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ABSTRACT 

People spend most of their time indoors. Because people’s health and productivity are highly 

dependent on the quality of the indoor thermal environment, it is important to provide occupants 

with healthy, comfortable and productive indoor thermal environment. However, inappropriate 

thermostat temperature setpoint settings not only wasted large amount of energy but also make 

occupants less comfortable. This study intended to develop a new control strategy for HVAC 

systems to adjust the thermostat setpoint automatically and accordingly to provide a more 

comfortable and satisfactory thermal environment. 

This study first trained an image classification model based on CNN to classify occupants’ amount 

of clothing insulation (clothing level). Because clothing level was related to human thermal 

comfort, having this information was helpful when determining the temperature setpoint. By using 

this method, this study performed experimental study to collect comfortable air temperature for 

different clothing levels. This study collected 450 data points from college student. By using the 

data points, this study developed an empirical curve which could be used to calculate comfortable 

air temperature for specific clothing level. The results obtained by using this curve could provide 

environments that had small average dissatisfaction and average thermal sensation closed to 

neutral. 

To adjust the setpoint temperature according to occupants’ thermal comfort, this study used mean 

facial skin temperature as an indicator to determine the thermal comfort. Because when human 

feel hot, their body temperature would rise and vice versa. To determine the correlation, we used 

a long wave infrared (LWIR) camera to non-invasively obtain occupant’s facial thermal map. By 

processing the thermal map with Haar-cascade face detection program, occupant’s mean facial 

skin temperature was calculated. By using this method, this study performed experimental study 

to collect occupant’s mean facial skin temperature under different thermal environment. This study 

collected  225 data points from college students. By using the data points, this study discovered 

different intervals of mean facial skin temperature under different thermal environment.  

Lastly, this study used the data collected from previous two investigations and developed a control 

platform as well as the control logic for a single occupant office to achieve the objective. The 
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measured clothing level using image classification was used to determine the temperature setpoint. 

According to the measured mean facial skin temperature, the setpoint could be further adjusted 

automatically to make occupant more comfortable. This study performed 22 test sessions to 

validate the new control strategy. The results showed 91% of the tested subjects felt neutral in the 

office 
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CHAPTER 1. INTRODUCTION 

1.1 Background and Significance 

People spend 90% of their time indoors and many spend their time at work in office environments 

(NHAPS, 2001). In these environments, people’s health and productivity was highly dependent on 

the quality of the indoor thermal environment (Wyon et al., 1987). Therefore, it is very important 

to provide occupants with healthy, comfortable and productive indoor thermal environments.  

Nowadays, such environments are usually provided by using heating, ventilation and air 

conditioning (HVAC) systems. Such environments are usually provided by using heating, 

ventilation and air conditioning (HVAC) systems. As a result, the demand of HVAC systems in 

providing high quality indoor environment leads to a greater energy consumption. Specifically, in 

the United States, 44% of the energy consumed by commercial buildings was used for heating, 

cooling and ventilation as the year of 2012 (EIA, 2019). One reason that made HVAC systems 

consumed so much energy was the control strategy.  

Currently, in many buildings, the building automation systems (BAS) controlled the HVAC 

systems to provide specific air temperature which was usually determined by using setpoint 

temperature control (Kontes et al., 2017), and the setpoint control was usually combined with a 

scheduling system to only operate the HVAC during work hours (8 a.m. to 5 p.m.) (Haniff et al. 

2013). However, Erickson et al. (2009, 2010) pointed out that fixed time-scheduling strategy 

would waste energy because it would control the spaces regardless occupancy status. Furthermore, 

with such amount energy consumed by the HVAC systems, many occupants were still not happy 

with their indoor thermal environments provided by the HVAC systems. For example, a study 

indicated only 35% occupants were satisfied with their air temperature supplied in the offices 

(Putra, 2017). Another survey also concluded that people felt cold or hot more often in offices than 

homes (Krajalainen, 2009). Thus, it is important to improve the current control strategy to provide 

more comfortable thermal environments for occupants. 

Thermal sensation describes the physiological and subjective response of occupants to the thermal 

environment in buildings (Arens et al., 2006). To evaluate thermal sensation, one can use the 

predicted mean vote (PMV) and predicted percentage of dissatisfaction (PPD) model (Fanger, 
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1982). In this model, it concluded six factors that related to occupants’ thermal sensation which 

were: air temperature, air velocity, relative humidity, mean radiant temperature, metabolic rate and 

clothing level (thermal insulation provided by clothing with a unit of clo). This model suggested 

that these six parameters should all be considered to provide the most comfortable thermal 

environment. However, current setpoint temperature control did not consider occupant’s clothing 

level when determining the setpoint. According to Arens et al. (2010), the setpoint temperatures 

were mainly determined by standards such as ASHRAE Standard 55 and ISO 7730, and in those 

standards the temperature setpoint were only designed for two clothing levels (ASHRAE, 2013; 

ISO, 2005). Moreover, studies pointed out the clothing levels were not constantly and uniformly 

distributed among groups (Nicol and Humphreys 2002). Therefore, current setpoint temperature 

control could make individual with different clothing level uncomfortable. Hence, it is essential to 

consider occupant’s clothing level when determining the setpoint temperature in the control 

strategy to make occupant more comfortable. 

Another major issue of the current HVAC control strategy was that temperature setpoint could not 

be automatically adjusted to meet occupants’ needs. In most of the commercial offices, the 

thermostats were usually placed away from the occupants. Such situation discouraged the 

occupants to tune the temperature setpoint even though they preferred a different temperature and 

the occupant would feel less comfortable. Also, the temperature measured at that location was not 

the temperature that occupants sensed. Therefore, Brager et al. (2015) criticized that the current 

control method did not consider occupants’ thermal comfort. Meanwhile, among those who 

willingly to adjust the setpoints, the setpoints were usually changed to awkward values due to the 

lack of understanding of the HVAC systems (Peffer, et al., 2011). For example, when occupants 

felt hot, they might adjust the temperature setpoint to extremely low because they thought the 

system could cool the room faster, however, after a while, they might think the room was too cold 

and they needed to adjust temperature setpoint again. Such behavior not only made occupants more 

uncomfortable but also introduced unnecessary load to the HVAC system which wasted ten billion 

dollars per year in the US (Derrible and Reeder, 2015). Therefore, it is worthwhile to determine 

occupants’ real-time thermal sensation for the control strategy to adjust the setpoint temperature 

automatically and accordingly. 
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1.2 Literature Review 

To accurately and quickly obtain the information about occupant’s clothing level and thermal 

comfort is critical for the new control strategy to provide comfortable environment. Therefore, it 

is worthwhile to develop new methods and models to obtain the information. This goal required 

good understanding of the state-of-the-art methods and models. Thus, this section explained the 

literature review on related researches. 

1.2.1 Numerical Models for Clothing Level Measurement 

Most of the studies used questionnaire (Fanger, 1982; Gagge, 1971; Yao et al., 2009) to collect 

occupant’s clothing level. However, survey method could not obtain occupant’s clothing level 

conveniently and timely, because occupants needed to interrupt their work to report their clothing 

level. Thus, it is necessary to investigate non-invasive ways to obtain occupant’s indoor clothing 

level information.  

Schiavon and Lee (2013) developed two linear models to inversely predict indoor clothing level 

based on outdoor air and indoor operative temperature, respectively. Two developed models 

explained 19% and 22% of the variance in clothing insulation, respectively. Carvalho et al. (2013) 

used linear model to predict indoor clothing level, but they only concluded that clothing level was 

mostly dependent on the average outdoor temperature of the previous day. Liu et al. (2018) used 

exponentially weighted running mean (RM) of the past outdoor and a four parameters logistic 

function to fit the relation between indoor clothing insulation and the RM outdoor temperatures. 

The model explained 90% of the variance in clothing insulation. Ngarambe et al. (2019) developed 

a deep neural network to predict indoor clothing level based on outdoor environment factors and 

mode of transportation. The deep neural network method explained 90% of the variance in clothing 

insulation.  

These studies regarded clothing level as a dependent variable of environmental parameters and 

developed models to predict clothing level. However, people also consider what occasions they 

are going to present and what activities they are going to do when choosing clothes. These personal 

adjustments were not considered in existing models which limited the performance of these models. 

Furthermore, existing numerical models could only predict average indoor clothing level for 

specific outdoor climate which means the models couldn’t determine real-time clothing level. Thus, 
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it is necessary to find a new approach rather than using numerical models to measure real-time 

clothing level to provide a more comfortable environment. 

1.2.2 Image Classification  

To determine real-time clothing level, numerical models were not a good approach, thus this study 

took a different approach which was using visual content to determine clothing level. Normally, 

different clothes have different looks, for example, T-shirts and sweatshirts. People could quickly 

tell what kind of clothes others were wearing. Thus, distinguish clothes by human eye was possible.  

However, it was infeasible to assign a person to determine other’s clothing level in real. Thus, an 

automatic agent was required to perform such tasks. Thanks to the development of computer vision, 

computers could classify an object in an image based on the visual contents (also known as image 

classification) using special programs. Thus, this study intended to investigate the approach of 

using image classification program to determine occupant’s clothing level. 

Image classification refers to the task of classifying objects in images based on their visual contents. 

For example, an image classification program could tell the species of a flower in a picture. 

Nowadays, the most popular way to perform image classification is by using artificial neural 

networks (ANNs). Among them, the convolutional neural networks (CNNs) had become a major 

in completing image recognition, classification and detection tasks (Rawat and Wang, 2017). In 

1989, LeCun et al. proposed the first CNN with multiple layers to process handwritten digit images. 

Their CNN was used to classify U.S. zip code. But the accuracy was low. Later in 1998,  LeCun 

et al. developed a new CNN architecture called LeNet-5. It had a good performance using the 

dataset called Modified National Institute of Standards and Technology (MNIST) which contains 

70,000 handwritten digits.  

However, CNNs stopped to develop due to limited computational power (Simard et al. 2003). Until 

recent years, thanks to the advances in computing machines, CNNs with more complicated 

structures were developed. Ranzato et al. (2007) introduced an architecture to extract hierarchical 

sparse features using max pooling technique. It achieved an 0.64% error on the MINST dataset. 

Lin et al. (2013) developed a CNN with convolutional filters replaced by multilayered perceptrons. 

This network produced state-of-the-art classification performances on Canadian Institute for 

Advanced Research dataset with 10 classes (CIFAR-10) and CIFAR-100 datasets. Furthermore, 
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Simonyan and Zisserman (2014) focused on deeper or more complicated network. They used 

methods including dimension reduction and residual network to improve the classification 

accuracy. As a result, their network had an enhanced accuracy on ImageNet dataset (the largest 

dataset in the field of image classification) but had a higher computational cost. These studies 

proved that modern CNN models achieved high accuracy on image classification.  

Based on the research, there was only one study that used CNN to perform clothing classification 

and it could only classify the style of clothes (i.e. T-shirt, shoes, shorts, etc.). Schindler et al. (2018) 

used CNN to classify fashion and apparel. They used multiple CNN models and the average 

accuracy for 30 types of clothes and the best accuracy was 91.07%. However, because this study 

could only classify the style, it was not helpful to classify clothing level. Thus, it is necessary to 

build our own image classification model in this study to measure clothing level. 

1.2.3 Evaluation of Thermal Comfort in Indoor Environment 

Thermal comfort had a definition as follow: the condition of mind which expresses satisfaction 

with the thermal environment and is assessed by subjective evaluation (American Society of 

Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), 2013). Thermal comfort as a 

subjective sense was extremely hard to evaluate using numerical parameters, however, the 

comfortable temperature for different people but with similar conditions such as clothing, humidity 

was found to be similar (ASHRAE, 2013). Therefore, multiple numerical models that related 

thermal comfort with different environment parameters have been developed in last 50 years. 

There were four main approaches that researchers followed to develop human thermal comfort 

models which were rational approach, adaptive approach, psychological approach and 

physiological approach (Enescu, 2017). 

