
SURROGATE MODELING FOR UNCERTAINTY QUANTIFICATION IN

SYSTEMS CHARACTERIZED BY EXPENSIVE AND HIGH-DIMENSIONAL

NUMERICAL SIMULATORS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Rohit K. Tripathy

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Ilias Bilionis, Chair

School of Mechanical Engineering

Dr. Marcial Gonzalez

School of Mechanical Engineering

Dr. Marisol Koslowski

School of Mechanical Engineering

Dr. Shirley Dyke

Lyles School of Civil Engineering

Approved by:

Dr. Nicole L. Key

School of Mechanical Engineering

iii

ACKNOWLEDGMENTS

I would like to acknowledge several people who have contributed to my personal

and professional growth during my time as a graduate student. First and foremost, I

would like to express my deepest gratitude to my advisor, Prof. Ilias Bilionis, for being

a fantastic mentor. I am extremely grateful for his guidance and support over the

years. I am thankful to all members, past and present, of the Predictive Science Lab

- Nimish, Piyush, Sharmila, Parth, Alex, Vanessa, Murali, Salar, Sabareesh, Atharva,

and others, for their friendship. I would also like to acknowledge all of the wonderful

people outside of our group with whom I formed friendships and acquaintances during

my time at Purdue.

I would also like to thank and acknowledge the many professional acquaintances

I developed over the past few years including Julie, Emil, Vishwas and others from

Argonne National Lab, and Rossen, Assaf, Fabien and others from JPMorgan. Each

of these individuals have contributed to my professional and technical development

during the brief time I worked with them.

Last, but certainly not the least, I would like to thank my girlfriend Alexandra.

She’s the best.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . xiv

1. INTRODUCTION TO UNCERTAINTY QUANTIFICATION 1
1.1 Background . 1
1.2 Sources of uncertainty . 2

1.2.1 Experimental uncertainty . 2
1.2.2 Numerical uncertainty . 3
1.2.3 Model-form uncertainty . 3
1.2.4 Parametric uncertainty . 4

1.3 Classification of uncertainty quantification tasks 5
1.3.1 Forward problem . 5
1.3.2 Inverse problem . 5
1.3.3 Sensitivity analysis . 6
1.3.4 Optimization under uncertainty 7

1.4 The surrogate approach . 7
1.5 Surrogate models and the curse of dimensionality 8
1.6 Dimensionality reduction in the context of surrogate modeling 9
1.7 Overview of upcoming chapters . 12

2. LEARNING LOW-RANK STRUCTURE WITH GAUSSIAN PROCESS
REGRESSION . 18
2.1 Gaussian Processes for data-driven modeling 21

2.1.1 Gaussian processes . 21
2.1.2 Gaussian process surrogate model 23
2.1.3 Statistical model . 24
2.1.4 Inference in Gaussian process regression 26

2.2 Classical active subspace recovery and response approximation 27
2.3 Embedding active subspaces in Gaussian process models 30

2.3.1 Two-stage iterative negative marginal likelihood minimization . 31
2.3.2 Maximizing the likelihood with respect to the projection matrix 33
2.3.3 Riemannian gradients . 34
2.3.4 Search Curves . 36
2.3.5 Curvilinear search based on the Armijo-Wolfe conditions 36
2.3.6 Full algorithm for optimizing W 37

v

Page
2.3.7 Model selection - picking the right active subspace dimensionality39
2.3.8 A note on computational complexity 41

2.4 Numerical experiments . 41
2.4.1 Synthetic function with known underlying structure 43
2.4.2 Benchmark partial differential equation problem 50
2.4.3 Propagation of geometric and material uncertainty in granular

crystals . 57
2.4.4 Uncertainty Propagation Results 68

2.5 Closing remarks . 69

3. HIGH DIMENSIONAL SURROGATE MODELING WITH DEEP NEU-
RAL NETWORKS . 71
3.1 Surrogate model structure . 72
3.2 Structure of a feedforward Deep neural network 73
3.3 Training a deep neural network . 76
3.4 Regularized loss function . 76
3.5 Gradient computation and optimization 77
3.6 Selecting network structure . 79
3.7 Combined global optimization and grid search for model selection . . . 81
3.8 Numerical example . 86

3.8.1 Forward model . 87
3.8.2 Data Generation . 88
3.8.3 Numerical settings . 89
3.8.4 Model selection settings . 90
3.8.5 Results . 92
3.8.6 Predictions at arbitrary lengthscales 96
3.8.7 Effect of dataset size . 98
3.8.8 Predictions with stratified diffusion fields 101
3.8.9 Uncertainty Propagation . 101

3.9 Multifidelity modeling . 105
3.9.1 Multifidelity DNN structure 106
3.9.2 Example - stochastic elliptic PDE with bi-fidelity data 107

3.10 Closing remarks . 109

4. GRADIENT-FREE ACTIVE SUBSPACE RECOVERY IN DEEP NEU-
RAL NETWORKS . 111

4.0.1 Formal problem description 112
4.0.2 A review of active subspaces 113
4.0.3 Active subspace recovery in neural networks 116
4.0.4 Synthetic example with known active subspace 119
4.0.5 Case 2: 2 dimensional active subspace 121
4.0.6 Benchmark elliptic PDE example 121

5. FUTURE WORK AND CONCLUSIONS 127

vi

Page

5.1 Dissertation summary . 127
5.2 Open questions and future work . 128

5.2.1 Physics-informed machine learning 129
5.2.2 Group-theoretic and latent structure in high-dimensional stochas-

tic dynamical systems . 130

REFERENCES . 131

VITA . 144

vii

LIST OF TABLES

Table Page

3.1 Optimal validation error, R∗, and structure parameter, S∗ = (L∗, d∗) cor-
responding to different sizes of the training dataset. 99

3.2 Relative error and R2 scores in the mean and variance of the PDE solution
for two different choices of spatial lengthscale pairs. 105

4.1 Root mean square error (RMSE) on test dataset predictions from classic
AS and deep AS response surfaces. 126

viii

LIST OF FIGURES

Figure Page

2.1 Probabilistic graphical model for GP regression. 24

2.2 Results for one dimensional active subspace recovery in synthetic function.
The left column shows a visualization of the link function obtained with
the classical approach for AS recovery. The right column shows a visual-
ization of the link function obtained with the proposed gradient-free GP
approach for AS recovery. The scatter plots show the training data used
to develop these constructions. Note the flatness of the function in one of
the coordinate directions in the bottom panel - the function intrinsically
exhibits a 1D AS. 45

2.3 Results for one dimensional active subspace recovery in synthetic func-
tion. The left column shows the visualization of the components of the
projection matrix (top) and the a comparison of the predicted and true
outputs from the surrogate (bottom) obtained using the gradient-free ap-
proach. The right column shows the visualization of the components of
the projection matrix (top) and the a comparison of the predicted and
true outputs from the surrogate (bottom) obtained using the classical ap-
proach. Note that the components of the projection matrix obtained from
the two approaches have the same magnitude but opposite signs. 46

2.4 Results for two dimensional active subspace recovery in synthetic function.
The left column shows a visualization of the link function obtained with the
classical approach for AS recovery. The right column shows a visualization
of the link function obtained with the proposed gradient-free GP approach
for AS recovery. The scatter plots show the training data used to develop
these constructions. 47

2.5 Variation of the active subspace dimensionality with the Bayesian Infor-
mation Criterion - the left plot shows the BIC vs d plot obtained from
the gradient based approach to active subspace recovery while the right
plot shows the BIC vs d plot obtained from the proposed gradient-free
approach to active subspace recovery. 48

ix

Figure Page

2.6 Robustness and consistency of the proposed gradient free approach to ac-
tive subspace recovery - the left plot shows the variation in the relative
error of the active subspace projection matrix as a function of the obser-
vation noise; the right plot shows the variation of the relative error in the
projection matrix as a function of the number of samples in the training
dataset. 51

2.7 Results for the large lengthscale case for the stochastic PDE problem -
the left column shows a plot of the link function obtained with the classic
approach for d = 1 (top) and d = 2 (bottom) whereas the right column
shows the link function obtained using the gradient-free approach for d = 1
(top) and d = 2 cases respectively. 52

2.8 Results for the large lengthscale case for the stochastic PDE problem - the
left plot shows the components of the active subspace projection matrix
obtained with the classic approach while the right plot shows the compo-
nents of the projection matrix estimated by the gradient-free approach.
. 53

2.9 Results for the short lengthscale case for the stochastic PDE problem -
the top row presents a comparison of the link functions obtained from the
classic and gradient-free approaches for d = 1 while the bottom presents
a comparison of the components of the projection matrix obtained from
the classic and the gradient-free approaches. 54

2.10 Elliptic PDE. The dots correspond to true observed responses vs predicted
ones for 30 validation inputs for the long (` = 1, left) and short (` = 0.01,
right) correlation cases. Perfect predictions would fall on the green 45◦ line
of each subplot. The top row corresponds to the gradient-free approach
while the bottom row corresponds to the classic approach. 55

2.11 Results for the granular crystals without gaps when the soliton is over par-
ticle 20 - (a) link function for the amplitude of the soliton, (b) Comparison
of the predicted and observed test amplitude values, (c) Components of
the estimated projection matrix. 59

2.12 Results for the granular crystals without gaps when the soliton is over
particle 20 - (a) link function for the time-of-flight of the soliton, (b)
Comparison of the predicted and observed test time-of-flight values, (c)
Components of the estimated projection matrix. 60

2.13 Results for the granular crystals without gaps when the soliton is over par-
ticle 30 - (a) link function for the amplitude of the soliton, (b) Comparison
of the predicted and observed test amplitude values, (c) Components of
the estimated projection matrix. 61

x

Figure Page

2.14 Results for the granular crystals without gaps when the soliton is over
particle 30 - (a) link function for the time-of-flight of the soliton, (b)
Comparison of the predicted and observed test time-of-flight values, (c)
Components of the estimated projection matrix. 62

2.15 Results for the granular crystals without gaps when the soliton is over
particle 30 - (a) link function for the width of the soliton, (b) Comparison
of the predicted and observed test width values, (c) Components of the
estimated projection matrix. 63

2.16 Results for the granular crystals with gaps when the soliton is over particle
20 - (a) link function for the amplitude of the soliton, (b) Comparison of
the predicted and observed test amplitude values, (c) Components of the
estimated projection matrix. 64

2.17 Results for the granular crystals with gaps when the soliton is over particle
20 - (a) link function for the time-of-flight of the soliton, (b) Comparison
of the predicted and observed test time-of-flight values, (c) Components
of the estimated projection matrix. 65

2.18 Histogram of the solition width over particle 30 for granular crystals with
inter-particle gaps. 66

2.19 Uncertainty propagation results for the granular crystals without gaps
when the soliton is over particle 20 - (a) Marginal distribution of the
soliton amplitude, (b) Marginal distribution of the soliton time-of-flight. . 66

2.20 Uncertainty propagation results for the granular crystals without gaps
when the soliton is over particle 30 - (a) Marginal distribution of the
soliton amplitude, (b) Marginal distribution of the soliton time-of-flight. . 67

2.21 Uncertainty propagation results for the granular crystals with gaps when
the soliton is over particle 20 - (a) Marginal distribution of the soliton
amplitude, (b) Marginal distribution of the soliton time-of-flight. 67

2.22 Uncertainty propagation results for the granular crystals with gaps when
the soliton is over particle 30 - (a) Marginal distribution of the soliton
amplitude, (b) Marginal distribution of the soliton time-of-flight. 68

3.1 3.1(a)-Schematic of a neural network (NN). 3.1(b) - Schematic of a single
neuron. 74

3.2 Swish activation with γ = 1. 75

3.3 Visualization of the parameterized network structure with L = 3 and d = 1. 80

xi

Figure Page

3.4 Growth of the number of network weights, Nweights, as a function of the in-
put dimensionality D and structure parameters, L and d. 3.4(a) - Growth
of Nweights as a function of L for various d, with D set to 1026. 3.4(b) -
Growth of Nweights as a function of D for various L, with d set to 2. 3.4(c)
- Growth of Nweights as a function of d for various L, with D set to 1026. . 85

3.5 Visual representation of LHS design of lengthscale pairs. Each ’x’ repre-
sents a sampled pair of lengthscales. 89

3.6 Samples of the random field a(x) with lengthscales `x = 0.446 and `y =
0.789 along the x and y directions. 90

3.7 Samples of the random field a(x) with lengthscales lx = 0.291 and ly =
0.099 along the x and y directions. 91

3.8 3.8(a) - Heatmap of λ∗S over the grid G. 3.8(b) - Heatmap of RS over the
grid G. 93

3.9 Gaussian process surrogate generated during BGO. We maximize the neg-
ative of the validation error R as a function of the logarithm of the regu-
larization parameter, λ. 93

3.10 Scatter plot of low-dimensional embedding of the input diffusion fields
from different lengthscales. 94

3.11 Link function, g(ζ) for 4 randomly selected examples from Dtest. 95

3.12 Comparisons of DNN prediction of the PDE solution to that correct so-
lution for 4 randomly chosen test examples. The left column shows the
logarithm of the input diffusion field, the middle column shows the FV
solution of the PDE and the right column shows the solution of the PDE
predicted by the DNN. 97

3.13 3.13(a) - Histogram of relative errors, E , for all examples in the test data
set. 3.13(b) - Histogram of the R2 scores for all examples in the test data set.98

3.14 3.14(a) - Mean relative errors of the predicted solution corresponding to
samples of a with arbitrary pairs of lengthscales not used in the DNN
training. 3.14(b) - Mean R2 scores of the predicted solutions corresponding
to samples of a with arbitrary pairs of lengthscales not used in the DNN
training. The ’x’ markers correspond to lengthscales used in training the
DNN and the solid dots correspond to lengthscales used to test the DNN
surrogate. 98

3.15 Variation of the log validation error, logR, corresponding to optimal struc-
ture estimated for different sizes of training datasets. 99

xii

Figure Page

3.16 Comparisons of DNN prediction of the PDE solution to that correct so-
lution for 4 randomly chosen stratified diffusion fields. The left column
shows the logarithm of the input diffusion field, the middle column shows
the FV solution of the PDE and the right column shows the solution of
the PDE predicted by the DNN. 100

3.17 Mean and standard deviation of the PDE solution obtained by MC sam-
pling of the DNN surrogate. In each sub figure the left column shows
the MCS approximation and the right column shows the DNN approxi-
mation. The top half compares the mean of the solution and the bottom
half compares the standard deviation. 3.17(a) - Case 1: `x = 0.1 and
`y = 0.5. 3.17(b) - Case 2: `x = 0.05 and `y = 0.15. 3.17(c) - Case 3:
`x ∼ TN(0.1, 0.03, 0.07, 0.13) and `y ∼ TN(0.5, 0.03, 0.47, 0.53). 102

3.18 3.18(a), 3.18(c) and 3.18(e) - Density of PDE solution at x1 for cases 1, 2
and 3 respectively. 3.18(b), 3.18(d) and 3.18(f)- Density of PDE solution
at x2 for cases 1, 2 and 3 respectively. 103

3.19 Extension of proposed architecture to the multifidelity case. 106

3.20 Comparison of the test dataset mean squared error (MSE) obtained from
a purely high-fidelity dataset of varying dataset sizes with the MSE from
a bifidelity dataset comprising data from runs of fine-grid and coarse-grid
simulations. 109

4.1 Synthetic function with D = 20 input dimensions admitting an d = 1
dimensional active subspace. Top left - True link function of f . Bottom
left - Link function predicted by DNN. Top right - Spectral decomposition
of the empirical covariance of the gradients. Bottom right - Comparison
of predicted output and correct output on the test dataset. 120

4.2 Synthetic function with D = 20 input dimensions admitting an d = 2
dimensional active subspace. Top left - True link function of f . Bottom
left - Link function predicted by DNN. Top right - Spectral decomposition
of the empirical covariance of the gradients. Bottom right - Comparison
of predicted output and correct output on the test dataset. 122

4.3 Stochastic elliptic PDE with ` = 1 - The plots on the top visualize the 1d
link function recovered by our gradient-free DNN AS approach and the
classic AS approach. The bottom plots compare the output predictions
vs observations on the test dataset for the DNN AS and the classic AS
approaches. 124

xiii

4.4 Stochastic elliptic PDE with ` = 0.01 - The plots on the top visualize the
1d link function recovered by our gradient-free DNN AS approach and the
classic AS approach. The bottom plots compare the output predictions
vs observations on the test dataset for the DNN AS and the classic AS
approaches. 125

xiv

ABSTRACT

Tripathy, Rohit Ph.D., Purdue University, May 2020. Surrogate Modeling for Uncer-
tainty Quantification in Systems Characterized by Expensive and High-Dimensional
Numerical Simulators. Major Professor: Ilias Bilionis, School of Mechanical Engi-
neering.

Physical phenomena in nature are typically represented by complex systems of

ordinary differential equations (ODEs) or partial differential equations (PDEs), mod-

eling a wide range of spatio-temporal scales and multi-physics. The field of com-

putational science has achieved indisputable success in advancing our understanding

of the natural world - made possible through a combination of increasingly sophis-

ticated mathematical models, numerical techniques and hardware resources. Fur-

thermore, there has been a recent revolution in the data-driven sciences - spurred

on by advances in the deep learning/stochastic optimization communities and the

democratization of machine learning (ML) software.

With the ubiquity of use of computational models for analysis and prediction

of physical systems, there has arisen a need for rigorously characterizing the effects

of unknown variables in a system. Unfortunately, Uncertainty quantification (UQ)

tasks such as model calibration, uncertainty propagation, and optimization under

uncertainty, typically require several thousand evaluations of the underlying physical

models. In order to deal with the high cost of the forward model, one typically resorts

to the surrogate idea - replacing the true response surface with an approximation

that is both accurate as well cheap (computationally speaking). However, state-of-

art numerical systems are often characterized by a very large number of stochastic

parameters - of the order of hundreds or thousands. The high cost of individual

evaluations of the forward model, coupled with the limited real world computational

budget one is constrained to work with, means that one is faced with the task of

xv

constructing a surrogate model for a system with high input dimensionality and small

dataset sizes. In other words, one faces the curse of dimensionality.

In this dissertation, we propose multiple ways of overcoming the curse of dimen-

sionality when constructing surrogate models for high-dimensional numerical simula-

tors. The core idea binding all of our proposed approach is simple - we try to discover

special structure in the stochastic parameter which captures most of the variance of

the output quantity of interest. Our strategies first identify such a low-rank struc-

ture, project the high-dimensional input onto it, and then link the projection to the

output. If the dimensionality of the low dimensional structure is small enough, learn-

ing the map between this reduced input space to the output is a much easier task in

comparison to the original surrogate modeling task.

1

1. INTRODUCTION TO UNCERTAINTY QUANTIFICATION

1.1 Background

Despite the indisputable successes of modern computational science and engineer-

ing, the increase in the predictive abilities of physics-based models has not been on a

par with the advances in computer hardware. On one hand, we can now solve harder

problems faster. On the other hand, however, the more realistic we make our models,

the more parameters we have to worry about, in order to be able to describe bound-

ary and initial conditions, material properties, geometric imperfections, constitutive

laws, etc. Since it is typically impossible, or impractical, to accurately measure every

single parameter of a complex computer code, we have to treat them as uncertain

and model them using probability theory. Unfortunately, the field of uncertainty

quantification (UQ) [1–4], which seeks to rigorously and objectively assess the impact

of these uncertainties on model predictions, is not yet mature enough to deal with

high-dimensional stochastic spaces.

The most straightforward UQ approaches are powered by Monte Carlo (MC)

sampling [5, 6]. In fact, standard MC, as well as advanced variations, are routinely

applied to the uncertainty propagation (UP) problem [7–9], model calibration [10,11],

stochastic optimization [12–14], involving complex physical models. Despite the re-

markable fact that MC methods convergence rate is independent of the number of

stochastic dimensions, realistic problems typically require tens or hundreds of thou-

sands of simulations. As stated by A. O’Hagan, this slow convergence is due to the

fact that “Monte Carlo is fundamentally unsound” [15], in the sense that it fails to

learn exploitable patterns from the collected data. Thus, MC is rarely ever useful in

UQ tasks involving expensive computer codes.

2

1.2 Sources of uncertainty

Uncertainty within predictive systems (numerical simulators or physical experi-

ments) arises from multiple sources. We broadly categorize the various sources of

uncertainty as follows:

1. Experimental sources.

2. Numerical sources.

3. Model-form uncertainty.

4. Parametric uncertainty.

1.2.1 Experimental uncertainty

The advent of computational methods notwithstanding, physical experimentation

retains an important within the engineering sciences. Physical experiments serve as

the most reliable validation technique for the predictions of computational methods.

Furthermore, physical experiments also serve as a source of generating high-fidelity

data i.e. they can be treated as a black-box forward model from which an output

quantity of interest can be derived. Thus, while using information produced as the

outcome of a physical experiment, one must be cognizant of various sources of un-

certainty. Uncertainties arise within experimental setup primarily through errors in

calibration or geometric imperfections in measuring equipment. For instance, particle

image velocimetry (PIV), the field concerned with visualization of velocity fields in

fluid flows and development of models for complex flows, exhibit complex nonlinear

relationships between input parameters and calibration errors. Rigorous characteri-

zation of these uncertainties is an active area of research within PIV [16–18]. Wind

tunnel experimentation is often used to validate numerical aerodynamic computation

and flow field visualization. Given manufacturing tolerances and calibration errors,

quantification of experimental errors is the subject of much research [19].

3

1.2.2 Numerical uncertainty

Mathematical models of complex physical systems often emerge as systems of an-

alytically intractable partial differential equations (PDEs). Making predictions about

the complex system entails developing and implementing numerical methods in order

to approximately solve these mathematical models. Computer implementation of ap-

proximate solvers are limited in their accuracy by the round-off precision errors [20].

Such errors can be mitigated through the use of higher precision datatypes (such

as double precision floating point numbers). However, the use of higher precision

numbers entails greater storage requirements and as such can be prohibitive for mas-

sive systems. The existence of precision errors, therefore, lead to a trade-off between

acceptable accuracy levels from approximate solvers and it’s associated storage costs.

Furthermore, approximate numerical solvers of PDEs work by discretizing an

infinite-dimensional problem into a finite-dimensional computation which is tractable

to a computer. The transformation from infinite to finite dimensions is characterized

by grid spacing parameters which induce error in the accuracy of the predictions.

While it is known that the accuracy of the solution improves with decreasing grid

sizes, the computational cost of the solution grows with decreasing step sizes,leading

to a trade-off. The uncertainty in the solution induced by discretization is not known

exactly but is bounded as a function of a grid spacing parameter. The finite element

(FE) community, for instance, is actively engaged in developing better bounds on the

solution accuracy - a line of inquiry referred to as aposteriori error analysis [21–24].

1.2.3 Model-form uncertainty

Model-form uncertainty (or functional uncertainty) [25] refers to uncertainty aris-

ing out of the selection of specific mechanistic or phenomenological model to explain

physical processes. The classic example of model-form uncertainty arises in the con-

text of constitutive laws for problems in continuum mechanics and inter-atomic po-

tentials used in molecular dynamics (MD) simulations. Computational models for

4

turbulent fluid flow problems require making choices on a ‘turbulence model’ - a phe-

nomenological model that captures turbulent flow behavior. Inspite of their flaws,

Reynolds-averaged Navier Stokes (RANS) models find widespread use as the go-to

turbulence model in a variety of design, analysis and prediction tasks in fluid dynam-

ical systems. More sophisticated turbulence models such as large eddy simulations

(LES) or direct numerical simulations (DNS) often incur prohibitive costs that exceed

available computational budgets. Toward this end, many recent works have proposed

methodologies for the quantification of uncertainties induced by the choice of RANS

models for turbulent fluid flow [26, 27] Exchange and correlation functionals used in

MD simulations are often simplifications of the actual material physics and many

researchers have proposed methodologies to quantify uncertainties induced by the

selection of simpler constitutive models in MD [28,29].

1.2.4 Parametric uncertainty

The most common source of uncertainty in engineering and scientific applications

is parametric uncertainty. Parametric uncertainty is the lack of knowledge about

input parameters to a computational or experimental model. In the common scenario

of PDE systems model for a physical phenomenon, there are numerous parametric

inputs needed for closure of the numerical simulation. Such inputs could include

parameters describing material properties or boundary/initial conditions. They could

also involve parameters that convey geometric information about the system.

In this thesis, we exclusively consider problems that involve parametric uncer-

tainties. Methods dealing with experimental, numerical or model-form uncertainties

are beyond the scope of this work and we refer readers to any of the aforementioned

citations for methodologies dealing with these types of uncertainties. Furthermore,

it is worth mentioning that it is a common practice to categorize uncertainty in an

application problem into aleatoric and epistemic uncertainties. The precise definition

5

of each kind is the subject of much debate1 among mathematicians, statisticians and

philosophers. For this work, we define epistemic uncertainty to be uncertainty arising

out of a lack of knowledge about a deterministic quantity and aleatoric uncertainty

to be uncertainty arising out of true randomness. All the problems that we consider

within this thesis fall strictly into the camp of epistemic uncertainty, i.e., we are in-

terested in inferring strictly deterministic quantities about which we have insufficient

information.

1.3 Classification of uncertainty quantification tasks

1.3.1 Forward problem

The forward problem or the uncertainty propagation problem [1, 30] is the sim-

plest and most common category of UQ tasks. Roughly speaking, the forward prob-

lem entails estimating statistical properties of output quantities of interest from a

computational model or experimental setup with stochastic inputs. Formally, given

a probability measure, µ, on the space of input quantities X , what is the induced

statistics on the space of the outputs Y of a system idealized as a mathematical func-

tion F? Note that this is essentially a question of estimating probability densities

under a change of variables defined by the system F .

1.3.2 Inverse problem

The inverse problem (also known as the model calibration or the state estimation

or the parameter identification problem [1,10,30] is extremely common cutting across

scientific disciplines. Stated simply, the inverse problem is the task of finding an

estimate of the unknown inputs to a model given data on observations of the model

outputs. It is easy to see that this is the reverse of the propagation problem from

Sec. 1.3.1. More formally, the inverse problem is the task of estimating a parameter

1https://www.stat.berkeley.edu/ aldous/Real˙World/ale˙epi.html

6

θ which is the input to a model F , from observations D of output quantities from

the model F .

The classical formulation of the inverse problem [10] treats the task of estimating θ

as an optimization problem, constrained by a system of PDEs [31]. Standard methods

of numerical convex optimization [32,33] such as Newton’s method are applied toward

this task. The more general, robust approach towards the model calibration task poses

the problem of estimating θ as a Bayesian inference task, i.e., estimating the posterior

probability density p(θ|D). Note that the classical formulation of generating a point

estimate of θ is a special case of the generic Bayesian approach to model calibration.

A point estimate recovered from minimizing the least squares discrepancies between

observations and model predictions can be thought of as approximating the posterior

over θ with a Dirac delta function centered over the mode of the posterior.

1.3.3 Sensitivity analysis

Sensitivity analysis is a category of tasks in UQ that seek to answer questions

around the degree of variation a function/model/experiment exhibit with respect to

any given input variable or a group of input variables. Broadly speaking, sensitivity

analysis is classified as either local sensitivity analysis - variation of a function around

a given location in it’s input regime of interest, or global sensitivity analysis - the mean

variation of the function across the entire domain.

Local sensitivity analysis is often performed by analyzing perturbations of the

function under consideration, f , around the point of interest. In the absence of ana-

lytical gradient information, finite difference approximations are used to characterize

the derivatives (total or partial) of f . Randomized approaches to local sensitivity

analysis have also yielded accurate results; see, for instance, [34]. In recent times, the

emergence of scalable, easy-to-use automatic differentiation computational libraries

has been enabling computation of exact gradients of complex numerical simulations,

proving extremely useful for local sensitivity analysis tasks.

7

1.3.4 Optimization under uncertainty

Many engineering tasks involve optimizing a quantity of interest subject to sci-

entific/economic constraints such as physical laws, monetary/computational cost etc.

