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ABSTRACT

Duntz, Mark E. MSAAE, Purdue University, May 2020. Counter Autonomy Defense
for Aerial Autonomous Systems. Major Professor: Shaoshuai Mou.

Here, we explore methods of counter autonomy defense for aerial autonomous

multi-agent systems. First, the case is made for vast capabilities made possible by

these systems. Recognizing that widespread use is likely on the horizon, we assert

that it will be necessary for system designers to give appropriate attention to the

security and vulnerabilities of such systems. We propose a method of learning-based

resilient control for the multi-agent formation tracking problem, which uses reinforce-

ment learning and neural networks to attenuate adversarial inputs and ensure proper

operation. We also devise a learning-based method of cyber-physical attack detection

for UAVs, which requires no formal system dynamics model yet learns to recognize

abnormal behavior. We also utilize similar techniques for time signal analysis to

achieve epileptic seizure prediction. Finally, a blockchain-based method for network

security in the presence of Byzantine agents is explored.
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1. INTRODUCTION

The unmanned aerial vehicle (UAV) has a long history tracing back to the first World

War, before the advent of modern robotics and high performance computing. From

the beginning, the chief motivation behind the technology was to reduce human risk

while still accomplishing missions requiring the use of aircraft. Since then, incredible

technological improvements in the areas of robotics, processing power, communica-

tions, and manufacturing have given life to a new era in aviation. In war, UAVs

provide greater endurance and persistence while also reducing human risk. This gives

combatant commanders unique capabilities that add flexibility and versatility to their

arsenal. The United States military took early notice of this and was a key early devel-

oper of the technology, investing in platforms like the RQ-11 Raven, MQ-1 Predator,

and the RQ-4 Global Hawk. Each of these platforms is drastically different in terms

of size, cost, and role, yet equally important to the warfighter.

To a certain extent, a platform’s combat role determines the degree of human oper-

ation required. For example, strike missions are carried out by human pilots operating

the UAV via relayed control. Still, they all are capable of some level of autonomy,

or exhibiting behavior and performing tasks without the need for dedicated operator

attention. This reduces the operator workload and often decreases operating costs

and increases effectiveness. It is expected that autonomy will only continue to ma-

ture, with the ultimate goal of autonomous execution with minimal high-level human

guidance and direction. The US Air Force has plans for a loyal wingman platform,

which replace conventional manned aircraft in favor of similarly-capable unmanned

autonomous ones. The result would be a single pilot leading a formation of aircraft

that could achieve effects which normally require a group of manned ones. Successful

development and employment of such technology will mark a paradigm shift for Air

Force aviators, as their role will expand to include multi-agent system management
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on top of the demanding responsibilities of operating a single ship. The Department

of Defense also has aspirations of fielding fully-autonomous groups of low-cost air ve-

hicles for certain missions. In 2016, US Navy F-18s successfully deployed a swarm of

autonomous Perdix drones during a flight test at Naval Air Weapons Station China

Lake. The test demonstrated key capabilities such as non-traditional deployment

methods, waypoint following, and congregation in a large micro-UAV swarm. The

potential applications for systems like this extends to intelligence, surveillance, and

reconnaissance (ISR) gathering, strike, combat search-and-rescue, hazardous material

detection, and projectile defense.

The Department of Defense is not the only entity interested in UAV development.

Commercial organizations like Uber, Walmart, and UPS have taken stakes in the

field motivated by the promises of quicker direct point-to-point transportation and

delivery. In fact, the FAA projects a 300% increase in commercial UAV use by

2023 after having observed accelerated growth in previous years [1]. Aspirations of

industry include utilizing UAVs for efficient people and cargo flow as well as remote

sensing. Ultimately, a high-degree of autonomy is desired to reduce costs and improve

operations efficiency.

One of the most attractive uses for UAVs in both the defense and commercial

sectors is in the form of a multi-agent system. These have become wildly popular in

recent years due to their ability to produce complex effects greater than the capabil-

ities of their individual agents. The utility of their emergent behavior hinges upon

the system’s robustness and scalability, since interaction in distributed multi-agent

systems occurs only locally without a central authority. Appropriately, interest in

multi-agent systems as well as the supporting research stems from the broad applica-

tion potential of the field including cooperative control over large, complex networks

of agents.

Systems of autonomous air vehicles crowding the sky above us seems inevitable, so

it is important to consider the areas of potential risk before that time comes. Due to

their unique roles and missions, failures of these systems are particularly dangerous.
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Consider the potential crises stemming from failures of UAVs used for urban air mo-

bility. Similarly, vehicles in a combat zone could be armed with formidable weapons,

and the effects of failure could be devastating. As with any innovative technology,

adversaries will seek to exploit its vulnerabilities with nefarious intent. Especially in a

military context, it is critical that system designers develop the techniques necessary

to prevent this. For this reason, this work is concerned with improving these tech-

niques. In particular, it addresses methods of resilient control and attack detection in

the face of adversaries. Along the way, a hybrid method for time-signal analysis was

developed and its applications were explored in another field based on a collaboration

request from a partnering institution. For this reason, epileptic seizure analysis is

performed using a method which could be just as effectively applied in the analysis

of signals for autonomous system threat detection and defense. Additional work is

also included on evaluating the potential of using blockchain technology to mitigate

the effects of malicious/faulty information flow between agents.

1.1 Related Works

1.1.1 Multi-agent Systems

Multi-agent systems have become wildly popular in recent years. Originating out

of inspiration from nature and biology, these systems concern decentralized networks

of agents that swarm to produce effects greater than the sum of their parts [2–4].

Attractive features of such systems that stem from their distributed nature include

robustness and scalability. Swarms are considered decentralized because global ef-

fects and behaviors are achieved by agents usually only interacting locally with their

neighbors. No central authority plans the network’s behavior and, thus, no single

point of failure exists. Research in robotic swarms has been increasing drastically

in recent years. As the cost of small robotic hardware decreases and computational

power density increases, swarms become a more viable and smarter choice for many

industrial applications, particularly in aerospace applications. Purpose-built, sophis-
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ticated aerospace vehicles are extremely costly. Highly adaptable systems that can be

mass-produced and work together to accomplish the same tasks could be cheaper and

more efficient. [5] acknowledges that recent developments in both hardware and swarm

research suggest commercial adoption of drone swarms is near. Potential applications

include package delivery, factory automation, air traffic management, on-demand

sensing services, transportation, and search and rescue [6–13]. Still, challenges exist

for organizations attempting to field and utilize robot swarms at the moment. For

instance, secure communication is a necessity for almost all UAV swarm applications,

from the military to package delivery [14]. Apart from appropriately handling user

and asset telemetry and data information, network agents need to be able to discern

which information and other agents they can trust. Similarly, agent failures must

be isolated and detected to avoid disruption of the entire network’s desired effects.

Further, techniques must be developed which would allow agents to complete their

missions in hostile environments. That is, agents should possess the ability to detect

attacks and vulnerabilities but also accomplish their goals even in their presence. This

is especially of interest to the Department of Defense, whose assets will undoubtedly

face this type of operating environment.

1.1.2 Formation Tracking with Adversarial Inputs

Formations, or organized structures and assemblies of agents within a MAS, is a

widely studied topic since it is assumed to be a supporting capability of nearly all

MAS applications. Indeed, formation control finds use in surveillance, search and

rescue, and unknown environment exploration [15–17]. Formations described by un-

derlying rigid graphs are shown to be stabilized by maintaining desired distances

between agents [18]. It is sufficient to maintain distances relative to a few agents

rather than all others. This is somewhat intuitive, since this is largely the technique

behind close formation flying taught to fighter pilots. The workload of maintaining

positions with respect to many other aircraft would be excessive, yet the formation can
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be maintained by restricting a pilot’s attention to one or two lead aircraft. Because of

this finding, as well as the observation that undirected formations are problematic in

terms of stabilization [19], directed formations have received growing research atten-

tion. Separately, directed formations enjoy certain practical advantages like reduced

sensing, communication, and processing capabilities [20]. We consider the formation

tracking problem, which entails agents assembling into a desired formation which

moves together at a common velocity. The goal is to design a distributed control law

relying only on local measurements that drives all agents to the specified formation

shape and the same constant velocity. [21] accomplishes this goal using the concept of

target points and integral control. The target points are defined based on the relative

position of an agent to its leaders, or the other agents it is charged with maintaining

distances from. Integral control drives all agents to their target points, which in turn

converge to the same velocity. As these points are achieved, so is the goal.

Hostile environments increase the risk of unwanted intrusions in the operation of

such activities. Taking this into consideration, a many attacks can be reduced to an

adversarial control input acting on the dynamics of the system. Likely, these will

occur at the agent level. For instance, one UAV in a formation could be subject to

a cyber-physical attack producing improper motor control. To achieve the formation

tracking goal, it is critical that the agent can compensate with proper inputs in order

to prevent other agents from reaching their target points. The control formulated

in [21] fails to achieve the goal in the presence of such inputs. Therefore, methods

of attenuating adversarial inputs are desired to be incorporated. However, the ac-

tual effect an adversary can have on the system varies widely. Adaptive machine

learning methods are promising since they have the possibility of accommodating for

varying and changing attacks. Motivated by the desire to compensate for such un-

known adversary behavior, the problem is formulated as a two-player zero-sum game,

similar to the problem considered in H∞ control [22]. Here, the operator and the

adversary have opposite objectives. A zero-sum game implies that the modeled ad-

versary will exhibit the worst-case behavior, which is useful in developing generalized
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techniques. However, H∞ control methods are highly technical and usually require

solutions to very complex nonlinear partial differential equations. Policy iteration

is a useful method for approximating solutions to these games, but this process is

most easily done offline. In the case of multi-agent formation control, online solutions

are required to allow adaptation to changing environments and threats. The authors

in [23] formulate an online solution that is limited by an excitation requirement. Fi-

nally, the research in [24] presents an online adaptive solutions which uses memory

replay to avoid the excitation requirement based on the research in [25]. This forms

the basis of the method we use for adversary attenuation in the formation tracking

problem.

1.1.3 Attack Detection

A critical ability for secure autonomous systems is to recognize when they are

subject to some sort of attack, whether physical, cyber-physical, or strictly cyber

in nature. In their systemization of knowledge on UAV security and threats, Nassi

et al. identifies detection of attacks as a highly-relevant and under-served problem

[26]. The ability to reliably detect incoming/on-going attacks to their vehicles would

provide operators with the situational awareness to take corrective measures. In many

cases, simply being aware of the threats would allow operators to mitigate effects

by initiating safe modes or aborting sensitive aspects of the mission. Especially in

military applications, it is critical that operators obtain this capability, since a security

breach could give adversaries access to sensitive information or even control over the

aircraft. Most attack detection schemes can be grouped into three main categories:

signature-based, unsupervised learning, and supervised learning.

Signature-based attack detection methods are often the most effective for the cer-

tain attacks they were designed for. Their inherent flaw is their limited generality

and scope. For example, [27] and [28] propose nice methods of detecting GPS spoof-

ing attacks, which are arguably the most prominent ones. However, these solutions



7

provide no zero-day protection and were formulated after these attack rose in preva-

lence. Additionally, they only detect the GPS spoofing attacks in accordance with

their model, giving no room for how the attack methods may shift as adversaries

become ever more creative. Similarly, the software overhead for implementing these

detection schemes is seemingly without upper limit, since each purpose-built program

would need to be included for comprehensive detection systems. The lack of gener-

ality requires operators and developers to have knowledge of many different fields

rather than simply aircraft operation and production. In [29], the authors consider

the same set of cyber-physical attacks presented here and use a control invariant ap-

proach for detection. Their software learns the vehicle’s operational signature and

recognizes abnormalities corresponding to attacks. It is a very promising solution,

but the field would still benefit from a more generalized model which requires less

technical information about the vehicle. Other prominent attacks exploit data vul-

nerabilities in transmission and storage such as deletion and deauthentication [30].

Traditional cybersecurity measures like WPA are suitable to detect and protect these

attack surfaces [26]. Still, it is unclear what other attack methods adversaries will

adopt, and these traditional protection measures lack the ability to identify abnormal

activity other than that which corresponds to their design signature.

In order to automate the attack detection process and increase the zero-day at-

tack protection, security researchers have turned to machine learning methods. These

schemes usually learn normalities during training and issue a warning based on devi-

ation from these. Unsupervised learning models require no labeled ground truth data

for training but are usually prone to considerably high false positive rates [26,29,31].

On the other hand, supervised learning models require labeled training data, which

can be hard to acquire for some applications. Still, especially when simulation results

can be used, producing labeled training data can be well-worth the effort. Supervised

methods usually outperform unsupervised ones and have shown promise in related

fields like intrusion detection in smart infrastructure [31] and detection of drone pres-

ence by network traffic analysis and acoustics [32, 33]. Machine learning models are
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particularly convenient because they do not require a priori construction of a formal

system model. They automatically recognize trends and connections in the data they

provided. For attack detection in UAVs, a behavior-based model is highly desired

since it would utilize data already available to the flight computer such as telemetry

and state measurements. This means no extra hardware or data collection is required,

which is ideal to keep the detection scheme’s footprint on the overall system as small

as possible.

Although gaining the situational awareness of successfully detecting attacks is

prized on its own, detection begs the question of further mitigation. Once detected,

mitigation schemes have been proposed such as back-tracking commands or auto-

matically initiated safe modes [26,29]. It is proposed that a mechanism which stores

commands might be able to reverse-execute them to lead the compromised vehicle

back home. In the worst case, multiple companies [34,35] count on the reliability of a

deployable safety parachute which could be used if all else fails, although this would

require physical recovery of the landed system.

