algorithm to learn a dictionary of size 64× 100 by 2D-DCT

and a dictionary of size 512× 1000 by 3D-DCT.

The algorithm 5 shows the overview of the sparse KSVD algorithm. The overall

structure is similar to the KSVD algorithm: the iteration between an update of a

signal representation γ̄ and an update of a dictionary representation ā.
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Algorithm 5 Sparse KSVD [19]

Input : Signal set X, base dictionary D0, initial dictionary representation

A(0), target sparsity T , number of iterations k

Output : Sparse dictionary representation A ∈ Rm×n and sparse signal repre-

sentation Γ ∈ Rn×N such that X ≈ D0AΓ

Initialization: Set A := A(0)

1 for n = 1 . . . k do

2 ∀i : γ̄i := argmin ‖x̄i −D0Aγ̄i‖2 s.t. ‖γ̄‖0 ≤ T

3 for j = 1 . . .m do

4 Aj := 0̄

5 I := {indices of the signals in X whose representations use āj}

6 ḡ := ΓT
j,I

7 ḡ := ḡ/‖ḡ‖2

8 z̄ := XI ḡ −D0AΓI ḡ

9 ā := argmin ‖z̄ −D0ā‖2 s.t. ‖ā‖0 ≤ T

10 ā := ā/‖D0ā‖2

11 Aj := ā

12 Γj,I := (XT
I D0ā− (D0AΓI)

TD0ā)T

13 end for

14 end for

In the line 2 of the sparse KSVD, the ith column of the matrix Γ is updated by

minimizing the residual under sparsity constraint while A is fixed. This problem can

be solved by any greedy algorithms; in this research, the batch-OMP algorithm is

used. In this step, the sparse structure of the dictionary D = D0A speeds up the

computation.

In the line 3 and the subsequent lines, the update of the matrix A is computed

after the update of Γ. Similarly to the KSVD algorithm, the update uses only the

columns in X whose sparse representations use the currently updated column ā`.
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Let I denote a set of indices of the signals in X which use the column ā`, then the

representation error can be expressed as follows:

‖XI −D0AΓI‖2
F =

∥∥∥∥∥XI −D0

m∑
i=1

āiγ̃
T
i

∥∥∥∥∥
2

F

(4.21)

=

∥∥∥∥∥
{

XI −D0

∑
i 6=`

āiγ̃
T
i

}
−D0ā`γ̃

T
`

∥∥∥∥∥
2

F

(4.22)

=
∥∥E` −D0ā`γ̃

T
`

∥∥2

F
(4.23)

Note that XI and ΓI denote the sub-matrix of X and Γ whose indices are specified

by I and γ̃Ti is the ith row of the matrix ΓI . For simplicity, the following notations

are used: E = E` = XI −D0

∑
i 6=` āiγ̃

T
i , ā = ā`, ḡ = γ̃T` . The minimization of the

right hand side of Eq.(4.23) is formulated as:

{ā, ḡ} := argmin ‖E− āḡT‖2
F s.t. ‖ā‖0 ≤ T0 (4.24)

Note that there is no sparsity constraint for ḡ because it is a sub-vector of a sparse

column of Γ. This problem can be solved by alternating the update of ā and the

update of ḡ. First, ḡ is updated while ā is fixed. This problem can be solved by least

squares which has a closed-form solution:

ḡ := argmin ‖E−D0āḡ
T‖2

F =
āTDT

0 E

āTDT
0 D0ā

(4.25)

Subsequently, ā is updated while ḡ is fixed. This problem is formulated as:

ā := argmin ‖E−D0āḡ
T‖2

F s.t ‖ā‖0 ≤ T0 (4.26)

This problem is not straightforward since ā is multiplied from the left and the right.

Rubinstein [19] showed that there is a much easier alternative for this problem under

the constraint that ḡT ḡ = 1:

ā := argmin ‖Eḡ −D0ā‖2
F s.t ‖ā‖0 ≤ T0 (4.27)

This problem can be easily solved by any greedy algorithms. In this research, the

batch-OMP algorithm is used.
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4.3 Denoising Simulation

One of many applications of dictionary learning is to remove noise from an image.

In this section, such a denoising technique is demonstrated by using KSVD and sparse

KSVD algorithms.

4.3.1 Problem Formulation

Suppose that a signal x̄ is generated by sparse-land model using a dictionary D

and a sparse coefficient vector γ̄:

x̄ = Dγ̄ with ‖γ̄‖0 ≤ T (4.28)

This signal is corrupted by additive noise v̄:

ȳ = Dγ̄ + v̄ with ‖v̄‖2 ≤ ε (4.29)

where the noise v̄ is often modeled as a Gaussian noise upper-bounded by ε. The

best way to remove noise from this signal ȳ is to find the best pair of D and γ̄ whose

representation error is within ε. Therefore, the denoising problem is formulated as a

following inverse problem:

{γ̂, D̂} := argmin ‖γ̄‖0 with ‖ȳ −Dγ̄‖2 ≤ ε (4.30)

This problem (Eq.(4.30)) looks similar to the dictionary learning problem. However,

one major difference is that this problem only has one image as training database

which is not sufficient at all. This issue is often fixed by a method called patch-based

method, which will be discussed in the next section.
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4.3.2 Patch-Based Method

Fig. 4.1.: Patch-based method

The basic idea of a patch-based method is to extract small image patches from a

whole image and used them as training database for dictionary learning. This method

has multiple advantages. First, it enables to deal with any size of images by choosing

a proper patch size. Moreover, it is possible to process each patch image in a parallel

way to speed up the computation. Furthermore, it enables to capture local properties

of an image which cannot be captured by global-scale operation.

There are some ways to extract patches. The most straightforward way would be

to divide the whole image into distinct image patches, apply dictionary learning and

merge the result in each patch back to their original locations. This method works

well but the result contains some artifacts in the boundary of the patches [52].

A better alternative is to use overlapped patches as shown in Figure 4.1. A patch

is first extracted from the upper left corner of the whole image. Then, another patch

is extracted from the place one pixel below the first one. This process is repeated

until a patch reaches to the lower end. Once it reaches to the end, the patch returns

to an upper end of the image but one pixel shifted rightward and the same process is

repeated until the patch reaches to the lower right corner. The total number of the
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overlapped patches is (n− p+ 1)2 if the whole image size is n× n and the patch size

is p× p. Each image patch is vectorized and concatenated to form a matrix Y of size

p2 × (n− p + 1)2. This matrix is used as a training database for dictionary learning

algorithm. The denoising problem can be written as follows:

{Γ̂, D̂} := argmin ‖γ̄i‖0 with ‖Y −DΓ‖F ≤ ε (4.31)

If the double sparsity model is used, the problem can be written as:

{Γ̂, Â} := argmin ‖γ̄i‖0 with ‖Y −D0AΓ‖F ≤ ε, ∀i, ‖āi‖0 ≤ T0 (4.32)

After each patch is denoised, these results are placed back into their original places

and their values are averaged.

4.3.3 Simulation

Methods

In subsection 3.2.2, three images have been reconstructed by simulating a single-

pixel camera (Figure 3.9). Now, these noisy images are denoised by using KSVD

and sparse KSVD algorithms based on the patch-based method and their results are

compared.

For KSVD algorithm, a patch size is 5 × 5 and a dictionary size is 25 × 25. The

initial dictionary is a 2D-DCT matrix. The constraint for the average representation

error per atom is 5. The number of iterations is 100.

For sparse-KSVD algorithm, the patch size is 5×5 and a dictionary size is 25×100.

The base dictionary is a separable 2D-DCT dictionary of size 10 × 10. The sparsity

constraint for the dictionary is 16 and the constraint for the average representation

error per atom is 5. The number of iterations is 100.
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Results

Fig. 4.2.: Comparison of noisy images and denoised images



65

Fig. 4.3.: Comparison of the learned dictionary

Figure 4.2 shows the result for the denoising by KSVD and sparse KSVD algo-

rithm. Figure 4.2 (a0), (b0) and (c0) are the noisy images obtained by Rademacher

mirror pattern, Gaussian mirror pattern with 64 minutes exposure and with 640 min-

utes exposure time in a single-pixel camera simulation in subsection 3.2.2. Figure 4.2

(a1), (b1) and (c1) are the images denoised by KSVD algorithm. Figure 4.2 (a2),

(b2) and (c2) are the images denoised by sparse KSVD algorithm.

In both cases, the PSNR values are greatly improved from the noisy images. The

sparse KSVD algorithm gives better results than that of the KSVD algorithm by

around 0.18-0.2 dB in all three cases. However, the biggest advantage of the sparse
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KSVD algorithm is its fast computation time. For the KSVD algorithm, it takes

around 39 seconds on average to complete the process for one image. On the other

hand, for the sparse KSVD algorithm, the computation time is only 5.6 seconds

on average. The simulations have been performed on a Dell Precision Tower 5810

computer equipped with an Intel Xeon E5-1650 and 16 GB of RAM running a 64-bit

version of Windows 7.

Figure 4.3 (a1), (b1) and (c1) are the dictionaries D obtained by KSVD and Figure

4.3 (a2), (b2) and (c2) are the sparse dictionary representations A obtained by sparse

KSVD after 100 iterations. Each column of the dictionary is reshaped and displayed

as an image. For example, in the sparse KSVD algorithm, the size of the dictionary

representation is 52×102. Therefore, in (a2), (b2) and (c2), there are 10×10 squares

and the size of each square is 5× 5.

As it can be seen, the learned dictionary is optimized into a collection of simple

fundamental elements to compose an image. Not surprisingly, Figure 4.3 (a1), (b1)

and (c1) share some similar columns since their corresponding images are the same.

Figure 4.3 (a2), (b2) and (c2) consist of sparser columns with cardinality 15.
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5. CHARACTERIZATION OF SATELLITE BY

COMPRESSED SENSING

The main goal of this chapter is to obtain an image of a satellite given its light curve

by using the compressed sensing scheme.