For instance, a question of fundamental importance to aerospace design engineers is

the optimal shape of an airfoil that minimizes drag and maximizes lift. The optimiza-

tion under uncertainty problem can be thus defined - given a quantity of interest q,

that needs to minimized, as a function of design parameters x and stochastic parame-

ters ξ, what is our best estimate of the design parameters that achieve this objective?

Mathematically, we seek a solution to the following stochastic optimization task:

x∗ = argmin
x

Ex [q(x, ξ)] , (1.1)

where, E is the expectation operator. While Eqn. (1.1) looks like a standard stochas-

tic optimization task, we are often, in realistic engineering scenarios, constrained by:

1. high cost of querying q due to the need for solving computational intensive PDE

systems,

2. Lack of access to information about the gradients of q with respect to the de-

sign or stochastic parameters, making classical stochastic optimization routines

infeasible.

The high computational cost of evaluating q coupled with the lack of gradient in-

formation has led to the emergence of black-box global optimization based on Gaus-

sian processes [35] as the state-of-the-art approach to tackling the task of design

optimization under uncertainty.

1.4 The surrogate approach

The simplest approach for tackling uncertainty quantification tasks is the Monte

Carlo (MC) method [5,6,36]. The basic idea of MC is that one can compute empirical

8

estimates of the statistics of some quantity of interest (QoI) by sampling averages.

The MC method is guaranteed to converge in the limit of infinite samples. MC

methods, and its advanced variants, are routinely applied to UQ tasks such as UP [37],

inverse problems [38,39], model calibration [40] and stochastic optimization [41]. The

computational time to convergence of MC methods is independent of the number of

the stochastic dimensions. However, the number of samples needed by MC methods,

to obtain convergent statistics is large, typically being of the order of hundreds of

thousands or millions. This makes MC methods unsuitable for UQ tasks involving

expensive computer codes.

We typically deal with expensive computer codes, by building a cheap-to-evaluate

surrogate of the response surface. To do this, a set of locations in the uncertain

parameter-space are carefully selected and the forward model is evaluated at these

locations. This produces a set of independent observations of the model response.

The total number of such simulations to be performed is determined by one’s com-

putational budget and desired accuracy. Because the surrogate model can be queried

very cheaply, one can use it as a replacement of the original simulator and perform

UQ tasks using MC techniques. Popular choices for surrogate models in the literature

include, Gaussian processes [42–47], polynomial chaos expansions [48–52], radial basis

functions [53,54] and relevance vector machines [44,55].

1.5 Surrogate models and the curse of dimensionality

Despite their success, traditional surrogate modeling methods have become in-

tractable for problems in which the number of input stochastic dimensions is large.

In order to construct a surrogate response surface for a multivariate function with a

large number of uncertain parameters, one has to overcome the phenomenon known as

the curse of dimensionality, a term coined by the mathematician Richard Bellman [56]

in the context of dynamic programming. In the context of statistical sampling and

machine learning the implication of the curse of dimensionality is that to sufficiently

9

explore a high dimensional space, one must visit an exponentially large number of

points in that space. As a concrete example, suppose the task of approximating a

surrogate model for a univariate function can be done by visiting 10 locations in the

input space and evaluating the forward model at those input locations. For a bivari-

ate function of similar lengthscale, one would need to visit roughly 10 × 10 = 100

points in the input space to maintain a similar level of accuracy of the constructed

surrogate. Generalizing, a d-variate function requires visiting O(10d) locations in the

input space and evaluating the forward solver at those locations.

Generic UQ techniques are unable to deal with high stochastic dimensions. This

is due to the reliance on the Euclidean distance to define input-space correlations

which becomes uninformative as the dimensionality of the input space increases [57].

In other words, blindly attempting to learn generic high-dimensional functions is a

futile task. Instead, research efforts are focused on methodologies that can identify

and exploit some special structure of the response surface, which can be discovered

from data.

1.6 Dimensionality reduction in the context of surrogate modeling

The simplest way to address the curse of dimensionality is to use a variable re-

duction method, e.g., sensitivity analysis [1, 58] or automatic relevance determina-

tion [59–61]. Such methods rank the input features in order of their ability to in-

fluence the quantity of interest, and, then, eliminate the ones that are unimportant.

Of course, variable reduction methods are effective only when the dimensionality of

the input is reasonable (not very high-dimensional) and when the input variables

are, more or less, uncorrelated. The common case of functional inputs, e.g., flow

through porous media requires the specification of the permeability and the porosity

as functions of space, cannot be treated directly with variable reduction methods.

In such problems one has to start with a dimensionality reduction of the functional

input. For example, if the input uncertainty is described via a Gaussian random

10

field, dimensionality reduction can be achieved via a truncated Karhunen-Loève ex-

pansion (KLE) [62]. If the stochastic input model is to be built from data, one may

use principal component analysis (PCA) [63], also known as empirical KLE, or even

non-linear dimensionality reduction maps such as kernel PCA [64]. The end goal

of dimensionality reduction techniques is the construction of a low dimensional set

of uncorrelated features on which variable reduction methods, or alternative meth-

ods, may be applied. Note that even though the new features are lower dimensional

than the original functional inputs, they are still high-dimensional for the purpose of

learning the response surface.

A popular example of an exploitable feature of response surfaces that can be

discovered from data is additivity. Additive response surfaces can be expressed as

the sum of one-variable terms, two-variable terms, and so on, interpreted as interac-

tions between combinations of input variables. Such representations are inspired from

physics, e.g., the Coulomb potential of multiple charges, the Ising model of statistical

mechanics. Naturally, this idea has been successfully applied to the problem of learn-

ing the energy of materials as a function of the atomic configuration. For example,

in [65] the authors use this idea to learn the quantum mechanical energy of binary

alloys on a fixed lattice by expressing it as the sum of interactions between clusters

of atoms, a response surface with thousands of input variables. The approach has

also been widely used by the computational chemistry community, where it is known

as high-dimensional model representation (HDMR) [66–69]. The UQ community has

been embracing and extending HDMR [70,71], sometimes referring to it by the name

functional analysis of variance (ANOVA) [72, 73]. It is possible to model additive

response surfaces with a GP by choosing a suitable covariance function. The first

such effort can be traced to [74] and has been recently revisited by [75–79]. By ex-

ploiting the additive structure of response surfaces one can potentially deal with a

few hundred to a few thousand input dimensions. This is valid, of course, only un-

der the assumption that the response surface does have an additive structure with a

sufficiently low number of important terms.

11

Another example of an exploitable response surface feature is active subspaces

(AS) [80]. An AS is a low-dimensional linear manifold of the input space characterized

by maximal response variation. It aims at discovering orthogonal directions in the

input space over which the response varies maximally, ranking them in terms of

importance, and keeping only the most significant ones. Mathematically, an AS

is described by an orthogonal matrix that projects the original inputs to this low-

dimensional manifold. The classic framework for discovering the AS was laid down

by Constantine [81–86]. One builds a positive-definite matrix that depends upon

the gradients of the response surface. The most important eigenvectors of this matrix

form the aforementioned projection matrix. The dimensionality of the AS is identified

by looking for sharp changes in the eigenvalue spectrum, and retaining only the

eigenvectors corresponding to the highest eigenvalues. Once the AS is established, one

proceeds by: i) Projecting all the inputs to the AS; ii) Learning the map between the

projections and the quantity of interest. The latter is known as the link function. The

framework has been successfully applied to a variety of engineering problems [87–94].

One of the major drawbacks of classic AS methodology is that it relies on gradient

information. Even though, in principle, it is possible to compute the gradients either

by deriving the adjoint equations [95] or by using automatic differentiation [96], in

many cases of interest this is not practical, since implementing any of these two ap-

proaches requires a significant amount of time for software development, validation

and verification. This is an undesirable scenario when one deals with existing com-

plex computer codes with decades of development history. The natural alternative

of employing numerical differentiation is also not practical for high-dimensional in-

put, especially when the underlying computer code is expensive to evaluate and/or

when one has to perform the analysis using a restricted computational budget. The

second major drawback of the classic AS methodology is its difficulty in dealing with

relatively large observational noise, since that would require a unifying probabilistic

framework. This drawback significantly limits the applicability of AS to important

problems that include noise. For example, it cannot be used in conjunction with

12

high-dimensional experimental data, or response surfaces that depend on stochastic

models e.g., molecular dynamics.

The ideas of AS methodologies are reminiscent of the partial least squares (PSL)

[97] regression scheme, albeit it is obvious that the two have been developed inde-

pendently stemming from different applications. AS applications focus on computer

experiments, while PSL has been extensively used to model real experiments with

high-dimensional inputs/outputs in the field of chemometrics [98–100]. PSL not only

projects the input to a lower dimensional space using an orthogonal projection ma-

trix, but, if required, it can do the same to a high-dimensional output. It connects

the reduced input to the reduced output using a linear link function. All model pa-

rameters are identified by minimizing the sum of square errors. PSL does not require

gradient information and, thus, addresses the first drawback of AS. Furthermore, it

also addresses, to a certain extent, the second drawback, namely the inability of AS

to cope with observational noise, albeit only if the noise level is known a priori or

fitted to the data using cross validation. As all non-Bayesian techniques, PSL may

suffer from overfitting and from the inability to produce robust predictive error bars.

Another disadvantage of PSL is the assumption that the link map is linear, a fact

that severely limits its applicability to the study of realistic computer experiments.

The latter has been addressed by the locally weighted PSL [101], but at the expense

of introducing an excessive amount of parameters.

1.7 Overview of upcoming chapters

Our goal throughout this thesis is to construct approximations of the form f(x) =

g(h(x)), where the function g(·) acts on a low-dimensional submanifold of the high-

dimensional space of the original inputs. The approximation task is, thus, decomposed

into:

1. Specifying a suitable form for the function h which projects the high-dimensional

stochastic parameters into a suitable low-dimensional manifold, and,

13

2. Finding the right link function g which maps the projected inputs into the space

of the quantity of interest.

Toward this end, in Ch. 2, we focus on the developing a Bayesian surrogate for

the map between the uncertain parameters and the quantity of interest, specifically

through the framework of GP regression. Our choice of this approach is motivated

by the following factors:

1. Given that we are working in the low-data regime, the Bayesian formalism,

and GP regression by extension, offers a systematic approach to capture the

epistemic uncertainty induced as a consequence of limited data. Indeed, GP

regression has been a popular choice of surrogates within the context of limited

data uncertainty quantification. See, for instance, [44–47,47,102–106].

2. The GP framework is particularly advantageous for 2nd order tasks such as

optimal experimental design. Since the posterior predictive distribution in the

standard regression setting with Gaussian likelihood is known in closed form,

it simplifies the task of quantifying the expected information gain from future

simulations. See, for instance, [44,59,107–109] for applications of GP regression

to tasks involving active learning and multi-objective global optimization within

the context of problems characterized by uncertainty.

3. In the framework of GP regression, we have the ability to encode prior knowledge

within the mean function and covariance kernel of the GP surrogate.

We seek an approximation where the projection function h is an orthogonal linear

transformation, i.e., h(x) = WTx, WTW = Id. This form of intrinsic structure,

known as the active subspace (AS) has recently emerged as a popular approach to

dimensionality reduction for surrogate modeling [81]. In our approach, we develop

a probabilistic approach for recovering the AS. The classical approach to recovering

the AS of any given quantity of interest requires evaluations of it’s gradient with re-

spect to the stochastic parameters - a major drawback which limits it’s applicability

14

to arbitrary computational programs. Our approach poses the task in a gradient-

free manner. Specifically, the projection matrix of the AS is posed a hyperparameter

within the covariance kernel of the GP surrogate. This approach seamlessly integrates

the dimensionality reduction from the AS projection with the Bayesian GP surrogate.

The orthogonal projection matrix is then learnt by the usual procedure of maximizing

the marginal likelihood of the data. Toward this end, we develop a two-stage iterative

approach for maximizing the likelihood. Our approach alternates between perform-

ing optimization over the Stiefel manifold with respect to the projection matrix and

the optimization unconstrained by orthogonality requirements with respect to the

remaining hyperparameters. This procedure is carried out until a suitable conver-

gence criterion is met. Furthermore, we develop a rigorous for model selection, i.e.,

answering the question - what is the right dimensionality of the active subspace for

the function under investigation? Our approach for model selection relies on a cheap

approximation of the model evidence using the Bayesian information criterion [110].

We show, empirically, that our proposed approach finds the right AS dimensionality.

Additionally we show results for a suite of experiments that test the performance

of the proposed framework. We test the robustness of our approach to observation

noise as well as dataset size. Our methodology is tested on a benchmark problem of

an elliptic partial differential equation with stochastic spatially varying conductivity

coefficient. Following traditional approaches, the uncertainty is modeled through a

spectral expansion in a basis of standard normal variables, i.e., we resort to the KL

expansion to obtain a finite dimensional representation of the infinite dimensional

random field input. Our active subspace GP regression framework is then used to

construct accurate surrogate maps between the coefficients of the truncated KL ex-

pansion and a scalar quantity of interest which is a functional of the PDE solution.

Finally, we use our approach to study the effects of uncertainties in the propagation

of solitons in a granular crystals system. We wrap up Ch. 1 with comments.

In Ch. 3, we propose a systematic approach for constructing surrogate models

using deep neural networks (DNNs) [111–114]. Neural networks (NNs) (or artificial

15

neural networks (ANNs)) are a class of function approximators that have shot to

prominence in recent years because of breakthrough successes achieved in numerous

artificial intelligence (AI) tasks such as image classification [115–119] and autonomous

driving [120,121]. The idea of DNNs is not new. The reason for their increased usage

and popularity in recent times is due to: 1. Advancements in computer hardware

leading to widespread availability of graphics processing units (GPUs) for accelerated

computation; 2. Advances in stochastic optimization including techniques such as

Adam [122], RMSprop [123], AdaGrad [124], AdaDelta [125] etc.; 3. Regularization

techniques such as dropout [126]; and, 4. Development of easy-to-use software li-

braries, such as Tensorflow [127], PyTorch [128] and Theano [129].

The basic idea of DNNs is that one can represent multivariate functions through a

hierarchy of features of increasing complexity. The most typical example of a DNN is

a feedforward multilayer perceptron (MLP). A highly attractive property of MLPs is

that, under mild assumptions on the underlying function being approximated, they

are universal approximators [130]. This means that any continuous function, regard-

less of its complexity, can be approximated with a neural network of just one layer

with a sufficient number of hidden units. DNNs tackle the curse of dimensionality

through a series of nonlinear projections of the input into exploitable latent spaces.

In fact, PCA can be thought of as a special case of a DNN with no hidden layers such

that the latent space is recovered through an orthogonal projection of the input.

The powerful nonlinear function approximation capabilities coupled with the scal-

ability of DNNs to high dimensions offers a very promising direction of research for

the UQ community, with the potential to significantly improve upon state-of-the-art

capabilities. [131] use a 3 layer convolutional DNN to learn a map between input

coefficients of SPDEs to a functional of the PDE solution. [132] use a Bayesian fully

convolutional encoder-decoder network to solve an image-to-image regression task

mapping the random input coefficient field of an elliptic SPDE to the correspond-

ing solution. These papers offer encouraging results for challenging problems in UQ.

However, they are only applicable to tasks where input parameters and output quan-

16

tities can be treated as images and they require a lot of cross validation to learn an

optimal network structure. Specifically in the context of SPDEs, we are interested in

learning a surrogate that can make predictions at spatial locations other than those

included in the discretization of the underlying deterministic numerical solver.

The task of selecting the architecture of the network and values for hyperparam-

eters such as regularization constants is a persistent problem in the application of

DNNs. Under constraints of limited data, this task assumes added importance. In

this work, we present a methodology based on MLPs where we parameterize our

network in a way that lends it the interpretation of discovering a low dimensional

nonlinear manifold that captures maximal variation of the model outputs. We think

of this procedure as discovering a nonlinear active subspace. The projection function,

which connects the high dimensional input, to the low dimensional manifold, is linked

to the scalar model output through a linear transformation. We utilize a combination

of Bayesian global optimization (BGO) [35] and grid search to select the best setting

of the network hyperparameters and determine the appropriate structure.

In Sec. 3.1, we discuss the task of surrogate modeling. In Sec. 3.2 through

Sec. 3.5, we discuss the process of constructing a DNN surrogate model, including

the parameterization of the network architecture and the optimization of the network

parameters. We conclude with a description of the procedure we use to select network

hyperparameters in Sec. 3.7. In Sec. 3.8, we demonstrate our methodology on a

SPDE with uncertain diffusion coefficient. A novelty of our work is that we do not

make any assumption on the regularity and lengthscales of the uncertain diffusion.

Specifically, we construct a surrogate of the SPDE solver which can accurately predict

the response when tested with input random fields that may not be structurally

similar (in terms of smoothness and lengthscales) to samples of the input in the

training dataset. This deviates from the standard formulation of this problem in

the UQ literature, where a specific covariance structure is imposed on the uncertain

parameter. As a result, our problem is not amenable to the application of preliminary

dimensionality reduction using the KLE, thereby making it far more challenging than

17

the traditional formulation of the problem. We wrap up Ch. 3 with concluding

remarks in Sec. 3.10.

In Ch. 4, we discuss a methodology for recovering classical linear active subspaces

within deep neural networks. We pose the active subspace projection matrix as the

reparameterization of an unconstrained tall-and-skinny matrix. This makes the DNN

amenable to standard stochastic gradient descent routines for training, while strictly

enforcing the orthonormality of the columns of the active subspace projection matrix.

The effectiveness of the approach is demonstrated on a suite of synthetic examples as

well as a high-dimensional stochastic partial differential equation problem.

We conclude this thesis in Ch. 5 with a discussion on:

1. A review of the methodologies developed as part of this dissertation, as well as

our key findings and lessons learned.

2. A discussion on some future directions of research on the subject of data-driven

uncertainty quantification, with an emphasis on the recently popularized ap-

proach of integrating physics with machine learning.

18

2. LEARNING LOW-RANK STRUCTURE WITH GAUSSIAN PROCESS

REGRESSION

1 Suppose we have a computer code simulating a physical phenomenon. Mathemat-

ically, we represent this simulator as a function f : X → Y . f accepts a vector of

inputs ξ ∈ X ⊆ RD where ξ could specify material properties, external loads, bound-

ary conditions, initial conditions, etc. The output of the computer code is some scalar

quantity of interest y = f(ξ) ∈ Y ⊆ R. Typically, f depends on the solution of some

PDE which depends on ξ. Furthermore, f is unknown in closed form and informa-

tion about it can only be obtained by querying the simulator at feasible values of ξ.

Finally, the dimensionality, D, of the input vector ξ is large, potentially of the order

of hundreds or thousands. Given a finite number of evaluations of the simulator, the

task of constructing a surrogate function, f̂ , for the true response surface f becomes

computationally infeasible without resorting to dimensionality reduction.

Suppose the inputs ξ to the function f are not known exactly (a common scenario

in numerous engineering tasks). We formalize our beliefs about ξ using a suitable

probability distribution:

ξ ∼ p(ξ). (2.1)

Given our beliefs about ξ, we wish to characterize the statistical properties of the

output f(ξ) such as the mean:

µf =

∫
f(ξ)p(ξ)dξ, (2.2)

1The contents of this chapter are reproduced, with permission, from the paper entitled “Gaus-
sian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty
propagation“ [43] published in the Journal of Computational Physics (2016).

19

the variance,

σ2
f =

∫
(f(ξ)− µf)2p(ξ)dξ, (2.3)

and the probability density,

pf (y) =

∫
δ(y − f(ξ))p(ξ)dξ. (2.4)

This is formally known as the uncertainty propagation problem (UP).

The UP problem is particularly hard when obtaining information about f(·) is

expensive. In such cases, we are necessarily restricted to a limited set of observations.

Specifically, assume that we have queried the information source at N input points,

X =
{
x(1), . . . ,x(N)

}
, (2.5)

and that we have measured

y =
{
y(1), . . . , y(N)

}
. (2.6)

We frame the UP problem as follows - what is our best estimate of the statistics of

the QoI, conditional on observing a limited dataset D? Our approach relies on recon-

structing the map between the stochastic input parameters and the output quantities

of interest from D, by exploiting low-rank latent structure in the space of the uncer-

tain parameters.

Given that the stochastic parameter space we are working in is high-dimensional,

i.e., D � 1, naive methods for reconstructing the map f(·) from data will fail due

to the curse of dimensionality. The standard approach to circumvent this problem

is to look for intrinsic exploitable structure within f(·). Ridge functions [133] are a

special class of multivariate functions which possess the following structure:

f(x) ≈ g(WTx), (2.7)

20

where, W ∈ RD×d is a tall-and-skinny matrix. Intuitively, such the columns of the

matrix W map the high-dimensional inputs to a low-dimensional manifold on which

the function variability is captured. A special case of ridge functions are obtained by

imposing the constraint that the matrix W is made up of orthonormal columns, i.e.,

WTW = Id, where, Id is the identity matrix in Rd. The vector space of projected

inputs, z = WTx ∈ Rd is referred to as the active subspace and it represents the op-

timal linear low-dimensional embedding of a high-dimensional multivariate function.

To summarize, we are looking for a function f(x) ≈ f̂(x) = g(z) = g(WTx), with

the constraint W ∈ Vd(RD), where,

Vd(RD) :=
{
A ∈ RD×d : ATA = Id

}
, (2.8)

is known as the Stiefel manifold of tall-and-skinny matrices with orthonormal columns.

g : Rd → R is a potentially nonlinear function acting on d-dimensional space and we

refer to it as the link function. Note that the structure of the approximation is unique

upto arbitrary rotations and relabeling of the active subspace coordinate system. The

working hypothesis in the theory of approximation of high input dimensional func-

tions is that the approximation is easier to construct if the size of the embedding d

is sufficiently smaller than the original vector space D, i.e., d� D.

The classical formulation of the active subspace requires evaluation of the gradients

of the response f(·). Given that this is a highly restrictive assumption, our goal is to

construct the active subspace approximation without leveraging gradient information.

In this chapter we discuss a complete framework for:

1. Constructing the active subspace ridge function approximation using observa-

tions of the function input and output pairs (but not it’s gradients), and,

2. Selecting the right dimensionality of the active subspace.

With an accurate construction of the approximation f̂ , one may utilize for performing

any uncertainty quantification task via Monte Carlo methods.

21

2.1 Gaussian Processes for data-driven modeling

In this section we provide a brief summary of Gaussian process regression (GPR).

We begin with a description of Gaussian processes (GP) as probability measures over

function spaces (i.e. stochastic processes) and then discuss the application of GPs to

the task of learn an unknown map between a set of inputs and outputs, potentially

contaminated with noise.

2.1.1 Gaussian processes

Without loss of generality, a Gaussian process (GP) may be defined as a stochastic

process {Xt}t≥0 such that any finite collection of random variables, {Xt1 , Xt2 , · · · , Xtk},∀k ∈
N, are joint distributed as a multivariate Gaussian. A GP is fully specified by it’s

mean, m(·) and covariance function, k(·, ·) i.e.:

E[Xt] = m(t), (2.9)

cov(Xt, Xt′) = E[(Xt − E[Xt])(Xt′ − E[Xt′])] = k(t, t′). (2.10)

If the covariance of the GP at two locations, Xt and Xt′ depends only on the

distance between the two locations, i.e., k(t, t′) = k̃(|t − t′|) then the corresponding

GP is said to be stationary. Processes that do not satisfy this criterion are said to be

non-stationary.

Let Xt be a GP indexed with t ≥ 0, and specified by a mean function m(t)

and a covariance function k(t, t′). Let the process be observed at locations X =

(Xt1 , Xt2 , · · · , XtT). Denote the set of indices of the observed locations as T =

(1, 2, · · · , T). The distribution of the vector X is given by X ∼ N (m,K), where,

m = (m(t1),m(t2), · · · ,m(tT)) , (2.11)

K = [k(ti, tj)]i,j≤T . (2.12)

22

Consider any new location t∗ ∈ [0,∞). Per the property of a GP, Xt∗ and X are

jointly distributed as:Xt∗

X

 ∼ N
Xt∗

X

∣∣∣
m(t∗)

m

 ,

k(t∗, t∗) k(t∗,T)

k(T, t∗) K

 , (2.13)

where, k(t∗,T) is the matrix of cross-covariances between the locations X(t∗) and X.

Since the joint distribution of
(
X t∗ ,X

)
is Gaussian and the marginals of Xt∗ and X

are also Gaussian, the conditional distributions of Xt∗ is also Gaussian and given by:

Xt∗|X ∼ N
(
Xt∗|m(t∗) + k(T, t∗)TK−1(X−m), k(t∗, t∗)− k(T, t∗)TK−1k(T, t∗)

)
.

(2.14)

The covariance function of a GP establishes the correlation in the GP at any two

locations t and t′. A valid covariance function is:

1. symmetric, i.e., k(t, t′) = k(t′, t),

2. positive-definite, i.e., for any real valued function, c(t),

∫∫
c(t)k(t, t′)c(t′)dtdt′ > 0. (2.15)

By Mercer’s Theorem [42], there exists, for every continuous, symmetric positive-

definite kernel, an orthogonal basis, {φi(t)}i∈N consisting of the eigenfunctions of the

linear operator TKϕ(t) =
∫
k(t, t′)ϕ(t′)dt′ such that:

k(t, t′) =
∞∑
i=1

λiφi(t)φi(t
′), (2.16)

where, λi > 0 is the eigenvalue associated with the eigenfunction φi. The sequence

λj, j = 1, 2, . . . ,∞, when arranged in descending order, converges to 0 and thus

the sum expressed in Eqn. (2.16) can be truncated at a finite number of terms M ,

i.e., k(t, t′) ≈ ∑M
i=1 λiφi(t)φi(t

′). Notice that the two-point covariance may also be

expressed as k(t, t′) =
∑∞

i=1 φ̃i(t)φ̃i(t
′) where φ̃i(t) =

√
λiφi(t). In other words, the

23

covariance between two locations in a GP is an inner product of an infinite dimensional

basis function vector φ(s) = (φ1(s), φ2(s), . . .), i.e., k(t, t′) = 〈φ(t),φ(t′)〉.

2.1.2 Gaussian process surrogate model

We discuss, in the section, how properties of Gaussian processes can be leveraged

to learn arbitrary nonlinear functions from a dataset of observations. Let us denote

the unknown function as f(·). Without loss of generality, f takes in a vector of inputs

x ∈ Rd and produces a scalar output, y ∈ R. While we do not know the underlying

structure of f , we have access to a dataset of observations of the outputs,

y = {y1, y2, . . . , yN}, (2.17)

corresponding to a set of input observations,

X = {x1,x2, . . . ,xN}. (2.18)

GP regression proceeds as follows. As discussed in the previous section, a GP

places a prior over a suitable space of functions. This prior captures our beliefs about

the unknown function apriori through a suitable choice of the mean and the covari-

ance function. Any finite sampling of the input space produces a joint distribution

of random variables that is a multivariate normal whose mean vector and covariance

function are governed by the choice of prior mean function and covariance kernel.

By conditioning the prior information uses Bayes rule to combine these prior beliefs

with observations. The result of this conditioning process is a posterior GP which

is simultaneously compatible with our prior beliefs and measurements. Because the

GP regression model is a Bayesian surrogate, it has the added benefit of providing

estimates of uncertainty around the predicted quantities of interest. Furthermore,

the predictive uncertainty can be easily segregated into the individual contributions

24

of epistemic uncertainty - uncertainty induced by limited measurements, and obser-

vational noise - uncertainty induced by noise in the measured data.

2.1.3 Statistical model

We now lay out the probabilistic model for modeling data D. We begin by placing

a Gaussian process prior on the unknown function f :

f(x) ∼ GP(f(x)|m(x), k(x,x′)). (2.19)

Figure 2.1. Probabilistic graphical
model for GP regression.

