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ABSTRACT

Booth, Matthew B. Ph.D., Purdue University, May 2020. Multiple Antenna Signal
Processing Techniques for Millimeter Wave Communications. Major Professors:
David J. Love and Nicolò Michelusi.

Mobile devices operating at millimeter wave (mmWave) frequencies are expected

to comprise an integral part of fifth generation (5G) communication systems to meet

increasing data rate demands. Massive multiple-input multiple-output (MIMO) and

advanced signal processing techniques are required to overcome the harsh propagation

environment in this spectrum. We focus on two aspects of mmWave communication

systems.

First, the large number of antennas creates a challenge in aligning and tracking

highly directional, narrow beams. Algorithms which rapidly adapt to the changing

mobile environment are required. We propose a novel beam alignment and tracking

algorithm for time-varying, sparse mmWave channels using multi-armed bandit beam

selection. We show our algorithm has a more rapid initial beam alignment compared

to other beam selection policies and, for dynamic channel support, long-term beam-

forming gain commensurate to omni-directional channel training. Simulation results

are accomplished using idealized and realistic mmWave channel models.

Second, massive MIMO systems can generate potentially prohibitive amounts of

data due to the large numbers of antennas. With modern parallel, low-rate analog-

to-digital converters (ADCs), the bottleneck is often not in the quantization of the

received signals but, rather, in the processing of the digitized bits. Therefore, we

develop an adaptive algorithm for down-selecting the digital output data to meet some

required output data rate threshold while simultaneously maximizing the information

between the transmitted signal and the selected output.
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1. INTRODUCTION

The exploding demand for wireless bandwidth is driving research into increased use of

higher carrier frequencies in wireless systems [1–3]. Although in this work we consider

commercial cellular systems, these challenges are not unique to terrestrial, commercial

communications. Consider, for example, an imagery satellite passing over a ground

station or a military unmanned aerial vehicle enabling communications in a remote

location. Using multiple-input multiple-output (MIMO) systems with large antenna

arrays at these higher frequencies helps obtain the link margin necessary. Regardless

of the application, there exists a ubiquitous push for higher bandwidths and more

efficient spectrum use which necessitates adaptive signal processing techniques.

Wireless networks operating between 30 to 300 GHz, known as the millimeter

wave (mmWave) spectrum, offer greatly increased bandwidths compared to current

cellular frequencies.1 As such, mmWave devices are expected to comprise an inte-

gral part of fifth generation (5G) communication systems to meet increasing data

rate demands [4]. However, the mmWave spectrum is a harsh propagation environ-

ment where signals experience high propagation losses and are susceptible to severe

blocking due to high penetration losses and poor diffraction characteristics [5]. To

overcome the propagation loss, practical mmWave systems use massive MIMO with

large antenna arrays and narrow, highly directional beams [2]. Along with the sizeable

bandwidth, the very large number of transmit and receive antennas creates additional

challenges, such as channel estimation and complex analog and digital signal process-

ing. Economically powering these large arrays is also a significant problem.

As a consequence of directional beams and signal blocking, mmWave signals ex-

hibit very limited multipath, quickly changing channel coefficients, and sparse channel

1Although in this work we focus on cellular systems due to the unfolding of 5G networks, the
conclusions generally apply to other MIMO wireless communication systems.
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characteristics. Precise alignment between the transmit and receive beams is critical

to establish and maintain a communication link. Moreover, mobile mmWave chan-

nels are dynamic, meaning the sparse channel support evolves over time. Given the

challenges of the mmWave channel, rapid beam training and tracking methods are

crucial.

With a large number of antennas, high-speed arrays of analog-to-digital convert-

ers (ADCs) digitize the received signal, and scenarios can occur where more output

information bits are generated than desired or can be used, i.e., an excessive output

data rate. For example, receiver power usage is related to the number of quantization

bits. Thus, a power threshold due to system requirements could constrain the number

or resolution of the ADCs. An additional example can be found in wireless networks

comprised of differing capacity links. To pass data from a high rate link to a lower

rate link, some bits must be discarded. When this happens, we wish to intelligently

select and send the bits which contribute the most to the end-to-end mutual infor-

mation. While the application layer can determine which bits to accept and which

to reject, the physical layer at the receiver can also alleviate this bottleneck. We can

avoid uncontrolled information loss by characterizing how to maximize the mutual

information between the input and quantized output given a constraint on the output

data rate.

In this dissertation, we focus on two aspects of mobile mmWave communication

systems. First, we propose a novel beam alignment and tracking algorithm using

multi-armed bandits (MABs) from the area of reinforcement learning. We show our

algorithm has rapid initial beam alignment followed by high beam tracking perfor-

mance in both static and dynamic channel support scenarios. Second, we design

algorithms to maximize the mutual information when performing antenna selection

to meet some output data rate constraint. In particular, we consider greedy selection

algorithms for varying numbers of quantization bits at the antenna outputs.
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1.1 Multi-Armed Bandit Beam Alignment and Tracking for Mobile Mil-

limeter Wave Communications

1.1.1 Multi-Armed Bandits

The MAB name originates from the colloquial term for slot machine levers, and

the problem is essentially equivalent to that of a gambler attempting to maximize the

total expected payoff from sequentially choosing which slot machine arm (a single-

armed bandit) to play from among a set of arms. A trade-off exists between taking

actions to exploit arms with high expected rewards or to explore previously untried

arms that may result in even greater rewards. Classic MAB algorithms seek to op-

timally balance the exploration and exploitation such that the cumulative rewards

are maximized. With diverse applications across many disciplines, MABs enjoy a

rich body of literature, and detailed descriptions of the classic MAB problem and its

many variants can be found in [6, 7].

In wireless communications, MABs have been used in areas such as power man-

agement [8], wideband channel estimation [9,10], and cognitive radio [11–15]. In [16]

MAB algorithms select so-called optimal adaptive antenna states in an orthogonal

frequency division multiplexing (OFDM) single-user, MIMO system from the IEEE

802.11n standard. In [17] the mmWave beam alignment problem is formulated as

a partially observable Markov decision process (POMDP) for a block-fading channel

model, where the process associates each channel block with a state. Both [18,19] rec-

ommend using MABs for training in a wireless communication system. Finally, [20,21]

both use an indirect type of MAB known as the upper confidence bound (UCB) to

evaluate transmit-receive beam pairs, returning a reward if the optimal beam pair is

exploited and zero otherwise. Neither [20,21] make use of the sparsity of the mmWave

channel.
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1.1.2 Beam Alignment

In this work, we use the fact that the structure and basic objectives of the beam

alignment problem closely parallel those of the MAB problem and can be directly

applied to the unknown channel. In beam alignment, the channel is a random vec-

tor, and the objective is to quickly determine the beamformers which provide the

maximum receive channel signal-to-noise ratio (SNR). We explore a set of feasible

beamformers through beam training, or by sounding the channel subspace with dif-

ferent beams to more precisely align the transmit and receive beams and improve

the receive SNR. We exploit a beamformer when we use it for data transmission.

After the transmitter sends a pilot signal using the selected beam, the receiver ob-

tains the effective receive channel output and sends it as feedback to the transmitter.

This effective receive channel output is the MAB “reward”. In keeping with the gen-

eral MAB setting, the transmitter does not observe the channel directly. Rather, it

only receives the feedback. Linear MAB algorithms use this fact to minimize the

cumulative regret, or the sum loss relative to the optimal reward at each exploitation.

In Chapter 2 we develop an online Kalman filter sparse Bayesian learning (SBL)

algorithm with a Bayesian MAB beam selection policy. We make use of the mmWave

channel sparsity by using SBL, a Bayesian machine learning framework for finding

sparse representations of signals [22,23]. Although SBL was not initially developed for

the time-varying case, the authors in [24], recognizing the Bayesian relation between

SBL and Kalman filters, use exact Bayesian inference to derive a recursive algorithm

for processing time-varying input data in batches. This algorithm is called Kalman

filter SBL (KSBL) and is used in [24] for channel estimation and tracking of OFDM

systems. In [25] KSBL is converted to an online algorithm. Parallel to these results,

[26] combines static SBL and a Bayesian MAB known as Linear Thompson sampling

(LTS) to design a novel sparse MAB algorithm.

As shown in Table 1.1, the contribution we describe in Chapter 2 falls in the in-

tersection of dynamic SBL and LTS MAB action selection. Our algorithm tracks the
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Table 1.1.
Matrix of SBL algorithms in the literature showing novelty of KSBL-
LTS algorithm described in Chapter 2.

No MAB action selection LTS MAB action selection
Static SBL [22,23] [26]

Dynamic SBL [24, 25] Chapter 2

non-zero channel coefficients and rapidly reacts to changes in channel support. Since

we modify KSBL by how actions are selected, we compare our algorithm’s normalized

beamforming gain performance to that of KSBL using random and greedy selection

policies, as well as to omni-directional training. Additionally, we compare KSBL

and omni-directional training normalized beamforming gain performance when using

a more realistic mmWave channel model generated from the QUAsi Deterministic

RadIo channel GenerAtor (QuaDRiGa) software package. Finally, we define a track-

ing measure which we use to compare the ability of KSBL-LTS to find and closely

maintain alignment between the transmitter and receiver.

Several beam alignment algorithms which exploit the channel sparsity under static

or slowly-changing mmWave channel conditions have been proposed (e.g., [27–32]).

These solutions must, essentially, “restart” every time the channel support changes,

making them unsuitable for beam tracking in highly mobile systems. Beam tracking

algorithms designed for the mobile mmWave scenario are proposed in [33–35]. The

authors in [33, 34] assume an a priori initial channel estimate and track the channel

using an extended Kalman filter for its relative low complexity. However, neither

proposal takes advantage of the sparse structure of the mmWave channel as does

our approach. In [35], the authors use sequential Monte Carlo sampling to track

the sparse channel support; we differ in our use of SBL to determine and track the

channel support.
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1.2 Quantized MIMO Mutual Information Selection

Millimeter wave systems must utilize large, directive antenna arrays, e.g., massive

MIMO, in order to overcome the propagation losses inherent at high frequencies. Tak-

ing advantage of the wide bandwidths available at these frequencies necessitates many

high speed ADCs in parallel. It is well-known that high-speed, high-resolution ADCs

are power hungry, not to mention expensive. Thus, since ADC power use increases

exponentially with the number of resolution bits, several recent works have proposed

parallel implementations of low-resolution ADCs, e.g., [36–40]. Furthermore, regard-

less of the ADC resolution, as the number of antennas increases so does the potential

for exceeding an output data rate constraint due to processing capabilities or link

capacities. How these challenges, namely, power consumption and excessive output

data rates, are addressed is critical to the performance of mmWave systems.

1.2.1 Antenna Subset Selection

We can divide the literature of proposed solutions to these challenges into two

main categories: 1) the aforementioned low-resolution ADCs, and 2) antenna subset

selection. While the majority of these works focus on minimizing the cost and power

consumption under certain constraints, it should be noted that their approaches can

also apply to restricting the output data rate. Recent works investigating the per-

formance of low-resolution ADCs include [36–41]. Processing of the signal can occur

before the quantization (analog) or completely after quantization (fully digital). Ei-

ther way, the power used in analog-to-digital conversion increases exponentially with

the number of resolution bits [39]. Thus, configurations of antenna arrays with low-

resolution ADCs in parallel can significantly reduce the power consumption. The

performance loss due to coarse quantization is mitigated by a large number of receive

antennas [37].

The second approach, more related to our work, is to only select a subset of anten-

nas for operation. Several earlier works focused on maximizing the mutual information
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of unquantized MIMO systems through antenna subset selection, e.g., [42–48]. Since

an exhaustive search of all possible combinations of selected antennas is computation-

ally prohibitive, other approaches select antennas based on those returning the largest

Frobenius norm of the channel matrix [42], convex optimization [43], the largest post-

processing SNR [44], highest energy efficiency [45], the correlation between different

channel vectors [48], and the greatest capacity or mutual information [46–48]. More

recently, the authors in [37,49,50] investigated the capacity limits of MIMO receivers

under a variety of architectures, to include multiple antenna selection and sign quan-

tization. Most similar to our work is the recent work in [51]. There, the authors

propose a quantized version of the MIMO antenna selection algorithm in [46], un-

der the assumption that all of the quantizers have the same resolution. We differ in

that we allow differing numbers of quantization bits, and in our results we show this

improves the average capacity over equal numbers of quantization bits.

1.2.2 Related Selection Problems

For completeness, we also note that the antenna selection problem is by no means

unique to wireless communication systems. For instance, for radar systems the au-

thors in [52] select transmitter-receiver pairs based on the optimization of a spatial

correlation coefficient; in [53] the authors formulate the selection as a knapsack prob-

lem using the Cramer-Rao bound as the performance metric; and in [54] the authors

jointly optimize antenna selection and power allocation using second-order cone pro-

gramming by convex relaxation.

The antenna selection problem can also be viewed through the lens of machine

learning. The bit vector at the output of the ADC is similar to a full set of features

extracted from noisy observations, in our case the received signal vector, from which

we must classify (estimate) the transmitted vector. In machine learning high numbers

of features results in a greater computational load. To combat this, feature selection

uses some criteria to select a subset of the features such that the estimation accuracy
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is diminished as little as possible. Several machine learning algorithms use mutual

information for feature selection, e.g., [55–57], and we refer the interested reader

to [58] for a review.

Another related area is the body of work done on the information bottleneck (IB)

(cf. [59–61]). Our output bit vector prior to selection must be compressed based on

the data rate constraint. Clearly, sending all of the bits would generate the greatest

mutual information, so removing some of the bits creates a “bottleneck” on the mutual

information.. We briefly summarize some of the IB results for the case of a Gaussian

input and a Gaussian channel without a fixed compression rate, as studied in [62–64].

The authors in [62] determine an optimal solution to the Gaussian IB problem. In [63],

the authors build on [62] to develop the optimal rate-information trade-off for the

scalar, real random variable case, such that the compression rate can be fixed at a

desired level and the relevant information maximized. This is extended to the case

of real vectors in [64], and it is shown that the information-rate function for the

vector case is the sum of information-rate functions of scalar Gaussian channels each

with an individual SNR. In practice, each sub-channel includes all sub-channels with

positive rate allocations and, for sparse channels, is equal to the number of paths in

the channel.

