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ABSTRACT

Liu, He Ph.D., Purdue University, May 2020. Video Processing for Agricultural Applica-
tions . Major Professor: Amy R. Reibman.

Cameras are widely used as sensors for a variety of engineering applications. In a

typical video-based application, spatial segmentation is a fundamental step which pro-

vides the spatial positions of different targets for further analysis. In this thesis, we focus

on videos analytics applied to the agricultural industry and describe several video seg-

mentation methods in the context of two practical projects: autonomous farming vehi-

cles and analysis of dairy cow health. In the autonomous farming vehicle project, we

propose three spatial segmentation methods based on traditional video features to iso-

late the regions of the video frame where critical information appears. Two applications

that apply the segmentation method are presented: farming activity classification and

header-height control for a combine harvester. In the project on cow health, we propose

a cow structural model based on the keypoints of joints from a side-view cow video. A

detection system is developed using deep learning techniques to automatically extract

the structural model from the videos. Based on this model, we also present a preliminary

application which estimates the cow’s weight based on video information.
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1. INTRODUCTION

This thesis introduces two applications in agriculture: video processing for farming ma-

chinery and animal health monitoring using visual data. This chapter introduces the re-

lated background of both the video processing applications presented in later chapters.

In Section 1.1, we first describe the general video applications in agricultural industry,

and then talk about the different levels of spatial segmentation problems applied in var-

ious tasks. Next, we introduce the video applications for large farming machinery, and

their unique challenges in Section 1.2 and Section 1.3. After that, some animal-related

visual applications from the literature are introduced in Section 1.4. Finally, we review

the previous technical researches about the video and image processing in Section 1.6.

1.1 General Background

1.1.1 Video applications and agriculture

Agriculture industry covers a wide range of subareas, including cultivating soil, rais-

ing crops, feeding live stocks, and so on. Recently, new engineering technologies, such

as sensing and robotics, have been applied to challenges in the agriculture [1] indus-

try. For example, the traditional farming activities 1 such as planting and harvesting also

benefits from these technologies by using advanced farming machines (vehicles), in-

cluding tractors and combine harvesters. Applications have been designed to improve

different aspects of the farming machines including autonomous control. Complete au-

tonomous systems are still difficult to build at current stage, but it is possible to develop

systems to help and assist parts of the control process for these machines.

1In this thesis, farming activities represent the crop raising with large farming machines.
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Among different sensors, videos can provide rich visual information at relatively low

cost. Like human eyes, cameras can be applied in different scenarios to monitor a place

to sense the environment. Effectively and robustly processing the video data can replace

the human label in many applications. Focusing on agriculture, in later chapters, we

present two projects which are designed for the purpose of replacing humans. The tar-

get of the first application introduced in Chapter 3 autonomous control of farming vehi-

cles. Different sensors including cameras, are placed on the farming machine to collect

data from the environment, and all the signals are processed and merged to make final

decisions that controls the machine. Another application presented in Chapter 4 is us-

ing cameras to monitor diary cow behaviors. We capture the walking positions and the

poses of cows and analyze their health conditions, like weight estimation or lameness

detection.

1.1.2 Spatial segmentation in video applications

Generally, the video-based systems require a spatial segmentation process for most

of the practical applications. However, their segmentation targets are not the same, and

different segmentation problems are proposed at different levels. From the literature,

semantic segmentation, object detection, and instance segmentation are considered

as different levels of spatial segmentation problems. Object detection problem tries

to identify the objects in the image, then it classifies each object to a certain category

and locates them with bounding boxes. Semantic segmentation labels every pixel in the

image frame to a known category. Instance segmentation detects more detailed infor-

mation: it not only detects all possible objects from the image at pixel level, but also

separates the objects into different categories.

The segmentation targets in the two agriculture projects presented in this thesis are

also different. In the farming vehicle automation project, the system needs to select

the region of interest from the video frames instead of detecting objects. This is more

like a semantic segmentation problem, but the challenges are unique in this project.
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For example, the image orientation varies from video to video, which makes their frame

structures different. In addition, the video content largely depends on the farming ac-

tivity and the type of machine. As a result, identifying the specific regions under these

challenges is the target for this project.

Animal (dairy cows) health project has a different segmentation target. The goal is

to analyze the health conditions of every animal, which requires a detailed instance seg-

mentation of all the cow objects. However, extracting the binary masks for every cow

object is not enough for health analysis. For example, cow lameness analysis requires

visual cues such as the movement of the cow’s body parts like legs and hooves. As a re-

sult, the segmentation target in this project includes more detailed information such as

the location of the cow’s joints, which is a keypoint detection problem in spatial domain.

Later in Chapter 4, we propose a model to detect both the keypoints and the mask of the

cows. A related application about cow-weight estimation is also presented based on the

extracted information.

1.2 Videos and autonomous vehicles

A normal autonomous system requires sensors to collect signals from the surround-

ing environment. Compared to traditional sensors such as GPS and RADAR used in

farming machines, cameras can provide a large amount of visual data efficiently, and

the data can be easily interpreted for human analysis. With the help of image process-

ing methods and video analytics, cameras have been applied in automation systems for

farming vehicles [2–5].

However, farming machines are more complex than automobiles. In addition to

steering and speed control, machines like a tractor or a combine harvester have a tool,

or attachment, which has interaction between the crops and the field. This interaction

needs to be manually controlled by farmers and requires domain knowledge to be auto-

mated. Each farming activity requires a distinct attachment with its own requirements

for controlling the interaction.
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Figure 1.1 shows three different farming activities and their attachments: corn chop-

ping, wheat harvesting, and tillage. The color, shape, and motion of the attachments are

all distinctive, which make them effective cues to separate one activity from another. Au-

tomating the interaction between the attachment and the field requires identifying the

activity and isolating the location of the attachment in the image. For example, when

harvesting, the height of the attachment (called the header) should be adjusted based

on the condition of the approaching field.

In addition, processing videos in practical farming vehicle applications is also chal-

lenging. Different applications have distinct requirements which determine where the

camera should be located, and their processing techniques are not the same. In [6],

cameras that are placed near the auger of a combine harvester are used to automate the

unloading process, while in [7] dash cameras are mounted inside the cockpit of farm-

ing vehicles to capture the front view of the operator. But one common challenge for

cameras is that the captured images normally include some unrelated areas which are

not useful for further analysis [8]. As a result, the most fundamental step for practical

image analysis is to identify which region of the image is useful for the application. Un-

like many video-based applications whose goal is to detect objects, instead we need to

locate distinct regions of the image for further analysis.

1.2.1 Car and farming vehicle automation

This section first introduces the general background of autonomous cars and au-

tomation applications on farming vehicles. Then we discuss the importance of video

analytic in autonomous systems.

Autonomous driving is one of the most popular applications in the engineering in-

dustry. One objective of autonomous driving in an urban environment is to drive safely

towards a target position and avoid the obstacles in the road [9]. To detect potential

obstacles, different sensors such as LIDAR, RADAR, cameras, and GPS are applied to

sense the surrounding environment [8]. Such multi-sensor signals are merged with sen-
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sor fusion algorithms to make correct decisions. However, sensor fusion algorithms are

an important issue in such methods because different sensors have different reliability

under various environment. For example, RADAR is difficult to detect the object lat-

eral position [8] and cameras may fail in foggy environment. The purpose of applying

different sensors is to maximize the reliability of detecting obstacles on the road [10].

Comparing to autonomous cars, automation on farming vehicles has different fo-

cuses. First, the task of detecting obstacles is at different importance levels between

car automation and farming vehicle automation. Autonomous farming vehicle requires

basic self-driving capability in the field. But unlike urban environment, the farming

vehicles are driving on the widely-opened field, and there are few human or other mov-

ing objects. The possible obstacles in the farm are easy to observe, such as big rocks

and large tree branches. And in real situation, it is less likely to find such obstacles in

the cultivated field, and we can assume the vehicle is able drive in any desired route.

In this situation, previous applications on steering automation control mainly focus on

other purposes, such as alignment with field edges [3], or designing efficient harvesting

route [11].

The second difference between farming vehicles and cars is that farming vehicles

normally have secondary controls besides steering. Cars are designed to carry people to

reach difference places, but farming vehicles are designed to perform the corresponding

farming activities. Different farming vehicles need their own corresponding operations.

For example, for a corn chopper, the operator controls the front cutter wisely to harvest

the corn field with minimum oil consumption; sprayer needs to control the spraying

arm and optimize the usage of fertilizer on different fields. To develop the autonomous

farming vehicles, such secondary controls should be the focus.

Compared to autonomous cars, the third difference of farming vehicle automation is

their expected targets. Society of Automobile Engineers (SAE) designs five different lev-

els of autonomous cars, with level 5 referring to the fully un-man autonomous cars [12].

Most studies in the autonomous car targets to design level 2 to 4, which means when

the algorithm fails, human can take over the control of vehicles. However, in farming
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vehicles, there is no such automation levels and the target are not clearly defined. The

general goal is to design un-man-controlled farming vehicles, but there are few clearly-

defined targets for specific operation on some types of farming machine. Because the

farming operations need domain knowledge and different operations have their own

challenges, and the difficulties of the operations are hard to measure. In addition, the

risk of designing autonomous farming vehicles is lower because it is less likely to cause

collision damage in the field comparing to an urban environment. This also affect the

target of designing automation systems in farming machines.

1.2.2 Videos in automation applications

Camera is one of the widely-used sensors in autonomous vehicles, because it can

provide fast and accurate information about surroundings. It is also cost-effective and

can detect information that other sensors do not, such as analyzing the traffic signs and

traffic lights [13]. Without using other sensors, the visual information is capable enough

to support autonomous driving systems. [14] designed an end-to-end driving system

for steering wheel control and the system can detect the lanes and control the speed

of the vehicle. [15] develops a video-based automation application that can deal with

complicated urban environment.

In agriculture industry, camera is also useful for automation applications. [2] shows a

machine control system need to use vision-based guidance for monitoring nearby field

conditions. In their work, several cameras are placed at the front of a tractor, and they

are used to detect the crop positions in front of the field, which is designed for steering

control. Apart from driving assistance, the cameras can be set on other positions, for

example the end of auger on a combine harvester to monitor the number of crops in the

grain container [6].
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Table 1.1.: Comparison between different farming activities

Processing steps Activity classification Reel control
Corn row alignment
(not implemented)

Segmentation Header region Field region Edges of row

Feature sampling
Fixed Position

Spatial squares Spatial lines
Trajectory

Feature types HOG, Motions Image Textures Texture, color

Decision system One-vs-all SVM
Crop presence Edge detection

classifier + line fitting

1.2.3 Farming automation application comparison

There is some commonality of developing different video-based autonomous farm-

ing applications. Table 1.1 summaries some common procedures of some farming video

processing applications. We compare three different applications in the table: activity

classification, reel control and corn row alignment. The activity classification and reel

control are studied and explained in later chapters. The target of corn row alignment is

detecting the edges of the corn so that the chopper can drive in alignment with the corn

rows. All these applications are trying to find cues from the domain knowledge and train

a system to decide. All three activities share some similar processing techniques. For ex-

ample, all three applications include a spatial segmentation step and their purposes are

highlighting the important spatial regions based on domain knowledge. In addition, all

applications include an image or video feature extraction process to represent the cues

for making decisions.

Although the applications apply the similar processing steps, their methods have dif-

ferent focuses. For example, activity classification uses more motion features between

different farming categories, but both reel control and row alignment focus on image-

based features, like texture and color. Beside their methods, the targets for each process

are not the same among three different applications. For example, we only need rough

segmentation results in activity classification because segmentation is only applied to

provide the weights of features. But in corn row alignment application, the edges of the
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corn row need to be segmented accurately so that the chopper does not miss any crops.

Therefore, it is reasonable to develop a basic general segmentation method for all, but

the criteria to measure the segmentation performance needs to be defined differently in

individual applications.

1.3 Challenges in farming video processing

This section introduces the challenges in the farming video processing process. We

first talk about the difficulties in farming video capturing, and then introduce the gen-

eral challenges when processing these videos.

1.3.1 Video collection challenges

For the purpose of monitoring the surroundings of the vehicle, we install cameras

inside the cockpit in combine harvesters or tractors, and we call the captured videos

farming videos or farming machinery videos. However, the video collection process is

not trivial. In general, it is time-consuming to collect videos in an outdoor environment

for everyday farming activities [16]. To the best of our knowledge, there are no embed-

ded camera systems available for farming vehicles that can transfer videos directly for

analysis, and there are few public farming datasets available. A multi-sensor dataset is

published from [17] to detect obstacles on the farm, but their video data only lasts for

two hours.

In addition, our target is to build a general segmentation system for different farming

activities, and we need to collect various types of videos from different farming events.

This is because the training-based systems have poor performance on data they have

not been seen before, and poor data variation causes troubles [18]. However, in prac-

tice, the timing of when most of the farming activities occur depends on factors such as

human labor and weather, and most of these tasks are finished within a short period of

time. This means that the farming videos must be collected within a limited time pe-

riod, for example within several hours a day for a few days a year. Such videos contain
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the same repeating actions under the same environment for a long time, and special

situations like field anomalies or machine breakdown rarely occur.

In summary, the video capturing environment makes it difficult to build one general

segmentation method which works for all farming applications with limited computa-

tional power. However, it is possible to build a system with a quick learning process

using limited data, so that it can be easily adapted to different farming applications.

Our proposed segmentation method in Section 3.3.3 is designed based on this idea. It

is trained on low-level hand-crafted features with limited data and provides robust seg-

mentation on videos from different farming activities.

1.3.2 Processing challenges

Classifying these farming activities using dashcam videos poses three challenges.

The first challenge is the unconstrained capturing environment. With a working ma-

chine in the field, operators could place the camera at different positions to get different

views, to monitor various aspects of the activity. Such different camera positions can

cause significant image structure variations. In addition, the plants in the field have

very different colors and shapes, depending on the weather and the season. In addition,

there are no rigid objects to track in the field, which means it is hard to find and match

robust feature points.

Figure 1.1 provides some examples of images from our farming videos. Each row

shows images from the same category but with different capturing angles or colors. The

first two images captured from two different fields during chopping corn silage. The

second row shows two tillage images with two different camera angles. The last row

presents two harvesting images with different camera positions. The left column images

are chosen from the training set, and the right column images are from the testing set.

We show in Section 3.4 that image-based features are inadequate alone to effectively

classify our categories. Therefore, in later sections, we focus on video attributes and

consider both spatial and motion information.
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Figure 1.1.: Some farming video frames from vehicle mounted cameras: chopping corns
(top), tillage (middle), harvesting (bottom). Images on the left are in the training data;
images on the right are in the test data. Notice that these videos are captured with dif-
ferent camera positions and various angles.

The second challenge is the variety of very different video motions. Dashcam videos

normally have three types of motion conditions: very low or no motion, object motion

and camera motion. In many instances, motions can be very useful to distinguish ac-

tivity categories, but not always. Camera movements can dominate motion features, for

example when vehicle is slowing down. If these motions are used as features, all other

activities which have a similar slowing down movement might be incorrectly classified.
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In this case, camera motion becomes a problem in the feature extraction process. Fur-

thermore, some videos can be static because the machine may stop anytime in the field

and no motions are included in those periods.

The third challenge is the limited number of videos. To our knowledge, currently

there are no large-scale farming video datasets available in either the classification or

the farming community. In addition, the duration of a commercial cropping season is

relatively long, and normally it takes a year to collect data from planting to harvesting.

Because a farming season is relatively long, which means most farming activities take

place only once a year, it is hard to collect a large amount of data in a short time period.

All three challenges are considered in our system development. As mentioned be-

fore, our goal is to segment regions instead of some specific objects. Summarizing the

possible features from farming machinery videos, the structure and object in each re-

gion can change due to vehicle movement, and the image distortion also challenges the

segmentation because of the outdoor environment [7]. Outdoor illumination changes

quickly and influences the color of every region in the video. Some regions could be

blocked by shadows and window glare due to the direction of movement and sunshine.

Apart from color, the outdoor regions also suffer from noise and blur distortion, which

are caused by the dust in the field or foggy weather.

Comparing to color and spatial structure, motion information is robust to outdoor

illumination changes, but the variety of motion from a farming vehicle is also challeng-

ing. For normal vehicle-mounted cameras, two types of motions are summarized in [19]:

camera-induced motion and independent motion (also called object motion in [7]). But

both motion types are more complicated in farming videos compared to those in the

videos from automobiles. Camera-induced motions are generated by the moving cam-

eras, and farming vehicles are very shaky when moving in the field, which causes noises

when analyzing the motions. Independent motions are caused by movements other

than the camera, and most of these motions on farming videos come from the inter-

action between the machine and the crops. These motions are difficult to model and

challenge the segmentation process.
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Both the image distortion and complicated motions are considered in our proposed

segmentation method. In section 3.1, We extract hand-crafted features of both color and

motion information and train a classifier to segment images. Our classifier is effective

given the practical challenges in farming videos.

1.4 Videos processing for animals

This section introduces the background of the animal-related video applications.

Dairy cow is the target animal we focus in this thesis. We first introduce the motivations

for this project in the thesis, and then review some animal-related video applications.

1.4.1 Dairy cow health problems

Monitoring animal health is a critical component of livestock farming, because healthy

animals are more productive. In practices, the health monitoring is often performed vi-

sually, because animal appearance and behavior are key indicators of health changes.

For example, trained farmers can analyze a dairy cow’s health condition based on visual

appearance [20], and can detect potential illnesses such as lameness [21]. However, time

and labor limitations preclude a human routinely watching for these changes, especially

in practical farms which house a large number of cows. Thus, there is increasing interest

in substituting automated video analytics for human observations. Indeed, video ana-

lytic techniques have been applied to different industries including animal agriculture.

With the help of the latest computer vision and image processing algorithms, visual ani-

mal biometrics has become an emerging research topic [22]. By applying video analytics

methods, it is possible to develop a camera system that automatically detects the cow’s

health condition with a low cost.
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1.4.2 Related applications for cows

There are some previous researches on cow-related visual applications and most of

them focus on lameness detection. However, their processing techniques are devel-

oped for a specially-designed environment where the captured images are clear enough

to process. Normally their detection targets are limited to a specific region instead of

the entire cow body structure. For example, methods like [23, 24] only detect the cow’s

back curvature while other applications such as [25, 26] only track the trajectories of the

legs and hooves. As a result, these methods are not general enough to provide a com-

plete body structure. Apart from lameness, more researchers focus on cow identifica-

tion problem with visual data [27, 28]. Their target is to extract cow features such as the

traditional image features [29] or CNN-based features [30], to distinguish different cow

identities. Their videos are collected from various devices, such as surveillance cameras

in a pen [27] or even from Unmanned Aerial Vehicle (UAV) [28]. But all these methods

need a fundamental step that detects and locates the cows within the image or videos.

1.5 Contributions

This section summarizes the major contributions in this thesis. There are two prac-

tical agriculture applications proposed: the video applications on farming machinery

automation and video analytics on dairy cow health. In the farming machinery project,

we define three spatial regions of the videos that are captured from the cockpit of the

farming vehicles, and proposed three different spatial segmentation methods to detect

every region. All three methods apply hand-crafted features based on color and motion

information, which provide robust results under constraints such as limited data and

computational power. One of the methods is based on training classifier to segment the

image into all three regions, which provides a solution for this semantic segmentation

problem. Two related applications are also introduced for farming machine automation.

In the farming video classification application, we apply the idea to select the most dis-

tinguishable features for classification and propose a two-branch classification pipeline.
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This farming video classification uses the idea to extract features based on the segmen-

tation results. Another application is the header height control for combine harvesters.

In this application, we proposed a crop presence classifier which estimates the amount

of crops in the front field region.

In the dairy cow project, we mainly solve a keypoint structure detection problem

for side-view cows. A cow structural model is proposed based on the keypoint joints,

which represents the cow’s spatial location and its walking pose. We also developed the

cow structure model detection system based on two CNNs and post processing. This de-

tection system is robust to the rough capturing environment with bad illuminations and

poor video qualities, which can also detect multiple cow objects together in a frame. The

corresponding evaluation metrics for the cow structure model is also proposed which

includes two unsupervised metrics which work without ground truth labels. In addition

to the model, we also implement a practical application which automatically evaluates

the cow’s weight purely based on the surveillance cameras. Two camera videos are ap-

plied to extract visual features, and the features are further fit into regression models for

weight prediction. The result shows our prediction error is better than some recent work

which applies complicated hardware systems.

Another contribution in this thesis is the video logging systems. Since both projects

are practical applications, video data collection is the fundamental step for further video

analytics. In farming vehicle application, an ISOBlue HD system is developed to gather

information from the farming machines, including videos, GPS, CANBUS data, etc. This

system can be automatically switched on when is machine starts to work and switched

off when the machine shuts down. In the dairy cow project, different camera devices

are experimented and the currently version is based on the IP surveillance cameras. A

controlling module is designed for the camera controls and it only records videos at re-

quired time periods. Both two proposed system are deployed into practical applications

and all the videos processed in the experiments are captured based on these video log-

ging systems.
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1.6 Literature review

This section reviews the typical research topics in video processing and introduce

some previous practical video applications.

1.6.1 Image & video spatial segmentation

Image spatial segmentation is important because it allows us to distinguish the rel-

evant visual cues from the proper area. Color-based graph cut methods such as [31–33]

are popular for still image segmentation. But as we shown later that color features are

not robust under different illuminations. [34] improves the graph cut method by adding

temporal connection to the initial graph, which better separates the front object and

the background. But as they stated, sensitivity to illumination changes is still a limita-

tion of their method. Also as mentioned in [5], the color information is not useful for

segmenting outdoor farming videos.

Compared with still images, videos contain motion that can be informative for spa-

tial segmentation. The Video Object Segmentation (VOS) problem [35] is described as

segmenting the front moving object from the background scene. In [36], motion infor-

mation is applied. This method segments out foreground region by assuming the fore-

ground only has large motion. The graph cut method is applied with video temporal

information in [34] to segment the foreground object, and [37] considers video segmen-

tation as a voting scheme from a region similarity graph.

More recent methods apply Convolutional Neural Networks (CNN) to segment ob-

jects from the image; for example [38] uses region proposals and [39] applies fully-connected

networks. Recently, CNN methods also become popular for solving VOS problems [40,

41]. However, these methods require large training datasets such as [42, 43], and most

of the popular methods are trained and tested with these public datasets that do not

contain relevant images related to agriculture or farming. In addition, most of these

datasets include videos with clearly-labelled moving objects in the foreground which is

developed for object detection purposes. But for videos captured from farming vehicles,
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the foreground is not well defined, and it is hard to apply these methods to our segmen-

tation problem. Training a large image segmentation network for farming applications

requires a large number of images and ground truth labels, and it is difficult to gather so

much data.