Our prior beliefs about the properties of the un-

known function f are captured in the specified

mean and covariance functions m(·) and k(·, ·).
For simplicity, we set the mean function m(x) =

0. Let the covariance kernel k(x,x′) be speci-

fied by a vector of hyperparameters θ. As pre-

viously discussed, a valid covariance function is

defined by a symmetric, positive-definite covari-

ance operator and can be expressed as the in-

ner product of a basis function vector applied

to it’s arguments x and x′. Covariance func-

tions measure degrees of similarity between in-

put locations. The most commonly used co-

variance function is the squared exponential (or

radial basis) covariance function defined as fol-

lows:

kSE(x,x′) = s2 exp

{
−1

2

d∑
i=1

(xi − x′i)2

`2
i

}
. (2.20)

25

In this work, we will deal exclusively with the case where the output y is a real-

valued scalar. As such, we pose the following model for the likelihood of the observed

data:

y(x) = f(x) + ε, (2.21)

where, ε is additive measurement noise in the output data. Following conventional

modeling choices, we endow ε with a 0-mean normal distribution with unknown noise

variance, i.e, ε ∼ N (0, σ2
n). The Eqn. (2.21) captures our beliefs about the measure-

ment process - the observation y is a noise corrupted version of the latent function

f which is modeled via a Gaussian process prior. Let us denote the latent function

values at input locations as f = (f1, f2, . . . , fN), where, fi = f(xi). Coupling this

with the likelihood model in Eqn. (2.21), we get the following joint distribution over

the observed data:

y = N (y|f , σ2
nIN), (2.22)

where, IN is the N ×N identity matrix.

The goal of inference is to make predictions about the latent function f at a new

unseen input locations. Denote by X∗ ∈ RM×D a set of M new input locations and

the corresponding latent function values as f∗ ∈ RM . By definition the latent function

values at the training locations X and the test locations are distributed jointly as a

multivariate Gaussian distribution whose mean vector and covariance matrix are fully

specified by our choice of the mean function and covariance kernel for the GP prior.

Conditioning the test latent function values f∗ on the observed data, D induces the

following posterior predictive distribution on the test outputs:

f∗ = N
(
f∗|KMN

[
K + σ2

nIN
]−1

y,KMM −KMN

[
K + σ2

nIN
]−1

KT
MN

)
, (2.23)

where, KMN are the cross-covariances between the training and test outputs and

KMM is the covariance matrix of the marginal distribution of the test output locations,

i.e., KMN,ij = k(xi,X
∗
j,:) and KMM,ij = k(X∗i,:,X

∗
j,:).

26

2.1.4 Inference in Gaussian process regression

The task of hyperparameter inference in GP regression is, ideally, framed as a

Bayesian inference problem. Denote, collectively, all the hyperparameters in the GP

regression mean and covariance functions as θ. Let our prior beliefs about θ be

formalized into a probability distribution:

θ ∼ p(θ). (2.24)

The likelihood of the observed data, conditional on the hyperparameters is given by:

p(y|X,θ) = N (y|0,KX + σ2
nI), (2.25)

where, the distribution in Eqn. (2.26) is the marginal likelihood of the observed

data, obtained by integrating out the latent function f from the likelihood of the

measurement process, i.e.,

p(y|X,θ) =

∫
p(y, f |X,θ)df . (2.26)

The likelihood noise, σn is also a hyperparameter and we ascribe to it, it’s own prior

p(σn). In the regression setting (with Gaussian likelihood models), this marginal-

ization can be carried out in closed form. For alternative likelihoods, a numerical

approximation of the marginal likelihood needs to be derived. The posterior state of

knowledge over the hyperparameters are then given by:

p(θ, σn) ∝ p(θ)p(σn)p(y|X). (2.27)

This joint distribution over (θ, σn) is intractable analytically, and ideally, one must re-

sort to approximate inference techniques such as Markov Chain Monte Carlo (MCMC)

[134–137] or Variational Inference (VI) [138–141].

27

A simple and computationally efficient approach to characterizing the posterior

p(θ, σn|D) is approximate the full posterior distribution with a delta function centered

at the mode of the posterior. If the posterior distribution is sharply peaked, such an

approximation is reasonably good. Assuming a flat prior on the hyperparameters,

i.e., p(θ, σn) ∝ 1, our inference task reduces to the problem of finding a suitable local

maxima of the marginal likelihood. For computational reasons, this task is framed as

the minimization of the negative log marginal likelihood, i.e.,

θ∗, σ∗n = argmin
θ,σn

− log p(y|X). (2.28)

The optimization task in Eqn. 2.28 can be efficiently performed using any second

order optimization method. Unless otherwise stated, we adopt the L-BFGS [142]

method to find local minima of the negative log marginal likelihood. Given that the

objective function is highly non-convex, it is entirely possible to be trapped in bad

local minima. To counter this possibility, our approach will be to be perform several

repetitions of the optimization routine with different initial starting points in order

to find the best possible maximum likelihood estimate (MLE).

2.2 Classical active subspace recovery and response approximation

Recall that our goal is to construct an approximation of the form f(x) ≈ f̂(x) =

g(WTx), where, W is a tall-and-skinny matrix of orthonormal columns. This ap-

proach was first formulated in [80] and extended and improved in [81]. The classical

approach to recovering the manifold spanned by the columns of W, the active subspace

requires information about the gradients of the quantity of interest [81–84,88,89,91].

Approximation, in the classical setting, follows two steps:

1. Get the matrix W from the spectral decomposition of an empirical centered

covariance matrix of the gradient samples,

28

2. Construct the approximation g : Rd → R, by fitting the projections of the

inputs X onto the active subspace, to the measured outputs, y.

This approach cannot deal with noisy measurements. For the sake of generality,

we will work with the assumption that our measurements, y are noisy estimates of

the true underlying function values, f . The Bayesian formalism within which we are

working, allows for a rigorous framework for dealing such observational noise.

Let the gradient of the quantity of interest be denoted as g, and we collect a

matrix of gradient samples at a finite number of input locations:

G =
{
g(1), . . . ,g(N)

}
, (2.29)

where

g(i) = ∇f
(
x(i)
)

=

(
∂f(·)
∂x1

, . . . ,
∂f(·)
∂xD

)T
∈ RD. (2.30)

Let the input space be equipped with a probability measure ρ. Note that this may

be different from the description of the input uncertainty p(x). We define a D × D
as follows:

C :=

∫
g(x)g(x)Tρ(x)dx, (2.31)

where, g(x) is the gradient evaluation of the function at location x. C is a real sym-

metric positive definite matrix and looks like the centered covariance of the gradient

g. This matrix admits a spectral decomposition of the form:

C = VΛVT , (2.32)

where,

Λ =

λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λD

 ∈ RD×D, (2.33)

29

is a diagonal matrix of the eigenvalues of C, arranged in decreasing order,i.e., λi >

λj∀i < j, and,

V =
[
v1 v2 · · · vD

]
∈ RD×D, (2.34)

is a matrix of eigenvectors of C, such that vi is the eigenvector corresponding to

eigenvalue λi. Since C is a real symmetric matrix, the columns of the eigenvector

matrix V form an orthonormal basis for the vector space RD. The classical approach

relies on partitioning the matrices Λ and V as follows:

Λ =

Λ1 0

0 Λ2

 , V =
[
V1 V2

]
, (2.35)

where Λ1 = diag(λ1, · · · , λd) ∈ Rd×d are the d largest eigenvalues and V1 = [v1 v2 · · ·vd] ∈
RD×d are their corresponding eigenvectors. The projection matrix is then set as:

W = VT
1 , (2.36)

Since the matrix integral in Eqn. (2.31) cannot be carried out analytically, we resort

to a MC approximation:

Ĉ =
1

N

N∑
i=1

gig
T
i . (2.37)

[81] quantifies the quality of the resulting approximation as follows. The ith

eigenvalue quantifies the total variation of the response f captured along the ith

eigenvector, i.e.,

λi =

∫
(vTi g)Tγ(x)dx. (2.38)

Denote the projection along the first d eigenvectors V1 as z = VT
1 x and the projection

along the last D−d eigenvectors, V2 as z̃ = VT
2 x. The total variation of the response

f captured in the subspace defined by V1 is then given by:

∫
∇zf(x)T∇zf(x)γ(z)dz =

d∑
i=1

λi, (2.39)

30

and the total variation of the function captured in the subspace defined by V2 is given

by: ∫
∇z̃f(x)T∇z̃f(x)γ(z̃)dz̃ =

D∑
i=d+1

λi, (2.40)

If the sum on the right hand side of Eqn. (2.39) is sufficiently small, the approximation

f̂(x) = g(WTx) is a sufficiently close to the true response f and may be deployed as a

surrogate response. For further theoretical properties of the active subspace see [81].

The link function g(·) that maps the active subspace projections z = WTx can

be a parametric model such as a generalized linear model (GLM) or a deep neural

network (DNN), or a non-parametric model such as GP regression.

2.3 Embedding active subspaces in Gaussian process models

The classic approach to active subspace based GP regression suffers primarily

from two drawbacks - 1. It requires samples of the gradient of the quantity of interest

and 2. It cannot seamlessly integrate measurement noise into the model. Toward

this end, we develop a probabilistic approach to active subspace recovery that can

overcome these limitations.

To recover the active subspace without gradient information, we propose a novel

covariance function acting on the high-dimensional stochastic parameter space:

kAS : RD × RD → R, (2.41)

such that:

kAS(x,x′) = k0(z, z′) = k0(WTx,WTx′), (2.42)

where k0 is any standard kernel function acting on the low-dimensional space of

projected inputs, z = WTx ∈ Rd. The covariance function k0 is characterized by it’s

own set of hyperparameters, φ. To summarize, the covariance function kAS acting

on the original high-dimensional input space, operates as follows - first the original

31

high-dimensional input pairs, x and x′ are projected to the active subspace defined

by the tall-and-skinny matrix W, i.e. z and z′ are computed. Then the covariance

between the GP function values at locations x and x′ is estimated as the covariance

function output obtained by operating on the pair of low-dimensional embeddings, z

and z′. The covariance function kAS is thus characterized by the hyperparameters of

the base kernel k0, φ as well as the orthonormal projection matrix W.

One may think of the GP regression model for the surrogate linking the high-

dimensional inputs, x and the output y as just a standard GP regression model, albeit

with an additional parameter, W. Put another way, defining a GP regression with

the covariance function of the form kAS places a prior distribution over the Hilbert

space of functions that assume the form - f(x) = g(WTx). The main challenge in

the model, as it is has been setup, is how does one go about inference (fully Bayesian

or maximum likelihood) while respecting the orthogonality constraints of the matrix

W, i.e., ensuring the search for a suitable W (or distribution over Ws) occurs over

the right Stiefel manifold.

The challenge of conducting inference in the GP regression model with the covari-

ance function kAS as laid out in the previous paragraph is non-trivial and to deal with

this, we will discuss our proposed two-step likelihood maximization approach. This

approach is guaranteed to converge to a local maxima and with multiple restarts of

the algorithms, can help produce ‘good’ local minima estimates.

2.3.1 Two-stage iterative negative marginal likelihood minimization

The negative log marginal likelihood minimization problem over the covariance

function hyperparameters θ and the noise variance σ2
n, is constrained by the fact that

the projection matrix W must satisfy W ∈ Vd
(
RD
)
, i.e., it is a tall-and-skinny matrix

of orthonormal columns. Our approach to dealing with this constrained optimization

task is to devise an iterative two-stage method where we alternate the optimization

over the projection matrix W and the remaining hyperparameters, φ and σn. The

32

algorithm proceed by first keeping the hyperparameters, φ and σn fixed while W

is updated by taking a step in the direction of decreasing negative log marginal

likelihood. Toward this end, we follow Alg. 2. In the second stage, the updated W

is frozen at it’s current value and the negative log marginal likelihood is minimized

over the hyperparameters φ and σn. The updates in the second stage follow the

L-BFGS [142] update scheme. Collectively, our approach resembles a coordinate

descent scheme. These two stages are performed alternatively until the convergence

criterion (relative decrease in the objective function value) falls below a selected

threshold. Empirically, it is found that the best results are obtained by fixing the

number of iterations per stage to 1. The full two stage minimization routine is

summarized in Alg. 1. Since the objective function is highly non-convex in it’s

arguments, we repeat the optimization process several times with different initial

starting points chosen randomly and pick the best local minima. To initialize the

projection matrix, we sample a random matrix of size D × d where each element is

sampled i.i.d. from a standard Gaussian distribution and extracting the Q matrix

from it’s QR decomposition. It can be shown that this procedure yields uniform

samples from the Stiefel manifold [143].

33

Algorithm 1 Algorithm to maximize the likelihood through a two-step iterative
procedure

Require: Inputs X, Outputs y, maximum number of iterations maxitr, tolerance ε

1: Initialize orthogonal matrix W by sampling each element independently from

N (0, 1).

2: Initialize θ and σn.

3: Initialize counter i← 1

4: while i <= maxitr do

5: Update W∗
i ← argmin

W
L(W∗

i−1) using Alg. 2

6: Update θ∗i , σ
∗
n, i ← argmin

θ
L(W∗

i ,θ
∗
i−1, s

∗
n,i−1) using the L-BFGS algorithm

[142].

7: Update objective function Li ← L(W∗
i ,θ

∗
i , s
∗
n,i)

8: if Li−Li−1

Li−1
< ε then

9: break

10: end if

11: Update counter i← i+ 1

12: end while

13: return W∗
i ,θ

∗
i , s
∗
n,i

2.3.2 Maximizing the likelihood with respect to the projection matrix

The active subspace projection matrix W is a tall-and-skinny matrix consisting of

orthonormal columns and is a member of the Stiefel manifold. Formally, the Stiefel

manifold is defined as follows:

Definition. Vp(Rn) is said to be the Stiefel manifold of matrices with n rows and p

columns (n ≥ p), if:

Vp(Rn) = {W ∈ Rn×p s.t. WWT = Ip×p}, (2.43)

where, Ip×p is the p× p identity matrix.

34

We seek to maximize the marginal likelihood of the Gaussian process regression

model with respect to the projection matrix W, i.e.,:

W∗ = argmaxW∈Vd(RD)L(W), (2.44)

where,

L(W) = L(W,θ, sn; X,y). (2.45)

To solve the optimization problem in Eqn. (2.44), we adopt a gradient descent method

suitably modified to take into account the manifold’s Riemannian structure.

The algorithm we use is a modified gradient descent algorithm. It differs from

classical gradient descent in two ways:

1. We will use the Riemannian gradient of the function rather than the Euclidean

gradient.

2. We will search over a curve that is not a geodesic (the equivalent of a straight

line on a manifold).

We would like to emphasize that we do not view this problem as a constrained

problem on RD×d. Rather we take the domain of L to be Vd(RD). For a more detailed

description of this algorithm see [144]. We provide a brief summary of the theory of

our modified gradient descent procedure in the following sections.

2.3.3 Riemannian gradients

A manifold is a geometric object which is locally equivalent to Euclidean space.

Formally, a set M ⊂ Rn is called a smooth k-dimensional manifold if for all x ∈ M
there exists a relatively open subset of M that can be mapped onto Rk by a smooth

bijection whose inverse is also smooth. The collection of all vectors which are tangent

to M at any particular point x form a k-dimensional vector space, TxM, called the

tangent space. A Riemannian metric, is a family of inner products gx = 〈·, ·〉x defined

35

on the tangents spaces such that 〈·, ·〉x varies smoothly in x. The ordered pair (M, g)

is referred to as a Riemannian manifold.

It is important to note that a given set M can have more than one Riemannian

metric g. For the Stiefel manifold, the two common choices of g are the Euclidean

metric 〈Z1, Z2〉e = tr(ZT
1 Z2) and the canonical metric

〈Z1, Z2〉c = tr(ZT
1 PXZ2) = tr(ZT

1 (I − 1

2
XXT)Z2).

The canonical gradient is appealing because it gives equal weight to each of the

coordinates of the tangent space. For X ∈Mp
n, there exists an n× (n−p) matrix X⊥

such that (XX⊥) is an orthogonal n × n matrix. It can be shown that an arbitrary

element of TXMp
n can be written as

Z = XA+X⊥B

where A is p × p, skew-symmetric matrix and B is a (n − p) × p matrix. Using this

representation, one may check that

〈Z,Z〉c =
∑
i>j

a2
i,j +

∑
i,j

b2
i,j.

(Note that a skew-symmetric matrix is uniquely determined by its entries above the

diagonal.) On the other hand, the Euclidean metric would give each entry ai,j, i > j,

twice as much weight as each entry bi,j. For this reason, we will use the canonical

metric in our gradient descent algorithm.

Letting G = DF(X) =
(

∂F
∂Xi,j

)
i,j

, we define the canonical gradient of F at point

X to be the unique is the unique element of TXMp
n so that

〈∇cF , ξ〉c = Gξ, ∀ξ ∈ TXMp
n.

36

One may use the definition of 〈·, ·〉c to check that ∇cF = G−XGTX. We will find it

convenient to write ∇cF = AX where A = GXT −XGT .

2.3.4 Search Curves

Since classical gradient descent algorithm in Euclidean space minimizes the objec-

tive function over straight lines, it would be natural for us to minimize over geodesics,

i.e. curves of minimal length between two points. However, exact geodesics are typ-

ically very expensive to compute. Therefore, instead we use a curve Y (t) defined

by

Y (t) = (I +
t

2
A)−1(I − t

2
A)X.

One may check that Y (t)TY (t) = I for all t and that Y ′(0) = −∇cF(X) = −AX.

Therefore,
d

dt
F(Y (0)) = −1

2
‖A‖2

F

Thus, on a sufficiently small time interval, F (Y (t)) is decreasing.

2.3.5 Curvilinear search based on the Armijo-Wolfe conditions

Given that the curve Y (t) is a descent path generated by the skew-symmetric

matrix A, we are interested in performing curvilinear search along Y (t) to generate

new trial points for the modified descent algorithm. The ideal step-size t∗ is given by

the global minimizer of the univariate function φ(t) = F(Y (t)). In computing t∗ we

face a trade-off between the time needed in obtaining the global optimizer of φ(t) and

a value of t which would produce substantial decrease in the value of the objective

function F . In general it is very expensive to identify the global minimizer of φ and

instead we resort to inexact line search for an ideal step size. Typically, line search

algorithms try out a set of candidate step sizes before stopping to accept a particular

choice based on the fulfillment of certain conditions. A popular set of conditions for

inexact line search are the so called Armijo-Wolfe conditions.

37

We define the Armijo-Wolfe conditions for our curvilinear search as follows:

F(Yk(tk)) ≤ F(Yk(0)) + ρ1tkF
′

t(Yk(0)), (2.46)

F ′t(Yk(tk)) ≥ ρ2F
′

t(Yk(0)), (2.47)

where F(Yk(tk)) is the value of the objective function evaluated at a new candi-

date trial point Yk(tk) generated by a taking a step of tk along the search direction,

F(Yk(0)) is the value of the objective function at the current trial point, F ′t(Yk(0))

is the derivative of the objective function w.r.t. to the step size t evaluated at the

current trial point, F ′t(Yk(tk)) is the derivative of the objective function w.r.t. to

t evaluated at the candidate next trial point and ρ1, ρ2 ∈ [0, 1] are known as the

Armijo-Wolfe parameters.

The quantity F ′t(Y (t)) is defined as follows:

F ′t(Y (t)) = tr(GTY
′
(t)),

where,

Y
′
(t) = −(I +

t

2
A)−1A

(
X + Y (t)

2

)
The inequality (2.46) ensures that any suitable candidate for the next trial point

has to sufficiently reduce the value of the objective function as it moves along the

descent curve Y (t). The inequality (2.47) ensures that unacceptably short step sizes

are ruled out. Typically, ρ2 ∈ (ρ1, 1].

2.3.6 Full algorithm for optimizing W

The initial guess for W is set by orthgonalizing a random matrix whose elements

are drawn from a standard normal distribution. Note that the objective function

depends on W as well as an additional set of hyperparameters, all of which are kept

constant during the optimization over the Stiefel manifold. We also note that this

38

optimization task is challenging oweing, primarily, to the difficulty of maintaining or-

thogonality constraints. The method is also prone to getting trapped in local minima.

For a given point in the feasible set, W, line search step size τ , and the gradient

G := ∇WL(W), we define:

A := GWT −WGT , (2.48)

where, A is a skew-symmetric matrix and G is the Euclidean gradient. The gradient

descent update is then defined as:

Y(η) =
(
I +

η

2
A
)−1 (

I +
η

2
A
)

W , (2.49)

This update scheme is also known as the Cayley transformation. It is easy to

show that the above update preserves the orthogonality of the gradient descent trial

points. Note that the gradient descent update for W depends on the step size η and,

consequently, the marginal likelihood also depends on η:

L(W) = L(W,θ, σn, η; X,y) (2.50)

The full iterative process is described in Alg. 2.

39

Algorithm 2 Optimization of the active subspace projection matrix W

Require: Marginal likelihood L, Euclidean gradient G, step size τ , maximum num-

ber of iterations M , tolerance ε

1: Sample an initial guess W0 such W0,ij ∼ N (0, 1).

2: Orthogonalize the columns of the initial guess using the Singular Value Decom-

position (SVD).

3: Update counter i← 1

4: while i ≤M do

5: Evaluate Li,Gi at Wi

6: Compute skew-symmetric matrix A using Eqn. (2.48).

7: Select step size η using the Brent algorithm [145] - η∗ ← argmax
η
L(η).

8: Update W∗ ← Y(τ ∗)

9: Update L∗ ← L(W∗)

10: if L∗ − Li < εLi then

11: break

12: end if

13: Update counter i← i+ 1

14: end while

15: return W∗

2.3.7 Model selection - picking the right active subspace dimensionality

The active subspace is an intrinsic property of the underlying unknown true re-

sponse - it is not contigent on the experimental design used for collecting data nec-

essary to approximate the response. As such, if the active subspace exists, there

is a correct dimensionality, d associated with it. The classical approach reveals the

right active subspace dimensionality through the magnitudes of the eigenvalues of the

empirical covariance matrix of the gradients. Unfortunately, our gradient-free does

not have an easy lookup procedure to figure out the correct active subspace dimen-

40

sionality. In this section, we focus on the specific model selection task of picking the

correct dimensionality of the active subspace in our gradient-free setting. Bayesian

model selection proceeds as follows. Suppose one has a set of candidate models which

we denote as M. M may be finite (such as the current case) or it may be an infi-

nite set of candidate models. A prior distribution over the set of candidate models

is posed, say p(M). The process of picking the right model is then posed as the

Bayesian inference task of estimating the posterior distribution over M, conditioned

over the observed data, (X,y), i.e.,

p(M|X,y) ∝ p(M)p(y|X). (2.51)

Note that the likelihood term p(y|X) is the marginal likelihood, i.e., it is obtained

by integrating over the entire set of model parameters, say, β. The term p(y|X) is

known as the model evidence, and is infact the normalization constant of the posterior

distribution of the model parameters, β conditioned on the observed data. The model

evidence is, in practice, analytically intractable and must be suitably approximated [?,

?]. A crude approximation to the model evidence is the so-called Bayesian information

criterion (BIC) [146]. The BIC score of our statistical model with a d-dimensional

active subspace is defined as:

BIC(d) = p(y|X)− 1

2
Nparam logN, (2.52)

where, N is the number of samples in the dataset and Nparam is the number of pa-

rameters in the model, i.e., the total number of hyperparameters being estimated.

Effectively, the BIC score penalizes model fit (first term in Eqn. 2.52) with model

complexity.

41

2.3.8 A note on computational complexity

The computational cost of the gradient-free approach to AS discovery is dominated

by the optimization over the search curves in the Stiefel manifold (Alg. 2). Each step

of the search curve optimization requires the solution of a symmetric N × N and a

generic d × d matrix. A complete analysis of the computational complexity of the

overall algorithm is beyond the scope of this work. However, we can easily infer

that the computational cost of our methodology is significantly greater than that of

the classical approach to AS, whose main cost arises from a single SVD of a N ×D
matrix, and the maximization of the likelihood of a GP with a N × N covariance

matrix. This additional computational cost is the price one has to pay for foregoing

the computation of the gradients.

2.4 Numerical experiments

Our Python implementation of the classic approach to active subspace recovery

(Sec. 2.2) as well our proposed gradient-free approach based on GP regression (Sec.

2.3) is available publicly at https://github.com/PredictiveScienceLab/py-aspgp. All

the results from this section can be replicated by using the code from this repository.

Note that in all of our numerical examples, we apply standard preprocessing tech-

niques to the data such as standardization, i.e., subtracting the empirical mean and

variance of the test dataset from the observed outputs. It goes without saying, that,

the preprocessing is only applied to the training examples to prevent corruption the

test dataset.

We begin this section, in Sec. 2.4.1, by setting up a series of experiments using

synthetic examples that exhibit an active subspace with a known dimensionality d.

Toward this end, we set our test functions as high-dimensional multivariate functions

which have a quadratic link function and the original high-dimensional input space

is connected to the active subspace via a known projection matrix W. In our ex-

periments with these synthetic functions, we first demonstrate that our approach is

https://github.com/PredictiveScienceLab/py-aspgp

42

capable of recovering the right active subspace and in doing so circumvents the main

drawback of the classical approach, i.e., the unavailability of gradient information

about the quantity of interest. Furthermore, we set up a series of experiments to

demonstrate:

1. The robustness of our methodology to observational noise,

2. The consistency of our methodology with respect to dataset sizes.

Our next numerical example is a classic problem in uncertainty quantification - a

2D elliptic partial differential equation with an unknown spatially varying diffusion

coefficient that is modeled with a Gaussian random field. Specifically, the version

of this problem we apply our methodology to, has gradients that enable us to draw

comparisons with the classical approach. In Sec. 2.4.2, we apply our technique

to this benchmark UQ problem with 100 input dimensions arising from a spectral

representation of the stochastic diffusion coefficient. The comparisons to the classical

gradient-based approach show the high degree of agreement between our approach

and the classical approach. We wrap this section on numerical examples, by applying

our proposed methodology to real engineering uncertainty quantification problem -

that of propagating uncertainty through a high-dimensional dynamical system model

representing the propagation of solitary waves in 1D particle chains known as granular

crystals (Sec. 2.4.3). Granular crystals are of deep interest for a variety of applications

due to their excellent shock absorbing properties arising from the propagation of these

solitary waves or solitons. Specifically, this particle chain system is characterized by

uncertainties in it’s material and geometric properties which influence the properties

of solitons propagating through the chain. Given that we do not have access to the

gradients of the quantities of interest with respect to the input stochastic parameters,

this UQ problem is not amenable to the classical approach.

43

2.4.1 Synthetic function with known underlying structure

To study the properties of our proposed gradient-free methodology for recovering

active subspaces and comparing our approach to the gradient-based classical approach

we set up a synthetic function with known active subspace as follows. Denote the

synthetic function as f and let f accept a vector of inputs x ∈ RD. For the sake of

simplicity we assume the response from this function is a scalar, i.e., f : RD → R. By

construction, f exhibits intrinsic low-dimensional structure and can be expressed as:

f(x) = g(z) = g(WTx), (2.53)

where, W ∈ Vd(RD) is a tall-and-skinny matrix with orthonormal columns. The

function g : Rd → R is known as the link function and we define it as a quadratic

function in the d-dimensional active subspace:

g(z) = zTAz + bTz + c. (2.54)

The parameters of the quadratic, A ∈ Rd×d,b ∈ Rd and c ∈ R are picked by random

sampling such that all of their elements are i.i.d. standard Gaussian, i.e., Aij ∼
N (0, 1),bi ∈ N (0, 1), c ∼ N (0, 1). To ensure reproducibility, we fix the seed of our

data generating scripts. The gradients of f are, ofcourse, computable exactly:

∇f(x) =
(
b + 2xTWA

)
WT . (2.55)

We set the true input dimensionality of the function to D = 10 and investigate cases

where d = 1, 2. To test robustness to noise, artificial additive Gaussian noise is added

to the observations and is controlled by a standard deviation parameter, σn. We first

verify that our methodology is:

1. able to recover an active subspace,

2. able to recover the right active subspace,

44

3. robust to observation noise,

4. consistent to the size of the dataset.

