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ABSTRACT 

Hydrological modeling has been a valuable tool to understand the processes governing water 

distribution, quantity, and quality of the planet Earth. Through models, one has been able to grasp 

processes such as runoff, soil moisture, soil erosion, subsurface drainage, plant growth, 

evapotranspiration, and effects of land use changes on hydrology at field and watershed scales. 

The number and diversity of water-related challenges are vast and expected to increase. As a result, 

current models need to be under continuous modifications to extend their application to more 

complex processes. Several models have been extensively developed in recent years. These models 

include the Soil and Water Assessment Tool (SWAT), Variable Infiltration Capacity (VIC) model, 

MIKE-SHE, and the Water Erosion Prediction Project (WEPP) model. The latter, although it is a 

well-validated model at field scales, the WEPP watershed model has been limited to small 

catchments, and almost no research has been introduced regarding water quality issues (only one 

study).  

In this research, three objectives were proposed to improve the WEPP model in three areas 

where either the model has not been applied, or modifications can be performed to improve 

algorithms of the processes within the model (e.g. erosion, runoff, drainage). The enhancements 

impact the WEPP model by improving the current stochastic weather generation, extending its 

applicability to subsurface drainage estimation, and formulating a new routing model that allows 

future incorporation of transport of reactive solutes. 

The first contribution was development of a stochastic storm generator based on 5-min time 

resolution and correlated non-normal Monte Carlo-based numerical simulation. The model 

considered the correlated and non-normal rainstorm characteristics such as time between storms, 

duration, and amount of precipitation, as well as the storm intensity structure. The model was 

tested using precipitation data from a randomly selected 5-min weather station in North Carolina. 

Results showed that the proposed storm generator captured the essential statistical features of 

rainstorms and their intensity patterns, preserving the first four moments of monthly storm events, 

good annual extreme event correspondence, and the correlation structure within each storm. Since 

the proposed model depends on statistical properties at a site, this may allow the use of synthetic 

storms in ungauged locations provided relevant information from a regional analysis is available. 
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A second development included the testing, improvement, and validation of the WEPP 

model to simulate subsurface flow discharges. The proposed model included the modification of 

the current subsurface drainage algorithm (Hooghoudt-based expression) and the WEPP model 

percolation routine. The modified WEPP model was tested and validated on an extensive dataset 

collected at four experimental sites managed by USDA-ARS within the Lake Erie Watershed. 

Predicted subsurface discharges show Nash-Sutcliffe Efficiency (NSE) values ranging from 0.50 

to 0.70, and percent bias ranging from -30% to +15% at daily and monthly resolutions. Evidence 

suggests the WEPP model can be used to produce reliable estimates of subsurface flow with 

minimum calibration. 

The last objective presented the theoretical framework for a new hillslope and channel-

routing model for the Water Erosion Prediction Project (WEPP) model. The routing model 

(WEPP-CMT) is based on catchment geomorphology and mass transport theory for flow and 

transport of reactive solutes. The WEPP-CMT uses the unique functionality of WEPP to simulate 

hillslope responses under diverse land use and management conditions and a Lagrangian 

description of the carrier hydrologic runoff at hillslope and channel domains. An example of the 

model functionality was tested in a sub-catchment of the Upper Cedar River Watershed in the U.S. 

Pacific Northwest. Results showed that the proposed model provides an acceptable representation 

of flow at the outlet of the study catchment. Model efficiencies and percent bias for the calibration 

period and the validation period were NSE = 0.55 and 0.65, and PBIAS = -2.8% and 2.1%, 

respectively. The WEPP-CMT provides a suitable foundation for the transport of reactive solutes 

(e.g. nitrates) at basin scales. 
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 INTRODUCTION 

1.1  Problem statement 

Hydrological modeling is critical to help understand several ongoing issues including 

climate change, water quality, soil erosion, and land use change effects at different scales 

(Rosenzweig et al., 2013; Martinez-Martinez et al., 2014; Negm et al., 2016; Wu et al., 2017; 

Anache et al., 2018). The number and diversity of water-related challenges are large and expected 

to increase in the future. These issues are found to often have negative impacts on society. For 

instance, three examples can be mentioned: 1) soil deterioration and lower water quality due to 

erosion and surface runoff produces lands that no longer can be cultivated and must be abandoned, 

which involves economical and food security problems (Pimentel, 2000; Rhodes, 2014; Song et 

al., 2019; Zhang and Zhuang, 2019); 2) climate change significantly impacts global amount 

precipitation and its distribution. Increase of rainfall in the tropics and higher latitudes and  

decrease in rainfall within the already semi-arid to arid mid-latitudes and the interior of large 

continents (Dore, 2005; Turral et al., 2011; Kunkel et al., 2013; Martel et al., 2018) will bring 

limited crop productivity, water scarcity in dry areas, and more recurrent floods and droughts along 

with human health consequences; and 3) The amount of pollutants generated by human activities 

such as destruction of wetlands, grasslands, and forest in favor of urban landscape and agricultural 

practices have increased hypoxia in estuaries and coastal waters. As a result, long term changes in 

ecology, weakening of species, economic losses, and freshwater availability are predicted 

(Levinton et al., 2011; Almeida, 2016; Jenny et al., 2016; Jabbari et al., 2019). 

 In response to these challenges, environmental models have been developed to understand, 

analyze, and propose solutions for sustainable water management. Conceptualization of a 

hydrologic system leads to the formulation of a variety of ways to classify rainfall-runoff models 

from deterministic to stochastic models, from physically-based models to empirical models, and 

the most distinctive, from lumped to distributed models. In terms of functionality, physically-based 

distributed models are often used in research to gain better understanding of the hydrological 

phenomena happening in a catchment and how changes in the catchment may affect the hydrology. 

Some of the physically-based distributed models found in the literature include the European 

Hydrological System (SHE) (Abbott et al., 1986a, 1986b), MIKE SHE (Refsgaard and Storm, 
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1995), TIN-based Real-time Integrated Basin Simulator (tRIBS) (Ivanov et al., 2004), 

HydroGeoSphere (HGS) (Therrien et al., 2010; Brunner and Simmons, 2012), and the Water 

Erosion Prediction Project (WEPP) model (Flanagan et al., 2012). Typically, the data and 

computation requirements for these models are enormous and demanding. To overcome this 

limitation, semi-distributed models partially allow catchment heterogeneities to vary in space by 

dividing the basin into several sub-basins, which in turn are treated as a single unit. Among these 

models, one could find the Variable Infiltration Capacity (VIC) model (Liang et al., 1994), 

TOPMODEL (Beven and Kirby 1984; Beven et al., 2001), and the Soil and Water Assessment 

Tool (SWAT) (Arnold et al., 2012). 

Acknowledging the potential of physically-based distributed models to simulate 

hydrological processes at field and/or watershed scales (Daniel et al., 2011), great efforts have 

been made to improve representation of hydrologic processes in this type of model. Research 

directed to improve semi-distributed and distributed process-based models include work on: 

SWAT (Moriasi et al., 2012; Bauwe et al., 2015; Zhang et al., 2016; Fuka et al., 2016; Bauwe et 

al., 2017; Raju and Nandagiri, 2017; Mittelstet et al., 2017), The Agricultural 

Policy/Environmental eXtender (APEX) model (Wang et al., 2008; Jeong et al., 2014; Ford et al., 

2016; Pi et al., 2017; Hong et al., 2018), WEPP (Conroy, 2005; Mao et al., 2006; Wang et al., 

2010; Frankenberger et al., 2011; Singh et al., 2011; Flanagan et al., 2012; Srivastava et al., 2017; 

Wang et al., 2018), and MIKE-SHE (Cui et al., 2005; Hansen et al., 2013; Zhang et al., 2015; Ma 

et al., 2016; De Schepper et al., 2017; Botero-Acosta et al., 2017; Sonnenborg et al., 2017). Among 

the available models cited above, one lagging in terms of water quantity and quality research at 

both the hillslope and watershed scales is the WEPP model.  

The WEPP model is a physically-based soil erosion prediction technology. It integrates 

hydrology, plant science, hydraulics and erosion mechanics to predict erosion at hillslope and 

watershed scales. The WEPP model can simulate and assess a variety of land uses, climates and 

hydrologic conditions. The main hydrologic processes in the WEPP model include 

evapotranspiration, snow accumulation and melt, surface runoff, infiltration, subsurface flow, and 

deep percolation of soil water (Flanagan et al., 2012). The model was developed beginning in 1985 

in an effort undertaken by the United States Department of Agriculture – Agricultural Research 

Service (USDA-ARS) to replace the Universal Soil Loss Equation (USLE; Wischmeier and Smith, 

1978), which was the standard tool for soil loss estimation used by the USDA Soil Conservation 
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Service (SCS).  Although WEPP has been well validated at the hillslope scale since its creation, 

there are still factors that contribute to the previously mentioned development lag in comparison 

to other hydrological models. The research described in this thesis deals with these factors and 

proposes three improvements to the WEPP model to promote its development and applicability. 

The enhancements impact the model by improving the stochastic weather generation, extending 

its applicability to improved subsurface drainage estimation, and formulating a new routing model 

that allows future incorporation of transport of reactive solutes. The following paragraphs describe 

the justification of these improvements and state the research objectives.  

First, climate temporal resolutions, such as daily precipitation often used to simulate 

hydrologic processes and soil erosion in the WEPP model (Fashi et al., 2015; Brooks et al., 2016; 

Shen et al., 2016; Kinnell, 2017; Srivastava et al., 2017; Zemke et al., 2019), are not entirely 

appropriate since water erosion estimates are more dominated by rainfall intensities than total 

rainfall (Archer and Fowler, 2018; Dunkerley, 2019). Rainfall intensities occur by nature in small 

time increments and storm durations can be shorter or longer than a day. Additionally, processes 

such as infiltration and chemical transport, as well as assessment of Best Management Practices 

(BMPs), often require time steps as small as minutes to realistically capture the flow dynamics and 

sediment loads coming from upland areas. Although the WEPP model can simulate hydrology and 

erosion using sub-daily values of precipitation, most research has been conducted using daily 

amounts of precipitation, which is often more available for longer time periods than in sub-daily 

form or it is easier to obtain. In an attempt to overcome this limitation, the WEPP model integrates 

a stochastic weather generator, CLIGEN (CLImate GENerator; Nicks et al., 1995). CLIGEN 

generates one storm per day with individual parameters including storm depth, time to peak 

intensity, peak intensity, and storm duration. However, this still limits the applicability of the 

WEPP model to long-term evaluation of erosion estimates and agricultural practices where a more 

extensive description of the storm intensities is required.  

As part of the first WEPP model enhancement, two facts are identified. First, in the United 

States, 3200+ meteorological stations record precipitation on a daily basis 

(https://www.ncdc.noaa.gov/ghcnd-data-access), 2000+ stations measure precipitation at 15-min 

time increments (https://www.ncdc.noaa.gov/cdo-web/datasets), and 1500+ stations measure 1-

min precipitation (https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-

datasets/automated-surface-observing-system-asos). One can see that daily precipitation is still 
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more available than sub-daily measurements. However, there are a significant number of stations 

providing high resolution, continuous measurement of precipitation, which can provide a more 

realistic view of storm events (Bonta, 2004). Although daily precipitation is often considered as 

continuous, it just reflects the total volume of precipitation in a day with no intensity associated 

with the data, while sub-daily measurements consider the entire occurrence of events and the 

associated characteristics of each rainfall event. Second, future estimates of the hydrologic 

processes and BMP design using environmental models often require the use of long-term 

measurements of rainfall (i.e. 50-100 yrs) or weather generators that reflect the temporal 

characteristics of the storm under stationarity or nonstationarity assumptions. As a result, many 

storm generators are available for generating synthetic weather. Nonetheless, the data availability 

in the past five decades limited storm generators to daily values of precipitation and storm 

characteristics generated by rainfall disaggregation methods (Vu et al., 2018). Although storm 

generators have been tested in many studies (Pui et al., 2012; Muller et al., 2018; Kossieris et al., 

2018), it is still far from reality, especially in cases where storms last more than 24 hours or 

multiple storms happen on the same day. These issues indicate that there is an opportunity to 

enhance the prediction of hydrological models through improving the resolution of their inputs (i.e. 

precipitation) by taking advantage of the finer but still short available precipitation data and the 

statistical numerical tools such as the concept of stochastic storm generator models. 

Second, in the Midwest US and other regions, subsurface drainage systems have drastically 

influenced the development of agriculture by allowing crop growth in otherwise unsuitable areas. 

Subsurface drains influence hydrology by substantially decreasing surface runoff, reducing 

periods of surface ponding and lowering the water table depth. However, one of the major concerns 

with the use of subsurface drainage systems is the adverse environmental effect as they modify 

soil water dynamics. In terms of water quality, these systems change volume and timing of 

sediment, nitrogen, and phosphorus losses, decreasing the residence time of the water within the 

soil, allowing direct passage of water and contaminants off-site. In drainage systems without 

surface inlets, subsurface drainage decreases sediment losses and potentially sediment-bound 

nitrates and phosphorus (David et al., 2010, King et al., 2015). Nonetheless, these systems enhance 

losses of soluble nitrates and phosphorus out of the tiles as subsurface flow moves into ditches, 

streams or lakes. In systems with integrated tile riser inlet pipes, sediments and sediment-bound 

nitrogen and phosphorus also travel in the subsurface flow and discharge directly into ditches and 
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downstream rivers and lakes. Large-scale studies show that the Upper Mississippi River Basin is 

the most significant source of nitrate flux contributing to the overall load of nitrates to the Gulf of 

Mexico, which contributes to the hypoxic dead zone (USEPA, 2007). Of this total contribution, 

the most prominent contributors of nitrate to the Mississippi River Basin are southwest Minnesota 

to across Iowa, Illinois, Indiana, and Ohio (David et al., 2010). Many natural resource models have 

been tested to predict surface and subsurface flow at different scales. These include DRAINMOD 

(Skaggs et al., 2012), DRENAFEM (Castanheira and Santos, 2009), GLEAMS (Knisel and 

Douglas-Mankin, 2012), WEPP (Flanagan et al., 2012), ADAPT (Gowda et al., 2012), and SWAT 

(Arnold et al., 2012). Of these, DRAINMOD and SWAT are widely used in North America to 

simulate outflows from subsurface drainage systems. In contrast, the WEPP model has been used 

in only a few studies on modeling subsurface drainage (Savabi, 1993; Maalim et al., 2013), which 

opens a window for testing and improving its capabilities as a model that integrates not only 

hydrology, soil loss estimation and plant growth components but also subsurface drainage, a 

practice heavily used in the midwestern U.S. The second contribution of this research was to test, 

enhance, and validate the WEPP model’s DRAINMOD-based routines used for artificial 

subsurface flow prediction. This work will also extend the possibility of WEPP to simulate realistic 

model responses for subsurface drainage systems and provide a clearer understanding of the effect 

of these systems on water dynamics, water quality and soil erosion. 

Lastly, a significant factor for the lag of application of the WEPP model at watershed scales 

is that the model was developed to function on hillslope and small catchments (< 260 ha) where 

residence times in channels are small in comparison with those in hillslopes and its use was mainly 

for soil erosion estimation at those scales (Flanagan et al., 2012). Whereas this limitation in regard 

to channel hydrology was addressed by the incorporation of a conventional routing model (i.e. 

Muskingum-Cunge) (Wang et al., 2010), only a few studies have used and validated it at relatively 

large catchment scales (Afshar and Hassanzadeh, 2017; Srivastava et al., 2017; Srivastava et al., 

2019). In this research it is believed that “the best model” is not only the one that gives the closest 

results to reality but also a model where each improvement allows subsequent enhancements. As 

a result of the problem and model definition explained above, the last contribution of this research 

was the formulation of a new routing model dealing with both flow and transport, which extends 

the use of the WEPP model to larger scales and provides the groundwork for future transport of 

reactive solute applications. In this context, general transport models (i.e. advection-diffusion 
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models), especially those that follow a stochastic framework have been shown to be appropriate 

for large-scale applications (Rodriguez-Iturbe and Rinaldo, 2001; Rinaldo et al., 2005), especially 

based on travel time distributions (Rinaldo and Marani, 1987; Rinaldo and Rodriguez-Iturbe, 1996; 

Gupta and Cvetkovic, 2002; Botter and Rinaldo, 2003; Botter et al., 2005; Rinaldo et al., 2005; 

Botter et al., 2010; Rinaldo et al., 2011). In this research, a general mass transport model with a 

stochastic framework based on travel time distributions was developed for routing the hydrologic 

response. The proposed model integrates the element of general transport theory with the unique 

functionality of a process-based model such as WEPP through an objective manipulation of 

hydrologic, geomorphologic and soil properties, and land use data, and provides suitable 

groundwork for transport of reactive solutes using the WEPP model, which is currently limited to 

only one study (Wang et al., 2018). 

1.2  Objectives 

The objectives of this dissertation are to 1) develop a stochastic storm generator using high-

resolution precipitation records to be used not only in the WEPP model but with other hydrological 

models; 2) improve the subsurface drainage flow algorithm in the WEPP hillslope model; and 3) 

formulate a new routing method for the WEPP model based on catchment geomorphology and 

travel time theory. 

The sub-objectives were: 

1. Introduce the concepts and the characterization of the variables defining precipitation 

events, present the mathematical and statistical methods to reproduce series of correlated 

storm variables and storm patterns using a machine learning tool, and conduct a 

preliminary test and analysis of the stochastic storm generator performance using 15-min 

precipitation data. 

2. Test the subsurface drainage routine found in the current version of the WEPP model 

(v2012.8), present the basis of the new algorithm to enhance the subsurface drainage 

prediction of the model, and calibrate and validate the model using an extensive dataset 

collected at four experimental sites managed by the USDA-ARS within the Lake Erie 

Watershed. 

3. Present the formulation of a new general transport model for routing of hydrologic response 

based on geomorphologic properties and travel time distributions at the basin scale, and 
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demonstrate a practical application of the WEPP model and the proposed mass transport 

model to predict the hydrologic response in a mountainous basin in western Washington 

state, U.S. 

1.3 Dissertation organization 

This dissertation contains five chapters. Chapter one provides an introduction about the 

importance of hydrological modeling and the current state of the WEPP model and other models 

as well as the motivation, research problems, gaps found in the model, and the general and specific 

objectives of this study. Chapter two covers the development of a stochastic storm generation 

approach using short time increment precipitation and its applicability. Chapter three describes the 

testing and improvement of the subsurface drainage routine in the current version of the WEPP 

model. The model was evaluated, calibrated, and validated using experimental data collected in 

four fields within the western Lake Erie basin watershed. Chapter four covers the formulation of 

a new hydrologic routing model for WEPP based on catchment geomorphology and travel time 

distributions. The general transport model theory is presented and performance of the model in a 

mountainous catchment is assessed. Lastly, the final chapter is structured to present the overall 

summary and conclusions of this research, as well as significant findings, uncertainties, and 

recommendations for further research. 
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 DEVELOPMENT OF A STOCHASTIC STORM GENERATOR USING 
HIGH-RESOLUTION PRECIPITATION RECORDS  

Abstract 

Sophisticated field and watershed scale environmental models for runoff, erosion control, 

environmental, and global-change investigations require detailed continuous temporal and spatial 

inputs of precipitation to drive the hydrologic processes. For accurate estimates of these processes, 

the resolution of the input data must allow the representation of the variability of precipitation as 

it represents a major source of variability in the model outputs. Currently, the use of stochastic 

weather generators is widespread to generate continuous series of meteorological data at gauged 

and ungauged locations. These weather simulators are designed to replicate the statistical 

properties of real weather data at monthly or daily time resolutions. However, daily values of 

precipitation do not represent the variability of storm parameters within a day, which is assumed 

to significantly influence the predictions of environmental or agricultural models where processes 

are sensitive to sub-daily values. This research proposes a parsimonious stochastic storm generator 

based on 5-minute time resolution and correlated non-normal Monte Carlo-based numerical 

simulation. The model considers correlated non-normal random rainstorm characteristics such as 

time between storms, duration, and amount of precipitation, as well as the storm intensity structure. 

The accuracy of the model was verified by comparing the generated rainfall with rainfall data from 

a randomly selected 5-min weather station in North Carolina. Current results have shown that the 

proposed storm generator can capture the essential statistical features of rainstorms as well as their 

patterns followed by their intensities, preserving the first four moments of monthly storm events, 

good annual extreme event correspondence, and the correlation structure within each storm. 

Finally, as the proposed model depends on statistical properties at a site, this may allow the use of 

the synthetic storms in ungauged locations provided relevant information from a regional analysis 

is available. 

2.1 Introduction 

Advanced field and watershed scale hydrological models for engineering design, soil erosion 

prediction, land use planning, and global-change research require high-resolution continuous 
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temporal and spatial inputs of precipitation to execute the hydrologic processes logic integrated 

into their formulations (Stone et al., 1995; Arnold et al., 2012). Accurate estimates of processes 

such as infiltration, soil erosion, and chemical transport in water need precipitation increments on 

the order of minutes. However, observed precipitation data series with such resolution are rarely 

available or lack wide-spread spatial coverage.  

Extensive research has been conducted in several disciplines using daily or longer time-scale 

precipitation, due in large part to the availability of high-quality global land-surface precipitation 

datasets (Tank et al., 2002; Menne et al., 2012; Schamm et al., 2014). However, this time increment 

does not represent the natural variability of storm events. Storms can occur at different times 

throughout a day with different durations and intensities, including the possibility of individual 

storm events lasting longer than a day. Scientists overcome these problems through the use of 

complex transformation methods known as rainfall disaggregation or temporal downscaling (Pui 

et al., 2012; Lu and Qin, 2014; Lee and Park, 2017). Additionally, observed precipitation data 

show dependency and correlation of the random variables defining the storms, which makes it 

difficult to reproduce daily precipitation records containing the natural variability observed in 

natural storm records. 

Research on climate generators allows scientists to produce long series of daily synthetic 

precipitation values to use as meteorological inputs to hydrological models. These models often 

provide series of continuous daily precipitation and characteristics defining a single rainstorm 

event such as storm duration, storm intensities, and wet or dry day occurrence.  Although daily 

storm generators are widely used and define the minimum storm variables, they are still an 

unrealistic representation and do not capture the intrinsic variability of storms and the statistical 

properties discussed above. Among all storm generators found in the literature, the Weather 

Generator (WGEN) (Richardson and Wright, 1984), USCLIMATE (Hanson et al., 1994), CLImate 

GENerator (CLIGEN) (Nicks et al., 1995); Long Ashton Research Station-Weather Generator 

(LARS-WG) (Semenov and Barrow, 2002), and a MATLAB-based daily scale weather generator 

(WeaGETs) (Chen et al., 2010, 2012) are widely used along with a disaggregation procedure to 

provide climate inputs for a variety of hydrological models with daily time step simulations. 

