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UTM Universal Transverse Mercator 

UWBDR Upper West Branch DuPage River 

VIF Variance inflation factor 

WGS-84 World Geodetic System 1984 

WSA Watershed areas 

WSlp Average watershed slope 

WTD Depth to water 

Wtl Wetland areas 
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ABSTRACT 

Land use alteration and climate change are major contributors to the hydrological cycle 

within watersheds. They can influence the quantity and quality of water resources, the ecosystem 

and environmental sustainability. Urban areas have expanded in recent decades, accompanied by 

a noticeable increase in energy and water use. Such changes in land use have many implications 

for humans to meet the increasing share of the planet’s resources and water issues. Hence, 

distinguishing the effects of land use change from concurrent climate variability is a particular 

challenge for studies on operational management processes. In this work, some shortcomings 

related to climate variability and land use change have been addressed, as applied to land surface 

temperature (LST) and groundwater resources. Thus, the main goal of this study is to evaluate the 

impacts of land use change on surface temperature and the impact of urbanization and climate 

variation on hydrology. The research methodology included modeling approaches that were used 

to estimate the land surface temperature and the responses of hydrology to climate change and 

urbanization. 

Land use maps derived from Landsat datasets were analyzed using several classification 

techniques to evaluate the intensity and pattern of urbanization and land surface temperature in the 

Greater Cairo Region (GCR), Egypt. Accuracy of Landsat derived land use data were relatively 

high and up to 96.5%. Findings indicated that the GCR land use alteration was dynamic and that 

vegetation loss was the main contributor to urban expansion in the GCR. Consequently, this led to 

increased LST and modified urban microclimate. The results showed that vegetation cover 

decreased by 7.73% within a 26-year timespan (1990-2016). 

Land use alteration impacted not only land surface temperature, but also, combined with 

variation in climate, affected watershed hydrology, specifically streamflow and baseflow. Changes 

in streamflow and filtered baseflow in three watersheds: Little Eagle Creek (LEC), Upper West 

Branch DuPage River (UWBDR) and Walzem Creek watershed, from 1980 to 2017, caused by 

climate alteration and land use change were separated and accessed using the SWAT (Soil and 

Water Assessment Tool) model. Results showed that SWAT performed well in capturing the 

streamflow and baseflow in urban catchments. SWAT model calibration and validation was within 

acceptable levels for streamflow and baseflow. About 30%, 30% and 12% of the LEC, UWBDR 

and Walzem Creek watershed areas changed from agricultural to urban areas. Findings for the 
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LEC watershed indicated that the variability in the baseflow and streamflow appeared to be heavily 

driven by the response to climate change in comparison to the variability due to altered land use. 

The contribution of both land use alteration and climate variability on the flow variation was higher 

in the UWBDR watershed. In Walzem Creek, the alteration in streamflow and baseflow appeared 

to be driven by the effect of climate variability more than that of urbanization. 

Finally, the impacts of basin lithology and physical properties on baseflow were examined 

using multiple regression models. Results suggest that the baseflow index (BFI) can be predicted 

using the basin’s physical and geological characteristics. This included different land uses and 

climate variables with high accuracy and low relative errors. BFI was found to be highly driven 

by precipitation and fractional areas of different lithologies in the basins in various regions. These 

could be estimated with a high accuracy, as opposed to evapotranspiration that caused lower model 

accuracy. 

Information gleaned from these outputs can help in understanding the dynamics of land use 

change and climate variation, in order to help policy-makers predict and plan for future expansion 

in developing countries and across the globe, in achieving long-term sustainability of soil and 

water resources and their impact on climate change. Increasing efforts to prevent further 

urbanization and vegetation loss should be regarded as a practical management strategy and are of 

vital significance to many communities. In addition, the regression models developed in this study 

can be easily exploited in other areas with poor hydrological data quality and ungauged sites in 

order to estimate the amount of groundwater discharge. 
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 INTRODUCTION                                                       

EFFECTS OF LAND USE CONVERSION ON ENVIRONMENTAL 

AND ECOLOGICAL ISSUES 

1.1 Introduction 

Land use conversion has generally been considered a local environmental and ecological 

issue, but it is becoming a force of global importance. Population growth and associated urban 

expansion are one of the main factors that impact climate, soil, water quality and quantity. Land 

surface impacts that occur during the process of urbanization include, but are not limited to, soil 

compaction, waterways, vegetation reduction and change from permeable to impervious surfaces 

as buildings, parking lots and roads are constructed. However, several decades of studies have 

uncovered the broader environmental effects of land use change throughout the globe, ranging 

from changes in atmospheric composition to the extensive alteration of Earth’s ecosystems. A 

seeming lack of planning of land use has been a problem at local to regional scales, making it a 

major issue in the study of worldwide ecological change (Adger et al., 2005; Omran, 2012). 

Urban areas have expanded in recent decades, accompanied by a noticeable increase in 

energy and water use. Such changes in land use have many implications for humans to appropriate 

an increasing share of the planet’s resources (Foley et al., 2005), environmental resilience, and 

water issues, such as the alteration of runoff, infiltration and groundwater discharge (Chen et al., 

2017).  Distinguishing the effects of land use change from concurrent climate variability and 

understanding the water balance is a particular challenge for studies on operational management 

processes. This problem can be solved by understanding the interaction between the Earth’s 

surface, atmosphere, hydrological components and the dynamics of land use change at various 

scales that drive them. 

In light of the above discussion, three main issues or gaps in this work related to the 

interaction between land use change, surface properties and hydrology, have been identified for 

making a contribution to the scientific community. 

First, land use dynamics can alter local and regional climates through their impacts on net 

radiation, the division of energy into sensible and latent heat, and partitioning of rainfall into soil 

water, evapotranspiration and runoff (Foley et al., 2005). Urban heat islands are an extreme case 

of how land use alters regional climate. The increases in land surface temperature over the past 
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several decades are considered a major issue in urban regions, due to the conversion of vegetation 

cover to impervious cover (Pal & Ziaul, 2016), which in turn has a negative impact on people 

(Tran et al., 2017), affects many environmental processes and modifies the degree of solar 

radiation absorption, evaporation rates, desertification, air pollution, albedo, heat storage, wind 

turbulence and many aspects of the water balance (Javed Mallick et al., 2008). 

Here, two significant facts were identified: 1) Studies revealed that settlements in developing 

countries grow five times as fast as those in developed ones (Bhagyanagar et al., 2012). Modeling 

research suggested that land use conversion in arid region impacts climate through the change in 

water balance, but the modification in temperate and boreal vegetation affects climate primarily 

through changes in surface radiation balance. Cities located in semi-arid and arid regions require 

more attention to be better evaluated and understood. In Egypt, the reduction of vegetation cover, 

increase of impervious cover, and the morphology of buildings in big cities combines to store heat, 

lower evaporative cooling and warm the surface air. The reduction of vegetation cover and 

agricultural area, especially for urbanization purposes, illustrates the poor planning of farmland 

protection laws and the ignoring of environmental and ecological legislation implemented in the 

urban master plan. In addition, there are limited regional figures on land expense for monitoring 

urban expansion. 2) In recent decades, accurate mapping of land surface temperature and urban 

heat islands have become more significant in providing information about surface physical 

properties. Even though land surface temperature and land use alteration can be monitored by 

traditional surveys in developed countries, the use of satellite images has become the predominant 

way to monitor surface radiant temperature on local and regional scales (Li et al., 2014; Kimuku 

& Ngigi, 2017). Satellite datasets are considered a time and cost-effective technique that can 

provide more information with respect to geographical distribution of land use (Abdulaziz et al., 

2009). As a result, they have been widely used to evaluate land use change with useful outputs and 

different scales. Nevertheless, acquiring observed meteorological data is quite challenging in 

Egypt, due to the limited resources of data acquisition. Therefore, in this sense, the concept of 

using remote sensing data in conjunction with Geographic Information Systems (GIS) can provide 

effective ways for mapping urban areas, modeling urban growth and monitoring the dynamic 

changes of land use. 

Second, the diversities of water-related challenges are large and expected to increase in the 

future. Hydrological modeling is essential to help understand these ongoing issues including water 
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quality and quantity, soil moisture and erosion, climate change, and land use change impacts at 

different scales (Anache et al., 2017; Martinez-Martinez et al., 2014). Land use conversion plays 

an important role in the distribution of surface water balance and the partitioning of precipitation 

into evapotranspiration, runoff, and groundwater discharge. Nonetheless, water demands 

associated with land use practices, e.g. irrigation, directly affect freshwater supplies through water 

diversion and withdrawal (Foley et al., 2005).  

Groundwater is considered the primary source of water for over 1.5 billion people worldwide, 

and is a critical component of the global environment (Alley et al., 2002). In the United States, 

approximately one-half of the population depends on groundwater for its supply of potable water. 

Despite the widespread use of groundwater as potable drinking water in the United States and 

globally, groundwater is a poorly understood resource by most people (Solly et al., 1998), and it 

has been increasingly threatened, directly and indirectly, by the action of human activities and land 

use alteration. Therefore, studies to evaluate the spatial and temporal distribution of water 

resources, and accurate analysis of water flow (streamflow and baseflow) is critical for sustainable 

groundwater management, which is required for sound ecosystems and quality of human life.  

This problem can be solved by the combination of hydrologic models and the study of land 

use dynamics. Compared to groundwater sampling and monitoring, groundwater modeling is less 

complex and costly, and allows evaluation of broad areas (Jang et al., 2018). In this sense, three 

main points must also be considered: 1) The impacts of land use change and climate variability on 

watershed hydrology are theoretically interlinked and, therefore, cannot be separated. This 

coupling effect, together with water withdrawal and retention, contributes to the uncertainties in 

identifying the specific impact of each factor on watershed hydrology. It makes inferring causation 

difficult to accomplish at a sufficient scale, and, therefore, it remains unclear which of these factors 

dominantly contributes to watershed hydrology (Omer et al., 2017). In this sense, distinguishing 

the effects of land use change from concurrent climate variability and understanding the water 

balance and water flow are considered a particular challenge for studies on operational 

management of reservoirs and river basins. 2) Impacts of climate and land use change on watershed 

hydrology vary from place to place and need to be investigated on a local scale (Khoi & Thom, 

2015). Therefore, there is a need to use comprehensive and physical tools to evaluate as much 

information as possible from limited existing data. Hence, hydrological models, rather than paired 

catchment and statistical approaches, are considered the most appealing approach to carry out 
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impact assessments studies. They provide a conceptualized framework and are suitable to be used 

as part of scenario studies on the relationship between climate variability, land use change and 

hydrological components. Among these models is the Soil and Water Assessment Tool (SWAT). 

SWAT is a conceptual mathematical semi-physical, semi-distributed based model (Luo et al., 2012) 

that can simulate surface flow and shallow groundwater dynamics based on hydrologic response 

units (HRUs). 3) Streamflow and baseflow in the US Midwest region reported upward trends with 

both land use change and climate variability in urbanized watersheds (Ahiablame et al., 2013a; 

Ahiablame et al., 2013b; Kumar et al., 2009). While previous streamflow and baseflow trend 

investigations included urbanized watersheds in the Midwest region, they lacked integration 

analysis, which exclusively focuses on the interactive effects of both land use change and climate 

variability on urbanized catchments. In this context, it is critical to focus on this issue, considering 

both the individual and coupled effects of both human and natural impacts. 

Third, baseflow is that part of streamflow that is derived from groundwater and other delayed 

sources such as snowmelt into the stream, and considered to be one of the most important low-

flow components in the hydrological cycle of a watershed in different climatic conditions. 

Baseflow displays spatial and temporal variability. Here, it is believed that, not only land use 

variation and climate conditions play a role in controlling baseflow, but also other watershed 

properties, for instance topography, geology, geomorphology, vegetation, frequency and amount 

of discharge, and soil types. Many of these factors may be altered due to human activates on the 

landscape, and therefore, it is critical to understand the relationship between catchment physical 

properties and baseflow.  

Two main facts related to this point can be identified: 1) Previous studies indicated that the 

effects of watershed physical properties on baseflow can be evaluated through relationships 

between catchment properties and baseflow but not in the context of regional scale that has 

different climatic pattern and geologic features. In addition, when it comes to which geologic unit 

and which climate category to consider in quantifying the impacts on baseflow, nothing is 

definitely known. Even though there is an assumption that the underlying geology influences 

baseflow, previous studies that estimate average annual baseflow typically simplify the effect of 

watershed geology to physical parameters that represent the fractional area of aquifer in a 

catchment (Bloomfield et al., 2009). To date the relationship between catchment geology and 

baseflow index (BFI) has not been quantified in a systematic manner. 2) Baseflow is generally 
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derived from available stream flow data using hydrograph separation methods. However, most of 

these methods are limited to estimating baseflow in gauged sites. With the development of 

geographic information systems and continuously increasing availability of digital data, it is much 

more feasible today to derive variables representing soil, geology, climate, and geomorphological 

characteristics of a basin than a decade ago. In this sense, it is now possible to explore relationships 

between more basin variables and groundwater recharge in ungauged watersheds, with 

possibilities of finding more accurate and meaningful models. Therefore, the last objective in this 

project is to test the impact of geological bedrock on baseflow along with other catchment 

properties.  

1.2 Objectives 

The overall goals of this dissertation are to 1) Analyze land use alteration by utilizing multi-

spectral Landsat data of Greater Cairo Region (GCR), Egypt, for 1990, 2003 and 2016 through the 

integration of remote sensing and GIS.  In addition, the use of these Landsat data to estimate land 

surface temperature (LST) in GCR; 2) assess the response of watershed streamflow and baseflow 

to climate variability and land use change in urban watersheds in the Midwest region of the United 

States, and compare it with an urban catchment in a semi-arid region; and 3) develop statewide 

numerical regression models in Texas to evaluate the effects of bedrock geology and other 

catchment properties on baseflow and to estimate average annual baseflow in watershed tributaries. 

In this research, various modeling approaches were used to estimate the land surface temperature 

and the responses of hydrology to climate change and urbanization. Data were acquired from 

different sources. The specific objectives in this study are as follows: 

1. Evaluate the land use and land surface temperature changes through classifications 

and post-classification change detection techniques by utilizing multi-spectral 

Landsat Thematic Mapper (TM) and Operational Land Imager (OLI) data of GCR 

for 1990, 2003 and 2016. 1) quantitatively delineate different LULC classes and 

evaluate the pattern of LULC change from 1990 to 2016 in GCR; 2) provide tools to 

reliably investigate the variation of LST values in relation to land use change through 

time; and 3) examine the potential and the accuracy of RS and GIS utilization in 

monitoring the spatial distribution of LULC changes. Two of the most important 

underlying premises of the objectives tested in the investigation are the opportunity 
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of obtaining land use and LST maps from synoptic view of Landsat images over large 

spatial areas and improvement of thermal studies in Egypt that will be used to justify 

subsidies in legislation seeking to reduce impacts of thermal comfort in existing 

urban areas. 

2. Evaluate the response of watershed streamflow and baseflow to climate variability 

and land-use change in urban watersheds, based on simulation following a 

comprehensive calibration. 1) analyze long-term trends of historical streamflow, land 

use and rainfall in an urban watershed; and  identify changes in land use from 1992 

to 2011; 2) calibrate and validate the SWAT model, using different land-use patterns 

for different periods; and 3) investigate hydrological streamflow and baseflow 

sensitivity to land-use change and climate variability and simulate the joint effects 

of both climate and land-use change on hydrology in these watersheds. For this goal, 

plausible scenarios of land-use change and climate variation were developed based 

on trends and information exploited from different watersheds. 

3. Investigate the impact of geological bedrock on baseflow and BFI along with other 

catchment properties. 1) Estimation of average annual baseflow in watershed 

tributaries in Texas from gauged sites using hydrograph separation models (recursive 

digital filter method); 2) Develop different geology-soil groups in the entire state of 

Texas to examine the physical relationship between average BFI and 

lithology/geological control in addition to other descriptive catchment properties, for 

instance climate, soil and topography; and 3) Make a statewide numerical regression 

model calibrated to the hydrograph separation results to estimate baseflow for 

ungauged areas and validate with regional relationships. This study hypothesizes that 

some catchment properties are more useful than others, and the more watershed 

variables included in the study, the more accurate the BFI prediction. 

1.3 Dissertation Organization 

This dissertation contains six chapters. Chapter 1: Introduction explaining the impacts of 

urbanization on ecological and environmental issues. It will focus of the research problems, gaps 

and the specific objectives of this study. Chapters 2 to 4 are standalone papers for each of the 
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proposed objectives in Chapter 1. Chapters 2 to 4 are reformatted from articles which are published 

in journals. 

Chapter 2 covers the first objective that evaluates the effect of urbanization on land surface 

temperature in the Greater Cairo Region (GCR). Chapter 3 and 4 cover the second objective of 

analyzing the single and combined effects of land use alteration and climate variation on hydrology 

in different urbanized watersheds using the SWAT model. Chapter 5 covers the third objective to 

evaluate the relationship between baseflow index and geology along with other watershed 

characteristics. Finally, Chapter 6 is designed as an overall summary and conclusion of this 

research, in addition to pointing out significant outputs, uncertainties, and recommendations for 

conducting further studies in the future.  
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 APPLICATION OF REMOTE SENSING AND 

GEOGRAPHIC INFORMATION SYSTEMS TO ANALYZE LAND 

SURFACE TEMPERATURE IN RESPONSE TO LAND USE/LAND 

COVER CHANGE IN THE GREATER CAIRO REGION, EGYPT  

Abstract 

The Greater Cairo Region (GCR), Egypt, has experienced rapid urban expansion and broad 

development over the past several decades, and faces many environmental consequences. In order 

to mitigate these consequences, it is essential to examine the historical change in the urban sprawl 

of GCR, and its effect on land surface temperature (LST). This study fulfills this goal by generating 

land use/land cover (LULC) maps derived from Landsat 5 Thematic Mapper (TM) for 1990 and 

2003 and Landsat 8 Operational Land Imager (OLI) for 2016, using several classification 

techniques. A spectral radiance model and a web-based atmospheric correction model were used 

to successfully evaluate LST from thermal bands of Landsat data. Overall accuracy of Landsat 

derived land use data were 90.3%, 96.5% and 94.9% for 1990, 2003 and 2016, respectively. The 

LULC change analysis revealed vegetation loss to urban land of 7.73% and from barren lands to 

urban uses of 8.70% within a 26-year timespan (1990-2016). This rapid urban growth 

significantly decreases vegetation areas, consequently increasing the LST and modifying the urban 

microclimate. Results from this study can help policymakers characterize the evolution of urban 

construction for future developments. 

2.1 Introduction 

Cities are dynamic due to unavoidable changes that can be assigned to many factors. One of 

the main factors behind these changes is urban growth and population expansion (Kafi et al., 2014). 

As the population of a given area increases, the interest for new settlements continues increasing 

at the expense of other land cover classes, for instance, vegetation and barren lands. Land surface 

impacts that occur during the process of urbanization include, but are not limited to, soil 

compaction, vegetation reduction and change from permeable to impervious surfaces as buildings, 

parking lots and roads are constructed. A seeming lack of planning of land use/land cover (LULC) 

has been a problem at local and regional scales, making it a major issue in the study of worldwide 

ecological change (Adger et al., 2005; Foley et al., 2005; Omran, 2012). Such changes have many 
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implications for human society, environmental resilience, and water issues, such as the alteration 

of runoff, infiltration and groundwater discharge (Chen et al., 2017). In addition, poor water quality 

occurs due to a lack of planning with comprehensive arrangements or any consideration regarding 

their effects on nature. Nevertheless, an increase in land surface temperatures (LST) is one of the 

key effects of LULC changes (Abdulaziz et al., 2009; Huyen et al., 2016; Li et al., 2014; 

Ogashawara & Bastos, 2012; Sahana et al., 2016; Sheikhi et al., 2015). Increases in LST over the 

past several decades are considered a major issue in urban regions, due to the conversion of 

vegetation cover to impervious cover (Pal & Ziaul, 2016), which in turn has a negative impact on 

people (Tran et al., 2017), affects many environmental processes and modifies the degree of solar 

radiation’s absorption, evaporation rates, desertification, air pollution, albedo, heat storage, wind 

turbulence and many aspects of the water balance (Javed Mallick et al., 2008). Therefore, the 

impact on environmental processes cannot be well-understood and mitigated without 

understanding the impacts of climate change, the interaction between the earth and the atmosphere 

and knowledge of land use/land cover change at various scales that drive them (Omran, 2012). 

Using remote sensing data in conjunction with Geographic Information Systems (GIS) have 

proved effective for mapping urban areas, modeling urban growth and monitoring the dynamic 

changes of LULC (Bhagyanagar et al., 2012; Kimuku & Ngigi, 2017). Remote sensing (RS) 

provides medium and high spatial, spectral and temporal resolution data with consistent and 

repetitive coverage of the earth’s surface (Owen et al., 1998), and a high capability to extract 

change information from satellite data (Pal & Ziaul, 2016). However, LULC change and LST can 

be monitored by traditional surveys and land based observation stations, as well as satellite data, 

because it is a time and cost-effective technique that can provide more information with respect to 

land use’s geographical distribution (Abdulaziz et al., 2009). Satellite RS techniques, therefore, 

have become prevalent in monitoring change detection in both rural and urban regions (Bauer et 

al., 1994; Wilson et al., 2002; Yang, 2002; Yuan et al., 2005). As a result, they have been widely 

used to evaluate LULC change with useful outputs and at different scales (Esam et al., 2012; 

Gilmore et al., 2008). 

Landsat imagery, in particular, is among the most widely used satellite system. These 

datasets are available since 1972 from seven satellites in the Landsat series and they have been a 

major component of NASA’s Earth observation program with four primary sensors: Multi-spectral 

Scanner (MMS), Thematic Mapper (TM), Enhanced Thematic Mapper (ETM+) and Operational 
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Land Imager (OLI). Landsat datasets have provided high resolution visible and infrared data, with 

thermal data and a panchromatic image. In addition, Landsat supplies an extraordinary level of 

information on the classification of several earth components at large scale (Butt et al., 2015; 

Ozesmi & Bauer, 2002) using a variety of automated change detection techniques and commonly 

applied classification algorithms (i.e. principle component analysis (PCA), unsupervised 

clustering, Hybrid, Fuzzy, Bayes and supervised classification). These change detection and 

classification techniques require personal experience and additional ancillary data with respect to 

study areas, i.e. very high resolution aerial images and ground data, which can be used to construct 

a trustworthy dataset for different classification algorithms that can be used further in training 

samples and accuracy assessments (Abdulaziz et al., 2009). Although ground data are considered 

to be the most reliable reference data, they are often either not accessible or very costly. Therefore, 

a pre-defined statistical characterizations file for the image is created to store a per-pixel signature 

of a certain land cover class. This uses the stored information and the raw digital number (DN) of 

each individual pixel in the scene and converts them to radiance values. Several researchers have 

applied similar techniques to achieve satisfactory results. For example, Landsat satellite images 

themselves were used to evaluate the performance of classification algorithms used to map forest 

clear cuts in the Pacific Northwest (Cohen et al., 1998). In addition, supervised classification 

maximum likelihood algorithms were applied to detect land cover change in a watershed in 

Pakistan and India with 95% and 92% overall accuracy, respectively (Butt et al., 2015; Rawat & 

Kumar, 2015). Although a high accuracy was obtained from these results, the presence of other 

reference data are essential to evaluate the overall accuracy and performance of the created 

geospatial maps (Abdulaziz et al., 2009). 

Accurate mapping of LST is becoming more significant in providing information about 

surface physical properties (Javed Mallick et al., 2008), and the use of satellite images has become 

the predominant way to monitor LST on local and regional scales (Kimuku & Ngigi, 2017; Li et 

al., 2014). The use of thermal remote sensing data were first demonstrated by Rao in 1972 for 

monitoring urban areas in the mid-Atlantic coast of the USA (Rao, 1972). The contributions of RS 

and GIS have since been used to evaluate and model LST in many regions with several climatic 

conditions by various scholars using a diversity of thermal infrared (TIR) sensors. For instance, 

LST and Normalized Difference Vegetation Index (NDVI) were evaluated to compare the spatial 

occurrence of droughts over the geo-botanical zone of Mongolia using the NOAA-Advanced Very 
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High Resolution Radiometer (AVHRR) (Bayarjargal et al., 2006). Sun and  Kafatos (2007) 

calculated the mean target brightness temperature and cloud cover fraction (CCF) derived from 

the Geostationary Operational Environmental Satellite (GOES-8) to find the correlation between 

LST and NDVI over North America. In addition, different algorithms were applied to retrieve LST 

from different satellite data, for instance, Landsat TM, Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER) and Moderate Resolution Imaging Spectroradiometer 

(MODIS), in different regional scales (Liu & Zhang, 2011; Omran, 2012; Youneszadeh et al., 

2015). Also, the patterns of LULC change were identified in some studies, followed by an 

investigation for the impact of these changes on LST (Ahmed et al., 2013; Sahana et al., 2016). 

Cities located in semi-arid and arid regions require more attention to be better evaluated and 

understood (Rasul et al., 2017). In many developing countries of the world, including Egypt, there 

are limited regional figures on land expense for monitoring urban expansion. Settlements in 

developing countries grow five times as fast as those in developed ones (Bhagyanagar et al., 2012). 

The present study focuses mainly on change detection evaluation of LULC and LST in the Greater 

Cairo Region (GCR) of Egypt for the past two decades, from 1990 to 2016. The GCR contains the 

largest portion of facilities and services, enabling the foundation of dwelling places for qualified 

work forces that are generally found close to and within the city (Zaki et al., 2011). Moreover, due 

to the suitable topographic and geologic setting, the areas surrounding GCR showed the highest 

proportion of urban expansion. This has contributed to the high rate of population growth, city 

expansion and extravagant development. 

The main thrust of this objective is to analyze LULC change through classifications and 

post-classification change detection techniques by utilizing multi-spectral Landsat TM and OLI 

data of GCR for 1990, 2003 and 2016 through the integration of remote sensing and GIS.  In 

addition, the use of these Landsat data to estimate LST in GCR will be evaluated through different 

models and algorithms, as described in detail in the methodology section. The current study aims 

to: 1) quantitatively delineate different LULC classes and evaluate the pattern of LULC change 

from 1990 to 2016 in GCR; 2) provide tools to reliably investigate the variation of LST values in 

relation to LULC change through time; 3) further evaluate the effect of vegetation on LST as 

derived from different algorithms for satellite imagery through an examination of the NDVI-LST 

and NDBI-LST (Normalized Difference Built-up Index) correlation based on statistical analysis 

methods and the texture of LULC changes, to determine the main causes of these environmental 
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changes; and 4) examine the potential and the accuracy of RS and GIS utilization in monitoring 

the spatial distribution of LULC changes. The information gleaned from the validated change 

detection outputs can help in understanding the dynamics of LULC change in order to help policy-

makers predict and plan for future developments in GCR, achieve long-term sustainability of soil 

and water resources, address impacts of climate change, and therefore characterize the evolution 

of new hot spots for urban construction lands and infrastructure development. 

Two of the most important underlying premises of the objectives tested in the investigation 

are the opportunity to obtain a LULC and LST maps from synoptic view of Landsat images over 

large spatial areas, and improved thermal studies in Egypt that will be used to justify subsides in 

legislation seeking to reduce impacts on thermal comfort in existing urban areas. 

2.2 Study area 

The selected study area for this research is the Greater Cairo Region (GCR), Egypt, which 

includes three sectors. The main sector is the metropolitan Cairo city on the eastern bank of the 

Nile River, parts of Giza City on the western bank of the Nile, and Qalyoubia, north of Cairo. The 

study area is located at 30°00’N and 31°20’E, in the middle and southern part, i.e. apex, of the 

Nile Delta Region, covering an area of 845,137 hectares (Figure 2.1). The Nile forms the 

administrative division between Cairo and Giza sectors, running through the study area in a 

floodplain 9 to 35 km wide. This is constricted by hills on both the eastern and western sides, with 

desert areas extending in the eastern and western direction (Shahin, 1990), characterizing it as a 

subtropical climatic region with high temperatures and solar radiation, dry and rainless summers, 

and cold, moist and rainy winters (Khoder, 2009). 

The GCR was selected because of its unique location and climatic conditions, with a 

diversity of historical heritages, making it one of the most dynamic urban regions in Egypt. It now 

represents about 23 % of the total population of Egypt and 43 % of the urban population. While 

the population expansion has grown tenfold in the whole country, the GCR has grown more than 

thirty fold in the last century and a half (El-batran & Arandel, 1998). Half of this expansion has 

taken place on vegetated and rich agricultural land, while the other half has been on the 

agglomeration fringes located at the borders of GCR. Little sporadic growth in the form of new 

communities has been created on what was desert land on the eastern district. Based on Central 
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Agency for Public Mobilization and Statistics (CAPMAS) estimation, it appears that GCR has a 

population of about 20 million as of 2016 (CAPMAS, 2017) (Figure 2.2). 

 

 

Figure 2.1. Greater Cairo Region (GCR), Egypt: (a) Location map, (b) the study area (Source: (a) 

ESRI online, (b) Landsat 8 Pan-Sharpened with Digital Elevation Model (DEM) from Shuttle 

Radar Topography Mission (SRTM) (U.S.Geological Survey, n.d.)) 
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Figure 2.2. Growth of GCR urban population during 1990-2016 according to Central Agency of 

Public Mobilization and Statistics (CAPMAS, 2017) 

2.3 Dataset description 

2.3.1 Satellite data 

Landsat 5 TM for 1990 and 2003 and Landsat 8 OLI 2016 were selected due to their high 

spatial resolution for both multispectral and thermal bands, which benefits an accurate location of 

different land uses and monitoring LST. Due to their availability, three cloud-free Landsat images 

were selected to detect changes in the study area: August 4, 1990; August 8, 2003; and August 11, 

2016 with scenes along the same path. The details of the Landsat data used in the current study are 

furnished in Table 2.1. All the satellite images were acquired during the summer season, 

intermediate to the agricultural growth season, in which most agricultural fields are green and 

active, which maximizes the spectral difference between these agricultural fields, urban areas and 

barren lands (Abdulaziz et al., 2009). High-quality Landsat data acquisition is available from 

private and public sources. 
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Table 2.1. Specification of Landsat satellite images used in the study (*TIR=120×30, data is 

acquired at 100 m and resampled to 30 m) 

Satellite Sensor 
Acquisition 

Date 
Path/Row 

Number of 

bands 

Radiometric 

Resolution 

Spatial 

Resolution (m) 

Landsat 5 TM 
Aug. 4th 

1990 
176/39 7 8 bit 

30  

*TIR= 120×30 

Landsat 5 TM 
Aug. 8th 

2003 
176/39 7 8 bit 

30  

TIR= 120×30 

Landsat 8 OLI/TIRS 
Aug. 11th 

2016 
176/39 11 16 bit 

30  

TIR= 100×30 

2.3.2 Auxiliary data 

Reference data were compiled for each of the three years and then randomly divided for use 

in either classifier training or for accuracy assessment. These data were used to collect sufficient 

information for image preprocessing, evaluate the ground truth of a certain type of land use with 

its imaging characteristics (Omran, 2012), and to determine the major types of land cover in the 

study area. The generated reference data include Egyptian topographic maps with a large scale 

(1:50,000) prepared by the Egyptian Military Survey, geologic maps, Digital Elevation Model 

(DEM) (U.S. Geological Survey, n.d.) and road networks (OpenStreetMap, n.d.). Different 

spectral classes was done on the basis of land-cover types obtained from Food and Agriculture 

Organization FAO-Land Cover Classification System (LCCS) of 2004, knowledge-based 

approaches and incorporated information from organizations and institutions of the Egyptian 

Government. The ground truth data were in the form of reference data points used for assessing 

accuracy of the classification, selected using high resolution GeoEye and QuickBird imagery 

(DigitalGlobe, n.d.) in addition to points collected during a field survey using Global Positioning 

System (GPS) receivers. 

Image processing, such as image extraction, rectification, atmospheric correction for 

Landsat data, restoration and classification, and GIS analysis and interpretation were performed 

using a set of software to assure higher accuracy: Earth Resources Data Analysis Systems (ERDAS) 

Imagine 2014, the Environment for Visualizing Images (ENVI 5.3), the Integrated Land and Water 
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Information System (ILWIS), ArcGIS 10.4 (ESRI) software, Python and Statistical Analysis 

System (SAS) software. 

2.4 Methodology 

The analysis included image preprocessing, image classification, land cover indices (NDVI 

and NDBI) derivation and the evaluation of LST using thermal bands in the Landsat dataset. A 

flowchart of the research process is described and summarized in Figure 2.3.  
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Figure 2.3. Data processing flow chart depicting procedures applied for preparation of LULC 

maps and LST evaluation from Landsat datasets 

2.4.1 Image preprocessing  

Both Landsat TM and OLI data are composed of independent single-band images. Therefore, 

it was necessary to combine these single-band images to a multi-band image of TM and OLI using 

a layer stacking tool. Landsat images were processed to a level-one terrain (L1T) corrected product, 
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which provided radiometrically calibrated and orthorectified images using ground control points 

(GCPs) and DEM to attain absolute geodetic accuracy (Ahmed et al., 2013). Therefore, the end 

result is a geometrically rectified image, free from any distortion related to the sensor, satellite and 

Earth’s surface (Zanter, 2016). The input Landsat data were georeferenced using the World 

Geodetic System 1984 datum (WGS-84) and the Universal Transverse Mercator (UTM) projection 

within zone 36 North, as the study area lay in this region. 

Although the data acquisition dates had clear atmospheric conditions for the study area, the 

three images were captured in different periods of time resulting in different atmospheric 

conditions. Hence, atmospheric corrections were conducted using the FLAASH module (VIS, 

2009), which was implemented in ENVI software. These atmospherically corrected images were 

clipped to occupy the study area using an image subset tool. Other radiometric and spatial 

enhancement techniques, like histogram equalization, principle component analysis (PCA), edge 

enhancement and spatial filtering, were carried out on each image to improve their visual 

interpretability. 

2.4.2 Optimum Index Factor (OIF) Calculation  

This study used the analytical method of the Optimum Index Factor (OIF) to determine the 

best RGB band combination emerging from all bands of the Landsat images (Chavez et al., 1982), 

without the thermal band. The OIF is a statistical approach to rank all possible red, green, blue 

(RGB) color combinations of multispectral remote sensing data according to total variance within 

bands and inter-band correlation coefficients. Its role is to provide spectral information of the 

object, i.e. the highest OIF has the highest variance and lowest duplication for the scene, and 

therefore, contains the highest amount of spectral information about the scene. The algorithm used 

to compute the OIF was (Qaid & Basavarajappa, 2008): 

 

𝑂𝐼𝐹 = 𝑀𝑎𝑥 [
∑ 𝜎(𝑖)𝑛

𝑖−1

∑ |𝑟(𝑗)|𝑛
𝑗−1

]            (2.1) 

 

where 𝜎( ) is the standard deviation of band i, and 𝑟(𝑗) is the absolute value of correlation 

coefficient of any two arbitrary bands. For the Landsat 5 TM data (1990 and 2003), the top ranked 

RGB band combinations were band1/band5/band7 (157) with OIF values of 60.784 and 56.431 
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for 1990 and 2003, respectively. The OIF calculation indicated that the band2/band3/band4 (234) 

RGB band combination had the highest spectral information with OIF value of 8155.43 for Landsat 

8 OLI 2016 (Figure 2.4). Overall classification accuracy was high when these bands were utilized 

in the classification process instead of using all bands (Omran, 2012). 

 

 

Figure 2.4. RGB band combination according to the highest OIF values of (a) TM 1990, (b) TM 

2003, and (c) OLI 2016 

2.4.3 Land Use/Land Cover Classification  

A classification scheme had to be established before image classification. By computing 

average spectra of each class, a spectral characteristic of each land use class in each of the acquired 

data had been recognized, resulting in a classification schema comprised of four LULC level 

classes described in Table 2.2. As highlighted below, a number of classification approaches were 

evaluated for their effectiveness in large area classification (Bauer et al., 1994). 
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Table 2.2. Classification schema of LULC in the study area. 

LULC classes Description 

Barren land Open spaces, bare lands and soils, sands, dunes and excavation sites 

Water Channels, rivers, waterlogged areas, estuaries and open water sources 

Vegetation Crop fields, agricultural lands, forests, trees, parks, playground and grassland 

Urban 
All infrastructure including commercial, residential, industrial areas, villages, settlements and 

roads  

2.4.3.1 Unsupervised Classification 

A combination of unsupervised classification methods were used to classify the study area. 

Images were first classified using the Unsupervised Interactive Self-organizing Data Analysis 

(ISODATA) algorithm to identify spectral cluster information from image data and convert image 

data to thematic data. This information contains average spectra for each of the identified LULC 

stored in a signature file, which in turn makes use of analyst with the help of the ground truth 

points and first-hand knowledge of the study area to recognize and assign spectrally uniform 

training data for a subsequent application of different supervised classification algorithms 

(Abdulaziz et al., 2009). This clustering process was repeated several times through many 

iterations until a threshold was reached and there was no significant change in the cluster statistics 

or the maximum number of iterations was reached (Rahman, 2016). Clustering processes are 

highly automated with no direction from the users, so are ideal for large study area application. 

2.4.3.2 Supervised Classification 

The data were processed further using different supervised classification algorithms after 

they were classified using an unsupervised ISODATA algorithm. Training samples were first 

digitized from different representative classes to identify pixels of a single class. Grouping 

different spectral and spatial classes was done on the basis of LULC classes by utilizing reference 

data obtained from GCPs; auxiliary information and knowledge-based approaches collected from 

various resources, as mentioned before, were used to evaluate the statistical signature files of each 

LULC class (Ahmed, 2011) and ensure that there was minimal confusion of the land use to be 

mapped (Gao & Liu, 2010). Different supervised classification algorithms were then applied to the 
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Landsat images; Parallelepiped, Minimum distance, Mahalanobis distance, Maximum Likelihood 

and Support Vector Machine. Several algorithms were applied to identify the best for the study 

area location. 

In order to increase classification accuracy and reduce classification error caused by 

confusion in spectral response of specific classes, the generalized images were spatially 

reclassified and refined for classification validation. Spectral confusion occurred due to the fact 

that several LULC have similar spectral response with respect to sensor characteristics especially 

in urban areas (Yang, 2002). Therefore, data reclassification has to be applied to consolidate 

different LULC types using the image spatial and contextual properties. Reclassification was 

carried out based on auxiliary data and several GIS functions, for instance: digitizing, overlaying 

and region of interest (ROI) functionality to produce the last version of LULC maps for different 

years. 

2.4.4 Post classification smoothing 

2.4.4.1 Accuracy assessment and validation 

Quantitative statements about accuracy assessment for the classification processes were an 

essential approach to validate how well the classification represented the real world and ensure the 

reliability of the information derived from LULC maps. Confusion matrices were computed to 

evaluate the relationship between the reference data used and the resulting classified LULC maps. 

Confusion matrices are one of the most popular ways to evaluate the overall classification accuracy 

providing information about a producer’s accuracy or errors of omission (percentage of a specific 

LULC class on the ground which is correctly classified) and user’s accuracy or error of 

commission (percentage of a certain pixel class on the produced map corresponding to the actual 

class on the ground) (Lillesand et al., 2004; Tran et al., 2017). Percentage of the overall accuracy 

was computed using the following formula (Pal & Ziaul, 2016): 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑎𝑟𝑦 (%) =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100       (2.2) 
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Congalton (1991) was the first to point out that 250 reference pixels (±5%) are needed to 

construct the confusion matrix and to estimate the actual mean of accuracy assessment (Congalton, 

1991). Therefore, 300 randomly selected reference pixels, placed on the classified images, for each 

time period were generated, representing a specific coordinate of the image. These points, 

distributed using the stratified random method, were then listed in two classes, one representing 

the class or reference values, while the other represented the actual LULC type. The percentage of 

the actual agreement of the automated classifier over a purely random assignment to classes was 

determined using a non-parametric Kappa coefficient (Ahmed, 2011) to remove the contribution 

of correct classification due to chance (Bauer et al., 1994). The Kappa coefficient for the different 

classification algorithms was evaluated by the following simplified equation (Gwet, 2002; Viera 

& Garrett, 2005): 

 

𝐾𝑎𝑝𝑝𝑎 =
𝑃(𝐴)−𝑃(𝐸)

1−𝑃(𝐸)
             (2.3) 

 

where P(A) is the observed accuracy and P(E) is the chance agreement. 

2.4.4.2 Land Use/Land Cover Change detection  

A multi-date post-classification comparison change detection method was employed to 

quantify the temporal change in LULC in the area of interest (Ridd & Liu, 1998). Three change 

detection statistics were obtained over time from the independent classified images for this 

research by conducting cross-tabulation analysis on a pixel-by-pixel basis, i.e. thematic overlay of 

the classified images (Al-Bakri et al., 2013). The possibilities were (1990-2003), (2003-2016) and 

(1990-2016) to evaluate the matrix table of “from-to” change information that revealed the main 

gains and losses in each category of the study site. 