5.1 Adapted Light Curve Model and Simulation Overview

5.1.1 Analogy Between Single-Pixel Camera and Light Curve Measure-

ments

Figure 5.1 shows the comparison between (a) a single-pixel camera measurement,

(b) an ideal light curve measurement and (c) an attenuated noisy light curve mea-

surement.

Fig. 5.1.: Comparison of a single-pixel camera and a light curve: (a) Observation of

an object by a single-pixel camera, (b) Observation of an object via an ideal light

curve, (c) Observation of an object via an attenuated noisy light curve
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First, in an observation by a single-pixel camera, the irradiance from an object is

multiplied by a random ratio based on the mirror pattern of a DMD array, and their

total intensity is measured by a photo-diode as shown in Figure 5.1 (a). The mirror

pattern is expressed in a matrix form Φk and it is vectorized to form a vector Φ̄k.

The kth measurement process is expressed as an inner product between the mirror

pattern vector and an image vector x̄:

yk = Φ̄T
k x̄ =

[
φk1 . . . φkn2

]
x1

...

xn2

 =
n2∑
l=1

φklxl (5.1)

This measurement is obtained at m different times using different but known mirror

patterns and the measurement vector ȳ is obtained.

Similarly, in a light curve observation, light fluxes reflected off a satellite are

collected by a sensor. The satellite is modeled as a polygon consisting of small facets

(meshes) and the light fluxes are computed in a mesh-wise way:

I(t) = I0

n∑
i=1

Ai
π(rtopo(t))2

{
Cd (V̄i · N̄i)(S̄i · N̄i) +

τi Cs (rSun(t))2

a2
Sun

}
(5.2)

τi =

1 if |θincoming − θoutcoming| ≤ 0.5◦

0 otherwise

(5.3)

The Eq.(5.2) can be simplified as an inner product between two vectors:

I(t) = 1̄T ρ̄(t) =
[
1 . . . 1

]
ρ1(t)

...

ρn(t)

 =
n∑
i=1

ρi (5.4)

where ρi denotes a light intensity from the ith mesh

ρi(t) = I0
Ai

π(rtopo(t))2

{
Cd (V̄i · N̄i)(S̄i · N̄i) +

τi Cs (rSun(t))2

a2
Sun

}
(5.5)

The Eq.(5.4) is a model for an ideal light curve where all the light fluxes are collected

without being disturbed as shown in Figure 5.1 (b). However, what can be observed in
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reality is an attenuated noisy light curve collapsed by atmosphere as shown in Figure

5.1 (c). The light fluxes from a space object pass through a turbulent atmosphere

around the Earth before they reach a ground-based observer. Since the atmosphere

is not even due to small temperature variations, the irradiance of light fluxes get

fluctuated. Some light fluxes may not be affected much while other fluxes may be

weakened severely or reflected off the observer direction. This effect is referred to

as scintillation and often modeled as a random process. Therefore, this attenuated

noisy light curve may be modeled by simply exchanging the vector 1̄ in Eq.(5.4) for

a Gaussian random vector φ̄:

I(t) = φ̄T ρ̄(t) =
[
φ1 . . . φn

]
ρ1(t)

...

ρn(t)

 =
n∑
i=1

φiρi (5.6)

Interestingly, the Eq.(5.6) is exactly the same form as the Eq.(5.1). Therefore, the

attenuated noisy light curve measurement can be regarded as one measurement in a

single-pixel camera, and the atmospheric noise can be considered as a mirror pattern

in a single-pixel camera, or a sensing matrix in compressed sensing.

However, there are two important aspects to be considered. The first aspect is

about a mathematical model of the measurement. The attenuated noisy light curve

is simplified to fit into a single-pixel camera model. The validity of this model is

discussed in further detail in the next subsection. The second aspect is the availability

of the sensing matrix. In a single-pixel camera, the sensing matrix is designed so that

it satisfies the RIP condition, and it is used in the reconstruction as well as the

measurement. On the other hand, in a light curve measurement, the sensing matrix

is unknown because it is impossible to know the atmospheric noise that the light

curve is subjected to.

Therefore, the main goal of this research is to bridge a gap between an attenuated

noisy light curve and a single-pixel camera under these simplified assumptions, and

determine applicability of the compressed sensing scheme to the reconstruction of a

resolved satellite image from the light curve.
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5.1.2 Adapted Light Curve Model

As introduced in Eq.(5.6) in subsection 5.1.1, this research models the noisy light

curve as a product between Gaussian random entries and an irradiance vector:

I(t) = φ̄T ρ̄(t) =
[
φ1 . . . φnmesh

]
ρ1(t)

...

ρnmesh
(t)

 =

nmesh∑
i=1

φiρi (5.7)

where nmesh is a total number of meshes in the 3D model of the satellite. In this

research, this light curve model is referred to as the ”realistic LC model”. In this

model, the mesh-wise product is chosen because it is physically correct in terms of

the process of the noise generation.

However, this realistic light curve model is not straightforward in terms of the

application to compressed sensing. In compressed sensing, an observed satellite is

modeled as an image which consists of pixels. Therefore, it is easier to model the

noise in a pixel-wise way instead of a mesh-wise way to apply the compressed sensing.

Thus, it is assumed that an observed satellite can be modeled as an image. Let x̄

denote the image vector, then the alternative model can be expressed as follows:

I(t) = φ̄T x̄(t) =
[
φ1 . . . φnpixel

]
x1(t)

...

xnpixel
(t)

 =

npixel∑
i=1

φixi (5.8)

where npixel is a total number of pixels of the satellite image. In this research this

simplified model is referred to as a ”simple LC model”. This model is an adapted

light curve model which is designed to fit into compressed sensing scheme directly.

Turning now to a simulation using this two light curve models, the difference be-

tween these two models and a noise-less light curve is discussed. First, a light curve

is generated without noise under the same settings as in Figure 2.9 in section 2.1.

Second, an attenuated noisy light curve is generated by following the realistic LC

model. Third, an attenuated noisy light curve is generated by modeling the satellite
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as an image of size 256×256 and following the simple LC model. In the both attenu-

ated noisy light curve models, the noise vector is generated from a Gaussian random

variable with mean 0 and variance 1/2562 by pseudo-random number generator so

that it is consistent with the sensing matrix required by compressed sensing theory.

Each time step, the pseudo-random number generator is initialized.

Fig. 5.2.: Comparison of two models for noisy light curve

Figure 5.2 shows the result. The black line is a noise-less light curve which is

exactly the same with Figure 2.9. The red line is a realistic LC model and the blue

line is a simple LC model. The both attenuated noisy light curves have a similar

trend as the noise-less light curve but they are shifted upward, which means they are

fainter than noise-less light curve. This characteristic is the same with a light curve

observed in a real world so these two models appear to be valid. Another remarkable

point is that the simple LC model makes the light curve darker than the realistic
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LC model even though the same kind of noise is added. This is simply because the

number of pixels (=2562) are much larger than the number of meshes (=4028) and

hence the simple LC model is easier to get affected by noise.

Finally, a procedure to construct a sensing matrix from these two light curve

models is considered. In both cases, a satellite needs to be observed m times under

the same geometry with varying atmospheric conditions. Therefore, it is assumed

that either the m measurements are done in a short time or over a moderate time

scale with the satellite being in a geostationary orbit with a stabilized attitude. These

m measurements are concatenated vertically to form a measurement vector. For the

realistic LC model, the measurement vector is expressed as:

ȳreal =


−φ(1)−

...

−φ(m)−

 ρ̄ =


φ

(1)
1 . . . φ

(1)
nmesh

...
...

φ
(m)
1 . . . φ

(m)
nmesh




ρ1

...

ρnmesh

 = Φmeshρ̄ (5.9)

Similarly, for the simple LC model, the measurement vector is expressed as:

ȳsimple =


−φ(1)−

...

−φ(m)−

 x̄ =


φ

(1)
1 . . . φ

(1)
npixel

...
...

φ
(m)
1 . . . φ

(m)
npixel




x1

...

xnpixel

 = Φpixelx̄ (5.10)

Note that φk is an atmospheric noise vector in the kth measurement.

In Eq.(5.10), the matrix Φpixel is identical with a sensing matrix in compressed

sensing. Therefore, when a simple LC model is used, the target problem is to directly

estimate Φpixel and x̄. On the other hand, in Eq.(5.9), the matrix Φmesh is not identical

to a sensing matrix since ρ̄ is not an image vector. Therefore, when a realistic LC

model is used, the matrix Φmesh has to be converted to a sensing matrix based on

a relationship between a pixel and a mesh before implementing compressed sensing

scheme. This will be discussed further in simulation A of section 5.2.

To summarize, this research considers two light curve models: the realistic LC

model and the simple LC model. In both cases, an observed satellite is assumed to

be observed from the same orientation under the same light conditions but with m
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different atmospheric noise settings. These two models are different in the way they

take noise into consideration. In the realistic LC model, the noise is applied in a

mesh-wise way. Therefore, this model is physically more accurate but an extra effort

is needed to obtain a sensing matrix. On the other hand, in the simple LC model, the

noise is applied in a pixel-wise way. Therefore, this model is physically less accurate

but more straightforward to apply to compressed sensing.

5.1.3 Simulation Overview

In the following, different satellite image reconstruction scenarios from light curve

measurements using compressed sensing are shown. Their methodology, advantages

and disadvantages as well as their applicability to real world scenarios are discussed.

The first two simulations, A and B solve the satellite image reconstruction problem

from light curve measurements in the presence of exact knowledge of the sensing

matrix. In the simulation A, the realistic LC model is used while in simulation B, the

simple LC model is used. In the simulation A, the limitation of the realistic LC model

is shown so in the later simulations, only the simple LC model is used. In the next

step, it is assumed that the sensing matrix is not known. In the simulation C1 and

C2, the dictionary learning approach is used with and without a patch-based method.

