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ABSTRACT

Chan, Virgil Ph.D., Purdue University, May 2020. An Explicit Formula for the Loday
Assembly. Major Professor: Daniel A. Ramras.

We give an explicit description of the Loday assembly map on homotopy groups
when restricted to a subgroup coming from the Atiyah-Hirzebruch spectral sequence.
This proves and generalises a formula about the Loday assembly map on the first
homotopy group that originally appeared in work of Waldhausen. Furthermore, we
show that the Loday assembly map is injective on the second homotopy groups for a
large class of integral group rings. Finally, we show that our methods can be used to

compute the universal assembly map on homotopy.



1. INTRODUCTION

Classically, algebraic K-theory deals with three Abelian groups Ky(R), K;(R) and
K5(R) associated to a ring R. See [Ros95] for their definitions. For a topological
space X, topologists have found geometric applications of the groups K;(Z[m(X)])
fori = 0,1, 2, where Z[m (X)] is the integral group ring of the fundamental group of X.
For example, an important application of Ky was found by Wall [Wal65]. He defined
an element y(X) in a quotient group Why (m1(X)) of Ko(Z[m(X)]), known as Wall’s
finiteness obstruction, and showed that a sufficiently nice X is homotopy equivalent to
a finite CW-complex if and only if x(X) = 0. (See [Ros05, Theorem 1 on page 579] for
the precise statement.) The second example, which is due to Whitehead, is an attempt
to classify manifolds of dimension at least five. In a collection of work [Whi39, Whi41,
Whi50], he defined the Whitehead torsion 7(f) € Why (m1(X)) of a continuous map
f, where Why (71(X)) is a quotient of K;(Z[mr(X)]). In particular, the vanishing of
the Whitehead torsion allowed Smale to prove the Poincaré Conjecture in dimensions
greater than four [Sma61].

For an ideal I C R, there is a natural exact sequence

K3(R) —— Ky(R/I) —— K{(R,I) — K,(R)

m

— K, — K,

W

(see [Ros95, Theorem 4.3.1 on page 200]), and a lot of effort went into the search

(1.1)

for definitions for K;(R) with i > 3 to extend this exact sequence to the left. The

first widely accepted definition was due to Quillen [Qui72, Qui73], for which he was



awarded the Fields Medal in 1978. His idea was that one should try to construct the

groups K;(R) not one at a time but all at once, as homotopy groups

of a certain topological space K(R) constructed to reflect structures of the category
of finitely generated projective R-modules. It was later discovered by Gersten and
Wagoner that the space K (R) is an infinite loop space [Ger72, Wag72], and hence is the
0-th space of an ()-spectrum ng (see Definition 2.3.2), making algebraic K-theory
part of stable homotopy theory. Several definitions of algebraic K-theory came out to
account for this property, notably Waldhausen’s S,-construction [Wal78¢c|. Nowadays,
people understand algebraic K-theory as a machine that takes in nice categorical data

to produce 2-spectra, or more precisely, a functor

K : SymMonCat — -Spectra (1.2)

from symmetric monoidal categories to {2-spectra such that the homotopy groups

i (1)

of the Q2-spectrum, obtained by evaluating at the category CPrOjfg of finitely generated
projective R-modules, recover the classical K-groups of R for i = 0, 1,2 and the higher
K-groups defined by Quillen.

However, the general consensus is that computing homotopy groups is difficult.
Hence, investigating algebraic K-theory of rings is not an easy task. On the other
hand, homology is more accessible—there are excisions, the Mayer-Vietoris sequence,
and even spectral sequences in homology that are more user-friendly than they would
be in homotopy. This is the story of assembly—to approximate homotopy theory by

a generalised homology theory.



1.1 History and Motivations

In his dissertation [Lod76], Loday defined a map

OLoday - BG+ A K%W — K%[\g} (13)

of spectra, which is now known as the Loday assembly (see Definition 3.1.2), to
unify the classical Whitehead groups Wh; (G) for i = 0, 1, 2 studied by Wall [Wal65],
Whitehead [Whi39, Whi41, Whi50], and Hatcher-Wagoner [HW73]. These groups are

isomorphic to the cokernel

Wh; (G) = coker (7; (oday) : ™ (BG+ AKSY) = K; (Z[G))) (1.4)

fori=0,1,2. See [Lod76, page 357-364], or Corollary 3.3.2 for the case i = 1. Before

this work appeared, Wall defined a version of assembly

A Hi(BG; Q) — Li(Z[G]) ® Q (1.5)

for L-theory. Furthermore, he showed that the injectivity of A; implies the classical
Novikov Conjecture about homotopy invariance of the higher signature of a closed,
oriented manifold M when G = m (M) [Wal70, 17H]. The converse is also true
[KM81], and therefore the classical Novikov Conjecture is equivalent to the injectivity
of the map A; for all 7. Motivated by this, Hsiang cast the following conjecture in his
1984 ICM address:

Conjecture 1.1.1 (K-theoretic Novikov Conjecture, [Hsi84]) Let R be a reg-

ular ring, and G be a torsion-free group. Then the map

Ti(Uoday) @ 1dg : Ti(BG L AKSY) @ Q — Ki(R[G]) @ Q (1.6)

15 injective for all i.



Attempts at answering the K-theoretic Novikov Conjecture 1.1.1 often lead to the
creation of new mathematics, most notably the Topological Cyclic Homology, which

allowed Bokstedt-Hsiang-Madsen to prove the following:

Theorem 1.1.1 ([ BHM93, Theorem 9.13 on page 535]) The K-theoretic Novikov
Congecture 1.1.1 is true if the homology groups H; (BG;Z) are all finitely generated.

A stronger statement is also possible:

Conjecture 1.1.2 (Classical Farrell-Jones Conjecture) Let R be a regular ring,

and G be a torsion-free group. Then the map

Ti(Qoday) : Ti(BG ANKRY) = K;(R[G]) (1.7)
s an isomorphism for all 1.

This conjecture can be understood as a conceptual approach to computing alge-
braic K-theory of a group ring via a homology theory, but it has important implica-
tions for a range of topics, notably the Borel Conjecture concerning the topological
rigidity of closed spherical manifolds, and the Kaplansky Conjecture about the idem-
potents in a group ring.

The following case has been verified:

Theorem 1.1.2 ([BLRO08, Theorem 1.1 (i) on page 58]) The Classical Farrell-
Jones Conjecture 1.1.2 s true if the group G is word-hyperbolic.

The work presented here is motivated by the Classical Farrell-Jones Conjec-

ture 1.1.2.

1.2 What Are We Trying to Do?

The purpose of this dissertation is to help the author to obtain his doctoral degree
by studying the Loday assembly. More precisely, the source of the Loday assembly



Oloday - BG+ AN K%W — K%[\g}

represents a generalised homology theory. Hence, its homotopy groups can be com-

puted by the Atiyah-Hirzebruch spectral sequence

B2, = Hy(BG.: K,(R))

= Tp+q (BG+ N ng) .

From the construction of the spectral sequence, we know there is a subgroup EY; of
the homotopy group m;11 (BG+ A ng) coming from the 1-skeleton of the classifying

space BG. We provide a formula for the restriction ;41 (0roday)| goo :
1,0

Theorem 1.2.1 (See Theorem 3.3.1 and Corollary 4.1.1 for the formula on
7o) Let R be a ring and G be a group. Fori >0, the filler of the diagram

D1
E?, = H(BG;KiR)) = Gu®K(R)------ K41 (R[G))
Ti+1 (aLoday)
Eloz S Ti+1 (BG A ng)

(1.8)

15 induced by the bilinear map

G x Ki(R) — Ki1(R[G])
(g, [f]) = {g} ¥ [f],

for which on the right-hand side, the element g is considered as an element in GL(1, R[G]),

and ' is the extended Loday product (see Definition 2.2.1).



In particular, when R = 7, the map

By : Gy ® K1 (Z) — Ko(Z[G)) (1.9)

1s induced by the bilinear map

G x K\(Z) — K»(Z[G))

(gail) = {_179}8‘5’ (110)

where {—1,g}s, € K2(Z[G]) is the Steinberg symbol of {—1} € Ky(Z) and {g} €
K (Z[G)).

The derivation of our formula involves extending the original Loday pairing

Vioday : BGL(R)® A BGL(S)" — BGL(R® S)* (1.11)

to the full K-theory space
Moday © [Ko(R) x BGL(R)"] A [Ko(S) x BGL(S)"] = Ko(R® S) x BGL(R® S)*
(1.12)
in a non-obvious way (see Definition 2.2.1). Here, the superscript “+” denotes

Quillen’s plus construction of the classifying space BGL (R) relative to the subgroup

E(R) generated by elementary matrices. In particular,

(i) we relate the product map

1 Ki(R) @ Kj(S) = Kivj(R® S)

induced by the extended pairing 71,4,, to the classical product maps defined

by Milnor in [Mil72] (see Theorem 2.3.1).



(ii) We recover (and generalise) a formula about the Loday assembly on m; written

down in a survey article [LRO5] by Liick-Reich (see Corollary 3.3.1).

(iii) We obtain injectivity results on 7y for a large class of integral group rings (See

Corollary 4.1.2).

(iv) We show that our formula can be used to compute the universal assembly in

the sense of Weiss-Williams
aBG . BG+ AN K]P;W — K]P;\[AG]]

written in terms of the non-connective Pedersen-Weibel K-theory spectrum

KEW of a ring R (see Theorem 5.6.1).

We elaborate more on item (ii). The assembly on fundamental groups

m (Ape) : m (BGy ANKLY) — Ki(Z[G)) (1.13)

was first described by Waldhausen. It is induced by the bilinear map

(+1) x G — K1 (Z[G))

(£1,9) — {£g} (1.14)

under the identification
m (BGy NKGY) = K1(Z) & Hy(G; Ko(Z))

= Ki(Z) © [Gap @ Ko(Z)]
= {+1} @ Guw (1.15)



resulting from the vanishing of differentials in the Atiyah-Hirzebruch spectral sequence
[Wal78b, Assertion 15.8 on page 229]. On the left-hand side of Equation (1.14), we
think of {£g¢} as represented by +¢ € GL(1,Z[G]). A formula for arbitrary regular
rings was later written down in the survey article by Liick-Reich [LR05, page 708].
To prove (1.13) is as given by (1.14), Waldhausen reformulates the Loday assem-
bly in terms of Quillen’s Q-construction, and interprets the source of the assembly
as a generalised homology theory for simplicial sets. Then, he verifies the formula
on the simplicial level. The work presented here provides a different approach to
prove Waldhausen’s formula by working in Loday’s original setting—using Quillen’s
plus construction. This new approach allows us to get higher degree results, and in

particular, an elegant formula on 7 (see Corollary 4.1.1).

1.3 Organisation

This dissertation consists of five parts, including the introduction. In Chapter 2,
we review the construction of the original Loday pairing map and extend it to the full
K-theory space using the Gersten-Wagoner delooping. We then relate the induced
product maps on the K-groups with the classical product maps defined by Milnor and
use the extended Loday pairing to construct the non-connective Gersten-Wagoner
Algebraic K-theory spectrum K&V of a ring R.

In Chapter 3, we use the extended Loday pairing to define the Loday assembly
and identify the subgroup of the source that we are interested in by studying the
Atiyah-Hirzebruch spectral sequence. It also contains the statement and the proof of
our main result.

Chapter 4 deals with the injectivity problem for the Loday assembly on my. We
study the extension problem for the second homotopy group of the source of the
Loday assembly coming from the Atiyah-Hirzebruch spectral sequence. Then we

provide injectivity results for a large class of integral group rings.



Chapter 5 is a quick summary of Sperber’s work on proving the Loday assembly is
the universal assembly [Spe04]. We show that our version of the Loday assembly can
be used to compute the universal assembly on homotopy even with the non-obvious
extension of the original Loday pairing. We begin by discussing a model for the

universal assembly

ape - BG4y ANKRY — Ky (1.16)

written in terms of the Pedersen-Weibel K-theory spectrum (see Definition 5.4.5).

Then, we construct two intermediate spectra and their versions of assembly

Oproj + BGw AKR™ — K (1.17)
e - BG4+ NKE® — Ky (1.18)

(see Definition 5.5.1), which allows us to move from a theoretically-friendly model
for the assembly to a computation-friendly model. More specifically, there is zig-zag

diagram

(6%
BG, A KEW be KZ\[}X;]
idA (5.68) (5.68)
BG. A KPe J proj KPYOJ
+ R R[G]
idA (5.65) (5.65)
BG, N Ki,
" Ofree “ (1.19)

of spectra that commutes up after passing to homotopy groups. We show that our
formula for the restriction m;y1(Qroday)|p can be used to compute the restriction
1,

Titr1(ree) | e for i > 2 (see Theorem 5.6.1) and therefore, computes the universal
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assembly on higher homotopy when restricted onto the subgroup coming from the

1-skeleton of BG.

1.4 Notations and Conventions
1.4.1 Groups

For a group GG, we write G, to be its Abelianisation. All groups in this article
are discrete. We write BG to be the classifying space for G, constructed from the bar
construction. Therefore, BG admits a canonical base-point. For n € N, we write C,
to be the cyclic group of order n. We write (t) to be the infinite cyclic group with

generator t, while reserving Z to be the ring of integers.