1.1.4 Seizure Prediction

The Epilepsy Foundation of America states that 1 in 26 Americans will develop

epilepsy in their lifetime [36]. A neurological disorder characterized by chronic, re-

current, and unprovoked seizures, the condition can have a debilitating effect on the

afflicted person’s life. During a seizure, the patient is at a greatly increased risk of

injury and even death [37]. Injuries are often a result of the sudden seizure onset, as

patients and caretakers have no indication that one is imminent and are unable to

assume safer positions. In some cases, death is even attributed to lack of warning, as

the onset of seizure caused a patient to enter a dangerous but preventable situation

like drowning or falling [38]. These cases fall under the umbrella of Sudden Unex-

pected Death in Epilepsy, or SUDEP. SUDEP is a significant risk for those living

with epilepsy, and associated seizures may even cause suffocation from severe apnea
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or heart failure. The cumulative effect of the prevalence of the condition and its

associated risk factors is a severely detrimented quality of life for the patient. While

some medications and seizure-suppression therapies do exist, a patient’s quality of

life would be greatly improved with simple warning of an oncoming seizure. Much of

the associated risk can be minimized by assuming a safe position/environment and

alerting an observer.

Motivated by the potential to improve the lives of so many people, research in-

terest from scientists and medical professionals has increased in the past decade [39].

Because seizures are a disruption of the electrical communication between neurons

in the brain [36], the research is focused on analysis of electroencephalogram (EEG)

signals. Some patients report an indescribable ”sense” before seizure onset, which

indicates preictal (just prior to seizure onset) brain activity may be detectable [40].

Many different features have been proposed which attempt to distinguish between

preictal and interictal (normal) brain activity with varying degrees of success. Such

features include the largest Lyapunov exponent, correlation density, dynamical simi-

larity index, etc. [39]. Recently, however, advances in artificial intelligence and deep

learning have enabled novel, automated feature extraction and classification methods.

The studies in [41] and [42] present state-of-the-art performance using deep learning

convolutional neural networks (CNNs) for feature extraction and classification. The

same studies also suggest that the distinguishing features between preictal and inter-

ictal activity can be different between patients and even in the same patients over

time. Therefore, generalized methods which account for this are highly desired for

prolonged effectiveness. Here, CNN machine learning models have a distinct advan-

tage, since the distinguishing features are taken directly from the training data itself,

independent of time and patient.

Our involvement in this problem is the result of a collaboration request from

neuroscience researchers at Yale University. This research group’s experience with

applications of machine learning led them to seek assistance with seizure prediction

analysis of EEG signals taken in mice for testing of an epilepsy therapy in develop-
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ment. The initial provided mice data is much less rich than available human data

because of the smaller brain size and number of available electrodes. As such, we

demonstrate the analysis in a dataset gathered from human patients to better com-

pare it to existing methods. We sought this as an opportunity to apply a hybrid

method of time signal analysis developed in another part of this work to a different

field to increase its scope and demonstrate it’s effectiveness with other data. This

could be extending to data which is further applicable in MAS and aerospace systems

in general.

1.1.5 Blockchain

Blockchain has been suggested as a potential solution for the need of a secure

communication and coordination pathway for UAV networks. Blockchain technology

originated in 2008 when Satoshi Nakamoto applied it to his cryptocurrency in the

white paper Bitcoin: A Peer-to-Peer Electronic Cash System [43]. Bitcoin is a de-

centralized, peer-to-peer digital currency that retains value with no support from a

central authority. The blockchain is at the heart of the cryptocurrency’s ability to

exchange economic value in a distributed manner. The blockchain is a public, chrono-

logical ledger of transactions recorded by agents on the network. The ledger is kept

and updated by every agent in the network. Transactions are grouped into datasets

that make up blocks. Certain information is included in each block, such as specific

transactions, a reference to the previous block to keep chronological order, and the

answer to a computationally difficult problem known as “proof of work”. Inclusion

of “proof of work” data validates each individual block and makes the creation of

overall blocks computationally difficult in order to prevent malicious agents from il-

legitimately manipulating the blockchain [43]. Proof of work is sometimes referred to

as the block’s digital fingerprint. It is based on cryptographic techniques that create

unpredictable outputs for different inputs [5]. Therefore, if a block is manipulated,

the digital fingerprint will be completely different, allowing detection. After verify-
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ing all transactions on a block do not conflict with transactions from other blocks,

the participating agent, known as a miner, then adds the block to the end of the

blockchain. Once this happens, the information in the block cannot be destroyed or

changed, and it is made public to the entire network. The blockchain is stored and

updated periodically by every agent in the network in a local, peer-to-peer fashion.

Overall, the blockchain is a mechanism for a distributed network to keep an accurate

and secure record without the need for a central authority.

While a blockchain does not require a central authority, it is considered global

information since all agents operate on it. It might seem counterintuitive to integrate

global information into UAV swarms since their value lies in the decentralization

associated with local interactions. However, it has been shown that in some in-

stances [44,45] global information in UAV swarms can be beneficial. This suggests a

combination of the two types of information might be optimal for certain applications

without sacrificing robustness and scalability [46]. Additionally, recent advances in

processing and communications hardware allow large scale communication and global

knowledge dissemination in UAV networks that might not have been technologically

capable otherwise, as [5] points out. Research has identified the need for agents to

detect and trust each other [47]. Likewise, it has been demonstrated that malicious or

even faulty agents are able to disrupt the entire swarm from achieving its goals [48].

Digital security, separate from only robot swarms, hinges on “core services such as

data confidentiality, data integrity, entity authentication, and data origin authenti-

cation” [5]. [49] shows that a lack of practical solutions to security problems exists

for UAV swarms compared to many other fields. It is possible this is due to the

academic community being preoccupied with the more fundamental swarm problems

like dynamics, control, autonomy, and interaction. The community suggests that ad-

dition of a blockchain into swarms is inherently more secure since a common ledger

is kept by all agents of the network, rather than in one or a number of vulnerable

points of failure [5, 9, 14, 47, 47, 49–54]. Additionally, it provides a framework where

general cryptographic methods, rather than solutions specific to UAV networks, could
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be used for information security in drone swarms. [5] asserts that blockchain could

provide a communications channel that is both peer-to-peer and secure, and [51]

agrees by listing a host of cybersecurity threats to UAV systems that a blockchain

would be resilient against. [5] offers public key and digital signature cryptography

on blockchain as a possible solution for both transmitting secure information to the

correct receiver only and authenticating the original agent’s identity for information

that is public. In both cases, data is exchanged securely over a common blockchain

regardless of the presence of malicious or faulty agents. [14] shows that blockchain

technology enables UAV networks to detect and avoid corroborating faulty informa-

tion from hijacked agents. The security issue is made even more complicated when

inter-service cooperation is required between agents of networks operated by multiple

vendors. [50] showed that a blockchain-based solutions exist for this problem, which

will be especially prevalent in areas of very dense swarm operations. More research

is needed in the form of simulations and experiments that can validate this method

as a means of achieving more secure and robust MAS.

1.1.6 Conclusion

Overall, there are many open questions in the field of counter autonomy for aerial

multi-agent systems. Control and operations of autonomous MAS benefits from a very

healthy stream of research interest. Because of this, the field has greatly matured,

and it now seems as though ensuring these control techniques can be implemented

safely and reliably will emerge as a major obstacle. This work attempts to build on

the progress of the others listed and develop techniques of ensuring aerial systems

can securely fulfill the promises their technologies offer. As noted, we seem to be

on the verge of a great boom in the adoption of autonomous systems in both the

military and commercial realms, and one of the main challenges plaguing the field is

defense against such broad and unpredictable threats. Therefore, it seems fitting to

investigate techniques of resilience in these systems. Advances in computation and
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artificial intelligence uniquely position themselves as ideal options for consideration in

these problems. Hopefully, the methods developed here can also be used to improve

the quality of life for epileptic patients as well.

1.2 Contributions

The main contributions of this work are

� A method of achieving distributed formation trajectory tracking control while

attenuating adversarial control inputs using machine learning

� A method and proof of concept of behavior-based cyber-physical attack detec-

tion in autonomous aircraft using supervised and on-board learning

� A hybrid method of time signal analysis using both convolutional neural net-

works and support vector machines which is demonstrated in epileptic seizure

prediction

� Investigation of a blockchain method of managing Byzantine agents in a dis-

tributed network
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2. FORMATION TRACKING IN THE PRESENCE OF

ADVERSARIAL INPUTS

2.1 Introduction

Formation control for teams of autonomous agents has found extensive applica-

tions in exploration, surveillance, and industrial operations. One essential ability of

formations is tracking control, so that the formation may properly follow the leader

and specified goal. In the spirit of redundancy, accomplishing this in a distributed

manner is desirable to ensure mission completion and reduce the reliance on global in-

formation spread. Here, distributed control of the formation involves the formulation

of agent control laws which rely only on local measurements. The desired formation

can be described by a directed graph which specifies the distance constraints between

agents. By maintaining the prescribed distances, the formation can be stabilized. In

a directed formation, we say that agent j is a leader of agent i if agent i must main-

tain a prescribed distance from agent j. Likewise, agent i is considered a follower of

agent j.

In real-time applications, it is likely that formations of agents may be operating in

hostile environments and exposed to a variety of adversaries such as cyber-physical at-

tacks, network attacks, or even adverse weather conditions. Here, the goal is formulate

distributed control laws for each agent such that the formation shape is maintained

while all agents converge to move at the same velocity, even when agents are subject

to erroneous adversarial inputs. Formations described by underlying rigid graphs are

shown to be stabilized by maintaining desired distances between agents [18]. We fol-

low the method of [21] and consider acyclic, minimally rigid formations and utilize

the idea of tracking target points for each of the agents. We consider adversarial

inputs for each of the agents in the form of a zero-sum game such that the worst-
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case adversary is accommodated, as in [24]. Thus, the overarching problem involves

formation flight, velocity consensus, and adversary attenuation.

2.2 Problem Formulation

We consider the class of acyclic, minimally rigid formations in the plane R2 with

n ≥ 2 agents. In [55], it is shown that any n-agent formation can be constructed from

Henneberg vertex addition starting from a two agent formation such that for agents i

where {i | 3 ≤ i ≤ n}, two other agents j, k ∈ {1, 2, ..., i−1} are selected as its leaders.

Agent 1 is usually referred to as the global leader of the formation, and agent 2 is

often called the first follower, since it only maintains a single distance. Simply, the

first follower maintains a prescribed distance from the global leader, while all other

followers are added to the formation via vertex addition and maintain prescribed

distances from two preceding agents. This class of formations is referred to as vertex-

addition formations. Examples of these formations are shown in Figure 2.1, where

2.1(e) is not a vertex-addition formation since agents 3 and 4 each only have one

leader (and the graph is cyclic). For agents with two leaders, the orientation of the

follower to its two leaders can be described as either clockwise or counter-clockwise.

Starting from the follower, the successive direction of its two leaders determine its

orientation. Figure 2.1(a) and 2.1(b) give examples of this.

Figure 2.1. Vertex-addition formations. (a) is oriented clockwisely,
(b) is oriented counter-clockwisely, and (e) is not a vertex-addition
formation.



16

Each agent’s motion is described by the simple point kinematic model

ẋi = ui, ∀ i = 1, 2, ...n (2.1)

where xi ∈ R2 is the position of agent i in the plane and ui is agent i’s control input.

The distributed formation tracking problem assumes the global leader’s velocity

converges exponentially fast to a constant, v0. Each agent i has a local measurement of

its relative position to its leader j, xi−xj. As such, ui must be chosen for i = 2, 3, ..., n

in terms of its measurements so the formation converges to the desired shape and all

agents reach the velocity consensus v0. Following the target point method in [21], the

formation can be maintained by defining target points for each agent to track based

on the relative position of its leaders. In a vertex-addition formation, agent 2 has a

single leader to follow while agents i > 2 have two leaders to follow. As such, there

are separate target point formulations for each case.

2.3 Existing Formation Control

2.3.1 One-leader Target Point

Considering a directed two-agent formation, let x, y ∈ R2 denote the positions of

the follower and the leader, respectively. If ẏ = v where v → v0 exponentially fast

and follower x knows its relative position measurement, x − y, the leaders velocity

direction, r =
v

||v||
(r =

 1

0

 if v = 0), and the prescribed distance away from the

leader, d. Then, a target point, τ(y) can be defined as

τ(y) = y − dr (2.2)

Using this definition, ||τ(y) − y|| = d and τ(y) moves at the same velocity as the

leader. The target point represents the desired position of the follower and, as such,

the tracking goal for the first follower.
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2.3.2 Two-leader Target Point

Considering a directed three-agent formation, let x, y1, y2 ∈ R2 denote the posi-

tions of the follower, the first leader, and the second leader, respectively. The leaders’

dynamics are given as

ẏ1 = v1, ẏ2 = v2 (2.3)

and d1 and d2 are the prescribed following distances from the leaders. We can as-

sume that by the chosen leader selection d1 ≥ d2 and v1, v2 → v0 exponentially fast.

Under these conditions, there are four possible cases which depend on the following

distances and the leader positions. Figure 2.2 illustrates these with the black square

representing the target point.