Through these two simulations, it is shown that a patch-based method seems to be

necessary for the success of the dictionary learning in this research. Therefore, the

simulation D uses another approach without using dictionary learning in the absence

of the knowledge of the sensing matrix. In this simulation, a light curve and images

of a reference satellite are assumed to be known. Under these additional assumptions,

a sensing matrix and the resolved satellite image is reconstructed by the compressed

sensing scheme. The overview of the assumptions, approaches and results of the

simulations are shown in Table 5.1.
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Table 5.1.: Simulation overview: assumptions, approaches and results

Simulation
Assumptions

Approach Result
LC model Sensing Matrix Φ

A realistic LC Given CS Success

B simple LC Given CS Success

C1 simple LC Not Given DL with patch Success

C2 simple LC Not Given DL without patch Failure

D1,D2,D3 simple LC Not Given Reference satellite Success

(Note: LC refers to a light curve, CS refers to compressed sensing and DL refers to dictionary

learning.)

5.2 Simulation A: Realistic Light Curve and Φ Known

5.2.1 Simulation

In this simulation, the satellite light curve is modeled as a realistic LC model.

Assuming that the noise matrix and the correspondence relationship between the

meshes and pixels are perfectly known, an image of the observed satellite is estimated.

The summary of this simulation settings is shown in Table 5.2.

Table 5.2.: Problem settings of the simulation A

Condition Symbol Size Description Assumption

Given ȳ m× 1 realistic LC model ȳ = Φrealρ̄

Given Φreal m× nmesh Pixel-wise noise matrix Φreal ∼ N (0, 1/npixel)

Find x̄ npixel×1 satellite image vector constant
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Fig. 5.3.: Flowchart of Simulation A

The procedures for the simulation A is shown in Figure 5.3. First, the light curve

intensity ρ̄ is corrupted by Gaussian noise matrix Φreal with mean 0 and variance

1/npixel. Note that npixel is a number of pixels in an image in which the reconstruction

is obtained. This matrix Φreal ∈ Rm×nmesh is converted into a sensing matrix Φ ∈

Rm×npixel based on the correspondence relationship between meshes and pixels. Note

that m is the number of measurements. Finally, given the sensing matrix Φ and the

measurement ȳ, the solution x̂ is obtained by solving the compressed sensing problem.

First, a sparse coefficient vector γ̂ is obtained by the minimization of L0-norm, and

subsequently the solution is converted to an image solution x̂ by using a discrete

cosine transform (DCT) matrix Ψ:

γ̂ = argmin ‖γ̄‖0 s.t. ‖ȳ −ΦΨγ̄‖2
2 ≤ ε2 (5.11)

x̂ = Ψγ̄ (5.12)
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The approximate problem is also solved by ADMM algorithm (Alternating Direction

Method of Multipliers):

γ̂ = argmin
1

2
‖ȳ −ΦΨγ̄‖2

2 + λ‖γ̄‖1 (5.13)

x̂ = Ψγ̄ (5.14)

Note that λ is a Lagrangian multiplier parameter.

The conversion of a matrix Φreal into a matrix Φ is discussed in detail as follows.

A mesh-wise measurement of a light curve is expressed as:

ȳ = Φreal ρ̄ =
m∑
i=1

φ̃Ti ρ̄ with φ̃Ti ∈ Rnmesh (5.15)

where φ̃Ti is the ith row vector of Φreal. In order to apply compressed sensing scheme,

the measurement needs to be interpreted as a pixel-wise measurement. Therefore,

the goal is to find an alternative expression:

ȳ = Φx̄ =
m∑
i=1

φTi x̄ with φTi ∈ Rnpixel (5.16)

This conversion is done based on a correspondence relationship between meshes and

pixels, which will be discussed in the following.

The jth measurement yj in Eq.(5.15) is a summation of a product between noise

values and intensity values:

yj = φ̃Tj ρ̄ = φ1ρ1 + φ2ρ2 + . . .+ φnmesh
ρnmesh

(5.17)

where ρ1, ρ2, . . . , ρnmesh
are the intensity of light curve in each mesh, and φ1, φ2, . . . , φnmesh

are the corresponding noise values. These mesh-wise light intensities are expressed as

a summation of pixel-wise light intensities:

ρ1 =

n1∑
k=1

x̃1k, ρ2 =

n2∑
k=1

x̃2k, . . . , ρnmesh
=

nnmesh∑
k=1

x̃nmeshk (5.18)

Substituting Eq.(5.18) into Eq.(5.17), the measurement is expressed in pixel-wise way:

yj = φ1

n1∑
k=1

x̃1k + φ2

n2∑
k=1

x̃2k + . . .+ φnmesh

nnmesh∑
k=1

x̃nmeshk (5.19)
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In Eq.(5.19), the pixel intensity values are collected in terms of φ’s. These terms are

sorted in lexicographical order with respect to the linear index of pixels in an image:

yj = φ′1x1 + φ′2x2 + . . .+ φ′npixel
xnpixel

= φ̄Tk x̄ (5.20)

Eq.(5.20) corresponds to the jth element of the measurement in Eq.(5.16). Therefore,

φ̄Tk in Eq.(5.20) is the kth row of the sensing matrix Φreal.

Therefore, the procedure for converting Φreal into Φ can be summarized as follows.

First, a mesh-wise noise matrix Φreal is generated from a Gaussian random variable.

Each column vector of Φreal corresponds to a mesh, and each mesh corresponds to

particular pixels in an image. Suppose the column vector φ̄k corresponds to a mesh

consisting of pixels p1, p2, ..., pnk
. Suppose there is an empty matrix Φ of sizem×npixel,

then the vector φ̄k is copied and saved in the columns of Φ which corresponds to

p1, p2, ..., pnk
.

In the simulation, a satellite is assumed to be in geosynchronous orbit and relative

position of the observer, the satellite and the Sun is fixed. The satellite is modeled as

a 3D mesh model consisting of 4028 meshes as shown in Figure 5.4. The red arrow

shows the direction of the Sun. The reconstruction result is obtained as an image of

size 100× 100. For the OMP algorithm, the error constraint in Eq.(5.11) is set to be

ε = 0.1. The ADMM algorithm is implemented 10 times with different values of the

parameter λ. These values are chosen from 10 logarithmically spaced points between

10−5 and 10−1 and multiplied by ‖(ΦΨ)T ȳ‖2. In both cases, if the reconstruction is

successful, an image in Figure 5.5 is obtained.
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Fig. 5.4.: The 3D satellite model in simulation A

Fig. 5.5.: The desired result in simulation A
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5.2.2 Results

Fig. 5.6.: Reconstructed image in simulation A

In this simulation, a satellite image is reconstructed given its realistic LC and the

sensing matrix. The OMP fails to produce a resolved image of the satellite. However,

ADMM algorithm gives a resolved image as shown in Figure 5.6. Although some

parts of the satellite does not look clear, it is accurate enough to identify the satellite

and its sub-components such as bus and panels.

The failure of the OMP is due to the property of the sensing matrix Φ. The matrix

Φ has the same multiple columns because there are multiple pixels corresponding to

one mesh. As a result, the OMP algorithm cannot find a unique solution since this

algorithm chooses the solution based on the inner product between the column of Φ

and the residual vector.

However, the assumption of this realistic LC model itself is not practical. An

image of the observed satellite is assumed to be unknown but at the same time, the

correspondence relationship between the meshes and pixels are assumed to be known.

In practical cases, this relationship should be unknown as well. If so, there are no

ways to reconstruct an image from the light curve.
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Therefore, in the following simulations, the realistic LC model is not used. Instead,

all the simulations are done using the simple LC model.

5.3 Simulation B: Simple Light Curve and Φ Known

5.3.1 Simulation

In this simulation, a light curve is modeled as a simple LC model. Assuming that

a sensing matrix Φ is known, an image of the observed satellite is estimated. The

summary of the simulation settings is shown in Table 5.3.

Table 5.3.: Problem settings of the simulation B

Condition Symbol Size Description Assumption

Given ȳ m× 1 simple LC model ȳ = Φx̄

Given Φ m× npixel sensing matrix Φ ∼ N (0, 1/npixel)

Find x̄ npixel × 1 satellite image vector constant

The procedures for the simulation B is shown in Figure 5.7. A target image is

Figure 5.8 of size 128 × 128. The pixel value of the image is adjusted so that all

the values are between 0 and 255. First, this image is vectorized and expressed as

a vector x̄. Subsequently, it is measured via sensing matrix assuming a simple LC

model:

ȳ = Φx̄ (5.21)

In this measurement process, three different kinds of sensing matrices Φ1, Φ2 and Φ3

are used to see the impact of the number of measurements. All these sensing matrices

are generated by Gaussian random variable with mean 0 and variance 1/npixel where

npixel = 1282. However, the number of measurements m, or the number of rows of

the matrix is 0.81npixel for Φ1, 0.25npixel for Φ2 and 0.09npixel for Φ3.
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Fig. 5.7.: Flowchart of Simulation B

Fig. 5.8.: Satellite image to reconstruct [54]
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Second, in each case, the image is reconstructed by using a simple LC and a

sensing matrix. Since the sensing matrix is assumed to be known, this problem is

exactly the same as the reconstruction process of an image in compressed sensing.

A sparse coefficient vector γ̂ is obtained with either a sparsity constraint or an error

constraint:

γ̂ = argmin ‖y − ΦΨγ‖2 s.t. ‖γ‖0 ≤ T or (5.22)

γ̂ = argmin ‖γ‖0 s.t. ‖y − ΦΨγ‖2 ≤ ε (5.23)

Subsequently, the sparse coefficient vector γ̂ is converted to a solution image vector

x̂ by discrete cosine transform (DCT) matrix:

x̂ = Ψγ̂ (5.24)

Theoretically, Eq.(5.22) and Eq.(5.23) are equivalent but empirically, Eq.(5.23) gives

a better result. Thus, in this simulation, Eq.(5.23) is solved by using the batch-OMP

(Orthogonal Matching Pursuit) algorithm [23]. Note that an two-dimensional discrete

cosine transform (2D-DCT) matrix is chosen as a sparsifying matrix Ψ. The error

constraint is set to be ε = 10.