1.2.3.1 Rational Models 

The rational approach, also known as heat-balance approach, based on the steady-state 

experiments which revealed that hot discomfort was caused by skin wittedness and clod discomfort 

was caused by mean skin temperature (Djongyang et al., 2010). Based on these findings, Fanger 

(1982) developed the most famous thermal comfort model known as the predicted mean vote 

(PMV) and percentage of dissatisfaction (PPD) model. The PMV model could predict the mean 
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value (mean vote) of the feeling responded by all the subjects under given condition. The vote in 

this model referred to the 7-scale thermal sensation vote (TSV) ( −3 for cold, −2 for cool, −1 for 

slightly cool, 0 for neutral, + 1 for slightly warm, + 2 for warm, and + 3 for hot) determined by the 

ASHRAE standard (2013). The PPD model could predict the percentage of people who felt 

uncomfortable at specific PMV. For example, the PPD model predicted that 100% people would 

be dissatisfied if the PMV was ±3. Another contribution of this model was that it concluded six 

parameters that related to the thermal comfort or PMV. The six parameters were: air temperature, 

air velocity, mean radiant temperature, relative humidity, metabolic rate and clothing level. 

However, because this model was developed from climate chamber with steady-state environment, 

researchers like McIntyre (1978) raised suspects toward the reliability of the steady-state model 

developed by Fanger. Because certain variables in the study was not reproduceable in real life. 

Similarly, Schiavon and Melikov. (2008) also proved it was impossible to create climate-chamber-

like environment in real life. Regardless these doubts, the PMV-PPD model was still the most 

popular model used in thermal comfort study, but researches started to develop adaptive models 

under environments that were more realistic. 

1.2.3.2 Adaptive Models 

The adaptive models referred to those models that were not developed in climate chamber but in 

different environments by field study (Djongyang et al., 2010). De Dear and Brager (2001) first 

published an adaptive model of thermal comfort which was developed from field study and 

concluded the dependence of indoor air thermal comfort on outdoor air temperatures especially in 

natural ventilated buildings. Ogbonna and Harris (2008) performed empirical thermal comfort 

study in Jos, a city located in tropical sub-Saharan Africa. They collected the data including air 

temperature, humidity, CO2 level and lighting level, as well as questionnaires on occupants’ 

sensations of thermal comfort. They concluded that an operative temperature of 26.67 °C would 

be the best at that specific location. Chu and Jong (2008) developed the least enthalpy estimator 

(LEE) which combined the concept of human thermal comfort with enthalpy theory to predict 

thermal comfort. They concluded that the HVAC systems operated under settings generated by the 

LEE could provide comfortable environment while saving the energy. Pasupathy et al. (2008) 

investigated technologies which were affordable and efficient that could be used to store large 

amounts of heat or cold with a small size. In their study, they found that increasing the thermal 
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storage capacity of a building could increase human comfort by decreasing the frequency of 

internal air temperature swings and maintained the indoor air temperature at the desired 

temperature for a longer period. Yao et al. (2009) developed Adaptive PMV (aPMV) for 

Chongqing, a city in China, to compensate the poor performance of PMV model under hot and 

humid environment. Their model used only one input which was the mean outdoor temperature to 

calculate the optimum operative temperature. Similarly, Indraganti et al. (2014) developed an 

adaptive model for hot and humid climates of India. Their model provided a relationship between 

comfortable temperature and running mean of the outdoor temperature. Xu et al. (2010) developed 

an aPMV model and established the relationship between aPMV and PMV for Beijing, a city in 

China. Besides aPMV, Fanger and Tofum (2002) developed Extended PMV (ePMV) models for 

buildings without air conditioning and located in warm and humid climate zones.  

The above-mentioned studies were merely a part of different adaptive models. Theses adaptive 

models provided many types of thermal comfort models for different types of environments which 

expanded the thermal comfort theory into a border filed. However, because the environments were 

different at every corner around the world, these models were usually only applicable for specific 

environments which limited their applications.  

1.2.3.3 Psychological Models  

The rational and adaptive models were both models that focused on environmental parameters 

such as air temperature and air velocity. However, the thermal interaction of human with the 

environment also involved psychological responses and physiological responses. Therefore, 

researchers developed models following these two approaches to further understand thermal 

comfort.(Cheng et al., 2012).  

According to Guan et al. (2003) the psychological models did not describe the mental status in a 

thermal environment but predicted the local and whole-body thermal sensation. Taniguchi et al. 

(1992) related the average facial skin temperature and its changing rate to the whole-bod thermal 

sensation for vehicles. The model was developed based on human subject tests. This model only 

related the facial sensation with the overall sensation. Therefore, the model was not comprehensive 

enough. Hagino and Junichiro (1992) also conducted experiment in vehicle  to determine the 

relationship between thermal sensation of whole body and thermal sensation of partial body 
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segment. The model reveled that the forehead and upper arm contribute the most to the whole-

body sensations than thigh and instep. De Dear et al. (1993) proposed receptor model which 

applied different thermal sensation Area Summation Factors (ASF) to different regions base on 

sensitivities towards thermal stimuli. This model only represented local skin temperature and did 

not have enough information for whole-body thermal sensation. Wang (1994) developed a model 

to calculate the thermal sensation under transient conditions. It combined PMV model with an 

extra term which described the rate of heat storage in skin. This model provided a quick method 

to predict transient thermal comfort but it lacked the information of local thermal sensation. Kohri 

(2002 and 2003) defined the local-standard effective temperature with the dispersed two-node 

model to evaluate thermal environment at different body parts. Lomas et al. (2003) used large 

amount of experimental data of overall TSV to develop a Dynamic Thermal Sensation. This model 

had an expression as equation 1.1.  

 

 

(1.1) 

 

In the equation, ΔTsk,m  and ΔTh were the error signals of the skin surface temperature and the body 

core temperature. The derivative with respect of dtmax represented the maximum positive rate of 

change of the skin temperature.   

These psychological models provided a more detailed information about the relationship between 

local thermal sensation and overall sensation. However, this study was not focused on this aspect. 

This approach was not further investigated in this study. 
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1.2.3.4 Physiological Models  

The simplest physiological model was the empirical one-node model developed by Givoni and 

Goldman (1971). In their model, the considered the entire human body as one-node. However, this 

model was only applicable to hot environments. Gagge et al. (1971) developed a two-node model 

to evaluate thermal comfort. This model divided human body into two concentric cylinders with 

two different temperatures to represent core temperature and skin temperature respectively. This 

model provided a more detailed model to approximate heat transfer model for evaluating thermal 

comfort. This model had a wider application comparing to the one-node model. Another two-node 

model developed Azer and Hsu (1977) modified Gagge’s two-node model and achieved a wider 

range of applicable environments. This model was able to determine thermal sensation directly 

from physiological strain. Later, Stolwijk (1971) developed a multi-node model to be used in 

aerospace applications. This model divided human body into six segments and each one was 

further divided into four layers in radial direction. Because the physiological phenomena of each 

section could be controlled, this model had better precision and flexibility than the previous ones. 

Even though this model was limited to steady-state conditions, it was regarded as the pioneer of 

modern multi-segment and multi-node physiological models. Fig. 1.1 shows the difference 

between single-segment and multi-segment model as well as the difference between two-node 

model and multi-node model. 

 

Figure 2.1 Comparison between physiological models (Katić et al., 2016) 
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Another physiological model was the UC Berkeley Comfort Model (Huizenga et al. 2001). This 

model could be applied to arbitrary number of segments, but usually used as 16 segments. For each 

segment, it was represented with multiple nodes to calculated heat exchange between each node. 

This model considered heat and moisture capacitance of clothing and heat loss by conduction to 

surfaces in contact with body, as well as improved convention and radiation coefficient. Individual 

differences such as body density, metabolic heat generation and blood flow rate were also 

considered in this model. Because of these improvements, this model could predict physiological 

response and estimate thermal comfort in transient or non-uniform thermal environments. Besides 

these models, the most complicated and realistic model was the multi-elements model that adopted 

finite element analysis (Li et al., 2004). This model solved differential equations to calculate 

temperature distribution of human body. Also, there were three-dimensional dimensional models 

that spitted human body into 15 cylindrical parts and used three thousand noes to represent human 

circulatory system.(Smith, 1991). This model was able to predict physiological responses of any 

local sections of human body. 

These abundant physiological models provided a more detailed understanding of physiological 

responses toward thermal environment. It allowed scholars to make more accurate thermal comfort 

predictions by using this model. However, simple physiological models usually had worse 

performance than rational or adaptive models, and models with better performance were far too 

complicated. Due to this dilemma, the physiological models were normally used in theoretical 

analysis rather than experimental studies. 

1.2.4 Physiological Indicators of Thermal Comfort and Measuring Instrument 

The previous section discussed different types of models used to determine thermal comfort. Most 

of the models were either too complicated or only applicable to specific situations which limited 

their practicality. However, the physiological models inferred that human’s physiological 

parameters would respond to different environments. Similarly, Harrison et al. (1988) concluded 

that human’s thermoregulation system responds very quickly towards the change of outside 

environment. Another study (Wang and Peterson, 1992) also pointed out that when the 

environment was in the moderately warm (33.5 °C) to moderately cool (18 °C) condition, human’s 
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thermoregulation system would vary skin temperature to maintain thermal comfort. These studies 

facilitated the effectiveness of using physiological parameters to determine thermal comfort. 

Many studies have been conducted studies to find the most reliable indicative parameter. Jung and 

Jazizadeh (2018) adopted an optical technique called photoplethysmography to measure the blood 

volume change in microvascular bed of skin. The results showed 66.7% of the subjects showed a 

positive correlation between the vision indicators, skin temperature and thermal sensations. 

Another study conducted by Xiong et al. (2016) investigated behavior of different physiological 

parameters, including skin temperature at different locations, heart rate, etc. under the step change 

of air temperature. This study concluded that skin temperature was the most correlated parameter 

with thermal comfort. Yao et al. (2007) conducted experiment with 20 students participated to 

investigate three physiological parameters including skin temperature, electrocardiograph (ECG) 

and electroencephalogram (EEG) to see their responses to different air temperature. The study 

found that all of these were sensitive to room temperature and could indicate thermal sensation. 

Choi and Loftness (2012) investigated body skin temperature as an indicator of thermal comfort. 

Their study measured subjects’ skin temperature at different locations using thermocouple and 

discovered the connection between wrist temperature and thermal comfort. Even though these 

studies investigated different physiological parameters, most of them concluded that skin 

temperature on forehead was the most indicative parameters about thermal comfort. Because skin 

temperature only dependent on the thermal status of human (Bierman, 1936) However, several 

other studies pointed out that measuring temperature at one point on forehead may not always be 

conclusive, for example Yi and Choi (2015) used thermographic camera to measure facial skin 

temperature and concluded that the facial skin temperature was five times more sensitive to 

ambient thermal conditions than other skin surfaces.  
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Figure 2.2 Correlation between facial skin temperature and thermal comfort (Salehi et al., 2020) 

 

From fig. 1.2, Salehi et al. (2020) pointed out that the skin temperature of left cheek (LC) and right 

cheek (RC) has higher correlation with thermal comfort and the correlation was 0.91 and 0.88, 

respectively. Also, in their study, the skin temperature on middle of forehead (MFH) had a 

correlation of 0.82. In another experimental study of Li et al. (2018), the results showed that when 

the room was heated, the skin temperature of nose changed the most with 2.4 °C, the skin 

temperature of left cheek changed 1.1 °C and the skin temperature on forehead changed the least 

with 0.6 °C. From these studies, we could say that only using temperature on forehead was not 

always the best parameter to use. It would be better to use multiple skin temperature at different 

locations to predict thermal comfort. Therefore, because the face region is the least covered when 

a person is indoor, this study intended to investigate the relationship between averaged facial skin 

temperature and thermal comfort. 

To measure and monitor occupant’s physiological parameters, studies mentioned in previous 

section used either thermocouple or special equipment which were not ideal for occupants’ daily 

life or for automatic operations. Recently, the development of wearable sensors for health 

monitoring provided non-invasive methods to measure physiological parameters. Liu (2018) used 

wearable sensors to measure physiological parameters to determine thermal comfort. Li et al. 