Figure 2.2. Representation of the four cases for two-leader target
points from [21]. (a) d1− d2 < ||y1− y2|| < d1 + d2 and the formation
is oriented counter-clockwisely, (b) d1− d2 < ||y1− y2|| < d1 + d2 and
the formation is oriented clockwisely, (c) ||y1− y2|| ≥ d1 + d2, and (d)
0 < ||y1 − y2|| ≤ d1 − d2.
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In Figure 2.2(a) and (b), the distances are large enough such that the triangle

inequality holds and the target point is then wholly defined by the formation orien-

tation. In Figure 2.2(c) and (d), the prescribed distances do not allow simultaneous

fulfillment. Therefore, we define the desired goal as maintaining the proper distance

to the first follower while also being as close as possible to the second leader. From

these four cases, we can define

s =


1 +

[||y1 − y2|| − (d1 + d2)] [||y1 − y2|| − (d1 − d2)]

2d1||y1 − y2||
, d1 − d2 < ||y1 − y2|| < d1 + d2

1, otherwise

(2.4)

where s represents cos(θ) for d1 − d2 < ||y1 − y2|| < d1 + d2. Then a rotation matrix

through the angle θ can be defined as

Rτ (s) =

 s γf
√

1− s2

−γf
√

1− s2 s

 (2.5)

where

γf =

1, if the formation is clockwisely oriented

−1, otherwise

(2.6)

so that Rτ (s) rotates a vector in accordance with the formation orientation. Then, a

target point, τ(y1, y2) can be defined as

τ(y1, y2) =


y1 +

d1

||y1 − y2||
Rτ (s)(y2 − y1), y1 6= y2

y1, otherwise

(2.7)

Using this definition, when d1 − d2 < ||y1 − y2|| < d1 + d2, ||τ(y1, y2)− y1|| = d1 and

||τ(y1, y2)−y2|| = d2. In the other two cases, ||τ(y1, y2)−y1|| = d1 while ||τ(y1, y2)−y2||

is minimized. Therefore, when an agent occupies its target point, it is in the proper

position described by the formation. The target point represents the desired position

of the follower and, as such, the tracking goal for each agent.
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2.3.3 Distributed Formation Tracking Control Policies

In [21], the integral control based on target points is presented which accomplishes

the distributed formation tracking problem without adversarial inputs. Their main

result yields the desired control policy

udi = − (xi − τi) + wi

ẇi = − (xi − τi)
(2.8)

where xi ∈ R2 denotes agent i’s position in the plane and τi represents its calculated

target point. Note that since the target points only require locally available infor-

mation, the listed control accomplishes the formation tracking goal in a distributed

manner. We refer to [21] for proof of convergence for both target point cases and will

use this policy as the desired control for each agent udi . By desired control, we mean

a control policy which will achieve the formation tracking goal nominally, or without

consideration of adversaries.

2.4 Adversarial Inputs

The target points defined in sections 2.3.1 and 2.3.2 define the goal for distributed

formation tracking. However, we are further concerned with the problem of dis-

tributed formation tracking in the presence of adversarial inputs. As such, ui from

the kinematic model given in equation 2.1 is given as

ui = uci + ki(xi)uai , ∀ i = 1, 2, ...n (2.9)

where uci is the control input including adversary compensation that we seek to

formulate and the additional term describes the general nonlinear adversary. If there

is a desired trajectory expressed by xdi with dynamics given by ẋdi = udi which will

accomplish the distributed formation tracking goal ignoring adversarial inputs, we

can define a tracking error due to the adversary as

ei = xi − xdi (2.10)
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with dynamics

ėi = ui − udi (2.11)

Letting uci = udi + uoi , the system’s implemented control law, be split into the part

required to achieve the desired trajectory and a part compensating for the adversarial

input, equation 2.11 is rewritten as

ėi = uoi + ki(ei)uai (2.12)

Note that since udi is chosen as shown in section 2.3.3, xdi is simply the trajectory

the agent would follow under the control policy from [21] without adversarial in-

puts. Therefore, we seek to formulate a control policy which will compensate for the

adversarial inputs and drive the agent’s trajectory as close as possible to xdi .

Now, following the methods in [24], we define a cost function for each agent over

the tracking objective as

Ji (ei(0), uoi , uai) =

∫ ∞
0

Qi(ei) +Ri(uoi)− γ2
i ‖uai‖

2 dτ (2.13)

where Qi(ei) is positive semidefinite and represents the cost due to the position error,

Ri(ei) is positive definite and represents the cost due to the compensating control

input, and γi ≥ γ∗i ≥ 0. γ∗i is the H∞ gain given in equation 2.14. This is a measure

of adversary attenuation in the system. To attenuate the adversary to the maximum

extent possible, it is desired that γi is as small as possible. Therefore, γ∗i is the

smallest gain that still yields a stable closed-loop system.∫ T

0
||Qi(e) +R(uoi)||

2 dt∫ T

0
||uai ||

2 dt
≤ γ2 (2.14)

The generally nonlinear definitions of the functionsQi(ei) and Ri(ei) provide for useful

applications within this framework. For example, Ri(ei) might be used to account

for input saturation constraints using a proper function which maps ei ∈ R2 onto the

interval
[
−uoimax

, uoimax

]
.

Thus, our goal is to design a control strategy, uci , to track the desired trajectory

xdi as closely as possible and attenuate the effects induced by the adversary uai while

simultaneously optimizing the tracking cost function given in equation 2.13.
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2.5 Adversary Compensation

This is the formulation of a zero-sum game where the adversary seeks to maximize

the cost-to-go and the operator’s compensating input seeks to minimize it. So, we

must find the following optimal cost function for each agent

C∗i (ei(t)) = min
uoi

max
uai

∫ ∞
t

Qi(ei) +Ri(uoi)− γ2
i ‖uai‖

2 dτ, t ≥ 0 (2.15)

subject to the dynamical constraint given in equation 2.12.

The operator and the adversary have opposite objectives, so it is intuitive to search

for a saddle point equilibrium in the zero-sum game. From game theory, this two-

player optimal control problem has a unique solution if a saddle point (representing

the pair of optimal control policies u∗oi and u∗ai) exists. This saddle point is defined

by the Nash condition

min
uoi

max
uai

Ji (ei(0), uoi , uai) = max
uai

min
uoi

Ji (ei(0), uoi , uai) . (2.16)

This situation represents the worst-case adversary, since from this equilibrium con-

dition, a unilateral change by either player results in decreased performance for the

players. That is,

Ji
(
ei(0), u∗oi , uai

)
≤ Ji

(
ei(0), u∗oi , u

∗
ai

)
≤ Ji

(
ei(0), uoi , u

∗
ai

)
. (2.17)

Figure 2.3 illustrates this concept, where the red sphere indicates the saddle point

equilibrium. If this sphere were to unilaterally shift in either direction, the reward

for that player would decrease in accordance with equation 2.15.

Using Leibniz’s formula to differentiate the cost-to-go given in equation 2.15, the

differential equivalent to the integral is in the form of the Hamiltonian, H, of the

dynamics from equation 2.12 and the cost from equation 2.13, which is

Hi = Qi(ei) +Ri(uoi)− γ2
i ‖uai‖

2 +∇CT
i (uoi + ki(ei)uai) = 0. (2.18)
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Figure 2.3. Saddle point equilibrium which arises from the Nash con-
dition on the zero-sum game. The red sphere represents the equilib-
rium point at optimal control policies for both players.

where∇Ci =
∂Ci
∂ei

. This is known as the zero-sum Bellman equation, which is a partial

differential equation for the cost-to-go. Stationarity conditions on the Hamiltonian

give equations for the optimal control policies

∂Hi

uoi
= 0⇒ u∗oi = −1

2
R−1
i ∇C∗i (2.19)

∂Hi

uai
= 0⇒ u∗ai =

1

2γ2
kTi (ei)∇C∗i . (2.20)

Substituting these optimal policies into equation 2.18 yields the Hamilton-Jacobi-

Isaacs (HJI) equation

H∗i = Qi(ei)−
1

4
∇C∗Ti R−1

i ∇C∗i +
1

4γ2
i

∇C∗Ti ki(ei)k
T
i (ei)∇C∗i = 0 (2.21)

Thus, the solution of the HJI equation for C∗i would yield the optimal operator

and adversary control policies for the game. However, this equation is not generally

solvable.
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2.5.1 Quadratic Case

It is useful to first discuss a simple form of the problem which yields a nice ana-

lytical result and highlights the necessity of approximation methods in more general

cases. The quadratic cost-to-go function is

C∗i (ei(t)) = min
uoi

max
uai

∫ ∞
t

eTi Qiei + uToiRiuoi − γ2
i ‖uai‖

2 dτ, t ≥ 0 (2.22)

where Qi ∈ R2×2 is positive semidefinite, Ri ∈ R2×2 is strictly positive and symmetric,

and ki(ei)uai = Di with Di ∈ R2×1. When the cost-to-go function is fully quadratic,

the HJI equation (2.21) reduces to the game algebraic Ricatti equation

0 = Qi − P T
i R

−1
i Pi +

1

γ2
i

PiDiD
T
i Pi (2.23)

where Pi is positive semidefinite, symmetric by design and chosen as the stabilizing

solution. This equation is solvable using traditional Ricatti equation methods. This

gives the optimal operator and adversary control policies

u∗oi(t) = −R−1
i Piei(t) (2.24)

u∗ai(t) =
1

γ2
DTPiei(t). (2.25)

However, this solution only holds for the quadratic case. Still, it is a useful compar-

ison for more general methods, and is worth highlighting here. In the non-quadratic

case, it is generally more efficient or even distinctly necessary to approximate and

iterate towards the solution to equation 2.21.

2.5.2 Online Solution by Approximation via Neural Networks

Recent research on methods of approximating solutions of HJI equations using

adaptive deep learning methods has shown promise and is the motivation behind

applying these methods to formation control here. We follow the methods of [24] and

will use actor-critic reinforcement learning by policy iteration. Figure 2.4 illustrates

this process, which successively iterates toward the solution to equation 2.21. Once
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this solution is converged upon, ∇Ci is known and both actors will be implementing

the optimal policies in accordance with equations 2.19 and 2.20. The critic evaluates

Figure 2.4. Two-player actor-critic reinforcement learning by policy
iteration. Implemented policies are functions of the critic evaluation.
Learning is finished when critic evaluations remain constant to a spec-
ified degree and the optimal actor control policies are implemented.

control policies implemented by the actors and approximates a solution to the HJI

equation. The two actors implement optimal control policies for the given policy

evaluation. Once the policy evaluations converge to the saddle point defined by

equation 2.16, the final optimal control policies will be in place.

Perhaps the simplest and most intuitive way to iterate towards a solution using

this method is to successively iterate control policies for both actors based on policy

evaluation and check for convergence. Upon convergence, implement the resulting

control policies. However, this method is not practical for use in real systems since

the learning is done by iteration offline. A better solution is a method of converging

toward this solution online while operating adaptively. This requires simultaneous

update of actor policies and critic evaluation such that all three are coupled. One

way of achieving this is directly approximating the solution to the HJI equation us-

ing neural networks, as in [24]. Using this method, the critic and both actors are

approximated using separate neural networks. The key idea behind this is function
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approximation using neural networks, which is shown in [56] to have bounded ap-

proximation error for a fixed number of neurons or vanishing approximation error

as the number of neurons goes to infinity in accordance with the Weierstrass higher

order function approximation theorem. Then, the problem reduces to implementing

real-time coupled weight tuning laws such that the weights converge to their opti-

mal value, which is the smallest possible approximation error for a fixed number of

neurons. Therefore, we must define and consider each approximator.

2.5.3 Critic

The critic approximator estimation can be written as

Ĉi(ei) = Ŵ T
ci

Φci(ei) (2.26)

where Ŵci represents the N × 1 vector of neural network weights, Φci(ei) represents

the N × 1 vector of activation functions for the critic approximator, and N is the

number of basis functions (number of neurons). Thus, the ideal critic approximator

for a fixed N is

C∗i (ei) = W ∗T
ci

Φci(ei) + εci(ei) (2.27)

where W ∗
ci

are the ideal weights and εci(ei) denotes the online approximation error.

The ideal critic approximator has the derivative

∂C∗i
∂e

= ∇ΦT
ci
W ∗
ci

+∇εci . (2.28)

where ∇Φci =
∂Φci(e)

∂e
. Substituting this derivative into equation 2.18, gives an

approximated Hamiltonian

H∗i = Qi(ei) +Ri(uoi)− γ2
i ‖uai‖

2 +W ∗T
ci
∇Φci(uoi + uai) = εH (2.29)

where

εH = −∇εTci(uoi + uai) (2.30)
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represents the residual error due to function approximation. For fixed actor control

policies, the current online approximate Hamiltonian is then

Ĥi = Qi(ei) +Ri(uoi)− γ2
i ‖uai‖

2 + Ŵ T
ci
µ(t) (2.31)

where µ(t) = ∇Φci(uoi + k(ei)uai). Therefore, we must formulate an update law

that ensures Ŵci → W ∗
ci

and Ĥi → H∗i . Following model reference adaptive control

from [57], we can use a deep learning approach for using past data together with

current data. We define an error for the current data

eHi
= Ĥi −H∗i (2.32)

and for the past data

eHiWk
= ĤiWk

−H∗i (2.33)

where Wk denotes the weights at time k. The weight performance index, Ei in

equation 2.34, is based on mean squared error for both current and past data, and it

can be used to ensure the neural network weights are tuned in the proper direction.

Ei =
1

2

eTHi
eHi

(µ(t)Tµ(t) + 1)2 +
1

2

kmax∑
k=1

eTHiWk
eHiWk(

µ (tk)
T µ (tk) + 1

)2 (2.34)

where kmax defines the size of the window of stored data. It has been shown that

too much past data adversely affects performance of the system, while too little

stored data has the same effect, but the analysis in [24] requires at least N linearly

independent data points are stored for proper weight convergence. Thus, kmax is a

design parameter which should be chosen based on desired performance. Finally, the



27

critic neural network weights can be updated via gradient descent on Ei from equation

2.34. This yields the update law

˙̂
Wci = −αc

∂Ei

∂Ŵci

= −αc
µi(t)

(µi(t)Tµi(t) + 1)2

(
µi(t)

T Ŵci(t) +Ri(uoi(t)) +Qi(ei(t))− γ2
i ‖uai(t)‖

2
)

− αc
kmax∑
k=1

µi(tk)

(µi(tk)Tµi(tk) + 1)2(
µi(tk)

T Ŵci(t) +Ri(uoi(tk)) +Qi(ei(tk))− γ2
i ‖uai(tk)‖

2
)

(2.35)

where αc > 0 is the learning rate for the critic. We refer to [24] for the proof of

convergence for Ŵci → W ∗
ci

.