After each solution is obtained, noise is removed from each result by using a sparse

KSVD algorithm. The patch size is 8 × 8 and the base dictionary is chosen to be a

2D-DCT matrix of size 100 × 100. Since the noise level differs in each of the three

results, different noise thresholds are set. The noise threshold is σ = 10 for Φ1, σ = 15

for Φ2 and σ = 35 for Φ3. The number of iterations is 50. The denoised results are

compared based on the PSNR values.
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5.3.2 Results

Fig. 5.9.: Reconstruction results with three different number of measurements, m

In this simulation, satellite images are reconstructed given its simple light curve

and the sensing matrix with three different number of measurements. The results

are shown in Figure 5.9. The first column shows the simple light curve ȳ for three

different number of measurements (m = 13225, 4096, 1444). In the simulation, y is

obtained as a vector and it is dimensionless value. However, for the sake of clarity,

it is converted to intensity value (W/m2). In subsection 5.1.2, the intensity value

of the noise-less light curve at time t = 0 is 1.658 × 10−11 W/m2. Since the total
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pixel value of an image in Figure 5.8 is 494140, the elements of ȳ are multiplied by

1.658× 10−11/494140 to have intensity values and its magnitude are computed:

ȳmag = magSun − 2.5 log10{1.658× 10−11/494140)ȳ} (5.25)

where magSun = −26.74. This result is plotted as a line graph with index of element

in a horizontal axis and the intensity in a vertical axis. Note that some negative

elements in ȳ are neglected when it is plotted as ȳmag. The values in the parentheses

shows the ratio between m and npixel, which is equivalent with a compression ratio in

compressed sensing.

The second column shows the reconstruction results obtained from the first col-

umn. The third column shows the results denoised by sparse KSVD algorithm. Each

result is shown with its PSNR value.

First of all, Figure 5.9 shows that it is possible to reconstruct an image based on

a light curve if a simple LC model is used and the sensing matrix is known. Although

the PSNR value of the image deteriorates as the number of measurement decreases,

the noise removal process improves the PSNR by 0.1− 0.2 dB and makes the image

clear enough to identify the satellite shape. In terms of the validity of the assumption

that the satellite is observed under the same relative positions between the observer

and the Sun, the number of measurement needs to be small. Since the shape of the

satellite is still recognizable even when the number of measurement is 4096 in Figure

5.9, the assumption appears to be valid.
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5.4 Simulation C: Simple Light Curve and Φ Unknown

In this section, the simple LC model is used but same as before, a satellite image

x̄ is reconstructed without any prior knowledge about the sensing matrix Φ.

The absence of the knowledge about the sensing matrix makes the problem ex-

tremely difficult to solve. The main reason is a huge number of unknown variables.

Reconstruction of an image of size 128× 128 requires ∼ 104(= npixel) values of pixels.

Suppose this signal is measured by using a sensing matrix of size 0.5npixel × npixel,

the matrix has ∼ 107 elements. This means, ∼ 104 variables are needed to specify

an image, and ∼ 107 variables are needed to specify a sensing matrix. A problem

with too many variables leads to an over-fitting and it is difficult to solve by regular

optimization algorithms.

This problem is solved by dictionary learning method. In the first simulation,

the benefit of a patch-based method is utilized in dictionary learning. However,

this patch-based method is difficult to apply in practical cases. Therefore, in the

second simulation, the dictionary learning is implemented without using a patch-

based method under simplified problem settings.

5.4.1 Simulation C1: With Patch-Based Method

Patch-based method

In this simulation, a patch-based method is applied to a simple LC model. In

the previous simple LC model, a whole satellite image is measured by computing the

inner product between the whole image vector x̄ and the sensing matrix Φ:

ȳ = Φx̄ (5.26)

On the other hand, in a patch-based method, it is assumed that only a part of the

satellite image can be observed in the form of a square patch of size p× p.
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Fig. 5.10.: Process of constructing a matrix X

Figure 5.10 shows a procedure for constructing a image patch matrix X in a patch-

based method. The image patches are cut out so that they are overlapped with each

other and span the whole image. The cutout of a patch starts from an upper left

of the image and it slides lower by one pixel until the patch reaches to the bottom

of the image. Once it reaches to the bottom, a patch returns to the upper of the

image which is shifted rightward by one pixel. This process continues until the patch

reaches to the lower right of the image. Therefore, suppose that the whole image is

of size nedge × nedge, the total number of patches being cut out is:

N = (nedge − p+ 1)2 (5.27)

Each patch image is measured by smaller sensing matrix Φ̃ in the same way as in

Eq.(5.26). The patch images are vectorized and the inner product between Φ̃ is

computed: {
ȳk = Φ̃subx̄k

}N
k=1

(5.28)

These N sets of measurements and image patches can be expressed in the form of a

matrix equation:

Y = Φ̃X (5.29)

where Y has ȳk’s in its columns and X has x̄k’s in its columns.
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This patch-based method may not be a valid assumption. What can be observed

in reality is only a summation of all the light fluxes coming from a satellite, and it

is impossible to selectively choose a part of the light fluxes coming from a specific

facet of the satellite. However, for a while this fact is put aside and benefits of the

patch-based method are enjoyed in the expectation that such a technology will be

feasible in the future.

The patch-based method has many advantages. The biggest advantage is that it

enables us to treat any size images. The size of the sensing matrix is determined by

the size of the patches, not by the whole image, so the number of variables as well as

the computational cost can be greatly reduced. Moreover, this method helps capture

the local characteristic of an image. Furthermore, this method enables us to use a

powerful tool called dictionary learning method.

Dictionary learning

A goal is to estimate Φ̃ and X in Eq.(5.29). This problem can be considered

as a dictionary learning problem. Assuming that each image patch can be sparsely

represented by a 2D-DCT matrix Ψ, the image patches X can be expressed as follows:

X = ΨΓ with ∀i, ‖γi‖0 ≤ T (5.30)

where γi is the ith column vector of a coefficient matrix Γ. Substituting Eq.(5.30)

into Eq.(5.29), it follows that

Y = Φ̃ΨΓ = DΓ (5.31)

Assume that the sparse expression by Eq.(5.30) is the sparsest possible expression for

the matrix X. Then, the target problem is to find the sparsest columns of Γ satisfying

YDΓ, which is formulated as:

{D̂, γ̂i} = argmin ‖γi‖0 s.t. ∀i, ‖ȳi −Dγ̄i‖2 ≤ ε (5.32)

This is identical with the dictionary learning problem. Therefore, the problem is

solved by one of the dictionary learning algorithms, KSVD algorithm [23].
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Simulation

In this simulation, a light curve is modeled as a simple LC model measured from

patches of a satellite image. The summary of the simulation settings is shown in

Table 5.4.

Table 5.4.: Problem settings of the simulation C1

Condition Symbol Size Description Assumption

Given Y m×N a set of simple LC’s Y = Φ̃X

Find Φ̃ m× p2 sensing matrix Φ̃ ∼ N (0, 1/p2)

Find X p2 ×N satellite image patches constant

Fig. 5.11.: Flowchart of Simulation C1
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The procedure for the simulation C1 is shown in Figure 5.11. A target image is

Figure 5.8 of size 256 × 256. Note that a larger image can be used than that of the

simulation B thanks to a patch-based method. This image is then stored as an image

patch matrix X. The patch size is 5 × 5 (hence p = 5). It is measured by a sensing

matrix Φ̃ assuming a simple LC model and a patch-wise light curve Y is obtained as

mentioned earlier. The number of measurements in each patch is m = 0.64p2.

Second, using Y as an input, the X and Φ̃ are estimated by dictionary learning.

First, Eq.(5.32) is solved by KSVD algorithm. The error constraint is set to be

ε = 0.1, and the iteration is repeated for 20 times. A 2D-DCT matrix is used as the

initial dictionary Φ(0). After the coefficient matrix of the patches Γ̂ is estimated, the

image patch matrix X̂ is computed by Eq.(5.30).

Finally, the whole image solution is obtained. Each column of the solution X̂ is

reshaped into an image patch of size 5 × 5. Subsequently, they are placed back into

their original places. Since these patches are overlapping with each other, the average

value of the patches is computed.

Results

Fig. 5.12.: Reconstruction results by dictionary learning with patch-based method
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In this simulation, a satellite image is reconstructed given its simple light curve

by a patch-based dictionary learning. Figure 5.12 shows the reconstruction result of

the whole satellite image without any prior information about the sensing matrix Φ̃.

The leftmost image is the original image and the center image is the reconstructed

result. This result is obtained by multiplying a DCT matrix Ψ by Γ̂ as in Eq.(5.30).

However, the result looks strange. On the other hand, the rightmost image is obtained

without multiplying a DCT matrix by Γ̂. This result has a larger PSNR value than

that of the center one, and it looks closer to the original image. This is probably

because image patches are so small that they can be regarded as sparse even without

a DCT matrix. In either case, the result is clear enough to recognize the details of

the observed satellite.

Fig. 5.13.: Comparison of image patches before and after the averaging: (a) Image

patches before averaging, (b) Image patches after averaging, (c) Correct image

patches
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On the other hand, Figure 5.13 shows the reconstruction result of some image

patches. The leftmost ones (a) are the patches before placing back to the original

places. The leftmost ones (b) are the patches after placing back and averaging. The

center ones (c) are the correct patches. It can be seen that the averaging proce-

dure helps the patches get closer to the correct patches. In other words, this dictio-

nary learning method is not accurate without the averaging effect of the patch-based

method.

Fig. 5.14.: Comparison of the initial dictionary D(0), the learned dictionary D̂ and

the true dictionary D

Fig. 5.15.: Representation error during 20 iterations
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This is supported by checking the learned dictionary. Figure 5.14 shows the com-

parison between the initial dictionary, the learned dictionary, and the learned dictio-

nary. It can be seen that the learned dictionary is still somewhat similar to the initial

dictionary and it is far from the true dictionary.

One of the possible reasons would be that the iteration has not been converged.

However, this possibility is excluded. Figure 5.15 shows the history of the average

representation error during the 20 iterations. The error is computed by the following

equation:

error =
‖Y − D̂Γ̂‖F

p2 · (npixel − p+ 1)2
(5.33)

where ‖ · ‖F represents the Frobenius norm. Even when the number of iterations is

greater than 20, the error does not get smaller than 0.2096. Therefore, it appears

that the dictionary learning has already converged.