For practical applications, obtaining ground truth labels is time-consuming, so new

methods are being developed to handle the label limitations. Semi-supervised meth-

ods train both labelled and unlabeled data together, while weakly-supervised methods

use image-level labels on pixel-level segmentation tasks [44]. Saliency maps are used

as supervised knowledge for segmentation in [45], and [46] defines image constraints to

characterize the weakly-supervised labels. These methods solve the problem of either

lack of labels or low-quality labels, but they do not consider the computational load. As

mentioned in Section 1, computational power is limited for practical farming video sys-

tems. As a result, although the previous work tackles some practical problems such as

labelling, they are not suitable for farming applications.

1.6.2 Object detection and keypoints detection

Object detection is one subset of spatial segmentation problem. Traditional Video

Object Segmentation (VOS) methods such as [36, 47, 48] detect objects using motion

information from video sequences. With the development of Convolutional Neural Net-

work (CNN), new learning-based methods achieve much better results. Methods such

as Mask R-CNN [49], DeepLab [50], and You Only Look Once (YOLO) [51], are widely

applied to solve the problem of image semantic segmentation, which requires detection

and classification of the objects in an image. CNNs are also applied for video object

segmentation. One Shot Video Object Segmentation (OSVOS) [41] does an online fine-

tuning process which is trained on one frame of the video sequence and applied to all the

other frames in the sequence. This method is further extended with image-based detec-

tion methods for semantic guidance [52]. Other methods such as [53–55] apply different

models using either temporal information or memory for object detection. There are
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also some popular public VOS datasets available for benchmarks, such as the YouTube

VOS [56] and DAVIS dataset [42]. However, all these methods generate bounding boxes

or pixel-level masks to represent detected objects, but the structural information of the

object is not identified. Additional processing would be required to extract further de-

tailed information from these masks.

Apart from spatial segmentation, there are also research focusing on object struc-

tural information such as keypoint detection and pose estimation. Benefiting from the

public human pose datasets such as MPII [57] and COCO human skeleton [58], ad-

vanced methods are developed for human skeleton detection. DeepPose [59] first ap-

plies CNN for human body parts detection based on images, and the stacked hourglass

network [60] extends it to detect humans at multiple spatial scales. To solve multi-

human detection, the relationship between human joints are considered. ArtTrack [61]

generates a simplified human body-part model; OpenPose [62,63] and Deepcut [64] use

part affinity fields to model the joint relationships. However, all these methods are de-

signed by incorporating different levels of knowledge about the human body, and they

are not easily altered or fine-tuned for other objects like cows.

Recently, new methods such as the DeepLabCut [65] toolbox, LEAP [66] and Deep-

Fly3D [67] extend keypoint detection to animals. One advantage of these methods is

that they provide a means for users to define body parts; this allows the algorithm to

adapt to different animal structures. The DeepLabCut toolbox also provides simple ac-

cess to fine-tune the networks, and it can achieve promising results with a small amount

of training data. However, there are two major limitations of these methods. First, they

only support the labeling of one object per frame, and they do not work with multi-

ple objects. This limits their usefulness in many situations. Second, they are designed

for video sequences that have been captured under laboratory conditions, with clean

background and clear illuminations. In later sections, our experiment shows that the

DeepLabCut [65] method does not work well on our cow videos.
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1.6.3 Image & video classifications

Image classification has been studied for years. Feature selection is critical when

performing image classifications. Spatial image features including color and texture,

and robust feature points, are effective for classification problems. For dash camera

videos in the farming environment, it is hard to find rich and consistent interest points

in the field [68]. The color features such as Color Co-occurrence Matrix (CCM) [69] and

Content-Based Image Retrieval (CBIR) [70] are also not effective due to lighting issues.

Texture features are more robust. The Local Binary Pattern (LBP) [71] is a commonly

used rotation invariant texture feature. It computes the histogram of the gray-level dif-

ferences between the center pixel and its neighbors. The Gray Level Co-occurrence Ma-

trix (GLCM) feature [72] is used to capture textures in block-based regions. This tex-

ture feature collects the histogram of all possible gray pixel level pairs and computes

the variation statistics of the histogram. Apart from traditional image features, recently,

Convolutional Neural Networks (CNN) [73] show much better performance. They train

networks on different classification purposes and apply these trained networks as fea-

ture extractors. But we show below that image based spatial features are not sufficient

for farming activity classification. Also it is not possible to perform CNN classification

method on crop presence classification.

In video feature extraction, there are many sampling methods to select interesting

feature positions, such as the cuboid detector [74], Space-Time Interest Points (STIP)

and dense trajectories (DT) [75]. STIP is designed to select points from a 3D volume

by computing the gradient matrix of each position and thresholding the trace and de-

terminant. Trajectory-based feature extraction methods were developed for studying

on human action recognition, and each motion trajectory contains a series of feature

points over time. In [75], interest points are traced based on Kanade Lucas Tomasi (KLT)

trackers or dense optical flow and then merged as trajectories. But not all the features

generated by such methods are useful, so methods have been developed to reject inef-

ficient positions. Page rank and visual similarity graphs were designed in [76] to prune
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static features by finding regions of interest. In [77], the writer applies the MPEG motion

estimation as descriptors to efficient features from predicted motion regions. Then fea-

ture descriptors are extracted along the neighbor pixels through every trajectory. In [78],

the Improved Dense Trajectory (IDT) method is proposed with a trajectory sampling

method that incorporates human detection and homography estimation. Detection of

humans is applied to remove feature points that may confuse the homography estima-

tion, that is used to reject those trajectories that are caused by camera motion. The hu-

man detection is removing feature points for homography estimation and homography

is used to reject the trajectories caused by camera motions.

In video classification problems, local feature descriptors are used to encode infor-

mation in 3D video volumes. Some widely-used descriptors are Histogram of Oriented

Gradients (HOG) [79], Histogram of Optical Flow (HOF) [80], Motion Boundary His-

tograms (MBH) [81], and 3D HOG [82]. These descriptors are widely used in activity

recognition and classification. HOG and HOF are directly extracted from video frames

and dense optical flow, but feature descriptors like MBH and Histograms of Motion Gra-

dients (HMG) [83] are computed based on either spatial gradient or temporal gradient

of optical flow. Such gradient-based descriptors are more robust to camera motions.

Farming applications require a system that can automatically classify videos into

different categories or contexts. Traditional image and video classification algorithms

extract features from the data and train classifiers with ground truth labels. Their per-

formance largely depends on where the features are sampled and the corresponding

feature descriptors. Among different feature sampling methods, key points such as SIFT

[84], SURF [85] and ORB [86] are most widely used. In videos, features are sampled

from 3D points such as Space-Time Interest Points [87] or 3D cuboids [74]. A trajectory-

based [78] feature sampling method can be more effective to capture the motions in

video streams.

Feature descriptors are generated based on the sampled positions. Popular image

feature descriptors include color features such as Color Co-occurrence Matrix (CCM)

[69] and Content-Based Image Retrieval (CBIR) [70], and texture features such as Local
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Binary Pattern (LBP) [71], the Gray Level Co-occurrence Matrix (GLCM) [72], and His-

togram of Gradient (HOG) [79]. Video feature descriptors such as Histogram of Optical

Flow (HOF) [80] and Motion Boundary Histograms (MBH) [81] are mainly extracted from

3D volumes.

Recently, CNNs are widely applied to image and video classification, such as the

PlacesCNN [88] for image scene classification, and [89] and [90] for video classifica-

tion. However, most of the learning-based classification algorithms are not trained on

farming-related data, and it is hard to find large-scale public datasets of farming images

or videos. Moreover, these methods require significant computational power which is

hard to applied in practical farming vehicles.

1.6.4 Classification models

Video classification methods include standard methods and approaches using CNN.

Standard classification methods normally include three steps: feature extraction, fea-

ture encoding and classifier training, such as [76, 78, 91–94]. Widely-used encoding

methods include Fisher encoding [95] and Vector of Locally Aggregated Descriptors (VLAD)

[96], and the one-vs-rest Support Vector Machine (SVM) is one of the most commonly-

used classifiers. Recently, more CNN-based approaches have appeared, such as the

two-stream architecture [97] and [89] with its fovea stream and context stream. The

two-stream architecture is proposed with two separated nets with one for image frames

and another for motion optical flows. [89] trained CNN with fovea stream and context

stream and tried on the UCF-101 dataset [98].

CNNs are powerful models that have been applied to solve a variety of tasks, such

as image spatial segmentation, video classification, and even a large complicated au-

tonomous system [14]. Agricultural applications [99, 100] also apply CNNs for various

purposes such as plant detection. However, our proposed method is not related to

CNNs. First, the hardware constraint limits the computational power of this applica-

tion, so it is not suitable to use a CNN. More importantly, the visual differences between
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our target regions can be easily characterized using simple classifiers. Therefore, there

is no reason to apply more powerful methods, and the experiment in Section 3.1 shows

that our hand-crafted features achieve better segmentation results. Also, using models

like CNNs are more likely to cause over-fitting problems, especially when the training

data is not enough. In Section 3.1, we train a light-weighted classifier with simple video

features which can be easily incorporated into practical farming applications.

1.6.5 Related public datasets

There are many video classification datasets available online. Human action recog-

nition is a widely-studied topic and some related public datasets are UCF-101 [98], HMDB

[101] HMDB51 [102], Hollywood [103] and Sport-1M [89]. The Sport-1M dataset is the

largest; it includes one million YouTube video clips with 487 different sports categories.

However, there are no farming-related outdoor activity video datasets available. In the

image classification field, there are some datasets for scene classification purposes. The

SUN dataset [104] includes 899 different categories including indoor, urban and natural

scenes. The Places dataset [73] is a much larger scene-centric dataset, and the Places-

CNN [73] is trained on this for scene classification. Both datasets provide some farming-

related categories, but their categories are not specific enough to separate our video

frames into different farming activities.

Apart from image and video processing topics, we also introduce some previous

works on autonomous vehicles. Autonomous driving systems such as [15] and [14] ap-

ply video-based approaches for steering control. For farming vehicles, video has mostly

been applied for vehicle alignment automation. [2] develops a video-based algorithm to

detect the lateral cutting edges on corn chopping. [105] applies motion analysis to adjust

the tractor steering in the corn field. In addition to the corn field, the Hough transform

is used in [106] to estimate the best chopping route. Besides videos, [107] reviews au-

tonomous farming applications for tractors including navigation and steering control.

But for studies related to the header of combine such as [108–110], they only focus on
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keeping the header at a constant height relative to the ground. They do not predict when

the header height should be adjusted.
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2. VIDEO CAPTURING SYSTEM

Gathering video data from practical agricultural applications is critical. This chapter in-

troduces the camera capturing systems used for two major projects: the farming vehicle

automation and the dairy cow health analysis. We start by introducing several versions

of our developed video logging system on farming machines in Section 2.1, followed by

a general processing procedure for a video-based autonomous applications in Section

2.2. Next, we present the camera capturing system installed in the dairy farm in Section

2.3.

2.1 Camera system on farming vehicles

Video provides large amount visual information for automation video system. How-

ever, there are no camera systems which are specifically designed to capture videos in

agriculture applications. In previous years, we used normal dash cameras to capture

videos and transmit data with normal SD cards. This is a slow and inefficient process.

Therefore, we develop new video capturing systems installed inside the cockpit of farm-

ing vehicles. In this section, we first talk about the limitation of video capturing process

and then introduce two developed new video capturing systems.

2.1.1 Limitation on previous video capturing process

All the video data used in this work are collected by our research group and to the

best of our knowledge, there are very few public video datasets captured from com-

mercial farming vehicles. We are working with a farmer who owns a farm with corn,

wheat and soybeans. In the farm, the commonly used machines include tractor, com-

bine harvester, corn chopper, sprayer and planter. The normal farming activities include
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planting, spraying, tillage, harvesting and bailing. We target to capture all these farm-

ing activities happened in the farm. Figures in appendix A show the images of different

farming activities we collected from the farm.

The purpose of placing a camera in a farming vehicle is to monitor the surround-

ing environment. And the captured videos provide enough information to develop au-

tomation applications. However, we need to consider where we should place our cam-

era inside the cockpit, in other words, what should be captured by the camera. From

the operator’s point of view, the front field is the most critical region to monitor. The

front view provides the most direct information to make decisions on steering control

or header control. But one single dash camera can only capture a part of the front re-

gion even with wide capturing angle. Apart from the front view, it is also important to

observe both the left side and right side of the vehicle. For example, on a harvesting ma-

chine, the operator should synchronize the harvester vehicle with the truck on the side,

for accurately dumping the crops into the truck. Besides, there are other regions that

need to be monitored from the cockpit, such as the control display. But we are limited

by the number of cameras and their powering systems. To select the most useful regions

from the cockpit, one possible solution is to capture what the operator sees during the

operation process.

Most of the cameras we used in the farming vehicles are dash cameras, including

Garmin Dashcam 10, Garmin Dashcam 45, Mobius ActionCam, and the latest IP camera

Ubiquiti G3 bullet. Some cameras have displays which are easier to control the captur-

ing angle. We also use first-person cameras to capture the views of the operator. How-

ever, unlike dash cameras which can capture videos with connected power supply, first-

person cameras are limited by their battery capacity. The latest nose camera we have,

the IVUE Rincon, has battery capacity which only supports two-hour capturing time. All

these dash cameras and nose cameras are capable of capturing 1080p videos at 30-frame

per second, but each camera has a limited amount of storage.

The current video collecting process is complicated. Because of the physical dis-

tance of the farm, we are not able to adjust the camera system constantly. In this case,
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we ask farmers to mount the dash cameras inside the cockpit of the vehicles and they re-

turn the cameras back to us to copy the videos once a week. There are several limitations

in this process. Firstly, the farmer needs to mount and control the cameras every time,

and the videos are captured at different angles. Secondly, the video collecting efficiency

is very low because of the limitation of camera storage.

2.1.2 Wireless video capturing system

Our first proposed video capturing system is designed for video logging using WIFI

transmission. In the system, we use three dash cameras and one nose camera. We

mount two dash cameras on the front window, with one pointing to the left side of the

vehicle and another to the right. Another dash camera is mounted on the back widow,

and it is pointing inside of the cockpit for capturing the operator’s actions. We also ask

the operator to wear a nose camera to capture what he or she sees during the opera-

tion. All the cameras have built-in WIFI modules, which means that they can broadcast

their own local wireless network. A laptop is also placed in the vehicle to automatically

download the videos that captured from the four cameras.

The detailed system processing procedures are introduced as follows. Firstly, all dash

cameras and the laptop will be turned on automatically when vehicle engine starts, and

each camera will broadcast its own WIFI network. Then a Python script starts to run

automatically when the laptop is turned on. The script controls the system to connect

the wireless networks generated by every camera. When the laptop and a camera is con-

nected through WIFI, the script will search the camera storage and download the latest

captured videos. The script switches the wireless connections repeatedly between all

cameras and downloads the videos from every camera. When the dash camera storage

is full, the camera will overwrite the previous captured videos which are already stored

on the laptop. Therefore, we can capture the videos from all four cameras, and these

videos can be synchronized by their captured time.
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Figure 2.1.: Different video angles from the camera system installed in a corn chopper.
The upper two images show the sample images from the two dash cameras on the left
and right side. The bottom left image is captured by the nose camera. The bottom right
camera is placed at the back window to capture the actions of the operator.

Figure 2.1 shows some example frames captured by four different cameras in a corn

chopper. All four images are captured at the same time. The top two cameras are point-

ing to the left and right side of the chopper, and we can see there is a truck of the right

side, which collects the harvested corns. There are some common regions between the

left and right images, for example the straight yellow bar in the middle, which can be

used to analyze the 3D stereo information. The bottom left image is selected from the

first-person video captured by the nose camera. The first-person video sequence has

very large global motions. At this moment shown in Figure 2.1, the operator is looking

at the bottom, and the image frame also captures the yellow bar which is also shown

on the two dash cameras. Then the viewing angle of the operator can also be estimated

based on the common object. The bottom right image is captured by the third dash

camera. This camera is capturing the inside cockpit and we can observe the motion on

the joystick controlled by the operator.
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Here we explain some details and rationales of this system design. Firstly, the goal of

the system is to capture every possible angle from the cockpit, but we only apply three

dash cameras to capture the important regions, because the number of dash cameras

is limited by the power supply. The cameras are charged from the cigarette lighter in

the vehicle and we also need to charge the laptop at the same time. There is an upper

limit for power consumption, so we only choose three most critical regions to capture.

To improve this, we can replace the laptop by some smaller processing systems with

lower power consumption. Secondly, we placed two cameras at front because we want

to capture the wide angle of the operator’s views. The images from two side cameras

provide the spatial positions for the front region by applying stereo analysis. Thirdly, the

position of the dash camera that points inside the cockpit is not fixed. The goal of this

camera is to capture how the operator controls the machine, including the operator’s

hand position, steering control, and button pressing. But in different machines, the

control handle or joystick are not at the same position. Adjusting this dash camera to

the proper position is necessary.

This design solves some video collecting issues we encountered in the previous col-

lecting process. In this new design, farmers are not intervened by the manually con-

trol of the video capturing system. The dash cameras start to capture once the engine

is started and videos will be transmitted automatically. In addition, the cameras are

mounted at the same position without removing, so the capturing angles can be fixed.

Furthermore, the storage is largely increased since the laptop storage is extendable com-

paring to fixed camera storage.

2.1.3 IP camera capturing system (ISOBlueHD)

We also design and build another video logging system which also works on the

farming vehicles. Unlike the wireless video logging system, this one applies Internet

Protocol (IP) cameras which powered by Ethernet cables. Figure 2.2 shows the system

pipeline and figure 2.3 presents the actual developed box. This system is controlled by
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an ISOBlue board [111], which is programmed to log data from different sensors from

the vehicle, including Controller Area Network (CAN bus), GPS, and videos. The board

is directly connected to the machine battery and controls on and off for all the sensors.

As mentioned before, the cameras are powered through Ethernet through a Power Over

Ethernet (POE) switch, and the switch is controlled with a relay board performs like an

automatic on and off button. During operation, the board send a signal to the relay

board to turn on all the switch and all the cameras. Then we run FFMPEG software on

the board to record videos from all cameras simultaneously, and all the videos are saved

directly to a hard drive connected to the board. While the system needs to be shut down,

the board will send a signal to turn off the relay board, together with the switch and all

the cameras.

Figure 2.2.: The system of the IP camera capturing system.

One advantage of this system is that all the collected data can be easily synchronized.

Synchronization between all sensors is important if we want to merge different sensor

data together, and this board uses the system time stamp to label all the signals. For

example, all the videos are captured with a maximum length of 10 minutes, and the

name of the video includes the system time on the board. Based on the video starting

time and the frame time index, the frames can be synchronized with GPS and CAN data,
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Figure 2.3.: The actual ISOBlue HD system box.

which provides multiple information of the machine. The merged data can be used for

higher-level event and activity detection for the farming vehicle.

2.1.4 Total video collection

The wireless video capturing system was applied in 2018, and it captured more than

200 hours of data, which is more than the sum of videos we captured before the that

years. The videos from the past several years are mostly captured by a single dash cam-

era. The videos are collected by the multi-camera system and these videos are synchro-

nized by the captured time. In total, we have collected around more than 300 hours of

videos data across different farming activities, which is around 2 TB of storage in to-

tal. Figures in Appendix A show some example images we collected on different farming

activities.
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Due to the large number of videos, the pre-processing of these raw videos needs a

large amount of work. For example, not all the captured videos are useful, in this case

some videos are captured when the vehicle is not working, or when the camera acci-

dentally falls from the mounted position. Selecting the informative videos is normally

the first step. In addition, the raw video sequences have different lengths, ranging from 1

minute to 15 minutes depending on the camera types and settings, which means editing

the raw videos is necessary for further processing.

The IP camera system (ISOBlueHD) was deployed in the wheat harvesting season in

July 2019. In total, we captured around 100 hours of videos together with the GPS and

CAN bus data available. These videos mainly cover left and right side of the vehicle,

and part of the human operator. The synchronized data are further processed to detect

abnormal events happened on a combine harvester, such as unusual reversing, and har-

vesting on wheat which is blown down by wind. These detection results are beyond the

scope of this thesis.

2.1.5 Other possible applications

Beside farming vehicles, our first proposed wireless capturing system can be applied

to many other applications. For example, our system can be applied in the surveillance

system. Old fashioned surveillance cameras are limited by the number of ports to the

Digital Video Recorder (DVR) and its storage. In addition, the placement of surveillance

cameras is limited by the wires. There are some latest wireless camera systems, but they

are not designed for research purposes and downloading the video data from their sys-

tems is complicated. For commercial surveillance camera systems, we are limited to

control the camera settings or capture quality. In our proposed system, we can control

every camera in the system and the video transmission process. In addition, the videos

can be directly downloaded to the processing server which is used to do further video

analysis. As a result, it is possible to apply real-time analysis based on this wireless cam-

era system.
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2.2 General procedures of developing a video-based autonomous application

The target of the automation system is to learn from the operator, and the system

can make the same actions as the operators do after training. There are some common

steps for designing an automation system based on video processing.

(a) Define the target autonomous farming activity.

(b) Search cues/rules to make decision.

(c) If learning from operator, also record the operator’s actions. If learning from rules,

label the input information.

(d) Extract information from source video data.

(e) Video data analysis to generate cues.

(f) Train the automation system to make decision.

Clearly defining an automation problem is critical and we also need to know the

rules why the operator performs such operation. The cameras are used to monitor the

cues and the captured videos can be further processed as indicators to make decisions.

For example, for header control of a combine harvester, the rule is that when there are

no crops in front, the header should be lifted. So we use the dash cameras to capture the

front field region and analyze the field.

The key processes in the general steps are the video data analysis and automation

system training. Cameras can capture a large amount of information, but normally the

cues need to be extracted by image processing techniques such as segmentation and

feature extraction. Extracting useful and effective cues from the video data is the key for

training the automation system.

We use the current multi-camera systems above as an example. Figure 2.4 presents

the data analysis process and the automation system training process. As shown in the

figure, the boxes at the bottom show the flow of an operator that is driving a machine.