1.4.2 Rings and Modules

All rings in this article are associative and unital, but not necessarily commutative.
A module over a ring will always be understood as a left module.
We define the cone of the integers Z to be the ring cone (Z) of locally finite matrices

over Z, that is,

has only finitely many non-zero entries

cone (Z) = {A e M(Z) Each COthlln and each row of A } _ (1.20)

There is an ideal m(Z) of cone (Z) consisting of infinite matrices with only finitely

many non-zero entries. The suspension of Z is defined to be the quotient

cone (7Z)

Y7 = m(Z)

(1.21)

We also define the suspension of a ring to be the tensor product

YR :=YZ® R, (1.22)
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and inductively

Y'R:= R, (1.23)
S'R:=% (X"'R). (1.24)

Therefore, for any two rings R, S, and for any m, n € NU {0}, we have a natural

isomorphism

STR@ENS & Y (R ) (1.25)

1.4.3 Topological Spaces and Spectra

In Chapter 24, the term topological space (or simply space) will always mean a
pointed topological space that is homotopy equivalent to a (not necessary finite) CW-
complex. Maps between spaces are always pointed and continuous. In Chapter 5,
we will work with un-based topological spaces that are homotopy equivalent to (not
necessary finite) CW-complexes. Maps between them are always continuous but not
necessary pointed.

We say two maps f,g: X — Y of spaces are weakly homotopic if the restrictions
fli, 9l are homotopic for every compact subset K C X. Weakly homotopic maps
between infinite loop spaces induce the same group homomorphisms on homotopy.

By spectrum, we mean a sequence E = {E; | i € I} of spaces, where I = NU {0}

or Z, together with maps

fi :S'AE; = Eipq

for each i € I, called the structure maps. An -spectrum is a spectrum for which the

adjoints
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71 (K — Q4

of the structure maps are all homotopy equivalences. A morphism or a map (resp.
weak morphism or a weak map) ¢ : E — F of spectrais a collection {p; : E; = F; | i € I}
of maps that commutes with the structure maps (resp. up to weak homotopy).

If E, F, G are spectra, then a pairing (resp. weak pairing) p : EAF — G of spectra
is a collection of maps i, ,, @ E,, AF,, = G4, that commute with the structure maps
up to homotopy (resp. weak homotopy). We abuse notation here to use the smash

product E A F in writing down a pairing of spectra.

1.4.4 Algebraic K-theory

Let R be a ring. We write Ky(R) to be projective class group of R, which is
an Abelian group whose generators are isomorphism classes [P] of finitely generated

projective R-modules P, and whose relations are

[Po] + [P] = [P1] (1.26)

for every short exact sequence

We write BGL(R)™ to be Quillen’s plus construction for the classifying space BGL(R)
for the general linear group GL(R), relative to the subgroup E(R) generated by
elementary matrices. For finite matrices, our convention is that BG L(p, R)+ denotes
BGL (p,R) for p < 2; for p > 3, it denotes the plus construction of BGL (p, R)
relative to the subgroup E(p, R) generated by elementary matrices.

The K-theory space of R is

Kg:= Ky(R) x BGL(R)", (1.28)
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where we think of Ky(R) as a discrete group. In particular, the homotopy groups
m;(KR) agree with the classical K-groups for i = 0, 1,2, and with the higher K-groups
defined by Quillen.

If w € GL(n,R), we write {u} € K;(R) to be the class represented by u. If G is
a group and g € G, then we write {g} € K; (R[G]) to be the class represented by g,
thinking of it as an element in GL(1, R[G]).
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2. LODAY PAIRING

2.1 The Loday Pairing

Let R, S be rings, and fix isomorphisms

Emn:R"®S" = (R S)™. (2.1)

for every m,n € NU{0}. In this setting, the tensor product of matrices gives a group

homomorphism

GL(m,R) x GL(n,S) — GL(mn,R® S),

sending elementary matrices to elementary matrices. Hence we have an induced map

8. BGL(m,R)" x BGL(n,S)" = BGL(mn,R® S)". (2.2)

m,

The convention is that BGL(p, R)* denotes BGL (p, R) for p < 2; for p > 3, it denotes
the plus construction of BGL (p, R) relative to the subgroup E(p, R) generated by

elementary matrices. Write
imn : BGL(mn, R® S)" — BGL(R® S)"
to be map induced by the canonical inclusion

GL(mn,R®S) - GL(R®Y).



15
Definition 2.1.1 (The map v, ,, [Lod76, page 332]) The map

Ymm : BGL(m, R)" x BGL(n,S)" = BGL(R® S)* (2.3)

1s defined by the formula:

YT, Y) = i © nli,g(m’ Y) = imn © 71235(1'7 Yo) = imn O nl;zjrs;(an y) - (2.4)

Here, the minus sign on the right-hand side comes from the H-group structure of
BGL(R® S)"; and xq (resp. yo) is the base-point in BGL(m, R)" (resp. BGL(n,S)").
(I.e., represented by the identity matrices.)

One gets a map

v:BGL(R)" x BGL(S)" - BGL(R® S)* (2.5)

by letting m,n — oo. If we choose a different collection
{¢,,:R"®S" = (R®S5)™ | m,ne NU{0}}

of isomorphisms, we get a different collection

{+hon : BGL(m,R)" x BGL(n,S)" = BGL(R® S)" | m,n € NU{0}}
of continuous maps, and therefore, a different map

7' BGL(R)" x BGL(S)" = BGL(R® S)*

by letting m,n — oo. It turns out that the maps v and 7' are weakly homotopic,
that is, the restrictions 7|, and 7/|, are homotopic for every compact subset K C

BGL(R)" x BGL(S)™ (see [Lod76, Lemma 2.1.6 on page 333]), that is, v and ' are
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weakly homotopic. As a result, the choice of the collection {&,,,, | m,n € NU{0}}
becomes irrelevant after passing to homotopy groups.
The map v is homotopy trivial on the wedge product BGL(R)™ v BGL(S)".

Hence, we obtain the following definition.

Definition 2.1.2 (The Loday pairing map 7ioday, [L0od76, Section 2.1.7 on
page 333]) The map

Vioday : BGL(R)" A BGL(S)" — BGL(R® S)* (2.6)

1s defined to be the filler of the following homotopy commutative diagram:

BGL(R)" x BGL(S)* BGL(R® S)*

-

proj

BGL(R)" A BGL(S)".

This allows us to define a multiplicative structure on algebraic K-theory.

Definition 2.1.3 (Loday product x, [Lod76, Section 2.1.10 on page 335])

For each integers i,7 > 1, we define the product

«: Ki(R)® K;(S) = Kirj(R® S) (2.8)

[f] * [g] = [/VLoday o (f A g)] ) (29)

where f and g are spheroids

f:S"— BGL(R)",
g:S — BGL(S)".
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Proposition 2.1.1 (Properties of the Loday Product x) The product map * is

(1) natural in R and S, associative and bilinear [Lod76, Theorem 2.1.11 on page
335];

(i1) graded commutative: for every [f] € K;(R) and [g] € K;(95),

119l = (=1)" (lg] * [f]) € Kis; (R®S). (2.10)

Here, we think of [g] x [f] as represented by the composition

SIAST S BGL(S)T A BGL(R)® 2% BGL(S® R)" < BGL(R® S),
(2.11)
where the last homotopy equivalence is induced by the natural isomorphism S ®

R=R®S [Lod76, Theorem 2.1.12 on page 335];

(111) when i = j = 1, the product {u} x {v} is the inverse to the Steinberg symbol:

{u} x{v} = —{u,v}q € KL (R®S) (2.12)

[Lod76, Proposition 2.2.3 on page 337]. Here, we write the Abelian group
Ky (R® S) additively.

2.2 The Extended Loday Pairing

We want to extend the Loday pairing map

Yioday : BGL(R)™ A BGL(S)" — BGL(R® S)*

to a map

IYLoday : KR VAN KS — KR@S;
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where

Kp = Ko(R) x BGL(R)™. (2.13)

This will yield an extended external product

Ki(R) ® K;(5) = Kij(R® 5)

for all 4, 7 > 0. Moreover, this external product should be coherent with the isomor-
phism

Ki(R) = Kiy1(XR) (2.14)
promised by the Gersten-Wagoner delooping [Ger72, Wag72|:

KR >~ QKER- (215)

At this point, we need the closed form of the isomorphism in Equation (2.14). Define
the element 7 € GL (X¥Z) = GL (1,¥7Z) by

(2.16)

o o o = o
[

o —- o o o

_ o o o o

o o o o o
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The isomorphism in Equation (2.14) is given by

[f] € Ki(R) w— [f]*{7}ifi>1 ([Lod76, Corollary 2.3.6 on page 345]),

[P] € Ko(R) — [Pl#{r} ={p®@7+ (1 —p)® 1} ([Lod76, page 328)]),
(2.17)

where p is the projection operator associated to the finitely generated projective R-
module P. Equally important, the extended external product should be related to

the classical products

#: K;,(R)® K;(S) = Ki+;(R®5) (2.18)
defined by Milnor [Mil72] for ¢, j > 0, and i + j < 2.

Definition 2.2.1 (The Extended Loday pairing 7y,4,,) The map

f)/ioday : KR A KS — KR@S

1s defined to be the filler of the following homotopy commutative diagram:

QBGL(ZR)" AQBGL(2S)* O*BGL(X*(R® S))".

2
Q YLoday (219)
The bottom arrow is given by sending the pair

(f:S'"—= BGL(ZR)") A (g:S' — BGL(XS)™)
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to the composition
s? = st As 2% BGL(SR)* A BGL(ES)T 122 BGL(S* (R® S)) T
Furthermore, we define a new product map

' Ki(R) ® K;(S) = Ki;(R® S) (2.20)

forall,7 >0 by

1% (9] := [Voaay © (f A 9)] - (2:21)

Corollary 2.2.1 Let R and S be rings. The pairing map

NModay : Kr A Ks — Kprgs
defined in Definition 2.2.1 is
(i) natural in R and S;
(ii) associative;
up to weak homotopy.

The proof follows from the corresponding results for the pairing y1oday as in [Lod76,

Proposition 2.1.8 on page 334]. The two products are related in the following way:

Proposition 2.2.1 For each i,j > 1, if [f] € K;(R) and [g] € K;(S), then

L1 (9] = [f] % ((=1)[g]) = (=1 ([f] x [g]) - (2.22)
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In particular, for {u} € Ki(R) and {v} € Ki(S), the ¥ -product is given by the

Steinberg symbol

{u} " {v} = {u, v}q, - (2.23)

Proof. We consider the commutative diagram

Kiyj(R®S)

1

(= {rh) @ (=x{r}) | = (= {7} = {7}

Kin1(3R) ® Kj1(59) " Kiyjra (2 (R®9))

(2.24)

induced by Diagram (2.19).
If [f] € K;(R) and [g] € K;(S), then the lower part of the diagram gives

(S AT > (gl = {7}) = [fT+ ({7} x [g]) {7} (associativity)
[/]
- ([f] x ((_1)j [9]) * {7'}) *{1}. (associativity)

* ((=1) ([g) x{})) * {7} (graded-commutativity)

So we must have

L1 (9] = [f]* ((=1)[g]) -
O

Note that Proposition 2.2.1 says the product +" is not graded-commutative in

general.
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2.3 Properties of the Extended Loday Pairing
2.3.1 Relationship With the Classical Pairings in Algebraic K-Theory

Milnor defined multiplicative structures on lower K-groups

fori, j > 0,and i+j < 2in [Mil72]. Actually, Milnor only defined the multiplication
internally (i.e., when R = S, and is commutative). But one can mimic his definition
to obtain an external product as in Equation (2.25), so that when R = S it becomes
Milnor’s version.

The multiplication in Equation (2.25) is given by the formulas:

[Pl#lQ] = [Ped] ifi=j=0,
[P]#{v} = {p@v+(1—-p) @1} ifi=0,and j=1, (2.26)
{u} #[P] = {up+1@(1-p)} ifi=1,j=0,

\ {uy#{v} = {u,v}g ifi=j5=1.

Here, p is the idempotent operator associated to the projective module P. We omit

the case i = 0, 7 = 2 here. The main tool we need is

Proposition 2.3.1 ([Mil72, Lemma 8.9 on page 70]) The multiplication # in

Equation (2.25) is associative and bilinear for i, j >0, and i+ j < 2.

Note that Milnor’s proofs extend to the external product case. It is also straight

forward to verify that # is graded-commutative. We now relate # and x'.

Theorem 2.3.1 For every [P] € Ko(R), [Q] € Ko(5), {u} € Ki(R), and {v} €
Ki(S), we have

(i) [P]¥[Q] = [P]#(Q].
(ii) [P]* {v} = [Pl (= {v}) = = ([Pl#{v}), and {u} ¥ [Q] = {u} #[Q].



(iii) {u} »" {v} = {u} # {v}.
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Proof. (i) When ¢ = j = 0, Diagram (2.19) induces the following commutative

diagram

K()(R) ® KO(S)
(=#{rh) @ (—#{r}) | =

Ki(XR) ® K (X95)

Ko(R® S)

12

(=#{r}) ~{r})

on homotopy. We then compute

([Pl {7}) » ([Ql# {7})

= —{[Pl# {7}, [Q# {7}}s,

= {[Pl# {7}, (=[Q) # {7} }s

= ([Pl#{7})

# ((=[Q) #{7})

= [Pl# ({7} # (=[Q])) # {7}

= [Pl# (=[QI# {7} # {7}

= — ([Pl ([QI#{7h) #{7})

K2(22(R® S)).

