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ABSTRACT

Han, Kyuseo Ph.D., Purdue University, May 2020. Articulated Human Movements
Tracking through Online Discriminative Learning. Major Professor: Avinash C.
Kak Professor.

In this thesis, we present a new class of object trackers that are based on a

boosted Multiple Instance Learning (MIL) algorithm to track an object in a video

sequence. We show how the scope of such trackers can be expanded to the tracking

of articulated movements by humans that frequently result in large frame-to-frame

variations in the appearance of what needs to be tracked. To deal with the problems

caused by such variations, we present a component-based MIL (CMIL) algorithm

with boosted learning. The components are the output of an image segmentation

algorithm and give the boosted MIL the additional degrees of freedom that it needs

in order to deal with the large frame-to-frame variations associated with articulated

movements. Furthermore we explored two enhancements of the basic CMIL tracking

algorithm. The first is based on an extended definition of positive learning samples for

CMIL tracking. This extended definition can filter out false-positive learning samples

in order to increase the robustness of CMIL tracking. The second enhancement is

based on a combined motion prediction framework with the basic CMIL tracking for

resolving issues arising from large and rapid translational human movements. The

need for appropriate motion transition can be satisfied by probabilistic modeling

of motion. Experimental results show that the proposed approaches yield robust

tracking performances in various tracking environments, such as articulate human

movements as well as ground human movements observed from aerial vehicles.
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1. INTRODUCTION

1.1 Problem Statement

Human tracking has been a key issue in several computer vision applications

that include pedestrian safety, surveillance, crowd analysis, border control, sports

broadcasting, and so on. For example, the retail sector benefits from customers’

movement trajectories in the stores for recognizing and analyzing customers’ activities

because the customers’ typical activities in stores are significant resources for retailers

to adequately arrange the goods and shelves. This allows them to provide customers

with convenient shopping experiences as well as increase their revenues. In border

control, it is essential to detect and track human and vehicle movement for observing

illegal immigration attempts across border.

Traditionally, there are two basic approaches to human tracking: an appearance-

based approach and a structured-body-part-based approach. The appearance-based

approach needs a reference template of a human of interest to be tracked that can

usually be defined by specific feature distributions in a bounding box that surrounds

the human to be tracked. The goal of appearance-based tracking is to find the lo-

cal region in the given input frame that has the most similar feature distributions

to those of the reference template. Note that the feature distributions have been

expressed with specific features, e.g., color, edge, gradient orientation, etc. Unfor-

tunately, the appearance-based approach often suffers from temporal variations in

feature distributions due to clutter backgrounds, varying illuminations, or partial

occlusions. Consequently, it is necessary to select appropriate features that can pro-

duce robust distributions for the temporal variations in order to guarantee better

performance for the appearance-based tracking.



2

The structured-body-part-based approach is an alternative way of human track-

ing that can compensate for the vulnerability of the appearance-based tracking. The

structured-body-part-based approach depends on joint configuration models for hu-

man body parts, e.g., head, arm, torso, leg, etc. The joint configuration model can

specify the feasible connections of one human body part with another. For example,

the human head can have a connection with the torso but cannot have one with the

legs. The structure-body-part-based approach can be robust to even some occlusions

because the predefined joint configuration model can provide possible connections of

human body parts. To achieve robustness, the structure-body-part-based approach

necessarily requires a high quality of human part detection as well as predefined joint

configuration models.

Both appearance- and structured-body-part-based approaches have reported good

tracking performance for simple human movements, e.g., walking and running. How-

ever, neither of appearance- and structured-body-part-based tracking approaches can

appropriately handle the extensively articulated human movements, e.g., bending,

crunching, jumping, etc. The reference template in the appearance-based tracking

approach has been contaminated by severe appearance changes in extensively ar-

ticulated human movements. On the other hand, the structured-body-part-based

tracking approach has been impaired by failures of human parts detection followed

by unpredictable results due to mismatched body part connections.

The unsuccessful conduct of both tracking approaches with extensively articulated

human movements is caused by the non-rigid shape of humans themselves. The con-

ventional object tracking techniques assume that the object to be tracked is a rigid

one – its appearance can hardly be changed during tracking – therefore, the center-

of-mass position of the rigid object is an actual value for a target to be tracked. In

contrast, the human body is so flexible and pliable that object rigidity is not an ade-

quate assumption for tracking humans; especially large articulated movements, such

as bending, crunching, rolling etc., can deteriorate the human tracking performance.
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Successful tracking for extensively articulated human movements ensures that the

human tracking techniques take into special consideration the non-rigid shape of the

human body.

1.2 A Tracking Framework with Classification

The recent computational developments and advances have shed a light on real-

time tracking frameworks based on classification techniques. Specifically, the tracking-

by-detection framework has been widely promoted for the online classification-based

tracking approaches. In the tracking-by-detection framework, classifiers can deter-

mine the best estimated position, where the object to be tracked is likely located,

among various candidate positions in an input image. The classifier for tracking-

by-detection has usually been composed of a binary classification (two-class classi-

fication) rather than a multiple-class classification because the binary classifier can

conceptually separate the object to be tracked and the background in the given image.

The binary classification naturally requires positive and negative training samples for

training classifiers: the positive training samples and the negative ones can be ob-

tained from the object to be tracked and the background, respectively. Ideally, the

optimal classifiers can be computed from a complete set of both positive and nega-

tive training samples. However, the classifier for tracking-by-detection for an online

learning-based tracking should be inherently trained from each input image during

tracking. In other words, the classifiers can be incrementally updated with subsets of

training samples that are collected in successive input images: the classifier can be

updated by extracting information from the best estimated position of the object to

be tracked in the current input image. Therefore, it is necessary to obtain as evenly

distributed sampled subsets of both positive and negative training samples on the en-

tire sample space as possible from each image. In real environments, however, most

online classifications have suffered from the imprecise sampling of training samples
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and outliers due to being impractical to collect the evenly distributed sampled subset

of training samples in each frame.

1.3 Online classification for articulated human tracking

This thesis primarily explores how to track the extensively articulated human

movements via the online classification technique. Specifically, we develop a more

robust way of updating the reference appearance template, which cooperates with

the human part joint configuration. The updated reference appearance template

alleviates failures of tracking due to significant appearance changes and severe human

pose changes during tracking the human. The online classification technique efficiently

accomplishes the adaptive update of the reference appearance template for dealing

with the extensively articulated human movements.

In this thesis, Multiple Instance Learning (MIL) has been adapted as the online

classification for the tracking framework. MIL is a variant of the supervised learning

approach with special managements of its training samples. Instead of using each

individual training sample, MIL utilizes a set of training samples, what we call a

”bag”. Hereafter, the training sample in MIL is the bag, and an element of each bag is

an instance. The positive bag is defined as the bag with at least one positive instance;

it means that the positive bag can contain both positive and negative instances. The

negative bag, on the contrary, should contain only negative instances. For successful

tracking of articulated human movements with online classification, it is significant

to collect true positive training samples in each input image because the selected

positive training samples likely include false positive training samples due to severe

changes in successive input images. Therefore, there exist some ambiguities in both

positive and negative training samples. MIL can handle this ambiguity in its inherent

training stage, which can minimize incorrect classification due to ambiguous training

samples.
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This work, an online MIL learning and classification for articulated human move-

ments, focuses on two main objectives: how to generate the reference template while

taking into consideration human part configurations and how to collect positive train-

ing samples more confidently.

First, the generation of the reference template of humans to be tracked is achieved

by segmenting the template into several small regions, what we call ”components.”

Each component characterizes human body parts because components in the reference

template can be segmented with respect to local similarity. The components in the

reference template can be positive instances in the context of MIL. Furthermore, the

component-based MIL(CMIL) is extended to use the adaptively configured positive

bag. The extension of positive bag can be declared when at least the minimum

number of positive components exist in the bag. The minimum number of positive

components can also be adaptively changed so that positive bags can be configured

while taking into account appearance changes during tracking due to illumination

changes, severe human movements, background changes, partial occlusions, etc. The

updated reference template can be configured by more than one positive component

to compensate for these appearance changes.

Second, the selection of true positive training samples can be achieved by mini-

mizing chances to select a false positive training sample. The adaptive selection of

positive training samples can decrease the opportunity to select false positive training

samples. The conventional random or uniform sampling of positive training samples

within a search range easily generates false positive samples due to severe shape or

appearance changes. These false positive samples aggravate the locally optimized

classifiers due to the limitation of partial sets of training samples. In this thesis,

the probable sampling positive bags for online MIL can provide better positive train-

ing sample selections. The aggregation with the particle filter framework provides

the probabilistic estimation of positive training samples. This probabilistic sampling

contributes to minimizing the chances of selecting false positive learning samples for
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online CMIL and provides better tracking performance when large translation mo-

tions with articulated movements exist.

1.4 Outlines

In Chapter 2, we introduce some brief background of human tracking and MIL.

Chapter 3 explains the concept of component-based MIL and some preliminary ex-

periments for extensive articulated human movement tracking. In Chapter 4, the

adaptively configured positive sample is introduced for reducing false positive sam-

ples in component-based MIL tracking. In Chapter 5, we also propose to transfer

good positive samples over the successive video frames via Particle Filter technique.

We conduct a comparative study with CNN based tracking algorithms in Chapter 6.

Chapter 7 illustrates how the MIL with Particle filter could be applied to Unmanned

Aerial Vehicle systems for tracking humans on the ground. Finally, we conclude the

component-based MIL for extensive articulated human movement tracking in Chapter

8.
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2. OVERVIEW OF TRACKING HUMAN MOVEMENTS

WITH ONLINE LEARNING

This chapter provides an overview for tracking articulated human movements through

the tracking-by-detection paradigm, which is specifically the online learning system.

First, we explain how to track human motions through two conventional approaches:

(1) the appearance-based approach and (2) the structured-body-part-based configu-

ration approach. Moreover, we summarize existing problems in articulated human

movements tracking. Second, as the tracking-by-detection method, Multiple Instance

Learning (MIL) will be introduced for alleviating existing problems in articulated

human movement tracking. MIL can provide a learning strategy that secures good

performance of classifiers for detecting even the humans who have severe changes

of appearance and shape. Finally, online Adaboost will be introduced for learning

classifiers in order to track human movements. The online learning mechanism is

inevitably required to track humans in a given video sequence in order to support

on-the-fly operations of human tracking.

2.1 Human Motion Tracking

Tracking humans in motion is an important part of computer vision in applications

that involve human subjects. Despite the fact that there now exist several algorithms

for this purpose, the solutions obtained with the current algorithms are generally

unsatisfactory in real-world applications [1].

For the problem of tracking humans when they are engaged in ordinary movements

— such as walking — the solutions developed fall into two categories: those that are

based on bounding boxes and those that are not. The bounding-box-based solutions

track the image intensity distributions within a bounding box placed around the
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target in the first image of a sequence and then use either a Kalman filter [2, 3] or

a particle filter [4, 5] to track the distribution. On the other hand, the algorithms

that do not require a bounding box are based on using a probabilistic framework that

can jointly carry out the segmentation that best describes the target in each frame

and tracking [6, 7]. For tracking more complex human movements, researchers have

proposed methods that use a parts-based model, with the parts standing for head,

torso, arm, leg, belly, etc. [8,9]. A major shortcoming of these methods is the need to

identify the parts in the images. In some cases, one can get around this shortcoming

by using a probabilistic framework [10–12]. However, even these approaches break

down when the extent of self-occlusion is significant. To deal with the problems caused

by occlusion, researchers have proposed tracking methods based on machine learning

algorithms, such as a cascade of SVM classifiers [13], boosted cluster tree [14], etc.

The two main categories for human tracking are described as: (1) appearance-

based tracking and (2) human-body-part-based tracking. Figure 2.1 and Figure 2.2

show the concepts of both appearance-based tracking and human-body-part-based

tracking, respectively.

Appearance-based tracking has been widely used for tracking objects and humans

in computer vision. The appearance model is usually represented by an intensity dis-

tribution within a bounding box that probably surrounds the human subject. Con-

sequently, the goal of human tracking based on the appearance model is to find the

position of the bounding box at which the true intensity distribution of the human

subject is located over successive image sequences. Either a Kalman filter or a par-

ticle filter have conventionally been used for tracking the intensity distribution over

the video sequence [2–4,15]. The Kalman filter has traditionally been used for object

tracking and, of course, for human tracking. Bertozzi et al. [2] use Kalman filter

to track individual pedestrians with merging overlapped region of interest (ROI).

The individual pedestrian is initially extracted from utilizing edge symmetry of the

detected object with stereo refinement. Grubb et al. [3] use the Kalman filter for

tracking the spatial information of pedestrians with Bayesian probability for tempo-
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Fig. 2.1. Example of appearance model for human tracking. The intensity
distribution can be expressed by histogram
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ral update. Also, Support Vector Machine (SVM) is used for pedestrian detection

with the extended Kalman filter for human tracking [16]. The initial candidates are

extracted from stereo vision and refined by SVM.

Particle filter is also widely used for human tracking. Giebel et al. [4] proposed

the particle filter based 3D object tracking with integrating multiple-cues, such as

shape, texture, and stereo cues. Similar to the extended Kalman filter with SVM,

a variant of SVM with the particle filter is used for human detection [5]. Tuong et

al. [15] also proposed the particle filter based pedestrian detection and tracking with

HoG descriptor.

Both Kalman filter and particle filter tracking usually estimate the center position

of the bounding box that encapsulates the human subject with conventionally sim-

ple human poses, for example the walking and standing of pedestrians. Specifically

both Kalman filter and particle filter based tracking frameworks have inherent limita-

tions in their ability to track large articulated movements on account of the fact that

the first-order probability distributions for the pixel intensities inside the object being

tracked undergo both large variations and large rates of variations that are beyond the

capabilities of such trackers. The presence of severe occlusion, complex background

clutter, and large illumination changes hinder these appearance-based trackers be-

cause the intensity distribution in the bounding box, which probably encapsulates

the human subject being tracked, is severely distorted from the true intensity distri-

bution.
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(a) (b)

Fig. 2.2. Example of human body part configurations: (a) Human
body topology (www.ifp.illinois.edu/˜yuhuang/Body.html) and (b) Hu-
man body skeleton configuration [17].

An alternative approach to human tracking is known as the human-body-parts-

based approach that has gained popularity for overcoming some deficiencies of the

appearance-based trackers. When such trackers are used for tracking human move-

ments, they seek to find several regions that correspond to the parts of the human

body, such as head, torso, arms, and legs, followed by merging these regions into

one big region which contains the human subject being tracked by pre-defined con-

figurations that describe how to build the human body with separate body parts.

In any configurations, the fact of restricted connections among human body parts,

e.g., the head can be connected with the torso but not with the legs, can improve

the performance of both the detection of the parts and the assignment of labels

to the parts. Using these ideas, some human-body-parts-based trackers have been

proposed [8, 10–12, 18] for human tracking and multi-person tracking. Andriluka et

al. [10] proposed an articulation and dynamic limb-based detector using a hierarchical

Gaussian latent model. Dollar et al. [18] proposed the part-based learning system for

object tracking. They proposed the multiple component learning, which is similar

to multiple instance learning; each component represents a part of the object to be

tracked with a restricted assumption that the component appears in a specific region
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of the image. Multi-person tracking has been proposed with considering body poses

for an improved observation model [8]. Each articulated tracker extracts pedestrian

silhouettes via segmentation and provides pose reconstruction and shape prediction

based on PCA with combining particle filter. Lin et al. [12] suggested the part-based

object detection algorithm. The object of interest consists of several parts; each part

has no semantics and its own positive and negative instances represented by local im-

age regions. Felzenszwalb et. al [19] present a mixture of the deformable part model

for object detection that employs a global template and deformable part. Both are

represented by HOG feature templates that are trained by latent SVM. Breitenstein

et al. [11] proposed online multi-person tracking with tracking-by-detection. Each de-

tector provides its confidence, which is used for updating both corresponding trackers

with implementation by a particle filter and a classifier handling false positive detec-

tions as well as false negative detections.

While the human-body-parts-based trackers are superior to the appearance-based

trackers in tracking articulated human movements, there is an upper bound on the

extent of articulation they can tolerate. For example, they usually fail when the

human movements include bending, crunching, or kneeling: such movements create

a whole alteration of the configuration that defines the relationship between human

body parts. The configuration changes entailed by such movements can be large

enough to create new adjacency and connectedness between the parts while destroying

those that applied at the start of the movement. This limitation of parts-based

trackers was the focus of a recent contribution by Zhang et al. [13]. Their framework

includes a detector that is based on a cascade of SVM classifiers. The tracking itself

in their work is driven by a simple silhouette-based model for the foreground and

the tracking based on a sliding window is executed by associating local trajectories

from MAP. A different approach was taken by Yang et. al [14] where the authors

have exploited edgelet features for detecting articulated variations in human poses

caused by standing, bending, crouching, and sitting. They heuristically optimized
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the sample split strategy; the samples are split into different clusters so that each

cluster includes as similar of a sample as possible.

2.2 Learning based human pose estimation

The recent burst of computing power has realized complex machine learning tech-

niques that had not been viable due to a lack of computational capacity and memory

storage. One of the beneficiaries is a convolution neural network(CNN). CNN plays

a significant role in improving the performance of object detection and recognition;

CNN-based image recognition techniques have beaten human benchmark errors [20].

This notable viability has drawn attentions from other research areas, one of them

being human detection and pose estimation [21–26].

DeepPose [21] is one of the pioneers for applying CNN to human pose estimation.

It directly regressed the 2D coordinates of joints of human body parts. The DeepPose

configured engineered training data, which were composed of the joints arranged in

a kinematic tree resembling the human body so that it could replace any kinematic

human body models.

Newell et al. [22] introduced a stacked hourglass network based on successive

pooling and upsampling. The stacked hourglass network attempted to capture infor-

mation across all scales from local features like faces, hands, or legs to full body poses

and finally combine them to pixel-wise output. The pixel-wise output was interpreted

by a heatmap for each joint, such as the neck, left elbow, right knee, left ankle, etc.

The final human pose is estimated by the maximum activation across each heatmap.

Cao et al. [23] illustrated the CNN-based human part detection and association

technique to detect multiple people in a given scene. The illustrated technique consists

of two frameworks; one is for detecting human parts and another is for associating

detected human parts into a human body. The first framework trained a deep learning

network to provide both a set of confidence maps and a set of 2D affinity vectors for

each human part. The confidence map suggests the candidate keypoints for part
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detection, and the 2D affinity vector, what is called the part affinity field, provides

the part association between a pair of two candidate keypoints. The inference of

the trained network only provides the candidate key points and the candidate part

association expressed by the 2D vector field. For human pose estimation, additional

optimization is required to connect candidate part association to make a full body for

each person. They proposed a greedy relaxation of the multi-dimensional matching

problem that is basically the NP-Hard[32]. They built a minimal number of edges for a

tree skeleton of human poses and then simplified the NP-Hard matching problem into

a set of bipartite matching subproblems. Even though the proposed technique showed

significant improvement in human pose estimation, some false cases are reported from

rare poses or appearances as shown in Figure 2.3, which shows one leg limb (blue color)

and one arm limb (green color) in the left image because the upright standing pose

could be the dominant pose in the training dataset. Without the appropriate training

samples for rare poses, it would be difficult to obtain the correct part association with

the proposed affinity fields.