1.3 Notation

We use the following notations in this dissertation. Bold capital letters denote

matrices, bold lowercase letters denote column vectors, and lower case letters not

bolded denote scalars. AT, AH, ‖a‖, |a|, Tr(A), vec(A), det(A), and card(A) denote,

respectively, transpose of A, conjugate transpose of A, `2-norm of a, absolute value

of a, trace of A, matrix vectorization of A, determinant of A and cardinality of

the set A. CN (a,A) denotes a complex Gaussian random vector with mean a and

covariance matrix A. The real and imaginary parts of a number are given by <{·} and

={·}, respectively. We denote the real domain by R and complex domain by C. We
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denote by H(a) the entropy of random variable a, by h(a) the differential entropy of

continuous random variable a, and by I(a; b) the mutual information between random

variables a and b. The probability density (mass) function of a random variable a is

denoted by f(a) (p(a)); the probability of discrete random variable a being equal to

a value a′ is denoted by Pr(a = a′). In Chapter 2, log is the natural logarithm, while

in Chapter 3 it is the base-2 logarithm.



10

2. MULTI-ARMED BANDIT BEAM ALIGNMENT AND

TRACKING FOR MOBILE MILLIMETER WAVE

COMMUNICATIONS

Millimeter wave (mmWave) communication systems are expected to employ large

antenna arrays with beamforming to overcome the propagation loss inherent at high

frequencies. Mobility increases the challenge of maintaining alignment of highly di-

rectional, narrow beams. Efficient approaches to rapid beam alignment and tracking

are critical, and many proposals, such as [65,66], have been made. In [65], the authors

point out the fact that mobile scatterers can cause significant, unpredictable angle of

departure (AoD) and angle of arrival (AoA) changes even for static users in mmWave

systems, and they propose a beamforming algorithm based on compressed sensing.

In [66], the authors use pairs of auxiliary beams to track angle variations and steer

the data beams based on the angle evolution.

Recently, Kalman filter-based solutions to the beam tracking problem were pro-

posed in [33–35]. The algorithms in [33, 34] require external initialization with ac-

curate channel information after which extended Kalman filters track the channel.

In [35], sequential Monte Carlo sampling is used to track the sparse channel support,

and a Kalman filter estimates the channel separately.

In this chapter, we propose a novel beam alignment and tracking algorithm for

time-varying mmWave channels using multi-armed bandit (MAB) beam selection.

Differing from [33,34], we exploit the channel sparsity through sparse Bayesian learn-

ing (SBL) [22]. Also, our algorithm does both initial beam alignment and subsequent

tracking. In contrast to [35], the Kalman filter in our algorithm jointly tracks the

sparse support and time-varying channel coefficients.

Sparse Bayesian learning is a machine learning framework for determining an un-

known, static sparse vector [22]. The offline time-varying SBL was initially developed
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in [24] by merging SBL with a Kalman filter to account for temporal correlation with

a common support; [25] extends this algorithm to an online version using sawtooth

lag smoothing. In [26], static SBL is integrated with a linear Bayesian MAB called

Linear Thompson sampling (LTS) to combine sparse learning with smart exploration

of feasible actions in an offline setting. We advance this progression by integrating

the online Kalman filter SBL (KSBL) algorithm with LTS.

Prior work on mmWave beam alignment using MAB algorithms is found in [20,21,

67,68], each of which employs frequentist-based MABs, whereas our MAB is Bayesian-

based. Furthermore, [20,21,67] each use MABs with indirect, binary feedback, while

we use the time-varying mmWave channel estimates as direct feedback. In [20],

coarse and fine levels of position-aided beam alignment use different MAB variants.

On the other hand, our algorithm utilizes a single, common MAB and is designed to

flexibly work with arbitrary architectures and beamformer codebooks. The authors

in [67] frame the beam alignment problem as a distributed architecture between the

transmitter and receiver using adversarial MABs which make no assumption of an

underlying channel distribution. Perhaps the beam alignment proposal with a MAB

most similar to ours is in [68], where the authors base their algorithm on a general

contextual MAB and use the receiver’s direction of arrival as the context, or side-

information, provided to the transmitter to initialize the beam alignment learning

algorithm. Our algorithm may be considered a linear contextual MAB, where our

contexts would be a given beamformer codebook. The quality of a selected beam

in [68] is measured by the amount of data received, while in our algorithm we use the

received channel output.

The contributions of this chapter are as follows: (a) development of a KSBL algo-

rithm with an LTS beam selection policy, or KSBL-LTS, and (b) numerical compar-

ison of the beamforming gain performance of KSBL-LTS to that of omni-directional

training and KSBL using random beamforming and greedy beam selection. Of the

policies considered, we demonstrate that KSBL-LTS has the largest beamforming
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gain over the initial rounds of training and data transmission, i.e., rapid initial beam

alignment.

2.1 System Overview

We assume a transmitter equipped with Ntx antennas for beamforming to a single

antenna receiver. We use a narrowband multiple-input single-output (MISO) model

for clarity in explaining our approach in this work. However, extensions to the more

representative MIMO model can be made by using an equivalent approach from the

receiver to the transmitter using combiners. The outdoor mmWave channel is char-

acterized by a small number NP � Ntx of dominant propagation paths due to limited

scattering [69]. We consider a channel model given by

h
(g)
t =

√
Ntx

NP∑
p=1

βpu(θp),

where βp ∼ CN (0, σ2
β) is the complex path gain, θp is the spatial angle of the p-th

path, and superscript (g) indicates the geometric channel model. The array steering

vector for a uniform linear array (ULA) is given by

u(θ)=
1√
Ntx

[
1, e−j2πθ, . . . , e−j2π(Ntx−1)θ

]T ∈ CNtx . (2.1)

The spatial angle θ is defined as θ , d
λ

sin(φ), where d is the antenna spacing, λ is

the signal wavelength, and φ ∈
[
−π

2
, π

2

]
is the physical angle in the azimuth plane.

Throughout this chapter, we assume d = λ
2
.

After correlation with a training sequence, the geometric channel input-output

relationship at channel use t is given by

yt =
√
ρ
(
h

(g)
t

)H
f

(g)
t + zt, (2.2)
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where yt ∈ C is the received post-processed signal, ρ is the pre-beamforming signal-

to-noise ratio (SNR), zt ∼ CN (0, 1) is i.i.d. noise, and f
(g)
t ∈ F (g) is the geometric

beamformer. The finite geometric beamforming set F (g) ⊂ CNtx is arbitrary, allowing

for flexible, potentially proprietary, codebooks and hardware configurations. Given

NP is small, we can infer the channel sparsity over the range of θ, but h
(g)
t itself is

not sparse.

We explicitly model the mmWave channel as an NP -sparse vector by converting

h
(g)
t to an equivalent virtual channel vector ht [70]. In the virtual channel model when

d = λ
2
, we can uniformly divide the range of θ into N ≥ Ntx discrete spatial angles

θi ∈ V(N) =

{
i− 1

N
− 1

2
: i = 1, . . . , N

}
. (2.3)

The vectors h
(g)
t and ht are related by the linear transformation

ht = UHh
(g)
t , (2.4)

where U = [u(θ1) , . . . , u(θN)] ∈ CNtx×N and ht ∈ CN is a vector of virtual fading

gains corresponding to each θi ∈ V(N). Note that when N > Ntx we use a more

general dictionary than just the set of basis functions of the Discrete Fourier Trans-

form (DFT); this is the so-called extended virtual representation [70]. The virtual

beamforming vector is obtained from f
(g)
t by ft ∈ F = {UH

(
UUH

)−1
f

(g)
t ; f

(g)
t ∈ F (g)}.

Then the virtual input-output relationship can be written as

yt =
√
ρ
(
h

(g)
t

)H
UUH

(
UUH

)−1
f

(g)
t + zt

=
√
ρhH

t ft + zt.

(2.5)

The non-zero channel elements of ht are designated by the support St. Mobility

causes both ht and St to evolve temporally. Since in practice channels are temporally
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and spatially correlated, we model this correlation using a Gauss-Markov process. Let

the path gains in ht evolve from block to block according to a Gauss-Markov process,

ht = εht−1 +
√

1− ε2gt, (2.6)

where ε ∈ [0, 1] is the correlation coefficient. We assume h1 ∼ CN (0,A−1
1 ) and

gt ∼ CN (0,A−1
t ), where A−1

t = diag(1/αt) is a hyperparameter matrix with αt =

[αt,1, . . . , αt,N ] on the diagonal to enforce channel sparsity [22]. gt is i.i.d. and in-

dependent of h1, i.e., E[h1g
H
t ] = 0Ntx , and gt,ht are independent of zt for all t. In

addition to varying the path gains, at channel use t let the elements of St indepen-

dently evolve as follows. For i ∈ St, at the next channel use t + 1, with probability

p, i /∈ St+1 with either i− 1 ∈ St+1 or i+ 1 ∈ St+1 equally likely, or, with probability

1−p, i ∈ St+1. Elements of St may combine and subsequently separate over time. We

assume p is small to maintain practical mobility settings where the channel support

varies slowly with time.

As we ultimately consider the general case of an evolving channel, to simplify

the notation we delineate an entire timeslot of Tts seconds with a time step index t

during which ht essentially remains constant. We assume Tts is less than the channel

and beam coherence times Tc and Tb. In other words, the timeslots can be considered

similar to very brief blocks with duration less than min{Tc, Tb}. The timeslot structure

is shown in Fig. 2.1. Within each timeslot are three divisions: 1) the training phase

of duration Ttr, 2) the feedback/update period of duration Tfb, and 3) the data

transmission phase of duration Td. An initialization phase, which we designate by time

step t = 1, is required for the KSBL algorithm to avoid an ill-conditioned estimate of

the channel covariance matrix. We conduct NP training phases using random linear

combinations of beams from F . Upon receiving feedback yNP
, the estimated channel

mean and covariance are updated, as will be described in the subsequent section,

using Lines 4 and 5 of Algorithm 1.
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Fig. 2.1. Algorithm timeslot structure. The time step indexes each
timeslot, and each timeslot is divided into three phases. Although the
figure shows equal times for each of the phases, Ttr, Tfb, and Td in
general are not equal but must meet the constraint Ttr + Tfb + Td =
Tts ≤ min{Tc, Tb}.

After the transmitter sounds with ft from F in the transmission phase, the receiver

sends only yt to the transmitter as feedback. Given the expectation of very reliable,

low latency control channels in 5G systems [4], we assume error- and delay-free feed-

back. Using the training history Ht = {(fτ , yτ ) : τ = 1, . . . , t} as input, the algorithm

updates the channel statistics. Data transmission follows after each round of training,

feedback and update. After the data transmission, the transmitter selects a beam-

former for use during the training phase of the next time step. Given oracle knowledge

of ht, the optimal strategy is to select the beamformer foptt = arg maxf∈F
∣∣hH

t f
∣∣, which

maximizes the receive SNR, Γt =
∣∣hH

t ft
∣∣2. We explain the algorithm steps in greater

detail in the following section.

2.2 KSBL-LTS Beam Alignment

2.2.1 Linear Thompson Sampling (LTS)

Conventionally, channel estimation for beam alignment often employs one of the

following beam selection policies:

• Random beamforming. Beams are randomly generated, as commonly done in

compressed channel sensing [71]. We use random beamforming as a policy
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within the KSBL algorithm for comparison with the proposed selection policy.

As random beamforming continually probes the channel space with random

beams regardless of estimated channel statistics, it is comparable to pure explo-

ration in decision theory.

• Greedy beam selection. Given the channel estimate ĥt−1, this policy selects

beams which maximize the expected receive SNR, or ft = arg maxf∈F

∣∣∣ĥH
t−1f

∣∣∣2.

This policy always selects beams which maximize performance based on the

current channel knowledge and is comparable to pure exploitation in decision

theory. Similar to the random beamforming policy, greedy beam selection is

not a stand alone algorithm but, rather, is used within the KSBL algorithm for

comparison with the proposed selection policy.

• Omni-directional training. A purely deterministic stand alone algorithm which

cycles beam selection through a set of orthogonal beams. It is a version of

exhaustive search. In this beam training method we let N = Ntx such that

the transform matrix U(g) is the square Ntx × Ntx DFT matrix. We only use

geometric channel vectors h
(g)
t . The beamforming vectors consist of the columns

of U(g), or F (g) = {u(θn) : θn ∈ V(Ntx), n = 1, . . . , Ntx}, where θn is defined

in (2.3). At the t-th channel use, column n of the DFT matrix is selected for

the training beamformer f
(g)
t , where n is found by

n =

t mod Ntx, when t mod Ntx 6= 0

Ntx, when t mod Ntx = 0

and mod is the modulus operation. Thus, we continuously cycle through all

Ntx beams when selecting a DFT training beam at each new channel use.

For a fair comparison with the KSBL-LTS algorithm, we use a Kalman filter

while cycling through the DFT training beams. This enables us to incorporate

both knowledge of the channel evolution from (2.6) and of the received signal
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samples from (2.2). Note that since the omni-directional training algorithm

uses the geometric channel representation, (2.6) is rewritten as

h
(g)
t = εh

(g)
t−1 +

√
1− ε2g(g)

t ,

where h
(g)
1 ,g

(g)
t ∼ CN (0,Q). The covariance matrix Q is derived from con-

verting h
(g)
1 ,gt to their geometric representations. For example, applying the

inverse relationship of (2.4) to g
(g)
t , we get

g
(g)
t =

(
UUH

)−1
Ugt, (2.7)

and E
[
g

(g)
t

(
g

(g)
t

)H]
=
(
UUH

)−1
UA−1

t UH
(
UUH

)−1
. However, the omni-

directional training algorithm does not have knowledge of the initial channel

support and cannot explicitly track channel support changes or time-varying

covariance matrices. Therefore, we assume A−1
t = IN ,∀t, which is equal to

the KSBL-LTS initialization assumption we will make for A−1
t in Section 2.2.2.