(2.27)

(Equation (2.12))

(Bilinearity of {—, —}¢,)

(Equation (2.26))

(Associativity of #)

(Graded-commutativity of #)

(Bilinearity of #)
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= —{[PI# ([QI#{T}) , T}, (Equation (2.26))
= ([P]# ([Ql#{7}) = {7} (Equation (2.12))
= (([PI#[Q]) #{7}) {7}, (Associativity of #)

proving

(ii) When i =0, j = 1, Diagram (2.19) induces the following commutative diagram

Ko(R) ® K1(S5) Ki(R® S)

(—#{th) @ (=% {r}) | =

12

((=x{T}) *{7})

K (XR) ® K5(XR) " K3;(Z*(R® 9)).
(2.28)
on homotopy groups. We then compute
([PI#A7}) » {v} < {7})
= (([Pl#A7}) *{v}) x {7} (Associativity of x)
= (= {[P]# {7} ,v}g) {7} (Proposition 2.1.1)

= (= (([PI#A{7}) #{v})) » {7} (Equation (2.26))



= (= ([Pl ({7} # {v})) x {7}

= ([PI# ({v} #{T}) * 7

= ([PI# {v}) #{7}) x {7}

= {[Pl# {v} {7} }g x {7}

= (= ([Pl v}« {mH) * {7}

= (= ([Pl v} s {TH) * {7}

= (([PI# (= {v}) x {T}) » {7}

proving

(Associativity of #)

(Graded-commutativity of #)

(Associativity of #)

(Equation (2.26))

(Proposition 2.1.1)

(Bilinearity of )

(Graded-commutativity of #),

[P]+ {v} = [Pl# (= {v}).

The proof for

{u} +" Q] = {u} #(Q]

is similar.
(iii)

{u} +" {v} = {u, v}

(Proposition 2.2.1)

25
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= {u} #{v}.

O]
The following case is still unknown.
Question 2.3.1 Is the product map
compatible with classical product map

defined by Milnor in [Mil72, page 51]%

2.3.2 The Non-Connective Gersten-Wagoner Algebraic K-Theory Spec-

trum KGW

We relate our extended Loday pairing

Moday * Kr A Ks — Kprgs

to the structure map

Sl/\KR—)KZR

of the Gersten-Wagoner spectrum ng. This will be used later in proving our version
of the Loday assembly is a map of spectra.

In [Lod76, page 341-343], Loday gave an explicit description of the Gersten-
Wagoner delooping
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Krp = QKsp,

so that the induced isomorphisms on homotopy groups in Equation (2.14) are given

as in Equation (2.17). We will use our extended Loday pairing to define a map

Sl/\KR — KER;

whose adjoint

Kp— QKER

will induce isomorphisms on homotopy groups, and hence is a homotopy equivalence
by the Whitehead Theorem. We begin by thinking of the circle S' as the classifying
space B (t) of the infinite cyclic group generated by ¢, and define the following group

homomorphism:

Definition 2.3.1 (The map t' : B (t) — Kxz) Let (t) be the infinite cyclic group
generated by t, and 7 € GL(XZ) be the element defined in Equation (2.16). Define

the group homomorphism

(t) = GL(SZ)

t— 7L

The induced map

is denoted by tT.
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Proposition 2.3.2 (Another Gersten-Wagoner Delooping) Let R be a ring,
and (t) be the infinite cyclic group generated by t. The adjoint of the composition

ttAid

B<t>/\KR—>ng/\KRMKER (232)
15 a weak equivalence, and hence a homotopy equivalence.

Proof. A class [f] € K;(R) is represented by a spheroid

f : Sl — Kg.
Suspending it yields the following composition

’
t+Aid TLoday

Sl/\SimglAKR—)KzzAKR—)KER, (233)
which represents the element {7_1} *' [f] € Ki+1(XR). In particular, we have
[f]* {7} if i >0 (Proposition 2.2.1)

IS = (2.34)
{ } {7-*1} #(fl=—{r}#[f]) ifi=0 (Theorem 2.3.1 (ii))

The map on homotopy groups

Ki(R) = Ki11(XR)

induced by the adjoint of (2.32) sends

1o [ {7}

which is an isomorphism for i = 0 (resp. ¢ > 0) by [Lod76, after Theorem 1.4.7
on page 328] (resp. [Lod76, Corollary 2.3.6 on page 345]). Therefore, Whitehead

Theorem asserts the homotopy equivalence



KR ~ QKZR-

Consequently, we have the following (2-spectrum

29

Definition 2.3.2 (The Non-connective Gersten-Wagoner Algebraic K-the-

ory Spectrum K%W) Let R be a ring. Define the spectrum KEW by having n-th

space as

KE"R ZfﬂZO,

(K%W) = .
QO "Kgr ifn<0,

n

with the convention that Y°R := R. The structure maps
. Ql GW aw
fn :STA (KR )n — (KR )n+1

are given by
(2.32) if n >0,

fn =
adjoint of id(ng) if n < 0.

By construction and Proposition 2.3.2, ng is an (-spectrum.

(2.35)

(2.36)

(2.37)
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3. THE MAIN THEOREM
3.1 Definition of the Loday Assembly

We use the extended Loday pairing 1,,4., to define a version of the Loday assembly

map:

Definition 3.1.1 (The Loday Assembly Map a1,04ay in Reduced Case) Let R

be a ring, and G be a group. The Loday assembly map is the weak map of spectra
(Loday - BG A ng — K%Eg], (31)

whose components are given by the compositions of maps of spaces:

j+/\id ,yioday
BG A Kz;mR — KZ[G} VAN KEmR _— KZ[G}@ZmR ~ KZmR[G]. (32)

Here, the map

j+ : BG — KZ[G] (33)

15 induced by the group homomorphism

j:G— GL(Z|G])
g 0 0
010
g— 10 01
000

= o O O
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The last homotopy equivalence is induced by the natural isomorphism of rings in
FEquation (1.25).

We need to justify our definition.

Proposition 3.1.1 (Cf [Lod76, Proposition 4.1.1 on page 356]) Let R be a
ring, and G be a group. The Loday assembly map

OLoday - BG A K%W — Kg%}
defined in Definition 3.1.1 is a weak map of spectra.

Proof. We need to show the components of aqoday, as defined in Equation (3.2),
commute with the structure maps of K&V as defined in Equation (2.32). Let (t) be
the infinite cyclic group generated by ¢. By unwrapping the definitions of ayoday and

the structure maps given in Proposition 2.3.2, the following diagram

idA (57 Aid) ) id Affoday
st A(BG A KR) ST A (Kz[c] A KR) —— 8" AKpg
[2 [ 12
it AidAid wist id AMYloday

BGAB(t) \KR ————— Kz[g) AB{(t) \KR —————— B(t) NKzjg) N\ Kp ———— B (t) A Kg[q]

id Att Aid id At Aid tT Aid Aid tT Aid

. ’
5T Aid Add swist id AYLoday
BGAKsy NKp ————— Kpig) N Kz NKp ———————— Ky AKgig) NKp ————————— Ky A KpR(g

o

. ’ . ! ’ ’ /
id AVLoday id AYLoday VLoday © YLoday VLoday

BGAKsp —————— Kyzjg) N KsRr Ks RG] Kxrig)
. . ’
]+ A id YLoday

(3.5)

commutes up to weak homotopy by Corollary 2.2.1. Here, the columns are the struc-

ture maps, and the rows are components of the Loday assembly. O
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The homotopy groups m;( BG A K%W) of the spectrum BG A K%W are the reduced
homology groups of the classifying space BG of G with coefficients in K§W. So the

induced map

Ti(QLoday) : Ti(BG A KEW) — Ki(R[G])

approximates the algebraic K-theory of the group ring R[G] by a reduced homology
theory. We want to lift the domain to an unreduced homology theory. Recall for any

(based) topological space X, there is a split cofibre sequence

0 -~~~

of spaces, where X, := X U point is the space obtained by adding a disjoint point to

X. If E is a spectrum, then we have a split cofibre sequence

0 T
SSAEZ X AE XANE (3.7)

of spectra. Consequently, we have a splitting

X, AE~ (X AE)V (S°AE)

= (XANE)VE (3.8)

of spectra. This allows us to extend the Loday assembly to the unreduced case.

Definition 3.1.2 (The Loday Assembly Map a4y in Unreduced Case) Let

R be a ring and G be a group. The canonical inclusion R — RG] induces a map

i K3Y — Ki (3.9)
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of spectra. The Loday assembly in unreduced case is defined by

BG, AKGY = (BG AKGY) v kgW Lton 3LV, geaw (3.10)

By abuse of terminology and notation, we call this map the Loday assembly and denote

it bY Qroday as well.

3.2 A Subgroup of the Source of Loday Assembly

Fix a ring R, and write AHSS (X)), _ to be the £} -term of the Atiyah-Hirzebruch
spectral sequence for the space X with coefficients in the spectrum K%W. This spectral
sequence is concentrated on the right-half plane. If in addition R is regular, then this

spectral sequence is concentrated on the first quadrant. It follows that the differentials

dy, - AHSS (X)), — AHSS (X)"

—r,q+r—1
dj - AHSS (X)]  — AHSS (X)]

1—r,q+r—1

are trivial for all ¢ whenever r > 1. Consequently, the term AHSS (X )80 , (resp.
AHSS (X)) is a quotient of AHSS (X); , (resp. AHSS (X)7 ).

0.9
When X = BG.,, Definition 3.1.2 guarantees a natural splitting

AHSS (BG.), = AHSS (8°)] @ AHSS (BG), (3.11)

of spectral sequences, where the left-hand side converges to the homotopy group

Tprq (BGL A K%W). Because

K,(R) ifp=0,
o q( ) 1rp (3'12>

2
AHSS (8°)° 0 if else,

a dimension argument says



34

0\>® _ 0)2
AHSS (8°) " = AHSS (8°) (3.13)
On the other hand, we also have
AHSS (BG), = AHSS (BG); , =0 (3.14)

because the homology group FIO (BG;Z) is trivial due to BG being path-connected.

As a result, the source of the Loday assembly

Tit1 (QLoday) © Tir1 (BG4 AKEY) — K11 (R[G))

contains

AHSS (BG4, @ AHSS (BG )T
= (AHSS (8°);,, ® AHSS (BG)3,.;) @ (AHSS (8°)7 @ AHSS (BG))
= AHSS (S");°,,, ® AHSS (BO)S,
—Ki.1(R) ® AHSS (BG)T (3.15)

as a subgroup. In fact, we already know what the Loday assembly is doing when
restricted onto the summand K;;(R)—it is induced by the inclusion
i: R— R[G|

of rings by Definition 3.1.2 before. What we want now is to study the Loday assembly
when restricted onto the summand AHSS (BG)T.
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3.3 Statement of the Main Theorem and the Proof

We have a diagram

d
AHSS (BG),; 2 Gy ® Ki(R) ------------ » Ky (R[G])
Ti+1 (Loday)

AHSS (BG){; ——— my1 (BG AKGY). (3.16)

We would like to study the filler ®;,; for ¢ > 0. Let us go back to the E'-page of
the Atiyah-Hirzebruch spectral sequence. Unlike the later pages, the E'-page is not

homotopy invariant—it depends on the choice of cellular structure on BG. For our

purpose, we are using the skeletal filtration on the bar construction for

BG, so that

AHSS (BG);; & mijy ((\/ Sl) A ng) . (3.17)

geG

The filler we want to study is then induced by the composition

Tit1 ((\/ Sl) A ng> (ic). Tis1 (BG A K%W) it (Loday) K1 (R[G)),

geG

(3.18)

for which the first arrow is induced by the inclusion

ic:\/S' = BG (3.19)

geG
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of the 1-skeleton into BG. This follows from the construction of the Atiyah-Hirzebruch
spectral sequence (see [Wicl5] for example). When G = () is the infinite cyclic group,

we know the circle S' is a model for B (t). Moreover,

Lemma 3.3.1 The inclusion

i, :S'— B{t) (3.20)
that sends S' to the 1-cell of B (t) labelled by the generator t is a weak equivalence.

Proof. 1t is clear that the induced group homomorphism

(i), : m (S') = m (B (t)) (3.21)

is an isomorphism for ¢ # 1, because the source and target are both trivial. So we

need to check the map

(ir), : m (S") — m (B(t)) (3.22)

is an isomorphism.

The map in Equation (3.22) is just an endomorphism of the infinite cyclic group.
In particular, it is surjective by the definition of i,. (The generator is in the image.)
So the First Isomorphism Theorem says the map in Equation (3.22) must have trivial

kernel, and hence an isomorphism. O

The Whitehead Theorem then asserts i, is a homotopy equivalence. Thus when

G = (t) is the infinite cyclic group, we have the following commutative diagram

1 i
Vst gy
ge(t)

s! (3.23)
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The map j; sends S! to the loop in \/ S! labelled by the generated t. The upshot is

ge(t)
that we are able to describe the composition in Equation (3.18) when G = (t).

