
EFFICIENT AND ACCURATE NUMERICAL METHODS FOR TWO CLASSES

OF PDES WITH APPLICATIONS TO QUASICRYSTALS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Duo Cao

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2020

Purdue University

West Lafayette, Indiana



ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Jie Shen, Chair

Department of Mathematics

Dr. Min Chen

Department of Mathematics

Dr. Guang Lin

Department of Mathematics

Dr. Suchuan Dong

Department of Mathematics

Approved by:

Dr. Plamen Stefanov

Associate Head of the Department Graduate Program



iii

I dedicate this dissertation, to my beloved family for their unconditional support.



iv

ACKNOWLEDGMENTS

I would like to express the deepest gratitude to my Ph.D. advisor Professor Jie

Shen for his kind and patient academic guidance. His broad knowledge, uncondition-

ally supports and ubiquitous encouragement greatly enlighten my path to the degree

and the subject. He guides me how to approach a problem, how to think like a re-

searcher and how to deal with a complicated mathematics question. It has been a

great honor and a privilege for me to become one of his students.

Next, I owe my sincere thanks to my other committee member Prof. Guang Lin,

Prof. Min Chen and Prof. Steven Dong for the time and patience reading and com-

menting on my manuscript of this thesis. I would also like to thank Prof. Jie Xu at

the Laboratory of Scientific and Engineering Computing, Dr. Changtao Sheng, Dr.

Sheng Chen, Dr. Yingwei Wang, Dr. Yiqi Gu and Prof. Leevan Ling at Hong Kong

Baptist University who offered great help and advice on my thesis.

In addition, there are many friends of mine that make my six years at Purdue

University colorful, but I will only mention Shiwei Liu, Xinyu Liu, Lingfei Li, Jimmy

Vogel, Zeyu Zhang for sharing this wonderful time with me.

Finally, at this point, I would like to thank my parents for their continuous sup-

port spiritually and materially. Without their education and help, this work could

never be possible.



v

TABLE OF CONTENTS

Page

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 EFFICIENT SPECTRAL METHODS FOR PDES WITH FRACTIONAL
LAPLACIAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Fourier-like basis functions . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Spectral method for fractional Laplacian equation . . . . . . . . 7
1.2.3 Space-time spectral method . . . . . . . . . . . . . . . . . . . . 8

1.3 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Approximation of fractional Laplacian . . . . . . . . . . . . . . 10
1.3.2 Error bounds for (1.17) . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.3 Error bounds for (1.25) . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Numerical results for linear fractional equations . . . . . . . . . . . . . 22
1.5 Application to nonlinear fractional equations . . . . . . . . . . . . . . . 26

1.5.1 Fractional FitzHugh-Nagumo model . . . . . . . . . . . . . . . . 27
1.5.2 Fractional Allen-Cahn equation . . . . . . . . . . . . . . . . . . 29

1.6 Stochastic pde with fractional laplacian . . . . . . . . . . . . . . . . . . 33
1.6.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.6.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . 35

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 EFFICIENT NUMERICAL SCHEME FOR COMPUTING STABILITY
OF QUASI-CRYSTALLINE INTERFACE . . . . . . . . . . . . . . . . . . . 38
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2 Model and numerical algorithms . . . . . . . . . . . . . . . . . . . . . . 42

2.2.1 Lifshitz–Petrich model and quasicrystal solutions . . . . . . . . 42
2.2.2 General setting for the interface system . . . . . . . . . . . . . . 45
2.2.3 SAV approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.4 Spatial discretization . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.5 Discretization in the x-direction . . . . . . . . . . . . . . . . . . 56
2.2.6 Outline of the numerical method . . . . . . . . . . . . . . . . . 59

2.3 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.1 Dirichlet boundary condition . . . . . . . . . . . . . . . . . . . . 60
2.3.2 Periodic boundary condition . . . . . . . . . . . . . . . . . . . . 67



vi

Page
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



vii

LIST OF FIGURES

Figure Page

1.1 (a). H
α
2 -error in semi-log scale of (1.1) with u(x) = ϕk(x); (b). H

α
2 -error in

semi-log scale of (1.1) with u(x, y) = ϕk(x)ϕk(y). . . . . . . . . . . . . . . . . 23

1.2 (a). H
α
2 -error, in log-log scale, of our method for (1.1) with right hand side

term f(x) = 1; (b). H
α
2 -error, in log-log scale, of Fourier spectral method in [1]

for (1.1) with right hand side term f(x) = 1. . . . . . . . . . . . . . . . . . . 24

1.3 L2-error, in log-log scale, of our method for (1.1) with right hand side term

f(x) = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 Numerical solution of fractional heat equation (1.71) for different α: (a) initial

data: e−25x2/(1−x2); (b) initial data: tanh(25x/
√

1− x2). . . . . . . . . . . . . 25

1.5 L2-error for (1.71) at T = 0.1 for different α; (a) initial data u0 = e−25x2/(1−x2);

(b). initial data u0 = tanh(25x/
√

1− x2). . . . . . . . . . . . . . . . . . . . . 26

1.6 Spiral wave in FitzHugh-Nagumo model for various α and Ku; top: Ku =
10−4; bottom: α = 1.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.7 Solution transitions in Allen-Cahn equation with t ∈ [0, 3000] for various α. 30

1.8 Initial transition of the Allen-Cahn equation with t ∈ [0, 10]. . . . . . . . . 30

1.9 (a) Interfacial layers with different α; (b) Layer width L against ε for different

values of α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.10 Evolution of solution of fractional Allen-Cahn equation with initial condi-
tion (1.77) for various fractional orderα. . . . . . . . . . . . . . . . . . . . 32

1.11 Temporal evolution of circular domain for various α. . . . . . . . . . . . . 34

1.12 Radius of the circular domain as a function of time obtained with different
fractional order α using time step ∆t = 0.5. . . . . . . . . . . . . . . . . . 34

1.13 Stochastic solution of fractional PDE . . . . . . . . . . . . . . . . . . . . . 36

2.1 Three patterns formed under LP model. . . . . . . . . . . . . . . . . . . . 46

2.2 Setting of the interface problem . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 Laminar flow interface steady state with small and big rotation angle θ. . 62

2.4 Interfacial transition and energy dissipation of two crystals with θ =
arctan

√
3

4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



viii

Figure Page

2.5 Interfacial transition with various θ . . . . . . . . . . . . . . . . . . . . . . 65

2.6 Interfacial transition with big-small crystals . . . . . . . . . . . . . . . . . 66

2.7 Quasicrystal interfacial transition with θ = arctan
√

3
4

. . . . . . . . . . . . 68

2.8 Crystal-Quasicrystal interfacial transition and energy dissipation. . . . . . 69

2.9 6-fold symmetry crystal equilibrium state . . . . . . . . . . . . . . . . . . . 70

2.10 12-fold and 10-fold symmetry quasicrystal phases . . . . . . . . . . . . . . 71

2.11 Order parameters obtained from minimization of free energy model . . . . 74

2.12 Modified non-local model steady state with different σ . . . . . . . . . . . 75

2.13 Energy dissipation plots of non-local model . . . . . . . . . . . . . . . . . . 76

2.14 Interface problem for 6-fold symmetry crystal . . . . . . . . . . . . . . . . 77

2.15 Interface problem for 12-fold symmetry . . . . . . . . . . . . . . . . . . . . 79

2.16 Interface problem for 10-fold symmetry . . . . . . . . . . . . . . . . . . . . 80

2.17 Interface problem for 6-fold symmetry with big-small crystals . . . . . . . 81

2.18 Interface problem for 12-fold symmetry under Multi-phase model . . . . . 82

2.19 Interface problem for 10-fold symmetry under Multi-phase model . . . . . 83

2.20 Interface problem for 12-fold symmetry in non-local model . . . . . . . . . 84

2.21 Interface problem for 10-fold symmetry in non-local model . . . . . . . . . 85



ix

ABSTRACT

Cao Duo Ph.D., Purdue University, May 2020. Efficient and Accurate Numerical
Methods for Two Classes of PDEs With Applications to Quasicrystals. Major
Professor: Jie Shen Professor.

This dissertation is a summary of the graduate study in the past few years. In

first part, we develop efficient spectral methods for the spectral fractional Laplacian

equation and parabolic PDEs with spectral fractional Laplacian on rectangular do-

mains. The key idea is to construct eigenfunctions of discrete Laplacian (also referred

to Fourier-like basis) by using the Fourierization method. Under this basis, the non-

local fractional Laplacian operator can be trivially evaluated, leading to very efficient

algorithms for PDEs involving spectral fractional Laplacian. We provide a rigorous

error analysis for the proposed methods, as well as ample numerical results to show

their effectiveness.

In second part, we propose a method suitable for the computation of quasiperiodic

interface, and apply it to simulate the interface between ordered phases in Lifschitz–

Petrich model, which can be quasiperiodic. The function space, initial and boundary

conditions are carefully chosen such that it fix the relative orientation and displace-

ment, and we follow a gradient flow to let the interface find its optimal structure. The

gradient flow is discretized by the scalar auxiliary variable (SAV) approach in time,

and spectral method in space using quasiperiodic Fourier series and generalized Ja-

cobi polynomials. We use the method to study interface between striped, hexagonal

and dodecagonal phases, especially when the interface is quasiperiodic. The numer-

ical examples show that our method is efficient and accurate to successfully capture

the interfacial structure.



1

1. EFFICIENT SPECTRAL METHODS FOR PDES WITH

FRACTIONAL LAPLACIAN

1.1 Introduction

We consider in this part numerical approximation of the spectral fractional Lapla-

cian equation

(−∆)
α
2 v = f, ∀x ∈ Ω, (1.1)

with suitable boundary conditions, and parabolic PDEs with spectral fractional Lapla-

cian:

vt + ε(−∆)
α
2 v +N (v, t) = 0, ∀(x, t) ∈ D := Ω× (0, T ], (1.2)

with suitable initial and boundary conditions. In the above, Ω is a bounded do-

main, (−∆)
α
2 is the spectral fractional Laplacian operator defined by the spectral

decomposition

(−∆)
α
2 u(x) =

∑
n

ũnλ
α
2
n φn(x), α ∈ (0, 2), (1.3)

where {λn, φn}n≥0 are the eigenvalues and eigenfunctions of the Laplace operator −∆

with given Dirichlet boundary conditions.

Approximation of spectral fractional Laplacian (1.3) has been the subject of many

investigations recently. For problems with periodic boundary conditions, it is natural

and effective to use Fourier spectral methods e.g., [1–3]. For non-periodic boundary

conditions, there are essentially four different approaches:

• Use space spanned by eigenfunctions of Laplacian operator as approximation

space. An one-dimensional example is considered in [4]. However, since the

eigenfunctions of Laplacian, sin ckx or cos ckx, have very poor approximation

properties for non-periodic functions, the convergence of such method is very

slow, even if the solution is smooth.
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• Use space spanned by eigenfunctions of discrete Laplacian operator as approx-

imation space. In [5], a spectral-element method is used to construct discrete

eigenfunctions which are then used to approximate the fractional Laplacian

operator.

• Use the Caffarelli-Silvestre extension [6,7]. This approach was first considered in

[8] using a finite-element method followed by extension to space-time parabolic

fractional PDEs in [9] and improvements with tensor product finite elements and

adaptivity in [10]. A spectral method for the extended problem is presented

in [11]. A different approach using the Caffarelli-Silvestre extension is given

in [12].

• Use the Dunford-Taylor formula. This formula can be viewed as a semi-analytic

solution of the Caffarelli-Silvestre extension in which the extended direction is

analytically represented by an integral formula. This approach was first adopted

in [13] with a finite-element method in space.

For more detailed presentation on numerical methods for fractional Laplacians (in

spectral form and integral form) and up-to-date references, we refer to two excellent

recent review papers [14,15].

In this part, we focus on the numerical approximation of spectral fractional Lapla-

cian (1.3) with non-periodic boundary conditions. We adopt the second approach.

More precisely, we use space spanned by eigenfunctions of discrete Laplacian oper-

ator where the discretization is done by a Legendre-Galerkin method [16].

It is well-known that only a portion of the discrete eigenpairs are good approxi-

mation of the corresponding exact eigenpairs, so a main question in using the second

approach is whether to use all discrete eigenpairs or only those who are good approxi-

mations of the exact ones. Numerical results in [5] indicated that better results can be

obtained by using all discrete eigenpairs, but no theoretical justification is available

on why spurious discrete eigenpairs should be included in the approximation space.
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A main purpose of this paper is to provide a theoretical justification by carrying out

a delicate error analysis.

A main bottleneck in using the second approach is that computing and storing

all discrete eigenpairs in multidomains is usually prohibitively expensive. So another

purpose of this paper is to develop a robust and efficient method to compute discrete

eigenpairs. To this end, we restrict our attention in this paper to rectangular domains,

with the expectation that the method developed here can be extend to more generally

domain using the recently developed novel spectral methods for complex domains

in [17]. Following the idea in [18], we construct eigenfunctions of discrete Laplacian

operator in the Legendre-Galerkin formulation using the so called Fourier-like basis

functions. The benefits of such choice are significant: the construction of Fourier-

like basis functions only involves finding all the eigenpairs of a symmetric positive

definite penta-diagonal matrix, and thanks to the orthonormality of the Fourier-like

basis functions in the underlying inner products, the linear system for approximating

(1.1) is diagonal so its solution can be obtained very efficiently.

We also construct a space-time spectral method for (1.2) by using the approxima-

tion based on the discrete eigenpairs in space and a dual-Petrov Galerkin method in

time. For linear parabolic systems, this method leads to a sequence of one-dimensional

tridiagonal systems that can be easily solved, and nonlinear parabolic systems can al-

so be solved very efficiently with a preconditioned iterative procedure using a suitable

linear parabolic system as a preconditioner.

We highlight below the main advantages of the proposed methods and main con-

tributions of the paper:

• Accuracy: the space spanned by the eigenfunctions of discrete Laplacian oper-

ator with Legendre-Galerkin method has excellent approximation properties: it

leads to exponential convergence for smooth functions, and can double the con-

vergence rate of finite-element methods for problems with corner singularities

which are present in problems with spectral fractional Laplacian.
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• Efficiency: Unlike the approaches based on the Caffarelli-Silvestre extension

and Dunford-Taylor formula which involve an extra-dimension, the presence of

the nonlocal fractional Laplacian operator does not introduce any additional

computational complexity so the cost of our proposed methods are essentially

the same as the very efficient spectral-Galerkin method for the Poisson type

equations [16] and dual-Petrov Galerkin method for parabolic type equations

[18].

• We derived error bounds between the discrete fractional Laplacian (−∆M)
α
2

and the fractional Laplacian (−∆)
α
2 , which in particular justifies the use of all

discrete eigenfunctions. This approach (results in Section 3.1) can also be used

to other discretization methods such as finite differences and finite-elements.

• We established error analysis of our proposed methods for fractional Laplacian

equation and linear fractional reaction-diffusion equation.

The rest of the paper is organized as follows. In the next section, we construct the

Fourier-like basis functions as the discrete eigenfunctions of fractional Laplacian op-

erator. In Section 3, we provide a complete error analysis of the proposed methods for

fractional Poisson equation and fractional PDE. Numerical experiments for bound-

ary value problem involving spectral fractional Laplacian are carried out in Section

4. In Section 5 we develop efficient methods for space fractional reaction-diffusion

equations. Some concluding remarks are given in the last section.

1.2 Algorithms

We construct below the Fourier-like basis functions which are the eigenfunctions of

discrete fractional Laplacian, and present spectral algorithms for fractional Laplacian

equation and a space-time spectral method for linear parabolic PDEs with spectral

fractional Laplacian on rectangular domains.

Let us first introduce some notations.
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• Let R (resp. N) be the set of all real numbers (resp. non-negative integers),

and let N0 = N ∪ {0}.