2.4.5 Derivation of land surface indices (NDVI and NDBI)   

NDVI and NDBI were utilized to characterize the LULC classes and evaluate the 

relationship between these classes and LST. NDVI is the most commonly used index to express 

information about the density of vegetation, predict crop production, monitor drought, map desert 
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encroachment (Xiong et al., 2012), and measure surface radiant temperature (Omran, 2012). NDBI 

was first developed to investigate the extent of imperviousness and built-up areas and map these 

areas, as it can highlight the urban distribution with a typically higher reflectance in the short-wave 

infrared region band than that of the near-infrared one (Alhawiti & Mitsova, 2016; Zha et al., 2003). 

NDVI and NDBI were computed using the following formulas from different wavelength regions 

of the Landsat data: 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
              (2.4) 

𝑁𝐷𝐵𝐼 =
𝑆𝑊𝐼𝑅−𝑁𝐼𝑅

𝑆𝑊𝐼𝑅+𝑁𝐼𝑅
           (2.5) 

 

where NIR, Red and SWIR are the reflectance in the Near-Infrared band (0.76-0.9 µm), Red band 

(0.63-0.69 µm) and Short-wave Infrared band (1.55-1.75 µm), respectively, for Landsat 5 TM. 

However, for Landsat 8 OLI these differed slightly: Near-Infrared band (0.85-0.88 µm), Red band 

(0.64-0.67 µm) and Short-wave Infrared band (1.57-1.65 µm). 

2.4.6 Land surface temperature retrieval from Landsat 5 TM data 

Atmospheric correction was first required to eliminate the atmospheric effect from thermal 

bands, as the satellite imagery measures the radiance of surface features modified by the 

atmosphere (Li et al., 2014). Therefore, the Top of Atmospheric (TOA) radiance correction model 

was applied on Landsat 5 TM imageries for both 1990 and 2003. TOA radiance is a simple model 

based on the scene calibration data available from the imagery header file. Based on Chander & 

Markham (2003), the brightness temperature from Landsat 5 can be obtained first by the 

conversion of the digital number of band 6 to the Top of Atmospheric (TOA) radiance using the 

following equation:  

 

𝐿𝜆 = (
𝐿𝜆𝑀𝐴𝑋−𝐿𝜆𝑀𝐼𝑁

𝑄𝐶𝑎𝑙𝑀𝐴𝑋
) 𝑄𝐶𝑎𝑙 + 𝐿𝜆𝑀𝐼𝑁                (2.6) 
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where 𝐿𝜆 is TOA radiance, 𝐿𝜆𝑀𝐴𝑋 is highest radiance corresponding to 𝑄𝐶𝑎𝑙𝑀𝐴𝑋 (DN=255), 𝐿𝜆𝑀𝐼𝑁 

is lowest radiance corresponding to 𝑄𝐶𝑎𝑙𝑀𝐼𝑁 (DN=0), and 𝑄𝐶𝑎𝑙 is the quantized calibrated pixel 

value of band 6 in DNs. 

The thermal band can then be converted from TOA radiance to effective at-sensor brightness 

temperature under the assumption that the Earth’s surface is a blackbody with a uniform emissivity 

and includes atmospheric effects using the following expression: 

 

𝑇𝑠𝑒𝑛𝑠𝑜𝑟 =
𝐾2

ln(
𝐾1
𝐿𝜆

+1)
            (2.7) 

 

where 𝑇𝑠𝑒𝑛𝑠𝑜𝑟 is at-satellite temperature in Kelvin, K1 is a calibration constant 1 (W/m2 sr μm), 

and K2 is a calibration constant 2 in Kelvin (Table 2.3). 

Table 2.3. Landsat thermal band calibration constants 

Satellite Band Number 
K1  

(W/m2×sr×μm) 

K2  

(Kelvin) 
𝑳𝝀𝑴𝑨𝑿 (W/m2×sr×μm) 𝑳𝝀𝑴𝑰𝑵 (W/m2×sr×μm) 

Landsat 5 6 607.76 1260.56 1.2378 15.303 

Landsat 8 10 774.8853 1321.0789   

Landsat 8 11 480.8883 1201.1442   

 

Thereafter, the TOA radiance (𝐿𝜆) was converted to reflectance measures, as 𝐿𝜆 does not 

consider atmospheric effects. Assuming that urban areas behave as a Planck surface, the expression 

to convert the TOA radiance to surface reflectance, correcting for solar irradiance, solar zenith and 

atmospheric effects is (Li et al., 2014): 

 

𝜌𝜆 =
𝜋×𝐿𝜆×𝑑2

𝐸𝑆𝑈𝑁𝜆×𝑐𝑜𝑠𝜃𝑠
               (2.8) 
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The correct evaluation of LST was constrained to an accurate estimation of surface 

emissivity. In this work, we considered NDVI to calculate emissivity using the following formula 

(Giannini et al., 2015): 

 

𝜀 = 𝑎 + 𝑏 × ln(𝑁𝐷𝑉𝐼)             (2.9) 

 

where a and b are obtained by regression analysis based on a large dataset (Faridatul, 2017), a = 

1.0094 and b = 0.047. 

Finally, the LST corrected, in Celsius, for spectral emissivity is computed using the 

following expression (Faridatul, 2017): 

 

𝐿𝑆𝑇(°𝐶) = (
𝑇𝑠𝑒𝑛𝑠𝑜𝑟

1+(
𝜆×𝑇𝑠𝑒𝑛𝑠𝑜𝑟

𝜌
)×ln(𝜀)

) − 273.15                        (2.10) 

 

where 𝜆 is the wavelength of emitted radiance (the average wavelengths = 11.45µm) (Markham & 

Barker, 1985), 𝜌 = ℎ × 𝑐 𝜎⁄  (1.438×10-2 m×K) with: 𝜎 is Boltzman constant (1.38×10-23 J/K), ℎ 

is Planck’s constant (6.626×10-34 J×s), and 𝑐 is the velocity of light (2.998×108 m/s). 

2.4.7 Land surface temperature retrieval from Landsat 8 OLI 

In the case of Landsat 8, TOA spectral radiance was computed using the radiance rescaling 

factors corresponding to each band provided in the metadata file using the following equation 

(Zanter, 2016): 

 

𝐿𝜆 = 𝑀𝐿 × 𝑄𝐶𝑎𝑙 + 𝐴𝐿              (2.11) 

 

where 𝑀𝐿 is the radiance multiplier, 𝑄𝐶𝑎𝑙 is the pixel value in DN and 𝐴𝐿 is the radiance additive 

scaling factor for the bands obtained from the metadata. 

A web-based atmospheric correction model was used to evaluate surface temperature by first 

converting the previously calculated TOA radiance to surface-leaving radiance, taking into 

account the atmospheric correction of thermal regions of Landsat 8 OLI (Barsi et al., 2005): 
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𝐿𝑇 =
𝐿𝜆−𝐿𝑢𝑝

𝜏×𝜀
−

1−𝜀

𝜀
× 𝐿𝑑         (2.12) 

 

where 𝐿𝑇  is atmospherically corrected radiance, 𝐿𝑢𝑝  and 𝐿𝑑  are upwelling and downwelling 

radiance, respectively (W/m2×sr×μm), and 𝜏 and 𝜀 are transmissivity and emissivity, respectively. 

These parameters can be assessed using the Atmospheric Correction Parameter Calculator online 

tool (https://atmcorr.gsfc.nasa.gov/). This uses the MODTRAN radiative transfer code that 

integrates algorithms to estimate atmospheric global profiles and parameters for a certain date, 

time, and location as the input (Barsi et al., 2003). Land surface emissivity was computed 

according to Equation (2.9). Even though the emissivity was calculated via NDVI in both Landsat 

5 TM and Landsat 8 OLI, it was also preferable to use the same emissivity model for both Landsat 

datasets, hence avoiding uncertainty in the change in LST. Additional emissivity models 

introduced by (Jiménez-Muñoz & Sobrino, 2004) were also applied; however, results obtained 

corresponding to Equation (9) were considered the most reliable and the closest to the real life 

after validation, with only small differences found between the models. 

Thermal Infrared bands of Landsat 8 OLI were converted from spectral radiance to effective 

at-sensor brightness temperature by converting the radiance using the inverse Landsat Plank’s law 

(Chander & Markham, 2003): 

 

𝐵𝑇 =
𝐾2

ln(
𝐾1
𝐿𝑇

+1)
− 273.15         (2.13) 

 

where K1 is the band specific-thermal conversation constant 1 (W/m2 sr μm), and K2 is a calibration 

constant 2 in Kelvin (Table 2.3). Lastly, the emissivity-corrected LST, in Celsius, was retrieved 

using Equation (2.10) with the replacement of BT instead of TSensor. 

https://atmcorr.gsfc.nasa.gov/
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2.5 Results and Discussion 

2.5.1 Spatial distribution and accuracy assessment of LULC 

The Support Vector Machine (SVM) and maximum likelihood algorithms provided higher 

overall accuracy and kappa coefficients than other supervised classification algorithms (Table 2.4). 

Utilizing this observation, image processing and spectral characteristics, the final product 

combining the unsupervised and supervised classifications in which the spatial distribution and 

patterns of the LULC changes and persistence for the years 1990, 2003 and 2016, are shown in 

Figure 2.5. Spatial distribution patterns reveal that the area was dominated by deserts and barren 

lands, vegetation in the northern region and urban cover in the middle. Due to the heterogenic and 

dense vegetation cover in the north central part of the study region, we could not obtain higher 

overall accuracies than the ones presented, even after repeated classification with different 

algorithms. 

The overall classification accuracies achieved for the images were found to be 90.3%, 96.5% 

and 94.9% with kappa coefficients of 0.85, 0.94 and 0.86 for 1990, 2003 and 2016, respectively. 

Note that in all classification algorithms, the vegetation class was responsible for producer errors; 

however, the urban class was the main reason for user errors (Table 2.5). On the other hand, classes 

of barren land and water were classified relatively accurately, approximately 98% or higher. The 

overall classifications in 2003 and 2016 are higher because of the availability of more detailed and 

higher resolution aerial reference images. Meanwhile, the use of OIF and enhancement techniques 

prior to classification increased the overall accuracy by 15 to 20%.  
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Table 2.4. Accuracy assessment of different supervised classification algorithms used for LULC 

maps in GCR  

Classification Algorithms 
Overall accuracy (%) 

Kappa 

Coefficient 

1990 2003 2016 1990 2003 2016 

Minimum Distance  86.7 90.6 86.6 0.78 0.84 0.79 

Parallelepiped 80.8 86.1 78.9 0.71 0.78 0.70 

Mahalanobis 87.1 92.7 89.0 0.80 0.88 0.83 

Maximum Likelihood 88.3 95.9 88.4 0.82 0.93 0.81 

Support Vector Machine 90.3 96.5 94.9 0.85 0.94 0.86 

 

Table 2.5. Accuracy assessment of the LULC classification results for GCR  

LULC classes 

1990 Classification 2003 Classification 2016 Classification 

Accuracy (%) Accuracy (%) Accuracy (%) 

Producer User Producer User Producer User 

Barren lands  98.8 94.4 99.9 96.8 98.7 95.1 

Water  99.5 99.8 97.8 99.9 98.2 99.8 

Vegetation 82.1 98.9 85.2 99.3 81.5 91.6 

Urban  97.5 75.3 98.2 92.7 82.0 70.1 

Overall Accuracy % 90.3 % 96.5 % 94.9 % 

Kappa coefficient 0.85 0.94 0.86 
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Figure 2.5. LULC map produced by classification processes for the years 1990, 2003 and 2016 

showing the change for types of classes within the study area 

2.5.2 Land Use/Land Cover change detection  

Change detection statistics were computed from each consecutive pair of LULC maps (1990-

2003 and 2003-2016), and the results of these changes are furnished in Tables 2.6 and 2.7. This 

shows the nature of change with respect to each class obtained from a matrix algorithm. Change 

detection analysis results show a sharp growth of 128% in the urban class during the 26-year period 

(1990-2016) (Figure 2.6). Significant differences appear to be related to barren land and vegetation 

land cover classes. Vegetation cover was reduced by 17,665 ha (14.3%) during 2003-2016 as 

compared to 14,432 ha (10.5%) during 1990-2003. Meanwhile, the barren land had a major decline 

of 30,669 ha (4.8%) and 24,822 ha (4.1%) during the two periods of 1990-2003 and 2003-2016, 

respectively, with a total amount of 55,491 ha during the entire period. These massive changes are 

related to desert-urbanization activities and construction of new housing developments, initiated 

by the Egyptian government in the early 1980s and that have since been accelerated (Abdulaziz et 

al., 2009). This increasing trend in urbanization enhances the effect of human interference and 

reinforces that socio-economic forces are the main stimulus on these anthropogenic land changes, 

specifically around streams coming out from the Nile River. However, the reduction of vegetation 

cover and agricultural area, especially for urbanization purposes, illustrates the poor planning of 

farmland protection laws and ignoring of environmental and ecological legislation implemented 

in the urban master plan. Water bodies, on the other hand, increased in area during 1990-2003, and 

then decreased again, due to the use of surrounding land for agriculture. Results obtained from this 
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study were similar to those evaluated by Megahed et al. (2015). They used three satellite images 

(1984, 2003 and 2014) to produce three LULC maps in GCR using the SVM algorithm. Results 

indicated that 13% of the vegetation was lost to urban areas between the period of 1984 to 2003, 

and 12% was lost between 2003 and 2014. However, only 3% of desert became urban areas in the 

first period, jumping to 5% between 2003 and 2014. 

 

 

Figure 2.6. LULC change in GCR during 1990-2016 
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Table 2.6. ‘From-to’ LULC change detection statistics for 1990-2003 for GCR in hectare 

Classes 

Area (Ha) 

2003 

LULC 2013 Difference 1990-2003 

Barren Land Water Vegetation Urban 

1
9

9
0
 

Barren Land 598519 2 134 5428 604083 -30669 

Water 25 4231 945 987 6188 +1710 

Vegetation 829 95 115167 7069 123160 -14432 

Urban 35379 149 21346 54832 111706 +43387 

LULC 1990 634752 4478 137592 68316 845137 0 

Class Change 36233 247 22426 13484 0 0 

 

Table 2.7. ‘From-to’ LULC change detection statistics for 2003-2016 for GCR in hectare 

Classes 

Area (Ha) 

2016 

LULC 2016 Difference 2003-2016 

Barren Land Water Vegetation Urban 

2
0

0
3
 

Barren Land 570451 3 210 8597 579260 -24822 

Water 51 4120 62 140 4373 -1815 

Vegetation 361 662 95118 9354 105496 -17665 

Urban 33220 1403 27770 93615 156008 +44302 

LULC 2003 604083 6188 123160 111706 845137 0 

Class Change 33632 2068 28042 18091 0 0 

 

In order to better understand these ‘From-to’ relationships, further GIS and statistical 

analyses were conducted. A post-classification comparison was conducted through cross-

tabulation GIS modules to overlay the two LULC maps (1990 and 2016) to produce a LULC 

change detection map pointing out the spatial pattern of change for the 26-year timespan (Figure 

2.7). Figure 2.8 and Table 2.8 show the areas and the percentage of different land covers in the 

GCR for the three time periods considered in this study. Results highlighted from these analyses 

showed two clearly recognizable trends; (a) barren land and vegetation cover declined gradually 
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and (b) urban area increased drastically and rapidly (at the rate of 128% as mentioned before). The 

conversion patterns between different land cover classes to urban land cover are illustrated in 

Figure 2.9. This reveals that barren land was the main contributor in shaping urban area by an 

amount of 8.70% followed by vegetation land cover by a rate of 7.73% within the 26-year timespan 

(1990-2016). This emphasizes the importance of RS in conjunction with GIS in the study of LULC 

change detection providing essential information about the dynamic nature and patterns of spatial 

change of land cover. 

 

 

Figure 2.7. Land cover conversion in GCR from 1990 to 2016 
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Table 2.8. Areas of LULC classes in the three time periods 1990, 2003 and 2016 in the study area 

LULC Area 
1990 2003 2016 

Hectares Hectares Hectares 

Barren Land 634752 604083 579260 

Water 4478 6188 4373 

Vegetation 137592 123160 105496 

Urban 68315 111706 156008 

 

 

 

Figure 2.8. Percentage of land cover types in GCR for the three time periods 
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Figure 2.9. Contribution to the net change in the urban land cover in GCR (Area percentage %) 

Areas classified as urban in the northern part of the study area, particularly in Qalyoubia 

Governorate, are mainly disseminated as urban encroachments within areas classified as 

vegetation land cover (Figure 2.5). However, the change in the central part of the study area, in 

the political capital of the Cairo Governorate, indicates a rough spherical sprawling tendency with 

large regions containing concentrations of many areas of localized change with a dense and 

granulated texture, especially during the period of 2003-2016. These are related to the 

establishment and implementation of new settlements, industries and communities at the expense 

of desert land that relies on surface water from the Nile River, for instance, El-Obour city and 

Tenth of Ramadan cities to the east of Cairo, and Six of October City in the western part. In general, 

these intense expansions occurred to accommodate the increasing population which caused the 

need for creating new jobs and maintaining food security, and is confirmed by Census data 

discussed in section 2.2 (Figure 2.2). 

0 2 4 6 8 10 12

Urban

Vegetation

Water

Barren Land

Contribution to net change in Urban areas during 1990-2003

0 1 2 3 4 5 6 7 8 9

Urban

Vegetation

Water

Barren Land

Contribution to net change in Urban areas during 2003-2016

0 1 2 3 4 5 6 7 8 9 10

Urban

Vegetation

Water

Barren…

Contribution to net change in Urban areas during 1990-2016



 

 

57 

 

2.5.3 Land Surface Temperature (LST) change and the relationship with Land Use/Land 

Cover (LULC) change 

Figure 2.10 shows the spatial distribution and the pattern of change in LST throughout the 

different time periods of the study (1990, 2003, and 2016). The enormous increase of LST for all 

LULC types is highly evident, in addition to the wide range of LST values over the period from 

1990 to 2016. Due to the dominance of desert and barren land in the study area, LST ranged from 

28.78 °C to 47.11 °C, with a mean of 38.4 °C in 1990, 27.02 °C to 53.84 °C, with a mean of 

40.6 °C in 2003, and 29.35 °C to 52.71 °C, with a mean of 42.1 °C in 2016. The estimated LST 

from different Landsat data were cross validated with near-surface air temperatures obtained from 

two meteorological stations on the same day of the obtained satellite data in the study area (Table 

2.9). The higher estimates of LST from satellite data over the three time periods were due to the 

effect of surface roughness on the surface temperature (Omran, 2012). Landsat data can be used 

to calibrate the distribution of LST in such dense places as GCR. Different algorithms for LST 

evaluation from Landsat were applied in this study to obtain accurate results. The calibration of 

LST should be refined with more data and in situ measurements of LST in future studies, as 

suggested by (Liu & Zhang, 2011). 

 

 

Figure 2.10. Spatial distribution of GCR LST for the years (a) 1990, (b) 2003 and (c) 2016 
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Table 2.9. Cross validation of the estimated LST from Landsat data with meteorological data for 

GCR 

Acquisition date Satellite LST estimation Meteorological stations  Difference 

Aug. 4th 1990 38.4 38 0.4 

Aug. 8th 2003 40.6 36 4.6 

Aug. 11th 2016 42.1 39 3.1 

 

GIS analysis coupled with image interpretation can help us to evaluate the relationship 

between the thermal signature and LULC types and highlight the impact of land cover changes on 

LST. We expressed the results of average LST in degree Celsius (°C) by LULC classes over three 

time frames in Table 2.10. LST distribution of 2016 demonstrated that these new high LST were 

related to non-evaporating impervious surfaces, like the industrial and residential areas that had 

been converted from other land cover types (Li et al., 2014). Results revealed that the highest 

maximum and mean LST were associated with barren land (mean value of 39.81 °C to 43.69 °C) 

and high density urban areas (mean value of 36.83 °C to 41.47 °C), followed by vegetation (mean 

value of 33.05 °C to 36 °C) and, lastly, water cover (mean value of 30.59 °C to 32.89 °C), in all 

three periods. Due to the urban-warming effect and rapid urban growth in GCR, urban areas, such 

as industrial districts and commercial centers in the eastern and western side of Cairo, experienced 

an increase in LST by 4.91 °C over the entire period. This implies that these noticeable increases 

were due to high emissions of pollutants and multiple artificial heat sources, and the replacement 

of native vegetation areas that reduce the amount of heat stored through transpiration with other 

non-transpiring and non-evaporating surfaces such as concrete, metals and stones. These high 

density building surfaces experience high radiance temperatures, confirming the phenomena of the 

urban-warming effect in which man-made materials in dense urban areas alter the superficial 

temperature and strongly link the urban category to higher LST in GCR.  
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Table 2.10. Average LST distribution (°C) over different LULC classes in GCR for 1990, 2003 

and 2016 

LULC 

Classes 

1990 2003 2016 Average 

Change in LST 

(1990-2016) 

Range 
Mean 

LST 

St. 

Dev 

Mean 

LST 

St. 

Dev 

Mean 

LST 

St. 

Dev 

Barren Land 39.81 1.48 42.49 1.85 43.69 1.43 3.88 0.15 

Water 30.59 2.28 31.33 2.17 32.89 2.50 2.30 0.09 

Vegetation 33.05 2.29 34.00 2.32 36.00 2.82 2.95 0.11 

Urban 36.83 2.11 38.14 2.24 41.74 2.48 4.91 0.19 

 

Vegetation cover showed the highest standard deviation values, reflecting the heterogeneous 

and complex nature of the vegetation cover with a wide range of surface radiant temperatures. On 

the other hand, barren lands exhibited the lowest standard deviation due to the dry nature of these 

surfaces and a lack of wide variation in surface radiant temperatures. 

Table 2.11 shows how the newly formed lands reacted with regard to LST after 

transformation, excluding water cover that accounts for less than 1% of the study area. The newly 

developed barren lands and urban areas had measured greater temperatures when transformed from 

vegetation cover with rates of 2.60 °C and 2.06 °C, respectively. On the other hand, vegetation 

cover tended to decrease the radiant LST in the conversion from either urban areas (1.90 °C) or 

barren lands (0.43 °C). Note that the transformation between barren lands and urban areas (and 

vice versa) had minimal effect on LST. In general, different land covers had different influences 

on the thermal distribution with a different magnitude, and LST acted as an important function of 

the change in LULC. Therefore, it is vital to increase green area to strengthen the study area 

protection. 
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Table 2.11. Average LST change in different LULC change types from 1990 to 2016 in GCR 

Newly created land LST (°C) in 1990  LST (°C) in 2016 Average change (°C) 

Barren Land to Urban 39.11 39.02 -0.09 

Barren Land to Vegetation 37.27 36.84 -0.43 

Vegetation to Urban 32.91 34.97 2.06 

Vegetation to Barren Land 33.53 36.13 2.60 

Urban to Barren Land 39.91 40.01 0.10 

Urban to Vegetation 36.09 34.19 -1.90 

2.5.4 Analysis of land indices and relationship with LST  

Two indices, NDVI and NDBI, as mentioned in section 2.4.5, were derived to quantify the 

relationship between LST and land indices. The visual depiction of the spatial pattern of both 

NDVI and NDBI are shown in Figures 2.11 and 2.12, respectively. Greater NDVI values 

correspond to dense vegetation areas in the central north of GCR, while lower values were 

observed in urban areas and barren land (Table 2.12). NDVI values are in the range of -0.525 to 

0.79 in 1990, have a mean value of 0.04 and standard deviation of 0.15. These values dropped to 

-0.444 and 0.681 with a mean of 0.026 and a 0.14 standard deviation in 2003, and gradually 

decreased to be between -0.528 and 0.681, with a mean of -0.02 and a 0.08 standard deviation in 

2016. As documented in the literature (Sun & Kafatos, 2007), higher levels of NDVI were 

associated with lower values of LST. On the other hand, NDBI values were found to increase over 

the study period. For 1990, 2003 and 2016, the average NDBI was -0.043, -0.039 and 0.021, 

respectively. In general, decreasing surface transpiration through the reduction of green canopy 

cover and increasing impervious surfaces modified thermal behavior and were essential for the 

reduced value of NDVI and increased NDBI. This pattern can be clearly seen in Tables 2.13 and 

2.14, showing the statistical analysis and the Pearson’s correlation coefficient between the indices 

and LST at a 0.05 significance level. The results revealed that NDVI was negatively correlated 

with LST, indicating the impact of green cover on LST is negative, in which the more green areas, 

the weaker LST will be (Figure 2.13). In comparison, NDBI presents a high positive correlation 

coefficient with LST over the three time periods of the study. Therefore, urban areas can strengthen 
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urban heat effects and increase LST (Liu & Zhang, 2011) (Figure 2.14). It was interesting to note 

that the high negative correlation between NDVI and NDBI in the three years could be explained 

by the action of establishing urban settlements in favor of green cover. 

Table 2.12. Mean values of NDVI and NDBI for the years 1990, 2003 and 2016 for GCR 

LULC classes 1990 2003 2016 

NDVI NDBI NDVI NDBI NDVI NDBI 

Barren lands -0.029 0.050 -0.040 0.049 -0.061 0.077 

Water -0.147 -0.429 -0.042 -0.047 0.071 -0.235 

Vegetation 0.467 -0.444 0.357 -0.043 0.255 -0.226 

Urban 0.033 -0.075 0.025 -0.054 0.008 -0.015 

 

Table 2.13. Correlation coefficient matrix from the indices and LST for the years 1990, 2003 and 

2016 for GCR 

 1990 2003 2016 

LST NDVI NDBI LST NDVI NDBI LST NDVI NDBI 

LST 1.00 -0.87 0.91 1.00 -0.86 0.90 1.00 -0.88 0.89 

NDVI -0.87 1.00 -0.96 -0.86 1.00 -0.96 -0.88 1.00 -0.98 

NDBI 0.91 -0.96 1.00 0.90 -0.96 1.00 -0.98 0.89 1.00 
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Table 2.14. Pearson’s correlation between LST and two indices at 0.05 significance level 

 1990 2003 2016 

R2 Root 

MSE 

P-

value 

R2 Root 

MSE 

P-

value 

R2 Root 

MSE 

P-

value 

LST Vs. 

NDVI 

 

0.7566 1.825 <.0001 0.7419 2.323 <.0001 0.7821 1.902 <.0001 

LST Vs. 

NDBI 
0.8310 1.520 <.0001 0.8033 2.028 <.0001 0.7980 1.832 <.0001 

 

 

 

Figure 2.11. Spatial distribution of NDVI for the years (a) 1990, (b) 2003 and (c) 2016 

 

 

Figure 2.12. Spatial distribution of NDBI for the years (a) 1990, (b) 2003 and (c) 2016 
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In order to disclose the variance among LST and land surface indices, we took the 2016 

image as an example to quantify the relationship among LST, NDVI and NDBI. Figure 2.15 shows 

the derived pixel values of LST and the two other indices based on West/East profile from the 

2016 image, showing that lower LST are usually found in areas of lower NDVI; however, the peak 

values of LST are consistent with higher values of NDBI along the profile. A multivariate linear 

regression analysis between LST and the indices was performed, leading to a relationship among 

the variables as shown in Equation (14), with a correlation coefficient of R2 = 0.80, p < 0.001, and 

Root MSE = 1.82 at a 0.05 significance level.  

 

𝑆𝑇 = −6.79 × 𝑁𝐷𝑉𝐼 + 21.60 × 𝑁𝐷𝐵𝐼 + 41.26           (2.14) 

 

The finding of Equation (2.14) showed a higher correlation coefficient in the multivariate 

linear regression than those of simple linear ones for the same year (R2 = 0.78 for LST-NDVI and 

R2 = 0.79 for LST-NDBI). 
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Figure 2.13. Correlation between NDVI and LST for the years (a) 1990, (b) 2003 and (c) 2016 for GCR 

 

 

Figure 2.14. Correlation between NDBI and LST for the years (a) 1990, (b) 2003 and (c) 2016 for GCR 
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Figure 2.15. Correlation among LST, NDVI and NDBI from a West/East profile in 2016 imagery 

2.5.5 Pearson’s correlation coefficient between LST, NDVI and NDBI by different LULC 

types 

In order to analyze the influence of specific LULC on LST accurately, Pearson’s correlation 

was evaluated between mean LST/NDVI (Table 2.15) and mean LST/NDBI (Table 2.16) for 

LULC, pixel-by-pixel, in 1990 and 2016. 

 

Table 2.15. Pearson’s correlation between LST and NDVI by LULC type at 0.05 significance 

level 

LULC 

classes 

LST/NDVI (1990) LST/NDVI (2016) 

R2 Regression functions Correlation RMSE R2 Regression functions Correlation RMSE 

Barren lands 0.008 
LST
= −6.58 × NDVI + 39.8 

-0.090 0.93 0.105 
LST
= −34.45 × NDVI + 41.9 

-0.325 1.54 

Water 0.081 
LST
= 4.67 × NDVI + 30.5 

0.284 1.16 0.108 
LST
= −28.92 × NDVI + 34.0 

-0.329 1.36 

Vegetation 0.385 
LST
= −9.69 × NDVI + 36.4 

-0.620 1.34 0.349 
LST
= −20.15 × NDVI + 38.5 

-0.590 1.79 

Urban 0.355 
LST
= −7.19 × NDVI + 37.7 

-0.596 2.14 0.392 
LST
= −30.64 × NDVI + 40.30 

-0.626 2.02 
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Table 2.16. Pearson’s correlation between LST and NDBI by LULC type at 0.05 significance 

level 

LULC 

classes 

LST/NDBI (1990) LST/NDBI (2016) 

R2 Regression functions Correlation RMSE R2 Regression functions Correlation RMSE 

Barren lands 0.009 
LST
= −3.04 × NDBI + 40.2 

-0.097 0.93 0.107 
LST
= 27.55 × NDBI + 41.9 

0.327 1.54 

Water 0.013 
LST
= 1.68 × NDBI + 30.5 

0.114 1.20 0.280 
LST
= 14.16 × NDBI + 35.2 

0.529 1.24 

Vegetation 0.483 
LST
= 9.12 × NDBI + 36.9 

0.695 1.23 0.381 
LST
= 14.67 × NDBI + 38.7 

0.618 1.75 

Urban 0.435 
LST
= 13.58 × NDBI + 38.2 

0.660 2.01 0.423 
LST
= 20.60 × NDVI + 40.31 

0.652 1.96 

 

Results showed that the correlation between LST and NDVI were all negative in both 1990 

and 2016 except for water coverage in 1990, likely due to lower amounts of pollutants in the 1990 

water. However, the lowest negative correlation was found on barren lands in 1990 due to the high 

area coverage in the study region. On the other hand, the highest negative coefficient of the 

regression function was found to be in vegetation covers (-0.620) and dropped slightly for urban 

cover (-0.596). In 2016, barren area still showed the lowest negative correlation, however urban 

cover experienced the highest correlation coefficient (0.652), slightly higher than that of the 

vegetation one. Results of this analysis are consistent with other studies discussing the relationship 

between LST and NDVI (Weng et al., 2004; Wilson et al., 2003). This indicates that by increasing 

NDVI, the LST of both vegetation and urban areas decreases more quickly than that of barren land 

cover. 

However, the NDBI index showed a positive correlation with all LULC types except for 

barren lands in 1990 which had negative or almost no correlation with LST. Similar to NDVI, the 

highest coefficient was related to vegetation in 1990 and urban cover in 2016. In general, the 

correlation coefficient between LST and land surface indices for the whole study area showed a 

higher correlation than in the case of using indices as indicators for LST according to each LULC 

type. However, the moderate relationship obtained for each LULC by surface indices and LST can 

provide important information for preliminary studies; for example, they can be simply used as 

proxies for temperature and for better planning by policy makers in large areas.  
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2.6 Summary and conclusions 

In this study, multi-temporal Landsat satellite data were used to accurately monitor the 

spatial and temporal change of LULC and to study the impact of rapid urbanization on land surface 

temperature in the GCR in Egypt. Three Landsat dates, TM 1990, TM 2003 and OLI 2016, were 

acquired at the same time of the season (summer) due to the availability of reference data and to 

keep the weather factor as constant as possible. The study showed the effectiveness of the remote 

sensing techniques in conjunction with GIS to enable us to delineate the urban expansion due to 

the establishment of new settlements and to produce an accurate landscape change map in the 

study area. Different image enhancements, atmospheric correction, information extraction 

techniques, and unsupervised and supervised classification algorithms were performed on each 

Landsat image to ensure accurate image classification and LULC mapping. This revealed that 

SVM and maximum likelihood gave higher accuracies with rates of 90.3%, 96.5% and 94.9% for 

the years 1990, 2003 and 2016, respectively. The post-classification comparison change detection 

method was employed to quantify the spatial change of land cover units. In addition, statistical 

‘from-to’ information was applied to quantify the magnitude of change through the entire 26 year 

timespan. Results demonstrated that the most distinct change was related to vegetation cover that 

drastically decreased by an amount of 32,097 ha (23.3%) from 1990 to 2016. In the same time 

period, significant reduction in barren land by 55,491 ha (8.70%) occurred. On the other hand, 

urban areas, due to the construction of new industrial and commercial settlements, showed a 

considerable increase by 87,689 ha (128.3%), particularly in the central and northern parts of the 

study area around water resources. These two land covers, barren lands and vegetation, were the 

main contributors to form new urban areas. 

LST evaluation through Landsat satellite images is easily recognizable. Different algorithms 

were applied to the thermal infrared data of different Landsat images to accurately calculate LST 

of different land covers. A very minor shift was found from different emissivity models, however 

results obtained in this study were considered the most reliable based on cross validation. Results 

showed that mean LST values were higher in barren lands and urban areas than in the surroundings 

over the entire period. These anomalies were associated with settlements and industrial and 

commercial areas that experienced dense populations. Moreover, the most typical impact of rapid 

urbanization on LST was investigated within a single LULC. The change in LULC modified the 

radiant temperature of the surface. It was believed that the change in LST and climatic response 
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was strongly related to the removal of vegetation cover and its replacement with non-evaporative 

surfaces. This can be concluded from the increase in the magnitude of LST by a rate of 2.06 °C in 

the areas that were transformed from vegetation cover to urban and 2.60 °C due to the 

transformation of barren lands from green areas in the entire period of study from 1990 to 2016. 

In general, rapid urbanization was considered the major contributor to urban climatic warming that 

creates the major spatiotemporal variation in LST, particularly due to the vegetation reduction and 

pollution expansion that can be attributed to settlement expansion that results in a large amount of 

waste heat which in turn affects the surface energy budget. 

Results from remote sensing studies show that LST and land surface indices, NDVI and 

NDBI together can identify the pattern of temporal variation and spatial distribution in urban 

thermal environments. The highest NDVI was found in vegetated areas while the highest NDBI 

was found in barren lands and urban areas. Statistical analysis showed a strong inverse relationship 

between LST and NDVI in contrast to a high positive one between LST and NDBI along different 

profiles in the study areas. These relationships dropped in the case of quantitative analysis among 

LST, LULC pattern and land surface indices. By way of conclusion, the study area reveals 

comparatively higher LST and NDBI, and lower NDVI over the period of study. These findings 

recommend the establishment of measures that can mitigate the strong effect of increasing LST on 

sustainable developments, population density control that is not limited to horizontal growth only, 

green coverage improvements like parks and gardens, and roof top area cultivation with 

horticultural plants that can alleviate the effect of LST. More multi-date images from the same 

season are also recommended to be investigated and evaluated, in a manner of providing more 

evidence of the thermal behavior on urban areas for better understanding of the impact of 

urbanization on LST. Moreover, RS satellite images are likely to be affected by cloud cover and 

other atmospheric effects, in addition to surface roughness, that in turn affect the DN values and 

therefore, it is highly recommended for future work that the integration of RS imageries from 

different sources with more land surface meteorological data be explored, and more attention on 

surface roughness be considered for more accurate results (Li et al., 2014).  

In general, results indicate the potential of multi-temporal Landsat images that can accurately 

quantify the change pattern in LULC and LST in GCR in Egypt. In addition, the integration of RS 

and GIS can provide a valuable opportunity for surveying, environmental monitoring and the 

nature of land cover change. Hence, the information gleaned from the change detection outputs 
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can help in understanding the dynamics of LULC change in order to help policy-makers predict 

and plan for future developments in GCR, achieve long-term sustainability of soil and water 

resources and its impacts on climate change, and therefore characterize the evolution of urban 

construction lands. 
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 HYDROLOGIC RESPONSE IN AN URBAN 

WATERSHED AS AFFECTED BY CLIMATE AND LAND-USE CHANGE 

Abstract 

The change in both streamflow and baseflow in urban catchments has received significant attention 

in recent decades as a result of their drastic variability. In this research, effects of climate variation 

and dynamics of land use were measured separately and in combination with streamflow and 

baseflow in the Little Eagle Creek (LEC) watershed (Indianapolis, Indiana). These effects were 

examined using land-use maps, statistical tests, and hydrological modeling. Transition matrix 

analysis was used to investigate the change in land use between 1992 and 2011. Temporal trends 

and changes in meteorological data were evaluated from 1980–2017 using the Mann–Kendall test. 

Changes in streamflow and baseflow were assessed using the Soil and Water Assessment Tool 

(SWAT) hydrological model using multiple scenarios that varied in land use and climate change. 

Evaluation of the model outputs showed streamflow and baseflow in LEC were well represented 

using SWAT. During 1992–2011, roughly 30% of the watershed experienced change, typically 

cultivated agricultural areas became urbanized. Baseflow was significantly affected by the 

observed urbanization; however, the combination of land and climate variability had a larger effect 

on the baseflow in LEC. Generally, the variability in the baseflow and streamflow appears to be 

heavily driven by the response to climate change in comparison to variability due to altered land 

use. The results reported herein expand the current understanding of variation in hydrological 

components, and provide useful information for management planning regarding water resources, 

as well as water and soil conservation in urban watersheds in Indiana and beyond.  

3.1 Introduction  

Water is an indispensable natural resource for life and an increasingly limiting factor to 

socioeconomic developments (Abdi & Yasi, 2015). Water resources issues are widely discussed 

throughout the world. Addressing these issues requires information about the factors that drive 

hydrological changes and their related effects on local water resources. Evaluating water resources 

becomes a complex task that needs to consider many facets. Studies that detail the spatial and 

temporal distribution of water resources are of vital significance to inform management strategies. 
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Both climate variation and human actions act as stressors that contribute to putting water 

resources under severe pressure (Wang et al., 2018). Intensive human activities apart from climate 

change, such as land use change, urbanization, economic development and population growth, 

have posed unprecedented impacts on watershed hydrological conditions. For example, these 

stressors can alter surface runoff, evapotranspiration, baseflow, the frequency of floods, annual 

mean discharge, flow routing time, peak flows and volume (Kibria et al., 2016). Moreover, the 

pressures of these human activities are  associated with climate variation which in turn will affect 

water sustainability for socioeconomic developments (Duan et al., 2019a). 

The impacts of individual factors on watershed hydrology theoretically cannot be separated 

(Zhang et al., 2015). This coupling effect, together with water withdrawal and retention, 

contributes to the uncertainties in identifying the specific impact of each factor on watershed 

hydrology (Guo et al., 2014). This creates difficulty in inferring causation on a sufficient scale, 

and therefore, it remains unclear which of these factors dominantly contributes to watershed 

hydrology (Duan et al., 2019; Zhang et al., 2015). Indeed, several reports show conflicting 

conclusions when the combined hydrological responses are measured (Guo et al., 2014; Omer et 

al., 2017; Park et al., 2011; Zheng et al., 2009). Climate variation exerts a control on dominant 

agricultural and land use practices including their spatial properties (Shi et al., 2013; Tao et al., 

2015; Tong et al., 2012). The joint impact on hydrology of climate variation and land use change 

has been shown to be similar to that of a single climate change factor (Kim et al., 2013; Zhang et 

al., 2015). Hence, identifying the distinct impacts of changing land use from climate variability 

and understanding the water balance is considered a particular challenge for studies on operational 

management of reservoirs and river basins. 

In recent years, several investigators have studied the effect of climate variation and land 

use change on watershed hydrology (Duan et al., 2016; Xu et al., 2013; Zhang et al., 2013). Zhang 

et al. (2013) studied these effects on streamflow in the China Fenhe River Basin, and found a 

stronger influence of land use on streamflow than climate change. Xu et al. (2013) similarly 

showed that land use affected streamflow variation twice as much across more than 50 watersheds 

throughout the Midwestern United States. 

Although an increase in high streamflow and decrease in low streamflow is often associated 

with urbanization (Tu, 2009), the impact of land use change often varies with climate (Kim et al., 

2013). On the other hand, the changes in watershed hydrology and annual water balance can also 
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be attributed to climate variability, especially in large scale watersheds, likely caused by 

compensatory effects in a complex watershed (Fohrer et al., 2001). Novotny and Stefan (2007) 

reported a correlation between the mean annual streamflow trend and rainfall in five major 

Minnesota River watersheds, while in Indiana rainfall has shown a strong relationship with low 

flow (Kumar et al., 2009). In addition, Frans et al. (2013) concluded that wet climates, rather than 

land use change, had the most impact on streamflow in the Upper Mississippi River Basin. 