In conclusion, the simulation C1 shows the effectiveness of the patch-based dictio-

nary learning approach to characterize a satellite without any prior knowledge about

sensing matrix. However, without the patch-based method, the dictionary learning

is not accurate enough to estimate the true image and dictionary.

5.4.2 Simulation C2: Without Patch-Based Method

In this simulation, a set of satellite images are measured by sensing matrix to

obtain a set of light curve. These light curves are used as a training database and the

original images are estimated by dictionary learning without any prior information

about the sensing matrix. However, the simulation C1 implied that the accuracy of

the dictionary learning is not sufficient enough to estimate a true sensing matrix and

a satellite image. Therefore, in this simulation, the problem is simplified and the

algorithm is modified to improve the accuracy.
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Simplified Problem

Fig. 5.16.: Simplified satellite images for training database

First of all, the problem is simplified. It is assumed that the target image is

always observed as a streak image as shown in Figure 5.16. The image size is 16× 16

and the total number of images are 105. All these images have a common support

but with different pixel values. The cardinality of an image is 15, thus these images

are regarded as sparse. These images are used as training database for dictionary

learning.

This assumption may sound questionable. However, even this simplified image

would be helpful for characterization of space objects. For example, it would be

possible to discern a difference between a satellite with two solar panels and one with

four solar panels. Moreover, if the target satellite is in geosynchronous orbit, it should

be observed in a constant location, thus the assumption that all the images have the

same support is also reasonable.

Double sparsity model

As discussed in subsection 4.2.2, the double sparsity model helps to improve the

accuracy of the dictionary learning while speeding up its computation. In order for

this model to be valid, the sensing matrix Φ needs to be sparsely represented in terms

of a fixed based dictionary Φ0:

Φ = Φ0A with ∀i, ‖āi‖0 = T0 � n2 (5.34)
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where the size of the image is n × n (n = 16). In order to verify this model for the

Gaussian matrix ∼ N (0, 1/n), the sparse representation of the Gaussian matrix is

computed by solving the following problem:

A := argmin‖āi‖ s.t. ‖φ̄i −Φ0āi‖2 ≤ ε (5.35)

where φ̄i is the ith column vector of the matrix Φ and the error constraint is ε = 0.1.

The base dictionary Φ0 is an overcomplete DCT matrix of size m × n2 (m = 64).

This problem is solved by batch-OMP algorithm.

Fig. 5.17.: Cardinality of the representation matrix of the sensing matrix

Figure 5.17 shows the pie chart of the cardinality of the obtained matrix A. The

cardinality of each column of the matrix is counted. The label shows the number of

cadinality and the angle of the pie shows its percentage. The average cardinality is

36.48 which is only about 14.25% of the number of elements per atom. Therefore, it

is safe to say that the double sparsity model holds for this sensing matrix.



95

Thus, this dictionary learning problem is solved by assuming the double sparsity

model. As discussed in 4.2.2, this problem is usually formulated as follows:

{Â, X̂} := argmin ‖Y −Φ0AX‖F s.t. ∀i, ‖āi‖0 ≤ K0, ‖x̄i‖0 ≤ 15 (5.36)

However, this formulation needs a modification in this case. In Eq.(5.36), the sparsity

of āi is upper-bounded by K0 but this results in a matrix A whose all columns have

the cardinality of K0. This result is not desirable since the correct matrix A should

not have the same cardinality in their columns as in Figure 5.17.

This issue can be circumvented by simply solving the line 9 of the algorithm 5

under the error constraint instead of the sparsity constraint:

ā := argmin‖ā‖0 s.t. ‖z̄ −Φ0ā‖2 ≤ E0 (5.37)

In this case, the cardinality of ā is not constrained. Thus, it is possible to obtain a

matrix A whose columns have variety of cardinalities.

Support-Constrained OMP

The sparse KSVD algorithm is further modified by additional constraint on the

solution. Because of the simplification of the problem, all the images have the same

support. This fact can be exploited to improve the accuracy of the solution.

In the sparse KSVD algorithm, the update of the representation of the image is

done by batch-OMP algorithm in the line 2 in algorithm 5. In this case, the image

itself is sparse so the update stage can be written as:

∀i : x̄i := argmin ‖ȳi −Φ0Ax̄i‖2 s.t. ‖x̄i‖0 ≤ 15 (5.38)

This update stage can be modified so that all the columns of X has the same support.

In the classical OMP algorithm, the support of the solution is chosen by finding

the index of the maximum entry of the inner product between a dictionary Φ and

the residual vector r̄ (line 2 in the algorithm 1):

î := argmax ‖φ̄Ti r̄‖ (5.39)
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where φ̄Ti is the ith row of Φ. In each column of the training database, the best

supports are chosen by different residual vector r̄ (line 5 in algorithm 1):

r̄ := ȳ −ΦI x̄I (5.40)

where I is a chosen support. As a result, the classical OMP obtains a set of images

with different supports when the learned dictionary is not accurate enough.

This issue can be fixed by considering a residual matrix R representing the residual

of whole set of solutions:

R := Y −ΦIXI (5.41)

Using this residual matrix, a support of the solution is obtained by:

î := argmax ‖φ̄Ti R‖ (5.42)

The whole structure of this algorithm is shown in Algorithm 6.

Algorithm 6 Support-constrained OMP

Input : Dictionary Φ, signal set Y, target sparsity K or target error ε

Output : Sparse representation X such that Y ≈ ΦX and all the columns of

X have the same support

Initialization: Set I := (),R := Y,Γ := 0

1 while (stopping criterion not met) do

2 î := argmax ‖φ̄Ti R‖

3 I := (I, î)

4 XI := (DI)
+Y

5 R := Y −ΦIXI

6 end while

The advantage of the support-constrained OMP can be easily examined through a

simple simulation. Let X denote a matrix of size 162× 105 whose columns are streak
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images with a common support. This matrix is compressed by a known sensing matrix

Φ to obtain a set of light curves Y

Y = ΦX (5.43)

Assuming that the matrix Φ is known, the image matrix X is reconstructed by batch-

OMP and support-constrained OMP:

X̂ = argmin‖x̄i‖0 s.t. ‖ȳi −Φx̄i‖2 ≤ ε (5.44)

Note that the error constraint is ε = 0.1.

Figure 5.18 shows the results. As can be seen, there is not a clear difference

between the results obtained by the two algorithms. The both algorithms can recon-

struct the images with high precision. On the other hand, there is a difference in the

computation time. It takes only 2.30 seconds to implement the support-constrained

OMP while it takes 4.22 seconds to implement the batch-OMP algorithm.

Fig. 5.18.: Comparison of the results obtained by batch-OMP and

support-constrained OMP
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In summary, it is expected that the accuracy of the dictionary learning improves by

using support-constrained OMP algorithm instead of batch-OMP to solve Eq.(5.38)

in the update stage of x̂i in sparse KSVD algorithm. The support-constrained OMP

algorithm efficiently gives a solution under the assumption that the all the solution

sets have the same support. Hereinafter, this support-constrained sparse KSVD al-

gorithm is referred to as a modified sparse KSVD algorithm (algorithm 7).

Algorithm 7 Modified sparse KSVD

Input : Signal set Y, base dictionary Φ0, initial dictionary representation

A(0), target sparsity of solution T0, target error of dictionary repre-

sentation E0, number of iterations k

Output : Sparse dictionary representation A ∈ Rn2×n2
and sparse signal X ∈

Rn2×N such that Y ≈ Φ0AX

Initialization: Set A := A(0)

1 for n = 1 . . . k do

2 ∀i : x̄i := argmin ‖ȳi −Φ0Ax̄i‖2 s.t. ‖x̄‖0 ≤ T0

3 (solved by support-constrained OMP)

4 for j = 1 . . .m do

5 Aj := 0̄

6 I := {indices of the signals in Y whose representations use āj}

7 ḡ := XT
j,I

8 ḡ := ḡ/‖ḡ‖2

9 z̄ := YI ḡ −Φ0AXI ḡ

10 ā := argmin ‖ā‖0 s.t. ‖z̄ −Φ0ā‖2 ≤ E0

11 ā := ā/‖D0ā‖2

12 Aj := ā

13 Γj,I := (XT
I D0ā− (D0AΓI)

TD0ā)T

14 end for

15 end for
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Simulation

In this simulation, a set of light curves Y is modeled as a simple LC model

measured via a sensing matrix Φ from a set of satellite images X. These images are

reconstructed without any prior knowledge about Φ. The summary of the simulation

settings is shown in Table 5.5.

Table 5.5.: Problem settings of the simulation C2

Condition Symbol Size Description Assumption

Given Y m×N a set of simple LC’s Y = ΦX

Find Φ m× n2 sensing matrix Φ̃ ∼ N (0, 1/n2)

Find X n2 ×N streak images common support

Fig. 5.19.: Flowchart of Simulation C2
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The procedure for the simulation C2 is shown in Figure 5.19. The target images

are randomly generated streak images of size 16× 16 with a common support. Some

examples of these images are shown in Figure 5.16. The cardinality of all these

images are 15. The total number of the images are 105. These images are vectorized

and stored as a matrix X of zize 162 × 105. It is measured by a sensing matrix Φ

assuming a simple LC model and a set of light curves Y is obtained. The number of

measurements in each image is m = 0.25 · 162 = 64.

Second, using Y as an input, the X and Φ are estimated by modified sparse

KSVD algorithm. The sparsity constraint of the solution is set to be T0 = 15 and the

error constraint of the dictionary representation is set to be E0 = 0.1. The iteration

is repeated for 1000 times. The initial dictionary representation is an identity matrix

I of size 256× 256.

The same procedure is also implemented by using sparse KSVD algorithm to see

the difference. In this case, the sparsity constraint of the dictionary representation is

set to be T1 = 64.
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Results

Fig. 5.20.: Cardinality of dictionary representation in two algorithms

Fig. 5.21.: Changes of representation error in two algorithms

In this simulation, streak images are reconstructed given its simple light curve

by sparse KSVD algorithm and modified sparse KSVD algorithm without using a

patch-based method. Figure 5.20 and Figure 5.21 show the comparison between the
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results obtained by sparse KSVD and modified sparse KSVD after 100 iterations.