Thus, Q = (UUH)−1.

The omni-directional training Kalman filter is then described by (2.8)-(2.12) for

s = 1, . . . , T . We initialize the algorithm with ĥ
(g)
0|0 = 0 and Σ

(g)
0|0 = Q.

ĥ
(g)
s|s−1 = εĥ

(g)
s−1|s−1 (2.8)

Σ
(g)
s|s−1 = ε2Σ

(g)
s−1|s−1 + (1− ε2)Q (2.9)

K(g)
s =

√
ρΣ

(g)
s|s−1f

(g)
s

(
1 + ρ(f (g)

s )HΣ
(g)
s|s−1f

(g)
s

)−1

(2.10)

ĥ
(g)
s|s = ĥ

(g)
s|s−1 + K(g)

s

(
yHs −

√
ρ(f (g)

s )Hĥ
(g)
s|s−1

)
(2.11)

Σ
(g)
s|s =

(
INtx −

√
ρK(g)

s (f (g)
s )H

)
Σ

(g)
s|s−1 (2.12)

At each channel use we use a greedy policy with the current channel estimate

ĥ
(g)
t|t to select the beam used in the data transmission phase. In summary, we
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select a single DFT training beam for each training phase, get feedback and

update the channel statistics using a Kalman filter, and greedily determine the

beam for data transmission before advancing to the next training beam in the

cycle.

This omni-directional training approach is distinctly different from sounding

the channel by turning on one transmit antenna in an array at a time. Omni-

directional training turns on one beam at a time and sequentially points the

beam in different, discretized angular directions. All of the angular directions

must be explored to obtain the most accurate channel estimate. To form such

a beam, every antenna element is used, as seen from the array steering vector

equation in (2.1).

On the other hand, training by transmitting on a single element of an array at

a time only returns channel information between the selected transmit antenna

and the receiver antenna. We must sound with each of the transmit antennas

in order to obtain an accurate channel estimate. This is accomplished in largely

the same way as is done in omni-directional training, except we replace the DFT

matrix with the identity matrix INtx . Then, instead of selecting f
(g)
t from the

columns of the DFT matrix, we successively select f
(g)
t from the columns of INtx .

The performances for both approaches are compared in Fig. 2.3 in Section 2.3.2.

Our algorithm does not use any of these approaches. Instead, we employ a MAB

method for online decision-making called Linear Thompson sampling (LTS) that bal-

ances the exploration and exploitation trade-off [72]. With LTS we draw a random

sample h̃t ∼ CN (ĥt−1,Σt−1) from p(h|Ht−1). We then select a training beamformer

that maximizes the reward given h̃t, or

ft = arg max
f∈F

∣∣∣h̃H
t f
∣∣∣.

Basing our beamformer selection on a random sample of the channel posterior enables

exploration of F by exploiting the covariance Σt−1 of the channel estimate. Larger
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(smaller) values of ‖Σt−1‖F imply more (less) exploration around ĥt−1. In this way,

LTS builds intelligent exploration into the MAB beam selection policy we use during

training.

Before describing the algorithm details in the next section, we need to make some

clarifying statements. First, the training channel outputs and beamformers up to

time t are collected, respectively, into vector yt = [y1, . . . , yt]
T and t × N matrix

Ft = [f1, . . . , ft]
T. Second, data transmission always employs a greedy beamformer

selection policy, regardless of the selection policy used during the training. Finally,

LTS by itself does not induce sparsity in the channel. This is accomplished through

the SBL part of the algorithm.

2.2.2 Sparse Bayesian Learning (SBL) and Kalman Filters

Sparse Bayesian learning uses hierarchical Bayesian inference to estimate a param-

eterized prior based on the data. We assume a complex Gaussian prior on each channel

vector element ht,i, i = {1, . . . , N} with parametric form p(ht,i;αt,i) ∼ CN (0, α−1
t,i ),

where αt,i is the hyperparameter controlling the variance of ht,i. Each element i of

ht and αt corresponds to θi. If αt,i → ∞, ht,i is effectively ‘turned off’ for that θi.

Thus, αt relates to the support St of ht, which contains the indices of the paths with

nonzero gains. For element indices i /∈ St, αt,i = ∞. We induce channel sparseness

by assigning a hyperprior for αt that ensures the majority of the αi’s are very large.

After sounding, we update the hyperparameter estimates α̂t using a SBL algo-

rithm which we describe shortly. Updates to the elements of α̂t determine the cor-

responding estimated channel weights in ĥt and the diagonal values of Σt. In turn,

Σt affects the distribution of the next channel realization used by the LTS beam

selection policy. For every i /∈ S, the algorithm attempts to cause α̂t,i → ∞ such

that the corresponding ĥt,i → 0, i.e., the expected multipath channel component at

spatial angle θi is negligible. Most α̂t,i → ∞ as the algorithm progresses, reflecting

the channel sparseness.
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We estimate the channel statistics and hyperparameters using a modified Kalman

filter. Without modification, the general Kalman filter is not optimal for sparse

channel estimation. In [24] an offline version of Kalman filtering and smoothing is

developed which incorporates SBL for sparse channel estimation. The authors in [24]

integrate SBL with a Kalman filter (KSBL) using a common hyperparameter vector.

They assume the time-varying channels are so-called ‘group approximately-sparse’,

meaning the large-scale parameters, and by consequence the hyperparameters, vary

slowly enough so as to be considered constant for the duration of their offline estima-

tion.

While we also assume a slowly changing channel support, we do not assume αt

is constant. Rather, we adapt an online version of KSBL as described in [25] for

our beam alignment and tracking problem. In this version of KSBL, a small time

lag of ∆ channel uses is introduced over which the algorithm estimates the channel

and slowly time-varying hyperparameters. However, for ease of exposition, in the

following description of the KSBL algorithm we assume αt = α is constant for a

time interval of T channel uses and, by extension, At = A for t = 1, . . . , T . After

explaining the KSBL algorithm, we then describe the incorporation of the interval ∆

into our algorithm.

We now summarize the steps of the KSBL algorithm; we refer the reader to [24] for

additional details. After T transmissions and feedback the joint probability density

function (PDF) of the received feedback and the temporally correlated channels,

parameterized by α, can be written as

p(yT ,h1, . . . ,hT ;α) =
T∏
t=1

p(yt|ht)p(ht|ht−1;α), (2.13)
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where, by convention, we assume p(h1|h0;α) = p(h1;α) and h1 ∼ CN (0,A). Taking

− log p(yT ,h1, . . . ,hT ;α) and neglecting terms constant with respect to h and α, we

define the cost function LT as

LT ,
T∑
t=1

∣∣yt −√ρhH
t ft
∣∣2 − T log det (A)

+
T∑
t=2

(ht − εht−1)H A (ht − εht−1)

(1− ε2)
+ hH

1 Ah1.

(2.14)

We jointly estimate the time-varying channel and hyperparameter vector by

ĥ1, . . . , ĥT , α̂ = arg min
h1,...,hT ,α

LT . (2.15)

A closed-form solution to the optimization problem in (2.15) does not exist, and we

can only obtain the incomplete data from observations yT = [y1, . . . , yT ]T. Therefore,

letting h1, . . . ,hT be hidden variables, we use the Expectation Maximization (EM) al-

gorithm to maximize the expectation of the complete-data log likelihood with respect

to the posterior distribution. The EM steps are the following:

E-step: Q
(
α|α(k)

)
= Eh1,...,hT |yT ;α(k)LT (2.16)

M-step: α(k+1) = arg min
α

Q
(
α|α(k)

)
(2.17)

Note that we found (2.14) using a negative logarithm, so minimizing the expectation

with respect to α accomplishes the M-step.

The E-step finds the marginal log-likelihood of the observations. To do so, we use

the current hyperparameter values α(k), where k is the EM algorithm iteration index,

to compute the posterior mean and covariance of the channel over the T channel

uses. This can be accomplished recursively using the Kalman filtering and smoothing

(KFS) equations. We use the notation at|s to denote the estimate (channel mean or

covariance) of a at time t given the training history Hs (beamformers and channel

outputs) through time s, where t may be greater than, less than or equal to s. The
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channel estimate ĥt|T depends on past and future channel observations. However, the

Kalman filter only uses past observations. Therefore, we require backward recursions

using the Kalman smoother to ensure the observations up to the T -th channel use

are included in ĥt|T for 1 ≤ t < T . The KFS equations for the k-th iteration are

given below, where we define Jr−1 , εΣr−1|r−1Σ
−1
r|r−1 and Ks as the Kalman gain. We

initialize the recursions with ĥ0|0 = 0 and Σ0|0 = (A(0))−1, where we arbitrarily set

A(0) = IN . Then the update proceeds as follows:

for s = 1, . . . , T do

Prediction:

ĥs|s−1 = εĥs−1|s−1 (2.18)

Σs|s−1 = ε2Σs−1|s−1 + (1− ε2)(A(k))−1 (2.19)

Filtering:

Ks =
√
ρΣs|s−1fs

(
1 + ρfHs Σs|s−1fs

)−1
(2.20)

ĥs|s = ĥs|s−1 + Ks

(
yHs −

√
ρfHs ĥs|s−1

)
(2.21)

Σs|s =
(
IN −

√
ρKsf

H
s

)
Σs|s−1 (2.22)

end

for r = T, T − 1 . . . , 2 do

Smoothing:

ĥr−1|T = ĥr−1|r−1 + Jr−1(ĥr|T − ĥr|r−1) (2.23)

Σr−1|T = Σr−1|r−1 + Jr−1(Σr|T −Σr|r−1)JH
r−1. (2.24)

end

In the prediction and filtering equations in (2.18)-(2.22), we use forward recursions

to estimate the channel statistics ĥt|t and Σt|t using the correlation coefficient ε from

the Gauss-Markov model in (2.6) and the training history Ht−1. The Kalman filter

estimates these statistics using a weighted average of the previous channel estimate
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ĥt|t−1 and the most recently received feedback yt. The weights, contained in the

Kalman gain matrix Ks, are updated at each time step using the estimated channel

covariance Σt|t−1. The smoothing equations in (2.23)-(2.24) go backward from time

step T to recursively improve the accuracy of the previous channel estimates.

Given ĥt|T and Σt|T , 1 ≤ t ≤ T , from the KFS equations, Q
(
α|α(k)

)
in (2.16) can

be simplified as

Q
(
α|α(k)

)
= T log det

(
A−1

)
+

1

1− ε2
T∑
t=2

Eh1,...,hT |yT ;α(k)

[
(ht − εht−1)H A (ht − εht−1)

]
+ Eh1,...,hT |yT ;α(k)

[
hH

1 Ah1

]
,

(2.25)

where we have dropped the first term from the right-hand side of (2.14) due to it

being constant with respect to α. We further simplify Q
(
α|α(k)

)
by computing the

following expectations in terms of variables calculated from the KFS equations:

Eh1,...,hT |yT ;α(k) [hr] , ĥr|T , (2.26)

Eh1,...,hT |yT ;α(k)

[
hrh

H
r

]
, Σr|T + ĥr|T ĥH

r|T , (2.27)

for r = 1, . . . , T , and

Eh1,...,hT |yT ;α(k)

[
hrh

H
r−1

]
, Σr,r−1|T + ĥr|T ĥH

r−1|T , (2.28)

for r = T, T − 1, . . . , 2. Equations (2.26) and (2.27) are the posterior mean and

covariance, respectively, and are obtained from (2.18)-(2.24). We have from [73]

that (2.28) can be written as

Σr−1,r−2|T = Σr−1|r−1J
H
r−2 + JH

r−1

(
Σr,r−1|T − εΣr−1|r−1

)
Jr−2. (2.29)
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Algorithm 1: KSBL-LTS Algorithm

1 Initialization:
2 Generate NP beamformers and observe channel outputs yNP

;

3 Set ÂNP
= IN and calculate ΣNP

=
(
ÂNP

+ ρFH
NP

FNP

)−1

;

4 Calculate ĥNP
=
√
ρΣNP

FH
NP

yNP
;

5 for t = NP + 1, NP + 2, . . . do
6 Training:

7 Get sample h̃t from distribution CN
(
ĥt−1,Σt−1

)
;

8 Select beamformer ft = arg maxf∈F

∣∣∣h̃H
t f
∣∣∣ ;

9 Observe channel output yt ;

10 Update {ĥt−1,Σt−1, Ât−1} → {ĥt,Σt, Ât} by inputting
{yt−(∆+1):t,Ft−(∆+1):t} to Algorithm 2;

11 Data Transmission:

12 Transmit with f
(data)
t = arg maxf∈F

∣∣∣ĥH
t f
∣∣∣ ;

13 Increment t ;

14 end

We initialize Σr−1,r−2|T by ΣT,T−1|T = ε
(
IN −

√
ρKT fHT

)
ΣT−1|T−1. Defining

Mr|T , Σr|T + ĥr|T ĥH
r|T + ε2

(
Σr−1|T + ĥr−1|T ĥH

r−1|T

)
−2εRe

{
Σr,r−1|T + ĥr|T ĥH

r−1|T

}
,

and

M1|T , Σ1|T + ĥ1|T ĥH
1|T , (2.30)

we obtain the final simplification of the E-step as

Q
(
α|α(k)

)
= T log

∣∣A−1
∣∣+ Tr

(
AM1|T

)
+

1

1− ε2
T∑
r=2

Tr
(
AMr|T

)
. (2.31)
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The M-step finds the hyperparameters α which minimize Q
(
α|α(k)

)
. Setting the

derivative w.r.t α(k+1)(i) of (2.31) equal to zero, we get the following update equation

for the i-th element, i = 1, . . . , N , of the hyperparameter vector:

α(k+1)(i) = T

(
T∑
r=2

Mr|T (i, i)

(1− ε2)
+M1|T (i, i)

)−1

.

We iterate the EM algorithm until the difference in hyperparameter updates converges

to some threshold ε.