Comparable research conducted in the Johor River Basin in Malaysia indicated that climate change 

was the main driving force that impacted watershed hydrology (Tan et al., 2015). In the Yellow 

River Basin in China, climate fluctuation accounted for a 10 mm per year reduction in mean annual 

streamflow (Wang et al., 2013). River discharge significantly increased in the upper Syr Darya 

river basin due to temperature increase from 1930 to 2006 (Zou et al., 2019). Duan et al. (2017) 

evaluated the effects of projected climate change scenarios on watershed streamflow in the Upper 

Ishikari river basin in Japan, finding annual mean streamflow will likely increase for future climate 

scenarios. Thus, it is important to distinguish between effects related to land use changes and those 

due to climate variability for accurate estimation of surface and groundwater responses. 

Impacts of these factors on watershed hydrology is different across watersheds. Therefore, 

sites must be evaluated on a local scale (Khoi & Thom, 2015). Due to limited available data, it is 

essential to use both comprehensive and physical tools to extract as much information about 

hydrologic responses as possible (Li et al., 2009). Hydrological models are considered an 

appealing approach to carry out impact assessment studies, as they provide a conceptualized 

framework to be used in scenario studies on the relationship between hydrological components, 

land use change and climate variability (Jothityangkoon et al., 2001). Model parameters can have 

physical meaning as related to measurable landscape properties and meteorological conditions 

(Legesse et al., 2003), and explicitly represent spatial variability (Lu et al., 2015). Initial model 

parameters describing vegetation, land use and soil types are called physically based parameter 

values; they can be adjusted to improve streamflow simulation through subsequent model 

calibration processes (Beven, 2006). 

Recently, water resource managers and modelers have counted on hydrological models to 

identify alternative strategies for water resource allocation and to obtain more information about 

watershed systems, hydrological processes, and their responses to both anthropogenic and natural 

factors (Rusli et al., 2017), including insight regarding the impacts of future climate projections 
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(Duan et al., 2019b). Some of these models incorporate the watershed’s heterogeneity and the 

spatial distribution of land use, topography, soil type, and meteorological conditions (Setegn et al., 

2008). Among these models is the Soil and Water Assessment Tool (SWAT) model. SWAT is a 

conceptual mathematical semi-physical, semi-distributed based model (Arnold et al., 1998). 

SWAT employs parameters with time steps at a daily scale (Arnold et al., 2012). The model is 

designed with basic components, for example, climate, sediments, nutrients, and hydrology 

(Huang et al., 2016). This allows for interconnections of different physical processes that occur in 

the environment, allowing the model to evaluate how the hydrological components are impacted 

by land management methods in complex catchments with different land covers, and climate 

scenarios in extreme events such as droughts and floods (Abbaspour et al., 2015). 

Streamflow and baseflow in watersheds in the US Midwest region reported upward trends 

with both urbanization and climate change (Beven, 2006; Zhang et al., 2013). While previous 

streamflow and baseflow trend investigations included urbanized watersheds in the Midwest 

region (Ahiablame et al., 2013b), they lacked integration analysis, which exclusively focuses on 

the interactive impacts of land and climate variability on urbanized catchments. In addition, 

multiple factors, nonlinear relationships, and poor understanding of mechanisms limits the ability 

to attribute causation (McIntyre et al., 2014). Therefore, the current study focuses on this issue 

through a systematic investigation, taking into account the effects of both individual and coupled 

impacts of human and natural impacts. 

The study area, Little Eagle Creek (LEC) in central Indiana is an ideal candidate site for this 

type of study because it has been previously examined for many water-related issues and has 

substantial data available for this study. Previously, the LEC was investigated to evaluate impacts 

of urbanization on water issues. Bhaduri et al. (2000) utilized the Long-Term Hydrologic Impact 

Assessment (L-THIA) model with different land use patterns to evaluate nonpoint source (NPS) 

pollution and to assess impacts on annual average runoff from the watershed. The study concluded 

that the 18% increase in urban areas, from 1973 to 1991, resulted in an estimated 80% and 50% 

increase in annual average runoff and pollutant loads, respectively. Grove et al. (2001) conducted 

a similar study; results were consistent with Bhaduri et al. (2000), though they reported an increase 

of 60% in average annual runoff depth from 1973 to 1991 due to urbanization. Doyle et al. (2000) 

reported that stream incision occurring in the LEC was a response to urbanization though the 

measures of channel stability were not directly related to levels of urbanization. Choi et al. (2003) 
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estimated an increase in direct runoff from 49% to 63% during a 12-year time-span (1973 to 1984), 

suggesting that urbanization impacted direct runoff more than total runoff. In addition, they also 

pointed out that substantial baseflow is essential to maintain sound stream ecosystems in the LEC 

watershed. In their attempt to minimize the runoff impact of urbanization in the LEC, Tang et al. 

(2005) were able to reduce runoff increase by as much as 4.9% from 1973 to 1997. 

More recently, Lim et al. (2006) estimated the effect of initial abstraction and urban growth 

on estimated runoff using modified curve number values in the L-THIA model. Results showed 

improvements in the prediction of direct runoff over the long term, resulting from using modified 

curve numbers and hydrologic soil groups for urbanized areas. They reported that improved input 

parameters could improve L-THIA model performance (Lim et al., 2006). 

The overall aim of this research was to evaluate the response of watershed streamflow and 

baseflow to climate variability and land use change in an urban watershed in Indiana, based on 

simulation following a comprehensive calibration. The specific objectives were: 1) to evaluate 

long-term trends of historical streamflow, land use and rainfall in an urban watershed; 2) identify 

changes in land use from 1992 and 2011 through transition matrix analysis; 3) calibrate and 

validate SWAT model performance, using different land use patterns for different periods; 4) 

investigate hydrological streamflow and baseflow sensitivity to land use change and climate 

variability; and 5) simulate the joint effects of both climate and land use change on hydrology in 

this watershed. For this goal, plausible scenarios of land use change and climate variation were 

developed based on trends and information exploited from the LEC watershed. The results 

obtained provide useful information towards the improvement of the current understanding of 

hydrological component variation. Additionally, the results are informative to planning and 

management strategies for water resources that seek to minimize the undesirable effects of land 

use change and climate variation as well as water and soil preservation in urban watersheds in the 

Midwestern USA and potentially beyond. 
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3.2 Materials and Methods 

3.2.1 Study area  

Little Eagle Creek Watershed is located in northwest Indianapolis, Marion County in central 

Indiana (Figure 3.1). The watershed covers approximately 74.5 km2 (USGS Gauge 03353600), 

with annual precipitation ranging from 795 to 1443 mm from 1980 to 2017. The minimum, 

maximum and mean elevation in the area were 208, 275 and 242 meters above sea level, 

respectively. This watershed has undergone significant urbanization in the past several decades 

due to its proximity to the capitol city, creating a possible threat to the watershed’s water resources. 

Current land use includes 95.8% typical urban residential and commercial categories that are the 

majority of land use, 3.2 % non-urban natural grass and forest, and only 0.5 % agricultural and 

cultivated areas (Lim et al., 2006). Regionally, thunderstorms occur throughout the year and 

particularly in the spring and summer seasons (Doyle et al., 2000). 

 

 

Figure 3.1. Index map showing location of the Little Eagle Creek (LEC) watershed in Indiana. 
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3.2.2 Datasets Description 

The explicit datasets used to build and calibrate the SWAT model can be classified into 

statistical, geographical or spatial data for hydrologic simulation. The statistical data includes 

hydro-meteorological data, while the spatial data include Digital Elevation Model (DEM), land 

use and soil maps. 

3.2.2.1 Hydro-Meteorological Data  

The sets of data used included long-term daily meteorological data from 1980–2017, 

(precipitation, minimum/maximum air temperature, wind speed, solar radiation and humidity), 

obtained from the National Climatic Data Center (NCDC). The weather station was approximately 

4 kilometers from the LEC watershed. Hydrological streamflow data were based on observations 

from 1980 to 2017 at a gauged station within the watershed. The streamflow data were used for 

the calibration and validation of the SWAT model and to separate the baseflow from the direct 

discharge. Streamflow data were complete with no missing records. 

3.2.2.2 Topography and Soil Type 

The results reported herein used elevation, flow direction, accumulation, stream network, 

channel properties, slope and aspect to describe the topography of the study areas. The DEM 

topographical data had a resolution of 10 m by 10 m and was obtained from the Geospatial Data 

Gateway (GDG). DEM data were first used to delineate watersheds into sub-basins and the 

drainage patterns and identify flow direction of the land surface terrain. Soil type, slope and land 

use was then used to classify these sub-basins into small Hydrologic Response Units (HRUs) 

(Mehan et al., 2017). HRUs represent the smallest hydrologic unit of the watershed. Soil type data 

were obtained from Soil Survey Geographic Data (SSURGO) with a resolution ranging from 

1:12,000 to 1:63,630. The SWAT model requires these soil parameters, as the soil’s chemical and 

physical properties play an important role in evaluating water movement within the HRU (Welde 

& Gebremariam, 2017).  
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3.2.2.3 Land-Use Data 

This study used digital land-use data acquired from the National Map Viewer (NMV). To 

examine the consequence of land-use change on the hydrology of the watershed, raster land-use 

maps of 1992 and 2011 were used in this research.  

3.2.2.4 Hydrological SWAT Model  

The SWAT model, developed by the USDA Agricultural Research Service, is designed to 

model hydrology at the scale of a watershed (Arnold et al., 1998). SWAT is structured on 

fundamental components, including climate, hydrology, sediment, nutrients and management 

(Almeida et al., 2018; Neitsch et al., 2005; Wallace et al., 2018) and can be used to predict the 

variation in these components by change in land use and climate. SWAT follows a defined 

operating sequence; (1) data preparation, (2) discretization of sub-basins and definition of HRUs, 

(3) sensitivity analysis, (4) parameter calibration and (5) validation. The computational simulations 

in this study were performed with the SWAT 2012 extension, using the ArcSWAT interface of 

ArcGIS 10.4.1 (Arnold et al., 2012). 

The hydrologic routine within SWAT includes the vadose zone processes (plant uptake, 

evaporation, infiltration, lateral flows, and percolation), groundwater flows and snow fall and melt. 

The hydrologic cycle in the SWAT model is based on water balance and is expressed as follows 

(Neitsch et al., 2002): 

 

𝑆𝑊𝑡 = 𝑆𝑊0 + ∑ (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)𝑡
𝑖=1      (3.1) 

 

where 𝑆𝑊𝑡 is the final soil water content (mm); 𝑆𝑊0 is the previous soil water (mm); t is the time 

step (day); 𝑅𝑑𝑎𝑦 , 𝑄𝑠𝑢𝑟𝑓 ,  and 𝐸𝑎  are the precipitation, surface runoff, and evaporation 

measurements on day i (mm), respectively; 𝑊𝑠𝑒𝑒𝑝 is the amount of water entering the vadose zone 

from the soil profile on day i (mm), and 𝑄𝑔𝑤 is the amount of return flow on day i (mm). 

For each HRU, SWAT simulates surface water and shallow groundwater. Then, these values 

are calculated for the sub-basins by a weighted value using the combined HRUs. Using daily 

rainfall amounts and a modified version of the Soil Conservation Service (SCS) curve number 

method, surface runoff is computed. Estimation of baseflow and groundwater flow is based on the 
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hydraulic conductivity of the shallow aquifer, water table height and the distance between the sub-

basin and main channel. 

The SWAT framework serves to conceptualize the relationship between climate variation, 

land-use change and human activities and their synchronous impacts on watershed hydrology 

(Omer et al., 2017). For further information on the SWAT model, refer to the online resource at 

https://swat.tamu.edu/ and (Arnold et al., 2012). 

3.2.3 Methods 

3.2.3.1 Land-Use Change Detection 

Post-classification change detection analysis was applied to determine the temporal change 

in land use of the watershed. Statistics for change detection from the land-use maps have been 

obtained over time (1992 and 2011) for this research through the thematic overlay of the classified 

land-use maps using pixel-by-pixel cross-tabulation analysis. This was used to evaluate the “from-

to” change detection matrix table that shows the major gains and losses in each category 

(Aboelnour & Engel, 2018; Gitau & Bailey, 2012; Gitau & Chaubey, 2010). 

3.2.3.2 Temporal Trend Analysis Method  

The modified Mann–Kendall (M-K) test was applied in this study to analyze the change in 

annual precipitation and temperature in the LEC watershed (Hamed & Rao, 1998). The M-K test 

is a widely-used, non-parametric, rank-based test (Kendall, 1975), that has found considerable use 

in hydrology and climatology given its robustness and ability to avoid the effects of extreme values 

(Tesemma et al., 2010). The modified M-K was chosen for this research due to the presence of 

negative and positive serial correlations recognized in meteorological data, that can result in 

overestimation or underestimation of the trends (Kibria et al., 2016). The M-K test can identify the 

magnitude of the slope of individual variables, whereby a positive slope magnitude indicates an 

upward trend and vice versa (Hirsch et al., 1982; Sen, 1968). The M-K test statistic is calculated 

by: 

 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖)
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1         (3.2) 
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and 

𝑔𝑛(𝑥𝑗 − 𝑥𝑘) = {

+1, 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) > 0

0, 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) = 0

−1, 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) < 0

       (3.3) 

 

where S is the M-K test statistic, xj and xi are the sequential data values; and n is the dataset size 

(Hirsch et al., 1982). 

3.2.3.3 Baseflow Separation Using Web-Based Bflow 

Baseflow separation methods were used for streamflow separation into direct runoff and 

baseflow since the measurement of baseflow is considered more difficult as compared to 

streamflow measurement. Baseflow measurements were calculated from USGS daily streamflow 

data using the ‘BFlow’ digital filter program. The BFlow program calculates baseflow by filtering 

streamflow data three times (1-Pass, 2-Pass and 3-Pass) through the filter in Equation (3.4), 

allowing the user to select the required number of passes for baseflow evaluation (Jung et al., 2016; 

Lee et al., 2018): 

 

𝐵𝐹𝑡 = 𝛼 × 𝐵𝐹𝑡−1 +
1−𝛼

2
× (𝑄𝑡 + 𝑄𝑡−1)         (3.4) 

 

where 𝐵𝐹 is the baseflow, 𝛼 is the filter parameter (0.925), 𝑄 is the total streamflow, and t is the 

time step. Equation (3.4) is applied only when BF ≤ Qt (Eckhardt, 2008). 

3.2.3.4 Scenario Analysis: Modeling Hydrological Response to Climate Variability and 

Land-Use Dynamic 

Land-use data and HRU outputs for the LEC watershed showed a dramatic change in 

impervious cover after 1992. However, little change was detected in impervious cover between 

2001 and 2011, as the watershed area was mostly urbanized by 2001. Therefore, at this stage, only 

land-use data for 1992 and 2011 were considered in the calibration and validation processes for 

the two climate periods. Land-use data from the National Land Cover Database (NLCD) for 2001 

and 2006 were not used in further analysis. 
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To evaluate the separate and combined influences of land-use dynamics and climate 

alteration on hydrological components, the “fix-changing” approach was used, in which one factor 

at a time was changed while holding others constant. Based on the change detection analysis of 

temporal trends of precipitation and temperature and land-use change, the meteorological data 

from 1980–2017 were divided into two periods, with each period including one land use map. The 

period of 1980–1998 was called CP1, representing the 1980s and 1990s and was considered the 

baseline period, and the impacted period of 1999–2017 was called CP2 and represented the 2000s 

and 2010s. The 1992 land-use map for 1992 represented the patterns in CP1, while the 2011 land-

use map for 2011 was used to show the patterns in CP2, assuming that minimal change existed in 

the watershed land use after 1992 to 1998, similarly after 2011. The calibrated baseline SWAT 

model of Scenario 1 (or S1) was applied for each of the other three scenarios of the two 

meteorological time periods to give four scenarios overall to evaluate the influences of land use 

and climate change. For SWAT simulation, these four scenarios were developed: 

Scenario 1 (S1: Baseline): 1992 land use and CP1 climate data (1980–1998). 

Scenario 2 (S2: Land-use change): 2011 land use and CP1 climate data (1980–1998). 

Scenario 3 (S3: Climate change): 1992 land use and CP2 climate data (1999–2017). 

Scenario 4 (S4: Climate and land-use change): 2011 land use and CP2 climate data (1999–2017). 

In order to evaluate the separate and combined impacts of climate and land use dynamics on 

streamflow and baseflow, the four modeling experiments were used to run the well-calibrated and 

validated SWAT model. The simulated output values were compared to the corresponding values 

for the baseline period under a no-change scenario. In these four scenarios, S1 and S4 represent 

actual circumstances, and the difference between S2 and S1 outputs indicates the individual 

impacts of land use on flows, while the difference between S3 and S1 simulations describes the 

impacts of climate variation on flows. Finally, comparison between S1 and S4 attempted to depict 

the combined effects of climate change and land use change on flows in the watershed. 

A flow chart of the model set up, sensitivity analysis, calibration and validation process of 

the streamflow and baseflow for the LEC watershed is described and summarized in Figure 3.2. 
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Figure 3.2. Flow chart depicting procedure for SWAT model setup, calibration and validation of 

both streamflow and baseflow in the LEC watershed. 

3.3 Results and Discussion 

3.3.1 Land Use Changes from 1992 to 2011 

The 1992 and 2011 land use maps for the LEC watershed are shown in Figure 3.3a,b, and 

the change in land use types is shown in Figure 3.3c. The most commonly distributed land use 

types in LEC are developed and cultivated areas. Results highlighted from the land use change 

detection showed two clearly recognizable trends; (a) the decline of cultivated areas; and (b) rapid 

increase in developed areas. Developed areas showed an increase of 30.75 km2 or 75.8%. On the 

other hand, cultivated surface experienced a reduction of 30.16 km2 or 99.1% from 1992 to 2011. 
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Figure 3.3. Land use types in LEC watershed in (A) 1992; (B) 2011 and (C) the transition 

between 1992 and 2011. 

 

Table 3.1 explains the variation in the LEC from 1992 to 2011 by analyzing the transition 

matrix of land use. 40.4 km2 of urban area remained unchanged, whereas the most notable 

transition is the conversion of 29.3 km2 of cultivated areas and 1.50 km2 of forests to urban uses 

from 1992 to 2011. The transition between other land uses was very small and has been omitted 

from analysis and the map. For instance, the change from water to developed and planted to water 

are only 0.14 and 0.16 km2, respectively. This might be attributed to the different classification 

algorithms used in NLCD data of 1992 and 2011. 
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Table 3.1. Land use change transition matrix in LEC from 1992 to 2011 (km2). 

1992 
2011 

Water Developed Forest Shrubland Cultivated Wetlands Total 

Water 0.10 0.14 0 0 0 0 0.25 

Developed 0.05 40.38 0.15 0.01 0 0.02 40.62 

Forest 0.01 1.50 1.59 0.07 0.03 0.01 3.21 

Cultivated 0.16 29.34 0.62 0 0.24 0.02 30.38 

Wetlands 0 0.04 0 0 0 0 0.05 

Total 0.33 71.41 2.36 0.08 0.27 0.05  

3.3.2 Changes in Temperatures and Precipitation 

Both annual precipitation and temperature experienced a significant increase during the past 

38 years. In order to quantify the magnitude of the increase in the meteorological data, the non-

parametric M-K test was applied. The analysis showed that the meteorological time series data 

were not stationary, and there was one change point in the time series that occurred in 1998. This 

change is likely associated with regional environmental change such as urbanization and climate 

variability. 

The trend Z-test statistics and the slope of precipitation and temperature were all positive 

and are displayed in Table 3.2. The results show that the monotonic trends of annual precipitation 

and temperature were different. For the overall period from 1980 to 2017, the annual precipitation 

increased at significance levels greater than 0.1, while air temperature passed the 0.001 

significance level. These findings mean that the long-term monotonic trend of annual temperature 

exhibited a significant increase during the study period, whereas the long-term monotonic trend of 

annual precipitation is statistically insignificant and weak over time. Of note, statistical 

significance, or lacking of significance with respect to climate can be misleading. Although 

increase in annual temperature and precipitation were obtained, changes in seasonal precipitation 

and temperature might impact the increase in precipitation and temperature during the study period. 

For instance, Sekaluvu et al. (2018) reported an overall insignificant decrease in precipitation by 

0.4 mm/year during the period 2005–2015; however, winter and fall precipitation decreased by 
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approximately 7.8 mm/year and 5.4 mm/year, respectively, and that reduction was significant. 

While spring precipitation increased significantly by 20 mm/year, and summer precipitation 

decreased insignificantly by about 4.0 mm/year (Sekaluvu et al., 2018). 

Table 3.2. Temporal trends in annual precipitation and temperature in the LEC watershed. 

 Precipitation Temperature 

Z-Stat 1.521 2.930 

Slope 4.219 0.032 

α >0.1 0.001 

 

Figure 3.4 shows the average values of annual precipitation and temperature before (red 

dashed line) and after (green dashed line) the change point. Compared to CP1, the results show 

that the average annual precipitation increased by 6.8% (73.7 mm, from 1080 mm to 1154 mm), 

while air temperature increased by 0.6 °C (from 11.6 °C to 12.2 °C) in the LEC. 

 

 
(a) 

 
(b) 

Figure 3.4. Annual precipitation (a) and temperature (b) in the LEC watershed. 

In some cases, annual temperature and precipitation might not provide a true picture for the 

change in trends given the change in seasonality. Therefore, taking α = 0.05 as the significance 

level, the Mann–Kendall test was conducted at a monthly scale for the monthly precipitation and 

temperature data series. The outcomes showed a significant, positive, monotonic trend in the 
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monthly precipitation in January and June in the LEC, while the monthly temperature exhibited a 

significant increase in April and September (Table 3.3). 

Table 3.3. Trend analysis and significance test for monthly precipitation and temperature in the 

LEC Watershed. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Precipitation 

Z-Stat 2.238 −0.352 0.402 1.308 −0.214 2.226 −0.063 −0.038 −0.013 0.780 −0.478 0.339 

Slope 1.167 −0.037 0.206 1.216 −0.116 2.055 0.243 −0.321 0.194 0.290 −0.834 0.153 

Sig 1 S NS NS NS NS S NS NS NS NS NS NS 

p-value 0.006 0.181 0.172 0.048 0.208 0.006 0.237 0.242 0.247 0.109 0.158 0.184 

Temperature 

Z-Stat 0.83 0.201 1.031 2.552 1.144 1.396 −0.717 1.195 1.974 1.107 0.779 0.05 

Slope 0.33 0.004 0.05 0.066 0.028 0.029 −0.005 0.027 0.048 0.035 0.02 0.044 

Sig NS NS NS S NS NS NS NS S NS NS NS 

p-value 0.102 0.210 0.076 0.002 0.063 0.041 0.118 0.058 0.012 0.067 0.109 0.240 

1 S: Significant. NS: Not significant. Significant level (α) = 0.05. 

3.3.3 Changes in Hydrological Variables 

The monotonic trends of streamflow and baseflow in the LEC watershed were quantified 

using the Mann–Kendall test. The Z-statistics and the slope of annual streamflow and baseflow 

were positive (Table 3.4). Both long-term annual streamflow and baseflow in LEC were positively 

trending and significant at a level of 0.001; this implies that both showed significant increasing 

trends over the 1980–2017 period (Figure 3.5). 

Table 3.4. Temporal trends in annual streamflow and baseflow in the LEC watershed. 

 Streamflow Baseflow 

Z-Stat 3.319 3.395 

Slope 5.078 2.062 

α 0.001 0.001 



 

 

86 

 

The increases in streamflow have a relationship with the increased rainfall. The increasing 

trend in annual baseflow might seem contradictory at first, as urbanization and imperviousness is 

increasing, the surface runoff is expected to increase instead of baseflow and infiltration. However, 

with a conductive hydrologic and geologic setting, evapotranspiration reductions, meeting water 

supply needs in urban areas and import of water into watersheds, sewage leakage, water 

distribution lines, retention and detention basins can all contribute to the baseflow to be increased 

in urban watersheds (Ahiablame et al., 2013). Detention basins have vital roles in increasing 

baseflow in urban watersheds, as water retained at the surface due to an increasing portion of 

surface runoff, and then slowly released into the stream as a form of baseflow. Therefore, 

increasing measures to maintain storm water over time may be a main reason for the increase of 

groundwater and baseflow in urban watersheds (Meyer, 2005). 

 

 
(a) 

 
(b) 

Figure 3.5. Average daily streamflow (a) and baseflow (b) over time in the LEC watershed. 

3.3.4 The SUFI-2 Calibration and Uncertainty Analysis Algorithm 

The Sequential Uncertainty Fitting program algorithm (SUFI-2) approach within the SWAT-

CUP interface was applied for optimization, calibration, validation and uncertainty analysis of 

parameters in the model (Abbaspour, 2015). In this algorithm, several sources of uncertainties, 

such as conceptual model, measured data (e.g., observed flow, sediments), driving variables (e.g., 

precipitation) and parameters, were quantified by the 95 Percent Prediction Uncertainty (95PPU), 

that calculate the cumulative distribution of an output variable at the 2.5% and 97.5% levels 

achieved through Latin Hypercube Sampling (LHS). 
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Based on previous studies, 20 hydrologic parameters were considered (Table 3.5). These 

parameters were described according to their existence among the main flow rate variable 

calibration parameters (Almeida et al., 2018). SUFI-2 begins with wide ranges of meaningful 

parameters that capture most of the observed data within the 95PPU and then iteratively decreases 

the uncertainty of the parameters (Neitsch et al., 2011). Newer and narrower parameter ranges of 

uncertainties are computed after each iteration, in which larger uncertainty reductions are more 

related to the sensitive parameters (Zuo et al., 2016). Finally, the best fitted parameters obtained 

from SUFI-2 were incorporated into SWAT for streamflow and baseflow simulations at a daily 

time step but summarized monthly (Mehan et al., 2017). 

Performance assessment of the default model showed discrepancies between observed and 

simulated values; therefore, both automatic and manual calibration were done. Due to the large 

number of parameters within the SWAT model, a sensitivity analysis was first conducted, in order 

to decrease the number of parameters to be optimized. The calibration process included only 

sensitive parameters, and parameters were optimized based on monthly values (Welde & 

Gebremariam, 2017). 
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Table 3.5. SWAT input parameters used for the LEC calibration of streamflow and baseflow. 

Parameter 1 Ext. Description Adjustment 1 IV 1 LB 1 UB 1 FV 

Parameters controlling water balance  

ESCO hru 
Soil evaporation compensation 

factor 
R 0.95 0.01 1 0.08 

EPCO hru Plant uptake compensation factor R 1 0.01 1 0.48 

CANMX hru Max canopy storage R 0 0 25 23.5 

SFTMP bsn Snowfall temp R 1 −5 5 −3.4 

SMTMP bsn Snowmelt base temp R 0.5 −5 5 3.8 

TIMP bsn Snow back temp lag factor R 1 0.01 1 0.59 

SMFMX bsn Melt factor for snow on 21 June R 4.5 0.01 10 1.38 

SMFMN bsn 
Melt factor for snow on 21 

December 
R 4.5 0.01 10 4.09 

Parameters controlling surface water response  

CN2 mgt Initial SCS Curve number V -- −0.25 0.25 0.22 

SURLAG bsn Surface runoff lag coefficient R 4 0.1 10 3.28 

Parameters controlling subsurface water response  

ALPHA_BF gw Baseflow alpha factor  R 0.048 0.01 1 0.75 

GWQMN gw Depth of water for return flow R 1000 0.01 5000 1273 

GW_DELA

Y 
gw Groundwater delay time R 31 0.1 50 19.4 

REVAPMN gw Depth of water for evaporation R 750 0.01 250 124 

GW_REVAP gw 
Groundwater evaporation 

coefficient 
R 0.02 0.02 0.2 0.15 

RCHRG_DP gw Deep aquifer percolation fraction R 0.05 0.01 1 0.59 

Parameters controlling soil’s physical properties  

SOL_AWC sol 
Available water capacity of the soil 

water 
V -- −0.25 0.25 0.10 

SOL_K sol Saturated hydraulic conductivity  V -- −0.15 0.15 0.03 

Parameters controlling channel’s physical properties  

CH_K2 rte Effective hydraulic conductivity R 0 5 300 32.6 

CH_N2 rte Main channel manning  R 0.014 0.01 0.15 0.08 

1 Ext: Extension, R: Replace by value, V: Multiply by value, IV: Initial values, LB: Lower bound, UB: Upper bound, 

FV: Final value. 
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The SUFI-2 global sensitivity analysis, in concurrence with the calibration procedure, was 

used to test 20 recommended parameters. Global sensitivity is important in identifying the relative 

significance of each parameter and the objective function sensitivity using the t-test. As a statistical 

measurement, the t-stat and p-value were used. A t-stat provides a sensitivity measure, in which 

greater absolute values are more sensitive, while the p-value determines the importance of the 

sensitivity (Zuo et al., 2016). 

Following Moriasi et al. (2007), graphical comparison and statistical indices can assess the 

performance of the calibrated parameters. The coefficient of determination (R2), Nash–Sutcliffe 

model efficiency (ENS), PBIAS and modified Kling–Gupta Efficiency (KGE) were used to 

evaluate the model performance for the simulated streamflow and baseflow. The formulas for R2 

and ENS, PBIAS and KGE can be acquired as previously outlined by Gupta et al. (2009) and Nie 

et al. (2011), respectively, and can be calculated as follow: 

 

R2 = [
∑ [(𝑌𝑜𝑏𝑠 − 𝜇𝑜𝑏𝑠)(𝑌𝑠𝑖𝑚 − 𝜇𝑠𝑖𝑚)]𝑖

2

√∑ (𝑌𝑜𝑏𝑠 − 𝜇𝑜𝑏𝑠)2
𝑖 ∑ (𝑌𝑠𝑖𝑚 − 𝜇𝑠𝑖𝑚)2

𝑖

]

2

 (3.5) 

ENS = 1 − [
∑ (𝑌𝑜𝑏𝑠 − 𝑌𝑠𝑖𝑚)2

𝑖

∑ (𝑌𝑜𝑏𝑠
𝑖 − 𝜇𝑜𝑏𝑠)2

] (3.6) 

PBIAS =
∑(𝑌𝑜𝑏𝑠 − 𝑌𝑠𝑖𝑚)

∑ 𝑌𝑜𝑏𝑠
× 100 (3.7) 

KGE = 1 − √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 (3.8) 

where 

𝛽 =
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
 (3.9) 

and 

𝛾 =
𝐶𝑉𝑠𝑖𝑚

𝐶𝑉𝑜𝑏𝑠
=

𝜎𝑠𝑖𝑚

𝜇𝑠𝑖𝑚⁄

𝜎𝑜𝑏𝑠

𝜇𝑜𝑏𝑠⁄
 (3.10) 

 

𝑌𝑜𝑏𝑠 is the observed data, 𝑌𝑠𝑖𝑚 is the simulated output, 𝜇𝑜𝑏𝑠 and 𝜇𝑠𝑖𝑚 are the mean of the 

observed and simulated flow, respectively, r is the correlation between the measured and simulated 

values, β is the ratio between the simulated mean (𝜇𝑠𝑖𝑚) and the observed mean (𝜇𝑜𝑏𝑠) flow, and 

γ is the variation coefficient ration between the simulated (𝐶𝑉𝑠𝑖𝑚) and the observed (𝐶𝑉𝑜𝑏𝑠) flow, 
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in which 𝜎𝑠𝑖𝑚 and 𝜎𝑜𝑏𝑠 represent the standard deviations of both simulated and measured data, 

respectively. Calibration and validation results were utilized to evaluate model success. Table 3.6 

reports a model performance rating of “Very good, good, satisfactory and unsatisfactory” for each 

parameter. 

Table 3.6. SWAT performance evaluation criteria according to Lee et al. (2018), Moriasi et al. 

(2013), and Thirel et al. (2015). 

Measure Output 
Evaluation Criteria of the Model † 

Very Good Good Satisfactory Unsatisfactory 

R2 Flow >0.85 0.75 < R2 < 0.85 0.60 < R2 < 0.75 R2 ≤ 0.60 

ENS Flow >0.80 0.70 < ENS < 0.80 0.50 < ENS < 0.70 ENS ≤ 0.50 

PBIAS Flow <±10 ±10 ≤ PBIAS ≤ ±15 ±15 ≤ PBIAS ≤ ±30 PBIAS ≥ ±30 

KGE Flow >0.80 0.70 < KGE < 0.80 0.50 < KGE < 0.70 KGE ≤ 0.50 

† Sources: (Lee et al., 2018; Moriasi et al., 2013; Thirel et al., 2015) 

3.3.5 Parameter Sensitivity Analysis 

In this research, Little Eagle Creek data at the Speedway gauging station were used to 

calibrate the model. The threshold for defining HRUs was set as zero percent for soil, land and 

slope. The overlay of soil and land use maps, in addition to the slope percentage resulted in 516 

HRUs, distributed over seven sub-basins. The sensitive parameters were optimized using the 

extension of auto-calibration in SWAT2012 to calibrate the hydrological model, and were 

recognized on the basis of global sensitivity analysis. Most of the parameters were modified on a 

trial and error basis within reasonable limits after consideration of the physical properties of the 

watershed. The global sensitivity analysis showed that parameters representing surface runoff, soil 

properties, and groundwater return flow were sensitive. Hence, it was important to accurately 

estimate these parameters for streamflow simulation. The 10 most sensitive input parameters are 

shown in Table 3.7, while the remaining parameters had less significant effect on streamflow 

simulation. Different ranks have been commonly detected in the same parameter for different 

watersheds and with a different number of simulations, which indicates the stochastic nature of 

SWAT-CUP (Mehan et al., 2017).  
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Table 3.7. List of top 10 ranking sensitive parameters for SWAT in the LEC watershed and their 

calibrated values. 

Rank Parameter Calibrated Value t-Stat p-Value 

1 ALPHA_BF 0.81 44.71 0 

2 CN2 0.02 18.47 0 

3 CH_K2 28.39 −13.34 0 

4 CH_N2 0.08 −4.72 0 

5 SOL_AWC −0.17 −4.13 0 

6 RCHRG_DP 0.01 −3.16 0 

7 EPCO 0.16 −2.99 0 

8 SMTMP −1.51 2.48 0.01 

9 SFTMP 4.90 −2.24 0.03 

10 CANMX 23.27 1.95 0.05 

 

For the LEC watershed, SUFI-2 outlined the most sensitive parameters to input changes, and 

these were ALPHA_BF, CN2, CH_K2, CH_N2, SOL_AWC, RCHRG_DP, EPCO, SMTMP, 

SFTMP, and CANMX. They each have a p-value close to zero. The ALPHA_BF and CN2, ranked 

first and second in sensitivity, respectively, and higher than the others which appeared to have 

made the most contribution in improving the ENS. In general, CN2, ALPHA_BF, SOL_AWC, 

and RCHRG_DP were important parameters for both baseflow and streamflow simulation, as the 

water traveling from the root zone in SWAT to deep aquifers was not redistributed into the main 

channel, soil, or shallow aquifers, but considered lost from the system boundary (Jang et al., 2018). 

The high ALPHA_BF constant in the LEC watershed indicated a rapid response to groundwater 

recharge. 

3.3.6 Selection of SWAT Model Structure  

After incorporating all the data inputs, and in accordance with the detection of temporal 

trends in temperature and precipitation results, the period of 1980–2017 was divided into two time-
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spans, 1980–1998 and 1999–2017. The model was run for 1980–1998 with the first 4 years (1980–

1983) used as a warm up period for the model. On the basis of the 1992 land use map, the period 

of 1980–1998 was recognized as the baseline condition for the SWAT model. The 1980–1993 

period was assigned for model calibration, while the years from 1994–1998 were used for model 

validation. Careful consideration was taken so that both calibration and validation periods had 

similar water balance (Arnold et al., 2012). The monthly statistical streamflow and baseflow 

outputs for the baseline model were used to evaluate the model performance. 

3.3.7 Calibration and Validation of SWAT Model 

The proportion of baseflow (ratio of baseflow over total streamflow) of the measured and 

simulated streamflow were 36.5% and 39.1%, respectively. The good match indicated that 

partitioning between baseflow and surface runoff could be represented by the calibrated model in 

the LEC watershed (Nie et al., 2011). 

Figures 3.6 and 3.7 show the simulated and measured monthly streamflow and baseflow for 

LEC during the calibration period (1984–1993) and validation period (1994–1998), with the first 

four years assigned as a warm up period (1980–1983). Model assessment statistics for monthly 

simulated streamflow and baseflow are summarized in Table 3.8. The ENS and R2 were 0.84 and 

0.87, respectively, within the calibration period of streamflow, and 0.74 and 0.83 over the course 

of the validation period. These statistical outputs indicated that the simulated streamflow in 

calibration and validation were in ‘Very Good’ agreement, according to the Moriasi et al. (2007) 

criteria. 
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Figure 3.6. Observed and simulated streamflow of LEC watershed for calibration and validation 

period. 

 

 

Figure 3.7. Observed and simulated baseflow of LEC watershed for calibration and validation 

period. 

As shown in Figure 3.6, observed and simulated streamflow outputs had a similar trend; in 

addition, the simulated streamflow showed a reasonable match with the observed records. 

Therefore, most of the measured and simulated streamflow values were bracketed by the 95 PPU, 

therefore, indicating comparatively little uncertainty for the streamflow simulation (Zuo et al., 

2016). However, the relatively low agreements at the end of winter of some years could be 

explained by the model deficiency in capturing certain hydrological processes such as soil 
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freezing-thawing and snowmelt during this period. In addition, some differences were observed in 

the peaks of observed and simulated values. These might have been due to the precipitation pattern 

or due to the limitations of the curve number (CN) method, as the CN method used in SWAT does 

not consider the duration and intensity of precipitation (Nie et al., 2011). Results showed that the 

CN method overestimated streamflow for some large rainfall events. Overall, the observed and 

simulated average annual streamflow during the baseline model period were 0.83 m3/s and 0.98 

m3/s, respectively. 

The agreement between the measured and simulated streamflow during the calibration and 

validation period, to some extent, involves a good groundwater discharge simulation. The 

computed baseflow agreed well with the observed results for the LEC (Figure 3.7). During the 

calibration period, the R2, PBIAS, ENS and KGE were 0.80, −24.97, 0.60 and 0.67, respectively, 

while they were 0.84, −31.40, 0.58 and 0.58 for model validation (Table 3.8). The performance of 

the SUFI-2 model for baseflow simulation was considered ‘Good’ for calibration and ‘Satisfactory’ 

for validation, according to Moriasi et al. (2007) and Moriasi et al. (2015). However, the peak 

baseflow was not well matched, as the SWAT simulation tended to overestimate baseflow, likely 

because of the spatial distribution of precipitation data was unevenly represented. In addition, peak 

baseflow may be attributed to the change in land use that influences hydrological phenomena and 

is related to direct runoff as well. An alternative possibility for the differences might be the 

presence of practices like surface detention and retention basins, in addition to the effect of soil 

freezing/thawing on infiltration and recharge during initial snowmelt. Overall, the average annual 

baseflow during the period from 1984 to 1998 for both measured and simulated data was 0.30 m3/s 

and 0.38 m3/s, respectively. These results ensure that the model can be further applied to assess 

hydrologic response analysis to various land use and climate change scenarios. Of note, despite 

the good agreements between the observed and simulated results, some uncertainty is associated 

with any hydrologic model (Duan et al., 2017). Uncertainties in hydrologic models can arise from 

many different sources, including the structure of the conceptual model itself, initial conditions, 

parameters, observed input data, and interaction processes. However, the study area covers only 

74.5 km2, and the amount of intense urbanization in which the watershed undergone may create 

some uncertainties, such as the surface water model not fully accounting for the complicated 

infrastructure in urbanized watersheds. Moreover, only 20 parameters were used to calibrate the 

model. Duan et al. (2017) suggest that these may not be sufficient to represent. In addition, 
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hydraulic conductivity can affect groundwater response time; however, most of the parameters in 

the SWAT model are surface-related such as hydraulic conductivity, saturated soil zones and 

channels (Duan et al., 2017). These parameters were used in the calibrated baseline model to obtain 

an estimate of baseflow, but this assumed that the recharge of groundwater came only from shallow 

aquifers to allow quicker contribution to baseflow. Additionally, SWAT divides underground 

storage into shallow and deep aquifers. The shallow aquifer receives recharge from unsaturated 

soil percolation. However, surface water models like SWAT hypothesize that water entering deep 

aquifers is considered lost from the system and therefore is not considered in future water budgets. 

Table 3.8. Values of statistical indicators in the calibration and validation periods for streamflow 

and baseflow in the LEC watershed. 

Period 
Streamflow (m3/s) Baseflow (m3/s) 

R2 ENS PBIAS KGE R2 ENS PBIAS KGE 

Calibration (1984–1993) 0.87 0.84 −14.4 0.81 0.80 0.60 −24.9 0.67 

Validation (1994–1998) 0.83 0.74 −26.9 0.72 0.84 0.58 −31.4 0.58 

3.3.8 Changes in Total Water Yield and Baseflow within Various Simulation Scenario 

Table 3.9 demonstrates the simulated SWAT annual average water yield and baseflow under 

different land use climate changes scenarios, as discussed in Section 3.2.3.4, in the LEC watershed. 