2.5.4 Operator Actor

Similarly, we can estimate the proper operator compensating control input with

another neural network as

ûoi(ei) = Ŵ ∗T
uoi

Φuoi(ei) (2.36)

where Wuoi represents the N2×2 vector of neural network weights, Φuoi(ei) represents

the N2×1 vector of activation functions for the operator actor approximator, and N2

is the number of basis functions (number of neurons). Thus, the ideal operator actor

approximator for a fixed number of neurons is

u∗oi(ei) = W ∗T
uoi

Φuoi(ei) + εuoi(ei) (2.37)

where W ∗
uoi

are the ideal neural network weights and εuoi(ei) denotes the online func-

tion approximation error.

From equations 2.19 and 2.26, the optimal operator policy for any critic evaluation

is

u∗oi(ei) = −1

2
R−1
i

(
∇ΦT

ci
Ŵci

)
. (2.38)
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So, we can define an approximation performance index for ûoi as

euoi = ûoi − u∗oi . (2.39)

We desire to select weights which minimize the squared error

Euoi =
1

2
eTuoieuoi , (2.40)

so we can update the weights by gradient descent using

˙̂
Wuoi = −αuo

∂Euoi
∂Ŵuoi

= −αuoΦuoi

(
Ŵ ∗T
uoi

Φuoi(ei) +
1

2
R−1
i

(
ΦT
ci
Ŵci

))T
(2.41)

where αuo > 0 is the learning rate for the operator. We refer to [24] for the proof of

convergence of Ŵuoi → W ∗
uoi

.

2.5.5 Adversary Actor

Likewise, we can estimate the worst-case adversary control policy with a separate

neural network as

ûai(ei) = Ŵ ∗T
uai

Φuai(ei) (2.42)

where Wuai represents the N2×2 vector of neural network weights, Φuai(ei) represents

the N2 × 1 vector of activation functions for the adversary actor approximator, and

N2 is the number of basis functions (number of neurons). Thus, the ideal adversary

actor approximator for a fixed number of neurons is

u∗ai(ei) = W ∗T
uai

Φuai(ei) + εuai(ei) (2.43)

where W ∗
uai

are the ideal neural network weights and εuai(ei) denotes the online func-

tion approximation error.

From equations 2.20 and 2.26, the optimal adversary policy for any critic evalua-

tion is

u∗ai(ei) =
1

2γ2
kTi (ei)

(
∇ΦT

ci
Ŵci

)
. (2.44)
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So, we can define an approximation performance index for ûai as

euai = ûai − u∗ai . (2.45)

We desire to select weights which minimize the squared error

Euai =
1

2
eTuaieuai , (2.46)

so we can update the weights by gradient descent using

˙̂
Wuai = −αua

∂Euai
∂Ŵuai

= −αuaΦuai

(
Ŵ ∗T
uai

Φuai(ei)−
1

2γ2
kTi (ei)

(
∇ΦT

ci
Ŵci

))T
(2.47)

where αua > 0 is the learning rate for the adversary approximator. We refer to [24]

for the proof of convergence of Ŵuai → W ∗
uai

.

2.6 Distributed Formation Tracking with Adversarial Inputs

Finally, we can now synthesize the results from the above sections to create a

method of achieving distributed formation tracking even when agents are subject

to adversarial inputs. The weight tuning equations (2.35, 2.41, and 2.47) allow for

simultaneous weight updates every time an error measurement is taken. The process

is defined in Algorithm 1.
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Algorithm 1: Deep Learning Formation Trajectory Tracking under Adver-

sarial Inputs using Target Points

Result: Distributed formation trajectory tracking which attenuates

adversarial inputs

Establish formation leader agent y and ensure ẏ → v0

Start with initial positions of all agents xi(0) = xdi(0) and ei(0) = 0

foreach follower agent i do

/* construct goal formation and start with given neural

network weights */

Define follower distances, d1 when i = 1 or d1i , d2i when i > 1, s.t. the

desired formation is constructed using vertex addition

Initialize neural network weights, Ŵci(0), Ŵuoi(0), Ŵuai(0) randomly or

otherwise

end

for m = 1, 2, ... do

/* each time ei(t) is measured where m is the index of

measurement */

foreach follower agent i do

Propagate ti and ei(t) forward using equations 2.12, 2.36, and 2.42

Propagate Ŵci , Ŵuoi , Ŵuai using equations 2.35, 2.41, and 2.47

Compute Ĉi(ei) = Ŵ T
ci

Φci(ei), (policy evaluation)

Compute ûoi(ei) = Ŵ ∗T
uoi

Φuoi(ei), (operator policy)

Compute ûai(ei) = Ŵ ∗T
uai

Φuai(ei), (worst-case adversary policy)

Compute τi as in equation 2.2 (i = 1) or 2.7 (i > 1)

Compute udi as in equation 2.8

Implement control policy uci = udi + ûoi

if m < kmax then

/* if history stack is not full, add to it */

Record µi(tm), ei(tm), ûoi(tm), ûai(tm) in history stack

end

end

end



31

Note that Algorithm 1 defines the process of creating a formation which will

perform distributed trajectory tracking while attenuating adversarial inputs at each

agent.

2.7 Simulation Results

Here, simulation results are provided in order to demonstrate the effectiveness

of Algorithm 1. In the first scenario, a simple three agent formation is described.

When subject to persistent sinusoidal attacks, ua =

 cos t+ sin 3t

cos 3t+ sin t

, the control law

defined in [21] fails to achieve both formation assembly and velocity consensus. Figure

2.5 shows the distance error for each edge which describes the desired formation.

Figure 2.5. Edge distance error over time for both cases. Notice
that with compensation the formation is still achieved and velocity
consensus is reached.

However, when Algorithm 1 is applied, the agents achieve the desired formation

and reach velocity consensus. Additionally, the adversarial inputs are attenuated in

accordance with equation 2.14, as shown in Figure 2.6.
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Figure 2.6. Instantaneous disturbance attenuation for the agent sub-
ject to attack. Notice that once learning is complete the attenuation
remains below the specified H∞ gain.

Figure 2.7 shows that the critic’s neural network weights converge to constant

values and remain stable once learning is complete and the adversary is attenuated.

Figure 2.7. Time history of weights for the critic neural network approximator.
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A demonstration of Algorithm 1 was also implemented in the Gazebo robotics

simulator for enhanced realness in the form of software-in-the-loop simulations. This

further validates the method proposed here and reduces the technological gap in

implementing the proposed method in real physical systems, which is the ultimate

goal. Implementing in real hardware is a direction of future work. Here, we have a

large swarm of 31 drones charged with tracking in a formation resembling the Purdue

logo. The smaller inlay frames only help to visualize the formation shape. The left

frame shows the stabilizing distributed formation control algorithm alone, and the

right frame shows the inclusion of this learning-based resilience method under the

same conditions.

Figure 2.8. Gazebo simulation initial conditions.

First, no adversarial inputs are given and we observe that both achieve proper

formation tracking. The learning-based resilience assembles slower since the neural

network weights are initialized to random values rather than zeros only to show that

the weight tuning laws also appropriately drives the compensating input to zero when

there are no attacks.

Next, a persistent sinusoidal attack is launched on only the first follower dispersing

both formations. It is subject to the adversarial inputs ua =

 3 cos t+ sin 3t

cos 3t+ 3 sin t

. Even

though only one agent is under attack in this large formation, it completely disrupts

all agents.
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Figure 2.9. Gazebo simulation with no attacks. Both methods achieve
formation tracking.

Figure 2.10. Gazebo simulation of first follower under attack. Both
formations disperse when attack is launched.

In the left frame, the attack continues to disrupt the formation unceasingly, while

the learning-based resilience method allows the formation in the right frame to at-

tenuate the adversarial inputs and recover to proper formation assembly and velocity

consensus.



35

Figure 2.11. Gazebo simulation of first follower under attack. With
our learning-based compensation, the formation recovers and achieves
tracking.
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3. BEHAVIOR-BASED CYBER-PHYSICAL ATTACK

DETECTION

3.1 Introduction

While in the previous section an attack-resistant control scheme was developed

for multi-agent systems, it is still important for the operator to have awareness when

such attacks take place. This falls into the realm of attack detection, which has

become an increasingly popular research area in recent years as adversaries develop

more and more sophisticated attack surfaces. Motivated by this observation and

the goals of our sponsors, we sought to devise a method of detecting attacks on

autonomous air vehicles with a broad scope, as many previous studies offer reactive

solutions based on attack signatures which do not provide any zero-day protection. At

the same time, we notice machine learning methods gaining traction in related fields

like anomaly/intrusion detection for smart infrastructure and computer networks.

Therefore, we seek to emulate the success other fields have found in counter-autonomy

defense here.

3.2 Monitoring System

The main goal of this work is to consider the feasibility and effectiveness of a

behavior-based machine learning model which can learn normal UAV system opera-

tion and recognize behavior which is likely occurring due to an attack. To accomplish

this, the model will act as a monitoring system similar to a sanity check. The figure

below depicts a block diagram of a UAV controller represented as a cyber-physical

system.
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Figure 3.1. Typical UAV control system.

Here, we propose an additional block which utilizes only the data already available

and processed by the control system, which reduces the barrier-to-entry for such a

system since other methods might require extra sensory data. This new block will be

the trained monitor, resulting in the modified block diagram below.

Figure 3.2. UAV control system with monitor added.

As depicted, the monitor program resides in the cyber domain and acts as a check

for interactions between the cyber and physical systems. Its predictions are used

by the high-level control logic to assess the status of the entire vehicle. This ability

enables operators to have real-time warning of ongoing attacks and vulnerabilities

in their system. While some methods of response to a detected attack have been

suggested, such as back-tracking as in [26], this work is restricted to the detection

only.
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Training will consist of two phases. First, off-board learning will be accomplished

by training a machine learning SVM classifier on a dataset. This model establishes

reasonable delineations between the attack behavior data points and the nominal

behavior data points. This provides a starting point for the monitoring system and is

usually computationally expensive. Once training is performed, however, predictions

on new data are very quick and efficient. Still, to constantly improve the model

during operation, learning does not end there. On-board learning will be utilized

in the form of corrections by operators. This is depicted in Figure 3.2 as the loop

originating and terminating at the monitor. This allows the model to adapt to new

behaviors which might be required of the system. This is achieved by leveraging the

delineation created during the off-board training. The operator establishes correction

parameters in the form of a maximum distance from the decision boundary and the

number of consecutive points within that distance. As the system is operational, new

data points are presented to the model. If they lie within the region defined by those

parameters, manual checks are elicited for human correction. As such, a trade-off

exists between the ability to tweak the boundary during on-board learning and the

number of manual corrections elicited. The optimal balance will likely depend on the

particular application, but we will show that such a method is successful in improving

model performance.

3.3 Simulated Cyber-physical Attacks

In order to establish the relevance of this work, the integrity of the data must

be shown. To accomplish this, the methods of data generation must be detailed.

This section elaborates on the methods of simulation which make up the resulting

dataset. [26] provides a thorough examination of the privacy and security challenges

facing UAV systems. Among these is the identification of cyber-physical threats

to UAVs. Namely, these threats exploit physical channels and components on the

vehicle to alter their operation (e.g. crash or redirect). The authors note that cy-
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berattacks are potentially easier to detect, and adversaries are starting to focus on

physical components. Because of this, we focus on cyber-physical attacks as well,

since they are highlighted as current vulnerabilities. Potentially the most well-known

cyber-physical drone attack is sensor spoofing, where an outsider feeds faulty infor-

mation to sensors in order to alter their operation. In 2011, the Iranian military used

such an attack to capture an advanced reconnaissance RQ-170 drone operated by

the CIA. Attackers perform this spoofing usually through a combination of jamming

the nominal signal (e.g. true GPS broadcast) and transmitting the malicious signals

with much larger power. Other cyber-physical attacks like control signal spoofing

is accomplished via powerful acoustic transmitters capable of modifying signals in

transit from the bus to the actuators. While some software-based methods have been

proposed to defend against attacks of this class, they are mostly highly specialized

and signature-based. [26] highlights concern about this, since signature-based solu-

tions off no protection against zero-day attacks and are always one step behind the

attackers. Recently, [29] proposed a promising software-based solution to the same

set attacks using a specification-based approach. However, specification-based ap-

proaches require intricate understanding of the underlying physical processes which

can be difficult to obtain and sensitive to dynamic operating environments, ageing,

or other evolvements of the system. Here, we propose a behavior-based detection

scheme which utilizes machine learning techniques, similar to that demonstrated in a

smart resource grid context [31]. This approach requires no a priori construction of

specifications or formal system models. Rather, it automatically learns key behavior

characteristics through operational data in order to assess system status. The result-

ing model is easy to develop (especially in the case where historical data is readily

available), can make predictions quickly, and adapt evolving system behaviors. This is

accomplished using a combination on supervised and unsupervised learning. Whereas,

unsupervised learning methods do not require large sets of labeled data for training

but are extremely prone to false positives or missed detections, supervised learning

can be much more accurate but requires labeled data. We propose a model training
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phase via supervised learning followed by unsupervised learning for increased model

adaptability.

The main challenge to utilizing supervised training is the requirement for labeled

training data. Since comprehensive data from real-world examples of the attacks

considered here are not readily available and the equipment required to perform them

is costly and difficult to develop, we must rely on data generated by simulations.

Luckily, these types of attacks can be simulated accurately. These attacks can be

categorized into three main groups: control signal spoofing, sensor spoofing, and

parameter corruption. The authors in [58] point out that these classes of attacks lack

research attention and defense methods.