The KSBL algorithm in [24] is an offline only algorithm and does not enable

efficient beam alignment and tracking. Therefore, we adopt the online KSBL approach

from [25]. In this approach, we estimate over ∆ channel uses instead of all T channel

uses. We accomplish KFS over t− (∆ + 1), t−∆, . . . , t and output channel estimates

ĥt−(∆+1):t|t.
1 Then the interval shifts by one and repeats. In the preceding description

of the KSBL algorithm, we assumed a constant hyperparameter vector α. Now

we modify this assumption to make αt only constant over the lag ∆. Since the

interval shifts by one at each time step, we revert back to using a subscript t. The

parameter ∆ should be adjusted to meet system requirements. Upon meeting its

stopping condition, Algorithm 2 returns ĥt|t, Σt|t, and α̂t. For data transmission, our

algorithm uses ĥt|t. The KFS equations for the k-th iteration of the online version of

KSBL are summarized in Algorithm 2.

As described, however, the KSBL algorithm contains no mechanism for balanc-

ing exploration and exploitation in beamformer selection. We incorporate this by

constructing an LTS “wrapper” for the Kalman filter. Using the estimated channel

distribution CN (ĥt−1,Σt−1), LTS obtains a sample channel realization h̃t. It then

selects the beamformer ft = arg maxf∈F

∣∣∣h̃H
t f
∣∣∣ to sound the channel on. After trans-

mission and feedback, we input the observed channel output yt into the KFS update

equations in Algorithm 2 to re-estimate the channel statistics. We use the newly

estimated channel vector to greedily select the best beamformer for the data trans-

1The +1 in (∆ + 1) is purely for accounting purposes as in [25].
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Algorithm 2: KSBL Algorithm

Input: yt−(∆+1):t,Ft−(∆+1):t, kmax, ε
1 Set difference = 1, k = 0, α(0) = IN ;
2 while ( difference > ε and k < kmax) do

3 E-step: Set Σ0|0 =
(
A(k)

)−1
; ĥ0|0 = 0 ;

4 for s = t− (∆ + 1), t−∆, . . . , t do

5 Prediction: ĥs|s−1 = εĥs−1|s−1 ;

6 Σs|s−1 = ε2Σs−1|s−1 + (1− ε2)(A(k))−1 ;

7 Filtering: Ks =
√
ρΣs|s−1fs

(
1 + ρfHs Σs|s−1fs

)−1
;

8 ĥs|s = ĥs|s−1 + Ks

(
yHs −

√
ρfHs ĥs|s−1

)
;

9 Σs|s =
(
IN −

√
ρKsf

H
s

)
Σs|s−1 ;

10 end

11 Smoothing: Set Σt,t−1|t = ε
(
IN −

√
ρKtf

H
t

)
Σt−1|t−1;

12 for r = t, t− 1, . . . , t− (∆ + 1) do
13 Jr−1 = εΣr−1|r−1Σ

−1
r|r−1 and Jr−2 = εΣr−2|r−2Σ

−1
r−1|r−2;

14 ĥr−1|t = ĥr−1|r−1 + Jr−1(ĥr|t − ĥr|r−1);
15 Σr−1|t = Σr−1|r−1 + Jr−1(Σr|t −Σr|r−1)JH

r−1;

16 Σr−1,r−2|t = Σr−1|r−1J
H
r−2 + JH

r−1

(
Σr,r−1|t − εΣr−1|r−1

)
Jr−2;

17 Mr|t =

Σr|t + ĥr|tĥ
H
r|t + ε2

(
Σr−1|t + ĥr−1|tĥ

H
r−1|t

)
− 2εRe

{
Σr,r−1|t + ĥr|tĥ

H
r−1|t

}
;

18 end

19 M-step: M(t−∆)|t , Σ(t−∆)|t + ĥ(t−∆)|tĥ
H
(t−∆)|t ;

20 α(k+1)(i) = t
(∑t

r=2

Mr|t(i,i)

(1−ε2)
+M(t−∆)|t(i, i)

)−1

for i = 1, . . . , N ;

21 Compute difference ,
∥∥ 1
α(k+1) − 1

α(k)

∥∥2
, k ← k + 1 ;

22 end

Output: ĥt|t; Σt|t; α̂t = α(k)

mission phase at the end of the timeslot. We summarize KSBL-LTS in Algorithms 1

and 2.
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Table 2.1.
Beam alignment simulation assumptions and parameters

System Parameters Simulation Assumptions
Number of transmit antennas Nt 64

Antenna spacing d λ/2
SNR ρ (dB) 0

Virtual channel dimension N 128
Channel Model from Section 2.1

Sparsity (virtual domain) NP 4
Channel correlation coefficient ε 0.9931

Mobility parameter p {0.01, 0.1}
Number of Monte Carlo iterations 1500

Channel Model from QuaDRiGa
Carrier frequency (GHz) 28

Transmit element power (dBm) 15
Receiver track length (m) 15
Receiver velocity (m/s) 30

Number of clusters 3
Number of Monte Carlo iterations 100

Additional parameters as given for UMi scenario in [74]

2.3 Numerical Results

2.3.1 Performance Metrics

To evaluate performance, we use the normalized beamforming gain, defined as

GBF (t) =

∣∣∣hHf
(data)
t

∣∣∣2∣∣hHfoptt

∣∣2 . (2.32)

This metric conveys the accuracy of the greedily-selected beam in the data trans-

mission phase relative to the optimal beam foptt ∈ F and is a function of the chan-

nel estimate quality and the beam selection policy used for training. We compare

performance results of the KSBL beam alignment algorithm for LTS, random beam-

forming, and greedy beam selection policies with the normalized beamforming gain

performance of omni-directional training.
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We provide beamforming gain simulated results using: a) the channel model de-

scribed in Section 2.1, and b) the channel from QuaDRiGa [75]. Parameters for both

simulations are listed in Table 2.1. All beamforming gain dynamic support results are

for a mobility parameter of p = 0.01, with LTS and omni-directional training each

having an additional curve for p = 0.1 to show the respective algorithm’s sensitivity

to mobility changes. Assuming a channel coherence time of 10 ms, p = {0.01, 0.1}

represents a range of mobile speeds ≤ 90 km/h. While any arbitrary F may be

used, in the simulations we use the DFT codebook [76]. All beam selection policies

except for omni-directional training use the KSBL algorithm and require a training-

only, initialization phase of NP sounding vectors to avoid singular covariance matrix

estimates, as shown in Lines 2-4 of Algorithm 1.

In addition to the normalized beamforming gain, we capture the tracking perfor-

mance of the algorithm. For these results, we use NP = 1 for clarity in describing the

algorithm’s performance and p = 0.1 since it is the more challenging path evolution

case. Given NP = 1, we are able to define the “angle” of ht as the virtual spatial

angle θt,imax corresponding to the virtual path gain ht,imax , where imax ∈ {1, . . . , N}

is the virtual sector at which the magnitude of ht is maximum, or

imax = arg max
i∈{1,...,N}

|ht,i|.

The estimated spatial angle of ĥt for a given beam selection policy is determined simi-

larly. Before plotting the angle tracking performance, we convert all angles to physical

angles using φ = sin−1(θ). In this work we only provide an example realization plot of

the angle tracking performance. We note, however, that the normalized beamforming

gain and angle tracking are related in that more accurate channel estimates result in

better performance for both. Thus, we expect beam selection policies and algorithms

with higher average normalized beamforming gains to also exhibit closer tracking of

the true channel on average.
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Fig. 2.2. KSBL-LTS, random beamforming, greedy and omni-
directional training GBF vs. time using the channel model from Sec-
tion 2.1 and ρ = 0 dB. All results are for a mobility parameter of
p = 0.01 with the exception of the LTS (p = 0.1) and Omni (p = 0.1)
curves. These additional results show the respective algorithms’ sen-
sitivities to mobility changes for at least t ≤ 300 channel uses.

2.3.2 Normalized Beamforming Gain Results

Defined Channel Model

The initial beam alignment rate of KSBL-LTS is more rapid than omni-directional

training. We observe in Fig. 2.2 for the channel model defined in Section 2.1 that in

the data transmission phase KSBL-LTS achieves greater GBF than omni-directional

training for at least t ≤ 100. Omni-directional training has slightly greater GBF in the

long-term, but this comes at the cost of slower initial beam alignment. The steady-

state difference in GBF between LTS and omni-directional training is only about 0.01.

Random beamforming and greedy beam selection both have a much lower average

GBF over time.
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We compare the steady-state sensitivities of LTS and omni-directional training to

mobility changes. While not shown in Fig. 2.2, these steady-state behaviors hold for

t > 300. LTS reaches a steady-state performance for p = 0.01 of GBF ≈ 0.55 and for

p = 0.1 of GBF ≈ 0.5. Omni-directional training reaches a steady state performance

for p = 0.01 of GBF ≈ 0.565 and for p = 0.1 of GBF ≈ 0.47. Comparing the two

approaches, LTS is on average less sensitive to mobility changes, with a GBF decrease

of about 0.05 versus a decrease of about 0.095 for omni-directional training.

The policies using the KSBL algorithm, namely, the LTS, random, and greedy

policies, all utilize an initialization phase which accounts for part of the beginning

rapid GBF rate. However, it must be noted that, although all three policies have

similar initialization phases, LTS still has a greater GBF for all t than random and

greedy. This can be attributed to the guided exploration characteristic of LTS, which

enables the KSBL algorithm to better track the estimate of the dynamic channel. On

the other hand, the GBF of random beamforming increases steadily until about t = 11

after which it maintains a noisy, low level of performance around GBF = 0.11. The

GBF of greedy beam selection also increases steadily until about channel use t = 20

and maintains a low performance at GBF ≈ 0.18 through about t = 40. After channel

use t = 40, however, greedy GBF gradually declines due to the greedy policy’s lack

exploration after converging to an estimate.

Omni-directional training does not use the KSBL algorithm and, thus, does not

require the same type of initialization phase. However, the omni-directional training

performance does depend on how the omni-directional training is implemented. As

described in Section 2.2.1, omni-directional training can be done by cycling through

individual beams at quantized angles or through individual antenna elements of the

array. The normalized beamforming gain performance of both approaches over 5, 000

Monte Carlo iterations is compared in Fig. 2.3. We observe that the beam approach

provides steadier performance, while the antenna approach oscillates at a period of

Ntx = 64 channel uses due to the channel variation.
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Fig. 2.3. Omni-directional training by turning on one beam at a time
(Beam) and by turning on one antenna at a time (Antenna). Both
results have similar performance, except cycling through antennas
creates an oscillating GBF .

QuaDRiGa Channel Model

From the channel coefficients outputted by QuaDRiGa for the parameters in Ta-

ble 2.1 we generate geometric channel vectors h
(g)
t and virtual channel vectors ht.

Using these channel vectors, we accomplish beam alignment by employing KSBL-

LTS and omni-directional training. The GBF results are averaged over independent

realizations of randomly-placed receivers equipped with omni-directional antennas

moving along linear tracks, as displayed in Fig. 2.4. Due to the complexity of the

QuaDRiGa channel model, simulating large numbers of independent receivers is very

computationally intensive, and we limited our simulation to 100 receivers. Results

for the GBF using the QuaDRiGa channel model are displayed in Fig. 2.5. We note

that the curves are noisy due to the small number of independent realizations. As

can be seen, the GBF of both KSBL-LTS and omni-directional training using the
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Fig. 2.4. Example from QuaDRiGa of 100 randomly placed, single
antenna receivers (blue) moving in random directions along 15m linear
tracks (black lines). The transmitter (red) employs an antenna array.
Beamforming gain results from the receivers are averaged together
and presented in Fig. 2.5.

QuaDRiGa channel model follow the same overall trend from the channel model de-

fined in Section II. That is, KSBL-LTS has a more rapid initial rate of performance

than omni-directional training, while omni-directional training has slightly better

long-term average GBF performance.

2.3.3 Example Angle Tracking Results

In Fig. 2.6 we show an example of the angle tracking performance of the various

beam selection policies relative to the true channel angle for NP = 1 and p = 0.1

over 300 channel uses of the channel model from Section 2.1. Random beamforming

has very noisy angle tracking performance and is not included so as not to clutter

the plot. In this single simulation realization, KSBL-LTS “locks on” to the true

channel angle (i.e., accurately estimates the true channel) at channel use t = 56, has
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Fig. 2.5. KSBL-LTS and omni-directional training GBF vs. time using
the QuaDRiGa channel model.

a widely varying estimate between channel uses t = 116 − 132 due to exploration

in its training phase, and then “locks on” to the true channel angle again. Omni-

directional training actually estimates the true channel angle very quickly at t = 9 in

this realization. However, at t = 74 it jumps to the incorrect greedy channel angle

estimate before returning to the true channel angle at t = 138. An additional period

of incorrect channel angle estimates occurs between channel uses t = 202 and t = 232.

Greedy beam selection never finds the true channel angle and exhibits very limited

exploration for the duration of the simulation despite the temporal evolution of the

true mobile channel.

Throughout the simulation KSBL-LTS continues to explore during its training

phase, typically leading to much quicker corrections to its channel estimation. For

example, the incorrect channel angle estimates between channel uses t = 116−132 last

a much shorter period than the incorrect omni-directional channel estimates between

channel uses t = 74 − 138. Overall, KSBL-LTS is generally able to respond more

rapidly to a dynamic, evolving channel than can omni-directional training.
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Fig. 2.6. Example of KSBL-LTS, greedy, and omni-directional train-
ing angle tracking performance over t = 300 channel uses for NP = 1
and p = 0.1. In general, random beamforming tracking performance
is very noisy and is not shown.