Proposition 3.3.1 When G = (t) is the infinite cyclic group and i > 0, the com-
position in Equation (3.18) can be identified as

(i)

Ti+1 (aLoday)

7Ti+1 \/ Sl /\K%W

g&(t)

Tiv1 (B () ANKEY) Kiw (R[t)

). (i), | = ”

Ti+1 (Sl A ng) Ti+1 (Sl A\ K%W)

id
I e I

Ki(R) id Ki(R) K (REY),

where the bottom composition sends [f] € K;(R) to the element

{t} ¥ [f] € Kis1 (R[t™]),
(We remind readers the commutativity of the top-left square comes from Diagram (3.23).)

Proof. The class [f] € K;(R) is represented by the spheroid

fZSi—>KR,

where

Kgr:= Ko(R) x BGL(R)™ .

Taking suspension yields
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CidAf 5t Aid VMeoda
SIASt —— ST A Kg Kz[til] AN Kgr did KR[til}.

This composition represents the element ;41 (oday) ([f]) € Kit1 (R[tF']), as well as

the product

{77} # [f] € Kisa (R[EF) .

Now, j1 is induced by the group homomorphism

j:{t) = GL (Z[t™))
t 0 0 0
0100
t— 10010

0 001

So {j*} = {t}, and thus

{7+ ] = {8+ 1]

as desired. n

For arbitrary group G, we recall the isomorphism

G = Hom ((t), G)

g (g t—g), (3.25)
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allowing us to extend Proposition 3.3.1 to arbitrary G.

Proposition 3.3.2 For an arbitrary group G and © > 0, under the canonical iso-

morphism

Tit1 ((\/ Sl) A K%W) ~ P Ki(R), (3.26)

geG geCG

the composition in (3.18) can be identified as

Tit1 ((\/ Sl) A ng) o). Tip1 (BG A ng) it (ALodey) K11 (R[G))

geG
[12 Il I
SPR T (BG AKEY) K (RIG)),
(3.27)

where the bottom composition sends the element [f] € K;(R) in the summand in

@ K;(R) labelled by g € G to the element

geG

{g} ¥ [f] € Kita (R[G]) .
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Proof. Fix g € (G, and consider the commutative diagram

Ti+1 (Sl A\ ng) (909)* Ti+1 ((\/ Sl) A ng>

geG

1%

(1t>*

(ic).

Tiv1 (B () ANKEY)

Tit+1 (XLoday) Tit1 (OLoday)

K1 (R[t]) K1 (R[G]).
(¢g). (3.28)

The top square commutes by chasing the definitions of the arrows. The bottom square

commutes by the naturality of aqeday via the group homomorphism

g1 (t) = G.

Now, Proposition 3.3.1 says the left vertical composition in Diagram (3.28) sends
[f] € Ki(R) to
{t} +' [f] =€ Kip1 (R[tT]) .
So the commutativity of Diagram (3.28) says the right vertical composition sends

[f] € K;(R) in the summand @ K;(R) indexed by g € G to the element
geG

{g} ¥ [f] € Kita (R[G]) .
]

Theorem 3.3.1 (An Explicit Formula for the Loday Assembly) Fori > 0,
the filler ®;.1 in Diagram (3.16) is induced by the bilinear map
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G x Ki(R) — K1 (R[G])
(9, [f]) = {g} ¥ [f]- (3.29)

Proof. Follows immediately from Proposition 3.3.2. O

Corollary 3.3.1 (The Loday Assembly on m;, [Wal78b, Assertion 15.8 on
page 229], [LRO5, page 708]) For a regular ring R, and a group G, the Loday

assembly on m is given by

Ki(i) ® @1 : Ki(R) & [Gap @ Ko(R)] — Ky (R[G]), (3.30)

for which i : R — R[G] is the inclusion, and ®; is induced by the bilinear map

G x Ko(R) — K1 (R[G])
(9, [P]) = {bg}, (3.31)

for which b, : RG] ®g P — R|G] ®g R is the automorphism given by
hy(u® ) = gu x.

Proof. 1f the ring R is regular, then the Atiyah-Hirzebruch spectral sequence for

(BG4 ANKSW) is concentrated in the first quadrant. Hence,

m(BGy AKGY) = K1(R) & [Gay © Ko(R)].

If g € G, and [P] € Ky(R), then Theorem 3.3.1 says the Loday assembly sends
(g, [P]) to
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{9} " [P] = {g} #[P] (Theorem 2.3.1)

={g@p+1x(1—p)}. (Equation (2.26))

If u®x € R|G] ®g P, then

(g@p+1(1-p)(uer)=(9ep) (udr)+ (12 (1 ~-p)(ue )
=(g®@p) (ux)
(since (1 —p)(z) =0)

=gu® .

Therefore,

gep+1®(1—p)=h,
O

Corollary 3.3.2 ([Wal78b, Proposition 15.7 (1) on page 229]) Let G be a
group. The cokernel of the Loday assembly

coker (71 (Qroday) : T1 (BG4 ANKSY) — K1(Z[G))) (3.32)

on T s isomorphic to the first Whitehead group

_ K(Z[6)

Why (G) = =7

(3.33)

Proof. We need to check the image im (7 (Qroday)) of the Loday assembly on m is
the subgroup £G of K;(Z[G]).
Note that the ring Z has no negative K-groups for being regular. Thus, the

vanishing of the differentials of the Atiyah-Hirzebruch spectral sequences says
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m (BG+ ANKSWY) 2 K((Z) & [Gap ® Ko(Z)] (3.34)
=y @ [Ga ® Z]
> {+1} d Gy (3.35)

We already know, from Definition 3.1.2, the Loday assembly 7 (roday) | K\ (2) when
restricted onto the summand K (Z) of m (BGJr A ng) is the group homomorphism
Ki(Z) — K (Z[G))

induced by the canonical inclusion i : Z — Z[G|]. Therefore, under the identification

Ky(Z) = {£1},

the restriction 7 (Loday) |5, () Sends £1 to £1 € K;(Z[G]).

On the other hand, we observe that the map

Dy : Gap ® Ko(Z) — Ki(Z[G))

from Corollary 3.3.1 sends the simple tensor g ® [Z] € Gu ® Ko(Z) to the element
{9} € K1(Z|G]), and therefore, sends the simple tensor g ® [Z"] € Gu ® Ko(Z) to the
element {¢"} € K;(Z[G]). As a result, under the identification

Gab ® KO(Z) = Gaba

the map ®; sends g € G to {g} € K1(Z[G)).

Combining everything together, we see that, under the identification

m (BG+ AKGWY) = {1} & G,
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the Loday assembly 71 (today) sends the element (£1)®g € {£1}PB Gy, to the element
{xg} € Ki(Z|G]). This proves im (71 (Qroday)) is the subgroup £G of K;(Z[G]) as
desired. ]
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4. THE INJECTIVITY PROBLEM FOR THE INTEGRAL
LODAY ASSEMBLY

One might ask whether torsion-free is a necessary condition in the Classical Farrell-

Jones Conjecture 1.1.2. Integrally, the cokernel

coker (m (QLoday) © Ti (BG+ A ng) — Ki(Z[G])) >~ Wh; (G) (4.1)

can be identified with the classical Whitehead groups Wh; (G) for i = 0, 1 and 2.
See [Lod76, page 357-364], or Corollary 3.3.2 for the case i = 1. As a result, non-
vanishing Wh; (G) implies the non-surjectivity of m;(areday). For example, if p is an
odd prime and C, is the cyclic group of order p, then Wh; (C,) # 0 [Coh73, 11.5
on page 45]. Consequently, torsion-free is necessary to guarantee surjectivity. What

about injectivity?

Question 4.0.1 (Non-injectivity Problem for the Loday Assembly) Let R be

a reqular ring. Is there a group G with torsion, such that the Loday assembly

Ti (QLoday) : Ti (BG4 ANKRY) — Ki(R[G))
s mot injective for some 1 ¢

It turns out that under suitable conditions, the Loday assembly is injective in

lower degrees.

Proposition 4.0.1 ([LR05, Lemma 2 on page 709]) Let R be a regular ring and
G be a group.

(i) The Loday assembly
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7o (QLoday) * o (BG+ A K%W) — Ko(R[G])

on my 1S always injective. In particular, its left inverse is induced by the aug-

mentation map

R|G] — R.

(i1) If also R is commutative, and the natural map

7. — Ko(R)

1+— [R]

s an isomorphism, then the Loday assembly

et (aLoday) DT (BG+ VAN K%W) — Kl(R[G])
on T 1S injective.

Consequently, the first place to look for non-injectivity phenomena for Loday

assembly would be the second homotopy group.

4.1 Second Homotopy Group

Question 4.0.1 was answered by Ullmann-Wu in the case when R is a finite field.

Theorem 4.1.1 (([UW17, Theorem 2 on page 461]) Let G be a finite group such
that Ho(G;Z) is non-trivial, and F a finite field with characteristic p which does not
divide the order of G, then the Loday assembly

79 (OzLoday> D) (BG+ VAN ng) — KQ(IF[G])
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18 not injective.
For example, we can take G = Cy ® Cy and F to be any finite field with charac-

teristic p > 2.

However, no such example is known when R = Z. In this case, the Atiyah-
Hirzebruch spectral sequence for o (BG+ A K%W) yields the following short exact

sequence

0 — Ko(Z) & [Gap ® K1 (Z)] — a0 (BG+ ANKGWY) — Hy(BG; Ko(Z)) — 0. (4.2)
See [Leh18, Theorem 12.2 on page 29]. The key point is that the differential

d;o : Hy(BG; Ko(Z)) — H1(BG; K1(Z)) = G ® K1 (Z) (4.3)

is trivial [Lehl18, page 28]. Together with Theorem 3.3.1, we have the following

corollary:

Corollary 4.1.1 (A Formula for the Loday Assembly on 7, of an Integral
Group Ring) Let G be a group. The Loday assembly map

OLoday - BGJr N K(Z}W — K%}[\NG] (44)

for the integral group ring Z|G| on my, when restricted onto the subgroup
Ky (Z) ® [Gap @ Ki(Z)] < ma (BG4 ANKFWY)

1s given by the formula:

Ky(i) @ g : Ko (Z) ® [Gap @ K1(Z)] — Ko (Z[GY), (4.5)

where i : Z — Z|G] is the inclusion, and 4 is induced by the bilinear map
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G x K1(Z) = K+(Z[G])

(gv il) = {j:Lg}St ) (46>

where we have identified K1(Z) = {£1}. In particular, the Steinberg symbol {1, g},
is always the identity element in Ky(Z[G]) for all g € G.

Proof. Only the description of ®5 needs to be justified. Theorem 3.3.1 says @, is
induced by the bilinear map

G x K\(Z) — K»(Z[G))

(g, £1) = {g} ¥ {£1} (4.7)
and we have
{g} ¥ {£1} = {g, £1}g, (Proposition 2.2.1)
=—{xl,g Skew-symmetric
St
={(ED) " g} (Bilinearity)
= {:l:17 g}St
as desired. [

It turns out that injectivity can happen for group with torsion.

Example 4.1.1 (Bijectivity on K3(Z[C5])). Denote by Cy the cyclic group of
order two, with generator g. Dunwoody showed that the second K-group of Z[Cy] is
generated by two Steinberg symbols [Dun75, Theorem on page 482]:
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K (Z[Cs)) = ({=1, —1}g . {—1, g}
=(Cy @ Cs. (4.8)

Because

=0,

we have

T (BCoy NKGW) 2 Ky (Z) @ [(Ca) ,, ® Ki(Z)].
Corollary 4.1.1 then says the Loday assembly for C'
T2 (aLoday> = KQ(Z) EB CDQ (49)

is bijective on 7.

The following result was proven in collaboration with Daniel Ramras.

Theorem 4.1.2 (An Injectivity Result for the Loday Assembly on 75) Let

G be a group. The composition

Ky (Z) @ |G ® K1 (Z)] @ m (BG4 ANKZY)

™2 (aLoday>

K (ZIG)  (4.10)

18 1njective.
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Proof. By Corollary 4.1.1, the composition in Equation (4.10) is given by the group

homomorphism

KQ(Z) &b (:[)2 : K2 (Z) D (Gab X {:l:].}) — K2 (Z[G]) , (4].1)

where i : Z — Z|G] is the canonical inclusion, and

D, : [g] @ {1} = {£1, g}, (4.12)

for [g] € G represented by g € G. Here, we have identified

K\(Z) = {+1}.

We know the group homomorphism K5(7) is injective, with left inverse induced by

the augmentation map

Z|G] — Z.

As a result, we only need to verify injectivity for ®,.
At this point, we will identify K(Z) with the additive group of the field with two
elements. We denote by e the field multiplication on K;(Z). We define the group

homomorphism

Gy — Gy @ K1(Z)

9] = [l @ (=1). (4.13)

Then, we note that the group homomorphism

t@id : Gop @ K (Z) — (Gup ® K1(Z)) ® K\ (Z) (4.14)

is an isomorphism, with inverse given by
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51 (Gay ® K1(Z)) @ K1(Z) = Gy @ K1(Z)

(g @er) @ea > [g] @ (e 069). (4.15)

Write V' := G ® K1(Z). Then we have a group homomorphism given by the

composition

v
G Gy — G ® K\(Z) =V
W W W

which induces the following commutative diagram

of
Gu @ K1(Z) K> (Z|GY)
t®id | v,
V ® Ki(Z) X Var ® K1 (Z) Ky (Z[V])
id <I>¥

(4.17)

by naturality of the Loday assembly. We wish to show the group homomorphism ®}
is injective. Then, it will follow that ®S is also injective.