He et al. [27] introduced an extension of fast R-CNN [28], which is called mask

R-CNN, that provides segmentation masks for each ROI (region of interest) on top of

the bounding box and classification outputs. The proposed pixel-to-pixel alignment

of ROI position can improve the accuracy of the location of the object. They also

evaluated the generality of Mask R-CNN by applying the model to human pose esti-

mation. They adopted Mask R-CNN to predict multiple masks, one for each keypoint

that represents a human body part, e.g., left wrist, right hand, etc., and each mask is

a one-hot mask that has only a one-pixel foreground. However, they only evaluated

the detection accuracy of keypoint; the evaluation did not illustrate how to associate

the detected human parts into a meaningful expression, the whole human body.

As inspired by 3D human modeling for human motion capture system and com-

puter graphics, a technique [29] of corresponding between 2D images and 3D human

body surface models has been developed. This dense correspondence between im-
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Fig. 2.3. Examples of failure cases reported in [23]; failure by rare poses
or appearances (right image) and by missing or false part detection (left
image)

age pixels and surface points, which is called ‘Densepose-RCNN’, is the enhanced

architecture of combining DenseReg [30] with Mask-RCNN.

All CNN-based human pose estimation essentially includes off-line training stages.

It implicitly requires well-balanced training datasets that can cover as many condi-

tions as possible, and, in general, huge amounts of data are required for training.

Additionally, owing to the nature of supervised learning, it demands a lot of human

labor to generate a large annotated dataset [31].

The recently proposed human pose estimations based on CNN have focused on

pixel-wise segmentation and classification. Given an input image, they resulted in

activated regions, which are usually specified as 2D coordinates or heatmaps, that are

likely associated with human parts. All pixels in the resulting regions are classified

with confidence factors. These outputs are only able to show the detected human parts

individually; furthermore for human detection, some domain knowledge — e.g., a

topological graph (tree) to configure human body as in [21,23,26,27] — will be applied

to aggregate the individually detected human parts into whole human bodies. An

alternate way is to design a structure of training data that can accurately represent the

whole human body. One exemplary structure of training data consists of the human
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part label, e.g., write, ankle, shoulder, etc., and regions where the corresponding

human body parts are located [21]. The proposed online CMIL model is relatively

less dependent on human labor for preparing the training data because it will generate

its training data from the current inputs. This means that the proposed model can

evolve during tracking. The new training data from each input make it possible to

incrementally evolve the CMIL model. CNN-based models, which inevitably need

off-line training, hardly change their network parameters during tracking. However,

the CMIL model takes time to be stabilized because it is trained by samples collected

in successive frames.

The proposed online CMIL model has no specific kinematic human body models

to associate detected human body parts. Articulated human movements cannot be

wholly supported by normal kinematic human pose structures which have been re-

quired to detect full human bodies. For instance, OpenPose [23] implicitly allows the

directional association between detected body parts, e.g., the knee point as the start

point and the ankle point as the end point, where the direction of 2D affinity vector

is always from knee to ankle; however, Figure 2.3 shows the failure of pose estimation

due to directional constraints on body part association. The proposed online CMIL

model is intrinsically free from this constraint because there are no kinematic human

body model assumptions.

2.3 Multiple Instance Learning

The recent machine learning techniques have been gradually used for object track-

ing due to increasing computational power that enables real-time learning. Supervised

learning is one of most popular method in machine learning for object tracking. In

supervised learning, the decision boundaries or concepts are determined by training

samples that usually consist of features and known corresponding class labels. The

performance of supervised learning relies on how sets of training samples can appro-

priately represent a space in which the samples to be classified are located. This
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means that training samples should have correctly their corresponding class labels

because incorrect class labels assigned to training samples cause a substantial bias for

determining the decision boundary or concepts. However, class label assignment is a

time-consuming task, especially when there exists a large amount of training samples.

With the considerable volume of training samples, it is difficult to assign correct class

labels of some training samples when these training samples are located around a

true decision boundary in the sample space. Therefore, this ambiguity of class labels

in training samples should be considered in the training stage.

Multiple Instance Learning (MIL) provides a good learning technique that effec-

tively handles ambiguity in the learning samples. The MIL is a variant of the super-

vised learning process where classification labels are associated with sets of samples

rather than individual samples. MIL had originally been suggested for pharmaceu-

tical research area for estimating drug activities [32]. It is important to effectively

consider deformations of molecular structure for finding candidate molecules to match

a target drug because the final molecule has at least one deformation of the molecule

to be matched in the target drug. From the view of generating learning samples, the

candidate molecule with a large number of its variable structures can be analogous

to a large set of learning samples and the positive class label can be assigned to the

candidate molecule rather than one of the variable structures. In other words, the

class label can be set to the bag of learning samples rather than each learning sample.

Given training samples (xi, yi), the goal is to estimate a function f : X → Y ,

where X ∈ R is the feature space with xi ∈ X and yi ∈ Y is the class label assigned

to each data xi. Let us assume that we have only two labels yi ∈ Y = {+1,−1}.

In MIL, the training data is not an individual sample but a set of training samples,

called a bag, where each training sample in the bag is called as an instance. A bag

Bi consists of a set of instances Bi = {xij}
Ni

j=1 and the label yi of the bag Bi can be

assigned by

yi = max{yi1, yi2, ...yiNi
}, (2.1)
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Fig. 2.4. Examples of positive bags and negative bags for tracking a man
from T th to (T + 10)th frame. The first row shows the positive samples
of the human to be tracked in blue rectangles, and the second row shows
the negative samples of it in red rectangles. The positive bag B+consists
of positive samples that are patches shown in the blue rectangles in the
first row.

where yij are the instance labels, which are unknown during the training stage.

Each bag can be classified into two different bags: a positive bag and a negative bag.

The positive bag B+ = {xj}
N+

j=1, i.e., the label y = +1, has to contain at least one

positive sample xj whereas the negative bag B− = {xj}
N−

j=1 consists of all negative

samples. Figure 2.4 shows an example of both positive bags and negative bags in

each frame.

We need to estimate the function f : X → Y given the training samples {(Bi, yi)}
N
i=1.

Numerous algorithms for solving MIL have been proposed [33–37] and Viola et. al [38]

suggest, the MILBoost, which solves the MIL with training a boost classifier that

maximizes the log likelihood of bags:

log(L(C)) =
∑

i

log(p(yi | Bi)). (2.2)

The likelihood of bag p(yi | Bi) can be expressed in terms of the likelihood of each

instance. The Noisy-OR model is used for estimating the likelihood of the positive

bag Bi,
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p(yi = 1 | Bi) = 1−
∏

j

(1− p(yij = 1 | xij)), (2.3)

where yij is an output of classifier yij = C(xij).

Under the Noisy-OR model, the likelihood of a set of training bags is

L(C) =
∏

i

(p(yi | Bi))
yi(1− p(yi | Bi))

(1−yi), (2.4)

where yi ∈ {0,+1} is the binary label.

Using eq. (2.2), the log likelihood of the classifier is obtained by maximizing

log(L(C)) =
∑

i

yi log(p(yi | Bi) + (1− yi)(1− p(yi | Bi)). (2.5)

The goal of the MIL process is to obtain in either instance classifiers or sample

classifiers through maximizing the log likelihood of classifiers as described in eq. (2.5).

Most MIL applications need to find out the instance classifiers for handling ambiguous

class labels attached in the bag. Therefore, the class label of each instance can be

determined during the training process.

In recent years, MIL combined with existing classification processes have addressed

problems in object detection and tracking [34–36,38]. Also, MIL can be implemented

in online detection and tracking systems [37, 39], which allow us to update the refer-

ence model for tracking objects in frame by frame. We will focus on the problem of

tracking location and scale of the bounding box surrounding humans of interest in the

online video sequence. We assume that the initial position and size of the bounding

box are given as prior knowledge for online learning. The online MIL can update the

reference model of the human of interest in each frame which will be used for tracking

the human in next frame.
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2.4 Online Boosting

This section explains one type of ensemble learning algorithms: the boosting. We

especially focus on describing the Adaptive boosting (Adaboost) learning algorithm.

The Adaboost learning algorithm is a powerful learning technique, but it needs all

training samples for building a classifier. Therefore, the online Adaboost learning

algorithm is introduced for handling the case in which all training samples cannot be

allowed while training the classifier.

2.4.1 Adaptive Boost

Ensemble learning is a combination of several primitive models whose individual

outputs of classification or regression are aggregated for computing a final decision.

The fundamental assumption is that each base decision model in the ensemble learn-

ing is uncorrelated with the others. However, this assumption can hardly be achieved

because real learning data are generally located on a very complex feature space

where each dimension cannot be easily distinguished. Therefore, many algorithms

have attempted to generate as uncorrelated of base models as possible so that they

guarantee the diversity of base models. The most popular ensemble learning algo-

rithms are bagging and boosting: bagging (Bootstrap Aggregating) creates multiple

sets of training samples with replacement and uses each of these sets to generate a

classifier; boosting utilizes all training samples at each learning stage with different

weight distribution over the training samples.

The boosting learning approach as an ensemble learning has shed significant light

on the machine learning research since the late 1990s; the combination of weak clas-

sifiers provides a very powerful classifier under the shadow of a supervised learning

framework. Freund et al. [40] have proposed an adaptive boost (AdaBoost) learn-

ing technique for improving the learning rate. Basically, the AdaBoost runs in offline

mode, which means that all training samples should be available in the training stage.

In each training iteration, each training sample is weighted by the currently estimated
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weak classifier that will be added into a strong classifier which is composed of a collec-

tion of weak classifiers up to that moment. The details of the Adaboost algorithm are

described in Alg. 1. Inputs of Adaboost are composed of three components: training

sample with known labels ({(xi, yi}
N
i=1), a base learning model algorithm (i.e., the

weak classifier, Fb) , and the number of base models to be combined as a final deci-

sion model (i.e., the strong classifier, M). The original Adaboost had been designed

for a two-class problem, and later expanded the two-class Adaboost algorithm into a

multi-class learning algorithm. The two-class Adaboost algorithm will be described

in this thesis for its simplicity. The weighted distribution is set to be equally uniform

for all training samples at an initial stage as 1
N
. At the first stage t = 1, the base

model is trained by all training samples and the current weighted distribution. Next,

the classification error of the current base model is computed as shown in Alg. 1

described in ǫ. The classification error is a sum of weights that correspond to the

misclassified training samples in the current base model. If the classification error

from the current base model is higher than 1
2
, the learning loop stops. Note that each

base model in boosting requires that the classification performance needs to be better

than random decision, which means the classification error has to be lower than 1
2
. If

the classification error of the current base model is lower than 1
2
, the weight of the

current base model is set to be 1
2
ln 1−ǫ

ǫ
. After assigning weight to the current base

model, the weighted distribution of all training samples is modified by the current

base model performance. If the training sample can be classified correctly, the weight

of this training sample will be smaller than the previous weight by multiplying an

exponential margin. The weight of incorrectly classified training samples will be in-

creased because these samples can probably be selected for training the next base

model. The key factor of Adaboost is to assign the weight for each training sample in

every iteration: the higher weights will be assigned to the training samples that the

current base model fails to correctly classify. The falsely classified training samples

are more likely to be selected for learning the base classifier at each iteration.

The training error bound of Adaboost is given by
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Algorithm 1 Adaboost

Given inputs {(xi, yi)}
N
i=1, Fb , and M ,

Initialize D1(n) =
1
N

for all n ∈ {1, 2, ..., N} .

For t = 1, 2, ...,M :

ht = Fb({(xi, yi}
N
i=1 , Dt)

ǫt =
∑

n:ht(xn 6=yn)
Dt(n)

if ǫ ≥ 1
2
then,

M = m− 1 and terminate learning

else

αt =
1
2
ln 1−ǫ

ǫ

Dt+1(n) =







1
Zt
Dt(n) e

−αtyt(n)ht(xn) if ht(xn) = yn

Dt(n) otherwise

end for

H(x) = sign
(

∑M
t=1 αtht(x)

)
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êrror(H) ≤
∏

t

2
√

ǫt(1− ǫt), (2.6)

where êrror(H) is the training error of H .

As shown in Eq.2.6, Adaboost is not theoretically guaranteed the minimum train-

ing error but just the upper training error bound.

In addition, the upper bound of generalization error is

error(H) ≤ êrror(H) +O(

√

Td

m
), (2.7)

where error(H) is the generalization error of the strong classifier H , T is the iteration

number, d is the complexity of weak classifiers, and m is the number of training

samples.

2.4.2 Online Adaboost

As explained in previous Section 2.4.1, Adaboost was originally used for offline

learning algorithms because entire training samples should be required for determining

the weights of each training sample and the strong classifier. The weight of each

training sample assigns its probability as selected training samples for the current

weak classifier that is added into the strong classifier.

Oza [41] first introduced the online Adaboost that does not require the entire set

of training samples for learning weak classifiers. The online Adaboost has a fixed

number of weak classifiers that will be trained from input samples in each iteration.

Under the condition of using a naive Bayes classifier as the base classifier, the final

classifier Honline of online Adaboost converges to that Hoffiline of the offline Adaboost

as increasing the number of training samples, N →∞. The pseudocode of the online

Adaboost is outlined in Alg. 2. The online Adaboost fundamentally works in a pre-

defined set of base classifiers for each training sample. Each base classifier hm in

the pre-defined set has two types of weights: λsc
m and λsw

m . λsc
m is a sum of weight

when the base classifier hmcorrectly classifies the training samples and λsw
m is a sum
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of weight when hmincorrectly classifies them. Given the first training sample, the

first base classifier h1is learned by this training sample. If the h1correctly classifies

the given training sample, λsc
1 is updated and the weight of this training sample λ

is also updated from ǫ1 =
λsw
1

λsw
1 +λsc

1
. If the h1incorrectly classifies the given training

sample, λsc
1 is updated and the λ is also updated from ǫ1 =

λsc
1

λsw
1 +λsc

1
. The given

training sample and updated weight λ are passed to the next base classifier h2 and

then update the weight of base classifier h2 as well as the weight of training sample

λ. This process is conducted on all base classifiers in the pre-defined set, and then

the final classifier is obtained by a sum of function of classification error in each base

classifier, h(x) = argmax
∑

m:hm(x)=y log
(

1−ǫm
ǫm

)

.

Grabner and Bischof [39] proposed a variant of online boosting for feature selec-

tion. They introduced an additional concept of training base classifiers: a selector.

Given a pool of base classifiers F = {h1, h2, ..., hP}, a subset of base classifiers,

Hk = {h1, h2, ..., hM}, is assigned to the selector Sk. The role of the selector is to

pick up an exact one base classifier with minimum classification error to a given one

training sample. Given a single training sample, the subset of base classifiers in the

selector S1 is trained and updates the importance weights of each base classifier. The

updated importance weights of base classifiers are used for computing the classifi-

cation error of each base classifier. The selector S1selects the base classifiers with

the minimum classification error and updates the importance weight of the current

training sample. The above process iteratively continues in the selector S2, S3, ..., SN .

Note that the base classifier with the maximum classification error is replaced with

new base classifier from the pool of base classifiers F . The final classifier is obtained

by linear combination of selectors,

H(x) = sign

(

N
∑

n=1

αnhn(x)

)

. (2.8)

The pseudocode of this online adaboost are outlined in Alg. 3. Compared to Oza’s

approach, they claim that the selection of the base classifier can be directly applicable

to feature selection because each base classifier corresponds to one specific feature. It
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Algorithm 2 Online Adaboost algorithm [41]

Initial λsc
m = λsw

m = 0 for all m ∈ {1, 2, ...,M}

Set the training sample’s weight λ = 1.

For each base classifier hm, m ∈ {1, 2, ...,M}in a base classifier pool h

set k according to Poisson(λd)

Do k times

hm = Fo(hm, (x, y))

if y = hm(x)

λsc
m ← λsc

m + λ

ǫm ←
λsw
m

λsc
m+λsw

m

λ← λ
(

1
2(1−ǫm)

)

else

λsw
m ← λsw

m + λ

ǫm ←
λsw
m

λsc
m+λsw

m

λ← λ
(

1
2ǫm

)

h(x) = argmax
∑

m:hm(x)=y log
(

1−ǫm
ǫm

)
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means that the final classifier can be the combination of features that are represen-

tative of the given classification space.

2.5 Tracking via Multiple Instance Learning

As described in Section 2.3, Babenko et al. [37] developed a robust tracking

through an online updated appearance model sustained by Multiple Instance Learn-

ing, which we call Multiple Instance Learning Tracking (MILTracking). Basically,

MILTracking is a variant of the Tracking-by-Detection approach; the reference tem-

plate, i.e., the target model, is sequentially updated and subsequently used for finding

the most similar appearance model in each frame. Given the updated target model,

MILTracking finds the local image patch that has the most similar appearance. MIL-

Tracking uses a greedy motion model for discovering the best estimated position of

the tracker, as shown in Fig. 2.5. The best estimated position of the tracker in time

t is used for an initial position of the tracker in time t + 1. Within a search area,

shown in a yellow dashed circle in Fig. 2.5, MILTracking cropped out a set of local

image patches and then applied a strong classifier learned from previous time steps.

Based on outputs of the strong classifier, MILTracking selects a local image patch

that has the minimum distance from the target model in the appearance space, i.e.,

the most similar appearance. After locating the best position of the tracker in time

t+ 1, the MILTracking collected both positive samples and negative samples around

the best position of the tracker, as shown in Fig. 2.5. These positive and negative

samples are fed into the learning process in the MILTracking for updating the target

model, in other words, the updated strong classifier. The MILtracking algorithm is

summarized in Alg. 4.

In the training stage, MILTracking uses the online Adaboost that is modified from

the proposed by [39]. The basic process is to select K weak classifiers from a pool

of M classifiers in each step. As mentioned in [41], online Adaboost is a sub-optimal
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Algorithm 3 Online Adaboost for feature selection

Initialize the importance weight λ = 1

for n = 1, 2, ..., N

for m = 1, 2, ...,M

hweak
n,m = Fo(h

weak
n,m , (x, y), λ)

if hweak
n,m (x) = y

λc
n,m = λc

n,m + λ

else

λw
n,m = λw

n,m + λ

en,m =
λw
n,m

λw
n,m+λc

n,m

end for

end for

m+ = agrminm(en,m)

en = en,m

hsel
n = hweak

n,m+

if en = 0 or en > 1
2
then exit

αn = 1
2
ln(1−en

en
)

if hsel
n (x) = y

λ = λ 1
2(1−en)

else

λ = λ 1
2en

end if

m− = argmaxm(en,m)

λc
n,m−

= 1, λw
n,m−

= 1
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Fig. 2.5. Tracking with the greedy motion model

Algorithm 4 MILTracking algorithm

INPUT: a video frame at time t and a final strong classifier Ht−1

OUTPUT: a final strong classifier Ht and the best position of object ℓ(x∗
t )

1. Extract a set of local image patches, X =
{

x |
∥

∥ℓ(x)− ℓ(x∗
t−1)

∥

∥ < d
}

2. Compute the feature vector of each image patch in the set X

3. Apply the classifier Ht−1 for estimating p(y = 1 | x) for x ∈ X

4. Find the best position of object, ℓ(x∗
t ) = argmaxℓ(x) p(y = 1 | x) | x ∈ X

5. Collect positive samples, Xp = {x | ‖ℓ(x)− ℓ(x∗
t )‖ < s} and negative samples,

Xneg = {x | s < ‖ℓ(x)− ℓ(x∗
t )‖ < t}

6. Update the final strong classifier Ht



29

procedure because all training samples are unavailable at specific times; only a partial

training sample is available at each time step.
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3. COMPONENT-BASED MULTIPLE INSTANCE

LEARNING

The work described in this chapter deals with the problem of tracking human move-

ments when the articulated motions span large variations in the configuration space.