2.4 Conclusion

In this chapter we proposed a novel beam alignment and tracking algorithm for

sparse, time-varying mmWave channels using a SBL Kalman filter with Bayesian

MAB beam selection. We numerically compared the normalized beamforming gain

performance of KSBL-LTS with that of other beam selection policies using theoreti-

cal and real-world channel models. Furthermore, we discussed an example realization

of the angle tracking performances of the policies, especially as it pertained to the

exploration evident in the KSBL-LTS and omni-directional training algorithms. Sig-

nificantly, KSBL-LTS has a faster learning rate than omni-directional training for

mmWave channels with a slowly time-varying channel support.
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3. QUANTIZED MIMO MUTUAL INFORMATION

SELECTION

Millimeter wave systems must utilize large, directive antenna arrays, e.g., massive

multiple-input multiple-output (MIMO), in order to overcome the propagation losses

inherent at high frequencies. As these arrays become larger, however, energy con-

sumption becomes a critical issue, and the system performance must be balanced

with the power use. Furthermore, the potential exists for an output data rate greater

then the application layer can accommodate, in which case selectively throttling the

number of bits per sample can be accomplished in the physical layer or in the applica-

tion layer; we focus on the physical layer in this work. This rate constraint, whether

due to power or data requirements, creates a bottleneck at the output of the receiver.

For best performance, the receiver should reduce the number of output bits by only

passing on the bits which provide the most information about the transmitted signal.

We term this process to be mutual information selection.

Mutual information selection can be accomplished through two different methods:

1) in the analog domain through antenna subset selection using a switch as shown in

Fig. 3.1, or 2) in the digital domain through subset selection of bits after quantization

as shown in Fig. 3.2. While we describe both methods in greater detail below, we

note that the analysis and results of both methods can be very similar. Thus, in this

work we focus entirely on the second method illustrated in Fig. 3.2.

1. The first method uses an analog switch to select a subset of antennas prior

to quantization. This enables the receiver to fix the number of required radio

frequency (RF) and quantizer chains to some number M̃ , determined by the

rate constraint. Denoting the total number of antennas by M , for M̃ < M the

cost and power consumption of the receiver are reduced. However, the receiver
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Fig. 3.1. Analog domain mutual information selection. Analog switch
selects a fixed number of ADCs before quantization.

Fig. 3.2. Digital domain mutual information selection. Bits are gener-
ated using one ADC per antenna and then selected after quantization.

requires either delay in or storage of the signal prior to quantization and/or a

dedicated selection training phase in order to determine which antennas to turn

on to maximize the mutual information between the transmitted signal x and

the receiver output q. This first method has been the focus of several previous

papers in the literature for the case of unquantized MIMO (e.g., [46,48,62,63]).

2. In the second method, we assume each antenna has a dedicated RF chain and

quantizer. We note that although this assumption ignores hybrid architectures

with several antennas per an RF chain, such as used in [77, 78], extensions can

be made to incorporate these more complex designs. The mutual information
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selection is digital, taking place after quantization, and is based on the quantized

signals. Delay or storage of the quantized signal is assumed acceptable. Using

this method allows for real-time quantization of the incoming signal. Literature

in the case of quantized MIMO includes [49,77–79].

Note that hybrids of the two methods are also possible. For example, we can use

feedback from the digital bit subset selection to set the analog, antenna selection

switch.

We comment on the apparent similarity between our categorization of mutual

information selection into analog and digital domain mutual information selection

methods and the architectures used by Rini et al. in [49]. There, the authors com-

pare different MIMO architectures by varying antenna selection and parallel sign

quantization techniques. Architecture (c) in [49] corresponds to multiple antenna se-

lection and multilevel quantization, where potentially more than one sign quantizer

is used with a single receive antenna output. Rini et al. term this to implicitly be

a digital domain approach. Architecture (d) corresponds to linear combining and

multilevel quantization and is termed to be in the analog domain. In our approaches,

we only consider antenna selection and do not consider linear combining. Also, while

understanding that multilevel quantization can be accomplished using multiple sign

quantizers in parallel, we simply consider the number of bits used in the quantization

and not the specific architecture.

In this chapter we formulate mutual information selection as a quantized MIMO

antenna subset selection problem. The signal model is provided in Section 3.1. Then,

in Section 3.2 we describe the quantization and the modeling of varying levels of

quantization bits across the overall analog-to-digital converter (ADC). In Section 3.3

we detail the problem, which is summarized as follows. Given a rate constraint, we

determine a linear selection matrix G, based on the quantized received signal and

channel H, which returns a subset of the total bits by only choosing the outputs

corresponding to specific antennas. Of all possible selection matrices, we seek ones

that result in the greatest mutual information between x and q. We address this
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problem in Section 3.4 with an optimal joint mutual information selection and by

developing a greedy subselection algorithm. Additionally, we show how previously

developed unquantized MIMO antenna subselection algorithms can be adapted for

quantized MIMO using our signal model. Finally, in Section 3.4.4 we present and

discuss numerical results from our algorithms.

3.1 Signal Model

Consider a MIMO system equipped with N transmit antennas and M receive

antennas. At the m-th receive antenna the received signal is given by

ym =

√
ρ

N
hH
mx + zm, m = 1, . . . ,M (3.1)

where ρ/N is the per-antenna, average transmit signal-to-noise ratio (SNR), hm ∈ CN

is the channel vector between the transmitter and the m-th receive antenna, and zm

is the noise at the m-th receive antenna with assumed distribution CN (0, σ2
z,m) where

σ2
z,m = 1. To simplify the characterization of the overall mutual information between

the transmitted signal vector x ∈ CN and the quantized output, we approximate x

as Gaussian-distributed, as also done in, for example, [80–82]. Specifically, x is a

zero mean, circularly symmetric complex Gaussian with covariance E[xxH] = Cx and

satisfying the energy constraint Tr(Cx) = N .

The overall received signal vector after RF processing is given by the input-output

relationship

y =

√
ρ

N
Hx + z, (3.2)

where y = [y1, . . . , yM ]T ∈ CM , H = [h1, . . . ,hM ]H, and z ∼ CN (0M , IM). Further-

more, z is independent of x, and E[zzH] = IM , i.e., zm,m = 1, . . . ,M are spatially

independent across the receive antennas. We assume channel state information (CSI)

is available at the receiver. This assumption is motivated by the fact that even when

quantization is very coarse (1-4 bits), it has been shown that reliable estimation is
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still possible for coherence times as low as Tc = 1 ms [83], well below the Tc = 10 ms

coherence time used in [84–86].

3.2 Quantization

The signal at each receive antenna ym is connected to an ADC pair represented

by the operator Qm(·), m = 1, . . . ,M , where Qm(·) is a scalar quantizer function

separately applied to the real and imaginary parts of ym. Each ADC of the m-

th ADC pair has Bm bits for quantizing each of the real and imaginary parts of

ym, where Bm is a function of the antenna index m. The quantization maps ym to

quantization points such that the quantizer output ŷm is selected as ŷm = E[ym | ŷm].

For each quantizer Qm(·), we assume the quantization regions are non-overlapping

and span C. Across the receive array a parallel configuration of ADCs, defined by

Q(·) = [Q1(·), . . . , QM(·)]T, performs element-wise quantization of the received signal

vector y. The vector of quantized outputs is given by ŷ = Q(y).

Quantization is inherently nonlinear, which complicates analysis. In Section 3.2.1

we describe the additive quantization noise model (AQNM), which we use to convert

the quantization into a more analytically friendly linear operation for our analysis.

This model is comprised of multiplying the input signal by a linear quantization gain

and then adding independent quantization noise. The quantization gain depends

on the quantizer input distribution, the scalar quantizer design and the number of

quantization bits Bm. In Section 3.2.2 we explain how to obtain the values of these

quantization gains. In Section 3.2.3 we derive the covariance of the received, quantized

signal in terms of the quantization gains, channel vectors, and channel noise.

3.2.1 Additive Quantization Noise Model (AQNM)

The nonlinearities inherent in quantization make exact analysis of mutual infor-

mation selection difficult. A more analytically tractable model is obtained by using
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the Bussgang theorem [87]. For Gaussian quantizer inputs, the Bussgang theorem

allows us to model the non-linear quantization operation ŷ = Q(y) in a linear form:

ŷ = Vαy + w. (3.3)

This model is the AQNM described in [82] and has been used in several other works,

e.g., [37,51,77–79,88–90]. We define the quantization gain matrix Vα from the linear

minimum mean square error (MMSE) estimation of ŷ from y such that E
[
wyH

]
=

0M [82, 89]. Thus, we have

Vα = CŷyC−1
y , (3.4)

where Cŷy = E
[
ŷyH

]
is the covariance between the quantizer input and output

signals and Cy = E
[
yyH

]
is the covariance of the quantizer input signal. The quan-

tization noise vector w is zero mean with covariance matrix

Cw = E
[
wwH

]
= E

[
(ŷ −Vαy)(ŷ −Vαy)H

]
= Cŷ −CŷyC−1

y Cyŷ,
(3.5)

where Cŷ = E
[
ŷŷH

]
. We lower bound the mutual information in our analysis by

assuming w has the worst-case noise of Gaussian distributed [80, 91]. Any deviation

by the noise from a Gaussian distribution improves the mutual information.

We aim to define the quantization variables Vα and w in terms of Cy and the

quantization loss. The quantization loss at the m-th quantizer is defined as

βm ,
MSEm
σ2
y,m

, (3.6)

where MSEm = E
[
|em|2

]
is the quantization mean squared-error (MSE), em = ŷm−

ym is the quantization error, and σ2
y,m = E

[
|ym|2

]
is the variance of ym. As we

will demonstrate in Section 3.2.2, the type of quantizer, number of quantization bits,

and input signal distribution determine the value of βm. We consider symmetric,

MMSE uniform quantizers and complex Gaussian inputs with uncorrelated real and
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imaginary parts. With these conditions in place, for m,n ∈ {1, . . . ,M}, we have the

following correlations [82,90]:

E [yme
∗
m] = −βmσ2

y,m (3.7)

E [eme
∗
m] = βmσ

2
y,m (3.8)

Furthermore, we can obtain two additional correlations using the fact that em

conditioned on ym is statistically independent of all of the other random variables [92].

The first is [82,90]

E [yme
∗
n] = Eyn [E [ym | yn]E [e∗n | yn]]

(a)
= Eyn

[
E [ymy

∗
n]E

[
|yn|2

]−1
ynE [e∗n | yn]

]
= E [ymy

∗
n]E

[
|yn|2

]−1 E [yne
∗
n]

(b)
= −βnE [ymy

∗
n] ,∀m 6= n,

(3.9)

where, since y is a vector of jointly Gaussian random variables, (a) uses the linear

estimator E [ymy
∗
n]E

[
|yn|2

]−1
yn corresponding to the Bayesian estimator E [ym | yn]

and (b) follows from (3.7). The final correlation we require is [82, 90]

E [eme
∗
n] = Eyn [E [em | yn]E [e∗n | yn]]

(a)
= Eyn

[
E [emy

∗
n]E

[
|yn|2

]−1
ynE [e∗n | yn]

]
= (E [yne

∗
m])∗ E

[
|yn|2

]−1 E [yne
∗
n]

(b)
= −βm (E [yny

∗
m])∗ E

[
|yn|2

]−1 (−βnσ2
y,n

)
(c)
= βmβnE [ymy

∗
n] ,∀m 6= n,

(3.10)

where (a) uses the linear estimator of the Bayesian estimator E [em | yn], (b) follows

from (3.7) and (3.9), and (c) uses the fact that (E [yny
∗
m])∗ = E [ymy

∗
n].

In what follows, we use the steps from [82, 90] to write the quantization gain

Vα and noise covariance Cw in (3.4) and (3.5), respectively, in terms of Cy and
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Vβ , diag(β1, . . . , βM). Note that Vβ contains only real values on the diagonal.

From (3.7) and (3.9) we obtain

Cye = E
[
yeH

]
= −CyVβ, (3.11)

where the quantization error vector e relates the quantization input and output

through ŷ = y + e. The result of (3.11) leads to

Cyŷ = E
[
y(y + e)H

]
= Cy + Cye

= Cy (IM −Vβ) .

(3.12)

Similarly, Cŷy = CH
yŷ = (IM −Vβ) Cy. Thus,

Vα = (IM −Vβ) CyC−1
y = (IM −Vβ) , (3.13)

and we define αm , 1− βm.

To simplify Cw, we require Cŷ = E
[
(y + e)(y + e)H

]
= Cy + Cye + CH

ye + Ce.

Using (3.8) and (3.10) we obtain

Ce = E
[
eeH
]

= Vβ diag(Cy) + Vβ offdiag(Cy)Vβ

= VβCy −Vβ offdiag(Cy) + Vβ offdiag(Cy)Vβ

= VβCy −Vβ offdiag(Cy) (IM −Vβ)

= VβCy −Vβ offdiag(Cy)Vα.

(3.14)
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With the results of (3.11) and (3.14), we have

Cŷ = Cy −CyVβ −VβCy + VβCy −Vβ offdiag(Cy)Vα

= Cy(IM −Vβ)−Vβ offdiag(Cy)Vα

= CyVα −Vβ offdiag(Cy)Vα

= CyVα −VβCyVα + Vβ diag(Cy)Vα

= CyVα − (IM −Vα)CyVα + Vβ diag(Cy)Vα

= CyVα −CyVα + VαCyVα + Vβ diag(Cy)Vα

= VαCyVα + Vβ diag(Cy)Vα.

(3.15)

Now we can plug in the results of (3.12) and (3.15) to simplify Cw in (3.5) as

Cw = Cŷ −CŷyC−1
y Cyŷ

= VαCyVα + Vβ diag(Cy)Vα −VαCyC−1
y CyVα

= VαVβ diag (Cy) .

(3.16)

With the assumptions given in this section, Cw is a diagonal matrix, as in [37,51,77–

79,81, 82, 93]. Note that [81] shows this simplifying approximation is fairly accurate,

especially for low to medium SNRs.

3.2.2 Quantization Gains for Gaussian Distributed Inputs

In the previous section, quantization is modeled as a linear operation in (3.3)

requiring only the input signal covariance Cy and quantization gains Vα (or, equiv-

alently, the quantization losses Vβ) to characterize the quantizer output. In this

section, we describe the quantization gains for a uniform scalar quantizer as a func-

tion of the number of quantization bits Bm assuming Gaussian distributed input

signals. We first provide a closed-form expression of a uniform scalar quantizer for

a generic Bm. Then we explain why we use numerically derived quantization gains

with a uniform scalar quantizer. We also note that, as an alternative, there exists a
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simple, closed-form expression for the quantization gains of a non-uniform quantizer

as a function of Bm. This expression can be used, if desired, to lower bound the

uniform quantization error variance. However, we opt to simply use the numerically

calculated values for a uniform quantizer.