The operator takes the input of visual information and performs the corresponding ac-

tions. We assume the performed actions from the operator are correct. Our target is to
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Figure 2.4.: The flow chart of an autonomous farming vehicle application based on the
current multi-camera system.

learn the automation system in the upper half of the flow chart. The camera system de-

scribed above is designed to provide us the videos. The videos captured from the front of

the vehicle can be considered as the input of the automation system. The video captured

from the nose camera highlights the region that is currently observed by the operator.

This tells the analysis system which spatial region should be focused. Apart from the

input, the actions of operators are also captured, which can be assumed as the output

of the system. With both input and output data, we can train the automation system

and produce the same action as the operator does. To extend the video-based system,

adding other sensors to the input helps with the training process, for example the GPS

data. In addition, the Controller Area Network (CAN) bus data are useful at the output

side because it presents the actual situations of the machine.

2.3 Camera system in dairy farm

This section introduces the camera capturing system applied in the dairy cow farm.

We first describe the camera system and then explain the designed camera positions

and their capturing target.
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2.3.1 The camera system

Unlike the camera system on autonomous farming vehicles, this system is applied as

the surveillance camera system with fixed power supply. This system applies the IP cam-

eras and a POE switch for video capturing. Figure 2.5 shows an deployed camera system

applied in the cow farm. All the videos are captured using FFMPEG software running

on the board, which directly records the videos from the cameras simultaneously. There

are four cameras applied in the system, and all the recorded videos are directly saved

to a hard disk connected to the board. This system is always on since it is connected to

the fixed power supply, but the cameras are turned on during the time when the cows

appear in the camera.

Figure 2.5.: The deployed cow camera system box.

The commercial dairy farm we deployed our system has a central walking path where

the cows are getting milked twice a day. The central path is bounded by fences which
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only allow one cow to walk through at a time. Based on the capturing target, we installed

four surveillance cameras at four different angles to capture every angle of the walking

path. Figure 2.6, 2.7, 2.8 show some sample frames from four different angle based on

two different camera types. Figure 2.6 is captured based on a low quality Digital Video

Recorder (DVR), which provides very low quality videos. The other two examples are

captured using the IP cameras, which show better quality videos with higher resolution

and wider viewing angle.

Figure 2.6.: Example frames 1 of the cow cameras from four angles.

For each figure presented above, we call the top left angle front-view, the bottom left

angle top-view, and the right two views side-views. Each viewing angle captures a differ-

ent side of the cow and each view has its best capturing timing. The target information

we want to extract and process from each angle varies, and each angle encounters a

different level of challenges. In addition, the best processing timing also varies among

four different angles. As a result, in further processing, each viewing angle is processed

individually, and the corresponding methods are presented in later chapters.
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Figure 2.7.: Example frames 2 of the cow cameras from four angles.

Figure 2.8.: Example frames 3 of the cow cameras from four angles.

2.3.2 Cow video collection

Two major camera systems are applied in the dairy cow farm, and all the videos are

captured during the milking process. In total, we collected more than 400 hours DVR
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videos and more than 300 hours IP camera videos. Among the IP camera videos, there

are around 100 hours videos which are captured during the weighing process. This is a

periodic operation in the dairy farm, which normally happens once a month. During

this process, the farmers do a health check on every cow individually, including mea-

suring weight and ultrasound examination. The cow’s health results are recorded by the

cow IDs and saved in our dataset. We collected four different weighting sections, and

each section includes around 110 to 130 cows. Currently, the records include more than

170 cow identities from all four different days collected in total.
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3. APPLICATIONS ON FARMING VIDEOS

This chapter introduces the spatial segmentation process applied in large farming ma-

chines. We first present three different versions of our proposed spatial segmentation

method for farming machines in Section 3.1. Next, we introduce two applications which

apply the spatial segmentation as a part of their systems. The first application in Section

3.3 is related to farming video classification, and the spatial segmentation module helps

to extract the most distinguishable features which largely improves the classification ac-

curacy and feature efficiency. The second application in Section 3.4 is related to the

header control of a combine harvester. The segmentation process locates the front field

region which sets the region of interest for further processing modules.

3.1 Spatial segmentation of farming videos

This section introduces the background and our provided methods for spatial seg-

mentation in farming machines. Section 3.1.1 talks about the background and moti-

vation of spatial segmentation in the farming scenario. Next, three proposed spatial

segmentation methods are explained in detail.

3.1.1 Background

Video-based applications require to know the region of interests in order to perform

further processes. The goal of spatial segmentation here is to identify every region cap-

tured in all the farming videos. Our video data are collected from multiple farms in the

US between 2016 and 2018. For the purpose of control automation, the cameras are

placed by farmers inside the cockpit of large agriculture vehicles to capture a view simi-

lar to that observed by a human operator. Notice that we refer to these captured videos
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Figure 3.1.: Sample video frames captured by dash cameras mounted on different farm-
ing machines: chopping corn, harvesting, and tillage.

as farming videos for the rest of this paper. Typical dashboard cameras (dash cams) are

used for capture because they can be easily mounted on the windows of the farming

machines, and the cameras are always pointed towards either the front side or back side

of the vehicles based on the farming activities. Figure 3.1 shows some example frames.

In our farming videos, there are normally three common regions captured from the

cockpit. The first important region is the header or attachment region, which is nor-

mally connected to the front side. Different farming activities use various types of at-

tachments. For example, the first row of Figure 3.1 shows two different attachments

used for corn chopping, although the attachment is blocked by the corn on the left im-

age. The second important region is the upcoming field in front of the vehicle. There are
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many types of fields and each has a unique appearance. Our collection mainly covers

three categories: soybean, wheat and corn. But for the same type of field, the color and

shape can be different; see for example, the two types of wheat fields in the second row

of Figure 3.1. The third region includes all other parts such as sky or faraway objects that

have no large motion. These low-motion regions are crucial in multi-camera systems

because the feature points in this region can be used to connect different cameras. As a

result, our target is to segment the farming videos into these three regions.

This farming video segmentation problem is different than the typical video segmen-

tation such as [34, 35, 40, 41]. First, there are no particular objects to detect in farming

videos, and our target is instead to divide the frame into different regions. In object de-

tection, the appearance of the target (like shape and color), do not dramatically change

overtime. But for region detection, the content inside the region is not determined, and

it also changes across time. Second, since the cameras are manually mounted by farm-

ers, the capturing angles and scene structures of the videos are not controllable, shown

in Figure 3.1. This requires the segmentation method to be robust to all these challenges

caused during capturing; for example, it should be able to quickly adapt to new viewing

angles. Third, there are many practical constraints like time and hardware. The seg-

mentation should process videos as quickly as possible because it needs to save time

for further analysis, especially for real-time applications. It is also not practical to in-

stall powerful machines on farming vehicles, which limits the computational power of

the method. Currently, we have not seen any related applications which address all the

issues listed above. But the methods provided in the next three subsections are all tar-

geting to separate either the field or the header region in the frame.

Spatial segmentation in agriculture videos is challenging. As mentioned in Section

1.3, the unconstrained capturing environment, various video motions, and the limited

amount of data are three general problems for processing videos of different agricultural

activities [68]. Color-based segmentation methods rely heavily on lighting conditions in

the outdoor environment. As a result, they are not effective when shadows or window re-

flections are present. Motion information is more robust than color in visual agricultural
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field analysis [68]. For a video captured on a slowly moving vehicle, the spatial structure

of frames remains the same in a short time period. Instead of color, [68] uses video mo-

tion to select spatial regions of farming videos. For a video captured on a straight moving

vehicle, the field region should have the most consistent forward motion. The motions

generated from other regions are not consistent across time, especially in the combine

harvester video, where the header regions generate chaotic motions and occupy a large

area of the frame.

Next, we explain three segmentation methods for farming video segmentation. These

methods are developed to locate the three regions we defined: object motion region,

camera motion region, and the low motion region.

3.1.2 Method 1: the Active map method

This first segmentation method we proposed, which is also covered in [7], is targeted

to locate the header region which contains the object motion. As discussed, object mo-

tion is the most critical motion feature for activity separation. Camera motions produce

very strong features, yet they are not unique to a particular activity. As a result, the goal

is to separate the potential object motion regions from the camera motions. In [78],

a homography is estimated for consecutive frames to compensate for the camera mo-

tion. But in our agricultural videos, there are no robust feature points for homography

estimation because there are no rigid objects in the field. The MBH feature can cancel

camera motion by computing a spatial gradient on optical flow, but it also removes use-

ful motions and only leaves motion boundaries. Therefore, in our method, we compute

gradient from both the spatial and temporal domain of the optical flow. Then the re-

gions are selected if they have large gradient in either the temporal or spatial domain in

a volume of video.

Formally, for a video volume V with frame number T , the dense optical flow is es-

timated for every frame noted as OFt where t ∈ {
1,2, ...T

}
. Then we convolve each OFt

with horizontal and vertical gradient kernels to obtain OF _D X t and OF _DYt . The tem-



41

poral derivative OF _DTt is computed as the difference between consecutive dense op-

tical flows. Note that the shape of OF , OF _D X , OF _DY and OF _DT are all the same as

V . With three derivative flow maps, the active pixel positions are selected using:

Acti ve_map =OR
((

OF _D X > T Hd x
)
,(

OF _DY > T Hd y
)
,(

OF _DT > T Hd t
)) (3.1)

where T Hd x , T Hd y and T Hd t are threshold parameters and OR is logical operator OR.

The Acti ve_map is a 3D binary volume. Then object-motion regions are selected by

summing Acti ve_map over the time axis, resulting in a 2D map. Those positions p
(
x, y

)
in the 2D map that have values that are larger than T /2 are selected as object-motion

regions. As a result, the optical flow analysis provides a spatial mask which is used for

all T frames in the volume. Finally, a spatial sampling step is added to pick positions

between some minimum distance. This prevents large overlapping feature vectors if

two sampled positions happen to be too close.

Figure 3.2 shows an example of the sampling result of a harvesting video. The upper

two images are the original frame and the computed optical flow map, and the lower two

are the sampled results from IDT [78] and our method. Notice that, in this video, the

combine is driving forward and in the upper right optical flow figure, the flows above

the hand-drawn red line are caused by the forward motions. These camera motions

are not necessarily related to the harvesting category, but the rotation motions below

the red line are distinctly object motions. The bottom left IDT method selects forward

motions as features and chooses features from the sky region. This method only selects

the object motion at the bottom region, which is more accurate and therefore will be

more informative.

3.1.3 Method 2: the two-step segmentation

Different from the previous method, this one is designed to find the field region in-

stead of the header region, which is also presented in [5]. Color is useful for separating
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Figure 3.2.: The feature sampling method comparison on a harvesting video. Top left:
the original image, top right: the optical flow at this frame, bottom left: the trajectories
positions from IDT [78], bottom right: sampled positions using our motion separation
method. In the optical flow image, the hand drawn red line partitions the object motions
from the camera motions. In two lower images, red points represent the positions of
trajectories for feature extraction.

out the field, but it varies in different frames. Inspired by the idea from the previous

method, motion analysis could provide a coarse but robust location of the field. Com-

pared to the chaotic rotation in the header region, the motion in the field region is more

consistent across time. As a result, we analyze the consistency of motion at every spatial

position in the video frame.

The motion consistency measure is based on optical flow analysis. The consistency

measure C of a spatial position in a video block is computed by equation (3.2),

C = 1

T

T∑
t=1

1[
dut

d t
< θ]×1[

d vt

d t
< θ] (3.2)

where T is the length of the video block, (u, v) is the optical flow and θ is minimum

motion threshold. This measure is computed based on the assumption that there are no

sudden motion changes in a short time period. A small value of the measure represents
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the case when the motion at this position is rapidly changing, which corresponds to the

header region. Large consistency means that this point has low motion changes or no

motion at all. An extra motion magnitude thresholding process is added to eliminate

the no-motion regions such as the sky.

The above segmentation method only provides a coarse detection of the field, and

typically only identifies the closer part of the field. But this incomplete field region

helps to pinpoint the specific color distribution of the field in that particular frame.

Thus, in the second step, an RGB-based color histogram is generated from the coarsely-

segmented field as reference, and we search the rest of field by comparing the local his-

togram with the reference. Based on the spatial connectivity, we follow a region growth

searching method and start the refinement process from the coarsely-segmented mask.

Figure 3.3.: The field segmentation result: yellow region is the target field region, green
shows the front reel; a: the original image, b: segmentation result using [34], c: coarse
segment result from motion consistency measure, d: segmentation after color refine-
ment.

Figure 3.3 shows an example of the field segmentation result. Notice that Figure 3b

using [34] is based purely on color information, but the green region mixes the field and
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header incorrectly because of the dark illumination. Figure 3c shows the result of coarse

segmentation and it can be observed that the faraway field region is not included. After

performing color-based refinement shown in Figure 3d, the field region has grown to

include the whole field region. Notice the reel region (green) is not the target of this

process, so no further refinement is performed.

3.1.4 Method 3: Learning based segmentation

The previous two segmentation methods are applied in two different farming appli-

cations, but they both have limitations. First, each method uses hand-crafted features

with specifically-tuned threshold parameters, which may not generalize well to other

farming applications. Second, each method only detects its desired target regions and

ignores all other parts of the frame. However, in the next section, we present a new ro-

bust training-based segmentation method that overcomes these two limitations. The

new method applies a training-based system which quickly adapts to different applica-

tions with a small number of training labels. It also segments all regions at the same

time, which makes it applicable to both tasks we studied before. We further show that

this proposed method achieves equal or better results compared to our previous meth-

ods on both applications.

In order to separate spatial regions of general farming videos, we propose a training-

based segmentation method which uses a classifier to separate pixel positions. Every

pixel position in the frame is a classification unit and represented by a feature vec-

tor. Both color and motion information are used to form the feature vector, but their

spatial positions [112] are not included because the region positions of farming videos

vary between different capture angles. Note that we still apply color features here be-

cause they improve the spatial smoothness of the segmentation as shown later in Figure

3.7. The color features are extracted using the Content-Based Image Retrieval (CBIR)

method [70], which is the histogram of the pixels in the HSV color space over a set of

pixel values, with 8 bins of illuminance channel and 6 bins of two-color channels. The
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motion features are hand-crafted with length 14D and are described in detail below. In

total, each pixel position has a feature vector of 14D color feature and 14D motion fea-

ture.

The motion features are extracted from the magnitudes of the optical flows over a

video block. The feature vector includes two parts: a measure of the motion magnitude

and the motion temporal consistency. The motion magnitudes are directly character-

ized by six percentiles ranging from 1% to 90% and the differences between two neigh-

bor percentile values. The motion temporal consistency is summarized by two values:

the total sum of motion Stot al and the sum of Step-By-Step motion Ssbs , which are de-

fined in Equation (3.3) and (3.4).

Stot al =
1

T

√√√√(
T∑

t=1
ut

)2

+
(

T∑
t=1

vt

)2

(3.3)

Ssbs =
1

T

√√√√ T∑
t=1

((
dut

d t

)2

+
(

d vt

d t

)2)
(3.4)

This total sum of motion Stot al describes the net movement of a pixel position during

a period T , which is similar to the cumulative distance [113] for video blocks. Here the

net movement is computed as the sum of optical flows over time, where the periodical

rotations are cancelled, and the overall forward motion is preserved. The step-by-step

motion sum Ssbs records the sum of the motion changes, which is computed as the sum

of all flow differences (dut /d t ,d vt /d t ) between neighboring frames. By accumulating

the differences, the rotating header region which is ignored in Stot al can be highlighted.

As a result, comparing these two types of motion sums can separate the camera motion

and object motion, especially when the camera motions are basically forward or back-

ward. Both consistency values and their difference are normalized and added to the

motion feature vector.

Figure 3.4 visualizes these two indicators. The main region in the sum of motion

Stot al identifies the field region and part of the rotating header, and the main region
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in the step-by-step motion Ssbs mainly indicates the rotating header region. Their dif-

ference mask shown in the bottom right image highlights the upcoming field region on

the left side. Note that there is a smaller and brighter region in middle of the difference

mask. It represents the conveyor belt (Figure 3.10), which is also highlighted because

the belt motions are also consistent.

Figure 3.4.: Motion difference measure in farming videos. The white region in the bot-
tom right mask shows where Stot al > Ssbs . Notice that the original image is rotated, and
the sky is on the left.

Using these features, spatial segmentation can be achieved by classifying all pixels

into different regions. Based on the training data, here we use a Random Forest (RF) clas-

sifier for two reasons. First, the classification is performed on each pixel position, which

means the size of the training data is huge, and a RF classifier is much faster to train than

other classifiers such as SVM. Another reason is that our feature vector contains multi-

ple types of information like motions and color, and some features may be more useful.

However, most linear classifiers treat all features equally without a preference, while the

RF can focus more on the distinguishable parts of the feature vector [114].
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3.2 Experiments on spatial segmentation

This section presents the experiments which compare all the segmentation methods

mentioned above, including some popular classification methods from the literature.

For our training-based segmentation method, we use three different choices of features:

color only, motion only and both features concatenated together. Every feature group is

individually trained with a RF classifier.

3.2.1 Experiment preparation

This subsection compares different segmentation methods using farming videos and

the manually-labelled ground truth. In total, 229 wheat and bean harvesting video clips

are prepared in this experiment. These video clips are selected and pre-processed from

the video dataset that we collected from the farms. During pre-processing, the raw

videos are downsampled to the resolution of 480×272 and temporally segmented into

video blocks with a length of 30 frames (1 second). The temporal segmentation enables

us to assume that the video structure remains the same during a short period of time.

The pre-processed video clips are hand-labelled into the three spatial regions: the

upcoming field region, the header (attachment) region, and low motion region (includ-

ing sky and part of the body of vehicle). Each video is only labelled with one ground truth

mask for all frames because the frame structure has little variation. As a result, there is

no guarantee that a given pixel position has the same label across the entire second. Be-

cause of this, we only label the pixel positions that maintain a single region consistently

across time. In other words, not all the pixels in the frame are labeled, but if the mask

indicates that a pixel belongs to one category, this position will always belong to that

category across the entire clip. As a result, there are some gaps (the black regions in the

ground truth label in Figure 3.7) in the labels, and this could influence the calculated

segmentation performance as discussed below.

In our experiment, we train three RF classifiers using different features: the color,

motion, and both features together. In a real application, the number of ground truth
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labels for segmentation is limited. So, we choose only one sample video clip from the

229 video clips to be the training data for all three classifiers. Here one clip is sufficient

to provide training data for pixel-level classification. In the actual training, 5000 pixel-

positions are randomly selected for each segmentation region. Notice all these clips are

chosen from several farms, which means the one selected training clip could be similar

to some of the testing clips, and we consider this issue when reporting the experiment

results.

In this experiment, we compare our proposed methods with 5 different segmenta-

tion methods. Since there are no previous segmentation methods which solve a similar

problem, here we test our videos on two popular VOS algorithms: Non-Local Consen-

sus Voting (NLCV) [37] and Saliency Aware Video Object Segmentation (SAVOS) [35]. In

addition, we compare with our two previous hand-crafted segmentation methods [5, 7].

Note that because the method in [5] is only designed for the header region, in this ex-

periment we extend it to create method [5]* by adding extra thresholds to separate all

three regions. Furthermore, we also compare with a CNN-based method Deeplab [50].

Although CNN-based methods are not practical to use for farming application, we still

want to explore the potentials of these methods in the future. In this experiment, we

fine-tune the last layer of the pre-trained Deeplab [50] network which is denoted by

Deeplab [50]*. Here the training data are the same limited ground truth labels used to

train the random forest classifiers, so we can obtain a fair comparison. The quantita-

tive comparison results are presented in Table 3.1 and Figure 3.5, and two sets of visual

segmentation results are presented in Figure 3.7.

3.2.2 Comparison results

Numerical comparison results

All 228 testing video clips are quantitatively measured with the ground truth masks.

The segmentation measures are based on all three regions, together with the overall

frame. For each region, the Intersection Over Union (IOU) percentages are computed
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for all the testing videos, and we report their mean and standard deviation (std) values.

Here, the std value is reported because the method is expected to generate robust seg-

mentation on videos from different scenes. Methods with a higher mean percentage and

a smaller std value show better and robust performance. We first show the general per-

formance comparison between different methods using a cumulative accuracy curve,

and then the detailed numerical measures are explained later.

Figure 3.5.: The normalized cumulative IOU percentages between different methods
on the overall frame measure. X axis is the number of videos, Y axis is the normalized
sum of previous IOU percentages. The vertical line separates the testing clips: the left
side shows the clips similar to the training data, and the right side shows testing clips
different from the training data. Notice a zoomed-in plot is provided in the black box.

A cumulative IOU percentage plot of the accuracy on the overall frame measure is

presented in Figure 3.5. Each line represents the IOU measures of one method, and its

detailed mean and std values are shown in the last two rows in Table 3.1. The x axis

of Figure 3.5 shows the number of the test videos and y is the normalized sum of all
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IOU percentages at this number of testing videos. For example, when x value is 100, the

corresponding y value is the sum of all testing videos from 1 to 100. In general, a line that

reaches higher y values means this method has better accuracy, and the straightness of

a line represents the robustness across different input videos. Notice among all testing

videos, there are some clips which are similar to the training data, and we use a black

vertical line to separate them: testing clips on the left side (first 42 clips) have similar

structure as the training video, while the others do not.

In Figure 3.5, we can see that two proposed random forest methods RF_motion (pink)

and RF_both (gray) are above the other lines and are relatively straighter than the oth-

ers. Methods like [5]* and Deeplab* are not as robust. Specifically for Deeplab* (purple),

applied to the first 42 testing videos, reaches similar performance with other methods,

but its performance starts to decrease after the vertical separation line (better viewed in

the zoomed-in box) when the testing data have different scene structures.

The detailed numerical measures of all the methods are reported in Table 3.1. Each

row shows the IOU of a target region and each column represents a segmentation method.

In general, the RF method with both color and motion features achieves better perfor-

mance than other methods, with both high mean accuracy and stable std values.

Among all the methods, three major comparisons from this table are discussed be-

low. First, considering the mean accuracy, the improved hand-crafted method [5]* us-

ing fixed thresholds is slightly better than all training-based methods, but its std value

is much larger. This means fixed threshold values can be adjusted to make the average

accuracy high, but the performance is not robust when applied to different video in-

puts. Second, comparing the Deeplab [50]* method with others, we can see it provides

reasonable performance for the field region, but fails on other regions. This is mainly

because the color of the field is much more similar across different testing videos. In

addition, it has a high std, which indicates a lack of robustness, potentially caused by

the limited number of training clips. Third, the methods from the last two columns have

similar performance: one uses only motion features and the other uses both motion and
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color features. But the std values for the second method is slightly lower. This shows that

adding color features has the potential to improve the robustness for segmentation.