• We use boldface lowercase letters to denote d-dimensional multi-indexes, vec-

tors and multi-variables, e.g., j = (j1, · · · , jd), k = (k1, · · · , kd) and x =

(x1, · · · , xd). Also, let 1 = (1, 1, · · · , 1) ∈ Nd, ei = (0, · · · , 1, · · · , 0) be the

i-th unit vector in Rd, and use the following conventions

α ≥ k⇔ ∀1≤j≤d, αj ≥ kj.

• Denote by |ξ|1, |ξ|2, |ξ|∞ be the l1, l2, l∞ norm of ξ in Rd, respectively.

1.2.1 Fourier-like basis functions

We consider the following general homogeneous boundary conditions:

a±j v(±1) + b±j vx(±1) = 0 1 ≤ j ≤ d. (1.4)

To ensure the well-posedness, we assume that for any 0 ≤ j ≤ d, the constants a±j

and b±j satisfy the following conditions

(i) a±j ≥ 0; (ii) (a−j )2 + b−j 6= 0, a−j b
−
j ≤ 0; (iii) (a+

j )2 + b+
j 6= 0, a+

j b
+
j ≥ 0. (1.5)

We first define the one-dimensional spatial approximation space as

VM = {v ∈ PM : a±v(±1) + b±vx(±1) = 0}, (1.6)

and denote

hk(x) = Lk(x) + akLk+1(x) + bkLk+2(x), 0 ≤ k ≤M − 2, (1.7)

where Lk(x) is the Legendre polynomial of degree k. It is shown in [19] that, for

boundary conditions in form of (1.4), there exists a unique set {ak, bk} such that

hk ∈ Vk+2.
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We recall below the construction of the Fourier-like basis functions [18]. Denote

by M (with entries mpq = (hp, hq)) and S (with entries spq = −(h′′p, hq)) be the

mass matrix and stiffness matrix, respectively. Let E := (epq)p,q=0,··· ,M−2 be the

matrix formed by the orthonormal eigenvectors of generalized eigenvalue problem of

M and S, and Λ = diag(λM,i) be the diagonal matrix with main diagonal being the

corresponding eigenvalues, i.e.,

SE = MEΛ, ETSE = Λ, ETME = IM−1. (1.8)

Then, the Fourier-like basis is given by

φM,n(x) =
M−2∑
j=0

ejnhj(x), 0 ≤ n ≤M − 2. (1.9)

Thank to (1.8), it is easy to verify that

(φM,p, φM,q) =
M−2∑
k,j=0

ekpejq(hk, hj) =
N−2∑
k,j=0

ejqmjkekp =
(
ETME

)
pq

= δpq,

(−∆φM,p, φM,q) = −
N−2∑
k,j=0

ekpejq(h
′′
k, hj) =

M−2∑
k,j=0

ejqsjkekp =
(
ETSE

)
pq

= λM,qδpq.

(1.10)

Let us define d-dimensional tensorial eigenfunctions and eigenvalues

φM,n(x) =
d∏
j=1

φM,nj(xj), x ∈ Ω := (−1, 1)d, and λM,n = (λM,n1 , · · · , λM,nd)
T ,

and the d-dimensional approximation space

V d
M := span{φM,n(x) : n ∈ ΥM ,x ∈ Ω}, (1.11)

where the index set

ΥM :=
{
n = (n1, · · · , nd) : 0 ≤ nj ≤M − 2, 1 ≤ j ≤ d

}
. (1.12)

One verifies by using (1.10) that

(φM,n,φM,m) = δmn , (−∆φM,n,φM,m) = |λM,n|1 δmn, (1.13)
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where m,n ∈ ΥM and

δmn =
d∏
j=0

δmjnj , |λM,n|1 = λM,n1 + · · ·+ λM,nd . (1.14)

Indeed, the discrete Laplacian operator −∆M : V d
M → V d

M can be interpreted as

−∆
∣∣
V dM

, which satisfies

〈−∆MφM,n,φM,m〉 = −(∆φM,n,φM,m) = |λM,n|1δmn, ∀φM,n,φM,m ∈ V d
M .

Then, we arrive at following definition of discrete spectral fractional Laplacian.

Definition 1.2.1 Let {λM,n,φM,n}n∈ΥM be the discrete eigenpairs of the Laplacian

operator −∆M on V d
M . For any u ∈ D(−∆), the discrete spectral fractional Laplacian

is given by

(−∆M)
α
2 ΠMu(x) =

∑
n∈ΥM

ũn|λM,n|
α
2
1 φM,n(x). (1.15)

where ΠM : D(−∆) → V d
M denote the orthogonal projection. Moreover, for any

uM ∈ V d
M , namely, uM(x) =

∑
n∈ΥM

ũnφM,n(x), the spectral fractional Laplacian is

given by

(−∆M)
α
2 uM(x) =

∑
n∈ΥM

ũn|λM,n|
α
2
1 φM,n(x). (1.16)

1.2.2 Spectral method for fractional Laplacian equation

We consider (1.1) with (1.4). Then, our spectral Galerkin method using the

Fourier-like basis functions is as follows:

Find uM ∈ V d
M such that(

(−∆M)
α
2 uM , v

)
Ω

= (f, v)Ω ∀v ∈ V d
M . (1.17)

We write

uM(x) =
∑
m∈ΥM

ũmφM,m(x). (1.18)

Substituting (1.18) into (1.17) and taking v = φM,n(x), the scheme (1.25) becomes∑
m∈ΥM

ũm((−∆M)
α
2φM,m,φM,n)Ω = (f,φM,n)Ω. (1.19)
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By the orthogonality (1.13) and (1.16), we obtain

ũn = |λM,n|
−α

2
1 f̃n, ∀n ∈ ΥM ,

where

f̃n = (f,φM,n)Ω.

Finally, the numerical solutions of (1.17) can be obtained from (1.18).

1.2.3 Space-time spectral method

We shall start by considering a special case of (1.2) with N v = βv − g :

vt + ε(−∆)
α
2 v + βv = g, ∀(x, t) ∈ D = Ω× (0, T ], (1.20)

with the initial condition v(x, 0) = u0(x) and boundary conditions (1.4). We shall

extend the algorithm to the general case of (1.2) in Section 5.

We propose below a space-time spectral method for (1.20) based on the Fourier-

like basis in space and a dual-Petrov Legendre-Galerkin formulation in time.

We first decompose the solution v(x, t) into two parts as

v(x, t) = u(x, t) + u0(x), (1.21)

with u(x, 0) = 0. Hence, by (1.21) , the equation (1.20) is equivalent to the following

equation

ut + ε(−∆)
α
2 u+ βu = f, ∀(x, t) ∈ D, (1.22)

where

f(x, t) = g(x, t)− ε(−∆)
α
2 u0(x)− βu0(x),

with

u(x, 0) = 0, ∀x ∈ Ω, (1.23)

and the boundary conditions (1.4).
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Since (1.20) or (1.22) has first order derivative in time, it is suitable to use the

dual-Petrov Legendre-Galerkin method in time direction [18, 20]. To simplify the

presentation, we first scale the time interval from (0, T ) to (−1, 1), and define a pair

of “dual” approximation spaces (in time):

SN = {u ∈ PN : u(−1) = 0}, S∗N = {u ∈ PN : u(1) = 0}. (1.24)

Then, after scaling the time interval to (−1, 1), the space-time spectral approximation

of (1.22) is: Find uL ∈ V d
M ⊗ SN such that

(∂tuL, v)D,+ε((−∆M)
α
2 uL, v)D + β(uL, v)D = (f, v)D, ∀v ∈ V d

M ⊗ S∗N . (1.25)

We now describe the numerical implementation of (1.25). An obvious choice for V d
M

in space is the Fourier-like basis function {φM,k}k∈ΥM . As for SN and S∗N in time, we

set

ψn(t) = Ln(t) + Ln+1(t), ψ∗q (t) = Lq(t)− Lq+1(t), (1.26)

and write

uL(x, t) =
∑
m∈ΥM

N−1∑
n=0

ũn,mφM,m(x)ψn(t). (1.27)

Substituting (1.27) into (1.25) and taking v = φM,p(x)ψ∗q (t), the scheme (1.25) be-

comes

∑
m∈ΥM

N−1∑
n=0

ũnm

{
(φM,m,φM,p)Ω (∂tψn, ψ

∗
q )I + ε((−∆M)

α
2φM,m,φM,p)Ω (ψn, ψ

∗
q )I

+ β(φM,m,φM,p)Ω (ψn, ψ
∗
q )I

}
= (f,φM,pψ

∗
q )D.

(1.28)

Denote

um = (ũ0,m, ũ1,m, . . . , ũN−1,m)T ,

stqn = (∂tψn, ψ
∗
q )I , mt

qn = (ψj, ψ
∗
i )I ,

St = (stqn)0≤q,n≤N−1, M t = (mt
qn)0≤q,n≤N−1,

f̃q,p = (f,φM,pψ
∗
q )D, fm = (f̃0,m, f̃1,m, . . . , f̃N−1,m)T .

(1.29)
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One may verifies that [18]

stqn = (∂tψn, ψ
∗
q ) = 2δqn, mt

qn = (ψn, ψ
∗
q ) = 0, if |q − n| > 1. (1.30)

Then, from (1.29) and (1.30), we find that (1.25) is equivalent to the following

(2I + (ε|λM,m|
α
2 + β)M t)um = fm, m ∈ ΥM . (1.31)

Since M t is tri-diagonal, the above systems can be efficiently solved.

Finally, we obtain the numerical solutions of (1.25) by (1.27).

1.3 Error analysis

The aim of this section is to perform error analysis for the two spectral algorithms

(1.17) and (1.25) described in the previous section. For the sake of brevity, we shall

restrict ourselves to the cases with homogeneous Dirichlet boundary conditions.

Throughout this section, we assume that α ∈ (0, 2), s = α
2

and α 6= 1.

1.3.1 Approximation of fractional Laplacian

We first recall some results in [21], which play a very important role in the forth-

coming analysis.

Definition 1.3.1 (see, e.g., [21, Appendix]) Let (X , ‖ · ‖X) and (Y , ‖ · ‖Y ) be two

Banach spaces. A linear operator A : D(A) ⊂ X → Y with operator norm

‖A‖L (X ,Y) = sup
06=x∈X

‖Ax‖Y
‖x‖X

is said to be of type (ω,K), if

1. A is densely defined and closed;

2. the resolvent set of −A contains the sector | arg λ| < π − ω, 0 < ω < π, and

λ(λ + A)−1 is uniformly bounded in each smaller sector | arg λ| < π − ω − ε,

ε > 0 with ‖λ(λ+ A)−1‖L (Y,X ) ≤ K for λ > 0.
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The following Corollary can be found in [21, Appendix].

Corollary 1.3.1 If A is of type (π
2
, K), then we have

‖(µ+ A)−1Au‖X ≤ (1 +K)‖u‖X , ‖(µ+ A)−1‖L (Y,X ) ≤ Kµ−1. (1.32)

For u ∈ D(−∆) := H2(Ω) ∩ H1
0 (Ω), the operator −∆ : H2(Ω) → L2(Ω) can be

defined via a bilinear form A(·, ·) : H1
0 (Ω)×H1

0 (Ω)→ R, namely

A(u, v) := 〈−∆u, v〉 = (∇u,∇v), for u, v ∈ H1
0 (Ω), (1.33)

which satisfies continuity and coercivity.

For uM , vM ∈ V d
M , the operator −∆M can be defined by the following bilinear form

〈−∆MuM , vM〉 = (∇uM ,∇vM), uM , vM ∈ V d
M , (1.34)

which satisfies continuity and coercivity.

Because of the continuity and coercivity, we immediately get the following lemma.

Lemma 1 The operator −∆ is of type (π
2
, 1). Moreover, the operator −∆M is also

of type (π
2
, 1).

Proof According to [21, 22], the operator ∆ is is a closed and maximal accretive

operator. On the other hand, we have the following equivalence (see, e.g., [21])

• the operator −∆ in Ω is a closed and maximal accretive operator;

• the operator −∆ is of type (π
2
, 1);

which will automatically lead to the desired results. Note that −∆M = −∆|V dM , so

the operator −∆M is also of type (π
2
, 1) (see, e.g., [21]).

We now turn to fractional Laplacian operator (−∆)
α
2 .

For u ∈ D((−∆)
α
2 ) := {u : (−∆)

α
2 u ∈ L2(Ω), u ∈ H

α
2

0 (Ω)}, the operator (−∆)
α
2

can also be defined via a bilinear form

A
α
2 (u, v) := 〈(−∆)

α
2 u, v〉 = ((−∆)

α
4 u, (−∆)

α
4 v), for u, v ∈ H

α
2

0 (Ω). (1.35)
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By density, the operator (−∆)
s
2 can be extended to the Hilbert space

Hs(Ω) =

{
u =

∞∑
k=1

ukφk ∈ L2(Ω) : ‖u‖2
Hs(Ω) =

∞∑
k=1

|uk|2λsk <∞

}
. (1.36)

The theory of Hilbert scales presented in Chap. 1 of [23] shows that[
H1

0 (Ω), L2(Ω)
]
θ

= D((−∆)
s
2 ), with θ = 1− s. (1.37)

This implies the following characterization of the space Hs(Ω)

Hs(Ω) =


Hs(Ω) = [H1(Ω), L2(Ω)]1−s , s ∈ (0, 1

2
),

H
1
2
00(Ω) = [H1

0 (Ω), L2(Ω)] 1
2
, s = 1

2
,

Hs
0(Ω) = [H1

0 (Ω), L2(Ω)]1−s , s ∈ (1
2
, 1),

(1.38)

where Hs(Ω) and Hs
0(Ω), s 6= 1

2
, are the classical fractional Sobolev spaces, and H

1
2
00

denote the Lions-Magenes space, which can be characterized as

H
1
2
00 =

{
u ∈ H

1
2 (Ω) :

∫
Ω

u2(y)

dist(y, ∂Ω)
dy <∞

}
.

If the boundary of Ω is Lipschitz, we have Hs
0(Ω) = Hs(Ω) for s ∈ (0, 1

2
]; and Hs

0(Ω)

is strictly contained in Hs(Ω) for s ∈ (1
2
, 1). In particular, we have the strict inclusion

H
1
2
00(Ω) $ H

1
2
0 (Ω) = H

1
2 (Ω).

Lemma 2 For v ∈ H
α
2

0 (Ω), α 6= 1 we have

|(−∆)
α
4 v| ∼= |v|H α

2 (Ω)
. (1.39)

Proof One derives immediately from (1.38) that the equality holds.

Using the first equality of (1.39), we deduce the following:

|A
α
2 (u, v)| . ‖u‖

H
α
2 (Ω)
‖v‖

H
α
2 (Ω)

, for u, v ∈ H
α
2

0 (Ω),

|A
α
2 (u, u)| & ‖u‖

H
α
2 (Ω)

, for u ∈ H
α
2

0 (Ω).
(1.40)

From Definition 1.2.1, for any uM , vM ∈ V d
M , the operator (−∆M)

α
2 : V d

M → V d
M can

be defined via following bilinear form

〈(−∆M)
α
2 uM , vM〉 = ((−∆M)

α
4 uM , (−∆M)

α
4 vM). (1.41)

The following Lemma can be found in [22, Lemma 4.1].
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Lemma 3 For 0 ≤ s ≤ 1
2
, there is a constant C, such that for any vM ∈ V d

M ,

‖(−∆)svM‖ ≤ C‖(−∆M)svM‖. (1.42)

For 0 ≤ s ≤ 1, there is a constant C, such that for any vM ∈ V d
M ,

‖(−∆M)svM‖ ≤ C‖(−∆)svM‖. (1.43)

Therefore, we deduce from Lemma 2 and Lemma 3 that

|((−∆M)
α
4 uM , (−∆M)

α
4 vM)| . ‖(−∆M)

α
4 uM‖L2(Ω)‖(−∆M)

α
4 vM‖L2(Ω)

. ‖(−∆)
α
4 uM‖L2(Ω)‖(−∆)

α
4 vM‖L2(Ω)

. ‖uM‖H α
2 (Ω)
‖vM‖H α

2 (Ω)
, for uM , vM ∈ V d

M ,

|((−∆M)
α
4 uM , (−∆M)

α
4 uM)| & ‖(−∆M)

α
4 uM‖2

L2(Ω)

& ‖(−∆)
α
4 uM‖2

L2(Ω) & ‖uM‖2

H
α
2 (Ω)

, for uM ∈ V d
M .