Our approach is based on discriminative learning called Multiple Instance Learning

(MIL) [32, 33] that associates class labels with sets of instances (as opposed to sin-

gle instances in the traditional learning algorithms). We first define the new basic

learning unit of MIL tracking for resolving tracking failures when the large articulated

human movements exist. We then apply this new MIL tracking for various articulated

human movement tracking and show how it improves performance.

3.1 Introduction

In recent years, MIL combined with existing classification strategies has been

used to address problems in object detection and tracking [34, 35, 38]. Work has

also been carried out in using MIL for online detection and tracking [37, 39]. In

this work, the reference model used in the tracking process is dynamically updated

from frame to frame. Specific focus of our work described in this chapter is on

addressing the problem of tracking human movements that cause large frame-to-frame

variations with the following steps: (1) Project the most probable bounding box in the

previous frame into a candidate bounding box in the current frame; (2) Apply a strong

classifier computed in the previous frame to different bounding boxes in the vicinity

of the candidate box and select the most probable bounding box; (3) Construct

randomly displaced versions of this most probable bounding box as positive examples;

(4) Choose image patches from the current frame outside the region spanned by the

positive examples as negative examples; (5) Apply an image segmentation algorithm
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to the positive and the negative examples; (6) Use the component based boosted

MIL algorithm to assign probabilities to the different positive examples with regard

to the similarity of their pixel distribution to the most probable bounding box in the

current frame; and, finally, (7) Compute the strong classifier from the component

based boosted MIL algorithm.

With the conventional logic of object tracking described above, we introduce the

new basic learning unit of MIL tracking. In our approach, image patches in the

positive and the negative examples are subject to automatic segmentation to yield

what we call components. It is the components that are subject to the basic clas-

sification by the boosted MIL algorithm. The components give our approach extra

degrees of freedom that are not possessed by the previous use for boosted MIL for ob-

ject tracking. For articulated motions, these additional degrees of freedom can play a

critical role in transferring the probabilities over the positive examples in the previous

frame to those in the current frame. When articulated motions are involved, it is less

likely that pixel brightness distributions would match well between two corresponding

bounding boxes in two successive frames. However, if we first segment each of the

bounding boxes into components based on, say, approximate uniformity of brightness

levels, we are more likely to find component-to-component matches between the two

corresponding bounding boxes. This then underlies the rationale behind our compo-

nent based boosted MIL algorithm. From the next section, we first provide a brief

introduction to MIL and then show how this technique can be adapted for tracking

humans with large articulated motions.

3.2 Multiple Instance Learning

As described in Section 2.3, MIL is a discriminative learning algorithm that is more

accommodating of ambiguities in the training data than the conventional approaches.

Given training samples (xi, yi), the goal is to estimate a function f : X → Y , where

X ∈ Rd is the feature space with xi ∈ X , and yi ∈ Y is the class label assigned to each
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data xi. In MIL, the training data is not an individual sample but a set of the training

samples called a bag and each training sample in the bag is called an instance. A

bag Xi consists of a set of instances Xi = {xij}
Ni

j=1 and the label yi of the bag Xi as

assigned by yi = max
j

(yij), where yij is the instance label, which is unknown during

training stage. Each bag is either a positive bag or a negative bag. The positive bag

X+ = {xj}
N+

j=1 has to contain at least one positive sample xj whereas the negative

bag X− = {xj}
N−

j=1 consists of all negative samples.

We need to estimate the function f : X → Y given the training samples {(Xi, yi)}
N
i=1.

Numerous algorithms for solving the MIL problem have been proposed [35–37] over

the years. Of particular interest to us is the solution proposed by Viola et al. [38].

Their algorithm, called MILBoost, solves the MIL problem by training a boosted

classifier that maximizes the log likelihood of the bags:

log(L(C)) =
∑

i

log(p(yi | Xi)), (3.1)

where yij is an output of classifier yij = C(xij). The likelihood of the bag p(yi | Xi)

can be expressed in terms of the likelihood of each instance. The likelihood of a set

of training bags is given by

L(C) = Π
i
(p(yi | Xi))

yi(1− p(yi | Xi))
(1−yi), (3.2)

where yi ∈ {0, 1} is a binary label. The likelihood p(yi | Xi) represents the connection

with the bag Xi and its instances xij in terms of noisy-OR model

p(yi = 1 | Xi) = 1−

Ni
∏

j=1

(1− p(yij = 1 | xij)). (3.3)

3.3 Component Based Online Boosted MIL Tracking

However, it is significantly required to update the reference template in appearance

based tracking. The update of reference template under machine learning framework

needs to run learning stages in each iteration in online mode: the learning samples
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Fig. 3.1. Multiple image patches are first extracted from the input image.
Automatic segmentation is then applied to each image patch to yield
discriminative clusters, or components.
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should be collected in each frame sequentially. Also, the online learning framework

inevitably has a partial learning samples. Therefore, we need some online learning

framework to handle partial collections of learning samples that are collected sequen-

tially.

A straightforward application of MILBoost fails to track human movements when

large articulated motions are involved on account of excessively large variations in

the appearance that needs to be tracked. To augment the logic of MILBoost in order

to more explicitly take into account the articulation caused variations in the images,

we now introduce a component based approach to the boosting of MIL in which

the components provide us with the additional degrees of freedom to accommodate

the image variations caused by articulations. By components we mean the blobs

produced by an image segmentation algorithm when applied to the patch inside a

bounding box. In this manner, our algorithm can simultaneously address the sort

of appearance variations handled by MILBoost and the human articulations that we

need for tracking people movements.

To explain how the components for the different image patches are used, in each

frame we start with the extraction of a number of image patches based on the current

bounding box for the human being tracked. As in the regular MIL boosting, some of

these patches are considered to be positive examples and the others negative exam-

ples. Each patch is segmented into components, as shown in Figure 3.1. While the

appearance variations are addressed by collections of local image patches (i.e., positive

instances), the human articulations are implicitly dealt with through the components.

We can think of the components as implicitly representing the human parts. In this

manner, our proposed boosted MIL approach can use the components in both the

positive and the negative examples for accommodating human articulation changes

during tracking.

To give the reader a sense of motion articulations as captured by the image compo-

nents extracted from a patch, we show Figure 3.2. If we simply represent the human

figure by a single patch containing a silhouette, as shown in Figure 3.2(b), the fore-



35

ground/background segmentation shown in the figure that is used as a silhouette for

tracking usually contains insufficient information for tracking the movements. Even

a parts based approach may fail to track in such cases on account of the “broken

linkages” shown in Figure 3.2(c) when we fit an articulated model to the silhouette.

However, the components in the image patch, as shown in Figure 3.2(d), can implic-

itly represent human articulation with loosely-connected configurations in that each

component contains partial or whole human parts.

We will now extend the MIL formalism of the previous section in order to incorpo-

rate the components in it. We now consider a bag Xi to consist of a set of sub-bags:

Xi = {Xij}
Ni

j=1, and a sub-bag Xij a set of component instances: Xij = {xijk}
Nij

k=1.

The Noisy-OR model of MIL in Eq. (3.3) can be expanded into

p(yi | Xi) = 1−Π
j
(1− p(yij | Xij)), (3.4)

p(yij | Xij) = 1− Π
k
(1− p(yijk | xijk)). (3.5)

The likelihood of the positive bag Xi for the component based boosted MIL is ex-

pressed by

p(yi | Xi) = 1− Π
j
(1− (1− Π

k
(1− p(yijk | xijk))))

= 1− Π
j
(Π
k
(1− p(yijk | xijk)))

. (3.6)

The likelihood of each component can be represented by the logistic regression model:

p(yij = 1 | xij) = σ(H(xij)) =
1

1 + e(−H(xij))
. (3.7)

Under the tracking-by-detection paradigm for component based boosted MIL tracker,

we need to update the classifier in every frame with selected positive and negative

bags. In every frame we detect the position of image patch at which the output of the

proposed boosted MIL classifier, learned in the previous frame, is maximized. The

optimal detected position p̂ of image patch is computed by

p̂ = argmax
p∈S

p(y | Xp), (3.8)
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where S is a predefined search area, Xp is the image patch at location p, and p(y | Xp)

is the output of proposed boosted MIL classifier. For collecting learning samples,

given the estimated optimal position p̂, we collect positive instances (image patches)

whose center positions are located in S; negative bags are generated from image

patches whose center positions are located outside of S. Figure 3.3 shows an example

of collecting positive instances around the human and negative instances from the

background area.

As shown in Algorithm 1, we extend the MILBoost [37] into component based

boosted MIL. Given a pool ofK candidate weak classifiers h, the algorithm choosesM

weak classifiers h from the candidate pool by optimizing a specific objective function

J ,

hk = argmax
h∈{hi}Ki=1

J(Hk−1 + h), (3.9)

where Hk−1 is the strong classifier up to the first (k − 1) weak classifiers. The M

weak classifiers are selected by noisy-OR model of probability of component labeling

rather than those of image patches.
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Algorithm 5 Component Based Online Boosted MIL

Input: Given N training samples (Xi, yi) where image patches Xi and their corre-

spondent label yi ∈ {0, 1},

1: Apply superpixel algorithm to obtain components {xij}
Ni

j=1 in ith image patch Xi

and set label yij, ∀j, yij = yi

2: Extract features {fijk}
K
k=1 from each xij

3: Update all K weak classifiers in the pool with all data {xij , yij}

4: For each weak classifier,

5: Compute likelihood of components in each image patch

6: Compute likelihood of image patch by combining likelihood of components

7: Choose a classifier having maximum likelihood

8: Select the classifier and add to a strong classifier

9: Repeat until collecting M classifiers.

Output: H(x) = Σhk(x)
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3.4 Experimental Validation

We present the result of CMIL tracking on four video sequences that include the

large articulated human movements, namely (1) ETH sunny day sequence (TUD)1,

(2) UIUC1 standing to sit sequence(StandToSit)2, (3) Skating sequence from VTD

webpage(Skating)3, and (4) Gymnastic athlete sequence from Youtube(Gym)4.

We compare our proposed algorithm with MILBoost tracking algorithm [37]. The

initial position of human in each sequence is manually specified. Each weak classifier

hk is composed of the log odd ratio,

hk(x) = log
[p(y = 1 | x)

p(y = 0 | x)

]

. (3.10)

We assume that both p(y = 1 | x) and p(y = 0 | x) are of a normal distribution,

N (µ1, σ1) and N (µ0, σ0), respectively. Those parameters are updated in each frame

by gathering positive and negative components.

µ← γµ+ (1− γ)
1

n

∑

fk(x),

σ ← γσ + (1− γ)

√

1

n

∑

(fk(x)− µ)2,

(3.11)

where 0 < γ < 1 is a learning rate parameter.

We used the turbopixel algorithm [42] for extracting components from each image

patch. Haar-like features are extracted in each component. We represent each compo-

nent as a vector of Harr-like feature, which are randomly generated, similarly to [18].

Each feature consists of two to six rectangles, and each rectangle has a real valued

weight. The feature value is then a weighed sum of the pixels in all the rectangles.

These features can be computed efficiently using the integral image trick described

in [38]. The parameters were set as follows: the search radius s is set to 36 pixels. We

1http://www.vision.ee.ethz.ch/˜aess/dataset
2http://vision.cs.uiuc.edu/projects/activity
3http://cs.snu.ac.kr/research/˜vtd
4http://www.youtube.com/watch?v=FJIrHgshB20
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sample positive in each frame using a radius r=4. This generates maximum 50 image

patches as the positive bags. The 65 image patches are randomly sampled as negative

bags. The learning rate γ for the weak classifiers is set to 0.85. Finally, the number of

candidate weak classifiers M was set to 50 and the number of chosen weak classifiers

K was set to 10. We compared the tracking results in two different categories: a

qualitative comparison and a quantitative comparison. Fig. 3.4 shows the qualitative

results of tracking humans in four video sequences. The blue line shows the tracking

result from the CMIL tracker and the yellow line shows those from the MILBoost

tracker. Both algorithms successfully track the walking man in the street in the first

test sequence. However, in other three test sequences, the proposed CMIL tracking

algorithm shows the better tracking performances than MILBoost tracking. Espe-

cially the MILBoost tracking lost the human just after a few frames from the initial

frame in the Skating sequence and Gymnastic sequence that have large articulated

human movement. Table 3.1 shows the quantitative results of two compared trackers.

The quantitative tracking results are measured by averaging pixel distance between

the ground truth position and the output of each tracker through whole frames. The

ground truth position of human in the sequences are manually extracted. As shown

in the qualitative comparison, the quantitative comparison clearly indicates that the

CMIL tracking achieves better performance for tracking humans with large articu-

lated movements: the pixel distance errors of CMIL tracking are a half time lower

than those of MILBoost tracking.

Fig. 3.5 and Fig. 3.6 display the selected positive components in the estimated

bounding box enclosed the human to be tracked. Even the MIL tracker lost the track-

ing target because of partial occlusion during tracking, the proposed CMIL tracker

could successfully track the target. This may rely on the fact that each component can

be described by a set of features and corresponding classifiers which could memorize

a sort of unique information for corresponding components.
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Table 3.1.
A quantitative evaluation by comparing mean pixel error. The mean

pixel error was computed by measuring the distance between the center
position of the bounding box and that of the human being tracked which
is manually picked.

Video Sequence TUD StandToSit Skating Gym

Mean Pixel Error MILBoost 13.7 9.57 25.68 35.65

Component

based

boosted

MIL

9.1 9.46 10.86 19.26
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3.5 Conclusion

In this chapter, we presented a component based version of the boosted MIL al-

gorithm for tracking articulated human movements. Compared to the conventional

boosted MIL tracking algorithm, our proposed method can better handle large ar-

ticulated motions that cause significant variations in the appearance of the humans

that need to be tracked. Components in each image patch that are automatically

generated by image segmentation provide the additional degrees of freedom that the

tracker needs to deal with the large frame-to-frame variations caused by articulated

movements. We validated the advantages of our proposed method by comparing the

tracking results against the MILBoost algorithm on four different video sequences.
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(a)

(b)

(c)

(d)

Fig. 3.2. Estimation of articulation of human pose. (a) an input image
patch; (b) an obscure silhouette from foreground/background segmen-
tation; (c) broken linkages and self occlusion in a possible joint model
representation; (d) components in the image patch.
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(a)

(b)

Fig. 3.3. Examples of candidate positive instances depicted by blue rect-
angles in (a) and candidate negative instances depicted by red rectangles
in (b).
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Fig. 3.4. Comparison of tracking results by MILBoost (yellow line) and
the proposed component based boosted MIL (blue line). From the first
row, TUD, StandToSit, Skating, andGym sequence are used for comparing
results.
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Fig. 3.5. Selected positive components (blue mask) in the estimated
bounding box.
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Fig. 3.6. Selected positive components (blue mask) in the estimated
bounding box.
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4. POSITIVE BAG CONFIGURED COMPONENT-BASED

MIL

This chapter primarily focuses on developing an extended component MIL tracking

with alternative positive image patches. The alternative positive image patch is

defined by the specific number of positive components rather than at least one positive

component. This specific number of positive components, which can declare the

positive image patch, can be adaptively varied during tracking in accordance with

positive and negative component distributions in the given image patch. We showed

how to define the alternative positive image patch with respect to positive component

distribution and the improving tracking performance.

4.1 Introduction

Tracking humans is an important issue in several computer vision applications,

such as surveillance, activity recognition, human behavior analysis, etc. Despite some

successes, the performance of the current breed of human tracking algorithms leaves

much to be desired, especially when one factors in illumination changes, background

clutter, large articulated motions, etc. [1].

A typical approach to tracking humans depends on an appearance model as rep-

resented by a reference template that is created in the first frame of a video sequence.

This reference template is basically an intensity distribution within an area surround-

ing the human being tracked, the area specified by a bounding box. The goal of the

tracker is to track this reference intensity distribution over the successive frames in

the video sequence. However, when the human being tracked engages in large ar-

ticulated motions, the intensity distribution as defined by the reference template is

inadequate for describing the distributions corresponding to all the motions of the
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articulated parts. Motions such as bending, crunching, kneeing, etc., produce large

changes in the overall shape of the human as seen by the camera. Our work focuses

on how to handle such large appearance variations common to articulated human

motions in order to improve tracking performance.

In order to deal with the problems of precisely labeling the positive and negative

images in several computer vision tasks, such as image retrieval, text recognition,

object tracking, etc., researchers [37, 39] have suggested the use of a discriminative

learning approach called Multiple Instance Learning (MIL) [32,33] in which the classi-

fier is trained from positive and negative bags of instances (as opposed to the positive

and the negative instances directly in the more traditional approaches). Since a bag is

a set of instances and since the positive bags are allowed to contain both positive and

negative instances (whereas the negative bags must only contain negative instances),

MIL is more forgiving of the errors made in choosing the positive instances for train-

ing. As demonstrated in Chapter 3, the fact that MIL is more accommodating of the

errors in identifying the image parts that may be on the object being tracked allows

it to be used for the tracking of relatively large articulated movements by humans.

More specifically, the contribution in Chapter 3 used a version of MIL known as online

boosted MIL for demonstrating the human tracking results. The boosted MIL was

used in a component-based framework (CMIL), with the components being the result

of automatic image segmentation applied to the current frame of the video sequence.

The classification output for components as determined by MIL was used to update

the reference template for the human being tracked.

In investigating the failure modes of the algorithm, we have noticed its perfor-

mance suffers from selecting positive samples from the image background region due

to overly cluttered backgrounds, too large frame-to-frame illumination changes, or

improper sampling range for positive samples. Figure 4.1 presents two results ob-

tained with CMIL as an example of the failure mode caused by a cluttered image

background. They are basically the same articulated movement by the human sub-

ject. The results shown in the right column are not as robust as those shown in the
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Fig. 4.1. An example of the failure modes of CMIL tracking for articu-
lated human motions. CMIL shows the different tracking results on the
same articulated movement. The left column displays the precise track-
ing results, and the right column depicts the failure of tracking results.
The red solid rectangles represent the tracking results of CMIL in both
columns. The yellow dashed rectangles in the right column represent the
ground-truth.

left column on account of the indistinguishability of the colors and textures on the

human vis-a-vis those in the background.

Our investigation shows that this failure mode of the CMIL can be attributed

directly to one of the foundational assumptions of MIL: that for a bag to be positive

it needs to contain only one positive instance at the least. This rather minimalist

requirement creates many false positives, meaning many components that are labeled
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as belonging to the object as opposed to belonging to the background, in the tracking

process. Figure 4.2 shows an example of a false positive image patch with only a

couple of positive components which represent a fraction of the human body parts.

These examples clearly provide evidence that it needs a new configuration of positive

bags.