Stochastic generation of hyetographs or within-storm intensities given a total daily amount 

of precipitation is complicated, as a single event can span less or more than 24 hours or several 

individual storms can occur throughout a day. Studies have presented two approaches to deal with 
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this complexity: 1) the use of so-called design storms to represent the variability of storm rainfall 

intensities, and 2) daily and sub-daily storm generators using rainfall disaggregation methods and 

high-resolution precipitation records. On one hand, the design storm methods provide an entire 

description of storm characteristics, which are often derived from Intensity-Duration-Frequency 

(IDF) curves; Chicago type, Huff curves; or observed large storm events. However, although these 

methods may be a good representation for design purposes, they do not represent the natural 

variability of storm intensities, which in fact present infinite variations and are intrinsically 

correlated. On the other hand, current sub-daily storm generators contain different variations of 

Poisson point process and cluster-based models (i.e., Neyman-Scott and Barlett-Lewis rectangular 

pulses). These models have shown different degrees of accuracy and applicability. However, one 

drawback is that they assume that intensities and durations are mutually independent, and 

independent of the Poisson process. These assumptions are invalid as storm duration and depth 

show strong correlation as well as the time distribution of intensities (Bonta, 2004).  

Based on the previous discussion, research on stochastic storm generation is needed to 

overcome these limitations. A stochastic storm generator has been developed at the National Soil 

Erosion Research Laboratory (NSERL) at West Lafayette, Indiana. The model stochastically 

simulates storm occurrence, time between storms, storm duration, and storm depth, characteristics 

found in the current daily and sub-daily storm generators. However, the formulation of the model 

accounts for the intrinsic correlation among the random variables defining the storms, which is not 

considered in the current models. Additionally, the storm generator simulates the variability of 

intensities in natural storms rather than the selection of fixed patterns (i.e., design storm methods) 

or the assumptions in the rectangular pulses Poisson process or cluster-based models. The 

formulation of the model involves the application of statistical techniques in some of the models 

found in the literature, as well as the use of a correlated non-normal multivariate Monte Carlo 

simulation integrated into both the simulation of the random variables defining the storm and its 

pattern. The flexibility of its formulation allows for future development of spatial and temporal 

storm generation in ungauged locations.  

2.2 Objectives and scope 

The objectives of this study were: (1) to present the concepts and the characterization of the 

variables defining precipitation events; (2) to present the mathematical and statistical methods to 
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reproduce series of correlated storm variables and storm patterns using a machine learning tool; 

and (3) to conduct a preliminary test and analysis of the model performance. A more extensive and 

detailed application of the model for other locations is a matter for future studies. 

2.3 Procedure 

2.3.1 General approach 

The approach in this model was statistical and did not relate storm characteristics to physics. 

The model initialization consists of the parameterization of the geographical location (e.g, 

precipitation gauge) where the synthetic storms are to be generated. The information needed to 

create the parameters file include: station ID, geographical location, time resolution, predefined 

number of storm patterns, number of years to be synthesized, number of years of observed data 

available, and input filename containing the observed precipitation record. Input data required by 

the model must be fine-resolution precipitation records, ranging from 1-min interval to 1-h interval 

at maximum. A minimum length of 10 years of observed data is recommended to ensure the 

accuracy of storm temporal definition. The generated synthetic storms will have the same 

resolution of the input data. The initial model execution generates the parameter files defining the 

storm distribution random variables, actual number of storm patterns, and the general descriptive 

statistics of the observed records. 

The main model tasks include the identification of statistically independent storms in the 

input precipitation dataset, characterization of the random variables defining storm events such as 

time between storms, storm depth, storm duration, and storm patterns, parameterization of suitable 

distributions and their correlation, and the generation of a synthetic time series of precipitation. 

Storm identification required the well-known assumption of independent storm events following 

a Poisson process with exponentially distributed arrival times (Todorovic and Yevjevich, 1979; 

Rodriguez-Iturbe et al., 1987a). Although stationarity might not be correct for long records of 

precipitation (e.g. Midwestern U.S. systems), a monthly characterization of storms assumes 

stationarity within a month. Thus, monthly descriptions of storm variables minimize the amount 

of data characterization and represent the most essential inputs required for model execution. 

Alternatively, the model could be set up for seasonal characterization of storms in its basic 

configuration. 
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The mathematical formulation of the model treats the random variables defining storms as 

correlated. Data analyses have shown a strong correlation between storm duration and storm depth, 

whereas time between storms is weakly correlated with the other two variables. Model 

parametrization does not require any optimization or calibration, as it only depends on the 

resolution of the input variables in the available precipitation record. 

The generation of hyetographs uses the advantages offered by clustering algorithms to 

identify similar storm patterns at a location. The inner structures of the storms, that is to say, each 

of the pulses of precipitation defining the storm pattern, are treated as random variables with 

individual frequency distributions. Similar to the generation of the storm variables mentioned 

above, the model assumes that there are correlations and dependencies among the storm depths. 

This assumption allows capturing the variability seen in natural storms and avoids the use of a 

fixed shape as in several existing storm generators. 

In this study, each storm variable, the methods for identification and characterization, model 

conceptualization and parametrization, and simulation concepts are presented. At the end of this 

article, a preliminary test of model performance is presented. Evaluation of the outputs includes 

comparisons of measured and simulated frequency distributions, monthly averages, and storm 

pattern accuracies. All algorithms and functions integrated in the storm generator proposed in this 

study were coded in the R-programming language version 3.4.4.  

2.3.2 Data used 

The model proposed requires time series of precipitation at sub-daily time resolution (e.g., 

1 h, 15 min, 10 min) to generate synthetic series of precipitation. Consequently, any location with 

precipitation measured at this resolution can be used. Since the main objective of this investigation 

was to determine the potential of the proposed model to synthesize storms, data inputs were set to 

minimal requirements (e.g. minimum number of years for storm separation). In this study, ten 

years of data from rain gauge “USGS351320080502645” at Charlotte-Mecklenburg, North 

Carolina, here named USGS-CHM, were used to illustrate the concepts of the stochastic storm 

generator.  The data ranged from 2008 to 2017 in increments of 5 min with a rainfall depth 

resolution of 1 mm.  Average annual precipitation for Charlotte-Mecklenburg is 1023 mm. The 

current state of the model does not deal with months that contain precipitation in the form of snow, 

so months with snow values in the records were discarded. However, this is the subject of ongoing 
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research and will be evaluated in subsequent papers. Additionally, a minimum number of 60 

storms was required to maintain the statistical power of the test for goodness of fit (e.g., 

Kolmogorov-Smirnov test). As a result of these two conditions, and with the intention to simulate 

a continuous period, months from March to August were selected for this study. 

2.4 Characterization of rainstorm events 

2.4.1 Definition of a rainstorm event 

Analysis of the probabilistic properties of rainstorm characteristics requires prior 

identification of rainstorm events. In meteorological terms, a storm is an event where rainfall is 

falling intermittently (Wu et al., 2006). In several studies on stochastic storm generation, storms 

were recommended to be statistically independent events (Restrepo and Eagleson, 1982; 

Rodriguez-Iturbe et al., 1984; Marien and Vandewiele, 1986; Acreman, 1990; Bonta, 2003, 2004). 

This assumption preserves the stochastic representation of a Poisson arrival process and facilitates 

the characterization of storms, parameter identification, and modeling the occurrence of events by 

avoiding the use of a conditional probability density function. Some of the methods for storm 

identification focus on the definition of an arbitrary threshold (e.g., 6 h in Wischmeier and Smith, 

1978), autocorrelation (Wenzel and Voorhees, 1981), rank correlation (Bonta and Rao, 1988), and 

exponential distribution (Bonta, 2003). All of these methods use the concept of a critical duration 

(CD), which means a minimum dry period separates individual storms in the precipitation record. 

Bonta and Rao (1988) found that the exponential method by Restrepo and Eagleson (1982) 

provided a better characterization for storm generation purposes. The assumptions in this method 

define the time between storms as exponentially distributed, and the storm generation equivalent 

to a Poisson process, making events statistically independent and simplifying simulation. Bonta 

and Rao (1988) estimated that at least ten years of precipitation records were needed for a reliable 

estimation of the critical duration for rain gauges in Ohio. The variability of the CD was very high 

if the calculations were performed on fewer than six years of data. Detailed studies of the procedure 

are given in Bonta (2001, 2004).  

In this study, the identification of independent storms is based on the exponential model 

presented by Restrepo and Eagleson (1982). However, the present model allows the user to select 

the rank correlation method or an arbitrary threshold as alternative options. For the USGS-CHM 
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precipitation data, the CD values ranged from 295 to 1270 min. August presented the longest 

average time between storm (ATBS = 7798 min), whereas July had the shortest rainless time 

(ATBS = 3869 min). Figure 2.1 shows the exponentially distributed time between storms (TBS) 

plotted in a logarithmic scale for the months with the greatest number of storms and precipitation 

in the form of rainfall (March-August). To validate the Poisson-process assumption, the ratio of 

the simulated critical duration to the ATBS is calculated in Table 2.1 for months from March to 

August. Values much smaller than unity suggest that the Poisson-process analog is appropriate 

(Restrepo and Eagleson, 1982). Consequently, values close to unity were considered as months 

with storm events in which the Poisson process assumption was not valid, and therefore they were 

discarded from this study. 

 
Figure 2.1 Empirical distributions of monthly time between storms and the corresponding 

theoretical distributions calculated in the exponential method for USGS-CHM precipitation data 
(2008-2017) at Charlotte-Mecklenburg, North Carolina. 

2.4.2 Characterization of storm arrival 

The generation of the storm sequences over a period of years to simulate accounts for the 

temporal distribution of the monthly number of storms found in the data. The Poisson distribution 

is commonly used to describe the variability of annual occurrence of hydrologic events (Eagleson 
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et al., 1987; Clark, 1998). Thus, the occurrence of storms at USGS-CHM was characterized for 

each month over the entire period of years and fitted into a Poisson distribution with rate 1/𝜇, 

where 𝜇 is the average of the monthly occurrence over the period of years analyzed. 

The accuracy of the Poisson distribution to replicate storm arrivals is measured by the Fisher 

dispersion index, 𝐷!, defined as: 

 

𝐷! =,
(𝑠! − 𝑠̅)"

𝑠̅

#

!$%

 (2.1) 

 

where 𝑠! is number of storms in the month 𝑖	(𝑖 = 1,2, … , 𝑛), and 𝑠̅ the sample mean of 𝑠!. The 

Fisher dispersion index follows a 𝜒" distribution. The hypothesis that the storm occurrence follows 

a Poisson distribution is not rejected if the 𝑝-value associated with the sample 𝐷! is larger than the 

5% significance level. 

 

Table 2.1 Measured rainfall characteristics at Charlotte-Mecklenburg, North Carolina for USGS-
CHM. 

Month 

Critical 

Duration 

(min) 

Average Time 

Between Storms 

(ATBS) (min) 

Ratio of Storm 

Duration to 

ATBS  

Average Storm 

Duration (min) 

Average 

Storm Depth 

(mm) 

March 285 3930 0.075 395.1 7.6 

April 310 4240 0.083 350.5 10.1 

May 1270 6469 0.114 737.2 16.0 

June 520 4206 0.051 214.2 9.8 

July 295 3443 0.037 128.9 8.1 

August 460 3903 0.065 253.8 11.0 

Average     0.061     

 

Table 2.2 shows the number of storms by month over the entire record. July had the shortest 

time between storms (Table 2.1), and it also had the maximum number of storms, which means 

that a small TBS will generate a greater number of storms after sampling its corresponding 

distribution. January, February, September and October had the fewest number of storms, so they 

were discarded from this study as well as months when snow may occur (November, December).  

A total of 590 out of 779 storms were contained in the selected period (March-August). 
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Table 2.2. Number of precipitation events by month. 
Period Number of storms 

January 59 

February 64 

March 109 

April 86 

May 60 

June 92 

July 127 

August 97 

September 47 

October 51 

November 52 

December 81 

Total 925 

2.4.3 Characterization of time between storms, storm duration, and storm depth 

Storm modeling requires the characterization of three main storm variables: time between 

storms, storm duration, and storm depth. The time between storms is defined as the period between 

two individual storm events. Storm duration represents the total time from the beginning of a storm 

to its end. Depending on how storms are identified, storm duration can include periods where 

rainfall intensities are zero. The exponential method proposed by Restrepo and Eagleson (1982) 

allows storms with zero-intensity ordinates. Storm depth quantifies the total amount of 

precipitation measured over the duration of an individual storm.  

From the database of 590 storms previously identified, storm durations and storm depths 

were characterized into series with length equal to the number of storms.  Marginal distributions 

for each variable were then defined, and the goodness of fit tested. The proposed model allows 

selection of the best distribution among five options: Exponential, Gamma, Log-normal, Pareto, 

and Weibull. Two parameter estimation methods are used: a) Maximum Likelihood and b) L-

moments. The goodness of fit of the marginal distributions is measured with the Kolmogorov-

Smirnov test, where the null hypothesis that the distribution comes from the selected option is 

rejected if the associated p-value is lower than the 5% significance level. 
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The time between storms (TBS) for USGS-CHM at Charlotte-Mecklenburg characterized in 

the previous section was found to be exponentially distributed because of an assumption explicitly 

considered in the identification of storms. As a result, the marginal distribution of TBS could be 

easily described by the one-parameter exponential distribution with the parameter set equal to the 

average time between storms (ATBS in Table 2.1). However, the model also has the option to use 

other distributions for TBS simulation.  

Monthly storm duration frequency distributions were created using the database of storms 

previously identified with the exponential method. The measured monthly average storm durations 

ranged from 128.9 min (July) to 737.2 min (May) (Table 2.1). Storms longer than 24 h were more 

frequent in May (20%) than in all other months considered in this study (~10%).  The empirical 

distributions plotted in Figure 2.2 quantify the effect of time of year on the storm duration 

variability. At this particular location, storm duration tended to fit the two-parameter Weibull 

distribution which has been widely used to simulate hydrological variables such as the depth of 

precipitation (Abas et al., 2014) and storm duration (Raudkivi and Lawgun, 1970; Bonta and Rao, 

1992; Bonta, 2004). 

Analogous to storm duration, empirical distributions of the storm depth were prepared from 

the database of storms and fitted to a Weibull distribution function. A visual analysis of Figure 2.2 

indicates that there is a high correlation between storm duration and storm depth. Storms in May 

had the longest durations and delivered the greatest precipitation depths. A more descriptive 

analysis of the storm characteristics series revealed that the Pearson correlation coefficients for the 

data ranged from 0.49 to 0.75. Hence, it is relevant that the stochastic storm generation considers 

the intrinsic correlation that exists between storm duration, storm depth, and time between storms. 
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Figure 2.2 Monthly storm depth (red squares) and storm duration (black circles) empirical 
distributions for USGS-CHM at Charlotte-Mecklenburg, North Carolina. The distributions were 

truncated to the depth resolution of the data (1 mm). 
 

Among the methods to simulate correlated random variables, Bonta (2004) defined three 

ways to deal with the aforesaid correlation. The first method, regression, uses a simple power 

equation to remove the positive correlation between the storm depths and durations. Storm depth 

is found after sampling the storm duration distribution function using the regression equation and 

the frequency distributions of the residuals. A drawback of this method is that it is influenced by 

the variability of the residuals. The second method consists of determining regions of statistical 
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independence between storm depth and duration by iteratively taking a minimum set of points and 

testing them for statistical dependence. Once the regions are defined, storm depths contained in 

the region are collapsed and fitted to empirical distributions. One problem in this method is that 

the conditional storm depths do not generate unique independent regions since the method depends 

on the selected initial set of values. The last method is a slight variation of the second one where 

the problem of non-unique independent duration regions is solved. However, the correlation 

between quantiles is only possible after collapsing the data from the estimated depth distributions. 

To avoid the introduction of uncertainties that strictly depend on the conceptualization of specific 

parameters and user interpretation as cited above, a more sophisticated method has been adopted 

in this study to deal with the correlation among random variables. A Monte Carlo numerical 

simulation of multivariate distributions that receives information from the marginal distributions 

and correlation from the three storm characteristics is applied. This method has the advantage of 

requiring only basic information of the random variables, and does not require their joint 

distributions, which are generally difficult to establish but necessary when simulating correlated 

random variables. More details of the model and its implementation are discussed in the next 

section. 

2.5 Stochastic simulation of rainstorm sequences 

2.5.1 Monte Carlo correlated non-normal multivariate simulation 

Storm duration, rainfall depth, and time between storms are inherently correlated, and their 

probabilistic distributions are likely to be non-normal. Therefore, the generation of these three 

rainstorm characteristics should preserve their respective marginal statistical properties and 

correlation. The model proposed here implements a procedure that replicates storm variable 

characteristics by using a Monte Carlo numerical simulation to generate random variables given 

the distribution properties and their correlation. 

Statistically and physically dependent random variables are not unique to storm generation 

but in many practical engineering situations. Furthermore, distribution types for the random 

variables involved can be a mixture of different distributions. To accurately replicate such systems, 

the Monte Carlo approach used here maintains not only the first moments of the random variables 

but also preserves the correlation relationships between the stochastic parameters and their 
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distributions. Examples of this type of Monte Carlo simulation include structural reliability 

analysis (Li et al., 2013), probabilistic load flow (Chen et al., 2012, 2015) and probabilistic safety 

analysis (Karanki et al., 2010); however, they have been rarely applied in hydrological modeling. 

Because of the nature of engineering problems and limited statistical data, the joint 

probability density function (PDF) of all input variables is hard to acquire, so that direct 

implementation of a Monte Carlo experiment becomes unsuitable. Here, the Nataf transformation 

is used to overcome the limited data issue. The mathematical model implemented in the storm 

generator allows the transformation from original space to mutually independent standard normal 

space. As a result, the joint PDF of the random variables is not required, making the marginal 

distributions of the input variables as well as their correlation matrix the only two requirements to 

run the model. Both inputs were obtained from the datasets characterized in the previous section. 

A brief explanation of the Nataf transformation is provided next, and more detailed information 

can be found in Nataf (1962). 

The Nataf transformation or Nataf model considers standard normal variates 𝑍 = (𝑍%, … 𝑍#) 

calculated by marginal transformations of 𝑋 = (𝑋%, …𝑋#) with a correlation matrix 𝑅. 

 

𝑍! = Ф&%>𝐹'!(𝑋!)@       𝑖 = 1,… , 𝑛 (2.2) 
 

where 𝛷(. )  is the standard cumulative normal distribution. The Nataf distribution for 𝑋  is 

obtained by assuming that 𝑍 has a normal joint distribution (Nataf, 1962).  The joint PDF of 𝑋 

after transformation is of the form: 

 

𝑓'(𝑥) = 𝑓'"(𝑥%)𝑓'#(𝑥")…𝑓'$(𝑥#)
𝜑#(𝑧, 𝑅′)

𝜑(𝑧%)𝜑(𝑧")…𝜑(𝑧#)
 (2.3) 

 

where 𝑧! = 𝛷&%>𝐹'!(𝑥!)@, 𝜑(. ) is the standard normal PDF, and 𝜑#(𝑧, 𝑅′) is the n-dimensional 

normal PDF of zero means, unit standard deviations, and correlation matrix 𝑅′. The elements 𝜌′!( 

of 𝑅′ are expressed in terms of the correlation coefficients 𝜌!(  (correlation coefficients of the 

random variables 𝑋!) through the integral relation: 

 

𝜌!( = H H I
𝑥! − 𝜇!
𝜎!

K L
𝑥( − 𝜇(
𝜎(

M
)

&)
𝜑!(N𝑧! , 𝑧( , 𝜌!(* O𝑑𝑧!𝑑𝑧(

)

&)
 (2.4) 
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To solve Equation (2.4), several alternatives were explored. Chang et al. (1994) overcame the 

required computation for solving 𝜌′!(  when the correlation coefficient 𝜌!(  and the marginal 

distribution are given using a set of semi-empirical formulas proposed by Der Kiureguian and Liu 

(1986) for a variety of probability distributions. However, some of the distributions analyzed in 

Der Kiureguian and Liu (1986) were not the same as the ones used here. Furthermore, the use of 

Der Kiureguian and Liu’s expressions are restricted to correlation values between 0.1 and 0.5. 

Similarly, Xiao (2014) analyzed the use of two possible methods for computing 𝜌′!(: (1) 

interpolation using the Gauss-Hermite quadrature and (2) a Monte Carlo simulation. For three 

mixtures of correlated distributions, Xiao (2014) concluded that equivalent results were obtained 

by both techniques. One advantage of the Monte Carlo method is that it can be used when an 

analytical expression between 𝜌!( and 𝜌′!( is unobtainable. As a result, a Monte Carlo technique 

like the one presented by Xiao (2014) was adopted for a mixture of the three distributions defining 

storm characteristics.  

Finally, after all coefficients of the matrix 𝑅′ in the standard normal space were obtained, 

the inverse transformation was calculated by the following expression: 

 

𝑋! = 𝐹!&%[Ф(𝑍!)] (2.5) 
 

where 𝐹!&%[. ] is performed using the known marginal distributions. Figure 2.3 is a flow chart 

outlining the proposed procedure. 

The generation of storm characteristics by using the Monte Carlo Multivariate method 

involves the following steps: 

Step 1. Identify statistically independent rainstorms. This can be done using the exponential 

method, rank correlation, or user-defined critical duration. 

Step 2. Based on the storms identified in Step 1, summarize relevant monthly statistics of 

rainstorm characteristics (occurrence, the time between storms, duration, and depth) and determine 

statistical moments, marginal distribution parameters, and correlation relationships. 

Step 3. Generate the number of storms for each month, year by year over the simulation 

period. 
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Step 4. For each generated storm event, simulate the time between storms, storm duration, 

and storm depth using the procedure for simulating correlated multivariate non-normal variables 

shown in Figure 2.3. 

 

Figure 2.3 Flowchart of a Monte Carlo correlated multivariate simulation. 

2.5.2 Modeling storm pattern 

A storm pattern or hyetograph is a representation of the time distribution of rainfall depth or 

intensity within a storm event. Storm distributions are required for the design of small drainage 

systems, which are more sensitive to short-duration and high-intensity storm events than large 

basins. However, some processes such as infiltration and soil erosion at basin scales often require 

high-resolution rainfall. As storm patterns change from one event to another, it is necessary that 

the model introduced here not only generates rainfall variables such as time between the storm, 

duration, and depth but also simulates the rainstorm patterns that represent the stochasticity of 

storm depths or intensities. 

Synthetic hyetographs or storm patterns are often generated by four methods: (1) particular 

geometrical shapes fixed to a peak intensity; (2) intensity-duration-frequency (IDF) curves; (3) 

dimensionless mass curves; and (4) stochastic models. Geometrical shapes are used to represent a 

simple local storm distribution that preserves rainfall characteristics of a particular zone (Ellozue 

et al., 2009). A fixed shape for hyetographs represents by far the greatest simplification of storm 
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pattern when data are not available; however, the approach does not agree with the behavior of 

natural rainfall. The well-known rainfall IDF method such as the Chicago method (Keifer and Chu, 

1957) and the Frequency Based Hypothetical Storm (Feldman, 2000) are focused on intense bursts 

within rainfall events rather than series of events. Average duration and rainfall intensity (with a 

particular frequency) are extracted from IDF curves and used to obtain the final synthetic 

hyetograph. The resulting pattern is an envelope curve which tends to be conservative for the 

general design of hydro-system infrastructure. Nonetheless, they do not resemble the rainfall 

patterns that are seen in natural precipitation records. 