All simulated data was gathered using a Gazebo simulation environment for an

Iris+ quadcopter using a PX4 autopilot. Gazebo is a 3D robotics and physics sim-

ulation environment capable of a high level of fidelity. The Iris+ model and PX4

plugins are available open source from the PX4 developers. Interaction with the PX4

(and, hence, the vehicle) is done via MAVlink messages. The spatial environment is

defined by a safe zone of airspace on Purdue’s athletic fields. A real world terrain

map is used as ground level and a 0.5km ceiling was defined. The simulation process

consists of high-level mission planning and low-level operational parameter planning.

That is, each simulated mission is composed of several high-level tasks like taking

off, navigating to a waypoint, loitering, and landing which each have associated op-

erational parameters like waypoint position, loiter time, etc. This delineation allows

formulation of a state machine which captures the possible high-level behavior of the

vehicle, as shown in [29]. For each simulated mission, a random walk through the

state transition diagram shown below generates the sequence of operations the drone

will accomplish. It is important to note that while this state machine captures rudi-

mentary behaviors which might be typical of some UAV applications like delivery, the

idea behind it could be applied to any application in which the high-level tasks can be

captured in a similar state transition diagram. Low-level parameters specifications

are accomplished by first establishing limits on each parameter (usually stemming
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Figure 3.3. State transition diagram for mission generation.

from operating limitations like max airspeed, max roll angle, etc.) and then choosing

values via random sampling from a uniform distribution across those limits.

These plans are compiled into executable instructions via MAVlink commands,

which are uploaded to the drone before each simulated mission using QGroundCon-

trol, a GUI for interacting with the PX4. The PX4 autopilot then executes the

missions autonomously and logs all computed data, just as it would in real hardware.

The only difference in simulation is the PX4 directs the Iris+ Gazebo model and

plugins and Gazebo in turn updates the world state, rather than directing real flight

hardware. Sensors measurements are simulated based on the Gazebo world state

and physics simulation. The logs kept by the PX4 autopilot will be used to describe

the drone’s behavior. Altogether, 95 missions were simulated: 35 nominal and 20 of

each type of attack. Five missions of each type were withheld from the model during

training to evaluate classification performance.

3.3.1 Control Signal Spoofing Attacks

To simulate control signal spoofing, the motor control pulse width modulation

(PWM) signal is targeted, as in [29]. This signal is used to adjust and control the

motors’ rotation. This particular signal was chosen here because its criticality makes it

a likely target for manipulation: if attackers can control the motors, they can control
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the operation of the vehicle. In fact, this type of attack is exploited in [58], [59],

and [60].

In simulation, the PWM signal is modified completely externally as it would be

in the three instances above. At the interface between the PX4 autopilot (simulating

the vehicle control system) and Gazebo (simulating the vehicles environment), the

width of the PWM signal is altered, resulting in improper RPM settings for the

motors. PWM is a method of achieving analog characteristics from a digital control

signal. In this case, the motor receives control signals in pulses at a fixed voltage.

The length of the pulse, as a proportion of the specified maximum pulse length,

determines the RPM setting of the motors, as a proportion of their maximum duty

cycle. For instance, here, PWM signals are generated with an amplitude of 3.3V and

a maximum pulse duration of 2.5 ms. A pulse sent to the motors with amplitude 3.3V

and duration of 1.25 ms would command the motor to 50% of its maximum RPM

setting.More specifically, PWM uses a rectangular pulse wave with modulating width

to communicate the desired duty cycle to the motor’s speed controller. The motor

directly measures this pulse width to determine the output power level corresponding

to the desired duty cycle. For the PX4, the pulse width in milliseconds as a function

of desired duty cycle is

W (k) = 2.5D(k) (3.1)

where D(k) is the desired duty cycle calculated by the autopilot at discrete time step

k. To simulate control signal spoofing, a malicious bias signal width is added at each

time step.

W ′(k) = W (k) + α (3.2)

The resulting signal, W ′(k), must be within the PWM limits to have an effect on

the motor, so α ∈ [−W (k), 2.5 −W (k)]. To add generality to the resulting dataset

since there is no knowledge of the exact intent behind the spoofing attack, α should

be chosen with some level of randomness so as to not be trivially detectable but

not completely arbitrary on its domain since some attacks might not require large
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deviations. For each mission a mean bias, b, is generated for the manipulating signal.

As such, Equation 3.2 is rewritten as

W ′(k) = W (k) + α, {α | α ∼ N(W (k) + b, σ2
α) ∧ α ∈ [−W (k), 2.5−W (k)]} (3.3)

where the variance of the truncated normal distribution, σ2
α, is chosen for each mission

to simulate varying levels of randomness. Smaller variances result in spoofed signals

nearer to the controller signal width, W (k), while large variances approach a uniform

distribution which would be complete randomness. For training, the goal here is to

simulate what might constitute abnormal behavior, not just a specific attack. The test

missions were subject to specific attacks like control signal saturation. These are more

evident of what attacks may exactly look like, and they provide us with an opportunity

to see if the trained model might recognize them from only learning on more subtle

attacks. This alteration occurs at the interface to the motor’s Gazebo plugin, as

shown in the figure below. Injection of the malicious signal at this point simulates

Figure 3.4. Software-in-the-loop simulation flow for control signal spoofing attacks.

tampering in transit from the vehicle’s bus to the actual motor. The resulting motor

function is captured and modeled by Gazebo, and sensor measurements are logged as

normal. Only a single, randomly-selected motor is targeted in each mission simulating

this attack. Each attack prevented normal operation as planned (optimal trajectory

to waypoints, etc.) and some even resulted in ground collisions (denial of service).
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3.3.2 Sensor Spoofing Attacks

Sensor spoofing attacks are possibly the most popular ones that exploit physical

channels on the vehicle. Attackers use external equipment to force false readings at

certain sensors, which could drive behaviors toward their desired state. GPS ( [61–63])

and IMU ( [63–65]) sensors have been shown to be most vulnerable, so these were

the targeted sensors for simulation here. Either GPS or IMU readings were altered

exclusively on missions, never both together. The same methods were followed as

in [29], where the measured values from the sensors in Gazebo were modified at the

interface between Gazebo and the autopilot. In missions where GPS was targeted,

the GPS position and velocity measurements were altered. Likewise, in the missions

where the IMU was targeted, the accelerometer measurements were altered. The

accelerometer was chosen because several sources identify it as a vulnerability [64,65].

The intent of a sensor spoofing attack must be considered in order to properly

simulate it. If an attacker were simply seeking to cause these sensors to fail, it might

alter the measurements randomly. It seems more likely, however, that an attacker

would seek to alter the signal to drive guidance in a certain direction. Therefore, in

each mission simulated, a random direction (represented by the unit vector ûattack in

the Earth-centered coordinate frame) was chosen as the target direction, which stayed

constant for the entire mission. Altering sensor measurements to drive the vehicle

in this direction would include feeding the autopilot false readings in the opposite

direction so that it compensates toward the attacker’s desired destination. Therefore,

each measurement is altered with some bias opposite of the attack direction according

to the following equations which incorporate some randomness to avoid static bias

which might be easier to detect. For GPS, the spoofed position, x′(k), and velocity,

v′(k), measurements are given by

x′(k) = x(k)− 2xbRûattack (3.4)

v′(k) = v(k)− 2vbRûattack (3.5)
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where x(k) and v(k) are the nominal position and velocity readings in the Earth-

centered coordinate frame, xb and vb are the bias center magnitudes (here 5 m and 2

m/s, respectively), and R ∼ U(0, 1). Spoofed accelerometer readings, a′(k), are given

by

a′(k) = a(k)− 2abRûattack (3.6)

where a(k) is the nominal accelerometer measurement in the Earth-centered coordi-

nate frame, and ab is the bias center magnitude (here 0.5 m/s2).

These signal alterations occur after sensor measurements are taken nominally in

Gazebo but before they are received by the autopilot, as shown in the figure below.

Modification at this point simulates external tampering as it might occur in real

Figure 3.5. Software-in-the-loop simulation flow for sensor spoofing attacks.

attacks. Each attack prevented normal operation as planned (optimal trajectory to

waypoints, etc.) but none resulted in ground collisions.

3.3.3 Parameter Corruption Attacks

Parameter corruption attacks are perhaps the simplest to simulate, since they

involve only modifying normally-constant parameter values that impact operation.

As in [29], the gains of attitude rate PID controllers were chosen as the focus of

these attacks since their ability to control motor function makes them likely targets.

In [66], parameters like these were shown to be easily altered, and [67] even used only

localized heating to modify parameter values like this, which could be accomplished

from a distance. These values are often tuned for desired performance and largely left
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unchanged during normal operation. Three PID controllers individually handle body

rates in each axis on this vehicle. Each PID controller consists of three coefficients

which govern its behavior. The proportional gain is used to minimize tracking error,

the derivative gain is used for dampening, and the integral gain keeps memory of

the error. Modification of these gains will affect the controllers’ handling of the

body rates. Each simulated parameter corruption attack exploited all gains for one

randomly-chosen controller governing an axis. The actual values of these gains are

withheld from the monitor model to prevent superficial checks and assess its ability

to recognize this attack from the vehicle’s behavior.

Before each mission, a random sample from the uniform distribution over the limits

of each gain (given in the PX4 developer’s guide) was evaluated and set as the modified

gain. The parameters were changed directly in the flight control software’s source

code, as illustrated in the figure below. Each attack prevented normal operation as

Figure 3.6. Software-in-the-loop simulation flow for parameter corruption attacks.

planned (optimal trajectory to waypoints, etc.) and some even resulted in ground

collisions (denial of service).

3.4 Classification

We formulate the classification problem as a binary discrimination one where

the classifier must find the best hyperplane delineation in the feature space. More

specifically, the classifier seeks to output a status ∈ {nominal, attack} of the vehicle.

Altogether, there are 174 features recorded in the PX4 log files. Therefore, we have

a high-dimensional dataset. The SVM classifier is capable of exploiting the so-called
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“kernal trick” to find a suitable delineation without debilitating increases in compu-

tational expense. The SVM output score also provides a convenient metric of the

distance to the decision boundary for use in eliciting manual corrections. Figure 3.7

illustrates a simple SVM used for binary discrimination.

Figure 3.7. Example 2-D SVM.

In order to evaluate the model, we must describe performance measures. There

are a handful of scenarios for each data point based on the model prediction and

the ground truth label. Each data point has a ground truth label which the model’s

classification is compared against. If the model’s classification matches the ground

truth, this is known as a true classification. If the model’s classification does not

match the ground truth, it is known as a false classification. The attack class is chosen

to be the positive one. This means that classifications of an attack are called positives,

and classifications of nominal are called negatives. Combining these terms, True

positives are data points correctly classified as attack by the model, true negatives

are data points correctly classified as nominal by the model, false positives are data

points incorrectly classified as attack by the model, and false negatives are data points

incorrectly classified as nominal by the model. Figure 3.8 illustrates the different

possibilities and how they relate to model evaluation.
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Figure 3.8. Performance metrics for binary discrimination.

The two main applicable performance metrics are precision and recall. Precision

is most intuitively described as the percentage of attack data correctly classified by

the model that is truly attack data. This relationship can be written as

Precision =
TP

TP + FP
. (3.7)

Similarly, recall is most intuitively described as the percentage of true attacks that

were correctly predicted. This is written as

Recall =
TP

TP + FN
. (3.8)

Initially, we found model performance to be noisy and subpar, so further improve-

ments were required to increase accuracy and reduce false alarms.

3.4.1 Temporal Context Features

Using the 174 features available from the flight logs, the SVM classifies each data

point independently. Initially, this resulted in subpar performance. As Table ??

shows, direct classification by the SVM only yielded 88% precision and 73% recall.

Therefore, we sought a way to improve model accuracy and reduce nagging false

alarms. Recognizing that there is likely useful information in the relation between

features at different time steps which is unavailable to model, we require a way of
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including temporal context for each of the features. Perhaps the simplest way of

accomplishing this would be to include the features from previous data points with

the current features at each time step. This is known as the sliding window method.

However, depending on the amount of past data considered, this would drastically

increase the number of features and does not scale well in terms of training time,

classification time, and computational burden. In fact, if w is the window length, the

number of features would be increased to 174×w, which does not scale well with an

increasing amount of temporal context available to the model. We propose using an

augmented sliding window technique, in which only the mean and standard deviation

of the past w points are kept. This restricts the number of features to 174 × 3, no

Figure 3.9. Augmented sliding window technique, where N is the data point index.

matter the size of the sliding window. Inclusion of temporal context should improve

the model’s recall performance.

3.4.2 Kalman Filter Post-processing

As noted previously, the SVM classifier makes a decision on every data point,

which is done at the high logging frequency. This produces a noisy signal which

causes spurious false alarms. To reduce the number of false alarms, it is desirable to

devise a method of estimating the true state of the vehicle based on the cumulative

successive outputs of the SVM. One such method is utilization of the Kalman filter

on the SVM classifications. We implement a second order discrete time Kalman filter

which estimates the true state of the vehicle, xk, based on noisy outputs of the SVM,

yk, while assuming the true state rate of change is stable with smooth transitions

and the measurement noise is much larger than the process noise. This filter can be
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described by the state space model below, where the relation σ2
v � σ2

w can be tuned

for the desired level of filtering.

Xk =

xk
ẋk

 wk ∼ N

0,

∆T 4/4 ∆T 3/2

∆T 3/2 ∆T 2

σ2
w


Xk+1 =

1 ∆T

0 1

Xk + wk vk ∼ N (0, σ2
v)

yk+1 =
[
1 0

]
Xk+1 + vk+1

3.5 Results

We observed promising results when applying the model to our test dataset. Table

4.1 summarizes the results for each mission. Notice that the model correctly identified

each of the attacks in the test dataset and did not output any false warnings. The

mean warning time was about two seconds, which would likely be quick enough to

initiate a defensive response, depending on the attack type/severity. The warning

time is directly related to the measurement noise parameter of the Kalman filter.