(2017) used the collected data from wearable sensors and a smart thermostat to build a random 

forest model for predicting thermal preference, and then used the model to determine the optimal 

room conditioning mode and HVAC setting via a smartphone. However, these wearable sensors 
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would also introduce an extra piece to the occupants and the accuracy of these sensors was not 

reliable.  

On the other hand, thermographic camera was also able to measure skin temperature. Also, because 

the camera can be placed on surfaces, it introduced less interference than the wearable sensors. 

Thus, it was more ideal for applications. Cosma and Simha (2018) also used thermographic camera 

to measure local body temperature to model thermal comfort under transient conditions. Later, 

Cosma and Simha (2019) used the same equipment to develop a machine learning model to predict 

individual thermal preferences under transient condition. Wang et al. (2017) used online learned 

thermal comfort model using infrared thermal imaging to control the thermal environment. Li et 

al. (2018) used infrared thermography to measure temperature at different location on face and 

concluded that ears, noses and cheeks are the most indicative of thermal comfort and can reach an 

85% prediction accuracy. Their experiment results showed that this system was feasible for actual 

application and effective for achieve more satisfactory indoor thermal environment using a smarter 

way. From these studies, they proved the reliability of the thermographic camera on measuring 

physiological parameters. However, their study only used such technology to model thermal 

comfort but did not modified the HVAC systems to trying to make occupants more thermally  

comfortable. Thus, this study intended to use thermographic camera to measure the mean facial 

skin temperature to determine occupant’s thermal comfort and move one step further to improve 

the HVAC system to make occupants more comfortable. 

1.3 Outline of this Thesis 

In summary, this study developed and validated a new HVAC setpoint temperature control strategy 

for single-occupant office. The control strategy would provide a comfortable temperature setpoint 

for different clothing level determined by an image classification program. The control strategy 

would also adjust the temperature setpoint to meet occupant’s thermal comfort need determined 

by mean facial skin temperature measured by long wave infrared (LWIR) camera combined with 

face detection program. To achieve this objective, this study conducted multiple investigations and 

reported them in following chapters: 

Chapter 2 presents the development of the image classification model for measuring clothing level 

and the data collection for comfortable air temperatures. This study used an RGB camera combined 
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with the classification model to collect the data. The experimental data was used to determine the 

temperature setpoint for the new control strategy. 

Chapter 3 presents the development of the thermal comfort model based on the mean facial skin 

temperature. The study used a LWIR camera combined with face detection program to collect 

mean facial skin temperature and corresponding thermal sensation vote (TSV). The model 

obtained was used to adjust the temperature setpoint in the new control strategy to meet occupant’s 

thermal comfort need.  

Chapter 4 presents the structure of the new control strategy implemented in LabVIEW by using 

results obtained from the previous chapters and discussed about the validation results of the new 

control strategy. 

Chapter 5 summarizes the major findings of this study and discusses the possible future works. 
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2. CHAPTER 2. CLOTHING LEVEL CLASSIFICATION AND 

COMFORTABLE AIR TEMPERATURE 

As stated in previous chapter, current setpoint temperature control did not consider occupants’ 

clothing level which made people uncomfortable. Thus, this chapter aimed to develop an image 

classification model to determine clothing level as well as to determine the most comfortable 

temperature setpoint for different clothing level. 

2.1 Clothing Level Classification 

The first section talks about the development of the image classification model. Instead of building 

a new classification model, this study used a pre-trained CNN model and trained it again using the 

new dataset. 

2.1.1 Pre-trained CNN Model 

The first step was to search for available pre-trained CNN models. As mentioned in Chapter 1, 

CNNs have numbers of variations and it is impossible to decide which one is the best. Therefore, 

this study used CNN architecture called MobileNetV2 developed by Sandler et al. (2018). This 

architecture was specifically developed for mobile platforms where the computational power was 

limited. Different from other residual networks, this network used an inverted residual block to 

conserve the input information. The inverted residual block had a structure shown as Fig. 2.1. 

Normal residual block performed dimension reduction before doing the convolution, in this case, 

the original information would lose during the convolution. However, the inverted residual block 

first performed dimension expansion than did the convolution. By doing so, more information of 

the input could be preserved. 
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Figure 2.1 Structure of  inverted residual block 

Stacking different layers together, the model used in this study had a structure shown as Table 2.1. 

This model used 4 operators which are normal convolution with 3 × 3 kernel (conv2d), inverted 

residual block (bottleneck),  normal convolution with 1 × 1 kernel (conv2d 1 × 1) and average 

pooling (avgpool). In the table, c stands for the number of output channels of each operator, n 

stands for the time the operator was repeated, s stands for the stride of the operator and t stands for 

the channel expansion factor applied on the input of each bottleneck operator. 

Table 2.1 Structure of MobileNetV2 
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2.1.2 Preparation of the Training Dataset 

When preparing the dataset, this study applied following rules to build a clean and representative 

dataset: (1) The clothes should be fully visible including the shoes, since shoes also contribute to 

the total clothing level. (2) The color of the clothes should be various to avoid overfitting the 

classifier model with clothes color. (3) The height, weight, gender, etc., of the  subject in the image 

should not be restricted to avoid overfitting as well. (4) The composition of the image should be 

simple (5) The subject in image should be standing out of background. Fig 2.2 shows examples of 

the dataset. 

     

  (a)            (b)       (c) 

Figure 2.2 Sample images from retrain dataset: (a) 0.6 clo (b) 0.4 clo (c) 0.8 clo 

The clothing level for each image in the dataset was manually calculated using method provided 

in the ASHRAE handbook (2009). The handbook instructed that the total clothing level of an 

ensemble was the summation of insulation value for individual garments. The insulation value was 

obtained from a table in the handbook and Table 2.2 shows part of the original table. 
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Table 2.2 Clothing insulation value 

 

 

When calculating the clothing level for each image, the results were rounded to one decimal place 

to make distinguishable classes. Because, for example, the difference between 0.3 clo and 0.32 clo 

may be only a pair of socks. Thus, if the calculated results were not rounded, each class in the 

dataset would be very similar which made training the model very difficult and less efficient. 

Furthermore, this study considered all clothes worn by the person in the image were thin, because 

it was unlikely to judge the thickness purely based on the visual. Moreover, we assumed people 

would wear a T-shirt for ensembles with long-sleeved clothes. Similarly, underwear and socks 

were considered for all types of ensembles unless there were clear indications of not wearing these 

garments. Following these assumptions, the clothes worn by the man in Fig. 2.2(a) was 

approximated as follow: long-sleeved shirt, straight trousers (thin), underwear, T-shirt because he 

wore a long-sleeved shirt, shoes and socks. Therefore, the total clothing level for Fig. 2.2(a) was: 

0.25 clo + 0.15 clo + 0.04 clo + 0.08 clo + 0.03 clo + 0.02 clo = 0.57 clo ≈ 0.6 clo. For Fig. 2.1(b) 

and 2.1(c), the calculated clothing level after rounding was 0.4 clo and 0.8 clo, respectively. 
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2.1.3 Training of the Image Classification Model 

With dataset prepared, this study adopted the MobileNetV2 to build a new model for clothing level 

classification by using transfer learning. Transfer learning is a process that uses new dataset to 

modify a pre-trained neural network to solve new tasks. Fig. 2.3 illustrates the theory of transfer 

learning. In the figure, “knowledge” refers to the parameters and the architecture of the pre-trained 

network which would be preserved in the new network.  

 

Figure 2.3 Illustration for transfer learning 

Transfer learning not only saved time and but also required less computational power than building 

a new CNN model from scratch. This method could also preserve the performance of original 

network because the “knowledge” was not modified. However, since transfer learning uses the 

parameters and the architecture from other neural network, the performance of the retrained 

network is usually worse than the model built from scratch. 

In this study, we connected a pre-trained MobilNetV2 with a linear classifier to build the clothing 

level classifier. Fig. 2.4 shows the structure of the classifier. By using this structure, we did not 

have to train the whole MobileNetV2 which had millions of parameters but just needed to train the 

linear classifier which had thousands of parameters. 
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Figure 2.4 Structure of clothing level classifier 

With the structure determined, this study used Python as programming language and TensorFlow 

as the machine learning library to train the new model. The training program used cross-entropy 

as the loss function, and equation 2.1 shows the definition of it. In this equation, 𝑦 stands for the 

one-hot encoding (Harris and Harris, 2012) for each class in the dataset and 𝑝 stands for the 

predicted probability for each class.  

 𝐿 = −(𝑦 ∗ ln(𝑝) + (1 − 𝑦) ∗ ln(𝑝)) (2.1) 

 

For example, an image contained an object encoded as [0, 1, 0] and the prediction made by the 

classifier was [0.1, 0.8, 0.1] indicating that the classifier thought the object had 80% of chance 

being class [0, 1, 0]. Then, the loss for this image was −(0 ∗ ln(0.1) + 1 ∗ ln(0.8) + 0 ∗

ln(0.1) = 0.223. Because the value of  loss function would be small when the prediction accuracy 

for the corresponding class was high, the goal to train the classifier was to minimize the loss 

function. 

To minimize the loss function, this study used mini-batch gradient descent method. Mini-batch 

gradient descent was a method combing batch gradient descent and stochastic gradient descent. In 

batch gradient descent, the model was updated only after evaluating errors for all samples in the 

training dataset. This method could result in a more stable error gradient but a stable error gradient 

may lead to premature convergence of the model. On the other hand, in stochastic gradient method, 

the model was updated immediately after evaluating errors for each sample in the training dataset. 

This method could result in a better convergence but the computational cost was too high for larger 

datasets. Combining the ideas for these two methods, the mini-batch gradient descent first divided 

the training dataset into small batches (usually 32 samples per batch). Then, it updated the model 

after evaluating the errors for samples in one batch and move on to evaluate next batch. Therefore, 
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this method provided a more robust convergence than batch gradient descent and cost less 

computational power than stochastic gradient descent. 

Table 2.3 shows the hyperparameters setting of the mini-batch gradient descent. The learning rate 

controlled the amount of updating the weight parameters in the model. The momentum was a 

constant value that would accelerates the training and avoid local minimum and the most common 

value for momentum was 0.9 (Smith, 2018). The batch size was the number of samples that would 

be used to update the model once. Also, a batch size of 32 was the most common setting (Smith, 

2018). Lastly, the epoch means how many times the program trained over the full training group. 

Table 2.3 Hyperparameters for mini-batch gradient descent 

Hyperparameter Value 

Learning rate 0.0025 

Momentum 0.9 

Batch size 32 

Epochs 60 

After running the training program, it saved a model that could be used to perform clothing level 

classification. In this study, the model was tested using images captured from offices. If the 

classification model could predict most of the input images, then it would be reasonable to 

conclude that the CNN could be a feasible way to measure clothing level.   

2.1.4 Results 

The training dataset included 300 images for clothing levels ranged from 0.3 clo to 0.8 clo with 

increment of 0.1 clo which made a total of 1800 images. The images with the same clothing level 

were collected into the same folder and labeled with their clothing level. Fig. 2.5(a) shows the 

folders for different clothing levels and Fig. 2.5(b) shows part of the data for 0.4 clo. Because the 

training program assigned class labels by folders’ name, the name of each image did not affect the 

training result. 
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 (a)       (b) 

Figure 2.5 Training dataset (a) Folders for different clothing level (b) Sample images for 0.4 clo 

Fig. 2.6 shows the program successfully detected the images in different folders. The training 

program randomly separated the whole dataset into two sub-groups, one for training (1441 images, 

80% of the dataset) and one for validation (359 images, 20% of the dataset). The training group 

was used to update the weight parameters in the classifier model and the validation group was used 

to evaluate the updated model. During the training, these two groups were kept independent with 

each other and the validation group were never used to update the model to avoid overfitting the 

model. Using the settings shown in Table 2.3, the 1441 training images was divided into 45 batches 

and 359 validation images would be divided into 11 batches. Therefore, for one training epoch, 

the model would be updated for 45 times and validated using 11 batches of images. 