More realistic approaches include expressions of the random and highly variable character 

of within storm intensities known as Huff curves (Huff, 1967) and the Soil Conservation Service 

(SCS) rainfall type curves (Cronshey, 1986). Huff (1967) developed this method by considering 

heavy rains in the Midwestern United States, with durations ranging from 3 to 48 h over an area 

up to 400 square miles. After deriving the dimensionless cumulative mass curves, the distributions 

were grouped into quartiles in which the peak intensity was located. These quartiles describe when 

the peak intensity occurs in a given storm event. 

 Early stochastic models of the rainfall process included point process rainfall models 

created to replicate statistical characteristics like the rainfall used to fit the model. Since daily 

records were the data available for these models, they often integrated disaggregation methods to 

produce synthetic rainfall at finer resolutions (e.g., hourly). The first novel developments were the 

Poisson counting process for rainfall time series by Rodriguez-Iturbe et al. (1984) and its later 

improvement by proposing a cluster-based rectangular model with two main versions: the 

Neyman-Scott process and the Barlett-Lewis process (Rodriguez-Iturbe et al.,1987a, b). These two 

models rely on the same basic theory and only differ in the generation of rainfall pulses. More 

recent studies have used the information contained in Huff curves to stochastically estimate rainfall 

distributions (Bonta, 2004).  Although the method was a promising way to use Huff curves for 

stochastic generation of storms, further research is needed to deal with the apparent correlation of 

adjacent depths and serial correlation incorporated into the mass curves using Huff curves. 

As each actual rainfall event is unique concerning its duration, depth, and pattern, this study 

adopted a more practical method to identify a few characteristic patterns and characterize the 

variability of their intensities rather than use a single curve as in previous studies. Hence, cluster 
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analysis objectively groups the entities by their similarities and differences (Tyron and Bailey, 

1970).   

In general, clustering algorithms can be divided into two categories: (1) hierarchical 

clustering and (2) non-hierarchical clustering.  The proposed storm generator is based on a non-

hierarchical clustering approach where the number of clusters is fixed in advance, and several 

iterations are performed to identify the best cluster and their cluster centers. Applications of 

clustering techniques have provided evidence that non-hierarchical clustering approaches are 

better than hierarchical clustering ones (Punj and Steward, 1983). Lin et al. (2017) used a two-step 

clustering technique and pattern recognition to propose a model for a typhoon hourly rainfall 

forecasting model using historical data from the Tamsui River Basin in northern Taiwan. Wu et al. 

(2006) applied the Euclidean distance-based K-means clustering method (MacQueen, 1967) to 

classify 8289 rainfall events into representative patterns occurring in Hong Kong territories in 

Southeast Asia. In their research, they constructed synthetic hyetographs by assuming that 

intensities were correlated as non-normal random variables under a unit-sum constraint. Because 

of this assumption, the log-ratio transformation was adopted to simplify the simulation into 

unconstrained multivariate non-normal variates of correlated variables. Wu et al. (2006) concluded 

that clustering analysis combined with a constrained Monte Carlo numerical simulation offered a 

suitable procedure for simulating storm patterns with the limitation that the log-ratio 

transformation was only acceptable for non-zero values of rainfall intensities. 

To synthetize hyetographs in this study, representative storm patterns for the USGS-CHM 

rain gauge at Charlotte-Mecklenburg, North Carolina, were defined by using the divisive K-means 

clustering method, previously shown to be satisfactory at classification of rainstorm patterns 

(Ramos, 2001; Wu et al., 2006). However, the limitation of the non-zero precipitation restriction 

was overcome. 

Before cluster definition, cumulative mass curves were derived from the 925 storms 

identified from the USGS-CHM rain gauge. Dimensionless curves were obtained by normalizing 

each storm with respect to its total duration and total depth. This allowed rainfall events with 

different durations and depths to be combined, examined, and categorized into representative 

rainfall patterns. Normalized duration 𝐷+ was obtained by dividing the cumulative time in a storm 

by the total duration, 𝐷, and normalized depth, 𝐹+, was calculated as the cumulative rainfall depth 
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divided by the total depth, 𝐷,. Incremental rainfall or the hyetograph ordinates, 𝑃+, were computed 

as 𝐹+ − 𝐹+&%. 

Clustering analysis required a D-dimensional data set of length 𝑛 , and a 𝑘  value that 

indicates how many cluster means should be produced. To produce inputs with the same dimension 

for all the storms, mass curves were divided into 𝑚 number of elements. Although 𝑚 was an 

arbitrary number, its selection had to assure capture of the overall shape of the dimensionless mass 

curves. A high number of elements might capture unnecessary details of the curves, while too 

small of a number could miss important characteristics of the storm patterns. In this study, 15 

elements were considered sufficient to capture the variability of the wide number of storm patterns. 

Since the appropriate number of clusters (𝑘) was not known in advance, it is commonly estimated 

by a trial-and-error process. For USGS-CHM, six significant clusters were identified based on 

visual inspection of the centroid curves (Figure 2.4). A rule of thumb is that overestimation of the 

number of representative patterns shows curves overlapping existing cluster centroids, while 

representative clusters with significant space in between means that more clusters are necessary. 

Among the clusters shown in Figure 2.4, four basic types can be observed. R-1 patterns 

represent storms events having the earliest peak intensity at the beginning of the storms compared 

to R-2. Storms adopting D-2 patterns are events with the most delayed peak intensity at the end of 

the storm compared to the ones in D-1 patterns. The M-1 pattern represents storms that attain their 

peak intensity at half of their durations. Lastly, the C-1 pattern represents storms with relatively 

uniform intensity over the entire duration. 

 

Figure 2.4 Significant clusters for USGS-CHM at Charlotte-Mecklenburg, North Carolina. 
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Storm pattern generation studies previously mentioned lack a procedure that examines the 

intrinsic variability of the storm intensities within an event assuming that storms follow a particular 

shape, or they are limited to a modification of the Neyman-Scott or the Barlett-Lewis processes. 

A similar procedure as the one in Wu et al. (2006) was followed in this study. However, former 

limitations such as non-zero values of precipitation were overcome in the proposed model because 

this is often seen in natural rainfall. To simulate the hyetograph more suitably, the intensity 

variability inside each representative pattern needs to be considered. Consequently, to 

stochastically simulate Pattern M-1 in Figure 2.5 containing 86 storm shapes (dashed-lines), 

ordinates of the corresponding curves need to be fit into a suitable distribution function. The variety 

of shapes offered by the Johnson distribution makes it the best one for this study (Kottegoda, 1987). 

The goodness of fit of the distribution was measured by the Kolmogorov-Smirnov test where the 

null hypothesis that the data comes from the selected distribution is rejected when the associated 

p-value is less than the 5% significance level. 

 

Figure 2.5 Intrinsic variability of storm intensities within a storm pattern. 86 storm patterns 
(dashed-lines) in an M-type representative pattern (solid-line). 

 

Analogous to the previous section, a multivariate non-normal Monte Carlo simulation was 

proposed to generate storm patterns. However, the Monte Carlo simulation was modified to the 

following constraints: (1) unit sum, namely, the addition of the dimensionless hyetograph 
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intensities must be one: 𝑃% + 𝑃" +⋯+ 𝑃- = 1.0, where 𝑚 was, as previously defined, equal to 

the number of ordinates that defines the dimensionless hyetograph; (2) non-negativity: 𝑃+ ≥ 0 for 

𝜏 = 1,2, … ,𝑚 . These conditions assured that the dimensionless mass curve ordinates were 

bounded between 0 and 1. 

The generation of storm patterns by using the Constrained Monte Carlo Multivariate method 

involves the following steps: 

Step 1. Based on the database of the independent storms, the pattern for each storm is 

characterized and normalized by the corresponding duration and depth. 

Step 2. Run the divisive K-means clustering method through the dimensionless mass curve 

to identify representative curves. 

Step 3. Summarize relevant statistical information of each ordinate of the representative 

dimensionless hyetographs, determine statistical moments, and fit the data contained in each 

ordinate into a Johnson-type distribution. 

Step 4. For each storm generated in the last section, randomly assign a type of storm from 

the six representative patterns identified in Step 2. Each generated storm is assumed to have the 

same probability of adopting any of the representative patterns. It has been observed that storm 

depth, duration, and patterns are correlated (Wu et al., 2006). However, the assumption mentioned 

here was adopted for simplicity in this study. 

Step 5. Generate 𝑚 ordinates of the dimensionless mass curves for the same number of 

storms in Step 4 by the Monte Carlo simulation procedure shown in Figure 2.3. This simulation is 

constrained to the following conditions: 

𝑃% + 𝑃" +⋯+ 𝑃! = 10           𝑖 = 1…𝑚 (2.6) 
 

𝑃! ≥ 0           𝑖 = 1…𝑚 (2.7) 

2.6 Model performance 

2.6.1 Analysis 

The model proposed in this study was evaluated by comparing observed and simulated 

monthly averages for the simulated variables: time between storms, storm duration, and storm 

depth. The simulation period was 100 years of continuous precipitation data. Furthermore, an 

assessment of empirical and simulated frequency distributions for the month with the greatest 
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storm duration and depth illustrated the degree of approximation provided by the model 

formulation. The generated storm patterns contained in each of the selected clusters were 

summarized and compared with the six representative dimensionless mass curves shown in Figure 

2.4. These comparisons allowed measuring the proper functioning of the model and documenting 

the overall performance of all components in the model. Hence, future research will provide 

substantial improvements in the model characterization and simulation. The goodness of fit 

between frequency distributions of the simulated storm variables and the corresponding empirical 

distribution was evaluated using the Kolmogorov-Smirnov (K-S) test and its probability value. 

Average monthly precipitation values for the selected period (March-August) were compared with 

the simulated monthly average, and difference and percent deviation are shown. For storms that 

span months, time between storms, storm duration, and storm depth for those cases were assigned 

to the month when the storms began. Table 2.1 shows the monthly averages at USGS-CHM at 

Charlotte-Mecklenburg, North Carolina. 

Table 2.3. Comparison between observed and simulated time between storms at USGS-CHM at 
Charlotte-Mecklenburg. 

 

2.6.2 Comparison of frequency distributions 

The numerical distribution of time between storms was well simulated (Figure 2.6). The 

smallest K-S probability value belonged to July (0.038). However, most of the probability values 

were greater than the 0.05 significance value considered here, meaning that the null hypothesis 

that the simulated and the observed TBS values come from the same distribution cannot be rejected.  

 Time Between Storms 

Month 
Average Observed 

(min) 

Average Simulated 

(min) 
Deviation (%) K-S p-value 

March 3930 3768 -4.1 0.054 

April 4240 4259 0.5 0.053 

May 6469 6306 -2.5 0.071 

June 4206 4068 -3.3 0.088 

July 3443 3382 -1.7 0.038 

August 3903 4020 3.0 0.186 

Average   -1.4  
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Average monthly measured and simulated time between storms values agreed well for most of the 

months (Table 2.3). The largest percent deviation occurred for March (-4.1%). Percent monthly 

deviations ranged from -4.1% to 3.0%. The excellent agreement of time between storms can be 

partly attributed to the characterization of dry times between storm events that can span months 

(Bonta, 2004). 

 

Figure 2.6 Comparison between simulated and observed time between storms at USGS-CHM at 
Charlotte-Mecklenburg, North Carolina, for the month with the longest average time between 

storms (May). 

 

Storm duration was also reasonably well approximated (Table 2.4). Probability values were 

the smallest in March and the most significant percent deviation occurred in July, 0.035 and -

14.9%, respectively. Percent monthly deviations varied from -14.9% in July to 2.2% in May, and 

average deviation was only -3.0%. Figure 2.7 shows the empirical and numerical Weibull 

distribution function superimposed, which indicates the good agreement between the observed and 

simulated values. While the empirical distribution was truncated at the minimum storm duration, 

the numerical distributions allowed for simulation of storms with shorter durations with a very low 

probability of occurrence. 
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Table 2.4. Comparison between observed and simulated storm duration and storm depth at 
USGS-CHM at Charlotte-Mecklenburg, North Carolina. 

 

Average monthly storm depths were less well simulated by the model (Table 2.4). Although 

significant probability values were found smaller than 0.05, rejecting that the simulated and 

observed depths come from the same distribution, the percent deviations ranging from -10.6% in 

July to 3.0% in April and May seemed to be acceptable, which meant that the model captured ~90% 

of the monthly average for all months. For storm depth, July was the month with the most 

significant deviation percentage and the smallest probability value, -10.6% and +0.000, 

respectively. Similar to storm duration, the Gamma distribution used here to simulate storm depths 

might include storms with smaller depths than the resolution of the gauge (1 mm). However, those 

depths have a very low probability of occurrence throughout the simulation (Figure 2.8). 

The considerable difference between observed and simulated storm duration and depths in 

July can be attributed to two main factors: (1) the distribution selected to simulate storm duration 

and depths does not describe the distribution of the observations of these two variables adequately. 

This claim is supported by the low K-S probability for both storm duration and storm depth. (2) 

Cases with probability values equal to +0.000 presented the least observed correlation between 

storm duration and depth. This may affect the simulation of these variables since the assumption 

of correlation is less appropriate for these months. The first factor, however, is more likely to cause 

the significant deviations in Table 2.4 than the second. Nonetheless, the simulated values still 

capture at least 90% of the variability of these correlated variables. 

 

 Storm duration  Storm depth 

Month 

Average 

Measured 

(min) 

Average 

Simulated 

(min) 

Deviation 

(%) 
K-S p-value  

Average 

Measured 

(mm) 

Average 

Simulated 

(mm) 

Deviation 

(%) 
K-S p-value 

March 295.1 290.8 -1.5 0.035  7.6 7.0 -7.9 0.056 

April 350.5 346.8 -1.0 0.642  10.1 10.4 3.0 +0.000 

May 737.2 753.2 2.2 0.576  16.0 16.5 3.0 0.606 

June 214.2 210.6 -1.6 0.088  9.8 9.9 1.5 0.153 

July 128.9 109.7 -14.9 0.118  8.1 7.2 -10.6 +0.000 

August 253.8 251.3 -1.0 0.096  11.0 11.2  1.8 0.020 

Average   -3.0     -1.5  
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Figure 2.7 Comparison between simulated and observed storm duration at USGS-CHM at 
Charlotte-Mecklenburg for the month with longest storm duration (May). 

 

Figure 2.8 Comparison between simulated and observed storm depths at USGS-CHM at 
Charlotte-Mecklenburg for the month with greatest storm depths (May). 

2.6.3 Model prediction efficiency  

The formulation of the model proposed here replicated the first four storm characteristics 

with at least 80% accuracy for the USGS-CHM rain gauge at Charlotte-Mecklenburg, North 

Carolina. However, this accuracy highly depended upon the simulated number of years of 

continuous precipitation. To evaluate the minimum number of simulated years required to preserve 
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at least 80% of the monthly averages of time between storms, storm duration, and storm depth, 10 

100-year precipitation series were generated, and then the average monthly precipitation values 

were calculated from the simulations (Figure 2.9a). The monthly time between storms averages 

were well simulated for 100 years of precipitation. Even though the accuracy percentage decreased 

for shorter periods of simulation, the replicability was still greater than 90%. There were no 

significant deviations for time between storms in series longer than 10 years. The more substantial 

discrepancy occurred for May when ten years of precipitation were generated with an accuracy of 

only ~70%. These deviations could be explained because May had the smallest number of storms 

in the precipitation record and a low K-S probability value (0.22, one-sample K-S test). At least 

20 years of synthetic precipitation is recommended to capture the essential statistical features of 

the time between storms. 

 
 

 

 

Figure 2.9 Model predictions for the three storm variables based on number of years generated: 
a) time between storms; b) storm duration; c) storm depth. 

(a) 

(b) 

(c) 
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Monthly storm duration averages were also well simulated for a 100 year-precipitation 

period (Figure 2.9b). For periods longer than 20 years of precipitation, the replicability was still 

above 85% accuracy. The greatest differences ranged from ~18% to ~30% for 10 years of 

simulated precipitation for the months of May to August. The goodness of fit test (one-sample K-

S test) revealed that these months had the lowest but still acceptable probability values that ranged 

from 0.27 to 0.77. To be able to capture the statistical features of storm durations, a series of 

precipitation greater than 20 years must be simulated. 

Deviations ranging from ~18% to -20% were found for 10 years and 20 years of precipitation 

depths, respectively (Figure 2.9c). These differences arise from two main possible sources. First, 

since the number of storms in May were the lowest, greater variability of the predicted variable is 

expected. This can be reduced once a longer observed series of precipitation data are used to 

parameterize the model. A second reason includes the variability introduced by the random 

sampling of the model, meaning that the high variability for the 20-year run for May in Figure 2.9c 

might decrease in a second 20-year run. Although the one-sample K-S test indicated that the 

generated depth data came from the associated Gamma distribution, series of precipitation longer 

than 20 years need to be simulated to capture enough statistical features of storm depths.  

 

 
Figure 2.10 Correlation estimations between storm duration and storm depth based on the 

number of years generated. 

 

Lastly, the correlation relationship between storm duration and storm depth was calculated 

for the simulated time periods as was done for the storm variables above (Figure 2.10). Correlation 

coefficients were not dependent on the number of years simulated but instead were a feature of the 
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random sampling involved in the formulation of the model. As a result, this was not affected by 

the length of the simulation but rather the multivariate model used here. 

2.6.4 Storm pattern performance 

Storm pattern (hyetograph) simulation was evaluated by aggregating all simulated storms to 

their corresponding representative pattern, and the coefficient of determination (R2) was calculated 

to determine how accurately the simulated storms replicated the associated cluster. For the six 

representative storm patterns (D, M, C, and R types) identified in this study, the model showed 

good replicability (Figure 2.11) after aggregating the simulated dimensionless mass curves (SD, 

SM, SC, and SR types). The calculated R2 values ranged from 0.922 to 0.997 (Table 2.5). 

 

 

Figure 2.11 Average generated storms patterns (SD/SM/SC/SR type) vs. representative patterns 
(D/M/C/R type). 
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Table 2.5. Coefficient of determination (R2) between observed and simulated storm patterns in 
Figure 2.11. 

Storm Pattern R2 

D-1 / SD-1 0.996 

D-2 / SD-2 0.922 

M-1 / SM-1 0.997 

C-1 / SC-1 0.988 

R-1 / SR-1 0.953 

R-2 / SR-2 0.993 

2.7 Conclusions 

This article presents a practical stochastic model for generating sub-daily rainfall storms 

according to the statistics of rainstorm characteristics, including the storm occurrence, time 

between storms, storm duration, storm depth, and storm pattern. The occurrence of statistically 

independent storms involves the use of a Poisson distribution and a Monte Carlo simulation for 

non-normal and correlated time between storms, storm duration, and rainfall depth, as well as a 

constrained Monte Carlo simulation for the corresponding rainfall pattern or hyetograph. 

The model was capable of reproducing the essential statistical features of the storm 

characteristics. The moment estimation efficiency showed that enough details of storm features 

were captured for periods of continuous precipitation longer than 20 years. However, a 100-year 

simulation had the best ability to replicate storm variables. The proposed model shows promising 

potential applicability to studies where high temporal resolution of rainfall is required, and within-

storm intensities play an essential role in the estimation of other hydrological or environmental 

variables. 

In this study, the simulation of storm events was based on monthly frequency distributions 

and 5-min increment precipitation data. The proposed model, however, can simulate storms over 

seasonal or annual frequency distributions and can be extended to shorter or longer time 

resolutions of precipitation data. Additionally, the assumption of equal probability for the storm 

pattern occurrence can be modified by assigning a proper distribution function to it. Lastly, as the 

model requires the specification of statistical properties of storm characteristics at a specific 

location, a proper regional analysis could extend its applicability to ungauged sites. 
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 IMPROVEMENT OF THE WATER EROSION PREDICTION 
PROJECT (WEPP) MODEL FOR QUANTIFYING FIELD SCALE 

SUBSURFACE DRAINAGE DISCHARGE  

Abstract 

In the poorly drained regions of the world, subsurface drainage systems are required to 

remove excess water for crop growth. Plastic drains alter a field’s hydrology by lowering the water 

table, reducing surface ponding, and reducing surface runoff. One of the significant concerns with 

the use of subsurface drainage systems is adverse environmental effects because of the 

modification of the soil water dynamics. Some effects include the reduction of ecological services 

since wetlands change to croplands, water quality concerns, particularly sediment, nitrogen, and 

phosphorus losses in agricultural subsurface discharge water, as well as changes in the volume and 

timing of off-site discharges. Hydrological simulation models predict surface and artificial 

subsurface flow at different scales. Often in these models, Hooghoudt-based expressions are 

adapted in their internal algorithms. In this study, the Water Erosion Prediction Project (WEPP) 

model, developed by the United States Department of Agriculture - Agricultural Research Service 

(USDA-ARS) for soil and water conservation planning activities, was tested and improved to 

simulate surface and subsurface discharges. The modified WEPP model was tested and validated 

on an extensive dataset collected at four experimental sites managed by USDA-ARS within the 

Lake Erie Watershed. Predicted drainage discharges show Nash-Sutcliffe Efficiency (NSE) values 

ranging from 0.50 to 0.70, and Percent Bias ranging from -30% to +15% at daily and monthly 

resolutions. Evidence suggests that the WEPP model can be used to produce reliable estimates of 

subsurface flow with minimum calibration.  Future work includes the extension of the model for 

quantifying subsurface drainage under controlled water table and watershed-scale simulations. 

3.1 Introduction 

Humid areas in Northern Europe, Canada, and the Midwest U.S are artificially drained by 

lowering the water table of perennially or seasonably wet soils (Pavelis, 1987; Gilliam et al., 1999). 

In the humid Upper Midwestern portion of the U.S., about 37% of the land (20.6 million ha) has 

been artificially drained to transform wet soils into highly productive cropland (Zucker and Brown, 
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1998). Drainage impacts hillslope and watershed hydrology as it increases the water storage 

capacity and improves physical structure of the upper layers of the soils (Skaggs and Broadhead, 

1982; Fraser and Flemming, 2001). Higher storage capacity reduces surface runoff and promotes 

infiltration (Skaggs et al., 1987; Robinson and Rycroft, 1999). Research shows that artificially 

drained soils act as a buffer for rainfall and spread runoff over longer time periods. Thus, peak 

flows decrease, and less flooding occurs as a result (Robinson, 1990; Konyha et al., 1992; Skaggs 

et al., 1994; Schilling and Helmers, 2008; Henine et al., 2010). 

Crop production benefits from subsurface drainage since it affects physical and chemical soil 

properties and strongly influences crop growth and quality (Messing and Wesstrom, 2006; 

Vopravil et al., 2017). As the goal of proper subsurface drainage is to remove excess gravitational 

water, consisting of shallow groundwater flow and water moving downward from upper soil 

horizons, constant aeration of the crop rooting zone promotes root health and microbial activity, 

which are important for maximizing nutrient availability (Kladivko et al., 1999; Tiemeyer et al., 

2006). Additionally, artificial drainage allows earlier planting, which increases the yield potential 

for crops (Kornecki and Fouss, 2001). Research has additionally demonstrated that subsurface 

drainage improves workability, reduces the potential for soil compaction and decreases surface 

ponding (Aldabagh, 1971; Kornecki and Fouss

Mathematical formulations have been developed to predict subsurface flow and associated 

transport focused on determining the optimal size and spacing of pipes in the field under steady or 

non-steady flow conditions. Most investigations assume systems with parallel drainage and 

equally spaced pipes (Wesseling, 1964; Kirkham, 1966; van Schilfgaarde, 1970), with 

Hooghoudt’s equation (Hooghoudt, 1940) applied to approximate flow into two parallel drains. 