Function with 1 dimensional active subspace

We first set the dimensionality of the active subspace to be d = 1. The projection

matrix is sampled from a uniform distribution on the appropriate Stiefel manifold

and the parameters of g are also sampled according to the procedures outlined in

the previous section. We begin our experiment by sampling 140 observations and

artificially adding Gaussian noise to it with a variance of 0.1. The scripts for gener-

ating the data can be found in the GitHub repository for this work. For validation

we use a dataset with 60 samples. Fig. 2.2 shows a comparison of the link function

obtained with our proposed methodology and the link function obtained using the

classical approach. We note that the two approaches show very good agreement with

each other. It is worth noting the parameterization of the active subspace obtained

in the gradient-free approach is unique upto arbitrary rotations and relabeling of the

coordinate system in the projected space. Fig. 2.3 shows a comparison of the indi-

vidual components of the projection matrix obtained from the two approaches and a

comparison of their respective predictive accuracy. We note that we obtain very good

predictions from our gradient-free approach which match the predictive quality from

the classical approach that utilizes gradient information.

Function with 2 dimensional active subspace

We now set the dimensionality of the active subspace to be d = 2. The pro-

jection matrix is, again, sampled from the Stiefel manifold and the parameters of g

are sampled as i.i.d. Gaussian. As with the 1D case, we generate data by sampling

140 observations and artificially adding Gaussian noise to it with a variance of 0.1.

45

4 3 2 1 0 1 2 3
z

5

4

3

2

1

0

1

g(
z)

(a)

3 2 1 0 1 2 3 4
z

5

4

3

2

1

0

1

g(
z)

(b)

z
1

3 2 1 0 1 2

z 2

2
1

0
1

2

g(
z 1
,z

2
)

5
4
3
2

1

0

1

(c)

z
1

3 2 1 0 1 2 3

z 2

3
2

1
0

1
2

g(
z 1
,z

2
)

5
4
3
2

1

0

1

(d)

Figure 2.2. Results for one dimensional active subspace recovery in synthetic function.
The left column shows a visualization of the link function obtained with the classical
approach for AS recovery. The right column shows a visualization of the link function
obtained with the proposed gradient-free GP approach for AS recovery. The scatter
plots show the training data used to develop these constructions. Note the flatness
of the function in one of the coordinate directions in the bottom panel - the function
intrinsically exhibits a 1D AS.

46

1 2 3 4 5 6 7 8 9 10
Input dimension

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

M
ag

ni
tu

de
 o

f W

w1

(a)

1 2 3 4 5 6 7 8 9 10
Input dimension

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

M
ag

ni
tu

de
 o

f W

w1

(b)

5 4 3 2 1 0 1
Observed

5

4

3

2

1

0

1

P
re

di
ct

io
n

(c)

5 4 3 2 1 0 1
Observed

5

4

3

2

1

0

1
P

re
di

ct
io

n

(d)

Figure 2.3. Results for one dimensional active subspace recovery in synthetic function.
The left column shows the visualization of the components of the projection matrix
(top) and the a comparison of the predicted and true outputs from the surrogate
(bottom) obtained using the gradient-free approach. The right column shows the
visualization of the components of the projection matrix (top) and the a comparison
of the predicted and true outputs from the surrogate (bottom) obtained using the
classical approach. Note that the components of the projection matrix obtained from
the two approaches have the same magnitude but opposite signs.

47

2 0 2
6

4

2

0

2

(a)

2 1 0 1 2 3
6

4

2

0

2

(b)

z
1

2
1

0
1

2

z 2

1.5
1.0

0.5
0.0

0.5
1.0

1.5
2.0

g(
z 1
,z

2
)

0.0

0.2

0.4

0.6

0.8

1.0

(c)

z
1

2
1

0
1

2

z 2

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

g(
z 1
,z

2
)

0.0

0.2

0.4

0.6

0.8

1.0

(d)

1 2 3 4 5 6 7 8 9 10

Input dimension

0.6

0.4

0.2

0.0

0.2

0.4

0.6

M
a
g

n
it

u
d

e
 o

f
W

w1

w2

(e)

1 2 3 4 5 6 7 8 9 10

Input dimension

0.6

0.4

0.2

0.0

0.2

0.4

0.6

M
a
g

n
it

u
d

e
 o

f
W

w1

w2

(f)

Figure 2.4. Results for two dimensional active subspace recovery in synthetic function.
The left column shows a visualization of the link function obtained with the classical
approach for AS recovery. The right column shows a visualization of the link function
obtained with the proposed gradient-free GP approach for AS recovery. The scatter
plots show the training data used to develop these constructions.

48

1 2 3 4

Active dimension

−300

−200

−100

0

100

200

300

400

B
IC

sc
or

e

True a.d. = 1

True a.d. = 2

True a.d. = 3

(a)

1 2 3 4

Active dimension

−200

−100

0

100

200

300

400

B
IC

sc
or

e

True a.d. = 1

True a.d. = 2

True a.d. = 3

(b)

Figure 2.5. Variation of the active subspace dimensionality with the Bayesian Infor-
mation Criterion - the left plot shows the BIC vs d plot obtained from the gradient
based approach to active subspace recovery while the right plot shows the BIC vs d
plot obtained from the proposed gradient-free approach to active subspace recovery.

For validation we use a dataset with 60 samples. Fig. 2.4 shows a comparison of the

link function obtained with our proposed methodology and the link function obtained

using the classical approach. We note that the two approaches show very good agree-

ment with each other. Once again, the representation of the active subspace obtained

in the gradient-free approach is unique upto arbitrary rotations and relabeling of the

coordinate system in the projected space.

Capturing the correct dimensionality of the active subspace

We now show, empirically, that our proposed approach, correctly (and automat-

ically) recovers the correct dimensionality of the active subspace. Recall that the

Bayesian information criterion is a crude approximation of the model evidence and

equals the data likelihood penalized by model complexity as measured by the number

of statistical parameters. Our hypothesis is that the BIC score will be maximized

for the model with the correct active subspace dimensionality. Fig. 2.5 shows a

variation of the BIC score with increasing active subspace dimensionality d, as ob-

tained from the classical gradient-based and the proposed gradient-free approach to

49

active subspace recovery. We notice that the BIC score, for both methods, reaches

a maximum for some dcorrect, and then remains constant. Applying the rule that we

pick the smallest active subspace dimensionality for the same BIC score, we observe

the gradient-free approach recovers the same active subspace dimensionality as the

classical approach.

Robustness and consistency of proposed methodology

As previously stated, the classical method for active subspace recovery is not

robust to observation noise. In this section, we show that the the proposed gradient-

free approach, which relies on a probabilistic formulation of the active subspace can

work with, and is robust to, measurement noise. Furthermore, we also show that the

proposed method is consistent, i.e., if we increase the number of the samples in the

training dataset, the model performance improve. In setting up experiments to test

these hypotheses, we introduce the following metric:

εrel =
‖Wtrue −Wproposed‖F

‖Wtrue‖F
. (2.56)

The metric εrel in Eqn. (2.56) is the relative error in the measurement of the active

subspace projection matrix from the gradient-free approach - ‖·‖F is the Frobenius

norm, Wtrue is the true projection matrix obtained from the SVD of the gradient

covariance matrix (classical approach) and Wproposed is the projection matrix obtained

from the gradient-free approach.

The data we use to conduct these experiments come from input-output measure-

ments of the synthetic function with low-dimensional quadratic structure by setting

D = 10 and d = 1, i.e., the projection matrix is a column vector W ∈ R10×1.

For our first experiment, we take a dataset of fixed size N and create several

replicas of the output measurements. To each replica we add different levels of additive

zero-mean Gaussian noise with variance σ2
n. We then use each of these replicas along

with the matrix of input variables and train separate models using the gradient-free

50

approach. For each model, corresponding to a dataset with a different noise level, we

compute εrel and generate a plot of εrel as a function of σ2
n. We repeat this procedure

for several Ns. The results are shown in Fig. 2.6 (left plot). Notice how the relative

error in the measurement of the projection matrix increases as a function of the noise

variance. Also, datasets of higher N have lower εrel relative to datasets of lower N ,

for the same σ2
n.

For our second experiment, we take several datasets of different Ns and corrupt

their output measurements with noise of fixed σ2
n. This is best done by taking one

large dataset and taking appropriately sized subsets of the data. For instance, in our

experiments, we generate one large dataset of size N = 500 and to create a dataset

of size N ′ < 500, we take the first N ′ samples from the superset of size N . Since

the original data is sampled randomly, randomness is preserved in the data subsets

created this way. We now apply the gradient-free approach on these separate datasets

of different sizes and note the relative error in the measured projection matrix. This

experiment is repeated for several σn and a plot of the results are shown in Fig. 2.6

(right plot). Again, note how εrel decreases consistently on introducing more samples

in the training dataset and also note how, for the same N , the relative error is lower

for smaller σn.

2.4.2 Benchmark partial differential equation problem

We now tackle a classic problem in uncertainty quantification - the steady-state

stochastic elliptic partial differential equation (PDE) in 2 dimensions with spatially

varying diffusion coefficient. Consider the following PDE defined over the unit square

[0, 1]2:

∇ · (c(x; ξ)∇u(x; ξ)) = 1, x ∈ Ω = [0, 1]2, (2.57)

51

0.0 0.5 1.0 1.5 2.0
Noise variance, s2

n

10−4

10−3

10−2

10−1

100

101

R
el

.
er

ro
r

N = 30

N = 100

N = 200

N = 400

(a)

0 100 200 300 400 500

Number of data points, N

10−4

10−3

10−2

10−1

100

101

R
el

.
er

ro
r

s2
n = 0.01

s2
n = 0.05

s2
n = 0.1

s2
n = 0.2

(b)

Figure 2.6. Robustness and consistency of the proposed gradient free approach to
active subspace recovery - the left plot shows the variation in the relative error of the
active subspace projection matrix as a function of the observation noise; the right
plot shows the variation of the relative error in the projection matrix as a function of
the number of samples in the training dataset.

subject to the following boundary conditions:

u(x) = 0, x ∈ Γ1, (2.58)

∇u(x) · n = 0, x ∈ Γ2, (2.59)

where, Γ1 is the top, left and bottom sides of the domain and Γ2 is the right side the

domain. Γ1 is equipped with homogeneous Dirichlet boundary conditions whereas Γ2

is equipped with homogeneous Neumann boundary conditions. The diffusion coeffi-

cient is uncertain and spatially varying. Following the classic approach, the logarithm

of a is modeled as a zero-mean Gaussian random field:

log a(x) ∼ GP(log a|0, k(x,x′)), (2.60)

where, the covariance function is set to be an exponential kernel with unit variance:

k(x,x′) = exp

(
−1

`
‖x− x′‖1

)
. (2.61)

52

3 2 1 0 1 2 3
z

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

g(
z)

(a)

3 2 1 0 1 2 3
z

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

g(
z)

(b)

z
1

2
1

0
1

2

z 2

2

0

2

g(
z 1
,z

2
)

1

0

1

2

3

(c)

z
1

2
1

0
1

2
z 2

2

0

2

g(
z 1
,z

2
)

1

0

1

2

3

(d)

Figure 2.7. Results for the large lengthscale case for the stochastic PDE problem -
the left column shows a plot of the link function obtained with the classic approach
for d = 1 (top) and d = 2 (bottom) whereas the right column shows the link function
obtained using the gradient-free approach for d = 1 (top) and d = 2 cases respectively.

` is a lengthscale parameter that controls the spatial frequency of the uncertain coef-

ficient a. Since log a is a infinite dimensional stochastic process, we produce a finite

53

0 20 40 60 80 100
Input dimension

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

M
ag

ni
tu

de
 o

f W

w1

w2

(a)

0 20 40 60 80 100
Input dimension

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

M
ag

ni
tu

de
 o

f W

w1

w2

(b)

Figure 2.8. Results for the large lengthscale case for the stochastic PDE problem -
the left plot shows the components of the active subspace projection matrix obtained
with the classic approach while the right plot shows the components of the projection
matrix estimated by the gradient-free approach.

dimensional representation by taking it’s Karhunen-Loève expansion and truncating

it at 100 terms:

log a ≈
100∑
i=1

√
λiφi(x)ξi, (2.62)

where, ξi ∼ N (0, 1) are i.i.d. standard normal random variables and {λi, φi(x)} are

obtained through the solution of the eigenvalue problem:

∫
k(x,x′)φi(x

′)dx′ = λiφi(x). (2.63)

The integral equation in Eqn. (2.63) cannot be solved analytically for our choice

of covariance function and one must resort to a suitable numerical method to ap-

proximate the eigenfunctions and eigenvalues of the integral operator in Eqn. (2.63).

Specifically, we resort to the Nyström approximation.

Denote all the ξis collectively as one vector ξ = (ξ1, ξ2, . . . , ξ100)T ∈ R100. The un-

certainty in the diffusion coefficient is fully captured within the vector ξ ∼ N (0, I100).

Given the uncertainty in the diffusion a, expressed through the stochastic process de-

scription of it’s logarithm, we are interested in propagating this uncertainty to the

54

3 2 1 0 1 2 3
z

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

g(
z)

(a)

3 2 1 0 1 2 3
z

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

g(
z)

(b)

z
1

2
0

2

z 2

2

1

0
1

2

g(
z 1
,z

2
)

1

0

1

2

(c)

z
1

2
1

0
1

z 2

2

1
0

1
2

g(
z 1
,z

2
)

2

1

0

1

2

(d)

0 20 40 60 80 100
Input dimension

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

M
ag

ni
tu

de
 o

f W

w1

(e)

0 20 40 60 80 100
Input dimension

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

M
ag

ni
tu

de
 o

f W

w1

(f)

Figure 2.9. Results for the short lengthscale case for the stochastic PDE problem -
the top row presents a comparison of the link functions obtained from the classic and
gradient-free approaches for d = 1 while the bottom presents a comparison of the
components of the projection matrix obtained from the classic and the gradient-free
approaches.

55

0.0 0.2 0.4 0.6 0.8 1.0
Observed

0.0

0.2

0.4

0.6

0.8

1.0

P
re

di
ct

ed

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Observed

0.0

0.2

0.4

0.6

0.8

1.0

P
re

di
ct

ed
(b)

0.0 0.2 0.4 0.6 0.8 1.0
Observed

0.0

0.2

0.4

0.6

0.8

1.0

P
re

di
ct

ed

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Observed

0.0

0.2

0.4

0.6

0.8

1.0

P
re

di
ct

ed

(d)

Figure 2.10. Elliptic PDE. The dots correspond to true observed responses vs pre-
dicted ones for 30 validation inputs for the long (` = 1, left) and short (` = 0.01,
right) correlation cases. Perfect predictions would fall on the green 45◦ line of each
subplot. The top row corresponds to the gradient-free approach while the bottom
row corresponds to the classic approach.

56

solution of the PDE and/or any functionals of the solution. Specifically, we consider

the following quantity of interest:

q =
1

|Γ2|

∫
u(x; ξ)dx, (2.64)

i.e., the scalar quantity of interest is a spatial average of the solution over the Neumann

boundary. The PDE is solved numerical using a finite element solver and 300 samples

of ξs and qs are generated, i.e. D =
{

(ξ(j), q(j))
}300

j=1
. Note that this a small dataset

with high dimensional inputs. We conduct our experiments for 2 cases for the covari-

ance lengthscale ` = 0.1 and ` = 1 which we will hereafter refer as the short and the

long lengthscale cases respectively. The dataset is available publicly, and can be found

at https://bitbucket.org/paulcon/active-subspace-methods-in-theory-and-practice/src

and first appeared in Constantine’s original paper introducing the classical approach

to active subspaces [81]. The dataset is split into two parts - 270 samples for training

and 30 samples for testing. The dataset source also contains gradients of q w.r.t. ξ

thereby allowing us to draw comparisons of our approach with the classic approach.

The results of application of the classic and gradient-free approaches on the long

lengthscale dataset are shown in Fig. 2.7 and Fig. 2.8. In Fig. 2.7, we show

a comparison of the link functions obtained from the two approaches for one and

two dimensional active subspaces. We observe that in both cases the link functions

obtained through our approach matches the link function from the classic approach

(upto rotation and relabeling of the axes ofcourse). In Fig. 2.8, we compare the

active subspace projection matrix components obtained from both approaches and

note good agreement.

Fig. 2.9 shows results for the case of the short lengthscale problem. We show that

the link function obtained, for the case of d = 1 active dimensions, from both the

classical as well as the proposed approach matches. In the same figure, we also show

a side-by-side comparison of the components of the projection matrix obtained from

the classical and gradient-free approach and note that the estimated gradient-free W

https://bitbucket.org/paulcon/active-subspace-methods-in-theory-and-practice/src

57

matches the true W obtained from the SVD of the gradient covariance. We also

present a comparison of the predicted outputs and true outputs from the test dataset

for both lengthscale cases and both approaches - classical and gradient-free (see Fig.

2.10).

2.4.3 Propagation of geometric and material uncertainty in granular crys-

tals

Granular crystals [147–152] which are a class of fabricated materials consisting of

solid particles packed together in compact lattices have attracted significant attention

because of their unique response to deforming forces. Specifically, granular crystals,

under suitable external forcing, exhibit highly nonlinear dynamics, manifesting in the

propagation of localized stress waves known as solitons. Mathematically, the response

of granular crystal chains under external forcing is modeling through elastic Hertzian

contact models [152]. The properties of the solitons propagating through granular

crystal chains are a function of the material properties of the constituent particles

(such as the elastic modulus) as well it’s geometric properties (radii of the constituent

particles).

We now setup the forward model for the soliton dynamics in an idealized 1D

granular crystal chain. Suppose the chain consists of n particles whose displacements

from the equilibrium is given by r = (r1, r2, . . . , rn)T . Let the radius and elastic

modulus of the ith particle be Ri and Ei. An external forcing is applied by striking

the last particle with velocity v and the velocity v is itself uncertain. We define the

vector of stochastic parameters as x = (R1, . . . , Rn, E1, . . . , En, v)T . The displacement

r satisfies Newton’s law, i.e., for the ith particle, mi(x)r̈i = fi(x) with suitable initial

conditions.

Let r(t; x) be the displacement vector of the particles at time t as a function of the

stochastic parameter vector x. The force on each particle is, then, per Newton’s laws,

a function of the displacement r and the parameters x. Suppose we observe the force

58

on all the particles at a discrete number of temporal points, ti, i = {0, t1, t2, . . . , ttf inal}.
This is our output space and it’s dimensionality is n×nt where nt is the number of time

steps. We perform a preliminary dimensionality reduction by fitting the output to a

solitary wave with particle dependent amplitude, frequency and velocity. Suppose, for

the ith particle, we denote these quantities as Ai(x),Wi(x) and Vi(x). This reduces

our output space to n× 3 dimensions.

To this end, we will be observing the force on each particle as a function of time

for a given set of parameters x.

Fi (t; x) ≡ Fi (q (t; x) ; x) . (2.65)

That is, for each x, we obtain, by integrating the equations of motion, the force

at a finite number of timesteps, 0 = t1 < · · · < tnt , say F(x) := {Fi(tj; x) : i =

1, . . . , np, j = 1, . . . , nt}. The dimensionality of the output is given by the number

of time steps times the number of particles. This is a very high-dimensional out-

put and we first reduce it’s dimensionality by fitting the output to a solitary wave

whose properties-amplitude, wave width and velocity, are particle dependent. Let

the properties of the soliton over the i-th particle be amplitude ai (x), wave speed

vi (x) and width wi (x). These are our quantities of interest. We treat each property

corresponding to each particle as a separate scalar quantity of interest for apply our

gradient-free surrogate model approach.

In our experiment, we have a chain with n = 47 particles. We will look at some

of these quantities of interest - the properties of the soliton over particle numbers 20

and 30. Denote the quantities of interest as y1 through y6. 1000 simulations of the

dynamical system are run with a Latin Hypercube (LHS) for the stochastic param-

eters, x and the resultant soliton properties are collected for surrogate modeling. In

our experiments, we consider cases with and without inter particle gaps resulting in

two different design matrices X1 ∈ R142 and X2 ∈ R95 respectively. To summarize,

59

1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2
z

3

2

1

0

1

2

3

g(
z)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Observed

0.0

0.2

0.4

0.6

0.8

1.0

P
re

di
ct

ed

(b)

0 20 40 60 80 100
Input dimension

0.8

0.6

0.4

0.2

0.0

M
ag

ni
tu

de
 o

f W

w1

(c)

Figure 2.11. Results for the granular crystals without gaps when the soliton is over
particle 20 - (a) link function for the amplitude of the soliton, (b) Comparison of
the predicted and observed test amplitude values, (c) Components of the estimated
projection matrix.

60

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
z

3

2

1

0

1

2

3

g(
z)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Observed

0.0

0.2

0.4

0.6

0.8

1.0

P
re

di
ct

ed

(b)

0 20 40 60 80 100
Input dimension

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

M
ag

ni
tu

de
 o

f W

w1

(c)

Figure 2.12. Results for the granular crystals without gaps when the soliton is over
particle 20 - (a) link function for the time-of-flight of the soliton, (b) Comparison of
the predicted and observed test time-of-flight values, (c) Components of the estimated
projection matrix.

we have 2× 6 = 12 datasets in total - one for each combination of input design and

output quantity of interest. We construct separate surrogate models for each dataset.

61

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
z

3

2

1

0

1

2

3

g(
z)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Observed

0.0

0.2

0.4

0.6

0.8

1.0

P
re

di
ct

ed

(b)

0 20 40 60 80 100
Input dimension

0.0

0.2

0.4

0.6

0.8

M
ag

ni
tu

de
 o

f W

w1

(c)

Figure 2.13. Results for the granular crystals without gaps when the soliton is over
particle 30 - (a) link function for the amplitude of the soliton, (b) Comparison of
the predicted and observed test amplitude values, (c) Components of the estimated
projection matrix.

62

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
z

3

2

1

0

1

2

3

g(
z)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Observed

0.0

0.2

0.4

0.6

0.8

1.0

P
re

di
ct

ed

(b)

0 20 40 60 80 100
Input dimension

0.6

0.4

0.2

0.0

0.2

M
ag

ni
tu

de
 o

f W

w1

(c)

Figure 2.14. Results for the granular crystals without gaps when the soliton is over
particle 30 - (a) link function for the time-of-flight of the soliton, (b) Comparison of
the predicted and observed test time-of-flight values, (c) Components of the estimated
projection matrix.

63

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4
z

3

2

1

0

1

2

3

4

g(
z)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Observed

0.0

0.2

0.4

0.6

0.8

1.0

P
re

di
ct

ed

(b)

0 20 40 60 80 100
Input dimension

0.8

0.6

0.4

0.2

0.0

0.2

0.4

M
ag

ni
tu

de
 o

f W

w1

(c)

Figure 2.15. Results for the granular crystals without gaps when the soliton is over
particle 30 - (a) link function for the width of the soliton, (b) Comparison of the
predicted and observed test width values, (c) Components of the estimated projection
matrix.

64

1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0
z

3

2

1

0

1

2

3

g(
z)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Observed

0.0

0.2

0.4

0.6

0.8

1.0

P
re

di
ct

ed

(b)

0 20 40 60 80 100 120 140 160
Input dimension

0.8

0.6

0.4

0.2

0.0

0.2

M
ag

ni
tu

de
 o

f W

w1

(c)

Figure 2.16. Results for the granular crystals with gaps when the soliton is over
particle 20 - (a) link function for the amplitude of the soliton, (b) Comparison of
the predicted and observed test amplitude values, (c) Components of the estimated
projection matrix.

65

1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2
z

3

2

1

0

1

2

3

g(
z)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Observed

0.2

0.0

0.2

0.4

0.6

0.8

1.0

P
re

di
ct

ed

(b)

0 20 40 60 80 100 120 140 160
Input dimension

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

M
ag

ni
tu

de
 o

f W

w1

(c)

Figure 2.17. Results for the granular crystals with gaps when the soliton is over
particle 20 - (a) link function for the time-of-flight of the soliton, (b) Comparison of
the predicted and observed test time-of-flight values, (c) Components of the estimated
projection matrix.

66

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Particle 30 full width at half maximum (mm)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
P

ro
ba

bi
lit

y
de

ns
ity

 d
is

tri
bu

tio
n

Figure 2.18. Histogram of the solition width over particle 30 for granular crystals with
inter-particle gaps.

200 300 400 500 600 700 800 900 1000
Force amplitude (N)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

P
ro

ba
bi

lit
y

de
ns

ity
 d

is
tri

bu
tio

n

Predicted output
Predicted output + Epistemic Uncertainty

(a)

6.5 7.0 7.5 8.0 8.5

Time of flight (10−4 s)

0.0

0.5

1.0

1.5

2.0

2.5

P
ro

ba
bi

lit
y

de
ns

ity
 d

is
tri

bu
tio

n

Predicted output
Predicted output + Epistemic uncertainty

(b)

Figure 2.19. Uncertainty propagation results for the granular crystals without gaps
when the soliton is over particle 20 - (a) Marginal distribution of the soliton amplitude,
(b) Marginal distribution of the soliton time-of-flight.

67

300 400 500 600 700 800 900 1000 1100
Full width half maximum (mm)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

P
ro

ba
bi

lit
y

de
ns

ity
 d

is
tri

bu
tio

n

Predicted output
Predicted output + Epistemic uncertainty

(a)

3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4

Time of flight (10−4 s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
ro

ba
bi

lit
y

de
ns

ity
 d

is
tri

bu
tio

n

Predicted output
Predicted output + Epistemic Uncertainty

(b)

Figure 2.20. Uncertainty propagation results for the granular crystals without gaps
when the soliton is over particle 30 - (a) Marginal distribution of the soliton amplitude,
(b) Marginal distribution of the soliton time-of-flight.

200 300 400 500 600 700 800 900 1000 1100
Force amplitude (N)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

P
ro

ba
bi

lit
y

de
ns

ity
 d

is
tri

bu
tio

n

Predicted output
Predicted output + Epistemic Uncertainty

(a)

6.5 7.0 7.5 8.0 8.5 9.0

Time of flight (10−4 s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

P
ro

ba
bi

lit
y

de
ns

ity
 d

is
tri

bu
tio

n

Predicted output
Predicted output + Epistemic uncertainty

(b)

Figure 2.21. Uncertainty propagation results for the granular crystals with gaps when
the soliton is over particle 20 - (a) Marginal distribution of the soliton amplitude, (b)
Marginal distribution of the soliton time-of-flight.

68

200 300 400 500 600 700 800 900 1000 1100
Force amplitude (N)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045
P

ro
ba

bi
lit

y
de

ns
ity

 d
is

tri
bu

tio
n

Predicted output
Predicted output + Epistemic Uncertainty

(a)

3.5 4.0 4.5 5.0 5.5 6.0

Time of flight (10−4 s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
ro

ba
bi

lit
y

de
ns

ity
 d

is
tri

bu
tio

n

Predicted output
Predicted output + Epistemic Uncertainty

(b)

Figure 2.22. Uncertainty propagation results for the granular crystals with gaps when
the soliton is over particle 30 - (a) Marginal distribution of the soliton amplitude, (b)
Marginal distribution of the soliton time-of-flight.

2.4.4 Uncertainty Propagation Results

For constructing our surrogates we use datasets of size 1000 and a further 100

samples are used for testing. We note that most of the variation of the quantities of

interest under investigation resides on a 1 dimensional active subspace.

We show results for estimated one dimensional link function, projection matrix

components and comparison of predicted test output with true test outputs for the

following quantities of interest:

1. amplitude of the soliton over the 20th particle with no interparticle gaps (Fig.

2.11),

2. time-of-flight of the soliton over the 20th particle with no interparticle gaps (Fig.

2.12),

3. amplitude of the soliton over the 30th particle with no interparticle gaps (Fig.

2.13),

69

4. time-of-flight of the soliton over the 30th particle with no interparticle gaps (Fig.

2.14),

5. width of the soliton over the 30th particle with no interparticle gaps (Fig. 2.15),

6. amplitude of the soliton over the 20th particle with interparticle gaps (Fig. 2.16),

7. time-of-flight of the soliton over the 20th particle with interparticle gaps (Fig.

2.17).