Recently, Li and Vasconcelos [43] presented the soft bag configuration for MIL, in

which the positive soft bag is defined as the bag with more than µ number of positive

instances, which they called the µ-positive bag. They demonstrated that this soft bag

performs better compared with the conventional MIL for scene classification. How-

ever, all experiments have been conducted offline with all possible training samples,

and the optimal µ values are determined by empirically varying µ values from 1 to

20. The goal of our present work is to demonstrate the use of MIL for tracking artic-

ulated motions with a relaxation of the foundational assumption mentioned above.

We introduce the notion of a minimum positive count as the minimum number of

positive instances that must exist in a bag for it to be called positive. In contrast

to the soft bag with µ-positive bag, we show how this new parameter, the minimum

positive count, can be determined adaptively on a frame-to-frame basis depending on

the conditions prevailing in the frame. We make this parameter a function of the ra-

tio of the total number of positive and negative components declared in the previous

frame.

4.2 CMIL tracking with adaptively configured positive bags

In this section, we first describe the notion of a minimum positive count for adap-

tive component-based MIL (aCMIL). Note that we can call it also as component-based

MIL with adaptive positive count (CMIL-AC). Then, we discuss how it is computed

dynamically in each frame and used for adaptively configuring positive bags in a

MIL-based tracking framework.
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Fig. 4.2. An example of a false positive image patch under the founda-
tional assumption of MIL. The image patch with only a couple of positive
components (a fraction of the human body parts) can be classified as a
positive image patch.
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4.2.1 Minimum Positive Count of a Positive Bag

Given the local image patch x = {x1, x2, . . . , xn} and its label y ∈ {−1,+1}, we

need to assign the proper class label of the image patch x by taking into account the

class label yi of each component xi. From a probabilistic viewpoint, the likelihood

probability of the positive image patch, Pr(y | x), is conventionally represented by

the Noisy-OR model [33],

Pr(y | x) = 1−

n
∏

i=1

(1− Pr(yi | xi)). (4.1)

The Noisy-OR model represents the foundational assumption of MIL: the local

image patch is positive if there exists at least one positive component in the image

patch. However, the Noisy-OR model for MIL is not suitable for CMIL tracking when

samll number of positive components exist in the positive image patch. It is more

natural to assign the positive label to the image patch that has at least a specified

number of positive components. From the above observations, the proposed assump-

tion of aCMIL is that the positive image patch has to contain at least the minimum

number of positive component, which we call the minimum positive count (τ). The

minimum positive count can provide a flexible way of assigning a positive label to

image patches to the extent of the distribution of both positive and negative com-

ponents in image patches. In addition, the minimum positive count helps aCMIL

build a more acceptable decision boundary, as depicted in Fig. 4.3. We need to adap-

tively change the minimum positive count in each frame during tracking to account

for varying distributions of positive and negative components. The details of how to

change the minimum positive count is explained in 4.2.2.

Under the new assumptions of aCMIL, the likelihood of a positive image patch can

be computed as follows. Each component in the image patch has its corresponding

confidence score (zi) which is a real-valued output of a classifier. Since we do not

know the true label of each component in the training stage, we estimate the label of

the component by looking at the sign of its confidence score from the current classifier.
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Fig. 4.3. The minimum positive count affects the decision boundary (black
dash lines) of the two-class classification. As the minimum positive count
τ changes from one to three, the aCMIL algorithm results in a much better
shape of the decision boundary.
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Given that the set of confidence scores in an image patch is z = {z1, z2, . . . , zn}, a

positive component count constraint in the image patch, Np, is computed as

Np =
n
∑

i=1

(c(zi))− τ, c(x) =







1 x > 0

0 x ≤ 0
(4.2)

where τ is the minimum positive count. Therefore, the image patch is labeled as

positive when Np is positive. In other words, the image patch is labeled as positive

when there exist at least τ positive components. Along with the positive compo-

nent count constraint (Np), the most likely positive component [44] can be another

contribution to the likelihood of a positive image patch as

Pr(y = 1 | z) ∝ ezmax , (4.3)

where zmax = max{z1, z2, . . . , zn}.

Based on the positive component count constraint (Np) and the most likely positive

component (zmax), the likelihood of the positive image patch is expressed by a logistic

function,

Pr(y | x) =
1

1 + exp(g(Np, zmax))
, (4.4)

where g(Np, zmax) is a function of the new assumptions of aCMIL. In this paper, we

define the function g(Np, zmax) as

g(Np, zmax) = −Np × zmax. (4.5)

4.2.2 Adaptive Configuration of Positive Bags

For the aCMIL under the proposed assumption described in Section 4.2.1, each

positive image patch has at least the minimum positive count of positive components.

Therefore, the minimum positive count plays a critical role in collecting positive image

patches. A fixed minimum positive count can generate false positive image patches



55

because distributions of positive and negative components in the image patch vary

in each frame due to the variations of the shape and appearance of the human being

tracked. As a result, the minimum positive count should be adaptively changed in

order to prevent generating false positive image patches. The adaptive changes of

the minimum positive count results in a more precise decision boundary through the

reduction of false positive image patches, as depicted in Fig. 4.3. In this paper, the

distributions are simply estimated by sample mean and variance.

The minimum positive count needs to be increased in order to avoid generating

false positive image patches if the negative components are dominant in the positive

image patches. On the other hand, the minimum positive count needs to be decreased

in order to prevent the problem of degeneracy, which produces too few positive image

patches when the positive components are dominant. We can derive a new minimum

positive count based on both measured variance and mean of label of components in

the ith patch,

τi =
ni

λ
(1 +

σ2
i

µ2
i

), (4.6)

where λ is a user-defined parameter, ni is the total number of components in the

ith patch, and µi and σ2
i are the mean and the variance of the label of components,

respectively.Note that theoriginal label y ∈ {−1,+1} is converted into the label y′ ∈

{0, 1}

4.2.3 Online aCMILBoost

We extend the online MILBoost [37] by constructing an alternative likelihood

model with adaptively configured positive bags. A pseudo code of our proposed

method is shown in Algorithm 6. Given a pool of K candidate weak classifiers h,

the algorithm chooses M weak classifiers H from the candidate pool by optimizing a

specific objective function J , for example a concave function,

Hk = argmax
h∈{hi}Ki=1

{J(Hk−1 + h)} , (4.7)
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where Hk−1 is the strong classifier up to the first (k − 1) weak classifiers. The M

weak classifiers are selected by the sum of the log-likelihood of each image patch; each

log-likelihood is computed by the positive component count constraint(Np) and the

confidence response of the most likely positive component (zmax) as described in Eq.

(4.4). At each ith positive image patch, the minimum positive count (τi) is updated

by the mean and variance of components in the image patch. Then we estimate a

final minimum positive count (τ) through the weighted sum of the minimum positive

count in each image patch.

Both positive and negative patches are collected through a simple motion model

for tracking. In each frame, we find the image patch that most likely encapsulates the

human being tracked by determining the output of classifiers trained in the previous

frame. The optimal position of the image patch can be formulated by

p̂ = argmax
p∈S

{

Pr(y | x(p))
}

, (4.8)

where p̂ is the optimal position of the image patch, S is a predefined search area, x(p)

is the image patch at location p, and Pr(y | x(p)) is the output of the aCMILBoost

classifier. After finding the optimal position of the image patch enclosing the human

being tracked, both positive and negative learning samples are generated around the

neighborhood of the optimal position of the image patch.

4.3 Experiments

We tested our proposed tracker, the adaptive component-based MIL tracker (aCMIL-

Track) on some challenging video sequences, namely Gym1, Skating2 , StandToSit3 ,

and Wiggle4 sequences. These sequences include extensive articulated human move-

ment such as bending, rolling, handstand, etc. We compare our algorithm to the

1http://www.youtube.com/watch?v=FJIrHgshB20
2http://cs.snu.ac.kr/research/˜vtd
3http://vision.cs.uiuc.edu/projects/activity
4http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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Algorithm 6 Online aCMILBoost with adaptively configured positive bags

Input: Data set {xi, yi}
N
i=1, where ith patch xi = {xi1, xi2, ...}, yi ∈ {0, 1} and τ

1: Update all M weak classifiers in the pool with data {xij , yi}

2: Initialize H = 0

3: for k = 1 to K do

4: for m = 1 to M do

5: zmij = H+ hm(xij)

6: zmmax = max{zmi1 , z
m
i2 , ..., z

m
ij },

Np =
(

∑n
j=1

sgn(zmij )+1

2

)

− τ

7: pmi = σ(Np × zmmax)

8: Lm =
∑

i(yilog(p
m
i ) + (1− yi)log(1− pmi )

9: end for

10: m∗ = argmaxm{L
m}

11: hk(x)← hm∗(x)

12: H← H+ hk(x)

13:end for

14: for i = 1 to N do

15: τi =
ni

λ
(1 +

σ2
i

µ2
i

)

16: end for

17: τ =
∑

i αiτi

Output: Classifier H(x) =
∑

k hk(x) and updated τ
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online MIL tracker (MILTrack) [37] and component-based MIL tracker (CMILTrack)

in Chapter 3.

For a fair comparison, all parameters of the learning classifiers in all the trackers

are fixed in all the test sequences except for the parameter λ in aCMILTrack, described

in Eq. (4.6). The qualitative evaluation is accomplished by displaying the bounding

box around the best estimated position of the human being tracked with articulated

motions in each frame as shown in Fig. 4.4, Fig. 4.5 , Fig. 4.6 , and Fig. 4.7. The

quantitative evaluations are achieved by two different measures: average location error

and precision. The average location error is computed by averaging the pixel distance

between the center of the bounding box that most likely surrounds the human being

tracked and that of the ground truth bounding box, which are manually collected in

a whole video sequence. However, the average location error is not enough to show

the performance of the tracker. We additionally include precision plots, similar to the

ones described in [37]. The precision plots show the percentage of frames in which the

distance between the center position of the estimated bounding box and the ground

truth position was within some threshold distance. Furthermore, the precision is

calculated from frames in which the detected human was located in the bounding

box because the error distance is valid only when the detected human is inside the

bounding box.

Figure 4.8 shows the location error in each frame in four different test sequences.

Table 4.1 summarizes the average location errors. aCMILTrack shows the lower lo-

cation error in the Gym, Skating, and Wiggle test sequences. In the StandToSit

sequence, aCMILTrack and CMILTrack have very similar location errors. In the pre-

cision plots shown in Fig. 4.10, aCMILTrack shows better precision performance at

a lower threshold distance, which indicates that the estimated bounding box satis-

fies the small location error as well as the precise encapsulation of the human being

tracked. In the Wiggle sequence, both the average location error and the precision

of CMILTrack are worse than those of MILTrack. However, aCMILTrack shows sig-

nificantly improved performance with respect to both location error and precision.
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Table 4.1.
Average location error with respect to pixel distance in each test sequence.

Gym Skating StandToSit Wiggle

MILTrack 24.11 33.14 19.19 13.11

CMILTrack 19.76 27.94 13.62 19.6

aCMILTrack 15.97 16.45 13.32 5.83

It implies that the minimum positive count compensates for the foundational as-

sumption of MIL in articulated human motion tracking. Note that aCMILTrack uses

a fixed size of bounding box specified in the first frame. Figure 4.12 displays the

adaptive changes of the minimum positive count with respect to the distribution of

positive components, measured by the mean of positive components, in the Skating

sequence. The minimum positive count varies with respect to the mean of the positive

component in positive patches. The minimum positive count increases as the mean

of the positive component decreases because aCMIL pursues greater confidence for

estimated positive patches by increasing the minimum positive count, which is the

threshold to classify positive and negative patches. In contrast, an increase in the

mean of the positive components induces the decrease of the minimum positive count

around 30-40 frames in Figure 4.12.

4.4 Conclusion

In this Chapter, we presented component-based MIL with adaptively configured

positive bags for tracking extensive articulated human movements that cause large

appearance variation of the human being tracked. The proposed approach allowed us

to change the required minimum number of positive components in a positive sam-

ple in order to filter out false positive samples in both learning and classifying input

samples in each frame. The required minimum number of positive components can
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Fig. 4.4. Tracking results on the Gym test sequence. We compared three
different trackers, MILTrack (Blue), CMILTrack (Green), and aCMIL-
Track (Yellow).
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Fig. 4.5. Tracking results on the Skating test sequence. We com-
pared three different trackers, MILTrack (Blue), CMILTrack (Green), and
aCMILTrack (Yellow).
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Fig. 4.6. Tracking results on the StandToSit test sequence. We com-
pared three different trackers, MILTrack (Blue), CMILTrack (Green), and
aCMILTrack (Yellow)
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Fig. 4.7. Tracking results on the Caviar Wiggle test sequence. We com-
pared three different trackers, MILTrack (Blue), CMILTrack (Green), and
aCMILTrack (Yellow)
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Fig. 4.8. Pixel distance error from different trackers on four test sequences.
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Fig. 4.9. Pixel distance error from different trackers on four test sequences.
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Fig. 4.10. Precision plots for validating different trackers.
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Fig. 4.11. Precision plots for validating different trackers.
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Fig. 4.12. An example of adaptive changes of the minimum positive count
in the Skating sequence.

be determined by the distribution of positive and negative components in positive

image patches. We evaluated our proposed tracker by comparing against other ex-

isting tracking algorithms in video sequences containing extensive articulated human

movements. Our proposed tracker demonstrated better tracking performance with

respect to both location error and precision.
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5. COMPONENT-BASED MULTIPLE INSTANCE

LEARNING WITH PARTICLE FILTERING

This chapter is primarily based on a published paper at WACV 2014 titled ”Robust

tracking of articulated human movements through Component-Based Multiple In-

stance Learning with particle filtering.” [46] The main contribution in this chapter is

a robust approach for tracking human subjects as their limbs and torso are engaged in

large articulated movements while the entire body is executing a large translational

motion with respect to the pointing angle of the camera. For large translational mo-

tions by the target, the CMIL tracking works with a motion prediction framework to

more accurately estimate the most probable positions of the target in the next frame

of a video sequence: this prediction is carried out with a particle filter. This coupling

between the CMIL tracking and the particle filter yields more accurate estimates of

candidate positions of the target in the next frame given the position of the target in

the current frame.

5.1 Introduction

As discussed before, tracking humans that one sees most often in the literature

usually involve only simple motions such as walking and running. Since these al-

gorithms depend straightforwardly on projecting — in some cases after taking into

account the motions estimated for the subject — a bounding box at the location of

the subject in the current frame into a bounding box in the next frame, they fail for

obvious reasons when the human subjects are executing large articulated motions [1].

There do exist tracking approaches that come under the label “Tracking by De-

tection” that can be expected to work more robustly in the presence of large artic-

ulated motions. In general, their performances depend on the accuracy with which
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the various components of the articulated object being tracked can be detected in a

frame under the typical constraints of real-time processing of a video stream. The

accuracy versus time tradeoff in these algorithms can be improved by organizing the

components in some manner in one frame for the purpose of searching for their cor-

respondents in the next frame. Approaches based on Multiple Instance Learning

(MIL) [32,33] are one way to solve this problem of how to lend some organization to

this frame-to-frame search for the different components of an articulated object.

The work described in Chapter 3 presents a variation on the basic MIL tracker

to make it more suitable for tracking large in-place articulated motions, i.e., CMIL.

This approach has a key step of automatic segmentation to the positive and negative

instances. The segmentation of positive and negative instances yields components

that lend themselves more easily to the delineation of the pixel blobs in the next

frame. Whereas the CMIL approach in Chapter 3 works well for large but in-place

articulated motions, it breaks down for obvious reasons when the human subject is

engaged in large translational motions while his/her limbs and torso are engaged in

large articulated movements.

Both the originally-proposed MIL based tracking [37] and the CMIL based track-

ing assume that the frame-to-frame variations in the center of mass of the target are

sufficiently small so that the most probable bounding box in the next frame can be

located simply by projecting the most probable bounding box in the current frame

and searching in the vicinity of the projected bounding box. However, this assump-

tion is violated if the human subject is also executing large translational motions with

respect to the camera pointing angle.

Obviously then, when a human subject is executing large translational motions

while engaged in articulated movements of his/her limbs, head, and torso, we must

combine the CMIL algorithm with a motion prediction framework. The contribution

is to demonstrate how to combine the CMIL based tracking with the motion prediction

framework, a particle filter.



71

Fig. 5.1. Note that the human subject is engaged in both the articulated
movements made by his entire body while he is also executing a large
translational movement with respect to the pointing angle of the camera.
The sequence of images in the top row is for the case when tracking is
attempted with just the CMIL based tracker. And the sequence of images
in the bottom row is for the case when we combine particle-filter based
motion prediction with CMIL based tracking.



72

The top row of images in Figure 5.1 visually illustrates how easy it is to lose a track

when a motion prediction framework is not used to augment a CMIL based tracker.

The entire body of the human subject is undergoing large articulated movements

while the center of the blob of the pixels occupied by him is moving rapidly with

respect to the pointing angle of the camera. However, when we include a particle-

filter based motion prediction in the tracking algorithm, the CMIL tracker produces

the excellent tracking results shown in the bottom row of images in the same figure.

The remainder of this chapter is organized as follows: In Section 5.2, we review

the previously related work. Section 5.3 presents brief overviews of the CMIL based

tracking and a particle-filter based tracking. In Section 5.4, how CMIL can be com-

bined with a particle-filter based prediction framework. We present quantitative and

qualitative experimental results produced by this combination tracker in Section 5.5.

Finally, we conclude in Section 5.6.

5.2 Related Works

Since the inspiration for the work reported in this Chapter has come from how var-

ious researchers have combined novel approaches to target modeling with the Bayesian

logic of particle filtering, we provide a brief review of such literature here. Another

major source of our inspiration was how researchers have combined the particle-filter

based tracking with binary classification logic for more robust tracking. In the rest

of this section, we first quickly review the former and mention two specific contri-

butions in which the human body was represented by a set of blobs. Subsequently,

we describe the previous work on combing particle filtering with binary classification

logic that is more along the lines of our own contribution.

For human tracking, Lee et al. [47] have shown how a particle filter can be com-

bined with a parts-based human tracker in which the human body is modeled as a set

of parts and each part considered a particle in the particle filter. Along the same lines,

Isard and MacCormick [48] have used a particle filter framework for multi-blob track-
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ing with the blob likelihood representing the frame-to-frame location of the human

body.

With regard to combining particle filtering with binary classification logic for more

robust tracking, Okuma et al. [49] have demonstrated an AdaBoost based approach

that is used to combine the results obtained by a mixture of particle filters. The

proposal distribution in their work is represented by a linear combination of the prior

transition distribution and a Gaussian distribution corresponding to the detections at

the output of the AdaBoost algorithm. Along similar lines, Li et al. [50] have proposed

a framework for low frame rate video tracking that is based on using AdaBoost to

combine three distinctive classification algorithms, LDA, offline AdaBoost, and an

online-learned AdaBoost, in a three-stage cascade implementation. On the other

hand, the contribution by Song et al. [51], deals specifically with the dynamic nature

of the changes to the particles and also the number of particles as a target is being

tracked. The particles in this approach are selected on the basis of the weights

assigned to them by an SVM classifier. As the target is being tracked, the particles

that become invisible for one reason or another are assigned uniform weights. Closer

to home, there is the work reported in [52, 53] in which an appearance based model

of the target is learned and and continually updated with MIL and the model then

tracked with a particle-filter based tracker. The MIL framework in these contributions

helps the tracker cope with noisy nature of on-line learning.