Now, because we can think of K;(Z) as the field with two elements, V' is then a
vector space over this field. Therefore for every element x € V', there exists a group

homomorphism

fo: V= Oy (4.18)
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that sends = to the generator. A non-zero element in V ® K;(Z) is of the form
x ® (—1), where z € V' is also non-zero. Hence, the group homomorphism f, induces

the following commutative diagram

r® (—1) € V® Ki(Z) i Ky (Z]V])
W fo @id (fz )
fe(r)®@(=1) € G Ki(Z) o0 K5 (Z[C5])

(4.19)

by naturality of the Loday assembly. Now, Example 4.1.1 says the element ®$? (f,(z) ® (—1)) €
K, (Z|Cy)) is non-zero. Therefore, the commutativity of Diagram (4.19) says the el-
ement ®) (v ® (—1)) € K, (Z[V]) is non-zero as well. This proves the injectivity of

®) and therefore, the claim holds as desired. O

Corollary 4.1.2 (A Bijectivity Result for the Loday Assembly on 1) Let G
be a group such that the second homology group Ho(BG;Z) is trivial. Then the Loday

assembly

7o (aLoday) LT (BG+ VAN ng) — KZ(Z[G])
on Ty 18 injective.

Proof. 1f Hy(BG;7Z) is trivial, then the short exact sequence in Equation (4.2) says

To(BGL NKSW) 2 Ky (7) @ [Gay @ K1(Z)].

Corollary 4.1.1 then tells us that the Loday assembly on 75 is given by

2 (aLoday) = K2<Z) ©® (I)Q.
The claim then follows from Theorem 4.1.2. []

We can use our result to give a new proof of
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Corollary 4.1.3 (Cf [Leh18, page 28]) The differential

d3, : AHSS (BG);, — AHSS (BG)} | = G ® K1(Z) (4.20)

for the Atiyah-Hirzebruch spectral sequence of BG with coefficients in the spectrum

KSW is trivial.
Proof. We have the following commutative diagram

D)

AHSS (BG)?, K (ZIG))-

coker (d?
r (d3 ) l /(ah)day) \AHSS(BG)TTZ
AHSS (BG),

(4.21)

Since we know ®, is injective from Theorem 4.1.2, the arrow coker (d?’,,o) is also

injective. Therefore, the differential d§70 is trivial. [

Example 4.1.2 (Cyclic Groups of Odd Orders). Our formula does not give
any information about the K-theory of the integral group ring Z[C,,] of cyclic group
C,, of odd order n. This is because C, ® Cy = 0, so the domain of the map ®, in
Equation (4.5) is trivial. Because Hy (BC,;Z) = 0 for all odd numbers n, the short

exact sequence in Equation (4.2) gives

T (BCry NKGWY) = Ky (Z), (4.22)

and therefore we learn nothing about structures of K»(Z[C,]) from this approach,

other than it contains K5(Z) as a subgroup.
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4.1.1 The Steinberg Symbol {—1, g},

We study the Steinberg symbol {—1, g}, € K3(Z[G]), and obtain an expression
for it in terms of generators of the Steinberg group St (Z[G]).

Theorem 4.1.3 Let G be a group. The Steinberg symbol {—1, g}g, € K2(Z[G]) for
g € G is given by

{1, g}q, = wi2(—1) wia(—1) wi2(g) wi2(g), (4.23)

where

wij(u) = @y (u) w5(—u™") xi(w), (4.24)
and the x;;(u)s’ are the generators of the Steinberg group St (Z[G]).

Proof. The proof involves playing with the presentation of the Steinberg group.
We recall from [Ros95, Lemma 4.2.15 on page 195] the identities

Wsj (U)il = 'LUij(—U), (425)
wij(u) = wyi(—u), (4.26)
w;;(v) if i, 7, k, ¢ are all distinct,
. wej(—u~ ') if k =1, and 4, 7, ¢ are all distinct,
wie(w) wig(v) wie(u)™ =
wie(—vu) if k = j, and 4, j, k are all distinct,
wii(—u o) if k=14, and j = L.

(4.27)

In particular, Equation (4.27) gives

wiz(u) wig(v) = wes (v u) wyz(u), (4.28)
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wiz(u) was(v) = wis(—uv™") wiz(u). (4.29)

Put

hij(u) := wi;(u) wi;(—1), (4.30)

then a long and boring computation shows

{=1,9}s = [M2(—1), hi3(g)]

= hia(—1) hi3(g) ha(=1)"" has(g)~"

= wia(—1) wia(—1) wi3(g) wiz(—1) wia(—1)"" wia(=1)"" wiz(=1)"" wiz(g) ™"

= wa(—1) wia(—=1) wiz(g) wis(—1) wi2(1) wia(1) wiz(1) wis(—g)
(Equation (4.25))

= wi2(—1) wia(—1) wis(g) 3013(—1) w12(12 wi2(1) wi3(1) wis(—g)

wos(—1) wiz(—1)

(Equation (4.28))

= wya(—1) wia(—1) wiz(g) was(—1) 3013(—1) ’w12(12 wy3(1) wiz(—g)

waz(—1) wiz(—1)

(Equation (4.28))

= w12<_1) w12(—1) w13(9) w23(—1) w23(—1) 3013(—1) w13(1) wlS(_g)

J/

-~

1
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(Equation (4.25))

= wy2(—1) wia(—1) 3013(9) w23(—1l wa3(—1) wiz(—g)

wlz(g)vwls(g)

(Equation (4.29))

= wiz(—1) wia(—1) wiz(g) 3013(9) wa3(—1) w13<_gl

~

w31(—g~1) was(—1) w3i(g—1)

(Equation (4.26))

= wia(—1) wia(—1) wia(g) wai(—g~") waz(—1) wsr(g™")

J/

NV
w21 (—g~1)

(Equation (4.27))

= wia(—1) wia(—1) wiz(g) war(—g")
(9)
wi2(9

(Equation (4.26))

= wi2(—1) wia(—1) wiz(g) wi2(g)

as desired. O
Theorem 4.1.3 motivates the following definition:

Definition 4.1.1 (The group Wi3(G)) Let G be a group. The subgroup Wis(G) of
Ky(Z|G)) is generated by the Steinberg symbols:

Wis(G) == ({1, g}, | g € G). (4.31)

Notice the following:
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The image of the map

(I)Q G x Kl(Z) — KQ(Z[G])

in Equation (4.5) is precisely Wi5(G).

Readers who are familiar with the classical definition

_ K(Z6)
K (ZIG) W (G)

Wh, (G) : (4.32)

of the second Whitehead group proposed by Hatcher-Wagoner in [HW73, page
10] will see our group Wis(G) follows their spirit. The group W(G) is generated
by the elements w;;(£g) for all ¢ € G, and for all 4, j, where

wyg(u) 1= g (W) (—u i (), (4.33)

and the x;;(u)s” are the free generators of the Steinberg group. See [Ros05, Defi-
nition 4.2.1 on page 187, and the end of page 192]. Together with Theorem 4.1.3,
we see that Wia(G) is a subgroup of W(G).

From the functoriality of the Steinberg group, we get a functor

Wia(—) : Groups — Abelian (4.34)

from groups to Abelian groups. Moreover, for every group G, there is a natural

group homomorphism

\I/G G — ng(G)
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g—{-1g}g, (4.35)

which satisfies

Ve = Paf 1yua (4.36)

for @5 as in Equation (4.5). Non-injectivity of W will imply the non-injectivity

of the integral Loday assembly on .

4.1.2 Kahler Differentials and de Rham Cohomology

Let k be a unital, commutative ring, and A be a unital, commutative k-algebra.
We define the A-module of Kahler differentials to be the free A-module generated
by the symbols da for each a € A, modulo linearity and the Leibniz rule:

Ql, = daa€4) , (4.37)
d(Aa + pb) = Ada + udb,
< d(ab) = a(db) + b(da) >

where A\, p € k and a, b € A. Let 1, be the multiplicative identity in k. The Leibniz
rule implies d(1;) = 0, and consequently, du = 0 for any u € k.
We then define the module €27, of differential n-forms to be the exterior prod-

uct

T = ARy (4.38)

where the exterior product is over A, not k. It is spanned by the elements agda; A
-+ ANday,, for a; € A, that we usually write apday - - - da,,.
Let us put Q% x ‘= A. Then for each n > 0, the exterior differential operator

is defined by
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. n n+1
d: QY — oy

apday - - - da,, — dagday - - - da,,. (4.39)
Since d(1x) = 0, it follows that d o d = 0, and the following sequence

A= S, S Say, S (4.40)

is a chain complex, called the de Rham chain complex of A over k. The homology
groups of the de Rham chain complex are denoted by Hjy (Alk), and are the de
Rham cohomology groups of A over k.

Using the theory of cyclic homology and Chern character, Loday constructed a

map

Ky(A) — Hig (Alk) (4.41)

that sends the Steinberg symbol {z,y},, where z, y € A, to the cohomology class
represented by the differential form z~ 'y~ 'dzdy [Lod97, page 275]. One may hope
that this map will be useful for studying the Steinberg symbol {—1, g}, when A =

Z|G] is an integral group ring. However, because

the image of the Steinberg symbol {—1, g}, is always trivial in Hj (Z[G]|Z). This

means we need other methods to analyse {—1, g},.
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5. COMPARING ASSEMBLY MAPS
In this section, we show our definition of Loday assembly can be used to compute the
Weiss-Williams assembly map (i.e., the universal assembly map).
5.1 Two Intermediate Spectra
5.1.1 Symmetric Monoidal Categories and the S~'S-Construction

Definition 5.1.1 (Symmetric Monoidal Category) A symmetric monoidal

category is a category C together with

(SMC 1) a functor

O0:CxC—=C
(A, B) — AOB,

(SMC 2) a distinguished object e € C,

(SMC' 8) and four basic natural isomorphisms

edA = A,
Aldle = A,
(ADB)OC = Ano(BOC),

AOB = BOA.
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subject to the coherence conditions given in [ML9S].

A monoidal functor between symmetric monoidal categories is a functor that re-
spects all the axioms. The category of symmetric monoidal categories and monoidal

functors will be denoted as SymMonCat.

Example 5.1.1 . The category FinSet of finite sets is a symmetric monoidal category

under disjoint union. The distinguished object is the empty set.

Example 5.1.2 . If (C, O) is a symmetric monoidal category, then its category iso (C)

of isomorphisms is also a symmetric monoidal category under 0.

The axioms (SMC 1)-(SMC 3) make the set my(BC) of the path components of
the classifying space of the symmetric monoidal category € a monoid. The S™'S-

construction is a categorical method to study the group completion of this monoid.

Definition 5.1.2 (The Category S~'S, [Weil3, Definition 4.2 on page 328)])
Let (S,0) be a symmetric monoidal category. We define a new category S—S from

S by the following data:
(SIS 1) Objects in S™'S are pairs (m,n) of objects in S.
(SIS 2) A morphism (my,ma) — (n1,n2) in S™1S is an equivalence class of compos-

ites

(mq, ms) SN (sOmy, sOms) M (ny,m2).

This composite is equivalent to

(ml,mg) t—D) (tDml,tsz) M (nl,ng)
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if and only if there is an isomorphism o : s — t in S so that the composition

with adid,,, sends " and ¢' to f and g.

We note that a monoidal functor S — T induces a functor

S1s —» T7IT

Moreover, the category S™'S has a natural symmetric monoidal structure induced
by the symmetric monoidal structure on S (see [Weil3, Remark 4.2.2 on page 329]).

Thus the S~ S-construction gives a functor

SymMonCat — SymMonCat

S 5718,

and (BS’IS) is an Abelian group. Under the conditions as in [Weil3, Theorem
4.8 on page 333, m (BS_ls) is the group completion of 7y (B.S).

Definition 5.1.3 (The Category 8,) Let A be a symmetric monoidal category.
We define the category S, to be the S™'S-construction of the category iso (A) of

1somorphisms in A, as defined in Definition 5.1.2:

84 :=iso (A) " iso (A) (5.1)

In particular, we write

ffreei%
for a ring R.
We say a ring R satisfies the Invariant Basis Property (IBP) when R" = R™

if and only if m = n. The importance of IBP is that we have explicit descriptions for

the classifying space B iso (?reefﬁ) and its homotopy group completion BSg.
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Theorem 5.1.1 ([Weil3, Theorem 4.9 on page 334]) Let R be a ring satisfying

the IBP. Then the classifying space of the category iso (?reeﬁ%) s given by

Biso (sfreefg) - | | BGL(p. R). (5.3)

p>1

Moreover, the space Z x BGL(R)" is a model for the classifying space of the S™'S-

. . f
construction of the category iso <?ree ﬁ) :

BSr ~ 7 x BGL(R)*. (5.4)

The natural homotopy group completion map

gcp: | | BGL(p,R) — Z x BGL(R)", (5.5)

p>1
induced by the maps sending a matriz A, € GL(p, R) to (p, A,) € Z x GL(R), makes

the diagram

Biso (?reeﬁ%) BSg

I 4
|| BGL(p. R) 7 x BGL(R)*
p>1 gCr

(5.6)

commute up to homotopy. The lightning bolt in the diagram is a zig-zag of homotopy

equivalences.