Visual comparison

Figure 3.6.: Segmentation results of two examples. Example (a)

In this section, we select two examples to show the visual segmentation results in Fig-

ure 3.7, which present some segmentation results from two testing videos. The example

clip (a) is captured from the same farming vehicle as the training data, but example (b)

is from a different scene. The blue, green, and red regions respectively represent the

header (attachment) region, the upcoming field region, and the low-motion region. The

black region represents unlabeled gaps in the ground truth or pixels that are not labeled

by the algorithm.

In this figure, the SAVOS [35] and [7] only segment the header region, and SAVOS is

not accurate enough because of the poor performance of the super-pixel segmentation.

Notice the Deeplab [50]* method works well on the left example because this testing
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Figure 3.7.: Segmentation results of two examples. Example (b). Two examples have
similar structure as the training data, and example (b) is captured from a different farm.
The blue region is the header or attachment, green region is the upcoming field region,
and red region is low-motion region. The black region is unlabeled.

video is similar to the training data, but it fails on the right one because of the scene

difference. This scene change also explains the drop of its curve in Figure 3.5 after video

number 40.

Our previous methods [7] and [5] are specifically designed with fixed threshold pa-

rameters to locate only the header (blue) region and field (green) region respectively.

The improved [5]* can perform multiple-region segmentation based on fixed threshold

values. But these fixed values are not robust, so the method misses some regions and has

unlabeled black areas for the left video. Considering our proposed RF methods, their

performances largely depend on the features they used. Color features over-segment

the left clip but fail on the right one because of the color difference. Motion features are

more robust in general but adding color features together corrects some miss-classified

regions shown in both examples.
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3.2.3 Discussion of training-based method

In general, the new training-based segmentation method outperforms all other meth-

ods, including two other proposed methods. It has four advantages for farming video

segmentation. First, our method is robust to different farming applications. Using color

and motion features can achieve segmentation in real-time with machines equipped

with normal computational power and storage, such as a single-board computer. Sec-

ond, with a quick training process, no fixed thresholds are required, and it is capable

of handling practical challenges. Third, unlike complicated models such as a CNN, this

classifier uses few labels for training, but achieves similar or better segmentation results.

In addition, the new classifier segments all three spatial regions in one step, which can

be directly applied to applications focusing on different regions. In the next two sec-

tions, we introduce two farming applications which use different regions based on the

segmentation.

3.3 Application 1: farming video classification

This section introduces one farming application based on the segmentation results.

Classifying the farming videos into different categories is important for further process-

ing. However, the domain knowledge helps for better classification, such as the specific

regions in farming videos that allow us to select the most distinguishable features. In this

section, we first introduce the general classification model which could benefit from the

domain knowledge in subsection 3.3.1. Then we explain the motivation and target of

this application in subsection 3.3.2, and subsection 3.3.3 shows how to apply the gen-

eral classification model for farming activities. Next, three experiments are presented.

Subsection3.3.4 compares the classification performance of two branches; subsection

3.3.5 compares the improvements using different methods as the second branch, and

subsection 3.3.6 compares the feature efficiency in the farming activity classification.
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3.3.1 Generalized two-branch classification model

In real applications, video classification methods that use domain knowledge typ-

ically perform better than methods that are designed for a general scenario [115, 116].

Based on the domain knowledge, the specific targeted methods can be designed to ex-

tract the unique domain features that better distinguish the different categories. Such

specifically-designed systems have been developed in different industries, such as sports

[117], transportation [118], and medical applications [119]. However, these unique char-

acteristics are not always applicable to all input data, and there are always exceptions.

For example, the object motions of farming videos are useful to recognize farming activ-

ities, but some raw videos may be static or have little object motion. As a result, classi-

fying videos with only the specific domain features is not enough.

Figure 3.8.: The generalized two-branch video classification pipeline. Note that when
applied to farming video classification, the activation scheme is based on video seg-
mentation.

In [7], we proposed a two-branch classification pipeline, which applies two specific

feature sampling strategies on different videos. In this paper, we expand this framework

to a generalized two-branch classification pipeline, which is shown in Figure 3.8. The

upper branch processes all input videos, but unlike our previous design, this branch

can incorporate any general classification method. The second branch (shown in the

red dashed box) selects those videos with unique domain-related features and processes

them with specific methods. There is an activation scheme of the second branch to de-
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cide whether the input video has characteristics that will lead to better classification

with the specifically-designed classifier (Branch 2). This scheme can be determined by

different indicators based on domain knowledge, such as amount of object motion in

farming video classification. Finally, the results from the general and specific classifiers

are merged to improve the overall accuracy. Different score fusion methods can be ap-

plied to form the final decision. Depending on the reliability of the classifiers, simple

fusion methods such as direct averaging or weighted sum can be effective. It is also pos-

sible to train a classifier that learns the weights between multiple branches [120].

3.3.2 Motivation of farming videos classification

Towards the goal of automating farm vehicles, cameras like dashcam, are placed on

big agricultural machines to sense the environment. There are different types of large

moving machines working on the farm, such as tractors and combines. However, oper-

ating farming machines is not easy since operators need to do multi tasks at the same

time, such as controlling of the vehicle, controlling of any attachments, and detecting

anything anomalous. These tasks depend on their exact farming activity, like planting,

spraying, harvesting and tillage. For example, harvesting needs to monitor the on the

reel speed and orientation, but for tillage it is more critical to minimize field overlap and

avoid trenching. To learn from the videos captured on the farming vehicles, one im-

portant step is to separate videos into different farming activities. But farmers cannot

document the activities as they happen, because they must focus on getting their work

done in a narrow time window.

Currently, farming videos are collected by farmers when they are operating on ma-

chines. This video gathering process is limited by many issues, such as the camera stor-

age. And it also needs farmers to transfer the videos to a server manually. To solve this

problem, we developed a wireless video-collecting system that can transmit videos us-

ing wireless network without human control and store the videos on a secure server. But

as mentioned above, all these videos are captured from different activities. Manually
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labelling many videos into different farming activities is time-consuming. Therefore,

one important pre-processing step before analyzing the data, is to classify the farming

videos into different farming activities.

In farming video, motion information is more effective to distinguish different farm-

ing activities. Thus, extracting the motion information is the key to apply this prior

knowledge, which better classifies the farming videos. However, the motion conditions

of farming videos are chaotic. In the literature, many of the public activity classification

datasets are captured from static cameras [121], where all motion features are generated

by the foreground objects such as human motion. However, the dash camera videos

captured from farming vehicles have strong camera motions which are not effective for

distinguishing among farming activities. Many of the camera motion estimation meth-

ods apply feature-point matching to cancel the global motions [78, 122]. But in farming

videos, there are few robust feature points available.

To solve the classification problem, we apply the general two-branch video classifi-

cation framework to deal with the unpredictable video motions from dashcams. In this

framework, the videos are separated into two subsets using the proposed segmentation

method from subsection 3.1.2. One subset of videos has camera motions only or no mo-

tion at all, while another set has motions generated by the activity or object motion. To

extract positions from two subsets of video separately, we use dense sampling [123] and

proposed the concept of Fixed Position Trajectories (FPT). Cuboid methods [74] are ap-

plied to build feature descriptors for both subsets, but the cuboid designs are different.

In our designs, features for videos containing object motions are extracted more densely

in the temporal domain, while the features for camera-motion or low-motion videos are

extracted more densely from the spatial domain. By applying different sampling and

extracting strategies on different videos, the generated features are more efficient and

informative, which makes this framework more adaptive to videos with various motion

situations.
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3.3.3 Apply two-branch model on farming videos

As explained above from Section 1, farming videos have strong domain features. The

most effective cues to distinguish different farming activities are in the attachment re-

gion. The attachment interacts with the vehicle and the field in a way that is unique for

each activity. As a result, the motion information from the attachment region is most ef-

fective, and our proposed segmentation method allows us to sample these distinguish-

able features for the video classification task. Next we explain the classification process

using two-branch network in detail.

Figure 3.9.: Flow chart of the classification framework. Branch 1 (upper row) is primary
and works on all videos, branch 2 (in red box) only works on object motion videos.

As mentioned above, this two-branch framework is inspired by the motions of farm-

ing video. Our video clips normally have three types of motions: static, camera motions

and object motion. Static videos have no motion at all or are slowly shifting or shaking.

Motion-based feature extraction methods such as Improved Dense Trajectories (IDT)

are not effective on these static regions. The second type is camera motion. The motion

in these scenes are generated only by the camera movement or the vehicle movement.

This occurs when the vehicle is driving, and the outside objects are moving in the reverse

direction. Camera motions are useful in detecting vehicle motion, but not effective for

classifying farming activities. The third type of videos contains object motions that are

generated by the objects themselves. These motions are robust to camera movements,

and yet capture the movement pattern of the activity. Therefore, they are the most criti-

cal features.
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Simply applying the same extraction methods on all types of videos cannot provide

efficient features. So we generate the two different classification branches as shown in

Figure 3.9, where both branches (upper and lower rows) include a complete classifica-

tion pipeline. While they have different feature extraction steps, the two classification

branches both have these classification steps: Principal Component Analysis (PCA) fea-

ture dimension reduction, Fisher encoding and one-vs-rest SVM training. In this frame-

work, the upper path is primary, so all videos are processed by the first branch. The

optical flow analysis is performed on the input video and used to determine if it con-

tains enough object motion. This analysis performs spatial segmentation and produces

spatial-temporal masks that indicate the object-motion regions. If no object-motion

regions are found, the second (lower red) branch is disabled and the result of the first

branch is final. If the video has enough object motions, the second branch is activated

to process that video. Then both branches are enabled, and the final decision is deter-

mined by a fusion process. Ideally the fusion process should be a model trained using

training videos as was done in [123] and [120]. Unlike [120] that trains an SVM classifier

to merge results from different classifiers, we simply add the scores from two classifiers

and choose the category with the highest score. Because the number of our training

videos is limited, we avoid extra training steps that may cause overtraining.

The feature extraction process includes both a feature sampling step and a descrip-

tor generation step. In the system shown in Figure 3.9, the two branches extract features

differently. Branch 1 uses dense sampling with spatial-focused descriptors and Branch

2 uses FPT and temporal-focused descriptors.

Branch 1 is designed for classifying all video clips, including slow motion videos.

Thus, its features should focus more on spatial information than temporal motion. We

use the dense sampling method and include every position in the spatial frame into the

feature vector. As shown in [92], the cuboid method has better performance than other

methods to generate spatial-temporal local feature descriptors. Each input volume is

first temporally cut into large temporal chunks with length T and each chunk is spatially

segmented into a fixed-sized M ×M ×T cuboid. Within each cuboid, different types of



60

features are extracted in smaller blocks, and then concatenated to form a descriptor. The

shape of a feature vector per video is fixed and determined by the volume shape only.

Branch 2 is designed only for object motion clips. Its features are extracted more

densely in the temporal domain to capture motion information. In this part, the pre-

computed object motion mask is applied, and features are only extracted around po-

sitions in the mask. To describe motion features, a trajectory is better than individual

points like STIP, because a motion should be traced as a series of points. But for dash-

cam videos, the spatial structures of consecutive frames are normally fixed across time.

Inspired by optical flow stacking from [97], we extract features at same positions through

time which we call a Fixed Position Trajectory (FPT). Unlike trajectories in [78], FPTs

have no drifting problems and they can use long temporal windows. The length of FPTs

need not be fixed, but here we set them to a fixed length to maintain dimensions for ev-

ery feature descriptor. The neighborhood region to compute the descriptor is generated

with the selected positions at center and lasts T frames. The blocks inside each neigh-

borhood region have fewer frames (a smaller value of t ) and this enables the descriptor

to preserve more motion information.

3.3.4 Classification performance experiment

All videos are collected from dashcams that are mounted on combines and tractors

at local farms during the last two years. All the raw captured videos are uniformly sam-

pled into short 5-second (150-frame) clips every 30 seconds. Each short clip is down-

sampled to 480× 272 and only the middle 120 frames are used for feature extraction.

These short videos are labelled with three basic farming categories: wheat harvesting,

corn chopping and tillage. In total, we randomly select 2400 short clips from all differ-

ent camera angles with 800 clips for each category. Within each category, 500 are for

training and 300 are for testing. The training and testing videos are separated based on

the camera angles. For example in Figure 3.1, the training frames on the left have very

different angles and structures from the testing frames on the right.
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Note that the focus of the second branches is on the feature sampling procedure.

Therefore, the rest of the experimental design follows that in [120] to process extracted

features from all different methods. In the implementation, we use the optical flow from

[124], because this method provides accurate dense flow although it is time consuming.

We implement the Fisher encoding method based on [125] while the PCA and one-vs-

rest SVM classifier are both from the Sklearn package [126]. Since our features have

much smaller shape, the PCA process is not performed for our system.

In this experiment, we compare our two-classification framework with other algo-

rithms that have feature sampling strategies, such as IDT [78]. Since the IDT method

uses HOG, HOF and MBH, we apply these three features in our strategy for a fair com-

parison. Recall that the proposed system has two classification branches; Branch 1 is

for all video clips and Branch 2 is only for clips which have object motions. In Branch 1,

we design 32×32×30 cuboids and 16×16×10 blocks inside each cuboid. The cuboid

temporal length is set to be one second (30 frames), since motion information is not the

focus for Branch 1. Based on this setting, each descriptor has the same feature dimen-

sion (396) as the feature from IDT, with 8 bins for HOG and MBH and 9 bins for HOF.

In Branch 2, all videos have strong motions; and features are extracted from positions

that are computed from the optical flow analysis process shown in Figure 2. Then the

neighboring cuboid size is smaller both temporally and spatially. The cuboid size is set

to be 16×16×30 and block size is 8×8×6. A smaller duration for each block helps to

capture more motion information. With this setting, each feature descriptor has a di-

mension of 660. The fusion stage adds the scores from the two classifiers and selects the

most probable category.

In addition, an image-based scene classification method Places-CNN [73] is com-

pared. We select frames from both training and testing videos at one frame per second

(5 images per video). Inspired by [89], we treat the CNN as a feature extractor and fine-

tune the top layer. The AlexNet model with pre-trained PLACE dataset is the underly-

ing model. The outputs of the last fully connected layer (FC7) are collected and these

4096-dimensional features are input to a one-vs-rest SVM classifier. In total, 7500 im-
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Table 3.2.: Feature sampling strategy comparison. Numbers in parentheses are averaged
values. Note *Places-CNN is fine-tuned with our data.

Method Feature per video N ×D Accuracy
Object
motion
videos

Proposed B1 480×396 0.808
IDT [78] (78773.67)×396 0.822

Proposed B2 (1596.17)×660 0.857

All
videos

*Places-CNN [73] 5×4096 0.696
Uijlings et al. [123] 2090×594 0.755

IDT [78] (46989.83)×396 0.751
Proposed B1 480×396 0.792

B1 + B2 N/A 0.840

ages selected from the trained videos are used to train the classifier and 4500 images are

tested.

Two groups of videos are compared for different sampling methods. By optical flow

estimation, 478 out of 900 testing clips have significant object motions. So we first com-

pare the performance on 478 videos with large object motions and then compare all 900

videos.

The results are shown in Table 3.2. The first group (upper 3 rows) considers only

478 object-motion videos and we compare our two branches B1 and B2, together with

the IDT method. Among all three methods, the dense sampling method (Branch 1) has

the worst performance since no feature sampling methods are used. Both IDT and our

Branch 2 apply motion-based sampling strategies, and Branch 2 has better accuracy.

Apart from accuracy, the feature shapes of each video from the three methods are very

different. IDT has the most feature descriptors N , because it extracts more trajectories

(see Figure 3.2) spatially.

The second group (lower 5 rows) considers the entire group of videos, which includes

videos with all motion types. Notice that image-based method Places-CNN has lower

performance than the motion-based methods. Among motion-based methods, the ac-

curacy of the IDT method decreases relative to the first test because this method is not

accurate for videos that have only small motions or purely camera motions. Our Branch

1 applies a dense extraction method with cuboid, that are uniformly sampled from ev-
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ery position in the video volume. The method in [123] is also densely sampled, but it

has much smaller cuboids and blocks, which makes both feature number N and dimen-

sion D larger than our design. But considering the performance, our output accuracy is

slightly higher, which means denser sampling might not always provide better accuracy.

The last row demonstrates that our whole framework outperforms other methods. This

result directly applies results from Branch 1 for videos without object motion, while for

object motion videos, it combines the probabilities from two classifiers.

3.3.5 Branch 2 improvement comparison

This section presents a farming activity classification experiment that demonstrates

that adding Branch 2 improves the overall performance of the classification system. Due

to the limited farming data, only three farming activities are classified: tillage, corn

chopping and wheat/bean harvesting. All the video clips used in this experiment have a

fixed length of 5 seconds, and they are randomly selected from the raw farming videos.

Each clip is manually labeled with a farming activity label. To measure the robustness of

the system, we separate all the video clips into training and testing groups based on the

time they were captured. The training clips are all selected from 2016 and 2017, and the

testing clips are from other days during 2017 and 2018. For each activity, we select 500

clips for training and 500 clips for testing, which equals to 1500 training clips and 1500

testing clips in total.

In the experiment, we choose different general classifiers as the baseline (Branch 1

in Figure 3.9) and compare them with the overall accuracy after adding Branch 2. Four

general video classification systems are tested as Branch 1: the Improved Dense Trajec-

tory (IDT) [78], the dense-extracted features [123], the first branch classifier from [7],

and a video-based 3D Convolutional Neural Network (C3D) model [90]. We implement

the dense cuboid method [123] and our previous method [7]. The original implementa-

tion of IDT feature extraction [78] is directly used. For the CNN method [90], we apply

the pre-trained C3D network and select the last layer from the network as the feature



64

vector. So the farming videos are input to the network and the output features are used

to train a random forest classifier. Note that this pre-trained model uses the ResNet ar-

chitecture [127] that is trained on Kinetics human action dataset [128].

Next we describe the implementation details of Branch 2. Four segmentation meth-

ods from Section 3.1 are selected to activate Branch 2: the fine-tuned Deeplab [50]*, our

previous method [7], the improved [5]*, and the new proposed RF_motion. These seg-

mentation methods produce spatial masks, but the rest of the classification processes

are the same. We extract video features including HOG, HOF and MBH from the masks

using FPT. The Fisher Vector (FV) from [125] is used to encode the feature vector and a

random forest classifier is trained as the classifier for this branch. The final decision is

made by averaging the scores from both branches.

Table 3.3.: The comparison of video classification methods. Note the right four columns
show the results by adding Branch 2, and each column uses different segmentation
method. Here C3D [90]* on the bottom row is used as feature extractor.

General
Classifiers

Branch
1 only

Overall result adding
Branch 2

[50]* [7] [5]*
RF_

motion
IDT [78] 0.591 0.661 0.618 0.619 0.754
Uijlings

et al. [123]
0.772 0.798 0.815 0.812 0.833

Liu et al.
[7]

0.768 0.792 0.80 0.819 0.834

C3D [90]* 0.818 0.869 0.826 0.830 0.872

The classification results are shown in Table 3.3. In this table, the second column

shows the classification results with Branch 1 only, and the right four columns present

the overall accuracy after adding the second branch with different segmentation meth-

ods. Comparing these columns, it can be observed that the performance of all four gen-

eral classifiers are improved after adding the second branch. The overall best perfor-

mance is achieved by the C3D [90] method as a general classifier plus the cuboid-based

method with RF_motion segmentation.
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Comparing four segmentation methods for feature sampling in the second branch,

we can see the proposed RF_motion method has the best performance. Note that each

segmentation result activates a different subset of videos to be processed by the Branch

2 classifier. So we do not report accuracy for Branch 2 alone because it does not operate

in isolation. But inaccurate segmentation can cause unnecessary computation such as

the Deeplab [50]* method, which activates Branch 2 for almost all testing videos. It in-

creases both time and computational requirements for this method relative to the other

segmentation methods.

Comparing the four general classifiers in Table 3.3, the improvements provided by

the second branch vary. This is mainly due to the feature sampling and extraction strate-

gies used in the two branches. The features from Branch 1 are extracted from the whole

frame, while features in Branch 2 are hand-crafted to concentrate more on object mo-

tions. However, the similarities between the feature-sampling strategies of two branches

limit the improvements that can be obtained by adding Branch 2. From the table, two

classifiers in Branch 1, [7] in row 3 and [123] in row 4, also depend on cuboid-based

feature extraction methods and they provide limited improvement. The dense trajecto-

ries [78] work poorly as Branch 1, but Branch 2 helps to improve the overall accuracy.

Comparing with traditional feature extraction methods, the pre-trained C3D [90] model

better captures the general video characteristics, so adding the hand-crafted Branch 2

method compensates for the lack of domain-related farming features and achieves best

performance.

In general, when applying this two-branch system to practical applications, the domain-

related features would generally be hand-crafted by humans based on prior knowledge.

As a result, choosing general feature processing methods as the first branch can achieve

better performance in the overall classification.
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3.3.6 Feature efficiency experiment

This experiment explores efficiency between different features using the cuboid-

based feature sampling method for farming video classification. Sampling methods

such as STIP, IDT and the proposed FPT provide interest positions in the video volume,

which can either be individual points or a series of points (trajectory). But when gen-

erating the feature descriptors from such positions, normally descriptors are built from

cuboid regions. One interesting question is how to design the cuboid and block size, in

order to get better feature efficiency with different feature sampling methods.

In a video sequence, each cuboid contributes to one feature vector and the whole

video is summarized as a feature vector with shape N ×D . The dimension of each de-

scriptor D is determined by the number of blocks inside the cuboid, multiplying the

number of bins of the feature histogram. The number of the descriptors or cuboids per

video N is determined by the sampling strategy. In dense sampling methods, N is nor-

mally the ratio between video size and cuboid size, so a smaller cuboid produces a large

N . On the other hand, in STIP or trajectory-based methods, the sampling threshold de-

cides N , and it varies based on video content and motions. Such N can be increased by

dense cuboid sampling on the same volume or sampling cuboids from more than one

spatial scale space. To explore this problem in our scope, we perform video classifica-

tions on the farming videos with multiple choices of N and D . Two groups of methods

are tested with different videos. Dense sampling is tested for all videos, and FPT is only

tested on object-motion clips.