However, when parallel spacing is not a suitable assumption (e.g., fields with irregular systems), 

the actual spacing is substituted by an effective spacing, which approximates the system to 

equivalent parallel drains of the same length. Effective spacing is not site-specific but somewhat 

depends on the soil type (Kurien et al., 1997) and accretion rate (Northcott et al., 2001). 
Hydrological simulation models estimate subsurface flow to drains at different scales. These 

models include the large scale Soil and Water Assessment Tool (SWAT, Arnold et al., 2012), 

field-scale models such as DRAINMOD (Skaggs, 2012c), GLEAMS (Leonard et al., 1987), and 

ADAPT (Gowda et al., 2012), as well as the multiscale Water Erosion Prediction Project 

(WEPP, Flanagan and Nearing, 1995; Flanagan and Livingston, 1995) model. Other models 
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include mathematical algorithms such as DRENAFEM (Castanheira and Santos, 2009) and 

HYDRUS2D (Simunek et al., 1999). Although the latter two models are not hydrologic 

formulations, they offer a more complex and complete representation of the transient 

saturated/unsaturated vertical flow in the soil profile. In practice, however, the hydrological 

models previously mentioned are solely based on the Kirkham (Kirkham, 1966) and Hooghoudt’s 

equation (Hooghoudt, 1940). At watershed and hillslope scales, respectively, SWAT and 

DRAINMOD have been extensively validated, whereas GLEAMS, ADAPT, and WEPP have 

limited evidence of their success for subsurface drainage estimation. 

As subsurface drainage influences infiltration and surface runoff, it is an important factor in 

the soil erosion process. Drainage reduces surface runoff, but questions abound on its influence on 

sediment transport through hillslopes and watersheds. Skaggs et al. (1982) and Maalim and 

Melesse (2013) used the DRAINMOD and WEPP models, respectively, to estimated average 

annual rates of erosion. They found that annual rates of erosion are up to 10 times lower when 

subsurface drainage is used as a practice to control water table depths. However, none of these 

predictions were validated with observed data. From a modeling standpoint, DRAINMOD has 

been widely applied in the United States for subsurface flow prediction. However, it neglects the 

effects of management operations, agricultural practices, and subsurface drainage on hillslope 

hydrology, which are conditions that greatly influence soil erosion by water. 

Management practices, such as soil disturbance by tillage operations, residue management 

and decomposition, and soil erosion control practices, are incorporated in the WEPP model 

(Flanagan et al., 2007), an environmental model for soil erosion prediction used by the United 

States Department of Agriculture (USDA) in soil and water conservation planning activities. 

WEPP includes mechanisms such as weather generation, winter processes, irrigation, hydrology, 

plant growth, management operations, and erosion for both hillslope and watershed scales 

(Migliaccio and Srivastava, 2007). However, model inconsistencies have been found when 

validating the subsurface drainage algorithms (Oztekin et al., 2004). Such discrepancies include 

overprediction of daily runoff for daily storms, large deviations between observed and simulated 

subsurface flow conditions, and poor representation of the water table depth variations. Although 

these inconsistencies were addressed by comparing the model predictions with those using 

DRAINMOD, there is no validation of the model using observed field drainage data and no updates 

have been included in the current public version of the WEPP model (v2012.8). 
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A comprehensive understanding of the hydrology of subsurface drainage fields and its impact 

on sediment delivery and transport are major knowledge gaps (Sims et al., 1998; King et al., 

2014a,b) that restrict suitable cropland management strategies, improved water quality, soil 

erosion mitigation, and selection and implementation of best management practices. The goal of 

this study was to evaluate and enhance the WEPP model subsurface drainage routines to provide 

a more realistic and holistic representation of the conditions observed in agricultural fields under 

subsurface drainage systems. The model improvements will not only extend the applicability of 

the current version of the WEPP model to artificially drained croplands and contribute to reducing 

the gap seen between agricultural practices and subsurface drainage but will also better account 

for these effects on soil erosion predictions. A comprehensive dataset of hourly weather variables 

and daily subsurface flow collected at four experimental sites managed by the USDA-ARS in the 

Lake Erie watershed were used for testing and validation as part of this study. Particularly, this 

research provides details on 1) subsurface drainage prediction calculated by the current version of 

the WEPP model (v2012.8), 2) modifications of the source code in subsurface drainage, 

percolation, water balance, and infiltration algorithms, and the incorporation of soil water 

movement by capillary rise from the water table into the model code, and 3) evaluation, calibration, 

and validation of the new subsurface drainage algorithms implemented in the model. 

3.2 Materials and Methods 

3.2.1 Model description 

The WEPP model (Flanagan et al., 2012, Ascough et al., 2013) is a soil erosion prediction 

tool developed since 1985 to replace the well-known empirical Universal Soil Loss Equation 

(USLE, Wischmeier and Smith, 1978). Contrary to the USLE, the WEPP model is a process-based 

technology that estimates the spatial and temporal distribution of soil loss and sediment deposition 

at both hillslope and watershed scales (Flanagan et al., 2007). It simulates continuous processes 

with a daily time step including weather generation, hydrologic processes, soil physics, plant 

growth, and erosion mechanics. The model water balance, based on soil water content in the root 

zone, includes processes such as infiltration, runoff, percolation, soil and residue evaporation, plant 

transpiration, lateral flow, snowmelt, subsurface drainage, and seepage. For more details on those 

processes and the model structure, see the model documentation (Flanagan and Nearing, 1995). 
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The current subsurface drainage component of WEPP (Savabi, 1993) simulates subsurface 

flow to pipes or ditches. Drainage fluxes are estimated for a given water table depth with the 

steady-state Hooghoudt equation (Bouwer and van Schilfgaarde, 1963) as follows: 

𝑄, =
4𝐾.𝑚(2𝑑. +𝑚)

𝐿"  (3.1) 

where 𝐾. is the soil’s equivalent lateral hydraulic conductivity (cm h-1), 𝑚 is the midpoint water 

table elevation above the pipes (cm), 𝑑. is the equivalent depth from the drain to the impervious 

layer (cm), and 𝐿 is the drain spacing (cm). The equivalent depth in the equation can be calculated 

with the Moody (1967) equations: 
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𝑑

1 + 𝑑𝐿 ^
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𝑟c − 3.4e
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𝐿𝜋

8 ^𝑙𝑛 b𝐿𝑟c − 1.15e
							

𝑑
𝐿 ≥ 0.3 

                                                             

(3.3) 

where 𝑑 is the distance between the impervious layer and the drain (cm), and 𝑟 is the effective 

drain radius (cm). 

Equation (3.1) in the WEPP model (v.2012.8) calculates the drainage rates when water table 

depth is located at and below the surface. For the latter condition, the Hooghoudt equation has 

been widely applied and validated (Skaggs, 2012). However, for the water table at the surface, the 

Kirkham equation (1957) has shown a more accurate representation. This condition and the 

inconsistencies previously mentioned were addressed by modifications in the model source code 

as described in the next subsections. The WEPP model (v2012.9), the enhanced version of the 

model, is used throughout this research for comparison purposes with the current version of the 

model (v2012.8). 

3.2.1.1 Subsurface drainage modifications 

For ponding of water at the soil surface, drainage flow in the WEPP model (v2012.9) is 

computed as (Kirkham, 1957): 
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𝑄, = 4𝜋𝐾.(𝑑/ + 𝑑, + 𝑟)/𝑔𝐿 (3.4) 

where 𝑑/  is the depth of ponded water (cm), 𝑑,  is the depth to the drain (cm), and 𝑔  is the 

estimated Kirkham’s coefficient (Kirkham, 1957) calculated as: 

𝑔 = 2𝑙𝑛 i
01#(#&'()*+,
01#*(+,

j + 2∑ 𝑙𝑛 iL
2345*-.

#, 62345*(#,
2345*-.

#, &2345*(#,
ML

2345*-.
#, &2345*(#,

2345*-.
#, 62345*(#,

Mj)
-$%        (3.5) 

where ℎ is equal to the hydraulic head (cm). Drainage at the soil surface and below are restricted 

to the drainage coefficient (𝑑2) of the system (cm/day). 

3.2.1.2 Soil water characteristics modifications 

The soil water distribution in the enhanced version (v2012.9) of the WEPP model is assumed 

to be divided into wet and dry zones. A wet zone develops from the water table level up to the root 

zone and possibly extending to the soil surface, whereas a dry zone occurs when water is removed 

from the root zone storage once the maximum capillary rise from the water table is not sufficient 

to supply the evapotranspiration amount (Skaggs, 2012c). A drained-to-equilibrium condition is 

assumed to control the water distribution in the soil domain (Skaggs, 1980), which represents a 

major change in the percolation routine in the WEPP model (v2012.8), which originally used 

storage routing techniques to percolate water content exceeding the soil field capacity. 

The soil water distribution above the water table and the volume of water-free pore space is 

calculated at each time step of the model (Figure 3.1a). Inputs required to make these calculations 

include the soil water retention curve (or soil moisture characteristic) for each soil layer (Figure 

3.1b), the volumetric water content lower limit available to the crop or permanent wilting point for 

the soil layer where roots are located, and the maximum upward water movement vs. water table 

depth relationships (Figure 3.1c). 
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Figure 3.1 Input relationships for the WEPP model (v2012.9) 

3.2.1.3 Infiltration modifications 

WEPP model v2012.8 calculates the cumulative infiltration using the Green-Ampt Mein-

Larson (Mein and Larson, 1973) model for unsteady rainfall. The Mein and Larson (1973) results 

showed good agreement with rates obtained from solutions of the Richard’s equation for a wide 

range of soil types. In this study, a simplistic solution of the Green-Ampt model was adopted under 

the assumption that the infiltration rate vs cumulative infiltration relationship is independent of the 

injection rate, and the only input parameters are those reflecting the initial conditions of the soil 

water content distribution (Skaggs, 1980).  

The Green-Ampt equation adopts the following form (Green and Ampt, 1911): 

𝑓 = 𝐾4 I1 +
𝑀𝑆7
𝐹 K 

 
(3.6) 

where 𝐾4  is the vertical soil hydraulic conductivity in the transmission zone, 𝑀 is the fillable 

porosity, 𝑆7 is the effective suction at the wetting front, and 𝐹 is the cumulative infiltration. The 

original form of the Green-Ampt expression was derived under total saturation behind the wetting 
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front. However, this assumption was relaxed by Philip (1954) so that 𝐾4 is expected to be less than 

the saturated hydraulic conductivity. 

For a given soil with an initial water content, Equation (3.6) can be written as, 

𝑓 =
𝐴
𝐹 + 𝐵 (3.7) 

where the parameters 𝐴 = 𝐾4𝑀𝑆18  and 𝐵 = 𝐾4  depend on soil properties, initial water content 

distribution, surface conditions, and water table depth. As in other Green-Ampt formulations, 

infiltration rates are set equal to rainfall rates until infiltration capacity is exceeded. 

For shallow water table soils, a typical initial condition is an unsaturated profile in 

equilibrium with the water table. Skaggs (1980) demonstrated that infiltration rate vs cumulative 

infiltration is nearly independent of the rainfall rate for a wide range of sandy loam soils under 

different initial water table depths. The latter is consistent with the results obtained by Mein and 

Larson (1973) for the same soils. As a result, the parameters 𝐴  and 𝐵  can be derived using 

regression methods from numerical calculations from the Richards equation or experimental data 

(Skaggs, 1980). 

In this study, the WEPP model was modified to input a set of parameters 𝐴 and 𝐵 versus 

water table depths (Figure 3.1d). For water table depths in between input values, parameters can 

be calculated by linear interpolation. Skaggs (1980) presents detailed methods to calculate the 

parameters 𝐴 and 𝐵 required for the WEPP model from both experimental and numerical-derived 

data. The numerical method described here was implemented and adopted in the WEPP model 

(v2012.9) using the input parameters derived from the application of a soil properties generator 

model (Schaap et al. 2001) based on soil properties used in the WEPP model (v2012.8) so that no 

additional inputs are required. 

3.2.1.4 Water balance 

A primary WEPP model water balance is calculated at daily time increments (Flanagan and 

Nearing, 1995). In this study, a secondary water balance within the soil profile was performed on 

an hourly basis to capture the variation of drainage fluxes in a more realistic fashion. A section of 

unit surface area extending from the impermeable layer to the soil surface and located midway 
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between parallel drains is idealized. The water balance within the soil profile is then expressed by 

the following: 

∆𝑉/ = 𝑄,5 + 𝐸𝑇5 − 𝐼𝐹5 (3.8) 

where ∆𝑉/ is the variation in water-free pore space in the soil profile (cm), 𝑄,5 is the drainage flux 

leaving the soil section (cm), 𝐸𝑇5 is the evapotranspiration including soil and residue evaporation, 

and plant transpiration (cm), and 𝐼𝐹5 is the infiltrated water (cm). As evapotranspiration rates are 

calculated daily in the WEPP model (v2012.8), daily evapotranspiration is distributed during a 12-

h period (6 am to 6 pm) to ensure an hourly water balance. It is assumed that evapotranspiration is 

only significant during daylight. Additionally, a computational sub-time step equal to 0.05 h is 

used to calculate infiltration when rainfall intensity exceeds the infiltration capacity. Once change 

in air volume in the profile is calculated, the water distribution in the soil is estimated at each time 

step, and each component of the primary water balance is updated to produce daily outputs. 

3.2.1.5 Upward water movement 

Capillary rise from the water table depth supplies water to the plant roots. As a result, it is 

an important process in models simulating water management systems such as artificial subsurface 

drainage. As the water table rises, water can be transmitted by capillary rise to the root zone to 

satisfy the ET demand of the crops. Capillary rise affects the water table drawdown since soil 

profile water is lost by upward flux. Consequently, upward flux has a direct effect on 

evapotranspiration. Originally, the WEPP model did not take upward water movement into 

account. Modifications to the model were done to determine the steady upward flux from different 

water table depths for the soils examined in this study. The method used here was illustrated by 

Memon et al. (1986), where the concept of matrix flux potential (MFLP) was defined by 

Shaykewich and Stroosnijder (1977): 

𝑀𝐹𝐿𝑃(ℎ) = H 𝐾(ℎ)𝑑ℎ
5-/0

51
 (3.9) 

where ℎ-19 is the maximum pressure head (cm) allowed at the center of the effective root zone, 

and ℎ3 is the pressure head at the water table (cm). Taylor and Ashcroft (1972) presented values 



 
 

72 

of ℎ-19 for a wide range of crops. These values vary with crop growth. Using the integral from 

the Darcy-Buckingham equation as: 

N𝑞 + 𝐾(ℎ)OH 𝑑𝑧
:

:1
= H 𝐾(ℎ)𝑑ℎ

5

51
 (3.10) 

where q is the rate of upward movement (cm/day), and 𝑧 is the water table depth (cm). Substituting 

Equation (3.10) into Equation (3.9), a finite difference form of Equation (3.9) is obtained: 

𝑧!6% =
𝑀𝐹𝐿𝑃!6% −𝑀𝐹𝐿𝑃!

𝑞 + [𝐾(ℎ!6%) + 𝐾(ℎ!)]/2
 (3.11) 

 For a range of soil matric potentials (i.e., h=-500 cm to h=0, soil matric potentials at the 

effective root zone and at the water table, respectively) an assumed flux upward, 𝑧!6%, can be 

estimated. The accumulated value of 𝑧!6% represents the water table depth as the corresponding 

upward water movement occurs. These calculations are repeated for several values of 𝑞, which 

represents theoretical values of the maximum amount of water supplied by capillary rise of the 

water table that can be used for plant transpiration. 

Calculations of the maximum upflux of water require previous knowledge of the soil 

unsaturated hydraulic conductivity when the water table is at ℎ (cm). The unsaturated hydraulic 

conductivity, 𝐾(ℎ), for each soil layer is estimated using the Mualem and Dagan (1978) model: 

𝐾(𝜃) = 𝑆.#
∫
(𝜃 − 𝜖)
ℎ"6; 𝑑𝜖<

=

∫
(𝜃 − 𝜖)
ℎ"6; 𝑑𝜖<2

=

 (3.12) 

where 𝑛 is the pore size distribution, 𝑏 is the soil tortuosity, 𝑆. is the effective saturation defined 

as 𝜃/𝜃4, 𝜃 is the effective water content defined as water content minus residual water content 𝜃>, 

and 𝜃4 is the water content at saturation. This model ensures that 𝐾(𝜃4) corresponds to the vertical 

saturated hydraulic conductivity, 𝐾4 . Soil water retention curves were fitted using the van 

Genuchten (1980) model: 

𝑆. = [1 + (𝛼ℎ)#]&- (3.13) 
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where 𝛼 is the air entry value, and 𝑚 is a fitting parameter set to one. All parameters required by 

the Mualem and Dagan and van Genuchten models are numerically calculated from soil texture, 

soil density, field capacity and wilting point. 

3.2.1.6 Additional modifications 

Supplementary modifications to the WEPP model (v2012.8) source code were performed to 

completely adapt the model to the new subsurface drainage routines and all the changes previously 

discussed. WEPP input routines were modified to allow inclusion of field and laboratory 

measurements such as soil water retention curves, upward movement of water or capillary rise, 

lateral hydraulic conductivity, and relevant information used for drainage flux estimation. Lastly, 

output routines were also modified to provide a temporal description of subsurface drainage. A 

new output file now includes information on water table level, subsurface drainage, and water-free 

pore space. 

3.2.2 Experimental sites 

A field selected to perform an uncalibrated validation of the current version of the WEPP 

model (v2012.8) and its latter modifications, from now on called “ES(1)”, is located near Hamilton 

in Steuben County, northeast Indiana (Figure 3.2). The USDA-ARS National Soil Erosion 

Research Laboratory (NSERL) at Purdue University, West Lafayette, Indiana collects crop 

management and subsurface drainage data to assess water and soil conservation practice 

implementation effects.  Dominant soils in the area of study are Blount loam and Pewamo silty 

clay loam (Table 3.1). The drainage system consists of corrugated plastic drains separated every 

10 m at a depth of 1 m from the soil surface. Meteorological data and drainage fluxes were 

measured from 2015 to 2017 at the experimental site (Table 3.2). Drainage flow characteristics 

such as discharge and speed were measured with a Thelmar 12” Compound Weir and a Teledyne 

ISCO TieNet 350 Area Velocity Sensor attached to a Teledyne ISCO 330 flowmeter, respectively. 

Crop and soil management at ES(1) are a two-year corn-soybean rotation and annual primary and 

secondary tillage operations, respectively (See Crop Management section and Table 3.2). 

For calibration and validation evaluations, fields, named here “ES(2-4)” were selected to 

demonstrate the efficiency of the enhanced version of the WEPP model (v2012.9) after the 
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modifications proposed in this paper. Sites ES(2-4) are located in northwest Ohio and managed by 

local farmers (Figure 3.2). The area has dominant soils such as Hoytville silty clay loam and 

Hoytville clay loam (See Table 3.1 for physical properties). For these sites, pipe spacing ranges 

from 6 to 10 m, at depths varying from 0.76 to 1 m (See Table 3.2). Drainage fluxes and 

precipitation from 2014 to 2018 were measured at the experimental sites. Additional weather 

variables were obtained from the Northwest Station (NW-Station) maintained by the Ohio 

Agricultural Research and Development Center (OARDC) (https://www.oardc.ohio-

state.edu/weather1/). Crop management data are detailed in the Crop Management section and 

Table 3.2. 

 

 
Figure 3.2 Experimental site locations. NW Station: Northwest station managed by OARDC; 

ES(1): Uncalibrated validation site; ES(2-4): Calibrated/Validated sites. 

3.2.3 Model input and calibration/validation 

The hillslope WEPP model simulation uses four basic inputs, 1) climate inputs describing 

temporal variability of precipitation, temperature, radiation, and wind speed and direction; 2) 

hydraulic and physical properties of single or layered soils (i.e., depths, soil textures, effective 

hydraulic conductivity, etc.); 3) detailed description of the steepness along the hillslope profile; 

and 4) plant/crop management data. Purposely, the ES(1) site was only used for an uncalibrated 
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validation, and calibration was not performed since the goal was to evaluate the accuracy of the 

current version and the improved version of the WEPP model under the same input conditions and 

parameters. To evaluate the modifications of the WEPP model (v2012.9) under different soil and 

drainage conditions, fields ES(2-4) were used for calibration and validation. A sensitivity analysis 

using the Model-Independent Parameter Estimation & Uncertainty Analysis (PEST) (Doherty, 

2015) software revealed that the saturated vertical hydraulic conductivity and saturated lateral 

hydraulic conductivity were the most sensitive parameters. Calibration of those parameters was 

performed until the best efficiency of the model to predict observed drainage fluxes was obtained. 

DRAINMOD-based model studies have demonstrated that model response is sensitive to multiple 

soil parameters among other variables (i.e. monthly potential evapotranspiration), and usually 

calibrated. However, in this study, only the first two most sensitive parameters were adjusted to 

maintain simplicity and practicability of the model (Singh et al., 2006; Singh et al., 2007; Morrison 

et al., 2014; Qi et al., 2015, Liang et al., 2018). After the model calibration, a one-year period was 

selected for validation purposes. For the simulations, one-year (2017) and two-year (2014-2015) 

warmup periods were used for WEPP to develop reliable initial conditions for the ES(1) and ES(2-

4) sites, respectively. 

3.2.4 Meteorological data 

Meteorological data including hourly precipitation and relative humidity, maximum and 

minimum daily air temperatures, and wind speed and direction measured at the site ES(1) were 

collected as part of the Conservation Effects Assessment Project (CEAP). Similarly, weather data 

at ES(2-4) were collected at each experimental site. All these data were used to calculate potential 

evapotranspiration using the Penman-Monteith method (Allen et al., 1998). Missing values in the 

climatic data were obtained from the OARDC weather system within a 30-km radius from the sites 

used for calibration. Daily solar radiation for the same period was obtained from the National Solar 

Radiation Data Base (NSRDB). 

3.2.5 Soil hydraulic parameters 

Most field soil properties relevant in subsurface flow estimation in the current version of the 

WEPP model were input as described in the NRCS Soil Survey for the soil found at the 
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experimental sites (Table 3.1). These properties included soil texture, field capacity, wilting point, 

bulk density, and vertical hydraulic conductivities per each soil layer. However, the improved 

version of the model required additional parameters to generate three main functions: soil water 

retention, drainage volume, and maximum capillary movement (more details on these functions in 

Appendix A). Although these additional relationships are commonly measured under laboratory 

conditions, in this paper, pedotransfer functions (PTFs) were used to predict the additional soil 

hydraulic parameters and subsequently develop the three input parameters (Table 3.1). Schaap et 

al. (2001) presents the ROSETTA software, a hierarchical neural network analysis model, that 

uses soil textures and soil water content at -33 and -1500 kPa and PTFs for generating sets of soil 

hydraulic properties. This method is convenient since it allows the generation of the additional soil 

hydraulic parameters using the same information obtained from the NRCS Soil Survey. In addition 

to the parameters shown in Table 3.1, the WEPP model soil input file requires information on 

organic matter and cation exchange capacity, both available in the NRCS Soil Survey. 