For a uniform scalar quantizer with a finite set of quantization points equally

spaced in a bounded interval [−A,A] and symmetric about the origin, we can de-

termine a closed-form expression for the quantization point locations given a generic

number of bits. Considering only the real domain (indicated by the superscript R),

the m-th ADC uses QR
m(·) to quantize the real input into discrete values from a

set A of KR
m = 2Bm quantization points indexed by k = 0, . . . , KR

m − 1, or A =

{ŷRm,0, . . . , ŷRm,KR
m−1}, where ŷRm,k is determined by

ŷRm,k =
(2k + 1−KR

m)A

KR
m

, ∀k = 0, . . . , KR
m − 1. (3.17)

The quantization interval length is given by ∆m = 2A
KR

m
. As an example, say we have

Bm = 2 such that KR
m = 4. Then, since ŷRm,k, k = 0, . . . , 3 are equally spaced between

−A and A, the set of quantization points is A = {−3A
4
, −A

4
, A

4
, 3A

4
}. The quantization

of the imaginary part of ym follows an identical process.

Given a uniform scalar quantizer such as we just described, we minimize the MSE

by adjusting ∆m based on Km and the input quantization signal probability density

function (PDF). When the input has a finite support, this optimization is straight-

forward and can result in a closed-form, exact characterization of MSEm in terms of

Bm. However, when the input has infinite support, such as in the case of the Gaussian

distribution we consider in this work, the optimization becomes more complicated and

even closed-form approximations of MSEm in terms of Bm are difficult. Closed-form

formulas approximating MSEm in terms of Bm for uniform scalar quantizers with

Gaussian inputs can be found in [94–96]. However, these approximation formulas are

of sufficient length and complication such that they do not lend themselves for use

in straightforward analysis. Therefore, we turn to numerically derived results. The
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Table 3.1.
Uniform quantization interval lengths and error variances for different
values of Bm [97]

Bm 1 2 3 4 5
∆m 1.596 0.9957 0.5860 0.3352 0.1881
βm 0.3634 0.1188 0.03744 0.01154 0.003490

Table 3.2.
Non-uniform quantization error variances (actual [97] and estimated)
for different values of Bm

Bm 1 2 3 4 5
βm 0.3634 0.1175 0.03454 0.009497 0.002499

Est. βm 0.6802 0.1700 0.04251 0.01063 0.002657

first numerical calculations of the MSE-optimal ∆m for a standard Gaussian input

with σ2
y,m = 1 were accomplished by Max in [97] for KR

m = 1 to 36. We reproduce

these values for KR
m = {2, 4, 8, 16, 32} in Table 3.1. Note that when σ2

y,m = 1, then

βm = MSEm.

Alternatively, there does exist a simple, closed-form approximation relating βm

and Bm for MSE-optimal non-uniform scalar quantization of Gaussian random vari-

ables. In the non-uniform formula, βm is approximated as [81,82]

βm ≈
π
√

3

2
2−2Bm . (3.18)

Recall that Bm is the number of bits for both the real and imaginary part of ym. The

approximation in (3.18) holds for Bm ≥ 4. We show this in Table 3.2 for the actual

values of βm numerically determined in [97] compared with the estimated values of βm

from (3.18). Asymptotically, i.e., at high resolution, βm is equivalent for the uniform

and non-uniform cases [96]. As non-uniform quantization minimum MSE for Bm ≥ 4

is guaranteed to be less than that of uniform quantization, (3.18) could be used as

a lower bound to the uniform quantization error variance. However, as we consider
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Bm ≥ 1, in our simulations we use the numerically calculated values of βm for a given

Bm shown in Table 3.1 for uniform scalar quantization.

3.2.3 Quantized Signal Covariance Using AQNM

Using the results of the previous two sections, we can determine the covariance of

the received, quantized signal Cŷ in terms of the quantization gains Vα, channel H,

and channel noise Cz = IM . We first sum the quantization noise w from (3.3) with

z scaled by the quantization gain to form a total noise term as shown:

ztot , Vαz + w. (3.19)

Scaling and combining the covariances, we obtain ztot ∼ CN (0M ,Cztot), where

Cztot = VαCzV
T
α + Cw

= Vα (Vα + Vβ diag(Cy))

=


σ2
ztot,1 · · · 0
...

. . .
...

0 · · · σ2
ztot,M

 ,
(3.20)

and

σ2
ztot,m = α2

m + αmβm

( ρ
N

hH
mCxhm + 1

)
, m = {1, . . . ,M}. (3.21)

Note that since Vα is a diagonal matrix Vα = VT
α . With ztot thus defined, we can

rewrite the system model as

ŷ =

√
ρ

N
VαHx + ztot. (3.22)

Given x and z are both marginally Gaussian and independent, the received signal

y is also Gaussian with distribution y ∼ CN (0,Cy) where Cy = ρ
N

HCxH
H + IM .
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Therefore, the covariance of the quantized, received signal ŷ given H can be written

as

Cŷ = VαCyVT
α + Cw

=
ρ

N
VαHCxH

HVT
α + Cztot

=
ρ

N
VαHCxH

HVT
α + VαV

T
α + VαVβ diag

( ρ
N

HCxH
H + IM

)
,

(3.23)

where the total noise term covariance Cztot is defined in (3.20). We can see how the

number of quantization bits Bm is used in our signal model by considering just the

quantizer output variances σ2
ŷ,m on the diagonal of Cŷ. Specifically, for m = 1, . . . ,M

and a given hm,

σ2
ŷ,m = α2

m

( ρ
N

hH
mCxhm + 1

)
+ αmβm

( ρ
N

hH
mCxhm + 1

)
= αm (αm + βm)

( ρ
N

hH
mCxhm + 1

)
= (1− βm)

( ρ
N

hH
mCxhm + 1

)
,

(3.24)

where we have used the fact αm + βm = 1. Thus, since βm can be found in Table 3.1

for m = 1, . . . , 5, we can model varying numbers of quantization bits Bm at each

receiver branch. The off-diagonal terms of Cŷ are similarly related to Bm.

We finish this section by defining a few variables which are used in subsequent

sections. A one-to-one mapping encodes ŷm into a 2Bm-bit binary vector bm, written

as

bm = [bm,1, . . . , bm,2Bm ]T,

where {bm,1, . . . , bm,2Bm} ∈ {0, 1} represent individual bits. Thus, ŷm represents the

quantized decimal value of ym, while bm represents the quantized binary value of

ym. The total number of quantization bits across all quantizers is denoted by J =
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∑M
m=1(2Bm), and the binary quantization output of the received vector y is written

as

b = Qbin(y) =


b1

...

bM


=
[
b1,1, . . . , b1,2B1 , . . . , bM,1, . . . , bM,2BM

]T
.

(3.25)

An illustration of the signal flow through the receiver is shown in Fig. 3.3 in Sec-

tion 3.3.

3.3 Problem Setup

In the scenario we consider, that is, massive MIMO with prohibitively large data

rates at the output of the receiver, we must constrain the receiver output data rate

so that only up to T bits per sample are processed, where T < J is some threshold

determined by the application using the receiver. We assume the reduction in bits

from the quantization stage to the receiver output is accomplished by simple subse-

lection. This means a subset of bits from the quantization are forwarded on to the

application and the rest are thrown away; no other bit operations are performed.

This is illustrated in Fig. 3.3 and explained in detail in the next paragraph.

The ADC outputs the J-bit vector b. We assume the channel matrix H is known

at the receiver. As a generalization of subselection, we consider a linear transformation

matrix G on bits b, where G is determined based on H. We denote the subselected

output data rate by L, where L ≤ T bits. Thus, G is a L × J matrix and selects L

bits from b for inclusion in a bit vector q at the final receiver output. Let L be the

set of L × J matrices modified from the identity matrix IJ by removing J − L rows

rj ∈ {j : j = 1, . . . , J}. Then, for G ∈ L, the relationship between b and q is written

as

q = Gb. (3.26)
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Fig. 3.3. Receiver block diagram of receiver signal flow and bit subset
selection after quantization. The parallel ADC outputs a total of J
bits in vector b. The application requires the output data rate be
no greater than some threshold T . After subselection the receiver
outputs the L-bit vector q, where L ≤ T < J .

The problem we address is to determine G for a given H such that the mutual

information between x and q is maximized under the constraint T , or

G = arg max
G′∈L

s.t. L≤T

I(x; q | H). (3.27)

The threshold T forces a down selection from J bits in b to L bits in q. This

creates a “bottleneck” on the maximum I(x; q | H) possible since T < J and fewer

bits implies less information. Let the indices of quantizers from which bits are selected

be given by iv, v = 1, . . . , M̃ , where iv ∈ {1, . . . ,M} and M̃ ≤ M is the number of

quantizers from which bits are selected. Therefore, we can write total number of

selected bits as L =
∑M̃

v=1Biv , where L ≤ T . Once the quantizer indices are chosen,

the output of each selected quantizer may be further refined. In general each quantizer

output bm can have anywhere from zero up to Bm bits selected from it. The number

of bits selected from each bm need not be equivalent. We denote by qv, v = 1, . . . , M̃
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the vector of bits selected from biv , and the combined sub-selected receiver output is

given by

q =


q1

...

qM̃

 , (3.28)

where the number of bits in qv ranges from one to Bm and may or may not be equal

in each qv, subject to the constraint T .

We use mutual information to determine which bits from b to forward on and

which to throw away. We do so by selecting G under the output rate constraint T

such that I(x; q | H) is maximized. Two methods of bit selection from b can be

considered:

1. Bit Subselection: The most general method for determining G is to allow se-

lection of anywhere from one to L ≤ T individual bits from the overall ADC

output bit vector b regardless from which quantizer the bits originate. Thus,

from each receive antenna’s quantized output bm, zero to Bm bits may be se-

lected and may vary from quantizer to quantizer. Due to the selection of zero to

Bm bits from a given quantizer, this method is significantly more complicated,

and we leave its consideration to future research.

2. Receive Antenna Subselection: In this method we set G based on H such that

exclusively all or none of the bits from an antenna’s quantized signal bm are

included in q. Equivalently, we can define a M̃×M antenna subselection matrix

G̃ ∈ L̃, where L̃ is the set of M̃ ×M identity matrices modified similar to the

previously defined set L. In our notation, we differentiate between variables

related to bit subselection, e.g., G, and variables related to antenna subselection

by adding a tilde to the variable. For example, in addition to M̃ , G̃, and L̃, we

denote the L×N matrix of selected channel vectors by

H̃ = G̃H, (3.29)
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and the subselected vector of quantized values by

ỹ = G̃ŷ. (3.30)

The selected indices are given by
i1
...

iM̃

 = G̃


1
...

M

 . (3.31)

Whether we use G or G̃, q consists of M̃ selected bit vectors and L =
∑M̃

v=1Biv

total bits, where iv ∈M = {1, . . . ,M} and, again, L ≤ T . Noting qv = biv , v =

1 . . . , M̃ and rewriting (3.28), we have

q = vec

G̃


bT

1

...

bT
M


 =


bi1
...

bi
M̃

 . (3.32)

At first glance, this method may seem equivalent to the many antenna selec-

tion approaches in the literature, e.g., [46–48]. However, due to the varying

numbers of bits at each quantizer, a mutual information selection algorithm

not only must select the quantized outputs returning the most mutual informa-

tion about the transmitted signal but must also account for how many bits are

used to quantize each antenna’s received signal. Our mutual information selec-

tion problem relates antenna selection with the bit allocation problem, similar

to [79].

We are only considering subselection antenna by antenna (versus by individual

bits as discussed in Section 3.3). The quantized subselected decimal values are given

by ỹ = [ŷi1 , . . . , ŷiM̃ ], and there exists a one-to-one mapping between ỹ and q. When
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stating the subselected results in terms of Gaussian distributions we use ỹ instead of

the subselected bit vectors q.

In the what follows, we discuss mutual information selection algorithms under

the assumption of a Gaussian distributed input signal and derive expressions for the

mutual information using joint and greedy selection algorithms.

3.4 Mutual Information Selection - Gaussian Approximation

3.4.1 Joint Mutual Information

Having defined the system model and setup the problem, we now turn to finding

the mutual information between the transmitted vector x and the subselected bit

vector q. We represent the subselection through multiplication by the matrix G̃ ∈ L̃,

where L̃ is the set of M̃ ×M matrices modified from the identity matrix as described

in Section 3.3. The optimal solution finds the matrix G̃opt ∈ L̃ which returns the

maximum joint mutual information I(x; q | H) (or, equivalently, I(x; ỹ | H)) under

some overall output rate constraint T .

After quantization we can use (3.22) and write the mutual information between

x and ŷ as follows:

I(x; ŷ | H) = h(ŷ | H)− h(ŷ | x,H)

= h(ŷ | H)− h(ztot | H)

= log
(
(πe)M det(Cŷ)

)
− log

(
(πe)M det(Cztot)

)
.

(3.33)

We can write Cztot as

Cztot = VαV
T
α + VαVβ diag

( ρ
N

HCxH
H + IM

)
= Vα

(
Vα + Vβ diag

( ρ
N

HCxH
H + IM

))
= VαDM ,

(3.34)
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where

DM = Vα + Vβ diag
( ρ
N

HCxH
H + IM

)
(a)
= Vα + Vβ + Vβ diag

( ρ
N

HCxH
H
)

(b)
= IM + Vβ diag

( ρ
N

HCxH
H
)
.

(3.35)

In (a)−(b), respectively, we used the facts that Vβ is diagonal and that Vα = IM−Vβ.