5.1.2 A Categorical Description of the Loday Pairing and the Spectrum

free
KR

Under Theorem 5.1.1, we give another formalism of the Loday pairing 7roday
defined in Definition 2.1.2 using category theory. This formalism is well-documented

in [Wei81] and we shall review it below.
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Again, let us choose an isomorphism R™ ® S"™ = (R ® S)™". Tensor product of

modules gives a functor

® :iso (?reef%) X is0 <5freegg) — 180 (H’Ieefﬁ@)S) : (5.7)

We then have the following homotopy commutative diagram

Biso (?ree%) A Biso (?ree%) be Biso (fﬂeefz%@s)
< | | BGL(p, R) x BGL(q, S)> B | | BGL(r,R® S)
pa>1 n r20 h
( | | BGL(p, R)" x BGL(q,S)+> f | | BGL(r,R® S)*
p,q>1 n r>0

<|_| BGL(p, R)+> A <|_| BGL(q, 5)*) 0os

p=>0 q=>0

gc;g VAN gcjg l

(Z x BGL(R)") A (Z x BGL(S)") =------o-------- > 7 x BGL(R® S)™.

(5.8)
The convention is that BGL(p, R)" denotes BGL (p, R) for p < 2; for p > 3, it denotes
the plus construction of BGL (p, R) relative to the subgroup F(p, R) generated by
elementary matrices. The map f (resp. the maps gc™) is induced by B® (resp. gc) via
the universal property of the +-construction, which is well-defined up to homotopy.

The group completion (Z x BGL(R)* ,gcR) satisfies the following cofinality

condition:
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Condition 5.1.1 (Cofinality Condition) For every z := (£, M) € Zx BGL(R)",
there exists m € N and xyg € BGL(p, R)" such that

(€ M) + (m, o) = gep(20),

where *4, 1S the base-point of BGL(R)+, and the addition operation is the H-group
operation of Z x BGL(R)".

We want to define a map

Yiree : (Z x BGL(R)") A (Z x BGL(S)") - Z x BGL(R® S)*
so that Diagram (5.8) commutes up to weak homotopy.

Definition 5.1.4 (The map geo) If x € Z x BGL(R)" (resp. y € Z x BGL(S)"),
let m € N, g € BGL(p, R)™ (resp. n € N, yo € BGL(q,S)") be as in Cofinality
Condition (5.1.1).

We define a map

Yiree : (Z x BGL(R)") x (Z x BGL(S)") - Z x BGL(R® S)*

Viree (T, Y) 1= 9Cres © f(xo,y0) — 9Cres © f(km, yo) — ICres © f (o, *n) + ICres © J Gk, %) -

Here, *,, (resp. *y) is the base-point of BGL(m, R)" (resp. BGL(n,S)"). The plus
and minus are from the H-group structure of Z x BGL(R ® S)+.

The choice of isomorphism R™ @ S™ = (R® S)™" implies the pairing Ygee is
well-defined up to weak homotopy.

Lemma 5.1.1 Under the notations in Diagram (5.8), the following diagram
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<|_| BGL(p, R)+> X <|_| BGL(q, S)+> f | | BGL(r,R® 5)"

p>0 >0 r20

gcp A geg 9CRres

(Z x BGL(R)") x (Z x BGL(S)") Z x BGL(R® S)*.

VYfree

commutes up to homotopy.

Proof. This is just a matter of diagram-chasing. Consider a point x in the image of

gcp. We know

z = (p, [My])

where [M,)] is an equivalence class in BGL(R)™, represented by some M, € BGL(p, R)™.
The Cofinality Condition (5.1.1) says there exists m € N such that

(pa [Mp]) + (mv *OO) = (p +m, [MP])

is in the image of gcp. In fact, we have

(p+m, [M, B *,]) = gep(M, B ),

where the operation “H” is induced by block sum of matrices. Similarly, for y =

(¢, N,) € Z x BGL(S)", there exists n € N such that

(g 47, [Ny B +,]) = geg(Ny B x,) .

We then compute
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%(I7 y) - %((p) Mp>7 (q7 Nq))

1= GCpgs © f (M By, Ny B ) — gepgg © f (km, Ny B %,,)

- gcR@S 5 f(Mp H *m, *n) + gcR@S © f(*ma *n)

= OCrgs © f(My B ¥, Ny B #n) — gCrgs © f(km, Ny B +,)

- gcR@S o f(Mp H *m, *n) + gCR@S o f(*m> *n)

>~ GCpgs © f(My B, Ny B %,) — geggg o f(Ng B, %)

— 9CRres © J (M, B #,, %) + 9Cpres © I ks %)

= GCpes (My @ Ny B M BN B ) — 0¢pas (Ny ™ B )

— 9CRes (M;En H *mn) + 9Cpas (kmn)

=~ QCR@)S(MP ® Nq)

as desired. n

From the definition, it is clear that e is homotopically trivial on the wedge

(Z x BGL(R)") Vv (Z x BGL(S)"),

hence Ygee factors through the smash product to give the map

Yiree : (Z x BGL(R)Y) A (Z x BGL(S)") = Zx BGL(R® S)",  (5.9)



68

making Diagram (5.8) commute up to weak homotopy. In particular, when restricting

onto the base-point component ({0} x BGL(R)") A ({0} x BGL(S)"), we have

7free| ({0}XBGL(R)+)/\({O}><BGL(S)+) = YLoday (510)

We are now able to define an intermediate spectrum that allows us to compare
the Loday assembly and the universal assembly. Let us mimic the construction given

in Proposition 2.3.2 and recall the map

tt: B <t> — KEZ
from in Definition 2.3.1.

Definition 5.1.5 (The Spectrum K%*) Let R be a ring satisfying the IBP. Define

the spectrum Kféee by having

(KE*), :==Z x BGL(S"R)" (5.11)

~ BSZ”R
forn > 0. Recall our notation that

Kpr:= Ko(R) x BGL(R)" .

We write
K& .= 7 x BGL(R)" (5.12)
The structure maps are given by the composition

AJr i ree
B (t) A KGss, S5 Kl A K, 2 KB, g, (5.13)
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where £ is induced by the group homomorphism

(t) = GL(3Z)

t—T, (5.14)

and T € GL(XZ) be the element defined in Equation (2.16).

It is worth pointing out that

mi(KE©) = K;(R)

for all © > 0. This can be seen from the definition of homotopy groups of a spectrum,

or Theorem 5.1.2 below. However, we do not know if there is a map of spectra

free GW
K" — Kg

or in the other direction that induces isomorphisms on homotopy groups. It is worth

pointing out the following. There is a map of spaces

Kb - Kp (5.15)

given by

K .= 7 x BGL(R)" — Ky(R) x BGL(R)" =: Kx
(m,z) — ([R™], ).

This map induces the identity maps on m, for n > 1. However, it does not extend to

a map of spectra. Otherwise, we would have a commutative diagram
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B Kfree t+ Aid free free free
(t) N Kp » Ky AN Kp Ksgr

| |

—— Ksz A KR p Ksr
tm Aid ’YLoday

Vree

B{t) N Kg

of spaces. The right square then induces the following commutative diagram

K;(SZ) ® K;(R) Kiyj(XR)
K;(Y7Z) ® K;(R) , Ki;(ER)

on homotopy groups. When 4, j > 1, the vertical arrows are identities. The commu-

tativity of this square would imply that

[f1%1g]l = [f1¥ [g] € Kiy;(ER)
for all [f] € K;(XZ) and [g] € K;(R), which is absurd by Proposition 2.2.1. As a
result, the map in Equation (5.15) does not extend to a map of spectra.
Finally, because of the construction of the structure maps in Equation (5.13), the
pairing Yee constructed in Equation (5.9) extends to a weak pairing of spectra. By
abuse of notation, we shall denote it as

Yiree : Ki® AKE® — Kieog (5.16)

for any two rings R, S satisfying the IBP.

5.1.3 Idempotent Completion and the Spectrum K%

A quick inspection of the classifying space BSg given in Theorem 5.1.1 says



71

0 (BSR) 7’\é KQ(R)

The spectrum K%ee defined in Definition 5.1.5 fixes this problem at the spectrum-level,

and we describe a space-level solution to this problem here.

Definition 5.1.6 (Idempotent Completion, [Weil3, page 143]) The idempo-
tent completion of a category C is the category € whose objects are pairs (C, p) with
p: C — C an idempotent endomorphism of an object C' of C.

A morphism (C,p) — (C',p') in @ is a map f:C — C"in @ such that the diagram

C C’
P p’
C C’
! (5.17)
commutes.
Example 5.1.3 . Because any projective module is a direct summand of a free

module, the idempotent completion of H’reef}% is a (small) category equivalent to the

category of finitely generated projective R-modules, and we denote this category by
Proj := Frecld (5.18)

and call it the category of finitely generated projective R-modules by abuse of termi-

nology.

If A is a symmetric monoidal category, then so is A. Thus, we define:
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Definition 5.1.7 (The Category P,) Let A be a symmetric monoidal category.
We define the category P4 to be the S™1S-construction of the category iso <fl> of

1somorphisms in the idempotent completion le\, as defined in Definition 5.1.2:

-1 A
Py :=iso (A) iso (A) (5.19)
In other words, Py = 83.
In particular, we write
fPR = ??ree% (520)
for a ring R.
The following theorem tells us how 8 and Pr are related.

Theorem 5.1.2 ([CP97]) If C is a category, then there is a canonical embedding

ee
C— (C)id). (5.21)

Therefore, we have an induced functor

between the categories defined in Definition 5.1.3 and Definition 5.1.7.
When C = H’reef}% is the category of finitely generated free modules over the ring

R, the induced group homomorphism

s an isomorphism for n > 1.
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Definition 5.1.8 (Pairing of Symmetric Monoidal Categories, [May80, page
308]) Let A, B, and C be symmetric monoidal categories. A pairing of symmetric

monotidal categories is a functor

®R:AXB—C (5.24)
(A,B)— A® B

satisfying the following condition:

(PSMC 1) For any objects A € A, B € B, we have

04 ®B=0c=A®O0gs (525)

(PSMC 2) For any objects A, A" € A and B, B' € B, there is a coherent natural

bi-distributivity 1somorphism:

(AOyA") ® (BOsB') 2 (A®B)Oc (A® B)Oe (A'® B)Oe (A ® B').
(5.26)

Example 5.1.4 . The standard example of a pairing of symmetric monoidal cate-

gories is the tensor product of modules.

Theorem 5.1.3 ([May80, Theorem 1.6 on page 307, and Theorem 2.1 on
page 310]) A pairing A x B — C of symmetric monoidal categories determines a

pairing

BSA VAN BSB — BS@ (527)
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of homotopy group completions. Moreover, this map fits into the following homotopy

commutative diagram:

Biso (A) A Biso (B) Biso (C)

BSA/\BSA BS@;

(5.28)

where the vertical arrows are the homotopy group completion maps.

Example 5.1.5 . According to [Wei81, Diagram 3.1 on page 500], the map

. free free free
Vivee : K™~ N Kg™ = Kpgg

is the pairing of homotopy group completions determined by the tensor product
® : iso <S’ree§§) X 180 (f}“reefsg> — iso (?reefI%@S)
of modules.

Definition 5.1.9 (The Pairing v,,,;) Let R, S be rings.
We define the pairing

Yproj * BTR VAN BTS — B?R@,g (529)

to be the pairing that is functorially determined by the tensor product

® :iso (iProij%) X 180 (fProijg> — is0 (?rojfﬁ@)S)
of modules in the sense of Theorem 5.1.3.

Because
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BPr ~ Ko(R) x BGL(R)" (5.30)
= KR

by [Weil3, Corollary 4.11.1 on page 337|, the pairing p.; induces a map

Yproj - KR A KS — KR@S- (531)

If in addition that the rings R, S both satisfy the IBP, then functoriality of the

pairings says the following diagram

B®

Biso (.’freeR> A Biso fTrreeS> Biso (?reeR@)S)

\ nclusmn \ nclusmn

Biso <‘Pr0JR> A Biso <Trojf§> Biso <Tr0JR®S>

BSr A BSg Jiree B8 res
B(% B(m
BPr A BPg BPres

Yproj

(5.32)
commutes up to weak homotopy, where the vertical arrows are the homotopy group
completion maps. However, Proposition 2.2.1 says the induced product maps are
different on homotopy groups. Therefore, the pairings yioday and 7pro; are not homo-

topic.

Definition 5.1.10 (The Spectrum Kgoj) Let R be a ring. Define the spectrum
KY by setting
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(Klﬁ‘)l’) = Kynp (5.33)

formn > 0. The structure maps are given by the composition

TrAid

B<t>/\KR—>ng/\KRMK2R, (534)
where t is induced by the group homomorphism in Equation (5.14).

Again, the pairing 7,,.; constructed in Equation (5.29) extends to a weak pairing

of spectra. By abuse of notation, we shall denote it as

Yoroj : Ko™ AKE — K22k (5.35)

for any two rings R, S.
The following result is an immediate consequence of Theorem 5.1.3, Definition 5.1.5

and Definition 5.1.10.

Theorem 5.1.4 Let R, S be rings satisfying the IBP.

The inclusion functor
fg -fg
JFreep; — Projp

induces the following diagram

free free free free
Kr* A Kg » Kros

| |

Ki A K™ — Kok
proj (5.36)
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of weak pairings of spectra. More precisely, for each pair (m,n) of non-negative

integers, the diagram

Viree
free free free
Kymp N Ksi'g — Bgmin(rgs)

| |

KEmR A KE"S 74’ KE’"*"(R@S)
proj (5.37)

commutes up to weak homotopy.