 

Figure 2.6 Separation of the dataset 

Table 2.4 shows the Python variable representation of the structure shown in Fig. 2.4. The 

keras_layer represented the MobileNetV2 which contained 2.2 million parameters. The program 

set these parameters to be non-trainable, following the theory of transfer learning. The droupout 

represented the Dropout layer. The Dropout layer could prevent overfitting by randomly disposing 

specific fraction of parameters in the model (Srivastava et al. 2014). This Dropout layer used 0.2 

as the disposing rate. Also, the Dropout layer did not include any trainable parameters. The final 
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layer dense was the linear classifier including 7686 parameters that intended to be trained using 

the training dataset. 

Table 2.4 Structure of the classifier in Python 

 

With the hyperparameters set to the values as shown in Table 2.3, the total training performed on 

a laptop consumed 4334 seconds. Fig. 2.7 (a) and (b) shows the average training loss and the 

average training accuracy for each epoch, respectively. In Fig. 2.7(a), the horizontal axis indicates 

the training epoch and the vertical axis indicates the cross-entropy value. The training had an initial 

loss as 1.69 and decreased to 1.2 at the next epoch. Then the loss started decreasing with a smaller 

rate until 50th epoch. After the 50th epoch, the training loss no longer had obvious change between 

consecutive epochs but damping around 0.68 in a range of 0.01, and the final training loss at 60th 

epoch was 0.68. Based on the change of the loss, it was reasonable to say the loss function had 

converged after 50 training epochs. However, because the training dataset was small, it was unclear 

if the convergence reached a global minimum or fell into a local minimum.  

In Fig. 2.7(b), the horizontal axis indicates the training epoch and the vertical axis indicates the 

training accuracy. Training accuracy indicated the how much data in the training dataset was 

correctly classified by the model. The initial training accuracy was 0.35 which was very low 

because the model was not well trained yet. The training accuracy increased to 0.59 at the next 

epoch. The trend of training accuracy was alike that of training loss but changing in a different 

direction. The training accuracy also reached a plateau at 50th epoch which was like that of the 

training loss.  The final accuracy at 60th epoch was 0.92 and the averaged training accuracy was 

85%.  
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 (a) Average training loss for each epoch 

 

(b) Average training accuracy for each epoch 

Figure 2.7 Results of training  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30 35 40 45 50 55 60

C
ro

ss
-e

n
tr

o
p

y

Epoch

Training loss

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60

A
cc

u
ra

cy

Epoch

Training Accuracy



35 

Fig. 2.8 shows the averaged validation accuracy for each epoch. The horizontal axis indicates the 

training epoch and the vertical axis indicates the validation accuracy. The validation accuracy 

indicates how much data in the validation set was correctly classified by the classification model. 

The initial validation accuracy was 0.60 and increased to 0.70 at the next epoch. The training 

accuracy kept increasing until 8th epoch. After 8th epoch, the validation accuracy stopped 

increasing and damping around 0.74 within range of 0.1. After the whole training, the averaged 

validation accuracy for 60 epochs was 74%. This accuracy was acceptable given the size of the 

dataset. 

 

Figure 2.8 Average validation accuracy for each epoch 

After the training, the model was tested using a new program to label 50 images captured from 

offices. Fig. 2.9 shows an example classification results using the trained model with different 

postures. In Fig. 2.9(b), the classifier had a level of confidence of 82% that the image had a clothing 

level of 0.3 and it did make the classification correct.  
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(a)       (b) 

Figure 2.9 Sample classification result (a) Input image (b) Classification result 

Table 2.5 shows the overall classification performance of the 50 images. The classifier correctly 

classified 84% of the images and most of them were with high level of confidence. These results 

all showed that the CNN could non-invasively measure clothing level. 

Table 2.5 Performance of the trained model 

Result Number of images 

Correct (level of confidence > 70%) 35 

Correct (70% > level of confidence > 50%) 8 

Wrong 7 

2.1.5 Discussions 

This study investigated the method of measuring clothing level based on visual content using CNN. 

But the validation accuracy of the trained CNN model was not high enough. This was because that 

the CNN used in this study was not fine-tuned to this specific task. However, because fine-tuning 

the pre-trained CNN model would consume more computational power and more time as well as 

would require a more detailed dataset, the performance of a fine-tuned CNN model was not 

investigated. Furthermore, the trained model had a potential of overfitting because the dataset was 

small which limited the training effectiveness in each epoch. Normally, it would be ideal to train 

more steps in one epoch rather than training more epochs. Because the model would see the 

training data more times which increased the risk of overfitting the model with more epochs. Also, 

because the visual content for the same clothes could be very different in color, fitting and 
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materials, the dataset used in the training may not be comprehensive enough which may result in 

false predictions and overfitting. However, because it would be impossible to collect every kind 

of clothes in one dataset, there would always be some overfitting in every CNN models. Moreover, 

current CNN model could only measure clothing level for one person which limited its application 

in room with multiple occupants. Lastly, the CNN model was not good at telling the spatial 

information of an image, because the input was a 2-D image. Therefore, CNN could not tell if the 

subject was wearing a thick sweater or a thin sweater. Even though, it could be trained to classify 

thickness to some extent, the accuracy would still be low. 

There was also a weakness of using the method mentioned in ASHRAE to calculate clothing level. 

Because the clothing level only reflected the total clothing level but did not considered the 

distribution of the clothes. For example, when a person wears a short-sleeved shirt, this person’s 

arm would have a larger chance of cold/hot feeling than the torso parts. Using our method to predict 

clothing level could not reflect such uneven distribution of clothes. Therefore, it would be more 

ideal to determine the distribution to provide a more personalized environment. 

2.2 Comfortable Air Temperature 

As stated in the previous chapter, people with different clothes needed different air temperature to 

stay comfortable. Because there was no information available in existing literatures, it was our 

task to determine the comfortable air temperature for different clothing levels.  

The experiment conducted in this study has been reviewed by Purdue University Institutional 

Review Board and received an exemption with protocol #1811021298. 

2.2.1 Data Collection 

This part of the study collected data on air temperature, clothing level, and thermal sensation in a 

single occupant office at Purdue University, U.S. The office was located on the second floor of a 

three-story building with the floor plan shown in Fig. 2.10 and the office had a layout shown as 

Fig. 2.11. The room had one side of exterior wall and the other walls were all interior. 



38 

 

Figure 2.10 Location of the office, indicated by the red dot 

 

 

Figure 2.11 Office layout 

This office used a thermostat (Siemens 544–760A) as shown in Fig. 2.12(a) which connected to 

building automation system (BAS) to control the room air temperature. The thermostat had an 

adjustment range from 18.3°C to 26.7°C. The data logger (Sper Scientific 800,049) as shown in 

Fig. 2.12(b) recorded the minute-by-minute air temperature in the office during the data collection. 

An RGB camera (Logitech C920) shown as Fig. 2.12(c) with a resolution of 1080p captured the 

occupant’s images which were used for clothing level classification. To facilitate the clothing level 

classification result, we asked occupants to report their clothing level as well. If the self-reported 

clothing level was different from result of the classification program, we used the self-reported 

value as the true value. To understand the comfort of the subject, subject’s thermal sensation was 
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recorded by questionnaires using the7-scale TSV ( −3 for cold, −2 for cool, −1 for slightly cool, 0 

for neutral, + 1 for slightly warm, + 2 for warm, and + 3 for hot) (ASHRAE, 2013). 

 

     

(a)    (b)    (c) 

Figure 2.12 Data collection devices (a) Thermostat (b) Data logger. (c) RGB camera 

This study applied two assumptions and one restriction when collecting data: (1) The air velocity 

around occupants in the office was assumed to be below 0.2 m/s. If the air velocity was below 0.2 

m/s, the effect of draft on the occupants was minimal. (2) The mean radiant temperature around 

the occupants to be the same as air temperature and the relative humidity in the offices to be 

between the comfortable range of 30% to 70% (ASHRAE, 2003). (3) The restriction was that all 

the occupants involved in the data collection were in sedentary state and performed office work 

during the investigation. Thus, their metabolism rate was at a similar level. 

This study collected comfortable air temperature data for different clothing levels in the following 

procedure. Before the begging of the test, the subjects were instructed about how to report their 

thermal sensation using the seven-scale TSV. After the tutorial, we captured an image of the 

subject by using the RGB camera. We then input the image to clothing level classifier and recorded 

the classification result. Then, the subject entered the office with air temperature controlled to 

20 °C. Subject spent 10 minutes after entered room for acclimation. This study used conclusion 

from Liu et al. (2013) to determine the acclimation time. They investigated the response of human 

thermal perception to step-change transient thermal environments. They concluded that subjects 

would be acclimated to the new environment after 10 minutes no matter how large the temperature 

changed. After the acclimation, we asked subject’s TSV and increased the thermostat by 1 K if the 

subject felt cold or decreased by 1 K if the object felt warm. After the adjustment, we recorded 

subject’s TSV and the corresponding air temperature every 2 minutes until the air temperature 
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reached the new setpoint. Then, if the TSV responded by the subject was still not comfortable, we 

repeatedly adjusted the thermostat according to the TSV until the subject responded TSV as 0. The 

air temperature at that time was regarded as the comfortable air temperature setpoint for subject’s 

clothing level. 

2.2.2 Results 

This study collected more than 450 data points from college-aged participants for clothing level 

ranged from 0.3 clo to 0.8 clo. Fig. 2.13 shows the raw data collected from the experiment. The 

comfortable air temperature was different not only for different clothing level but also for different 

subject.  

 

Figure 2.13 Raw data of comfortable air temperature 

From the collected data, it was possible to determine a single comfortable air temperature for each 

clothing level. Therefore, the averaged air temperature at different clothing level was computed 

along with its standard deviation to examine the data distribution. Table 2.6 shows the calculation 

results. In the table, the mean air temperature shows that the comfortable air temperature increased 

as the clothing level decreased. When clothing level decreased, the area of skin exposed to the 
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environment increased which then increased the total amount of heat exchanged between human 

body and environment. Thus, the environment needed to be warmer to reduce the temperature 

difference between human and environment to preserve heat balance and maintain human’s core 

temperature. Furthermore, the standard deviation was also calculated. Among each group, the 

standard deviation had similar magnitude. In the same group, the variation was small comparing 

to the average temperature. The maximum variation was 1.46% of average temperature for 0.4 clo 

and the minimum was 0.97% for 0.5 clo. 

Table 2.6 Comfortable air temperature for different clothing level 

Clothing Level (clo) 0.3 0.4 0.5 0.6 0.7 0.8 

Average Air Temperature 

(°C) 

24.3 23.8 23.4 23.1 22.8 22.6 

Standard Deviation (°C) 0.29 0.34 0.23 0.29 0.33 0.24 

 

Fig. 2.14 plots the averaged air temperature for different clothing level. The error bar in the figure 

has a value of 2 times of the standard deviation. This error bar could be regarded as the 95% 

confidence interval if we assume a normal distribution among each group. Even though the 95% 

confidence interval had overlap with each other, the averaged value still showed a clear trend. 

Based on the figure, it was reasonable to consider the air temperature as a dependent variable of 

clothing level. The datapoints were fitted with different type of trendline including linear, 

exponential, 2nd-order polynomial and logarithmic. These types of trendline could describe 96.2%, 

96.5%, 99.9% and 99.6% of the variation of the average comfortable air temperature, respectively. 

The best fitted 2nd-order polynomial trendline had an equation as 𝑦 = 4.2185𝑥2 − 7.7836𝑥 +

26.239 where y was the comfortable air temperature and x was the clothing level. By using this 

equation, it was possible to determine comfortable air temperature for any clothing level and use 

the calculated temperature as the temperature setpoint for the HVAC control system. 
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Figure 2.14 Second-order parabolic trend line for averaged comfortable air temperature 

This study also calculated PMV and PPD using the experimental data to facilitate the findings. 

The PMV and PPD was calculated by using the tool developed by UC Berkley (Hoyt et al., 2019). 

This tool had an interface shown as Fig. 2.15. It automatically calculated the PMV and PPD based 

on the 5 inputs. Because this study assumed that the mean radiant temperature was equal to the air 

temperature, by using equation 2.2 the operative temperature calculated was the same as the air 

temperature. The equation was provided by ASHRAE Standard 55-2013. In the equation ta is the 

air temperature, tmr is the mean radiant temperature and to is the operative temperature. 