Table 3.1. Soil physical properties and hydraulic properties at the experimental sites from 
USDA-NRCS Soil Survey and ROSETTA model. 

Site Soil Layer BDa Particle fraction (%) 𝜃!b 𝜃"b 𝛼b 𝑛b 𝐾"#a 𝐾"$a 
   (g cm-3) Sanda Silta Claya (cm3 cm-3)   (cm h-1) 

ES(1) Loam 

1 1.45 32 45 23 0.0611 0.4117 0.0142 1.3133 0.920 1.38 
2 1.45 16 42 42 0.1058 0.4345 0.0394 1.2534 0.092 0.138 
3 1.45 25 40 35 0.2275 0.4065 0.0485 1.8536 0.092 0.138 
4 1.45 22 45 33 0.2051 0.4065 0.0465 1.9721 0.074 0.111 

ES(2,4) Clay 
loam 

1 1.32 25 39 36 0.0664 0.4162 0.0112 1.2628 0.773 1.1595 
2 1.55 18 36 46 0.1056 0.4224 0.0433 1.1814 0.282 0.423 
3 1.55 23 39 38 0.0819 0.4159 0.0269 1.1959 0.920 1.38 
4 1.55 25 38 37 0.2120 0.3864 0.0521 1.6368 0.005 0.0075 

ES(3) 
Silty 
clay 
loam 

1 1.43 19 42 39 0.0773 0.4497 0.0139 1.2614 0.100 0.15 
2 1.60 18 36 46 0.0978 0.4098 0.0412 1.1694 0.282 0.423 
3 1.60 23 39 38 0.0766 0.4037 0.0252 1.1865 0.092 0.138 
4 1.60 25 38 37 0.1984 0.3736 0.0529 1.5767 0.005 0.0075 

Notes: 1) BD, bulk density; 𝜃!, residual soil water content; 𝜃", saturated soil water content; 𝛼, inverse of air-entry value; 𝑛, 
pore size distribution index, Ksv saturated vertical hydraulic conductivity,  𝐾"$ = 1.5𝐾", saturated lateral hydraulic 
conductivity. 2) a Values as described in the NRCS Soil Survey, b ROSETTA model generated values. 

3.2.6 Crop/plant management 

Crop parameters for WEPP model simulations were obtained from the extensive database 

available within the model installation. The management input file contains all information related 

to plants/crops grown, growth parameters, residue characteristics, residue decomposition 

parameters, tillage implements, soil disturbance parameters, as well as their temporal and spatial 
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description. Management information collected at each of the sites included tillage operations, 

planting and harvesting dates, fertilizer application, and details on the subsurface drainage system 

installation (Table 3.2). Site ES(1) consisted of a two-year corn-soybean rotation with primary and 

secondary tillage operations using a plowing disk and field cultivator, respectively. Field ES(2) 

had a two-year corn-soybean rotation with no tillage operations. Tillage operations in ES(3) 

included primary tillage with a combination subsoiler (disk ripper 30.48 cm (12”) deep) and land 

leveler equipment, and secondary tillage using a seedbed conditioner (turbo tillage). Lastly, ES(4) 

included primary tillage with a disk chisel 20.32-25.40 cm (8-10”) deep and secondary tillage 

using a field cultivator with a rolling harrow 5.08 cm (2”) deep. 

Table 3.2 Subsurface drainage system and crop management data 
 ES(1) ES(2) ES(3) ES(4) 

System design     
Depth to drain (cm) 100 91 91 91 
Spacing between drains (cm) 900 1200 760 1200 
Depth to impervious layer (cm) 200 200 200 200 
Drain radius (cm) 10.16 10.16 10.16 10.16 
Drainage coefficient (cm) 3.80 1.75 1.25 0.870 
Initial water table depth (cm) a 90 70 90 74 
Plant/crop management     

Crop Corn-soybean Corn-soybean Soybean-wheat-
corn Corn-soybean 

Tillage Plowing disk and 
field cultivator No-till 

Disk ripper, land 
leveler and turbo 

tillage  

Disk chisel and 
field cultivator 

Note: a A reasonable initial water table was selected for the beginning of the warmup period. No water table depth data were available. 

3.2.7 Performance evaluation measures 

Statistical measures can be used to quantify the differences between the predicted and 

observed values and evaluate the model efficiency. In this study, four statistical measures were 

used to assess the quality and reliability of WEPP model predictions of subsurface drainage: Root 

Mean Square Error (RMSE) (Liang et al., 2018), Mean Absolute Error (MAE) (Willmott and 

Matsuura, 2005), Percent Bias (PBIAS) (Yapo et al., 1996), and Nash-Sutcliffe efficiency (NSE) 

(Nash and Sutcliffe, 1970). 

 

𝑅𝑀𝑆𝐸 = {∑ (A!&B!)#$
!3"

#
                                   (3.14) 
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𝑀𝐴𝐸 = %
#
∑ |𝑂! − 𝑆!|#
!$%                                    (3.15) 

 

𝑃𝐵𝐼𝐴𝑆 = 100 ∑ (B!&A!)
$
!3"
∑ A!$
!3"

                                   (3.16) 

 

𝑁𝑆𝐸 = 1 − ∑ (B!&A!)#
$
!3"

∑ (A!&AD!)#$
!3"

                                   (3.17) 
 

where 𝑛 is the number of observed-simulated values, 𝑂! is the ith observed value, and 𝑆! is the ith 

simulated value. RMSE represents the absolute difference between observed and simulated values; 

MAE measures the average magnitude of the errors between the observations and predictions 

without considering their direction; PBIAS quantifies the average tendency of the simulated values 

to be larger or smaller than the observed values, and NSE measures the model performance. 

Evaluation metrics are compared with the calibration criteria for statistical measures of agreement 

between predicted and measured drainage volume in Moriasi et al. (2015) and Skaggs et al. (2012). 

3.3 Results and discussion 

3.3.1 Uncalibrated performance at ES(1) (WEPP v2012.8 vs WEPP v2012.9) 

Daily drainage measurements at ES(1) were initiated in late 2015 and collected until 2017. 

Two years (2016-2017) of drainage flux, weather variables, and crop management data were used 

to compare the uncalibrated performance of the current WEPP model (v2012.8) and the enhanced 

WEPP model (v2012.9).  Simulated daily drainage values using the current WEPP version showed 

a poor match with measured drainage flux distribution and peaks (Figure 3.3). The model predicted 

values presented delayed responses with respect to the observed values. Model accuracy measures 

indicated both large differences between simulated and observed conditions and poor model 

performance (Table 3.3). For instance, the RMSE and MAE for uncalibrated conditions were 0.686 

cm and 0.402 cm, respectively. These measures represent substantial differences since drainage 

values at ES(1) varied from 0.0 to 2.65 cm. Percent bias was 69.8% meaning that ~70% of the 

simulated values tended to be greater than the observations. Overall, model performance was poor 

(NSE<0) with an NSE of -1.17. 
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Figure 3.3 Model output at ES(1). (top) observed precipitation; (bottom) observed drainage 
(circles), WEPP v2012.8 simulated drainage (red solid-line), and WEPP v2012.9 daily drainage 

(black solid-line). 
 

After analyzing the results, it was difficult to compare predicted to observed values as the 

water table depth in the current WEPP version did not present a realistic temporal distribution 

(Figure 3.4) as often observed in previous subsurface drainage investigations (Skaggs et al., 

2012a,b; Saadat et al., 2017). Simulations showed water table depth gradients changed very 

quickly under the presence of small amounts of rainfall or when water was removed from the soil 

through evapotranspiration. For instance, in the 2016 growing season, a sudden decline of the 

water table depth was observed (Figure 3.4, red solid line). When water was above the depth to 

the pipe (100 cm), the water table depths were limited to the soil depth (~80 cm). This behavior 

seemed to be related to the assumption of the WEPP model moving all water above the field 

capacity at the end of the day, which forces the model to maintain the water table depth only to a 

certain soil depth (Figure 3.4, red solid line). In other words, these two behaviors cause transitions 

between saturated and unsaturated conditions to happen very quickly, which is unusual for many 

soils. 
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Table 3.3 Model accuracy evaluation for daily drainage flow estimates at test site ES(1) and 
calibrated/validated sites ES(2-4). 

Site/Model RMSE (cm) MAE (cm) PBIAS (%) NSE 
U-M C-M V-M U-M C-M V-M U-M C-M V-M U-C C-M V-M 

ES(1) – WEPPa 0.686 - - 0.402 - - 69.8 - - -1.17 - - 
ES(1) – WEPPb 0.337 - - 0.154 - - -33.2 - - 0.47 - - 
ES(2) – WEPPa 0.203 - - 0.123 - - -12.4 - - -0.20 - - 
ES(2) – WEPPb 0.157 0.106 0.100 0.069 0.053 0.051 -68.9 -39.3 -28.2 0.27 0.65 0.73 
ES(3) – WEPPa 0.299 - - 0.183 - - 88.4 - - -4.72 - - 
ES(3) – WEPPb 0.100 0.702 0.112 0.046 0.034 0.045 -53.4 38.2 -15.4 0.36 0.59 0.42 
ES(4) – WEPPa 0.155 - - 0.096 - - 20.0 - - -0.18   
ES(4) – WEPPb 0.104 0.072 0.089 0.052 0.036 0.045 -30.5 -32.2 -15.3 0.47 0.71 0.69 

Note: a WEPP v2012.8, b WEPP v2012.9. Uncalibrated Model (U-M); Calibrated Model (C-M); and Validated Model (V-M). 

 

 
Figure 3.4 Model output at ES(1): (top) observed precipitation; (bottom) WEPP v2012.8 

simulated water table depth (red solid-line), and WEPP v2012.9 simulated water table depth 
(black solid-line). 

 

There are several possible reasons why WEPP drainage fluxes and water table depths were 

poorly simulated. First, the 24-hour time step used to calculate drainage in the current model is 

large, and water table depths can change rapidly during this period. Second, the WEPP model 

seemed to predict a perched water table, and not a water table with saturated conditions from the 

bottom of the soil profile. Internally, WEPP runs its water routing percolation process through nine 

layers and creates saturated conditions in upper layers while lower layers may not be saturated. 
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However, WEPP assumes that water table depth was created from the bottom to top of the soil 

profile. As a result, lower layers may be in an unsaturated condition, and the transitions between 

saturated and unsaturated states can occur quickly. Lastly, the WEPP model appeared to 

underestimate snow melt for the observed field conditions, which reduced infiltration water, and 

along with the saturated condition of the topsoil layer, that water then tended to leave the hillslope 

in the form of runoff later in the simulations. As a result, a flat-water table was observed during 

winter periods of the simulations (Figure 3.4, red solid line). Although this might not affect 

previous studies where the main purpose was to predict runoff-induced erosion (Savabi, 1993; 

Savabi et al., 1995; Zhang et al., 1996), this turned out to be important for drainage flux estimation 

where soil water distribution played an important role. The problem discussed above confirmed 

some of the findings previously reported by Oztekin et al. (2004) and re-emphasized that the WEPP 

model needed improvements in its drainage computations. 

After all model modifications, drainage predictions were statistically improved (Table 3.3) 

at site ES(1). Water table depth showed more expected variations (Figure 3.4, black solid line), 

similar to those produced in soils under shallow water tables (Skaggs et al., 2012c).  Predicted 

drainage peaks matched observed peaks in most cases (Figure 3.3, black solid line) and deviations 

between predicted and observed drainage improved (Figure 3.5, solid circles). In periods where 

plants were actively growing (May-Oct), the water table depths were deeper than the pipe 

installation depth, and consequently drainage stopped. These periods also had greater rates of 

evapotranspiration so that infiltrated water decreased to its minimum. Differences between 

observed and predicted daily drainage depth amounts were reduced by more than 50% after the 

proposed modifications. RMSE and MAE were 0.337 and 0.154 cm, respectively; whereas the 

current version of WEPP overpredicted drainage (PBIAS = 69.8%), the modified version 

underpredicted it (PBIAS = -33.2%). Model efficiency, NSE=0.47, greatly increased after the 

model code changes. The coefficient of determination (R2) between simulated event drainage 

amount values and observations was equal to 0.50 (Figure 3.6a). 
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Figure 3.5 Predicted vs. observed daily subsurface drainage water depth (cm) using WEPP 
model v2012.8 (hollow circles) and WEPP model v2012.9 (solid circles) for uncalibrated 

performance at ES(1). 

3.3.2 Drainage at uncalibrated sites ES(2-4) 

Performance measures of the enhanced WEPP model (v2012.9) for uncalibrated conditions 

(U-M) are shown in Table 3.3.  Site ES(2) presented the largest errors of all three locations, with 

RMSE and MAE equal to 0.157 cm and 0.069 cm, respectively. ES(3) and ES(4) presented similar 

values of RMSE and MAE ranging from  ~ 0.100 cm to MAE ~ 0.046 cm. The WEPP model 

(v2012.9) applied to ES(2-4) tended to underestimate drainage water depth amounts, with PBIAS 

= -68.9%,  -53.4% and, -30.5%, respectively. NSE values for individual drainage event depths 

ranged from 0.27 to 0.47 for the three uncalibrated fields (Table 3.3). These performance levels 

indicate that the uncalibrated version of the improved WEPP model predicted daily drainage 

discharge depths with an accuracy ranging from ~30% to ~50% for the experimental fields 

analyzed in this study. 

Similar to the uncalibrated validation at ES(1), the values of RMSE and MAE calculated 

with the current version of the model (v2012.8) at ES(2-4) were about twice as high as ones using 

the improved version of the model (Table 3.3). RMSE ranged from 0.155 to 0.299 cm, whereas 

MAE ranged from 0.096 to 0.183 cm.  Average values of subsurface drainage depths tended to be 
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overpredicted at sites ES(3) and ES(4) with PBIAS = 88.4% and 20%, respectively, while at ES(2) 

values were underpredicted with PBIAS = -12.4%. Lastly, poor behavior of the model was 

indicated by the negative Nash-Sutcliffe efficiency (NSE) values varying from -4.72 to -0.18 for 

sites ES(3-4). These results contrasted with those obtained using the improved WEPP model 

(v2012.9), that increased the confidence in the model enhancements to predict daily estimates of 

drainage flow. 

 
Figure 3.6 Predicted vs. observed daily subsurface drainage depths (cm) using WEPP model 

v2012.9 for validation site ES(1) and calibrated (C-M)/validated(V-M) sites ES(2-4). 
 

One can easily notice that for the uncalibrated conditions all sites ES(1-4) were in the 

acceptable range of performance according to Moriasi et al. (2015) and Skaggs et al. (2012), which 

means the modifications performed in the WEPP model allow suitable subsurface drainage 
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estimation for the field conditions found at the study sites. In the following section, the saturated 

vertical and lateral hydraulic conductivity values of the soils at sites ES(2-4) were adjusted 

manually to improve the model performance during the calibration period. A validation period was 

then evaluated to observe the model behavior under the calibration parameters. 

3.3.3 Drainage at calibrated/validated sites ES(2-4) 

Simulated drainage amounts at the calibrated sites ES(2-4) using the enhanced WEPP model 

(v2012.9) were expected to agree well with observations since the two soil input parameters, 𝐾48 

and 𝐾4E , were adjusted. Although more parameters could be adjusted to reach an optimal 

agreement, changing many input parameters can lead to non-meaningful model reliability. Skaggs 

et al. (2012c) presented a list of possible soil and physical parameters that may be adjusted due to 

uncertainty found in field-scale simulations. Here, only hydraulic conductivities (most sensitive 

soil parameters) were adjusted to allow for assessment of the model potential for predicting 

drainage amounts under limited calibration. 

Table 3.3 shows the differences and model efficiencies between observed and predicted 

drainage amounts at the calibrated sites. ES(2) had the greatest errors among all sites, with RMSE 

and MAE equal to 0.106 cm and 0.053 cm, respectively. ES(3) and ES(4) had similar error 

magnitudes (RMSE ~ 0.071 cm and MAE ~ 0.035 cm).  Although RMSE is in the same drainage 

units, it does not give either the relative size or the nature of the errors. The updated WEPP model 

applied to ES(2) and ES(4) tended to underestimate drainage amounts, with PBIAS = -39.3% and 

-32.4%, respectively. WEPP applied in ES(3) overpredicted drainage (PBIAS = 38.2%). Model 

efficiencies ranged from 0.52 to 0.71 for all sites (Table 3.3). Even though these efficiencies might 

be improved by a more detailed calibration procedure, values between 0.50 ≤ NSE ≤ 1.00 are 

considered acceptable when predicting subsurface drainage amounts (Wang et al., 2006; Skaggs 

et al., 2012c). 

Average values of calibrated 𝐾48 and 𝐾4E ranged from 0.223 to 0.481 cm h-1 and from 0.291 

to 1.487 cm h-1, respectively. Clay loam soils at ES(2) and ES(4) showed similar magnitudes of 

both vertical and lateral hydraulic conductivities, 0.481 and 0.435 cm h-1, respectively. This 

behavior was expected since soils at those sites had similar physical and hydraulic properties 

(Table 3.1). 𝐾48 and 𝐾4E for ES(3) were 0.223 and 0.290 cm h-1, respectively. Figure 3.6 shows 

substantial correlation between predicted and observed drainage amounts with coefficients of 
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determination (𝑅") ranging from 0.69 to 0.73; WEPP v2012.9 model predictions at the ES(3-4) 

sites had the greatest correlation. Figure 3.6 also shows how model predictions at ES(3) tended to 

overpredict drainage amounts, whereas simulations at ES(2) and ES(4) showed the opposite 

behavior. Predicted daily drainage fluxes at ES(2-4) for the calibration period (2016-2017) 

matched most of the peaks in the observed data (Figure 3.7). Also, most of the drainage occurred 

during the spring months (March-May) when crops were not in the field or at initial growth stages 

and did not have any significant effect on drainage rates. 

For the validation period at sites ES(2-4), RMSE and MAE were similar in magnitude to the 

ones in the calibration period. RMSE average values were ~0.10 cm and MAE values were ~0.47 

cm. The latter shows that the mean errors tended to be greater in the validation period. Percent bias 

in the same period, showed improvement with respect to the calibration period, being equal to -

28.2%. -15.4%, and -15.3% for ES(2), ES(3), and ES(4), respectively. While the modified WEPP 

model (v2012.9) was overpredicting daily drainage flux at ES(3) for the calibration period, 

estimates were underpredicted for the validation period. NSE values decreased during the 

validation period at sites ES(3) and ES(4) to 0.42 and 0.69, respectively. However, for site ES(2), 

NSE improved from 0.65 to 0.73. In summary, the modified version of the WEPP model showed 

an acceptable response to predict daily drainage depths under the conditions found at experimental 

sites ES(2-4) for the validation period selected in this study. 
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Figure 3.7 Daily drainage at experimental sites - ES(2-4): (Top) Simulated and observed 

drainage at ES(2); (Middle) Simulated and observed drainage at ES(3); (Bottom) Simulated and 
observed drainage at ES(4). 



 
 

87 

3.3.4 Water balance at the experimental sites 

Average infiltrated water contributing either to evapotranspiration or subsurface drainage at 

ES(2-4) for the entire time period (2016-2018) corresponded to 78%, 99%, and 92% of the annual 

precipitation, respectively. Evapotranspiration amounts at the experimental sites ES(2-4) 

accounted for approximately 53%, 78%, and 71% of the annual precipitation, respectively (Table 

3.4). No seepage was calculated since we assumed that all infiltrated water not contributing to 

evapotranspiration was drained through the pipes. ES(3) had the greatest rates of infiltration and 

evapotranspiration. The latter might have occurred due to the presence of a crop during the winter 

period which induced water infiltration and increased water demand by evapotranspiration. The 

rates of evapotranspiration for ES(2-4) were compared to the mean annual values for northwestern 

Ohio and northeast Indiana calculated in the Sanford and Selnick (2013) study. The estimated 

mean annual ratio of actual evapotranspiration to precipitation (ET/P) at sites ES(2-4) were 0.61, 

0.75, 0.70, respectively. Those ET/P values are comparable to a mean value equal to 0.65 found 

for the field locations in Sanford and Selnick (2013). 

Accumulated monthly amounts of drainage for the experimental sites are shown in Figure 

3.8. Similar to the daily amounts, model simulations for ES(2) and ES(4) underpredicted monthly 

drainage amounts, while simulations at ES(3) overpredicted the drainage amounts. For most 

months, the improved version of the WEPP model simulated ~70% of the subsurface drainage at 

the sites accurately. 

Table 3.4 Annual water balance at the sites ES(2-4). 
Sites Year Precipitation (cm)c Runoff (cm)a,d Infiltration (cm)a,d ET (cm)b,d Drainage (cm)b,d 

ES(2) 
2016 85.22 14.37 (17%) 70.85 (83%) 52.38 (74%) 18.60 (26%) 
2017 92.84 23.14 (25%) 69.70 (75%) 47.33 (68%) 22.55 (32%) 
2018 98.43  24.15 (25%) 74.27 (75%) 45.96 (62%) 27.43 (38%) 

ES(3) 
2016 76.26  0 76.26 (100%) 65.13 (85%) 13.45 (15%) 
2017 100.51  3.58 (4%) 96.93 (96%) 71.61 (74%) 23.87 (26%) 
2018 86.64  0 86.64 (100%) 67.22 (78%) 16.85 (22%) 

ES(4) 
2016 80.37  2.91 (4%) 77.46 (96%) 67.80 (88%) 11.83 (12%) 
2017 98.79  11.52 (12%) 87.26 (88%) 65.83 (75%) 21.35 (25%) 
2018 109.94  9.69 (9%) 99.95 (91%) 68.66 (69%) 28.15 (31%) 

a Percent as a fraction of the total precipitation 
b Percent as a fraction of the infiltrated water 
c Measured variable 
d Simulated variable 
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Figure 3.8 Monthly drainage depths for sites ES(2-4): WEPP v2012.9 simulated and observed 

drainage. 
 

Model simulations for ES(2-4) showed fairly good agreement for drainage fluxes during the 

winter months for the first two years (2016-2017) (Figure 3.8). However, drainage for the last year 

of the calibration period was not as accurately simulated. This difference can be attributed to the 

fact that the assumption of drained-to-equilibrium, which was used here to calculate drainage, does 

not consider the effects of the freezing and thawing processes on water movement in soils. This 

issue can be solved by incorporating the unfrozen water content curve derived from the soil 

freezing characteristic curve measured on-site or approximated using air temperature as a reference 

(Luo et al., 2000). 