Recalling from (3.23) that Cŷ = ρ
N

VαHCxH
HVT

α + Cztot , the mutual information

becomes

I(x; ŷ | H) =
log det (Cŷ)

log det (Cztot)
(a)
= log det

(( ρ
N

VαHCxH
HVT

α + Cztot

)
C−1ztot

)
(b)
= log det

( ρ
N

VαD
−1
M HCxH

H + IM

)
,

(3.36)

where in (a) we use the fact that detA
detB

= det AB−1 and in (b) the fact that Cztot =

VαDM is diagonal.

We incorporate antenna subselection into the equation using G̃. Recall G̃ is the

identity matrix modified by removing the unselected rows {1, . . . ,M} \ {i1, . . . , iM̃}.

Using the tilde notation introduced in the previous section, we define the following

M̃ × M̃ matrices:

Ṽα
M̃
, diag

(
G̃[α1, . . . , αM ]T

)
Ṽβ

M̃
, diag

(
G̃[β1, . . . , βM ]T

)
D̃M̃ , IM̃ + Ṽβ

M̃
diag

( ρ
N

H̃CxH̃
H
)
.

Recall H̃ = G̃H is an M̃ × N matrix. Now we can write the subselected mutual

information as

I(x; ỹ | H) = log det
(
IM̃ +

ρ

N
ṼαD̃

−1

M̃
H̃CxH̃

H
)
. (3.37)
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The optimal antenna subselection matrix G̃opt for the joint mutual information selec-

tion is found by

G̃opt = arg max
G̃∈L̃

s.t. L≤T

I(x; ỹ | H),
(3.38)

where L =
∑M̃

v=1Biv . Equivalently, we can write this expression as a joint selection

of antenna indices, under the same constraints, by

{i1, . . . , iM̃} = arg max
{1,...,M}

I(x; ỹ | H).

With Gaussian approximations and antenna selection, this problem formulation

appears similar to many antenna selection algorithms in the literature. However, as

noted in Section 3.3, due to the quantization and the potential for varying numbers

of bits at each quantizer, joint mutual information selection must not only account

for the most informative channel vectors but also for how many bits each quantizer

uses. Unfortunately, exhaustive search is the only method known to the authors for

finding the optimal solution. An exhaustive search results in
(
M
M̃

)
possible solutions

and is infeasible for large M . This motivates the need for sub-optimal approaches,

such as the greedy algorithm, which we consider next.

3.4.2 Greedy Algorithm

In a greedy algorithm we sequentially choose the quantized outputs which max-

imize the mutual information at each selection. This approach is sub-optimal for

not considering the correlations between antennas. As we will show, instead of using

the full covariance matrices employed in the joint selection expression, the greedy

approach only uses the variance terms from the diagonals of the covariance matrices.

However, greedy algorithms are straightforward and computationally efficient.
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In our approach, we begin with i1, then i2, and so on to iM̃ , and we successively

perform antenna subselection based on

iv = arg max
iv∈{1,...,M}\{i1,...,iv−1}

I(x; [ŷi1 , . . . , ŷiv ] | H). (3.39)

We want to write this selection equation in terms of the channel, the transmitted

signal covariance, the number of quantization bits, and the noise variance (recall

σ2
z,m = 1). To do so, we first use the chain rule for information [80], which allows us

to write the total mutual information after M̃ selections as

I(x; [ŷi1 , . . . , ŷiM̃ ] | H) =
M̃∑
v=1

I(x; ŷiv | ŷi1 , . . . , ŷiv−1 ,H). (3.40)

Combining the previous two equations and explicitly writing out the successive selec-

tion equations, we have

i1 = arg max
i∈{1,...,M}

I(x; ŷi | H)

i2 = arg max
i∈{1,...,M}\{i1}

{I(x; ŷi1 | H) + I(x; ŷi | ŷi1 ,H)}

...

iv = arg max
i∈{1,...,M}\{i1,...,iv−1}

{I(x; ŷi1 | H) + I(x; ŷi2 | ŷi1 ,H) + . . .

+ I(x; ŷi | [ŷi1 , . . . , ŷiv−1 ],H)},

(3.41)

for v = 1, . . . , M̃ .

We clearly see that each succeeding selection incorporates the mutual information

of the preceding selections. However, these past values are constant with respect to
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the current selection. Thus, the selection equations in (3.41) can be simplified as

follows:

i1 = arg max
i∈{1,...,M}

I(x; ŷi | H)

i2 = arg max
i∈{1,...,M}\{i1}

I(x; ŷi | ŷi1 ,H)

...

iv = arg max
i∈{1,...,M}\{i1,...,iv−1}

I(x; ŷi | [ŷi1 , . . . , ŷiv−1 ],H).

(3.42)

Let us examine the selection of the first index. Following an approach similar to that

used for the joint selection mutual information expression in (3.36), we obtain

I(x; ŷi1 | H) = log

∣∣∣∣1 +
ρ

N

αi1
di1

hH
i1

Cxhi1

∣∣∣∣,
where div is the located on the iv-th position of the diagonal on DM in (3.35), or

div = 1 +
ρ

N
βivh

H
ivCxhiv .

The first index selected is the one which maximizes I(x; ŷi1 | H). This result shows

the first greedy antenna selection is a function of the channel and the quantization

effects, through the quantization gain αiv and normalized quantization error variance

βiv . As will be shown, this result also holds for subsequent selections.

To obtain selection equations for v > 1, we generalize an approach taken in [51].

In [51] the authors apply quantization to the Fast Antenna Selection (FAS) algorithm

developed in [46]. They dub the quantized version of FAS as Quantization Aware

FAS (QAFAS). However, the authors in [51] assume the same number of quantization

bits at each quantizer, i.e., Bm = B, ∀m ∈ {1, . . . ,M}, in their analysis. On the other

hand, our proposed algorithm, which we call modified QAFAS, is more general in that
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we allow for varying numbers of bits Bm across all of the M quantizers. If we select

v ≤M antennas, the joint mutual information from (3.36) can be written as

I(x; [ŷi1 , . . . , ŷiv ] | H) = log det
(
IN +

ρ

N
H̃H
v (ṼαvD̃

−1
v )CxH̃v

)
= log det

(
IN +

ρ

N

(
H̃H
v−1(Ṽαv−1D̃

−1
v−1)CxH̃v−1 +

αiv
div

hivh
H
iv

))
,

(3.43)

where for v selected antennas H̃v is the v ×N matrix of channel vectors, Ṽαv is the

v×v diagonal matrix of quantization gains, and D̃v is the v×v diagonal matrix with

di1 , . . . , div on the diagonal.

Using the matrix determinant lemma, we can write the mutual information at the

v-th antenna selection as

I(x; [ŷi1 , . . . , ŷiv ] | H) = I(x; [ŷi1 , . . . , ŷiv−1 ] | H) + log det

(
1 +

ρ

N

αiv
div

civ

)
, (3.44)

where we define

civ = hH
iv

(
IN +

ρ

N
H̃H
v−1(Ṽαv−1D̃

−1
v−1)CxH̃v−1

)−1

hiv .

The last term of (3.44) corresponds to mutual information being maximized in the

v-th selection equation in (3.42), or

I(x; ŷiv | [ŷi1 , . . . , ŷiv−1 ],H) = log det

(
1 +

ρ

N

αiv
div

civ

)
. (3.45)

Thus, we can reduce the selection to the following objective function:

iv = arg max
i∈{1,...,M}\{i1,...,iv−1}

αi
di
ci. (3.46)

We comment that in [51] the authors assume all quantizers have the same number

of quantization bits and, therefore, they need only maximize over ci/di, thereby omit-
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ting the quantization effect of αi. Our more general objective function, on the other

hand, assumes varying numbers of quantization bits at the quantizers and, thus, must

include αi in the numerator. From (3.46), we see the optimization is a function of

the channel vectors and the quantization resolution.

A formula for efficiently updating ci can be found using the matrix inversion

lemma, as shown in [51]. After all M̃ antennas are selected, the greedy selection

matrix G̃g is found by removing rows {1, . . . ,M} \ {i1, . . . , iM̃} from an identity

matrix IM . Each ŷiv has binary representation biv . All Biv bits associated with each

biv , v = 1, . . . , M̃ are included in the output L-bit vector q (recall that L =
∑M̃

v=1Biv).

This greedy approach assumes the system model using the combined error term

in (3.22). Furthermore, it is, for the most part, derived specifically from the unquan-

tized MIMO antenna selection algorithm in [46] and is not generally applicable to

converting other unquantized MIMO antenna selection algorithms to their quantized

counterparts. In the next subsection we address how we can adapt our system model

in (3.22) to be generally applicable to converting most unquantized MIMO antenna

selection algorithms to their quantized MIMO versions.

3.4.3 Generalized System Model for Quantized MIMO Antenna Selection

Several antenna subset selection algorithms using greedy approaches exist in the

literature for unquantized MIMO systems (see, for example, [46–48,98]). We can con-

vert an unquantized MIMO selection algorithm to quantized MIMO by re-deriving the

entire algorithm to include quantization, for instance, by incorporating the AQNM.

This is similar to what was done by the authors in [51] by converting the algorithm

in [46] to the quantized MIMO case. They incorporated quantization using the AQNM

and derived new selection equations based on the addition of quantization gains and

a quantization error term. In the previous section, we generalize the approach in [51]

by varying the number of bits utilized at each quantizer, i.e., we use αi instead of just

α in the algorithm.
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In this section, however, instead of re-deriving the entire algorithm we develop an

approach which is more generally applicable to converting unquantized to quantized

MIMO antenna selection algorithms. We develop a modified system model which,

when used, causes the conversion to occur. We convert the quantization effects from

being a combination of gains and noise terms to only being scale factors on the chan-

nel vectors. We do this by whitening our quantized MIMO system model in (3.22)

and derive an effective channel H′. Our new system model is more generally appli-

cable for converting unquantized MIMO antenna selection algorithms to quantized

versions. We demonstrate this by using our model to convert the unquantized mutual

information-based method (MIBM) in [48] to a quantized MIBM (QMIBM).

We now derive the effective channel by factoring out the effects of the different

quantization error variances on the various channel vectors using channel whitening.

Let y′ , C
− 1

2
ztotŷ. Moreover, we rewrite (3.21) as

σ2
ztot,m = α2

m + αmβm

( ρ
N

hH
mCxhm + 1

)
= αm(αm + βm) + αmβm

ρ

N
hH
mCxhm

= αm

(
1 + βm

ρ

N
hH
mCxhm

)
= αmdm.

(3.47)

Then,

y′ =

√
ρ

N
C
− 1

2
ztotVαHx + C

− 1
2

ztotztot

=

√
ρ

N
H′x + C

− 1
2

ztotztot,

(3.48)

where

H′ = C
− 1

2
ztotVαH =


√
α1/d1h

H
1

...√
αM/dMhH

M

 ,
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and the error term C
− 1

2
ztotztot is whitened noise, as shown in the following:

E
[
C
− 1

2
ztotztotz

H
tot

(
C
− 1

2
ztot

)H]
= E

[
C
− 1

2
ztot (Vαz + w)

(
Vαz

H + wH
) (

C
− 1

2
ztot

)H]
(a)
= E

[
C
− 1

2
ztot

(
VαzzHVα + wwH

) (
C
− 1

2
ztot

)H]
= E

[
C
− 1

2
ztot

(
V2
α + Cw

) (
C
− 1

2
ztot

)H]
= E

[
C
− 1

2
ztotCztot

(
C
− 1

2
ztot

)H]
= IM ,

where (a) is due to the fact that the quantization error w is uncorrelated with y [82,

93].

With the channel thus scaled, we can use (3.48) in the modified antenna subselec-

tion algorithm QMIBM. In [48], the authors take a top-down approach to antenna

selection by beginning with the full H and removing rows one-by-one based on the

mutual information until the required dimension is achieved. The QMIBM algorithm

selects antennas based on the pairwise mutual information between the quantized

outputs y′iv and y′iu for iv, iu ∈ M = {1, . . . ,M}. If receive antenna outputs contain

nearly identical information (high pairwise mutual information), then clearly we do

not need both, and G̃ should select the one with the highest effective channel vector

norm squared, i.e., αiv

div
‖hiv‖

2
?

≷ αiu

diu
‖hiu‖

2. Following [48], we use a normalized mutual

information metric, which is defined as

I0(y′iv , y
′
iu) =

I(y′iv , y
′
iu)

IUB(y′iv , y
′
iu

)
, (3.49)

where

I(y′iv , y
′
iu) = log

(
‖hiv‖

2 ραiv

Ndiv
+ 1
)(
‖hiu‖

2 ραiu

Ndiu
+ 1
)

(
‖hiv‖

2 ραiv

Ndiv
+ 1
)(
‖hiu‖

2 ραiu

Ndiu
+ 1
)
− |〈hiv ,hiu〉|

2 ρ2αivαiu

N2divdiu

, (3.50)
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Algorithm 3: Quantized MIBM Algorithm

1 Initialization:
2 Set L = J ;
3 For all iv and iu, iv > iu, in M, calculate I0(y′iv , y

′
iu);

4 while L > T do
5 Choose the iv and iu which return the largest I0(y′iv , y

′
iu) ;

6 if αiv

div
‖hiv‖

2 ≥ αiu

diu
‖hiu‖

2 then

7 Remove hiu ;
8 Delete iu from M ;
9 Set L = L−Biu ;

10 else
11 Remove hiv ;
12 Delete iv from M ;
13 Set L = L−Biv ;

14 end

15 end

and IUB(y′iv , y
′
iu) is the mutual information upper bound given as

IUB(y′iv , y
′
iu) = min

{
log

(
‖hiv‖

2 ραiv
Ndiv

+ 1

)
, log

(
‖hiu‖

2 ραiu
Ndiu

+ 1

)}
. (3.51)

The derivation for this upper bound on the quantized mutual information is similar

to the unquantized one provided in [48].