Figure 5.20 shows the cardinality of each column of the dictionary representation

A. In the one learned by sparse KSVD, all the columns have the same cardinaliy

because of the sparsity constraint. On the other hand, in the one learned by modified

sparse KSVD, the columns have a variety of cardinalities ranging from 0 to 64, which

captures the structure of the true A more accurately. Figure 5.21 shows the changes

of the representation error over the number of iterations. While the sparse KSVD

decreases the error up to the order of 10−1, the modified sparse KSVD decreases the

error up to the order of 10−3. Therefore, clearly, the modified sparse kSVD algorithm

has a better performance in dictionary representation as well as in the representation

error.

However, even the modified sparse KSVD algorithm does not give a desired result.

Figure 5.22 shows the learned images after 1000 iterations. The red boxes show the

correct support which should be chosen. Some pixels are correctly chosen but most

other pixels are chosen from the incorrect positions. Figure 5.23 focuses more on the

chosen support in each iteration. The blue dots represent the position of the chosen

pixel in each iteration and the red lines represent the positions of the correct pixels.

Ideally, all the 15 blue dots should be on the red lines. However, it never happens

during the 1000 iterations and the incorrect pixels (especially 50th and 120th pixels)

tend to be chosen frequently. Moreover, in Figure 5.24, the representation error seems

to have already converged. Therefore, even if the algorithm is implemented for more

iterations, the result would not improve.

There are some possible reasons for these results. One reason would be the low

accuracy of the learned dictionary. Although the accuracy is much better than the

result obtained by sparse KSVD, the result of the modified KSVD in Figure 5.20 has

larger cardinality than the correct dictionary in Figure 5.17. This trend does not

change even after 1000 iterations.

In the first place, this algorithm still has a redundancy in the way of learning a

dictionary. In this problem, all the images have the same support whose cardinality is
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15. Therefore, only the corresponding 15 columns in the dictionary are used to obtain

the measurement Y and the rest of the columns are never used for the calculation

of Y. In other words, it is only necessary to learn these 15 columns accurately to

obtain the true solution. However, the current algorithm does not take this fact into

consideration and it deals with all the columns of the dictionary equally. One of the

solutions would be to somehow evaluate the contribution of each column to prune the

unnecessary columns, which is similar to the idea of the greedy algorithms.

Fig. 5.22.: Images learned after 1000 iterations (by modified sparse KSVD

algorithm)
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Fig. 5.23.: Support of a solution during 1000 iterations (by modified sparse KSVD

algorithm)

Fig. 5.24.: Representation error during 1000 iterations (by modified sparse KSVD

algorithm)
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5.5 Simulation D: Simple Light Curve, Reference Satellite and Φ Un-

known

In this section as well, a satellite image x̄ is reconstructed without any prior

knowledge about the sensing matrix. However, one additional assumption is made

to substitute the dictionary learning approach. It is assumed that both a light curve

and corresponding images of a reference satellite are available.

This method is similar to an idea called a guide star in adaptive optics. The

adaptive optics system is a technique to improve the resolution of the astronomical

images by sensing and correcting the atmospheric aberrations [25]. In this technique,

a reference star or a guide star is observed to estimate the atmospheric turbulence

effect. This knowledge enables to adjust a deformable primary mirror to get much

sharper images of other stars than images which are obtained without adaptive optics.

The guide star can be either a heavenly body or an artificial star such as a sodium

laser [26].

Inspired by the idea of a guide star, this section proposes three ways to estimate the

sensing matrix by reference satellite observations. In the first simulation, abundant

images of the reference satellite are assumed to be available. These images are used

to build a full rank matrix, and by using its inversion, a sensing matrix and a target

image is estimated. This approach is successful but it has its limitations. In the

second simulation, it is assumed that not a sufficient number of images are available

to construct a full-rank matrix. Even in such a case, it is shown that a sensing

matrix and a target image can be estimated accurately. In the final simulation,

the computational cost of the second simulation is lowered by making additional

assumptions. It is assumed that a reference satellite is always oriented in a constant

direction. It is also assumed that the positions of the target satellite and the reference

satellite always overlap in the image.
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5.5.1 Simulation D1: Full Rank Matrix Approach

Theory

Assume that there are npixel (= n2) images of a reference satellite and their corre-

sponding light curves expressed by simple LC model. The size of each image is n×n.

These images are vectorized and concatenated to form a square matrix Xref of size

npixel × npixel. Using this matrix, the light curves of the reference satellite images are

expressed as:

Yref = ΦXref (5.45)

where Φ is a sensing matrix, which is unknown. At the same time, a target satellite

image is also observed under the same atmospheric condition. Its light curve is

obtained as follows:

ȳ = Φx̄ (5.46)

Suppose the reference image matrix Xref is a full-rank matrix, then it has an inverse

matrix. Under this assumption, Eq.(5.45) can be simply solved as below:

Φ̂ = YrefX
−1
ref (5.47)

Since the sensing matrix Φ̂ is estimated, Eq.(5.46) can be easily solved by compressed

sensing scheme. A sparse coefficient vector γ̂ is obtained by L0-norm minimization

and subsequently the solution is converted into a solution image vector x̂ by using

discrete cosine transform (DCT) matrix Ψ:

γ̂ = argmin ‖γ̄‖0 s.t. ‖ȳ − Φ̂Ψγ̄‖2 ≤ ε (5.48)

x̂ = Ψγ̂ (5.49)

In this method, two assumptions are made. The first assumption is that both the

reference satellite and the target satellite are observed under the same atmospheric

conditions or the same sensing matrix. As mentioned earlier, since the similar idea
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has been used in adaptive optic technique as well, this assumption seems to be valid.

The second assumption is that Xref is a full rank matrix, which means the image

vectors of the reference satellite are varied enough to be linearly independent. This

assumption holds if the satellite is observed from random directions with random

light conditions and noise.

Simulation

In this simulation, a target satellite image and a sensing matrix is estimated by

reference satellite images, reference satellite light curves and the target satellite light

curve. The summary of the simulation settings is shown in Table 5.6.

Table 5.6.: Problem settings of the simulation D1

Condition Symbol Size Description Assumption

Given Xref npixel × npixel reference image matrix a full rank matrix

Given Yref m× npixel simple LC of reference satellite Yref = ΦXref

Given ȳ m× 1 simple LC of target satellite ȳ = Φx̄

Find Φ m× npixel sensing matrix Φ ∼ N (0, 1/npixel)

Find x̄ npixel × 1 satellite image vector constant
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Fig. 5.25.: Flowchart of Simulation D1

The procedure for the simulation D1 is shown in Figure 5.25. A target image is

Figure 5.8 of size 128 × 128. First, reference satellite images of size 128 × 128 are

generated by using the rendering technique in section 2.2. A satellite model in Figure

2.17 is assumed to be in geosynchronous orbit and it is illuminated and observed

from random directions. The total number of images are 1282. Their pixel values are

stretched so that all the values are between 0 and 255 and corrupted by Gaussian

noise ∼ N (0, 1). Finally, they are vectorized and concatenated to form a square

matrix Xref. This matrix is assumed to be known.

Second, the reference satellite images and the target image are measured by a

common sensing matrix Φ. In both cases, the number of measurements is m =

0.64 · 1282 ≈ 10486. A set of the light curves of the reference satellite is expressed
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as Yref whose columns correspond to a light curve of each reference image. A light

curve of the target satellite is expressed as ȳ.

Third, the sensing matrix is computed by Eq.(5.47). The inverse of the matrix is

computed by using LU decomposition. In order to avoid numerical errors, a matrix

ε Inpixel
with a small constant ε is added to Xref before inverting:

Φ̂ = Yref (Xref + ε Inpixel
)−1 (5.50)

Note that Inpixel
is an identity matrix of size npixel × npixel.

Finally, the target image is estimated by solving Eq.(5.48) based on the estimated

sensing matrix Φ̂ and the light curve ȳ. The error constraint is 0.1. If the recon-

structed image is noisy, the noise is removed by sparse KSVD algorithm. A patch

size is 5× 5 and a dictionary is 2D-DCT matrix of size 100× 100. Sparsity constraint

of the dictionary is T = 6. The iteration is repeated 50 times.

Results

Fig. 5.26.: Reconstruction results of simulation D1

In this simulation, a target satellite image is reconstructed given its light curve and

a set of light curves and images of the reference satellite. The images of the reference

satellite are assumed to be abundant. Figure 5.26 shows a comparison of the correct

image (leftmost), a reconstructed image (center) and a denoised image (rightmost).
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As can be seen, even the noisy result clearly shows the shape of the satellite. After the

noise has been removed, the image gets even clearer and the result is almost identical

with the true image. It takes about 68 minutes to finish the computation in a SID

server.

Although this result looks satisfactory, there is still some room for improvement.

First of all, this method requires enormous number of measurements. It is necessary

to prepare at least n2 images of the reference satellite if the observed satellite image is

of size n×n. Moreover, the construction of the matrix Xref is not straightforward. In

this simulation, it was straightforward because the synthetic images were corrupted by

Gaussian noise, which makes all the images linearly independent with ease. However,

this is not the case in actual observations. Just computing the rank of a matrix Xref

is a difficult task because of its large size. To overcome the limitation of having a

large amount of data available and to lower computation times, the simulation D2

and D3 are implemented.