(1.44)

Next, we define negative norms by

‖u‖−s = sup

{
(u, v)

‖v‖Hs

; v ∈ Hs

}
, for s ≥ 0. (1.45)

The following Lemma plays a key role in the error analysis.

Lemma 4 For any 0 < s < 1 and u ∈ H1
0 (Ω) ∩H2−s(Ω), we have

‖(−∆)su− (−∆M)sΠMu‖H−s(Ω) ≤ cu,s ‖(−∆)u− (−∆M)ΠMu‖sH−s(Ω).

where cu,s = c(s) (‖ΠMu‖H−s(Ω) + ‖u‖H−s(Ω))
1−s.

Proof By virtue of −∆M is of type (π
2
, 1) and (−∆M)−1 is bounded, we follow the

procedure used in [21], the operator (−∆M)s can be defined indirectly by

(−∆M)sΠMu =
sin(πs)

π

∫ ∞
0

µs−1 (µ+ (−∆M))−1 (−∆M)ΠMu dµ. (1.46)
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Subtracting from (1.46) a similar expression with M replaced by M ′, M ≤ M ′, we

have

(−∆M)sΠMu− (−∆M ′)
sΠM ′u

=
sin(πs)

π

[ ∫ δ

0

µs−1(µ+ (−∆M))−1(−∆M)ΠMu dµ−
∫ δ

0

µs−1(µ+ (−∆M ′))
−1(−∆M ′)ΠM ′u dµ

+

∫ ∞
δ

µs(µ+ (−∆M))−1(µ+ (−∆M ′))
−1
(

(−∆M)ΠMu− (−∆M ′)ΠM ′u
)

dµ
]
.

(1.47)

Moreover, we can derive from (1.32) with K = 1 and the norm of linear operators

(see, e.g., [24, p102]) upon H−s that

‖(µ+ (−∆M))−1(−∆M)ΠMu‖H−s
(1.32)

≤ 2‖ΠM ′u‖H−s(Ω)

and

‖(µ+ (−∆M))−1(µ+ (−∆M ′))
−1 ((−∆M)ΠMu− (−∆M ′)ΠM ′u) ‖H−s(Ω)

(1.32)

≤ ‖(µ+ (−∆M))−1(µ+ (−∆M ′))
−1‖L (V dM ,V

d
M )‖(−∆M)ΠMu− (−∆M ′)ΠM ′u‖H−s(Ω)

(1.32)

≤ µ−2‖(−∆M)ΠMu− (−∆M ′)ΠM ′u‖H−s(Ω).

This, along with equation (1.47), yields

‖(−∆M)sΠMu− (−∆M ′)
sΠM ′u‖H−s(Ω)

≤ sin(πs)

π

[
2(‖ΠMu‖H−s(Ω) + ‖ΠM ′u‖H−s(Ω))

∫ δ

0

µs−1dµ

+‖(−∆M)ΠMu− (−∆M ′)ΠM ′u‖H−s(Ω)

∫ ∞
δ

µs−2dµ
]

=
sin(πs)

π

[
2s−1δs(‖ΠMu‖H−s(Ω) + ‖ΠM ′u‖H−s(Ω))

+(1− s)−1δs−1‖(−∆M)ΠMu− (−∆M ′)ΠM ′u‖H−s(Ω)

]
.

Taking δ = ‖(−∆M)ΠMu − (−∆M ′)ΠM ′u‖H−s(Ω)/(‖ΠMu‖H−s(Ω) + ‖ΠM ′u‖H−s(Ω)), we

deduce that

‖(−∆M)sΠMu− (−∆M ′)
sΠM ′u‖H−s(Ω)

≤ c(s)(‖ΠMu‖H−s(Ω) + ‖ΠM ′u‖H−s(Ω))
1−s‖(−∆M)ΠMu− (−∆M ′)ΠM ′u‖sH−s(Ω).

Finally, letting M ′ →∞ leads to the desired results.
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1.3.2 Error bounds for (1.17)

To fix the idea, we restrict our attention to Ω = Λd, Λ = (−1, 1). To derive the

error bounds, we take ΠM = Π2,d
M where Π2,d

M : H2(Ω)→ PdM satisfy

Π2,d
M u|∂Ω = u|∂Ω,

Π2,d
M u

∂n
=

u

∂n
. (1.48)

To measure the truncation error Π2,d
M u− u, let us denote

χr(x) =
d∏
j=1

χrj(xj) =
d∏
j=1

(1− x2
j)
rj ,

and introduce the non-uniformly weighted Sobolev space B̃r with semi-norm and

norm:

|u|B̃r(Ω) =
( d∑
j=1

∑
r∈Υ̃j

‖∂rxu‖2

χ(rj−2)ej

) 1
2
, ‖u‖B̃r(Ω) =

(
‖u‖2 + |u|2

B̃r(Ω)

) 1
2
.

where the index sets

Υ̃j =
{
r ∈ Nd

0 : d ≤ rj ≤ r; ri ∈ {0, 2}, i 6= j;
d∑

k=1

rk = r
}
, ∀1 ≤ j ≤ d. (1.49)

The approximation property of Π2,d
M stated below:

Lemma 5 If u ∈ H2(Ω) and u ∈ B̃r(Ω) with max(d, 2) ≤ r ≤M + 1 then we have

‖Π2,d
M u− u‖Hµ(Ω) .Mµ−r(‖u‖H2(Ω) + |u|B̃r(Ω)), µ ∈ [0, 2]. (1.50)

Proof Let Π2
M : H2(Λ)→ PM be the H2-orthogonal projection on Λ = (−1, 1) such

that

Π2
Mu(±1) = u(±1), (Π2

Mu)′(±1) = u′(±1).

According to [25, Theorem 4.2], for any u ∈ H2(Λ) and ∂rxu ∈ L2
χr−2(Λ) with 2 ≤ r ≤

M + 1, we have

‖Π2
Mu− u‖Hµ ≤ cMµ−r(‖u‖H2 + ‖∂rxu‖χr−2), µ ∈ [0, 2], (1.51)
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where c is a positive constant independent of M and u. In view of (1.48), we have

Π2,d
M := Π

2,(1)
M ◦ · · · ◦ Π

2,(d)
M with Π

2,(j)
M = Π2

M , j = 1, · · · , d. (1.52)

For clarity, we only prove the results with d = 3, as it is straightforward to extend

the results to the case with d > 3. Using integration by parts, we have

‖∆(Π2,3
M u− u)‖2 =

3∑
j=1

‖∂2
xj

(Π2,3
M u− u)‖2 +

3∑
i,j=1
i 6=j

∫
Λ3

∂2
xi

(Π2,3
M u− u)∂2

xj
(Π2,3

M u− u)dx

=
3∑
j=1

‖∂2
xj

(Π2,3
M u− u)‖2 +

3∑
i,j=1
i 6=j

‖∂xi∂xj(Π
2,3
M u− u)‖2 := I1 + I2.

(1.53)

By virtue of (1.51) and (1.52), we obtain that

I1 ≤ 2
(
‖∂2

x1
(Π

2,(1)
M u− u)‖2 + ‖∂2

x1
Π

2,(1)
M ◦ (Π

2,(2)
M ◦ Π

2,(3)
M u− u)‖2

+‖∂2
x2

(Π
2,(2)
M u− u)‖2 + ‖∂2

x2
Π

2,(2)
M ◦ (Π

2,(1)
M ◦ Π

2,(3)
M u− u)‖2

+‖∂2
x3

(Π
2,(3)
M u− u)‖2 + ‖∂2

x3
Π

2,(3)
M ◦ (Π

2,(1)
M ◦ Π

2,(2)
M u− u)‖2

)
(1.54)

≤ cM2(2−r)
(
‖u‖2

H2 +
d∑
j=1

∥∥∂rxju∥∥2

χ(r−2)ej

)
+ 2‖Π2,(2)

M ◦ Π
2,(3)
M (∂2

x1
u)− (∂2

x1
u)‖2

+2‖Π2,(1)
M ◦ Π

2,(3)
M (∂2

x2
u)− (∂2

x2
u)‖2 + 2‖Π2,(1)

M ◦ Π
2,(2)
M (∂2

x3
u)− (∂2

x3
u)‖2.

Hence, it remains to estimate the last three terms in (1.54), and we only need to

consider the last term as they are similar to each other. Then, we can derive from

(1.54) and (1.51) with µ = 0 that

‖Π2,(1)
M ◦ Π

2,(2)
M (∂2

x3
u)− (∂2

x3
u)‖ ≤ ‖Π2,(2)

M (∂2
x3
u)− (∂2

x3
u)‖

+ ‖Π2,(1)
M (∂2

x3
u)− (∂2

x3
u)‖+ ‖(I − Π

2,(2)
M )

(
Π

2,(1)
M (∂2

x3
u)− (∂2

x3
u)
)
‖

≤ cM2−r
(
‖u‖H2 +

∥∥∂r−2
x2

∂2
x3
u
∥∥
χ(r−4)e2

+
∥∥∂r−2

x1
∂2
x3
u
∥∥
χ(r−4)e1

)
+ cM−2

∥∥Π
2,(1)
M (∂2

x2
∂2
x3
u)− (∂2

x2
∂2
x3
u)
∥∥

≤ cM2−r
(
‖u‖H2 +

∥∥∂r−2
x2

∂2
x3
u
∥∥
χ(r−4)e2

+
∥∥∂r−2

x1
∂2
x3
u
∥∥
χ(r−4)e1

+
∥∥∂r−4

x1
∂2
x2
∂2
x3
u
∥∥
χ(r−6)e1

)
.
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Applying this argument repeatedly leads to

I1 ≤cM2(2−r)
(
‖u‖2

H2 +
3∑
j=1

∥∥∂rxju∥∥2

χ(r−2)ej +
3∑

i,j=1
i 6=j

∥∥∂r−2
xi

∂2
xj
u
∥∥2

χ(r−4)ei

+
3∑

i,j,k=1
i 6=j 6=k

∥∥∂r−4
xi

∂2
xj
∂2
xk
u
∥∥2

χ(r−6)ei

)
.

(1.55)

Now, we turn to estimate I2. Similarly, we only consider i = 1, j = 2 in I2, since

the other terms in I2 can be derived in a similar fashion. Then, we obtain from (1.52)

and the triangle inequality that

‖∂x1∂x2(Π
2,3
M u− u)‖ ≤ ‖∂x1∂x2(Π

2,(1)
M ◦ Π

2,(2)
M u− u)‖+ ‖∂x1∂x2Π

2,(1)
M ◦ Π

2,(2)
M (Π

2,(3)
M u− u)‖

≤ cM2−r
(
‖u‖H2 +

∥∥∂r−2
x1

∂2
x2
u
∥∥
χ(r−4)e1

+
∥∥∂2

x1
∂2
x2
∂r−4
x3

u
∥∥
χ(r−6)e3

)
.

Applying this argument repeatedly leads to

I2 ≤ cM2(2−r)
(
‖u‖2

H2 +
3∑

i,j=1
i6=j

∥∥∂r−2
xi

∂2
xj
u
∥∥2

χ(r−4)ei
+

3∑
i,j,k=1
i6=j 6=k

∥∥∂r−4
xi

∂2
xj
∂2
xk
u
∥∥2

χ(r−6)ei

)
.

(1.56)

According to [25, Lemma 8.8], there holds

|Π2,3
M u− u|H2(Ω) ≤ c‖∆(Π2,3

M u− u)‖L2(Ω),

This, together with (1.55) and (1.56) leads to desired result (1.50) with µ = 2.

Furthermore, we can follow a similar procedure as above to derive the L2-bound for

Π2,3
M . A combination of the above facts and the standard space interpolation leads to

(1.50) with d = 3. It is straightforward to extend the above derivation to d > 3. This

completes the proof.

Theorem 1.3.1 Let α ∈ (0, 2), α 6= 1 and let u, uM be respectively the solutions of

(1.1) and (1.17). If u ∈ H
α
2

0 (Ω) and u ∈ H2(Ω) ∩ B̃m(Ω) with 2 ≤ m ≤ M + 1, then

we have

‖u−uM‖H α
2 (Ω)

.M
α
2
−m(‖u‖H2(Ω)+|u|B̃m(Ω)

)
+cu,α

2
M

α
2

(2−α
2
−m)
(
‖u‖H2(Ω)+|u|B̃m(Ω)

)α
2 .
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Proof Then, applying the first Strang Lemma (see, e.g., [26]) to (1.44) , we can

obtain

‖u− uM‖H α
2 (Ω)

. inf
wM∈V dM

{
‖u− wM‖H α

2 (Ω)
+ sup

06=vM∈V dM

〈(−∆)
α
2wM , vM〉 − 〈(−∆M)

α
2wM , vM〉

‖(−∆)
α
4 vM‖L2(Ω)

}

. inf
wM∈V dM

{
‖u− wM‖H α

2 (Ω)
+ sup

06=vM∈V dM

〈(−∆)
α
2wM , vM〉 − 〈(−∆M)

α
2wM , vM〉

‖vM‖H α
2 (Ω)

}
= inf

wM∈V dM

{
‖u− wM‖H α

2 (Ω)
+ ‖(−∆)

α
2wM − (−∆M)

α
2wM‖H−α2 (Ω)

}
.

Take wM = Π2,d
M u in the above, we derive from (1.50) and Lemma 4 that

‖u− uM‖H α
2 (Ω)

.M
α
2
−m(‖u‖H2(Ω) + |u|B̃m(Ω)

)
+ ‖(−∆)

α
2 (Π2,d

M u− u) + (−∆)
α
2 u− (−∆M)

α
2 Π2,d

M u‖
H−

α
2 (Ω)

.

Thus, it remains to estimate the last term of above equation. By (1.50), the triangle

inequality and Lemma 4, we obtain

‖(−∆)
α
2 (Π2,d

M u− u) + (−∆)
α
2 u− (−∆M)

α
2 Π2,d

M u‖
H−

α
2 (Ω)

. ‖(−∆)
α
2 (Π2,d

M u− u)‖
H−

α
2 (Ω)

+ ‖(−∆)
α
2 u− (−∆M)

α
2 Π2,d

M u‖
H−

α
2 (Ω)

. ‖Π2,d
M u− u‖

H
α
2 (Ω)

+ cu,α
2
‖(−∆)u− (−∆M)Π2,d

M u‖
α
2

H−
α
2 (Ω)

.M
α
2
−m(‖u‖H2(Ω) + |u|B̃m(Ω)

)
+ cu,α

2
‖(−∆)u− (−∆)Π2,d

M u‖
α
2

H−
α
2 (Ω)

.M
α
2
−m(‖u‖H2(Ω) + |u|B̃m(Ω)

)
+ cu,α

2
‖u− Π2,d

M u‖
α
2

H2−α2 (Ω)

.M
α
2
−m(‖u‖H2(Ω) + |u|B̃m(Ω)

)
+ cu,α

2
M

α
2

(−α
2
−m+2)

(
‖u‖H2(Ω) + |u|B̃m(Ω)

)α
2 .

A combination of above facts lead to the desired result.