Annual observed and predicted drainage amounts are reported in Table 3.5. WEPP v2012.9 

simulations at ES(1), ES(2), and ES(4) predicted ~67% of the observed total drained water for the 

entire simulated period. Model predictions at ES(3) overestimated (~20%) subsurface flow. About 

70% of the annual drainage amount at ES(1) was accurately predicted, which indicates that the 
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modified WEPP model can provided acceptable annual estimates of subsurface drainage for 

similar soils and conditions. 

Table 3.5 Annual WEPP v2012.9 predicted and observed subsurface drainage amounts for the 
sites ES(1-4). 

Year ES(1) ES(2) ES(3) ES(4) 

 Predicted 
(cm) 

Observed 
(cm) 

Predicted 
(cm) 

Observed 
(cm) 

Predicted 
(cm) 

Observed 
(cm) 

Predicted 
(cm) 

Observed 
(cm) 

2016 49.35 70.92 18.60 31.82 13.45 6.37 11.83 22.19 
2017 56.54 87.57 22.55 35.97 23.87 20.63 21.35 26.75 
2018 - - 27.42 38.20 16.85 19.92 28.15 33.21 

 

Among the models for subsurface drainage simulations for both field and watershed scales, 

DRAINMOD has been leading research at field scales. For a comparison between the WEPP 

model (v2012.9) and DRAINMOD (v6.0) performances, recent field studies using DRAINMOD 

can be divided into two categories depending on the nature of the input soil properties: 1) studies 

using experimental-based inputs (Yang et al., 2007; Salazar et al., 2009; Nabi-Sichani and 

Sepaskhah, 2012; Skaggs et al., 2012c; Ale et al.,2013; Negm et al., 2014; El Hawary et al., 2015; 

Golmohammadi et al., 2016; Negm et al., 2016; Negm et al., 2017; Liang et al., 2018; Wilson et 

al., 2019), and 2) studies using numerical-based inputs (Singh et al., 2006; Singh et al., 2007; 

Morrison et al., 2014; Qi et al., 2015). The overall efficiency (i.e. NSE) of the studies contained in 

the first category was 0.65. However, about 50% of those studies were focused on monthly 

drainage estimates. Average Nash-Sutcliffe Efficiency for monthly drainage fluxes was ~0.75, 

whereas for the daily drainage fluxes NSE ~ 0.60. The performance of the model in the second 

category provided an overall efficiency of ~0.60, whereas Nash-Sutcliffe Efficiency values for the 

daily and monthly drainage studies were 0.72 and 0.40, respectively. The NSE values found in this 

study for daily and monthly drainage estimates were 0.63 and 0.70, respectively. The improved 

WEPP model (v2012.9) thus showed a comparable efficiency for both monthly and daily drainage 

estimates among the studies found in the literature. This indicates that the new version of the 

WEPP model presented in this study may be a suitable tool for computing estimates of subsurface 

drainage without any increase in the amount of input data required in previous versions of the 

model. 
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3.4 Concluding remarks 

The field-scale hydrologic models WEPP v2012.8 and v2012.9 were tested to simulate the 

effect of artificial subsurface drainage on hydrology of four fields within the western Lake Erie 

basin, U.S. Initial testing of WEPP showed that the current version (v2012.8) did not accurately 

predict the daily amount of subsurface drainage. Modifications in the subsurface drainage, 

percolation, water balance, and soil water distribution algorithms were made to the source code to 

improve the model drainage calculations. Calibration and validation of the improved version of 

the model (v2012.9) in three agricultural fields showed that WEPP could predict subsurface 

drainage amounts well with NSE > 0.6. On average 21% of the precipitation left the field through 

drain pipes at the sites studied here. The monthly and annual amounts of water leaving through 

drains were also predicted well (NSE ~ 0.70). The combined use of the enhanced WEPP model 

and a suitable soil property estimation model (ROSETTA) showed that an acceptable amount of 

drainage could be estimated with limited field data. Additional future modifications can be 

performed to improve the WEPP model estimates of subsurface drainage under shallow water 

tables during winter conditions. 

The results of this study when implemented will increase confidence in the WEPP model 

predictions for agricultural fields with installed drainage systems in the Midwest U.S. Further 

investigations using field data and modification of the model to controlled water table conditions 

are recommended to understand the impacts of shallow water tables on hydrology and crop 

production in fields with subsurface drainage systems. 
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 FORMULATION OF A ROUTING MODEL FOR THE WATER 
EROSION PREDICTION PROJECT (WEPP) MODEL BASED ON 

CATCHMENT GEOMORPHOLOGY AND TRAVEL TIME THEORY 

Abstract 

This paper describes the theoretical framework for a new hillslope and channel-routing 

routine for the Water Erosion Prediction Project (WEPP) model. The routing model (WEPP-CMT) 

underlies the continuous mass transport modeling (CMT) theory for flow and transport of reactive 

solutes. The model structure uses the unique functionality of WEPP to simulate hillslope responses 

under diverse land use and management conditions and a Lagrangian description of the carrier 

hydrologic runoff at two stages: hillslope and channel domains where flow and transport are 

represented in the model through travel time distributions (TTD) derived from catchment 

geomorphology using a stochastic framework. An example of the model functionality was tested 

in a sub-catchment of the Upper Cedar River Watershed in the U.S. Pacific Northwest. Results 

showed that the model offers an acceptable representation of flow at the outlet of the studied 

catchment. Model efficiencies and percent bias for the calibration period and the validation period 

were NSE = 0.55 and 0.65, and PBIAS = -10% and -3.1%, respectively. A comparison with an 

existing routing method (WEPP-MK) found in the geospatial version of the model, GeoWEPP, 

showed similar results. Nonetheless, the latter was able to capture peaks of the hydrologic response 

slightly more accurately, which suggests that WEPP-CMT needs a more appropriate representation 

of the temporal and spatial variability of the parameters controlling the routing model. The WEPP-

CMT provides a suitable foundation for the transport of reactive solutes (e.g. nitrates) at basin 

scales. 

4.1 Introduction 

Understanding of hydrological systems is an important subject for people and their 

environment. It allows grasping the relationship of the waters of the earth within each phase of the 

hydrologic cycle, their occurrence, circulation and distribution, their chemical and physical 

properties, and their reaction with the environment, including their relation to living things 

(Linsleuy et al., 1975). Particularly, the transformation of natural ecosystems into agricultural and 
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urban areas impacts water quantity and water quality. These physical perturbations along with 

ongoing climate change and soil heterogeneities modify flow discharges of many rivers around the 

world and bring collateral changes in other hydrologic processes where water draining into streams 

interacts. One of the techniques to quantify these changes is to model the effect of human 

disturbances on water quantity and quality, and to compare the outputs under different 

management conditions (Zhou et al., 2013; Moriasi et al., 2012; Moriasi et al., 2013; Hoghooghi 

et al., 2017; Wang et al., 2018; Aboelnour et al., 2019). 

Various natural resource models (Arnold et al., 2012; Flanagan et al., 2012; Flanagan et al.,  

2013; Bhandari et al., 2017) continue efforts to improve the representation of the hydrological 

processes in large complex basins. Each model possesses its unique characteristics and requires 

inputs such as precipitation, air temperature, soil properties, topography, vegetation, and other 

physical parameters. Among available hydrologic models, one lagging in terms of water quantity 

and quality investigations at the catchment scale is the Water Erosion Prediction Project (WEPP) 

(Flanagan et al., 2012).  A significant factor for this lag is that the WEPP model was developed to 

function on hillslopes and small catchments (~260 ha) where residence times in channels are small 

in comparison with those on hillslopes (Flanagan et al., 2012). To overcome this limitation, Wang 

et al. (2010) implemented additional channel-routing routines in the WEPP source code, but only 

a few researchers have used and validated it at relatively large catchment scales (Afshar and 

Hassanzadeh, 2017; Srivastava et al., 2017; Srivastava et al., 2019), and the model interface is not 

set up to function for large catchments. Additionally, water quality research using the WEPP model 

has been limited to hillslope scales, and only one recent investigation on transport of reactive 

solutes has been published (Wang et al., 2018). 

As a result of the problems explained above, the need for a routing model dealing with both 

flow and solute transport is an open opportunity to extend the use of the WEPP model to larger 

scales. In this context, general transport models (i.e. advection-diffusion models), especially those 

that follow a stochastic framework, have been shown to be appropriate for large-scale applications 

(Rodriguez-Iturbe and Rinaldo, 2001; Rinaldo et al., 2005). Formulations of transport by travel 

time distribution have been widely supported by several studies (Rodriguez-Iturbe and Valdes, 

1979; Gupta et al., 1980; Dagan, 1989; Rinaldo and Rodriguez-Iturbe, 1996) and applied to 

investigations at basin scales (Rinaldo and Marani, 1987; Rinaldo and Rodriguez-Iturbe, 1996; 

Gupta and Cvetkovic, 2002; Botter and Rinaldo, 2003; Botter et al., 2005). However, these have 
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largely been applications with several simplifications of the hydrologic response (e.g. direct runoff, 

movement of water in soils, and dispersion mechanisms) to fully comprehend a single component 

of the hydrologic response. In this study, a general mass transport model with a stochastic 

framework based on travel time distributions is developed for routing the hydrologic response. 

The proposed model integrates the element of general transport theory with the unique 

functionality of a process-based model such as WEPP through an objective manipulation of 

hydrologic, geomorphologic and soil properties, and land use data, and provides suitable 

groundwork for transport of reactive solutes using the WEPP model.  

The structure of this paper is divided into four sections. The first section provides a brief 

introduction of the general transport theory used for the formulation of the model; the second 

section describes the underlying model structure and assumptions; a practical scenario is provided 

to evaluate the model performance in section three; and lastly, concluding remarks as well as future 

research for model improvements are mentioned in section four. 

4.2 Objectives 

The two main objectives of this study were to: (1) present the formulation of a new general 

transport model for routing of hydrologic response based on geomorphologic properties and travel 

time distributions at the basin scale, (2) demonstrate a practical application of the WEPP model 

and the proposed mass transport model to predict the hydrologic response in a mountainous basin 

in western Washington state, U.S. 

4.3 Theoretical background 

4.3.1  Mass transport theory 

Flow and transport phenomena in the hydrologic response are complex because of the 

interaction of physical and geochemical properties, acting over a multiplicity of spatial and 

temporal scales (Rubin, 2003). Further complexities at the basin scale increase prediction 

uncertainties due to time-dependent flow paths and variability of chemical conditions. Thus, 

stochastic models might be a better option than deterministic models, as they embody both spatial 

variability and uncertainty into a coherent mathematical framework with a limited number of 

parameters such as those using probability distributions. Stochastic models also require fewer 
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assumptions and can provide a suitable description of the physical processes involved in these 

complex systems (Rinaldo et al., 2005). 

A practical description of the journey of a water particle in a control volume (i.e., basin) can 

be seen as surface and subsurface trajectories the particle travels within natural formations before 

reaching the basin’s outlet without significant change in its mass. Assuming that the mass of an 

injected particle 𝑚7 at time 𝑡= = 0 is carried by a single particle, trajectories can be described 

through a Lagrangian scheme as follows: 

𝑋(𝑡) = 𝑥= +H 𝑣(𝑋(𝜏), 𝜏)𝑑𝜏
0

=
 (4.1) 

where 𝑣(𝑥, 𝑡) is known as the velocity vector. In a transport volume, the spatial distribution of 

water concentration after the injection of a single particle is described by (Taylor, 1922): 

𝑐7(𝑥, 𝑡) 	≈ 	𝑚7𝛿(𝑥 − 𝑋(𝑡)) (4.2) 

where 𝛿(∗) is Dirac’s delta function. Under the scenario of water transport, a unit and constant 

porosity are assumed so that the water concentration in the transport volume at any specific 

location along the flow paths remains constant. 

At basin scales, the trajectory of an injected water particle can be seen as a random function 

due to the heterogeneity of natural formations as well as the interaction with physical and 

geochemical processes. Assuming that 𝑔(𝑋)𝑑𝑋 is the probability that the particle is found within 

the infinitesimal volume 𝑑𝑋 located around the position 𝑋 at time 𝑡, the average concentration 

〈𝑐7(𝑥, 𝑡)〉 is given by (Taylor, 1922, Dagan, 1989): 

〈𝑐7(𝑥, 𝑡)	〉 = H 𝑚7𝛿(𝑥 − 𝑋)𝑔𝑋𝑑𝑋
)

&)
=	𝑚7𝑔(𝑥, 𝑡)	 (4.3) 

where 𝑔(𝑋) is called the displacement probability function, which under the kinematics of the 

particle injected in the control volume rules the travel time distribution 𝑓(𝑡). It is worthy to note 

that the time of all particles injected through the control section is exclusive, and the flux passing 

through the outlet is proportional to the travel time distribution. Thus, the total mass storage inside 

the control volume 𝑉 at time 𝑡 is: 

𝑀7(𝑡) = 𝑚8H 𝑔(𝑋, 𝑡)𝑑𝑥 =
F

𝑚8𝑃(𝑇 ≥ 𝑡) (4.4) 
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Here, 𝑃(𝑇 ≥ 𝑡) represents the probability that the residence time is larger than the actual time. 

Using the concept of mass continuity, one can obtain: 

𝑀7(𝑡)
𝑑𝑡 = 𝐼 − 𝑄7 (4.5) 

where 𝐼  is the mass injected in the control volume, and 𝑄7  is mass flux at the basin outlet. 

Replacing Equation (4.4) in (4.5) and assuming an instantaneous pulse of water, 𝐼(𝑡) = 𝑚7𝛿(𝑡), 

a final expression for 𝑄7 as a function of the travel times is as follows: 

𝑄7(𝑡) = −𝑚7
𝑑𝑃(𝑇 ≥ 𝑡)

𝑑𝑡 = 𝑚7𝑓(𝑡) (4.6) 

A particular challenge appears under this formulation, that is the definition of a proper travel time 

distribution function 𝑓(𝑡) . Studies have tried to address this challenge adopting particular 

functions and deriving their parameters with relatively physical meanings (Rodriguez-Iturbe and 

Valdes, 1979); others have derived travel time distributions from an extensive analysis of the 

equation of motion (Rinaldo and Rodriguez-Iturbe, 1996). The following section provides a brief 

analysis of the two approaches for characterizing travel time distributions used in this paper. 

4.3.1  Travel time distribution formulations 

In transport models, the determination of travel time distributions follows an analysis of the 

detailed motion of water particles in space and time over hillslopes and through the channel 

networks. In this context, a catchment or basin is a nested structure of geomorphologic states in 

which the hydrologic transport occurs. Catchment hydrology identifies two main states: hillslope 

and channel. Transport processes taking place on hillslopes are central in defining the features of 

the catchment travel time distributions even at large scales (Wood et al., 1988; Botter et al., 2005). 

The relatively small flow velocities on hillslopes are responsible for relatively large contact times 

between the soil and the hydrologic surface and subsurface flows, with significant implications for 

the resulting carrier concentrations. 

In contrast, flow velocity in channels is usually between 1-5 m/s, while the overland flow 

(runoff) rates on hillslopes or in unchannelized valleys are at least 10 times slower (Emmet, 1978; 

Huff et al. 1982; van der Tak and Bras, 1990; McGuire et al, 2005). Although one could think 

solute generation mostly occurs on hillslopes, it can be significant from channels if travel times 

become large due to exchanges with hyporheic zones, riparian vegetation, and organic matter 
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decay. As a result of these differences in travel times, independent travel time distributions for 

surface and subsurface stages need to be defined for suitable mass transport model implementation 

at basin scales. 

4.3.1.1 Surface hydrologic response function 

The transport of the fast component of the hydrologic response has been investigated through 

linear systems theory. One of the first contributions was attributed to Sherman (1932) developing 

the theory of the unit hydrograph, which simulates hydrologic response as the sum of pulses 

generated by different inputs of precipitation. Later, Rodriguez-Iturbe and Valdes (1979) 

reformulated this theory and provided a geomorphological interpretation of the basin response 

function and named it the Geomorphological Instantaneous Unit Hydrograph (GIUH). This 

formulation has been extensively analyzed in many studies (Gupta et al., 1980; Rinaldo et al., 1991, 

Rinaldo and Rodriguez-Iturbe, 1996; Saco and Kumar, 2002a, 2002b; White et al., 2004; 

D’Odorico and Rigon, 2003; Paik and Kumar, 2004), as it provides a suitable approach to study 

dispersion mechanisms at catchment scales; however, only a few studies have had practical 

applications (Rinaldo et al., 2005; Nicótina et al., 2008). 

In this study, the travel time distribution 𝑓(𝑡) governing the overland response routing 

relates somehow to the instantaneous unit hydrograph (Gupta et al., 1980). However, wider 

representation of hydrologic response is adopted through a functional description of the distances 

from any point of the catchment to its outlet. This descriptor is known as the area-width function 

(Beven and Wood, 1993), which provides a complete coverage of all possible paths in a basin of 

both hillslope and channel states, which are intrinsically heterogeneous media due to heterogeneity 

of soil texture, land cover, stream roughness, and other properties of a catchment. Although this 

function has the advantage of being directly derived from Digital Elevation Models (DEM), a 

transfer function is required to express it as a travel time distribution. A residence time function 

accounting for both convective and storage-diffusive effects in channels is a solution of the 

Fokker-Plank equation (e.g. Equation (4.8), Rinaldo and Rodriguez-Iturbe, 1996). These 

expressions do not consider the fractal sinuosity of individual channels, yet capture the fractal 

properties of the network structure. Thus, the travel time distribution 𝑓(𝑡) for the fast-hydrologic 

response in Equation (4.6) can be expressed as: 
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𝑓4(𝑡) = H 𝑊(𝑥)𝑓2(𝑡)
E

=
 (4.7) 

where 𝑊(𝑥) is the width-area function, 𝑙 is the longest distance from the basin outlet, and 𝑓2(𝑡) is 

the advection-dispersion equation of all possible paths defined as nested transitions between 

hillslope and channel states contained in 𝑊(𝑥) and described by the following expression: 

𝑓2(𝑡) =
𝐿

√4𝜋𝐷𝑡G
𝑒H&

(9&10)#
IJ0 K (4.8) 

where 𝐿  is the maximum length from the basin outlet, 𝐷  is the hydrodynamic dispersion 

coefficient, and 𝑎 is the velocity of propagation of the flood wave or wave celerity. A common 

equivalence of wave celerity in terms of channel velocity 𝑢  is 𝑎 = 1.5𝑢 . The difference in 

velocities between hillslopes and channels are quantified by assuming that distances in hillslope 

states are amplified by a factor 𝑟 = 𝑢2 𝑢5⁄  representing to the number of times that velocity in 

channels 𝑢2  exceeds the ones in hillslopes 𝑢5 . Thus, distances 𝑥 in 𝑊(𝑥) are expressed by the 

following equation: 

𝑥 = 𝑥2 + 𝑟𝑥5 (4.9) 

where 𝑥2  is the distance of the trajectory that water travels in the channel state, and 𝑥5  is the 

distance in the hillslope state. 

4.3.1.2 Subsurface hydrology response function 

A particular case of Lagrangian approaches is presented by Rinaldo et al. (2005) to couple 

the transport of water and matter in the framework of transport by travel time distributions and 

extend to the case of reactive components in the context of the geomorphologic unit hydrograph 

(GIUH) (Rodriguez-Iturbe and Valdes, 1979). Similar to the overland response, the idea stems 

from assuming that a particle of water spends a certain amount of time in each state defining each 

path (i.e. sub-surficial hillslopes and channels) while traveling to the basin outlet. The travel time 

𝑇' of the particle in state 𝑋 is a random variable described by the probability density function 

𝑓'(𝑡).  Similarly, a particle in a different state 𝑌 with travel time 𝑇L can have a different travel 

time distribution 𝑓L(𝑡), where 𝑇' and 𝑇L are statistically independent. Any path 𝛾 from the source 

to the outlet contained in 𝛤 (i.e. basin) is composed of a set of states 𝛾 = (𝑋%, … , 𝑋A) where 𝑋A is 

the control section at the outlet of the basin. Thus, by geomorphological classification, one can 
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categorize the states corresponding to hillslopes (ℎ) and channels (𝑐). The entire set of states and 

their corresponding transitions 𝑋%, … , 𝑋A ∈ (ℎ%, … , ℎA , 𝑐%, … , 𝑐A) provides a detailed description 

of the entire structure of the river network. The random travel time through the entire path 𝛾, 𝑇M =

𝑇'" +⋯+	𝑇'4 , follows the path travel time distribution 𝑓M (t), and is defined as the integral 

convolution over all of the state travel time distributions forming the entire path as follows: 

𝑓M(𝑡) = 𝑓'" ∗ … ∗ 𝑓'5 (4.10) 

Hence, the travel time distribution 𝑓(𝑡) for the slow component of the hydrologic response in 

Equation (4.6) at the outlet is obtained by randomizing over the set Γ of all possible paths to the 

basin outlet (Rinaldo et al., 2005): 

𝑓4;(𝑡) =,𝑝(𝛾)𝑓M(𝑡)
MNO

 (4.11) 

where 𝑝(𝛾) is the path probability and ∑ 𝑝(𝛾) = 1M∈O . Under the assumption that the rainfall input 

𝐼(𝑡) is uniformly distributed in space, 𝑝(𝛾) is simply 𝐴5!/𝐴; , with 𝐴5!  being the area of the 

injection area at hillslope state ℎ! (i.e. sub-basin area) and 𝐴; the area of the basin. Although this 

might be true for small catchments, precipitation in large catchments tends to present spatial and 

temporal variability. For those cases 𝑝(𝛾) presents temporal variability and can be estimated as: 

𝑝(𝛾, 𝑡) = Q(M,0)
Q(0)

   (4.12) 

where 𝐼(𝛾, 𝑡) is the injected rainfall in state ℎ! in time 𝑡, and 𝐼(𝑡) is the total rainfall injected in the 

basin at time 𝑡. Here, ℎ! represents each of the hillslopes discretized within the basin and where 

the precipitation is considered to be spatially uniform, but not the same among all ℎ!’s. 

It is important to note that by the latter assumption, one is relaxing the condition of never-

changing travel time distributions such as the case of the unit hydrograph theory (Sherman, 1932). 

Distribution functions adopted for the channel states are in the form of Equation (4.8), whereas for 

hillslope states an exponential function with mean residence time (D’Odorico and Rigon, 2003; 

Nicotina et al., 2008) can be used: 

 𝑡M̅,! = 𝛼!𝐴M=.GT   (4.13) 

where 𝐴M  is the sub-basin area of the hillslope state ℎ! , and 𝛼!  is a calibration parameter. In 

Equation (4.13), the average travel time is a function of the basin size. Such empirical expression 

has been proposed by Boyd (1978) and Bathurst (1993) for basins ranging between 0.388 km2 and 
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251 km2. Additionally, the selection of a transport model by travel time distributions used in this 

study offers a suitable framework to link travel times with the global contact time controlling mass 

exchanges and consequently provides reasonable operational capabilities to describe large-scale 

transport processes where hydrologic transport occurs. 