Different from [48], we assume a constraint on the number of bits selected. Note

the dependence of the mutual information on the channel vectors scaled by the quan-

tization term αm/dm and, thus, the number of bits per quantizer. Therefore, we start

with the total number of bits before subselection J and track the number of bits after

each down selection. We continue until the total number of selected bits L is less

than or equal to the rate constraint T . The QMIBM algorithm proceeds as shown in

Algorithm 3.
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3.4.4 Numerical Results

In this section we verify the performance of the proposed modified QAFAS and

QMIBM algorithms. We first show average capacity results for both algorithms under

various conditions using Monte Carlo experiments. Next we evaluate the bit error rate

(BER) of our algorithms in a practical system using quadrature amplitude modulation

(QAM) to encode/decode the bits. Throughout this section we use two channel

models:

1. i.i.d. channel model. A channel matrix H with independent and identically

distributed (i.i.d.) entries distributed as hij ∼ CN (0, 1).

2. mmWave channel model. We assume a narrowband geometric millimeter wave

(mmWave) channel model given by

H =

√
NM

Np

·
Np∑
n=1

αnunv
H
n , (3.52)

where αn ∼ CN (0, 1) denotes the complex path gain, un denotes the M × 1

receive array steering vector, and vn denotes the N × 1 transmit array steering

vector. The constant
√

NM
Np

normalizes the channel power. Assuming uniform

linear arrays (ULAs) with λ/2 element spacing where λ is the wavelength, the

receive and transmit array steering vectors corresponding to angle of arrival

(AoA) φR,n and angle of departure (AoD) φT,n, respectively, are given as

un =
1√
M

[
1, e−jπ sin(φR,n), . . . , e−j(M−1)π sin(φR,n)

]T
(3.53)

vn =
1√
N

[
1, e−jπ sin(φT,n), . . . , e−j(N−1)π sin(φT,n)

]T
. (3.54)

We assume the AoAs and AoDs have a uniformly random distribution in an

angular spread of 180◦ in the azimuth plane.

Additional simulation parameters are given in Table 3.3.
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Table 3.3.
Mutual information selection simulation parameters

Transmit antennas, N 8
Total receive antennas, M {16, 64, 128}

MmWave paths, Np 2
SNRs {−10,−5, 0, 5, 10, 15, 20} dB

Max number of quantization bits, Bm 5 bits

General Performance Evaluation

We obtain numerical results in this section by Monte Carlo simulation of 10,000

independent channel realizations and, when using random Bm, quantization bit as-

signments. In addition to modified QAFAS and QMIBM results, for M = 16 receive

antennas we also show the optimal quantized MIMO antenna selection results ob-

tained by exhaustive search. For M > 16 the optimal selection is computationally

prohibitive and is not shown.

Our first set of results in Fig. 3.4 verifies the performance of our proposed quan-

tized MIMO selection algorithms. We compare the average capacity of the modified

QAFAS and QMIBM to that of their corresponding unquantized versions, respec-

tively, FAS and MIBM, as function of the number of antennas selected. As the

unquantized algorithms are equivalent to infinite quantization, we are unable to use

the rate constraint T as the independent variable on the horizontal axis. Therefore,

for fair comparisons between the quantized and unquantized algorithms, we only

compare the unquantized results with equal Bm quantized results, since we can easily

attribute the equal Bm case to a specific number of selected antennas. In the case

of M = 16 receive antennas, we also include the optimal selection results. In every

instance, the average capacity of a quantized algorithm is less than or equal to that

of its corresponding unquantized algorithm. This is expected due to the quantization

error. We only display results from the medium to high SNR regime, since at lower

SNRs the average capacities for all of the algorithms are essentially equal. However,

as can be seen for both the mmWave and i.i.d. channels, in the high SNR regime



64

(a) (b)

(c) (d)

Fig. 3.4. Average capacity vs. number of selected antennas at var-
ious SNRs for unquantized (FAS, MIBM) and quantized (QAFAS,
QMIBM) MIMO antenna selection algorithms. For fair comparisons
with unquantized algorithms, we only use the equal Bm = 5 case.
We include the optimal quantized MIMO antenna selection results
for M = 16 receive antennas.

the quantization error dominants, and there exists greater separation between the

unquantized and quantized algorithms.

In Figures 3.5 and 3.6 for the i.i.d. and mmWave channels, respectively, we show

the average capacity as a function of SNR for the various output data rate constraints
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T shown. As discussed in Section 3.4.2, our algorithms allow for varying numbers of

bits at the quantizers. Thus, our modified QAFAS algorithm generalizes the QAFAS

algorithm developed in [51]. These results show how varying Bm can improve the

average capacity under certain parameters. The dash-dot line denotes results obtained

when randomly assigning Bm to quantizers. We use a uniform distribution between

1 and 5 bits. The dotted line denotes results obtained when all quantizers have the

same number of bits (as in the QAFAS algorithm in [51]), which in this case we set

to Bm = 5 bits. For a clearer comparison between the random Bm and equal Bm

average capacity performances, in Figures 3.7 and 3.8 we plot the difference between

the equal Bm and random Bm results for optimal selection and modified QAFAS at

M = 16 and for modified QAFAS at M = 128 using both channel models.

We plot the average capacity as a function of the output data rate constraint T

in Figures 3.9 and 3.10 for M = 16 and M = 128, respectively, at several SNRs.

As is evident in Fig. 3.4, the modified QAFAS and QMIBM algorithms are nearly

equivalent, with the modified QAFAS having a slightly higher average capacity than

QMIBM. Therefore, in Figures 3.9 and 3.10 we only plot the modified QAFAS results;

for M = 16 in Fig. 3.9 we also include the optimal selection results.

We make the following observations and comments from Figures 3.5 - 3.10:

1. The i.i.d. and mmWave channels present similar trends, despite the average

capacity for mmWave channels being scaled down relative to that of the i.i.d.

channels due to the sparsity of the mmWave channels.

2. For equal values of low output data rate thresholds T and at low SNRs, the

random Bm average capacity is generally greater than the corresponding equal

Bm average capacity. This is especially noticeable in the difference plots in Fig-

ures 3.7 and 3.8. When the additive white Gaussian noise (AWGN) dominants

the quantization error (low SNR regime), assigning more quantization bits to

the higher capacity sub-channels and fewer quantization bits to the lower ca-

pacity sub-channels results in a greater overall capacity for the MIMO channel.
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(a) (b)

(c) (d)

Fig. 3.5. Average capacity vs. SNR for the i.i.d. channel at various
output data rates T for equal (dash-dot) and random (dot-dot) Bm.
(a)-(c) show average capacity when M = 16 for optimal selection,
modified QAFAS, and QMIBM, respectively, while (d) shows average
capacity whenM = 128 for modified QAFAS. Note the higher average
capacity when using random Bm versus equal Bm at lower SNRs and
output data rates.

In the high SNR regime, the quantization error dominants, and higher average

numbers of quantization bits returns greater average capacity. In general, vary-
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(a) Optimal selection, M = 16 (b) Modified QAFAS selection, M = 16

(c) QMIBM selection, M = 16 (d) Modified QAFAS selection, M = 64

Fig. 3.6. Average capacity vs. SNR for the mmWave channel at
various output data rates T for equal (dash-dot) and random (dot-dot)
Bm. (a)-(c) show average capacity when M = 16 for optimal selection,
modified QAFAS, and QMIBM, respectively, while (d) shows average
capacity when M = 128 for modified QAFAS.

ing the number of quantization bits - even randomly, as in our results - improves

the overall average capacity in the low SNR regime.

3. For the optimal selection algorithm, as the rate constraint T increases, the SNR

at which the random Bm average capacity is greater than the equal Bm average
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(a) (b)

(c) (d)

Fig. 3.7. Difference between equal Bm and random Bm vs. SNR
at various values of T when using optimal selection (a)-(b) and the
modified QAFAS algorithm (c)-(d) for M = 16 and both channel
models.

capacity decreases. In our simulations for the random Bm we assume Bm is

assigned according to a random uniform distribution between 1 and 5 bits.

Thus, on average a randomly assigned quantizer has 3 bits - 2 bits less than the

5 bits assigned to each quantizer when using equal Bm - and, as a result, the

advantage of the random Bm diminishes as T increases.
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(a) (b)

Fig. 3.8. Difference between random Bm and equal Bm vs. SNR at
various values of T when using the modified QAFAS algorithm.

(a) (b)

Fig. 3.9. Average capacity vs. output data rate T for equal Bm and
random Bm at various SNRs for M = 16.

This outcome is accentuated in our sub-optimal selection algorithms, as seen

for modified QAFAS in Figures 3.7 and 3.8. (Note that while we do not show

the QMIBM results in these figures to improve readability, our simulations

confirm nearly equivalent results for the QMIBM algorithm.) The difference
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(a) (b)

Fig. 3.10. Average capacity vs. output data rate T for equal Bm and
random Bm at various SNRs for M = 128.

between the equal Bm and random Bm average capacities becomes more neg-

ative as T moves towards 50% of the maximum output data rate threshold,

or Tmax = M maxm(Bm). However, as T increases above Tmax/2 the average

capacity difference moves in a positive direction. Thus, the average capacity

upper bound when using random Bm is achieved at TUB = M mean(Bm), as we

would intuitively expect. Figures 3.9 and 3.10 also illustrate this result.

Practical QAM Evaluation

To evaluate the accuracy of our proposed approximations and to provide a proof-

of-concept example, we implement our modified QAFAS antenna selection algorithm

using a QAM constellation of Λ symbols and k = log2 Λ bits per symbol. We com-

pare the BER performance of the modified QAFAS with random Bm to that of the

unmodified QAFAS from [51] with equal Bm. While not presented, the BER perfor-

mance of QMIBM is similar to that of the modified QAFAS. Our BER simulations

are for 106 bits or 103 errors, whichever occurs first. Bit error rate curves are gen-
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erated for Λ = {16, 256} symbols and M = {16, 64} receive antennas over SNRs

ρ = {−10,−5, . . . , 15, 20} dB. All other parameters are as given in the previous sec-

tion.

A symbol s is randomly selected for signaling from an Λ-QAM constellation with

E[s] = 0 and E[|s|2] = 1. We generate an independent channel realization H and

perform antenna selection, assuming knowledge of the channel and the number of

quantization bits Bm at the m-th receive chain quantizer. The sub-selected channel

matrix is denoted by Hs. In order to focus our results on the performance of the

modified QAFAS with varying Bm, we simply use the singular value decomposition

(SVD) of Hs to obtain the optimal beamforming and combining vectors, fopt and gopt,

respectively, where

fopt = v1,gopt =
Hsv1

‖Hsv1‖2 , (3.55)

and v1 represents the dominant unit-norm right singular vector of Hs. Recall that

under the AQNM the quantized signal is given as (from (3.22), but repeated here for

convenience)

ŷ =

√
ρ

N
VαHx + ztot.

Using the linear combiner gopt with nearest-neighbor decoding, we obtain an estimate

of the transmitted symbol as

ŝ = gH
optŷ =

√
ρ

N
gH
optVαHsfopts+ gHztot. (3.56)

We first consider BER curves generated for a Λ = 16-QAM constellation and

M = 16 antennas under both channel models. As expected based on our previous

observations, the equal Bm curves have a BER greater than or equal to the random

Bm BER curves. On average, the largest difference between equal and random Bm is

when T = Tmax/2. Therefore, in our next BER plots we only include results at this

threshold.
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(a)

(b)

Fig. 3.11. BER curves comparing performance of equal Bm and ran-
dom Bm for various output data rate thresholds T .

In Fig. 3.12 we show pairs of equal and random Bm BER curves for different

configurations of Λ and M for both channel models. Clearly, the BER decreases

when M increases. Conversely, when Λ increases, the BER also increases. Both of

these behaviors are as expected for a MIMO system. In each of the configurations,
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(a)

(b)

Fig. 3.12. BER curves comparing performance of equal Bm and ran-
dom Bm for T = Tmax/2.

the random Bm BER is less than the equal Bm BER, although at low SNR and large

Λ the two performances are similar due to the AWGN and the constellation symbol

proximity to its neighboring symbols.
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4. CONCLUSION

In this dissertation, we investigated adaptive signal processing techniques for high

frequency, multiple-input multiple-output (MIMO) wireless communication systems.

Although our approaches can be applied elsewhere, we focused on the mobile mil-

limeter wave (mmWave) communication system scenario. Specifically, we addressed

two problems encountered by mobile MIMO systems at mmWaves: 1) transmit-

ter/receiver beam alignment and 2) mutual information selection via antenna subset

selection.

In Chapter 2, we proposed a novel beam alignment and tracking algorithm for

sparse, time-varying mmWave channels using a sparse Bayesian learning (SBL) Kalman

filter (KSBL) with a multi-armed bandit (MAB) beam selection known as Linear

Thompson sampling (LTS). We showed KSBL-LTS has rapid initial beam alignment

compared to other beam selection policies. Significantly, KSBL-LTS performed nearly

as well as omni-directional training for mmWave channels with a dynamic support.

This result held when using an ideal narrowband, MIMO channel model and when

using a more realistic mmWave channel model known as QUAsi Deterministic RadIo

channel GenerAtor (QuaDRiGa). This work has been published in IEEE Communi-

cation Letters [99].

In Chapter 3, we developed algorithms for maximizing the mutual information

between the input and output of a quantized MIMO system when constrained by the

output data rate. Specifically, we used the additive quantization noise model (AQNM)

to model varying numbers of quantization bits in the receive signal processing chains.

Given an output rate constraint, we developed a mutual information-based expression

for the optimal joint selection of quantized MIMO antenna outputs. We determined

algorithms for finding a linear selection matrix using a general greedy selection algo-

rithm that allowed for varying numbers of quantization bits at each receive antenna.
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We demonstrated how our signal model can be used in general to convert unquan-

tized MIMO antenna selection algorithms to quantized MIMO antenna selection algo-

rithms. Finally, we showed several results verifying the performance of our algorithms

and approach. Significantly, under low signal-to-noise ratio (SNR) and low output

data rate thresholds the uniformly random determination of numbers of quantization

bits has a higher average capacity than if the number of quantization bits were all

equal.
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[57] M. Tesmer and P. A. Estévez, “AMIFS: adaptive feature selection by using mu-
tual information,” in IEEE International Joint Conference on Neural Networks,
Budapest, 2004, pp. 303–308.
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