Results indicated that the difference in average annual water yield between S2 and S1, that 

simulated the impacts of land use change, showed an increase of 30.5 mm (6.7%). Meanwhile, the 

average annual water yield increased by 88.1 mm (17.9%) in S3 as compared to S1, which 

indicated the impacts of climate variability. Water yield increased by 91.9 mm (20.3%) due to the 

combined effects of land use change and climate variation; i.e., the contrast between S1 and S4. 

These findings indicated that the average annual water yield increased in the LEC during CP1 and 

CP2 due to the effects of both land use dynamics and climate variation, with the influences of 

climate change greater than that of the land use alteration. Meanwhile, the contribution of the 

combined impacts was greater than that of land use change and climate change separately. 

Therefore, the results emphasized that when climate variation played a dominant role, the impact 

of land use dynamics on water yield was not obvious. However, urban expansion also had a 
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considerable impact on annual water yield by increasing impervious area, therefore, increasing 

surface runoff and decreasing water infiltration (Zhao et al., 2015). 

On the other hand, simulation suggested the reduction of the average annual baseflow due 

to the effect of land use change and the combined impacts of land use and climate change by an 

amount of 42.2 mm (28.8%) and 33.7 mm (23.0%), respectively, while the average annual 

baseflow increased by an amount of 22.3 mm (15.2%) due to the separate effects of climate change. 

Therefore, both land use change and the combined effects of land use and climate change had a 

greater negative impact on average annual baseflow, which illustrates the greater effect of land use 

change on baseflow in the LEC watershed. Climate variation has reduced the negative impact of 

land use change by 5.8%, as it increased from −28.8% to −23.0% from S2 to S4. The reduction of 

average annual baseflow in S2 and S4 may be because of several activities, for instance, over-

exploitation, industrial uses, water withdrawal and groundwater pumping that are primarily used 

in the LEC watershed for production, manufacturing and daily human consumption. In addition, 

the decreasing trend seen in average annual baseflow could be due to the increase in surface runoff 

and lower soil infiltration, due to urbanization and increasing imperviousness that resulted in less 

water reaching unsaturated soils. 

Table 3.9. Average annual change in water yield and baseflow in the LEC watershed. 

Scenario Land Use Climate Water Yield (mm) Baseflow (mm) Surface Runoff (mm) 

   Av. Ch. Δ   (%) Av. Ch. Δ (%) Av. Ch. Δ (%) 

S1 NLCD 1992 CP1 452.7 - - 146.5 - - 294.1 - - 

S2 NLCD 2011 CP1 483.2 30.5 6.7 104.3 −42.2 −28.8 374.7 80.6 27.4 

S3 NLCD 1992 CP2 533.8 81.1 17.9 168.8 22.3 15.2 360.9 66.8 22.7 

S4 NLDC 2011 CP2 544.6 91.9 20.3 112.8 −33.7 −23.0 428.5 134.3 45.7 

 

Figures 3.8 and 3.9 show the results of the LEC watershed average monthly water yield and 

baseflow in different simulated scenarios. Most of the water yield was concentrated from March 

to July in all scenarios, i.e., within the rainy season. However, water yields accounted for 50% in 

both S1 and S2, while increasing to 55% in S3 and S4 during the rainy season. After evaluating 

the change in monthly precipitation between CP1 and CP2 (Figure 3.8), it might be concluded that 
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the rainfall increase between CP1 and CP2 and the change in the pattern of average annual rainfall 

resulted in increased flood peaks between the two periods. The combined effects of climate 

variability and land use change caused an increase in monthly water yield in all months except 

November, which experienced a higher rainfall pattern in the first time period (CP1) as compared 

to CP2. Meanwhile, the average monthly baseflow response showed a similar behavior to the water 

yield response; however, the effect of climate change on baseflow was greater than the impact on 

water yield in the rainy season (Figure 3.9). Overall, both climate change and land use change had 

a greater impact on baseflow than water yield. Furthermore, average monthly baseflow showed an 

increase under the effect of solely climate change impacts of S3 in all months for the LEC 

watershed except for July and October, which showed a very minor reduction in baseflow (Figure 

3.9). The highest average monthly increase occurred in the coldest months of the year with respect 

to S3 with the lowest amount of rainfall. This might be attributed to the process of freeze-thaw that 

can change the runoff process, soil infiltration and subsurface water storage. Therefore, baseflow 

from shallow aquifers was considered the main contributor to total streamflow with the reduction 

of average monthly precipitation. 

Figure 3.10 shows the average monthly streamflow changes relative to the baseline scenario 

(S1). Under the S2 scenario, the streamflow showed a reduction in January, February and June by 

0.8% to 3.7%, while it increased in other months by 1.6 to 16.5%. Under the S3 scenario, however, 

streamflow showed an increase in all months, especially in summer, by an amount of 3.4% to 

30.3%. Furthermore, the S4 scenario showed a similar trend in streamflow increase in all months 

by an amount ranging from 7.6% to 34.2%, with the only reduction recorded in May of 2.1%. On 

the other hand, Figure 3.11 shows the average monthly absolute changes in baseflow relative to 

the S1 (baseline) scenario. At the monthly timescale, baseflow showed a reduction in all months 

with respect to the S2 scenario (land use change) from 8.9% in March to the greatest reduction in 

August of 58.7%. A significant increase of baseflow occurred in all months ranging from 6.6% to 

81.9% under the climate variation scenario (S3), while baseflow decreased with respect to the 

baseline scenario in the wet season by 2.9% to 15.5%. Finally, the S4 scenario showed reductions 

in baseflow for nearly the whole year ranging from 1.3% to 61.8%, while the only increase was 

found in January by 23.1%. Generally, the impact of the combined effects of land use and climate 

variation were reduced when land use and climate variation caused changes in opposite directions. 

This can be clearly seen in all months of the year with respect to baseflow variation (Figure 3.9). 
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Figure 3.8. Average monthly water yield for the LEC watershed under different scenarios. 

 

 
 

Figure 3.9. Average monthly baseflow for the LEC watershed under different scenarios. 

These changes in streamflow and baseflow were intimately bound up with the variation of 

precipitation between the two time periods. As can be seen in Figures 3.8 and 3.9, the variation in 

precipitation generally reflects the variation in water yield in most months. However, the exception 

in other months may be attributed to the impacts of temperature fluctuation. For example, baseflow 

declined in October under the S3 scenario even with the increase in rainfall. That was possibly in 
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connection with temperature rise in CP2 compared to CP1 (Zhang et al., 2015), which could lead 

to an increase in evapotranspiration. In addition, compensatory contributors to baseflow, for 

example lawn irrigation, may contribute to this fundamental change in baseflow; therefore, a 

reduction in lawn irrigation might lead to the decline in the amount of water discharged to the 

shallow aquifer that contributed to baseflow. 

 

 

Figure 3.10. Relative change in average monthly streamflow in the LEC watershed. 

 

 

Figure 3.11. Relative change in average monthly baseflow in the LEC watershed. 
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3.4 Summary and Conclusions 

Recognizing the impacts of land use alteration and climate variability on hydrologic systems 

is the basis for pragmatic watershed sustainability and ecological restoration efforts. In this study, 

the impacts of climate variability and land use change from 1980 to 2017 on water streamflow and 

baseflow in the Little Eagle Creek watershed were evaluated using the non-parametric Mann–

Kendall statistical test, land use maps and hydrologic modeling. The novelty lies in that not only 

were the effects of climate variation on hydrological response investigated, but the combined 

impact of land use dynamics and climate variation was also evaluated in an urbanized watershed 

in the US Midwest. 

The long-term streamflow and baseflow response to land use change and climate variability 

were evaluated using the calibrated SWAT model. The model contained four scenarios in two 

periods, and applied two land use datasets (1992 and 2011) for the two climate periods (CP1 and 

CP2). By simulating the historical, continuous variation in streamflow, the SWAT model was 

calibrated and validated over the period 1980 to 1998 throughout the SUFI-2 approach within the 

SWAT-CUP interface. The SUFI-2 algorithm played an important role in minimizing the 

differences between measured and simulated streamflow in the LEC watershed. Discrepancies 

observed between the outputs of the model simulation and the observed data may in part occur due 

to the lack of meteorological input data from more than a single station. The SWAT model 

produced ‘very good’ and ‘good’ results for calibrating and validating observed streamflow and 

baseflow data. Hence, the calibrated parameters in this study can be used to carry out further future 

environmental and hydrological studies in similar watersheds. The hydrological balance 

assessment has shown that baseflow is a key component of the total discharge as it accounted for 

36.5% of total flow within the LEC watershed. In general, SWAT proved versatile in modeling 

the effects of environmental changes in urban watersheds. 

The model was used to explore likely impacts of urbanization and climate variation in an 

urban watershed. Much of the original cultivated and forest areas had already been converted to 

developed areas or urbanization. During the period of 1992–2011, about 30% of the LEC 

watershed area changed from cultivated to urban areas, while the climate became warmer and 

wetter. Overall, climate variability had the dominant impact on streamflow, while urban expansion 

influenced baseflow more significantly than climate change. Urbanization can be considered a 

major environmental stressor controlling hydrological components, including surface runoff, 
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baseflow, and water yield in a catchment. Understanding the variation in streamflow and baseflow 

due to the separate and coupled effects of climate variation and land use dynamics is essential for 

sustainable management of water resources. The results gleaned from this study can be useful in 

providing information for management and planning of water resources, in addition to assessing 

the prospective impacts of adaptation measures to cope with climate variation, particularly in areas 

that are sensitive to climate variability and experiencing high urbanization. 

The results obtained in this study must be interpreted carefully, with the caveat that the 

meteorological station records reflect data that are the result of the combined impacts of land use 

alteration and climate variability. Since these effects cannot be separated in this data, the predicted 

impact of climate variability alone on streamflow and baseflow may not be simulated accurately. 

Studies that focus on quantifying the effect of each land use category change on streamflow and 

baseflow are likely to yield useful additional insights on how climate variability and land use 

impact hydrological response separately. Furthermore, additional studies using catchments that 

exhibit different urbanization and climate regions could provide beneficial comparative results to 

determine the impacts of these variables on hydrological components. 
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 A COMPARISON OF STREAMFLOW AND BASEFLOW 

RESPONSES TO LAND-USE CHANGE AND THE VARIATION IN 

CLIMATE PARAMETERS USING SWAT  

Abstract 

Alteration of land use and climate change are among the main variables affecting watershed 

hydrology. Characterizing the impacts of climate variation and land use alteration on water 

resources is essential in managing watersheds. Thus, in this research, streamflow and baseflow 

responses to climate and land use variation were modeled in two watersheds, the Upper West 

Branch DuPage River (UWBDR) watershed in Illinois and Walzem Creek watershed in Texas. 

The variations in streamflow and baseflow were evaluated using the Soil and Water Assessment 

Tool (SWAT) hydrological model. The alteration in land use between 1992 and 2011 was 

evaluated using transition matrix analysis. The non-parametric Mann–Kendall test was adopted to 

investigate changes in meteorological data for 1980–2017. Our results indicate that the baseflow 

accounted for almost 55.3% and 33.3% of the annual streamflow in the UWBDR and Walzem 

Creek watersheds, respectively. The contribution of both land use alteration and climate variability 

on the flow variation was greater in the UWBDR watershed. In Walzem Creek, the alteration in 

streamflow and baseflow appeared to be driven by the effect of climate variability more than that 

of urbanization. The results reported herein were compared with results reported in chapter three 

in order to provide necessary information for water resources management planning, as well as 

soil and water conservation, and to broaden the current understanding of hydrological components 

variation in different climate regions. 

4.1 Introduction 

Ecosystems and humans are fundamentally dependent on different water resources. Thus, 

for the general development of any country, the quality and the quantity of these water resources 

flowing through rivers are of vital importance to socio-economic development (Ficklin et al., 2016). 

Issues related to changes in water resources are commonly evaluated around the globe (Duan et 

al., 2016; Tong et al., 2012; Zhang et al., 2013b). In the United States, evaluation of streamflow 

and baseflow has been documented (Aboelnour & Engel, 2018b; Kumar et al., 2009; Zhang & 
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Schilling, 2006). However, the quantitative change in streamflow and baseflow has yet to be 

evaluated across different climatic conditions. 

Climate alterations and human actions both act as stressors to place severe pressure on water 

resources (Aboelnour et al., 2019). The variations in climate and land use directly impact total 

streamflow, interflow, surface runoff, and baseflow, causing events of droughts and floods that 

impact the sustainability of these resources and the social ecosystem (Jin et al., 2016). Several 

studies have examined alterations in streamflow due to changes in temperature and precipitation 

(Duan et al., 2017; Frans et al., 2013; Novotny & Stefan, 2007), urbanization (Chen et al., 2017b), 

and land use change (Xu et al., 2013; Zhang et al., 2013b). Baseflow is the portion of streamflow 

sustained in a river by delayed pathways. Baseflow is often assumed to be equal to groundwater 

recharge (Gebert et al., 2007). It provides a relatively high water quality with a high clarity and 

stable temperature, and is considered indicative of sustained streamflow during dry periods of the 

season, which is important to stream biota and helps recreation-based industries (Neff et al., 2005). 

These low-flow data are essential in understanding the current and future changes to watershed 

hydrology. Several reports have indicated that the change in baseflow over time is due to variations 

in agricultural management (Charles, 2007), climate change (Aboelnour et al., 2020), urbanization 

(King et al., 2016), and land use alteration (Price et al., 2011). Therefore, to develop scenarios for 

water resources evaluation, land use change and climate variation are usually chosen as the main 

influencing factors. The impacts of climate variation and urbanization on streamflow and baseflow 

were reviewed by different scholars (Aboelnour et al., 2019; Price, 2011). 

Different methods have been used to evaluate the response of watershed streamflow and 

baseflow to human activities and climate change. These techniques include hydrologic similarities 

within the watersheds, paired catchments, statistical methods, and hydrological modeling (Dey & 

Mishra, 2017). Since climate and land use change need to be investigated on a local scale and can 

vary from place to place (Khoi & Thom, 2015), there is a need to use comprehensive and physical 

tools to evaluate as much information as possible from the limited existing data (Li et al., 2009). 

Hence, hydrological models are considered the most appealing approach to carry out impact 

assessment studies. They provide a conceptualized framework and are suitable for use as part of 

scenario studies on the relationship among hydrological components, climate variability, and land 

use change (Gitau & Chaubey, 2010; Jothityangkoon et al., 2001). Among these models is the Soil 

and Water Assessment Tool (SWAT) model. 
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The SWAT model, developed by the United States Department of Agriculture (USDA) 

Agricultural Research Service, is designed to model hydrology at the scale of a watershed (J. G. 

Arnold et al., 1998). SWAT is widely used around the world to evaluate the influences of 

ecological and environmental alterations and for hydrological processes at different catchment 

scales, even with limited data (Liu et al., 2018). In addition, it offers several software tools, and 

was therefore selected for this research. Each watershed was divided into smaller sub-basins in the 

SWAT model. These sub-basins were then divided into smaller Hydrologic Response Units 

(HRUs), which were fundamentally based on land use, soil type, and slope (Arnold et al., 2012). 

Within each HRU, the Soil Conservation Service (SCS) curve number and Green–Ampt 

infiltration were adapted to compute surface runoff using daily precipitation. In addition, SWAT 

subdivides the groundwater system into deep confined aquifers, which contribute to flow outside 

of the catchment, and shallow unconfined ones, in which the groundwater and baseflow return to 

the stream (Neitsch et al., 2009). The SWAT model has proven to perform well in streamflow and 

baseflow simulations around the world and in complex catchments with extreme events 

(Abbaspour et al., 2015), since it allows the interconnections of different physical processes (Luo 

et al., 2012; Yan et al., 2018; Zhang et al., 2011). Therefore, in this research, the SWAT model 

was adopted to assess the impacts of land use and climate change. 

Streamflow and baseflow responses to human activities, urbanization, and climate variation 

are different in various basins with respect to climate regions, geographical variances, scale, and 

urbanization levels (Mwakalila et al., 2002; Price, 2011). However, the need to fully understand 

the streamflow and baseflow responses to external stimuli is of vital importance. Many studies in 

the last few years have been carried out to investigate the hydrological response to urbanization 

and climate change (Zhang et al., 2016). Outputs of these studies can help in understanding the 

cause of shifts in water resources. However, these studies mainly focus on the single impact of 

either land use change or climate variation, but neglect the combined effects of climate alteration 

and human activities and their contributions to the change. Thus, the combined effects are still not 

fully understood over different climatic conditions and geographical regions. For this reason, the 

responses of streamflow and baseflow to urbanization and climate variation will be evaluated for 

varying climate conditions with different urbanization levels. Two watersheds, the Upper West 

Branch DuPage River (UWBDR) watershed, Illinois, and Walzem Creek watershed, Taxes, were 
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used as examples to quantify the changes in streamflow and baseflow as a response to climate and 

land use change. 

As evidenced by the USA Census population data, the Upper West Branch DuPage River 

(UWBDR) watershed, Illinois, has undergone intense urbanization in the last four decades. In 

addition to this dramatic urbanization, the watershed has experienced major flood events, such as 

the floods of 1996 and 2008 (Burke et al., 2006). Other incidences in the watershed have been 

identified as impactful on the development of the UWBDR. One of the main contributors is 

floodplain management that addressed overbank flooding of the main stream and its tributaries 

(Burke et al., 2006). Hejazi and Markus (2009) investigated the impacts of urbanization and 

climate variability on annual flooding in 12 urban watersheds in Cook County, northeastern Illinois. 

They found that urbanization had a greater impact than climate on the increase in flood discharge, 

and, due to increasing urbanization, discharge volume may become even higher in the future. In 

addition to floodplain management, wetland protection, bank stabilization, stream restoration, 

water quality, and groundwater recharge are also concerns within the catchments (Hejazi & 

Markus, 2009). Some sections of the stream are supplied with a substantial amount of their 

baseflow from local groundwater discharge, while other sections release baseflow to groundwater 

due to the presence of a large outwash plain at the base of the West Chicago Moraine that creates 

conditions that promote rapid flooding and groundwater movement from the border of the moraine 

through the outwash (Burke et al., 2006). 

The second watershed is the Walzem Creek, San Antonio, Texas. The city of San Antonio, 

Bexar County and other partners initiated a watershed protection plan in 2006 for the Upper San 

Antonio basin, including the Walzem Creek watershed, to track efforts that enhance urban outreach, 

and to bring the basin back into compliance with water resource and water quality recreation 

standards. In 2015, the Environmental Protection Agency (EPA) approved this protection plan, 

making the state eligible for project funding within the watershed to address nonpoint source 

runoff. The report can be viewed at https://www.brwm-tx.org/. A combination of rocky and clay 

soils contributes to larger runoff than groundwater flow in this watershed. Rock, clay, and slopes 

create nearly impervious conditions in the northern portion of the watershed and thus reduce the 

effect of development and its associated impervious cover on storm water flow (Clean River 

Program San Antonio River Basin, 2017). 
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The main target of this study was to evaluate the impact of separate and combined impacts 

of land use changes and climate alteration on streamflow and baseflow in two watersheds under 

different land use and climatic conditions. The specific goals of this research were: (1) identify the 

long term trend and the abrupt changes in hydrological and meteorological data; (2) determine the 

change in land use maps from 1992 to 2011; (3) use the new calibrated and validated SWAT model 

to assess the individual and combined impacts of land use change and climate variation on 

streamflow and baseflow; and (4) compare the outputs of this study with the findings of Aboelnour 

et al. (2019). Information gleaned from this study can be used to understand the variations in 

hydrological flow components, and are necessary for water resources management and planning, 

as well as water and soil conservation in geographically different watersheds. 

4.2 Study Areas 

4.2.1 Upper West Branch DuPage River Watershed 

The Upper West Branch DuPage River watershed (UWBDR) is located in northeast Illinois, 

within the six-county Chicago metropolitan region. The watershed is located approximately in the 

western one third of DuPage County (Figure 4.1a). The headwaters originate in the northwestern 

part of Cook County where the water flows generally to the south into and through DuPage County. 

The UWBDR is part of the West Branch DuPage River (WBDR) watershed that divides into upper, 

middle, and lower branches within the DuPage catchment and belongs to the Des Plaines River 

basin. The UWBDR covers approximately 91.7 km2 (USGS Gauge 05539900) with mean annual 

precipitation ranging from 612 to 1293 mm from 1980 to 2017, and average annual temperatures 

ranging from 8.4 to 12.5 °C. The minimum, maximum, and mean elevations in the area are 217, 

298 and 240 m above sea level, respectively. Developed and residential areas were the dominant 

land use type in the UWBDR at the end of the last century (44.1%), followed by cultivated and 

forest land cover at 39.0% and 8.8%, respectively. Current land use varies from residential (84.2%) 

to forest (4.4%), vacant (4.5%), and cultivated (2.7%). The river network in the watershed receives 

treated effluent and wastewater from the city of West Chicago, Illinois (Drury et al., 2013). 
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4.2.2 Walzem Creek 

Walzem Creek is located in Bexar County in the state of Texas and in the San Antonio East 

USGS quad (Figure 4.1b). Currently, except for the lower most portion of the watershed, the 

majority of Walzem Creek is characterized by dense, urban development. The lower portion of the 

watershed is characterized by a mix of vegetation and forests and normally dry except during rain 

events. The Walzem Creek is a part of the Upper San Antonio Watershed and covers approximately 

109 km2 (USGS Gauge 08178800), with a mean annual precipitation ranging from 320 to 1200 

mm and average annual temperatures ranging from 19.3 to 22.3 °C. Mean elevation in the area is 

204 m, with a minimum and maximum of 152 and 266 m above sea level, respectively. Similar to 

the UWBDR watershed, recently, most of Walzem Creek is covered with developed areas (84.5%); 

however, other land uses include wetlands (7.2%), shrublands (4.2%), and forests (2.5%). 

However, it was characterized by only 64.4% of residential areas, 17.5% of planted cover, and 8.7% 

and 7.0% of forest and shrublands covers, respectively, at the beginning of the 1990s. This area is 

a large portion of the Upper San Antonio Watershed; hence, it contributes a large amount of total 

streamflow. According to the main Koppen–Geiger climate classes for US counties, the San 

Antonio, Bexar County area lies at the border between the warm, humid, equatorial zone and fully 

hot arid and steppe zone (Kottek et al., 2006). Therefore, this watershed is representative of semi-

arid regions. 
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Figure 4.1. Index map showing location of the study watersheds: (a) Upper West Branch DuPage 

River in Illinois; and (b) Walzem Creek in Texas. 
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4.3 Materials and Methods 

The data described herein include spatial topography, Digital Elevation Model (DEM), land 

use and soil data, and hydro-meteorological data. Data analysis procedures and methods used are 

detailed extensively in the work presented in Chapter 3. A flow chart depicting procedures used in 

this study is shown in Figure 4.2. 

 

 

Figure 4.2. Flow chart showing the methodology used in this study 

4.3.1 Data Development 

4.3.1.1 Spatial Data 

Two raster land use maps for the years 1992 and 2011 were obtained from the National Map 

Viewer (NMV). Digital Elevation Model (DEM) data were acquired from the Geospatial Data 

Gateway (GDG) with a resolution of 10 m. Soil Survey Geographic Data (SSURGO) data were 

used in this research with a resolution ranging from 1:12,000 to 1:63,630. Land use, soil type, and 
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slope were then used to divide the delineated sub-basins into a small series of uniform HRUs that 

represent the smallest representative units within the watershed (Mehan et al., 2017). 

4.3.1.2 Hydro-Meteorological Data 

The required datasets used include daily observed streamflow data at gauged USGS stations 

for the period 1980 to 2017. The streamflow data were used to separate baseflow from surface 

runoff, and for the SWAT model calibration and validation. In addition, long-term daily 

meteorological datasets for the same period (1980–2017) were collected from the National 

Climatic Data Center (NCDC). The meteorological weather stations were 12 km and 0.8 km away 

from the borders of the UWBDR and Walzem Creek watersheds, respectively. 

4.3.2 Methodology 

4.3.2.1 Baseflow Separation 

Baseflow measurements were separated from daily streamflow data acquired from USGS 

gauged stations using the automatic baseflow digital filter method (BFlow). The BFlow filter 

separates streamflow data into baseflow and surface runoff by passing the observed streamflow 

through the filtering equation three times (Jung et al., 2016; Lee et al., 2018): 

 

𝐵𝐹𝑡 = 𝛼 × 𝐵𝐹𝑡−1 +
1 − 𝛼

2
× (𝑄𝑡 + 𝑄𝑡−1) (4.1) 

  

where 𝐵𝐹 is the baseflow, 𝛼 is the filter parameter (0.925), 𝑄 is the total streamflow, and t is the 

time step. Equation (1) is applied only when BF ≤ Qt (Eckhardt, 2008). BFlow is a conservative 

filter that enables the user to filter streamflow data to calculate the baseflow, and also to generate 

a tabular dataset or graphical hydrograph interface from USGS gaging stations. Herein, BFlow 

filtered streamflow data three times (Equation 4.1), and it is commonly observed that the 1-pass 

baseflow is consistent with manually estimated baseflow and thus was subsequently used in this 

study (Eckhardt, 2008). 
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4.3.2.2 Soil and Water Assessment Tool (SWAT) Model Calibration and Validation 

The monotonic trends in the historical meteorological data were evaluated using the 

modified Mann–Kendall (MK) test developed by Hamed and Rao (1998). Based on the abrupt 

change in the trends in precipitation and temperature using the MK test, the study period from 

1980 to 2017 was split into two time spans, 1980–1998 and 1999–2017, with a breakpoint in 1998. 

The period 1980–1998 was assigned as a baseline for model calibration and validation. The model 

simulation time was segmented into a warm up period (1980–1983), calibration period (1984–

1993), and validation period (1994–1998). The SWAT model calibration and validation were 

performed using the land use map of 1992 and streamflow data from 1980 to 1998 for each of the 

selected watersheds. Model optimization, sensitivity analysis, calibration, validation, and 

uncertainty analysis of parameters were carried out using the Sequential Uncertainty Fitting 

program algorithm (SUFI-2) approach within the SWAT-CUP interface (Abbaspour et al., 2015). 

Based on methodology reported in Chapter 3, the twenty hydrologic parameters listed in Table 4.1 

were used in this study for the UWBDR and Walzem Creek watersheds calibration of streamflow 

and baseflow. However, sensitivity analysis using the SUFI-2 global sensitivity analysis was 

carried out in the first stage due to the presence of many parameters within the SWAT model [44]. 

Only parameters sensitive for the watersheds were then used in the calibration process and 

optimized based on monthly values (Welde & Gebremariam, 2017). Both automatic and manual 

calibration were carried out to allow qualitative and quantitative comparisons of the values, to fine 

tune the values of the auto-calibrated parameters, and to decrease the differences between the 

observed and simulated outputs (Ghazal et al., 2019). 
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Table 4.1. SWAT input parameters used for the UWBDR and Walzem Creek watersheds 

calibration of streamflow and baseflow (Aboelnour et al., 2020). 

Parameter 1 Ext. Description Adjustment 1 IV 1 LB 1 UB 

Parameters Controlling Water Balance 

ESCO hru Soil evaporation compensation factor R 0.95 0.01 1 

EPCO hru Plant uptake compensation factor R 1 0.01 1 

CANMX hru Max canopy storage  R 0 0 25 

SFTMP bsn Snowfall temp  R 1 −5 5 

SMTMP bsn Snowmelt base temp  R 0.5 −5 5 

TIMP bsn Snow back temp lag factor  R 1 0.01 1 

SMFMX bsn Melt factor for snow on 21 June  R 4.5 0.01 10 

SMFMN bsn Melt factor for snow on 21 December R 4.5 0.01 10 

Parameters Controlling Surface Water Response 

CN2 mgt Initial SCS Curve number V — −0.25 0.25 

SURLAG bsn Surface runoff lag coefficient R 4 0.1 10 

Parameters Controlling Sub-Surface Water Response 

ALPHA_BF gw Baseflow alpha factor  R 0.048 0.01 1 

GWQMN gw Depth of water for return flow R 1000 0.01 5000 

GW_DELAY gw Groundwater delay time R 31 0.1 50 

REVAPMN gw Depth of water for evaporation R 750 0.01 250 

GW_REVAP gw Groundwater evaporation coefficient R 0.02 0.02 0.2 

RCHRG_DP gw Deep aquifer percolation fraction R 0.05 0.01 1 

Parameters Controlling Soil’s Physical Properties 

SOL_AWC sol Available water capacity of the soil water V -- −0.25 0.25 

SOL_K sol Saturated hydraulic conductivity  V -- −0.15 0.15 

Parameters Controlling Channel’s Physical Properties 

CH_K2 rte Effective hydraulic conductivity R 0 5 300 

CH_N2 rte Main channel Manning’s “n”  R 0.014 0.01 0.15 

1 Ext, Extension; R, Replace by value; V, Multiply by value; IV, Initial values; LB, Lower bound; 

UB, Upper bound 
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4.3.2.3 Model Sensitivity Analysis 

The global sensitivity analysis procedures showed that the sensitive parameters obtained 

from the LEC in Chapter 3 were critical in the case of the UWBDR watershed, but with a different 

rank order. It was also found that these rankings were impacted by the selected objective function 

in the model. For example, curve number (CN2), soil evaporation compensation factor (ESCO), 

snowfall temperature (SFTMP), melt factor for snow (SMFMN), baseflow recession constant 

(ALPHA_BF), and deep aquifer percolation fraction (RCHRG_DP) were the most critical 

parameters in UWBDR when the Kling–Gupta Efficiency (KGE) was selected to be the objective 

function incorporated into the model (Table 4.2). These parameters characterize surface runoff, 

soil properties, and groundwater. 

In the case of Walzem Creek, the parameters in Table 4.2 were consistent with other SWAT 

parameter sensitivity analyses completed for semi-arid regions. The SWAT model is highly 

sensitive to surface runoff and basin parameters when the watershed is characterized by 

inconsistent rainfall events ( Veith et al., 2010; Yuan et al., 2015). ALPHA_BF followed by CN2 

were the most sensitive parameters in Walzem Creek. In contrast to the other watersheds, snowfall 

and snow melt parameters were not sensitive in Walzem Creek since there was no persistent 

snowpack. The high ALPHA_BF constant in Walzem Creek indicated a rapid response to 

groundwater recharge. However, the lower baseflow recession constant in the UWBDR indicated 

large storage discharge and slow drainage in the shallow aquifer, which might be attributed to the 

complex geological structure of the watershed such as the presence of folds and faults (Zhang et 

al., 2016). The high deep aquifer percolation parameter (RCHRG_DP) in Walzem Creek indicated 

the increase of water movement to the deep aquifer. SOL_AWC represented the soil moisture 

content and hence played a role in surface runoff and was considered to be directly proportional 

to the soil’s ability to hold water, affecting streamflow. 
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Table 4.2. Top 10 optimized SWAT sensitive parameter values in the UWBDR watershed and 

Walzem Creek watershed. 

UWBDR Watershed Walzem Creek Watershed 

Rank Parameter Fitted  t-Stat p Value Rank Parameter Fitted  t-Stat p Value 

1 ALPHA_BF 0.81 44.71 0 1 CN2 −0.10 −24.87 0.00 

2 CN2 0.02 18.47 0 2 ESCO 0.99 5.78 0.00 

3 CH_K2 28.39 −13.34 0 3 SFTMP 0.31 −3.12 0.00 

4 CH_N2 0.08 −4.72 0 4 SMFMN 0.86 −2.79 0.01 

5 SOL_AWC −0.17 −4.13 0 5 ALPHA_BF 0.23 −2.51 0.01 

6 RCHRG_DP 0.01 −3.16 0 6 RCHRG_DP 0.01 2.47 0.01 

7 EPCO 0.16 −2.99 0 7 SOL_AWC 0.03 −2.07 0.04 

8 SMTMP −1.51 2.48 0.01 8 GW_DELAY 32.14 −0.78 0.44 

9 SFTMP 4.90 −2.24 0.03 9 SURLAG 0.92 0.75 0.45 

10 CANMX 23.27 1.95 0.05 10 CANMX 0.31 −0.74 0.46 

4.3.2.4 Statistical Criteria and Model Evaluation Performance 

The performance of the SWAT model can be computed using statistical indices and 

graphical comparisons (Moriasi et al., 2007). For the simulated streamflow and baseflow, the 

coefficient of determination (R2), Nash–Sutcliffe model efficiency (ENS), PBIAS, and modified 

KGE were adopted to evaluate the model performance (Gupta et al., 2009; Nie et al., 2011). The 

monthly statistical streamflow and baseflow values for the calibrated models were adopted to 

evaluate the model performance. The performance of the SWAT model is considered good on a 

monthly basis when R2 > 0.75; ENS and KGE > 0.7; and PBIAS ≤ 15 according to Moriasi et al. 

(2013) and Thirel et al. (2015). 

4.3.2.5 Scenarios Separating the Impact of Land Use Change and Climate Change 

In this research, the “change-fix” approach used in Chapter 3 was applied to evaluate the 

streamflow and baseflow as a response to separate and combined impacts of urbanization and 
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climate alteration. Land use maps of 1992 and 2011 were used to represent the two time periods. 

The land use map of 1992 was adopted to represent the patterns in the first period (1980–1998), 

herein called TS1. On the other hand, the 2011 land use map was used to represent the second time 

span (1999–2017), herein called TS2. 

A combination of four simulations were developed to evaluate the natural and human 

impacts on hydrology: (1) 1992 land use and TS1 climate data of 1980–1998 (X1); (2) 2011 land 

use and TS1 climate data of 1980–1998 (X2); (3) 1992 land use and TS2 climate data of 1999–

2017 (X3); and (4) 2011 land use and TS2 climate data of 1999–2017 (X4). The well-calibrated 

SWAT model, using the land use data of 1992 and first climate period, was used to run the other 

four scenarios (X1–X4). The simulated output values obtained from these scenarios were 

compared to the corresponding baseline model. X1 represents the baseline scenario with the 

corresponding circumstances, while the difference between X4 and X1 simulation describes the 

combined effects of land use change and climate variation. The comparison between X1 and X2 

attempts to depict the separate impact of land use change. Finally, the differences between X3 and 

X1 outputs emphasize the individual impact of climate alteration. 

4.4 Results and Discussions 

4.4.1 Trends in Hydrologic Components 

Statistical analyses were performed on climatological variables using the modified non-

parametric Mann–Kendall (MK) test, to evaluate possible transition points, trends, and their 

significance in the time series from 1980 to 2017. The modified MK test statistic, τ, is standardized 

and can be used in comparing variables that experience differences in their magnitude (Sen, 1968). 

A positive slope magnitude indicates an upward trend and vice versa (Hirsch et al., 1982). As 

shown in Table 4.3, the slope and the τ -statistics for annual streamflow and baseflow were all 

positive, except for the baseflow trend in Walzem Creek, which showed a significant decrease in 

monotonic trend. However, the null hypothesis was accepted in the case of annual streamflow, as 

it showed an insignificant increasing trend (Figure 4.3). Results also showed that the annual 

baseflow increased at a significance level greater than 0.1 for the UWBDR watershed, which 

indicates a slightly increasing trend. However, a significant increasing trend in streamflow during 

1980–2017 was detected for the UWBDR watershed (Figure 4.3).  



 

 

116 

 

Table 4.3. Temporal trends in annual streamflow and baseflow in the study areas. 

 Streamflow Baseflow 

UWBDR watershed 

τ-Stat 2.238 1.848 

Slope 3.195 1.301 

α 0.001 >0.1 

Walzem Creek 

τ-Stat 0.277 −1.961 

Slope 2.043 −3.335 

α  >0.1 0.001 

 

The increase in average precipitation played an important role in the increasing trend of 

streamflow for the UWBDR watershed, while the slight increase in streamflow at Walzem Creek 

was accompanied by decreased precipitation and an increase in temperature as well. Moreover, 

human activity, such as construction of urban areas on agricultural areas, played a vital role in the 

amount of streamflow and baseflow. A combination of temperature increase and either a reduction 

or increase in rainfall are likely the main reasons for climate variation affecting the global water 

balance. In other words, the magnitude and the directions of these changes will affect any particular 

change in streamflow and baseflow (Price et al., 2011). 

The relationship between baseflow and human impacts and climate change varied. The 

reduction of annual baseflow in the Walzem Creek watershed may be attributed to the reduction 

of cultivated area and implementation of imperviousness, which in turn has a negative impact on 

the infiltration rate by increasing the surface runoff, specifically during the wet season of the year 

(Ghazal et al., 2019). On the other hand, the increasing trend in the annual baseflow in the UWBDR 

was similar to the trend of the Little Eagle Creek (LEC) watershed mentioned in Chapter 3. This 

increase is likely caused by several factors, including the influx of water from outside the 

watershed during the process of urban development and infrastructure and leakage from water 

supply pipes. Lerner (2002) reported that urbanized catchments are usually associated with leakage 

rates of 20–50% in sewer systems and septic tanks, causing large amounts of groundwater 

discharge. Wastewater from the West Chicago Moraine may also provide a significant amount of 

water, which likely originates outside the catchment. In addition, detention basins play essential 

roles in increasing baseflow in urban catchments, as water is retained at the surface due to an 

increasing amount of surface runoff, and then slowly released into the stream as a form of baseflow 

(Aboelnour et al., 2019). Lastly, physiological features may also contribute to this observed trend, 

including features such as the topography, geology and soil types that result from glacial melting 
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with high porous media, which can play a significant role in increasing infiltration (Bhaskar et al., 

2016). 

 

  
(a) 

 
(b) 

  
(c) (d) 

Figure 4.3. Average daily streamflow (a) and baseflow (b) in the UWBDR watershed; and 

average daily streamflow (c) and baseflow (d) in the Walzem Creek watershed. 

4.4.2 Trends in Climatic Components 

The MK test was furthermore employed to quantify the monotonic trends of precipitation 

and temperature in the selected watersheds. Compared to the first climate period (1980–1998), 

statistical results indicated that the mean air temperature increased by 0.7 °C (from 9.7 to 10.4 °C) 

and 0.6 °C (from 20.7 to 21.3 °C) during TS2 at the UWBDR and Walzem Creek watersheds, 

respectively. Average annual precipitation increased by 9.1% (82 mm, from 890 to 972 mm) 

during TS2 in the UWBDR, while decreasing by 6.5% (56 mm, from 858 to 802 mm) in Walzem 

Creek (Figure 4.4). 

In the case of UWBDR, the trend of τ-test statistics and the slope of precipitation and 

temperature were positive and are provided in Table 4.4. The results show a difference in the 
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monotonic trends of annual temperature and precipitation. For the time series from 1980 to 2017, 

the annual air temperature increased at a significance level greater than 0.001, which indicates that 

the long-term trend of temperature was statistically significant. The annual precipitation increased 

only at a significance level greater than 0.1, indicating a minor increase of precipitation over time 

and that the trend is statistically insignificant at the 95% confidence level. On the other hand, the 

average annual precipitation after the change point in Walzem Creek exhibited a slight decrease 

from the average before the change point. However, the temperature at Walzem Creek showed an 

increasing trend at the 0.001 significance level, which indicates that the climate at Walzem Creek 

became warmer and drier during the study period. While the average annual precipitation and 

temperatures shifted over time, these trends may not reflect the true picture as the change displayed 

in both may have been seasonally influenced (Sekaluvu et al., 2018). Therefore, the MK test was 

further performed at a monthly scale for time series data from 1980 to 2017 (Table 4.5). The results 

show that the monotonic trends of the monthly meteorological data for the study were different. 

For the UWBDR watershed, the results indicate that the monthly temperature showed increasing 

trends in slope in every month of the year. The monotonic increasing trends of monthly 

temperature were only statistically significant at a confidence level of p = 0.05 in June, September, 

and October. Monthly precipitation trend for November decreased significantly, while it showed 

an insignificant reduction in August, September, and December. The remaining months showed 

an insignificant increase in monthly precipitation, with the highest increment recorded in June 

(1.36 mm/month). On the other hand, monthly precipitation in Walzem Creek Watershed showed 

decreasing trends in February, May, June, October, November, and December, while increasing 

trends in the other months with the highest increment recorded in September (1.52 mm/month) 

and maximum reduction recorded in June (1.68 mm/month). Change in monthly precipitation in 

the Walzem Creek Watershed was insignificant. Similar to the UWBDR watershed, increases in 

monthly temperature trends were recorded in every month, with only February showing a 

significant increase in the monotonic trend at a confidence level of p = 0.05.
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(a) 

 
(b) 

  
(c) 

 
(d) 

Figure 4.4. Annual precipitation (a) and temperature (b) in the UWBDR watershed; and annual 

precipitation (c) and temperature (d) in the Walzem Creek watershed. 

 

Table 4.4. Temporal trends in annual streamflow and baseflow in the study areas. 

 Precipitation Temperature 

UWBDR 

τ-Stat 0.503 2.709 

Slope 0.821 0.037 

α >0.1 0.001 

Walzem 

τ-Stat 0.327 3.640 

Slope 1.179 0.036 

α >0.1 0.001 
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Table 4.5. Summary of significance test and trend analysis for monthly precipitation and 

temperature in the UWBDR and Walzem Creek watersheds. 