An interesting observation from these results is that the quantities of interest are

practically independent of some of the inputs. This is deduced from observing the

estimated components of the projection matrix - for any given quantity of interest,

many of the projection matrix components are zero. For instance, the amplitude of

the soliton is primarily affected the radius of the particles and the elastic modulus. In

all cases, the BIC score does not change significantly from changing d = 1 to d = 2.

Having built our surrogate response, it is now easy to propagate the uncertainty

in the input parameters through to the output. The input stochastic parameters are

assigned uniform distributions within permissible bounds and we use the predictive

mean of the GP surrogate corresponding to the quantity of interest in a MC sampling

framework. We sample 105 realizations of the inputs and use the cheap surrogate to

obtain samples of the output for each input realization. The resulting densities of the

output quantities of interest are visualized through the histograms of their discrete

samples and shown in Fig. 2.19, 2.20, 2.21 and 2.22.

2.5 Closing remarks

We developed an approach for recovering intrinsic low-dimensional structure,

known as the active subspace, in functions mapping parameters of physical systems

with physical quantities of interest. Specifically, our major contributions are circum-

venting the two main drawbacks of the classical approach:

70

1. We bypasses the need for samples of the gradients of the quantity of interest -

a highly restrictive requirement of the classical approach.

2. We frame our approach in a probabilistic setting which allows us to seamlessly

integrate observational noise.

Furthermore, we also develop a systematic approach for model selection, i.e., picking

the correct dimensionality of the active subspace.

The work presented in this chapter presents a first step towards fully Bayesian

active subspaces. Gaussian process surrogates provide principled estimates of the

uncertainty in predictive distributions over test data. However, the approximate in-

ference approach adopted in this chapter, does not account for epistemic uncertainty

over the GP hyperparameters, in particular the projection matrix, induced as a result

of limited data. Future developments of the work presented here should seek to quan-

tify this uncertainty by extending the inference procedure to a fully Bayesian one.

The stumbling block for any such development is the manifold constraint on the pro-

jection matrix. To efficiently perform Bayesian inference over the Stiefel manifold one

might consider MCMC procedures obtained by modifying the proposal distribution

to sample from the appropriate manifold [153]. To take the fully Bayesian approach

a step further, one might also integrate the active subspace dimensionality into the

statistical model as another latent variable and infer it using techniques such as the

reversible jump MCMC [154].

71

3. HIGH DIMENSIONAL SURROGATE MODELING WITH DEEP NEURAL

NETWORKS

1 In Ch. 2, we presented a novel GP Regression based approach for constructing

surrogate models for high-dimensional and expensive numerical simulators. Toward

this end, we developed a novel covariance kernel which embeds an orthogonal trans-

formation of the input data onto a low-dimensional linear manifold, formally referred

to as the Stiefel manifold. The proposed approach was demonstrated on several syn-

thetic examples, a benchmark elliptic PDE problem and a real engineering problem

involving granular crystals. While the proposed approach did prove to be reasonably

effective on problems with moderately high dimensions, there are still the following

issues to contend with:

1. As we increase the dimensionality of the problem, the size of the projection ma-

trix W also increases. This means that the number of tunable hyperparameters

in the GP regressor also increases, making the maximum likelihood optimization

more expensive. This poses a natural problem when the uncertain inputs are

functional in nature (permeability fields for instance). This limitation is par-

tially overcome through techniques such as the KL expansion. However, this

requires making restrictive assumptions about the nature of the probabilistic

structure of the underlying uncertainties (such as it’s correlation model).

2. The cost of each optimization (or MCMC) step in GP regression is O(N3),

where N is the number of data samples. While numerous approaches based

on ‘pseudo-inputs’ exists [156, 157] which reduce the computational burden to

1The contents of this chapter are reproduced, with permission, from the paper entitled “Deep UQ:
Learning deep neural network surrogate models for high dimensional uncertainty quantification”
[155] published in the Journal of Computational Physics (2018).

72

(O)(M2N), where M � N , such methods have only shown to be effective on

problems with a very small number of input dimensions.

With these issues in mind we lay-out a simpler surrogate model approach based

on deep neural networks that is: a. scalable to very large uncertain parameter spaces,

b. scalable to large dataset sizes without requiring expensive pseudo-input approxi-

mations.

3.1 Surrogate model structure

Recall that we are interested in solving the uncertainty propagation problem

through a high-dimensional and expensive computer code denoted by f . This amounts

to evaluating various intractable integrals with an expensive integrand over a high-

dimensional state space. The easiest way to do so, would be to use the MC method.

Unfortunately, as discussed earlier in Ch. 1, the MC method is computationally

infeasible because of slow convergence in the number of forward model evaluations.

Furthermore, information about f can only be obtained by querying the computer

code at carefully selected design points. Say, we have N design points, which we

collectively denote as X:

X = (ξ1, ξ2, · · · , ξN). (3.1)

X is an N × D matrix, with each row representing a single sample from p(ξ). We

evaluate the computer code for each of these N samples and obtain an estimate

yi = f(ξi) of the model output, ∀i ∈ {1, 2, · · · , N}. We collectively represent all

samples of the model output as,

y = (y1, y2, · · · , yN). (3.2)

y is an vector in RN , with each element of the vector representing a sample of the

output. We denote the inputs and the outputs taken together as D = (X,y). Thus,

the task of building a surrogate model can be summarized as follows - given data D

73

collected by querying the computer code at a finite number of input locations, we

wish to build an approximation f̂ of the true model f . We propose a form of the

surrogate model f̂ , which projects the input data onto a nonlinear low dimensional

manifold, i.e., f̂ : X → R, such that,

f̂(ξ) = g(ζ) = g(h(ξ)), (3.3)

where, ζ ∈ Z ⊆ Rd is the projected input corresponding to the true input x. We call

the function h : X → Z, the projection function and the function g : Z → Y , the link

function. The link function is a generic nonlinear function of the projected inputs, ζ.

One immediately recognizes this structure as a generalization of the active subspace

surrogate in [81] which expresses f̂ as:

f̂ = g(WTξ). (3.4)

The proposed structure in Eq. 3.3 is capable of capturing directions which explain

most of the variation in the model output. Alternatively, one also recognizes the above

construction of the projection function as being the encoder section of neural network

autoencoders2 [112]. The complete structure is posed as a deep neural network (DNN)

which we describe in the following section.

3.2 Structure of a feedforward Deep neural network

Neural networks (NN) are a powerful class of data-driven function approximation

algorithms which represent information through a hierarchy of features. Each step in

the hierarchy, beginning with the input, and ending with the final output, is known as

a layer. Intermediate layers are known as hidden layers. By manipulating the number

of hidden layers and the size of each hidden layer, one can learn functions of arbitrary

complexity. The sizes of the input layer and output layer are fixed and determined

2An autoencoder is a kind of DNN used to recover a low dimensional embedding of a high dimensional
space.

74

by the dimensionality of the input and output. Fig. 3.1(a) shows a schematic of

a NN with 2 hidden layers. Each circle in the schematic of the NN represents the

fundamental unit of computation in a NN, known as the neuron. A neuron accepts

one or more inputs and produces an output by performing a linear transformation

followed by an element-wise nonlinear transformation. A schematic of a single neuron

and the computations taking place within it are shown in Fig. 3.1(b). We discuss the

symbols in full detail in the subsequent paragraphs.

(a) (b)

Figure 3.1. 3.1(a)-Schematic of a neural network (NN). 3.1(b) - Schematic of a single
neuron.

A DNN is simply a NN with a large number of hidden layers. The output of a

layer is known as the activation. The activation from one layer of a DNN is used as

the input to the next layer. The activation produced by the jth hidden layer of the

DNN is given by:

z(j) = σ(W(j)z(j−1) + b(j)), ∀j ∈ {1, 2, · · · , L}, (3.5)

where W(j) ∈ Rdj×dj−1 , b(j) ∈ Rdj and dj is the number of neurons in the jth hidden

layer. Note that z(0) is the input ξ and d0 = D. σ is a nonlinear function applied

element-wise on its arguments. Popular choices for σ include the logistic function,

75

Figure 3.2. Swish activation with γ = 1.

the hyperbolic tangent function or the rectified linear unit (or ReLU) function [112].

The ReLU function has been utilized extensively in recent times, and has been shown

to eliminate the need for an unsupervised pretraining phase while training deep ar-

chitectures [158].

However, a recent result described in [159] demonstrates the superior performance

of the Swish activation function defined as follows:

σ(z) =
z

1 + exp(−γz)
, (3.6)

such that γ is either a constant or a hyperparameter to be learned from data. In this

work, we use the Swish activation function with γ = 1.

The quantities W(j) and b(j), ∀j ∈ {1, 2, · · · , L+1}, are known as the weights and

biases of the network, respectively. Collectively, they are known as the parameters

76

of the network, θ = {W(j),b(j)}L+1
j=1 ∈ Θ. The weights and biases together, fully

describe the structure of the network, known as the network architecture.

3.3 Training a deep neural network

As discussed in the previous section, f̂ is a parameterized function with parameters

θ. Estimating θ reduces to the problem of minimizing a loss function L(θ; f), which

captures the mismatch between f and f̂ . For regression tasks L is typically chosen

to be the mean squared error. In practice, we do not have access to the function f ;

only a limited set of observations, D. Suppose D is a dataset of N examples, with

the ith example denoted as Di = (ξi, yi). The training problem is cast as minimizing

the mismatch between a prediction f̂(ξi) and the correct output, yi.

θ∗ = arg min
θ

1

N

N∑
i=1

L(θ; yi). (3.7)

In practice, the averaging in Eq. 3.7 is performed over a small randomly sampled

subset (or mini-batch) DM ⊂ D, at each iteration of the optimization procedure.

3.4 Regularized loss function

Since DNNs are prone to overfitting [126], one resorts to penalizing the misfit

function with an appropriate penalty term known as a regularizer. This ensures

that the DNN generalizes better to unseen data. Popular choices for regularization

include the scaled L1 norm or L2 norm of the weights [112]. Both the L1 and L2 norm

penalties promote shrinkage in the parameter values, with the L1 penalty additionally

promoting sparsity in the network weights. The elastic net regularizer introduced

in [160] is a mixture between the L1 and L2 regularizers and is known to combine the

advantages of L1 and L2 penalties (See [160]). While typically the L1 and L2 parts in

the elastic net are assigned different scaling factors, we share the scaling parameter λ

(called the regularization constant). This choice is motivated by a need to reduce the

77

complexity of the model selection task. Over a set DM consisting of M data samples

the full loss function is expressed as,

L(θ;λ,DM) =
1

M

M∑
i=1

‖yi − f̂(ξi,θ)‖2+λ
L+1∑
i=1

(
‖W(i)‖2

2+‖W(i)‖1

)
. (3.8)

From the point of view of constrained optimization, normed weight penalties limit

model complexity by shrinking the feasible region of parameters, θ, to their corre-

sponding norm balls. There is also a Bayesian justification for the use of normed

penalties on the weights. θ∗ obtained by the minimization of the regularized loss

function corresponds to the maximum a posteriori (MAP) estimate of θ, with the

prior given by the chosen penalty. The L1 and L2 penalties correspond to a Laplace

and Gaussian priors on the weights while the elastic net represents a compromise

between the two. In unnormalized form, the elastic net regularizer with equi-scaling

of the L1 and L2 parts, correspond to the following prior on the weights:

p(W) ∝ exp(λ‖W‖2
2+λ‖W‖1). (3.9)

3.5 Gradient computation and optimization

A DNN f̂(ξ;θ) is a highly complicated function of the network parameters θ

because of the fact that it involves multiple layers of compositions of simpler func-

tions. To perform gradient descent optimization one needs access to the gradients

of the objective function. For training DNNs, this is achieved by utilizing the cele-

brated backpropagation algorithm [161]. In essence, the backpropagation algorithm

is a recursive application of the standard chain rule. Unlike numerical differentiation

schemes such as finite differences, backpropagation is exact.

Note that training a DNN with subsets (i.e. minibatches) of the full dataset D, is

a stochastic optimization problem with the objective function being the loss function

described in Eq. (3.8). The most common way of solving this problem is via the

stochastic gradient descent (SGD) [162] algorithm. As the name suggests, SGD is the

78

stochastic analogue of deterministic gradient descent. The SGD algorithm produces a

converging sequence of updates of the optimization variables, by making appropriately

sized steps in the direction of the negative gradient of the objective function. The

key idea of the SGD method, is that it approximates the negative gradient of the

objective function by averaging a finite set of objective function gradient samples.

This is done by independently sampling a small subset of examples, DM , from the

full training dataset, D. The update scheme of the SGD method is:

θk+1 ← θk + αk∇θL(θ;λ,DM). (3.10)

Note that the sampling of DM is performed at every iteration of SGD. While the SGD

algorithm is simple to implement, it is not guaranteed to perform well for complex

high dimensional objective functions (as is typical for Eq. 3.7). While there are

multiple variants of the SGD method that have demonstrated improvements over

vanilla SGD, in this work, we solve Eq. (3.7) with the Adaptive Moments (ADAM)

optimization algorithm [122]. The ADAM update scheme is as follows:

Mk ← β1Mk−1 + (1− β1)Gk, (3.11)

Vk ← β2Vk−1 + (1− β2)G2
k, (3.12)

M̂k ←
Mk

1− βk1
, (3.13)

V̂k ←
Vk

1− βk2
, (3.14)

θk+1 ← θk + αk
M̂k√
V̂k + η

, (3.15)

where, Gk = ∇θL(θ;λ,DM) is the estimate of the objective function gradient at

iteration k and Mk and Vk are exponential moving average estimates of gradients

and squared gradients respectively. M0 and V0 are set to 0 and the bias introduced

by this initialization is corrected by computing M̂k and V̂k. η is a suitably small

number introduced to prevent 0 denominator. β1 and β2 are averaging parameters

79

which can be tuned. In practice, default values of β1 = 0.9, β2 = 0.999, as suggested

by [122] work well and we do not fiddle with these quantities.

3.6 Selecting network structure

Although various authors in the literature offer rules of thumb for selecting the

number and size of DNN layers (such as those suggested in [163]), rigorous rules

for the selection of these quantities do not exist. One typically resorts to extensive

experimentation to arrive at a suitable network configuration. In the most naive case,

the number and size of the hidden layers are hyperparameters selected using cross-

validation. In this work, we are interested in learning a surrogate of the form described

in Eq. (3.3). The function h accepts an input in a vector space of dimensions D and

projects it to a vector space of dimension d, where d << D (d is to be determined

through our methodology). We parameterize this section of the DNN such that the

widths of it’s hidden layers decays exponentially. Specifically, the number of hidden

units in the kth hidden layer in this section is given by:

dk = dD exp(ρk)e, (3.16)

where, dae represents the ceiling (closest greater integer) of the number a. The

parameter ρ is uniquely determined, conditional on the knowledge of d and the total

number of layers, L, in h. It can be computed by substituting k = L and dk = d in

the expression dk = dD exp(ρk)e. The link function g is formulated as a single layer

MLP. The hidden layer in g is taken to have a width of 300d. One could set this

width to be anywhere between 100−500 times the size of the encoding d. This would

be an additional hyperparameter which we choose not to tune in the present work, to

minimize our computational burden. The idea is that the subnetwork representing the

link function g ought to have a sufficient number of hidden units to capture arbitrary

nonlinearities. A visual representation of the DNN surrogate is shown in Fig. 3.3.

80

Figure 3.3. Visualization of the parameterized network structure with L = 3 and
d = 1.

81

Note that no activation function is used at the output of the encoding subnetwork h,

and the output of the link function subnetwork, g. The task of optimizing the network

structure is then reduced to a task of cross validating over two integer quantities, L

and d, a much simpler task than optimizing for the number of layers and sizes of the

individual layers separately.

3.7 Combined global optimization and grid search for model selection

The stochastic optimization task stated in Eq. (3.7) is characterized by hyperpa-

rameters, weight decay λ, and the integer quantities L and d, which fully parame-

terize the structure of the network. We refer to structure parameters collectively, as,

S = (L, d). Training a DNN involves, in addition to optimizing for θ, selection of

appropriate values of hyperparameters. The naive approach to do this is to perform

an intuition guided manual search. In this work, the task of model selection reduces

to selecting 3 quantities - the discrete hyperparameters, L and d and the continuous

hyperparameter, λ. To be systematic, we adopt a combined grid search and stochas-

tic global optimization procedure. Specifically, we define a grid of values for L and

d. Over each grid location of the structure parameters, we perform a Bayesian global

optimization (BGO) [35,164] for λ.

We split the dataset D into 3 parts - a training set, Dtrain, a validation set, Dval

and a test set, Dtest. We define a grid, G 3, of L and d values and seek to assign a

score to each location on the grid. The optimal choice of the structure parameters,

S would then be the grid location which minimizes the validation error:

R(S, λ) =
1

Mval

Mval∑
i=1

(yval,i − f̂S(ξval,i;θ
∗
S(λ)))2, (3.17)

3The use of the term ‘grid’ to denote the set of hyperparameters of a model is standard within
machine learning literature. The reader, however, might be more familiar with the term ‘lattice’ to
denote such a set.

82

where, (ξval,i, yval,i) ∈ Dval, Mval is the size of the validation set, and f̂S is a DNN

characterized by structure parameter, S. θ∗S(λ) is an estimate of the network param-

eters, θ obtained by minimizing the loss function in Eq. (3.8), with the regularization

constant set to λ and network structure parameter, S.

The optimal choice of regularization constant λ, corresponding to structure pa-

rameter, S, is:

λ∗S = arg min
λ

E[R(S, λ)]. (3.18)

Eq. (3.18) is a stochastic global optimization problem characterized by a noisy ob-

jective function. BGO sequentially seeks out the global optimum of the objective

function, R, by iteratively updating a Gaussian process (GP) surrogate response

surface for R(λ,S). During each iteration of BGO, a new pair of input-output obser-

vations is generated by maximizing an information acquisition function (IAF). The

most popular choice of IAF is the expected improvement (EI) function. In closed

form, the EI-IAF is given by:

EI(λ) =

(µ(λ)−R(λ∗,S))Φ(Z) + σ(λ)φ(λ) if σ(λ) > 0,

0 if σ(λ) ≤ 0,

(3.19)

where, φ and Φ are the probability density function and the cumulative distribution

function of the standard normal distribution. Z = µ(λ)−R(λ∗,S)
σ(λ)

where, µ(λ) is the

predictive mean of the GP surrogate at λ, and σ(λ)2 = σGP(λ)2 − σnoise(λ)2, where

σGP(λ)2 is the predictive variance of the GP surrogate which captures the epistemic

uncertainty induced due to the limited set of observations and σnoise(λ)2 is GP esti-

mate of the observational noise induced by random initializations of the DNN weights

and random splitting of the dataset into Dtrain, Dtest and Dval. σ(λ)2 is thus a filtered

version of the predictive variance which is robust to observational noise. The BGO

algorithm is summarized in Alg. 3. Note that the we maximize the negative of the

validation error R. In the present work, the GP surrogate is chosen to have zero

prior mean and the Matern function with ν = 3
2

(See Eq. (4.17) of [42]) as the prior

83

covariance kernel. The expressions for the predictive mean and variance of the GP

surrogate, i.e., µ(·) and σ(·)2 can be found in Eq. (2.25) and (2.26) in [42].

Algorithm 3 Bayesian global optimization of validation error R(λ,S)

Require: Training data, Dtrain, validation data, Dval, structure parameter, S, num-
ber of initial observations, ninit, number of BGO iterations, maxiter, bounding
box for λ, B.

1: Initialize empty arrays, ΛBGO and RBGO.
2: Use Latin Hypercube sampling (LHS) [165] to generate ninit samples of λ within

the bounding box B. Call it Λinit.
3: for λi ∈ Λinit do
4: Minimize L from Eq. (3.8) with training data, Dtrain to obtain θS(λi).
5: Evaluate Ri = -R(λi;S).
6: Append λi and Ri to ΛBGO and RBGO respectively.
7: end for
8: Fit a GP surrogate linking ΛBGO and RBGO.
9: for iter = 1 to maxiter do

10: Get next sample of λ, λninit+iter = arg max
λ

EI(λ).

11: Evaluate Rninit+iter = −R(λi;S).
12: Append λninit+iter and Rninit+iter to ΛBGO and RBGO respectively.
13: end for
14: Get index = arg maxRBGO.
15: return λ∗S = ΛBGO(index). Return λ corresponding to the highest observed

negative validation error.

Finally, the optimal structure parameter, S∗ is given by:

S∗ = arg min
S∈G

R(S, λ∗S). (3.20)

The full algorithm is summarized in Alg. 4. The estimation of θ∗S for each individual S
can be parallelized and the computational cost of the global optimization search for λ∗S

requires maxiter+ninit times the cost of a single run of the ADAM optimizer. The cost

of a single iteration in the ADAM optimization grows linearly with the total number of

weights in the network. To see this, recall that a single iteration comprises of a forward

and backward pass through the network. Since the expressions for the gradients in

each layer of the network are analytically available, evaluation of the gradients incur

84

a negligible cost in the overall execution of an optimization step. The computational

cost of one iteration is, thus, dominated by the series of matrix multiplications in the

forward propagation of the input and the backpropagation of the parameter gradients.

The complexity of multiplying m× n and n× p matrices is given by O(mnp). Thus,

the cost of executing a single forward-backward pass in a DNN with the proposed

architecture is proportional to M(300d(d+ 1) +
∑L

k=1 dk−1dk) = MNweights, where M

is the size of the data mini-batch and Nweights is the total number of weights in the

network. dk is obtained from Eq. 3.16. Note that the network biases have a negligible

effect on the computational cost of forward and backward propagation in the network.

The effect of the input dimensionality D, and the structure parameters, L and d, on a

single iteration of the ADAM optimization can be estimated by observing the growth

of Nweights as a function of D,L and d, which is plotted in Fig. 3.4.

Algorithm 4 Full procedure for training DNN surrogate

Require: Data, D = (X,y), grid of L and h values, G, parameters for Alg. 3, niter,
maxiter and B.

1: Split D into 3 parts - Dtrain,Dtest and Dval.
2: for S ∈ G do
3: Set λ∗S ← arg min

λ
E[R(S, λ)]. Using Alg. 3.

4: Set θ∗S,λ ← θ∗S(λ∗S).
5: Set RS ← R(S, λ∗S ;θ∗S,λ). Estimate of the global minima of R for DNN with

structure parameter S.
6: end for
7: Set S∗ ← arg min

S∈G
RS . Get the structure parameter that minimizes the observed

validation error.
8: return S∗, λ∗S∗ ,θ∗S∗,λ∗S∗ . Final DNN surrogate.

85

(a)

1 2 3 4 5
d

2

3

4

5

6

N
we

ig
ht

s
(x

 1
05)

L = 4
L = 5
L = 6
L = 7

(b)

1 2 3 4 5
d

2

3

4

5

6

N
we

ig
ht

s
(x

 1
05)

L = 4
L = 5
L = 6
L = 7

(c)

Figure 3.4. Growth of the number of network weights, Nweights, as a function of the
input dimensionality D and structure parameters, L and d. 3.4(a) - Growth of Nweights

as a function of L for various d, with D set to 1026. 3.4(b) - Growth of Nweights as a
function of D for various L, with d set to 2. 3.4(c) - Growth of Nweights as a function
of d for various L, with D set to 1026.

86

3.8 Numerical example

We consider the following benchmark elliptic PDE on the 2-d unit square domain:

−∇(a(x)∇u(x)) = 0, ∀x ∈ [0, 1]2, (3.21)

with boundary conditions:

u = 0, ∀x = 1, (3.22)

u = 1, ∀x = 0, (3.23)

∂u

∂n
= 0, ∀y = 0 and y = 1, (3.24)

where, x = (x, y) are the physical coordinates in 2-d Euclidean space.

Eq. (3.21) is a model for 2-d steady-state diffusion processes. The quantity a(x) is

a spatially varying diffusion coefficient. The physical significance of the equation and

all terms in it are derived from context. For instance, Eq. (3.21) could be an idealized

model for single-phase groundwater flow in an aquifer [166], where a represents the

transmissivity coefficient and the solution variable, u is the pressure.

It is often the case that the a is unknown throughout the PDE domain. The

uncertainty in the diffusion coefficient is formalized by modeling a as a log normal

random field, i.e.,

log a(x) ∼ GP(a(x)|m(x), k(x,x′)), (3.25)

where, m(x) and k(x,x′) are the mean and covariance functions, respectively, of

the Gaussian random field which models the logarithm of the diffusion coefficient

a(x). The mean function models beliefs about the generic trends of the diffusion

field as a function of spatial location. For the sake of simplicity, we set m(x) = 0 in

this example. The covariance function k models beliefs about the regularity of the

diffusion field and the lengthscales in which it varies. A popular choice for k is the

exponential kernel:

87

k(x,x′) = exp
(
−

2∑
i=1

|xi − x′i|
`i

)
, (3.26)

where `i represents the correlation length along the ith spatial direction. The cor-

relation lengths are typically assigned a fixed value. One then proceeds to use the

truncated KLE to produce a reduced representation of the infinite-dimensional ran-

dom field. The coefficients of the KLE are i.i.d. standard normal, and realizations of

the diffusion field, a, can be generated easily, i.e., by sampling the KLE coefficients.

For each realization of a, the corresponding solution of Eq. (3.21) is obtained. Any

relevant quantity of interest, q = Q[u], is computed. Finally, one learns a surro-

gate response surface that maps the coefficients of the truncated KL expansion, using

suitable learning algorithms such as GP regression.

We broaden the scope of the problem by removing the restrictions on the length-

scales, `i. The goal, in this example, is to construct a surrogate, which can accurately

predict the solution, u, of the PDE, regardless of the lengthscales of the realization of

a. Our approach, then, is to construct a surrogate which directly maps the discretized

random field, to the numerical solution of the PDE.

3.8.1 Forward model

We solve the PDE using the finite volume method (FVM). The solver is imple-

mented in the Python library FiPy [167]. The unit square domain is discretized into

32× 32 finite volume cells. The input to the solver, â ∈ R32×32 is the discretized ver-

sion of a sample of the random diffusion a. The output of the solver, û ∈ R32×32, is

the numerical solution of the PDE corresponding to the realization â of the diffusion

field.

The model inputs, ξ = (vec(â),x) ∈ R1026 are spatial coordinates appended to a

flattened version of the discrete random field realization and the model outputs are

the PDE solution at the FV cell centers, u(x, â). Our goal is to learn a surrogate

88

response, f̂ : R1024× [0, 1]2 → R, which maps the snapshot of the diffusion field and a

particular coordinate in the unit square to the solution of the PDE at that location.

3.8.2 Data Generation

Intuitively, we would like to sample more realizations, of a, that have smaller

lengthscales because one would observe the most variability in the solution corre-

sponding to low lengthscale diffusion fields. Thus, instead of sampling lengthscale

pairs uniformly from the unit square, we bias our sampling procedure to pick length-

scales that are smaller. Alg. 5 describes the procedure to select lengthscales to

train the DNN surrogate. Note that a lower bound on `i is set by constraining the

lengthscale to be larger the FV cell size, h(= 1
32

).

Algorithm 5 Sampling of lengthscale pairs.

Require: Number of lengthscale pairs, n, lower bound on lengthscale, h.
1: Initialize n-dimensional empty array L.
2: Initialize counter, c = 1.
3: while c ≤ n do
4: Sample u = (u1, u2, u3) ∼ U([0, 1]3). U(A) is the uniform distribution over the

set A.
5: if exp(−u1 − u2) < u3 then
6: Set `c = (`x,c, `y,c) = (h + u1(1 − h), h + u2(1 − h)). Scale the sampled

lengthscales to the range [h, 1].
7: Set Lc ← `c.
8: Increment counter c← c+ 1.
9: end if

10: end while
11: return L.

We generate n different lengthscale pairs following the procedure in Alg. 5 to

obtain a design of lengthscale pairs L.

For each lengthscale pair, (`x, `y) ∈ L, we solve the forward model N times by

generating N realizations of the diffusion coefficient. In this example we set n = 60

and N = 100. Note that the choice of n and N are not fixed. One could potentially

89

Figure 3.5. Visual representation of LHS design of lengthscale pairs. Each ’x’ repre-
sents a sampled pair of lengthscales.

shrink the requisite size of the total dataset through a smart choice of n and N .