Smaller assumed measurement noise would force the model to respond more quickly

to attack SVM classifications. However, this comes with added risk of more false

alarms. Therefore, operators should take care to tune this relationship based on the

allowable risk.

Table 3.2 shows the dramatic performance increase associated with including tem-

poral context and the Kalman filter post-processing. These two methods are key

design features that enable effective status assessment by the monitor.

Figure 3.10 shows the dramatic increase in performance when even a small amount

of temporal context is included, but the improvements plateau beyond window lengths

of more than about one second. While the inclusion of artificial temporal context

features does increase the number of predictors for the SVM, there was no significant

increase in supervised training time.
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Table 3.1. Summary of test dataset results.

Test Mission No. Attack Type Predicted Status Warning Time (s) False Alarms

1 None Nominal - 0

2 None Nominal - 0

3 None Nominal - 0

4 None Nominal - 0

5 None Nominal - 0

6 Control Signal Attack 2.01 0

7 Control Signal Attack 1.53 0

8 Control Signal Attack 0.57 0

9 Control Signal Attack 3.02 0

10 Control Signal Attack 3.87 0

11 GPS Signal Attack 1.56 0

12 GPS Signal Attack 2.44 0

13 GPS Signal Attack 3.62 0

14 IMU Signal Attack 3.61 0

15 IMU Signal Attack 1.83 0

16 Roll PID Attack 0.79 0

17 Roll Rate PID Attack 1.42 0

18 Pitch PID Attack 3.24 0

19 Pitch Rate PID Attack 0.47 0

20 Yaw Rate PID Attack 1.55 0

Mean 2.10 0

The impact of Kalman filtering the SVM classifications can be seen in the model

output from the test mission in Figure 3.11. It is particularly beneficial in preventing

false alarms when the SVM classifications are near the decision boundary, but a

conclusive spike has not yet been observed. This has the effect of reducing manual

correction elicitations and provides operators with a clearer picture of the vehicle’s
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Table 3.2. Effect of temporal context features and Kalman filter post-processing.

SVM Direct
Temporal Context,

No Kalman Filter

Kalman Filter,

No Temporal Context

Temporal Context,

and Kalman Filter

Precision 88.2% 94.3% 90.2% 98.1%

Recall 73.1% 84.7% 75.6% 88.4%

Figure 3.10. Performance versus sliding window size.

Figure 3.11. Effect of Kalman filtering on model output.

status. In all cases and window lengths, the filtering improved precision by at least a

few percent.
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On-board learning by manual corrections proved effective in improving recall, but

only marginally. While a more comprehensive study in terms of flight data and

correction incorporation would benefit the field, the results of this work suggest that

these corrections do in fact improve performance of such a behavior monitor. Figure

3.12 shows the recall improvement observed for varying correction parameters. The

Figure 3.12. Effect of correction parameters on model performance.

relationship between improvement and parameters will likely be largely dependent

on the specific application. Still, this work suggests that such a method is useful in

improving performance during operation, allowing the system to keep learning after

training. This is important, since interaction between autonomous systems and their

operators is a critical dynamic, and it is one that, when mastered, will truly unlock

the full potential of autonomous systems. Future work should include creation of

an operator-system interface which streamlines the correction process and further

reduces technical burden on the operator.
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4. EPILEPTIC SEIZURE PREDICTION USING A

HYBRID METHOD OF MACHINE LEARNING TIME

SIGNAL ANALYSIS

4.1 Introduction

In the previous section, a method of analyzing time signal data using machine

learning was developed which consisted of a traditional machine learning mechanism

(the SVM) and augmenting techniques including artificial temporal context features

and Kalman filter post-processing. These augmentations proved critical in boosting

the performance of the overarching system. We also note that time signal analysis

has extremely broad applications, particularly in fields related to autonomy, such as

computer vision, sensor fusion, telemetry analysis, etc. Motivated by this, and a col-

laboration request from a Yale neuroscience research group, we were presented with an

opportunity to generalize our hybrid method to other datasets, further examining its

potential for other applications. The collaborators at Yale seek a system for predict-

ing seizures in epileptic patients based on signals collected by electroencephalography

(EEG). In this section, we combine traditional feature extraction methods in the form

of deep convolutional neural networks (CNNs) with our classifier techniques devel-

oped in the previous section to form a hybrid method of time signal analysis using

machine learning.

4.1.1 Epilepsy

Epilepsy is a brain condition characterized by chronic, recurrent, unprovoked

seizures. It affects one in every 26 Americans, and places a significant risk of in-

jury and other complications on those afflicted [38]. Patients are exposed to signifi-
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cant risk of harm during these seizures, which negatively impacts their quality of life

since their seizures are spontaneous and, hence, their safety is constantly uncertain.

Seizures can cause coincidental accidents like drowning or injury, but the risk of Sud-

den Unexpected Death in Epilepsy (SUDEP) is also an important concern. SUDEP

is the leading killer of people with uncontrolled seizures [36]. Its cause is not known,

but it may [68, 69] be due to seizure-induced apnea. In these cases, death can be

avoided by simply physically stimulating the patient to restart the normal breathing

process [68]. While therapies and medications do exist, many times the patient’s risk

factor can be dramatically lowered by simply assuming a safe position/environment

and being monitored by an able caretaker. As such, a system capable of providing

advance notice to patients and caretakers would prove extremely valuable, both in

terms of decreasing the patient’s risk and improving their quality of life. Upon suc-

cessful prediction, the patient could take precautions to reduce environmental risk,

alert a caretaker for proper supervision, or even medicate to suppress the impending

seizure altogether.

4.2 Dataset

The dataset used here comes from experimental data collected at Boston Chil-

dren’s Hospital, which was made public from the study in [70]. It consists of EEG

recordings from 22 patients of the hospital, both male and female between the ages

of 1.5 and 22. 23 EEG electrodes were placed at specified locations on the scalp, and

the signals were recorded at a sampling frequency of 256 Hz. While some recordings

lacked all 22 electrode locations due to physical limitations during the experiment,

we restricted the dataset to only those with the same amount of electrodes and cor-

responding scalp locations. Both interictal (between seizures, normal brain activity)

and ictal (during seizure) data were included. All seizures were manually verified by

video recording and labeled accordingly. In total, the dataset used here consisted

of 198 seizures and 209 interictal hours. From these records, three partitions were
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created. 70% of the data was used for training the model (training set), 15% was

used for validation during training (validation set), and 15% was used to evaluate the

model performance (test set). Each of these partitions consisted of proportionally

equal parts interictal and ictal data.

4.3 Method

In order to predict imminent seizures, the developed must recognize preictal (just

before seizure onset) brain activity as recorded on the EEG which is reliably char-

acteristic. Therefore, the underlying objective is to create a machine learning model

which can accurately distinguish between interictal and preictal brain activity. Figure

4.1 below illustrates the method we propose to accomplish this objective. First, the

Figure 4.1. Visual representation of seizure prediction process by the
proposed method.

raw EEG signals are segmented into labeled windows. Each window is then trans-

formed into a two-dimensional signal representation, which is used to train a deep

convolutional neural network. A feature vector describing the learning features of the

windows from the two considered classes (interictal and preictal) is extracted from

the activations at the CNN’s final layers. Then, the feature vectors from neighboring

windows are used to create artificial temporal context features, which are included
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with the feature vectors to form augmented feature vectors. Next, the augmented

feature vectors are used to train an SVM classifier. Finally, the SVM output scores

are post-processed by a Kalman filter to produce an estimate of the true state of the

patient.

4.3.1 Pre-processing

As with all deep neural networks, the quality and quantity of training data will

significantly affect the model’s performance. First, the raw signal must be properly

labeled for our classification purposes. Figure 4.2 shows how one channel of a two

hour section of signal is labeled for training. The labels provided with the dataset only

Figure 4.2. Labels for two hours of signal from a single channel.

identify seizures in the signal, and they provide no information on preictal or clean

interictal activity. The model’s ability to predict seizures hinges on the assumption

that defining features of the preictal period will become present in the signal at some

point before the seizure. For preictal activity to be recognized, its characteristic

features must be present and the corresponding data labeled appropriately. This
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part of labeling is critical, since incorrect labeling will make training more difficult

and degrade model performance. For example, consider a true preictal duration of

10 minutes prior to seizure onset. If we underestimate that the preictal duration

is 4 minutes and label the data accordingly, the model will be incorrectly trained

on 6 minutes of data that is labeled interictal but contains the preictal features.

Similarly, overestimating the preictal duration as 14 minutes before seizure onset

would result in incorrectly training the model on 4 minutes of data that is labeled

preictal but contains no preictal features. Both scenarios would make it difficult

for the model to distinguish between the interictal and preictal periods, which is a

necessary ability. Further complicating matters, there is no identified point at which

the preictal features become present, although other studies suggest it is usually

around ten minutes before seizure onset [42]. We deal with this problem by defining

a buffer period between the chosen preictal duration and the utilized interictal data

for training. This is the blue region of signal in Figure 4.2. By refraining from using

the buffer period data during training, we aim to ensure the model is being only

being trained on data which has a high level of confidence in its label. As long as the

buffer period is sufficiently large, it is unlikely that preictal features will be present in

the interictal data used. Likewise, restricting the preictal period to only a matter of

minutes before seizure onset ensures a high level of confidence that if preictal features

exist, they will be present there. In Figure 4.2, the seizure occurs at two hours. Ten

minutes before the seizure is used as preictal data, and interictal data is taken from

signal at least 90 minutes before seizure onset. Large buffer periods are acceptable

since the dataset is highly skewed in favor of the interictal class. That is, there is

much more interictal data in the set than preictal. Therefore, large buffer periods

can be used to balance the two classes.

The labeled data is then segmented into windows. This is necessary in order to

consider data sections at frequencies other than 256 Hz and because CNNs learn

features from two-dimensional inputs. The number of resulting windows of signal de-

pends on the size of signal sections as well as the amount of overlap between windows.
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Window overlap provides a convenient way of oversampling the dataset and forcing

the model to refrain from learning time-local features. A trade-off exists between

the computational cost associated with windowing, transforming, and training with a

greater number of windows and the resulting potential resolution for seizure warning

opportunities.

Image transformation of the windowed signal segments is done by two methods

for visual representation of the signal. Fourier analysis produces two-dimensional

spectrograms, which capture the amplitude of particular frequencies at the given

time. Likewise, wavelet analysis produces two-dimensional scalograms, which cap-

ture the absolute value of the wavelet coefficients describing the signal at the given

time. Both have advantages and disadvantages, so they were jointly considered here.

Spectrograms are plagued by time/frequency resolution, where more accurate results

in timing come at the expense of frequency, or vice versa. Scalograms, however, are

not subject to this, but they do produce much larger images and are associated with

a higher computational cost both during image transformation and CNN training, as

the greater number of pixels requires a greater number of parameters to be learned

by the model. Figure 4.3 shows an example of a scalogram and spectrogram from

the same window of preictal signal. These images are generated for each labeled

Figure 4.3. Example spectrogram (a) and scalogram (b).

window from each channel. All corresponding windows from each channel are then

concatenated along a fourth dimension to produce a 3-D image representing the en-

tire EEG signal. Therefore, each image has dimensions time, frequency, and channel,
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where the pixel values are in accordance with the visual representation (amplitude

for spectrograms, absolute value of wavelet coefficient for scalograms).

4.3.2 Feature Extraction

Convolutional neural networks have proven effective in extracting features and

classifying natural images in multiple instances [71, 72]. Therefore, they are likely to

also be a good tool for classifying this signal data. An ideal model would undergo

a training phase where it is trained on lots of labeled windows from the interictal

and preictal periods. Once it has learned to distinguish between windows from each

period, it could be deployed to analyze real-time EEG signal data and issue warnings

when it starts classifying the current signal as preictal.

The optimal architecture of CNNs is a widely debated topic in the field, and it is

largely thought to be highly dependent on the application. In order to be conservative,

we use a proven approach for designing the network which consists of several blocks

of convolution, batch normalization, and max pooling layers. This also allows us to

directly compare our approach to the results of [41] in order to evaluate our model.

Figure 4.4 shows the network architecture used here. The concatenated 3-D image

16 I/
2

Block 1

32 I/
4

Block 2

64 I/
8

Block 3

1 25
6

FC 1

1
FC 2 +
Softmax

2

Figure 4.4. Convolutional neural network architecture used for feature extraction.

is fed into the first convolution block, which uses 16 3-D filters of size 5 by 5 by

23 (number of channels) with rectified linear unit activation (ReLU) and stride 2

by 2 by 1. These activations are then down-sampled by a max pooling layer over
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a region of 2 by 2 by 1 and passed to the next convolution block. Block two uses

32 2-D filters of size 3 by 3 with ReLU activation and stride 1 by 1. Again, these

activations are then down-sampled by a max pooling layer over a region of 2 by 2 and

passed to the next convolution block, which is identical to the second except for using

64 filters. After the third convolution block, the resulting activations meet a fully-

connected layer (FC 1) consisting of 256 neurons. A final fully-connected layer (FC

2) with two neurons feeds a softmax activation layer for direct classification by the

CNN. For our purposes, we are interested in a CNN which produces a feature vector

representative of the input image rather than normal direct classification. Therefore,

we use the 256 activations at FC 1 as the CNN feature vector. The activations here

should capture the cascading features learned by the previous layers and convolution

blocks, providing a convenient summary of the most relevant features in the signal.

Hyperparameters associated with training like learning rate schedule, regularization,

and momentum were tuned using Bayesian optimization. The validation data was

used to monitor the progress of training. Training was concluded once the batch

cross-entropy loss diverged from the loss on the validation set.