4.4 Methods 

4.4.1  General model approach 

The general approach of the WEPP model and its integration with a Continuous Mass 

Transport model (WEPP-CMT) follows the sequence in Figure 4.1. The partition into the surface 

and subsurface pathways was performed by using the WEPP hillslope model for all the hillslopes 

found within the catchment. The WEPP watershed model treated a watershed as a collection of 

hillslopes and channels draining to the basin outlet (Baffaut et al., 1997). Watershed discretization 

was performed using a geospatial interface of the WEPP model such as GeoWEPP (Renschler, 

2003). This representation allowed the incorporation of a mass transport model and travel time 

distribution theories as a possible routing routine at watershed scales such as the one described in 

the previous section. Following the watershed spatial discretization, information describing 

topography, soils, land use, and climate was input to the WEPP model to predict both surface and 

subsurface rainfall partitioning. Outputs from each hillslope were then used as inputs for the 

proposed mass transport model (WEPP-CMT), which routes daily partitions of rainfall traveling 

from the surface and subsurface states to the catchment outlet (Figure 4.1). 
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Figure 4.1 Hydrologic response as a combination of: a) surface response function and b) 

subsurface response function. 

 

Once the rainfall was partitioned (i.e. net rainfall for both surface and subsurface states in 

Figure 4.1), hillslope response functions were obtained following Equations (4.7) and (4.11) 

described in the previous section for both surface and subsurface components of the response, 

respectively. Description of the distance from any point on the land surface to the closest stream 

was required to obtain the width-area function in Equation (4.7), whereas the hillslope areas were 

required in Equation (4.13). The spatial analysis of these properties was performed using the 

geospatial software GRASS GIS (v7.5). The transfer function for the surface response function 

(Figure 4.1a) for the surface runoff adopted the form shown in Equation (4.8), which depended on 

the hillslope distances and two hydrodynamic parameters. Hillslope distances were modified 

according to the calibration factor 𝑟 in Equation (4.9), which changes the number of times that 

channel velocities exceed hillslope velocities. For the subsurface flow, hillslope travel time 

distributions took an exponential form with the mean travel time calculated using Equation (4.12). 

This expression required the hillslope area in km2 (Figure 4.2b) and a calibration parameter 𝛼 in 

hours/(km2)0.38. 
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Figure 4.2 Subsurface travel time distribution and its derivation 

 

After the hydrologic runoff leaves the hillslopes, the water is routed in channels as a mixture 

of surface and subsurface flows. As a result, a unique set of parameters (e.g. wave celerity and 

hydrodynamic dispersion) were required to route both responses so that no distinction needs to be 

added between the surface and subsurface states once the water reaches the channels. A detailed 

analysis of the channel morphology was performed using the information generated after the 

watershed delineation and stream generation of the study area (see the next section for more 

details). For the overland contribution to streamflow, distances from each reach/channel to the 

outlet were obtained from the extraction of the corresponding channel area (i.e. fraction of pixels) 

from the previously obtained area-width function (Figure 4.1a), which is called the width function 

when simplifying to channels. The routing function associated with each channel distance is as 

shown in Equation (4.8) (Figure 4.1a). This expression depends on two main physical parameters: 

wave celerity 𝑢 in m/s, and hydrodynamic dispersion 𝐷 in m2/s. The network response function 

for surface runoff is then obtained by the integration of the width function and the routing function 

in the form of Equation (4.7). The total catchment response for the surface contribution, 𝑄4, is 

obtained by the following expression: 
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𝑄4(𝑡) = ∫ 𝐼4(𝜏)𝑓4(𝑡 −
0
= 𝜏)   (4.14) 

where 𝐼4(𝜏) is the net rainfall going to the surface partition of the basin. 

The subsurface flow going to channels was routed by the routing function, 𝑓2(𝑡), expressed 

in Equation (4.8) (Figure 4.1b), and an example of this function is shown in Figure 4.2c. This 

expression for the travel time function was selected to preserve consistency in the hydrodynamic 

parameters governing the channel routing for both surface and subsurface flows. Flow paths for 

each hillslope characterized are exemplified in Figure 4.2a-b. Path travel time distributions, 𝑓M(𝑡) 

(Figure 4.2d), were then generated by numerical convolution of the travel times function of all 

states in the path (Equation (4.10)) and later added as indicated in Equation (4.11). The total 

catchment hydrologic discharge was obtained through numerical integration of the fraction of the 

net rainfall going to the subsurface hydrologic component with its respective travel time 

distribution as follows: 

𝑄4;(𝑡) = ∑ ∫ 𝐼4;(𝛾, 𝜏
0
= )𝑓M(𝑡 − 𝜏MNO )   (4.15) 

where 𝐼4;(𝛾, 𝜏) is the net rainfall weighted by the respective probability of occurrence, and 𝑠𝑏 

indicates the subsurface transport condition. 

To better highlight the difference between the two schemes followed for routing the 

hydrologic runoff, it is necessary to understand that surface runoff is mainly controlled by the 

geomorphology of the catchment, which is described by an area-width function, while subsurface 

flow experiences soil random physical heterogeneities that can be described using a lumped-based 

concept such as a hillslope’s mean travel time. 

4.4.2  Description of the area of study and hydrologic data 

The WEPP-CTM model was assessed in a mountainous forested sub-catchment of the Upper 

Cedar River Watershed in western Washington state US. The catchment drains a 105 km2 surface 

area, and its elevation ranges from 477 to 1660 m (USDA, 2014). Precipitation in the watershed 

falls into three zones depending on elevation, aspect, and location. The first zone corresponds to 

lower elevations and precipitation primarily is in the form of rain, which drives the peak response 

of the streamflow during winter. A transition zone contains precipitation as a mixed form of snow 

and rain, which contributes to hydrograph peaks in winter and spring periods and highly depends 
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on temperature and precipitation type. Areas at higher elevations are characterized as a snow-

dominated zone where snowmelt controls the peaks during the spring season (Srivastava et al., 

2017). The dominant soils in the watershed include upland areas with loamy sand soils and gravelly 

sandy soils covering 56% and 15% of the total area of the catchment, respectively. In lower 

elevations, sandy loam soils are found and cover 29% of the area of the catchment (USGS, 2014; 

See Srivastava et al., 2017 for more details). 

Vegetation within the watershed is a conifer forest of two different growing phases. The old-

growth phase includes forest between 250 to 680 years old, mainly located at higher elevations, 

while the second phase is comprised of younger forests due to reforestation after timber harvest 

occurring at the lower elevations (Seattle, 2015). Of these forest areas, three main vegetation zones 

were characterized according to their elevation and climate (Franklin and Dyrness 1988; 

Henderson et al., 1992).  The first forest zone, a rain-dominated area, is the Western Hemlock 

Zone encompassing primarily western hemlock and Douglas fir located at elevations below 800 

m. At elevations between 800 and 1200 m, forests including Pacific silver fir and western hemlock 

constitute the Pacific Silver Zone, which is a snow-dominated area, and snow interception is about 

60%. A third forest zone, the Mountain Hemlock Zone, is dominated by a less dense stand of 

Pacific silver fir and mountain hemlock located above 1200 m (Srivastava et al., 2017). 
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Figure 4.3 Location map of the Upper Cedar River Watershed in western Washington, US. 

 

Daily weather within the watershed is recorded at different elevations (Figure 4.3). These 

three stations are managed by the Natural Resources Conservation Service (NRCS) Snow 

Telemetry (SNOTEL) network. Variables measured include daily precipitation, snow depth, snow 

water equivalent, maximum temperature, and minimum temperature. The annual precipitation 

from the three weather stations varies from 1727 to 3929 mm. Srivastava et al. (2017) found that 

precipitation in the watershed varies with both elevation and air temperature. While precipitation 

increases at ~0.13 mm m-1 during the winter and decreases ~0.01 mm m-1 in the summer, mean air 

temperature during both winter and summer decreases with elevation by 0.004 oC m-1.  These two 

conditions indicate that spatial variability plays an important role in the hydrologic response of the 

catchment in this study. Streamflow at the outlet of the watershed was measured by USGS station 

12115000 (47o 22’ 13” N, 121o 37’ 26”) located upstream of Cedar Lake. 
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4.4.3  Runoff generation 

The WEPP model is a complex process-based hydrology and erosion model designed to not 

only simulate hillslope hydrology but also to assess the impact of management practices on soil 

erosion and sediment delivery. The model has been applied and validated in different parts of the 

United States and around the world (Pandey et al., 2009; Pieri et al., 2007; Singh et al., 2011). 

Hillslope hydrologic processes simulated in the WEPP model include infiltration, surface runoff, 

lateral flow, and overland erosion (detachment and deposition) (Flanagan and Livingston, 1995; 

Flanagan and Nearing, 1995). Only one investigation related to water quality and transport has 

been found at the hillslope scale (Wang et al., 2017) and none at the watershed scale.  

The watershed application of the WEPP model, GeoWEPP (Renschler, 2003), or online 

interfaces allow the discretization of the watershed into multiple hillslopes and channels under 

different drainage densities. Hydrology is calculated for each hillslope, and then flow is transported 

from the channels to the catchment outlet by a routing algorithm (Wang et al., 2010). However, 

only limited studies have assessed the model at watershed scales (Abaci and Papanicolau, 2008; 

Abaci and Papanicolau, 2009; Srivastava et al., 2017; Brooks et al., 2016; Srivastava et al., 2019). 

Two of the primary limitations are that the model routing algorithm and the baseflow contributions 

due to groundwater interactions have not been fully integrated into the model.  

Acknowledging that the hillslope version of the WEPP model is well validated and its ability 

to predict the hydrologic response at hillslope scales as well as the potential of the current 

geospatial applications of the model to discretize a watershed into multiple hillslopes and channels, 

this study focused on developing a new channel routing approach through the proposed model 

(WEPP-CTM). As a result, a previously calibrated and validated hillslope simulation for the Cedar 

River Watershed was used to test the suitability of the WEPP-CTM to route the hydrologic 

response within hillslopes and channels; details on calibration and validation can be found in the 

Srivastava et al. (2017) study. 

4.4.4  Calibration and validation 

WEPP-CMT model simulations were run at a daily time step with a computational increment 

of 15 minutes. Daily observed streamflow records were divided into two periods: model calibration 

period (2009-2010) and the validation period (2011). A warm-up period for the model was not 
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required since hillslope hydrologic processes were already calibrated in a previous study. The 

calibrated parameters in WEPP-CMT are listed in Table 4.1. Manual calibration of those 

parameters was performed until the best efficiency of the model to predict daily flow discharge 

was obtained. 

Table 4.1 WEPP-CTM calibration parameters 

Parameter Notes Initial value Parameter 
range 

Calibrated 
parameter 

𝛼% 
Sub-surficial hillslope’s mean 
residence time (hours/(km2)0.38 10.0 5-100 14.2 

𝑢*% Uniform-flow bank full velocity (m/s) 1.0 0.5-5.0 0.63 

𝐷% 
Hydrodynamic dispersion coefficient 

(m2/s) 500.0 100-5000 1000 

𝑟 Velocity ratio between overland and 
channel wave celerity (m/s) 1.0 1.0-5.0 1.77 

 

 Calibration parameters such as 𝑟 and 𝛼!  govern the surface and subsurface hydrology at 

hillslopes states, respectively. Routing at channel states are dominated by 𝑢�!  and 𝐷! . Suitable 

ranges for the last two parameters were taken from available literature (Deng et al., 2001; Sahin, 

2014). 

4.4.5 Performance evaluation 

Statistical measures can be used to quantify the differences between the predicted and 

observed values and evaluate the model efficiency. In this study, three statistical measures were 

used to assess the quality and reliability of the WEPP-CTM model to predict flow discharge at the 

sub-basin of the Upper Cedar River Watershed: Root Mean Square Error (RMSE) (Liang et al., 

2018),  Percent Bias (PBIAS) (Yapo et al., 1996), and Nash-Sutcliffe efficiency (NSE) (Nash and 

Sutcliffe, 1970). 

𝑅𝑀𝑆𝐸 = �∑ (𝑂! − 𝑆!)"#
!$%

𝑛  (4.16) 

𝑃𝐵𝐼𝐴𝑆 = 100
∑ (𝑆! − 𝑂!)#
!$%
∑ 𝑂!#
!$%

 (4.17) 
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𝑁𝑆𝐸 = 1 −
∑ (𝑆! − 𝑂!)"#
!$%

∑ (𝑂! − 𝑂�!)"#
!$%

 (4.18) 

where 𝑛 is the number of observed-simulated values, 𝑂! is the ith observed value, and 𝑆! is the ith 

simulated value. RMSE represents the absolute difference between observed and simulated values; 

MAE measures the average magnitude of the errors between the observations and predictions 

without considering their direction; PBIAS quantifies the average tendency of the simulated values 

to be larger or smaller than the observed values, and NSE measures the model performance. 

The study of similarity between travel time distributions, or the lack thereof, was assessed 

by using a divergence measure. In particular, a measure of distances between two or more 

distribution functions is required (Wolpert and Macready, 2007). In this study, the generalized 

Jensen-Shannon divergence (JSD) was used to evaluate the similarity among multiple travel time 

distributions. The JSD is defined as (Grosse et al., 2002): 

𝐽𝑆𝐷N𝑝%,𝑝", … , 𝑝#O = 𝐻 ^%
#
∑ 𝑝!#
!$% e − %

#
∑ 𝐻[𝑝!]#
!$%    (4.19) 

where 𝑝!  are the probability distributions ( 𝑖 = 1,… , 𝑛) , 𝐻[𝑝] = −∑ 𝑝(𝑗)𝑙𝑜𝑔"𝑝(𝑗)U
($%  is the 

Shannon entropy of 𝑝 (Shannon, 1948). The JSD adopts values from 1-0, meaning 1 has perfect 

similarity, whereas 0 has a completely dissimilar set of probability distributions. 

4.5 Results and discussion 

4.5.1  Catchment geomorphology  

Discretization of the catchment in the Upper Cedar River Watershed using GeoWEPP 

generated 253 hillslopes and 103 channels. Based on the Horton-Strahler number method, the 

catchment was composed of 52 first-order channels, 21 second-order channels, 7 third-order 

channels, and 23 fourth-order channels. The number of paths found was 253, which matches the 

number of hillslopes. The longest transitions consisted of one hillslope and 30 channels with a 

travel distance of 22 km, while the shortest path encompassed two transitions (1 hillslope and 1 

channel) and a travel distance of 0.43 km.  

Characterization of the travel distances included flow length to streams and distances from 

any point of the catchment to the outlet. Thus, distances at hillslope and channel network states 

were calibrated to simulate differences in velocity in both states. A full description of both 
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hillslopes and channels is shown in Figure 4.4. Flow lengths from the land to the streams showed 

a maximum distance of 2.39 km (Figure 4.4a), while the maximum distance to the catchment outlet 

was 22.74 km (Figure 4.4b). This spatial description was used for the parametrization of the 

WEPP-CMT model to predict the surface hydrologic response as follows in the next sub-section. 

 
Figure 4.4 Flow distance characterization: a) Distance to the closest stream; b) Distance to the 

outlet. 

4.5.2 Surface travel time distribution 

4.5.2.1 Area-width function 

As previously discussed, the area-width function can be seen as the map of the distances 

from any point in a catchment to the outlet following the drainage direction. In Figure 4.5a, the 

distribution of flow distances is described. Notice that the function redefined a two-dimensional 

basin characteristic (i.e. flow distances) into a one-dimensional descriptor independent of climate, 

geology, and vegetation. Additionally, the area-width functions resemble the basin shape, being 

narrow closer to its outlet, wider at distances of about 20 km, and narrow at maximum distances 

(Figure 4.4b). Studies on extracting basin boundaries from area-width functions can be found in 

the literature (Marani et al, 1991; Rinaldo et al., 1995). 
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Figure 4.5 Area-width function of the catchment in the Upper Cedar River Watershed: a) 

distance to the outlet distribution, b) normalized width-area. 
 

The width-area function for the catchment in the Upper Cedar River Watershed, when no 

difference between hillslope and channel states was imposed, overlooked the role of transitions 

from areas of divergent topography to areas of convergent topography with or without 

channelization (𝑟 = 1,	dashed blue line in Figure 4.5). The addition of this distinction through the 

factor 𝑟 in Equation (4.9) allowed modifying this condition. Width-area functions especially show 

a skewed-right noisy shape when velocities in hillslope and channels are assumed equal (dashed 

blue line in Figure 4.5). This behavior changed when flow velocities in the hillslopes were assumed 

to be slower than in the channels, especially for those values of 𝑟 greater than 2.0, making the 

hillslopes’ distance increase and creating smoother rescaled width-area functions (Figure 4.5). 

However, these functions do not entirely resemble the skewed left feature observed in natural 

hydrologic response. As a result, it can be claimed that the smooth shape and pronounced skewness 

of real-life hydrographs is not solely because of the addition of different velocities between 

hillslope and channels but it also involves dispersion mechanisms. This finding contradicts and 

reinforces the conclusions by Rinaldo et al. (1995) and Rinaldo et al. (2005). A contradiction was 

found since the distinction of hillslope and channel velocities was the only factor that changed the 

skewness of the hydrologic response as for the watershed in Rinaldo et al. (1995). However, once 

the dispersion mechanism was included through the introduction of a transfer function, the shape 
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of a more realistic hydrologic response was obtained as will be shown in the next section (Figure 

4.6). As a result, both hydrodynamic dispersion and variable wave celerities between hillslope and 

channels need to be included in the formulation of transport by travel time distributions, especially 

for cases where hillslopes are where most solute generation within the carrier runoff occurs. It is 

important to mention that no distinction between hillslopes and channels has been introduced in 

both the unit hydrograph approach and its geomorphological version.  

 

 
Figure 4.6 Surface travel time distribution for different distance amplification factors 𝑟 = 𝑢2 𝑢5⁄ . 

4.5.2.2 Travel time distribution 

The presence of both dynamic effects (i.e. wave celerity and hydrodynamic dispersion) 

through Equation (4.8) and its numerical integration over the domain of all catchment distances 

and probabilities obtained in the previous section are shown in the travel time distributions in 

Figure 4.6. All the distributions show a relatively fast rising limb and a long tail, which are typical 

characteristics in a basin’s hydrologic response. The case of uniform velocities over the catchment 

(𝑢2 𝑢5⁄ = 1) had a higher peak among all the overland response functions. Once the slower 

velocities were imposed for overland runoff (𝑢2 𝑢5⁄ = 2,… ,10), decreases in the peak response 

and time to peak were obtained (Figure 4.6). The peak response of the travel time distribution 
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showed an exponential decrease for higher values of the amplification factor 𝑟 as can be seen in 

the inset of Figure 4.6. 

The analysis of the probability density functions for the surface component of the hydrologic 

runoff contributed to a more comprehensive understanding of travel times in hillslope and channel 

states. However, it is important to mention that hillslopes in this approach were assumed to have 

the same overland velocity to maintain the simplicity of the model. The relaxation of this 

assumption is a topic for another paper, where a more detailed description of spatial distribution 

of hillslope velocities can be characterized. Nonetheless, this analysis served as a tool for model 

calibration.  

Manual calibration of the model showed that the suitable 𝑟 factor was equal to 1.77, which 

means that hillslope flow velocities are about half the velocities seen in channels. The Jensen-

Shannon divergence for the surface travel time functions was equal to 0.03, which indicates that 

travel time distributions for the surface runoff do not differ significantly and suggests that the 

assumption of differences in velocities in this approach plays a relatively small role in the selection 

of an appropriate distribution function. However, this may change for other watersheds where 

travel time becomes significantly larger on hillslope surfaces. 

4.5.3  Subsurface travel time distribution 

As explicitly expressed in the methods section, subsurface travel times in this approach were 

divided into two states: hillslopes and channel contributions. Whereas surface response was 

described in terms of the geomorphologic characteristics of the landscape, subsurface conditions 

are, in reality, more complex domains where soil heterogeneities vary significantly within 

relatively small areas. Consequently, flow movement on hillslopes was expressed as a lumped-

based exponential model with mean travel time calculated as a function of the catchment area. 

Discussion of results is presented in the following sub-sections. 

4.5.3.1 Hillslope contribution 

Mean travel times in subsurface conditions played a significant role since hillslopes 

represent the state where solute generation within the hydrologic runoff occurs. As a result, the 

implementation of the distributions governing the transit of water in the subsurface hillslope states 
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used in this study was also adapted to extend this framework to solute transport in future research. 

In Figure 4.7, the distribution functions of travel times for the subsurface component of the 

hydrologic runoff for different mean residence times (𝛼 = 10…100	hours/(km2)0.38) are presented. 

These curves were estimated using Equation (4.11) after the numerical convolution of the 253 

paths’ travel time distributions identified within the catchment and flow velocity and their 

respective probabilities.  Dispersion coefficient values adopted were 1 m/s and 1000 m2/s, 

respectively, to facilitate analysis of travel times in Equation (4.12). 

Probability density functions showed significant variability under different values of the 

factor 𝛼, which controls the mean travel time for all hillslopes in the watershed. The higher the 

magnitude of 𝛼 , the longer the residence time of water particles in hillslopes. For 𝛼 = 10 

hours/(km2)0.38, travel times tended to reflect a hillslope under a predominance of convection and 

relatively low storage-diffusion effects (dashed blue line in Figure 4.7). When higher values of 𝛼 

were adopted (𝛼 = 20,… ,100), flow and transport were storage-diffusion dominated. The mean 

travel time that presented the greatest difference was 𝛼 = 100 hours/(km2)0.38 (dotted blue line in 

Figure 4.7). The time to peak of the functions occurred at similar times, while the peak response 

decreased exponentially with greater values of 𝛼 (inset in Figure 4.7). Manual calibration of the 

model showed that the optimal 𝛼 factor was equal to 14.2 hours/(km2)0.38.  

 

 
Figure 4.7 Subsurface travel time distributions for different mean travel times. Flow velocity, 

𝑢 = 1.0 m/s; and hydrodynamic dispersion, 𝐷 = 1000 m2/s. 
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A significant difference was found among the travel time distributions with a Jensen 

Shannon divergence equal to 0.13. As expected, travel times highly depended on hillslope areas, 

and the average residence time for a range of hillslope areas was equal to 12.89 hours. A limitation 

found in this approach is that the factor 𝛼 was assumed to be the same for all hillslopes within the 

catchment. Having said that, this does not mean that travel time was assumed the same as it 

depends on the hillslope area, making the analysis presented here a contribution to understanding 

the travel time theory underlying the model and its calibration. 

4.5.3.2 Channel contribution 

For channel states, the hydrodynamic conditions governing flow are the same as those 

previously discussed for surface conditions. Although the discussion of the difference between 

hillslope and channel velocities and its incorporation into the area-width function was established, 

the effect of the parameter 𝑟 was ignored and it was kept equal to its calibrated value. In this section, 

the sensitivity of the probability density function of the travel times in channels to the flow velocity 

and hydrodynamic dispersion are discussed. To isolate the effect of hillslope travel time 

distributions, the factor 𝛼 was set equal to its calibrated value (14.2 hours/(km2)0.38).  