1.3.3 Error bounds for (1.25)

In the error analysis, we compare the numerical solution with a suitable orthogonal

projection of the exact solution. The orthogonal projection in time π0,−1
N : L2

ω0,−1(I)→

SN , is defined by

(π0,−1
N v − v, φ)I,ω0,−1 = 0, ∀φ ∈ SN . (1.57)
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Defining

Ĥ1(I) := {u : u ∈ H1(I) ∩ L2
ω0,−2(I)},

one observes that for any v ∈ Ĥ1(I) and ψ ∈ S∗N ,(
∂t(π

0,−1
N v − v), ψ

)
I

= −
(
π0,−1
N v − v, ω0,1∂tψ

)
I,ω0,−1 = 0, (1.58)

which follows from the fact ω0,1∂tφ ∈ SN and the definition (1.57). According to

Theorem 1.1 in [27], we have

Lemma 6 If v ∈ L2
ω0,−1(I) and ∂kxv ∈ L2

ωk,k−1(I) for 1 ≤ k ≤ n, then

‖∂lt(π
0,−1
N v − v)‖ωl,l−1 . N l−n‖∂nt v‖ωn,n−1 , l ≤ n, l = 0, 1. (1.59)

For notational convenience, we denote by Am(D) (respectively Bn(D)) a func-

tion space consisting of measurable functions satisfying ‖u‖Am(D) < ∞ (respectively

‖u‖Bn(D) <∞), where for integers m ≥ 2 and n ≥ 0,

‖u‖Am(D) =
(∥∥ ‖∂tu‖H2(Ω) + |∂tu|B̃m(Ω)

∥∥2

L2
ω2,0

(I)
+
∥∥ ‖u‖H2(Ω) + |u|B̃m(Ω)

∥∥2

L2
ω0,−1 (I)

) 1
2
,

‖u‖Bn(D) =
(
‖∂nt u‖2

H
α
2 (Ω,L2

ωn,n−1 (I))
+ ‖∂nt u‖2

L2(Ω,L2
ωn,n−1 (I))

) 1
2
.

Theorem 1.3.2 Let α 6= 1, ε > 0 and β > 0, and let u, uL be respectively the solutions

of (1.22) and (1.25). If u ∈ L2
ω1,−1(I;H2(Ω)) ∩ Ĥ1(I;L2(Ω)) ∩ Am(D) ∩ Bn(D) and

∂nt u ∈ H2−α
2 (Ω, L2

ωn,n−1(I)) with integers m ≥ 3 and n ≥ 0, then we have

‖u− uL‖L2(Ω,L2
ω0,−1 (I)) + ‖(−∆)

α
4 (u− uL)‖L2(Ω,L2

ω1,−1 (I)) . N−n‖u‖Bn(D) +M
α
2
−m‖u‖Am(D)

+ dαuM
α
2

(−α
2
−m+2)

∥∥ ‖u‖H2(Ω) + |u|B̃m(Ω)

∥∥α2
L2
ω0,−1 (I)

+ dαuN
−α

2
n‖∂nt u‖

α
2

H2−α2 (Ω,L2
ωn,n−1 (I))

,

where dαu := c(α)
(
‖Π2,d

M u‖
H−

α
2 (Ω,L2

ω1,−1 (I))
+ ‖u‖

H−
α
2 (Ω,L2

ω1,−1 (I))

)1−α
2 .

Proof Let us denote ũL := π0,−1
N Π2,d

M u = Π2,d
M π0,−1

N u and eL := uL − ũL. By virtue of

(1.2) with N (u) = βu− f and (1.25), we have

a(u, v) : =
(
∂tu, v

)
D

+ ε
(
(−∆)

α
4 u, (−∆)

α
4 v
)
D

+ β
(
u, v
)
D

= (f, v)D,

aM(uL, v) : =
(
∂tuL, v

)
D

+ ε〈(−∆M)
α
2 uL, v〉D + β

(
uL, v

)
D

= (f, v)D, v ∈ VM ⊗ SN ,

(1.60)
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which imply

a(u, v) = aM(uL, v), v ∈ VM ⊗ SN .

This, along with (1.60), yields

aM(eL, v) = a(u− ũL, v) + a(ũL, v)− aM(ũL, v)

=
(
∂t(u− ũL), v

)
D

+ ε
(
(−∆)

α
4 (u− ũL), (−∆)

α
4 v
)
D

+ β
(
u− ũL, v

)
D

+ ε〈(−∆)
α
2 ũL − (−∆M)

α
2 ũL, v〉D,

(1.61)

for all v ∈ VM ⊗ S∗N . Due to (1.58), the above equation can be simplified to

aM(eL, v) =
(
∂t(u− Π2,d

M u), v
)
D

+ ε
(
(−∆)

α
4 (u− π0,−1

N Π2,d
M u), (−∆)

α
4 v
)
D

+ β
(
u− ũL, v

)
D

+ ε〈(−∆)
α
2 ũL − (−∆M)

α
2 ũL, v〉D.

(1.62)

Taking v = 1−t
1+t
eL(∈ VM ⊗ S∗N) in above equation, and using Lemma 2, we arrive at

‖eL‖L2(Ω,L2
ω0,−2 (I)) +

√
ε‖eL‖H α

2 (Ω,L2
ω1,−1 (I))

+
√
β‖eL‖L2(Ω,L2

ω1,−1 (I))

∼= ‖eL‖L2(Ω,L2
ω0,−2 (I)) +

√
ε‖(−∆)

α
4 eL‖L2(Ω,L2

ω1,−1 (I)) +
√
β‖eL‖L2(Ω,L2

ω1,−1 (I))

. ‖∂t(u− Π2,d
M u)‖L2(Ω,L2

ω2,0
(I)) + ‖(−∆)

α
4 (u− π0,−1

N Π2,d
M u)‖L2(Ω,L2

ω1,−1 (I))

+ ‖u− ũL‖L2(Ω,L2
ω1,−1 (I)) + ‖(−∆)

α
2 ũL − (−∆M)

α
2 ũL‖H−α2 (Ω,L2

ω1,−1 (I))
.

(1.63)

The first two terms at the right-hand side can be bounded by using Lemma 5 - 6,

(1.58), (1.59) and (1.50) as follows:

‖∂t(u− Π2,d
M u)‖L2(Ω,L2

ω2,0
(I)) .M−m

∥∥ ‖∂tu‖H2(Ω) + |∂tu|B̃m(Ω)

∥∥
L2
ω2,0

(I)
,

‖(−∆)
α
4 (u− π0,−1

N Π2,d
M u)‖L2(Ω,L2

ω1,−1 (I))

≤ ‖(−∆)
α
4 (u− π0,−1

N u)‖L2(Ω,L2
ω1,−1 (I)) + ‖π0,−1

N (−∆)
α
4 (u− Π2,d

M u)‖L2(Ω,L2
ω1,−1 (I))

. ‖u− π0,−1
N u‖

H
α
2 (Ω,L2

ω1,−1 (I))
+ ‖u− Π2,d

M u‖
H
α
2 (Ω,L2

ω0,−1 (I))

. N−n‖∂nt u‖H α
2 (Ω,L2

ωn,n−1 (I))
+M

α
2
−m
∥∥ ‖u‖H2(Ω) + |u|B̃m(Ω)

∥∥
L2
ω0,−1 (I)

,

and

‖ũL − u‖L2(Ω,L2
ω1,−1 (I)) . ‖π0,−1

N (u− Π2,d
M u)‖L2(Ω,L2

ω0,−1 (I)) + ‖u− π0,−1
N u‖L2(Ω,L2

ω0,−1 (I))

. ‖u− Π2,d
M u‖L2(Ω,L2

ω0,−1 (I)) + ‖u− π0,−1
N u‖L2(Ω,L2

ω0,−1 (I))

.M−m
∥∥ ‖u‖H2(Ω) + |u|B̃m(Ω)

∥∥
L2
ω0,−1 (I)

+N−n‖∂nt u‖L2(Ω,L2
ωn,n−1 (I)).
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A combination of the above leads to

‖eL‖L2(Ω,L2
ω0,−2 (I)) +

√
ε‖eL‖H α

2 (Ω,L2
ω1,−1 (I)

.M−m∥∥ ‖∂tu‖H2(Ω) + |∂tu|B̃m(Ω)

∥∥
L2
ω2,0

(I)

+N−n‖∂nt u‖H α
2 (Ω,L2

ωn,n−1 (I))
+M

α
2
−m∥∥ ‖u‖H2(Ω) + |u|B̃m(Ω)

∥∥
L2
ω0,−1 (I)

+N−n‖∂nt u‖L2(Ω,L2
ωn,n−1 (I)) + ‖(−∆)

α
2 ũL − (−∆M)

α
2 ũL‖H−α2 (Ω,L2

ω1,−1 (I))
.

(1.64)

We can estimate the last term by using an argument similar to that for the proof in

Theorem 1.3.1,

‖(−∆)
α
2 ũL − (−∆M)

α
2 ũL‖H−α2 (Ω,L2

ω1,−1 (I))

≤ ‖(−∆)
α
2 (ũL − u) + (−∆)

α
2 u− (−∆M)

α
2 ũL‖H−α2 (Ω,L2

ω1,−1 (I))

≤ ‖(−∆)
α
2 (ũL − u)‖

H−
α
2 (Ω,L2

ω1,−1 (I))
+ ‖(−∆)

α
2 u− (−∆M)

α
2 ũL‖H−α2 (Ω,L2

ω1,−1 (I))

(1.65)

By (1.59) and (1.50), the bound of first term in (1.65) is given by

‖(−∆)
α
2 (ũL − u)‖

H−
α
2 (Ω,L2

ω1,−1 (I))
. ‖ũL − u‖H α

2 (Ω,L2
ω1,−1 (I))

. N−n‖∂nt u‖H α
2 (Ω,L2

ωn,n−1 (I))
+M

α
2
−m∥∥ ‖u‖H2(Ω) + |u|B̃m(Ω)

∥∥
L2
ω0,−1 (I)

.
(1.66)

Then, by Lemma 4, we estimate the last term of (1.65) by

‖(−∆)
α
2 u− (−∆M)

α
2 ũL‖H−α2 (Ω,L2

ω1,−1 (I))
. dαu‖(−∆)u− (−∆)ũL‖

α
2

H−
α
2 (Ω,L2

ω1,−1 (I))

. dαu‖∆(u− π0,−1
N u)‖

α
2

H−
α
2 (Ω,L2

ω1,−1 (I))
+ dαu‖π

0,−1
N ∆(u− Π2,d

M u)‖
α
2

H−
α
2 (Ω,L2

ω1,−1 (I))
(1.67)

. dαu‖u− π
0,−1
N u‖

α
2

H2−α2 (Ω,L2
ω1,−1 (I))

+ dαu‖u− Π2,d
M u‖

α
2

H2−α2 (Ω,L2
ω1,−1 (I))

. dαuN
−α

2
n‖∂nt u‖

α
2

H2−α2 (Ω,L2
ωn,n−1 (I))

+ dαuM
α
2

(2−α
2
−m)
∥∥ ‖u‖H2(Ω) + |u|B̃m(Ω)

∥∥α2
L2
ω0,−1 (I)

.

On the other hand, we have u − uL = u − ũL + eL. Then, using Lemma 6 - 1.50,

again yields for α 6= 1,

‖(−∆)
α
4 (u− ũL)‖L2(Ω,L2

ω1,−1 (I))

. N−n‖∂nt u‖H α
2 (Ω,L2

ωn,n−1 (I))
+M

α
2
−m∥∥ ‖u‖H2(Ω) + |u|B̃m(Ω)

∥∥
L2
ω0,−1 (I)

,
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and

‖u−ũL‖L2(Ω,L2
ω0,−1 (I)) .M−m∥∥ ‖u‖H2(Ω)+|u|B̃m(Ω)

∥∥
L2
ω0,−1 (I)

+N−n‖∂nt u‖L2(Ω,L2
ωn,n−1 (I)).

Consequently, the desired result follows from above estimates, the triangle inequality

and (1.67).

1.4 Numerical results for linear fractional equations

In this section, we present some numerical results obtained by the spectral method

(1.17) for (1.1) and the space-time spectral method (1.25) for (1.22).

Example 1 (with known smooth exact solutions)

We consider first the following smooth exact solutions for (1.1) with homogeneous

Dirichlet boundary conditions:

u(x) = ϕk(x) and u(x, y) = ϕk(x)ϕk′(y), k, k′ = 0, 1, 2, · · · , (1.68)

where {λk, ϕk}k≥0 denote the eigenpairs of spectral Laplacian operator on (−1, 1), and

have explicit formulas

ϕk(x) = sin(
√
λk(x+ 1)), λk =

((k + 1)π

2

)2

. (1.69)

The corresponding source term can be calculated by using the definition of spectral

fractional Laplacian

f(x) = λ
α
2
k ϕk(x), f(x, y) = (λk + λk′)

α
2 ϕk(x)ϕk′(y).

In Fig 1.1, we list the H
α
2 -errors in semi-log scale with α = 1.8. The plots in

Fig 1.1 indicate the numerical errors decay exponentially. This is consistent with

the theoretical result in Theorem 3.1 which predicts that for this smooth solution, the

convergence rate is faster than any algebraic rate.

Example 2 (with a unknown weakly singular solution)
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Figure 1.1.: (a). H
α
2 -error in semi-log scale of (1.1) with u(x) = ϕk(x); (b). H

α
2 -error in

semi-log scale of (1.1) with u(x, y) = ϕk(x)ϕk(y).

We consider now the problem (1.1) with f(x) = 1 and homogeneous Dirichlet

boundary conditions. Since the exact solution is unknown, we use the truncation of

the exact solution

u(x) ≈
10000∑
j=0

λ
−α

2
j 〈1, ϕj〉ϕj(x), (1.70)

as the reference solution, where {λj, ϕj}j≥0 are given in (1.69). It is known that the

exact solution has weak singularities at the boundary [10]. In the left of Fig 1.2, we

plot the H
α
2 -error of our Legendre spectral method in log-log scale. We observe that

the convergence rate is clearly O(M−1−α). As a comparison, we also plot the H
α
2 -

error of the Fourier spectral method [1] in the right of Fig 1.2. We observe that the

Fourier spectral method converge at O(M−0.5−α/2), which means the convergence rate

of our method is twice that of Fourier spectral method under H
α
2 -norm.

We plot in Fig 1.3 the L2-error of our Legendre spectral method in log-log scale.

While one can not use the usual duality argument to improve the error estimate in

L2-norm, we do observe that the L2-error decays as O(M−1−2α), an improvement of

order α over the H
α
2 -error.

Example 3 (a fractional diffusion equation)
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Figure 1.2.: (a). H
α
2 -error, in log-log scale, of our method for (1.1) with right hand side

term f(x) = 1; (b). H
α
2 -error, in log-log scale, of Fourier spectral method in [1] for (1.1)

with right hand side term f(x) = 1.
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Figure 1.3.: L2-error, in log-log scale, of our method for (1.1) with right hand side term

f(x) = 1.

As the last example, we consider the following fractional diffusion equation

∂tu+ (−∆)
α
2 u = 0, (1.71)
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with the initial conditions: (a) a Gaussian like function e−25x2/(1−x2) (with homo-

geneous Dirichlet boundary condition); (b) a sigmoid exhibiting sharper gradients

tanh(25x/
√

1− x2) (with Neumann boundary condition). The numerical solution

computed with our space-time spectral method with M = N = 100 at T = 0.1 are

plotted in Figure 1.4, and the black dotted line is the initial conditions. We observe

that, as expected, the diffusion rate decreases as the fractional power α decreases.

In Fig 1.5, we list the L2-errors of (1.71), compared with an ”exact” solution

computed with a refined mesh, in semi-log scale against various M = N at T = 0.1.

We observe an exponential convergence with respect to M = N for our space-time

spectral method, but as α decreases, the rate of convergence also decreases. This is

due to the fact that, with the given initial conditions, the solution is essentially smooth

in the time interval that we considered.

x
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(a)

x
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-1
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1
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α=1.2
α=1.4
α=1.6
α=1.8
α=2

(b)

Figure 1.4.: Numerical solution of fractional heat equation (1.71) for different α: (a) initial

data: e−25x2/(1−x2); (b) initial data: tanh(25x/
√

1− x2).
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Figure 1.5.: L2-error for (1.71) at T = 0.1 for different α; (a) initial data u0 = e−25x2/(1−x2);

(b). initial data u0 = tanh(25x/
√

1− x2).