Furthermore, one could even come up with adaptive strategies to select the number

of evaluations per lengthscale pair. Exploration of these data generating strategies

are, however, beyond the scope of the present work. A visual representation of L is

shown in Fig. 3.5. Samples of the diffusion coefficient drawn from two different pairs

of lengthscales are shown in Fig. 3.6 and 3.7.

3.8.3 Numerical settings

Dataset split

We generated our dataset, D, of n × N = 60 × 100 = 6000 pairs of â and û. D
is randomly shuffled and split into 3 parts - A set of 2000 training examples, Dtrain,

a set of 2000 validation examples, Dval and a set of 2000 test examples, Dtest. For

90

Figure 3.6. Samples of the random field a(x) with lengthscales `x = 0.446 and `y =
0.789 along the x and y directions.

the purpose of constructing the surrogate, we work with the logarithm of both â and

û during training 4. Furthermore, û in the training set is standardized along each

dimension, i.e., scaled to have dimension-wise zero mean and unit variance. Necessary

inversions of the transformations are performed during test time.

3.8.4 Model selection settings

For selection of λ∗S using Alg. 3, we set the number of initial design points,

ninit = 5. The number of BGO iterations, maxiter = 10 and the bounding box,

4Note that the use of the logarithmic transform is valid because the response ûi > 0, ∀i. Appropriate
preprocessing of the data must be perform conditional on the properties of the data.

91

Figure 3.7. Samples of the random field a(x) with lengthscales lx = 0.291 and ly =
0.099 along the x and y directions.

B = [10−10, 10−3]. The grid of structure parameters is set to be G = {3, 4, 5, 6, 7, 8, 9}×
{1, 2, 3, 4}.

Network optimizer settings

We set the ADAM optimization learning rate α to be 1× 10−3. The optimizer is

run for 45000 iterations and α is decreased by a factor of 0.1 every 15000 iterations.

The batch size, M , is set to be 50. Default values of tunable parameters of the

ADAM optimizer are used, as recommended in [122]. These settings are, by no

means, universal. Refer to [163] for some practical guidelines on DNN hyperparameter

selection.

92

We use the Python library tensorflow to write scripts for training our DNN

surrogates. For the purpose of reproducibility, the NumPy pseudo-random number

generator seed is fixed. The code to replicate all the results are available at https:

//github.com/rohitkt10/deep-uq-paper.

3.8.5 Results

Fig. 3.8 shows a heatmap of λ and optimal validation error RS over the grid of

the structure parameters. We observe that for the chosen grid, the optimal structure

parameter is found to be S∗ = (7, 2) and λ∗(7,2) = 1.043 × 10−7. Fig. 3.9 shows GP

surrogate response for − logR as a function of log λ, for S = (7, 2). Observe, from

Fig. 3.9 that there is a dense clustering of the ‘x’ markers around the optimum,

indicating the convergence of the sequential optimization process. Fig. 3.10 shows

a scatterplot of ζ = (z1, z2) = h(ξ), the low-dimensional embedding of the inputs,

corresponding to 5 arbitrarily chosen input lengthscales from the test dataset, Dtest.

Fig. 3.11 shows a visualization of the link function g(ζ) for 4 randomly selected

examples from the test dataset. It is interesting to note that inputs sampled from

the different lengthscale pairs gather around numerous non-segregated clusters in the

low-dimensional manifold.

https://github.com/rohitkt10/deep-uq-paper
https://github.com/rohitkt10/deep-uq-paper

93

(a) (b)

Figure 3.8. 3.8(a) - Heatmap of λ∗S over the grid G. 3.8(b) - Heatmap of RS over the
grid G.

Figure 3.9. Gaussian process surrogate generated during BGO. We maximize the
negative of the validation error R as a function of the logarithm of the regularization
parameter, λ.

94

Figure 3.10. Scatter plot of low-dimensional embedding of the input diffusion fields
from different lengthscales.

The quality of the DNN predictions are evaluated based on the following relative

error metric:

E(â) =
‖ûDNN − ûFV‖F

‖ûFV‖F

, (3.27)

where, ‖·‖F is the Frobenius norm. ûFV and ûDNN are the FVM PDE solution and

the DNN prediction of the PDE solution corresponding to the realization â of the

diffusion field. We also check the coefficient of determination, (also known as the R2

score), which is defined as:

R2 = 1−
∑1024

k=1 (ûFV,k − ûDNN,k)
2∑1024

k=1 (ûFV,k − ūFV,k)2
, (3.28)

where, k indexes all the FV cell centers, ûFV,k and ûDNN,k are the FV solution and

DNN predicted solution at the kth cell center respectively, and ūFV is the mean of

ûFV. Fig. 3.12 shows a comparison of the DNN predicted PDE solution solution

95

Figure 3.11. Link function, g(ζ) for 4 randomly selected examples from Dtest.

96

corresponding to a few randomly chosen realizations of the diffusion field from Dtest.

We observe that the relative error as reported on the headers of the predicted fields

in Fig. 3.12 are less than 0.1 and the R2 scores close to 0.99, which implies that the

predicted solution from the DNN matches the true very closely. We also note that the

PDE solution predicted by the DNN is ‘smoother’ than the FV solution of the PDE.

This effect gets more pronounced when the lengthscales of the input diffusion field

are smaller. The smoothness is a consequence of regularizing the DNN loss function.

Fig. 3.13 shows the histograms of E and R2 scores for all samples in Dtest. Note that

all testing of the predictive capacity of the network is done using the test set Dtest

because the Dtrain and Dval have already been used during the training and model

selection phase.

3.8.6 Predictions at arbitrary lengthscales

Having constructed a DNN surrogate for the FV solution of the PDE, we would

like to test predictive accuracy for samples of â with lengthscales which are not used

to generate the dataset D. A 10× 10 uniform grid of lengthscales is generated in the

domain [h, 1]2, and for each lengthscale, 100 observations of the diffusion field and

it’s corresponding PDE solution are generated. The mean of the relative errors and

mean of the R2 scores for each lengthscale pair in this uniform grid is computed and

shown in Fig. 3.14. We observe that even when the input field has lengthscales that

do not match the lengthscales used for training, we are able to predict the solution

with accuracy similar to that obtained during testing with samples from Dtest. This

suggests that DNN surrogate is learning to map the ‘picture’ of the input field to

the corresponding output. Note that the accuracy of the DNN decreases for diffusion

fields with very fine lengthscales. This is consistent with the intuitive expectation that

97

Figure 3.12. Comparisons of DNN prediction of the PDE solution to that correct
solution for 4 randomly chosen test examples. The left column shows the logarithm
of the input diffusion field, the middle column shows the FV solution of the PDE and
the right column shows the solution of the PDE predicted by the DNN.

lesser the “variation” in the structure of the diffusion field, the easier it is characterize

the function that maps the input to the solution.

98

(a) (b)

Figure 3.13. 3.13(a) - Histogram of relative errors, E , for all examples in the test data
set. 3.13(b) - Histogram of the R2 scores for all examples in the test data set.

(a) (b)

Figure 3.14. 3.14(a) - Mean relative errors of the predicted solution corresponding
to samples of a with arbitrary pairs of lengthscales not used in the DNN training.
3.14(b) - Mean R2 scores of the predicted solutions corresponding to samples of a
with arbitrary pairs of lengthscales not used in the DNN training. The ’x’ markers
correspond to lengthscales used in training the DNN and the solid dots correspond
to lengthscales used to test the DNN surrogate.

3.8.7 Effect of dataset size

Intuitively, one would expect the accuracy of the DNN surrogate to improve as

the size of the training dataset increases. To verify this proposition we construct a

DNN surrogate when the training set has N = 500, 750, 1000, 1250, 1500 and 2000

samples. In each case, we follow the procedure outlined in Alg. 4 with the same

model selection settings outlined in Sec. 3.8.4. Table 3.1 shows the optimal structure

parameters corresponding to each N . It is worth noting that the size of the DNN is

99

Figure 3.15. Variation of the log validation error, logR, corresponding to optimal
structure estimated for different sizes of training datasets.

adaptive to the size of the training dataset. The decay of the optimal validation error

with increasing training dataset size is visualized in Fig. 3.15.

Table 3.1. Optimal validation error, R∗, and structure parameter, S∗ = (L∗, d∗)
corresponding to different sizes of the training dataset.

N R∗S∗(×10−3) L∗ d∗

500 1.25965 8 4
750 1.06043 9 3
1000 0.88968 8 2
1250 0.78989 9 1
1500 0.72258 7 1
2000 0.63191 7 2

100

Figure 3.16. Comparisons of DNN prediction of the PDE solution to that correct
solution for 4 randomly chosen stratified diffusion fields. The left column shows the
logarithm of the input diffusion field, the middle column shows the FV solution of
the PDE and the right column shows the solution of the PDE predicted by the DNN.

101

3.8.8 Predictions with stratified diffusion fields

We now use the DNN surrogate to test it’s predictive capability with stratified (or

layered) diffusion fields. The construction of the stratified diffusion field is as follows

- 1. Sample m1 and m2 independently from U([0, 1]); 2. Divide the input domain,

[0, 1]2, into two regions, Ω1 and Ω2, separated by the line joining xm1 = (0,m1) and

xm2 = (1,m2); 3. Set the log normal diffusion field as:

log a(x) ∼ GP(a|0, k1(x,x′))IΩ1(x) + GP(a|0, k2(x,x′))IΩ2(x), (3.29)

where, IA(·) is the indicator function and k1 and k2 are exponential covariance kernels,

each with their own unique lengthscale pair. We generate 100 such samples of strat-

ified diffusion fields and use the DNN surrogate to predict the corresponding PDE

solution. Fig. 3.16 shows a comparison of the PDE solution obtained from the FV

solver and the PDE solution predicted by the DNN surrogate for 4 randomly chosen

examples. Averaged over all 100 examples, we obtain a mean R2 score of 0.99163,

and a mean relative error, E , of 0.04468. Qualitatively, however, it is clear that the

DNN surrogate is unable to capture jumps in the solution caused at the stratification

interface. This is consistent with our observation that the regularization of the DNN

weights leads to predictions where sharp transitions are smoothed out. This might

be alleviated, to some extent, by including in the training dataset examples with

non-smooth solutions.

3.8.9 Uncertainty Propagation

Having constructed a DNN surrogate that maps the input diffusion coefficient of

the PDE in Eq. 3.22 and verified its accuracy, we can use this surrogate to solve

UP problems. This surrogate is generalizable for arbitrary choices of the lengthscale

of the input diffusion field. Additionally, the DNN surrogate can also be used to

102

(a) (b)

(c)

Figure 3.17. Mean and standard deviation of the PDE solution obtained by MC sam-
pling of the DNN surrogate. In each sub figure the left column shows the MCS ap-
proximation and the right column shows the DNN approximation. The top half com-
pares the mean of the solution and the bottom half compares the standard deviation.
3.17(a) - Case 1: `x = 0.1 and `y = 0.5. 3.17(b) - Case 2: `x = 0.05 and `y = 0.15.
3.17(c) - Case 3: `x ∼ TN(0.1, 0.03, 0.07, 0.13) and `y ∼ TN(0.5, 0.03, 0.47, 0.53).

103

(a) (b)

(c) (d)

(e) (f)

Figure 3.18. 3.18(a), 3.18(c) and 3.18(e) - Density of PDE solution at x1 for cases 1,
2 and 3 respectively. 3.18(b), 3.18(d) and 3.18(f)- Density of PDE solution at x2 for
cases 1, 2 and 3 respectively.

propagate uncertainty for the case of uncertainty in the lengthscales. We solve the

following 3 UP cases -

104

1. Case 1: Fixed lengthscales with `x = 0.1 and `y = 0.5.

2. Case 2: Fixed lengthscales with `x = 0.05 and `y = 0.15.

3. Case 3: Uncertain lengthscales with `x ∼ TN(0.1, 0.03, 0.07, 0.13) and `y ∼
TN(0.5, 0.03, 0.47, 0.53),

where, TN(µ, σ, a, b) is a truncated normal distribution with location and scale pa-

rameters, µ and σ, and support (a, b). In each case, we draw 105 samples from the

corresponding input distribution and estimate the following output statistics from

the DNN surrogate predictions:

1. Mean of û.

2. Variance of û.

3. Probability density of the PDE solution at x1 = (0.484, 0.484) and x2 =

(0.328, 0.641).

The comparison between DNN surrogate approximation of the above quantities and

their corresponding MCS approximations, for cases 1 and 2, are shown in Fig. 3.17

and Fig. 3.18. The relative error and R2 scores between the DNN surrogate and the

MCS approximations of the mean and standard deviations are shown in Tab. 3.2.

We note that the mean PDE solution from the DNN surrogate matches that from

the MCS sampling very closely in both cases. The error in the standard deviation,

while reasonably low, is increased because of the tendency of the DNN to ‘smooth

out’ the solution as discussed earlier. This is why we see a somewhat larger relative

error for case 2, where the smaller lengthscales of the diffusion coefficient lead to PDE

solutions that are inherently less smooth than the larger lengthscales of case 1.

105

Table 3.2. Relative error and R2 scores in the mean and variance of the PDE solution
for two different choices of spatial lengthscale pairs.

Mean Standard deviation
Case E R2 E R2

1 0.01174 0.99944 0.06565 0.96446
2 0.01080 0.99953 0.07035 0.95105
3 0.01187 0.99942 0.05941 0.97148

3.9 Multifidelity modeling

Many engineering problems are simulated, not by a single simulator, rather by

a suite of simulators of varying accuracy. Typically, a simulator of high accuracy

requires a greater time for a single evaluation, whereas, a simulator of lower accuracy

has a smaller computational cost. A typical example of such a scenario can be found

in the field of computational fluid dynamics (CFD), where the higher accuracy turbu-

lence closure models carry a greater computational burden. The natural question one

might ask here is - how does one construct a surrogate when one can gather informa-

tion from a variety of sources of varying fidelity? It’s worth keeping in mind that the

accuracy of a surrogate is only as good as the quality of the solver which produces

data. How then, does one systematically utilize a small amount of high fidelity infor-

mation to improve the quality of a low fidelity surrogate? More generally, if one has a

suite of simulators, and a fixed computational budget, how does one fuse information

from all of these sources, and in what amount, to construct a surrogate with optimal

accuracy? Such questions lie at the heart of the field known as multifidelity uncer-

tainty quantification [168]. This area of exploration is not new. The seminal work

on this topic is the celebrated autoregressive Gaussian process framework of [169].

This model was extended into the decoupled recursive co-kriging framework of [170].

Finally, [171] generalized the linear autoregressive model of [170] into a nonlinear

framework. The common thread tying all frameworks together is that - a. they rely

upon GPs to construct surrogates, and b. they do not consider ways to tackle the

curse of dimensionality in the input parameter space and as such are applied primar-

106

ily to problems with a small number (< 10) of input stochastic dimensions. In this

section we present a simple extension to the DNN surrogate structure from Sec. 3.1

to incorporate data from multiple sources.

3.9.1 Multifidelity DNN structure

Suppose we have a suite of computer codes of varying fidelities and we index

them by s, i.e. fs(x), s = 1, 2, . . . ,m, where f1 represents the cheapest and lowest

fidelity computer code and fm represents the highest fidelity, but most expensive,

simulator. We assume that there exists some underlying correlation between the

various simulators, i.e., the output from any given model is predictive of the output

from any other model for the same vector of inputs, x.

Figure 3.19. Extension of proposed architecture to the multifidelity case.

Suppose we have, at our disposal, an experimental design of inputs to be run

at varying fidelity levels. Denote the dataset of observations collected by running

107

the computer code at fidelity level i, as D = {x(i), y(i)}Ni
i=1. The complete dataset

consisting of data samples generated at every fidelity level is then, denoted as, D =

{D1,D2, . . . ,Ds}. To handle the multifidelity case, we make a few simple changes

to the structure of the DNN. First, we retain the overall shape. That is, the overall

architecture is a composition of two nonlinear functions, f(x) = g(h(x)), where, g is

a neural network link function with 1 hidden layer and h is a nonlinear projection

function whose architecture is governed according to the rule defined in Eqn. (3.16).

In addition to the stochastic parameters, x, we add a new input parameter t which

indexes the fidelity level of the simulator. Finally, we expand the output space to

produce s outputs - each corresponding to the computer code from a specific fidelity

level. For a visual representation of the architecture, see Fig. 3.19. To summarize, the

modification to the original architecture does the following - given an input-output

pair (x, y) and a fidelity level, the network should produce a vector of predictions,

ŷ1, ŷ2, . . . , ŷs for the scalar quantity of interest for all fidelity levels. Finally, we

modify our loss function to accommodate these changes in the architecture. If the

input fidelity level is t, where t ∈ {1, 2, . . . , s}, we need to compare the output label

with the tth component of the output vector.

3.9.2 Example - stochastic elliptic PDE with bi-fidelity data

Consider the elliptic PDE problem in two dimensions:

∇ (a(x)∇u(x)) = 0, (3.30)

where, x = (x1, x2) ∈ Ω = [0, 1]2.

The PDE is equipped with boundary conditions -

u = 0,∀x1 = 1,

u = 1,∀x1 = 0,

∂u

∂n
= 0,∀x2 = 1,

(3.31)

108

As usual, we model the diffusion with as a lognormal Gaussian random field with

zero mean:

log a(x) ∼ GP (0, k(x,x′)), (3.32)

where, k is set to an exponential kernel with lengthscales `1 and `2 corresponding to

coordinates x1 and x2. We set `1 = `2 = 0.3.

To obtain a finite dimensional representation of the Gaussian random field, we

resort to the Karhunen-Loeve expansion:

log a(x) =
M∑
i=1

√
λiφi(x)ξi, (3.33)

where, ξi ∼ N (0, 1) are i.i.d. Gaussian. M = 350 terms are needed to retain 95% of

the variance of the random field.

We set up the bi-fidelity problem as follows. We consider a fine discretization(

64 × 64) and a coarse discretization (32 × 32) of the input domain. The FEM

solver is simulated Nlow = 900 times for the coarse mesh and Nhigh = 300 times for

fine mesh. We use Algorithm 4 to train the network with these Nlow +Nhigh = 1200

data samples from two fidelity levels. Separately, we generate datasets comprising of

only high-fidelity data samples, with varying dataset sizes and follow our standard

training procedure.

Fig. 3.20 shows the decay of the test set mean squared error obtained from models

trained with datasets comprising purely high-fidelity data. The errors obtained from

these monofidelity datasets are compared to the test error obtained from the bifidelity

dataset consisting of Nhigh and Nlow high fidelity and low fidelity data. We observe

that by augmenting a small number of high-fidelity runs (Nhigh) with a large number

of cheaper low fidelity runs (Nlow), we obtain a model that is as accurate as a model

obtained from training with a dataset with 800 high fidelity samples.

109

Figure 3.20. Comparison of the test dataset mean squared error (MSE) obtained from
a purely high-fidelity dataset of varying dataset sizes with the MSE from a bifidelity
dataset comprising data from runs of fine-grid and coarse-grid simulations.

3.10 Closing remarks

We propose a methodology for learning DNN surrogate models for uncertainty

quantification based on a parameterization of the DNN structure, such that the DNN

is a composition of an encoder and one-layer MLP. Our parameterization lends the

DNN surrogate the interpretation of recovering a nonlinear active subspace. We use

a combination of grid search and BGO to select model hyperparameters, namely, the

number of hidden layers, L, the width of the AS, h, and the weight decay regular-

ization constant, λ. We demonstrate our methodology with a UP problem in elliptic

SPDE with uncertain diffusion coefficient, and learn a surrogate which maps a ‘pic-

ture’ of the discretized version of the coefficient to the PDE solution. Furthermore,

we demonstrated that the DNN surrogate can effectively predict the solution of the

PDE, even for diffusion fields with lengthscales that are not used for training the

network.

110

This work is an early step towards using deep learning to create surrogate models

for high dimensional UQ tasks. UQ for state-of-the-art computational simulators are

notoriously difficult because of the prohibitive time span for individual simulations.

One can extend the methodology proposed in this work to a Bayesian treatment of

DNNs [172], i.e., imposing a prior on the weights of the NN and using approximate

inference techniques such as variational inference [140, 173] to estimate the posterior

distribution over the weights. Additionally, the Bayesian approach would allow one

to better quantify the epistemic uncertainty induced by limited data.

DNNs are also naturally suited for tasks for multilevel/multifidelity UQ [168,169,

171]. For instance, fully convolutional networks do not impose constraints on input

dimensionality and can be trained on data obtained from several simulators at varying

levels of fidelity. The hierarchical representation of information with a deep network

can be used to learn correlations between heterogeneous information sources.

111

4. GRADIENT-FREE ACTIVE SUBSPACE RECOVERY IN DEEP NEURAL

NETWORKS

1 Many quantities of interest in the engineering sciences are both expensive to obtain

and functions of a large number of input parameters. This makes construction of

surrogate models of these quantities of interest, for various UQ tasks, infeasible,

through naive approaches. Fortunately, such functions often exhibit some underlying

low-dimensional structure. Such structure might be in the form of a low dimensional

manifold or a decomposition of the function into an additive structure over several

low-dimensional functions. A key focus of this thesis has been on exploring approaches

to recover active subspaces - a specific kind of low-rank structure that is intrinsic to

a high-dimensional multivariate function. We saw, in Ch. 2, that the active subspace

representation can be embedded into a Gaussian process covariance kernel, lifting the

requirement of obtaining gradients of the function with respect to the input. This

was a significant relaxation over the classical approach to recovering active subspaces.

In Ch. 3, we tackled the problem of finding a nonlinear version of the active subspace

by posing the task in the framework of deep neural networks. The use of DNNs

allowed us to tackle UQ tasks that were much more ambitious in scope compared to

the GP approach laid out in Ch. 2. This is due to the inherent scalability advantages

of a parametric representation (such as DNN) over a nonparametric representation

such as GP. In this chapter, we present a methodology that applies the flexibility

and scalability of DNNs to the task of recovering the classical version of the active

subspace without access to gradient information. The key obstacle to our goal in this

approach is that the standard stochastic gradient descent (SGD) approach to training

1The contents of this chapter are reproduced, with permission, from the paper entitled “Deep Active
Subspaces: A Scalable Method for High-Dimensional Uncertainty Propagation” [174] published in
the Proceedings of the ASME 2019 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference (2019).

112

DNNs do not respect the necessary orthogonality constraints on the active subspace

projection matrix. To enforce these constraints, we rely on a reparameterization of

the weights of the first layer of the DNN, which makes our network amenable to

standard SGD routines for training while retaining AS projection orthogonality.

4.0.1 Formal problem description

Consider a physical system modeled with a (potentially complex, coupled) system

of partial differential equations. The PDE(s) is solved numerically using a black-

box computer code, which we denote as f . f may be thought of as a multivariate

function which accepts a vector of inputs ξ ∈ Ξ ⊂ RD and produces a scalar quantity

of interest (QoI) f(ξ) ∈ Y ⊂ R. Information about f may be obtained through

querying the solver at suitable input design locations ξ. We allow for the possibility

that our measurement from the computer code may be noisy, i.e., y = f(ξ) + ε,

where ε is a random variable (the measurement noise might arise as a consequence

of quasi-random stochasticity or chaotic behavior). Given this setup, the uncertainty

propagation (UP) task is summarized as follows. Given a formal description of the

uncertainty in the input parameters, ξ ∼ p(ξ), we would like to estimate the statistical

properties of the QoI. This includes, the probability density,

p(f) =

∫
δ(f − f(ξ))p(ξ)dξ, (4.1)

and measures of central tendency such as the mean:

µf =

∫
f(ξ)p(ξ)dξ, (4.2)

and variance:

σ2
f =

∫
(f(ξ)− µf)2p(ξ)dξ, (4.3)

where, δ(·) in Eqn. (4.1) refers to the Dirac δ-function.

113

As already discussed in the introduction, the standard MC method is infeasible

when there is a large computational cost associated with querying f and one must

resort to the surrogate approach - replacing the true simulator f with an accurate,

cheap-to-evaluate approximation, f̂ . To do this, one queries f at a set of N carefully

selected design locations X = (ξi)Ni=1, resulting in a corresponding set of measure-

ments, y = (yi)Ni=1. We refer to the observed data, collectively, as D = {X,y}.
Although the task of careful selection of the input design locations are a subject of a

great deal of research, an in-depth discussion of this topic is beyond the scope of the

present work. Here we simply assume that we are given D.

4.0.2 A review of active subspaces

The fact that we are working in a high-dimensional regime D(� 1) makes the

task of constructing an accurate surrogate model with limited data (N ≈ O(D))

practically infeasible because of the curse of dimensionality. To circumvent this, one

seeks to exploit low-rank structure within the true response f and methods for doing

so are broadly categorized as ‘dimensionality reduction’ techniques. In this work, we

focus on the case where the response admits the following structure:

f(ξ) = g(ζ) = g(WTξ), (4.4)

where, W ∈ RD×d is a tall-and-skinny matrix of orthogonal columns which projects

the high-dimensional input ξ to ζ lying in a d-dimensional subspace such that d� D.

In particular, W is constrained to be an element of the set:

Vd
(
RD
)

=
{
A ∈ RD×d : ATA = Id

}
. (4.5)

Vd
(
RD
)

is known as the Stiefel manifold with Id being the identity matrix in Rd×d and

g : Rd → R is known as the link function. The structure posited in Eqn. (4.4) takes on

physical meaning where the columns of W correspond to directions of the input space

114

most sensitive to variation in the response f . The dimensionality reduction induced

by the introduction of this structure, significantly simplifies the task of learning an

accurate surrogate model.

Classical approach to active subspace recovery

The classical approach to recovering the active subspace, introduced in [81], pro-

ceeds as follows. Let the gradient of the QoI w.r.t. the input be denoted as ∇ξf =(
∂f
∂ξ1
, ∂f
∂ξ2
, · · · , ∂f

∂ξD

)
∈ RD. Given a probability distribution ρ endowed upon the input

space, we define the symmetric positive semi-definite matrix,

C =

∫
(∇ξf(ξ))(∇ξf(ξ))Tρ(ξ)dξ, (4.6)

which admits the spectral decomposition C = VΛVT , where Λ is a diagonal matrix

of eigenvalues ordered by magnitude. Separating the d largest eigenvalues from the

rest, we can write the matrix of eigenvectors, V, as:

V = [V1,V2] , (4.7)

where, V1 ∈ RD×d is a matrix consisting of the eigenvectors corresponding to the d

largest eigenvalues and V2 ∈ RD×(D−d) is composed of the remaining eigenvectors.

The active subspace projection matrix, then, is simply, W = V1. Since the integral

in Eqn. (4.6) is intractable analytically (due to the black-box nature of f), one only

has access to discrete samples of the gradient at input locations ξ sampled from

the distribution ρ. Given a dataset of S gradient evaluations, g(i) = ∇ξf(ξ(i)), i =

1, 2, · · · , S, where the ξ(i)s are sampled iid from ρ, an approximation to the matrix C

may be constructed as:

CS =
1

S

S∑
i=1

g(i)g(i),T . (4.8)

115

One may think of the approximation CS as an empirical covariance matrix. After

recovering the projection matrix W through the above procedure, one can obtain

projected inputs, using z = WTx and using a suitable technique such as Kriging to

learn the link function g(·).

Recovering active subspaces without gradients within Gaussian processes

As discussed in Sec. 4.0.2, the classic approach to AS recovery requires the evalu-

ation of an empirical covariance matrix from samples of the gradient ∇ξf . Obtaining

gradient samples in challenging in practice. In some cases (such as simple dynamical

systems), one might have access to an adjoint solver which can compute the gra-

dients of the QoI wrt the input parameters [?]. In other cases, the gradients can

be approximated through finite differences (FD). Note that a single first-order FD

gradient evaluation requires 2 expensive forward model runs. Lastly, one might even

approximate gradients through approximate global models for the data [90]. In gen-

eral, the black-box nature of the response as well the associated cost of FD gradients

means that one simply does not have access to∇ξf and therefore cannot construct W

through the classical approach. To alleviate this limitation, [43] introduced a method-

ology for constructing surrogate models without requiring gradient information. The

gradient-free approach relies on two key ideas:

1. In GPR, prior knowledge about the underlying function can be encoded in a

principled manner through the mean and the covariance functions of the GP.