 𝑡𝑜 =
𝑡𝑎 + 𝑡𝑚𝑟

2
 (2.2) 

The air speed was set to 0.1 m/s, the metabolic rate was set to 1.1 met as if the occupant was doing 

office work, and the relative humidity was set to be 50% when validating each clothing level. 

y = 4.2185x2 - 7.7836x + 26.239
R² = 0.9993
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Figure 2.15 PMV calculation tool 

Table 2.7 shows the calculated PMV and PPD using this tool. The calculated PMV was all negative 

indicating the air temperature was lower than the model required. The average PMV for 6 clothing 

level was -0.58. However, the absolute value for all clothing level was small, indicating a slightly 

uncomfortable environment. The PPD indicated the percentage of people that may feel dissatisfied 

under the given environment. The average PPD for 6 clothing level was 12.83%.  The PPD had a 

maximum when clothing level was 0.3 clo. One reason that caused this large dissatisfaction might 

be the assumption that mean radiant temperature was the same as the air temperature. Because this 

clothing level was most common in summer and the outdoor air temperature was higher in summer. 

Because the office that used to collect data had one side of exterior wall, the mean radiant 

temperature would be higher than the air temperature in summer (Walikewitz et al., 2015). 

Therefore, the real operative temperature would be higher which would reduce the PPD. This 

reason could also be applied to 0.4 clo and 0.5 clo which were also common clothing level in 

summer. To validate the guess, we recalculated the operative temperature for 0.3 clo using mean 
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radiant temperature as 26 °C, then the PMV became -0.56 and PPD reduced to 12% improved 

from original calculation. 

Table 2.7 PMV validation results 

Clothing Level (clo) 0.3 0.4 0.5 0.6 0.7 0.8 

Average Air Temperature 

(°C) 

24.3 23.8 23.4 23.1 22.8 22.6 

Calculated PMV  -0.86 -0.77 -0.66 -0.52 -0.4 -0.27 

Calculated PPD 21% 17% 14% 11% 8% 6% 

2.2.3 Discussions 

This study investigated the comfortable air temperature for different clothing level. The overall 

trend was clear but the variation in each group was obvious which was reflected on the standard 

deviation. This variation was mainly due to the personal preference on thermal environment. 

Because thermal comfort was a personal feeling and this study did not asked subjects about their 

preference, these variations could not be explained by numerical analysis.  

Also, the test group used in this experimental study was limited to college students, because they 

had easier access. Such bias on test groups would have impact on the results, because age had 

impact on both physiological and psychological. For example, for physiological, the metabolic 

rate of younger person would be higher than those of elderly which would make younger people 

felt cold less possible than elderly. Similarly, for psychological, younger person could had higher 

tolerance under cooler environment while elderly would prefer a warmer environment. Such 

source of error would have impact on the comfortable air temperature. Because for the same 

clothing level, younger person could report a lower comfortable air temperature than elderly. 

Therefore, conducing experiment with a test group with larger difference on age could improve 

the applicability of this model. 

Furthermore, this study only asked about the overall thermal sensation of the subject but did not 

asked if subjects felt uncomfortable on specific body parts. Local discomfort had more effect on 

lower clothing level because the area of skin exposed to the environment would be larger than that 

of higher clothing level. With larger area of skin exposed, people would be more sensitive towards 
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air flow, air temperature change as well as the cold/heat radiance. Therefore, for lower clothing 

level, such as 0.3 clo or 0.4 clo, only controlling the air temperature may not be enough to optimize 

occupant thermal comfort, it would be ideal to investigate the presence of local discomfort. 

In addition, rounding of the measured clothing level was also a source of variation for averaged 

comfortable air temperature. Because this process would over-simplify the population and 

increased the in-group differences. For example, the 0.4 clo in this study included clothing level 

ranged from 0.35 clo to 0.44 clo. The in-group clothing level had a 0.9 clo difference and it was 

reasonable to assume the comfortable temperature would be different for the clothing level on two 

ends. Therefore, it would be more informative and potentially reducing in-group variation if the 

population was divided into more detailed clothing levels. 

2.3 Conclusions 

This investigation trained an image classification model based on CNN to measure clothing level 

based on visual content and used it to investigate comfortable air temperature for different clothing 

levels. This study led to following conclusions: 

(1) CNN based image classification could non-invasively measure clothing level with acceptable 

accuracy. Specifically, this study used MobileNetV2 and obtained an averaged training accuracy 

of 85% and an averaged validation accuracy of 74% without fine-tuning the model. 

(2) People with different clothing level required different air temperature to stay comfortable. The 

comfortable air temperature could be calculated using equation: 𝑦 = 4.2185𝑥2 − 7.7836𝑥 +

26.239, where y is the comfortable air temperature and x is the total clothing level. 

(3) The air temperature calculated using this curve could provide an average PMV of -0.58 and an 

average PPD of 12.83%. 
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3. CHAPTER 3. MEAN FACIAL SKIN TEMPERATURE AND 

THERMAL COMFORT 

Another objective of this study was to determine occupant’s thermal comfort based on 

physiological parameters. Thus, this chapter aimed to investigate the relationship between mean 

facial skin temperature and thermal sensation. This study used LWIR camera to capture subject’s 

thermal image of their face and then used a face detection program to locate the face to calculate 

the average temperature. 

3.1 Face Detection 

As discussed in Chapter 2, CNN was able to classify the class of an image. Also, CNN was able 

to detect face in an image. However, due to the large computational cost and complicated structure, 

this study decided to use another approach to perform face detection. 

The other approach was to do face detection using Haar-like feature. Viola and Jones (2001) 

developed the Haar-like feature. They defined the Haar-like feature as “the difference between the 

sums of the pixel intensities in each region that are adjacent rectangular in a detection filter”. Fig. 

3.1 shows some filters with different shapes. With the filter placed at one location on the image, 

the Haar-like feature was obtained by subtracting the summed pixel value in shaded area from the 

summed pixel value in blank area. 

 

Figure 3.1 Different shapes of filters for calculating Haar-like feature 

The advantage of Haar-like feature was the lower computational cost. Because, firstly, the input 

dimension of Haar-like feature was lower than that of the CNN. The Haar-like feature takes only 

grayscale image as input and the filters were usually two-dimensional (height and width) while 

CNN usually had a color image input and the filters were usually three-dimensional (height, width 
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and 3 color channels). This reduction in dimension reduced the times of calculating Haar-like 

feature. Secondly, calculating the Haar-like feature was faster than calculating convolutions. Haar-

like feature was calculated using the summed-area table. In the summed area table, the value at 

any point (x, y) in the table was the sum of all the pixels above and to the left of (x, y), inclusive 

(Crow, 1984). For example, the sum of pixels of the shaded area in Fig. 3.2 can be calculated as C 

+ A – B – D. This operation reduced computational cost to only four operations which was 

extremely less than calculating convolutions. 

 

Figure 3.2 Calculating the sum of the shaded rectangle area  

After calculating the Haar-features for different images, researchers found that human face share 

some common Harr-feature at specific location, for example, the region of the eyes was darker 

than the region of the cheeks. Thus, it meant the Haar-feature at these regions would be a special 

value. By using this special value, the Haar-feature could be used to detect human faces. However, 

using it was unlikely to find the face location by only calculating the Haar-like feature by once. 

Therefore, the process needed to be repeated to eliminate the false area in which the face was not 

presented. By eliminating all the false area, then the area remained would be where the face 

presented. Following this idea, the Haar-cascade model was developed and Fig. 3.3 shows the 

structure of the cascade model. 
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Figure 3.3 Haar-cascade face detection structure 

This model first divided the input image into multiple small areas (sub-windows). In each small 

area, the model calculated the Haar-like feature and compared it with the threshold which 

represented the feature of human face. If the comparison result was in a specific range, the sub-

window was labeled as true (represented as “T” in Fig. 3.3), and if the comparison result was not 

in the range, the sub-window was labeled as false (represent as “F” in Fig. 3.3). In the next step, 

the program would only perform Haar-like feature calculation in the sub-windows which were 

labeled as true in the previous step. Until the model found a region where all the sub-windows 

were classified as true, then this region would be regarded as the true location where a human face 

presented.  

To implement this face detection, this study used Python as the programming language and 

OpenCV as the library. Because the Haar-cascade detection model was already available and it 

was a universal model, there was no need of training the model. 

3.2 Temperature Measurement using Thermographic Camera 

As discussed in Chapter 1, this study intended to use thermographic camera as a non-invasive way 

to measure the mean facial skin temperature. Hence, it was necessary to understand the working 

principle of the thermographic cameras before using it. 
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Thermographic camera was a type of a camera that did not capture visible light but captured 

infrared light emitted by objects. Everything that had a temperature higher than 0 K would emit 

infrared light (Herschel, 1800). The infrared light emitted by objects usually had a wavelength 

between 7 to 14 μm which was also known as long-wavelength infrared (Vollmer and Möllmann, 

2011). Thus, the thermographic camera was also called as long-wave infrared (LWIR) camera. 

These LWIR cameras could measure the intensity of the infrared light emitted by an object using 

special sensors and processes the measurement with thermal radiation laws. Hence, the 

temperature of an object could be calculated.  

There were two major types of LWIR camera, one was cooled cameras and the other was the 

uncooled cameras. As the name suggested, cooled cameras had a cooling system to cool the sensor. 

Such camera could reduce thermally induced noise and have a more accurate measurement, but 

the price was usually very high (FLIR, 2020). On the other hand, uncooled camera would have 

larger noise and less accurate result comparing to cooled sensors, but the price was lower and 

easier to operate. Therefore, due to cost limitation, this study used an uncooled camera to measure 

the temperature. 

This study used Lepton 3.5 LWIR camera manufactured by FLIR. Fig. 3.4(a) shows the look of 

the camera. Because the camera core did not have ports to communicate with computer, the camera 

required an input/output (I/O) module to send the data to the computer. This study used a 

Purethermal 2 I/O module produced by GroupGets. Fig. 3.4(b) shows the I/O module with the 

camera mounted. The camera had a specification shown as Table 3.1, provided by the 

manufacturer. The camera was controlled by a program provided by the manufacturer which 

allowed user to read the camera status and perform calibration. Fig. 3.5 shows the user interface 

of the program. This camera had a nominal resolution of temperature measurement of 0.05 °C and 

a nominal accuracy that was less than 5%. 
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(a) 

 

(b) 

Figure 3.4 LWIR camera system (a) Thermal camera core (b) I/O module with camera mounted 

(GetLab, 2020) 
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Table 3.1 Specifications of Lepton 3.5 (FLIR, 2020) 
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Figure 3.5 User interface of camera control panel (FLIR, 2020) 

3.3 Data Collection 

As stated in the Chapter 1, this study intended to investigate the relationship between mean facial 

skin temperature and thermal comfort. Thus, this part of the study collected data on air temperature, 

mean facial skin temperature, and thermal sensation in a single occupant office at Purdue 

University, U.S. The office was the same as the one discussed in Chapter 2 as well as the datalogger 

for air temperature measurement and the thermostat. 

This study used the LWIR camera combined with the Haar-cascade face detection program 

discussed in the previous sections to measure the mean facial skin temperature. Because the skin 

temperature only dependent on the thermal status of human (Bierman, 1936), it was not necessary 

to collect the clothing level or air temperature. This study used the same questionnaire as the one 

in Chapter 2 to record occupant’s thermal sensation. Assumptions and restrictions mentioned in 

previous chapter were still applicable to this data collection.  
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This study collected the mean facial skin temperature under different air temperature following 

this procedure. Before the begging of the test, the subjects were instructed about how to report 

their thermal sensation using the seven-scale TSV. After the tutorial, subject entered the office 

with air temperature controlled to 18 °C. Subject spent 10 minutes after entered room for 

acclimation. After the acclimation, we asked subject’s TSV and captured the thermal image of 

subject’s front face to measure the mean facial skin temperature. First, we controlled the air 

temperature in test office to be 23 °C to produce a neutral sensation. After a subject entering the 

office for 10-minute acclimation, we measured the mean facial skin temperature of the subject and 

asked the subject’s TSV at that moment. Then we changed the thermostat setpoint by 1 K and 

recorded the corresponding mean facial skin temperature and TSV every 5 minutes. For each 

measurement, three thermal images were captured. During the experiment, this study managed the 

air temperature from 20 °C to 26 °C to produce TSV varied from -2 to 2 for every subject. This 

study did not collect the data for TSV = 3 or TSV = -3. Because of the mean facial skin temperature 

was lower than that at TSV = -2, then subject’s TSV = -3. The same method was applied for 

determining TSV = 3. 