The presence of the pairing map Yge allows one to define a multiplication map

*free - KZ(R) & KJ(S) — KH_](R@ S)

L1 ® (9] = [Viree © (f A 9)] (5.38)

It is clear from Diagram (5.8) that xgee recovers tensor product of modules when
i = j = 0, and coincides with Loday’s multiplication x by Equation (5.10) when

1,7 > 1. However, the following cases are still open:

Question 5.1.1 What is the product map

*tree : Ko(R) ® K;(S) = K;(R® S)? (5.39)

In particular, can we relate this product map with the classical product map

defined by Milnor as in Equation (2.26) when j =1,27
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5.2 Categories Over Metric Spaces and the Non-Connective Pedersen-

Weibel Algebraic K-Theory Spectrum

Recall the definition of an additive category.

Definition 5.2.1 (Additive Category) A category A is additive if all of the

following are satisfied:

(A1) The collection of morphisms Hom (A, B) from A to B is an Abelian group for
each object A, B € A.

(A2) The composition of morphisms

Hom (A, B) x Hom (B, C') — Hom (A, C)
1s a bilinear map.

(A3) There is a distinguished object 04 € A such that

Hom (A, OA) =0 = Hom (OA, A)
for all objects A € A.

(A4) There is a binary operation

PAxXxA—-A

which 1s both the categorical product and categorical coproduct.

Example 5.2.1 . Our standard example is the category ff"reefg of finitely generated
free modules over the ring R. The binary operation in (A4) is the direct sum of
modules. Note that the ring R does not have to satisfy the IBP for ?reef}% being
additive.
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Definition 5.2.2 (Filtered Additive Category, [PW85, Definition 1.1 on
page 168]) An additive category A is said to be filtered if there is an increasing
filtration

Fy(A,B)C---C F,(A,B)C---CHom (A, B)
on Hom (A, B) for every pair of objects A, B € A, satisfying the following properties:
(F'1) Each F;(A, B) is a subgroup of Hom (A, B).
(F2) | JF.(A, B) = Hom (A, B).
(F3) The identity map ida and the zero map 04 are in Fy(A, A).

(F4) The canonical maps

A® B — A,
A—- A B

and all coherence isomorphisms are in Fy(A, B).

(F5) The composition law in A respects the filtration, meaning that if f € F;(A, B)
and g € F;(B,C), then go f € F1;(A,C).

Definition 5.2.3 (The Category C,, (A), [Spe04, Definition 4.2 on page 14])
Let A be a category and (M,d) be a metric space. We definition the category Cps (A)

as follows

(i) objects are sets {A.}, oy, of objects Ay € A, with the condition that the collec-
tion {x € M | A, # 0} is locally finite.

(i1) A morphism ¢ : A — B in Cp (A) is a collection of morphisms
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@, : Az — By

in A with a bound R > 0, so that p; = 0 whenever d(z,y) > R. In this case,

we say the morphism ¢ : A — B is bounded by R.

Note that if A is an additive category, then so is Cys (A). Secondly, the bounded-
ness condition on morphisms gives a natural filtration on the Hom-sets of €,; (A)—for
each pair of objects A, B € €y (A), the collection F;(A, B) consists of morphisms
A — B in @y, (A) that are bounded by i. Thus the category Cys (A) is filtered ad-
ditive in the sense of Definition 5.2.2. Thirdly, if the category A we start with is
already filtered, we require all components ¢y : A, — B, of the morphism ¢ : A — B

have filtration degree ¢ as well.

Example 5.2.2 (C; (A)). Our standard example for €, (A) is the case when M = Z'.
Let us equip Z' with the metric induced by the ¢*°-norm, so that

d(Z,§) = |7 = ll e

= max |z; — yj|

1<5<i
for ¥ = (z1,--,2;), ¥= (y1,---,v;) € Z". In this case, we write
A ifi=0,
e, (A) == (5.40)

Cpi (A) ifi >0

and we get a sequence {C; (A)};~, of categories. Note that the categories C; (€; (A))
and C;y; (A) are isomorphic. The sequence {C; (A)};Z, was first constructed by
Pedersen-Weibel to produce non-connective spectra from additive categories [PW85].
In particular, when A is the category of finitely generated free modules, the resulting

spectrum has homotopy groups isomorphic to algebraic K-groups of the underlying
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ring. The categories €y (A) were also studied by Carlsson-Pedersen to prove the
K-theoretic Novikov Conjecture for a large class of groups [CP95].
Finally, we give C; (A) the split exact structure as in [PW85, page 171]. More

precisely, We say a chain

A—-C—=B

of morphisms in €; (A) is an exact sequence if there is an isomorphism A ® B = C

in C; (A) such that the diagram

A A®B

1R

A ¢ B (5.41)

~

commutes. Because C; (C; (A))

C; (A) inductively.

Citj (A), this gives an exact category structure on

Definition 5.2.4 (The Category P, ;) Let A be a split exact, additive category.

For each integer i > 0, we define

:PAJ' = :P(fi(fl) (542)

as in Definition 5.1.7. In particular, we write:

Pri = P, (gret) (5.43)

R
for a ring R.

Pedersen-Weibel proved the following:

Theorem 5.2.1 ([PW85, Theorem B on page 167]) Let A be a split ezact,

additive category.
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For each v > 0, we define

(KLY), == BPa,. (5.44)

Then for each i > 0, we have the delooping

(KEY), =0 [(K5Y),,, ] (5.45)

Thus the sequence {(Kiw)i}oo

o of spaces forms an §2-spectrum.

Theorem 5.2.2 (The Non-connective Pedersen-Weibel K-theory Spectrum
of Rings, [PW85, Theorem A on page 166]) Let R be a ring.
The spectrum
KEW .= KE}LE (5.46)

1s an C2-spectrum, the so-called non-connective Pedersen- Weibel algebraic K-

theory spectrum of R, whose homotopy groups are

Ki(R) if i >0,
mi (Ki")

1

(5.47)
negative K-groups of R

defined by Bass in [Bas68] if i <0.

5.3 The Universal Assembly Map

Definition 5.3.1 (Homotopy invariant, excisive, and strongly excisive func-
tors) Let Spaces be the category of (un-based) topological spaces homotopy equivalent

to (not necessary finite) CW-complexes and continuous maps. We say a functor

[F : Spaces — Spectra

1s homotopy invariant if it takes homotopy equivalences to homotopy equivalences.

A homotopy invariant functor F is
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(1) excisive if it is excisive and preserves homotopy push-out squares, and F(() is

contractible;

(2) strongly excisive if it preserves arbitrary coproducts, up to homotopy equiva-

lence.

Theorem 5.3.1 (Weiss-Williams/Universal Assembly, [WW95, Theorem

1.1. on page 333|) For any homotopy invariant functor

IF : Spaces — Spectra,

there exists a strongly excisive functor

F” : Spaces — Spectra

and a homotopy natural transformation

aww : F? =T, (5.48)

the so-called Weiss-Williams assembly, or the universal assembly, such that the

component

aww : F”? (point) — F (point)

of the homotopy natural transformation is a homotopy equivalence. Moreover, F”

and aww can be made to depend functorially on F.

Proof. (Outline)
The point is that the functor

X — X, AT (point) (5.49)

is a model for F”; and the homotopy natural transformation
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WwW ]F% =F
is induced by the constant map X — point. O

Theorem 5.3.2 ([WW95, Observation 1.3 on page 336]) If the homotopy in-

variant functor

[F : Spaces — Spectra

18 already excisive, then the component

(aww)y : F?(X) = F(X)

of the homotopy natural transformation

awwi]F%:>IF

1s a homotopy equivalence for every compact X.

If F is strongly excisive, then (aww)y is a homotopy equivalence for all X.

Theorem 5.3.3 (Universal Property of the Weiss-Williams Assembly, [WW95,
page 336]) Suppose the homotopy invariant functor

[F : Spaces — Spectra

admits another homotopy natural transformation

b:E=TF



from a strongly excisive functor E. Then the diagram

commutes.

We conclude by the following remark. In Diagram (5.50), if the component

of the homotopy natural transformation  is a homotopy equivalence, then

E
Aww

E” E

B%

Bpoint : E(point) — F(point)

T ER(X) = FA(X)
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(5.50)

is a homotopy equivalence for all X by the Eilenberg-Steenrod Uniqueness Theorem

ES52, Theorem 10.1 on page 100-101]). So 3 is homotopic to aiyy after identifying
WW

the source and target.

5.4 A Model for the Universal Assembly

We recall the notions of ringoids and modules over them as in [WW95, page

337-338).

Definition 5.4.1 (Ringoid, [WW95, page 337]) A ringoid is a small category

i which

(1) all morphism sets come equipped with an Abelian group structure,

(2) composition of morphisms is bilinear.
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Example 5.4.1 (The Ringoid R|[C| of the Category C Over the Ring R). Let
R be aring, and € be a small category. We define the ringoid R[C] to be the category

having the same objects as C, and the morphism set

morge) (r,y) := R (more (z,y))

is the free left R-module generated by the set more (z,y). When € = G is a group,
considered as a category with one object, then the ringoid R[C] is the group ring
R[G], considered as a category with one object, hence justifying the notation.

The category R|[C] is also referred as the R-category associated to € in [DLIS,
page 212].

Definition 5.4.2 (Modules over Ringoids, [WW95, page 338]) Let R be a
ringoid.

A left R-module is a functor

f R — Abelian

from R to the category of Abelian groups, such that the induced map

.f ¢ mMoreg (a?, y) — IMOT gpelian (f($)7 f(y))

is a group homomorphism. A right R-module is a left R°P-module.

A left R-module f is

(1) free on one generator if it is representable:

f(=) = morg (z, -)

for some x € R;
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(2) finitely generated free if it is isomorphic to a finite direct sum of representable

ONes;

(3) finitely generated projective if it is a direct summand of a finitely generated

free one.

The category Moduleg of left R-modules and natural transformations forms an
Abelian category. The subcategory ?ree% of finitely generated free left R-modules is
a split exact, additive category. We can then use the Pedersen-Weibel construction

as in Theorem 5.2.1 to get an Q-spectrum
KgW::JKgl%. (5.51)

Now, when R = R is a ring, considered as a category with one object, there is a

natural equivalence

fg ~ fg
Freey ~ Freep

of categories. In this case, the spectra KJP;W and KZW are weakly equivalent.
Let us construct a functor Y : Spaces — Spectra. Let TI(X) be the fundamental
groupoid of the topological space X. Given aring R, we can form the ringoid R[I1(X)]

as in Example 5.4.1. Our functor is then given by:

Definition 5.4.3 (The Functor Y) Let R be a ring. We define the functor Y by
Y : Spaces — Spectra (5.52)
PW
X = Kpmx

Clearly, the functor Y is homotopy invariant, so Theorem 5.3.2 asserts the exis-

tence of the universal assembly map

aWww - Y% — Y.
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We will construct this assembly map explicitly following [Spe04]. The key ingredient

is an analogue of the Loday pairing for the Pedersen-Weibel spectrum.

Lemma 5.4.1 ([Spe04, Lemma 4.6 on page 16 and Lemma 4.7 on page 17])
Let A, B, and C be split exact, additive categories, considered as symmetric monoidal
categories in the canonical way.

Suppose ® : A X B — € is a pairing of symmetric monoidal categories. Then

(i) for alli, j >0, there is an induced pairing

of symmetric monoidal categories.

(i) Moreover, the collection {®}?§:0 of pairings assemble to give a pairing

® KWV AKRY - KEW
of spectra.

Let us apply this result to ringoids.

Definition 5.4.4 (Tensor Product of Ringoids) Let R, § be ringoids. The tensor
product of R and 8 is the ringoid R®8 whose objects are given by pairs (r, s) of objects
in R and S, and the collection of morphisms is given by

Homggs ((1, 1), (12, $2)) := Homg (r1,72) ®z Homg (s1, $2) . (5.54)

Composition is given by

(f1® f2) o (91 ® g2) = (fiog1) ® (f2092), (5.55)

and then extended linearly.
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When the ringoids are rings considered as categories with one object, this tensor
product becomes tensor product of rings in the usual sense. Furthermore, the tensor
product of ringoids extends to a tensor product of modules over ringoids as defined

in Definition 5.4.2.

Example 5.4.2 . Let R be a ring, and C be a small category. We can then form
the ringoids Z[C], R[C] as in Example 5.4.1. Tensor product of ringoids then gives

R ® Z[C] = R[C]. (5.56)
Moreover, it also gives a pairing
® : Freelf x SrreefZg[e] — H’ree%[@] (5.57)

of symmetric monoidal categories as in Definition 5.1.8. Note that in this case, we

are considering modules over ringoids as in Definition 5.4.2.

We are now ready to construct a model for the universal assembly map associated

to the functor Y. Let us recall from the proof of Theorem 5.3.1 that the functor
X — X AY (point)

is a model for the functor Y” : Spaces — Spectra.

Definition 5.4.5 (The Assembly a) Write II(X) to be the fundamental groupoid
for the topological space X. Let R be a ring.
Define a map of spectra
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having components

X A (REY), S B, A (REY), 2 (K5 ), A (KR,
\\‘\‘\\\\‘\‘\ )
(@x)y “~\\\\“\
Here,

(1) the map ¢ : X — BII(X) is the classifying map of the universal cover of X ;

(ii) the map J : BII(X),+ — <KEE}1\TI(X)])0+ is induced by the inclusion functor

II(X) — iso (Z[II(X))]) ;

(11i) and the map & is the pairing map constructed in Lemma 5.4.1. In particular, it

is induced by the tensor product of ringoids as constructed in Definition 5.4.4.