The result is provided in Table 3.4. Notice that the results from Table 3.4 are not

comparable to Table 3.2, since here we use more feature types than in the previous ex-

periment. In the table, the upper half rows show the test for all videos and the lower four

rows are for object motion videos only. We test features individually first with HOG and

HOF, together with MBH and the recently proposed HMG [83]. The number after each

feature in the table is the number of histogram bins of that feature. The last two columns

show two different orders of feature encoding and merging. In all merging order, the
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system merges all different features together as one long feature vector and then uses a

Fisher vector to encode. On the other hand, All separate encodes different feature types

individually and then concatenates all encoded vectors. All designs in the table have

the same cuboid shape and each row represents one different design for the block size.

Block number shows the number of blocks in the fixed-sized cuboid and scale means the

number of scale spaces used to extract features. All the processing procedures are the

same except the feature extraction methods. The classification accuracy is computed to

be the measure of feature efficiency.

The upper half of Table 3.4 shows the results of the FPT sampling method. The HOF

feature achieves the best performance among all feature types, and even outperforms

the results from all features together. The lower half shows the results for the dense

sampling method. The first three rows have the same number of feature vectors, but the

dimension increases. The best accuracy is achieved with all five feature types with all

merged order. AlSo this design has the minimum number of features and the smallest

feature dimension.

There are some observations we can draw from the table. Firstly, neither using denser

sampled cuboids nor increasing the blocks inside the cuboid to get larger feature vector

improves the accuracy for either the dense sampling method or the FPT method. Also

simply applying more types of features does not improve accuracy, unless a late score

fusion stage is well trained to merge all decisions, like [120]. However, it is not efficient

to use larger features or multiple feature types, because this adds computational bur-

den for the encoder and classifier training process. Secondly, the order of encoding after

merging five features (all merged) allows the GMM training stage to choose the most

representative centroids in the high dimensional feature space. Therefore, it improves

the encoded feature efficiency to some degree. In contrast, when merging individual

encoding features together all separate, all feature types have the same contribution to

the final feature vector. In this case, the final decision could be influenced by ineffective

features. Thirdly, sampling methods such as FPT perform a spatial selection process be-

fore feature extraction, and the gradient-based features such as MBH or HMG might not
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provide as good performance as features that operate on the original image or optical

flow, such as HOG and HOF.

3.4 Application 2: combine header control

After the videos are classified into different categories, we can develop automation

applications for specific farming activities. This section introduces one video-based au-

tomation application: header-height control for a combine harvester. We select the har-

vesting videos which captured by dash cameras that mounted a combine harvester. The

goal of this application is to automatically predict when the header needs to be lifted

based on analyzing the front field. We present our prediction framework in subsections

3.4.2. Then we present the experiments on our prediction system in subsections 3.4.4,

3.4.5, and 3.4.6.

3.4.1 Background knowledge

Most farming vehicle automation applications focus on steer controls. Beside driv-

ing control, the machine operator also needs to perform the required farming work, es-

pecially for harvesting operations. For a combine harvester, the front reel (header) po-

sition should be adjusted based on crop conditions in the field. However, there are not

many studies on automating the front reel header in the literature. Towards the goal of

fully automated farming vehicles, this section explores the header-height prediction for

a combine harvester. Note that, crop refers to different plants in the field, such as wheat,

soybeans or corns.

In the combine harvester, the reel is a rotating wheel-like device that is attached to

the front header to push the crop from the field. The header-height above the ground

controls the position above the ground where the crops are cut off. The header should

be low to the ground when there are crops to be cut, so no crops are left in the ground.

But the header should be lifted when there are no crops in front to harvest, to prevent

damage [108]. As a result, the number of uncut crops in front can be used to adjust the
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header-height. Most of the previous efforts [109, 110] for combine header are mainly

passive control and their common goal is to stabilize the header-height despite vehi-

cle vibration. However, by incorporating visual information, the header-height can be

actively predicted. While continuous height adjustment is possible, here we only con-

sider the movement from low to high. In other words, for this application, we assume

the combine harvester is harvesting crops with its header low, so there are crops in the

upcoming field region by default, and our goal is to predict and automatically control

when the header should be lifted.

The cue when the header should be lifted is based on monitoring the upcoming field

region of the combine harvester. In our settings, a dash camera is mounted on the front

window by farmers. The camera not only captures the field region, but also the header

and other regions. Figure 3.10 shows some sample frames that were captured from the

cockpit of a combine harvester. The orange region shows the front reel (header) of the

combine and the blue region is the conveyor belt that carries the cut crops into the mid-

dle. The field region, which we would like to monitor, is outlined in black. Therefore, the

first task is to segment out the spatial position of the field region in the frame. The seg-

mentation methods provided in previous sections be directly applied to select the field

region.

The prediction is based on analyzing the upcoming field region, which is shown as

the black box in Figure 3.10. Estimating how the crop amount changes in the field region

is the key step. However, designing this automatic prediction system is not trivial. First,

it needs an accurate spatial segmentation of the upcoming field region as the target.

Inaccurate field regions cause missing blocks which affects crop estimation. Second,

comparing the left and right columns in Figure 3.10, it is visually difficult to separate

the uncut crop versus the empty field (including cut crops), or even to estimate of the

amount of crops. Later in this section, two segmentation methods are evaluated for this

task, and a texture-based crop-presence classifier is developed to estimate the fraction

of remaining crops.



71

Figure 3.10.: Sample frames captured by dash camera mounted on combine harvester
in bean field (top row) and wheat field (bottom row). Black box shows the front field
region, red box is the front reel and green region is the conveyor belt carrying cut wheat
or beans. On each row, left and right images shows the crop field and empty field in
black box respectively.

For this application, the goal of monitoring the field region is to detect whether there

are crops in front, and we use the fraction of the visible field that still has crops present to

control the header position. Within the field region, we can classify the crops versus the

empty field by training image classifiers. However, this image classification task is differ-

ent than other typical classification problems. First, the camera is randomly mounted

on top of the combine and far from field region. This long distance causes blurriness on

the field region in the image. Secondly, from the classification point of view, the crop

region and the empty field are very similar. As shown in Figure 3.10, the cut and uncut

crop share a similar color for both wheat and beans. Even in the same farm field, the

crops from different field regions can appear different because of the weather, lighting

or the local soil condition.
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Figure 3.11.: The combine harvester header prediction pipeline.

3.4.2 Proposed system

The presented header prediction system is shown in Figure 3.11. The input raw

videos are processed based on a block of frames with length 30. After applying spatial

segmentation, the upcoming field region is highlighted, and a crop-presence classifier is

used to separate the uncut crop and empty field. Based on the classification results, each

video frame produces one crop percentage value p. By analyzing a series of percentage

values, we can estimate the final time when the header should be lifted.

The goal of the crop-presence classifier is to separate the crops from the empty field

and estimate the crops percentages. In our design, we segment the field regions into

smaller units for the classifier and then calculate the total crops percentages. As a result,

the field region is divided into squares with length L based on the segmentation, and all

neighboring squares overlap. We use overlapping squares because each square might

not provide a complete view of the crop, and over-segmenting the field region can pre-

serve the shape of crops. This overlap also means that each pixel is covered by multiple

squares, which improves the accuracy of crop amount estimation.

To classify the squares between crop and empty field, we extract features from the

divided squares. As shown in Figures 3.10 and 3.12, comparing the fields in the left and

right columns, texture is more effective than color to separate the crops and the empty

field. Between different texture features, we choose GLCM feature for this classification

process because it better captures the directional textures in the field. As we shown in

section 3.4.4, three different features including the color-based feature CBIR, the texture

feature LBP and GLCM are all tested, and GLCM significantly outperforms the other two.
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In the implementation of GLCM, we apply the method from [129]: four possible direc-

tions of neighbor pixel pairs are collected in each square, and the histogram contrast

and homogeneity are measured as the feature vector. Each square is described by an

eight-dimensional feature, and all features are trained by a decision tree classifier. No-

tice that all the combine harvesting videos we collected have a resolution of 1920×1080,

and these higher resolution images enable the texture feature to perform well. The tex-

ture features are used to train a random forest classifier, and based on the classified

squares, each pixel receives a probability representing how likely it is to be a crop instead

of empty field. Then for each video frame, a final crop percentage value p is estimated

using the weighted sum of all the probabilities of pixels in the upcoming field region.

After estimating all the frames in a video block, a series of crop percentage values pt

are generated. If the header of the combine harvester needs to be lifted, this percentage

value should be decreasing. To capture the possible decreasing percentages, a Sigmoid

function (3.5) is used to fit pt with respect to time t :

p̂t = s0

1+e− s1
t−s2

+ s3 (3.5)

where all the si are parameters, s ∈ {0,1,2,3}. This Sigmoidal function is a natural choice

given that the percentage of crop will monotonically decrease. The parameter s2 con-

trols the temporal position where the function decreases, s1 indicates the dropping cur-

vature, and s0, s3 normalize the range into 0 to 100. The fitted curve represents the de-

crease of crop percentage, which allows us to estimate the percentage value at a future

time p̂t+∆T . As a result, the time when the header should be lifted tup can be estimated

by equation (3.6),

tup = ar g (p̂t → 0)+Tdel ay (3.6)

which predicts the time when the crop percentage decreases to 0. The Tdel ay is a con-

stant time and it represents the delay between the time when there are no crops in the

camera until the combine actually harvests the crops.



74

3.4.3 Experiment preparation

Figure 3.12.: Illumination variation of two video sets. The combine in the bean harvest-
ing video (first row) is driving to the right and is driving to the left in the wheat harvesting
videos (second row). The left column images are from the training set and right column
are from the testing set. Notice the classifier is trained on squares which are selected
from the coarsely-segmented field (red).

The source videos are captured by a dash camera that mounted on the front window

of a combine harvester. We call a sequence of videos captured from the same day a set,

and such videos normally have the same frame structure, because the camera will not

move once mounted by the farmer that day. All the videos have resolution of 1920*1080

at 30 frames per second. Two sets of videos are selected in the experiment: one is on

a soybean field and another is on a wheat field, as shown in Figure 3.12. For each set,

we temporally segment the raw videos by hand and select those clips which contain a

transition from crops to empty field. In total, we include 12 transition clips from the

beans set and 20 clips from the wheat set.

Since the training and testing data are chosen from the same set of video frames, for

validation we need to guarantee that the source frames of the training data and testing
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data are well separated in time. The different lighting conditions are considered as the

separation boundary. Based on the illumination differences, we specify the first 9 clips

in bean set and first 16 clips in wheat set as the source of training data, and the rest

are the source for testing data. Several sample frames are shown in Figure 3.12. In the

set of beans (top row), the training frame Figure 3.12a is much brighter than the testing

frame Figure 3.12b, and the color of the fields are different. The lighting conditions are

also different in the wheat frames set (bottom row), and the testing frame 3.12d even

contains a large area of glare.

After the training and testing sources are prepared, we label the ground truth of crops

(positive) and empty field (negative) for all source data. Every training or testing tran-

sition clip has around 300 frames and they all have the same decreasing trend of crops.

Therefore, each transition clip produces one positive and one negative video block. For

each clip, we label the first 30 frames as a positive video block and last 30 frames as a

negative video block.

We prepare one pair of training data and testing data on the beans set, and another

pair of training and testing data on the wheat set. There are 18 training video blocks and

6 testing blocks for the bean set, and 32 training blocks and 8 testing blocks in the wheat

set. Each video block has 30 frames.

3.4.4 Crop classification experiment

The basic units of the classifier are the squares divided from the field region in the

image frames. To generate the squares from the labelled video blocks, first, the field re-

gion is located in each frame by performing the spatial segmentation method described

above. Notice that to achieve real-time processing speed, during segmentation, the

frames are downsampled for optical flow analysis. Then the segmented field mask is up

sampled back to the original size, in order to extract texture features in high-resolution

images. Here we only use the motion-based coarse segmentation method to locate the

closer field region. There are two reasons for this. Firstly, the closer field region pro-
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vides more robust texture features than the blurry faraway field. Secondly, the goal of

this detection is to predict the crop percentage for the near future, so the distant field is

less critical. The red boxes in Figure 3.12 show the coarsely-segmented results of each

frame.

Next the field region of each frame is divided into squares of 100 by 100 pixel with

overlap of 50 pixel. Notice the pre-labelled positive video blocks only produce posi-

tive squares and all negative video squares are from negative video blocks. In total we

prepared more than 60,000 squares for each training set. But for each video set, we ran-

domly select 5000 positive squares and 5000 negative squares for training because the

squares overlap.

To compare different features, for each square we extract three different types of fea-

tures: CBIR, LBP and GLCM. CBIR computes the histogram in HSV color space with a

fixed-bin range. The LBP feature is formed by computing the histogram of normalized

LBP at every position in the square. GLCM is computed with the method in section

3.4.2. For each type of feature, we train three different classifiers. One general classifier

is trained on the combined bean and wheat sets and other two classifiers are individual

trained on video sets: one on the bean set and other on the wheat set. We generate two

groups of testing data in the same way (one from each set). Finally, all the classifiers are

tested with both two test groups.

Table 3.5.: Crop presence classification results. Notice the number below features is the
feature dimension.

Feature
Trained Test on Test on
dataset beans set wheat set

CBIR [70]
(14D)

Both 0.498 0.641
Beans 0.601 0.486
Wheat 0.651 0.671

LBP
(8D)

Both 0.601 0.783
Beans 0.633 0.506
Wheat 0.540 0.856

GLCM
(8D)

Both 0.809 0.902
Beans 0.961 0.712
Wheat 0.655 0.935
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The classification results are shown in Table 3.5. This is a two-class classification,

so the base line accuracy is 0.5. Comparing three different features, the color feature

CBIR does not work. LBP has a better performance on wheat than beans, because the

wheat field texture is less directional, as shown in Figure 3.12. GLCM achieves the best

performance in both sets of videos.

Comparing the three classifiers on one feature, we can observe that the general clas-

sifier that was trained on both video set, has a worse performance than the specifically-

trained classifiers. In addition, the classifier trained on beans does not work as well on

wheat and vice versa. The reason could be the feature difference between the two types

of fields. The specific conditions from different fields make it difficult to generate one

single pre-trained classifier that solves the classification problem for all fields. As a re-

sult, we need to develop a dynamic classifier that can adapt to the conditions in the

specific fields. In future system design, the general trained classifier (as shown in the

table) can be applied as an initialization step. Then based on the specific conditions of

the field, the classifier can be improved and fine-tuned to achieve better accuracy.

3.4.5 Field analysis experiment

This section shows how we apply the pre-trained classifier to analyze crop percent-

age and make predictions. This simulates a real-time field analysis of header-height

prediction. For preparation, first, we use the testing transition clips in the bean set to

represent the real-time captured videos. All these videos begin with driving towards the

end of the field and end with the reel being lifted. We choose the pre-trained GLCM clas-

sifier (eighth row in Table 3.5) for this prediction experiment. Notice the performance of

the classifier in this section is not comparable with results in Table 3.5, because in this

experiment, the classifier is used to analyze all the squares from every frame in the test

video sequence, and there is no direct ground truth for the classification results. The

only ground truth we know is that the trend of crop percentage should decrease in every

testing video sequence.
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Figure 3.13.: Probability maps of beans in the field. Color represent the probability of
beans: blue indicates beans and orange indicates empty field. (a) frame 90, (b) frame
120, (c) frame 150, (d) frame 180.

The experiment steps are explained as follows. We first temporally divide the in-

put testing clips into video blocks and perform spatial segmentation to find the field re-

gion. Then for every frame in the block, the classifier is used to separate all the squares

that can be extracted from the field region. Next, we apply the voting method explained

above and generate a probability map. This process is repeated for every frame in the

whole video sequence and finally we generate a series of probability maps.

Figure 3.14 shows some probability maps at frame number 90, 120, 150 and 180 in

one testing clip. The colored regions (both orange and blue) represent the coarsely-

segmented field region, and the color shows the probability: blue indicates more likely

to be crop area; orange indicates no crop. Notice the combine harvester is driving to

the right, and the crop region (blue) is gradually shrinking from right to left over time.

In Figure 3.13b and 3.13c, we can clearly observe the border line between the crops and

the empty field. But in Figure 3.13d, there are some uncertain regions in the lower half
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Figure 3.14.: The fitted curve of crop percentage pt

of the field. One possible reason could be the pre-trained classifier has a bias that makes

it more effective at classifying crops than classifying empty field.

The crop percentage pt can be estimated based on the probability maps and we can

fit the percentage using equation (3.5). The percentage plot of one testing clip is shown

in Figure 3.14, where the x axis represents the frame number and the y axis shows the

percentage pt . We can observe that before frame 110, the crop percentage is around

100% and after the decrease between frame 110 to around 220, the percentage reaches

0 after frame 220. The fitted sigmoid function of p̂t is shown in orange, which correctly

captures the decreasing trend of the bean percentage in the field.

Considering the prediction of time to lift the header tup , according to equation (3.6),

we need to find the time when p̂t reaches to 0. By setting a low cut-off percentage, we

estimate that this time is at frame 220. Adding the constant time offset Tdeal y = 2 sec-

onds, the predicted lift-up time is around 280, which agrees with the actual time when

the header is lifted.
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The performance of our overall system depends on both the classifier and the seg-

mentation process. Errors from the classifier lead to inaccurate probability estimation.

The spatial segmentation result is also critical, and the inconsistency of segmentation

affects the later steps. The colored (blue and orange) regions from Figure 3.13 show

the coarse segmentation results in consecutive frames. The field region varies slightly

between the four different frames, which introduces errors when counting the crop per-

centage. One reason is that the global motion magnitude at different times is changing,

but the threshold value θ in equation (3.2) is fixed. To minimize the error in future work,

designing a dynamic threshold value that is adaptive to the global motion magnitude

can smooth the segmentation difference and further improve the overall system robust-

ness.

3.4.6 Segmentation method comparison

This experiment compares the influence of different segmentation methods to the

header control system. We use both wheat harvesting and soybean harvesting videos in

this comparison experiment. The crop-presence classifier is trained from the manually

labelled masks used in the segmentation experiment in Section 3.4.2. These ground

truth masks are further labelled into crops and empty fields to train the crop-presence

classifier. In the implementation, the square length L is 100 pixels, the overlap between

squares is L/2, and the crop-presence classifier is trained from multiple harvesting clips.

When preparing the testing videos for header prediction, the raw harvesting clips

are manually segmented into transition clips. All these clips contain the moment when

the farmer lifts the header. Each transition clip is 10 seconds (300 frames) long with the

transition happening around frame 250 to 280. We also select some normal harvesting

videos (without header lifted) as negative clips. In total, we prepare 37 positive transition

clips and 38 negative clips.

Three segmentation methods are compared below: the fine-tuned Deeplab [50]*, the

method from 3.1.3*, and the proposed random forest method from 3.1.4. To measure
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Figure 3.15.: Example output of the crop-presence classifier. The color represents the
probability of crops: blue indicates crops, and orange indicates empty field.

the performance of this system, we first evaluate whether the system can make a correct

decision when to lift the header. This measure is based on the difference between the

average value of p̂t of the first N frames and the average value of the last N frames. Here

N is the number of frames that the header is stabilized to either high or low position,

which is 30 frames (1 second) in the experiment. The accuracy is computed by the ratio

of correctly predicted clips. If the header needs to be lifted, the system also predicts the

time when the header needs to be lifted. As a result, another measure is the averaged

error time between the actual rising time and the predicted Tup .

Figure 3.15 shows another result of the crop-presence classifier using the segmen-

tation in 3.1.3* on a soybean-harvesting video. Similar to Figure 3.13, the blue color

indicates regions that are more likely to have crop and the orange regions represents

the empty field. But this example shows a smaller field region which also shows the de-

creasing trend as time increases. Note that this machine is driving toward to the right

side, which is the end of a row in the field. As the frame number increases, the area of

crop (blue) is shrinking to the left (frame 150 and 180 in Figure 3.15), and disappears in
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Figure 3.16.: The crop amount prediction comparison on an example video clip. The X
axis shows the frame number, and Y axis is the estimated crop percentage.

the end. It can be observed that the classifier is applied on squares, and the light blue

squares in frame 180 shows the uncertainty of the classifier. Each frame produces one

percentage value p, and after fitting these values with time, the future crop percentage

can be estimated.

On the same soybean harvesting clip, the crop percentage curves estimated by three

segmentation methods are shown in Figure 3.16. All three curves present the decreasing

crop percentages, but the decreasing moment of the Deeplab* [50] curve is difficult to

detect. One possible reason could be the segmentation method miss-classifies other

blurry regions such as the sky or some far-away blurry fields. The texture features in

those regions confuse the crop percentage estimation which leads to the flat curve. The

other two methods provide clear decreasing curves which can be easily interpreted to

create a header control signal.

Table 3.6.: The comparison of three segmentation methods in combine header predic-
tion. Notice all videos are 30 frame per second.

Method
Prediction
accuracy

Averaged
error frames

Deeplab [50]* 0.778 121.04
Liu et al. [5]* 0.984 40.67
RF_motion 0.953 66.72

The quantitative comparison between the segmentation methods is shown in Table

3.6. It can be observed that apart from the Deeplab [50]*, the other two methods have
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almost the same performance on both decision accuracy and averaged error time. But

for real applications, no incorrect prediction is allowed. Therefore, for further improve-

ment, this system needs to have more accurate spatial segmentation results for the field

region. The crop-presence classifier needs to gain robustness by training data from var-

ious farms.

An extra experiment is performed to evaluate the sensitivity of the parameters of the

fitting function in Eq. (3.5). All four si values are adjusted to si ±5% and we perform the

same evaluation as in Table 3.6. The results show that only the variation of s2 cause 1%

variation compared to the original results in Table 3.6, and all other parameter variations

result in no changes. This indicates that the method is robust to small perturbations

generated by the parameters in the fitting model.

3.4.7 Limitations and potential improvements

There are some limitations of this current prediction framework. The camera-based

system is only able to predict the time when the reel should be lifted, but the time when

reel should be lowered is not considered. Also, we only consider the header-height to

be in either high or low position, but for an accurate control system, predicting precise

height positions needs further exploration. Instead of detecting the crops in front of

the vehicle, there are other cues that can be applied to predict the header position, for

example the load on the conveyor belt. Our presented system could be improved by

considering more cues for better prediction.