In relation to the contributions mentioned above, our goal in this paper is to

demonstrate that when we combine the CMIL based tracking with motion prediction

made possible by particle filtering, we get a truly robust tracker that can deal with

the body articulation by a human target as the target is moving across the field of

view of a camera.
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5.3 Brief Reviews of MIL, CMIL, and Particle Filtering for Tracking

5.3.1 MIL and CMIL Based Tracking

The main idea of MIL is to learn the best class labels for a set of data instances

from what are known as the positive and the negative bags of such instances. A

positive bag must contain at least one truly positive instance and all of the instances in

a negative bag must be negative instances. The advantage of the MIL approach is that

it is more accommodating of the errors made in labeling positive instances during the

learning process. This gives an MIL-based object tracker, as, for example, originally

formulated by Babenko et al. [37], the freedom to make errors when declaring certain

blobs in the next frame as positive instances of the most probable blob in the current

frame. All that is needed is that a positive bag for localizing the target in the

next frame contain at least one truly positive instance. This can be ensured by

straightforwardly projecting the most probable bounding box in the current frame

into the next frame and creating several candidate bounding boxes by shifting this

projected bounding box around. Assuming that the frame-to-frame motion of the

target is small, we can be reasonably certain that the set of bounding boxes thus

created in the next frame will contain at least one truly positive instance of the

target. To ensure that all the instances in a negative bag are negative, all we have to

do is to choose these instances relatively far from where the target being tracked is

likely to be.

A fundamental step in the MIL-based tracker is the transfer of probabilities to one

or more candidates for positive instances in the next frame from one or more positive

positive instances in the current frame. In the past, this has been carried out on the

basis of pixel brightness similarities between the bounding boxes. However, this logic

for establishing similarities breaks down when a human subject is executing large

articulated motions. In such cases, estimating similarity probabilities on the basis of

the similarity of pixel brightness levels — especially when such calculations involve

all of the pixels inside the bounding boxes — just does not work. In CMIL, this prob-
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lem was taken care of by applying automatic segmentation to the bounding boxes in

the current frame to yield what the authors of [45] refer to as the components. We

have argued, since each segmented component is likely to have a fairly uniform color,

establishing correspondences between the positive instances in the current frame and

the next is likely to be more accurate than when the same calculations are carried

out with all of the pixels inside the bounding boxes. This allowed us to demonstrate

tracking results when the human subjects were executing large articulated motions.

For the underlying MIL logic, the CMIL was implemented using the MILBoost algo-

rithm of Viola et al. [38]. The label assigned assigned to a candidate positive instance

in their implementation was a “noisy-or” of the labels of the components contained

therein.

5.3.2 Particle Filter Based Tracking

For a quick review of the formulas that go into a prediction framework based on

particle filtering, consider a sequence of the state vectors {xt | t ∈ N} and another

sequence of the observation vectors {zt | t ∈ N} that we may associate with a target

in motion. We assume that the time evolution of the state vectors is described by a

possibly nonlinear function ft as shown below (this being referred to as the process

model):

Xt = ft(Xt−1,Vt), (5.1)

We may also associate an observation model with the sequence of state vectors:

Zt = gt(Xt,Wt), (5.2)

where gt is also possibly a nonlinear function. The time varying variables Vt and Wt

are the white noise and the observation noise.

From a Bayesian perspective, the tracking problem is to recursively compute a

Bayesian estimate for xt given the observations z1:t up to time t. The prediction

problem is to construct a Bayesian estimate for xt+1 given the observations z1:t up
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to time t. Thus it is required to construct the posteriori state probabilities for either

p(xt|z1:t) or p(xt+1|z1:t) given all the causal observations z1:t = (z1, · · · , zt). With

the Markov assumption on state transitions, it can be shown that the posteriori

probability p(xt|z1:t) can be expressed in the following form:

p(xt|z1:t) =
p(zt|xt)

∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1

p(zt|z1:t−1)
, (5.3)

where p(zt|z1:t−1) is the normalization constant.

In particle filter, in general, the posteriori probabilities for p(xt|z1:t) are approxi-

mated by a set of N samples and their weights w, {x
(i)
t , w

(i)
t }

N
i=1, as follows:

p(xt|z1:t) ≈

N
∑

i=1

w
(i)
t δ(xt − x

(i)
t ). (5.4)

For object tracking in videos, one commonly uses the sequential importance resam-

pling (SIR) particle filter for removing what is known as the degeneracy problem.

This entails giving equal weights to the particles. As a result, the equation shown

above can be written as

p(xt|z1:t) ≈

N
∑

i=1

1

N
δ(xt − x̂

(i)
t ). (5.5)

In the prediction stage of an SIR particle filter, one starts by selecting new particles

from the state transition probabilities p(xt|xt−1) as follows:

x
(i)
t ∼ p(xt|x̂

(i)
t−1), i = 1, · · · , N. (5.6)

In the update stage, the posterior PDF p(xt|z1:t) is computed by updating the weight

of each particle with the likelihoods as follows:

w
(i)
t ≈ p(zt|x

(i)
t ), (5.7)

Subsequently, the posterior probabilities p(xt|z1:t) can be approximated through a

resampling step as follows:

p(xt|z1:t)⇔ {x̂
(i)
t ,

1

N
}Ni=1. (5.8)
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5.4 CMIL Tracker with Particle Filter based Motion Prediction

The proposed approach provides a framework that couples a CMIL tracker and

a particle filter for robust tracking of articulated human movements while the entire

body is executing a large translational motion. Figure 5.2 illustrates the difference

between the conventional CMIL tracker and the proposed CMIL tracker with particle

filter based motion prediction. The conventional CMIL tracker uniformly samples

positive image patches around the estimated position of the target in the previous

frame. On the other hand, the proposed method adaptively samples positive image

patches at the locations specified by the particle filter. The motion prediction and

adaptive sampling made possible by particle filtering provide increased robustness

against a large translational motion of the target.

The proposed method is summarized in Algorithm 7. Given, the target estimate

from the previous frame, the particle filter first selects new particles using the state

transition probability. The particle filter then computes the weight of each particle.

For this purpose, we utilize two distance measures, dB and dmax, which we will describe

shortly. The posteriori probability is then approximated by a resampling step. Instead

of uniformly sampling positive image patches as in the conventional MIL and CMIL,

our method collects positive image patches at the locations of new particles using

the state transition probability and negative image patches elsewhere. Each of these

positive and negative image patches is segmented into a set of components and fed

into an online boosting algorithm to update the classifier Ht [45]. Given the updated

classifierHt, we then compute the feature vector s of the image patch that corresponds

to the estimated position of the target.

We mentioned earlier that we utilize two distance measures for the purpose of

computing the weight of each particle. Before we define these two distance mea-

sures, we first need to introduce the feature vector s of an image patch. Recall that

each of the positive and negative image patches is segmented into the set of compo-

nents. The current classifier Ht, when applied to each of these components, produces
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Fig. 5.2. An illustration of the difference between the conventional CMIL
tracker and the proposed CMIL tracker with particle filtering. The red
dots indicate the sampling positions of a positive image patch at time
t+ 1.
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a confidence score of whether that component belongs to a positive instance. Let

ν =
{

ν(ℓ)|ℓ = 1, · · · , L
}

be a set of confidence scores where ν(ℓ) is the output of the

classifier Ht applied to the ℓ-th component in the image patch. Based on the set of

confidence scores, the feature vector s is composed of two parts: the first part is the

histogram of the confidence score set ν, and the second part is simply the maximum

value in the confidence score set. Denoting the histogram as r and νmax ≡ max(ν),

the feature vector of an image patch at x
(i)
t is defined as:

s(x
(i)
t ) = [r(x

(i)
t ), νmax(x

(i)
t )]. (5.9)

Now that we have defined the feature vector of an image patch, we can describe

how the weight of each particle is computed. Note that computing the weight of each

particle involves computing the similarity between the feature vector of the image

patch at the current estimate of the target (i.e., s(x̂t)) and the feature vector at

each of the particle samples (i.e., s(x
(i)
t+1)). We use the Bhattacharyya distance [54]

as the first distance measure for comparing the two histograms. The Bhattacharyya

coefficient measures the degree of overlap between two different discrete distributions,

p and q:

ρ(p, q) =

N
∑

i=1

√

p(i)q(i), (5.10)

and the Bhattacharyya distance is defined as

dB(p, q) =
√

1− ρ(p, q). (5.11)

As demonstrated in [44], the maximum confidence score in a positive bag in MIL can

be used for estimating the probability of the positive bag . Put it in an equation, we

have

Pr(y = 1|ν) ∝
1

e−νmax
, (5.12)
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where y is the label of bag, y ∈ {−1, 1}. The second distance measure between two

feature vectors of image patches, therefore, is simply defined as

dmax(ν
(k)
max, ν

(ℓ)
max) = ν(k)

max − ν(ℓ)
max, (5.13)

where ν
(k)
max = νmax(x

(k)).

Finally, the weight of each particle is then given by

w
(i)
t+1 ≈ p(zt+1|x

(i)
t+1)

∝ e−γ(αdB(r(x̂t),r(x
(i)
t+1))+(1−α)dmax(ν̂t,ν

(i)
t+1))

, (5.14)

where ν̂t = νmax(x̂t), ν
(i)
t+1 = νmax(x

(i)
t+1), and γ and α are user-specified control pa-

rameters.

5.5 Experiments

We tested our proposed tracker, a CMIL tracker coupled with a particle filter

(CMIL-PF), on some challenging video sequences: Gym1, Skating2 , StandToSit3,

andWiggle4 sequences. These sequences include extensive articulated human move-

ments such as bending, rolling, handstand, etc. These sequences also include large

translational motions by the human subjects. We compare our algorithm to the online

MIL tracker [37] and component-based MIL (CMIL) tracker.

For a fair comparison, all parameters involved in learning the classifiers are fixed

in all the trackers and in all the test sequences. In our method, we have fixed the

number of particles to be 50 and the noise variance of state transition to be 7 pixels

in all test sequences. We have empirically chosen the parameters in Eq. (7.24) for

computing the weight of each particle as γ = 2.5 and α = 0.3 in all test sequences.

We analyzed the performance of the trackers both qualitatively and quantitatively.

1http://www.youtube.com/watch?v=FJIrHgshB20
2http://cs.snu.ac.kr/research/˜vtd
3http://vision.cs.uiuc.edu/projects/activity
4http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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Algorithm 7 CMIL tracker with particle filtering

Input : {x̂
(i)
t−1, ŵ

(i)
t−1}

N
i=1,Ht−1, and st−1 = s(x̂t−1)

Output : {x̂
(i)
t , ŵ

(i)
t }

N
i=1, Ht, and st = s(x̂t)

Particle Filter Stage

• Predict Motion x
(i)
t ∼ p(xt | x̂

(i)
t−1)

• Compute weight w
(i)
t ≈ p(zt | x

(i)
t )

= e−γ(αdB(r(x̂t−1),r(x
(i)
t ))+(1−α)dmax(νmax(x̂t−1),νmax(x

(i)
t )))

• Resample particles

{x
(i)
t , w

(i)
t }

N
i=1 ⇒ {x̂

(i)
t , ŵ

(i)
t }

N
i=1

CMIL Stage

• Extract image patch at each x
(i)
t

• Run CMIL online boost for updating

Ht =
∑

k hk(x
(i)
t )

• Compute the updated target feature s(x̂t)
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Fig. 5.3. Tracking results on four different test sequences: the test se-
quences are Gym, Skating, StandToSit, and Wiggle from the top to bot-
tom. We compared three different trackers, MIL tracker (Red), CMIL
tracker (Green), and CMIL-PF tracker (Blue).
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Fig. 5.4. Pixel distance errors on four test sequences.
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Fig. 5.5. Precision plots of the three trackers on four test sequences.
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Figure 5.3 shows the qualitative assessment of the trackers by displaying the bounding

box at the position of the human subject estimated by each tracker in each frame.

The center position of each rectangle is the best estimated position of the human

subject in the image coordinate space.

We also carried out two quantitative evaluations. First, we measured the pixel

distance between the target position estimated by each tracker and the ground truth

position that are manually collected in all of the test sequences. Figure 5.4 shows

the pixel distance errors of the three trackers on each of the four test sequences. In

most cases, the proposed CMIL-PF trackers has least pixel distance errors compared

to the MIL and CMIL trackers. An exception occurs in the Gym sequence at around

frame 20 where the CMIL tracker performs better than the CMIL-PF tracker. The

exceptional pixel distance errors in these frames are caused by the fact that the

human subject is located at the bottom area of the estimated bounding box from

the CMIL-PF tracker; in other words, the human subject is not located at around

the center of the bounding box. As shown in the second frame (the frame number

15) of the first row in Fig. 5.3 , the center of the bounding box from the CMIL-PF

tracker(the blue rectangle) deviates from the center of the human being tracked while

the bounding box enclosed the human subject. However, the center of the human

subject is located at around the center of the bounding box from the CMIL tracker

(the green rectangle). Recall that the target position is the center position of the

bounding box, which is used for computing the pixel distance error. Table 5.1 shows

the average pixel errors.

The second quantitative evaluation was carried out using precision plots, similar

to the ones described in [37]. A precision plot shows the percentage of frames in

which the distance between the center position of estimated bounding box and the

ground truth position was within some threshold distance. Furthermore, the precision

is calculated from frames in which the detected human was located in the bounding

box because the error distance is valid only when the detected human is inside the

bounding box. Figure 5.5 shows the precision plots of the three trackers on each of
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Table 5.1.
Average location error with respect to pixel distance in each test sequence.

Gym Skating StandToSit Wiggle

MIL track 24.11 33.15 19.19 13.11

CMIL track 19.76 27.94 13.62 19.6

CMIL-PF track 11.44 13.48 9.11 5.84
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the four test sequences. The precision plots clearly show that the proposed method

increases the tracking accuracy of human subjects with large articulated movements

and translational motions. In Wiggle sequence, for example, the CMIL-PF tracker

was able to track the human subject with the accuracy of 10 pixels or less at all

times. Note that only the qualitative result of Parkour 5 sequence is shown in Figure

5.1 because the MIL and CMIL trackers lost track within the first couple of frames.

5.6 Conclusion

In this chapter, we addressed the large translational motions of human subject

while engaged in articulated movements through the CMIL tracking with the mo-

tion prediction framework that is carried out with the particle filter. With motion

prediction, the positive image patches in CMIL can be feasibly selected in terms of

the probability distribution of human being tracked, so that the classifier in CMIL

provides more accurate observation to likelihood computation in the particle filter.

We evaluated our proposed tracker by comparing against other existing tracking al-

gorithms in video sequences containing extensive articulated human movements. The

proposed tracker showed better tracking performance with respect to both location

error and precision in all test sequences.

5http://www.youtube.com/watch?v=XuiWzgdA6MA
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6. COMPARATIVE STUDY WITH CNN BASED

TRACKING

6.1 Introduction

The recent progress in deep learning has tremendously influenced on different

technical areas, such as data mining, medical data analysis, natural language pro-

cessing, semantic scene analysis, and so on. Particularly deep learning frameworks

enable us to effectively deal with traditional problems in computer vision, visual ob-

ject detection and recognition. A convolutional neural network(CNN) – one of the

deep learning techniques requiring huge computational power and memory – plays

a significant role in the performance of object detection and recognition; specifically

improved CNN based image detection and recognition techniques have beaten human

benchmark errors [20]. Under the tracking-by-detection framework, an object track-

ing is one of beneficiaries from this rapid development of deep learning techniques

for object detection. The CNN based object tracking [55–64] pursuits to improve

tracking performance for different objects, e.g., car, animal, human, etc. The avail-

ability of large-scale data in the training stage can realize that CNN based tracking

algorithms can successfully track a variety of objects with substantially improved

tracking performance. Therefore, it is valuable to conduct a comparative study of the

proposed CMIL based tracking algorithms and recent CNN based tracking algorithms

for articulated human movement tracking.

From starting to track the target, CMIL based tracking algorithms evolve into

more robust tracking models through online training, whereas most CNN based track-

ing algorithms completely build their tracking models in offline where they are em-

powered by large-scale training data so that they are able to effectively mature their

elaborate tracking models. The proposed CMIL based tracking algorithms could be
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probably less comparable to CNN based tracking algorithms because of a shortage of

training data and relatively simple model complexity of the CMIL; on the other hand,

CMIL based tracking algorithms with online learning, which include no pre-trained

information, are likely flexible to unknown target motions than CNN based tracking

algorithms even though CNN based tracking algorithms can minimize opportunities of

encountering unlearned motions with a wide range of examples in large-scale training

data.

Since taking into account an eminence of CNN based tracking algorithms, our

primary purpose in this chapter is to investigate achievements of CMIL based track-

ing algorithms vis-a-vis the state-of-the-art CNN based tracking algorithms rather

than whether CMIL based tracking algorithms outperform CNN based tracking algo-

rithms. The comparative analysis presents some details of both CMIL and CNN based

tracking algorithms in terms of tracking articulated human movements and we can

emplace the proposed CMIL tracking algorithms with respect to the state-of-the-art

CNN based tracking algorithms.

The following section 6.2 describes some of recent CNN based tracking algorithms

and four selected CNN based tracking algorithms that are used for comparative anal-

ysis to the proposed CMIL tracking algorithm. Section 6.3 shows experimental results

and analyzes these results to gain insight of CMIL based tracking.

6.2 Related Works

As explained before, CMIL is the learning-based tracking algorithm that requires

training data collected during tracking. CNN based tracking algorithm, however,

requires large-scale training data to effectively maximize its operability. Therefore,

offline training with large-scale data in general is a common way to train CNN based

tracking algorithms. Recent CNN based tracking algorithm [62] also supports both

offline and online training that allows to update a part of whole CNN tracking mode

on-the-fly.
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In FCNT [56], the fully convolutional network has been used for tracking the target

online manner. The backbone of this tracking network is VGGNet [65]. At the first

frame online, FCNT first selects top K features from two feature maps: one contains

primitive features, e.g., edge, gradient, etc., and another has semantic features. The

subnetwork in FCNT, GNet, determines the target location along with removing

outliers because the input of GNet is the selected features from the semantic feature

map. Otherwise, another subnetwork in FCNT, SNet, determines the final target

location when there exist a certain number of outliers. During tracking, only SNet

is updated to be adaptable target appearance variation and to enhance separability

between foreground and background.

SINT [57] builds a VGGNet [65] based Siamese network to train a generic match-

ing function that is robust to common appearance variation in the object. The ro-

bustly generic matching function implemented by the Siamese network selects the best

matched patch among candidate patches in a new frame with the initial patch from

the first frame. The matching function can be realized by sufficient large and diverse

training data; therefore, the well-configured training data are inevitably required to

obtain improved tracking performances. Irrespective of its reasonable performance,

it fails when there are several similar objects in the frame or long occlusion exists.

SiameseFC [59] introduces the Siamese architecture that is composed of fully-

convolution layer to generate feature maps. These feature map outputs are integrated

to a final heatmap representing the location of object being tracked. Without sup-

porting online model update, SiameseFC refines its outputs by applying a limited

search range as well as a cosine window for penalizing large movements. Since Siame-

seFC can be expected to show possible deficiency to tracking large articulated object

movements, e.g., articulated human movements, the comparison to other tracking

algorithms reveals its superiority and inferiority with respect to accuracy and robust-

ness, respectively.