Thus, a new covariance kernel may be defined where the AS projection matrix

W is simply a hyperparameter and learned through available data, D. Formally,

the prior knowledge about the active subspace structure described in Eqn. (4.4)

is expressed through a GP kernel which takes on the form:

kAS(x,x′) = kbase(z, z
′) = kbase(W

Tx,WTx′), (4.9)

116

where, kbase(·, ·) is any standard kernel (such as the Matern or Radial basis

function (RBF) kernels) which expresses prior knowledge about the regular-

ity properties of the link function g(·). Once the active subspace kernel has

been defined, inference in GPR proceeds through the maximization of the log

marginal likelihood of the data wrt the kernel hyperparameters i.e.,

W∗,H∗, σ∗n = argmax
W,H

log p(y|X,W,H, σn), (4.10)

where, H is the set of all hyperparameters of the base kernel kbase, and σn is

the standard deviation of the likelihood noise.

2. While it is easy to enforce positivity constraints on the hyperparameters (H, σn) =

φ, the optimization task in Eqn. (4.10) is made challenging because of the fact

that it is non-trivial to enforce the orthogonality constraints on the projec-

tion matrix W. In order to do so, the complete methodology of [43] relies on

a coordinate-ascent scheme to iteratively optimize over the variables φ while

keeping W constant and vice versa. The optimization steps over φ proceed via

standard second-order techniques for unconstrained optimization, such as the

L-BFGS method [142]. The optimization steps over the projection matrix W

utilize an adapted version of gradient-ascent on the Stiefel manifold described

in [144].

4.0.3 Active subspace recovery in neural networks

The methodology introduced by [43] lifts the gradient requirement of the classical

approach to AS recovery by subsuming the AS projection matrix into the covariance

kernel of a GP. While the methodology is sound and experimentally shown to recover

the true AS, it suffers from two major drawbacks -

1. It is not agnostic to the choice of the surrogate model. Note that the gradient-

free method described in Sec. 4.0.2 necessitates a GP surrogate by construction.

117

Inspite of the elegance of GPR, arising out of the principled framework it of-

fers for incorporating prior knowledge, quantifying epistemic uncertainty and

performing model selection, its standard formulation scales poorly due to the

O(N3) inversion of the (potentially dense) covariance matrix required at each

optimization step. While sparse GPR [156, 157] partially alleviates this poor

scaling through the introduction of M(� N) inducing variables or ‘pseudo-

inputs’, the task of selecting or optimizing for the inducing input locations is

non-trivial.

2. The proposed solution for optimizing over the projection matrix W, while re-

specting orthogonality constraints, is itself non-trivial, introduces Dd additional

hyperparameters into the covariance kernel, and is prone to getting trapped in

local stationary points [43].

We propose, here, a much simpler approach that is:

1. Is agnostic to the choice of the link function approximator,

2. Is trivial to implement.

Specifically, we express W as:

W = h(Q), (4.11)

where, Q ∈ RD×d lies on the standard Euclidean space, and h : RD×d → RD×d

orthogonalizes the columns of Q. Specifically, we chose h to be the celebrated Gram-

Schmidt (GS) orthonormalization procedure [?]. The GS process may be summarized

as follows. Given an unconstrained matrix Q = [q1,q2, · · · ,qd] ∈ RD×d, where the

qis are the columns of Q, we apply the transformation,

wi = wi−1 −
(

wT
i−1qi

wT
i−1wi−1

)
wi−1, i = 2, 3, · · · , d, (4.12)

118

with w1 = q1. The projection matrix W is then assembled by normalizing the wis,

i.e., W =
[

w1

‖w1‖2 ,
w2

‖w2‖2 , · · · ,
wd

‖wd‖2

]
.

Now one only needs to care about the the Euclidean matrix Q, and optimize it to

the available data. Noting that the transformation specified by Eqn. (4.12) is fully

differentiable (as it composed entirely of differentiable mathematical operations), one

may simply define a routine implementing the GS process using a backpropagation-

capable library (such as TensorFlow or PyTorch) to obtain exact gradients of any

QoI wrt Q.

Since the projection matrix W has been reparameterized without any concern for

the specific structure of the link function, g, we are free to pick any suitable class of

function approximator for g. In this work, we define g to be a deep neural networks

(DNN) [112], a class of highly flexible nonlinear function approximators with satisfy

universal approximation properties. Formally, a L-layered DNN representation for g

is defined as:

g(z) = fL+1 ◦ fL ◦ · · · ◦ f1(z), (4.13)

where, fi(zi−1) = hi(W
T
i zi−1 + bi), with Wi ∈ Rdi×di−1 ,bi ∈ Rdi , zi = Rdi , z0 =

z, zL+1 = g(z), and hi(·) is a suitable nonlinear function applied elementwise on

its argument. hL+1 is set to be the identity function (since we are dealing with

unconstrained real-valued outputs) and the other his are set as the hyperbolic tangent

function, a standard choice in the literature. The matrices Wis and the vectors bis are

called the ‘weights’ and ‘biases’ of the DNN and here we denote all of them collectively

as θ = {W1,W2, · · · ,WL+1,b1,b2, · · · ,bL+1}. The full surrogate, is there expressed

as:

f̂(ξ;θ) = g(h(Q)T¸;θ), (4.14)

where the unknown parameters (θ,Q) can be optimized through standard gradient-

descent techniques. In this work, we use the famous Adaptive Moments (ADAM)

optimization method [122].

119

4.0.4 Synthetic example with known active subspace

Let f : RD → R such that f(ξ) = g(ζ) = g(WTξ) where W ∈ Vd
(
RD
)
. Define

g : Rd → R as a quadratic function in Rd:

g(ζ) = WTξ = α + βTζ + ζTΓζ. (4.15)

The gradients of f are given by

∇f(ξ) =
(
β + 2ξTWΓ

)
WT . (4.16)

For this pedagogical example, we set D = 20 and test our approach on two cases

with true AS dimensionality, d = 1 and 2. The data for inputs ξ, α, β and Γ are

generated by sampling standard Gaussians of appropriate shapes. The matrix W

is generated by performing the QR decomposition on a similarly generated matrix

in RD×d. The random seed is fixed for reproducibility. The output data y used for

training is standardized, i.e. it is scaled to have 0 mean and unit variance.

Case 1: 1 dimensional active subspace

We begin testing our proposed gradient-free approach on a synthetic function

which has an AS of dimensionality d = 1. To train the AS DNN, we use N = 50

input-output observations. Furthermore, the output data is corrupted with zero mean

Gaussian noise of standard deviation 1 × 10−2. The link function is approximated

with a 2 layer DNN of 50 units per hidden layer and L2 regularization with a weight

decay constant of 1 × 10−4 is used to prevent overfitting. The ADAM optimizer is

set to perform 3 × 104 iterations with a base learning rate of 1 × 10−3 dropped by

a factor of 10 every 104 iterations. In Fig. 4.1 we visually compare the true AS

for this case and the AS discovered by the DNN. We note that they are very close,

indicating that our approach has found the correct AS upto a rotation of the y axis.

Fig. 4.1 also shows a comparison of the AS DNN predicted response with the true

120

response from a test dataset of 500 observations. Qualitatively, the predictions match

the observations very closely. Quantitatively, we achieve a root mean square error

of 0.039689 on the test dataset. Note that we pursue no further optimization of our

DNN structure.

3 2 1 0 1 2 3
z

0

2

4

6

8

y
=

g(
z)

True AS

0 5 10 15
i

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

i

Eigenvalues

3 2 1 0 1 2 3
z

1

0

1

2

3

4

5

6

7

y
=

g(
z)

Predicted AS

0 2 4 6
ytest

0

2

4

6

8

y p
re

di
ct

ed

N = 50

x = y line
Observation vs Prediction

Figure 4.1. Synthetic function with D = 20 input dimensions admitting an d =
1 dimensional active subspace. Top left - True link function of f . Bottom left -
Link function predicted by DNN. Top right - Spectral decomposition of the empirical
covariance of the gradients. Bottom right - Comparison of predicted output and
correct output on the test dataset.

121

4.0.5 Case 2: 2 dimensional active subspace

We now test our proposed on a synthetic function with AS dimensionality, d = 2.

We use N = 100 input-output observations for training and corrupt the output data

with zero mean Gaussian noise of standard deviation 1 × 10−2. We retain all other

experimental settings from Sec. 4.0.4. A comparison of the true AS and the predicted

AS shown in Fig. 4.2 reveals that we recover the low-dimensional quadratic response

upto arbitrary rotations of the coordinate system. We compare the predicted response

of the AS DNN and true outputs from a test dataset of 500 observations. Again, we

obtain excellent qualitative agreement as seen in Fig. 4.2 and quantitatively, we obtain

a root mean squared error of 0.028748 between the predicted and true outputs.

4.0.6 Benchmark elliptic PDE example

Consider the following stochastic elliptic partial differential equation defined on

the unit square in R2:

∇ · (a(s)∇u(s)) = 1, s ∈ Ω = [0, 1]2, (4.17)

with boundary conditions:

u(s) = 0, s ∈ Γu, (4.18)

∇u(s) · n = 0, s ∈ Γn, (4.19)

where, Γu is the top, bottom and left boundaries and Γn denotes the right boundary

of Ω. The diffusion coefficient a (or conductivity field) is a spatially-varying uncertain

122

z1

3
2

1
0

1
2

3

z2

3
2

1
0

1
2

3

y
=

g(
z)

2

4

6

8

10

True AS

z1

3
2

1
0

1
2

3

z2

3
2

1
0

1
2

3

y
=

g(
z)

0

2

4

6

8

10

Deep AS

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
i

0

1

2

3

4

i

Eigenvalues

1 0 1 2 3 4 5
ytest

1

0

1

2

3

4

5

y p
re

di
ct

ed

N = 100

x = y line
Observation vs Prediction

Figure 4.2. Synthetic function with D = 20 input dimensions admitting an d =
2 dimensional active subspace. Top left - True link function of f . Bottom left -
Link function predicted by DNN. Top right - Spectral decomposition of the empirical
covariance of the gradients. Bottom right - Comparison of predicted output and
correct output on the test dataset.

input, and its logarithm is modeled as a 0-mean Gaussian random field, i.e., log a(s) ∼
GP (a|0, k(s, s′))), where, the covariance function k is defined as follows:

k(s, s′) = exp

(
−
∑2

i=1|si − s
′
i|

`

)
, (4.20)

with ` being the correlation length. This formalization of the uncertainty around a(s)

makes it a stochastic process - an infinite dimensional quantity. We use the truncated

123

KL expansion to perform a preliminary dimensionality reduction by expressing the

logarithm of the field as:

log a(s) =
100∑
i=1

√
λiϕi(s)xi, (4.21)

where, the λis and the ϕis are the eigenvalues and eigenfunctions of the correlation

function, numerically obtained using the Nyström approximation [47], and the xis are

uncorrelated, standard normal random variables. Denote all the xis collectively as

x = (x1, x2, · · · , x100) ∼ N (x|0, I100). We are interested in the following scalar QoI:

q(x) = F [u(s; x)] =
1

|Γ2|

∫
u(s; x)ds. (4.22)

Given a realization of the random variable, x = (x1, x2, · · · , x100), one can generate

a realization of the QoI, q, whose statistics one wishes to estimate. We have, at our

disposal, a dataset of 300 realizations of the random variable x and the corresponding

solution q. With this dataset, we construct a surrogate that maps x to q, i.e., f̂ :

R100 → R. We will consider two cases of the correlation length ` - a short correlation

length of ` = 0.01 and a long correlation length of ` = 1 and attempt to recover as AS

with d = 1. We randomly shuffle and split the data into a training set of 250 samples,

and test on the remaining 50 samples. The output data is standardized to have

zero mean and unit variance for numerical stability. The dataset for this example,

and the code to generate it, can be found here: https://github.com/paulcon/as-

data-sets/tree/master/Elliptic PDE. Once again, we set our approximation of the

link function to be a DNN with 2 hidden layers and 50 units per layer. All other

experimental settings from Sec. 4.0.4 are retained. Lastly, for this example, samples

of the QoI gradients are available and we use this to compare our results with the

results obtained from classic AS. For the case of the classic AS, we use GPR as the

link function.

https://github.com/paulcon/as-data-sets/tree/master/Elliptic_PDE
https://github.com/paulcon/as-data-sets/tree/master/Elliptic_PDE

124

2 1 0 1 2
z

1

0

1

2

3

4

5

6

y
=

g(
z)

AS (classic)

2 1 0 1 2
z

1

0

1

2

3

4

5

6

y
=

g(
z)

AS (DNN)

1 0 1 2
ytest

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

y p
re

di
ct

ed

Classic AS

x = y line
Observation vs Prediction

1 0 1 2
ytest

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

y p
re

di
ct

ed

DNN AS

x = y line
Observation vs Prediction

Figure 4.3. Stochastic elliptic PDE with ` = 1 - The plots on the top visualize the
1d link function recovered by our gradient-free DNN AS approach and the classic AS
approach. The bottom plots compare the output predictions vs observations on the
test dataset for the DNN AS and the classic AS approaches.

Fig. 4.3 shows results comparing the deep AS approach and the classic AS ap-

proach for the ` = 1 case. Fig. 4.4 shows the same for the case of ` = 0.01. We observe

that there is good qualitative agreement between the AS recovered by gradient-free

deep AS approach and the gradient-based classic approach. This serves to verify the

fact that our approach does indeed recover the correct AS. Table 4.1 shows a com-

125

3 2 1 0 1 2 3
z

3

2

1

0

1

2

3

y
=

g(
z)

AS (classic)

3 2 1 0 1 2 3
z

3

2

1

0

1

2

3

y
=

g(
z)

AS (DNN)

2 1 0 1 2
ytest

2

1

0

1

2

y p
re

di
ct

ed

Classic AS

x = y line
Observation vs Prediction

2 1 0 1 2
ytest

2

1

0

1

2

y p
re

di
ct

ed

DNN AS

x = y line
Observation vs Prediction

Figure 4.4. Stochastic elliptic PDE with ` = 0.01 - The plots on the top visualize the
1d link function recovered by our gradient-free DNN AS approach and the classic AS
approach. The bottom plots compare the output predictions vs observations on the
test dataset for the DNN AS and the classic AS approaches.

parison of the RMSE error in the prediction of the outputs from the test dataset, for

both ` cases. We observe that inspite of the fact that we do not use the information

about the gradients of QoI, our gradient-free deep AS approach is are able to achieve

RMSE comparable to the classic AS. Once again, we emphasize that we do not pursue

optimization of the modeling choices involved in the DNN approximation of the link

126

function.

Table 4.1. Root mean square error (RMSE) on test dataset predictions from classic
AS and deep AS response surfaces.

Approach ` = 1 ` = 0.01

Classic AS 0.04378 0.17276
Deep AS 0.09241 0.23626

An interesting observation that emerges from the comparison of the classic and

deep AS approaches for the short correlation length in Fig. 4.4 is that inspite of

recovering a one-dimensional AS, the test data predictions from both approaches show

a discrepancy from their true values. Since the QoI is generated from a deterministic

computer code, we cannot explain this deviation as ‘noise’. Rather, this suggests

that a linear dimensionality reduction is sub-optimal and one might wish to recover a

nonlinear generalization of the active subspace, such as the one discussed in [155]. An

investigation into this shortcoming is beyond the scope of the present work. Finally,

one may note that both the classic and the deep AS approaches perform much better

on the ` = 1 case, relative to the ` = 0.01 case. This is unsurprising, considering that

it becomes much more difficult to capture the uncertainty of the diffusion coefficient

as its lengthscale reduces.

127

5. FUTURE WORK AND CONCLUSIONS

We conclude this thesis with a brief review of the work done so far in Sec. 5.1 followed

by a discussion on open questions and future directions in Sec. 5.2.

5.1 Dissertation summary

The standard workflow for a team of computational scientists is divided, broadly,

into two stages - (i) pose a mathematical model (typically a complex system of

ODEs/PDEs) to describe the dynamics of the system under investigation, and, (ii)

employ the most sophisticated numerical method available at their disposal, subject

to a computational budget. Typical numerical solvers are characterized by a large

number of input parameters - initial/boundary conditions (IC/BCs), material prop-

erties etc. It is fairly typical for many of these parameters, in a realistic problem, to

be uncertain, i.e., we have incomplete information about an input to a computational

solver, and this uncertainty is characterized quantitatively through a suitable prob-

ability distribution. ‘Uncertainty quantification’, then, can involve one or more of

several categories of tasks such as the forward (or propagation) problem, the inverse

(or the model calibration) problem, sensitivity analysis, optimization under uncer-

tainty etc., as discussed in Ch. 1. In practice, much of UQ amounts to complex

high-dimensional density estimation tasks. While classical Monte Carlo (MC) ap-

proaches are very well-suited for high-dimensional density estimation, they require

far too many evaluations of the computational solver to be feasible under a realis-

tic simulation budget. Thus, one has to resort to constructing a surrogate of the

computational budget which can make accurate predictions of the quantity of the

interest while being cheap to evaluate. Under the high-dimensional setting, the curse

of dimensionality provides an insurmountable obstacle to the task of constructing

128

accurate surrogates under limited simulation budgets. Our work in this disserta-

tion has focused on developed machine learning based approaches to mitigate the

curse of dimensionality by exploiting the underlying structure of the quantity of in-

terest. Towards this end we developed approaches to construct Gaussian process and

DNN surrogate models that encode both linear and nonlinear dimensionality reduc-

tion and have applied our proposed approaches to various challenging problems in

high-dimensional surrogate modeling with reasonable success.

5.2 Open questions and future work

The work performed as part of this dissertation explore ideas around discovering

intrinsic structure in high-dimensional functions to make uncertainty quantification

feasible in such cases. Results, while encouraging, are a small step towards the goal

of accurate and scalable data-driven uncertainty quantification. A holistic program

for data-driven uncertainty quantification needs to incorporate:

1. Underlying intrinsic structure in quantities of interest,

2. Be amenable to incorporating data sourced from multiple simulators and/or

experiments,

3. Any available information around the physics such as governing PDEs, invari-

ances, symmetries etc., and,

4. Exploit group structure and latent structure in dynamical systems.

In this thesis we have tackled some aspects of items 1 and 2 from the (non-

exhaustive) list above. Future work on the subject of high-dimensional UQ needs to

focus on the question of how to incorporate physics into machine learning. This is a

burgeoning area of research, popularized fairly recently, and is colloquially known as

physics-informed machine learning (PIML) which we discuss in some further detail in

Sec. 5.2.1. Furthermore, while the present work is agnostic to time-dependence in the

129

underlying model, there are properties (such as flow map semigroup structure [175]

and Koopman operators [176]) exhibited in dynamical systems, specifically, which

can be exploited to produce better predictive models. We elaborate upon these ideas

in Sec. 5.2.2.

5.2.1 Physics-informed machine learning

To construct a computationally inexpensive surrogate model connecting uncertain

input parameters (material properties/constitutive relations) to quantities of inter-

est (solution field variables), one can develop a more data efficient methodology by

leveraging physical information. For instance, a DNN surrogate such as the ones used

in Ch. 3 can be regularized by the addition of additional penalty terms in the loss

function which (softly) enforce the constraint the surrogate must satisfy the govern-

ing physics. Such constraints impose inductive biases on the DNN whose regularizing

effect can dramatically reduce data-requirements (or even completely eliminate it).

Consider, for instance, the task of propagating uncertainty through a stochastic PDE.

The associated physics can be incorporated through the corresponding variational

principle. A physical process governed by the PDE may be expressed as A[u(x)] = 0,

where, A[·] is some nonlinear PDE operator. Given an appropriate Lagrangian density

function L(u, x), the solution of the aforementioned PDE can be estimate through

the minimization of the energy functional - I[u] =
∫
L(u,∇u,x)dx [177]. This is

achieved by setting the first variation of the energy functional to zero, i.e., δI = 0.

Doing so leads to the celebrated Euler-Lagrange equations [178]. A special case of

this idea is the Dirichlet principle [177] - a variational principle for the solution of

Laplace’s equation. For discrete mechanical systems, this is referred to as the prin-

ciple of least action [179], where the Lagrangian is defined as the sum of the kinetic

and potential energy of the system as a function of the system’s generalized coor-

dinates. To account for the stochastic parameters in the problem, the energy func-

tional is modified by introducing an additional integral over the uncertain parameters

130

- I[u(x;ω)] =
∫

Ω

∫
X L(∇u, u,x, ω)dxdω. Indeed, this is the approach we take in our

recent work on UQ in stochastic elliptic PDEs [180] where we do not use any data

obtained from runs of a computational simulator.

5.2.2 Group-theoretic and latent structure in high-dimensional stochastic

dynamical systems

It is well-known that dynamical systems exhibit a 1-parameter Lie group sym-

metry in the time variable. For any given dynamical system there exists a group

transformation operator gt which evolves the state of the system, z, from it’s initial

condition (z0) to it’s state at time t (zt). Following the theory of Lie groups, gt may

be expressed as gt(·) = exp(tv)(·), where v = 〈ξ,∇z〉 is the infinitesimal generator

and ξ is a suitable vector field. Using a truncated approximation of the exponential

map and a DNN representation of ξ, one might attempt to learn the infinitesimal

generator, either from experimental data on the state variables or through available

physics (PDEs).

Long range simulation/forecasting in high-dimensional nonlinear dynamical sys-

tems is extremely challenging. A standard approach for making system amenable

to prediction is to exploit intrinsic linear structure. See, for instance, recent works

in [181–183]. A topic worthy of detailed exploration is the application of genera-

tive models to discover intrinsic low-dimensional latent structure of high-dimensional

chaotic dynamical systems, such that the dynamics in the intrinsic space is linear and

amenable to long range forecasting and prediction.

REFERENCES

131

REFERENCES

[1] Ralph C Smith. Uncertainty quantification: theory, implementation, and appli-
cations, volume 12. Siam, 2013.

[2] Xiaoping Du and Wei Chen. Efficient uncertainty analysis methods for multi-
disciplinary robust design. AIAA journal, 40(3):545–552, 2002.

[3] Francesco D’auria, Nenad Debrecin, and Giorgio Maria Galassi. Outline of the
uncertainty methodology based on accuracy extrapolation. Nuclear technology,
109(1):21–38, 1995.

[4] William L Oberkampf, Jon C Helton, Cliff A Joslyn, Steven F Wojtkiewicz,
and Scott Ferson. Challenge problems: uncertainty in system response given
uncertain parameters. Reliability Engineering & System Safety, 85(1-3):11–19,
2004.

[5] Jun S Liu. Monte Carlo strategies in scientific computing. Springer Science &
Business Media, 2008.

[6] Christian Robert and George Casella. Monte Carlo statistical methods. Springer
Science & Business Media, 2013.

[7] William J Morokoff and Russel E Caflisch. Quasi-monte carlo integration. Jour-
nal of computational physics, 122(2):218–230, 1995.

[8] Andrea Barth, Christoph Schwab, and Nathaniel Zollinger. Multi-level monte
carlo finite element method for elliptic pdes with stochastic coefficients. Nu-
merische Mathematik, 119(1):123–161, 2011.

[9] Frances Y Kuo, Christoph Schwab, and Ian H Sloan. Quasi-monte carlo finite
element methods for a class of elliptic partial differential equations with random
coefficients. SIAM Journal on Numerical Analysis, 50(6):3351–3374, 2012.

[10] Albert Tarantola. Inverse problem theory and methods for model parameter
estimation, volume 89. siam, 2005.

[11] Ilias Bilionis, Beth A Drewniak, and Emil M Constantinescu. Crop physiology
calibration in the clm. Geoscientific Model Development, 8(4):1071–1083, 2015.

[12] James C Spall. Introduction to stochastic search and optimization: estimation,
simulation, and control, volume 65. John Wiley & Sons, 2005.

[13] Ilias Bilionis and Phaedon-Stelios Koutsourelakis. Free energy computations
by minimization of kullback–leibler divergence: An efficient adaptive biasing
potential method for sparse representations. Journal of Computational Physics,
231(9):3849–3870, 2012.

132

[14] Ilias Bilionis and Nicholas Zabaras. A stochastic optimization approach to
coarse-graining using a relative-entropy framework. The Journal of chemical
physics, 138(4):044313, 2013.

[15] Anthony O’Hagan. Monte carlo is fundamentally unsound. The Statistician,
pages 247–249, 1987.

[16] Bernhard Wieneke. Piv uncertainty quantification from correlation statistics.
Measurement Science and Technology, 26(7):074002, 2015.

[17] Andrea Sciacchitano, Bernhard Wieneke, and Fulvio Scarano. Piv uncer-
tainty quantification by image matching. Measurement Science and Technology,
24(4):045302, 2013.

[18] Aaron Boomsma, Sayantan Bhattacharya, Dan Troolin, Stamatios Pothos, and
Pavlos Vlachos. A comparative experimental evaluation of uncertainty estima-
tion methods for two-component piv. Measurement Science and Technology,
27(9):094006, 2016.

[19] D Boon, Richard Dwight, JJ Sterenborg, and Hester Bijl. Reducing un-
certainties in a wind-tunnel experiment using bayesian updating. In 53rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materi-
als Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th
AIAA, page 1856, 2012.

[20] Uri M Ascher and Chen Greif. A first course on numerical methods, volume 7.
Siam, 2011.

[21] DW Kelly, JP De SR Gago, OC Zienkiewicz, and I Babuska. A posteriori error
analysis and adaptive processes in the finite element method: Part i—error anal-
ysis. International journal for numerical methods in engineering, 19(11):1593–
1619, 1983.

[22] Michael B Giles and Endre Süli. Adjoint methods for pdes: a posteriori error
analysis and postprocessing by duality. Acta numerica, 11:145–236, 2002.

[23] Ivo Babuska and Werner C Rheinboldt. A posteriori error analysis of finite
element solutions for one-dimensional problems. SIAM Journal on Numerical
Analysis, 18(3):565–589, 1981.

[24] Mark Ainsworth and J Tinsley Oden. A posteriori error estimation in finite
element analysis, volume 37. John Wiley & Sons, 2011.

[25] Inseok Park, Hemanth K Amarchinta, and Ramana V Grandhi. A bayesian
approach for quantification of model uncertainty. Reliability Engineering &
System Safety, 95(7):777–785, 2010.

[26] Heng Xiao, J-L Wu, J-X Wang, Rui Sun, and CJ Roy. Quantifying and reduc-
ing model-form uncertainties in reynolds-averaged navier–stokes simulations:
A data-driven, physics-informed bayesian approach. Journal of Computational
Physics, 324:115–136, 2016.

[27] Nicholas Geneva and Nicholas Zabaras. Quantifying model form uncertainty
in reynolds-averaged turbulence models with bayesian deep neural networks.
Journal of Computational Physics, 383:125–147, 2019.

133

[28] Samuel Temple Reeve and Alejandro Strachan. Error correction in multi-fidelity
molecular dynamics simulations using functional uncertainty quantification.
Journal of Computational Physics, 334:207–220, 2017.

[29] Alejandro Strachan, Sankaran Mahadevan, Vadiraj Hombal, and Lin Sun. Func-
tional derivatives for uncertainty quantification and error estimation and reduc-
tion via optimal high-fidelity simulations. Modelling and Simulation in Mate-
rials Science and Engineering, 21(6):065009, 2013.

[30] Timothy John Sullivan. Introduction to uncertainty quantification, volume 63.
Springer, 2015.

[31] Lorenz T Biegler, Omar Ghattas, Matthias Heinkenschloss, and Bart van Bloe-
men Waanders. Large-scale pde-constrained optimization: an introduction. In
Large-Scale PDE-Constrained Optimization, pages 3–13. Springer, 2003.

[32] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science
& Business Media, 2006.