3.4 Results 

This first section presents the results of the face detection program using images captured by the 

LWIR camera as well as the results of using the program to measure the mean facial skin 

temperature. The second section presents the results of data collected from the experiment. 

The experiment conducted in this study has been reviewed by Purdue University Institutional 

Review Board and received an exemption with protocol #1811021298. 

3.4.1 Face Detection and Temperature Measurement 

Fig. 3.6 shows a sample image captured by the LWIR camera. The image was in 14-bit image in 

grayscale with tagged image file format (.tiff), therefore, it was in monochrome and did not show 

any color information. 
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Figure 3.6 Raw image of the LWIR camera 

Because the face detection program was only applicable to 8-bit grayscale image, the raw output 

was converted in to 8-bit scale using equation 3.1. In 8-bit grayscale, each pixel value represented 

an amount of light which was an intensity information. Pixels in grayscale image were saved as 8-

bit binary numbers which could be expressed from 0 to 255 in decimal. A decimal number 0 meant 

the weakest intensity in the image which was shown as black while a decimal number 255 meant 

the strongest intensity in the image and shown as pure white. The number among 2 boundaries 

would be shown as different level of gray. 

8 − 𝑏𝑖𝑡𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 = 255 ∗ 
𝑅𝑎𝑤𝑉𝑎𝑙𝑢𝑒−𝐺𝑙𝑜𝑏𝑎𝑙𝑀𝑖𝑛𝑖𝑚𝑢𝑚

𝐺𝑙𝑜𝑏𝑎𝑙𝑀𝑎𝑥𝑖𝑚𝑢𝑚−𝐺𝑙𝑜𝑏𝑎𝑙𝑀𝑖𝑛𝑖𝑚𝑢𝑚
  (3.1) 

The conversion equation used is shown as equation 3.2, the global minimum was the smallest 

value in the original image while the global maximum was the largest value in the original image. 

The advantage of this equation was that it took its own value to construct contrast instead of using 

constant numbers, thus this equation was universally applicable to any kind of image. 

This study used MATLAB script to perform the conversion. The MATLAB version was R2017b. 

Fig. 3.7 shows the actual code. The first line read the image using the Tiff function which was 

specifically for handling images with .tiff format. This function would create a tiff object available 

for later process. The second argument in the function indicated the status of the object which was 

readable(‘r’) or writable (‘w’). Line 2 read the tiff object and saved the data into a new variable. 

Since the script read the tiff object as unsigned 16-bit integer (uint16), it could not be calculated 

in MATLAB. Line 3 converted the uint16 to double precision number. Line 4 and 5 found the 

global maximum and global minimum in the image. The script used two max/min operations, 
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because the first operation only provided the max/min value in each column. Therefore, the second 

operation could find the global maximum/minimum. Line 6 and 7 performed calculation shown as 

equation 3.1. Line 8 saved the converted image into portable network graphics (PNG) format. 

 

Figure 3.7 MATLAB script for 8-bit conversion 

Fig. 3.8 shows the result of converting image shown as Fig. 3.5 to 8-bit grayscale. Comparing to 

the original image, the object in the original image became visible. 

 

Figure 3.8 Image in 8-bit gray scale 

By applying the Haar-cascade face detection program on the 8-bit grayscale image, it successfully 

located the face and enclosed the face with green rectangle. Fig. 3.9 shows a sample result. Besides 

enclosing the face in an image, the program also provided the location of the face by outputting 

the coordinates of the enclosing rectangle. For this image, the four output values of the face 

detection program are [43 19 63 70]. The first and second value represented the horizontal and 

vertical coordinate of the top-left vertex of the rectangle, respectively. The third and fourth value 

represented width and height of the rectangle, respectively. By using this information, we could 

locate the face area of the subject and calculate the average temperature in that area to obtain mean 
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facial skin temperature. The Haar-cascade face detection was effective on detecting face in an 

image. 

 

Figure 3.9 Face detection result 

According to FLIR (2020), the temperature data stored in the thermal image captured by the LWIR 

camera was 100 times of the real temperature represented in Kelvin. Therefore, the data was 

converted to Celsius using equation 3.2.  

℃ = 
𝑅𝑎𝑤𝑑𝑎𝑡𝑎

100
− 273.15    (3.2) 

Fig. 3.10(a) and (b) shows the data before and after unit conversion. The converted data was 

rounded to 2 decimals for a more meaningful result. 

   

(a)     (b) 

Figure 3.10 Temperature conversion results (a) Raw readings (b) Readings in Celsius 

Before calculating the mean facial skin temperature, this study considered that the subject may or 

may not wear eyeglasses. Because eyeglasses’ temperature would result in false results, this study 

used the following producers to eliminate the effects. First, we compared all temperature in the 
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enclosed face area with the threshold to obtain a Boolean map. In the map, the value larger and 

smaller than the threshold would be 1 and 0, respectively. By multiplying the Boolean map with 

the original temperature map, the temperature smaller than the threshold would be zeroed out. 

Finally, the mean facial skin temperature was obtained by calculating average of non-zero values. 

In this study, the threshold was 27 °C, because facial temperature for healthy human under normal 

condition would never be lower than this value. Also, the threshold could also be adjusted to 

determine the best value. This method could also eliminate other source of errors such as the hair 

temperature and the wall temperature appeared in the enclosed area. 

   

(a)       (b) 

Figure 3.11 Temperature calculation result (a) Detected face area (b) Calculated temperature 

Fig. 3.11 shows a sample temperature result using images collected from experiment. Fig. 3.11(a) 

shows the enclosed face area and Fig. 3.11(b) shows the calculated temperature in Celsius. The 

processing time was 5 seconds for each image which was fast enough for real application. These 

results showed the effectiveness and practicality of combining LWIR camera and face detection 

program to calculate the mean facial skin temperature. 

3.4.2 Mean Facial Skin Temperature and Thermal Comfort 

After validating the LWIR camera and the face detection program, this study collected the data of 

mean farcical skin temperature and thermal comfort to investigate the relationship. Fig. 3.12 shows 

the collected data. The horizontal axis indicates the overall thermal sensation and the vertical axis 

indicates the mean facial skin temperature measured by the LWIR camera in Celsius.  
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Figure 3.12 Mean facial skin temperature at different TSV 

This study collected 225 data points for TSV from -2 to 2 from college student participants. Under 

the air temperature from 20 °C to 26 °C, people felt neutral at the most time, therefore, TSV = 0 

had the most data points. For other TSV, the number of data points were similar. The data showed 

a clear trend that as TSV increased which meant the occupant felt hotter, the mean facial skin 

temperature increased. When the TSV decreased which meant the occupant felt colder, the mean 

facial skin temperature decreased. The minimum recorded temperature was 30.5 °C for TSV = -2 

and the maximum recorded temperature was 33.78 °C for TSV = 2. In group variation existed for 

all TSVs, because skin temperatures were regulated by thermoregulation system, individual 

physiological parameters such as age and gender. 

Fig. 3.13 shows the average mean facial skin temperature at different TSV. This data was obtained 

by calculating the average temperature at different TSV. The horizontal axis indicates the TSV 

and the vertical axis shows the average temperature in Celsius. The vertical line at each data point 

indicates the 95% confidence interval for that TSV. The calculation of this interval assumed a 

normal distribution among each group. The span of the interval was the largest for TSV = 0, 

indicating a large variation in the individual mean facial skin temperature. On the other hand, the 
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span of the interval was the smallest for TSV = 1. This indicated a small variation in the individual 

measurement. 

In the figure, each temperature interval at each TSV had some overlap. The most overlap existed 

between TSV = -1 and TSV = -2. The upper bound of TSV = -2 almost reached the average value 

for TSV = -1. The least overlap existed between TSV = 0 and TSV = 1 as well as  TSV = 1 and 

TSV = 2. For these three TSVs, there were no obvious overlap between each other. Such 

phenomena could be explained by the structure of human’s thermoregulation system. In human 

thermoregulation system, thermoreceptors were used to sense cold and heat. When the 

environment temperature decreased, it would stimulate the cold receptors and send signal to brain 

to inform the presence of cold. When the environment temperature increased, it would stimulate 

the warm receptors and inform brain the presence of heat. However, because the location and 

numbers of these thermoreceptors, human’s sensitivity to warm and cold was different. In human 

body, there were more cold receptors than warm receptors and the warm receptors located deeper 

in the skin than the cold receptors. Thus, people were more sensitive to cold than warm. In our 

study, because people were more sensitive to cold, people tend to report a lower TSV before their 

temperature dropped, which caused the large overlap for lower TSVs but not for higher TSVs. For 

example, a subject reported TSV  = -1 at air temperature as 21°C, after 5 minutes, the temperature 

dropped by 0.2 °C but the subject reported TSV = -2. However, the mean facial skin temperature 

would not have big change with 0.2 °C difference in air temperature. Therefore, the mean facial 

skin temperature might not change but the TSV changed. Under TSV = 0 which was neutral 

sensation, the average skin temperature was 32.14 °C. By considering the 95% confidence interval 

which was 0.36 °C, the temperature range became from 32.5 °C to 31.78 °C. Based on these 

findings, it was possible to determine occupants’ thermal sensation using mean facial skin 

temperature. 
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Figure 3.13 Average mean facial skin temperature at different TSV 

This study also compared the results with other researcher’s results shown as Fig. 3.14 (Choi and 

Loftness, 2012). In their results, it was obvious that the forehead temperature was proportional to 

thermal sensation. This trend was shared in their results and this study’s results. However, in their 

results, the 95% confidence interval for each sensation vote was larger and  had a lot of overlaps 

with other TSVs. The larger overlap would reduce the prediction accuracy in real application. 

However, in this study’s results, the overlap was only obvious between TSV = -1 and TSV = -2. 

Hence, it was reasonable to conclude the mean facial skin temperature was more indicative than 

mean temperature on forehead.  
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Figure 3.14 Mean temperature on forehead (Choi and Loftness, 2012) 

3.5 Discussions 

Human’s thermoregulation system regulates our body temperature and it is the reason we 

experience cold or hot sensation. Even though different people have different preference and habit, 

all human should share the same trend. The trend would be that when environment temperature 

raised, people experienced hot sensation and our body temperature would raise, vice versa. In this 

study, subjects expressed similar trend of their thermal sensation and mean facial skin temperature. 

However, due to personal differences such as metabolic rate which affected heat generation of 

human body, there were inevitable inconsistency in response of skin temperature for different 

people. This inconsistency resulted in a relatively large confidence interval and would lead to the 

failure of our results. Also, like the previous experiment, the experiment conducted in this study 

used college students as major participants. Their TSV at different room temperature could not 

guarantee that everyone else would have a similar TSV. Therefore, in thermal comfort study, it 

was more likely to produce a model that perfectly suit one group of people rather than suit everyone. 

However, the model developed by using a larger number of subjects and subjects with different 

age would be more universal. 
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Another weakness of this thermal comfort study was the different understanding of TSV for 

different subjects. Even though this study provided instructions on how to report their TSV, it was 

still possible that the subjects reports TSV incorrectly. Because it was very difficult for every 

subject to have the same criteria for “slightly”. Such inconsistency introduced error for each TSV 

and compromised accuracy of predicting thermal comfort based on their mean facial skin 

temperature. 