This current framework can be improved to be a fully automated and adaptive pre-

diction system. In the current framework, during the pre-processing stage, the raw har-

vesting video data need to be manually labelled. Then we need to temporally segment

the transition clips by hand. For future work, we can further automate the hand labelling

work of the temporal segmentation, which enable the system to achieve better perfor-

mance on to different fields.
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Figure 3.17.: The fully autonomous header-height prediction framework.

Figure 3.17 shows the fully autonomous header prediction system. The incoming

video is processed by two branches. The proposed header-height prediction framework

is applied to estimate the time when the reel should be lifted. At the same time, a tempo-

ral analysis module detects the changes of header position. The temporal analysis will

automatically crop the transition clips, and further process them into labels of crops and

empty fields. The new data and labels provide a feedback to update the crop presence

classifier in the prediction framework. With the automatic temporal segmentation sys-

tem, the whole framework can produce accurate classification result and make better

predictions.

There are some potential issues need to be considered for this fully autonomous sys-

tem. Firstly, in this dynamic system, the prediction framework is updating but temporal

analysis part should be fixed. And the temporal analysis should be robust enough be-

cause it is used to replace human labelling process. Secondly, we need to assume that all

header lifting movements are caused by the fact that there are no crops in front. To over-

come this limitation, we need to apply different rules for predicting when the header

is lifted, such as the crop load on the conveyor belt. Thirdly, this system is designed to

learn from the operator. So, we need to assume that the operator is performing correct

operations, otherwise the reliability of video data is not guaranteed.
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4. DAIRY COW ANALYSIS

This chapter introduces video processing techniques related to animal health analysis.

We mainly focus on dairy cows in the project. In Section 4.1, we present our proposed

cow structural model, followed by the cow model detection system in Section 4.1. The

proposed evaluation metrics are described in Section 4.3. Then we present three differ-

ent experiments based on the detection system in Section 4.4. Based on this proposed

method, we also introduce an cow-weight estimation application in Section 4.5.

4.1 Cow structural model

This section describes our proposed side-view cow structural model. We first intro-

duce the motivation of this model in subsection 4.1.1. Then we present the keypoints

in our cow structural model in detail in subsection 4.1.2, and then describe the spatial

constraints between the keypoints in subsection 4.1.3.

4.1.1 Motivation and Target

As Section 1.4 mentions, video analytic techniques could be applied to monitor and

detect cow health conditions. However, the first step to analyze cows using visual data is

to detect and segment the cows within the video sequences. This is a straightforward

task when each cow walks individually on a well-lit pathway with a very clear back-

ground and no obstructions. However, if a practical camera system is installed on a

commercial farm, with the goal of not interrupting daily operations, unrelated objects

such as humans and fences are often captured. As a result, identifying the spatial loca-

tions of cows is a fundamental first step for further analysis. However, location is not

enough. For the purpose of assessing an aspect of the animal (i.e. body size or gait),
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simply having a binary mask that labels the cow’s location is inadequate. Further in-

formation of the cow’s structure is required, such as the locations of all body parts or

joints 1. This information can then be converted to human interpretable knowledge, or

further processed by autonomous health monitoring systems. In summary, we need a

video system that not only isolates the cow’s spatial location, but also detects its body

structure and tracks its movements.

Designing a video processing system that satisfies these two requirements is not triv-

ial. Many previous segmentation methods focus on object detection, which generates

a binary mask of the objects and their corresponding labels. But this is not enough

for further cow health analysis. Recently, additional methods have been proposed to

detect keypoint-based object structures, like human skeleton models. These models

are formed with a series of keypoints or joints connected in a particular order. But

these methods are designed with the knowledge of human structure, which is difficult to

adapt to other animals like cows. While new methods such as DeepLabCut [65] focus on

animal-related keypoint detection methods, this method requires clear video sequences

with a single object and a clear background. It cannot be directly applied for practical

cow applications on the farm. Finally, there are some visual applications [23, 26, 130]

for cows in the literature, but they are designed for videos captured in a specifically-

designed environment, which requires extra efforts and costs for the farm to collect

video data.

Processing cow videos collected from a practical farm also poses specific challenges.

First, the environment in which video is captured environment cannot be fully con-

trolled without interrupting the daily operation of the farm. The cameras need to be

installed with specific positions and viewing angles, so that the cows can be clearly ob-

served with few obstructions. Issues such as poor illumination [26] and heavy obsta-

cles [27] largely influence the performance of existing detection algorithms. In addition,

the environment also limits the choice of capturing devices. Surveillance cameras are

the most suitable devices to install and deploy on typical farms, but the quality of the

1In this paper, we use the term body parts or keypoints to refer to the points that represent joints or
specific regions on the cow.
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videos is limited. Distortions such as low color saturation, low frame rate, and heavy

compression deteriorate the performance of detection algorithms.

In later sections, we introduce our proposed cow structural model and a detection

system. we combine deep learning with domain knowledge about cows to develop a

cow structure detection system that operates on videos captured from a practical dairy

farm. Our system estimates the number of cow objects in a frame and detects the body

parts of every individual cow. For each cow object, the detected body parts compose a

side-view cow structural model as shown in Figure 4.1. This model describes both the

spatial location of the cow and additional structural information such as the body con-

tour, the positions of major joints, and the trajectories of their movement. This detailed

information provides interpretable knowledge for further health analysis.

This method also overcomes some practical issues. First, all the videos are captured

without interfering with the daily work on the dairy farm, requiring only surveillance

cameras and no specialized hardware. Second, by incorporating domain knowledge

about cows, the video processing algorithm overcomes practical video challenges, such

as poor video quality, bad lighting conditions, and heavy occlusion from fences. Later

experiments show that our method provides robust results under these conditions.

4.1.2 The body structural model

This proposed structural model is designed to represent a detected cow object in the

frame more effectively than using a binary cow mask. It is designed to provide both the

spatial location and cow structural details, such as the body shape and positions of the

body parts. For consecutive video frames, this model should also provide information

so that we can track the movement or motions of these body parts. Inspired by recent

approaches to model the human skeleton [59], we combine some anatomical cow joints

with other spatial keypoints to represent the cow pose, and the cow structural model is

built by connecting the keypoints.



88

Figure 4.1.: The proposed cow structural model. 4 blue head region points: A:nose,
B:head, C:top of neck, J:bottom of neck. 5 red body region points, D:shoulder, E:spine,
G:tailhead, H:mid-thigh, I:bottom of shoulder. 8 white leg and hoof points, with name
format: Right/Left + Front/Back + Leg/Hoof.

Figure 4.1 shows our proposed side-view cow structural model. There are 17 points

in total to describe the important locations of a cow object from this angle. The upper

body region has 9 points, including the head region (blue) and the main body region

(red). Connecting these points forms the contour of the upper body region (green lines).

Another 8 points are in leg-hoof regions which represent the four limbs, and each limb

has a pair of leg and hoof joints. Comparing to the anatomical 51-point cow skeleton

model [131], we only select visually-observable joints. Some joints such as the elbow and

stifle joints are neglected because their positions are hidden in the body and difficult to

estimate visually. In addition, we also add some points such as the two bottom corners H

and I show in Figure 4.1. Even though they are not physical joints, connecting them with

other joints forms a closed contour which spatially locates the body region. The point

E on the spine is also an added point, because connecting three spine points provides

information about the back curvature which is useful for lameness detection.
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There are two general observations about the keypoints in this cow structural model.

First, the points in the main body region (red in Figure 4.1) are always visible from the

side-view, and their relative spatial locations do not change dramatically when the cows

are walking. Second, the leg and hoof points are more difficult to detect compared to

the upper body region points because of the practical issues such as bad illumination,

shadows, and fast leg movement. Distinguishing between the points from the left or the

right leg is also difficult when there are obstacles in front, for example the horizontal

fences shown in Figure 4.1.

4.1.3 keypoints constrains

Practical constraints limit the potential relationships among the keypoints in both

space and time. When the cows are walking between the fences, the cameras located at

a fixed position on the side wall always capture the side-view of the cow. In this case,

all the cows shown in the video have the similar pose, and the keypoints of their upper

body region are always located at relatively fixed spatial positions. For example, the

cow’s head always appears on the right side of the body, and the body does not change

size. As a result, we can compute general relationships that constrain the keypoints in

the cow structural model.

To model the constraints, we first define the center of the cow’s body. This center

point is computed as the spatial center of all the keypoints from the cow’s upper body

region. Note that the points in the leg-hoof region are not used to compute the center

point because their positions are not relatively fixed when the cow moves. Then we can

estimate the relative spatial relationship between the center and all the keypoints.

Figure 4.2 visualizes the keypoint constraints. The middle X shows the cow center c,

and the relative spatial locations of the upper body parts appear surrounding the center.

Notice each body part mapping function F j is a 2D Gaussian probability distribution,

which is shown as the ellipse in the figure.
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Figure 4.2.: The constraints between the upper body keypoints of the cow structural
model. The yellow X is the cow center, and the surrounding points shows the relative
positions of the keypoints in the upper body region.

Formally, for a fixed cow center point c∗ = (x, y), we define a set of mapping func-

tions F j (·) that describe the relative spatial locations of every upper body-part point p∗
j

to the center,

p∗
j = F j (c∗) (4.1)

where j is the index of the body part. Each mapping function F j is characterized by a 2D

Gaussian model, and the parameters are trained using all ground-truth labels. During

the training process, the approximate cow center c is computed first by averaging all

labelled body parts, and the parameters in each F j are estimated individually based on

their relative spatial locations to c.

In the next section, we show how these constraints can be used to separate cows

which are spatially close together in the frame. They also provide a reference when as-

signing body-part candidates to each individual cow object in the post-processing mod-

ule.

4.2 Cow structure model detection system

This section introduces our proposed system to detect the structure of cows. We first

review one popular work for keypoint extraction and then describe the components of
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our proposed system. Then we explicitly introduce two main processing components:

the body part extraction module and the post-processing module.

4.2.1 The DeepLabCut tool box

The DeepLabCut toolbox [65] is a recent popular method to extract keypoints from

video sequences. Its inputs are color images from videos, and it applies a CNN to gener-

ate confidence maps that represent the potential keypoint locations. One advantage of

the DeepLabCut toolbox is that it provides simple access for users to manually define the

output body parts, and the toolbox automatically alters the last layer of the CNN based

on the number of body parts. For example, there are 17 confidence maps generated in

our case because we have 17 keypoints in our cow structural model. In our system, we

apply the network created by the toolbox to extract the keypoints of our cow structural

model.

However, other modules from the toolbox are less suitable for our application be-

cause of two major limitations. First, this platform is designed and evaluated with videos

captured from a laboratory environment with clear objects and background. But our

cow videos, generated from a commercial farm, have low video quality and the view

of the cows are often blocked by obstructions. Later experiments show that the origi-

nal DeepLabCut does not provide robust detection results on our videos. Second, this

method assumes there is only one object in a frame, so it only chooses one body part

from each confidence map. If there are multiple body-part candidates detected, only the

position with the highest confidence score will be selected. But in practical cow videos,

there could be multiple cows and obstructions like fences easily cause false detection.

We address these two limitations and build a general keypoints detection system which

extracts robust keypoints on our cow videos.
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4.2.2 Proposed system

This detection system is targeted to extract the structural model for every cow object

from video sequences. Figure 4.3 presents the overall system; its primary components

are two CNNs for the extraction and a post-processing module. The body part extraction

module uses trained networks to convert each single image into a group of confidence

maps. Each map shows the potential locations of a particular body part, and the values

of the map represent their detection confidence. The post-processing module gener-

ates the final structural model based on two groups of confidence maps and the trained

keypoint constraints. Both modules are discussed in detail in the next two sections.

In this figure, both the training process and the testing process are labelled using

colored arrows. During the training process (indicated by the green arrow in Figure 4.3),

the ground-truth labels are used to fine-tune both CNNs and the keypoint constraints.

During operation (indicated by the yellow arrow), the system takes the input of both the

color image and the frame difference image on the left and generates the cow structural

model for a single image. After all the frames from a video sequence are processed,

the post-processing module refines all the detected cow structures based on temporal

information.

Figure 4.3.: A diagram of the proposed system. The green arrows show the training pro-
cess and yellow arrows present the process during operation.
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4.2.3 Body part detection module

The goal of this module is to find the spatial locations of all potential keypoints

from raw images. In our system, we apply the original DeepLabCut network [65], la-

beled CNN1, to extract keypoints from color images. This network structure follows

DeeperCut [132] and is implemented using ResNet [127] for the convolution stages, fol-

lowed by one de-convolution layer before the output layer to recover the target spatial

locations of the keypoints. The last two convolution layers apply atrous convolution,

which increases effective fields-of-view of the applied convolution and preserves spatial

resolution [50]. By default, the DeepLabCut network is pre-trained on ImageNet [133]

for image classification tasks, and we use our own cow labels to fine-tune the last de-

convolution layer for keypoint detection.

However, as mentioned above, low video quality and heavy obstacles influence the

performance. To overcome this issue, we add an extra network, CNN2, into the system.

The architecture of this network is same as the first, but it processes frame difference

images. There are three major advantages of using frame difference images for our cow

videos. First, because we have fixed cameras, the frame difference image better cap-

tures the moving objects and eliminates the stationary obstacles such as fences. Sec-

ond, many of our target keypoints are on the contour of the cow body, and the frame

difference highlights these edges of a walking cow.

Third, frame difference also reduces the influence of color variation. This is useful,

because the color responses of different cameras are different especially under poor illu-

mination. In addition, the majority of the cows have color variations introduced by the

patterns on the cows, but there are some cows have single coloring, such as pure while

or pure brown. These patterns are unlikely to be included in the training frames, so the

color-based CNN methods would likely fail to detect cows with unknown colors. As a

result, using frame differences provides robustness to these factors.

However, using the frame difference images alone is not enough because they elimi-

nate too much spatial information, especially for legs and hooves. This is because most
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of the legs are stationary even when the cows are moving. As a result, our system merges

both networks together to improve the body part detection accuracy.

4.2.4 Post processing module

The post-processing module collects and merges the confidence maps from the two

CNNs and assigns the cow body-part candidates to each cow object instead of just to

one cow per frame. This step enables the system to detect multiple cows together and

track their temporal movements. There are three major steps in this post-processing

module: body part extraction, spatial clustering, and temporal filtering.

Body part extraction

This step extracts the spatial locations of all body-part candidates from the confi-

dence maps generated by the CNNs. Notice that at this stage, the number of cow objects

in the image is unknown and we want to extract all possible candidates. So, for each

body part, the confidence map from the two networks are merged together, and we use

non-maximum suppression to select all the points whose confidence scores are higher

than their neighbors.

The output of this step are lists of body-part candidates. Formally, for a given frame

at time t , all these body-part candidates can be represented as p i ,t
j = (x, y), where j is

the index of that body part, and i ∈ {1,2...} indicates the count of all possible keypoints

extracted for this body part. The total number of i is not determined because there could

be multiple objects in the frame, or some candidates could be incorrectly detected. All

these candidates are further selected and clustered in the next step.

The confidence maps from the two networks are treated differently during this pro-

cess. For keypoints from the upper body region, the two confidence maps are directly

merged to find body parts. But since color information is more useful to detect the legs

and hooves, only the confidence map from the color image network is used unless this

map contains no candidates.
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Spatial clustering

The second step in the post-processing module is spatial clustering. This step se-

lects the correct body parts and clusters them into different cow objects. The first task

before clustering is to determine the number of cows in the frame by counting cow cen-

ters. Given a set of extracted keypoint candidates p i ,t
j from the upper body parts, the

corresponding cow center positions can be estimated based on the constraints of the

keypoints, shown in Equation 4.2.

c i ,t
j = F−1

j (p i ,t
j ) (4.2)

Then a mean-shift clustering method is applied to the 2D spatial positions of all the cow

centers c i ,t
j . Based on the clustering results of the center points, the corresponding body

parts are labelled into separate cow objects. We ignore a cow object if the system cannot

detect more than half of its keypoints.

The cow centers are also used to predict the location of missing body parts that the

network fails to detect. After all the keypoints are clustered into distinct cow objects,

then for each cow object, we compute the averaged cow centers based on the detected

points, and the miss-detected keypoints can be estimated using the keypoint constraints

F j . The predicted body parts based on the constraints may not be always accurate, but

they provide a rough estimate of the cow’s spatial location, which is useful for searching

for keypoints in leg-hoof regions.

The final process in this step is to match the leg-hoof points. Similar to [26], we indi-

cate the region of all possible leg-hoof points using a rectangle that is somewhat wider

than the rectangle of the upper body. Candidates outside this region will not be consid-

ered. The search process relies on the structural model. We follow the order of shoul-

der/tail base, leg, hoof along each limb, and search the joints from among the candidates

that lie in the search range. We also reject inappropriate points by applying the rule that

each limb should have a certain rotation range; the angle between shoulder to leg and

leg to hoof must be greater than 90 degrees for valid keypoints. Finally, all the selected
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Figure 4.4.: The procedure of spatial clustering during post-processing. Top left: the key-
points and centers, Top right: Center points clustering. Bottom left: Adding leg region
points, Bottom right: The output structural model. Circles represent the body parts p
and crosses are the estimated cow centers c. Empty circles are the predicted body parts.
Each color indicates a different cow object.

leg-hoof joints are connected to the body contour to complete the final cow structural

model.

Figure 4.4 illustrates the procedures of the spatial clustering step. The top left image

shows the original extracted body parts from the previous step. The red circles are the

extracted candidates, and each is converted to a corresponding cow center, shown as

crosses. Then in the top right image, all center crosses are clustered using mean shift

to produce three clusters shown in distinct colors. Here the incorrect cluster (white)

is eliminated because there are not enough candidates. Next in the bottom left image,

points in the leg and hoof region are assigned to each cow object. Notice the empty cir-

cles are predicted points; the yellow one is blocked by the fences. Finally, by connecting

all keypoints together, we form two cow structural models as shown in the bottom right

image.
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Temporal filtering

The final step in post-processing module refines the detection results using temporal

information and matches cow objects across different frames. The two previous steps

each operate on a single image, but the relationship between neighboring video frames

is helpful to refine keypoint positions. It is reasonable to assume that the cows walk on

an identical path between the fences and that they move steadily and slowly. This means

that for a specific keypoint in the upper body, its trajectory over time should be smooth

and any points far from the trajectory line can be considered outliers.

Based on this idea, we refine the positions of every upper body-part point across

time to improve the temporal smoothness of the output. Before this step starts, all the

frames in a video have been processed, so we know the number of cow objects in each

frame. Then for every body-part in the upper body region, we temporally filter each

trajectory to remove and correct the outliers. In our experiment, we use a median filter,

which is simple and provides robust prediction. Other filters such as the Kalman filter

do not work well especially when there are too many missing points from the previous

steps. Notice that the leg-hoof region points are not involved in this process, since their

trajectories are much more complicated.

Based on the trajectories of each cow object, the cow objects can be matched be-

tween neighboring frames. After this process, the system detects the total number of

cows shown in a complete video sequence, and parameters about how every cow move

can be inferred, including the speed and rhythm [134].

4.3 Evaluation metrics

This section introduces our evaluation metrics. Although our method uses few ground-

truth labels for training, ground truth is typically also required for performance evalua-

tion. Therefore, in this paper we propose to use both supervised measures, which com-

pare the detected results with ground-truth labels, and unsupervised measures, which

directly evaluate the results without labels. Adding unsupervised measures to the eval-
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uation process improves its thoroughness in the presence of insufficient labels. We first

discuss the supervised measures for the cow structural model, and then introduce two

unsupervised metrics.

4.3.1 Supervised metrics

Quantifying the performance of the cow structural model requires more than the

typical measures used to quantify object detection. As mentioned in Section 1, the cow

structural model is designed to provide two types of information: the spatial location

of the body region, and the detailed positions of body parts. Both information is repre-

sented in terms of the keypoints of the cow body parts, and our ground-truth labels are

also in terms of keypoints. As a result, we separately evaluate the area of the cow body

region and the points in the leg-hoof region. Two metrics are developed and described

below in detail: the Body F1 score and the Leg-hoof F1 score. In each case, the F1 score

is harmonic mean of precision and recall when comparing the detection results to the

ground truth. Notice that both metrics compare accuracy at the keypoint level. In a

later experiment in Section 4.4, we also propose a method to convert the cow structural

model to a binary mask with both body region and extended limbs, for the sole pur-

pose of comparing our detected keypoint model with other mask-based segmentation

methods.

Body F1

This metric measures the spatial area formed by the body region points. We connect

the keypoints in the upper body region and generate one polygon mask for both the

detected structural models and the ground-truth keypoints. Then we compare the two

masks using the typical Intersection Over Union (IOU) metric and report the F1 score.
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Leg-hoof F1

For the legs and hooves, a single pixel position represents each keypoint. However,

physical joints typically extend for a larger spatial region. Therefore, the evaluation met-

ric must accommodate this discrepancy, which may introduce systematic errors to both

the labelling and detection process. For this reason, when measuring the distance be-

tween ground truth and the detected leg and hoof keypoints, we set a threshold distance

of 30 pixels. If the distance between the points is less than this threshold, we consider

the joint to be detected, and points further away are considered to be miss-detected. Af-

ter thresholding, we determine how many leg-hoof points are successfully detected and

summarize this using the F1 score computed from the precision and recall. Since we do

not create ground-truth labels for keypoints that are completed blocked by obstacles,

these blocked joints do not affect the evaluation result.

4.3.2 Non-supervised metrics

Unsupervised measures allow performance evaluation without ground-truth labels.

This is particularly critical for video, where exhaustive application-specific labeling be-

comes even more onerous. Without labels, previously proposed metrics such as mean

of region similarity, contour accuracy [135], and temporal stability metric [42] cannot

be computed. Here, we apply prior knowledge to evaluate the performance when the

ground-truth labels are not provided.

We consider two rules for the cow structural model. First, the spatial locations of the

keypoints in a model should always form a cow-shaped object. Second, the shape of

the cow body should be stable during the walk and the keypoints should have similar

smooth trajectories. Based on these two constraints, we introduce two unsupervised

metrics: the valid cow percentage and temporal consistency.
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The Valid Cow Percentage (VCP)

This metric counts the fraction of detected cow models that are valid. Here valid

means that the positions of the keypoints in the structural model can form a cow-shaped

object. Like the supervised measure, we validate the upper body region and leg-hoof

region separately.

For the upper body region, we use the trained keypoint constraints (Figure 4.2) as a

reference, and compute the similarity between the detected contour and the reference

using the Fréchet distance [136]. We choose this distance because it better captures the

similarity between two curves, which are the body contour in our case. The computed

distance is thresholded to form a binary decision whether the upper body region is valid

or not. For points in the leg-hoof region, we define two interpretable rules to validate

their spatial positions: all leg-hoof points should be lower than the body region points,

and all hoof points should be lower than their corresponding leg points. If all leg-hoof

points satisfy these two rules and the upper body region contour is also validated, the

cow structure is considered valid.