[33] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[34] James C Spall. A one-measurement form of simultaneous perturbation stochas-
tic approximation. Automatica, 33(1):109–112, 1997.

[35] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian opti-
mization of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.

[36] Christopher Z Mooney. Monte carlo simulation, volume 116. Sage publications,
1997.

[37] Piero Baraldi and Enrico Zio. A combined monte carlo and possibilistic
approach to uncertainty propagation in event tree analysis. Risk Analysis,
28(5):1309–1326, 2008.

[38] Klaus Mosegaard and Albert Tarantola. Monte carlo sampling of solutions to
inverse problems. Journal of Geophysical Research: Solid Earth, 100(B7):12431–
12447, 1995.

[39] Klaus Mosegaard and Malcolm Sambridge. Monte carlo analysis of inverse
problems. Inverse Problems, 18(3):R29, 2002.

[40] Ilias Bilionis, Beth A Drewniak, and Emil M Constantinescu. Crop physiology
calibration in the clm. Geoscientific Model Development, 8(4):1071–1083, 2015.

[41] James C Spall. Introduction to stochastic search and optimization: estimation,
simulation, and control, volume 65. John Wiley & Sons, 2005.

[42] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes
for Machine Learning (Adaptive Computation and Machine Learning). The
MIT Press, 2005.

[43] Rohit Tripathy, Ilias Bilionis, and Marcial Gonzalez. Gaussian processes with
built-in dimensionality reduction: Applications to high-dimensional uncertainty
propagation. Journal of Computational Physics, 321:191–223, 2016.

134

[44] Ilias Bilionis and Nicholas Zabaras. Multi-output local gaussian process re-
gression: Applications to uncertainty quantification. Journal of Computational
Physics, 231(17):5718–5746, 2012.

[45] Ilias Bilionis, Nicholas Zabaras, Bledar A Konomi, and Guang Lin. Multi-
output separable gaussian process: Towards an efficient, fully bayesian
paradigm for uncertainty quantification. Journal of Computational Physics,
241:212–239, 2013.

[46] Peng Chen, Nicholas Zabaras, and Ilias Bilionis. Uncertainty propagation us-
ing infinite mixture of gaussian processes and variational bayesian inference.
Journal of Computational Physics, 284:291–333, 2015.

[47] Ilias Bilionis and Nicholas Zabaras. Bayesian uncertainty propagation using
gaussian processes. Handbook of Uncertainty Quantification, pages 1–45, 2016.

[48] Dongbin Xiu and Jan S Hesthaven. High-order collocation methods for differ-
ential equations with random inputs. SIAM Journal on Scientific Computing,
27(3):1118–1139, 2005.

[49] Dongbin Xiu and George Em Karniadakis. The wiener–askey polynomial chaos
for stochastic differential equations. SIAM journal on scientific computing,
24(2):619–644, 2002.

[50] Dongbin Xiu. Efficient collocational approach for parametric uncertainty anal-
ysis. Commun. Comput. Phys, 2(2):293–309, 2007.

[51] Habib N Najm. Uncertainty quantification and polynomial chaos techniques
in computational fluid dynamics. Annual review of fluid mechanics, 41:35–52,
2009.

[52] Youssef M Marzouk, Habib N Najm, and Larry A Rahn. Stochastic spectral
methods for efficient bayesian solution of inverse problems. Journal of Compu-
tational Physics, 224(2):560–586, 2007.

[53] Silvia Volpi, Matteo Diez, Nicholas J Gaul, Hyeongjin Song, Umberto Iemma,
KK Choi, Emilio F Campana, and Frederick Stern. Development and validation
of a dynamic metamodel based on stochastic radial basis functions and uncer-
tainty quantification. Structural and Multidisciplinary Optimization, 51(2):347–
368, 2015.

[54] GJA Loeven, JAS Witteveen, and H Bijl. A probabilistic radial basis function
approach for uncertainty quantification. In Proceedings of the NATO RTO-MP-
AVT-147 Computational Uncertainty in Military Vehicle design symposium,
2007.

[55] Panagiotis Tsilifis, Iason Papaioannou, Daniel Straub, and Fabio Nobile. Sparse
polynomial chaos expansions using variational relevance vector machines. arXiv
preprint arXiv:1912.11029, 2019.

[56] Eamonn Keogh and Abdullah Mueen. Curse of dimensionality. In Encyclopedia
of Machine Learning, pages 257–258. Springer, 2011.

[57] Yoshua Bengio, Olivier Delalleau, and Nicolas L Roux. The curse of highly
variable functions for local kernel machines. In Advances in neural information
processing systems, pages 107–114, 2006.

135

[58] Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica
Cariboni, Debora Gatelli, Michaela Saisana, and Stefano Tarantola. Global
sensitivity analysis: the primer. John Wiley & Sons, 2008.

[59] David JC MacKay. Bayesian interpolation. Neural computation, 4(3):415–447,
1992.

[60] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer
Science & Business Media, 2012.

[61] Radford M Neal. Assessing relevance determination methods using delve. Nato
Asi Series F Computer And Systems Sciences, 168:97–132, 1998.

[62] Roger G Ghanem and Pol D Spanos. Stochastic finite element method: Re-
sponse statistics. In Stochastic Finite Elements: A Spectral Approach, pages
101–119. Springer, 1991.

[63] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science, 2(11):559–572, 1901.

[64] Xiang Ma and Nicholas Zabaras. Kernel principal component analysis
for stochastic input model generation. Journal of Computational Physics,
230(19):7311–7331, 2011.

[65] Jesper Kristensen, Ilias Bilionis, and Nicholas Zabaras. Adaptive simulation
selection for the discovery of the ground state line of binary alloys with a limited
computational budget. In Recent Progress and Modern Challenges in Applied
Mathematics, Modeling and Computational Science, pages 185–211. Springer,
2017.

[66] Herschel Rabitz and Ömer F Aliş. General foundations of high-dimensional
model representations. Journal of Mathematical Chemistry, 25(2-3):197–233,
1999.

[67] Ömer F Alış and Herschel Rabitz. Efficient implementation of high dimen-
sional model representations. Journal of Mathematical Chemistry, 29(2):127–
142, 2001.

[68] Genyuan Li, Carey Rosenthal, and Herschel Rabitz. High dimensional model
representations. The Journal of Physical Chemistry A, 105(33):7765–7777,
2001.

[69] Genyuan Li, Sheng-Wei Wang, Carey Rosenthal, and Herschel Rabitz. High di-
mensional model representations generated from low dimensional data samples.
i. mp-cut-hdmr. Journal of Mathematical Chemistry, 30(1):1–30, 2001.

[70] Rajib Chowdhury, BN Rao, and A Meher Prasad. High-dimensional model
representation for structural reliability analysis. Communications in Numerical
Methods in Engineering, 25(4):301–337, 2009.

[71] Xiang Ma and Nicholas Zabaras. An adaptive high-dimensional stochastic
model representation technique for the solution of stochastic partial differential
equations. Journal of Computational Physics, 229(10):3884–3915, 2010.

136

[72] Jia Wei, Guang Lin, Lijian Jiang, and Yalchin Efendiev. Analysis of variance-
based mixed multiscale finite element method and applications in stochastic
two-phase flows. International Journal for Uncertainty Quantification, 4(6),
2014.

[73] Zhiwen Zhang, Xin Hu, Thomas Y Hou, Guang Lin, and Mike Yan. An adap-
tive anova-based data-driven stochastic method for elliptic pdes with random
coefficient. Communications in Computational Physics, 16(2):571–598, 2014.

[74] Tony A Plate. Accuracy versus interpretability in flexible modeling: Implement-
ing a tradeoff using gaussian process models. Behaviormetrika, 26(1):29–50,
1999.

[75] Cari G Kaufman, Stephan R Sain, et al. Bayesian functional {ANOVA} model-
ing using gaussian process prior distributions. Bayesian Analysis, 5(1):123–149,
2010.

[76] Nicolas Durrande, David Ginsbourger, Olivier Roustant, and Laurent Carraro.
Additive covariance kernels for high-dimensional gaussian process modeling.
arXiv preprint arXiv:1111.6233, 2011.

[77] David K Duvenaud, Hannes Nickisch, and Carl E Rasmussen. Additive gaussian
processes. In Advances in neural information processing systems, pages 226–234,
2011.

[78] Elad Gilboa, Yunus Saatçi, and John P Cunningham. Scaling multidimensional
inference for structured gaussian processes. IEEE transactions on pattern anal-
ysis and machine intelligence, 37(2):424–436, 2015.

[79] XuanLong Nguyen and Alan E Gelfand. Bayesian nonparametric modeling for
functional analysis of variance. Annals of the Institute of Statistical Mathemat-
ics, 66(3):495–526, 2014.

[80] Trent Michael Russi. Uncertainty quantification with experimental data and
complex system models. PhD thesis, UC Berkeley, 2010.

[81] Paul G Constantine, Eric Dow, and Qiqi Wang. Active subspace methods
in theory and practice: applications to kriging surfaces. SIAM Journal on
Scientific Computing, 36(4):A1500–A1524, 2014.

[82] Paul G Constantine. A quick-and-dirty check for a one-dimensional active sub-
space. arXiv preprint arXiv:1402.3838, 2014.

[83] Paul Constantine and David Gleich. Computing active subspaces with monte
carlo. arXiv preprint arXiv:1408.0545, 2014.

[84] Paul G Constantine, Armin Eftekhari, and Michael B Wakin. Computing active
subspaces efficiently with gradient sketching. arXiv preprint arXiv:1506.04190,
2015.

[85] Paul G Constantine. Active subspaces: Emerging ideas for dimension reduction
in parameter studies, volume 2. SIAM, 2015.

[86] Paul G Constantine, Carson Kent, and Tan Bui-Thanh. Accelerating markov
chain monte carlo with active subspaces. SIAM Journal on Scientific Comput-
ing, 38(5):A2779–A2805, 2016.

137

[87] Zachary J Grey and Paul G Constantine. Active subspaces of airfoil shape
parameterizations. AIAA Journal, 56(5):2003–2017, 2018.

[88] Trent W Lukaczyk, Paul Constantine, Francisco Palacios, and Juan J Alonso.
Active subspaces for shape optimization. In 10th AIAA Multidisciplinary Design
Optimization Conference, page 1171, 2014.

[89] Paul G Constantine, Brian Zaharatos, and Mark Campanelli. Discovering an
active subspace in a single-diode solar cell model. Statistical Analysis and Data
Mining: The ASA Data Science Journal, 8(5-6):264–273, 2015.

[90] Jennifer L Jefferson, James M Gilbert, Paul G Constantine, and Reed M
Maxwell. Active subspaces for sensitivity analysis and dimension reduction of
an integrated hydrologic model. Computers & Geosciences, 83:127–138, 2015.

[91] Paul G Constantine, Michael Emory, Johan Larsson, and Gianluca Iaccarino.
Exploiting active subspaces to quantify uncertainty in the numerical simulation
of the hyshot ii scramjet. Journal of Computational Physics, 302:1–20, 2015.

[92] Carsten Othmer, Trent W Lukaczyk, Paul Constantine, and Juan J Alonso. On
active subspaces in car aerodynamics. In 17th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, page 4294, 2016.

[93] Zachary del Rosario, Paul Constantine, and Gianluca Iaccarino. Developing
design insight through active subspaces. In 19th AIAA Non-Deterministic Ap-
proaches Conference, page 1090, 2017.

[94] Andrew Glaws, Paul G Constantine, John N Shadid, and Timothy M Wildey.
Dimension reduction in magnetohydrodynamics power generation models: Di-
mensional analysis and active subspaces. Statistical Analysis and Data Mining:
The ASA Data Science Journal, 10(5):312–325, 2017.

[95] R-E Plessix. A review of the adjoint-state method for computing the gradient of
a functional with geophysical applications. Geophysical Journal International,
167(2):495–503, 2006.

[96] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and
techniques of algorithmic differentiation, volume 105. Siam, 2008.

[97] Paul Geladi and Bruce R Kowalski. Partial least-squares regression: a tutorial.
Analytica chimica acta, 185:1–17, 1986.

[98] Svante Wold, Michael Sjöström, and Lennart Eriksson. Pls-regression: a ba-
sic tool of chemometrics. Chemometrics and intelligent laboratory systems,
58(2):109–130, 2001.

[99] Richard G Brereton. Chemometrics: data analysis for the laboratory and chem-
ical plant. John Wiley & Sons, 2003.

[100] Ana P Ferreira and Mike Tobyn. Multivariate analysis in the pharmaceutical
industry: enabling process understanding and improvement in the pat and qbd
era. Pharmaceutical development and technology, 20(5):513–527, 2015.

138

[101] Sanghong Kim, Manabu Kano, Hiroshi Nakagawa, and Shinji Hasebe. Estima-
tion of active pharmaceutical ingredients content using locally weighted partial
least squares and statistical wavelength selection. International journal of phar-
maceutics, 421(2):269–274, 2011.

[102] Anthony O’Hagan. Bayes–hermite quadrature. Journal of statistical planning
and inference, 29(3):245–260, 1991.

[103] Anthony O’Hagan, JM Bernardo, JO Berger, AP Dawid, AFM Smith, et al.
Uncertainty analysis and other inference tools for complex computer codes.
1998.

[104] Jeremy Oakley and Anthony O’hagan. Bayesian inference for the uncertainty
distribution of computer model outputs. Biometrika, 89(4):769–784, 2002.

[105] Jeremy E Oakley and Anthony O’Hagan. Probabilistic sensitivity analysis of
complex models: a bayesian approach. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 66(3):751–769, 2004.

[106] Ilias Bilionis and Nicholas Zabaras. Multidimensional adaptive relevance vector
machines for uncertainty quantification. SIAM Journal on Scientific Comput-
ing, 34(6):B881–B908, 2012.

[107] Prasanna Balaprakash, Robert B Gramacy, and Stefan M Wild. Active-
learning-based surrogate models for empirical performance tuning. In Cluster
Computing (CLUSTER), 2013 IEEE International Conference on, pages 1–8.
IEEE, 2013.

[108] Donald R Jones. A taxonomy of global optimization methods based on response
surfaces. Journal of global optimization, 21(4):345–383, 2001.

[109] Michael Emmerich, Nicola Beume, and Boris Naujoks. An emo algorithm using
the hypervolume measure as selection criterion. In International Conference on
Evolutionary Multi-Criterion Optimization, pages 62–76. Springer, 2005.

[110] Kevin P Murphy. Machine learning: A probabilistic perspective. adaptive com-
putation and machine learning, 2012.

[111] Christopher M Bishop. Neural networks for pattern recognition. Oxford univer-
sity press, 1995.

[112] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
Press, 2016.

[113] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural
networks, 61:85–117, 2015.

[114] Simon S Haykin, Simon S Haykin, Simon S Haykin, and Simon S Haykin. Neural
networks and learning machines, volume 3. Pearson Upper Saddle River, NJ,
USA:, 2009.

[115] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

139

[116] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. Reg-
ularization of neural networks using dropconnect. In Proceedings of the 30th
International Conference on Machine Learning (ICML-13), pages 1058–1066,
2013.

[117] Benjamin Graham. Fractional max-pooling. arXiv preprint arXiv:1412.6071,
2014.

[118] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and ac-
curate deep network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289, 2015.

[119] Chen-Yu Lee, Patrick W Gallagher, and Zhuowen Tu. Generalizing pooling
functions in convolutional neural networks: Mixed, gated, and tree. In Inter-
national conference on artificial intelligence and statistics, 2016.

[120] Brody Huval, Tao Wang, Sameep Tandon, Jeff Kiske, Will Song, Joel
Pazhayampallil, Mykhaylo Andriluka, Pranav Rajpurkar, Toki Migimatsu,
Royce Cheng-Yue, et al. An empirical evaluation of deep learning on highway
driving. arXiv preprint arXiv:1504.01716, 2015.

[121] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriving:
Learning affordance for direct perception in autonomous driving. In Proceedings
of the IEEE International Conference on Computer Vision, pages 2722–2730,
2015.

[122] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[123] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradi-
ent by a running average of its recent magnitude. COURSERA: Neural networks
for machine learning, 4(2):26–31, 2012.

[124] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12(Jul):2121–2159, 2011.

[125] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[126] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. Journal of machine learning research, 15(1):1929–1958, 2014.

[127] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
Tensorflow: Large-scale machine learning on heterogeneous distributed systems.
arXiv preprint arXiv:1603.04467, 2016.

[128] Adam Paszke, Sam Gross, Soumith Chintala, and Gregory Chanan. Pytorch,
2017.

[129] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Raz-
van Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and
Yoshua Bengio. Theano: A cpu and gpu math compiler in python. In Proc. 9th
Python in Science Conf, pages 1–7, 2010.

140

[130] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural networks, 2(5):359–366, 1989.

[131] Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving parametric pde problems
with artificial neural networks. arXiv preprint arXiv:1707.03351, 2017.

[132] Yinhao Zhu and Nicholas Zabaras. Bayesian deep convolutional encoder-
decoder networks for surrogate modeling and uncertainty quantification. arXiv
preprint arXiv:1801.06879, 2018.

[133] Allan Pinkus. Ridge functions, volume 205. Cambridge University Press, 2015.

[134] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Au-
gusta H Teller, and Edward Teller. Equation of state calculations by fast
computing machines. The journal of chemical physics, 21(6):1087–1092, 1953.

[135] W Keith Hastings. Monte carlo sampling methods using markov chains and
their applications. 1970.

[136] Heikki Haario, Marko Laine, Antonietta Mira, and Eero Saksman. Dram: effi-
cient adaptive mcmc. Statistics and computing, 16(4):339–354, 2006.

[137] Michael Betancourt. A conceptual introduction to hamiltonian monte carlo.
arXiv preprint arXiv:1701.02434, 2017.

[138] Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponen-
tial families, and variational inference. Foundations and Trends R© in Machine
Learning, 1(1–2):1–305, 2008.

[139] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference:
A review for statisticians. Journal of the American statistical Association,
112(518):859–877, 2017.

[140] Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational infer-
ence. In Artificial Intelligence and Statistics, pages 814–822, 2014.

[141] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic
variational inference. The Journal of Machine Learning Research, 14(1):1303–
1347, 2013.

[142] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited mem-
ory algorithm for bound constrained optimization. SIAM Journal on Scientific
Computing, 16(5):1190–1208, 1995.

[143] Robb J Muirhead. Aspects of multivariate statistical theory, volume 197. John
Wiley & Sons, 2009.

[144] Zaiwen Wen and Wotao Yin. A feasible method for optimization with orthog-
onality constraints. Mathematical Programming, 142(1-2):397–434, 2013.

[145] Richard P Brent. Algorithms for minimization without derivatives. Courier
Corporation, 2013.

[146] Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari,
and Donald B Rubin. Bayesian data analysis. CRC press, 2013.

141

[147] AN Lazaridi and VF Nesterenko. Observation of a new type of solitary waves in
a one-dimensional granular medium. Journal of Applied Mechanics and Tech-
nical Physics, 26(3):405–408, 1985.

[148] VF Nesterenko. Propagation of nonlinear compression pulses in granular media.
Journal of Applied Mechanics and Technical Physics, 24(5):733–743, 1983.

[149] Vitali Nesterenko. Dynamics of heterogeneous materials. Springer Science &
Business Media, 2013.

[150] Christophe Coste, Eric Falcon, and Stephan Fauve. Solitary waves in a chain
of beads under hertz contact. Physical review E, 56(5):6104, 1997.

[151] Upendra Harbola, Alexandre Rosas, Massimiliano Esposito, and Katja Linden-
berg. Pulse propagation in tapered granular chains: An analytic study. Physical
Review E, 80(3):031303, 2009.

[152] Joseph John II Lydon. Nonlinear Effects in Granular Crystals with Broken
Periodicity. PhD thesis, California Institute of Technology, 2015.

[153] Mark Girolami and Ben Calderhead. Riemann manifold langevin and hamilto-
nian monte carlo methods. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 73(2):123–214, 2011.

[154] Peter J Green. Reversible jump markov chain monte carlo computation and
bayesian model determination. Biometrika, 82(4):711–732, 1995.

[155] Rohit K Tripathy and Ilias Bilionis. Deep uq: Learning deep neural network
surrogate models for high dimensional uncertainty quantification. Journal of
computational physics, 375:565–588, 2018.

[156] Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using
pseudo-inputs. In Advances in neural information processing systems, pages
1257–1264, 2006.

[157] Michalis Titsias. Variational learning of inducing variables in sparse gaussian
processes. In Artificial Intelligence and Statistics, pages 567–574, 2009.

[158] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neu-
ral networks. In Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, pages 315–323, 2011.

[159] Prajit Ramachandran, Barret Zoph, and Quoc Le. Searching for activation
functions. 2017.

[160] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
67(2):301–320, 2005.

[161] Yves Chauvin and David E Rumelhart. Backpropagation: theory, architectures,
and applications. Psychology Press, 1995.

[162] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

142

[163] Yoshua Bengio. Practical recommendations for gradient-based training of deep
architectures. In Neural networks: Tricks of the trade, pages 437–478. Springer,
2012.

[164] Piyush Pandita, Ilias Bilionis, and Jitesh Panchal. Extending expected im-
provement for high-dimensional stochastic optimization of expensive black-box
functions. Journal of Mechanical Design, 138(11):111412, 2016.

[165] Ronald L Iman. Latin hypercube sampling. Encyclopedia of quantitative risk
analysis and assessment, 2008.

[166] Weixuan Li, Guang Lin, and Bing Li. Inverse regression-based uncertainty
quantification algorithms for high-dimensional models: Theory and practice.
Journal of Computational Physics, 321:259–278, 2016.

[167] Jonathan E Guyer, Daniel Wheeler, and James A Warren. Fipy: partial dif-
ferential equations with python. Computing in Science & Engineering, 11(3),
2009.

[168] Benjamin Peherstorfer, Karen Willcox, and Max Gunzburger. Survey of mul-
tifidelity methods in uncertainty propagation, inference, and optimization.
Preprint, pages 1–57, 2016.

[169] Marc C Kennedy and Anthony O’Hagan. Predicting the output from a complex
computer code when fast approximations are available. Biometrika, 87(1):1–13,
2000.

[170] Loic Le Gratiet. Bayesian analysis of hierarchical multifidelity codes.
SIAM/ASA Journal on Uncertainty Quantification, 1(1):244–269, 2013.

[171] Paris Perdikaris, Maziar Raissi, Andreas Damianou, ND Lawrence, and
George Em Karniadakis. Nonlinear information fusion algorithms for data-
efficient multi-fidelity modelling. In Proc. R. Soc. A, volume 473, page 20160751.
The Royal Society, 2017.

[172] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra.
Weight uncertainty in neural networks. arXiv preprint arXiv:1505.05424, 2015.

[173] Alex Graves. Practical variational inference for neural networks. In Advances
in Neural Information Processing Systems, pages 2348–2356, 2011.

[174] Rohit Tripathy and Ilias Bilionis. Deep active subspaces: A scalable method
for high-dimensional uncertainty propagation. In ASME 2019 International
Design Engineering Technical Conferences and Computers and Information in
Engineering Conference. American Society of Mechanical Engineers Digital Col-
lection.

[175] Klaus-Jochen Engel and Rainer Nagel. One-parameter semigroups for linear
evolution equations, volume 194. Springer Science & Business Media, 1999.

[176] Anastasiya Salova, Jeffrey Emenheiser, Adam Rupe, James P Crutchfield, and
Raissa M D’Souza. Koopman operator and its approximations for systems
with symmetries. Chaos: An Interdisciplinary Journal of Nonlinear Science,
29(9):093128, 2019.

143

[177] Lawrence C. Evans. Partial differential equations. American Mathematical
Society, 2010.

[178] Izrail Moiseevitch Gelfand, Richard A Silverman, et al. Calculus of variations.
Courier Corporation, 2000.

[179] Lev Davidovitch Landau and EM Lifshift. Mechanics. 2. 1969.

[180] Sharmila Karumuri, Rohit Tripathy, Ilias Bilionis, and Jitesh Panchal.
Simulator-free solution of high-dimensional stochastic elliptic partial differen-
tial equations using deep neural networks. Journal of Computational Physics,
404:109120, 2020.

[181] Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for
universal linear embeddings of nonlinear dynamics. Nature communications,
9(1):1–10, 2018.

[182] Enoch Yeung, Soumya Kundu, and Nathan Hodas. Learning deep neural net-
work representations for koopman operators of nonlinear dynamical systems.
In 2019 American Control Conference (ACC), pages 4832–4839. IEEE, 2019.

[183] Craig Gin, Bethany Lusch, Steven L Brunton, and J Nathan Kutz. Deep learn-
ing models for global coordinate transformations that linearize pdes. arXiv
preprint arXiv:1911.02710, 2019.

VITA

144

VITA

Rohit Kaushal Tripathy was born in Sunabeda, Odisha (India) in 1992. After

graduating from high school in 2010, he entered the undergraduate program in Me-

chanical Engineering at VIT University in Vellore, India. In 2014, upon completion of

his undergraduate degree, Rohit began a masters degree in the School of Mechanical

Engineering at Purdue University, during which time he began working as a research

assistant in the Predictive Science Lab (PSL) led by Prof. Ilias Bilionis. Rohit con-

tinued his work at PSL as a doctoral student beginning in January 2016. During

his time at the PSL, Rohit worked on the development of data driven methods for

uncertainty quantification. While a PhD student, he spent a summer as an intern at

the Mathematics and Computer Science (MCS) division of Argonne National Labo-

ratory and two summers working as an intern in Quantitative Research (QR) groups

in JPMorgan & Chase. Rohit is graduating from the doctoral program at Purdue

in May 2020 and is expected to begin a postdoctoral appointment at Cold Spring

Harbor Laboratory with Prof. Peter Koo immediately after.

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction to uncertainty quantification
	Background
	Sources of uncertainty
	Experimental uncertainty
	Numerical uncertainty
	Model-form uncertainty
	Parametric uncertainty

	Classification of uncertainty quantification tasks
	Forward problem
	Inverse problem
	Sensitivity analysis
	Optimization under uncertainty

	The surrogate approach
	Surrogate models and the curse of dimensionality
	Dimensionality reduction in the context of surrogate modeling
	Overview of upcoming chapters

	Learning low-rank structure with Gaussian process regression
	Gaussian Processes for data-driven modeling
	Gaussian processes
	Gaussian process surrogate model
	Statistical model
	Inference in Gaussian process regression

	Classical active subspace recovery and response approximation
	Embedding active subspaces in Gaussian process models
	Two-stage iterative negative marginal likelihood minimization
	Maximizing the likelihood with respect to the projection matrix
	Riemannian gradients
	Search Curves
	Curvilinear search based on the Armijo-Wolfe conditions
	Full algorithm for optimizing W
	Model selection - picking the right active subspace dimensionality
	A note on computational complexity

	Numerical experiments
	Synthetic function with known underlying structure
	Benchmark partial differential equation problem
	Propagation of geometric and material uncertainty in granular crystals
	Uncertainty Propagation Results

	Closing remarks

	High dimensional surrogate modeling with deep neural networks
	Surrogate model structure
	Structure of a feedforward Deep neural network
	Training a deep neural network
	Regularized loss function
	Gradient computation and optimization
	Selecting network structure
	Combined global optimization and grid search for model selection
	Numerical example
	Forward model
	Data Generation
	Numerical settings
	Model selection settings
	Results
	Predictions at arbitrary lengthscales
	Effect of dataset size
	Predictions with stratified diffusion fields
	Uncertainty Propagation

	Multifidelity modeling
	Multifidelity DNN structure
	Example - stochastic elliptic PDE with bi-fidelity data

	Closing remarks

	Gradient-free active subspace recovery in deep neural networks
	Formal problem description
	A review of active subspaces
	Active subspace recovery in neural networks
	Synthetic example with known active subspace
	Case 2: 2 dimensional active subspace
	Benchmark elliptic PDE example

	Future work and conclusions
	Dissertation summary
	Open questions and future work
	Physics-informed machine learning
	Group-theoretic and latent structure in high-dimensional stochastic dynamical systems

	REFERENCES
	VITA