5.5.2 Simulation D2: Rank Deficient Matrix Approach

Theory

The simulation D2 considers a case where the number of images and light curves

of a reference satellite is not abundant. Assume that there are only nsmall (< npixel)

images of a reference satellite and their corresponding light curves expressed by simple

LC model. Note that the size of each image is n× n and the total number of pixels

per image is npixel = n2. These images are vectorized and concatenated to form a

vertical matrix Xref ∈ Rnpixel×nsmall . Using this matrix, the light curves of the reference

satellite images are expressed as:

Yref = ΦXref (5.51)
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where Φ is a sensing matrix, which is unknown. For a later use, both sides of Eq.(5.51)

are transposed:

YT
ref = XT

refΦ
T (5.52)

At the same time, a target satellite image is also observed under the same atmospheric

condition. Its light curve is obtained as follows:

ȳ = Φx̄ (5.53)

Now the matrix Φ needs to be somehow estimated. Since Xref is neither a square

matrix nor a full-rank matrix, its inverse does not exist in this case. One of the best

approaches is to utilize the sparsity of the matrix ΦT . First, it is sparsely represented

by discrete cosine transform (DCT) matrix Ψ:

ΦT = ΨA s.t. ∀i, ‖āi‖0 ≤ T0 (5.54)

where a vector āi is the ith column of the coefficient matrix A. Therefore, now the goal

is to estimate the matrix A exploiting its sparsity property. Substituting Eq.(5.54)

into Eq.(5.52), the following expression is obtained:

YT
ref = XT

refΨA s.t. ∀i, ‖āi‖0 ≤ T0 (5.55)

Suppose that Eq.(5.54) is the sparsest possible expression for the matrix ΦT , then

the columns of the coefficient matrix A can be obtained by the following optimization

problem:

∀i, âi = argmin ‖āi‖0 s.t. ‖YT −XT
refΨA‖2 ≤ ε1 (5.56)

Once the matrix A is estimated, the sensing matrix can be computed as:

Φ̂ = ÂTΨT (5.57)

Using the estimated sensing matrix, Eq.(5.53) can be easily solved by compressed

sensing scheme. A sparse coefficient vector γ̂ is obtained by L0-norm minimization
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and subsequently the solution is converted into a solution image vector x̂ by using

discrete cosine transform (DCT) matrix Ψ:

γ̂ = argmin‖γ̄‖0 s.t. ‖ȳ − Φ̂Ψγ̄‖2 ≤ ε2 (5.58)

x̂ = Ψγ̂ (5.59)

In this method, the sensing matrix Φ is estimated by solving Eq.(5.56) by re-

garding XT
ref as a sensing matrix in compressed sensing. Since the accuracy of the

reconstruction highly depends on the sensing matrix in compressed sensing, it is im-

portant to choose XT
ref properly in this simulation to estimate Φ accurately. Therefore,

in this simulation, reference satellite images are generated as many as possible and

nsmall images are chosen randomly to construct XT
ref. This random choice is done

several times to construct several candidates for XT
ref.

There may be some other ways to estimate ΦT in Eq.(5.52). The most straight-

forward way would be a least squares method:

Φ̂T = argmin ‖YT −XTΦT‖2
F (5.60)

which has a closed-form solution as follows:

Φ̂T = (XXT )−1XYT (5.61)

However, the least squares cannot give a correct solution to this problem in this case.

The detailed reason can be found in chapter 6 of a lecture note by Baraniuk [55]. In

short, L2-norm is not a valid measure to find a sparse solution like this matrix ΦT .

Without the sparsity constraint on a solution, the minimizer of the L2-norm of the

residual does not necessarily mean the correct solution.

Simulation

In this simulation, a target satellite image and a sensing matrix is estimated by

reference satellite images, reference satellite light curves and the target satellite light
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curve. Assume that not enough number of reference satellite images are available.

The summary of the simulation settings is shown in Table 5.7.

Table 5.7.: Problem settings of the simulation D2

Condition Symbol Size Description Assumption

Given Xref npixel × nsmall reference image matrix nsmall < npixel

Given Yref m× npixel simple LC of reference satellite Yref = ΦXref

Given ȳ m× 1 simple LC of target satellite ȳ = Φx̄

Find Φ m× npixel sensing matrix Φ ∼ N (0, 1/npixel)

Find x̄ npixel × 1 satellite image vector constant

Fig. 5.27.: Flowchart of Simulation D2

The procedure for the simulation D2 is shown in Figure 5.27. A target image is

Figure 5.8 of size 64×64. The target image size is smaller than that of the simulation

D1 to avoid too much computational cost in the estimation of Φ.
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First, reference satellite images of size 64 × 64 are generated by using the ren-

dering technique in section 2.2. A satellite model in Figure 2.17 is assumed to be

in geosynchronous orbit and it is illuminated and observed from random directions.

The total number of images are 8000. Their pixel values are stretched so that all

the values are between 0 and 255. Among these images, nsmall images are randomly

chosen, vectorized and concatenated to form a horizontal matrix Xref. The number of

the chosen images is nsmall = 0.8npixel ≈ 3277. This matrix is assumed to be known.

Second, the reference satellite images and the target image are measured by a

common sensing matrix Φ. In both cases, the number of measurements is m =

0.81 · 642 ≈ 3364. A set of the light curves of the reference satellite is expressed as

Yref whose columns correspond to a light curve of each reference image. A light curve

of the target satellite is expressed as ȳ.

Third, the sensing matrix is computed by solving Eq.(5.56) by batch-OMP algo-

rithm. The error constraint is ε = 1.

Finally, the target image is estimated by solving Eq.(5.58) based on the estimated

sensing matrix Φ̂ and the light curve ȳ. The error constraint is ε = 1.

This whole procedure is repeated 9 times. In each iteration, different kinds of

reference satellite images are chosen at random to construct the matrix Xref, and the

solution x̂ is obtained. the best result of the 9 results is chosen. If the image is noisy,

the noise is removed by sparse KSVD algorithm with a 2D patch of size 5× 5 and a

2D-DCT matrix of size 100 × 100. Moreover, the 9 results are combined to form a

3D image. The noise of this 3D image is removed by sparse KSVD algorithm with

a 3D patch of size 5 × 5 × 5 and a 3D-DCT matrix of size 100 × 100 × 100. This

3D-sparse KSVD algorithm is expected to remove noise better than the 2D-sparse

KSVD algorithm.
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Results

Fig. 5.28.: Noisy results obtained by 9 different Xref

Fig. 5.29.: Comparison between the original image, the best noisy image,

2D-denoised image and 3D-denoised image
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In this simulation, a target satellite image and a sensing matrix is estimated by

reference satellite images, reference satellite light curves and the target satellite light

curve assuming that the reference satellite images are sparse and not adequate to

construct a full-rank matrix. Figure 5.28 shows the nine results directly obtained

by this method. As expected, the PSNR value of the results are different from each

other due to the different sensing matrices Xref consisting of different sets of reference

satellite images. Overall, the results are noisier than the results obtained by regular

compressed sensing because of the ill-designed sensing matrix. For the same reason,

the computation time gets longer. It takes about 8 hours to finish the procedure per

image. The simulation has been performed in the SID Group server.

Of the nine results, the fourth result has the largest PSNR value in Figure 5.28.

Therefore, this image is denoised by 2D-sparse KSVD algorithm. The result is shown

in the third image of Figure 5.29. The PSNR value has improved by 0.38 dB but

the image is still noisy. Therefore, all the nine results are concatenated to form a

3D image and their noise is removed by 3D-sparse KSVD algorithm. The result is

shown in the fourth image of Figure 5.29. The PSNR value has improved by 2.65

dB compared to the 2D-denoised result and the image is clear enough to identify the

satellite.

This method has one great advantage over the method proposed in the simulation

D1. The restrictions on the reference satellite images are less severe than that of the

simulation D1. This method does not require many measurements and the reference

satellite images do not have to be linearly independent since the matrix Xref does

not have to be a full rank matrix. However, due to the ill-designed matrix Xref, the

computational cost is larger and it has a restriction on the size of the image it can

deal with. When this simulation is implemented for an image of size 128 × 128, it

takes about 8 days to estimate one image and the result is extremely worse than the

one obtained by the simulation D1. Therefore, the simulation D3 attempts to solve

this issue by imposing extra constraint on the reference satellite image.
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5.5.3 Simulation D3: Faster Full Rank Matrix Approach

Theory

Suppose there are some reference satellite images of size n× n. These images are

vectorized and concatenated to form a matrix Xref. Using this matrix, a set of light

curves of the reference satellite can be expressed as:

Yref = ΦXref (5.62)

where Φ is a sensing matrix, which is unknown. Similarly, a light curve of a target

satellite is also measured:

ȳ = Φx̄ (5.63)

Since Φ is of size m × npixel (where npixel = n2), it is computational expensive to

estimate the matrix. However, this issue can be prevented under a certain assumption.

The simulation D3 considers a special case where a reference satellite is always

observed from a constant direction. In this case, the reference satellite always occupies

a constant position in the images. Therefore, all the vectorized images have the same

supports. As a result, all the rows of the matrix Xref are zero vectors except for some

specific rows. These rows are specified by a set of indices, I = (i1, . . . , ik). Using this

set of indices, Eq.(5.62) can be simplified as:

Yref = Φ(:, I) Xref(I, :) = ΦsubXsub (5.64)

Note that Φ(:, I) = Φsub represents a sub-matrix of Φ containing the columns indexed

by I in the order in which they appear in I. Similarly, Xref(I, :) = Xsub represents

a sub-matrix of Xref containing the rows indexed by I in their corresponding orders.

Generally, the number of non-zero elements k of the reference satellite image is much

smaller than the total number of pixels:

k � npixel (5.65)
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since most pixels in the satellite images are zero because of their black background.