 
UWBDR Walzem Creek 

τ-Stat Slope 1Sig p-Value τ-Stat Slope 1Sig p-Value 

January 
PRCP 1.245 0.551 NS 0.106 0.704 0.564 NS 0.240 

TEMP 0.805 0.045 NS 0.210 1.722 0.051 NS 0.042 

February 
PRCP 0.905 0.409 NS 0.183 −0.905 −0.142 NS 0.183 

TEMP 0.339 0.005 NS 0.367 2.351 0.071 S 0.009 

March 
PRCP 0.126 0.035 NS 0.450 0.855 0.248 NS 0.196 

TEMP 0.729 0.043 NS 0.233 1.685 0.048 NS 0.046 

April 
PRCP 0.805 0.425 NS 0.211 0.629 0.992 NS 0.265 

TEMP 1.383 0.036 NS 0.083 1.722 0.038 NS 0.043 

May 
PRCP 1.584 0.988 NS 0.057 −0.704 −0.268 NS 0.241 

TEMP 0.981 0.024 NS 0.163 0.893 0.017 NS 0.186 

June 
PRCP 1.534 1.364 NS 0.061 −1.282 −1.678 NS 0.100 

TEMP 2.012 0.051 S 0.022 1.798 0.03 NS 0.036 

July 
PRCP −0.427 0.581 NS 0.335 0.729 0.741 NS 0.233 

TEMP 0.465 0.014 NS 0.321 1.031 0.013 NS 0.151 

August 
PRCP −0.805 −1.349 NS 0.210 −0.641 0.493 NS 0.261 

TEMP 1.358 0.021 NS 0.087 1.585 0.025 NS 0.056 

September 
PRCP −0.855 −0.442 NS 0.196 1.383 1.52 NS 0.083 

TEMP 2.364 0.054 S 0.009 1.245 0.019 NS 0.107 

October 
PRCP 0.151 0.25 NS 0.440 −0.930 −0.547 NS 0.176 

TEMP 2.087 0.058 S 0.018 1.207 0.031 NS 0.114 

November 
PRCP −2.024 −1.669 S 0.021 −1.471 −0.504 NS 0.071 

TEMP 1.320 0.043 NS 0.093 1.886 0.042 NS 0.030 

December 
PRCP −0.226 −0.324 NS 0.411 0.176 −0.238 NS 0.430 

TEMP 0.566 0.051 NS 0.286 1.119 0.04 NS 0.132 

1 Significance level (α) = 0.05. S, Significant; NS, Not significant. 
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4.4.3 Changes in Land Use Characteristics 

Cross tabulation analysis and post classification comparison were applied to evaluate the 

quantity of temporal conversions and nature of changes from one land cover category to another 

in land use maps of 1992 and 2011 (Aboelnour & Engel, 2018a; Gitau & Bailey, 2012). In the 

UWBDR, a comparison of land use maps for the years 1992 and 2011 indicated that the most 

significant changes occurred in three classes: developed urban, planted, and forest (Figure 4.5). In 

1992, the main land use types were planted and developed areas, which occupied 76.1% of the 

total watershed area. However, owing to urban expansion, the proportional extent of developed 

areas increased from 44% to 77% from 1992 to 2011. Conversely, the proportional extent of 

planted and forest decreased from 35.8% to 2.7% and from 8.1% to 4.4%, respectively. The 

transition matrix of UWBDR land use in Table 4.6 explains these changes in detail. Overall, 43.6% 

or 39.9 km2 of the developed area in 1992 remained unchanged, whereas 27.7 km2 (30.2%) and 

5.38 km2 (5.9%) of the planted and forest areas, respectively, were primarily converted to 

developed urban areas from 1992 to 2011. In hydrological modeling, uncertainties in land use data 

are determined by the sensitivity of the model output to different land use data inputs. Some 

uncertainties might be associated with different classification algorithms used in both the 1992 and 

2011 NLCD land use data. Therefore, the presence of low percentages of land use changes between 

1992 and 2011 is omitted. Uncertainties and accuracies in NLCD data are also dependent on the 

interpretation of the person(s) collecting the information and therefore may be assessed differently 

depending on how it was analyzed. Some uncertainties, therefore, might be applicable to the 

intended application, while others may have no effects (Castilla & Hay, 2007). 
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Figure 4.5. Land use types in the UWBDR watershed in: (A) 1992; (B) 2011; and (C) the 

transition between 1992 and 2011. 

 

Table 4.6. Transition matrix (in percentages) of land use change in UWBDR from 1992 to 2011. 

1992 

2011   

Water Developed Barren Forest Shrubland Herbs Planted Wetlands Total 

Water 0.77 0.82 0.01 0.08 0.00 0.07 0.14 0.11 2.00 

Developed 0.04 43.56 0.00 0.22 0.00 0.08 0.14 0.01 44.06 

Barren 0.01 2.59 0.07 0.03 0.01 0.65 0.21 0.02 3.59 

Forest 0.07 5.87 0.00 1.52 0.01 0.11 0.16 1.09 8.82 

Herbs 0.01 0.39 0.00 0.16 0.00 0.02 0.00 0.10 0.69 

Planted 0.20 30.25 0.47 2.03 0.23 3.52 1.96 0.35 39.01 

Wetlands 0.24 0.76 0.01 0.36 0.01 0.07 0.03 0.36 1.84 

Total 1.34 84.24 0.56 4.40 0.26 4.52 2.65 2.04  
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The Walzem Creek watershed also underwent some land use changes over the past few 

decades (Figure 4.6). During the 20-year period, developed and planted areas were the two largest 

land use types, and they accounted for approximately 64% and 17% of the total area, respectively. 

The planted areas shrunk from 1992 to 2011 by 18.3 km2. Developed and wetland areas had the 

greatest increase from 64% to 92% and from approximately 0% to 7.8%, respectively. These 

increases were due to a large scale, continuous decrease in planted areas (17.5% to 0.8% of the 

watershed area) and a gradual decrease in forests (9.5% to 2.5%). The increase in wetland areas 

mostly occurred after 2006 (from 0.06 to 7.82 km2) due to the ecological restoration program for 

watershed protection that enhanced the urban reaches, bringing the basin back into compliance 

with water resources and water quality recreation standards. On the other hand, developed areas 

increased to the detriment of planted and cultivated areas due to the rapid urban development and 

expansion in the city of San Antonio (Table 4.7). 

 

 

Figure 4.6. Land use types in the Walzem Creek watershed in: (A) 1992; (B) 2011; and (C) the 

transition between 1992 and 2011. 
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Table 4.7. Transition matrix (in percentages) of land use change in the Walzem Creek watershed 

from 1992 to 2011. 

1992 

2011   

Water Developed Barren Forest Shrubland Herbs Planted Wetlands Total 

Water 0.09 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.18 

Developed 0.00 62.63 0.05 0.26 0.38 0.05 0.09 0.95 64.40 

Barren 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.09 

Forest 0.00 3.42 0.00 1.15 0.61 0.05 0.11 3.32 8.66 

Herbs 0.00 1.32 0.00 0.05 0.43 0.12 0.21 0.00 2.13 

Shrubland 0.00 4.79 0.00 0.23 1.47 0.09 0.12 0.26 6.95 

Planted 0.00 12.15 0.00 0.87 1.26 0.29 0.29 2.64 17.50 

Wetlands 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.09 

Total 0.09 84.57 0.05 2.55 4.16 0.59 0.82 7.17  

4.4.4 SWAT Model Calibration and Validation Results 

At the UWBDR, the total observed and simulated streamflow during the calibration period 

were 7.52 and 7.60 m3/s, respectively. The resulting hydrograph from SWAT streamflow in the 

UWBDR also showed agreement in trends between the two (Figure 4.7). The best calibration 

achieved was an R2 of 0.69, PBIAS of 4.86, ENS of 0.67, and KGE of 0.82. Note that KGE was 

used as an objective function type in the SUFI-2 calibration and validation because it could be 

decomposed into three terms that represented the correlation, bias, and relative variability between 

the measured and simulated values (Lazzari Franco & Bonumá, 2017). Hence, it allowed the 

simultaneous use of baseflow and streamflow in calibration and enabled comparison between 

different strategies. The summed observed and simulated streamflow during the validation period 

were 9.03 and 8.27 m3/s, respectively. Streamflow validation showed a higher performance than 

the calibration with an R2 of 0.84, PBIAS of 23.1, ENS of 0.68, and KGE of 0.67 (Table 4.8). 

On the other hand, the total annual baseflow during the calibration and validation periods 

for both measured and simulated data were 8.02 and 7.82 m3/s, respectively. Goodness-of-fit 

measures were evaluated to test the performance of baseflow predictions. The R2 for the calibration 
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period was 0.67, with a PBIAS of −1.08, ENS of 0.60, and KGE of 0.80 (Table 4.8). Figure 4.8 

shows the results of model calibration and validation of baseflow at the UWBDR. Overall, there 

was reasonably good agreement between computed and simulated baseflow. Further, the model 

performance was validated using data for the subsequent time period. It was observed that the 

computed baseflow from the USGS streamflow values were reasonably close to the simulated ones. 

The evaluation indices R2, PBIAS, ENS, and KGE were 0.79, 8.43, 0.58, and 0.79 for the baseflow 

of the validation period, respectively. 

In general, the results suggested that the SWAT model performed satisfactorily in the 

UWBDR watershed according to the criteria set by Moriasi et al. (2007). However, the model 

underestimated the simulated streamflow for the validation period at a monthly time step during 

low streamflow, which indicates that there may be uncertainty in the results of SWAT simulations 

for urban watersheds. The lower performance of the SWAT model in the UWBDR may be 

attributed to the fact that the climate data obtained from the main weather station were located 

outside the basin, and the distribution of the climate stations with a complete record was sparse. 

In addition, the overestimation of some peaks in baseflow could be related to the existence of the 

West Chicago Moraine outwash plain, creating circumstances that promote fast groundwater 

movement from the moraine through the outwash. Ratios of baseflow to the total annual 

streamflow were 55.3% and 60.8% for both measured and simulated streamflow, respectively. 

This discrepancy is acceptable because all of the separation methods of baseflow using different 

filters are subject to uncertainties (Zhang et al., 2016).



 

 

126 

 

Table 4.8. Statistical indicators for calibration and validation periods for streamflow and 

baseflow in the UWBDR watershed and Walzem Creek watershed. 

 
Period 

Streamflow (m3/s) Baseflow (m3/s) 

 R2 ENS PBIAS KGE R2 ENS PBIAS KGE 

UWBDR 
Calibration (1984–1993) 0.69 0.67 4.9 0.82 0.67 0.60 −1.1 0.80 

Validation (1994–1998) 0.84 0.68 23.1 0.67 0.79 0.58 8.4 0.79 

Walzem 
Calibration (1984–1993) 0.87 0.87 −4.3 0.91 0.85 0.76 21.6 0.70 

Validation (1994–1998) 0.83 0.70 −3.8 0.54 0.70 0.68 −5.12 0.79 

 

 

 

Figure 4.7. Observed and simulated time series streamflow for the UWBDR watershed during 

calibration and validation periods.
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Figure 4.8. Observed and simulated time series baseflow for the UWBDR watershed during 

calibration and validation periods. 

Unlike the UWBDR and the LEC watersheds results reported in Chapter 3, the baseflow 

proportion of the observed and simulated streamflow at the Walzem Creek watershed were 33.3% 

and 26.8%, respectively, which indicated that surface runoff was a major supply component for 

the stream. Figure 4.9 shows the comparison between the simulated and observed monthly 

streamflow for the calibration and validation periods. USGS records show that the total monthly 

streamflow for Walzem Creek was 18.7 m3/s, while the simulated one was 19.5 m3/s. However, 

streamflow was overestimated for most of the light rainfall events (dry climate periods) and 

showed very good agreement with the large rainfall events (wet periods). Previous studies have 

shown that SWAT performed better under more humid climatic conditions (Lazzari Franco & 

Bonumá, 2017; Van Liew et al., 2005). In addition, SWAT has some problems with precisely 

accounting for water loss through infiltration and evapotranspiration, especially during dry climate 

seasons, and evaluating the soil moisture storage (Feyereisen et al., 2007; Tobin & Bennett, 2009; 

Van Liew et al., 2007). 

During the streamflow calibration period, the R2, ENS, PBIAS, and KGE were 0.87, 0.87, 

−4.31, and 0.91, respectively, while they were 0.83, 0.70, −3.83, and 0.54 during the validation 

period (Table 4.8). The SWAT performance for the monthly streamflow during both the calibration 

and validation periods was very good (Moriasi et al., 2007). Moreover, the high values of R2 and 

ENS in the calibration and validation periods indicated that, with calibrated parameters, the SWAT 
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model was useful to simulate streamflow in this semi-arid region and to further quantify the 

hydrological impacts of climate variation and land use change over water balance components. 

Although the SWAT performance for the streamflow validation period was not as good as the 

calibration period, the results show that its performance was still good, implying that SWAT is 

applicable to Walzem Creek. The reason that SWAT validation performance was less than the 

calibration performance was most likely due to the occurrence of an extreme flooding event in 

October 1998, in which a strong flood killed at least 25 people and caused hundreds of millions of 

dollars in damages across counties in the southern and eastern regions of San Antonio. The SWAT 

model poorly matched the peak flow of this large event. 

The results also indicate that the simulated values of baseflow were slightly lower than those 

of the computed ones from observed USGS records. The computed monthly baseflow from USGS 

records and the simulated one were 6.23 and 5.22 m3/s, respectively, during the whole calibration 

and validation periods. Figure 4.10 shows the comparison between the simulated and the computed 

monthly baseflow values at the Walzem Creek watershed in the calibration and validation periods. 

In the calibration period, the baseflow of the computed and simulated results had a similar trend. 

Meanwhile, the values of R2, ENS, PBIAS, and KGE were 0.85, 0.76, 21.65, and 0.70, respectively, 

with a P-factor of 0.70 and R-factor of 0.62. In the validation period, these measures were 0.70, 

0.68, −5.12, and 0.79, respectively. The statistical measure results indicate a “very good” to “good” 

match between the simulated baseflow in the calibration and validation periods and the computed 

records (Moriasi et al., 2007). However, SWAT overestimated the computed baseflow during the 

validation period, which was exemplified in the negative values of PBIAS. The statistical indicator 

and the similar trend between the computed and simulated results showed that the SWAT model 

was adequate in the semi-arid region of Walzem Creek, and confirmed that the optimized and 

calibrated model can be applied to evaluate the responses of the basin’s hydrology to land use and 

climate change. 

However, considering the study area was in a semi-arid region and only one meteorological 

station within the catchment was used, it was difficult to detect whether the climatic conditions in 

the entire watershed were precisely captured. In addition, the design of the SWAT model may not 

fully capture the groundwater flow characteristics. However, the outputs are expected to be 

accurate and reliable since the model was calibrated and validated using observed streamflow. 
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Figure 4.9. Observed and simulated time series streamflow for the Walzem Creek watershed 

during calibration and validation periods. 

 

 

Figure 4.10. Observed and simulated time series baseflow for the Walzem Creek watershed 

during calibration and validation periods. 

 

0

100

200

300

400

500

600

700

800

900

10000

5

10

15

20

25

30

35

40

Jan-84 Jan-85 Jan-86 Jan-87 Jan-88 Jan-89 Jan-90 Jan-91 Jan-92 Jan-93 Jan-94 Jan-95 Jan-96 Jan-97 Jan-98

P
re

c
ip

it
a
ti

o
n

 (
m

m
)

M
o

n
th

ly
 S

tr
e
a
m

fl
o

w
 

(m
3
/s

)

Precipitation Observed Simulated

Calibration Validation



 

 

130 

4.4.5 Impacts of Land use Change 

One of the vital parameters assessed for sustainable management of water resources is water 

yield. Total water yield is the aggregate amount of water entering the main channel after leaving 

the HRUs during a time step and can be computed using the following equation (Arnold et al., 

2012). 

 

𝑊𝑌𝐿𝐷 = 𝑆𝑈𝑅𝑄 + 𝐿𝐴𝑇𝑄 + 𝐺𝑊𝑄 − 𝑇𝐿𝑂𝑆𝑆 (4.2) 

 

where 𝑊𝑌𝐿𝐷 is the total water yield (mm); 𝑆𝑈𝑅𝑄 is the surface runoff (mm); 𝐿𝐴𝑇𝑄 and 𝐺𝑊𝑄 are 

the contributions of lateral flow and groundwater to streamflow (mm), respectively; and 𝑇𝐿𝑂𝑆𝑆 is 

the transmission loss through the bed from the tributary channels in the HRU (mm). 

The SWAT simulation suggested that the conversion of the existing planted land cover to 

urban areas in the UWBDR watershed caused a minor increase in the annual mean water yield by 

0.5% (Table 4.9). The variation could be explained by the reduction in the extent of forests and 

planted areas and implementation of imperviousness, leading to the reduction of 

evapotranspiration and infiltration, and increase in surface runoff. However, the reduction of 

evapotranspiration and the increase in surface runoff were considered not significant in the 

UWBDR watershed. This could explain the minor increase in the annual mean water yield at the 

area. Other than the total water yield, the SWAT simulation also suggested a considerable change 

in baseflow due to the effect of urbanization. Baseflow increased by 2 mm (accounting for 3.0%) 

when only the effect of land use dynamics between the two different periods was considered. 

Figures 4.11 and 4.12 show the distribution of the monthly average water yield and baseflow 

simulated by SWAT, respectively, for the four scenarios for the UWBDR. Average monthly water 

yield was concentrated in the late fall/spring seasons and accounted for 29% in the land use change 

scenario (X2). The change in water yield tended to be positive under the X2 scenario except for 

the winter season. On the other hand, land use change had minimal effect on baseflow, with no 

obvious change between X1 and X2. Baseflow variation showed increasing trends in warm months 

from May to September, and then decreased from October to April. Such increase may be 

attributed to leakage from an outwash plain at the base of West Chicago Moraine and the increased 

precipitation during the wet season. 
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Table 4.9. Average annual change in water balance components in the UWBDR watershed. 

Scenario Land Use Climate Precipitation (mm) Water Yield (mm) Baseflow (mm) Surface Runoff (mm) Evapotranspiration (mm) 

   Av. Ch. Δ (%) Av. Ch. Δ   (%) Av. Ch. Δ (%) Av. Ch. Δ (%) Av. Ch. Δ (%) 

X1 1992 TS1 890.8 - - 312.6 - - 65.9 - - 238.3 - - 568.6 - - 

X2 2011 TS1 890.8 0 0 314.1 1.5 0.5 67.9 2.0 3.0 240.9 2.59 1.1 567.8 −0.8 −0.1 

X3 1992 TS2 972.2 81.4 9.1 343.4 30.8 9.9 119.7 53.8 81.6 216.7 −21.57 −9.1 608.6 40 7.0 

X4 2011 TS2 972.2 81.4 9.1 347.1 34.6 11.1 73.0 7.1 10.8 268.4 30.11 12.6 605.2 36.6 6.4 

 

 

Table 4.10. Average annual change in water balance components in the Walzem Creek watershed. 

Scenario Land Use Climate Precipitation (mm) Water Yield (mm) Baseflow (mm) Surface Runoff (mm) Evapotranspiration (mm) 

   Av. Ch. Δ (%) Av. Ch. Δ   (%) Av. Ch. Δ (%) Av. Ch. Δ (%) Av. Ch. Δ (%) 

X1 1992 TS1 857.7 - - 326.1 - - 95.2 - - 223.3 - - 528.3 - - 

X2 2011 TS1 857.7 0 0 334.1 8.0 2.7 87.3 −7.9 −26.0 239.5 16.1 6.4 520.0 −8.3 −1.5 

X3 1992 TS2 802 −55.7 −6.5 291.8 −34.3 −11.9 82.2 −13.0 −42.9 202.6 −20.8 −8.2 514.9 −13.4 −2.5 

X4 2011 TS2 802 −55.7 −6.5 300.5 −25.7 −8.9 74.6 −20.7 −67.9 219.1 −4.2 −1.7 505.1 −23.2 −4.3 
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Figure 4.11. Monthly water yield change for the UWBDR watershed under different scenarios. 

 

 

Figure 4.12. Monthly baseflow change for the UWBDR watershed under different scenarios. 

 

The results in Table 4.10 show that the average annual water yield increased by 8.0% due to 

the urbanization effect in Walzem Creek (X2-X1). Meanwhile, urbanization caused the baseflow 
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to experience a reduction of 26.0%. Based on the proposed approach, the average annual 

evapotranspiration and surface runoff variability during the three scenarios were further analyzed 

to provide deeper insight into how climate and land use dynamics interacted with hydrologic 

systems in Walzem Creek watershed. In semi-arid regions, hydrologic systems could be very 

sensitive to climate variability. Evapotranspiration was an important component of the hydrologic 

process, often nearly equaling precipitation in the catchment water balance, and, under given 

climate conditions, it was mainly affected by vegetation cover (Zhang et al., 2017). Under the same 

precipitation conditions, decreased evapotranspiration brought an increase in baseflow and 

streamflow, while increased evapotranspiration led to the reduction in both (Schilling et al., 2008). 

This is illustrated in our findings shown in Table 4.10, in which evapotranspiration experienced a 

minor reduction of 1.5% due to the land use alteration. However, the reduction of groundwater 

discharge reported at the Walzem Creek Watershed was mainly due to urbanization, agriculture 

loss, and deforestation. Of note, the evapotranspiration rate was greater in the UWBDR Watershed 

than in the Walzem Creek Watershed, despite having a higher potential evapotranspiration (PET), 

as a result of several key differences. The PET recorded in the Walzem Creek Watershed was 

greater than that of the UWBDR Watershed for all scenarios. The PET ranged from 1016 to 1091 

mm for the UWBDR Watershed, but was between 1800 and 2084 mm for the Walzem Creek 

Watershed. However, the amount of precipitation in the Walzem Creek Watershed was lower than 

that of the UWBDR Watershed, resulting in dryer soils that limit ET. Moreover, the areas of 

vegetation and forest cover in the UWBDR Watershed was greater for both 1992 and 2011 (Tables 

4.6 and 4.7). In addition, the UWBDR watershed experienced a greater increase in temperature in 

TS2 compared to TS1 (0.7 °C). Finally, the UWBDR Watershed average daily wind speed was 

4.5 and 4.3 ms−1 in TS1 and TS2, respectively. In comparison, the average wind speed for the 

Walzem Creek watershed was 3.9 and 3.8 ms−1 in TS1 and TS2, respectively. 

Figure 4.13 illustrates the monthly impacts of land use change, climate, and their joint effect 

on Walzem Creek’s water yield. Land use change had a more pronounced effect for all months in 

conjunction with a higher monthly average of rainfall in the first period of time (TS1). For example, 

the monthly average precipitation in June was 120.2 mm in TS1, and decreased to 75.0 mm in TS2. 

The contributions of land use impacts on monthly water yield were the highest in May, June, 

October, and December. Conversely, deforestation and urban expansion resulted in a reduction in 
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monthly baseflow in all months from with the greatest reduction recorded in the summer season 

from May to July with a total of 33.9% (Figure 4.14). 

 

 

Figure 4.13. Monthly water yield change for the Walzem Creek watershed under different 

scenarios. 

 

 

Figure 4.14. Monthly baseflow change for the Walzem Creek watershed under different 

scenarios. 
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The streamflow changes in the UWBDR watershed appeared to occur in the same manner 

as changes for the LEC watershed discussed in Chapter 3, with some minor differences (Figure 

4.15). For instance, under X2, streamflow was reduced in the winter months by 5.4% to 35.8%. In 

addition, the average annual water year experienced an increase of 6.7% in the LEC watershed, 

while it was simulated to be only 0.5% and 8.0% in the UWBDR watershed and Walzem Creek 

watershed, respectively. In contrast to the LEC watershed, which showed a reduction in average 

annual baseflow as a result of reducing infiltration rate due to urbanization by 28.8%, the UWBDR 

watershed experienced an average increase in baseflow regardless of the urbanization trend. The 

reduction in baseflow in the LEC watershed could be caused by over-exploitation and excessive 

pumping of groundwater used in industry and production (Aboelnour & Engel, 2018b), while the 

minor increase in average annual baseflow in the UWBDR might be attributed to flooding of 

underground structure and the leakage of the groundwater into wastewater systems. The significant 

decrease in average annual baseflow at Walzem Creek might be due to clearing vegetation, 

deforestation, and increasing imperviousness, which in turn led to the reduction of 

evapotranspiration and groundwater discharge while increasing surface runoff. Urbanization is 

usually associated with measures that play a vital role in accelerating the removal of water from 

the catchment and stream system, especially during heavy rainfall events. Compacted soil, 

channelization, and imperviousness allow water to flow rapidly as a result of lower hydraulic 

resistance of channels and land surfaces of urbanized catchments, which might be an explanation 

for decreasing baseflow in the Walzem Creek Watershed. 
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Figure 4.15. Absolute change in mean monthly streamflow for the UWBDR watershed under 

different scenarios. 

4.4.6 Impacts of climate variation 

In comparison to the land use change scenario, the climate variation scenario caused the 

average annual water yield to increase by 9.9% as a result of a prominent increase in precipitation 

at the UWBDR watershed. Baseflow also showed an increase when only climate variation was 

considered (X3); however, this was much more pronounced than the change in water yield, with 

an increase of 53.8 mm (81.6%) (Table 4.9). These results indicate that both land use change and 

climate variability played a role in increasing baseflow. However, climate change played a more 

pronounced role than land use change in impacting the hydrologic regime of the UWBDR during 

the recent past, due mainly to the increase in precipitation. This can also be seen in Table 4.9, in 

which the surface runoff decreased by 9.1% and evapotranspiration increased by 7.0%. Together, 

these results indicate that the climate alteration contributes more substantially to the effects 

observed on hydrological components compared to urbanization. 

Similar to the land use change scenario, the average monthly water yield was predominantly 

observed in late fall/spring at the UWBDR watershed. Of note, the highest change in monthly 

water yield was observed in July (39%) due to the X3 (climate change) scenario. The change in 

water yield tended to be positive in months that experienced a significant increase in precipitation 

in the second period (TS2) compared to the first one (TS1) (Figure 4.11). On the other hand, the 

results show an increase in average monthly baseflow under the effect of climate change only, 
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impacts of X3 in all months, although the highest growth was detected in the warmest months of 

the year (May to September) (Figure 4.12). 

The climate change scenario had the maximum impact on the average annual water yield, 

causing it to decrease by 11.9% for the Walzem Creek Watershed, while it caused the average 

annual baseflow to decrease by 42.9% (51.7 mm) compared to the baseline scenario (X1) (Table 

4.10). This may be attributed to the significant reduction in the precipitation pattern and the 

increase in temperature in TS2 as compared to TS1, where the climate became warmer and drier. 

Therefore, these likely played an important role in the contribution to the total streamflow for 

Walzem Creek. Climatic variables, specifically precipitation, largely determined the runoff 

hydrograph. Precipitation reduction in the second climatic period (TS2) resulted in the significant 

decline of surface runoff by 20.8 mm (8.2%), and a reduction in evapotranspiration by 2.5%, within 

the X3 scenario (Table 4.10). These results indicate that impact of climate variability on baseflow 

and evapotranspiration was larger than the land use alteration scenario; however, both scenarios 

had opposite impacts on average annual water yield and surface runoff. Overall, the impacts of 

climate variation were greater than those of land use change. 

On a monthly basis, the highest negative impacts of climate change over the monthly average 

water yield were detected in June, October, and December, with amounts of 19.2, 12.5, and 12.3 

mm, respectively, where the average monthly precipitation was significantly greater in TS2 as 

compared to TS1. On the other hand, monthly water yield increased at the end of summer and the 

beginning of fall seasons, especially in September; in which it increased by 17.5 mm. It could be 

inferred that climate variation had a lasting negative effect on water yield (Figure 4.13). Similarly, 

the climate change scenario (X3) caused a reduction in monthly baseflow in all months except 

August, September, October, and December, with the highest difference recorded in September 

(3.1 mm). The increase of baseflow in these months was mainly due to changes in precipitation 

and temperature patterns from TS1 to TS2. For example, TS2 experienced less precipitation as 

compared to TS1, while the temperature was greater in TS2 compared to TS1. Hence, baseflow 

played a role in water contribution to total streamflow when the weather got warmer and drier in 

the semi-arid watershed (Figure 4.14). The probable climate alteration impacting most of the globe 

is mainly determined by the combination of temperature increase and either decrease or increase 

in rainfall intensity, and any particular baseflow response will depend on the direction and 

magnitude of both precipitation and temperature. For instance, the change in average monthly 
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precipitation was positive in September, while it was negative in October. Meanwhile, average 

monthly baseflow showed an increase in both September and October, which might also be 

explained by the changes in monthly temperature between the two scenarios as it was higher in 

October than in September. 

The streamflow changes under the X3 scenario, which was considered the climate change 

scenario, were remarkably similar at the UWBDR watersheds to those at the LEC watershed, in 

which all months exhibited an increase of 12.2–34.5% (Figure 4.15). In addition, the relative 

change in streamflow percentage in the UWBDR watershed was greater than the change in the 

LEC watershed, suggesting that streamflow change was more sensitive to climate change than to 

land use dynamics. Climate change had a similar impact on the average annual water yield in both 

the UWBDR and the LEC watersheds, in which it increased by 17.9% and 9.9% in the LEC and 

UWBDR watersheds, respectively. However, negative impacts due to the X3 scenario occurred in 

Walzem Creek, indicating that urbanization and climate change had opposite impacts in this semi-

arid region. On the other hand, the climate change caused the average annual baseflow to increase 

by 15.2% and 81.6% at the LEC and UWBDR watersheds, respectively. However, it declined by 

42.9% at the Walzem Creek Watershed. In addition, the average annual surface runoff exhibited 

an increase in the LEC Watershed due to the impact of climate change by an amount of 22.7%, 

but decreased in Walzem Creek by 8.2%. These findings imply that the runoff hydrographs of a 

catchment are largely impacted by climatic variables, especially precipitation, which in turn affects 

the percolation of soil water to the groundwater. 

4.4.7 Combined Impacts of Both Land Use Change and Climate Variations 

To evaluate the combined impacts of land use and climate change, the simulated results 

under the X4 scenario were compared to the calibrated baseline scenario. The annual mean water 

yield increased by 11.1% as a response to the X4 scenario at the UWBDR watershed (Table 4.9). 

These changes, compared to X2 and X3 scenarios, emphasize that the joint effects of land use 

change and climate variability led to consistent growth in water yield in the UWBDR watershed. 

Furthermore, the effect of climate variation was larger than that of the land use dynamic on the 

total water yield. This can be clearly seen by the X3 and X4 scenarios, in which the mean annual 

precipitation showed an increase of 81.4 mm, resulting in an increase in the mean annual water 

yield. These changes are similar to the changes reported in the LEC watershed discussed in Chapter 
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3, resulting from the combined impacts of land use and climate change. In contrast to the LEC 

watershed, where baseflow decreased, the X4 scenario for the UWBDR watershed led to an 

increase in the average annual baseflow to 7.1 mm (10.8%) (Table 4.9). This difference might be 

attributed to the prevalence of negative urbanization impacts for the LEC watershed, in contrast to 

the significant positive effects of climate variation for the UWBDR watershed. 

Similar to the climate scenario, we observed that the average monthly water yield was 

concentrated in the late fall and early spring in the X4 scenario, totaling 39% of the annual yield. 

In general, positive changes were detected in all months under different scenarios except for 

November, January, and February. However, the variation due to the joint effects tended to be 

higher in all months with a higher precipitation pattern in the second period of time (TS2) than in 

TS1 (Figure 4.11). For instance, the effect of land use scenario (X2) was greater than those of X3 

and X4 in August, as the average monthly rainfall was 127.2 mm in TS1, while it was only 99.8 

mm in TS2. Meanwhile, the combined effect of land use change and climate variability and the 

sole effect of climate change had greater impacts on water yield in July, as the average monthly 

precipitation was 83.7 in TS1, increasing to 114.8 mm in TS2. Baseflow variations showed 

increasing trends in warm months from May to September, then decreased from October to April 

in conjunction with the joint effect of climate variation and land use change (Figure 4.12). The 

increase in baseflow may be mostly due to an increase in rainfall, and could be explained by 

fluctuations in both precipitation and temperature between TS1 and TS2. The freeze–thaw 

processes of the active layer could have changed the soil infiltration capacity and the volume of 

subsurface water storage, thus impacting baseflow as well (Qin et al., 2017). 

Results from the X4 scenario in the Walzem Creek Watershed indicate that the average 

annual water yield decreased by 25.7%, while the average annual baseflow showed a consistent 

reduction of 67.9% (Table 4.10). Additionally, the annual evapotranspiration was negatively 

impacted by the joint effect of climate variation and land use change, decreasing by 4.3%. The 

decline in evapotranspiration was mainly caused by the reduction in green cover (Table 4.7). 

Compared to X1, the combined effects of land use change and climate variability under X4 

decreased surface runoff by 4.2 mm (1.7%). Therefore, with the concurrent reduction in 

evapotranspiration, average annual water yield and baseflow had significant decreases under the 

X4 scenario These findings indicate that changes of average annual water yield and surface runoff 

under the joint effects of climate variation and urbanization were smaller than the changes due to 
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the impacts of the sole impact of climate variation. In other words, the climate alteration had a 

dominant role, while the land use variation had a counteractive role affecting water yield and runoff. 

The land use change reduced the negative impacts of climate variation by 3.0% and 6.5% for 

annual water yield and surface runoff, respectively. However, the joint effect of climate variability 

and land use change on baseflow was greater than the sole impact of the land use change scenario 

and climate variation scenario. X4 had the greatest negative impact on evapotranspiration. Thus, 

when the impacts of individual land use change scenarios and climate alterations occur in the same 

direction (increase/decrease), the impacts will be intensified when both changes occur at the same 

time. Of note, the joint effect of climate variation and the urbanization scenario are not a simple 

summation of each of the individual impacts; however, it represents the interaction of both climate 

and land use change represented by the SWAT model outputs. 

On a monthly basis, the contribution of the joint effects of both climate variability and land 

use change tended to be similar to the contribution of climate change impacts but with a smaller 

magnitude for the monthly water yield, with the maximum difference recorded in September (19.0 

mm) due to a significant increase in rainfall. Monthly water yield exhibited the greatest reduction 

in June (18.6), due to the notable decline in precipitation in this month. The impact of land use 

change played a counteractive role for water yield from the Walzem Creek Watershed (Figure 

4.13). Similarly, the greatest average monthly change for baseflow was recorded in September (2.5 

mm) as a result of the combined impacts of urbanization and climate variation (Figure 4.14). 

Generally, the behavior of average monthly baseflow under the combined impact of land use and 

the climate change scenario was consistent with the changes under the individual impact of climate 

variation. At a monthly timescale, the streamflow for Walzem Creek Watershed increased only in 

August, September, and November considering the climate change scenario and the combined 

scenario of land use and climate variation, with the greatest increase in September of 63.7% (X3) 

and 71.3% (X4), while it exhibited a reduction in all other months with the greatest decline 

recorded in June of 35.0% (X3) and 33.8 (X4). Note that streamflow in Walzem Creek showed a 

minor increase in all months when considering the impacts of land use change scenario (X2), 

except for July and August that showed a minor reduction of 0.7% and 1.1%, respectively (Figure 

4.16). Moreover, the streamflow rate tended to decrease when considering scenarios X3 and X4, 

except in August, September, and November, due to the increase in precipitation during these 

months. The impact of the combined effect of land use change and climate variability showed the 
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same behaviors as the sole impact of climate variability in the Walzem Creek watershed. This 

situation was well demonstrated by the monthly streamflow variation in the watershed (Figure 

4.16), with the greatest streamflow increase estimated in September at 71.3%. Meanwhile, the 

greatest reduction in monthly streamflow when considering the individual impacts of climate 

change was estimated in June at 35.0%. These changes were mainly the result of incremental, 

dynamic precipitation patterns between the two periods, TS1 and TS2. For instance, September 

experienced the greatest increase in rainfall (40.4 mm), while June showed the greatest reduction 

in monthly precipitation (45.2 mm) in TS2 as compared to TS1. 

Compared to the LEC watershed, in which the urbanization had a prevailing negative effect 

on baseflow while climate change caused increases in both flows, in the Walzem Creek watershed, 

both land use change and climate change had an impact on streamflow and baseflow. However, 

our study showed that the climate change impacts played a more important role than land use 

dynamics and urban expansion on streamflow and baseflow in this semi-arid region. 

 

 

Figure 4.16. Absolute change in mean monthly streamflow for the Walzem Creek watershed 

under different scenarios. 

4.5 Summary and Conclusions 

Urbanization and climate change play an important role in altering the spatiotemporal 

distribution of water resources and hydrologic components. Streamflow and baseflow are two 

critically important components of hydrology that are essential to sustain water demands by 
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various sectors, such as agriculture and industry, and are vulnerable to these changes. Therefore, 

it is of vital significance to understand the behaviors of these components under the separate and 

combined impacts of climate variation and land use dynamics in different climate regions. In this 

research, we followed the methodology discussed by in Chapter 3 for computing streamflow and 

baseflow for diverse watersheds. 

Findings of this research indicate that the climate became warmer and wetter for the 

UWBDR and for the LEC watershed evaluated in Chapter 3, but warmer and drier at the Walzem 

Creek watershed. The combined effect of these changes showed nonlinear responses to the water 

balance component. Changes at the UWBDR watershed were remarkably similar to those for the 

LEC watershed, with the exception that the climate variation was shown to have a greater impact 

on streamflow, surface runoff, and baseflow, while land use change exerted a relatively small 

influence on the flow. In other words, in the UWBDR watershed, when the direction of the changes 

caused by urbanization and climate variation occur in the same direction, the changes of the 

combined impacts will be intensified. Of note, increasing surface runoff was considered a negative 

impact as it further strengthened environmental stress by generating more surface erosion and 

sedimentation. On the other hand, urbanization influenced streamflow positively, while it affected 

baseflow negatively in the semi-arid Walzem Creek Watershed. However, the climate change had 

negative impacts on all water components in the area. This might be attributed to the change in 

rainfall pattern between the two climate periods. The small reduction in mean annual precipitation 

in the TS2 produced a considerable reduction in runoff. Therefore, the impact of the combined 

scenario will be amplified when the individual impacts of land use alteration and climate variation 

are in the same direction (positive/negative). These findings indicate the necessity of evaluating 

the influences of urbanization and climate alteration separately when assessing the hydrologic 

effects in urban catchments. 

Generally, with the variation in spatiotemporal properties of precipitation, and increasing 

hazardous events associated with water, such as droughts and floods, stress on water resources will 

increase and will further encourage the development of mitigation approaches. Based on this 

research, findings will provide practical suggestions for policy makers on how to sustain water 

resources more efficiently in relation to its variability as a response to urbanization, land use, and 

climate change. These changes can be problematic and can incur great costs to establish new 

infrastructure, especially in undeveloped nations. Therefore, policy makers need to develop 
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policies to address these types of changes, taking into account the individual influences of human 

activities and climate variation, for instance, improving infrastructure to be more resilient to human 

activities, constructing dams following proper regulations on water resources, and limiting the 

amount of deforestation, which threatens some hydrological components. In addition, outcomes of 

this study can be used in quantifying the potential impacts of future projected climate change and 

land use change. Nevertheless, it might be found that the driving factors interact to impact 

streamflow and baseflow through chain effects, in which one factor is trying to increase/decrease 

the magnitude of the other. Hence, more studies are crucial to evaluate this potential future impact 

on the hydrological system, with the emphasis on the interactive effect of environmental change 

drivers when predicting future change. 

While this research showed the separate and combined impacts of human activity and 

climate alteration using the SWAT model, modelers should be aware that other types of 

uncertainties associated with the model exist that may result from observed data, the 

parameterization process, or from the conceptual model itself. One of the potential shortcomings 

of this study is that the urbanization processes were an integrated part of the watershed, along with 

climate alteration. Therefore, it was difficult to discern whether the separate effects of human 

action and climate change were able to be truly simulated and this issue might therefore create a 

biased condition. Thus, a suggestion to avoid this limitation in future research is to hypothesize an 

extreme land use/land cover change that is sensitive to the anthropogenic changes instead of a 

natural system simulated by the model. 
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 IMPACTS OF WATERSHED PHYSICAL PROPERTIES 

AND LAND-USE ON BASEFLOW IN TEXAS, USA  

Abstract 

The groundwater component of streamflow is one of the most important components in watershed 

hydrology because it sustains flow in the stream during dry seasons, moderates seasonal 

fluctuations in the temperature of the stream, and typically has better quality water compared to 

surface water. In this study, 140 gauge sites and their associated watershed physical and geological 

properties were used to develop multiple regression models to predict Baseflow Index (BFI) across 

Texas, a large state in the US that experiences a diversity of climate conditions and water demands. 

The measured BFI was derived from USGS daily streamflow data from 1980 to 2017 using the 

two parameter recursive digital filtering approach of the Web-based Hydrograph Analysis Tool 

(WHAT). Three scenarios were developed and validated across five study areas (Categories 1 to 

5) that were chosen based on categorization of climate conditions, and one model was developed 

across the whole state. The first two scenarios related BFI to topography, climate and land use. 