Re3 [58] proposes a recurrent network incorporating convolutional layers with sup-

porting multi-level features by skip connections. The convolution layers extract object
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appearance information and the recurrent layer supports to store the appearance of

object and motion information. Only parameters of the recurrent layers can be up-

dated during tracking. Re3 shows the competitive performance with other compared

tracking algorithms in terms of overall performance including accuracy, robustness,

and speed.

As a variant of SiameseFC [59], CFNet [60] employs an asymmetric Siamese net-

work that embeds a correlation filter (CF) to which the output feature map of the

initial patch of the object will be an input. The CF templates are computed in the

training stage. Only difference between SiameseFC and CFNet is to add CF tem-

plates optimization into the whole network pipeline. Through combining the Siamese

network and CF, the CFNet performs comparatively to the state-of-the-arts tracking

algorithm. Especially, CFNet shows superior performance even with shallow depth

of CNN because the CF template can compensate the limitation of shallow depth

capability.

CREST [55] employs a convolutional residual network to integrate a discriminative

correlation filters(DCFs) based tracking scheme. It consists of three layers, a spatial

residual layer, a temporal residual layer, and a base convolution layer. The base

convolution layer – reformulated DCFs – works for generating spatial correlation

response map and the spatial and the temporal layers are operated for compensating

the appearance changes of the object being tracked; each layer can be trained online.

Authors claim that CREST can alleviate model degradation by incorporating residual

networks. CREST reasonably performs on several test data with comparing other

state-of-the-arts tracking algorithms. However, in experiments, CREST suffers from

blur and rapid motions of the object.

GOTURN [63] consists of an offline learned network. In contrast to most generic

object tracking algorithms that supports online training session, the GOTURN pro-

posed the offline learned neural network based generic object tracker at real-time

speed.Along with it, instead of classifying many small patches to find the target, it

runs a single feed-forward network to regress to the location of target. The two main
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components – offline training and single pass regression – enables to track the target

at real-time speed.

The network inputs two cropped images from the previous frame and the current

frame: one cropped image from the previous frame specifies the target to be tracked

and another cropped image for the current frame sets the search range. A sequence

of convolution layers outputs high-level features from these cropped images. The

outputs of the sequence of convolution layers are then fed into a sequence of fully

connected layer that is to find out the target by comparing features of the target

from the previous frame and those from the current frame.

Without supporting online training, it can track the target faster than other CNN

based tracking algorithms that support online training. Furthermore GOTURN di-

rectly estimates only one bounding box so that it does not suffer from increasing

computational complexity. However, its performance wholly relies on configurations

of offline training data; it may fail to track targets that are far from the offline train-

ing data because it has never opportunity to adapt its network by online learning. In

addition, during offline training, The network was trained for preferring small motions

to large motions under real-world observations. It suffers from irregular motions of

the target to be tracked because of its lack of large or irregular motions to be fed into

the network during the tracking stage.

DeepSort [64] is a combined framework that performs a Kalman filtering and a

CNN based appearance model; the Kalman filtering is to estimate motions of the

target and the CNN based appearance model is to extract appearance description

of the target. The Kalman filter estimates states of bounding box of the target

and the CNN based appearance model extracts appearance descriptors within this

estimated bounding box. DeepSort integrates motion and appearance information

through a combined metric consisting of Mahalanobis distance and cosine distance,

respectively.

DeepSort allows to track multiple persons simultaneously with supporting ID

switches during tracking through examining the association metric. It, however, in-
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Fig. 6.1. Examples of CNN based tracking framework. In general, input
and output of the network are an individual video frame and positions
of bounding box surrounding the target being tracked. Reprinted from
MDNet [62] and SiamRPN [61].

creases track fragmentation due to sustaining target identities for long-term tracking.

Furthermore DeepSort requires external target detectors and currently utilizes fast R-

CNN [28]. Therefore, the performance of detector significantly impacts on the overall

performance of DeepSORT.

MDNet [62] is designed for building more robust tracking network that is able

to overcome a scarcity of variations between targets and background in the training

data. MDNet is composed of two types of layers: a shared layer and a number of

domain-specific layers. The shared layer pursuits to construct shared representations

of targets in the multiple training video data and the domain-specific layer is the a

binary classification layer to distinguish the target and background solely. Specifically
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the domain-specific layer rephrases the tracking problem as the two-class problem with

less computational complexity from its 6 fully-connected layers. Both shared layers

and domain-specific layers are trained together with offline training data. During

tracking, MDNet creates a new single domain-specific layer and trains it with the

shared layer trained offline. Therefore, MDNet is also the online-learning network by

creating and updating the new domain-specific layer. This combination of pre- and

online trained network provides more flexible trained network that is more suitable

for a given target to be tracked whereas most other CNN based tracking algorithms

apply pre-trained network in offline. Yet as similar to other CNN based tracking

algorithms the performance of network is dependent on a diversity of training data

for the shared layer.

SiamRPN [61] incorporates a Siamese network and a region proposal network

so that it performs a feature extraction and an estimation of the position of the

target being tracked, respectively. Through a template branch and a detection branch

in the Siamese network, the SiamRPN encodes the appearance information of the

target that are an input of a region proposal network. This region proposal network

includes a classification branch and a regression branch; the classification results in

the foreground and background classification and the regression branch works for

extracting proposal of the bounding box of the object to be tracked. For tracking,

as the output of the template branch is considered as the kernel of the detection,

the template branch initialized the kernel in the first frame. After the first frame,

only the output of detection branch is the input of the regional proposal network.

Since only detection branch runs, SiamRPN can reduce computational power during

tracking that consequently supports tracking performance at high-rate speed. On

the contrary, SiamRPN can fail to track the target with large changes in size and

ratio because it also has no update of kernel during tracking. In addition, the refined

process for selecting top proposals from outputs of the region proposal network solely

takes into account bounding boxes around the vicinity of previous target position due

to an assumption of very small motion between successive frames that constrains the
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tracking performance. As authors also indicated, the more training data are required

to improve the tracking performance.

As described above, most CNN based tracking algorithms require a massive num-

ber of training data sets so as to improve their performance; therefore, the scale

of training data plays a key role to reduce tracking errors. In addition, since most

of CNN based tracking algorithms only allow off-line training, it inevitably causes

tracking error when they need to track the targets which are absent in the training

data.

6.3 Experiment

We compared the proposed tracking algorithms including CMIL, CMIL-AC, and

CMIL-PF with the MIL tracker as well as selected four state-of-the-art CNN based

algorithms including GOTURN [63], DeepSort [64], MDNet [62], and SiamRPN [61]

among described algorithms in Section 6.2. The selected CNN based tracking algo-

rithms performed well in most popular data sets [66,67]. Especially MDNet presented

the best performance of tracking in VOT 2014 [66]. Among these selected CNN based

tracking algorithms, only MDNet supports a partial update of network parameters

by online training.

We evaluated these eight(8) tracking algorithms on five(5) test sequences that

mostly include articulated human movements. The performance of tracking algo-

rithms is measured by two metrics, precision [37] and accuracy [68].

The precision metric is based on the average distance error which is measured by

the pixel distance between a center point of the estimated bounding box and that

of the ground-truth bounding box across all frames in a given test sequence. This

simple average distance error is sometimes insufficient to evaluate the performance of

tracking algorithms when distance errors across all frames are widely dispersed.

To compensate this insufficient measurability, the precision also measures a per-

centage of frames which the distance error is within certain threshold distance error.
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Fig. 6.2. An illustration of the precision with respect to different distance
errors. The intersection point of the threshold line(blue) and a precision
line(red) represents that 30% of frames have below 20 of distance error.

Figure 6.2 visualizes the 0.3 of precision on 20 threshold distance error that is repre-

sented by a point of intersection of a blue straight line with a red curve, which means

that 30 percents of frames are less than 20 of distance error.

The accuracy metric is the mean intersection over union (mIOU) that measures

the ratio of overlapping area of two bounding boxes.

We used the pre-trained model for each CNN based tracking algorithm. The

GOTURN was pre-trained with ALOV300++ data set [69], which is a collection of

314 video sequences, and a set of still images from ImageNet Detection Challenge [70],

a total of 134,821 images. The DeepSort [64] was pre-trained with a large-scale person

re-identification dataset [71] that contains over 1,100,000 images of 1,261 persons.

The MDNet [62] was pre-trained with the ImageNet-VID training set [20] because

authors reported that the performance of MDNet with VOT is inferior to that with

ImageNet-VID. For SiamRPN [61], the Siamese network is a modified AlexNet trained

with ILSVRC [20] and YouTube-BB [72]; the template and the detection branches

are trained by patches extracted from two frames of the same video.

Overall, MDNet shows superior tracking performance in OTB and VOT 2014

datasets. Specifically, for VOT 2014 test, MDNet has the top score and ranks with
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respect to accuracy and robustness metrics which are corresponding to the bounding

box overlap ratio and the number of failures, respectively.

On VOT2015, VOT2016, and VOT2017, the SiamRPN shows the best tracking

results with respect to expected averaged overlap (EAO). However, especially for

VOT2016, the SiamRPN ranks the 3rd in failure.

6.3.1 Experimental Results and Discussion

As shown in Table 6.1 and Table 6.2, the state-of-the-art CNN based tracking

algorithm, SiamRPN [61], shows the best tracking performance. Among CMIL based

tracking algorithms, CMIL-PF outperforms other CMIL based tracking algorithms

on all test sequences except for Wiggle sequence where CMIL-AC has the best per-

formance. Overall, CMIL-PF is comparative to compared CNN based tracking al-

gorithms on all test sequences in terms of the average distance error and precision.

In addition, CMIL-PF shows the competitive accuracy even with its shortcomings of

both fixed size and ratios of bounding box that likely produce some noises in online

training data, while CNN based tracking allows to change the size and ratio of bound-

ing box. In terms of accuracy which a measurement of overlapped regions between

the ground-truth bounding box and the estimated bounding box, CNN based track-

ing more likely conducts better performance. In Table 6.1 and Table 6.2, Bold and

underline demonstrate the best CMIL based tracking algorithm and the best CNN

based tracking algorithm in each test sequence, respectively. The N/A in the Table

6.1 indicates that the corresponding tracking algorithm fails to track the target.

The Gym sequence presents that CMIL-PF shows better performance than GO-

TURN and SiamRPN. The average distance error of CMIL-PF scores 11.44; GO-

TURN and SiamRPN result in 12.72 and 12.95, respectively. The accuracy of CMIL-

PF, 0.41, is closely competitive to that of GOTURN and SiamRPN, both are 0.45.

Overall CMIL-PF competes well with CNN based tracking algorithms in Gym se-

quences. Interestingly, both GOTURN and SiamRPN, which are variants of the
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Table 6.1.
Comparison between all CMIL and CNN based tracking algorithms in
terms of average distance error between ground-truth and expected bound-
ing box in test sequences. The bold and underline represent the best
CMIL based tracking algorithm and CNN based algorithm, respectively.

StandToSit Wiggle Skating Gym TUD

MIL 19.19 13.11 33.14 24.11 13.55

CMIL 13.62 19.6 27.94 19.76 9.02

CMIL-AC 13.32 5.83 16.45 15.97 13.9

CMIL-PF 9.11 5.84 13.48 11.44 8.57

GOTURN 6.99 5.18 14.10 12.72 N/A

DeepSort 23.21 N/A 17.78 N/A 7.96

MDNet 11.07 7.94 10.53 8.40 6.25

SiamRPN 7.65 5.37 8.78 12.95 6.01
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Table 6.2.
Comparison between all CMIL and CNN based tracking algorithms in
terms of accuracy in test sequences. The bold and underline represent
the best CMIL based tracking algorithm and CNN based algorithm, re-
spectively.

StandToSit Wiggle Skating Gym TUD

MIL 0.44 0.57 0.30 0.25 0.63

CMIL 0.53 0.30 0.25 0.25 0.64

CMIL-AC 0.58 0.61 0.38 0.32 0.41

CMIL-PF 0.62 0.58 0.43 0.41 0.65

GOTURN 0.64 0.61 0.33 0.38 0.17

DeepSort 0.52 0.31 0.41 0.45 0.71

MDNet 0.69 0.69 0.59 0.52 0.77

SiamRPN 0.78 0.71 0.52 0.45 0.76
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Siamese network that mainly is designed for learning its parameters with similarities

of adjacent frames, result in lower precision scores. Since the Gym sequence consists

of very severe changes of shape and appearance of the human target by articulated

human movements which come from postures of gymnastics, e.g., upside down head

to leg position, occlusion of head behind torso, etc. Both GOTURN and SiamRPN

suffer from insufficient articulated human movement in their training data from pop-

ular training dataset [20,69,70,72]. The CMIL-PF works well for articulated human

movements irrespective of limited training data from its online learning framework.

In StandToSit sequence, CMIL-PF also is competitive to MDNet with 9.11 and

11.07 of average distance error, respectively. The accuracy of CMIL-PF is relatively

not superior to other CNN based tracking algorithms, since the StandToSit sequence

as well contains continuous changes of size and ratios of human target to be tracked.

It is interesting that all CNN based tracking algorithms except for GOTURN

mark high precision and accuracy in the TUD sequence. One feasible analysis on this

observation is that configurations of training data could have impacted on tracking

performance. All CNN based algorithms were pre-trained with large-scale of training

data in offline which are configured with different categories of objects and ordinary

human motions. The TUD sequence consists of a typical human motion, walking

pedestrians, for which all CNN based tracking algorithm have been sufficiently learned

from large-scale training data.

The test sequence, Wiggle, was captured by a top-down and high-angle view of

the camera that is mounted on a wall or a ceiling where the shape of the object

usually can be distorted by different perspective. Besides the sequence includes a

man who lays down first, stands up, and walks away; therefore a whole human body

has different shape and appearances – unusual ratios of size between human body

parts – across the sequence due to its high-angle view. CMIL-PF favorably performs

with 5.84 of average distance error as compared to GOTURN and SiamRPN with

5.18 and 5.37, respectively. Furthermore, CMIL-PF accomplishes better precision

than MDNet with 7.94 of average distance error.
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The Skating sequence includes partial and complete occlusions from interactions

between two human bodies. MDNet and SiamRPN accomplish 10.53 and 8.78 of aver-

age distance error, respectively and CMIL-PF scores 13.48. This minor performance

of CMIL-PF is mainly caused by its online training data that can deteriorate its detec-

tion model when the occlusion of the target happens. Once the model is deteriorated,

CMIL-PF strives to recover its model with subsequent online training data; hence the

recovery of model principally rests on whether the accurate online training data can

be collected afterward. CMIL-PF and GOTURN perform closely 13.48 and 14.10 of

average distance error, respectively; however, CMIL-PF outperforms GOTURN in

terms of accuracy with 0.41 and 0.38, respectively.

Figure 6.6 and 6.7 demonstrates tracking results from compared tracking algo-

rithms on test sequences. As illustrated in Figure 6.6, DeepSort fails to track the

target in Gym and Wiggle sequences. GOTURN is also unsuccessful to track the

target in TUD sequence as shown in Figure 6.7.

Since we observe tracking performance of each compared algorithm on test se-

quences which are particularized with articulated human movements, we examine

circumstances in which CMIL based tracking algorithms can favorably be on par with

the state-of-the-art CNN based tracking algorithms or sometimes outperform them.

As reported in Table 6.1, CMIL-PF is likely competitive to CNN based tracking algo-

rithms in terms of average distance error of position of bounding box. With regard to

precision, CMIL-PF accomplishes fairly decent tracking performance at cost of limited

online training data to both SiamRPN and MDNet that exploit large-scale training

data as shown in Figure 6.5. It is important to notice that CMIL-PF is more compe-

tent to track the human target with severely articulated movement and perspective

distortion than CNN based tracking algorithms; Figure 6.3 depicts Gym and Wiggle

sequences that illustrate these conditions. The Gym sequence comprehends strongly

noticeable articulated human movements including forward bending torso, forward

and side rolling, partial occlusions between body parts, etc. The average distance

errors are 11.44, 12.72, and 12.95 in CMIL-PF, GOTURN and SiamRPN, respec-
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Fig. 6.3. Examples of circumstances in which CMIL based tracking algo-
rithms are comparable to CNN based tracking algorithms. The first row
displays Gym sequence including articulated human movement such as
bending, rolling, and self-occlusions. The second row illustrates Wiggle

sequence containing top-down view to cause perspective distortion.

Fig. 6.4. Precision plots for Wiggle and Gym test sequences on which
CMIL-PF is competitive to CNN based tracking algorithm. The yellow
vertical line represents the threshold distance which distance errors of all
frame are less than.
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tively. The accuracy scores are 0.41 and 0.45 in MIL-PF, GOTURN and SiamRPN,

both mark the same score, respectively. Likewise, the Wiggle sequence is compiled

with high-angle view images that lead to peculiarly perspective distortion between

human body parts, e.g., the size of head is much larger than that of legs. The average

distance errors of CMIL-PF is 5.84 and that of GOTURN and SiamRPN are 5.18 and

5.37. Interestingly the CMIL-PF has better average distance error than MDNet with

7.94. Figure 6.4 illustrates precision plots of Gym and Wiggle with specific threshold

distances. In Gym sequence, CMIL-PF, MDNet, and GOTURN reach to 1.0 of pre-

cision at 20 of distance error whereas SiamRPN and DeepSort are still below 1.0 of

precision. In Wiggle sequence, all CNN based tracking algorithms except for Deep-

Sort and CMIL-PF accomplish 1.0 of precision at 9 of distance error. Consequently,

CMIL-PF could demonstrate its competitive performance to the state-of-the-art CNN

based tracking under such circumstances of severely articulated human motion and

perspective distortion as shown in Gym and Wiggle sequences, notwithstanding its

fixed bounding box and restricted online training data.
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Fig. 6.5. Comparison of precision and distance error across frames. The
left column and the right column display the precision plot and the dis-
tance error of each test sequence, respectively.
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Fig. 6.6. Comparison of estimated bounding boxes from compared track-
ing algorithms on test sequences. From top to bottom, tracking results are
from the Gym and Wiggle. Note that DeepSort fails to track the target
in both sequences

Fig. 6.7. Comparison of estimated bounding boxes from compared track-
ing algorithms on test sequences. From top to bottom, tracking results
are from the Skating, TUD, and StandToSit. GOTURN fails to track the
target in TUD sequence.
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7. GROUND TARGET LOCALIZATION AND

TRACKING WITH CMIL FOR UAV VISION

This chapter explains how to apply CMIL for ground target localization and tracking

for unmanned aerial vehicle(UAV) vision. The first section introduces a static ground

target localization with respect to the ground coordinate space in well-structured en-

vironment. The line matching technique is used for refining homography between

UAV images and the ground coordinates space, image-to-ground homographies. Fur-

thermore, the homography between consecutive frames, what is called interframe

homographies, is also introduced to estimate the image-to-ground homography of the

current frame through propagating the image-to-ground homography in the previ-

ous frame. The second section presents the moving ground target localization and

tracking in unstructured environment. The CMIL with particle filtering operates on

tracking the human subject in the image coordinate space. The interframe homo-

graphies are used for both building motion prediction model in the particle filtering

framework and estimating the image-to-ground homographies.