4.3.3 Temporal Context

Similar to the temporal context created in the previous section, we use neighboring

feature vectors from the CNN to create temporal context features. The augmented

sliding window technique, illustrated in Figures 3.9 and 4.5 below, will eventually

provide the classifier with features that capture the recent behavior of the signal as

well as what is currently seen. This should help the model draw better conclusions

than it would if it was considering each window of data individually. The augmented

sliding window technique produces an augmented feature vector of 768 elements which

can then be classified.
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Figure 4.5. Augmented sliding window for temporal context. The
current features are those from the dark green area, while the aug-
mented feature vector includes the means and standard deviations of
the features from the preceding windows.

4.3.4 Classification

We formulate the classification problem as a binary discrimination one where the

classifier must find the best hyperplane delineation in the feature space between the

augmented feature vectors of the interictal and preictal classes. More specifically, the

classifier seeks to output a status ∈ {interictal, preictal} of the patient. Altogether,

there are 768 features in each augmented feature vector. Therefore, we have a high-

dimensional dataset. The SVM classifier is capable of exploiting the so-called “kernal

trick” to find a suitable delineation without debilitating increases in computational

expense. Figure 3.7 illustrates a simple SVM used for binary discrimination.

Again, in order to evaluate the model, we must describe performance measures.

Unlike the previous section, recall and precision will not be adequate, since we are

more focused on metrics that evaluate the proposed system’s impact on the patient’s

QoL. The authors in [40] provide a thorough examination of the different ways of

assessing and comparing seizure prediction methods. Two such measures have become

the standard means of evaluation: sensitivity and false alarm rate. Sensitivity is the

percentage of seizures that the model correctly issues advanced warnings for, and

false alarm rate (FPR) is the number of false warning issued per hour by the model
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when applied to the entire record. Still, we must further define what constitutes a

correct warning. Following [41], we define a seizure prediction horizon (SPH), or the

minimum time before seizure onset that a warning must be issued, of five minutes. We

also select a seizure occurrence period (SOP), or the period of time after the warning

and SPH that seizure onset must occur during, of 30 minutes. These two parameters

are illustrated in Figure 4.6. For a warning to count as correct, a seizure must occur

Figure 4.6. Window for correct warnings in terms of SPH and SOP.

no earlier than the SPH and no later than the SPH+SOP. Further, we compare our

model to a random predictor for further validation. From [73], the probability of

randomly issuing a warning in a given SOP with a given FPR can be approximated

as

P ≈ 1− e−FPR·SOP . (4.1)

Therefore, the probability, p, of predicting at least m seizures of M total seizures by

chance is

p =
∑
i≥m

 M

i

P i(1− P )M−i (4.2)

In order to compare the performance of the model to the unspecified random predictor,

p was calculated where m equals the number of seizures predicted by the model. p

is then the statistical significance level to which our model performs better than the

random predictor.

4.3.5 Post-processing

Similar to the previous section, the SVM classifier makes a decision on every

window, which we found to produce a noisy signal which causes spurious false alarms.
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FPR has an adverse effect on the patient’s overall QoL, since high FPRs would keep

them in a constant state of alarm and undermining the convenience that such a seizure

prediction system would provide them in the first place. To reduce the FPR, it is

desirable to devise a method of estimating the true state of the patient based on

the cumulative successive outputs of the SVM. Other studies use methods such as

threshold crossing or k-of-n.

Threshold crossing, equation 4.3, makes use of the output of the CNN’s softmax

layer, q(t), and it is used in [42].

w(t) =

q(0) t = 0

αq(t) + (1− α)w(t− 1) t > 0

(4.3)

where α is a convex weighting acting as a smoothing parameter. q(t) can be computed

from equation 4.4, where

q(t) = P (cr|x, θ) =
P (x, θ|cr)P (cr)∑k
j=1 P (x, θ|cj)P (cj)

(4.4)

where P (cr|x, θ) is the probability that the observation belongs in class r, P (x, θ|cr)

is the conditional probability of the observation given the class r, P (cr) is the prior

class probability, and
∑k

j=1 P (x, θ|cj)P (cj) is the sum of the conditional probabilities

and prior class probabilities over all possible classes [74]. Finally, a threshold can be

set for w(t) to issue an alarm once it is crossed. This method attempts to make some

use of temporal context via the smoothing parameter.

The k-of-n method from [41] simply only issues an alarm if k of the last n windows

were predicted to belong to the preictal class. Their results suggest k = 8 and n = 10

are good choices for a window length of 30 seconds.

We make use of a Kalman filter on the SVM classifications, as in [75]. We imple-

ment a second order discrete time Kalman filter which estimates the true state of the

patient, xk, based on noisy outputs of the SVM, yk, while assuming the true state

rate of change is stable with smooth transitions and the measurement noise is much

larger than the process noise. This filter can be described by the state space model
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in section 3.4.2, where the relation σ2
v � σ2

w can be tuned for the desired level of

filtering.

4.4 Results

We can evaluate the model trained by the method outlined above on the test set to

analyze its performance in predicting seizures. For the purposes of the results listed

here, we used a cross-validation approach, which is typical in such applications. Each

iteration, one seizure was used for evaluation and all others were used for training.

The number of iterations is equal to the number of seizures. Therefore, training and

evaluation were accomplished several times for each patient, but each seizure is only

used once for evaluation. Further, we repeat this process twice, to ensure consistency

between non-deterministic training sessions and to be consistent with [41]. Results

for model performance are given in the table below separated by individual patient.

Mean and standard deviation between runs is reported for both sensitivity (%) and

FPR (/h).

Table 4.1. Summary of results for Boston Children’s Hospital dataset.

Pat.

ID

#

Seizures

Interictal

Hrs

Sens.

[41]

FPR

[41]

Sens.

(repr.)

FPR

(repr.)

Sens.

(ours)

FPR

(ours)
p

1 7 17 85.7±0 0.24±0 85.7±0 0.18±0 100±0 0.21±0.04 <0.001

2 3 22.9 33.3±0 0±0 66.6±0 0.09±0.06 66.6±0 0.02±0.03 <0.001

3 6 21.9 100±0 0.18±0 83.3±0 0.14±0 83.3±0 0.11±0.10 <0.001

5 5 13 80±20 0.19±0.03 100±0 0.15±0 80±0 0.19±0.05 <0.001

9 4 12.3 50±0 0.12±0.12 75±0 0±0 100±0 0.04±0.06 <0.001

10 6 11.1 33.3±0 0±0 83.3±0 0.18±0 83.3±0 0±0 <0.001

13 5 14 80±0 0.14±0 60±0 0.21±0.04 60±0 0.07±0.10 <0.001

14 5 5 80±0 0.40±0 100±0 0.40±0 80±0 0.20±0 <0.001

18 6 23 100±0 0.28±0.02 83.3±0 0.22±0.05 91.6±8.35 0.24±0.03 0.002

19 3 24.9 100±0 0±0 33.3±0 0±0 66.6±0 0±0 <0.001

20 5 20 100±0 0.25±0.05 60±20 0.30±0 80±0 0.23±0.04 <0.001

21 4 20.9 100±0 0.23±0.09 100±0 0.24±0.14 100±0 0.17±0.03 <0.001

23 5 3 100±0 0.33±0 80±20 0.66±0 80±0 0.17±0.24 <0.001

Total 64 209 81.2±1.5 0.16±0 77.7±3.0 0.21±0.02 82.4±0.6 0.13±0.06

Three sets of results are shown. First is the published results in [41], followed by

the results we obtained when attempting to reproduce their method and the results

obtained by our proposed method outlined in this section.
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As shown, our method improves overall sensitivity and FPR of the predictor.

While the improvements are marginal from the reported results in [41], our repro-

duction of their method never reached those presented. The improvement over the

reproduction is much better, which may be a better comparison of the two methods.

Overall, sensitivity increased by 4.7% and FPR was reduced by 0.08. The increase in

sensitivity is likely explained by the inclusion of temporal context features, and the

decrease in false alarm rate is likely due to filtering out spurious preictal classifica-

tions which might have otherwise raised a warning. Figure 4.7 below shows one such

example taken from an hour of interictal data from patient 19. The end result is a

Figure 4.7. Interictal sample from patient 19. Notice the avoided false
warnings from spurious preictal classifications.

better seizure predictor and a higher quality of life for the patients.
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5. IDENTIFICATION AND MITIGATION OF

BYZANTINE AGENTS IN MULTI-AGENT SYSTEMS

USING BLOCKCHAIN

5.1 Introduction

In designing distributed networks, especially those which include aerospace vehi-

cles performing sensitive missions or operating over populated areas, it is particularly

important to keep security in mind. The advantages of using a distributed network

of low cost agents also come with the possibility of failure or even malicious hijacking

of agents due to their often minimalist design. In UAV network applications like

military surveillance and even industrial package delivery, motivation to disrupt the

network is easily found. Additionally, though, even less sensitive applications may

experience innocent power or component failures on some nodes. Ideally, networks

are designed for resiliency in these cases, so the network’s intended goals and behavior

are not compromised in these situations.

Potential services provided by UAV networks include package delivery, factory

automation, air traffic management, on-demand sensing, transportation, and search

and rescue [6–13]. Threats from adversaries and failures might result in the denial of

these services, network malfunction, and even leaks of confidential information and

user data. Naturally, system designers must address these problems to ensure mission

success.

These arbitrary threats, both malicious and naive, can be modeled as Byzantine

faults framed by the Byzantine generals problem. First described by [76], the prob-

lem describes a faulty process which disseminates conflicting information to other

processes. Here, Byzantine faults pose a particular threat to the network’s ability

to reach a consensus, which is vital for many distributed algorithms which make the
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network provide any useful function [77]. The distributed consensus problem in the

presence of Byzantine faults is often allegorically compared to a group of Byzantine

generals surrounding an enemy city. They must decide together whether to attack or

withdraw, and some of the generals may be traitors. In order to be successful, all of

the loyal generals must decide to attack or withdraw together, otherwise the army will

be decimated. Therefore, a solution to the Byzantine generals problem must ensure

1) all loyal generals agree on the same option and 2) the option agreed upon did not

explicitly originate from a non-loyal source (i.e. the group does not take the action

desired only by the traitors) [77].

Resilience to this type of attack is known as Byzantine fault tolerance. Indeed,

several methods of achieving Byzantine fault tolerance have been proposed, since the

subject has been studied for over thirty years [78]. However, almost all of these meth-

ods require a central authority for process verification, constrain the proportion of

dishonest agents to less than a minority, or do not scale well with the size of the net-

work. For instance, the original algorithm proposed by [76] requires a communication

cost of O(nm+1), where n is the number of network nodes and m is the number of

Byzantine agents. Blockchain technology was established to achieve Byzantine fault

tolerance for decentralized cryptocurrency markets which have very similar require-

ments to the UAV networks considered here: decentralized, scalable, and efficient.

In fact, Byzantine fault tolerance has since been identified as the most important

attribute of blockchain protocols [79]. It could potentially serve as a method of

achieving Byzantine fault tolerance in the applications considered here, and it even

has the potential to benefit them in other areas like coordination and autonomy once

applied as well [5].

5.1.1 Blockchain Byzantine Fault Tolerance

Blockchain achieves Byzantine fault tolerance through the use of a distributed

ledger which records and verifies transactions or processes via majority approval,
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thereby revealing any traitorous ones [79]. Effectively, a blockchain protocol removes

the necessity of trust between agents in a distributed network. Blockchains use con-

sensus algorithms to choose a single agent who will produce the next block. Records

of processes are grouped together by this agent into blocks which are cryptograph-

ically sealed and linked to the previous ones. Each agent stores a local copy of

the blockchain which it updates with its neighbors to distribute/receive new blocks.

Therefore, only verified blocks are exchanged between agents rather than raw process

information. This allows detection of Byzantine faults because logical inconsisten-

cies are recorded on the blockchain and available to each agent even if they occur

at large distances across the graph. The most popular consensus algorithm which

produces verified blocks and achieves Byzantine fault tolerance on the blockchain

information exchanged locally is known as Proof-of-Work (PoW). This was first pro-

posed by Satoshi Nakamoto for Bitcoin but was later adopted in variation by almost

all other protocols, including Ethereum [43]. The PoW algorithm is widely successful

because it is both difficult to solve and easy to verify. Therefore, blocks are verified

quickly and distributed throughout the network. Additionally, since blocks are linked

to each preceding one by unique hashes produced by solution of the PoW, a malicious

agent seeking to modify a block would have to re-solve PoW problems for every block

which follows the one it wishes to modify. Further, all of this computation must be

done before the next latest block is produced and all of the hashes are verified again

or it must start over. Because of this, the blockchain remains secure until Byzan-

tine agents hold the majority of the network’s computing power, which is much less

stringent than other methods for Byzantine fault tolerance.

5.1.2 Blockchain Basics

As mentioned before, the blockchain is simply a recording ledger of information

and transactions which is secured by the protocols that restrict nodes’ ability to edit

it. Interactions with the blockchain are usually referred to as transactions involving
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tokens (the currency). The blockchain is made up of groups of transactions called

blocks, which are linked to each other forming a chain. Blocks consist of headers,

which include administrative data like the linking information, a timestamp, and

other relevant mining data, as well as transaction and potentially other state data

organized into merkle trees for accessibility. Figure 5.1 shows a representation of

how blocks are usually arranged. The links between blocks, known as hashes, are

Figure 5.1. The anatomy of a general blockchain [43].

the result of one-way hash algorithms applied to the combination of the previous

block’s hash, the transaction information included in the block, and an input number

called a nonce. The blockchain protocol controls the addition of new transactions

to the chain by controlling the process of creating new blocks. Usually, a proof

of work algorithm is used to select which participating node will produce the next

block. Network nodes known as miners compete to create blocks by finding a suitable

nonce to produce a hash in the solution set defined by the protocol. In the proof of

work algorithm, the only way to search for a suitable nonce is by brute force, which

attaches a computational cost to generating new blocks. The process of attempting

to solve the proof of work problems and grouping transactions into candidate blocks

is called mining and is shown in Figure 5.2. The target value is set by the blockchain

protocol’s mining difficulty, and the token reward for successfully mining a new block

is known as a coinbase, which incentivizes miner participation. Since each block

hash is generated using the hash of the previous block, the blocks are linked together



71

Figure 5.2. Generating a new block with proof of work [79].

such that modifying a block would change the its hash and require calculation of

new hashes for all succeeding blocks in the limited time period before a new block is

successfully mined. Nakamoto’s analysis in [43] shows this provides data security as

long as cooperating miners account for at least the majority of processing power in

the network.