The third scenario used surface geology mapping, soil type and hydrogeology parameters. The 

models developed for each category showed high performance, low bias and low relative errors to 

calculate BFI, with R2 values varying from 0.76 to 0.99, and strong agreement with measured BFI 

values. The results further showed that there was no specific pattern for BFI variation across Texas, 

which ranges from 0.17 to 0.71, and could not be accurately captured using a model developed 

from statewide data. The greatest model accuracy was recorded in Western Texas in Categories 4 

and 5, and the lowest model performance occurred in the Category 2 region. Outputs indicated that 

evapotranspiration attributed to lower model accuracy and that BFIs can be quantified as an 

integral expression of the fractional areas of each lithology in the basins. Generally, scenarios 1 

and 3 within each category showed greater prediction performance than scenario 2. The findings 

of this study are beneficial for water resources planning and management, as the results can be 

used to establish water resources plans at local and regional scales in Texas. Additionally, the 

developed models can be easily applied to other areas that have similar topographic, geologic and 

climatic conditions. The developed equations reported herein can support further research in 

groundwater modeling, by presenting independently obtained BFI estimation for ungauged sites. 
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5.1 Introduction 

Identifying the key physical processes that influence watershed hydrology are of vital 

significance to many fields. This identification is achieved by studying how watersheds with 

different physical properties are both similar and different in hydrology, enabling broader 

conclusions about the behavior of similar watersheds. Estimation of some hydrological behavior 

of different watersheds, based on catchment sizes, can be approached by scaling of different 

physical properties. Hydrological properties of watersheds, such as streamflow and baseflow, may 

be estimated using different physical descriptors, including meteorological and physio-graphic 

parameters, as well as geological and hydrogeological parameters (Bloomfield et al., 2009). 

This estimation not only requires physical properties, but also the separation of the total 

discharge of the watershed into different natural flow components such as surface runoff and low-

flow (Haberlandt et al., 2001). Several separation methods have been developed depending on the 

catchment scale. Estimation of the flow, depending on the need, can range from an average value 

for a state, to large watersheds, small drainage basins, or smaller project scales (Gebert et al., 2007). 

For example, in small catchments (one to a few km2) hydrometric techniques and tracer methods 

can be effective in providing insight into flow generation mechanisms (Bonell, 1999). Hydrograph 

separation and hydrologic modelling can provide valuable insight for lower mesoscale catchments 

(100s of km2) (Krysanova et al., 1999). Of note, tracers can also be used to track low flow at larger 

areas; however, it becomes increasingly difficult to sample larger watersheds (Frisbee et al., 2011). 

However, with increasing size, a differentiation of discharge into three main flow components may 

be considered: surface runoff, interflow and baseflow (Becker et al., 1999). 

The groundwater component of streamflow is one of the most important components in 

watershed hydrology, as it sustains flow in the stream during dry seasons, moderates seasonal 

fluctuations in the temperature and typically has better quality water compared to surface water. 

Therefore, changes in baseflow play a role in evaluating change in aquatic life of streams. 

Baseflow is that part of streamflow that is derived from groundwater and other delayed sources 

such as snowmelt into the stream and is considered one of the most important low-flow 

components in the hydrological cycle of a watershed in different climatic conditions (Hall, 1968). 

Baseflow is critical for sustaining flow in rivers and streams and is often assumed to be equal to 

groundwater recharge (Gebert et al., 2007). The continuation of streamflow during these times of 

dry seasons is of critical importance to both stream biota and to some recreation based industries 
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(Neff et al., 2005). In addition, baseflow maintains flow for navigation, water supply, hydroelectric 

power and recreational uses in reservoirs (Santhi et al., 2008).  

Being able to understand and predict what changes will impact this low-flow water 

component over time is essential to understand the current and future changes to a watershed’s 

hydrology, especially in the face of climate and land use alteration. This understanding helps in 

developing water management strategies, establishing relationships between aquatic organisms 

and their environment, estimation of small to medium water supplies, and the management of 

water salinity. An evaluation of baseflow discharge is also valuable for the calibration and 

validation of groundwater models that are being used to investigate many water supply problems 

(Cherkauer, 2004; Gebert et al., 2007). However, baseflow displays spatial and temporal 

variability and is dependent on a large number of watershed properties, for instance topography, 

lithology, land use, geomorphology, vegetation, amount of discharge, soil and climatic conditions 

(Mwakalila et al., 2002), in addition, it is also dependent on the source in which the baseflow was 

generated. Therefore, improvements in quantification modeling and evaluating the relationships 

between these properties and baseflow are important to develop a detailed understanding of 

baseflow generation for specific areas. 

Baseflow estimation at various spatial scales has been previously studied (Ahiablame et al., 

2013a; Cherkauer, 2004; Gebert et al., 2007; Haberlandt et al., 2001; Longobardi & Villani, 2008), 

typically by making extensive use of statistical analysis to empirically relate baseflow to catchment 

characteristics. One such study examined the relationship between baseflow index (BFI) and 

landscape descriptors, that included a set of qualitative geology-vegetation parameters and 

dimensionless topographic and climatic indices, for 114 catchments in Australia, but found no 

trends in plots of baseflow index against any dimensionless topographic parameters within the 

groups (Lacey & Grayson, 1998). BFI is the long-term ratio of baseflow to overall streamflow and 

therefore represents the delayed contribution to river flow (Bloomfield et al., 2009). However, a 

study examining regionalization of flow components to derive the empirical relationship for the 

estimation of average BFI within large river basins in Germany found that the average BFI was 

strongly related to topographical, hydrogeological, and precipitation characteristics and less 

influenced by land use properties of the watersheds (Haberlandt et al., 2001). A study of semi-arid 

environments in Tanzania investigated the influence of physical catchment properties on baseflow 

and revealed that the BFI had a strong relationship with both climate and geology. Specifically, 
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catchments with high rainfall or low evapotranspiration underlain with granites or basalt tended to 

give high baseflow (Mwakalila et al., 2002). Together, these studies underscore the variability 

between how physical features affect watershed hydrology when assessed by statistical models.  

In another approach, BFI was predicted from the means of different parameters using 

multiple linear regressions and neural networks within 52 basins in Zimbabwe. This work found 

that a neural network predicts the BFI with comparable accuracy to multiple regression. However, 

differences in lithology and land cover type between basins were not significant in explaining the 

BFI (Mazvimavi et al., 2005). More recently, a regional approach to predict the BFI at ungauged 

sites in a Mediterranean region was developed using a linear regression model, for which only 

very poor gaged data were available. The study was able to predict baseflow contribution to 

streamflow using elevation and permeability index of basins (Longobardi & Villani, 2008). 

Another approach used linear regression methods to quantify geological controls on BFI within 

the Thomas Basin in the UK, which suggests that the influence of hydrologic soils on BFI has a 

geological meaning, in which the presence of different types of rocks results in the formation of 

different types of soils (Bloomfield et al., 2009).  

Many investigators have examined the relationship between landscape descriptors, 

catchment properties and baseflow/BFI in the USA as well and have helped provide insights into 

the importance of some components. In a study that examined the influence of a number of 

geomorphologic parameters on groundwater discharge in Appalachian watersheds in the 

northeastern part of the US, total length of perennial streams, average basin slope, and drainage 

density were most closely related to groundwater discharge (Zecharias & Brutsaert, 1988). 

Additionally, the use of multiple regression analysis and observed geographic and spatial trends 

in baseflow in the Great Lakes basin suggested that attention must be given to watershed specific 

properties, such as scale, geology, and surface water, when characterizing baseflow at different 

locations (Neff et al., 2005). Using the same methodology, these results were supported by the 

observation that baseflow was naturally influenced by a variety of watershed characteristics in 

Wisconsin (i.e. basin drainage area, soil infiltration rate, and basin storage) (Gebert et al., 2007). 

Interestingly, relief and percentage of sand were highly correlated with baseflow index, and the 

amount of baseflow volume can be related to gradient and the amount of effective rainfall (Santhi 

et al., 2008). In addition, regression models using meteorological, geomorphological and 

geological variables, were successfully able to predict streamflow, baseflow and storm runoff in 
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Pennsylvania, Indiana and Wisconsin under different scenarios with an R2 greater than 0.94 and at 

reasonable prediction errors, ranging from 0% to 48% (Ahiablame et al., 2013a; Zhang et al., 2013; 

Zhu & Day, 2009). In general, geology, soil and rock types, geomorphological terrains of different 

landscapes, topographical relief, subsurface drainage, land use change and climate are some of 

many factors that control the magnitude of baseflow (Huang et al., 2016). Many of these factors 

may be altered due to human activates on the landscape, and therefore, it is critical to understand 

the relationship between catchment physical properties and baseflow.   

As mentioned, previous studies indicated that the effects of watershed physical properties 

on baseflow can be evaluated through relationships between catchment properties and baseflow 

(Table 5.1). However, this pattern does not appear to accurately represent these properties on 

regional scales that have different climatic patterns and geologic features (Neff et al., 2005). The 

relationship between the physical properties and groundwater are poorly understood when it comes 

to which geologic unit and climate category to consider in quantifying the impacts on baseflow. 

Even though there is an assumption that the underlying geology influences baseflow, previous 

studies that estimate baseflow and BFI typically simplify the effect of watershed geology to 

physical parameters that represent the fractional area of aquifer in a catchment (Bloomfield et al., 

2009). To date the relationship between catchment lithology and BFI has not been quantified in a 

systematic manner.  

Therefore, the goal of this study was to develop regression models using study areas in Texas 

to explore the relationship between BFI, baseflow and catchment properties (including climate and 

geologic bedrock). Using these relationships, the results are likely to be useful to evaluate baseflow 

of other watersheds with similar climatic and geologic conditions, potentially beyond the US. For 

example, in regions where drainage basins lack these kind of data because of poorly developed 

hydrological networks, these regression models could be applied to predict hydrological 

components to evaluate water resources (Rodda, 2001). In addition, the need for hydrological data 

has greatly increased as water resources, which are in some cases scarce, have to be shared among 

competing uses (Mazvimavi et al., 2005). Therefore, evaluation of baseflow and, in general, 

hydrological characteristics for water resources planning is a major need globally. 

The state of Texas has experienced extensive change in land use over time, and is getting 

warmer and drier, in particular in western areas. Therefore, the amount of water recharging 

aquifers and appearing as baseflow has likely changed over the past few decades. Groundwater 
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has experienced significant declines during the last few decades in some Texas locations 

(Arciniega & Breña-naranjo, 2016), and water rights demands have increased dramatically due to 

population growth (Sophocleous & Perkins, 2000). Nevertheless, surface water is usually 

sustained by groundwater, and in anticipation of the expansion in human use of water and change 

in climate, there is a growing need to evaluate surface and groundwater as a single resource (Miller 

et al., 2016; Winter et al. 1998). This requires water resources managers to have better estimates 

of water supplies for their planning and management, and it is important to know the present 

contribution of baseflow to total streamflow, to ensure that flow to the stream is sustained and 

meeting public water demands. These estimates might be done using watershed models, for 

instance MODFLOW or SWATMOD. However, these models require extensive data and typically 

need to be calibrated and validated for a specific basin before application. On the other hand, 

methods for estimating groundwater recharge can be implemented using physical properties of 

watersheds by developing regression models, as discussed in the literature (Cherkauer & Ansari, 

2005; Lorenz & Delin, 2007). 

Baseflow is generally calculated from stream flow data using hydrograph separation 

methods, for instance graphical and analytical methods (McNamara et al., 1997; Szilagyi & 

Parlange, 1998), recession curve methods, mass balance methods (Hoeg et al., 2000), digital 

baseflow filter methods (Nathan & McMahon, 1990), and geochemical and isotopic hydrograph 

separation techniques (Pinder and Jones, 1969; Sklash and Farvolden, 1979). However, most of 

these methods are limited to estimating baseflow for gauged sites, with the exception of 

geochemical and isotopic techniques which can be used to estimate a fraction of groundwater 

without gauge data. With the development of geographic information systems (GIS) and 

continuously increasing availability of digital data, it is much more feasible today to derive 

variables representing soil, geology, climate, and geomorphological characteristics of a basin 

compared to a few decades ago. Therefore, it is now possible to explore relationships between 

additional basin variables and groundwater recharge in ungauged watersheds, with the possibilities 

of elucidating more accurate and meaningful models (Zhu & Day, 2009).  

The basic philosophy behind using regression and statistical models in estimating baseflow 

is that regression models relate baseflow and BFI to watershed characteristics. As observed in 

previous literature, regression models have the advantage of  being implemented relatively easily 

to estimate baseflow with reasonable accuracy (Zhang et al., 2013a). In light of the above 
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discussion, the main motivation of this study was to evaluate the impact of different climate, 

lithology and soil types on baseflow and BFI along with other catchment properties. Herein, we 

report on development of a model that encompasses theoretical and experimental components to 

estimate baseflow and the effect of different watershed properties on this low-flow to: 1) Estimate 

the average annual baseflow in watershed tributaries in Texas from gauged sites using hydrograph 

separation models (recursive digital filter method); 2) Develop lithology-soil groups for Texas to 

examine the physical relationship between average BFI and lithology/geological control in 

addition to other descriptive catchment properties, for instance climate, soil and topography; and 

3) Develop statewide numerical regression models calibrated to the hydrograph separation results 

to estimate baseflow for ungauged areas and validate with regional relationships. The results of 

these research objectives are described in detail below. 
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Table 5.1. Review of some research evaluating the relationship between watershed properties 

and baseflow. 

Authors Study areas Method Catchments properties 

Zecharias & 

Brutsaert (1988) 

Appalachian 

Plateau, USA 

Principle axis 

factoring 

Area, stream length, elevation, drainage networks 

Lacey & Grayson 

(1998) 

Australia Multiple linear 

regression 

Drainage area, forest, precipitation stream length, potential ET  

Haberlandt et al. 

(2001) 

Germany Stepwise 

regression 

Topographic index, hydraulic conductivity, slope, precipitation 

Mwakalila et al. 

(2002) 

Tanzania  Stepwise and 

multiple 

regression 

Channel slope, basin slope, drainage density, geological index, 

precipitation, potential ET  

Mazvimavi et al. 

(2003) 

Zimbabwe Multiple linear 

regression 

Slope, wooded grassland, grassland, precipitation 

Neff et al, (2005) Great Lakes Multiple 

regression 

Surface water proportion, bedrock geology, grain sizes, till 

Lorenz & Delin 

(2007) 

Minnesota, USA Regional 

regression model 

Drainage area, precipitation, growing degree day, specific yield 

Gebert et al. 

(2007) 

Wisconsin, USA Multiple 

regression 

Drainage area, baseflow factor, storage, infiltration rate 

Longobardi & 

Villani (2008) 

Italy Simple and 

multiple 

regression  

Permeability index 

Santhi et al. 

(2008) 

Conterminous US. Stepwise 

regression 

Relief, precipitation, potential ET sand percentage 

Bloomfield et al. 

(2009 

United Kingdom Stepwise 

regression 

Lithology 

Zhu & Day 

(2009) 

Pennsylvania, 

USA 

Multiple 

regression 

Drainage area, elevation, precipitation, evapotranspiration 

Ahiablame et al. 

(2013b) 

Indiana, USA Stepwise and 

multiple 

regression 

Drainage area, tile drained area, relief, slope, channel slope, 

bedrock depth, precipitation, ET, land uses, soil groups 

Zhang et al 

(2013a) 

Michigan, USA Multiple linear 

regression 

Drainage area, slope, relief, stream length, land covers, 

precipitation, temperature, ET, transmissivity, water table, 

surficial geology, soil group 
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5.2 Materials and Methods 

5.2.1 Study area description 

Texas is the second largest state, with an area of 691,027 km2, and second most populated 

state in the United States (Hudak, 2000). Found in the south-central US, Texas represents both the 

wetter eastern and the drier western regions of the country (Zhang & Wurbs, 2018). Climate, 

geology, topography, hydrology and water management vary dramatically across the state. 

Geology in Texas ranges from simple-dipping strata structures of the Gulf Coastal Plain, North-

Central Texas, and Panhandle, to the complicated geological structure of the Marathon Uplift, the 

Llano Uplift, and the Big Bend region (Figure 5.1). Mean annual precipitation ranges from 250 

mm at El Paso on the Rio Grande in west Texas to 1500 mm in the Sabine River Basin on the 

eastern border (Figure 5.2). Average temperatures rarely go above 35 °C or below -5 °C (Zhang & 

Wurbs, 2018). Hydrology is extremely variable, subject to major floods and severe droughts along 

with seasonal and continuous fluctuations. Figures 5.3 and 5.4 showed the average annual 

evapotranspiration and runoff in Texas. Agriculture is considered the major industry and the 

principal land use in Texas. 

 

 

Figure 5.1. Geologic regions of Texas (Texas Water Development Board, 2012). 



 

 

153 

 

Figure 5.2. Average annual precipitation in Texas (ESRI, 2020). 

 

 

Figure 5.3. Average annual evapotranspiration in Texas (ESRI, 2020). 
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Figure 5.4. Average annual runoff in Texas in thousands of gallons from a typical 2000 ft2 area 

(Texas Water Development Board, 2012). 

 

Groundwater is a major source of water in Texas. Land use change threatens groundwater 

quality and quantity in Texas, and the amount of water recharging the aquifers and appearing as 

baseflow has likely changed over the past few decades. Even though groundwater supplies 

approximately 56% of the statewide water consumed (Strause, 1987), it has experienced 

significant decline during the last few decades (Arciniega & Breña-naranjo, 2016), while at the 

same time, water rights demands increased dramatically (Sophocleous & Perkins, 2000). Therefore, 

with 42% of the supply from surface water and 2% from reuse, it is important to understand the 

present contribution of baseflow to total streamflow.  

Of all the water use in Texas, about 40% is surface water; while the other 60% is groundwater  

(Texas Water Development Board, 2012). The eastern part of Texas accounts for nearly 80% of  

residents and 56% of the water consumed each year in Texas; however, the western side contains 

the other 20% of the state’s population and accounts for 44% of the state’s water consumed 

(George et al., 2011). In addition, irrigation accounts for 85% of all water demands in west Texas. 

The eastern humid part of Texas receives plenty of rainfall and contains major industries within 
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large cities. Surface water used in the east accounts for approximately 85% of the total surface 

water used in Texas (George et al., 2011).  In general, most of the groundwater, 72%, is used for 

irrigation, and 21% is used for municipal demands. Manufacturing, livestock, mining, and power 

account for the remaining 7% of groundwater consumed in Texas. Therefore, it is important to 

continue to research the impacts of physical properties on baseflow in Texas to maintain the 

viability of the state’s natural resources, health and economic development.   

As mentioned above, Texas experiences a range of climate and geological conditions. This 

diversity is essential to the goals of this study, which includes understanding how baseflow is 

affected by different factors related to climate, soil and bedrock. Additionally, data availability and 

accuracy are critically important in development and assessment of the regression models and to 

inform policy decision. Texas has the spatial and temporal datasets needed to achieve the goals of 

this study and allow us to further test the hypothesis that with inclusion of more variables in the 

model, the prediction power of the model will be more accurate. 

This study was conducted with a group of watersheds distributed throughout the entire state 

that range in area from 247 to 1499 km2. Data selected for this study were obtained from 140 

gauging stations that have long-term streamflow records from 1980-2017. Delineated watersheds 

from the USGS database were selected for this study (Figure 5.5). Of note, in this research, it was 

assumed that no water is contributed from any neighboring basins and that the surface watershed 

divides were the same for the groundwater divides.   
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Figure 5.5. Watersheds used for model development and validation in Texas. 

5.2.2 Watershed selection 

All 1,047 continuous recorded gauged stations were accessed through the USGS database 

(https://waterdata.usgs.gov/tx/nwis/sw). The screening criteria for the gauged stations were as 

follows: 1) basin for station lies entirely within the Texas border; 2) the station has a continuous 

streamflow record from 1980 to 2017; 3) at least 90% of the record is available and no missing 

record in the last 15 years; and 4) diversions structures and regulations such as dams and man-

made reservoirs have no impacts on the streamflow on the gauged station to avoid biased results 

and minimize the influence of flow routing and limit the effects of reservoir release (Santhi et al., 

2008). The screening procedure yielded a total of 140 gauged stations across Texas. However, the 

https://waterdata.usgs.gov/tx/nwis/sw
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western part of the state was poorly represented due to the presence of few perennial streams, data 

scarcity and missing values.   

5.2.3 Baseflow Index Evaluation 

Baseflow index (BFI) values were determined by calculating the ratio of long-term baseflow 

to total stream flow, as this value represents the slow continuous contribution of groundwater to 

river flow. BFI for a gauging station was calculated from USGS daily streamflow data using the 

Web-based Hydrograph Analysis Tool (WHAT) (Lim et al., 2005). WHAT provides a fast and 

consistent baseflow separation technique, with a user-friendly interface that provides an 

understanding of the behavior of runoff and the contribution of baseflow within streams. WHAT 

is comprised of three models that the user can select from for baseflow separation: a local minimum 

method and two digital filter methods, one using a one parameter filter method and the other, 

known as Eckhardt filtering, using a two-parameter filter method (Eckhardt, 2005). The two 

parameter filtering method, that consists of a filter parameter and BFImax, was used in this research, 

as it has previously been validated against several baseflow separation methods (Eckhardt, 2008). 

The BFImax is the maximum index that the recursive digital filter can model, while the filter 

parameter defines the rate with time at which the streamflow decreases after recharge and can be 

computed by recession analysis (Arnold et al., 1995; Eckhardt, 2005). The filter assumes that 

discharge from the aquifer is linearly proportional to storage and as consequence, there is an 

exponential decay in the recession. Eckhardt (2005) estimated BFI indices for different 

hydrological settings by comparing baseflow from conventional separation methods with the 

digital filter methods. These analyses proposed a value of 0.80 for perennial streams, 0.50 for 

ephemeral streams, and finally 0.25 for perennial streams with hard rock aquifers. Therefore, in 

this study, the BFImax was modified according to the geological and hydrogeological properties of 

different aquifers across Texas. The daily baseflow was computed using the general form of the 

digital filter method and can be evaluated as follows (Eckhardt, 2005).  

 

𝐵𝐹𝑡 =  
(1 − 𝐵𝐹𝐼𝑚𝑎𝑥) × 𝛼 + 𝑏𝑡−1 + (1 + 𝛼) × 𝐵𝐹𝐼𝑚𝑎𝑥 × 𝑄𝑡

1 − 𝛼 × 𝐵𝐹𝐼𝑚𝑎𝑥
 (5.1) 
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where 𝐵𝐹𝑡 is the baseflow; 𝑏𝑡−1 at time step t-1;  𝛼 is the filter parameter (0.98), 𝑄𝑡 is the total 

streamflow at time step t. 

5.2.4 Dataset Development 

This research established a qualitative physical properties classification scheme to reflect 

the baseflow rate in terms of BFI. The dataset analyzed in this research was selected using a three-

step procedure that represents the physical conditions of the watersheds. Step 1: select variables 

that represent the physical characteristics of the watersheds that we expect will impact baseflow 

generation. These variables were selected according to studies that previously characterized 

hydrogeomorphic, morphometric and geological parameters and found them to be representative 

of overall watershed properties (Bloomfield et al. 2009; Hale & Mcdonnell, 2016). Therefore, most 

of these variables have been found to have empirical relationships to measured baseflow in more 

than one study (Gebert et al., 2007; Zecharias & Brutsaert, 1988; Zhang et al., 2013a). This 

procedure yielded 37 variables for the watershed characteristics used for developing the model. 

Step 2: categorize these variables in two groups to establish different scenarios for the 

subsequent procedures based on models that evaluate the empirical relationships between baseflow 

and the basin physical properties. The first group included variables representing topography, 

stream characteristics, meteorological conditions and land use of the selected watersheds.  This 

step yielded 19 variables representing the previously mentioned properties. The second group 

involved considering the variables that represent geomorphology, soil types, lithology and 

hydrogeological characteristics of the watersheds. This procedure allowed use of 18 variables 

representing the geological section of this research.  

Step 3: establish a well-calibrated regression model, based on different scenarios, to evaluate 

the relationships between the physical properties of the basins and these variables to make 

estimates of BFI at ungauged sites. The relationship would be then validated by evaluating the BFI 

of different basins. This research took into consideration that the selected watersheds’ physical 

properties should be acquired from ready-to-use sources for hydrologists, for instance from 

geological maps, soil data and national databases. 



 

 

159 

5.2.4.1 Topographical Variables  

A total of 140 watersheds with hydrologic unit code 10 (HUC 10) were selected and acquired 

from the National Hydrography Dataset (NHD), including the watershed areas and drainage areas 

of the gauge stations of each watershed. The Digital Elevation Model (DEM) used had a resolution 

of 10 m by 10 m and was obtained from the Geospatial Data Gateway (GDG). DEMs were used 

to evaluate topography of the watersheds. The stream power index (SPI), stream density (StrD), 

total stream length (TStrL), and sediment transport index (STI) of each of the selected watersheds 

in the study area were evaluated using the DEM. SPI is an index used to evaluate the erosive power 

of flowing water, while StrD measures how well a basin is drained by channels and is an important 

indicator of water supply. StrD can be computed by dividing the total stream length by basin area, 

and it is expected to impact the transformation of precipitation to runoff (Mazvimavi et al., 2003). 

STI characterizes the process of erosion and deposition of the channels within the basins. In 

addition, results reported herein used the DEMs to evaluate average slope percent, average 

elevations and relief, and topographic index to define the topography of the basins. The average 

slope percent was used as an index for the kinetic energy available for water to move to a 

watershed’s outlet, and accounts for factors such as overland flow to the channels and infiltration 

(Mwakalila et al., 2002).  The topographic index (TI) is a dimensionless index that measures the 

extent of flow accumulation at the given point of the topographic surface. The TI is directly related 

to the catchment areas but inversely proportional to the average slope. ArcGIS 10.5 was used for 

the implementation of SPI, StrD, TStrL and STI.  .   

5.2.4.2 Hydro-Meteorological and land use data  

The sets of data used herein include long-term daily meteorological data from 1980–2017 

(precipitation, and minimum/maximum/average air temperature), obtained from the National 

Climatic Data Center (NCDC). Precipitation and temperatures were acquired from weather 

stations within or less than 5 km away from each watershed. Evapotranspiration (ET) data were 

obtained from the National Oceanic and Atmospheric Administration (NOAA). Average annual 

evapotranspiration rates were weighted from mean values of gridded ET data representing each of 

the selected watersheds. The evapotranspiration is related to solar energy input, which in turn has 

an effect of drying out the basins (Lacey & Grayson, 1998).  
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Hydrological streamflow data were based on observations from 1980 to 2017 at a gauged 

station within the watersheds. The daily streamflow data, acquired from the USGS National Water 

Information System (NWIS), were used to separate the baseflow from the direct discharge. 

Streamflow data were complete with no missing records. Finally, digital land-use data acquired 

from the National Land Cover Database (NLCD) were used to examine the consequence of 

different land-use types on BFI of the watersheds. Raster land-use maps from 2016 were used in 

this research, and the proportion of each land use type was used to characterize main land use in 

the basins.  

5.2.4.3 Soil Types and Lithology 

Different lithologies can influence streamflow and baseflow in two ways. The first is that 

groundwater is stored in the rocks, especially highly fractured ones, and the second impact is on 

the formation of different soil types. Different lithologies, under the influence of erosion, 

weathering and plant activities, tend to produce different types and depths of soil which in turn 

impacts the contribution to stream flow, groundwater and the recharge rate (Mwakalila et al., 2002). 

Therefore, in this research, area-weighted percentages for hydrologic soil groups, from A to D, 

were obtained from the Soil Survey Geographic Data (SSURGO) with a resolution ranging from 

1:12,000 to 1:63,630. The lithological classification scheme for model development was based on 

a 1:250,000 digital geologic map of the United States that contains more than 150 different types 

of surficial materials. A general distribution of different lithologies and surficial materials for each 

watershed was acquired from the USGS database. A classification system was established to assign 

the many complex units on source maps into units much more broadly and simply defined. In this 

study, five surficial-geology classes were defined and the area weighted percent of these classes 

in each basin were used. These classes included alluvial, coastal, colluvial, eolian and residuals 

surficial deposits.  

5.2.4.4 Hydrogeological variables 

A major hydrological challenge was to derive quantitative hydrogeological indices that 

demonstrate geological impacts on baseflow and runoff. Hydrogeological parameters such as 

porosity and permeability are often rare and time consuming to acquire. In addition, 
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hydrogeological characteristics are highly variable in space and differ across different lithologies. 

Therefore, only four variables were included in this study to represent the hydrogeological 

parameters for each of the selected watersheds: the available water storage data from 0 to 150 cm, 

depth to water, transmissivity and hydraulic conductivity. The compilation of these datasets 

include publicly available published and unpublished data from different resources in Texas, for 

instance well records at the Texas Water Development Board (TWDB) dataset, files from 

municipal and industrial groundwater users and water-supply companies, and published and open-

file reports of the USGS, TWDB and the Bureau of Economic Geology (BEG). The soil available 

water storage data were acquired from SSURGO soil data that generally extend 150 cm below the 

land surface.  For this variable, the underlying soil layer was considered to represent the top of the 

saturated zone, in addition, the texture properties of these deeper layers was assumed to be identical 

to the material close to the water table (Lorenz & Delin, 2007). These watershed properties, their 

symbols and units are presented in Table 5.2. 
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Table 5.2. Variables representing watershed properties for developing regression model. 

 
Variables Descriptions Units 

 BFI Baseflow index - 
T

o
p
o

g
ra

p
h

y
 a

n
d

 g
eo

m
o
rp

h
o

lo
g

y
  WSA Watershed areas km2 

DA Basin drainage areas for each stream gauge km2 

SPI Stream power index - 

STI Sediment transport index - 

TStrL Total stream length km 

StrD Stream density km/km2 

WSlp Average watershed slope % 

Elev Average watershed elevation m 

Relv Average watershed relief m 

TI Topographic index - 

M
et

eo
ro

lo
g
y
 PRCP Annual precipitation mm 

TMAX Maximum temperature °C 

TMIN Minimum temperature °C 

TAVG Average temperature °C 

ET Annual Evapotranspiration mm 

L
an

d
 u

se
 

Brn Barren lands % 

Clt Cultivated areas % 

Dvlp Developed areas % 

Frst Forests % 

Hrb Herbaceous cover % 

Srb Shrubland % 

Wtr Water cover % 

Wtl Wetland areas % 

Soil HydxA, B, C, D Hydrologic soil group A, B, C and D % 

L
it

h
o
lo

g
y
 

All Alluvial sediments % 

Cstl Coastal zone sediments % 

Coll Colluvial sediments % 

Eol Eolian sediments % 

Res Residual deposits % 

H
y
d
ro

g
eo

lo
g

y
 

WTD Depth to water m 

Tr Transmissivity m2/day 

K Hydrologic conductivity m/day 

AWS Available water storage at depth 0-1.5 m  m 
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5.2.5 Model development 

Texas climate varies across the state. Therefore, in order to acquire higher prediction for 

baseflow, the watersheds in this study were categorized into five divisions according to Texas 

climatic zones. Smakhtin (2001) suggested that developing distinct regression models for separate 

regions across the study area would improve the accuracy of baseflow prediction. As stated by the 

National Data Center, Texas has ten primary climate zones (Figure 5.6). These zones represent 

areas with similar properties such as temperature, precipitation, humidity, vegetation and seasonal 

weather changes (Texas Water Development Board, 2012). These zones are listed, from Eastern 

to Western Texas as follows: 

• East Texas with sub-tropical humid mixed evergreen-deciduous forestland. 

• Upper Coastal Plain characterized by sub-tropical humid marine prairies and 

marshes. 

• North Central with sub humid mixed savanna and woodland. 

• South Central zone characterized by sub-tropical sub-humid mixed savanna, 

woodlands and prairie. 

• Edwards Plateau characterized by sub-tropical climate and semi-arid savanna and 

brushland. 

• Southern Plain also characterized by sub-tropical climate and semi-arid savanna and 

brushland. 

• Lower Valley with sub-tropical sub-humid marine. 

• Low Rolling Plains characterized by sub-tropical steppe and semi-arid savanna. 

• High Plains with a continental steppe climate and semi-arid savanna. 

• Trans Pecos that is mainly sub-tropical arid desert. 

Based on these classifications and numbers of watersheds within each zone, these zones 

were divided into five categories to develop multiple distinct models for each of them. Category 1 

includes the East Texas and Upper Coastal Plain, Categories 2 and 3 include the North Central and 

South Central zones, respectively. Edwards Plateau, the Southern Plain and the Lower Valley lie 

in Category 4. Finally, Category 5 occupies the High Plains, Low Rolling Plains and the Trans 

Pecos zone (Figure 5.6). 
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Figure 5.6. Climate zones of Texas and categories used in this study. 

The BFI values estimated from the digital filter for the period 1980 to 2017 in 113 

watersheds were used to develop the model. The remaining 27 basins were used for model 

validation and to assess model efficiency for various spatial conditions. These 27 watersheds were 

randomly selected from each of the previously mentioned categories using bootstrap-resampling. 

Before model development, watershed variables were logarithm-transformed to meet the normality 

requirement using the following equation: 

 

log(𝐵𝐹𝐼) = log(𝑌0) + 𝑌1 log(𝑋1) + 𝑌2 log(𝑋2) + 𝑌3 log(𝑋3) + ⋯ 𝑌𝑛 log(𝑋𝑛) (5.2) 

 

where 𝑌0 is the regression constant; X1, X2, X3, …, Xn are basin physical properties; Y1, Y2, Y3, …, 

Yn are the regression coefficients, as used before in similar studies (Ahiablame et al., 2013b; 

Bloomfield et al., 2009; Zhang et al., 2013a; Zhu & Day, 2009). In addition, in this research, 

preliminary outputs showed that the correlation coefficients (R2) of the developed regression 
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model were slightly greater with the use of logarithm-transformed variables than with the use of 

untransformed variables. The watershed variables were also transformed using the Box-cox 

transformation (Yue, 1999); however, the logarithm-transformed outputs showed higher R2 for the 

regression model. 

For an ideal model prediction, the correlation should include independent parameters and be 

physically sensible and statistically significant when producing good BFI estimates. The Auto 

Correlation Function (ACF) and the Spearman’s correlation test were applied to evaluate the 

independency and the correlation, respectively, between the selected variables. The correlation 

analysis showed that the transformed variables were independent in this research, but there were 

some correlations among them. For instance, PRCP and ET were highly correlated. A strong 

correlation was also found between TAVG and TMIN variables (Figure 5.7).  

Based on the computational complexity and number of variables, three scenarios were used 

to develop the regression models. The first two scenarios used variables that represented areas and 

stream geomorphologies in addition to meteorological and land use variables (Figure 5.7a).  

Scanlon et al. (2002) suggested that the geomorphology, land use and meteorological variables 

should be considered in developing a model for groundwater estimation. The third scenario used 

topography, hydrogeological, soil, and lithology variables in order to relate BFI to surficial 

geology in the region (Figure 5.7b). In baseflow research, soil and geology must be considered 

together since the groundwater flows through both (Lacey & Grayson, 1998). This procedure was 

important to avoid highly correlated variables in the same scenario that might lead to 

multicollinearity. Multicollinearity can increase the estimates of coefficient variance and make 

these estimates sensitive to minor changes in the model, which in turn could negatively affect 

model stability and quality (Zhu & Day, 2009). Therefore, to avoid multicollinearity and to attain 

simplicity in the model, scenarios 1 and 2 retained only one parameter from a group of highly 

correlated parameters in which the correlation coefficient was greater than ±0.85. For instance, the 

correlation between precipitation (PRCP) and evapotranspiration (ET) was -0.91, hence the PRCP 

was used in scenario 1, while ET was used in scenario 2. The non-highly correlated parameters 

were all retained for model development and were divided to form three scenarios. The first 

scenario used variables WSA, DA, SPI, STI, TStrL, StrD, PRCP, TMAX, TMIN, Brn, Clt, Dvlp, 

Frst, Hrb, Srb, Wtr and Wtl. Scenario 2 retained variables WSA, DA, SPI, STI, TStrL, StrD, ET, 
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TMAX, TAVG, Brn, Clt, Dvlp, Frst, Hrb, Srb, Wtr and Wtl. Scenario 3 used variables represented 

in Figure 5.7b. 
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(a) 

 

(b) 

Figure 5.7. Correlation matrix of watershed variables used for BFI prediction in this study. (a) 

variables representing topography, stream properties, metrology and land use; (b) variables 

representing geomorphology, soil, lithology and hydrogeology. 
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After the selection of independent parameters, an initial stepwise multiple regression model 

was developed using the parameters listed in Figure 5.7. This procedure yielded a large number of 

regression models; however, the best model was selected based on a combination of explanatory 

statistical indices and variables, for instance, Akaike Information Criteria (AIC), p-values, 

correlation coefficient (R2), and adjusted R2. The p-values were used to check the significance of 

individual parameters. The residuals of the fitted model were also checked for normality. The AIC 

is used to choose the best predictor subsets in regression models and for comparing non-nested 

models, which ordinary statistical tests cannot perform. Larger differences in AIC indicate stronger 

evidence for one model over the other. The R2 values measure the percentage of parameter 

variability described by the regression equation. 

During stepwise regression modeling, variables were removed when their coefficient at 90% 

confidence level was not significantly different from zero. However, one of the main goals of this 

research was to evaluate the optimal regression model for BFI prediction; therefore, all variable 

combinations were used in developing the model. Of note, this study hypothesized that some 

variables would be more useful than others in BFI prediction. The stepwise multiple regression 

analysis identified the best model predictors for BFI. The model that provided a higher correlation 

coefficient, AIC value, adjusted R2, had all variables that were significant and was represented by 

a minimum number of basin variables, was finally selected for each scenario tested. Finally, an 

afterwards check for multicollinearity of the developed model was applied using the variance 

inflation factor (VIF). This step is necessary to measure the degree of collinearity present for each 

parameter included in the developed model. If the VIF is equal to 1, there is no multicollinearity 

among parameters; however, a VIF greater than 10 indicates the presence of high multicollinearity 

that is strong enough to require remedial measures, and therefore, they were omitted from the 

developed model (Lin, 2008). VIF for an independent factor xi was calculated as:  

 

𝑉𝐹 =
1

1 − 𝑅𝑖
2        (5.3) 

 

where R2 is the coefficient of determination that is acquired when xi is regressed on all other 

independent variables in the model (Lin, 2008). In this study, factors that have VIF values more 

than 5 were removed from the developed model. 
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A total of 15 best regression models for BFI prediction in the study region were developed, 

one for each of the three scenarios for the five categories listed above. Multiple linear regression 

was utilized to develop a model for transferring the filtered BFI at the gauging stations to the 

prediction of BFI at ungauged stations in the following expression:   

 

𝐵𝐹𝐼 = 𝑌0 × 𝑋1
𝑌1 × 𝑋2

𝑌2 × 𝑋3
𝑌3 × … × 𝑋𝑛

𝑌𝑛         (5.4) 

 

Within the inverse logarithmic function, Equation 5.4 is the retransformed version of 

equation 5.2. Hence, the multiple linear regression models were created based on the transformed 

parameters. The graphical outputs of these equations were validated using statistical indices to 

assess the performance of the model. The coefficient of determination (R2), Nash–Sutcliffe model 

efficiency (ENS), PBIAS and Relative Error (RE) were used to evaluate the accuracy of the 

regression outputs (Nash & Sutcliffe, 1970). A regression with lower RE was usually more 

accurate than one that had a higher RE. The formulas for R2 and ENS, PBIAS and RE were 

previously outlined by Gupta et al. (2009) and Nie et al. (2011) and can be calculated as follows: 

 

R2 = [
∑ [(𝑌𝑜𝑏𝑠 − 𝜇𝑜𝑏𝑠)(𝑌𝑝𝑒𝑟 − 𝜇𝑝𝑒𝑟)]𝑖

2

√∑ (𝑌𝑜𝑏𝑠 − 𝜇𝑜𝑏𝑠)2
𝑖 ∑ (𝑌𝑝𝑒𝑟 − 𝜇𝑝𝑒𝑟)2

𝑖

]

2

 (5.5) 

ENS = 1 − [
∑ (𝑌𝑜𝑏𝑠 − 𝑌𝑝𝑒𝑟)2

𝑖

∑ (𝑌𝑜𝑏𝑠
𝑖 − 𝜇𝑜𝑏𝑠)2

] (5.6) 

PBIAS =
∑(𝑌𝑜𝑏𝑠 − 𝑌𝑝𝑒𝑟)

∑ 𝑌𝑜𝑏𝑠
× 100 (5.7) 

RE =
𝑌𝑝𝑒𝑟 − 𝑌𝑜𝑏𝑠

𝑌𝑜𝑏𝑠
× 100 (5.8) 

 

where 𝑌𝑜𝑏𝑠 is the observed BFI data separated from the digital filter , 𝑌𝑝𝑒𝑟 is the simulated BFI 

output, 𝜇𝑜𝑏𝑠 and 𝜇𝑝𝑒𝑟 are the mean of the observed and simulated BFI, respectively. Literature 

suggests that there is a consensus that the model performance is satisfactory when the values of  

R2 and ENS are greater than 0.5 and PBIAS is less than 30% (Engel et al., 2007; Moriasi et al., 

2007; Santhi et al., 2001). The RE and the absolute relative error (ARE) will be displayed in 

boxplots for better interpretation. ARE is the absolute value of the difference between the 
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measured value and the true value. ARE is different from RE in which ARE measures how large 

the error is, while the RE measures how large the error is relative to the correct value. After fitting 

the model, it was also critical to check the residual plots for each of the developed models to avoid 

the presence of unwanted patterns in the model. The advantage of using stepwise multiple 

regression modeling in this study lies in the availability of a group of models rather than one model, 

which in turn helped in generalizing the relationships between basins’ properties and BFI; however, 

this may lead to a group of models that shows similar fits to the dataset (Ahiablame et al., 2013b). 