This study discovered another issue that was the location to measure air temperature. It was found 

that the air temperature at different location across the room had small variances. For example, if 

the air flow from diffuser had direct contact with the datalogger, the temperature reading would 

be different from the temperature the occupant was sensing. Therefore, it was another challenge 

to decide where to put the thermometer when performing this type of experiment. 

Also, this study used thermographic camera to measure mean facial skin temperature. It worth to 

mention that the LWIR camera needed special care during the measurements. For example, in this 

study, the camera had a low resolution so it could not be placed further than 40-cm away from the 

subject. Otherwise, the subject’s face would be too small to be detected. Furthermore, during the 

study, it was spotted that the camera had a jump of reading after each calibration. But the reading 

became accurate after 2 minutes. Therefore, the measurement should be performed after 2 minutes 

of calibration. 

3.6 Conclusions 

This investigation combined LWIR camera with face detection program to measure mean facial 

skin temperature. By this approach, this study investigated the relationship between mean facial 

skin temperature and thermal sensation by experimental study. This study led to following 

conclusions. 

(1) The mean facial skin temperature could be quickly and accurately obtained by the LWIR 

camera combined with face detection program. When subject felt comfortable, the mean facial 

skin temperature was between 31.78 and 32.5 °C.  
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(2) The mean facial skin temperature was more indicative than forehead temperature. For each 

sensation vote, the confidence interval for mean facial skin temperature was smaller than that of 

forehead temperature. 
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4. CHAPTER 4. IMPLEMENTATION AND VALIDATION OF THE 

CONTROL STRATEGY 

This chapter describes the procedure and results obtained from field test in a single occupant office 

with the proposed control strategy, including comfortable air temperature setpoint determined by 

clothing level classification and automatically setpoint temperature adjustment based on prediction 

of thermal comfort by using the mean facial skin temperature. 

4.1 Implementation of the Control Strategy 

This study used LabVIEW 2018 to implement the control strategy. Fig. 4.1 shows the front panel 

(user interface) of the LabVIEW VI. 

 

Figure 4.1 Front panel of the control system 

There were three buttons that manage the infrastructure of control system and three inputs to 

perform the control strategy. Three buttons shown in the Fig. 4.1 are “experiment start”, 

“acclimation done” and “end test”. By triggering the “experiment start” button, it would enable 

the data communication between the sever machine where this VI was located and the BAS. Also, 
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it would disable local temperature setpoint control via thermostat. The “acclimation done” button 

would be triggered after the acclimation session which was the first 10 minutes of the experiment. 

Triggering this button would allow the program to change the static setpoint to a dynamic setpoint. 

The setpoint would be changing every 10 minutes based on the prediction result about occupant’s 

thermal comfort. The “end test” button would be pressed at the end of each test session to restore 

the system settings. It would reset the HVAC system in the room to the offset setpoint, terminate 

the communication between the server machine and the BAS and enable the local setpoint control 

via thermostat.  

The control system also required three inputs to operate which were clothing level, room air 

temperature and the mean facial skin temperature. In Fig. 4.1, these inputs were represented as 

“clo”, “Room T” and “Skin T”, respectively. The first input, clothing level, was the value that 

described occupants’ clothing insulation quantitatively. This input was filled manually after 

running the clothing classification program described in Chapter 2. The second input, room 

temperature, it needed to be filled by hand based on the measurement obtained from the datalogger 

located by the subject. The third input, mean facial skin temperature, was also filled by hand using 

the value measured from LWIR camera using face detection program discussed in Chapter 4.  

At current stage, these inputs were not automatically filled due to the hardware limitation and 

network structure. Hardware limitation referred to the circumstances that the fundamental 

hardware for the control strategy such as RGB camera, LWIR camera and the datalogger were 

operated on a personal computer. Because there were no I/O ports for the hardware, the data could 

only be obtained locally on the personal computer. Network structure of the server machine and 

the BAS also limited the automatic operation of the program. Because personal computer was not 

allowed to establish communication with the server machine due to security concern that adding a 

personal computer to a closed security network would make the network vulnerable to hostile 

attacks. Therefore, the inputs were currently filled manually but it would be possible to make them 

automatic if the hardware and network were specially designed for this control strategy.  

Two graphs at the middle of the UI recorded and plotted the value of calculated setpoint 

temperature and air temperature every 10 minutes during the experiment. The data could also be 

saved as Excel spread sheet for later investigation. The setpoint temperature was in Celsius and it 

needed to be converted to Fahrenheit due to the requirement of the BAS. 
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The wiring diagram or the actual code of the control system is shown as Fig. 4.2. The outmost loop 

is the timed loop which is a discrete loop used for digital control. Inside the loop, it contains 

different input, output and communication functions and the structure at the center is the main 

code for control system. At the center of the loop, there is the function called case structure. Case 

structure is like an if statement that includes two instructions and each to perform based on the 

true or false condition of a Boolean input. In this case, the Boolean input is the “acclimation done” 

button representing the status of acclimation period. 

Fig. 4.2 shows the wiring diagram of this VI. The outmost loop was the timed loop which was a 

discrete loop used for digital control. The loop was operated under 1kHz clock which provided a 

resolution of millisecond. The sampling period was set to 1 second. Because the control strategy 

only changed the temperature setpoint every 10 minutes, there were no necessity of using a faster 

sampling period. The other settings of the timed loop were set as default.  



 

 

6
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Figure 4.2 Block diagram of control VI

 



 

68 

Inside the loop, it contained different input, output, communication functions and the structure at 

the center was the main code for control strategy. At the center of the loop, there was the function 

called case structure. Case structure was like an if statement that included two instructions and 

each to be executed based on the true or false condition of the Boolean input. In this case, the 

Boolean input was the “acclimation done” button representing the status of acclimation period. 

This study used Modbus protocol as the communication protocol to establish communication 

between the server machine and the BAS. 

Acclimation period served as a buffer time for the occupant to eliminate the effects on thermal 

sensation due to their previous actives. Therefore, the setpoint temperature should be set to a 

constant during the acclimation period. Following this idea, Fig. 4.3 shows the script for setting 

the temperature setpoint during acclimation period. This study used MathScript node to calculate 

the temperature and unit conversion. The acclimation temperature setpoint was determined based 

on their clothing level, represented as “clo” in the figure, using the equation discussed in Chapter 

2. This code also included the conversion between Celsius and Fahrenheit at line 2. After 

conversion, the setpoint was sent to the BAS. 

 

Figure 4.3 Control script for acclimation period 

After acclimation done, the case structure would be triggered to true case. Under the true case, the 

setpoint temperature would be adjusted automatically every 10 minutes based on occupant’s mean 

facial skin temperature measurement. Table 4.1 shows the fundamental logic of adjusting the 

temperature setpoint. The decision of how to adjust the temperature setpoint was made based on 
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the results obtained from Chapter 3 that occupants felt comfortable when the mean facial skin 

temperature was between 31.7 and 32.5 °C. Therefore, when the mean facial skin temperature was 

lower than 31.7 °C, the setpoint would be increased by 1°C to raise the air temperature. When the 

mean facial skin temperature was higher than 32.5 °C, the setpoint would be decreased by 1 °C to 

reduce the air temperature. When the mean facial skin temperature was in-range, the setpoint was 

not changed. 

Table 4.1 Fundamental logic for temperature setpoint adjustment 

Mean facial skin temperature  measurement (°C) Behavior of temperature setpoint 

Lower than 31.7 °C Increase the setpoint by 1 °C 

Higher than 32.5 °C Decrease the setpoint by 1 °C 

Between 31.7 and 32.5 °C (in-range) Maintain at current setpoint 

 

However, it was possible that the room temperature did not reach the temperature setpoint after 10 

minutes and occupant still not felt comfortable. For example, at the first measurement the 

temperature setpoint was 21°C, the air temperature was 20.9°C and the mean facial skin 

temperature measured was 31.2°C. Based on this result, the temperature setpoint was adjusted to 

22°C. After 10 minutes, the air temperature was 21.7°C and the mean facial skin temperature was 

31.6. In this case, if we only used the decision table shown as Table 2.4, the temperature setpoint 

would be increased by 1°C again and the occupant may feel warmer after another 10 minutes 

because the air temperature may become too high. Therefore, it was necessary to compare the 

temperature setpoint and the air temperature before changing the temperature setpoint. Hence, the 

Fig. 4.4 shows the flowchart of the improved logic. 
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Figure 4.4 Flowchart of improved control logic 

Based on the improved logic, the setpoint temperature was only changed if the air temperature was 

equal to the temperature setpoint. This logic also had an advantage that it could change the 

temperature setpoint to any value that occupant felt comfortable. For example, the temperature 

setpoint was 21°C, the air temperature was 20.9°C and the mean facial skin temperature measured 

was 31.4°C. After 10 minutes, the air temperature was 21.7°C and the mean facial skin temperature 

was 32.1°C. In this case, by using the improved logic, the temperature setpoint could be adjusted 

to 21.7°C rather than 22°C. This function could reduce occupant’s overshoot on thermal comfort 

and may have a potential of energy saving. 

Fig. 4.5 shows the implementation of the improved logic in LabVIEW. The function with an arrow 

and a star was the feedback node, it could send the value of the variable (setpointc) at previous 
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iteration. The program saved it as “cs” and compared with the room temperature to determine if 

the setpoint met the room temperature. Line 2 and 3 would reduce the temperature setpoint if the 

occupant felt hot and line 4 and 5 were for increasing the setpoint to warm the room up. Line 6 

and 7 kept the setpoint the same as the room temperature. Line 11 was for unit conversion and 

send the setpoint to the BAS. 

 

Figure 4.5 Implementation of improved control logic 

4.2 Validation of the Control Strategy 

After developing the control platform, this study performed validated our control logic and strategy. 

This study conducted validation in the same location as the one mentioned in Chapter 2 (shown as 

Fig. 2.10 and Fig. 2.11). The experiment used the same data logger to measure air temperature. 

This study also used the Lepton LWIR 3.5 camera and Logitech RGB camera for mean facial skin 

measurement and clothing level classification. We used the same questionnaire to collect subject’s 

TSV. The same assumption was also application to this experiment. 

To collect the validation result, this study followed following procedures. Upon the arrival of 

subject, researcher first measured the clothing level of the occupant and input it to the control 

platform.  The program sent the initial temperature setpoint to the BAS which controlled the test 

room air temperature to the setpoint. Subject would stay in another room until the temperature in 
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the test room reached the setpoint. Also, subject would be instructed how to report the TSV. Once 

the temperature met the setpoint, the subject entered the test room and began a 10 minutes 

acclimation period. At the end of the acclimation period, we measured the mean facial skin 

temperature and recorded the results into an Excel spreadsheet. The measured mean facial skin 

temperature and the room temperature obtained from datalogger was inputted to the control system. 

Then, the setpoint temperature of HVAC system would be adjusted accordingly following the 

improved logic. Meanwhile, subjects’ attitude towards the thermal environment was also surveyed 

using the seven-scale thermal sensation vote. The survey results would help consolidating the 

method of predicting thermal comfort based on mean facial skin temperature. This set of 

measurement would happen every 10 minutes during the whole 60 minutes experiment. Therefore, 

the total time for one experiment session was 70 minutes including10 minutes acclimation session. 

During the experiment, the subject would perform activities involving minimum physical effort 

such as typing, reading, etc. to keep the metabolic rate at a constant and consistent value for 

different subjects. Also, for different subjects, their clothing levels were different but subjects were 

advised not to change clothing during the experiment. 

4.3 Results 

The experiment conducted in this study has been reviewed by Purdue University Institutional 

Review Board and received an exemption with protocol #1811021298. 

This study performed 22 test sessions to validate the control strategy. Table 4.2 shows the 

summarized result of the 22 test sessions. There were three major types of the result. The type 1 

results included tests that the subject felt comfortable through the whole experiment, this type of 

the results could prove the effectiveness of the comfortable temperature curve. The type 2 results 

included tests that the subject did not felt comfortable with the initial temperature setpoint but 

became comfortable again by adjusting the setpoint. This type of the results could prove the 

effectiveness of the thermal comfort prediction based on mean facial skin temperature. The type 3 

results included tests that the subject did not felt comfortable by using this strategy. 
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Table 4.2 Number of tests for different types of the results.  