7.1 Ground Target Localization Framework in Structured Environment

The goal of ground target localization is to determine the center-of-mass position

of one or more ground targets in a world coordinate system using vision-enabled

UAVs. Given input aerial images, ray-tracing is widely used owing to its limited time

and computational requirements [73–78]. However, ray-tracing has poor accuracy in

practice because of the difficulty in estimating the orientation of UAVs. More accurate

target localization can be obtained by registering the aerial images to a geo-referenced

image provided by a Geographic Information System (GIS) database [78–81].
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In general, images of the same outdoor scene which are taken by different cameras

and under different conditions can be substantially different. Because of this, feature

based image matching is more suitable than direct image matching [82]. We use lines

as our basic features for matching since line extraction is invariant to image resolution

as well as modest changes in illumination and contrast. Also, lines capture the shape

of man-made structures well and they can be stored and manipulated efficiently since

they are defined by just their endpoints. Consequently, in this report, we focus on

how to register aerial images to the reference image under structured environment

where mainly consists of man-made structures rather than natural structure, such as

forest, lake, mountains, meadows, etc.

One common approach for line matching is to subsample the lines to obtain points

and then apply the Iterative Closest Point (ICP) algorithm which iteratively solves

for the transformation between two point sets. ICP has typically been applied to

UAVs and Unmanned Ground Vehicles (UGVs) using range sensors, such as Light

Detection and Ranging (LIDAR) or sonar. Most of these studies have focused on

vehicle state estimation through scan matching. Sappa et al [83] proposed a variant

of the ICP algorithm based on edge points in images which used a subsampling

technique to reduce the number of outliers and the computational requirements. Hsu

et al [84] used ICP in a coarse-to-fine approach which matched two sets of 3D LIDAR

data to detect occluded targets. Madhavan et al [85] adapted the weighted ICP for

registering two different LIDAR datasets from UGVs. Also, they provided a hybrid

registration consisting of feature-based matching followed by point-based matching.

Their approach matches LIDAR data from UAVs to data from a UGV. In the context

of indoor SLAM using micro UAVs, Sober and Johnson [86] used a laser sensor and

sonar to augment an inertial measurement unit. The ICP algorithm is generally robust

against noise and missing information and is guaranteed to have decreasing error in

every iteration and hence a local minimum (but not necessarily the global minimum)

is always reached [87]. Unfortunately, processing on UAVs is time-bounded, therefore

convergence may not be possible within the allotted time.
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To address the time-bounded problem, we bail out of ICP after a fixed number of

iterations. This breaks the convergence guarantees of ICP. However, we show that by

propagating information across subsequent frames we can still achieve desired conver-

gence. The key observation is that the geo-registration solutions for two subsequent

frames are related by the homography between the frames. By computing this ho-

mography, we can propagate the partial ICP results into the next frame and thus still

achieve convergence as long as the error reduction in each frame is greater than the

error introduced by the interframe homography. Our experimental results support

our claim, with a substantial improvement in ground target localization after a few

frames compared to backprojection.

A second issue with ICP is that the algorithm only guarantees convergence to a

local minimum [88] and hence there is no guarantee that it will give the correct geo-

registration. This problem with ICP can be solved by restarting the algorithm from

a number of different initial positions and keeping the minimum cost solution [89].

Another solution is to run ICP several times using randomly selected subsets of the

points and again keeping the minimum cost solution [90]. Neither solution is feasible

for real-time processing on a UAV.

Fortunately, we can increase the likelihood that ICP converges to the correct geo-

registration by simply using the ICP results from the previous frame to initialize

ICP in the next frame – by the aforementioned homography between two subsequent

frames. Each new frame captured by the UAV reveals some new data which was not

present in the previous frame. If the geo-registration in the previous frame was correct,

then this new data will agree closely with the initialization and ICP will again converge

to the correct solution. On the other hand, if the geo-registration in the previous

frame was not correct, then the new data is unlikely to agree with the initialization

and ICP will converge to a new solution. The instability of incorrect solutions and

the stability of the correct solution makes it likely, though not guaranteed, that the

correct solution will be achieved given enough frames. This intuition is borne out in

our experimental results which show that ICP sometimes requires a few frames to
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converge to the correct registration, but once the correct registration is achieved it is

maintained for as long as the interframe homographies can be correctly estimated.

The high level structure of our proposed method for geo-registration aerial images

shown in Fig. 7.1. As noted above, our strategy for localizing ground targets is to

determine the geo-registration of each input image which has been previously shown

to be an effective method [79–81]. The novelty in this report lies in our use of line

features along with ICP in order to obtain a quick and robust registration. Line

features are largely invariant to illumination and contrast changes. Furthermore, by

using lines we do not require the images to be of the same type, e.g., the reference

GIS database could be made up of geo-referenced optical or IR images or even floor

plans for man-made structures in the area. Our geo-registration algorithm is made

up of two major steps: (1) extract parameterized lines from the aerial image and (2)

match these lines to a set of reference lines using ICP.

7.1.1 Line Extraction in Aerial Images

We extract lines by first applying the Canny edge detector [91] and then organizing

the low-level edge pixels into higher-level line features using the k-adjacent segment

algorithm [92]. We then remove spurious lines – lines whose length is shorter than

a pre-specified threshold or lines that are connected by an acute angle – in order to

produce a set of lines which are more likely to correspond to the artificial landmarks

in the image (e.g., man-made structures such as buildings and roads). By pruning

the lines in this way we reduce the computational requirements of the system and

also increase the robustness of the matching process.

An example of the extracted lines before and after pruning the spurious lines is

shown in Fig. 7.2.

Before proceeding, we need to transform the data into the camera coordinate

system. We map each endpoint of each line (xi, yi) to the corresponding camera

coordinates (xc, yc) by following equations.
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Fig. 7.1. The system structure of ground target localization in structured
environment through combination of GPS/IMU information, interframe
homography, current aerial image, and the reference image.
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Fig. 7.2. An example of pruning spurious lines: initial extracted lines
(left) and refined lines after applying length and angle constraints (right).
The example shows the successful removal of spurious lines appeared in
unstructured regions.
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where fx and fy are the focal lengths of the camera and (cx, cy) is the principal point.

We then correct for radial distortion using
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where κi is the ith lens distortion coefficient and θd =
√

x2
c,d + y2c,d.

7.1.2 Image Registration via ICP

The iterative closest point (ICP) algorithm is a method for aligning two point

clouds, first introduced by Besl and McKay [88]. Given points p, q ∈ R2, a set of

data points P = {p1, . . . ,pnp
} and model points M = {m1, . . . ,mnM

}, the goal of

ICP is to compute a rotation matrix R and a translation vector t ∈ R2 such that the

transformed data points are best aligned with M . The following is a summary of the

algorithm:
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Fig. 7.3. Two other examples of aerial images (top row) and the extracted
lines in those image (bottom row); the refined lines, i.e., excluding spurious
lines, are appeared at boundaries of buildings or roads. It indicates that
line features are likely suitable for representing structured environment.
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1. Initialization:k = 0, R = I2x2, t = 0.

2. Compute the closest point: For each point in P̂ = RP + t, compute the closest

point in M subject to a set of conditions (note that some points in P̂ may not

be matched if no points in M meet the conditions). The result is a set of m

correspondences pi ↔mc(i).

3. Compute the registration: Given the set of corresponding pairs, compute a new

R and t which minimize J(R, t) = 1
Z

∑Z

i=1

∥

∥mc(i) − Rpi − t
∥

∥

2
.

4. Check for convergence: Terminate if the reduction in cost is below a threshold

or if a maximum number of iterations has been reached.

The final homography is given by Hicp =





R t

0T 1



 .

In order to match line features extracted from aerial images to the GIS database,

we must first apply two preprocessing steps to the data. The ICP algorithm is lim-

ited to estimating a similarity transform and so we transform the endpoints of the

extracted lines based on an initial estimate of the image-to-ground homography H̃ck,w

with the assumption that this estimate mostly accounts for any perspective distor-

tion. Our method for determining H̃ck,w is described in the next section. Since the

ICP algorithm is based on point matching, we sample each line at 1 meter intervals.

This is done for both the transformed lines from the aerial image as well as the lines

from the GIS database. The sample points from the aerial image become the set P

in the above algorithm while the sample points from the GIS database become the

set M .

For the matching in step 2, we define the closest point to pi ∈ P to be

mc(i) = argmin
mi∈M

‖Rpi + t−mj‖

subject to ‖pi −mj‖ ≤ dmax

|Rnpi
·nmi|

‖npi
‖‖nmi

‖
≥ cos(θmax)

,
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where nx is the normal vector to the line passing through the point x. The

maximum angle threshold θmax ensures that only points from lines which roughly

agree on orientation are matched. The maximum distance threshold dmax is intended

to remove outliers during the matching process. Because of this, it is important to

start with a large value for dmax and then progressively reduce it with each iteration.

The initial maximum distance threshold dmax is set and updated by

dmax =



















max {Dth, µd + λσd} , first iteration

(1− α)ηd + αξd, otherwise

, (7.3)

where Dth, λ, and α are user parameters, µd and σd are the mean and standard

deviation of the matching distances from the final iteration of ICP in the previous

frame, and ηd and ξd are the mean and max distances respectively from the preceding

iteration.

By expressing dmax in this way, the distance threshold is always between the

mean and max distance from the preceding iteration for any α ∈ [0, 1]. Once the ICP

algorithm converges or reaches the maximum number of iterations we compute the

final estimate of the image-to-ground homography

Hck,w = HicpH̃ck,w, (7.4)

where H̃ck,w is an initial estimate of the image-to-ground homography. Once we

have computed Hck,w it is straightforward to convert any xi in the image coordinate

system (e.g. the image coordinates of a target) to the corresponding xw in the world

coordinate system as follows:

xw = Hck,wxc, (7.5)

where xc is the corresponding point of xi in the camera coordinate system.
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7.1.3 Initializing ICP Using Interframe Homographies

In the previous section, we discussed how ICP can be used to improve the initial

estimate of the image-to-ground homography H̃ck,w. In this section we discuss how

to obtain this estimate.

The simplest way to obtain the estimate H̃ck,w is to use GPS/IMU information.

Given the estimated position and orientation of the UAV,

Y =











cos(α) −sin(α) 0

sin(α) cos(α) 0

0 0 1











, (7.6)

P =











cos(β) 0 sin(β)

0 1 0

−sin(β) 0 cos(β)











, (7.7)

R =











1 0 0

0 cos(γ) −sin(γ)

0 sin(γ) cos(γ)











, (7.8)

Hpos =











0 1 posx/posz

1 0 posy/posz

0 0 1/posz











, (7.9)

where α, β, and γ represent the yaw, pitch, and roll angles respectively, and posx,

posy, and posz are the UAV’s x, y, and z positions in the world coordinate system.

The desired estimate for the image-to-ground homography is computed by

H̃ck,w = HposHRot Hc,g. (7.10)

where Hpos is determined from the position of the UAV, HRot = YPR is deter-

mined from the orientation of the UAV, and Hc,g accounts for the extrinsic calibration

between the camera and GPS/IMU unit. While this method is fast, it often fails to
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give a good estimate due to the difficulty in accurately measuring the position and

orientation of the UAV. For example, in our experiments the UAV is at an altitude of

220m. At this altitude, an error in the pitch or roll measurement of just 1◦ results in

a localization error of around 4m if the UAV is directly overhead and much more than

4m if the UAV is viewing the target at an oblique angle. Difficulty in estimating the

position of the UAV (particularly the height) also introduces a substantial amount of

error.

A comparison of the red and green lines in Figure 7.10 reveals that using ICP

with H̃ck,w determined from the GPS/IMU reduces the localization error by a factor

of two compared to using ray-tracing. While this is a substantial improvement, much

better results can be obtained by using a better initialization.

In our method, we observe that the geo-registration solutions for two subsequent

frames are related by the homography between the frames, i.e., the interframe ho-

mography. Note that this homography can typically be estimated very efficiently and

accurately because the rotation and translation between subsequent frames is limited

by the kinematic and dynamic constraints of UAVs.

As illustrated in Fig. 7.4, the initial estimate of the image-to-ground homography

of the current frame is given by

H̃ck,w = Hck−1,w Hck,ck−1
, (7.11)

where Hck−1,w and Hck,ck−1
are the image-to-ground homography of the previous frame

and the interframe homography from the current frame to the previous frame, respec-

tively. Of course, this initialization can only be used when Hck−1,w and Hck,ck−1
are

available, i.e., only after the first frame and only when Hck,ck−1
can be accurately

estimated. Otherwise we fall back on using the GPS/IMU to obtain H̃ck,w.

To estimate Hck,ck−1
, we first extract and match Speeded-Up Robust Feature

(SURF) features [93] from each frame and then transform the coordinate of each

feature point to the camera coordinate system. Finally, we apply Random Sam-

ple Consensus (RANSAC) to robustly estimate the homography in the presence of



117

Fig. 7.4. Illustration of the image-to-ground homography of the cur-
rent frame Hck,w, the image-to-ground homography of the previous frame
Hck−1,w, and the interframe homography Hck,ck−1
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outliers. We evaluate the estimated homography via the number of of inliers from

RANSAC and the magnitude of the rotation and translation. If the number of in-

liers is below a threshold or the rotation and translation exceed a threshold then we

discard Hck,ck−1
and use the GPS/IMU to obtain H̃ck,w.

Using Eq. (7.11)to initialize ICP can be understood as using the interframe ho-

mography to transfer the final ICP results from the previous frame to the current

frame. This allows us to overcome two potential difficulties with ICP, the open-ended

time requirements due to the fact that it is an iterative algorithm and the difficulty

in avoiding local minima.

First, since real-time processing on a UAV is time-bounded, we limit the number

of iterations of ICP to a small fixed number. Because of this, ICP is typically not

able to converge if the initial error is high. However, by carrying these partial results

into the next frame, in a sense ICP is able to continue the iterations. In this way, we

still obtain convergence after several frames. Section 7.1.6 gives some experimental

results that support the validity of this claim.

Using interframe homographies to initialize ICP also helps to reduce the problem

of local minima. Given enough iterations, ICP is guaranteed to converge to a local

minimum near the initialization point. In general, there is no guarantee that this

local minimum will correspond to the correct geo-registration. However, if Hck−1,w

is a correct geo-registration, then using Eq. (7.11) to initialize ICP increases the

likelihood of converging to the correct geo-registration. On the other hand, if Hck−1,w

is not a correct geo-registration then the initialization obtained using Eq. (7.11)

is unlikely to be near the correct local minimum and thus ICP will likely converge

to an erroneous geo-registration. In practice, however, given enough frames and a

rich enough scene we eventually obtain convergence to the correct geo-registration as

shown in Fig. 7.8.
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Algorithm 8 Propagated Iterative Closest Point Algorithm

Given:

The reference point set M = {mi}
NM

i=1 .

Do

(1) Given an aerial image, extract line from the aerial image and do sampling points

li from each line.

(2) Extract SURF points the current aerial image and Compute interframe homog-

raphy Hck,ck−1
.

(3) Compute the initial camera-to-ground homography H̃c,w.

i) if Hck,ck−1
passed the evaluation test, the initial homography H̃c,w =

Hck−1,w Hck,ck−1
.

ii) if Hck,ck−1
failed to pass the evaluation test, the initial homography H̃c,w =

HposHRot Hc,g.

(3) Compute back-projected point pi from the sample point li using H̃c,w and construct

a set P = {pi}
NP

i=1.

(4) Run ICP and compute Hicp from P and M .

(5) Refine the initial camera-to-ground homography H̃c,w by Hc,w = Hicp H̃c,w.

while still available aerial images
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7.1.4 Uncertainty of Estimated Transformation

We can utilize the covariance of estimated homography parameters in order to

compute the covariance of the position of ground targets. For any homography, given

two points mcand p satisfying the transformation m = Hp , the covariance of point

m is given by

Σm = JhΣhJ
T
h , (7.12)

where Σhis the covariance matrix of the parameters of the homography Hicp and Jh

is the Jacobian matrix representing ∂m
∂H

[94]

Jh =





xT 0T −x′xT

0T xT −y′xT



 . (7.13)

where pT
i = [ xi yi 1 ]T , mT

i = [ x′
i y′i 1 ]T .

Σh can be estimated based on the corresponding pairs used to estimate the ho-

mography. Given n corresponding pairs mi ↔ pi we can estimate the parameters of

H by minimizing

E(h) =
∑

‖Ah‖2 , (7.14)
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and h =
[

h1 h2 h3 h4 h5 h6 h7 h8 h9

]T

.

If we compute the SVD decomposition of A, A = UWVT , we can compute Σh as

Σh = Cov(hjk) =

M
∑

i=1

(

VjiVki

w2
i

)

, (7.15)

where Vi is the ith column of V [95].
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7.1.5 Experiments

For evaluating geo-registration of aerial images, we conducted outdoor flight ex-

periments to localize a static ground object on a road using a single UAV shown in

Figure 7.5. To generate the reference landmark lines, we first captured a satellite

image of the applicable region from Microsoft Bing map and then manually extracted

lines on the landmarks. The world geodetic system (WGS) coordinates of two end

points of each line were obtained using the Microsoft Bing map API. These WGS

coordinates were then mapped into a locally defined world coordinate system. The

origin of the world coordinate system was set to the location of a known ground

station with +x to the east and +y to the north.

An example aerial image and the static ground target, a red car, are shown in

Figure 7.7. The ground truth WGS position of the ground target was manually

measured by a GPS device prior to conducting the experiment.

Our dataset consists of 250 aerial images of the region containing the target. For

each image, color based segmentation was used to detect the ground target with the

center of mass used as the ground target location in the image coordinate system.

The extracted lines from each aerial image were then registered to the reference lines

using ICP. We set α = 0.95, Dth = 10m, and λ = 3 in Eq. 7.3 for determining dmax

in each iteration of ICP. The value of θmax was fixed at 45 degrees for all iterations.

Figure 7.8 shows corresponding pairs between query and model lines for selected

iterations of ICP. In Figure 7.8, the yellow square in the image indicates the ground

truth target location, the white square shows the estimated target location by ray-

tracing using the GPS/IMU information, and the cyan square shows the current

estimated target location based on ICP.

Figure 7.10 shows the ground target localization error over the whole dataset for

three different methods while TABLE 7.1 summarizes this information. The three

methods are: (1) conventional ray-tracing via GPS/IMU information; (2) ICP with

the initial image-to-ground homography computed from only the GPS/IMU informa-
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(a)

(b)

Fig. 7.5. Unmanned Aerial Vehicles in experiments: (a) UAV and (b) an
example image captured in the experiment.

Table 7.1.
Ground target localization error with unlimited ICP iterations

Ray-Tracing ICP with GPS/IMU ICP with interframe homography

median error (m) 60.2964 24.4213 4.2373
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Fig. 7.6. The reference satellite image and the set of reference lines repre-
sented by red line; the geodesic coordinate and pixel position of two end
points of each reference line have been manually extracted.