The best models were selected as described above.  A flow chart depicting procedures used in this 

study is shown in Figure 5.8. 

 

Figure 5.8. Flow charts showing the procedures to develop models examining the relationship 

between baseflow and watershed properties. 

 

Stepwise and multiple regression 

Log transformation and Correlation matrix 

Baseflow index (BFI) data derivation Identifying climatic zones in Texas 

Developing variables representing 

climatic, topography, land cover 

conditions of the basins (S1 and S2) 

Developing variables representing 

lithology, soil classes and 

hydrogeological parameters (S3) 

Developing regression models 

(Model 1, 2 and 3) 

Validation of regression equations 

(error analysis) 
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5.3 Results and Discussions 

5.3.1 BFI estimation 

One aim of this study was to provide an estimate of the contribution of baseflow to total 

streamflow, using the evaluation of statewide datasets from gauged stations across Texas, US. 

Baseflow contribution was exhibited using the BFI. A key advantage of using BFI rather than 

absolute baseflow components was that it provided better comparability across watersheds having 

different stream densities and total streamflow. In addition, BFI has previously been shown to give 

smaller variance and better evaluation of the baseflow and direct runoff at the same time 

(Haberlandt et al., 2001). 

 

 

Figure 5.9. Map of major aquifers in Texas (Texas Water Development Board, 2012). 

The groundwater contribution to surface water was found to be greatest in East Texas and 

around major aquifers in Middle Texas. The Edwards aquifer (Figure 5.9), that lies in a fault zone 
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in central Texas (Category 4), discharged the highest rate of BFI that ranged from 0.20 

(Headwaters North Concho Watershed) to 0.70 and had a mean value of 0.52 (Montell Creek 

Watershed). The differences in BFI between these two watersheds was likely partially attributable 

to the reduced amount of precipitation received by the Headwaters North Concho Watershed. 

Springs and seeps (groundwater) in West Texas also contribute locally to significant baseflow to 

the river system (Category 5); however, the filtered BFI for the period 1980-2017 varied between 

0.17 (Upper Palo Duro Creek Watershed) and 0.68 (Oasis Creek Watershed), and had a lower 

mean value for the BFI than Category 4 with a value of 0.43. The differences in BFI in Category 

5 might be due in large part to the Upper Palo Duro Creek Watershed being covered by 86.5% soil 

type A, unlike many other watersheds in this category, and had a low runoff potential and high 

infiltration rate.  

Across the 38 year time span, the average BFI for Category 1 ranged between 0.29 at the 

South Bedias Watershed and 0.68 at the Big Creek Watershed. The average BFI was 0.47 in 

Category 1. The lowest BFI recorded at the South Bedias Watershed might be attributed to the fact 

that the watershed was covered by 91.4% of low permeable residual materials, developed mostly 

in metamorphosed sedimentary rocks, that decreased the infiltration rate and groundwater 

discharge. Similarly to Category 1, the mean BFI for the 27 watersheds in Category 2 was 0.48 

with minimum and maximum values of 0.19 (Royse City Watershed) and 0.66 (Village Creek 

Watershed), respectively. Although the Royse City Watershed had greater precipitation than the 

Village Creek Watershed, the lower BFI might be caused by the urban coverage and residual 

sediment, which were greater in the Royse City Watershed. Finally, for Category 3, the average, 

minimum, and maximum BFI were 0.50, 0.29, and 0.71, respectively. These baseflow outputs 

were comparable to previously published reports of the TWDB (George et al., 2011). 

In general, among the 140 gauged stations selected for model development, BFI values for 

the whole study area, including the basins used for model validation, ranged between 0.17 to 0.74 

with a mean value of 0.48, suggesting that 48% of the long-term streamflow in Texas was coming 

from shallow subsurface flow and groundwater discharge (Figure 5.6). The lowest BFI value was 

observed in northwestern Texas, particularly, in the northern Ogallala aquifer that is characterized 

by clayey soil and relatively small thickness that limits the amount of groundwater recharge to the 

stream (George et al., 2011). In contrast, the highest BFI was recorded across several regions, 

including western Texas (Courtney Creek Watershed), as well as central southern Texas 
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(Headwaters Frio Watershed), particularly, in the Pecos Valley aquifer and Edwards-Trinity 

(Plateau) aquifer, respectively. Groundwater in the Pecos Valley Aquifer was unconfined. The 

high BFI for West Texas, the Courtney Creek and Narrow Bow Draw Watersheds, might be 

attributed to the top of the aquifer, that is exposed at the ground surface over the entire extent of 

the aquifer, leading to higher groundwater discharge. Springs and seeps in West Texas, where the 

water table intersects canyons or surface topography, also contribute locally significant baseflow 

to streams. Another explanation for this might be partial recharge by seepage from ephemeral 

streams, cross-formational flow, and lower irrigation pumpage rates in the Pecos Valley Aquifer 

(Meyer et al, 2012; Texas Water Development Board, 2012). The Edwards-Trinity aquifer is 

mostly under water table or unconfined aquifers that are composed of sand, fractured limestone 

and dolomite. Natural discharge from the Edwards-Trinity aquifer to surface water occurs mostly 

from springs along the margins of the aquifer where the water table intersects the ground surface 

(Bruun et al., 2016). The Edwards is also called the fault zone aquifer, in which the highly fractured 

limestone outcrop at the surface, allowing large amounts of natural recharge called allogenic 

recharge, in which the streams cross the permeable formation and go underground, for instance 

sinkholes that can receive large amounts of recharge and transmit it directly into the aquifer 

(https://www.edwardsaquifer.net/intro.html). Overall, BFI tends to be greater in the eastern side 

of the state. However, there was no specific pattern for BFI variation across Texas (Figure 5.10). 

Of note, without explicitly taking basin areas into account, the WHAT model was more likely to 

overestimate BFI for larger basins. This may be because the algorithms of the model estimate 

baseflow with substantial smoothing (Lim et al., 2005). 

 

https://www.edwardsaquifer.net/intro.html
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Figure 5.10. BFI at gauged station locations of each selected watershed in this study. 

5.3.2 Regression models 

5.3.2.1 Category 1  

The Category 1 area represents the northern part of the Carrizo aquifer and north and central 

Gulf Coast aquifers.  The Carrizo aquifer is primarily composed of sand locally interbedded with 

gravel, silt, clay, and lignite. The Gulf coast aquifer lies parallel to the Gulf of Mexico coastline 

and is primarily composed of discontinuous sand, silt, clay, and gravel beds of Miocene to 

Holocene age (Figure 5.9).  The best low-flow prediction model under the three scenarios, 

developed in section 5.2.5, involved different variables, but had values of R2 greater than 0.83 

(Table 5.3). Based on an F-test, the best models were significant (p-value <0.0001) for both 
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scenarios 1 and 2, and the p-value was less than 0.05 for scenario 3. Significant variables included 

in scenarios 1 and 2 were similar with the exception that scenario 1 contained the variable PRCP, 

that was replaced by ET in scenario 2. ET was found to have no impact on BFI prediction in 

scenario 2 due to the high humidity for the Category 1 region (Figure 5.3). Only the AWS and K 

variables were significant, at 90% confident level, for BFI prediction in the third scenario. These 

results suggest that BFI could be modeled using common log transformed meteorological, 

hydrogeological and topographical parameters with high reliability indicated by the high R2 (0.93, 

0.83 and 0.95 for scenarios 1, 2 and 3, respectively) and adjusted R2 values (0.84, 0.77, and 0.75 

for scenarios 1, 2 and 3, respectively) summarized in Table 5.3. Of note, for the same model 

scenarios, the R2 and adjusted R2 values were lower than that of the transformed variables.  

 

Table 5.3. Baseflow prediction models developed for the Category 1 area. 

Scenario Model AIC R2 
Adj 

R2 
P-value 

S1 

𝐵𝐹𝐼 = 5.997∙ × 𝑊𝑆𝐴0.301∙ × 𝐷𝐴0.072∗∗ × 𝑆𝑇𝐼0.389∗∗

× 𝑇𝑆𝑡𝑟𝐿0.048 × 𝑃𝑅𝐶𝑃2.838∗ × 𝐶𝑙𝑡0.114∗

× 𝐷𝑣𝑙𝑝0.024 × 𝑊𝑡𝑙0.058 

-67 0.93 0.84 <0.0001 

S2 
𝐵𝐹𝐼 = −1.081∗∗∗ × 𝑊𝑆𝐴0.296∗∗ × 𝐷𝐴0.089∗∗∗ × 𝑆𝑇𝐼0.179∙

× 𝐶𝑙𝑡0.139∗∗∗ × 𝐷𝑒𝑣𝑙𝑝0.041 
-60 0.83 0.77 <0.0001 

S3 

𝐵𝐹𝐼 = −3.801 × 𝑊𝑆𝑙𝑝0.817 × 𝐸𝑙𝑒𝑣0.263 × 𝑇𝐼2.376

× 𝐴𝑊𝑆0.278∙ × 𝐴𝑙𝑙0.005 × 𝐶𝑠𝑡𝑙0.028

× 𝐾0.072∙ 

-63 0.95 0.75 0.0451 

˙,*, **, and *** stand for statistically significant at 0.1, 0.05, 0.01, and 0.001 probability levels 

 

The evaluation of three model scenarios in the 24 watersheds selected in Category 1 showed 

that the RE for scenario one varied from -11 to 20%. However, for scenario 2, a larger range, 

between -20 to 35%, and higher maximum RE were observed. From the model for scenario 3, we 

showed a lower percentage for the RE, between -16 and 14% (Figure 5.11). The median values for 

the ARE varied from 5 to 14%, while all scenarios had 3rd interquartile range of less than 9%, 
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indicating that, with a probability of over 75%, the ARE values were within 9% (Figure 5.12). 

Model assessment statistics for BFI prediction are summarized in Table 5.4. The R2 and ENS 

values between the observed and predicted BFI for model development ranged between 0.82 and 

0.93, while the PBIAS varied between -0.3 and -0.7. These findings suggested that model 

development in scenarios 1 and 3 were slightly better than scenario 2 (Figure 5.13). This observed 

variance might be attributed to having fewer descriptive parameters in the scenario 2 model. In 

addition, the presence of the PRCP variable in scenario 1 gave higher prediction accuracy. 

Precipitation was found to have a significant impact on the amount of groundwater discharge, 

specifically in humid areas (Aboelnour et al., 2019; Zhu & Day, 2009). 
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Figure 5.11. Boxplots of RE for BFI prediction model development and validation for the 

Category 1 region. 

 
Figure 5.12. Boxplots of ARE for BFI prediction model development and validation for the 

Category 1 region. 
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Table 5.4. Values of statistical indicators in model development and validation for BFI 

prediction in the Category 1 region. 

Scenarios 
Model development Model validation 

R2 ENS PBIAS R2 ENS PBIAS 

Scenario 1 0.93 0.93 -0.3 0.73 0.72 -1.1 

Scenario 2 0.82 0.82 -0.6 0.60 0.57 -1.5 

Scenario 3 0.93 0.93 -0.3 0.84 0.84 -0.8 

 

As shown in Figure 5.13, the filtered and predicted BFI showed similar values, indicating 

some uncertainty in the developed model, as would be expected but with overall agreement of the 

data. Notably, models for scenarios 1 and 2 showed the highest accuracy. One particular prediction 

of note that deviates from the filtered BFI was observed in scenario 2 for the Cypress Creek 

Watershed. The model overestimated the predicted BFI, compared to the filtered BFI value of 0.56; 

the model predicted BFI was 0.69. This deviation could be in part attributed to the effect on 

baseflow by the large forest cover (46%) and high topographic index that facilitates baseflow 

discharge to the stream network within the watershed. 

The developed models in the three scenarios were further validated using randomly selected 

basins from each category during the 1980-2017 study period. Using the model validation 

watersheds that consist of 27 basins, results provided poorer BFI prediction evaluation metrics 

than for the development basins with a median RE of 4.46, -0.09 and -0.6% for scenarios 1, 2 and 

3, respectively (Figure 5.11). The validation model for the three scenarios had a RE interquartile 

ranging from -6 and 9%. The median ARE had values of 13.57, 11.34, and 9.15 for scenarios 1, 2 

and 3, respectively (Figure 5.12). For the validation dataset, the computed BFI from the filtered 

USGS streamflow values were reasonably close to the predicted ones. However, the scenario 2 

model provided poorer performance than scenarios 1 and 3. This might be attributed to the absence 

of the PRCP parameter in scenario 2 compared to scenario 1. The evaluation indices R2, ENS, and 

PBIAS for the validation dataset are listed in Table 5.4. In general, the validation dataset resulted 

in better BFI prediction in scenario 3 with values of 0.84, 0.84 and -0.8 for evaluation indices R2, 

ENS, and PBIAS, respectively.  



 

 

179 

 

Figure 5.13. Observed (filtered) and predicted BFI measured within the three scenarios in the 

Category 1 region. 

It should be noted that the highest deviations between the filtered and predicted BFI for the 

validated dataset were observed in the Headwater Frio and Courtney Watersheds in Scenario 2, 

and Marcelinas Watershed in Scenarios 1 and 2 (Figure 5.14). The model in general tended to 

underestimate the values in the Marcelinas Watershed. This could be explained by the PRCP 

variable in which the Marcelinas Watershed had lower annual precipitation compared to other 

basins included in the validation dataset. Similarly, the Headwater Frio Watershed tends to 

underestimate BFI prediction in all scenarios because the baseflow in a watershed does not 

necessarily originate from areas within the border of the watershed, but can migrate from 

surrounding watersheds as well.  The Headwater Frio Watershed lies in the Central Southern Texas 

and is surrounded by another three watersheds that were included in this study, hence, that might 

exaggerate the amount of observed baseflow. The Headwater Frio Watershed lies at the southern 

part of the Balcones fault that enhance the interconnection among the watersheds by fault-
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generated fracture system that allow long-distance inter-basin groundwater transfer from higher 

western topographical areas to the lower, more permeable discharge points towards the east 

(Woodruff and Abbott, 1986). The Courtney Watershed lies in the western part of Texas and 

resulted in the highest filtered BFI (0.74). Although the watershed was characterized by low 

average water storage, the large variability in topography and high conductivity might have 

enhanced the groundwater flow in the watershed leading to higher prediction of BFI.    

 

 

Figure 5.14. Observed (filtered) and predicted BFI for the validation dataset within the three 

scenarios in the Category 1 region. 

5.3.2.2 Category 2 

The Category 2 region covers the northern Trinity aquifer in the northeast part of the state 

(Figure 5.9).  The aquifer is composed of several water-bearing formations within the Trinity 
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Group that consists of limestones, sands, clays, gravels, and conglomerates. The productivity of 

the aquifer is mainly affected by the thickness and distribution of sandstone. These sandstones 

were deposited in two different environments resulting in a stratified network of aquifers and 

aquitards in the Northern Trinity Group that covers the Category 2 region (Bruun et al., 2016).  

The regression analysis resulted in the development of two similar models for scenarios 1 

and 2, with the exception that scenario 2 involved the variable Frst that was not statistically 

significant at the 0.1 probability level. The watershed properties that affected the BFI in Category 

2 included drainage areas, stream power index, maximum temperature, and urban cover for 

scenarios 1 and 2. These variables were statistically significant at different probability levels. 

Variables elevation, topographic index, hydrologic soil groups A, B and C, water storage, and 

alluvial deposits influenced the BFI prediction in scenario 3. Except for HydxB, all other 

parameters were statistically significant. These parameters have previously been utilized for 

predicting a high precision BFI (Zhang et al., 2013; Zhu & Day, 2009). The fact that the variables 

Frst and HydxB are not significant in scenarios 2 and 3, respectively, for BFI prediction, can be 

explained by the presence of highly significant of urban and HydxA parameters in scenarios 2 and 

3. Therefore, it makes these variables less important compared to others. The regression models 

showed that all models developed in the three scenarios had p-values less than 0.0001; however, 

scenario 3 had higher prediction accuracy with values of -59, 0.89 and 0.79 for AIC, R2 and 

adjusted R2, respectively (Table 5.5). Although Category 2 represents a humid region, scenarios 1 

and 2 lacked precipitation variables in the prediction model and this was likely attributed to the 

delayed precipitation response, particularly for large watersheds (Ahiablame et al., 2013b). The 

variables that best predicted BFI in the Category 2 area included elevation and topographic index, 

in addition to hydrologic soil groups A, B and C. Elevation and topographic index regulate the rate 

at which soil water moves down a slope, and therefore dictates whether the runoff  post event will 

be directly flushed to the river system or stored in the soil (Price, 2011). As previously mentioned, 

the impact of hydrological soil groups has a geological impact on BFI prediction. Different soils 

with differing infiltration capacity were determined by the rock type, which is known to influence 

groundwater discharge. Different studies have shown that a high correlation between BFI 

prediction and basin TI, elevation, and percentage of sand in different soil groups exists 

(Bloomfield et al., 2009; Lacey & Grayson, 1998; Santhi et al., 2008).  In addition, average water 

storage contributed to BFI prediction, in which the AWS parameter had an important role in water 
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redistribution towards the basin outlets (Hector et al., 2015). Additionally, watersheds representing 

Category 2 had lower stream density and higher forest cover compared to other categories, which 

may be related to subsurface storage characteristics, with lower stream densities possibly 

negatively correlated with subsurface water storage capacity. The forest cover has been shown in 

other studies to increase the infiltration rate and the recharge to subsurface water storage (Price, 

2011). Finally, alluvial deposits are closely related to the presence and the extent of baseflow, in 

which the quantity of groundwater recharge was found to be correlated to topographic positions 

that have greater cover of alluvial deposits (Schilling, 2009).  

 

Table 5.5. Baseflow prediction models developed for the Category 2 area. 

Scenario Model AIC R2 
Adj 

R2 
P-value 

S1 
𝐵𝐹𝐼 = −7.463∗∗ × 𝐷𝐴0.066∗∗ × 𝑆𝑃𝐼0.211∗∗∗ × 𝑇𝑀𝐴𝑋4.155∗

× 𝐷𝑣𝑙𝑝0.156∗∗∗ 
-54 0.84 0.74 <0.0001 

S2 

𝐵𝐹𝐼 = −8.596∗∗∗ × 𝐷𝐴0.059∗ × 𝑆𝑃𝐼0.228∗∗∗

× 𝑇𝑀𝐴𝑋4.978∗∗ × 𝐷𝑣𝑙𝑝0.159∗∗∗

× 𝐹𝑟𝑠𝑡−0.070 

-52 0.76 0.70 <0.0001 

S3 

𝐵𝐹𝐼 = 4.764∗∗∗ × 𝐸𝑙𝑒𝑣−0.841∗∗∗ × 𝑇𝐼0.263

× 𝐻𝑦𝑑𝑥𝐴4.584∗∗∗

× 𝐻𝑦𝑑𝑥𝐵0.061 × 𝐻𝑦𝑑𝑥𝐶0.195∗∗

× 𝐴𝑊𝑆−0.879∗∗ × 𝐴𝑙𝑙0.199∗∗  

-59 0.89 0.79 <0.0001 

˙,*, **, and *** stand for statistically significant at 0.1, 0.05, 0.01, and 0.001 probability levels 

 

The three developed models were then applied to the 27 watersheds of Category 2 to 

compare between the filtered and predicted BFI values. The performance of the three models to 

predict BFI in Category 2 showed a slightly higher RE compared to Category 1 for the three 

scenarios. The RE ranges between -26 and 33% for scenario 1 with a median percentage of -1.79%, 

and varied from -25 to 41% for scenario 2, while it showed the smallest margins that ranged 

between -21 and 21% for scenario 3 (Figure 5.15). Similarly, the ARE showed relatively higher 
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percentages compared to Category 1, in which the 3rd interquartile for the three developed models 

ranged from 11 to 19%, indicating that ARE were below 19% with a probability over 75%. In 

addition, the median percentages were 10.87, 9.14, and 6.71 for scenarios 1, 2 and 3, respectively 

(Figure 5.16). These results hold promising outputs for predicting BFI values; however, the model 

developed for scenario 3 indicated higher accuracy for BFI prediction in the area of Category 2. 

This can be clearly seen in the outputs listed in Table 5.6. The R2 and PBIAS values were 0.80, 

0.72 and 0.85; and -0.5, -0.9, and -0.2 for scenarios 1, 2 and 3, respectively. Although the model 

developed in scenario 1 had less representative variables compared to scenario 2, it performed 

slightly better than scenario 2, indicating that adding variables did not improve the model, and that 

in this part of the state, the forest cover was not a significant factor affecting the BFI.  

Figure 5.17 compares the predicted BFI values with the observed BFI determined by the 

equations listed in Table 5.5. When the forest land use variable was removed from scenario 2, the 

bias between the predicted and filtered BFI slightly decreased; however, the model including 

geological parameters showed the least deviation between the observed and predicted BFI values. 

The highest deviation was observed in the Lower Little River Watershed in the model developed 

in scenario 2, in which the predicted BFI was underestimated. This might be related to the higher 

temperature of the watershed compared to the others included in Category 2. Although the annual 

ET variable was not significant in scenario 2, the higher temperature played an important part in 

increasing evapotranspiration and leading to a decrease in infiltration. In addition, only 0.7 and 

2.7% of water and wetlands, respectively, cover the Lower Little River Watershed, which would 

cause a decrease in the amount of water discharged to the subsurface. 
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Figure 5.15. Boxplots of RE for BFI prediction model development and validation for the 

Category 2 region. 

 

 
Figure 5.16. Boxplots of ARE for BFI prediction model development and validation for the 

Category 2 region. 
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Table 5.6. Values of statistical indicators in model development and validation for BFI 

prediction in the Category 2 region. 

Scenarios 
Model development Model validation 

R2 ENS PBIAS R2 ENS PBIAS 

Scenario 1 0.80 0.79 -0.5 0.65 0.64 -1.5 

Scenario 2 0.72 0.71 -0.9 0.52 0.50 -2.3 

Scenario 3 0.85 0.83 -0.2 0.75 0.75 -1.2 

 

The regression models developed for Category 2 were tested for the period 1980 to 2017 

using the 27 basin validation dataset. The performance of the model for validation showed similar 

trends to the model for the development dataset. Validation watersheds for scenario 2 appeared to 

have the lowest accuracy, and the RE percentage had a large range from -39 to 57%, while 

validation for scenario 3 had the narrowest range in the three scenarios (Figure 5.15). Table 5.6 

showed the performance of model validation with respect to R2, ENS and PBIAS which range 

from 0.52 to 0.75, 0.50 to 0.75, and -2.3 to -1.2, respectively. While these indices have been used 

extensively for model performance estimation, it is recommended different indices be used 

simultaneously to measure the model accuracy. Based on the outputs of these statistics and the 

percentage of RE, the model showed adequate performance for the validation datasets (Moriasi et 

al., 2007; Santhi et al., 2001). The consistency in the pattern across the RE and the three indices 

indicates that the differences between the filtered and predicted BFI for the validation dataset are 

not attributed to the suitability of the model but may be linked to other reasons such as 

anthropogenic activities in the region or data quality. 
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Figure 5.17. Observed (filtered) and predicted BFI measured within the three scenarios in the 

Category 2 region. 

Results for model validation during the 1980 to 2018 period are shown in Figure 5.18. The 

underestimation for BFI prediction of the Headwaters Frio Watershed might be attributed to factors 

discussed above in Category 1, while the underestimation of BFI prediction in the Black Cypress 

Watershed in scenarios 1 and 2 might be related to lower temperature experienced in the watershed 

compared to others. Generally speaking, the developed models for the three scenarios tended to 

underestimate the prediction of BFI values in the validation dataset, leading to a slightly negative 

bias.   
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Figure 5.18. Observed (filtered) and predicted BFI for the validation dataset within the three 

scenarios in the Category 2 region. 

5.3.2.3 Category 3 

The Category 3 area is characterized by sub-tropical, sub-humid climates in the South 

Central part of the state that covers the Southern Trinity aquifer, the central parts of Carrizo and 

the Gulf Coast aquifers. The northern parts of the area are mainly covered by limestone and 

dolomitic rock types, while the central part is covered by the Middle Eocene Claiborne and Wilcox 

groups that mainly consist of a vertical sequence of alternating sandstones, siltstones, and 

claystones of variable thickness of interfering marine and non-marine units. These units can reach 

up to 800 m in thickness (Davies & Ethridge, 1971). The Central Gulf Coast aquifer consists of 

Tertiary and Quaternary clastic sediments composed of silt, clay, sand and gravel that dip southeast 

towards the Gulf of Mexico. The sediments were deposited in a wide array of settings ranging 
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from non-marine at the up-dip extent of the study area to marine along the coast (Texas Water 

Development Board, 2003). 

The regression equation developed for this category showed that the model could predict 

BFI with high accuracy in this region (Table 5.7). Among the climate, landscape and geological 

descriptors, BFI can be predicted using variables DA, SPI, STI, TStrL, PRCP, Wtr and Wtl covers 

for scenario 1. The model for scenario 1 provided outputs of -61, 0.95, and 0.87 for AIC, R2 and 

adjusted R2, respectively. Unlike scenario 1, BFI can be predicted by replacing the variables TStrl, 

PRCP and Wtl with parameters TMAX, ET and Frst cover for scenario 2, with predictive capacity 

higher than that of scenario 1. These variables are statistically significant at different probability 

levels for scenario 2; however, DA, Wtr and Wtl were not significant in scenario 1 (Table 5.7). 

Watershed areas included in Category 3 were characterized by a higher percentage of cultivated 

and forest cover compared to other Categories, with a percentage of 37 and 25%, respectively. 

Many studies associate higher watershed forest cover with lower BFI, due to the higher 

evapotranspiration rates of forests (Sahin & Hall, 1996; Swank et al., 1988), while others indicate 

increased BFI with higher watershed forest cover due to higher infiltration and recharge of 

subsurface water storage (Price, 2011; Santhi et al., 2008). Both forest cover and 

evapotranspiration were included in the model prediction for scenario 2. It can be clearly seen that 

the ET had a negative correlation with BFI, since ET depletes the water on which baseflow is 

dependent (Table 5.7).  

For scenario 3, BFI can be predicted using the average watershed slopes, basin relief, 

hydrologic soil group B, water storage, alluvial and colluvial deposits and finally hydrologic 

conductivity. However, only the alluvial and colluvial lithology are statistically significant at 0.10 

and 0.05 probability levels, respectively. Surface topographic properties may express the amount 

of colluvial deposits available and this likely explains the existence of the variables Relv and Coll 

in predicting BFI in scenario 3. Colluvial deposits are sedimentary deposits consisting of surface 

mantle formed at the base of a slope caused by the transportation by gravity and non-channelized 

flow (Fairbridge, 1968; Millar, 2015). Colluvial deposits have previously been shown to play an 

important role in shallow reservoirs and play a significant role in explaining the variability in 

magnitude of groundwater (Schulz et al., 2008).  In the Category 3 region, that included 22 basins, 

only 9 watersheds were found to have colluvial deposits due to the high relief in these watersheds. 

This relief appears to affect the amount of groundwater discharge. Colluvial deposits that are 
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significant in scenario 3 may be related to the movement of water, such that the flow from bedrock 

to colluvium is more likely where the bedrock has layers with strong permeability contrasts that 

dip out of the slope.  

 

Table 5.7. Baseflow prediction models developed for the Category 3 area. 

Scenario Model AIC R2 
Adj 

R2 
P-value 

S1 

𝐵𝐹𝐼 = −1.369∗∗∗ × 𝐷𝐴0.037 × 𝑆𝑃𝐼0.230∗∗

× 𝑆𝑇𝐼−0.141∗ × 𝑇𝑆𝑡𝑟𝐿0.182∙

× 𝑃𝑅𝐶𝑃−1.166∗∗ × 𝑊𝑡𝑟0.055 × 𝑊𝑡𝑙0.013 

-61 0.95 0.87 <0.0001 

S2 

𝐵𝐹𝐼 = −7.125∗∗∗ × 𝐷𝐴0.051∙ × 𝑆𝑃𝐼0.173∗∗∗ × 𝑆𝑇𝐼−0.068

× 𝐸𝑇−4.126∗∗∗ × 𝑇𝑀𝐴𝑋3.721∗

× 𝐹𝑟𝑠𝑡−0.110∗ × 𝑊𝑡𝑟0.051∗ 

-81 0.97 0.95 <0.0001 

S3 

𝐵𝐹𝐼 = −1.076 × 𝑊𝑆𝑙𝑝0.239 × 𝑅𝑒𝑙𝑣0.263 × 𝐻𝑦𝑑𝑥𝐵0.044

× 𝐴𝑊𝑆0.191 × 𝐴𝑙𝑙0.094∙ × 𝐶𝑜𝑙𝑙0.108∗

× 𝐾0.096  

-87 0.99 0.94 <0.0001 

˙,*, **, and *** stand for statistically significant at 0.1, 0.05, 0.01, and 0.001 probability levels 

 

The performance of the three models to predict BFI in ungauged stations in Category 3 

showed lower RE percentages compared to Categories 1 and 2 for each scenario. The 3rd 

interquartile RE ranges were less than 5% in all scenarios with a median of -0.69, 0.12, and 0.49 

for scenarios 1, 2 and 3, respectively (Figure 5.19). Scenario 3 had the narrowest RE percentages 

indicating that the model developed using soil and hydrogeological parameters could predict BFI 

values with the highest accuracy in Category 3. Similarly, the model validation showed a 

promising RE percentage; however, the highest prediction accuracy in scenario 1 had a median 

RE percentage of -0.81. The ARE of the models for the development and validation datasets did 

not differ from the relative prediction errors. Scenario 3 had the narrowest ARE for model 

development that varied from 0.2 to 8% with a median value of 1.8%. On the other hand, the 

validation dataset had the narrowest range of ARE with respect to scenario 1, with ranges from 
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zero to 33% (Figure 5.20). Although the three scenarios had slight differences in the evaluation 

indices, they predicted the BFI for the development and validation datasets precisely. The R2 and 

ENS for the three scenarios varied from 0.94 to 0.98; in addition, the scenario had a low bias 

percentage of -0.1 (Table 5.8). In general, the results of errors together with the statistical indices 

suggested that the BFI can be predicted using the model developed with high accuracy. However, 

the validation dataset had lower performance for the three scenarios. The R2, ENS and PBIAS 

ranged from 0.68 to 0.71, 0.67 to 0.70, and -1.0 to -1.4, respectively (Table 5.8). This variation 

might be attributed to the change in meteorological patterns across the state since the validation 

dataset was randomly selected from each of the five categories and may have important features 

that specifically affect BFI values such as geology or land cover and use. However, the outputs of 

these statistical indices indicated that the predicted BFI values in the validation dataset were in 

‘Very Good’ agreement, according to the Moriasi et al. (2007) criteria. 

 

Table 5.8. Values of statistical indicators in model development and validation for BFI 

prediction in the Category 3 region. 

Scenarios 
Model development Model validation 

R2 ENS PBIAS R2 ENS PBIAS 

Scenario 1 0.94 0.94 -0.1 0.71 0.70 -1.0 

Scenario 2 0.97 0.97 -0.1 0.68 0.67 -1.4 

Scenario 3 0.98 0.98 0.0 0.70 0.69 -1.4 
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Figure 5.19. Boxplots of RE for BFI prediction model development and validation for the 

Category 3 region. 

 

Figure 5.20. Boxplots of ARE for BFI prediction model development and validation for the 

Category 3 region. 
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Figure 5.21. Observed (filtered) and predicted BFI measured within the three scenarios in the 

Category 3 region. 

 

The predicted and observed BFI values filtered using the WHAT model for the three 

scenarios for the Category 3 region were plotted to visualize similarities and differences (Figures 

5.21 and 5.22). The predicted BFI values exhibited the same pattern for the three scenarios with 

respect to the model development dataset; however, there were some divergences between the 

simulated and observed BFI values in the validation dataset. For instance the Jones Watershed 

tended to overestimate BFI in scenario 1. One explanation may be that this difference was related 

to how the watershed area was subjected to different measurements to prevent flash flood events. 

The watershed lies directly on the Gulf of Mexico and has been subjected to severe flood events 

in the past with the last one recorded in 2017. With the inclusion of precipitation variables in 

scenario 1 and with the high rainfall of the watershed, the model overestimated the predicted BFI. 
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Overall, for the validation dataset, the lower the filtered BFI value, the lower the divergence 

between the simulated and observed BFI and the better the performance of model prediction.  

 

 

Figure 5.22. Observed (filtered) and predicted BFI for the validation dataset within the three 

scenarios in the Category 3 region. 

5.3.2.4 Category 4 

The Category 4 area represents the central and the southern part of the state. It is 

characterized by sub-tropical and semi-arid climate conditions, with the exception of the southern 

part called the Lower Valley, which experiences sub-tropical and sub-humid marine climate. The 

Central region of the area represents the Edward Plateau that contains the Edwards-Trinity Aquifer. 

The aquifer extends over an area of about 90,500 km2 in central-west Texas. The topography of 
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the Edwards Plateau consists of a flat tableland with stream-cut canyons in the southern and eastern 

portions of the plateau (Anaya, 2001). The water-bearing units are composed predominantly of 

limestone and dolomite of the Edwards Group and sands of the Trinity Group. The top of Edwards-

Trinity aquifer is mostly unconfined, and sediments rest on top of an uneven erosional surface of 

folded and faulted Paleozoic to Triassic-age sediment (George et al., 2011). This lower portion of 

the aquifer is largely confined and being recharged via natural sinkholes, i.e. allogenic recharge 

(https://www.edwardsaquifer.net/intro.html). Towards the central and southern part of the 

Category 4 region, the area is mainly covered by fluvial-deltaic sediments of the upper Paleocene 

and lower Eocene Wilcox Group, Carrizo Sand of the Southern Carrizo aquifer (Deeds et al., 2003), 

and discontinuous silt, clay and sand beds of the Miocene and Holocene ages (Bruun et al., 2016). 

The regression equations were developed using three sets of data. Among the potential BFI 

response predictors for the scenario 1 model, forest, barren lands and wetland areas were the best 

predictors for BFI (Table 5.9). In addition, stream power and sediment transport indices, 

precipitation and water cover descriptors were also included in the model; however, they were not 

significant at a 0.10 probability level. This might be related to the low stream densities in the 

region, especially towards the west, which in turn reduced the stream power and sediment transport 

indices. This reduction in stream power index might be attributed to some of the streams in the 

plateau are sinking streams and never reach an outlet, however, they flow into a fracture zone or 

sinkholes and turn into allogenic recharge. In addition, there is no pattern in precipitation in the 

Category 4 area. Precipitation is the highest in late spring and early fall in only the eastern part of 

the region due to the colliding of cool northern frontal air masses with warm southern air, and from 

humid air masses coming from the gulf. However, the western part experiences a lower 

precipitation rate, that occurs due to convectional storm events during late summer (Anaya, 2001). 

For the model developed in scenario 2, the variables ET, Clt and Frst were significant in 

predicting BFI at a 0.05 significance level. This observation was consistent with the attributes of 

the selected watersheds, representative of areas that were mainly covered by shrublands, forest and 

cultivated cover with 70, 12, and 10%, respectively. The shrublands had a high correlation with 

ET, and the cultivated and forest areas had negative impacts on ET (Figure 5.7a). These findings 

suggest why we observe positive correlation of the Clt and Frst parameters but negative correlation 

for the ET variable (Table 5.9). Of note, Figure 5.7a represents not only the correlation matrix 

between variables in the Category 4 watersheds, but also for the 140 selected watersheds across 

https://www.edwardsaquifer.net/intro.html
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the state. Based on their recharge and infiltration rate, shrublands may lead to the reduction of 

evapotranspiration and BFI in the region; however, it was hard to infer the direct relationship 

without specific information about the types of these land covers. The negative relationship 

between shrublands and BFI may be the result of covariance with precipitation, since shrublands 

are typically located in basins with lower precipitation rates. 

 

Table 5.9. Baseflow prediction models developed for the Category 4 area. 

Scenario Model AIC R2 
Adj 

R2 

P-

value 

S1 

𝐵𝐹𝐼 = −0.771∙ × 𝑆𝑃𝐼0.052 × 𝑆𝑇𝐼0.057

× 𝑃𝑅𝐶𝑃0.489 × 𝐵𝑟𝑛−0.084∗ × 𝐹𝑟𝑠𝑡0.093∗

× 𝑊𝑡𝑟0.057 × 𝑊𝑡𝑙0.1∙ 

-51 0.95 0.86 <0.01 

S2 
𝐵𝐹𝐼 = 11.782∗ × 𝑆𝑇𝐼0.141∙ × 𝐸𝑇−4.260∗ × 𝑇𝐴𝑉𝐺−0.1

× 𝐶𝑙𝑡0.074∗ × 𝐹𝑟𝑠𝑡0.074∗ 
-38 0.86 0.76 <0.001 

S3 

𝐵𝐹𝐼 = −0.733 × 𝑊𝑆𝑙𝑝−0.078

× 𝐴𝑊𝑆0.232 × 𝐶𝑜𝑙𝑙0.110 × 𝑅𝑒𝑠0.203∗

× 𝐾0.1  

-50 0.96 0.82 <0.1 

˙,*, **, and *** stand for statistically significant at 0.1, 0.05, 0.01, and 0.001 probability levels 

  

The watersheds selected in Category 4 were mostly covered by residual and colluvial 

sediments, 37 and 23%, respectively, supporting the use of these two variables in the model 

developed for scenario 3. Although the colluvial deposits were not significant at a 0.10 level, the 

residual deposits were significant at a 0.05 probability level. Average slope, water storage, and 

hydraulic conductivity were also included in the model, but they were not significant. This could 

be due to the lack of complex topography, low water storage and conductivity in this area, with an 

average K of 3 m·day-1 (Barker & Ardis, 1996). 

Overall, the model developed for scenario 2 had the lowest BFI prediction accuracy with an 

R2 and adjusted R2 values of 0.86 and 0.76, respectively. This was in contrast to the models 
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developed for scenarios 1 and 3 that showed higher accuracies with R2 of 0.95 and 0.96 and 

adjusted R2 values of 0.86 and 0.82, respectively. These accuracies were reflected in the 

performance of the models for predicting BFI. Figures 5.23 and 5.24 show the percentages of RE 

and ARE for both model development and the validation dataset. The median percentages for RE 

ranged between -4.05 to 0.55% for model development, and varied from -0.54 to 0.59 for the 

validation dataset. Similarly, the median ARE for the model development were 3.47, 10.12 and 

4.53 for scenarios 1, 2 and 3, respectively. Although the ARE reached a maximum of 54 and 73% 

for scenarios 1 and 2 in the validation dataset, respectively, these margins were considered outliers 

from the 3rd interquartile, ranging between 15 to 25%.  The model predicted BFI with relatively 

high R2 values for scenarios 1 and 3 (0.92 and 0.94, respectively), indicating that some 

meteorological variables were more useful than others (i.e. PRCP is better used as estimator for 

BFI than ET), and that the continuous coverage of the lithological scheme could be used for 

predictive purposes pertaining to BFI. The R2 values and other evaluation statistical indices had 

lower values for the validation dataset compared to the developed model. The lowest R2 value was 

0.65 for scenario 2, and the highest was recorded in scenario 1 with a value of 0.82 (Table 5.10). 

Although the correlation coefficient detected in the validation of scenario 2 was lower, the 

relatively high R2 and ENS, and low bias of model developments suggests that the BFI can be 

modeled by utilizing basin lithological, topographic and meteorological variables (Moriasi et al., 

2007).  

 

Table 5.10. Values of statistical indicators in model development and validation for BFI 

prediction in the Category 4 region. 

Scenarios 
Model development Model validation 

R2 ENS PBIAS R2 ENS PBIAS 

Scenario 1 0.92 0.92 -0.1 0.82 0.82 -0.9 

Scenario 2 0.79 0.78 -0.6 0.65 0.68 -1.5 

Scenario 3 0.94 0.93 0.0 0.76 0.74 -0.8 
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Figure 5.23. Boxplots of RE for BFI prediction model development and validation for the 

Category 4 region. 