1.5 Application to nonlinear fractional equations

The method presented in Section 2 can be used as an effective preconditioner in the

Jacobian-free Newton-Krylov algorithm [28] to solve nonlinear fractional equations

(1.2). More precisely, the linearized (about a function w) equation of (1.2) is:

Lwv := ∂tv + ε2(−∆)
α
2 v +N ′(w)v = 0. (1.72)

Hence, with a suitable constant β, L0 defined by

L0v := ∂tv + ε2(−∆)
α
2 v + βv

will be an effective preconditioner for Lw. Since v → Lwv and v → L−1
0 v can be

efficiently performed in the space-time approximation space described in Section 2,

we can solve (1.2) efficiently with the the Jacobian-free Newton-Krylov algorithm. In

addition, the following strategies are used:
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• The convergence rate of the Newton-Krylov iteration depends on the quality of

the initial guess. We use the following simple semi-implicit scheme to generate

such an initial guess: Find vn+1
M ∈ V d

M s.t.

(
vn+1
M − vnM
tn+1 − tn

, wM) + (ε2(−∆)
α
2 vn+1
M , wM) + (N(vnM), wM) = 0 ∀wM ∈ V d

M , (1.73)

where tk are the scaled Legendre-Gauss-Radau points. The above equation can

be easily solved by using the Fourier-like basis of V d
M .

• To integrate the nonlinear problems (1.2) for a large time interval [0, T ], we can

first divide [0, T ] into a number of smaller intervals [0, T ] = ∪Ki=1[Ti−1−Ti], and

apply the space-time spectral method on each interval using the final solution

at the interval [Ti−1 − Ti] as the initial condition for the interval [Ti − Ti+1].

1.5.1 Fractional FitzHugh-Nagumo model

The FitzHugh-Nagumo model is a system of reaction-diffusion equations describ-

ing wave propagation in an excitable medium. It takes the following form (with

α = 2):

∂tu = −Ku(−∆)
α
2 u+ u(1− u)(u− a)− v,

∂tv = ε(βu− γv − δ),

∂nu|∂Ω = ∂nv|∂Ω = 0,

(1.74)

where u is a ”fast” variable which describes membrane potential of a cell and v is a

”slow” variable which connects with the medium conductivity by inverse ratio. Here,

we also consider the fractional FitzHugh-Nagumo model, represented by the above

system with α ∈ (1, 2), which takes into accounts non-local interactions [1].

Let Ω = (−1, 1)2, and set the parameters in (1.74) to be a = 0.1, ε = 0.01, β =

0.5, γ = 1, δ = 0. These parameters are considered in [1], and they lead to stable

patterns in the system in the form of re-entrant spiral waves. In our simulations,

the trivial state (u, v) = (0, 0) was perturbed by setting the lower-left quarter of
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the domain to u = 1 and the upper half part to v = 0.1, which allows the initial

condition to rotate clockwise to generate spiral patterns. We discretize the spatial

domain using 256× 256 points, and compute the solution up to T = 2000 so that the

solution reaches the steady state.

The steady state rotating solutions at t = 2000, with different diffusion coefficient

K and fractional order α, are presented in Fig. 1.6. we observe similar behaviors

as reported in [1]. Namely, as α decreases, the width of the excitation wavefront

decreases (cf. the top row of Fig. 1.6), which also happens as we decrease the diffusion

coefficient (cf. the bottom row of Fig. 1.6). However, there is also a significant

difference between our simulation with homogeneous Neumann boundary conditions

and the simulation in [1] with a periodic boundary condition: in our simulations,

the rotation angles are more aligned with the boundary which reflects the effect

of the homogeneous Neumann boundary conditions, while in their simulations the

curvatures are essentially uniform.

(a) α = 2 (b) α = 1.7 (c) α = 1.5

(d) Ku = 5× 10−5 (e) Ku = 3× 10−5 (f) Ku = 10−5

Figure 1.6.: Spiral wave in FitzHugh-Nagumo model for various α and Ku; top:

Ku = 10−4; bottom: α = 1.7.
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1.5.2 Fractional Allen-Cahn equation

The Allen-Cahn equation is a reaction-diffusion equation describing the process

of phase separation in crystalline solids. It takes the following form (with α = 2):

∂tu+ ε2(−∆)
α
2 u+ (u2 − 1)u = 0. (1.75)

The fractional Allen-Cahn equation (with α ∈ (1, 2)) has received some attention

recently [3,29,30]. In the following, we shall present some numerical results for both

the regular and fractional Allen-Cahn equation. In all computations below, we set

ε = 0.1.

Solution transition presentation

We then give an example to show the transition process of the solution, see,

e.g., Fig 1.7. In our example, x ∈ [−1, 1], t ∈ [0, 3000] and 128 × 128 points used to

discretize the region. Here initial solution is selected as u(x, 0) = 1
2

sin(3π
2
x)(cos(πx)−

1). As mentioned in [1], in α = 2 and 1.7 cases, the initial solution evolves to an

unstable intermediate equilibrium and then quickly transform to a settlement with

one interface. However in α = 1.4 case, the unstable state lasts longer and when α

continues decreasing, the final equilibrium will become two waves. In Figure 1.8 we

also plot the initial transition of the solution for α = 1.4, where t ∈ [0, 10]. This

figure shows the sudden transform of the initial state which may not be observed in

Fig. 1.7 because of the large time scale.

width of 1-D interfacial layer

It is well-known that the parameter ε represents the interfacial width of the regu-

lar Allen-Cahn equation, and that the interfacial width deceases as α decreases in the

fractional Allen-Cahn equation [3, 29, 30]. More precisely, it has been observed com-
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Figure 1.7.: Solution transitions in Allen-Cahn equation with t ∈ [0, 3000] for various
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Figure 1.8.: Initial transition of the Allen-Cahn equation with t ∈ [0, 10].
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putationally [30] in and proved in [3] that the interfacial width behaves like O(ε1/α).

In this example, We take the initial solution to be

u0(x) =

 1, 0 ≤ x ≤ 1,

−1, −1 ≤ x < 0,
(1.76)

and compute the solution up to time=1 using N = 64, M = 1024 in our space-time

spectral method. In the left of Fig. 1.9, we plot the interfacial layer for different α at

time T = 1. And the thickness L is defined to be {x| − 1 < x < 1 and |u(x)| < 0.99}

(as is shown in Fig 1.9 (a)). In the right of Fig. 1.9, we plot the interfacial width L

with different α and ε, and we observe indeed that as the interfacial width decreases

as α decreases, and behaves like L = O(ε1/α) [3, 30].

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Interface layer for α=2, 1.6 and 1.2

x

 

 

α=2

α=1.6

α=1.2

L

(a)

0.005 0.01 0.015 0.02 0.025
0.17

0.37

0.57

0.77

1.01

ε

L

M=1024

α=2
α=1.6
α=1.2
ε1/2

ε1/1.6

ε1/1.2

(b)

Figure 1.9.: (a) Interfacial layers with different α; (b) Layer width L against ε for different

values of α.

2D kissing balls

We simulate the coalescence of two kissing bubbles, i.e. with the following initial

condition

u0(x, y) =

 1, (x+ 1
4
)2 + y2 ≤ 1

4
or (x− 1

4
)2 + y2 ≤ 1

4
,

−1, otherwise.
(1.77)
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Here we take ε = 0.1,M = 128. In order to illustrate the effect of changing the value

of fractional derivative α on the character of the solution of fractional Allen-Cahn

equation, we present plots of the solution for different values of fractional order α at

various times in Fig. 1.10 . We observe that in all cases, as time evolves, the two

bubbles coalesce into a single bubble but then shrink and disappear. This is because

Allen-Cahn equation doesn’t conserve mass. On the other hand, when α decreases to

fractional case, the shrinking speed becomes slower.

(a) α = 2.0

(b) α = 1.8

(c) α = 1.5

Figure 1.10.: Evolution of solution of fractional Allen-Cahn equation with initial

condition (1.77) for various fractional orderα.
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Velocity of 2-D moving interface

As suggested in [31], in order to predict quantitatively the kinetics of microstruc-

tural evolution, we have to calculate not only the accurate equilibrium profiles but

also the accurate velocity of a moving interface. To compare the influence of frac-

tional order α on the velocity of a moving interface, we consider the two dimensions

Allen-Cahn equation with system size 128× 128 in domain [−1, 1]2. In Fig. 1.11 we

plotted the contour near u = 0 which captures the movement of the interface. At

time t = 0, there is a circular interface boundary with a radius of 74. The order

parameter values inside the circle are assigned to be +1 and −1 outside. Such a

circular interface is unstable and will shrink under the mean curvature. In Fig. 1.12

we compute the radius of the inner circle with respect to time t for different α. It is

numerically observed that the radius of the circle shrinks as R2
0−R2 = O(tα/2) where

R0 is the initial radius.

1.6 Stochastic pde with fractional laplacian

1.6.1 Formulation

In this section we present one application of our algorithm in stochastic PDE with

polynomial chaos. In this problem setting the fractional order α is a random variable

satisfying certain distribution. The problem we are going to deal with is:

∆(y+1)/2
x u(x, y) = f(x, y) (1.78)

Here y ∈ [−1, 1] and satisfy uniform distribution for simple calculation. Following

our previous definition of fractional Laplacian, we have

∆α/2Φi = λα/2Φi
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Figure 1.11.: Temporal evolution of circular domain for various α.
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Figure 1.12.: Radius of the circular domain as a function of time obtained with

different fractional order α using time step ∆t = 0.5.
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where Φi(x) are the eigenfunction of Laplacian operator. As mentioned in [32], with

uniform distribution, one should use Legendre polynomials as the basis for stochastic

variable. Thus we have:

∆(y+1)/2
x uN(x, y) =

M∑
i=1

N∑
j=1

uijλ
(y+1)/2
i Φi(x)Lj(y) = f(x, y)

Then we take expectation of the equation and get the following inner product:

(f(x, y),Φp(x)Lq(y)) =
M∑
i=1

N∑
j=1

uij(Φi(x),Φp(x))(λ
(y+1)/2
i Lj(y), Lq(y)) (1.79)

=
N∑
j=1

upj(λ
1−(y+2)/2
p Lj(y), Lq(y)) (1.80)

1.6.2 Numerical Examples

We test the solution with:f(x, y) = sin(πx). In Fig. (1.13) a, the stochastic

solution is given, the y axis is the random variable and one could reach different

solution when y varies. Fig. (1.13) b is the expectation of the function u(·, Y = y)

which would be the exact solution of the FPDE.

1.7 Conclusion

In this paper, we developed efficient spectral methods for solving PDEs with frac-

tional Laplacians, and carried out rigorous error analysis for them. The methods are

based on the Fourier-like basis functions which are the eigenfunctions of the discrete

fractional Laplacian with non periodic boundary conditions. Therefore, the nonlocal

fractional Laplacian operator can be naturally handled, leading to simple, efficient

and accurate numerical algorithms. Our numerical experiments demonstrated that

our algorithms are robust, efficient and accurate for a variety of linear and nonlinear

PDEs with fractional Laplacian.

The analytical framework we introduced to estimate the errors between fractional

Laplacian and discrete fractional Laplacian is not restricted to spectral methods and
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can be used to analyze numerical approximations of fractional Laplacian by using

other Galerkin type approximations such as finite-element methods.

We only considered rectangular domains in this paper. However, by using a re-

cently developed spectral method for general domains [17], we expect to be able to

extend the approach proposed here to problems in more general domains.
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2. EFFICIENT NUMERICAL SCHEME FOR

COMPUTING STABILITY OF QUASI-CRYSTALLINE

INTERFACE

2.1 Introduction

When we mention a modulated structure in space, for a long time in the history we

think of a parallelepiped, typically cubic, unit cell occurring repeatedly in the space.

A few structures easy to imagine include lamellae, cylinder, and sphere structures.

Some complex structures are also observed, such as gyroid structure. Despite they

might seem fancy, we can always cut a unit cell from the structure. These structures

have been found in various systems, including metals, colloids, block copolymer, liquid

crystals, etc. [33–35]. Mathematically, they can be described by periodic functions in

R3. It was not until the 1980s that the first discovery of a 5-fold symmetry structure in

a rapidly cooled Al-Mn alloy is reported [36], which is recognized as quasicrystals years

later. Since then, quasicrystals are observed in several other physical systems [37–39].

In quasicrystals, local morphology can be found repeatedly, but one is not able to find

a unit cell. To describe quasicrystals, periodic functions are no longer appropriate

and have been extended to quasiperiodic functions, which can be generated by the

limitation of a periodic function in Rn onto an R3 subspace. In this sense, a periodic

structure can be regarded as special cases of quasicrystals. The most interesting fact

about quasicrystals is that they can form symmetries not allowed by crystallographic

space groups, such as five-, eight-, ten- and twelve-fold rotations and icosahedral

symmetries [40–45].

Studies of quasicrystals have been focusing on the structures themselves. For

the phase transitions involving quasicrystals, we currently know very little. Phase

transitions can typically occur in two different ways. One is that one phase loses
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stability and transforms into another as a whole. The other is that two phases coexist

for some time and the change mainly happens in the transition zone. In the latter, the

transition zone is understood as an interface between two structures. The driving force

of the phase transitions comes from the interface where excess energy is stored. When

modulated phases are involved, the morphology of interfacial more complex, since the

modulated phase possesses different intrinsic structures with different symmetries.

For many materials consisting of modulated phases, the morphology of interface has

a great effect on physical properties, such as elasticity and conductivity.

There are different viewpoints held on the interface. In many works, the interface is

regarded as a transient state [46–48]. One could choose a finite domain, let two phases

occupy part of the domain, and focus on the dynamics showing the movement of the

interface. Studies of this kind are common for the interface between disordered phases

such as water-vapor interface. The interface between modulated phases, however,

usually has a long lifetime and is dependent on relative position and orientation.

It is desirable to view the interface as a steady state under some constraints, so as

to figure out the mechanism of connecting two modulated structures with different

symmetries. From the above setting, it is difficult to control the relative position and

orientation, and typically multiple structures are obtained that could interplay each

other, making it difficult for us to identify the mechanism. Therefore, we choose the

framework proposed in [49]. In that framework, the whole space is divided into three

regions by two parallel planes, the two phases, with each phase being displaced or

rotated, occupy the two on the sides, and a transition zone occurs in between. After

posing the two phases as above, one then chooses the appropriate function space and

boundary conditions that are able to describe both phases and constrain the relative

position and orientation. In this function space, one could then let the system evolve

to a local minimizer, typically under a gradient flow, to obtain the process for the

interface to reach the optimal structure. Under this framework, we would understand

the mechanism more clearly.
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Although the framework in [49] is clear, the numerical methods are not careful-

ly designed previously. Only the special cases are examined where two phases are

matched with common periodicity, and the numerical schemes adopted are naive.

When quasicrystals are put into consideration, further difficulties arise. The first one

is that high-order spatial derivatives will likely be involved, which is common in the

models of quasicrystals. We use the Lifschitz–Petrich free energy [50], a model system

that contains up eighth-order spatial derivatives. The free energy requires conserva-

tion of mass, so the H−1 gradient flow will be studied. As a result, we need to solve

a PDE with tenth-order spatial derivatives. To reach the accuracy that will not the

destruct the quasicrystalline structures, it is crucial to choose an appropriate spatial

discretization. Problems of this kind have been studied for capturing the bulk pro-

file [51], where one either needs to use Fourier series of higher dimensional space, or

approximate by the Fourier series in three-dimensional space with a carefully chosen

length of period. In the system for computing the interfacial structure, however, the

Fourier series cannot be adopted directly. This will bring a second difficulty, that is,

to specify the boundary conditions numerically. We need to displace and rotate its

profile into a given position and orientation, then find the boundary conditions and

set them for the interface system. These two steps are trivial for PDE, but become

a problem for the discretized system. For the special cases where common periodic-

ity exists, this problem could be evaded by using the same spatial discretization for

both the bulk profile and the interface system. However, this is no longer applicable

for quasiperiodic interface. Since the spatial discretization will be different, when

implementing the rotation and transformation between different discretization, we

also need to guarantee reasonable accuracy that is able to keep the two phases on

both sides. A third difficulty brought by the high-order spatial derivatives is for the

time discretization of the gradient flow that requires energy stability. An ideal time

discretization would combine energy stability, efficiency and easy implementation.