Fig. 7.7. The ground target marked in a red rectangle
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(a) Extracted lines in an UAV image (b) Reference lines from the GIS database

(c) Initial starting point of ICP (d) Iteration #2 of ICP

(e) Iteration #20 of ICP (f) After 45 iterations of ICP

Fig. 7.8. Target localization using ICP. The starting point of ICP was
provided by GPS/IMU input. The query lines (blue) approach to the
reference lines (red) during the ICP. The corresponding pairs between
query and model sets are depicted by green lines. The yellow square
indicates the ground truth target location, the white square the target
location estimated using the onboard GPS/IMU, and the cyan square the
target location estimated by ICP.
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(a) Extracted lines in an UAV image (b) Reference lines from the GIS database

(c) Initial starting point of ICP (d) Iteration #1 of ICP

(e) Iteration #5 of ICP (f) After 8 iterations of ICP

Fig. 7.9. Target localization using ICP. The starting point of ICP was
provided by the frame-to-frame homography. The query lines (blue) ap-
proach to the reference lines (red) during the ICP. The corresponding
pairs between query and model sets are depicted by green lines. The yel-
low square indicates the ground truth target location, the white square
the target location estimated using the onboard GPS/IMU, and the cyan
square the target location estimated by ICP.
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Fig. 7.10. The localization error by three different methods in which ICP
was allowed to take an unlimited number of iterations.
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Fig. 7.11. An example of computing homography between two consecutive
frames in the image sequence; the green and red dots in the two images in
the left column represent the extracted SURF points, and the yellow lines
in the right image indicate the matched pairs of SURF points between the
two images.
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Fig. 7.12. The matched points between two consecutive frames where the
resulting homography was rejected because of the large error between the
matching points.
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tion; (3) the proposed method of ICP with the initial image-to-ground homography

computed using interframe homographies. The spikes in the error for the proposed

method are associated with frames in which the interframe homography could not be

accurately measured, as shown in Fig. 7.12, and thus GPS/IMU initialization was

used. The median localization error of our proposed method, 4.24m, was over five

times better than ICP with GPS/IMU initialization and over fourteen times better

than using ray tracing. Note that when there exist no prominent lines in the current

frame, the ICP naturally fail to estimate the correct homography. In the case, we set

the initial estimate of camera to ground-to-plane homography H̃ck,w as the Hck,w.

7.1.6 Time-Bounded ICP

For the results in the previous section, we allowed ICP to iterate until convergence.

However, for a real-time system an arbitrary number of iterations is not feasible. We

now consider the performance of our proposed method when the number of iterations

is limited to a fixed number. Figure 7.13 compares the ground target localization er-

rors for different limits on the number of iterations. The localization error of ICP with

an arbitrary number of iterations is depicted by black rectangles in Figure 7.13 and

represents the best possible scenario. When we fix the maximum number of iterations,

convergence is slowed and it takes a larger number of iterations to reach convergence.

However, even with a small number of iterations the error is reduced in each frame

and over a large number of frames approaches the best possible performance.

Figure 7.14 shows the error reduction achieved by ICP in each frame when ICP is

limited to 15 iterations. Notice that the initial error of each frame is close to the final

error of the preceding frame. This is a result of using the interframe homographies

to propagate the results from the previous frame into the current frame.
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Fig. 7.13. The convergence of target localization error in subsequent in-
puts with fixed number of iteration in ICP

Fig. 7.14. Initial and final error of ICP initialized using interframe homo-
graphies.

TABLE 7.2 shows the processing time required for the major components of our

algorithm. In our system, new images are acquired at approximately 2fps and so we

have limited the maximum number of iterations to 15.
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Fig. 7.15. The localization error by three different methods in which ICP
was limited to 15 iterations.
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Table 7.2.
Average computational requirements of major steps in our algorithm

Line Extraction Interframe Homography ICP iteration

Time (ms) 49.8 0.83 23.6

Table 7.3.
Ground target localization error with ICP limited to 15 iterations

Ray-Tracing ICP with GPS/IMU ICP with interframe

median error(m) 60.2964 39.0408 5.1788

Figure 7.15 shows the ground target localization error for our 250 image dataset

while TABLE 7.3 summarizes these results. Notice that the error increases substan-

tially if we initialize ICP using the GPS/IMU but only increases a small amount if

we use interframe homographies and previous results. This provides further evidence

that our proposed initialization gives good performance even under time constraints.

7.2 Ground target tracking and localization with CMIL

In the previous sections, we showed that the combination of the interframe ho-

mography and ICP with line matching can estimate the image-to-ground homography

of the current frame. The interframe homography initialized the image-to-ground

homography of the current frame and ICP updated this initial image-to-ground ho-

mography. The image-to-ground homography can localize the ground target in well-

structured environments where there exist a number of man-made structures that can

provide sufficient lines for ICP.
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In this section, we concentrate on how to track and localize the moving ground

target, the human subject, in unstructured environments. Under unstructured envi-

ronments where there exist few man-made structures, ICP could fail to update the

initial image-to-ground homography due to an insufficient number of lines that mainly

come from man-made structures. The failure of ICP yields the updated image-to-

ground homography as being identical to the initial image-to-ground homography; it

deteriorates the ground target localization in the ground coordinate space due to the

inaccurate image-to-ground homography. Therefore, we directly estimate the ground

target location by tracking the ground target in the image coordinate space.

One hurdle for tracking the ground target, especially the human on the ground,

is the fact that the shape and appearance of the moving human on the ground often

varies with respect to changes in the viewing angle of cameras attached to the UAVs.

The different viewing angles in each frame are usually caused by different moving

speeds between UAVs and humans or abrupt changes of the moving path of UAVs

from unexpected wind turbulence, control malfunction, and so on. An additional

factor of shape and appearance changes in the human on the ground is to interact

with ground objects, e.g, opening a car door, entering a building, walking beside

cars, etc. Consequently, the severe changes of shape and appearance of the human

on the ground make it hard to find the best estimated position of the human subject,

even with simple motions. Another problem of human tracking for UAV vision is

the fact that both human motions and UAV motions simultaneously contribute to

observed human movements in the image coordinate space. Therefore, it is required

to manipulate interconnection between human motions and UAV motions.

We apply the CMIL with a particle filtering framework for tracking humans on

the ground with severe shape and appearance changes due to either viewing angle

variations or interactions with other ground objects. The CMIL framework can first

address problems of tracking human subjects with severe changes of shape and ap-

pearance through updating the reference template of the human subject. The trained

classifiers in each frame can serve to update the reference template for the human
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subject. Interframe homography works as the motion prediction model for CMIL with

a particle filter framework. Interframe homography implicitly deals with both human

motions and UAV motions in the image coordinate space and also can be adaptively

changed during tracking. Therefore, we expect that CMIL with particle filtering em-

bedding interframe homography can provide a good human tracking algorithm with

UAV vision.

7.2.1 Motion Prediction Model with Interframe Homography

The typical non-linear motion prediction model in particle filtering is expressed

by

Xt = f(Xt−1,Vt), (7.16)

where Xt is the state of the particle at time t and Vt is the noise at time t.

Given a set of particles xt, the motion prediction in the particle filtering is con-

ventionally used to sample new particles x̃t+1 through the transition density,

x̃t+1 ∼ p(xt+1|xt). (7.17)

For tracking human subjects from UAV images, it is difficult to derive a correct

motion prediction model because the motion prediction model for human subjects

should simultaneously consider the human motions as well as UAV motions. Instead

of finding the correct motion prediction model, we can replace the motion prediction

model with interframe homography. Interframe homography can connect one point in

the first UAV image with the corresponding point in the second UAV image; two UAV

images are used to estimate interframe homography. With interframe homography

Hct+1,ct, the set of particle xt is transferred into the corresponding set of particle x′
t+1

,

x′
t+1 = Hct+1,ctxt. (7.18)
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The motion prediction model in Eq. 7.17 can be converted as

x̃t+1 ∼ p(xt+1|x
′
t+1). (7.19)

Fig. 7.16 illustrates the motion prediction model combined with interframe ho-

mography for CMIL particle filtering. For graphical clarification, the particles in the

frame at time t are assumed to be uniformly distributed. The top row shows the

conventional motion prediction model, and the bottom row displays the motion pre-

diction model combined with the interframe homography in particle filtering. The

main difference between them is the initial position of particles at time t + 1. The

initial positions of particles at time t + 1 are the same positions of particles xt in

the conventional motion prediction model. However, the positions of particles xt are

transferred into the positions of the particles at t+1 through interframe homography

Hct+1,ct as shown in bottom row of Fig. 7.16. Therefore, we expect that the initial

positions of particles at t+ 1 with the interframe homography can formalize a better

candidate motion prediction model.

We utilize two distance measures for CMIL with particle filtering. These two

distance measures, dB and dmax, are used for computing the weight of each particle.

Let ν =
{

ν(ℓ)|ℓ = 1, · · · , L
}

be a set of confidence scores where ν(ℓ) is the output of

the classifier Ct applied to the ℓ-th component in the image patch. The feature vectors

of an image patch are composed of two parts: (1) the histogram of the confidence

score set ν and (2) the maximum value in the confidence score set. Denoting the

histogram as r and νmax ≡ max(ν), the feature vector of an image patch at x
(i)
t is

defined as:

s(x
(i)
t ) = [r(x

(i)
t ), νmax(x

(i)
t )]. (7.20)

We use the Bhattacharyya distance [54] as the first distance measure dB for com-

paring the two histograms. The Bhattacharyya distance is defined as :
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Fig. 7.16. Comparison between motion prediction in conventional particle
filtering and that in particle filtering with interframe homography. The
red dots represent particles
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dB(p, q) =

√

√

√

√1−

N
∑

i=1

√

p(i)q(i), (7.21)

where p and q are discrete distributions. As demonstrated in [44], the maximum

confidence score in a positive bag in MIL can be used for estimating the probability

of the positive bag as

Pr(y = 1|ν) ∝
1

e−νmax
, (7.22)

where y is the label of bag, y ∈ {−1, 1}. The second distance measure dmax is defined

as

dmax(ν
(k)
max, ν

(ℓ)
max) = ν(k)

max − ν(ℓ)
max, (7.23)

where ν
(k)
max = νmax(x

(k)).

Finally, the weight of each particle is then given by

w
(i)
t+1 ≈ p(zt+1|x

(i)
t+1)

∝ e−γ(αdB(r(x̂t),r(x
(i)
t+1))+(1−α)dmax(ν̂t,ν

(i)
t+1))

, (7.24)

where zt+1 is an observed feature vector at x
(i)
t+1, ν̂t = νmax(x̂t), ν

(i)
t+1 = νmax(x

(i)
t+1),

and γ and α are user-specified control parameters.

7.2.2 Experiments

We tested the CMIL with particle filtering for tracking the human subject on test

sequences which have been taken in unstructured environments, as shown in Figure

7.17: action 1 and action 2 sequences1. Test sequences, which are composed of a

series of human movements, such as opening a car door and walking out of the car

were captured from a 400-to-450-foot flying height with different viewing angles. The

ground coordinates in Figure 7.17 are measured by using Google Earth and are set

1http://crcv.ucf.edu/data/UCF Aerial Action.php
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with the x axis to the east direction and the y axis to the south direction. As was

the case in comparing in order to localize the stationary ground target in structured

environments in the previous section, this work focused on the localization of the

moving ground target in unstructured environments.

We compare four different tracking algorithms: (1) MIL tracking (MIL), (2) MIL

tracking with interframe homography (MIL-IH), (3) CMIL with particle filtering

(CMIL-PF), and (4) CMIL with particle filtering through interframe homographies

(CMIL-PFIH). Among them, MIL-IH, which is newly introduced to compare the pro-

posed CMIL-PFIH, transfers the current target position into an initial search position

in the next frame with interframe homography. Some parameters used in particle fil-

tering are empirically selected; we have fixed the number of particles to be 70 and

the noise standard deviation of state transition to be 8 pixels in all test sequences.

We have chosen the parameters for computing the weight of each particle to be γ = 3

and α = 0.3 in CMIL-PF and CMIL-PFIH trackers. Similar to previous experi-

ments in CMIL-based tracking, we have analyzed both qualitative and quantitative

performance of trackers.

Figure 7.18 and Figure 7.19 show the qualitative assessment of the trackers by

displaying the bounding box at the position of the human target estimated by each

tracker in each frame. The center position of each rectangle is the best estimated

position of the human target in the image coordinate space. The action 1 sequence in

Figure 7.18 consists of following human actions: opening the car door, getting out of

the car, closing the car door, and walking away from the car. CMIL-PFIH, depicted

by blue rectangles, showed the best tracking results among four tracking algorithms.

It successfully encloses the human subject on different human motions. Figure 7.19

displays tracking results on the action 2 sequence that has 2 different humans; one is

walking away from the left side of the car while another gets out of the car. Similar to

results depicted in Figure 7.18, CMIL-PFIH outperforms other tracking algorithms

for tracking a human whose motion is to walk away from the left side of the car.
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Fig. 7.17. The test site for capturing action 1 and action 2 video sequences.
The distance between locations in the image are measured by Google
Earth’s distance measuring tool. This site is located in the north area of
the University of Central Florida campus.
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Fig. 7.18. Example of the tracking results of action 1 video sequence.
The four trackers compared are : (1) MIL (red rectangles), (2) CMIL-PF
(green rectangles), (3) MIL-IH (cyan rectangles), and CMIL-PFIH (blue
rectangles)
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Fig. 7.19. Example of the tracking results of action 2 video sequence.
The four trackers compared are : (1) MIL (red rectangles), (2) CMIL-PF
(green rectangles), (3) MIL-IH (cyan rectangles), and CMIL-PFIH (blue
rectangles)
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Fig. 7.20. Localization error on action 1 video sequence

The quantitative assessment of the trackers are carried out by localization er-

ror in the ground coordinate space. Both the center position of each rectangle and

the ground truth position of the human subject in the image coordinate space are

transformed into corresponding points in the ground coordinate space through the

image-to-ground homographies, respectively. Figure 7.20 and Figure 7.21 display the

localization errors of the four compared trackers in action 1 and action 2 test se-

quences, respectively. CMIL-PFIH tracker shows the best tracking performance in

both test sequences. On the other hand, three trackers, MIL, CMIL-PF, and MIL-IH

showed large localization errors in the action 2 sequence as shown in Figure 7.21.

Table 7.4 summarizes the average localization errors of four trackers in the ground

coordinate space.
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Fig. 7.21. Localization error on action 2 video sequence

Table 7.4.
Mean localization error in four trackers

MIL CMIL-PF MIL-IH CMIL-PFIH

action 1 1.06 1.01 0.98 0.57

action 2 4.66 5.58 3.33 2.11
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7.3 Conclusion

We presented a new method for improving the accuracy of ground target local-

ization. We utilized line features to match the UAV images to the GIS database

by ICP algorithm. We used line features to efficiently represent structured environ-

ment in a GIS database. In order to address time constraints and to increase the

likelihood of convergence to the correct ground target localization, we propagated

the image-to-ground homography across successive frames using interframe homogra-

phies. This propagated image-to-ground homography efficiently initialized ICP for

the current frame. We demonstrated that the propagated image-to-ground homogra-

phies increased the accuracy of ground target localization in the experiments. The

experimental results showed that this initialization improved the accuracy of ground

target localization after a few frames even when limiting the number of iterations in

ICP.

Along with this, we demonstrated the combination CMIL-PF with interframe ho-

mography for moving ground target localization. Interframe homography worked as

the motion prediction model for CMIL-PF. The motion prediction model with the

interframe homography efficiently compensated for ground target motions triggered

by both target movements and UAV movements. The experimental results displayed

that the CMIL-PFIH outperforms other comparing tracking algorithms even in un-

structured environments.
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8. SUMMARY

8.1 Conclusions

In this thesis, we explored the problems of articulated human movement tracking

utilizing by the tracking-by-detection framework. We adapted the instance-learning-

based classifier for making a decision about the location of the human target in video

sequences. Specifically, we developed the enhanced instance learning-based classifier,

which is based on the multiple instance learning classifier, since articulated human

movements are clearly non-rigid motions.

We first developed the new basic classification unit of MIL so that the classifier

can resolve the large variation of human movements in successive frames. The basic

classification unit, component, is obtained by automatically segmenting both positive

and negative image patches. Components provide our approach with extra degrees

of freedom with which the tracker can deal with the large frame-to-frame variations

caused by articulated human movements. CMIL tracking was also combined with the

online boosting learning system for updating the classifier that can detect the human

target to be tracked subsequently.

We then extended the basic CMIL approach by analyzing sample distributions

for the training stage. The positive image patch in this extension was classified by

patches that have more than the minimum number of positive components. The

minimum number of positive components was updated in the online version by ana-

lyzing the distribution of positive and negative components in positive image patches.

The extended CMIL approach with the adaptively configured positive image patches

outperformed other tracking algorithm as compared in experiments.

The probabilistic approach has augmented the basic CMIL tracking by combining

with the motion prediction framework. The probabilistic prediction has resolved the
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issue arising from the large and rapid translational human movements which easily

break down the in-place articulated movement tracking. The positive image patches

in CMIL worked as the motion prediction model in the particle filter and provided

more accurate likelihood estimation. With the extension of this motion prediction

framework, we achieved the competitive tracking performance for large and rapid

human transnational movements and further evaluated the tracking performance for

ground objects for unmanned aerial vehicles vision.

Finally the comparative study with the state-of-the-art CNN based tracking sug-

gested that the proposed CMIL trackings are competitive to CNN based tracking for

articulated human movements. Additionally, CMIL-PF sufficiently performed in the

sequence including perspective distortion from the top-view angle.

8.2 Future Works

From the viewpoint of unifying two main human tracking approaches, in this

thesis we have sought to integrate both the appearance-based tracking and part-based

tracking for articulated human movement tracking. The appearance-based approach

can be described by the unique pixel distribution in the component, and the part-

based approach can be expressed by the segmentation as well as the interconnection

between components, which is modeled by the set of weak classifiers. We need to

take into account the following four issues for improving articulated human movement

tracking performance.

First, we need to utilize more information for extracting components from image

patches. In Chapter 3, grayscale-based segmentation has been used for extracting

components in each image patch. The color-based segmentation can be useful to

discriminate the human and the background in some environments, and the specific

image features can also feasibly set up the initial segmenting seeds for complex image

contents. However, we also need to consider a trade-off between computational speed

and segmenting performance.
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The second issue is which learning technique has to be selected to enhance the

current component-based learning scheme. In this thesis, we applied the boosting

learning technique due to the marginal convergence of its online version with the

offline version. However, as described in Chapter 2, the online boosting can only

select a specific weak classifier from the pool that contains a finite number of the weak

classifier. Therefore the final strong classifier has the limited tracking performance

due to its finite possible configurations. The recent progress on computation power

may enable the application of other online learning techniques, such as online SVM,

online convex regularization, etc.

The third issue is how to define the positive image patch in the context of MIL.

The original definition of the positive image patch in MIL is the patch that contains at

least one positive component. This may cause more false-positive image patches that

have been inappropriate for positive learning samples. In Chapter 4, the definition

of positive image patch is extended into the patch that contains at least the speci-

fied minimum number of positive components and the required minimum number of

positive components can be adaptively varied with the distribution of positive image

patches. We need to enhance the way of defining the minimum number of positive

components.

The final issue is how to incorporate the motion prediction framework into the

current CMIL tracking framework. In Chapter 5 and 7, we integrated the parti-

cle filter with the component based MIL as a candidate framework and evaluated it

for articulated human movement tracking in different environments. However, the

problem is how to set up a suitable motion prediction model for covering the large

articulated human movements, which can be represented by the state transition prob-

ability p(xt | xt−1) in the particle filter framework. The human kinetic model can be

a candidate transition model for motion prediction.
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