This validation scheme is applied to all the detected cow objects in a video sequence,

and the Valid Cow Percentage (VCP) is computed as the number of valid cow objects

divided by the number of detected cows. The absolute VCP score is directly related to

the actual number of cows in the testing video sequence, so the score is only meaningful

when compared with other methods on the same testing dataset.

Temporal Consistency (TC)

The second unsupervised metric evaluates the Temporal Consistency (TC), which

reflects the smoothness of the motion of moving objects in a video sequence. It is rea-

sonable to assume that at a certain camera angle, the points from the body region al-

ways share the same translational motion because the shape of the cow body is stable.

So ideally, the motion vector between every keypoint generated from one frame to the

next frame should be the same. The Temporal Consistency (TC) metric evaluates this



101

co-movement and computes the difference between the motion vectors generated by

the body parts.

Formally, for each body part p t
j in a cow object, we compute its motion vector from

time t to t +1 and summarize the variations d between all the motion vectors as

d t = std(p t+1
j −p t

j ),∀ j ∈ {
j1, j2...

}
(4.3)

where std is the standard deviation, and ji represents the index of the body part from

the upper body region. Then the temporal consistency is computed as the average mo-

tion vector differences for all the frames in a video sequence.

TC = mean(d t ),∀t (4.4)

Notice this measure is applied to every individual cow object in a video sequence, and

smaller TC values imply smoother object movements.

4.4 Structural model experiments

This section presents the validation experiments. We first give a high-level summary

of how we collect and prepare the video data from a practical farm. Then we present

three different experiments. The system output experiment compares the results of ev-

ery stage in the proposed method, to demonstrate the importance of each component.

Next, the dataset robustness experiment is performed on three different sets of videos, to

demonstrate the robustness of the method. Finally, we compare our method with other

popular object segmentation methods, to demonstrate the advantages of our proposed

method for cow detection.
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4.4.1 Data collection

All cow videos in these experiments are collected from the Purdue Animal Sciences

Research and Education Center located in West Lafayette, IN, USA from 2018 to 2019. All

procedures were approved by the Institutional Animal Care and Use Committee (PACUC

#1803001704). The cameras are mounted at fixed positions include a side-view of the

path where cows walk every day. This path has fences on both sides and only allows one

cow to walk through at a time. This limits the amount of cow-overlap; however the dense

fences partly block the view of the cows, and some body parts are not visible behind the

fences, as shown in Figure 4.1. This walking path is a typical component of many dairy

farms.

During data collection, we used three different capture devices: a commercial surveil-

lance camera with Digital Video Recorder (DVR), a GoPro camera, and a high-quality IP

camera. Table 4.1 shows the detailed information of the three video sets captured from

the three cameras. The DVR videos have the worst quality with low frame rate and low

resolution. The GoPro videos provide higher frame rate, but they are spatially cropped

with less spatial details. The IP camera captures high quality videos with both high frame

rate and rich spatial information.

Table 4.1 compares several factors among the cameras that will influence detection

performance. As noted, the video resolution and frame rate are different between the

three sets and Set 3 has the best quality. The number of pixels per cow refers to the

average number of pixels that each cow occupies in a image, which is an indication of

the spatial detail in each set. Notice that Set 2 only has 0.29 million pixels per cow, which

is less than a third of the other two sets. The field-of-view each camera are also different.

Set 1 videos only capture the center of the walking path where there are fewer fences,

while the other two sets capture a wider view which includes two sides that have denser

fences. In addition, the typical number of cows in one video are different across the sets.

Narrow field-of-view videos normally captures a single cow in the frame, but the wider-

angle videos could contain multiple cows, which challenges the detection method. In
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general, Set 3 has more video clips than the others with the greatest variety, so we will

further divide this set into subsets in a later experiment described in Section 4.4.

To prepare the videos, we temporally segment the hours-long sequences into 10-

second clips, on average, where all cows walk from left to right. In each set, we separate

the clips into training and testing groups, where the number of training clips per set

are shown in parentheses in Table 4.1 after the number of video clips. All multiple-cow

clips are testing clips, so the training clips all contain only a single cow object. Non-

consecutive frames are chosen randomly for labeling from both training and testing

clips.

Table 4.1.: Summary of three sets of video data used in the experiments. The # Pixel per
cow is in units of millions.

Set 1 Set 2 Set 3
Capture Device DVR GoPro IP camera

Video info
1280*720

@12fps
1232*384

@30fps
1920*1088

@30fps
# Pixels per cow 0.88m 0.29m 1.35m
Image Quality low low high
Field of view narrow wide wide

# cow per clips single multiple multiple

# video clips
(# for training)

87 (5) 18 (2) 114 (5)

# training frames 100 40 100
# testing frames 585 59 611

4.4.2 System validation experiment

This experiment compares all the internal outputs from our proposed system shown

in Figure 4.3, to demonstrate the importance of each individual module. We choose the

output of CNN1 as the baseline method, which is the original method in the DeepLab-

Cut (DLC) toolbox [65]. However, this method can only detect one object per frame,

so for a fair comparison, we only use the videos in Set 1 since these only contain one
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cow object. We compare the baseline method with four other internal outputs from the

system: the CNN2 output from the difference videos, the CNN1 output plus the Post-

Processing (PP) stages, the CNN2 output plus the PP stages, and the final merged result.

The implementation details are explained below. The frame difference images are

generated by the sum of differences between the current frame and both the previous

and next frame. The training labels from Set 1 are used to fine-tune both CNNs in the

system. Recall that CNN1 processes the color images and CNN2 processes the frame-

difference images. Both networks are pre-trained on ImageNet [133] and their final up-

sampling layers are fine-tuned with our cow images. For the two CNN methods with-

out PP stage, we follow the extraction method from the DeepLabCut toolbox by setting

a hard threshold and finding the location in the confidence maps with the maximum

probability.

Both supervised and unsupervised evaluation metrics are used, but their testing data

are different. For unsupervised measures, we compare the Valid Cow Percentage (VCP)

and Temporal Consistency (TC) for all the frames in the testing videos because no labels

are required. But for supervised measures, only the 585 labelled testing frames are used

for evaluation. Among these labelled images, we report the body F1 score and leg-hoof

F1 score, and the VCP score is also computed to compare the cow detection capability

of each module in the system. Both qualitative and quantitative results are presented

below.

Figure 4.5 shows an example of all five outputs of one testing image in Set 1. The di-

rect outputs from the two CNNs without post-processing (top middle and bottom left)

miss-detect some body parts, because they apply the strategy from the original DLC

method that only selects one maximum point. Our proposed post-processing module

uses non-maximum suppression to select all local maximum values from the confidence

map, and all body-part candidates are detected (see bottom right of Figure 4.5). Consid-

ering the leg-hoof points, some joints of the swing leg are missed by CNN1 based on

color image, because of motion blurriness and heavy compression. But these points are



105

Figure 4.5.: The outputs of different stages in the proposed system.

detected by CNN2 using the frame difference image, and the merged result generates a

complete cow structural model.

Table 4.2.: Comparison of the outputs of the system components on Set 1 videos (single-
cow). Notice smaller TC value means smoother object movement in the video. Bold
numbers show the best performance method in each column.

Unsupervised Supervised
VCP TC VCP Body F1 Leg-hoof F1

CNN1
(DLC [65])

0.447 102.8 0.714 0.260 0.391

CNN2 0.408 155.0 0.673 0.366 0.252
CNN1+PP 0.632 8.92 0.846 0.772 0.373
CNN2+PP 0.667 10.19 0.929 0.841 0.333

Merged output 0.705 9.0 0.960 0.879 0.434

The numerical comparison results are presented in Table 4.2. In general, our com-

plete system (last row) improves the performance compared to the method in the DLC

toolbox (first row). It can be observed that adding a Post-Processing (PP) module largely

improves the system performance. The temporal and spatial prediction in the PP mod-

ule improves the cow-detection ability demonstrated by the increasing VCP scores. No-

tice the two VCP scores from supervised measure and unsupervised measures are not

comparable because their test sets are different. In addition, the temporal filtering pro-
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cess in the PP module largely improves the Temporal Consistency (TC), because the

original CNN method purely operates on an image without considering temporal in-

formation. Comparing two F1 scores in the supervised measures, the PP step improves

the detection accuracy for the cow structural model because more body-part candidates

are selected from the intermediate CNN output.

Comparing the first two rows from the table, we can see CNN2 has better perfor-

mance than CNN1 for the cow body region but works poorly on the leg and hoof re-

gions. As explained in Section 4.2.2, CNN2 operates on gray-scale edges generated by

the frame difference and better captures smoothly moving objects like the body region.

But it cannot work in isolation because it eliminates too much information contained

in the original images, such as the stationary legs. As a result, merging the two networks

together obtains better detection for the leg-hoof region points.

4.4.3 Robustness evaluation experiment

This experiment evaluates the system robustness with different datasets. Training-

based detection methods normally perform worse when they are applied to testing data

that is substantially different from the training set. In this experiment, we evaluate the

performance of our system when testing on frames collected from the three different

cameras, that capture the same region of the farm but with different capture angles.

This experiment also explores the influence of image quality on our system, since the

video qualities from the 3 sets are also different.

For the training images in each video set, we fine-tune three detection systems, S1,

S2, and S3, based on each individual corresponding dataset, respectively. An extra sys-

tem S_al l is trained on all the training frames together. In the testing phase, each trained

system is applied to the images from the three sets separately. We also test each system

on all testing images together for an overall comparison. All training and testing data are

separated regardless of their dataset, and no images used for both training and testing.

In total, there are 4 trained models testing on 4 groups of test sets, which forms 16 train-
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ing/testing pairs. For each pair, we measure the final system output using supervised

metrics: body F1 score and leg-hoof F1 score. Table 4.3 shows the comparison results.

Table 4.3.: System performance comparison on different video sets. The bold numbers
show the best performance of each column.

Trained
system

Body F1 score on Leg-hoof F1 score on
Set1 Set2 Set3 All Set1 Set2 Set3 All

S1 0.80 0.42 0.51 0.64 0.61 0.18 0.35 0.46
S2 0.72 0.65 0.58 0.65 0.16 0.59 0.33 0.26
S3 0.82 0.56 0.59 0.69 0.61 0.52 0.56 0.58

S_al l 0.82 0.64 0.61 0.71 0.62 0.65 0.56 0.59

In Table 4.3, each row represents a system trained from one dataset, and each col-

umn shows the system performance on one corresponding test set. Comparing the four

systems, it can be observed that S_al l achieves similar and slightly better performance

than the others, and this merged system even works better than when each individual

system is both trained and tested on its own videos (diagonal values). This demonstrates

that adding training data from other similar video sets helps to improve the detection

performance.

The results in Table 4.3 also allow us to examine the performance of the method

when the input videos have different qualities. While both Set 1 and Set 2 have low qual-

ity, the images in Set 2 (see Figure 4.6) have a small spatial resolution while the images in

Set 1 (see Figure 4.5) are blurry with poor illumination. Therefore, the results of system

S1 on Set 2 and of system S2 on Set 1 images are poor, especially for the leg and hoof

regions. However, system S3, which is trained on high quality images, provides better

results on both these two datasets. This demonstrates that using higher quality images

or increasing the variation of training data can improve system performance.

A final observation from the table is that the body region F1 scores are more stable

across different systems than the leg-hoof F1 scores, due to the post-processing module

that only operates on the body region. The spatial and temporal prediction in the post-

processing model improves the estimates of missing and incorrectly detected points,
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Figure 4.6.: The detection comparison between systems trained on different video sets.
This example image is from Set 2.

which compensates for poor CNN performance. Since the legs and hooves are estimated

directly from the CNN outputs, the performance variation is primarily due to the varia-

tion of training data.

In addition to numerical comparison, in Figure 4.6 we also present some visual re-

sults from all 4 trained systems applied to a test image from Set 2 that contains two

cows. Comparing the outputs, system S1 fails to detect two cow objects and S3 is con-

fused with some body parts between the two cow objects. However, system S2 and S_al l

both detect two cow objects and present an accurate cow shape, because these two sys-

tems are both trained with data from Set 2. But the merged result from S_al l is more

accurate on some body parts, for example the points on each cow’s back, because of

the additional training data involved. However, for the leg and hoof region, none of the

systems detect all the points, due to the difficulty of observing them and the lack of post-

processing process.

4.4.4 Detection performance evaluation

This experiment compares the detection performance between our system and other

popular object detection methods. Recall that the motivation for our system is not only

to segment the spatial location of the cow, but also to detect critical keypoints about its
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body parts. Therefore, ideally comparison methods should also target these two goals.

However, as mentioned in Section 1.6, most previous keypoint detection methods fo-

cus on human objects and incorporate knowledge about human body parts, and it is

difficult to adapt them to cow bodies for a comparison. On the other hand, there are

many popular object detection methods which can be fine-tuned to segment cows, and

these make for an effective comparison. In this experiment, we compare the cow object

detection performance between our system and other three popular pixel-wise object

detection methods: One Shot Video Object Segmentation (OSVOS) [41], DeepLab [50],

and Mask R-CNN [49].

Structural model to mask

To create a performance comparison that does not disadvantage the object detection

methods, we convert the output of our structural model into a binary cow mask, with

two steps. First, all keypoints from the upper body region are connected to form a closed

area representing the cow body. Second, every leg-hoof limb is expanded from a line into

a polygon with a horizontal width of 10 pixels, as shown in the second column of Figure

4.7. This expansion process is applied to both the ground-truth labels and the detection

results. The newly expanded ground-truth masks are then used to fine-tune the object

detection methods, as well as to compute performance metrics. Still the point-to-mask

conversion is not perfect. Notice the approximated masks cannot exactly cover the cow

object from the original image; see for example the inaccurate edges of the cow body

and the straight legs.

Performance comparison

We use all the training and testing data from the three video sets in this experi-

ment. In total, there are 240 single-cow frames for training and 1255 images for testing.

Each of the three comparison methods are fine-tuned with the approximate cow masks,

with different implementation details. For OSVOS [41], we use the parent network pre-
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trained on the DAVIS 2016 [42] dataset and fine-tune it with our data. The output results

are binarized using Otsu [137] threshold. For DeepLab [50], we use the pre-trained net-

work from the COCO dataset [58], and we modify the last layer to produce two classes:

cows and background. The fine-tuning process is applied only on the last atrous spatial

pyramid pooling layers with binary entropy loss. For Mask R-CNN [49], we use the net-

work pre-trained on the COCO dataset and fine-tune its region proposal network and

feature pyramid network. The classifier outputs are also adjusted to the two classes of

cows and background.

Figure 4.7 shows some visual examples of the detection results. From left to right are

the original image, ground truth, and the results from OSVOS, DeepLab, Mask R-CNN,

and our system, respectively. Each row shows an example which is selected from a dif-

ferent test set. Example (a) includes a human wearing black clothes who is walking right

behind the cow. This confuses OSVOS which considers it to be part of the moving fore-

ground object. Example (c) shows a special case which contains a pure white cow, and

this color is not present in the training data. The DeepLab method completely misses

the cow, because it directly extracts information from the color image and this rare color

has not been seen before. The OSVOS method detects part of this cow using motion in-

formation, but Mask R-CNN works well because its region proposal network determines

there is an object candidate and segments the cow object correctly.

Examples (b) and (d) contain multiple cows, and each method does detect multiple

cow objects. However, the three masked-based methods merge all detected cow ob-

jects together because the objects are close to each other, and we need further effort

to count the number of cows or to extract other detailed information. But our result

provides a clear delineation between the cow objects, due to the use of the structural

model. Another observation about these two examples is that the cow positions in these

two images are different. Some cows are in the middle with fewer fences and others are

on either the left or right side with denser fences blocking the view. Every method can

detect the middle cow, but the cows on the sides are more difficult due to the obstacles.

We further analyze the influence of fences in later paragraphs.
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Table 4.4.: Comparison of methods on different test sets.

Set 1 Set 2 Set 3 All
OSVOS [42] 0.571 0.580 0.570 0.571

DeepLab [50] 0.655 0.513 0.577 0.610
Mask R-CNN [49] 0.735 0.692 0.630 0.682

ours 0.750 0.668 0.662 0.703

Numerical comparison results among the methods are also reported using the F1

scores of the IOU between the detection results and the ground-truth masks. The mea-

sures are reported based on every test set separately in Table 4.4, and on distinct subsets

of Set 3 in Table 4.5.

From Table 4.4, it can be observed that our method achieves the highest accuracy for

most sets, although its performance relative to the fine-tuned Mask R-CNN is similar.

There are three factors which may influence these scores. First, when comparing the

masks using IOU, we use a merged mask containing both the cow body and leg regions.

Since the body region occupies a larger area of the ground-truth mask, the IOU score

can still be high even if the legs are miss-detected. Second, because the masks for our

method and the ground truth are both converted from keypoints, it is highly sensitive

to the positions of the keypoints, especially for the narrow leg regions. Small position

shifts can lead to a large change to the converted mask, which will influence the IOU

score. Third, when our system does not detect a leg or hoof point, the mask will be

empty in this region. This will also decrease the IOU of our system. Nonetheless, our

system performs well in comparison.

Detection comparison under fences

As mentioned above, a main consideration of our system is to obtain acceptable per-

formance even when there are multiple cows, and when there are obstacles like fences.

We use Set 3 videos to further explore the influence of these issues, to eliminate any per-

formance variations due to video quality. As Figure 4.7 shows, Set 3 images have a wider
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Table 4.5.: Comparison of methods on subsets of Set 3. Middle means the cow is in the
image center which has fewer obstacles, while Side means the cows are on the two sides
with denser fences.

Middle Side Single-cow Multiple-cows
OSVOS [42] 0.672 0.589 0.650 0.547

DeepLab [50] 0.644 0.537 0.616 0.518
Mask R-CNN [49] 0.749 0.574 0.703 0.520

ours 0.734 0.645 0.711 0.587

view of the walking path, and cows in the center have fewer fences while cows on the

left or right sides are blocked with denser fences. So we separate the testing frames from

Set 3 into four subsets: cows in the middle, cows on either side, single-cow frames, and

multiple-cow frames. Among the four subsets, images with cows in the middle and with

a single cow set will be easier than images from the other two subsets. The qualitative

comparison F1 scores of these subsets are shown in Table 4.5. From the table, Mask R-

CNN has better performance on the easier test case when the cows are blocked by fewer

fences. But for difficult test sets like denser obstacles, our proposed system works bet-

ter. The OSVOS method also performs well when there are more obstacles because this

method only considers the foreground and background, which allows it to separate the

stationary fences from the moving cows.

Experiment discussion

In general, compared to the other three mask-based object detection methods, our

proposed system has three advantages. First, based on the keypoints detection, our

method can correctly detect the cow structure even when the cows are behind the fences

or there are humans nearby. Second, when there are multiple cow objects, this system

can explicitly isolate each cow even when they are close to each other. Third, it can de-

tect cows with color patterns that do not exist in the training data through the use of

frame difference images. However, our system also has two limitations. First, the cow

structural model completely depends on the accuracy of the body parts, and one inac-
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curate detection can cause large errors for the body contour and influence the overall

spatial location. Second, the prediction system in our method is based on the keypoint

constraints from the cow structural model, which is fixed after the training process. So

if there are not enough cow body parts detected, the prediction system still forces the

results to conform to a particular shape, which could cause incorrect results.

4.5 Application 1: cow weight estimation

This section introduces a video analytic application for cow weight estimation, which

applies the side view cow structural model proposed in previous sections. We first intro-

duce the target and motivation of this application in subsection 4.5.1. Then we explain

our developed weight estimation system in subsection 4.5.2. Next, we present three ex-

periments in the following subsections.

4.5.1 Motivation

As explained in previous sections, dairy cows are one of the production animals

which is economically important. One of the major purposes of monitoring cows is

weight estimation [138]. However, accurately measuring the cow’s weights using ani-

mal weighing devices requires large amount of human efforts for large dairy farms. For

years, people are discovering easy-to-measure body features that can predict the cow’s

weight. The heart girth [139–141], withers height [142,143], and body length [142] are the

most widely used features, which are considered closely correlated to the cow’s weight.

Figure 4.8 shows the examples of some these features. Inspired by this idea, it is possi-

ble to measure these visual features based on our proposed cow structural model from

Section 4.1. Based on these features, we can predict the cow’s weights automatically

without extra human labor.

In the literature, many systems are proposed to automatically measure the cow weights

using visual information. To achieve accurate measurements, many methods include

the specifically-designed cow capturing environment. For example, [145] designs a cow-
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Figure 4.8.: Typical weight estimation features from [144].

image taking unit with a multi-camera system covered with good lighting conditions.

To capture more robust cow visual features, [146] designed a 3D box over the weighing

scale, so that the captured videos and images have less noise. Researchers from [138]

also install depth cameras on top side to capture the height of the joints on the cow’s

back, which could be further applied for body condition scores estimation [147]. How-

ever, all these methods require either building a special hardware system or install ex-

pensive depth cameras. Extra efforts are required for the farmers to control the cows to

walk through the weighing unit.

However, in this section, our proposed weighing estimation method is purely au-

tomated without any human involvement. The videos are captured under the normal

daily work of a typical dairy farm using commercial surveillance cameras. As Chapter 2

explains, there are four cameras installed in the dairy farm at different positions. This

method uses two viewing angles from the system: the front view which captures the face

and back of the cow, and the side view which we can extract the cow structural model

proposed from Section 4.1. We extract six different human-interpretable cow body fea-

tures and fit them into a linear model to estimate the body weights.
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4.5.2 Weight estimation system

This section introduces the general flowchart of our proposed weight estimation sys-

tem. Figure 4.9 shows the system pipeline. It takes input of two sets of videos captured

from different viewing angles, front-view and side-view, which are the top and bottom

branch in the figure. For both branch from left to right, first we need to locate the cow

object in the video sequence including the useful frames and the cow’s spatial position.

Next, based on the viewing angle and their spatial positions, several visual features are

defined and extracted. Finally, all features from both views are merged together to fit a

weight estimation model, which predicts the cow weight.