Taking these difficulties into consideration, the finite difference and finite element

methods that are commonly used in previous works [52–55] are not very convenient,
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because for solving high order PDEs the long grid stencils for high order derivative

discretization will have a problem on accuracy. Spectral-collocation method is also not

appropriate as the quadratures involving derivatives at the boundary points are diffi-

cult to derive [56]. We propose to use the spectral methods for spatial discretization,

which are accurate enough to describe the quasiperiodic structures and are conve-

nient to implement rotation and specify boundary conditions. Spectral methods have

proved to be efficient and accurate for solving PDEs involving high order derivatives

in simple geometries, which have been applied to the third-order KdV equation [57]

and some fourth-order equations [58, 59]. Spectral methods embrace the advantage

that the resulting linear system is sparse and well-conditioned, and in some cases fast

direct solvers are available. Theoretical analysis and numerical results have shown

the accuracy and efficiency [57]. For the interface system, we propose to use mix-

ing of Fourier series and generalized Jacobi polynomials as spatial discretization. It

is worth pointing out that when dealing with quasiperiodicity, to describe a system

with certain physical dimension, usually the dimension of computation is necessarily

higher (cf. [51], where four-dimensional Fourier series are needed for two-dimensional

dodecagonal structures). The system to be solved numerically could become very

large if we do not carefully control the size of spatial discretization. The spectral

methods are able to reach adequate accuracy with a relatively small the number of

variables in each dimension. Thus, spectral methods can greatly reduce the size of

the discretized system, thereby improve the efficiency.

For the time discretization, we use the SAV approach proposed recently for gra-

dient flows [60, 61]. The SAV approach leads to numerical schemes linearly implicit

with unconditional energy stability. Furthermore, the resulting linear system has con-

stant coefficients that is easy to solve efficiently. This approach is extremely suitable

when the free energy of the gradient flow has a dominant quadratic part, which is

exactly the case for the Lifshitz–Petrich energy. Together with the spectral methods

for spatial discretization, the linear system is block diagonalized so that we can solve
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without much effort. For the Lifshitz–Petrich energy, the convergence of the time

discretization has actually been covered by the analysis in [62].

On applying the above numerical scheme for the quasicrystal interface, we examine

some cases that are not dealt with previously. In particular, apart from the interface

with a periodic structure, we focus on the quasiperiodic cases. These cases include

the interface between periodic phases without common periodicity, or the interface

involving quasicrystals. Some novel structures are presented. From these examples,

we can see the potential of applying our scheme to deal with a larger class of free

energy functionals, such as free energy characterizing long-range pairwise interactions

proposed for 3D icosahedral quasicrystals [43].

The rest of the paper is organized as follows. In Section 2, we describe the basic

setting and discretization. We introduce the Lifshitz-Petrich free energy and the

function space for quasicrystal solutions, followed by explaining the function space

and boundary conditions for the interface system. Then, we discretize using the SAV

scheme, followed by spatial discretization. In two of the three directions we use the

Fourier series. For the other direction, we explain how to construct an approximation

space by Jacobi polynomials. Significant details in the implementation are explained.

Numerical results of interfacial structures will be presented in Section 3. Concluding

remarks are given in Section 4.

2.2 Model and numerical algorithms

2.2.1 Lifshitz–Petrich model and quasicrystal solutions

The free energy for modulated phases might originate from Brazovskii [63], known

as the Landau–Brazovskii model, and is later studied in different context [64–66]. By

modifying the Landau–Brazovskii model, some free energy functionals are proposed

for quasicrystals [50, 67, 68]. We will consider the Lifshitz–Petrich (LP) free energy
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proposed in [50] and has received much attention. The free energy density in a domain

Ω ⊆ R3 is given by

E[φ(r); Ω] =
1

V (Ω)

∫
Ω

{ c
2

[(∆ + 1)(∆ + q2)φ]2 − ε

2
φ2 − α

3
φ3 +

1

4
φ4
}
dr, (2.1)

where r = (x, y, z)t, V (Ω) is the volume of Ω, and q > 0, c > 0, ε, α are phe-

nomenological parameters. This free energy is simple while is able to describe many

modulated phases including quasicrystals.

The bulk profile of a phase is obtained by minimizing the functional (2.1) when

letting Ω→ R3. If the phase is periodic with the unit cell Ω0, we can verify that

lim
Ω→R3

E[φ(r); Ω] = E[φ(r); Ω0], (2.2)

which is the energy density in the unit cell. However, the limit on the left-hand side

is also suitable for quasicrystals. The free energy is characterized by the first term

involving derivatives. We could see it by taking a simple wave cos(p · r) into the

energy where p is a constant vector. The first term yields

c

4
(1− |p|2)2(q2 − |p|2)2,

indicating that this term favors |p| = 1 or |p| = q. This term acts as a role of

wavelength selection that damps out all modes except those near the above two

spherical surface.

No matter for periodic or quasiperiodic phases, the profile could be written in the

following form,

φ(r) =
∑

k1,...,kn∈Z

φ̂k1,...,kn exp(i
n∑
j=1

kjbj · r). (2.3)

In the above, bj (j = 1, . . . , n) are n vectors in R3 that are linearly independent about

the field of rational numbers Q. It implies that
∑n

j=1 kjbj = 0 for some integers kj

is equivalent to kj = 0. We define the n-dimensional integer vector k and the 3 × n

matrix B as

k = (k1, . . . , kn)t, B = (b1, . . . , bn). (2.4)
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The profile φ(r) can then be written as

φ(r) =
∑
k∈Zn

φ̂k exp(iktBtr). (2.5)

Taking the profile into the free energy, noticing the linear independence of bj and the

equality

lim
Ω→R3

1

V (Ω)

∫
Ω

exp(ip · r) dr = 0, p 6= 0, (2.6)

we obtain

lim
Ω→R3

E[φ(r); Ω] =
1

2

∑
k∈Zn

(
c
(
1− |Bk|2

)2(
q2 − |Bk|2

)2 − ε
)
φ̂kφ̂−k

− α

3

∑
k1+k2+k3=0

φ̂k1φ̂k2φ̂k3 +
1

4

∑
k1+k2+k3+k4=0

φ̂k1φ̂k2φ̂k3φ̂k4 . (2.7)

From the above expressions, we can see that the structure of a phase weighs heavily

on the 3×nmatrix B that is full column-rank on Q. The matrix B determines whether

the phase is periodic: if n ≤ 3, and the column rank of B on R is also n, then φ is

periodic in R3; if n ≥ 4, or n ≤ 3 but the column rank of B on R is less than n,

then φ is no longer periodic, and is called quasiperiodic. In what follows, we write

down the matrix B, under specific orientation, for three phases we will discuss in this

paper: striped, hexagonal, and dodecagonal, which are drawn in Fig. 2.1. They all

show modulation in at most two directions and are homogeneous in the third, which

we can see from the matrix B. The former two phases are periodic, while the third is

quasiperiodic. Rigorously speaking, the matrix B shall be optimized by minimizing

(2.7). However, we choose to write down directly with |bj| = 1 or |bj| = q, which is

an approximation good enough.

• Stiped phase. Because we have two favored wavelength, there are two cases.

B =


0

1

0

 , B =


0

q

0

 . (2.8)
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The striped pattern is shown in Fig. 2.1 (a), where two matrices will give

different widths of the stripe. Since the second and the third rows of B are zero,

the phase profile φ does not depend on y and z and only shows modulation in

the x-direction.

• Hexagonal phase. Similar to the striped phase, we have two cases.

B =


0

√
3

2

1 1
2

0 0

 , B =


0

√
3q
2

q q
2

0 0

 . (2.9)

The third row of B is zero, indicating that profile φ is independent of z. The

hexagonal pattern is drawn in Fig. 2.1 (b), where the two matrices will give

different distances between circles.

• Dodecagonal phase. We require q = 2 cos(π/12), and let

B = (b1, b2, b3, b4) =


1 1

2

√
3

2
0

0
√

3
2

1
2

1

0 0 0 0

 . (2.10)

Since the third row of B is zero, the dodecagonal phase only has modulation

in two directions. The value of q is chosen such that it equals to the length of

the vector b1 + b2. Note that B has four columns. We could verify that the

vectors mj are linearly independent on Q, by noting that 1 and
√

3 are linearly

independent on Q. Thus, from B we can see that the phase is quasiperiodic.

The pattern is drawn in Fig. 2.1 (c), showing 12-fold symmetries that cannot

be allowed in periodic phases.

2.2.2 General setting for the interface system

As we have mentioned, we divide the whole space into three regions by two parallel

planes x = −L and x = L for some L. We assume that the phase 1 occupies the
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(a) Striped (b) Hexagonal (c) Dodecagonal

Figure 2.1.: Three patterns formed under LP model.

region x ≤ −L, and the phase 2 occupies the region x ≥ L. The interface will emerge

in the region −L < x < L. In this region, we solve the gradient flow below to let the

interface evolve to the equilibrium state,

∂φ

∂t
=∆µ, (2.11)

µ =
δE

δφ
= (∆ + 1)2(∆ + q2)2φ− εφ− αφ2 + φ3. (2.12)

To make the gradient flow indeed describe the interface for certain relative position

and orientation, we need to specify some conditioins as we explain below.

First, we need to pose the two phases in certain position and orientation. Let us

express the two phase profiles after some rotation and displacement, which we denote

by φR1 and φR2 . For Ts ∈ SO(3) and ds ∈ R3, the profile of the phase s (s = 1, 2)

becomes

φRs (r) = φ(Tsr + ds) =
∑
ks∈Zns

φ̂sk exp
(
iktsB

t
s(Tsr + ds)

)
=
∑
ks∈Zns

(
φ̂sks exp(iktsB

t
sds)

)
exp

(
ikts(T

t
sBs)

tr
)

=
∑
ks∈Zns

φ̂Rsks exp
(
ikts(T

t
sBs)

trs

)
, (2.13)

where we denote φ̂Rsks = φ̂sks exp(iktsB
t
sds).
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Phase 1 Interface
(Computational 
domain)

Phase 2

z

x
y

x=-L, Dirichlet Phase 1

y-z Quasiperiodic

x=L, Dirichlet Phase 2

z

x
y

Figure 2.2.: Setting of the interface problem

The information for x ≤ −L and x ≥ L is translated into the Dirichlet boundary

condition. The function value and the normal derivatives of φ on the boundary shall

be identical to the bulk values. Denote r̃ = (y, z)t. Then we have

∂k

∂xk
φ(−L, r̃) =

∂k

∂xk
φR1 (−L, r̃),

∂k

∂xk
φ(L, r̃) =

∂k

∂xk
φR2 (L, r̃), k = 0, 1, 2, 3 (2.14)

Besides, we require the mass equation −L < x < L, so that we impose the Neumann

condition on µ,
∂µ

∂n
= 0. (2.15)
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Furthermore, since we are studying a PDE on the whole y-z plane, we need to

specify the function space in the y-z plane in which we solve the PDE. To this end,

let us look back into the phase profile φRs . For s = 1, 2, let us decompose the rotation

matrix Ts as (Tsx, T̃s), where Tsx is the first column, and T̃s is the second and third

columns of Ts. Then, we write

φRs (x, r̃) =
∑
ks∈Zns

φ̂Rsks exp
(
ikts(T

t
sxBs)

tx
)

exp
(
ikts(T̃

t
sBs)

tr̃
)
, (2.16)

Define B̃s = T̃ tsBs that is a 2 × ns matrix. For fixed x, φRs (x, r̃) is in the function

space

As =

{ ∑
ks∈Zns

aks(x) exp
(
iktsB̃

t
sr̃
)}

. (2.17)

Now, let us consider the 2 × (n1 + n2) matrix (B̃1, B̃2). The column rank of this

matrix on Q is n ≤ n1 + n2. Therefore, we could find a 2 × n matrix B such that

there exists an n× (n1 + n2) integer matrix Z satisfying

B̃Z = (B̃1, B̃2). (2.18)

We define the function space

A =

{
a(r) =

∑
k∈Zn

ak(x) exp
(
iktB̃tr̃

)}
. (2.19)

It can be verified that A1, A2 ⊆ A, since we have

B̃1k1 = (B̃1, B̃2)

 k1

0

 = B̃Z

 k1

0

 . (2.20)

In this sense, the function space A is suitable for both phases. It is easy to verify that

A is closed for linear combination, function multiplication and derivatives. So, if the

initial condition of the gradient flow (2.11)–(2.12) is in A, the solution will remain in

A.

It should be noted that the the definition of the space A depends on B̃1 and B̃2,

which are determined by the bulk profile and the rotations T1 and T2. In particular,
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even if the bulk phases are the same, for different rotations, the resulting function

space is also different.

We are now ready to define the inner product,

(u, v) = lim
D→R2

1

2LS(D)

∫
[−L,L]×D

u(r)v(r) dr =
1

2L

∑
k∈Zn

∫
[−L,L]

uk(x)v−k(x) dx.

(2.21)

For the second equality, we need to use the fact that B̃ is column full-rank on Q.

The interfacial energy density is defined as

Ei = lim
D→R2

E
[
φ(r);−[L,L]×D

]
, (2.22)

for which we have the energy dissipation,

dEi(φ)

dt
=

(
δE

δφ
,
∂φ

∂t

)
= −(∇µ,∇µ). (2.23)

We could write φR1 in the form given in (2.19) as follows,

φR1k(x) =
∑
k1

φ̂R1k1 exp(ikt1B1T1xx), the sum is taken over k = Z

 kt1

0

 .

(2.24)

Then, the boundary conditions are actually given on the coefficients φk(x) by

∂k

∂xk
φk(−L) =

∂k

∂xk
φR1k(−L),

∂k

∂xk
φk(L) =

∂k

∂xk
φR2k(L), k = 0, 1, 2, 3; (2.25)

and on µk(x) by
∂µk
∂n

= 0. (2.26)

For the initial condition, we could construct by a simple mixing ansatz,

φk(x) = (1− α(x))φR1k(x) + α(x)φR2k(x). (2.27)

where α(x) is a smooth monotone function satisfying α(−L) = 0 and α(L) = 1, which

we could approximate by

α(x) =
1− tanh(σx)

2
, (2.28)



50

with σ large.

To discretize the gradient flow (2.11)–(2.12), we first present the semi-discretized

scheme in time using the SAV approach that is unconditionally stable, followed by

spatial discretization by generalized Jacobi polynomials. Several details of computa-

tion will be presented, from which the efficiency can be recognized.

2.2.3 SAV approach

For the interface system, we are more interested in the steady state, so we use the

first-order scheme. Let

E1[φ] =
(
F (φ), 1

)
, F (φ) = C0 −

ε+ β

2
φ2 − α

3
φ3 +

1

4
φ4. (2.29)

where β > 0 is a constant, C0 is chosen such that F (φ) > 0 for any φ. An auxilliary

variable r(t) =
√
E1[φ] is introduced, so that the gradient flow is rewritten as

∂φ

∂t
= ∆µ

µ =
(
c(∆ + 1)2(∆ + q2)2 + β

)
φ+

r(t)√
E1[φ]

F ′(φ)

rt = lim
D→R2

1

2LS(D)

∫
[−L,L]×D

F ′(φ)

2
√
E1[φ]

φt dr.

(2.30)

Multiplying above equations with µ, ∂φ
∂t

and 2r respectively, integrating the first two

equations and add them together, we achieve the following energy dissipation law:

dEi[φ(t)]

dt
=

d

dt
[
c

2

(
(∆ + 1)(∆ + q2)φ, (∆ + 1)(∆ + q2)

)
+
β

2
(φ, φ) + r2] = −(∇µ,∇µ).