 

Figure 5.24. Boxplots of ARE for BFI prediction model development and validation for the 

Category 4 region. 
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Figures 5.25 and 5.26 compare the simulated BFI to the filtered BFI values using the 

equation shown in Table 5.9 for the development and validation datasets, respectively. There was 

low bias in the predictions in all three scenarios, and the developed model equations provide 

comparable estimates for the BFI. Some predictions were more variable from the measured BFI, 

such as the overestimation of BFI in the Dry Frio Watershed, and the underestimation of the Lower 

Sabinal River Watershed in scenario 2. Although the Dry Frio Watershed had the highest forest 

cover and second highest sediment transport index in the Category 4 region, it was also 

characterized by higher annual precipitation (924 mm) and lower evapotranspiration (399 mm) 

rates compared to other watersheds in the region. STI has been shown to be positively correlated 

to groundwater flow in many regions (Price et al., 2011; Warner et al., 2003). STI relies on water 

flow to move a load downstream. Water flow is variable, affected not only by the topography, such 

as slope, but also by the amount of rainfall that will directly affect the water level. The high rainfall 

observed in the Dry Frio Watershed leads to an initial increase in water level, which is then 

returned to baseflow over hours or days. Therefore, light or heavy precipitation, in this watershed 

especially, can impact the amount of water flow and sediment transport. Of note, the impacts of 

forest and sediment transport index variables exert strong influences on BFI prediction; however, 

it is uncertain whether these parameters were the main driving forces that controlled baseflow in 

the region, or if other basin characteristics that more directly influence groundwater discharge and 

are more strongly influenced by these measurements. 

 Similarly, the model overestimated the predicted BFI for Montell Creek Watershed in 

scenario 3 due to the high hydraulic conductivity in the watershed (12 m·day-1). Although the 

watershed is covered by shallow to very shallow gravelly loam and clay, the high conductivity 

reported was likely caused by the data acquisition. For hydrogeological parameters, data were 

collected from well reports, and these wells are generally sited at locations with high values of 

water storage, transmissivity and conductivity. Figure 5.22 showed slight divergence between the 

estimated and measured BFI in Mountain Creek Watershed. The model overestimated the BFI in 

scenario 3, in contrast to scenarios 1 and 2 where the values were underestimated. This might be 

attributed to the high AWS of the watershed in scenario 3, and this is known to generally lead to 

an increase in the ground water discharge. On the other hand, the underestimated BFI values may 

be caused by the watershed’s low cultivation and forest cover, which has a positive correlation 

with BFI in the developed model. 
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Figure 5.25. Observed (filtered) and predicted BFI measured within the three scenarios in the 

Category 4 region.
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Figure 5.26. Observed (filtered) and predicted BFI for the validation dataset within the three 

scenarios in the Category 4 region. 

5.3.2.5 Category 5 

The Category 5 area represents the sub-tropical and semi-arid climates of the Low Rolling 

and High Plains in North Western Texas, and the dry arid desert of the Trans Pecos Plain in the 

far western part of the state (Figure 5.6). The region features the Seymour aquifer in Northern 

Texas, Ogallala aquifer in North Central Texas, and the Pecos Valley aquifer in the west (Figure 

5.9). The Seymour Aquifer consists of Quaternary-age, alluvial sediments overlying westerly-

dipping Permian-age rocks. The Seymour Aquifer is composed of discontinuous beds of poorly 

sorted gravel, conglomerate, sand, and silty clay eroded from the High Plains, deposited by 

eastward moving streams (Duffin & Beynon, 1992; Preston & Bankston, 1978). The Ogallala 

aquifer consists of sand, gravel, clay, and silt that has a maximum thickness of 800 feet. The 

selected watersheds for model development and validation mainly lay in the northern part of the 
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aquifer in the Ogallala formation. The Ogallala Formation was deposited as alluvial outwash from 

the Rocky Mountains with a coarser grained pebble to boulder size gravel near the mountains, to 

finer grained sand and gravel with increased distance from the mountains  (Gustavson, 1996). The 

Pecos Valley aquifer consists of alluvial, lacustrine, and eolian deposits of Tertiary and Quaternary 

age, that can reach up to 450 m in thickness, deposited in the Pecos River Valley. Groundwater  in 

the aquifer is unconfined and the top of the aquifer is exposed at the ground surface over the entire 

extent of its area (Bruun et al., 2016).  

The best low flow regression model developed under the three scenarios in Category 5 

showed high R2 values compared to other categories (0.99, 0.94 and 0.97 for scenarios 1, 2 and 3, 

respectively). In addition, the developed model for both scenarios 1 and 2 involved similar 

parameters. The only difference between the model developed in scenarios 1 and 2 was the 

replacement of PRCP by the ET parameter in scenario 2. However, with this modest change, the 

factors WSA and Dvlp cover no longer affected the prediction of BFI in scenario 2. Although the 

precipitation was not statistically significant in scenario 1, the evapotranspiration was significant 

at a 0.01 probability level. This is likely explained by the areas that lie in the dry western region 

of the state where the rate of rainfall is significantly lower, with a mean of 500 mm compared to 

the precipitation of other categories that range from 650 mm in Category 4 up to 1300 mm in 

Category 1. The precipitation in this category occurs predominantly in April and May, with 115 

mm, and July is the driest month with only 45 mm of precipitation. The rainfall in the wet season 

is mainly due to the convergence of prevailing west and south winds during late spring. On the 

other hand, some of the watersheds representing the Category 5 area are characterized by highly 

cultivated areas with a high ET rate (400 mm). Findings in the Category 5 region indicated that 

the correlation between ET and BFI was negative, and statistically significant at a 0.01 probability 

level (Table 5.11). In addition, the existence of the ET factor in the model was likely the reason 

for reduced accuracy of the model developed in scenario 2, as the R2 reduced from 0.99 to 0.94 

from scenario 1 to scenario 2.  

Using an F-test, the best models were all significant (p-value <0.01) for scenario 1, and the 

p-value was less than 0.0001 for scenarios 2 and 3. Topographic factors including Relv and TI, 

hydrologic soil groups A, B and D, alluvial and eolian deposits, and hydrologic conductivity are 

all significant in the model developed for BFI prediction in scenario 3. Alluvial and eolian deposits 

in the Trans Pecos Plain and colluvial sediments in the High Plain region are the predominant 
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lithology groups for watersheds within the Category 5 area. As mentioned previously, these 

variables are known to be the driving force that controls baseflow (Zhang et al., 2013; Zhu & Day, 

2009).  

The model developed for BFI prediction in Category 5 was applied on 20 selected 

watersheds that represent the area. The 1st and 3rd interquartile for RE margins ranged from -5 to 

only 6% for the three scenarios, with the narrowest RE margin observed in scenario 1 (Figure 5.27). 

These findings indicate that the percentage of relative errors was between -5 and 6%, with a 

probability between 25 to 75%. The ARE for the three scenarios also had a narrow percentage 

range, with a median of 2.76, 6.48 and 4.71% for scenarios 1, 2 and 3, respectively (Figure 5.28). 

These results show that the regression models developed are accurate for BFI prediction in the 

western part of Texas using input from topographic, meteorological, lithological and 

hydrogeological data, and that the model developed for scenario 1 predicts the BFI with the highest 

accuracy.  

 

Table 5.11. Baseflow prediction models developed for the Category 5 area. 

Scenario Model AIC R2 
Adj 

R2 
P-value 

S1 

𝐵𝐹𝐼 = 1.097 × 𝑊𝑆𝐴0.567 × 𝑆𝑃𝐼−0.158

× 𝑇𝑆𝑡𝑟𝐿 −0.664∗× 𝑃𝑅𝐶𝑃0.443

× 𝐵𝑟𝑛−0.071∙ × 𝐷𝑣𝑙𝑝0.232 × 𝐹𝑟𝑠𝑡0.158∗

× 𝑊𝑡𝑟0.043 × 𝑊𝑡𝑙0.058 

-68 0.99 0.93 <0.01 

S2 

𝐵𝐹𝐼 = 14.355∗ × 𝑆𝑃𝐼−0.281∗∗ × 𝑇𝑆𝑡𝑟𝐿−0.230∙ × 𝐸𝑇−6.185∗∗

× 𝐵𝑟𝑛−0.051∙ × 𝐹𝑟𝑠𝑡0.108∗ × 𝑊𝑡𝑟0.081∙

× 𝑊𝑡𝑙0.031 

-45 0.94 0.83 <0.0001 

S3 

𝐵𝐹𝐼 = 1.447 ∗× 𝑅𝑒𝑙𝑣−0.180∗

× 𝑇𝐼−1.266∗∗ × 𝐻𝑦𝑑𝑥𝐴0.037∗∗

× 𝐻𝑦𝑑𝑥𝐵−0.060∗

× 𝐻𝑦𝑑𝑥𝐷−0.046∗ × 𝐴𝑙𝑙0.050∗∗ × 𝐸𝑜𝑙−0.042∗

× 𝐾0.136∗  

-53 0.97 0.87 <0.0001 

˙,*, **, and *** stand for statistically significant at 0.1, 0.05, 0.01, and 0.001 probability levels 
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Figure 5.27. Boxplots of RE for BFI prediction model development and validation for the 

Category 5 region. 

 

Figure 5.28. Boxplots of ARE for BFI prediction model development and validation for the 

Category 5 region. 
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Table 5.12 shows the performance statistics for the developed models used in BFI prediction 

in Category 5. The R2 and ENS values between the observed and predicted BFI for model 

development ranges between 0.91 and 0.98, while PBIAS varied between zero and -0.3. Therefore, 

it could be concluded that the baseflow has a strong relationship with lithology, soil type and 

climate in this Category, and that the BFI can be explained as an integrated description of the 

fractional areas of lithology in the basins. In addition, it can be clearly seen that the predicted BFI 

values exhibit the same pattern for the three scenarios with respect to the model development 

dataset in Category 5 (Figure 5.29). The small deviation and extremely low bias between the 

observed and predicted BFI in Figure 5.29 might be explained by the constant topography of the 

plains and meteorological conditions in the area.  

 

Table 5.12. Values of statistical indicators in model development and validation for BFI 

prediction in the Category 5 region. 

Scenarios 
Model development Model validation 

R2 ENS PBIAS R2 ENS PBIAS 

Scenario 1 0.98 0.98 0.0 0.75 0.74 -1.1 

Scenario 2 0.91 0.91 -0.3 0.73 0.72 -1.2 

Scenario 3 0.94 0.94 0.0 0.81 0.81 -0.8 
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Figure 5.29. Observed (filtered) and predicted BFI measured within the three scenarios in the 

Category 5 region. 

 

The model validation used datasets from 27 basins, and showed larger margins of RE 

compared to basins used to model development, with 1st and 3rd quartile range from -12 to 6%, 

with scenario 2 having the biggest margin. On the other hand, the highest ARE 3rd  quartile range 

for the validation dataset was 20% in scenario 2 (Figures 5.27 and 5.28), indicating that the model 

developed for scenario 2 had the least accuracy but still can be utilized in predicting BFI values 

according to the evaluation criteria of Moriasi et al. (2007). The evaluation criteria for the model 

using the validation datasets is summarized in Table 5.12. The R2 and ENS values showed a lower 

performance in the validation process than model development. The lowest R2 values were 

recorded in scenario 2 with a value of 0.73, while the highest R2 value was for scenario 3 (0.81). 

However, the low bias in the validation dataset indicated that the regression model could be used 

to predict BFI in areas that have similar climatic, geological and topographic conditions to that of 
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the Category 5 region. Figure 5.30 shows the comparison of BFI values for the validation dataset 

derived from streamflow and values evaluated from the equation listed in Table 5.11. A close 

agreement was observed between the measured and predicted BFI values. Therefore, the 

developed regression equation can be used to evaluate BFI in similar regions. The higher 

estimation of baseflow in Jones Creek in scenario 1 might be attributed to the same reasons 

mentioned in Category 3, that the watershed experiences higher rainfall that had a positive impact 

on groundwater discharge, that in turn increased the predicted BFI value. 

 

 

Figure 5.30. Observed (filtered) and predicted BFI for the validation dataset within the three 

scenarios in the Category 4 region. 
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Finally, it should be mentioned that, in this research, we tried to develop a model including 

all the selected watersheds that represent the five categories (113 watersheds); however, outputs 

of these models were not able to predict baseflow adequately. Table 5.13 summarizes the statistical 

indices of the best models for the three scenarios. Evaluation criteria for both scenarios 1 and 3 

were identical, with R2, ENS, and PBIAS values of 0.43, 0.41 and -2.7. Scenario 2 had a lower 

performance with R2, ENS, and PBIAS values of 0.37, 0.36 and -2.9. Regardless of the number of 

variables included in the model, the lower performance for the statewide models was likely 

attributed to the variability in climatic and geological conditions and parameters across the state. 

These findings indicated the benefits of determining appropriate study areas to develop regression 

models within a larger study region. Although the development of distinct regression equations 

can be computationally and resource-intensive, specifically over large regions that have several 

meteorological, geological, and topographic features, the developed models showed an ability to 

accurately predict the BFI across the state.  

Table 5.13. Values of statewide statistical indicators in model development for BFI prediction.  

Scenarios 
Model development 

R2 ENS PBIAS 

Scenario 1 0.43 0.41 -2.7 

Scenario 2 0.37 0.36 -2.9 

Scenario 3 0.43 0.41 -2.7 

5.3.3 Limitations of our Approach 

Findings of this research showed that the deviation between the estimated and predictive 

values were relatively small in all developed and validated models; however, several limitations 

of this study should be noted and would benefit from further investigation in future studies. First, 

although the collection of watershed properties representing hydrogeological factors that impact 

baseflow is a challenging process, as most of these parameters are acquired from areas where data 

from wells are available. These wells are usually located in areas where the water storage, 

conductivity and transmissivity are relatively high, and therefore may not be indicative of the 
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watershed conditions. This might explain why neither depth to water nor transmissivity were 

involved in any of the developed models of scenario 3, for example. Since the data were derived 

from pumping test wells, they were considered as point estimates that are constant across the basin. 

Therefore, it is recommended to apply other representative parameters, for instance, relative 

elevation topographic surface, in which the floodplain surface was subtracted from the nearest 

river channel water level elevations, rather than depth to water, and to involve well data throughout 

the area or by utilizing an area weighted average to acquire values better representing the whole 

basin. Moreover, other hydrogeological parameters that can be acquired from other groundwater 

models should be used in developing such models. Additionally, the stepwise model development 

used in this study has been shown to introduce bias in parameter estimation and some 

inconsistencies between model selection algorithms (Whittingham et al., 2006). An alternative 

way that might be used in future studies, especially when using many variables, is principle 

component analysis (PCA) regression. PCA involves reducing the number of individual models 

and can be used when the variables are collinear or even highly correlated (Ringnér, 2008).  

One of the potential shortcomings of this study is that the baseflow has been estimated from 

computed filtering methods, and in addition, there is no standard for selecting specific baseflow 

separation methods for model development and for comparing predicted to filtered values with 

anther separation approach. Since there was no measured baseflow data available to support our 

decision, it was challenging to select the best baseflow separation technique for the study area. The 

WHAT filtering technique was selected in this study as it provided fast and consistent baseflow 

separation with respect to manually separated results. The results of the filtered BFI values might 

be different if another filtering methods were used or by using the flow duration curve (FDC) 

method. 

Some of the developed models included the impact of slope, basin relief, stream density and 

different lithology on baseflow. However, knowledge about water storage in different lithology 

units and their relationship to baseflow is limited, and it remains uncertain if these parameters 

directly influence groundwater discharge or correlate to other aquifer characteristics that impact 

groundwater (Price et al., 2011). Thus, there is a critical need for further investigation into the role 

of subsurface topography on baseflow.  

Another limitation of this study is that the soil properties were represented only by the 

percentages of different HSGs; however, basins may contain various soil types with different 
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characteristics at different locations based on topography. For example, some soils can be deep 

and permeable and others can be shallow and impermeable at small depths below the subsurface 

within the same basins. Unfortunately, there are currently no robust methods to incorporate the 

effects of all of these varying soil characteristics into the models. In this work, we developed the 

simplest classification for lithology across the state that is satisfactory for developing the 

regression model (Bloomfield et al., 2009). However, it is reasonable to identify representative 

hydrogeological and lithological categories that are continuous and stable across the whole 

watershed. The proportion of different lithological types in each watershed might not be sensitive 

enough to measure the impact of lithology on BFI. 

Accuracies of model results are also limited to the input of single time point land use data 

(NLCD 2016). The filtered BFI values were calculated from USGS daily streamflow data from 

1980-2017, with the assumption that the land use was constant over this timespan. Therefore, any 

changes in land use patterns over time have not been specifically addressed by the developed 

models. An improvement to consider in future studies would be to acquire at least two land use 

datasets, one from an early time and one current, to obtain a percentage of land cover change of 

each basin. Lastly, log transformed parameters usually introduce a bias when applied to back 

transformation that detracts from the accuracy associated prediction as the transform of the error 

term has been omitted. However, the potential impacts of these biases were minimal due to the 

low biases acquired from the models.   

Taking into account these limitations of our approach, the regression models are suitable in 

their ability to predict groundwater in Texas and other regions, based on the proposed categories 

that experience similar topography and climatic conditions. It is challenging to explicitly confirm 

which of these limitations are more significant than the other. However, the most critical result 

obtained from this research was to assess whether the developed relationships can provide 

satisfactory prediction for BFI.   

5.4 Summary and Conclusions 

Baseflow is defined as the total groundwater discharge to streams that feed water bodies. 

The evaluation of the baseflow is critical for the appropriate management of these bodies. Regional 

regression models were developed to predict baseflow indices in the state of Texas. The developed 

model was based on basin-wide physical, lithological and hydrogeological properties in each 
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watershed for groundwater discharge estimation across Texas. The baseflow indices were derived 

from USGS daily streamflow data from 1980 to 2017 using the two parameter recursive digital 

filtering approach of Web-based Hydrograph Analysis Tool (WHAT). Texas experiences a range 

of climate and geological conditions. This diversity is essential to the goals of this study, which 

include understanding how baseflow is affected by different factors related to climate, soil and 

bedrock. However, to produce accurate models, the watersheds in this study were categorized into 

five divisions according to Texas climatic zones, as we demonstrated that a state-wide model has 

low predictive abilities (Table 5.13). The results of models made using these categories indicated 

that there is no specific pattern for BFI variation across Texas. However, the groundwater 

contribution to surface water was found to be greatest in east Texas and around major aquifers in 

middle Texas and in correlation with the variability in precipitation from east to west.  

Multiple linear regression models were used to develop three scenarios based on different 

characteristics affecting baseflow. The first two scenarios used variables that represent areas and 

stream geomorphologies, in addition to meteorological and land use variables. The third scenario 

used topography, hydrogeological, soil, and lithology variables. This research used the typical 

stepwise linear regression approach to correlate independent variables to BFI. The first two 

scenarios are relatively similar and relate BFI to topography, climate and land use. Surficial 

geology, soil type and hydrogeology parameters are the primary variables used in building scenario 

3 by quantifying the impacts of fractional areas of each lithology on BFI. These regression models 

were then used to predict BFI for 113 watersheds across the state and tested using another 27 

randomly selected basins from within the area of each category. Results of the regression showed 

the models predicted BFI at ungauged sites with high accuracy. The highest accuracy was recorded 

in Categories 4 and 5 areas, while the lowest model performance was detected in the Category 2 

region. This is likely related to the complexity of topography and the diversity of lithological data 

acquired in the Category 2 region.  

Correlation coefficients (R2) relating BFI values to basin properties in this research were 

relatively high, and the percentages of relative errors were relatively low. In general, within each 

category, scenarios 1 and 3 had higher prediction performance, while scenario 2 was the lowest.  

Independent variables for ten regression models developed for scenarios 1 and 2 are similar, with 

differing degrees of significance levels, resulting in predicted BFIs that are similar to the filtered 

values. The major difference between scenarios 1 and 2 is the use of the factor representing 
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evapotranspiration, which when applied in the model leads to a lower BFI prediction accuracy. 

This might be caused by the fact that ET was not categorized as proportional to the percentages of 

cultivated areas within each basin, but was generalized to represent the whole basin. Independent 

parameters include precipitations, basin areas, stream power index, sediment transport index; 

cultivated, forests and developed covers were found to correlate directly to BFI predictions in both 

scenarios 1 and 2. In agreement with this prediction, it was observed that evapotranspiration was 

negatively correlated to the BFI values in Categories 3, 4 and 5. ET was found to have no impacts 

on baseflow in Categories 1 and 2, likely due to the higher humidity of these regions compared to 

the others, which decreases the amount of evapotranspiration.  

For scenario 3, factors including average water storage, hydrologic conductivity, hydrologic 

soil groups, alluvial, colluvial, and residual lithology are the main explanatory parameters for 

baseflow. Elevation and topographic index are negatively correlated to groundwater discharge in 

scenario 3, and eolian deposits have a negative relationship to baseflow prediction only in Category 

5 due to the existence of eolian cover in basins included only in this region. Hydrologic soil groups 

impact the BFI differently, in that the increase in the BFI prediction increases with the increase of 

percentage of sand in the soil. For instance, hydrologic soil group A was the highest to correlate 

with BFI prediction in Categories 2 and 5. 

This research led to the development of models that are able to predict BFI values that are 

comparable to those obtained by WHAT, by using categorized areas across the state of Texas, with 

very high performance. Moreover, these findings show that BFIs are an integral expression of the 

fractional areas of each lithology in the basins. The regression models have further been tested 

using validation datasets, and showed a high performance and that the developed models can be 

adequately used to predict BFI in ungauged regions. Therefore, the developed models can be easily 

applied in other areas that have similar topographic, geologic and climatic (arid, semi-arid or 

humid) conditions, where databases for meteorology, hydrogeology and soil types are available.  

Some limitations should be taken into account when applying these models to additional 

study areas and further studies to improve some of the proposed approaches are recommended, as 

discussed above. However, due to the accessibility and simplicity of independent variables used 

in scenario 1, it is recommended for use in other regions that have similar characteristics. Findings 

of these regression models should be beneficial to guide water management strategies and in 

establishment of water resource plans at local and regional scales. The models developed play a 
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vital role in planning for an accurate estimation of factors that impact groundwater discharge. In 

addition, the developed models can support modelers of groundwater by presenting independently 

obtained BFI estimation in ungauged sites.  



 

 

213 

 CONCLUSIONS AND FUTURE WORK 

6.1  Conclusions 

Land use conversion and climate variation have generally been considered a local 

environmental and ecological issue, but these are becoming forces of global importance. 

Population growth associated with urban expansion is one of the main factors that impacts climate, 

soil, water quality and quantity. Several studies have shown that land use and climate variation 

have affected the past and will continue to impact spatial water distribution and availability. 

Distinguishing the effects of land use change from concurrent climate variability and 

understanding the water balance are specific challenges for studies on operational management 

processes. These can be solved by understanding the interactions between the Earth’s surface, 

atmosphere, hydrological components and the dynamics of land use change at various scales that 

drive them.  

The goal of this research was to evaluate the impacts of land use change on surface 

temperature and the impact of urbanization and climate variation on hydrology in Egypt and USA, 

respectively, utilizing modeling and statistical techniques. In this dissertation, three main issues or 

gaps related to the interaction between land use change, surface properties and hydrology, have 

been identified and addressed through three main objectives to evaluate shortcomings in the 

current state of land use and climate change science, as applied to the Earth’s atmosphere, surface 

and groundwater resources. Research on these gaps was designed to make recommendations and 

further understand the dynamics of land use and climate change on different components for future 

development and develop predictive models for use in areas with limited data. 

The first issue relates the change in land use and urbanization to land surface temperature in 

the Greater Cairo Region (GCR), Egypt. Land use alternation analysis was conducted by utilizing 

multi-spectral Landsat data of the GCR for 1990, 2003 and 2016, incorporating the integration of 

both remote sensing and GIS.  In addition, these Landsat data were used to estimate land surface 

temperature (LST) in the GCR. In Egypt, the reduction of vegetation cover, increase of impervious 

cover, and the morphology of buildings in big cities combines to store heat, lower evaporative 

cooling and warm the surface air. Therefore, multi-temporal Landsat satellite data were used to 

monitor the spatial and temporal change of land use and to study the impact of rapid urbanization 
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on land surface temperature in the GCR in Egypt. The research methodology included image pre-

processing and classification, land cover indices derivation, and the evaluation of LST. The study 

showed the effectiveness of the remote sensing techniques in conjunction with GIS to enable 

delineation of urban expansion due to the establishment of new settlements and to produce an 

accurate landscape change map in the study area.  

Findings indicated that the most distinct change in land use was related to vegetation cover 

that drastically decreased by 23.3% from 1990 to 2016. In the same period, significant reduction 

in barren land by 8.70% occurred. Urban area, due to the construction of new industrial and 

commercial settlements, showed a considerable increase by 128.3%. The two land covers, barren 

lands and vegetation, were the main contributors to form new urban areas. Additionally, results 

showed that mean LST values were higher in barren lands and urban areas than in the surroundings 

over the entire period. These anomalies were associated with settlements, and industrial and 

commercial areas, that experienced dense populations. It was believed that the change in LST and 

climatic response was strongly related to the removal of vegetation cover and their replacement 

with non-evaporative surfaces. The increase in the magnitude of LST was 2.06 °C in the areas that 

transformed from vegetation cover to urban and 2.60 °C due to the transformation of barren lands 

from green areas in the period of study from 1990 to 2016. Statistical analysis showed a strong 

inverse relationship between LST and Normalized Difference Vegetation Index (NDVI), in 

contrast to a high positive relationship between LST and Normalized Difference Built-up Index 

(NDBI). Generally, the study area reveals comparatively higher LST and NDBI, and lower NDVI, 

over the period of study from 1990-2016. Results demonstrated multi-temporal Landsat images 

can accurately quantify the change pattern in LULC and LST in the GCR in Egypt.  

The second objective evaluated the response of watershed streamflow and baseflow to 

climate variability and land use change in urban watersheds in the Midwest region of the United 

States, and compared it with an urban catchment in a semi-arid region. Baseflow is the main 

component of water balance in many basins, and is regularly evaluated in many watersheds. The 

study of baseflow can provide further insight into the dynamics of watershed hydrology. Both 

climate variation and human actions serve as stressors that contribute to putting water resources 

under severe pressure. Hence, identifying the distinct impacts of changing land use from climate 

variability and understanding the water balance is considered a particular challenge for studies on 

operational management of reservoirs and river basins. 
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This identification can be utilized by the combination of statistical analyses, hydrologic 

models, and multiple scenarios that were varied in land use and climate change in three watersheds: 

1) Little Eagle Creek (LEC), Indiana; 2) Upper West Branch DuPage River Watershed (UWVDR), 

Illinois; and 3) Walzem Creek Watershed, Texas. These impacts can be identified by utilizing 

calibrated and validated Soil and Water Assessment (SWAT) models that serve to conceptualize 

the relationship between climate variation, land-use change, human activities, and their 

synchronous impacts on watershed hydrology. Additionally, the Sequential Uncertainty Fitting 

program algorithm (SUFI-2) approach within the SWAT-CUP interface was applied for 

optimization, calibration, validation and uncertainty analysis of parameters in the model. 

Outputs of Chapter 3 emphasized the impacts of climate and land use alteration on hydrology 

in the LEC watershed. It showed that the SWAT model produced ‘very good’ and ‘good’ results 

for calibration and validation using observed streamflow and baseflow data. Baseflow was a key 

component of the total discharge as it accounted for 36.5% of the total flow within the LEC 

Watershed. By comparing different land use datasets (1992 and 2011), about 30% of the LEC 

watershed area changed from cultivated to urban areas, while the climate became warmer and 

wetter. In addition, climate variability had the dominant impact on streamflow, while urban 

expansion influenced baseflow more significantly than climate change. 

For the UWBDR and Walzem Creek watersheds, findings of Chapter 4 indicated that 

baseflow accounted for almost 55.3% and 33.3% of the annual streamflow in the UWBDR and 

Walzem Creek watersheds, respectively. Owing to urban expansion, the proportional extent of 

developed areas increased from 44% to 77% and from 64% to 92% during the study period, in the 

UWBDR and Walzem Creek watersheds, respectively. Additionally, climate became warmer and 

wetter for the UWBDR watersheds, but warmer and drier at the Walzem Creek watershed. Changes 

at the UWBDR watershed were remarkably similar to those for the LEC watershed, with the 

exception of the climate variation was shown to have the greater impact on streamflow, surface 

runoff, and baseflow, while land use change exerted a relatively small influence on the flow. In 

other words, in the UWBDR watershed, when the direction of the changes caused by urbanization 

and climate variation occur in the same direction, the changes of the combined impacts will be 

intensified. On the other hand, streamflow increased due to urbanization impacts, while it reduced 

baseflow in the semi-arid Walzem Creek Watershed. However, the climate change had negative 

impacts on all water components in the area that might be attributed to the reduction of 
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precipitation in the catchment. Therefore, the impact of the combined scenario will be amplified 

when the individual impacts of land use alteration and climate variation are in the same direction 

(positive/negative).  

These findings indicate the necessity of evaluating the influences of urbanization and climate 

alteration separately when assessing the hydrologic effects in urban catchments. Generally, with 

the variation in spatiotemporal properties of precipitation, and increasing hazardous events 

associated with water, such as droughts and floods, stress on water resources will increase and will 

further encourage the development of mitigation approaches. Based on this research, these findings 

provide practical suggestions for policy makers on how to sustain water resources more efficiently 

in relation to its variability as a response to urbanization, land use, and climate change. 

The third gap is relating baseflow to watershed physical and lithological properties in Texas 

by developing numerical regression models. The developed models were used to evaluate the 

effects of bedrock geology and other catchment properties on baseflow and to estimate average 

annual baseflow in watershed tributaries. Baseflow displays spatial and temporal variability. Not 

only do land use variation and climate conditions play a role in controlling baseflow, but also other 

watershed properties do as well. Baseflow is generally derived from available streamflow data 

using hydrograph separation methods. Although most of these methods are limited to estimating 

baseflow in gauged sites, it is now possible to explore relationships between basin variables and 

groundwater recharge in ungauged watersheds, with possibilities of finding more accurate and 

meaningful models. 

In this study, 140 gauge sites and their physical and geological properties were used to 

develop multiple regression models to predict baseflow index (BFI) across Texas, a large state in 

the U.S. that experiences a diversity of climate conditions and water demands. Methodology 

included measured BFI derived from USGS daily streamflow data from 1980 to 2017, using the 

two parameter recursive digital filtering approach of Web-based Hydrograph Analysis Tool 

(WHAT). In addition, three scenarios were developed and validated across five study areas 

(Categories 1 to 5) that were chosen based on categorization of climate conditions, and one model 

was developed across the whole state. The first two scenarios are relatively similar and relate BFI 

to topography, climate and land use. Surficial geology, soil type and hydrogeology parameters are 

the primary variables used in building the third scenario by quantifying the impacts of fractional 
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areas of each lithology on BFI. In this study, we used the typical stepwise linear regression 

approach to correlate the independent variables to BFI. 

Results showed that there is no specific pattern for BFI variation across Texas. However, the 

groundwater contribution to surface water was found to be greatest in East Texas and around major 

aquifers in Middle Texas, and in correlation with the variability in precipitation from east to west. 

Results of the regression model showed the models predicted BFI with high accuracy. In 

Categories 4 and 5 areas, the highest accuracy was recorded, while the lowest model performance 

was detected in a Category 2 region. This is likely related to the complexity of the topography and 

the diversity of lithological data acquired in the Category 2 region. In general, within each category, 

scenarios 1 and 3 had higher prediction performance, while scenario 2 was the lowest. Independent 

variables for regression models developed for scenarios 1 and 2 are very similar, however, with 

differing degrees of significance levels. These resulted in predicted BFIs that are very similar to 

the filtered values. The major difference between scenarios 1 and 2 is the use of the factor 

representing evapotranspiration, which when applied in the model, leads to lower BFI prediction 

accuracy. Independent variables that included precipitation, basin area, stream power index, 

sediment transport index, cultivated, forests, and developed covers were found to correlate directly 

to BFI predictions in both scenarios 1 and 2. For scenario 3, factors included average water storage, 

hydrologic conductivity, hydrologic soil groups, alluvial, colluvial, and residual lithology were the 

main explanatory parameters for baseflow. Hydrologic soil groups impact the BFI differently, in 

which the BFI prediction increased with the increase of percentage of sand in the soil. For instance, 

hydrologic soil group A experienced a high correlation with BFI prediction in Categories 2 and 5. 

In another words, BFIs were found to be an integral expression of the fractional areas of each 

lithology in the basins. The regression models have further been tested using validation datasets 

and showed a high performance. This indicates that the developed models can be used to predict 

BFI in ungauged regions. 

The findings from this study can be applied in other areas that have similar topographic, 

geologic and climatic (arid, semi-arid or humid) conditions, where databases for meteorology, 

hydrogeology and soil types are available. In addition, the models developed play a vital role in 

planning for rigorous estimation of factors that impact groundwater discharge as they can support 

modelers of groundwater by presenting independently obtained BFI estimates at ungauged sites.  
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Generally speaking, this work made recommendations to understand the dynamics of land 

use and climate change on different components for future development and apply predictive 

models in areas with limited data. 

6.2 Recommendations and Future Work 

Even though the methodologies modified and developed in this dissertation show promise 

to evaluate the impacts of urbanization and climate variability on surface temperature and 

hydrology, respectively, this research also indicates that further analysis is needed. Specific 

recommendations are given in respective chapters of this dissertation and are summarized as 

follows: 

• More multi-date images from the same season for the GCR should be investigated and 

evaluated to provide more evidence of the thermal behavior on urban areas and for better 

understanding of the impact of urbanization on LST. 

• Generally, satellite images are likely to be affected by cloud cover and other atmospheric 

effects, in addition to surface roughness, that in turn affect the digital number values. 

Therefore, it is highly recommended for future work that the integration of remote sensing 

imageries from different sources with more land surface meteorological data be explored, 

and more attention on surface roughness be considered for more accurate results. 

• Regarding urbanization and vegetation removal in the GCR, it is recommend that 

additional effort be placed on establishing some measurement that can mitigate the strong 

effect of increasing LST. For instance, establishing green areas like parks and gardens, 

and roof top area cultivation with horticultural plants that can alleviate the effect of LST. 

• Urbanization was found to be the primary contributor to the change in hydrology in three 

watersheds in the Midwest and Texas. Thus, watershed managers should give priority to 

reverse watershed degradation. Agroforestry is advised to increase the vegetation cover, 

as are practical management and protection techniques for the watersheds. 

• Based on the challenges encountered and the outputs obtained in the second objective, 

results indicated that urbanization processes are an integrated part of the watershed, along 

with climate alteration. Thus, meteorological station records used in this study reflect data 

that are the result of the combined impacts of land use alteration and climate variability. 
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To this end, the number of meteorological stations and the parameters used to calibrate the 

SWAT model is suggested, if applicable, to be increased.  

• Additionally, studies that focus on quantifying the effect of each land use category change 

on streamflow and baseflow are recommended. These are likely to yield additional useful 

insights on how climate variability and land use impact hydrological response separately. 

•  As future research, depending on the availability of continuous data, further development 

of the water quality model of the three watersheds can be beneficial. 

• Additional studies using catchments that exhibit different urbanization and climate regions 

could provide beneficial comparative results to determine the impacts of these variables 

on hydrological components. 

• Outputs of objective three recognized the interaction between groundwater and watershed 

physical properties. For improving the developed model, it is possible to utilize denser 

gauge networks. It is also recommended, for future studies, to involve well data throughout 

the area or by utilizing an area weighted average to acquire values better representing the 

whole basin, and additionally to apply other techniques to develop the regression models, 

for instance, principle component analysis.  

• The filtered BFI values were calculated from USGS daily streamflow data from 1980-

2017, with the assumption that the land use was constant over this timespan. An 

improvement to consider for future studies would be to acquire at least two land use 

datasets. One from an early time point and one current, to obtain a percentage of land 

cover change of each basin. 

• For water resources management and planning, the developed regression models can be 

utilized in water quality models to extend the capabilities of those models for evaluation 

of the advantages of best management practice on streamflow, baseflow, and direct 

discharge at different scales.  

• The developed models can be automated in the future to be used as web tools by 

incorporating different datasets. The web-based model could be enhanced with the 

addition of GIS capabilities in order to estimate baseflow index in other regions that have 

similar characteristics and climatic conditions. 
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PROFESSIONAL SUMMARY (Years of Experience: 10 years) 
• Hydrologic modeler; trained in modeling of surface and subsurface flow processes and interactions 

for prediction of physical principles and interrelationships with land use alteration and climate change. 
• Geo-detection and information technology; trained in analysis, visualization and interpretation of 

environmental and land use changes using Remote Sensing and Geographic Information Systems. 
• Strong background in geology; in-depth knowledge of geological structures, soil and rock types. 
• Strong oral and written communication skills; ability to identify complex problems and review 

related information to develop and evaluate options and implement solutions. 
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• Ph.D: Agriculture and Biological Engineering, 2015-Present 

      Purdue University • West Lafayette, IN, USA 
• Master of Science: Earth Science and Resources, 2010-2013 

     China University of Geosciences • Beijing, China 
• Bachelor of Science: Geology with honors, 2009 

     Suez Canal University • Ismailia, Egypt 
 

CAREER OBJECTIVE 
It is my ambition to apply my analytical and modeling expertise to an academic career in which I have the 
opportunity to develop detailed environmental studies and identify recommended solutions to problems 
related to economics, environment, urbanization, natural resources and homeland security. I strongly 
desire to continue to not only apply my knowledge of hydrology, modeling, statistics and GIS approaches, 
but to also develop new analytical techniques or applications to facilitate lasting, impactful solutions to 
environmental/economic problems in agriculture and potentially other sectors.  
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• 5In preparation: Aboelnour, M., et. al. Working title: Impacts of Watershed Physical Properties and 

Land-Use on Baseflow at Regional Scales.  
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4Aboelnour, M., Gitau, M. W., & Engel, B. A. (2020). “A Comparison of Streamflow and Baseflow 

Responses to Land-Use Change and the Variation in Climate Parameters using SWAT. Water. 
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• PRF Research Fellowship: One-year Assistantship, 2019 • Purdue Research Foundation 
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• The Frederick N. Andrews Environmental Grant: Awardee, 2018 • Purdue University 

• Purdue Graduate Student Government Travel Award: Awardee, 2018 • Purdue University 
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SELECTED CONFERENCE PRESENTATIONS 
 

 
 

TEACHING ASSISTANTSHIPS 
Spring 2019   Introduction to survey (200-level class, Purdue University) 
Spring 2015   Geographic Information System (GIS) (300-level class, Suez Canal University) 
    Hydrogeology (200-level class, Suez Canal University) 
Fall 2015   Structural Geology (300-level class, Suez Canal University) 
Spring 2014   Physical Geology- for non-majors (100-level class, Suez Canal University) 
Fall 2014   Engineering Geology- for non-majors (200-level class, Suez Canal University) 
Fall 2012   Remote Sensing and Image Processing (Grad level, China Univ. of Geosciences) 
Spring 2010   Optical mineralogy (200-level class, Suez Canal University) 
Spring 2009   Crystallography (200-level class, Suez Canal University) 
    Geology of Egypt (400-level class, Suez Canal University) 
    Optical mineralogy (200-level class, Suez Canal University) 
Fall 2009   Introduction to General Geology (100-level class, Suez Canal University) 
 

LEADERSHIP AND SERVICE  
2020-Present   Agriculture Water Management, Reviewer  
2020-Present   Environmental Science and Pollution Research, Reviewer  
2018-Present   American Geophysical Union, Member 
2017-Present   Agricultural and Biological Engineering Graduate Committee, Representative 
2017-Present   Egyptian Student Assoc in North America, Treasurer (Funded $40,000) 
2017-Present   American Society of Agricultural and Biological Engineers  
2017-2018   Egyptian Student Association at Purdue University, Vice President 
2016-2018   Graduate Student Organization, Treasurer (Funded $15,000) 
2016-2018   Annual Graduate Ag. and Bio. Eng. Research Symposium, Coordinator 
2013-Present   The Egyptian Society for Environmental Sciences, Member 
2010-2013   American Association of Petroleum Geologists, Representative 
 
 

MENTORING EXPERIENCE:  
I have mentored three Master’s students in the development of hydrogeological models and guided thesis 
presentations, emphasizing excellence in communication, data management and interpretation. 

• “Urban Watershed Responses to Climate Variability and 
Land Use Dynamics.”  

• “Responses of Streamflow and Baseflow Hydrology to 
Climate Variability and Land Use Dynamics in an Urban 
Watershed.”  

• “Impacts of Climate Variability and Land Use Change on 
Streamflow and Baseflow in an Urban Watershed.”  

• “Analysis of the Impact of Land Use/Land Cover Change 
on Land Surface Temperature Using Remote Sensing: A 
Case Study in Greater Cairo Region, Egypt.”  

• Outstanding Poster Award: “Statistical Correlation between 
NDVI and Land Surface Temperature Using Geo-Spatial 
Techniques in Greater Cairo Region, Egypt.”  
 

• “Geologic Mapping Using MASTER Multispectral Data 
Analysis: A Case Study in Cuprite Area, Nevada, USA.” 

• “Monitoring Geothermal Areas Using Satellite-based 

Thermal Infrared: A Case Study in the Gulf of Suez, Egypt.”  
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American Geophysical Union.  

Washington D. C. 2018. 
 

Indiana Water Resources Association.  

Bloomington, IN. 2018. 

American Assoc. of ABE.  

Spokane, WA. 2017. 

 

Indiana Water Resources Association.  

Marshal, IN. 2017. 

 

ABE Meeting.  

West Lafayette, IN. 2017. 

Ecological Sci & Engineering Conf.  

West Lafayette, IN. 2016.

 