The collection of maps {ax | X € Spaces} then gives a homotopy natural transfor-
mation

a: Y=Y (5.59)
of the functor Y : Spaces — Spectra constructed in Definition 5.4.3.
Theorem 5.4.1 ([HP04, Theorem 4.3 on page 39], [Spe04, Theorem 4.9 on
page 18]) The homotopy natural transformation & : Y”* = Y in Definition 5.4.5 is
(homotopic to) the universal assembly map in the sense of Theorem 5.3.1.

5.5 The Comparison

We mimic Definition 3.1.1 to create two Loday-like assemblies.
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Definition 5.5.1 (The Assembly Maps age and o) Let R be a ring and G
be a group.

We define two maps of spectra

BG ANKE* — Ky (5.60)
BG AKRY — Kl (5.61)

having components

free

7 Aid

U (R, A ), BG A (KE) (k) A (K5

~ . ~
~_ N
~ SO
NN Vfree Sel Yproj
(ctfree)n \\\ (O‘proj)n \\\
K

(KE&),- (Kﬁocjﬂn

BG A (Ki).

(5.62)
respectively. Here, the map j* is defined in Equation (3.3), and the map j™° is
defined analogously. We then use the construction in Definition 3.1.2 to extend these

two maps and get:

e : BG4 ANKE® — Kty (5.63)
proj * BGy AKRY — Kb (5.64)

In light of their definitions and Proposition 3.1.1, the maps ee and apyoj are maps
of spectra, well-defined up to weak-homotopy. The following result is an immediate

consequence of the definitions.

Proposition 5.5.1 Let R be a ring satisfying the IBP, and let G be a group.

The canonical map
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SR_>?R

giwen in Equation (5.22) gives a weak equivalence

s Kiee —y KProl (5.65)

of spectra. Moreover, this weak equivalence fits into the following diagram

Tee Cfree free
BG, NKj KRria

I I
BG, NKE™ — Ky
proj (5.66)

of spectra, which commutes up to weak homotopy.

The proof of the following result was outlined in [HP04], and later completed in
[Spe04].

Theorem 5.5.1 Let R be a ring satisfying the IBP.

For each © > 0, there is a functor

G;: G, (?reeﬁ%) — S"reefzgiR, (5.67)
such that
a) the collection {G;}:°, of functors gives a homotopy equivalence
=0
g KEW — K> (5.68)

of spectra [Spe04, Theorem 5.14 on page 26 and Proposition 5.15 on page 28].
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(b) Moreover, the map g is compatible with the pairings of spectra. More precisely,

for each pair of non-negative integers m, n, there is a diagram

(KRY),, A (KR, —— (KRY),.p.

gm A gn I/ ‘/ Im+n

(i), (57), < (57
m n m—+n (569)

that commutes up to weak homotopy [Spe04, Corollary 6.3 on page 40].

Proof. (Outline) We outline the construction of the functors G,, here since this the-
orem is the main result of [Spe04]. We begin by constructing the functors

G, C, (&"reeﬁ%) — Freed, ,
inductively.

Step 1: When n = 0, we have

Co (ffreei%) = Sfreef,%.

Thus, we define

Go=id, 1. (5.70)

Freep

Step 2: Secondly, let fﬁee% be the category of countably generated free R-modules

and locally finite matrices over R. It is proven that the categories

N
Free

f

1~ Freesy,

g
JFreey;

are equivalent [PW89, Proposition 6.1 on page 359].
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The idea is as follows: choose an infinitely based R-module R* in JFreel,
and observe that

Endg, . (R>) = cone (R).

Now, the category rfreell\]% is Karoubi-filtered by its subcategory &rreef]%, and

the completely continuous endomorphisms of R* form the ideal m(R) of
cone (R). Thus, we have

End,,.; (R¥) = SR.
g
R

|

Jree

The canonical additive functor

Freey

Frod® (5.71)
R

YR~ R™

fg
Freegp —

Sr' N
is therefore full and faithful. But every object of !

f is either isomorphic
g

reey;
to the zero module or to R™, so this functor is also an equivalence.

We denote by

Free

Freep

— Free, (5.72)
the inverse equivalence functor of Equation (5.71).

Step 3: Thirdly, we define the functor

B:C, (Free®) — Freel
R R
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{Ai}, — P A,
1=0

for which C, (?reeﬁ%) is the subcategory of C; <3"ree§§) consisting objects
{A;}°  with A; = 0 whenever i < 0.
Note that each A; is finitely generated, so the direct sum @ A; is an object

i=0
in Freely. Moreover, this functor induces a functor

Ct (?reeﬁ%) Freel)

Free's %? fe
reeR reeR

B

(5.73)

We comment that S"ree% is regarded as a subcategory of C, (S"reefﬁ) via the

embedding

A (A,0,0,---).

Step 4: Next, for a filtered additive category A in the sense of Definition 5.2.2, we

define the functor

Ci (A
7:C (A) = +(A) (5.74)
A
{A}Z o = {A}S, -
Recall that a morphism ¢ in €; (A) is an infinite matrix (¢i7j)z§zfoo' We

define 7 (¢) to be the sub-matrix (¢; ;)

oo
ij=1"

Step 5: We now define the functor

G, :C, (ffree%) — Free,



for n > 1 inductively. When n = 1, we define GG; to be the composition

(5.75)

Now suppose the functor

G, : G, (?reeﬁ%) — ?reefzgnR

is defined. As pointed out in Example 5.2.2, the categories C; (Gj (?reei%))

and Gy, (?ree%) are isomorphic. We define the functor G,,; to be the
composition:

This completes the construction of the functors
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G;: 6 (?reeﬁ%) — ?reefzgiR,

and we refer readers to [Spe04, Theorem 5.14 on page 26, Proposition 5.15 on page
28 and Corollary 6.3 on page 40] for checking the remaining properties. O

A consequence of Theorem 5.5.1 is the following corollary:

Corollary 5.5.1 Let R be a ring satisfying IBP, and G be a group.

Consider G as a groupoid in the canonical way. Then the component
ape - BGy ANKRY — Ky (5.77)
of the universal assembly map &, as constructed in Definition 5.4.5, is weakly homo-

topic to the assembly map

Qproj + BGw AKR™ — Kl (5.78)
constructed in Definition 5.5.1.

Proof. We need to check the diagram

cyp ANid

BG, A (KRY), "5 BGL A (KRY), — (K5 A (KEY), —— (KR),

id Agn ‘/ id Agn { id Agn [ [ gn

B0 (15%), g 00 (5%), - (), (5%), < (),

n ¢+ Aid
(5.79)

commutes up to weak homotopy for all n > 0. Here,

(1) the classifying maps

Cy BG+ — BG+
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for the universal cover of BG. is just the identity, so the left square commutes
up to homotopy automatically.
(2) The middle square commutes up to homotopy by the definitions of J and j%.
(3) The right square commutes up to weak homotopy by part (b) of Theorem 5.5.1.

Finally, the map g,, is a homotopy equivalence by Theorem 5.5.1 (a). So the claim
holds as desired. O

Corollary 5.5.2 (Corollary of Corollary 5.5.1) Let R be a ring satisfying IBP,
and G be a group.
Consider G as a groupoid in the canonical way, then the component
apo - BGy ANKRY — Ky (5.80)
of the universal assembly map &, as constructed in Definition 5.4.5, is weakly homo-
topic to the assembly map
e - BG+ NKE® — Kty (5.81)

constructed in Definition 5.5.1.

5.6 An Explicit Formula for the Universal Assembly

We now relate Theorem 3.3.1 to the universal assembly map.

Theorem 5.6.1 Let R be a ring and G be a group.
There is a subgroup AHSS (BG)‘;Z of Tii1 (BG+ /\KEW) which is a quotient of
the E*-term

AHSS (BG)},; = Ga, ® Ki(R)

from the Atiyah-Hirzebruch spectral sequence of the classifying space BG of G with
coefficients in the Pedersen- Weibel K-theory spectrum K5 of R.



For i >0, the filler of the diagram

AHSS (BG)}; 2 Gy @ K;(R) ------------ » K1 (R[G])

AHSS (BG)y,; ———— my1 (BG AKRY)

18 induced by

G x Ki(R) — Kis1 (R[G))
(g, [f1) = {g} *[f].
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(5.82)

(5.83)

This provides an explicit formula for the universal assembly map when restricted onto

the subgroup AHSS (BG)T.

Proof. From Corollary 5.5.2, we know the universal assembly apg induces the same

map on homotopy groups as the assembly map aygee. S0 we need to verify the formula

for tree.

As pointed out in Equation (5.10), the pairing map e used in constructing

the assembly o is homotopic to the original Loday pairing 71.day. Therefore, by
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repeating the same proofs as in Proposition 3.3.1 and Proposition 3.3.2, we see that

the bottom composition of

i * ree
Tit1 <<\/ Sl) A K%) ) Tir1 (BG ANKE®) - K1 (R[G))

geG
12 I Il

D Ki(R) T (BG AKE) Kivy (RIG)
geG
(5.84)
sends the element [f] € K;(R) in the summand in @ K;(R) labelled by g € G to the
geG
element
{g} x [f] € Kit1 (R[G]) .
This completes the proof. O

The universal assembly then admits the following version of Corollary 4.1.1.

Corollary 5.6.1 (The Universal Assembly on 7, of an Integral Group Ring)

Let G be a group. The universal assembly map

apo : BGL NKyY — Kooy (5.85)

for the integral group ring Z|G| on my, when restricted onto the subgroup
K3 (2) ® [Gap © Ki(Z)]

1s given by the formula:

(i) @ By 2 Ky (Z) @ [Gap © K1 (Z)] = Ko(Z[G)), (5.86)

for which i : 7. — Z|G) is the inclusion, and ®y is induced by the map
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G x K1(Z) — K»(Z[G])

(g, £1) = —{%1, g}, - (5.87)

Proof. We have — {+£1, g}, instead of {£1, g}, because of Proposition 2.1.1 (iii). O

Our proof for Theorem 4.1.2 applies to the following result.

Theorem 5.6.2 (An Injectivity Result for the Universal Assembly on )
Let G be a group. The composition

K (Z) ® [Gup @ K (Z)] 42 (BG4 ANKEW) 2229 k) (z]G)) (5.88)

is injective. Moreover, if Hy(BG;Z) is trivial, then the universal assembly apg is

mjective on my.

Because of Question 5.1.1, it is unclear if Corollary 3.3.1 (or its variants) holds
for the universal assembly. However, Waldhausen showed that when R = 7Z, the

assembly

71 () : M (BGL ANKE®) — K1 (Z]G])

on 7y is the usual map

{1,-1} & Gu — K1 (Z[Q))

(£1) ®© g = {*g}

under the identification

m (BG+ ANKE®) 2 {1, -1} ® G
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See [Wal78b, Assertion 15.8 on page 229]. His proof involves rewriting the assembly
map in terms of Quillen’s @)-construction and then verifying the formula at the sim-
plicial level. Therefore, it seems likely that the following conjecture is true. But a

rigorous proof is not known to the author.

Conjecture 5.6.1 (The Universal Assembly on Fundamental Group) Let R
be a reqular ring, and G be a group. The universal assembly map on m is given by

the formula

Ki(i) @ @1 : Ki(R) @ [Gap @ Ko(R)] = K1 (R[G]), (5.89)

where i : R — R[G] is the inclusion, and the map ®; is induced by the map

G x Ko(R) — K1 (R[G])

(0.1P]) by: P®rR[G] — P®gR|G] | (590
XU — @ ug

5.7 A Final Remark on Extending the Loday Pairing

One might ask why we use the Gersten-Wagoner delooping to extend the Loday

pairing

Yioday : BGL(R)" A BGL(S)" — BGL(R® S)*

to

Moday © [Ko(R) x BGL(R)"] A [Ko(S) x BGL(S)"| = Ko(R®S) x BGL(R® S)",

instead of using the “naive approach”:
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Vnaive © [Ko(R) x BGL(R)™] A [Ko(S) x BGL(S)"] = Ko(R® S) x BGL(R® S)"

([P], ) A([Q y) = ([P © Q, Yeoday (7, ) -

(5.91)
However, if we look at the induced product map
*naive : Ki(R) @ K;(S) = Kipj(R® S)
[f1@® [g] = [Ynaive © (f A 9], (5.92)

we immediately see that it is the zero map when ¢ = 0 and j > 0. Therefore,
algebraically the naive pairing gives the wrong thing.

Secondly, if the naive pairing extends to a pairing (or weak pairing)

Tnaive * ng A KSW — Kggs (593)

of spectra, then one can define an assembly map

naive * BG NKEY = KRy (5.94)

by mimicking Definition 3.1.2. However, the cokernel coker (71 (paive)) of this assem-
bly on m; will not be isomorphic to the classical Whitehead group Wh; (G) when
R = 7Z. Since Waldhausen’s work shows the cokernel of the universal assembly map
on m is isomorphic to Why (G) when R = Z [Wal78b, Assertion 15.8 on page 229],
the assembly map ampaive is not the correct one. Therefore, topologically the naive

pairing gives the wrong thing.
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