(2.31)
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Let ∆t be a time step, and φn denote the numerical approximation to φ(r) at

t = tn. Then a first-order scheme in time for the above system can be constructed as

follows:

φn+1 − φn

∆t
= ∆µn+1

µn+1 =
(
c(∆ + 1)2(∆ + q2)2 + β

)
φn+1 +

rn+1√
E1[φn]

F ′(φn)

rn+1 − rn

∆t
= lim

D→R2

1

2LS(D)

∫
[−L,L]×D

F ′(φn)

2
√
E1[φn]

φn+1 − φn

∆t
dr

(2.32)

By taking the inner product of the three equations with µn+1, φn+1 − φn and 2rn+1

respectively and use the equality (b− a, 2b) = b2 − a2 + (b− a)2 we will reach

Theorem 1 The scheme (2.32) admits a unique solution and is unconditionally en-

ergy stable in the sense that

1

∆t

(
Ẽi[φ

n+1, rn+1]− Ẽi[φn, rn]
)

+
1

∆t

( c
2

(
(∆ + 1)(∆ + q2)(φn+1 − φn), (∆ + 1)(∆ + q2)(φn+1 − φn)

)
+
β

2
(φn+1 − φn, φn+1 − φn) + (rn+1 − rn)2

)
= −(∇µn+1,∇µn+1) (2.33)

where the modified energy is defined as

Ẽi[φ
n, rn] =

c

2

(
(∆ + 1)(∆ + q2)φn, (∆ + 1)(∆ + q2)φn

)
+
β

2
(φn, φn) + (rn)2 (2.34)

Adaptive time stepping

In our interface system, the energy curve about the time descends drastically at the

early stage but becomes flat afterwards as it approaches the steady state. Therefore,

we adopt an adaptive time stepping method, using small time steps initially and large

time steps when the energy is decreasing slowly. We choose the time step updating

strategy suggested in [69],

∆tn = max
(

∆tmin,
∆tmax√

1 + η|En+1(t)− En(t)|2/∆t2
)
, (2.35)
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where tmin, tmax are predetermined minimum and maximum time steps and η is a

suitable parameter, taken as η = 1000 in our simulation. Interested readers could

refer to [69,70] for more details.

2.2.4 Spatial discretization

We are actually approximating the function space A given in (2.19). In the y-z

direction, the function has already been expressed in Fourier series, so we just truncate

according to the indices k. Let us define |k| = max{kj}. The truncation is made

by |k| ≤ N1. Thus, we only need to consider the approximation in the x-direction

for φnk(x) and µnk(x). We need to choose a finite dimensional function space, which

is dependent on the boundary conditions. Because we impose Dirichlet boundary

conditions on φnk and Neumann boundary conditions on µnk(x), we need two different

function spaces. In particular, we use polynomials to form the approximation function

spaces.

Let WN and VN be two finite dimensional polynomial spaces. For any polynomial

ϕ(x) ∈ WN , it satisfies

∂k

∂xk
ϕ(−L) =

∂k

∂xk
ϕ(L) = 0, k = 0, 1, 2, 3. (2.36)

For h(x) ∈ VN , it satisfies

∂

∂x
h(−L) =

∂

∂x
h(L) = 0. (2.37)

We will discuss the construction of the two spaces later. Whatever the function spaces

we choose, denote by φnNk(x) the approximation of φnk(x) that belongs to WN+φ0k(x),

where φ0k(x) is a function satisfying the boundary conditions (2.25). Similarly, we

denote by µnNk(x) the approximation of µnk(x) that belongs to VN .

Denote by φnN(x, r̃) and µnN(x, r̃) the approximation at tn of φ and µ, respectively.

Then,

φnN(x, r̃) =
∑
|k|≤N1

φnNk(x) exp
(
iktB̃tr̃

)
. (2.38)
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Similarly,

µnN(x, r̃) =
∑
|k|≤N1

µnNk(x) exp
(
iktB̃tr̃

)
. (2.39)

The fully discretized scheme of (2.32), in weak formulation, is then given by: find

φnN in the form (2.38) and µnN in the form (2.39), such that for any vN(x) ∈ VN ,

wN(x) ∈ WN , and |k| ≤ N1, they satisfy(φn+1
N − φnN

∆t
, vN(x) exp

(
− iktB̃tr̃

))
= −

(
∇µn+1

N ,∇vN(x) exp
(
− iktB̃tr̃

))
,(

µn+1
N , wN(x) exp

(
iktB̃tr̃

))
=

c
(

(∆ + 1)(∆ + q2)φn+1
N , (∆ + 1)(∆ + q2)wN(x) exp

(
− iktB̃tr̃

))
+ β

(
φn+1
N , wN(x) exp

(
− iktB̃tr̃

))
+

rn+1√
E1[φnN ]

〈
F ′(φnN), wN(x) exp

(
− iktB̃tr̃

)〉
rn+1 − rn

∆t
=

〈
F ′(φnN)

2
√
E1[φnN ]

,
φn+1
N − φnN

∆t

〉
.

(2.40)

In the above, the notation 〈·, ·〉 is a numerical integration to approximate the inner

product (·, ·) and is bilinear, i.e.

〈λ1a1(r) + λ2a2(r), b(r)〉 = λ1〈a1(r), (br)〉+ λ2〈a2(r), b(r)〉,

〈a(r), λ1b1(r) + λ2b2(r)〉 = λ1〈a(r), b1(r)〉+ λ2〈a(r), b2(r)〉. (2.41)

We will specify it later.

By choosing vN = µn+1
N,−k, wN = φn+1

N,−k − φnN,−k in (2.40) and summing up over k,

followed by multiplying the last equation of by 2rn+1, one could reach the discretized

version of energy dissipation about

Ẽ[φnN , r
n] =

c

2

(
(∆ + 1)(∆ + q2)φnN , (∆ + 1)(∆ + q2)φnN

)
+
β

2
(φnN , φ

n
N) + |rn|2 (2.42)

Next, we discuss some details in the scheme (2.40).
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Solving the linear system

Define an operator

σ(B̃k) = (∂2
x − |B̃k|2 + 1)(∂2

x − |B̃k|2 + q2). (2.43)

After some calculations, the scheme (2.40) can be simplified into(φn+1
Nk − φnNk

∆t
, vN

)
= −(∂xµ

n+1
Nk , ∂xvN)− |B̃k|2(µn+1

Nk , vN),

(µn+1
Nk , wN) = c

(
σ(B̃k)φn+1

Nk , σ(B̃k)wN

)
+ β(φn+1

Nk , wN)

+
rn+1√
E1[φnN ]

〈
F ′(φnN), wN(x) exp

(
− iktB̃tr̃

)〉
,

rn+1 − rn

∆t
=

〈
F ′(φnN)

2
√
E1[φnN ]

,
φn+1
N − φnN

∆t

〉
,

(2.44)

where φnNk ∈ WN + φ0k, µnNk ∈ VN .

Looking at (2.44), we notice that for different k, the equation is only coupled by

the scalar rn+1. We could decouple the equations for different k as described below.

Let ϕj(x) and hj(x) be a basis of WN and VN , respectively. We expand φnNk(x) and

µnNk(x) by the basis,

φnNk(x) =
∑
j

φ̄njkϕj(x), (2.45)

µnNk(x) =
∑
j

µ̄njkhj(x). (2.46)

Define the vector ynk = (φ̄njk, µ̄
n
jk), yn = (ynk), and the matrices

(S1k)j1j2 =c
(
σ(B̃k)ϕj1 , σ(B̃k)ϕj2

)
+ β(ϕj1 , ϕj2), (2.47)

(S2k)j1j2 =c(∂xhj1 , ∂xhj2) + |B̃k|2(hj1 , hj2), (2.48)

(S3k)j1j2 =(hj1 , ϕj2). (2.49)

Then, (2.44) can be written in the form S ∗

∗ ∗

 yn+1

rn+1

 = bn. (2.50)
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where the matrix S is block diagonal,

S = diag(Sk), Sk =

 S1k −St3k
1

∆t
S3k S2k

 . (2.51)

Therefore, to solve (2.50), we could apply the block Gauss elimination by solving the

equation of the form Sy = b twice.

Numerical integration

We notice that in the scheme (2.44), we need to compute a numerical integration

of the form 〈F ′(u), v〉. Here, the two functions u(r) and v(r) are given in the form

u(r) =
∑
|k|≤N1

uk(x) exp(iktB̃tr̃).

Furthermore, we notice that F ′ is a third-order polynomial. So, we focus on computing

the highest-order term 〈u3, v〉. Since 〈u3, v〉 is an approximation of (u3, v), we first

write down the latter according to the definition (2.21),

(u3, v) =
1

2L

∑
k1+k2+k3+k4

∫
[−L,L]

uk1(x)uk2(x)uk3(x)vk4(x) dx. (2.52)

In the x-direction, we choose the Gauss–Lobatto points xj in [−L,L] with the

corresponding weights λj, and approximate an integral as

1

2L

∫ L

−L
f(x) dx ≈

∑
j

λjf(xj). (2.53)

It remains to calculate ∑
k1+k2+k3+k4

uk1(xj)uk2(xj)uk3(xj)vk4(xj). (2.54)

This can be done by constructing new Fourier series in Rn, where we recall that the

n here is the dimension of k: let z = (z1, . . . , zn) and consider

U(z) =
∑
|k|≤N1

uk exp(2πik · z). (2.55)

With the help of the above function, (2.54) can be calculated by n-dimensional FFT.
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2.2.5 Discretization in the x-direction

We describe how to construct the functions spaces VN and WN , for which we make

use of the Jacobi Polynomials.

In these two spaces, the boundary conditions are given on x = ±L. We could

introduce a scaling x′ = x/L, so that it is equivalent to consider the functions on the

interval [−1, 1]. For the discussion below, we shall assume L = 1.

Jacobi polynomials

We first recall the classical Jacobi polynomials and their properties. For α, β > −1,

let Jα,βn be the classical Jacobi polynomials which are orthogonal with respect to the

weight function ωα,β(x) = (1− x)α(1 + x)β over (−1, 1), i.e.∫ 1

−1

Jα,βn (x)Jα,βm (x)ωα,β(x)dx = γα,βn δmn (2.56)

where

γα,βn = ||Jα,βn ||2ωα,β(x) =
2α+β+1Γ(n+ α + 1)Γ(n+ β + 1)

(2n+ α + β + 1)n!Γ(n+ α + β + 1)
(2.57)

and δmn is the Dirac Delta symbol. And Jacobi polynomials have the following

properties:

Property 1 Three-term recurrence relationship:

Jα,βn+1(x) = (aα,βn x− bα,βn )Jα,βn (x)− cα,βn Jα,βn−1(x), n ≥ 1

Jα,β0 (x) = 1, Jα,β1 (x) =
1

2
(α + β + 2)x+

1

2
(α− β)

(2.58)

Property 2 Derivative relationship:

∂kxJ
α,β
n (x) = dα,βn,kJ

α+k,β+k
n−k (x), n ≥ k, (2.59)

where

dα,βn,k =
Γ(n+ k + α + β + 1)

2kΓ(n+ α + β + 1)
. (2.60)
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We then recall the generalized Jacobi polynomials (GJP) introduced in [71]:

Jk,ln (x) =


(1− x)−k(1 + x)−lJ−k,−ln−n0

(x) if k, l ≤ −1

(1− x)−kJ−k,ln−n0
(x) if k ≤ −1, l > −1

(1 + x)−lJk,−ln−n0
(x) if k > −1, l ≤ −1

(2.61)

where n ≥ n0, n0 = −(k + l), −k, −l for the above 3 cases respectively and Jk,ln is

classical Jacobi polynomial with k, l ≥ −1. We now present some basic properties of

GJP:

Property 3 The GJPs are mutually L2
ωα,β(x)

-orthogonal, i.e.,∫ 1

−1

Jk,ln (x)Jk,lm (x)ωα,β(x)dx = γk̄,l̄n−n0
δmn, (2.62)

where γk̄,l̄n−n0
is defined in (2.57) and

n̄ =

−n, n ≤ −1

n, n > −1

(2.63)

Property 4 ∀k, l ∈ Z and k, l ≥ 1

∂ixJ
−k,−l
n (1) = 0, for i = 0, 1, ..., k − 1 (2.64)

∂jxJ
−k,−l
n (−1) = 0, for j = 0, 1, ..., l − 1. (2.65)

thus {J−k,−ln } are natural candidates as basis function for PDEs with the boundary

conditions:

∂ixu(1) = ai, for i = 0, 1, ..., k − 1 (2.66)

∂jxu(−1) = bj, for j = 0, 1, ..., l − 1. (2.67)

And we have the similar derivative recurrence relation:
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Property 5 Let k, l,m ∈ N, and if m ≤ k, l then

∂mx J
−k,−l
n (x) = (−2)m

(n− k − l +m)!

(n− k − l)!
J−k+m,−l+m
n−m (x), n ≥ max(k + l,m). (2.68)

Using above properties, GJP and their derivatives can be computed recursively.

Construction of VN

The polynomials in VN satisfy the boundary conditions (2.37). We could construct

the basis of VN , hk(x), is the linear combination of Legendre polynomials Lk(x),

hk(x) = Lk(x) + akLk+1(x) + bkLk+2(x), (2.69)

for k = 1, . . . , N . Legendre polynomials are a special case of GJP with ωα,β(x) = 1.

More properties about Legendre polynomials can be found in books like [25, 72]. It

is shown in [19] that there exists a unique set {ak, bk}.

Construction of WN

By Property (4), we choose the basis of WN as follows that satisfy boundary

conditions (2.36), Define the basis functions using GJPs

ϕl(x) := clJ
−4,−4
l+7 (x), l = 1, . . . ,≤ N, (2.70)

where cl is the scaling factor such that (∂4
xϕk, ∂

4
xϕl) = δkl.

Construction of φ0k(x)

The boundary conditions on φk are not homogeneous, so that we need to find a

φ0k(x) satisfying the non-homogeneous boundary conditions. There are eight condi-

tions in total, so it can be done by using a seventh-order polynomial.
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Computation of matrix elements

We have specified the basis ϕj(x) and hj(x) above. It remains to calculate the

matrix elements of Sk in (2.51), defined in (2.47)–(2.49). They can be pre-computed

using Property (3) and (5) . Notice that because of orthogonality of polynomials,

S1k, S2k and S3k are sparse matrices and elements are non-zero on at most 9 sub-

diagonals. When solving the linear equation with the coefficient matrix Sk, we use

the LU factorization, because the size is 2N × 2N that is moderate. In particular,

since the matrix Sk, the LU factorization can be done as a preprocessing.

2.2.6 Outline of the numerical method

For the computing of quasiperiodic interfacial structure, we list the outline of

implementation:

• Find the bulk phase profile in the form (2.3) by minimizng the free energy

density (2.2). Impose the desired rotation and displacement by (2.13), from

which the boundary conditions and the initial state come from.

• Find the matrix B̃, column full-rank on Q, for the space (2.19). Set the bound-

ary conditions (up to third-order derivatives) and initial state using (2.24)–

(2.28).

• Discretize the gradient flow (2.11)–(2.12) in time using SAV approach. We

apply an unconditional energy stable first order scheme in order to reach the

steady state quickly.

• Discretize in space using spectral method. In the y-z plane, we truncate the

Fourier series. In the x-direction, we use generalized Jacobi polynomials in

accordance with the boundary conditions. With non-periodic boundary condi-

tions, this task is not easy using finite difference or finite element method as

instability would arise. Spectral method with generalized Jacobi polynomials
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will generate sparse matrix when dealing with high order derivatives and are

free from this problem.

• Different Fourier modes in y-z can be decoupled under SAV. The nonlinear

terms in the scheme are polynomials. For quasiperiodic functions, it can be

calculated efficiently by higher dimensional FFT.

We must emphasize here that all our derivation depends on that B̃ is column full-rank

on Q. Moreover, the number of columns of B̃, n, gives the the computational cost,

which is O(Nn
1 N). Since B̃ depends on the rotations of the two phases, it implies

that under different phases or relative orientations, the computational cost will be

different. We will illustrate it in the numerical examples.