An obvious hydrodynamic variable that modifies the travel time in channels is the flow 

velocity. In this particular case, the uniform flow bank full velocity in the channel modified the 

travel time distribution, as shown in Figure 4.8. It can be noticed that Equation (4.8), used as the 

routing function, depends directly on the wave celerity and not on flow velocity. A common 

equivalence between these parameters was adopted as 𝑎 = 1.5𝑢, where 𝑢 is the flow velocity 

(Paik and Kumar, 2004). Higher velocities tend to make a more convective channel network (solid 

green line in Figure 4.8). On the contrary, when low values of the bank full velocities were imposed, 

a channel network dominated by storage and diffusive effects was obtained. 
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Figure 4.8 Travel time distribution under different flow velocities in the channel. 

 

Both time to peak and peak response were significantly modified when flow velocities were 

varied. Peak response increased exponentially with respect to flow velocities (inset in Figure 4.8), 

with 𝑢 = 2.5 m/s the most convective response and 𝑢 = 0.5 m/s the smallest response. The Jensen 

Shannon divergence among the travel time distributions for the different flow conditions was equal 

to 0.27, which suggests that the travel time in channels was significantly modified by the bank full 

velocity in channels, with the latter equal to 0.63 m/s after manual calibration.  

A second hydrodynamic variable important for the prediction of travel time in channels was 

the hydrodynamic dispersion as can be seen in Equation (4.8). Figure 4.9 shows the travel time 

distributions for a range of dispersion coefficients. Flow velocity 𝑢 and parameter 𝛼 were set equal 

to their calibration values. Graphically, travel time distributions did not seem to be significantly 

sensitive to changes in hydrodynamic dispersion, being the peak response was the most affected. 

The Jensen Shannon divergence of the probability density functions was equal to 0.00053, which 

corroborates the claim that dispersion coefficient changes do not significantly affect the peak 

response of the hydrologic response. However, as previously discussed, the dispersion mechanism 

is responsible for the skewed left shape of the travel time distribution. The dispersion coefficient 

used for the subcatchment in the Upper Cedar River Watershed was set to 1000 m2/s for calibration 

purposes. 
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Figure 4.9 Travel time distribution under different hydrodynamic dispersion coefficients in the 

channel. 

4.5.3.3 Rainfall heterogeneity 

In previous analyses, rainfall variability was not incorporated into the sensitivity analysis in 

order to maintain simplicity and avoid the generation of multiple scenarios for each rainfall event. 

The effect of rainfall heterogeneities in the stochastic framework adopted here through Equation 

(4.12) showed that temporal variability of path probabilities played a relatively small role in 

shaping the hydrologic response for the subcatchment in the Upper Cedar River Watershed (Figure 

4.10). However, previous analysis of the spatial distribution of the precipitation in this catchment 

varied with elevation and temperature (Srivastava et al., 2017), which is a common characteristic 

in mountainous basins. As a result, precipitation heterogeneity is therefore transferred to the 

surface and subsurface response of the basin. 

Figure 4.10 shows the calibrated travel time distribution for subsurface and channel 

conditions under different precipitation events.  The time to peak and peak responses depend on 

both rainfall spatial distribution and the magnitude of the rainfall event (Figure 4.10). A significant 

similarity among the probability density functions was found with a JSD =  0.012. 
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Figure 4.10 Temporal variability of travel time distribution for subsurface and channel 

conditions in the Cedar River Watershed. 

4.5.4  Catchment total response 

The total hydrologic response of the catchment was calculated by numerical convolution of 

each component of the hydrologic response function (i.e. surface and surface compartments) and 

their corresponding rainfall partitions (i.e. net rainfall) through Equations (4.14-4.15). The 

temporal distribution of flow discharge at the outlet of the Cedar River Watershed for both 

calibration and validation periods is displayed in Figure 4.11. Predictions using WEPP-CTM 

agreed well with the observations, except for months during the spring where snowmelt occurred. 

Hydrograph peaks for the spring season tended to be underpredicted for the calibration period 

while during the validation period they were overpredicted. Prediction results obtained by using 

the Muskingum-Cunge method (WEPP-MK) developed by Wang et al. (2010) were included for 

comparison. Both methods showed similar predictions, with the WEPP-MK more accurate in 

estimating peak discharges. 
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Figure 4.11 Daily flow discharge at the outlet of the simulated subcatchment of the Upper Cedar 

River Watershed. 
 

Table 4.2 shows the differences and model efficiencies between the observed daily flow and 

predicted daily flow for the Upper Cedar River Watershed for both the calibration and validation 

periods using both WEPP-CMT and WEPP-MK. The RMSE for both models were of similar 

magnitude. WEPP-CMT presented slightly higher errors (RMSE = 5.2 mm) in comparison with 

the ones obtained with WEPP-MK (RMSE=4.0 mm). The proposed transport model in this study 

tended to underestimate the daily flow amount with PBIAS= -2.8%. Similar percent bias was found 

for the conventional routing method (PBIAS=-3.1%), which is a condition expected since as the 

water balance for both models are equivalent (Table 4.3). Small differences were introduced during 

the calculation of the numerical convolution but considered negligible for this study. Correlation 

between observations and predictions were in the acceptable range for both the WEPP-CMT and 

WEPP-MK models, being R2=0.57 and R2=0.71, respectively (Ibarra-Zavaleta et al., 2017). Nash-

Sutcliffe model efficiency values for predicted daily flow discharge values using WEPP-CTM and 

WEPP-MK were 0.57 and 0.70, respectively. This difference was due to the capacity of the 

conventional method (WEPP-MK) to capture peaks more accurately than the model based on 

travel time distributions (WEPP-CTM) (Figure 4.11). However, both models were in the 

acceptable range of prediction (Ibarra-Zavaleta et al., 2017; Abouelnour et al., 2019). 
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Table 4.2 Performance evaluation of daily flow discharges for Cedar River Watershed for both 
calibration and validation periods. 

Model RMSE (mm) PBIAS (%) R2 NSE 
Calibration Validation Calibration Validation Calibration Validation Calibration Validation 

WEPP-CMT 5.20 5.09 -2.8 2.1 0.57 0.66 0.55 0.65 
WEPP-MK 4.00 4.00 -3.1 2.6 0.71 0.77 0.70 0.77 

 
 

For the validation period, RMSE values were similar to those found in the calibration period; 

the WEPP-CMT model had RMSE = 5.09 mm while the WEPP-MK model had a RMSE = 4.00 

mm (Table 4.2). The mass transport model showed improvement but still underestimated daily 

flow with a PBIAS = -3.1%, whereas the conventional routing shifted to daily flow overprediction 

with PBIAS = 2.6%. Improved correlation between observed values and predictions for both 

models considered here was observed. Correlation coefficients showed acceptable ranges for 

performance evaluation for hydrological models. Model efficiencies improved for the validation 

period. Nash-Sutcliffe model efficiency values were 0.65 and 0.77 for WEPP-CMT and WEPP-

MK, respectively. 

Accumulated monthly streamflow for both calibration and validation periods are shown in 

Figure 4.12. Similar to daily conditions, streamflow was often under predicted by WEPP-CMT, 

except for winter months where WEPP-MK also showed similar underprediction. However, for 

most months the routing model based on travel time distributions predicted ~80% of the monthly 

streamflow that occurred in the subcatchment of the Upper Cedar River Watershed accurately. 

 
Figure 4.12 Monthly flow discharge at the outlet of the modeled subcatchment of the Upper 

Cedar River Watershed. 
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Water balance for water years 2009-2010 is shown in Table 4.3. About 20% of the input 

water left the watershed in the form of evapotranspiration for the three water years. Link et al 

(2004) reported a similar ET (21%) for old growth coniferous trees exceeding 450 years and 

located 405 km south the Cedar River Watershed and mean annual temperature of 8.7 oC.  For 

younger ages of coniferous forests, 255 km northwest of the Cedar River Watershed, Jassal et al. 

(2009) measured ET using the eddy covariance technique. The measured ET was about 23% of 

the annual precipitation. Therefore, the simulated ET in this study is comparable with values found 

in literature considering the similarities in climate. The fraction of the input water contributing to 

baseflow was very small in comparison to the amount of subsurface flow (~70%). Surface flow 

was ~10% of the precipitation in the analyzed water years. No groundwater recharge was assumed 

in the watershed as an impervious layer was present at a depth of 0.60 m from the soil surface, so 

that the major contribution to the hydrologic runoff was by subsurface flow. 

Table 4.3 Annual water balance from the WEPP-CTM model for 2009-2011 water years. 

Water year P RM ET D ∆TSW ∆GW QB QS QSB 
 (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

2009 2590 2538 551 43 -68 0 43 291 1721 
2010 2494 2467 485 43 151 0 43 96 1692 
2011 3348 3281 499 43 -66 0 43 335 2470 

Note: P = precipitation, RM = rain plus snowmelt, ET = evapotranspiration, D = deep percolation from the soil profile, ∆TSW and ∆GW = 
yearly change in soil water and groundwater, QB  = baseflow, QS = surface runoff, and QL = lateral flow. 

 
Among the available studies dealing with hydrology at a large scale, some of the most similar 

investigations to the case study here are shown in Table 4.4. The WEPP model performed well for 

relatively small catchments (0.09-40 km2) with NSE varying from 0.42 to 0.94 for both calibration 

and validation scenarios. Larger catchment applications using WEPP included studies where NSE 

ranged from 0.55 to 0.82, and only three studies were found. Other well-known models, such as 

SWAT, commonly applied in agricultural watersheds include studies at watershed scales with 

drainage areas varying from 44 to 400 km2. Overall, SWAT efficiencies were in acceptable ranges 

(0.34-0.94) and several studies could be found in the literature. Between 2016 and 2019, 1538 

SWAT publications were identified (https://www.card.iastate.edu/swat_articles). This indicates 

that the SWAT model has experienced continuous development and application for water quantity 

and quality research at catchment scales. 
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Table 4.4 Comparison of model performance (NSE) of large-scale hydrological models and 
WEPP model for flow discharge estimation. 

Reference  Watershed  Model Drainage 
area Time period NSE 

   (km2) CAL VAL CAL VAL 

Conroy et al. (2006) 
North Fork Caspar 

Creek Experimental 
Watershed (U.S) 

WEPP 4.24 1989-
1991 1992-1997 0.42 0.70 

Pandey et al. (2009) Karso Watershed 
(India) WEPP 27.93 1996 

1992, 1993, 
1995, 1997, 
2000 

0.92 0.88 

Dun et al. (2009) Hermada watershed 
(U.S.) WEPP 0.09  1995-2000  0.45 

Singh et al. (2011) Umroi Watershed 
(India) WEPP 2.39 2003 2004 0.94 0.87 

Brooks et al. (2016) Lake Tahoe Basin (U.S) WEPP 19.12-
36.75 

1989-
2005 1989-2005  0.37-0.42 

Gould et al. (2016) Little Salmon River 
Watershed (U.S.) 

VIC-
WEPP 1491 1979-

1994 1995-2010 0.76 0.75 

Afshar and 
Hassanzadeh (2017) 

Torohg Dam Watershed 
(Iran) WEPP 163.12 2004-

2005 2006-2007 0.854 0.824 

Srivastava et al. 
(2017) 

Cedar River Basin 
(U.S.) WEPP 105 1997-

2003 2004-2011 0.55 0.60 

Rouhani et al. 
(2007) 

Grote Nete River 
(Belgium) SWAT 383 1986-

1989 1990-1995 0.67 0.66 

Geza and McCray 
(2008) Turkey Creek (U.S.) SWAT 126 1998-

2001 
 0.27-

0.77 
-0.01-
0.70 

Glavan et al. (2012) River Axe (England) SWAT 400 1988-
1997 1998-2005 0.62 0.47 

Mishra and Kar 
(2012) 

Banha Watershed 
(India) SWAT 16.95 1996 2000, 2001 0.70 0.62-0.70 

Cerro et al. (2014) Alegria Watershed 
(Spain) SWAT 53 2009-

2010 2010-2011 0.68 0.49 

Fohrer et al. (2014) Kielstau Watershed 
(Germany) SWAT 50 2003-

2005 2006-2009 0.83 0.76 

Oliver et al. (2014) Big Haynes Creek (U.S) SWAT 44 2003-
2006 2007-2010 0.49 0.37 

McMichael et al. 
(2006) 

Jameson catchment 
(U.S) 

MIKE-
SHE 34 1962-

1981 1983-1992 0.80 0.60 

Ping et al. (2017) Gujiao Watershed 
(China) 

MIKE-
SHE 1584 1961-

1975 1976-1980 0.87 0.94 

Sonnenborg et al. 
(2017) 

Skjern and Lejre 
catchments (Denmark) 

MIKE-
SHE 1098, 465 

2008-
2010, 
2002-
2008 

2011, 2009  0.67, 
0.49 

Dan et al. (2012) Heihe River basin 
(China) VIC 11.6 × 

104 
1986-
1990 1993-1997 0.74 0.72 

Meng et al. (2017) Jinshajiang River Basin 
(China) VIC 3.35 x 

104 
2002-
2007 2008-2010 0.78 0.78 

Lu et al. (2017) Yellow River, Yangtze 
River (China) VIC 

12.19 x 
104, 

13.77 x 
104 

1981-
1996 1997-2000 0.72, 

0.75 
0.75, 
0.79 

CAL: Calibration period 
VAL: Validation period 
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Other model applications for MIKE-SHE and VIC can be also found in the literature with 

acceptable performance (NSE ~0.70), with VIC applied to very large areas. Comparing model 

performances in Table 4.4 and the WEPP-CTM implementation presented in this research, one can 

conclude that WEPP-CTM was in the range of acceptable efficiency (NSE ~0.62) among well-

known models for watershed scale applications in this very limited case study application. 

4.6 Concluding remarks 

This paper presented the formulation of a new approach for hillslope and channel routing 

based on catchment geomorphology and travel time distributions. The geomorphological 

approaches of the hydrologic response pursued herein showed a suitable stochastic framework for 

streamflow routing and potential transport of reactive solutes, which is mainly controlled by 

contact times of the hydrological carrier between the mobile and immobile phases. The model was 

tested to simulate the transport of the hydrologic response in a snow-dominated mountainous 

watershed, a subcatchment of the Upper Cedar River Watershed, which is located in western 

Washington state, U.S. Travel times on hillslopes had a relatively small effect on shaping of the 

surface hydrologic response functions. Surface travel time distributions showed relatively low 

sensitivity when imposing different hillslope flow velocities (JSD = 0.03), being that the flow 

velocities in the channels were almost twice as high as those on the hillslopes (𝑟 = 1.77). However, 

response functions tend to be dissimilar when channel velocities increase. 

Subsurface response functions of the catchment highly depended on the hillslope mean travel 

time. Long travel times shaped a response function dominated by storage-effects (𝛼  = 100 

hours/(km2)0.38), whereas convection-dominated responses were observed when travel times 

decreased (𝛼 = 10 hours/(km2)0.38. Probability distributions were dissimilar for small changes in 

hillslope mean travel times (JSD = 0.3). The channel routing for water leaving the hillslope as 

subsurface flow seemed to be highly sensitive to changes in flow velocity. Hydrologic response 

functions had shorter times to peaks and higher peaks for small increments in flow velocities. The 

dispersion coefficient in channels was the least sensitive parameter (JSD=0.00053) for both surface 

and subsurface stochastic approaches. However, the inclusion of the dispersion mechanism in the 

hydrologic response function provided the invariant skewed-left shape seen in natural hydrographs. 

Additionally, rainfall spatial heterogeneities had a relatively small effect on temporal variability 
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of the hydrologic response for the study area but only in overall characteristics such as time to 

peak and peak response. 

The applicability of the WEPP-CTM to predict flow discharges at the outlet of the 

subcatchment of the Upper Cedar River Watershed showed an acceptable performance. Overall, 

good correlation between observed and predicted flow discharges was achieved (R2 = 0.62). 

Relatively small underprediction of streamflow was detected for both calibration and validation 

periods with PBIAS = -2.8% and 2.1%, respectively. The overall Nash Sutcliffe Efficiency was 

0.60, which is an acceptable value in hydrologic modeling. Nonetheless, an existing routing model, 

WEPP-MK, had a greater model efficiency (NSE = 0.73). This suggests that the new model 

assumptions might need to be relaxed, especially the assumption of a uniform wave celerity over 

the entire catchment, which seems to be inaccurate for mountainous watersheds where velocity 

gradients are higher than in relatively flat watersheds. 

In summary, the routing model presented in this study showed an acceptable performance in 

predicting streamflow at the outlet of the subcatchment of the Upper Cedar River Watershed. The 

interaction of a routing method based on travel time distributions and the WEPP hillslope model 

opens a window for modeling of transport of reactive solutes (e.g. nitrates), which is an unexplored 

field for the WEPP model at watershed scales. 
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 CONCLUSIONS 

5.1 Research overview 

The studies in this dissertation dealt with three major factors limiting advancement of the 

WEPP model (v.2012.8). The resolution of the precipitation input of the stochastic simulation 

option in WEPP has been upgraded, a new subsurface drainage procedure integrated into the main 

routines of the WEPP model, and a flow routing method based on general transport adapted to 

extend research on solute transport. 

In the first study, a parsimonious stochastic storm generator based on 5-min time resolution 

and correlated non-normal Monte Carlo-based numerical simulation was created. The model 

considered correlated non-normal random rainstorm characteristics such as arrival time, storm 

duration, and amount of precipitation, as well as the storm intensity distribution. The accuracy of 

the model was verified by comparing the generated rainfall with rainfall data from a randomly 

selected 5-min weather station in North Carolina, U.S. 

In the second study, the subsurface drainage routines in the WEPP model (v.2012.8) were 

tested and validated. The current version revealed serious errors in the routines governing 

subsurface flow estimation, so the model was improved through the modification of subsurface 

drainage, percolation, water balance, and soil water distribution algorithms, providing, thus, a 

more realistic estimation of the drainage at field scales. The modified WEPP model was tested and 

validated on an extensive dataset collected at four experimental sites managed by the USDA-ARS 

within the western Lake Erie Basin. 

In the third study, the theoretical framework for a new hillslope and channel-routing routine 

for the WEPP model (v.2012.8) was introduced. A routing model (WEPP-CMT) was developed 

to allow for continuous mass transport modeling for flow and transport of reactive solutes. The 

model structure used the functionality of WEPP to simulate hillslope responses under diverse land 

use and management conditions and a Lagrangian description of carrier hydrologic runoff for 

hillslope and channel states, both represented in the model through travel time distributions derived 

from catchment geomorphologic properties using a stochastic scheme. Model functionality was 

tested in a sub-basin of the Upper Cedar River Watershed in the U.S. Pacific Northwest.  
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Overall, the studies in this dissertation have improved the WEPP model’s ability to predict 

more accurate hydrology, improved implicitly the soil loss estimates by including not only better 

input of precipitation but also integrating a new subsurface drainage algorithm, and finally 

increased the potential of the model to be used at larger scales as well as for transport of reactive 

solutes. 

5.2 Major research findings 

Major research findings from the study are provided below. 

The stochastic storm generator proposed in the first study was capable of reproducing the 

essential statistical properties of the storm characteristics such as time between storms, storm 

duration, amount of precipitation, and intensity distribution. The moment estimation efficiency 

showed that details of the storm features were captured for periods of continuous precipitation 

longer than 20 years. However, a 100-year simulation had the best representation of the storm 

variables. The proposed model shows promising potential in studies where high temporal 

resolution rainfall is required and within storm intensities play essential roles in estimation of other 

hydrological or environmental variables. 

The current version of the WEPP model (v2012.8) did not accurately predict the daily 

subsurface drainage fluxes for the four experimental sites managed by the USDA-ARS within the 

western Lake Erie Basin analyzed in this study. The NSE values ranged from -4.72 to -0.20. The 

modifications in the water percolation, water table generation, and evapotranspiration algorithms 

of the source code (WEPP model, v2012.9) improved subsurface drainage calculations at the same 

sites. Calibration and validation of the improved version at three experimental sites showed that 

WEPP could predict subsurface drainage amounts well with NSE ~0.65 and NSE ~0.61, 

respectively. On average 21% of the precipitation at the study sites left the field as subsurface flow. 

The monthly and annual amounts of subsurface drainage were also well calculated by the modified 

WEPP model (NSE ~0.70). The combined use of the enhanced WEPP model and a soil property 

estimation model (ROSETTA) showed that an acceptable amount of drainage can be estimated 

with a limited amount of field data. 

The hydrologic response based on catchment geomorphology and travel time distributions 

(WEPP-CMT) was demonstrated as a suitable stochastic framework for streamflow routing and a 

potential tool for transport of reactive solutes. For the sub-basin in the Upper Cedar River 
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Watershed, surface travel distributions had relatively small effects on shaping the hydrologic 

response function (JSD = 0.03), which suggested that velocity in the channels and hillslopes did 

not differ significantly. Subsurface response functions, on the contrary, were highly dominated by 

the hillslope travel time (JSD = 0.3), given that the mean travel time equaled 12.89 hours for the 

catchment in the study. The channel travel distributions were highly dependent on the flow velocity 

(JSD = 0.27), whereas hydrodynamic dispersion showed a small effect on the channel travel 

distributions (JSD = 0.00053) but primarily contributed to the overall shape of the response 

function. The applicability of the WEPP-CTM to predict daily flow discharges for the study site 

showed an acceptable performance with an overall NSE = 0.60. 

5.3 Limitations of the current study and future research 

A primary limitation found in the stochastic storm generator developed in the first study was 

the need for at least 10 years of data to reproduce acceptable storm characteristics. However, for 

most U.S precipitation databases (e.g. ASOS, NCDC, USGS), this limitation should not represent 

any restriction since most of the stations in these databases contain precipitation periods longer 

than 10 years. Another limitation was the assumption that storm generation is performed using 

stationary monthly probability density functions, which may not be entirely accurate in locations 

where climate change has been shown to have a significant effect on the amount of precipitation 

and intensities. Future work on this issue can be done by relaxing this assumption and 

characterizing the trend followed by the data and by adjusting the distribution parameter to this 

trend. Additional work would include an extensive test with more weather stations measuring 

precipitation at different time increments and spatial characterization of the parameters defining 

the distributions for those stations, which may allow the use of synthetic storms in ungauged 

locations provided relevant information from a regional analysis is available. 

Limitations of the study on the implementation of a new subsurface drainage routine in the 

WEPP model include the fact that the model was only tested under three soil types (i.e. loam, clay 

loam, silty clay loam), and the additional soil properties required by the new model were generated 

using a soil property generator (ROSETTA) rather than measured field data, which is often 

recommended. Future work would include a test of the model under different soil types and slope 

conditions, model adaptation to controlled water table scenarios, and the extension of the model 

to WEPP watershed simulations. 
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A drawback of the routing model (WEPP-CMT) found in its application to the sub-basin of 

the Upper Cedar River Watershed was that uniform channel flow velocity was assumed for the 

entire watershed, which seems to be inaccurate for mountainous watersheds where velocity 

gradients are greater than in relatively flat watersheds. This limitation could be addressed by 

relaxing the above assumption and characterizing the wave celerity and dispersion coefficient at 

several points in the channels if discharge information is available. Additionally, the extension of 

this model to allow for transport of reactive solutes needs to be addressed along with an expanded 

hillslope component that includes all sorption/desorption processes determining the temporal 

variability of the solute mass transported by the moving particles interacting between the mobile 

and immobile phases. 
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