This assumption helps to reduce the computational cost for estimating Φsub. Sup-

pose Xsub is a square matrix, its size is k × k. Therefore, only k reference satellite

images are needed to construct a full-rank matrix Xsub. Moreover, since the images

are cropped, it is much easier to collect the images so that they are linearly indepen-

dent. After constructing a full-rank matrix Xsub, Eq.(5.64) can be simply solved by

inverting Xsub:

Φ̂sub = YrefX
−1
sub (5.66)

However, importantly, this method can only estimate the sub-matrix Φ̃ and cannot

obtain the whole sensing matrix Φ. This imposes a certain constraint on a target

image which this method can deal with. The support Itarget of the target satellite

image needs to be a subset of the support I:

Itarget ⊆ I (5.67)

In other words, the target satellite and the reference satellite need to overlap in an

image. Under this assumption, Eq.(5.63) can be reduced to the following without any

loss of information:

ȳ = Φsub x̄(I) = Φsub x̄sub (5.68)

where x̄(I) = x̄sub represents a sub-vector of x̄ whose elements are indexed by I. Since

the sensing matrix Φ̂sub is estimated, Eq.(5.68) can be easily solved by compressed

sensing scheme. A sparse coefficient vector γ̂sub is obtained by L0-norm minimization

and subsequently the solution is converted into a solution image vector x̂sub by using

discrete cosine transform (DCT) matrix Ψ (∈ Rk×k):

γ̂sub = argmin ‖γ̄sub‖0 s.t. ‖ȳ −ΦsubΨγ̄sub‖2 ≤ ε (5.69)

x̂sub = Ψγ̄sub (5.70)

The target image result is obtained by nullifying a vector X̂ and substituting x̂sub in

indices I:

x̂(I) := x̂sub (5.71)
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Simulation

In this simulation, a reference satellite is assumed to be always observed from

a constant orientation. Moreover, a target satellite and the reference satellite are

assumed to overlap in images. The summary of the simulation settings is shown in

Table 5.8.

Table 5.8.: Problem settings of the simulation D3

Condition Symbol Size Description Assumption

Given Xsub k × k sub-matrix of Xref indexed by I |I| = k � npixel

Given Yref m× k simple LC of reference satellite Yref = ΦsubXsub

Given ȳ m× 1 simple LC of target satellite ȳ = Φsubx̄sub

Find Φsub m× k sub-matrix of sensing matrix Φsub ∼ N (0, 1/k)

Find x̄ npixel × 1 satellite image vector constant

Fig. 5.30.: Flowchart of Simulation D3
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The procedure for the simulation D3 is shown in Figure 5.30. Comparison of a

reference satellite and a target satellite is shown in Figure 5.31. The leftmost image

is one of the examples of the reference satellite image of size 128×128. It is generated

by using the rendering technique in section 2.2. A satellite model in Figure 2.17 is

assumed to be in geosynchronous orbit and it is observed from a constant direction

but with different light conditions. As can be seen in the rightmost image in Figure

5.31, the two satellites overlap in an image so that Eq.(5.67) holds. The pixel values

of the reference images are stretched so that all the values are between 0 and 255.

These images are cropped by their common support I whose number of elements is

k = 1922. Subsequently, they are corrupted by Gaussian noise ∼ N (0, 1), vectorized

and concatenated to form a square matrix Xsub of size 1922×1922. The target image

is also cropped by I.

Fig. 5.31.: Reference satellite image, target satellite image and their relationship

Second, the cropped reference satellite images and the cropped target image are

measured by a common sensing matrix Φ. In both cases, the number of measurements

is m = 0.8k ≈ 1538. A set of the light curves of the reference satellite is expressed

as Yref whose columns correspond to a light curve of each reference image. A light

curve of the target satellite is expressed as ȳ.
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Third, the sensing matrix is computed by Eq.(5.66). The inverse of the matrix

is computed by LU decomposition. In order to avoid numerical errors, a matrix ε Ik

with a small constant ε is added to Xref before inverting:

Φ̂ = Yref (Xsub + ε Ik)
−1 (5.72)

Note that Ik refers to an identity matrix of size k × k.

Finally, the target image is estimated by solving Eq.(5.69) based on the estimated

sensing matrix Φ̂ and the light curve ȳ. The error constraint is 10−10. If the recon-

structed image is noisy, the noise is removed by sparse kSVD algorithm with a 2D

patch of size 5 × 5 and a 2D-DCT matrix of size 100 × 100. The error constraint is

ε = 28.

Results

Fig. 5.32.: Comparison between the original image, the reconstructed noisy image,

denoised images

In this simulation, a target satellite image is reconstructed based on its light curve

and a set of light curves and images of a reference satellite. It is assumed that the

reference satellite is always observed from a constant direction and it overlaps with

the target satellite in an image. In Figure 5.32, the leftmost one is the original

target image and the second one is the result directly obtained by this method. This

result contains noise in the shape of the reference satellite . By applying the sparse
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KSVD algorithm, the noise is removed and the PSNR value has increased by 5.48 dB

as shown in the third image. However, this result still contains some noise. Thus,

all the pixels under the threshold T = 0.4 are nullified and the rightmost image is

obtained. The PSNR value has further increased by 0.24 dB and the result is almost

identical with the true image.



123

6. SUMMARY

6.1 Conclusions

This research discusses a potential application of a compressed sensing technique

to characterize an unknown stabilized satellite in a known orbit from its non-resolved

light curve via imaging. Characterization is an essential step in space situational

awareness, and its objective is to determine the size, shape and attitude of the un-

known satellite. A satellite image is one of the most comprehensive ways of satellite

characterization and easy to interpret for humans and machines, although a stable

attitude has to be given. One of the approaches in the characterization which resem-

bles this research is a radar imaging approach but this approach can only deal with

objects that are in low altitude orbits.

Compressed sensing was developed for efficient signal compression and reconstruc-

tion. It enables to reconstruct an image from only a fraction of its linear measurement.

This measurement is done by an inner product with a random Gaussian matrix, which

is referred to as a sensing matrix. One of the applications of compressed sensing, a

single-pixel camera, is of great importance in this research. In this camera, the sens-

ing matrix is substituted by a collection of microscopic mirrors. These mirrors reflect

the light fluxes from an object either away from or toward a photo-diode. Therefore,

only a part of the light fluxes is randomly collected and measured. This measurement

can be exploited to reconstruct an image of the object.

The measurement of this single-pixel camera has an analogy with a light curve

measurement that is corrupted via atmospheric noise. The light curve is a time

history of the brightness of the light reflected by a space object. It is regarded as a

summation of all the light fluxes from the object but they are randomly degraded by

atmospheric noise. Therefore, the atmospheric noise is regarded as a sensing matrix,
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and the light curve is considered as a linear measurement obtained via this unknown

sensing matrix. Due to this analogy, a noisy light curve may be exploited to estimate

an image of a target satellite. In this thesis, light curve measurements of the target

satellite in high altitude orbits have been simulated to test this idea.

There are two main differences between compressed sensing and the light curve.

First, the light curve is not exactly identical to a compressed image. The light curve

is often simulated by modeling the target satellite as a polygon that consists of small

flat facets referred to as a mesh, and by summing up the intensity of light reflected

on these meshes. Therefore, in short, the light curve is modeled in a mesh-wise way.

On the other hand, the compressed image is expressed in a pixel-wise way. Therefore,

it is impossible to associate the light curve and the compressed image without the

knowledge of the corresponding relationship with the meshes and the pixels. However,

for simplicity, this research models a light curve to fit into the compressed sensing in

a pixel-wise fashion, which is referred to as a simple light curve model. In this thesis,

this simple light curve is carefully compared with a realistic light curve. The second

difference between the reconstruction of the satellite image from the light curve and

using the single-pixel camera of classical compressed sensing is the availability of

the sensing matrix. In a light curve measurement, it is almost impossible to know

the atmospheric noise, which means the sensing matrix is unavailable. Therefore,

the image of the target satellite needs to be estimated in the absence of the sensing

matrix.

In the first step to approach the satellite characterization problem from light

curves using compressed sensing, the sensing matrix is assumed to be known. In this

case, it is confirmed that the target satellite image can be reconstructed from both

the realistic light curve and the simple adapted light curve.

To ease the assumptions and to make the simulation much more realistic, in the

second step, the sensing matrix is assumed to be unknown. First, a dictionary learning

approach has been applied. In the first simulation, the KSVD algorithm (k-singular

value decomposition algorithm) with a patch-based method has successfully obtained
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a clear image of the satellite. However, this method is unpractical since it requires

measurements of patch images of the satellite, which is not available in the light

curve. Moreover, the limitations of dictionary learning have been shown. Therefore,

in the second simulation, a dictionary learning approach has been applied without the

patch-based method. However, it has not been possible to reconstruct the satellite

image even when restricting the problem further by assuming a fixed outline of the

satellite or modifying the KSVD algorithm under an assumption that the sensing

matrix has a sparse representation.

As a subsequent step, it has been assumed that the sensing matrix is still unknown

but can be inferred from a previous or simultaneous observation of a known satellite.

This means a set of light curves and images of the reference satellite is assumed to

be known. In the first case under those assumptions, it is assumed that the images

of the reference satellite are abundant enough to construct a full-rank matrix of size

1282 × 1282. In this case, the sensing matrix and the target image can be estimated

accurately. In a more realistic case, only fewer images of the reference satellite would

be available. As a result, the reference satellite images are sparse and not sufficient

for constructing a full-rank matrix. However, utilizing the sparsity property, the

target satellite image estimation is achieved. This has been done by using a three-

dimensional sparse KSVD algorithm. However, this methodology is found to be very

computationally intensive. For the faster computation, it has been shown that under

the conditions that the reference satellite is always observed from a constant direction

and it overlaps with the target satellite in an image, a computational speedup is

achieved while maintaining a similar accuracy in the reconstructed target satellite

image.

6.2 Future Work

First of all, further validation is required for the light curve model via a com-

parison with actual measurements, e.g., from the Purdue Optical Ground Station,
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to explicitly show that the simple light curve model in this research is valid. Po-

tentially, sophisticated statistic models have to be taken into account to match the

atmospheric movement resulting in the scintillation in the light curve. The effects on

the methodology have to be studied carefully and adaptions are likely necessary.

Moreover, a known reference satellite might not always be available. One potential

approach is the further investigation of the dictionary learning methodology. In the

current research, this approach is successful only with a patch-based method. The

main advantage of the patch-based method is to merge the local image of the satellite

to obtain the global image. This kind of multi-scale approach is known to be useful in

image processing in general. One way to leverage this technique in a light curve would

be to split the light curve into different components, using them for reconstruction and

merge the results. This would require more investigation about the optical properties

of light curves to judge the feasibility. Another possible approach is the use of a guide

star, which is well established in astronomical measurements as a reference instead.
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