Thermal sensation votes Number of tests 

Neutral (TSV=0) during the whole experiment 14 

Initially uncomfortable (TSV≠0) with the setpoint then become comfortable 

(TSV=0) after changing setpoint with facial skin temperature  

6 

Uncomfortable (TSV≠0) with the control strategy  2 

Fig. 4.6 shows a typical response of the type 1 result. Fig. 4.6(a) shows the air temperature, Fig. 

4.6(b) shows the setpoint temperature, Fig. 4.6(c) shows the mean facial skin temperature and Fig. 

4.6(d) shows the TSV. The clothing level of this subject was 0.3 clo and the temperature setpoint 

calculated was 24.3 °C. The horizontal axis for all figures stands for the time passed after 

acclimation period in minutes and the vertical axis stands for temperature in Celsius for 

temperature results and TSV for thermal sensation results.  

 

(a) Air temperature during the experiment 

Figure 4.6 Type 1 sample results  
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Figure 4.6 continued 

 

(b) Setpoint temperature during the experiment 

 

(c) Mean facial skin temperature during the experiment 
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Figure 4.6 continued 

 

(d) TSV during the experiment 

For the type 1 results, all subject’s mean facial skin temperature did not have significant change 

but damped in the comfortable range determined by results in Chapter 3. The air temperature did 

not have much fluctuation during the whole experiment. Their thermal sensation votes were 0 

during the whole experiment. Since their mean facial skin temperature did not have significant 

change, the setpoint temperature did not change during the experiment. This type of the results 

would be the most ideal one because the subject did not experience any discomfort. 

Fig. 4.7 shows a typical response of the type 2 result. Fig. 4.7(a) shows the setpoint temperature, 

Fig. 4.7(b) shows the air temperature, Fig. 4.7(c) shows the mean facial skin temperature and Fig. 

4.7(d) shows the TSV. The clothing level of this subject was 0.3 clo and the temperature setpoint 

calculated was 24.3 °C. The horizontal axis for all figures stands for the time passed after 

acclimation period in minutes and the vertical axis stands for temperature in Celsius for 

temperature results and stands for TSV for thermal sensation results.  
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 (a) Setpoint temperature 

 

(b) Air temperature 

Figure 4.7 Type 2 sample results 
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Figure 4.7 continued 

 

(c) Mean facial skin temperature 
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At time 0, which was at the end of the acclimation period, the air temperature was controlled at 

24.3, subject had a mean facial skin temperature reading at 32.61°C. Because this temperature was 

higher than comfortable threshold the setpoint decreased by 1°C. The subject also reported a TSV 

=1 which was slightly warm which met the prediction based on mean facial skin temperature. After 

10 minutes, the subject reported a TSV = 2 which suggested the subject was feeling warm. 

However, the mean facial skin temperature was in the comfortable range, therefore the setpoint 

was adjusted to the air temperature at that time. At 20 minutes, the subjects mean facial skin 

temperature exceeded the threshold and the TSV was 2. Hence, the setpoint was decreased. At 30 

and 40 minutes, occupant’s mean facial skin temperature was still higher than the threshold. But 

because the air temperature did not reach the setpoint, the setpoint was not adjusted based on the 

improved logic. Occupant’s TSV became 0, due to the cool air provided. At 50 minutes, occupant’s 

mean facial skin temperature was in the comfortable range, thus the setpoint was adjusted to air 

temperature at that time. At the end, subject’s TSV was 0. Type 2 results could consolidate the 

effectiveness of the control logic and the thermal comfort prediction based on mean facial skin 

temperature. 

Fig. 4.8 shows a typical response of the type 3 result. Fig. 4.8(a) shows the setpoint temperature, 

Fig. 4.8(b) shows the air temperature, Fig. 4.8(c) shows the mean facial skin temperature and Fig. 

4.8(d) shows the TSV. The clothing level of this subject was 0.4 clo and the temperature setpoint 

calculated was 23.8°C. The horizontal axis for all figures stands for the time passed after 

acclimation period in minutes and the vertical axis stands for temperature in Celsius for 

temperature results and stands for TSV for thermal sensation results.  
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(a) Setpoint temperature 

 

(b) Air temperature 

Figure 4.8 Type 3 sample results 
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Figure 4.8 continued 

 

 (c) Mean facial skin temperature  
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During first 20 minutes, the air temperature was controlled at 23.8°C. However, the occupant 

reported TSV = -1 and -2. Based on this response, the setpoint temperature should be increased. 

Meanwhile, because the mean facial skin temperature was in the range, the control strategy did not 

adjust the setpoint temperature. At 30 minutes, the measured mean facial ski temperature was 

lower than the lower bond, therefore, the setpoint was increased. After the adjustment, even the 

subject’s mean facial skin temperature raised back to the comfortable interval, the TSV was still 

not improved. At the end of the experiment, the occupant did not feel comfortable in this 

environment.  

The tests show that 63.3% of subjects’ TSVs were comfortable with the air temperature at setpoint 

that was determined by clothing level shown in Table 4.2. If a subject was not satisfied with the 

air temperature, the mean facial temperature of the subject could be used to adjust the setpoint 

according to Fig. 3.13. The adjustment could make an additional 27.3% of the subjects to feel 

comfortable. Thus, a total of 90.9% of the subjects could feel comfortable with the control strategy. 

The remaining 2 subjects reported uncomfortable with the control strategy so that the facial skin 

temperature was not a good indicator for their thermal comfort. 

4.4 Discussions 

This investigation performed experimental study to validate the proposed control strategy. Based 

on the results, there were two subjects who did not feel comfortable by using this strategy. This 

may be due to their personal preferences. Their skin temperatures seem in the comfortable range, 

but they still wanted cooler environments. Their thermal comfort requirement was a subjective 

feeling and may not be determined by physical parameters. Therefore, combing physiological 

parameters with other information such as occupant’s location or air velocity could improve the 

control strategy. 

Current HVAC systems also compromised the effectiveness of this strategy. Because the air 

temperature could not be adjusted fast enough. During the experiment, we noticed that it usually 

took one to two minutes before the systems started changing the air temperature. Even though it 

was a short period of time, the effect may still be huge. Overshooting the temperature was also a 

potential trouble, especially for heating cases. Because the test room used radiator to provide heat, 

it still emitted heat even after turned off. Such overshoot would cause fluctuation in the air 
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temperature and would make occupants uncomfortable. Thus, it would be ideal to have HVAC 

systems that has minimal overshoot. 

Another issue was the location of LWIR camera. Because at current, the subject must look at the 

camera every 10 minutes to take measurement. Such interruption was not ideal for real 

environment. Also, if the subject was not facing the camera properly, the face detection could not 

find the face. In that case, it could not measure the temperature. Therefore, it might be helpful to 

have multiple cameras or cameras that could move to take pictures for the occupant. 

Another consideration would be the privacy issue. Even though this strategy could provide a better 

environment, it used occupant’s information to do so. Thus, it would be one of the worries when 

occupants used such system. 

4.5 Conclusions 

This chapter discussed about the implementation and the validation of the control strategy. The 

validation results proved the effectiveness of the control strategy with about 90.9% tested subjects 

felt comfortable by using this control strategy. From the experiment results, the correlation 

between the thermal comfort and the mean facial skin temperature was again confirmed. Also, the 

temperature setpoint determined based on the clothing level could be applied to most of the tested 

subjects. Furthermore, determining the clothing level by image classification program and 

measuring the mean facial skin temperature by LWIR camera combined with face detection 

program could be adopted in the HVAC control to provide a more comfortable environment. 
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5. CHAPTER 5. CONCLUSIONS AND FUTURE WORKS 

This chapter summarizes the major conclusions in the research and provide some ideas for future 

works. 

5.1 Conclusions 

This study developed a new thermal environment control using occupant’s mean facial skin 

temperature and clothing level. The control strategy automatically determined the comfortable 

temperature setpoint for different clothing level using image classification. This control strategy 

also adjusted the setpoint temperature automatically. The adjustment was based on the prediction 

of the thermal comfort. 

This study trained a CNN image classification model using dataset classified by the clothing level. 

The results showed that the image classification model could determine the clothing level for the 

classes that the model was trained for. However, because the training dataset used in this study 

was small comparing to other large dataset, the trained model did not have comparable 

performance with another well-trained model. The training time was long but it could classify the 

image with acceptable speed. With this tool, this study performed experimental study of 

comfortable air temperature for different clothing level. The experimental study determined the 

relationship between clothing level and comfortable air temperature. The relationship was inverse 

which meant as the clothing level decreased, the comfortable air temperature increased. The 

relationship could be described using a second order parabolic trendline 𝑦 = 4.2185𝑥2 −

7.7836𝑥 + 26.239. By using this curve, we could determine the air temperature that could provide 

a neutral sensation for specific clothing level. This study also compared the results with the PMV-

PPD model. The results showed that the air temperature determined by this curve could produce 

an average PMV of -0.58 and an average PPD of 12.83% for six clothing levels. The discrepancy 

may due to the assumption that the mean radiant temperature and relative humidity was not 

considered during the experiment. 

This study then investigated the relationship between mean facial skin temperature and thermal 

comfort. This study used LWIR camera to capture subject’s facial temperature map. The LWIR 
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camera used in this study had a small size and good operability which made it very effective to 

perform experimental study. By using a Haar-cascade face detection model, the face location on 

the thermal map was determined. The model was effective and could produce results with fast 

speed. By using this tool, this study performed experimental study of mean facial skin temperature 

and thermal comfort, determined by TSV. The results showed that as the TSV increased from -2 

to 2, the mean facial skin temperature increased from average 30.98°C to 33.25°C. For each TSV, 

the interval was not large but overlap existed between each thermal sensation. This overlap could 

be explained by personal preference of thermal comfort and personal difference on physiological 

differences. The results showed occupant was feeling neutral when mean facial skin temperature 

was between 31.7 and 32.5 °C. Therefore, measuring mean facial skin temperature using LWIR 

camera could non-invasively determine occupant’s thermal comfort.  

This study finally combined these two methods as well as the results to build a control platform 

using LabVIEW. This study developed a control logic specifically for this control strategy. This 

study them performed experimental study to validate the control strategy. The tests showed that 

63.3% of subjects’ TSVs were comfortable with the air temperature at the setpoint that was 

determined by clothing level. There were 27.3% of the subjects who were not satisfied with the air 

temperature, but the mean facial skin temperature of the subject was used to adjust the setpoint 

according to the results obtained from previous investigation. The adjustment made these 27.3% 

occupant felt comfortable again. Thus, a total of 90.9% of the subjects can feel comfortable with 

the control strategy. The remaining subjects did not feel comfortable by using this control strategy. 

This could also be explained by personal preferences that could not be determined based on 

physiological parameters. 

5.2 Future Works 

Although this study developed a new control strategy using mean facial skin temperature and 

clothing level and led to some conclusions. However, there are several aspects where the current 

work could be  improved, or further research could be conducted. 

First, the image classification model used in this study was a pretrained model. A pretrained model 

would not have performance as good as specifically designed model. Therefore, further researches 

on developing new structure or architecture of CNN to perform clothing level classification would 
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be possible. Also, there are other methods that could be used to determine clothing level, such as 

clothing temperature. Thus, it is also interesting to explore other approaches for better prediction 

of clothing level. 

Second, this study only used mean facial skin temperature to determine thermal comfort. But it 

showed limitation on determining occupant’s thermal preference and local discomfort. Therefore, 

to further improve the quality of thermal comfort, it is worth developing the methods to obtain 

such information and investigating the underlying relationship between these factors.  

Third, this study only developed a control strategy for single occupant office. However, there are 

many offices with multiple occupants or open space offices. In those environments, the 

physiological parameters are hard to obtain. Also, for multiple occupants, the control logic needed 

to be reconsidered to optimize not only one occupant but multiple occupants. Furthermore, current 

control strategy only controlled air temperature, but because thermal comfort also relates to other 

factors,  it is worth to developing a control method and strategy for other parameters to improve 

the thermal environment for multi-occupant offices. 
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