Two videos provide different views of the cow and their target body features also

varies, as a result, we use two separate branches to process them. For the front-view,

the cow body width is the main feature to extract from this angle, and we design a

spatial-temporal segmentation process to only select the frames where the cow’s spa-

tial location are within a particular region. But for the side-view videos, more detailed

information can be extracted, such as the body length and height. This detailed infor-

mation requires the location of some specific joints from the cow’s body, which requires

a side-view cow structure based on keypoints. In this case, our previously-proposed

keypoint-based detection system [148] is applied to extract the joint locations. The de-

tailed feature extraction process is explained in the next section.

Figure 4.9.: The general flowchart of the weight estimation system.
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Front-view video feature

This section introduces the procedure to process the front-view videos. This viewing

angle captures the cow walking from a front top side, which clearly sees a complete cow

including both the head region and the back of body region. Weight-related features

such as the cow’s back width and size can be measured in the unit of image pixels.

The fundamental step for cow feature extraction is to locate the cow objects from the

video sequences. Because of the fixed camera position, a fixed Region Of Interest (ROI)

is defined to locate the walking path (black box in Figure 4.10), which is further divided

into 4 vertical boxes (black dash lines) from top to bottom. Within this ROI, we apply

Gaussian Mixture Model to detect background changes within every vertical box. We as-

sume a cow is included in this area if all four black boxes have the changing background,

and these frames are selected for further analysis. After the temporal segmentation, all

the selected frames for spatial segmentation. Since our target feature is mainly the body

width, a pixel-level cow mask is needed. The Mask-RCNN [49] is applied to detect the

spatial position, which is shown in red shaded area in Figure 4.10. Notice that the Mask-

RCNN is pre-trained on COCO [58] which includes a cow category.

Based on the detected cow mask, we can extract the body width w directly. We ver-

tically divided the cow’s mask into n rectangulars, and each rectangular has the width

of the maximum length of the cow’s mask at that vertical position. As shown in Figure

4.10, the red cow mask is equally cut into small rectangulars. However, only the width

of the body region is needed, and we select top m green boxes and record the median

of their length of pixels as feature body width w. In later experiments, we choose n as

14 and m as 9 in the system. Apart from the body length, we also record the area of the

mask as another feature represented by a_f, which is the area of the red mask in Figure

4.10. After all the selected frames from the video are processed, we average both feature

values from all the frames as the final features to represent this cow in the video.

Note that the angle of this surveillance camera is not straight down, and the width

on the image are not consistent due their distance to the camera. As a result, an extra
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Figure 4.10.: The feature analysis for the front-view video. Notice the body width w is
the median length of the green rectangulars, and another feature is the front area a_f
shown in red.

process is added to normalize the body width features. We use the shape of the ROI box

as reference because its left and right edges, or the fences, are parallel and the length

between edges are the same. Based on this fact, different scale factors are computed

based on the pixel vertical position in the frame, and then multiplied to the extracted

body width w features to unify their represented physical distance.

Side-view video analysis

This section introduces the side-view video analysis. Figure 4.11 shows an example

frame from the side-view videos, which shows the cows to walk from the left to right

side through the path bounded by fences. Unlike the front-view videos, this view pro-

vides more body size information related weight estimation such as the like body length

and height. In addition, this view does not cause geometric length-measuring problems,

because the camera is far from the cows, and it is reasonable to assume the length on

the frame is independent of the cow’s spatial location. However, detecting cows in this

view needs to handle the fences which always partly-block the cow. There are also unre-
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lated background noise that challenges the cow detection, such as the crowned cows in

behind shown in Figure 4.11.

As mentioned above, the length measurement on this view requires the location of

joints from the cow. Here we apply our previously-proposed cow structure detection sys-

tem [148]. This method is based on CNNs, which takes the input of a video sequence and

extracts the joint keypoints of all possible frames to generate a structural model. Shown

in Figure 4.11, the yellow dots around the cow body edges are the detected structural

model, which consists of the upper body boundary and the position of all 4 leg limbs.

In this model, we mainly focus on the three joints labelled in the figure: the shoulder,

tail base, and the bottom front. We define these lines connected by the joints with the

following names: the black line is the body length l, the green line is the body height h,

and the blue line is called the body diagonal length d. The area of the body region mask

shown in red in Figure 4.11 is also used for weight estimation, which is denoted by a_s.

Figure 4.11.: The feature analysis for the side-view video. The yellow color shows the
output of cow structural detection system, and the black, green, and blue lines repre-
sents the body length l, body height h, and body diagonal length d. The feature side area
a_s is the shown in red.

When applying the structural model detection system, we detect the target body

lengths from all possible frames and each frame produces a vector of visual features. To
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overcome the inconsistency of the detection process on different frames, we computed

the median value of every length feature collected from a video sequence and result in a

final set of features to represent the cow.

Detection model and fitting

This section introduces the weight estimation model based on visual features. Based

on analyzing videos from both viewing angles, six features are extracted. Four of these

features represent the physical lengths but in unit of pixels, and another two are the

areas of the cow body. All these features have physical meanings and they are generally

all proportional to the cow’s weight. Here we use a simple linear model to fit the features

and predict the Body Weight (BW) shown in Equation 4.5:

BW =∑
i
αi fi +β (4.5)

where the fi is the visual feature, and αi and β are the parameters. The parameters are

estimated based on the training weights using linear regression.

The weighing model could variate by having different choice of visual features, and

it is possible to use one single feature only to predict the cow’s weight. In later sections,

apart from single feature fitting, we mainly consider four different combinations: the

front-view features only, the side-view features only, four length features, and all features

together. All these combinations are trained and evaluated in later experiment section.

4.5.3 Experiment preparation

All cow videos used in this paper were collected from a local U.S. dairy farm during

2017 to 2019. We install high-quality IP cameras on different positions in the farm, so

that we can collect both the front-view and side-view of the walking path. The cam-

eras provide videos with the resolution of 1920*1080 at 30 frames per second. The raw

captured videos from both views are temporal segmented into single cow walking clips
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manually, and they are synchronized with time. As a result, every cow identity is cap-

tured by two clips, where the front-view one (Figure 4.10) captures the cow move from

far to near, and the side-view one (Figure 4.11) shows the cow move from left to right.

Table 4.6.: Summary of video clips used in the experiments.

Day
# of

cows

Min
weight

lbs.

Mean
weight

lbs.

Max
weight

lbs.

weight
SD
lbs.

1 125 1010 1449.2 1851 167.6
2 105 1132 1460.1 1841 170.1
3 137 1114 1447.9 1857 181.2
4 135 1021 1447.6 1931 183.3

All 502 1010 1447.9 1931 176.6

Most of these single cow walking clips are captured during the monthly weighting

process, and the weight of these cows are recorded as ground truth labels in this experi-

ment. As Table 4.6 shows, we separate these clips by their captured days, and the ground

truth weight statistics are also presented. Notice each cow identity has two video clips,

one from side-view and one from the front-view. In addition, the unit of weights in this

paper is pound (lbs.), so all the weight estimation models used later try to fit the visual

features into the scale of pound.

Apart from the cow weighting clips, we also extract 100 frames from the side-view

clips and label the keypoints of their joints. These labels are used to fine-tune the cow

structural model detection system for the side-view video analysis.

4.5.4 Visual features comparison

This experiment evaluates every extracted visual feature individually. From two view-

ing angles, we select six visual features to estimate the body weight: the median body

width w , front-view body area a f , body diagonal d , body length l , body height h, and

side-view body area as . All the features are shown in Figure 4.10 and 4.11.
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For each feature, two major aspects are evaluated: the statistics of the feature and

its correlation with body weight. First, we show the basic value ranges of each feature

and their Standard Deviation (SD) to provide a sense of the range of the feature values.

Second, the connection between the feature and the body weight is measured using the

Pearson Correlation Coefficient (PCC). In addition, we assume every feature has a linear

correlation with the body weight, which fits the feature values and weights into a linear

function. Then the Root Mean Square Error (RMSE), Mean Absolute Percentage Error

(MAPE), and the R square error (R2) are reported to show the fitting errors. The RMSE

and MAPE are defined below,

RMSE =
√√√√ 1

N

N∑
i=1

(yi − ŷi )2 (4.6)

M APE = 1

N

N∑
i=1

∣∣∣∣ yi − ŷi

yi

∣∣∣∣×100% (4.7)

r2 =
∑N

i=1(ŷi − ȳ)2∑N
i=1(yi − ȳ)2

(4.8)

where N is the number of samples, yi is the ground truth weight, ŷi is the predicted

weight, and ȳ is the mean value. Notice, these errors are generated in the processing of

linear parameter fitting, and we do not separate the data into training and testing sets in

this experiment.

Table 4.7.: Statistics of every single feature and their correlation versus body weights.
Notice the unit of the RMSE is lbs..

name abv min mean max sd pcc RMSE MAPE r2
width w 0.337 0.446 0.522 0.027 0.721 120.1 12.14 0.52
area_f a f 8.942 24.24 32.52 2.136 0.504 149.7 11.05 0.254

diagonal d 232.9 261.8 308.8 10.95 0.55 144.8 11.3 0.302
length l 192 235.6 276 11.99 0.583 140.8 11.45 0.34
height h 84.25 98.55 125.5 4.905 0.426 156.8 10.79 0.182
area_s as 23952 29803 35760 2153 0.615 136.6 11.6 0.379
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Table 4.7 shows the statistics and correlation of every feature with the body weights.

The first two features width and area_f are extracted from the front video videos. Both

features are normalized because of the geometric of the viewing angle, so their values are

generally smaller and do not have units. Other four features from the side-view videos

are all in unit of pixel, which are directly measured from the video frame. Comparing all

the features based on the last four columns, it can be observed that the front view width

w has the highest correlation with the body weight. It also achieves the minimum RMSE

and highest r2. This is mainly because this width is computed based on the median of

9 horizontal bins from the cow’s back, which is more robust to errors. In the side-view

features, the area of the cow as shows the best correlation with the body weight. Among

other three length-based features, the side-view body length has less error.

The scattered plots between the feature and weights are shown in Figure 4.12. Among

all six features, it can be observed that the front-view width w has the strongest linear

correlation with the weight. Two area-based features a f and as have more non-linear

correlations. The weight prediction models can be further explored with more compli-

cated non-linear fitting functions, but this is beyond the scope of this thesis. In the next

section, we select some combinations based on these features and computer their per-

formance on weight estimation.

4.5.5 Weight estimation experiment

In this experiment, we separate all the weighting data into training and testing sets

and evaluate the weighting prediction errors which are tested on unknown dataset. We

first compare the feature and the models based on the feature combinations. Then we

split the data by different days and simulate a practical situation that we have our fitted

model based on current data, and try to estimate cow weights for new collected videos.
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Figure 4.12.: Visual features versus the cow body weight. The red dots show the pre-
dicted weight using linear model.

Test with different feature combinations

In this subsection, we randomly separate features to evaluate the performance of

different linear models using multiple features. There are 502 samples collected from

all four different days, and we randomly split these samples at the percentage of 80%
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and 20% at each test. In other words, 400 samples are used to fit the linear data model

proposed in Section 4.5.2, and 102 testing samples are used to compute the prediction

errors. In the testing process, we report the RMSE and MAPE score to evaluate the pre-

diction errors. In addition, the prediction Error Percentile (EP) are also reported. The EP

is computed by sorting the prediction errors and select the values at corresponding per-

centile in an increasing order. In the experiment, we report EP at 50% and at 95%. The

test is repeated for 100 times, and every value reported are averaged over all the tests.

Different feature models are considered in this experiment. Apart from the single

features, we also select their combinations, such as the two features from the front-view

video, four features from the side-view video, four line-based features, and all features

together. All combination of features are merged using the weighted linear sum shown

in Equation 4.5. The prediction results are shown in Table 4.8.

Table 4.8.: The weight prediction test on different feature models. Notice the units are all
in lbs. Notice that the training sample number and testing sample number in this table
are 400 and 102.

model RMSE MAPE EP50 EP95
w 118.7 6.557 79.43 234.3
a f 146.9 8.449 108.8 268.4
d 141 7.893 93.42 269.3
l 135.5 7.441 84.98 271.8
h 151.3 8.551 103 276.8
as 133.4 7.31 87.4 254.2

w ,l 104.6 5.679 65.04 211.5
front only (w ,a f ) 118.3 6.568 82.09 231.9

side only (d ,l ,h,as) 126.7 6.93 81.57 246.3
four lines (w ,d ,l ,h) 100.5 5.451 61.96 195

all 99.39 5.406 61.72 192.7

From the table, it can be observed that merging features together generally improves

the prediction errors. Specifically, the merged model with all six features together achieves

the best prediction. There are three observations from this table. First, the front-view

features have better predictions than the side-view features, and one reason could the
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viewing distance. The cows appear far away from the camera, which makes one pixel

equal to larger physical distance. So minor pixel error could be amplified which further

increases detection noise.

Second, the model based on front-view body width w and side-view body length l

is an approximation of the popular physical measuring method using heart girth and

body length from [144]. This model predicts a reasonable result with two lines since it

is easier to measure these two values physically. However, based on our visual analy-

sis, adding feature dimension improves the prediction results. This shows the potential

that for practical weight estimation, measuring more physical quantities of the cow also

improves the accuracy and robustness.

Third, the Error Percentile (EP) shows range of the absolute prediction errors. For

example, in the last row, this value means half of the prediction errors are less than 61

lbs., which is useful and meaningful in real application. But the 95% prediction error is

less than 200 lbs., which is too large to deploying in practices according to the weighting

data from Table 4.6. The robustness of the prediction system needs to be improved in

the future.

Multi-day prediction experiment

This experiment separates the training and testing data by days to simulate a practi-

cal usage. In total we collect data from four different days, and we trained four different

linear models based on the combination of all six visual features together (last row from

Table 4.8). Each model is trained on the video data from three different days and test

on the videos from the other day. We report the RMSE and the mean difference of the

errors. This mean difference error is used to check if there are any bias on different days.

The estimation results are shown in Table 4.9.

It can be seen from the table that RMSE scores variate between four different models

with the range around 20 lbs.. The best results are achieved on testing day 2 videos,

which has the largest training samples. This implies that training with more data has
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Table 4.9.: The weight estimation experiment based on different days. The unit of the
weights are lbs.

Train days Train N Test date Test N RMSE mean dif
2,3,4 377 1 125 96.60226 34.69979
1,3,4 397 2 105 90.74556 21.96487
1,2,4 365 3 137 112.6376 -28.1958
1,2,3 367 4 135 106.6216 -22.3129

the potential to improve the prediction results. Another observation is that the mean

difference value or bias error is not close to zero. This shows the fact that there could

be capturing issues on specific days which influence the feature extraction, such as the

lighting condition or the position of the obstacle fences in front.

4.5.6 Discussion and potential improvements

This preliminary weight prediction method has two major advantages. First, the

whole measuring system is fully automatic, which means no extra human efforts are

required. The videos are captured during the daily milking section, and the system is

running in the background and predict the weights automatically. Second, this system

uses normal surveillance cameras for video capturing, which is economically efficient.

Using pure video data, our best prediction result achieves the RMSE error of 90 to 100

lbs.. This error level also achieves the similar performance comparing to a recent previ-

ous work such as [146], which applies complicated hardware system.

However, there are many limitations to this weight prediction system. The most im-

portant one is the large prediction error, while the ideal error level suggested by farmers

is 30 lbs.. Another limitation is the sensitivity of the system. A good weight prediction

system can compare the weights between two cows, but our system has a high com-

parison error. This issue is more common to observe when comparing two cows with

weight difference less than 100 lbs.. In addition, the extracted visual features largely de-

pend on the pose of the walking cows. If special poses happen, for example the cow is
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turning their head or trying to rotate in the walking path, the detection system will fail

and cannot provide the correct visual features.

There are many potential procedures to improve the prediction errors. Based on our

current video capturing system, there are four viewing angles available which provides

four different views of the cow, but our current method only applies two of them. For

example, the top view which captures vertically above the cow could provide more di-

rect and robust body width information. Second, the segmentation methods could be

improved to extract visual features more accurately. Some rare situations, such as the

cows are blocking each other or an uncommon cow body pose, could be solved with

better spatial localization methods. Third, better models could be applied to estimate

the cow body weights. For example based on the fitting plots shown in Figure 4.12, some

features such as the areas could be fitted with second order functions. In addition, more

complicated regression model could be applied, such as neural network.

From a practical point of view, estimating the cow body weights of every walking

through cow is not enough. This work could be extended into a fully automated cow

monitoring system. One further potential application is cow re-identification (Re-ID).

With the help of Re-ID, the estimated weights could be automatically saved into the farm

recording system, because we know which cow is walking through and its weight. This

can further improve efficiency of a dairy cow farm using cameras and video analytics.
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5. CONCLUSION

This chapter summarizes the projects in the thesis and provides some general discus-

sion of video analytics in practical applications. In Section 5.1, we first highlight the key

features from the two video processing projects in agricultural industry: farming video

processing and animal video analysis. Next we discuss more about the general chal-

lenges in practical applications and how we overcome them in Section 5.2.

5.1 Project summary

5.1.1 Farming video project summary

In farming video processing project, we first introduce the multi-sensor data logging

system ISOBlueHD in Section 2.1. Next the spatial segmentation problem is defined for

farming machine videos. Unlike typical video object segmentation, the goal of segment-

ing farming videos is to partition the frame into different regions. The practical farming

environment also requires the system to be both computationally efficient and easily

adaptable to different farming applications. Based on these conditions, three spatial

segmentation methods are presented. The first two methods in Section 3.1.2 and 3.1.3

based on thresholding motion features select the specific regions from the frame. The

third method from Section 3.1.4 uses a trained random forest classifier. It extracts ba-

sic color and motion features, and the system can be quickly trained on machines with

limited computational power.

In addition, two video-based farming applications are presented, each focuses on a

different region of the image. First, we develop a generalized two-branch pipeline for

farming video classification in Section 3.3. The system uses a general video classifier

as Branch 1 and merges a specifically-designed classifier in Branch 2 based on domain
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knowledge. When applying this system to classify farming activity videos, the second

branch selects features from the attachment region and improves the overall perfor-

mance. Apart from farming, this two-branch pipeline can be further applied to video

classification problems for other areas with domain knowledge involved.

Another application is to predict and control the header-height of a combine har-

vester in Section 3.4. This system uses the segmentation results and focuses on analyz-

ing the upcoming field region. Based on crop presence classification, the system esti-

mates the crop amount in the field, which can be further parsed to indicate and adjust

the combine header-height. The results show that the crop percentages in the field re-

gions can be successfully detected, and the sensitivity test shows the system can identify

the decreasing percentage and it is robust to minor crop detection errors.

5.1.2 Cow health analysis

In cow health analysis project, we design a side-view cow structural model based

on the joints or keypoints in Section 4.1. This model shows three levels of information:

the spatial location of every cow object in the frame, the mask of the cow’s upper body

region, and the keypoint positions of some specific joints. A cow structural model is

also proposed to automatically detect cow keypoints from the video sequences. The

detection system is based on deep learning techniques, and it first extracts all possible

keypoints from the frame and then assign them to every cow object. The miss-detected

keypoints could be predicted based on spatial and temporal prediction using the key-

points constrains and temporal motion consistency.

We also show some preliminary results of an application related to cow weight es-

timation. Videos from two different views are collected for cow weight estimation: the

front view and the side view. Related cow body features are extracted from two different

views, such as the cow body width and cow length. Notice the features from the side-

view videos are extracted from the proposed cow structural model directly. We use a

linear function to fit the features to cow weights, and the predict weight error range is
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around 100 Lbs.. Further improvement process is required to decrease the prediction

error rate.

5.2 General discussion of practical applications

There are some common challenges for practical video applications. First, the video

capturing process is not easy. Depending on the application, there are many limits on

the camera selection and placement. One typical challenge for practical application is

the limited video data. Second, the collected raw videos require large amount of ef-

fort for pre-processing. Temporal segmentation and spatial segmentation are crucial

to locate where the target objects or regions are in the long video sequences. The per-

formance and accuracy of the pre-processing steps directly influence the further steps.

Third, the ground truth labels are very expensive. For industries with specific domain

knowledge, only trained personals or special operations can provide the labels. For ex-

ample, the weight of cows from the dairy farm is collected based on weighing process

which involves large amount of human efforts.

Figure 5.1.: General relation between human knowledge and machine effort.

A typical video analytic system is often designed to read input data and provides the

required targets, like event detection or object classification. Nowadays, it is possible to

build self-learning systems using large amount of data and labels using a complicated



132

model such as a CNN. In this case, only the data and labels are required to solve the

problem, and little human knowledge is needed since it is converted into the labels.

As long as the number of data and labels is enough, normal video applications such as

classification or event detection can be solved with a reasonable performance.

However, for practical applications which have limited video data and labels, the

data-driven models are not suitable. In this case, we can apply the prior human knowl-

edge to reduce the complexity of models and huge requirement of data. In the projects

we presented in this thesis, different levels of human knowledge are applied: defining

the machinery farming videos into three different regions, hand-crafting motion fea-

tures for segmentation purposes, and applying the cow body features for weight estima-

tion. All the human knowledge is implemented in the analytic systems, which is more

general and robust to data-driven methods, especially when the videos or labels are lim-

ited.

Figure 5.1 shows these two type of systems. The machine effort on the Y axis repre-

sents the number of data and labels, plus the computation power and model complexity.

The human knowledge on the X axis shows how much knowledge used when develop-

ing the system. The blue point in Figure 5.1 represents the data-driven systems. It uses

less human knowledge but needs large amount of data and computational power. On

the other hand, the applications shown in the thesis are represented as the red point.

We use domain knowledge to develop the applications, which requires generally less

data and labels for industries such as agriculture. Our experimental results from previ-

ous chapters show that our systems achieve similar or better performance comparing to

data-driven methods.
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A. APPENDIX FIGURES

(a) Harvest corn(snaplage) (b) Harvest corn(snaplage)

(c) Harvest corn(chopper) (d) Harvest corn(chopper)

(e) Combine beans (f) Combine beans

Figure A.1.: The example images captured from framing vehicles (1)
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(a) Tillage (b) Tillage

(c) Planting (d) Planting

(e) Spraying (1) (f) Spraying (1)

(g) Spraying (2) (h) Spraying (2)

Figure A.2.: The example images captured from framing vehicles (2)
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(a) Wheat harvesting (1) (b) Wheat harvesting (2)

(c) Wheat harvesting (1) (d) Wheat harvesting (2)

(e) Hauling Bales (1) (f) Hauling Bales (2)

(g) Planting corn (1) (h) Planting corn (2)

Figure A.3.: The example images captured from framing vehicles (3)