2.3 Numerical simulations

2.3.1 Dirichlet boundary condition

All simulations are conducted on Intel i7-4790 CPU with 3.6GHz. In x-direction,

polynomials order N is chosen to be 256 and 512 Gauss-Lobatto points are used to

compute the integrals. The interpolation smoothing parameter σ in (2.28) is chosen

to be 250.

We will consider the three phases introduced above, for which the B matrices are

given in (2.8)–(2.10). Note that the third row of B are zero for all the three phases.

So, the three phases can all be place in the x-y plane and homogeneous in z-direction.

When doing the rotation, we also constrain in the x-y plane, i.e. the rotation matrix

T is given by

T (θ) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 . (2.71)
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As a result, in the interface system, only the first row of the two-row B̃ matrix is

nonzero. When determining the column rank of B̃ on Q, we are actually determining

the number of linearly independent real numbers on Q.

Grain boundaries of striped phase

The phrase ’grain boundary’ means the interface with two identical phases with

different orientations. The grain boundary of striped phases have been studied exten-

sively. Thus, we start from some grain boundaries as a verification of our numerical

method.

We examine the kink grain boundaries of the striped phases. That is, the phase

1 and phase 2 are both the striped phases of the same type with the first B in (2.8).

The phase 1 is rotated by T1 = T (θ), while the phase 2 is rotated by T2 = T (−θ).

Recall that we define B̃1 = T̃ t1B where T̃1 is the second and third columns of T1. In

this case, we calculate that

B̃1 = T̃ t1B =

 cos θ

0

 , B̃2 = T̃ t2B =

 cos θ

0

 .

Therefore, the B̃ matrix can just be chosen as

B̃ =

 cos θ

0

 .

It implies that we are actually considering a periodic boundary condition on the

y-direction, which is the special case discussed in [49].

We choose c = 1, α = 0, ε = 1 and q = 2cos(π/12). We consider three different θ,

for which the steady state is reached at t = 5000 shown in Fig. 2.3(a), (b) and (c).

When θ is small, a smooth transition layer will form; for a larger θ we observe the

Omega-shaped patterns in the interface; when θ is near π/2, a dislocation emerges.

These patterns are identical to the previous studies using different free energy [73–75].



62

(a) θ = 0.2 equilibrium state

(b) θ = 0.5 equilibrium state

(c) θ = 1.5 equilibrium state

Figure 2.3.: Laminar flow interface steady state with small and big rotation angle θ.
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Grain boundaries of the hexagonal phase

We turn to the grain boundaries of the hexagonal phase. We still consider the

kink grain boundaries, letting T1 = T (θ) and T2 = T (−θ). The case is different from

the striped phase, because we may have B̃ of different columns. Let us explain it

below.

These results are calculated under c = 1, α = 1, ε = 0.15. The B matrix is given

as the first one in (2.9).

We first examine the case when all the four coefficients ±sinθ and ±(1
2
sinθ +

√
3

2
cosθ) are rational to each other and the 8 reciprocal basis decays to one. One could

verify that tanθ/
√

3 is a rational number in this case. So we could set θ = arctan
√

3
4

and it can be shown that the basis is written as

The evolution of interface and energy dissipation are shown in Fig. 2.4.

We then consider examples where only two pairs of coefficients are rational to

each other or tanθ/
√

3 is not a rational number. In these cases, our phase profile is

written as:

φ(x, y) =
∑
k1,k2

φ̂k1,k2(x)eiy( 1
2
k1sinθ+

√
3

2
k2cosθ) (2.72)

For various θ we have the following interfacial result shown in Fig. 2.5.

Our next simulation is based on the fact that the crystals phase under LP model

will form shape of two different sizes on |k| = 1 and |k| = q. We anchor the crystal

phase which reaches minima on |k| = 1 on the left and |k| = q on the right of the

plane. The simulation result is presented in Fig. 2.6 and one observe trilateral bulk

in the interfacial region.

Interface involving the dodecagonal phase

We then simulate the Quasi-crystals with some simplification. After rotation, the

eight reciprocal vector have coefficients sinθ,
√

3
2
sinθ+ 1

2
cosθ, 1

2
sinθ+

√
3

2
cosθ, cosθ and

−sinθ,−
√

3
2
sinθ + 1

2
cosθ,−1

2
sinθ +

√
3

2
cosθ, cosθ. In general, 6 of these 8 reciprocal
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(a) t = 0

(b) t = 5000
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(c) Energy dissipation plot

Figure 2.4.: Interfacial transition and energy dissipation of two crystals with θ =

arctan
√

3
4

.
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(a) θ = 0.17

(b) θ = 0.3

(c) θ = 0.4

Figure 2.5.: Interfacial transition with various θ



66

(a) t = 0

(b) t = 10000

(c) t = 30000

Figure 2.6.: Interfacial transition with big-small crystals
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vectors are linear independent with rational coefficients. However, by setting θ to be

special number, one could reduce the dimension of reciprocal vectors. For integers r

and s, we have:

• if tanθ = r
s
√

3
, we have two independent reciprocal vectors with coefficient

sinθ
2r
, cosθ

2s
;

• if θ = π
4
, there are three independent reciprocal vectors with coefficient

√
2

2
,

√
6+
√

2
4

,
√

6−
√

2
4

;

• otherwise, we will have 4 reciprocal vectors sinθ,
√

3
2
sinθ+ 1

2
cosθ, 1

2
sinθ+

√
3

2
cosθ

and cosθ.

Due to computation complexity, we here only consider the first two cases, i.e. when

θ = π
4

and when
√

3tanθ = r/s is a rational number and we have

φ(x, y) =
∑
k1,k2

φ̂k1,k2(x)eiyk1
sinθ
2r eiyk2

cosθ
2s (2.73)

φ(x, y) =
∑

k1,k2,k3

φ̂k1,k2,k3(x)eiyk1
√
2
2 eiyk2

√
6+
√
2

4 eiyk3
√
6−
√
2

4 (2.74)

The initial and equilibrium profile is shown in Fig. 2.7. The parameters are chosen

as c = 150, α = 1, ε = 0.015, q

Our last example is constructed by combining a cylindrical crystal phase with a

12-fold quasicrystal phase. The equilibrium state and energy dissipation are shown

in Fig.(2.8). To maintain both phases, we take ε = 0.00833 and α = 0.5.

2.3.2 Periodic boundary condition

We here list our previous simulations where the phase profile is periodic in x

direction. In such situation, the phase function is periodic in both x and y directions

and can be solved all in frequency space using pseudo-spectral method.
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(a) t = 0

(b) t = 100

Figure 2.7.: Quasicrystal interfacial transition with θ = arctan
√

3
4
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(a) t = 100
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(b) Energy dissipation plot

Figure 2.8.: Crystal-Quasicrystal interfacial transition and energy dissipation.
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Cylindrical crystal phase

We start our simulation from a crystal phase profile. The phase function could be

represented as

φ(x, y) =
∑
k1,k2

φ̂k1,k2e
ix(k1+ 1

2
k2)+iy

√
3

2
k2 (2.75)

The equilibrium of such crystal has 6-fold symmetry and is shown in Fig. (2.9). The

results are calculated with c = 1, α = 1, ε = 0.15.

Figure 2.9.: 6-fold symmetry crystal equilibrium state

Quasicrystal

We then demonstrate our algorithm on quasicrystals. For quasicrystal with 12-fold

symmetry, we have presented above that the projection matrix has the form:

S12 =

1 cosπ
6

cosπ
3

0

0 sinπ
6

sinπ
3

1


And the 10-fold symmetry quasicrystals have the projection matrix in the following

form:

S10 =

1 cosπ
5

cos2π
5

cos3π
5

0 sinπ
5

sin2π
5

sin3π
5


In this simulations, the parameters are chosen as q12 = 2cos(π/12), q10 = 2cos(π/5), c =

1, α = 1, ε = 0.015. The equilibrium states for both cases are shown in Fig. (2.10).
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(a) 12-fold symmetry (b) 10-fold symmetry

Figure 2.10.: 12-fold and 10-fold symmetry quasicrystal phases
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These simulations verify the accuracy of our scheme and we will apply our scheme

on the following more complicated cases.

Multi-phase Model

LP model is not only effective on one phase model, one may refer to [76] about

multi-phase model. In such Swift-Hohenberg model, the nonlinear part of the free

energy is given as:

f =
1

V

∫
dr[τφ2

2 + g0φ
3
2 + φ4

2 + tφ2
1 + t0φ

3
1 + φ4

1 − g1φ
2
2φ1 − g2φ2φ

2
1] (2.76)

where t, τ, t0, g0, g1 and g2 are parameters depending on the interaction between com-

ponents and the thermodynamic conditions, such as temperature. In order to intro-

duce multiple frequency forcing, the LP model and this Swift-Hohenberg model are

combined together by adding two gradient terms into the free energy. The free energy

functional now becomes

E[φ1, φ2] =
1

V

{ c
2

∫
dr[(∇2 + 1)φ2]2 + [(∇2 + q2)φ1]2 + E1[φ1, φ2]

}
(2.77)

where

E1[φ1, φ2] =

∫
dr(τφ2

2 + g0φ
3
2 + φ4

2 + tφ2
1 + t0φ

3
1 + φ4

1 − g1ψ
2φ1 − g2φ2φ

2
1)

The gradient flow system for the relaxation :

∂φ2

∂t
= − δf

δφ2

= −c(∇2 + 1)2φ2 − (2τφ2 + 3g0φ
2
2 + 4φ3

2) + 2g1φ2φ1 + g2φ
2
1

∂φ1

∂t
= − δf

δφ1

= −c(∇2 + 1)2φ1 − (2tφ1 + 3t0φ
2 + 4φ3) + 2g2φ2φ1 + g2φ

2
2

According to [61], we can pose the SAV scheme for gradient flows of multiple

functions φ1 and φ2:
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∂φi
∂t

= ∆µi

µi = c[(∇2 + 1)2φi] +
r(t)√
E1

Ui

rt =
1

2
√
E1

∫
Ω

Ui
∂φi
∂t

dx

(2.78)

where Ui = δE1/δφi and µi = δE/δφi.

It is shown in [76] that the effective phase density ΦA, ΦB and ΦC could be

recovered from φ1 and φ2 through

ΦA =
1

2
(φ1 + φ2),ΦB =

1

2
(φ2 − φ1),ΦC = −φ2

And the simulation result is shown in Fig.(2.11).

Modified Non-local model

In the present study, a generic coarse-grained free energy functional is used.

E[φ(r)] =
1

V

∫ ∫
c

2
[φ(k)G(k,k′)φ(k′)]dkdk′ (2.79)

+
1

V

∫
[− ε

2
φ2 − α

3!
φ3 +

1

4!
φ4]dk, (2.80)

where G(k,k′) = G(|k − k′|) is a two-body correlation potential. The term con-

tains G(k,k′) describes the free energy cost of inhomogeneity of the system and the

choice of G(k,k′) will affect the different dominant modes at particular length scales,

thus promoting different ordered structures. In our model, the corresponding pair

interaction potential of G(k,k′) in the Fourier space is given as

Ĝ(k) = e−|k|
2/2σ2

[(1− |k|2)2(q2 − |k|2)2 − η] (2.81)

= e−k
2/2σ2

(d0 + d2k
2 + d4k

4 + d6k
6 + d8k

8) (2.82)

The constant η is subtracted to let Ĝ not necessarily positive. In our simulation

η = 1. di’s are obtained by simplifying the equation and σ is the model parameter.

When σ is large, say 1, the result after PM will be similar to the ordinary quasicrystal
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(a) φ1 (b) φ2

(c) φ1 + φ2 (d) φ2 − φ1

Figure 2.11.: Order parameters obtained from minimization of free energy model
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case. For small σ, we observe a Mosaic-like pattern. The equilibrium state is shown

in Fig.(2.12).

(a) σ = 0.15 (b) σ = 1

Figure 2.12.: Modified non-local model steady state with different σ

Energy decay

In Fig. (2.13) we plot the modified free energy for the non-local model simulation.

The energy decays fast in the beginning of the simulation and goes down smoothly

in the later time evolution. The top figure in Fig. (2.13) is the energy for t ≤ 100

and the bottom figure is a magnified plot in time region 10 ≤ t ≤ 17. The energy

decay results are pretty similar in other models, thus we only show the energy of this

model.

Interface problems

We start presenting our simulation results on interface problems.

Crystals We first place two small fraction of cylindrical crystals each rotated with

π/6 and −π/6 degree in the center of the domain. The bulk will grow to reach the

minima of the free energy. The transition process is shown in Fig. (2.14).
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Figure 2.13.: Energy dissipation plots of non-local model
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(a) t = 0 (b) t = 2.5

(c) t = 20 (d) t = 100

Figure 2.14.: Interface problem for 6-fold symmetry crystal



78

Quasicrystals We then place two quasicrystal phases in the domain and each are

rotated by θ = ±π/10 respectively. In our final result, c is taken as 1 and we noticed

that when c = 150 the interfacial layer will be transient. The transition process is

given in Fig.(2.15). The final stable state is in 12-fold stability.

Similarly we show the result of two 10-fold symmetry quasicrystals. The result is

shown in Fig.(2.16).

Under LP model, we could also place two cylindrical crystals in the domain. Under

such case, the phase will reach local minima when |k| = q or |k| = 1. We thus place

on the left a cylindrical crystal with |k| = q and on the right a cylindrical crystal

with |k| = 1. The transition process is shown in Fig. (2.17). It is interesting to point

out that during the transition period, a transient 12-fold quasicrystal phase appears.

The six-fold cylindrical phase diffuses to the left and will become the final state in

the whole domain.

Multi-phase model We then put two 12-fold (10-fold) symmetry quasicrystals

formed by multi-phase model each rotated with angle θ. The result is shown in

Fig.(2.18) (and 10-fold result in Fig.(2.19)).

Non-local model Similarly, we could see the pattern of the interfacial problem

using nonlocal free energy. The result of 12-fold and 10-fold results are given in

Fig.(2.20) and Fig.(2.21) respectively.

2.4 Conclusion

We propose a numerical method for computing the interface between two ordered

phases that involves quasiperiodicity. With the properly chosen function space and

boundary conditions to fix the relative orientation and displacement, we solve the

H−1 gradient flow of the Lifschitz–Petrich free energy, to let the interface evolve to

its optimal structure. The gradient flow is discretized in time by the SAV approach,

and in space by spectral method with a combination of quasiperiodic Fourier series
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(a) t = 0 (b) t = 20

(c) t = 150 (d) t = 250

(e) t = 300 (f) t = 350

Figure 2.15.: Interface problem for 12-fold symmetry
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(a) t = 0

(b) t = 200

Figure 2.16.: Interface problem for 10-fold symmetry
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(a) t = 0

(b) t = 5

(c) t = 20

(d) t = 30

(e) t = 50

(f) t = 100

Figure 2.17.: Interface problem for 6-fold symmetry with big-small crystals
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(a) t = 0 (b) t = 2

(c) t = 5 (d) t = 10

Figure 2.18.: Interface problem for 12-fold symmetry under Multi-phase model
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(a) t = 0 (b) t = 5

(c) t = 10 (d) t = 20

(e) t = 50

Figure 2.19.: Interface problem for 10-fold symmetry under Multi-phase model
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(a) t = 0 (b) t = 0.3

(c) t = 1 (d) t = 20

Figure 2.20.: Interface problem for 12-fold symmetry in non-local model
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(a) t = 0 (b) t = 0.3

(c) t = 1 (d) t = 20

Figure 2.21.: Interface problem for 10-fold symmetry in non-local model
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and generalized Jacobi polynomials. We present some typical examples, including the

interface of the striped, hexagonal and dodecagonal phases. In particular, we show

that our numerical method can successfully capture the interfacial structure in the

cases where the interface is quasiperiodic. The method proposed in this work shall be

fundamental for systematic simulations of the interface between ordered structures.

In the future work, we aim to utilize the method to investigate interface involving

other phases, espcially the three-dimensional phases, including the bcc/fcc spherical

and gyroid that are periodic, and icosahedral quasicrystals.
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