Since each nodes holds its own version of the blockchain, new blocks must be

broadcast when they are created. The successful miner shares the new block with

its neighbors, who in-turn share it with theirs to distribute it across the network. It

is possible that nodes will be operating off of different versions of the blockchain in

sufficiently large or sparse networks. This is called forking, and this is managed by

chain length comparisons. The longest chain is traditionally chosen to operate on,

so even when nodes produce blocks at the same time, when the versions are rectified

when the next block is received. Transactions in the discarded block are returned

to the pool for inclusion in the next blocks if they are not already included in other

blocks. This process is shown in Figure 5.3. Mining difficulty influences the prevalance
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Figure 5.3. Blockchain forking. Two valid blocks exist at position 4,
but Branch B is adopted when new blocks are mined [79].

of forking because it controls the block generation rate. When new blocks are created

faster than they can be distributed across the network, more possible chain versions

exist. Each time a new block is mined and added to the chain, all of the blocks

preceeding it are considered validated. For example, a block that is followed by five

other blocks has five validations. The canonical chain refers to the section of the

blockchain which can be considered stable. That is, it has at least a specified number

of validations. The likelihood of losing a block due to forking drops off exponentially

with the number of validations that block has received [43]. Therefore, it is useful to

operate on information from the canonical chain rather than the most recent blocks.

Blockchains may be implemented publicly, as is the case for Bitcoin and Ethereum,

or they may be permissioned or private. Network owners may control who is allowed

to participate in the network and, thus, who has access to view or mine on the

blockchain. Private blockchains allow companies to enjoy the benefits of distributed

record-keeping while still retaining data privacy in-house. Many organizations in-

cluding Walmart [80], Amazon [6], and Bank of America Merrill Lynch [81] have used

this approach to experiment with utilizing blockchain technology in their processes.

Additionally, consortiums of similar entities might operate a blockchain together.

This acts as a semi-private network, where companies might mutually benefit from

provably transparent coordination while retaining privacy from the public. Likewise,

data on the blockchain may also be public or private. Traditional key encryption, for

example, can be used to ensure transaction records are kept but only relevant stake-
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holders can access them. This is especially useful for applications involving personal

information like medical records or personnel files.

Though the blockchain concept originated with Bitcoin, its implementation there

left much to be desired by many who sought to leverage blockchain technology in other

applications. While originally created for use only as a cryptocurrency transaction

ledger, demand rose for a blockchain architecture which expanded the the allowable

data types naturally. Ethereum was created out of this demand, and its focus, rather

than secure cryptocurrency exchanges, is being a decentralized, adaptable, public

blockchain which supports verifiable scripting. As such, it is a blockchain-based

distributed computer which enables users to participate in trustworthy computational

interactions. Though not complete, it is a promising first step in an attempt to develop

a blockchain-based world computer. Ethereum accomplishes this via the Ethereum

Virtual Machine (EVM). The EVM is a Turing-complete virtual processer capable of

executing scripts and loading data. As Dhillon et. al write, the ”EVM allows any user

on the network to execute arbitrary code in a trustless environment where the outcome

is fully deterministic and the execution can be guaranteed” [79]. Effectively, this

transforms the blockchain from a simple ledger to a computational platform capable

of complete isolation of executable code. Each node operates an EVM, which allows

nodes to pass inputs to the verified code at the appropriate location on the blockchain

and receive the result of the executed functions. Transactions are synonymous with

function calls to the code on the blockchain.

Ethereum also consists of the cryptocurrency Ether which, similar to Bitcoin, is

used to incentivize miner participation and facilitate the exchange of value in the net-

work. There is also a small Ether cost attached with computation on the blockchain,

called gas, which acts as a spam-prevention mechanism. Operations cost gas in the

Ethereum network to dissuade code with long run times from clogging up the net-

work. The protocol sets a limit for the amount of gas allowed per block as well as the

amount of money users would have to spend to execute this code. The executable

code exists on the blockchain in the form of smart contracts, which are called by the
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EVM when invoked by the user. Smart contracts exist as byte code which is actually

executed when invoking transactions are mined. In turn, the mined block containing

this transaction is disseminated through the network as usual, but the executable

code is also verified by all miners who receive the new block. This is necessary to

ensure all nodes are operating on blockchain versions with the same states. When

a full node receives a new block, it executes all transactions included in it to verify

it and update its blockchain state. Because of this, computation and storage on the

blockchain is relatively expensive. Smart contracts can be written in a programming

language like Solidity, which then uses a compiler to convert the program into byte-

code for deployment on the blockchain. Then, a node can use the EVM to deploy the

contract bytecode with a transaction. When this constructor transaction is mined,

the code is included on the blockchain. To interact with the smart contract, a new

transaction will is sent with the appropriate arguments. Once this transaction is

mined, the code is executed and the blockchain state is updated accordingly. Nodes

can watch for the anticipated changes and view the execution results. For further

information on the mechanics of Bitcoin, Ethereum, and other common blockchain

protocols, see [79].

5.2 Implementation

Ethereum is open source and its source code is modifiable. Because of this, along

with the highly-customizable smart contract capabilities, it is often used to experi-

ment with blockchain. Additionally, it supports operation of private networks with

multiple nodes from a single machine, which is useful for easily simulating distributed

networks. Here, the Ethereum protocol was chosen because it is adaptable to the ex-

periments considered and it enjoys thorough documentation and a large support com-

munity. Smart contracts allowed for the implementation of the algorithms considered

on the blockchain.
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A local private network was run on a single computer to simulate a distributed net-

work operating on the desired algorithms. The process outlined below was repeated

for each consensus algorithm considered, with the only differences being the code to

implement the algorithms. For each algorithm, consensus was simulated traditionally

with no blockchain and all cooperating agents, with a blockchain and all cooperating

agents, and then both with and without a blockchain in the presence of Byzantine

agents to evaluate the blockchain’s effects on resilience. The same network topology

is used for all cases of the same algorithm in order to provide a valid comparison

between the standard and blockchain cases. For simplicity, simulations including the

application of a blockchain will be referred to as the blockchain case. Likewise, the

simulations without inclusion of a blockchain are referred to as the standard case.

A MATLAB script was written to simulate the network behavior without the

application of a blockchain. This is similar to standard simulations of distributed

algorithms, and it operates a specified fixed, synchronous network topology for a

specified number of time steps to observe convergence behavior. Another MATLAB

script was written to function as a driver for the blockchain case. This driver script

performs several operations to initialize the blockchain protocol and pass the desired

commands to the EVMs for each node. The MATLAB script interacts with the

Ethereum client Geth, which is the command line interface for running Ethereum

nodes. For these experiments, Geth’s source code was modified and then recompiled

to establish a constant mining difficulty to eliminate any effects on the simulations.

Normally, Geth employs a variable mining difficulty to control the block generation

rate, but this could introduce variance between simulation runs. At each run, the

driver uses Geth to initialize a blockchain from a custom genesis block and pre-

allocates 100 Ether into each node’s account. This amount is arbitrary but is sufficient

to ensure no agents are unable to execute transactions due to a lack of Ether. Next,

the individual nodes are initialized and connected as peers in accordance with the

simulated network connectivity. This allows nodes to exchange blockchain versions.

Next, all nodes begin mining new blocks and one node sends a transaction to deploy
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the smart contract on the blockchain. The smart contract contains several functions

to implement the desired algorithms and is written using the Solidity compiler before

the simulation runs. The main functions the nodes interact with are registerAgent,

which provides the smart contract with the nodes’ public keys and initial states, and

applyUpdate, which executes the update algorithm and returns the agents’ next

states. All nodes listen for events which are triggered when certain transactions

are successfully mined and included on the blockchain. When the smart contract

deployment transaction is mined, all nodes receive an event notifying them of its

location on the blockchain. They will use this address to interact with the smart

contract, and, hence, the update algorithm.

Once the nodes receive the smart contract’s address, each one sends a signed

transaction to the registerAgent function with its initial state as an argument.

This function records the agent’s public key and initial state on the blockchain and

returns the block number and block hash where these values are recorded to the agent

once the transaction is mined via an event. When all agents have been registered on

the blockchain, the blockchain state matches the initial network state in the standard

case and the simulation run can proceed. At each time step, each agent sends a

transaction to the applyUpdate function to receive its next state. The input argu-

ments to this function include the agent’s current state and the block number and

block hash this state is based on. The applyUpdate function checks the agent’s

current state and block information against the record on the blockchain. The block

hash is checked to ensure the agent is operating off of the correct blockchain version

and provides the location of the relevant data on the chain. If the block information

matches the blockchain’s recorded information, the argument state is compared to

the recorded state. If this matches, the update algorithm is applied and the new

state and corresponding block number and hash are returned to the agent via an

event as well as recorded on the blockchain. Locality is enforced since each agent’s

blockchain version only has the current states of its neighbors it has exchanged chain

versions with, whereas the recorded states of non-neighbors is always outdated. If the
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state does not match, the agent is considered Byzantine, since it holds a state which

does not agree with the output of the algorithm at the last time step. When this

happens, the smart contract blacklists this agent and ignores it’s state values from

consideration in the subsequent time steps. This effectively removes the node from

the network, since its state will no longer influence the state updates of its neighbors.

When a Byzantine agent is identified, it is with 100% certainty. This prevents the

Byzantine agents from affecting the other agents once their behavior is identified,

which requires one time step. The update algorithm is secured to the level of the

blockchain protocol, since its code and execution exist on the blockchain itself. In the

same way, the blacklist is also secured to the level of the blockchain protocol and is

both immutable and unalterable.

5.3 Unconstrained Consensus

Here, unconstrained consensus refers to a few selected consensus algorithms which

are simple yet find applications in multi-agent systems. These algorithms are intended

to represent the lowest level of complexity in multi-agent system dynamics and control

in order to analyze their utility from a security/resiliency standpoint.

5.3.1 Majority Rule Consensus

Majority rule consensus is frequently applied in social dynamics models and mod-

eling of natural scientific processes. As previously noted, consensus by majority rule

is not guaranteed in every case but depends on network parameters like size, spar-

sity, and the state value space. Network size and sparsity determine the size of each

agent’s neighborhood. The state value space determines the possible state values each

agent could hold. If the neighborhoods are small and the state value space is large,

the likelihood of a state with a clear majority existing in each agent’s neighborhood

decreases. At its extreme, this situation would cause random states to be adopted at

every time step if xj(t) where j ∈ Ni contains no true mode.
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Still, it can be shown that the application of a blockchain improves a network’s

ability to reach a consensus under a majority rule update in the presence of Byzantine

agents. Here, we consider Byzantine agents as those which do not update their state

in accordance with majority rule. Instead, they hold their state values in order to

simulate innocent malfunction Byzantine fault or malicious Byzantine attack seeking

to disseminate their state value.

Figure 5.4(a) below shows convergence of an example network consisting of ten

non-Byzantine agents under the majority rule update both with and without the ap-

plication of a blockchain. Convergence is achieved in both the standard distributed

consensus case and when a blockchain is applied under the same conditions. Similar

convergence behavior is observed, but some slight differences occur due to difference

state values selected when an agent’s set of neighbor states happens to be multimodal.

Since the agent randomly chooses one of the modal states, consensus error is affected

when differing states are chosen. Next, two agents of the same network are selected

as Byzantine while the initial conditions remain unchanged. Figure 5.4(b) shows

convergence behavior both with and without application of a blockchain. The con-

(a) No Byzantine agents. (b) Two Byzantine agents.

Figure 5.4. Consensus error for ten agents under majority rule.

sensus error history indicates the states of the non-Byzantine agents fail to converge.

Only ten time steps are shown for concision, but the final error shown here remains

constant even after thousands of time steps. However, when a blockchain is applied
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under the same conditions, convergence is achieved in a very similar fashion to the

non-Byzantine case. Additionally, the convergence value is unaffected by the presence

of the Byzantine agents in the blockchain case. This simulation suggests resilience

to Byzantine agents is improved by application of a blockchain under majority rule

consensus.

5.3.2 Maximum Rule Consensus

Unlike majority rule, convergence is guaranteed in maximum rule consensus (with-

out inclusion of Byzantine agents), as shown in [82]. Additionally, the state value

space is usually increased to real numbers here rather than integers. Maximum rule

consensus is often applied when some sort of quality estimate is associated with a

measurement or process. Networks seek to reach a consensus of the highest quality

estimate for state adoption. Here, agents update their state by selecting the maxi-

mum of their set of neighbor states. This proves to be a challenge in combating the

effects of Byzantine agents. Because of the time step required for proper identifi-

cation, states from Byzantine agents can still affect the rest of the network if other

agents adopted this state during this lag time.

Figure 5.5(a) below shows convergence of the same ten agent example network

both with and without the application of a blockchain under the maximum rule up-

date. Since their is no randomness involved in this update, the convergence behavior

should exactly match if initialized the same, which is observed. Under maximum

rule, consensus is achieved among cooperating agents in the presence of Byzantine

ones both with and without Blockchain. This is due to the fact that the random

behavior of Byzantine agents will not have an affect on cooperating ones unless they

hold a higher state value, so usually their randomness is ignored. The error occur-

ring once a consensus is reached is caused by Byzantine agents happening to take

a state which is greater than the previously converged-upon maximum. This only

happens in the standard case, since the blockchain method has already identified and
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(a) Initial max in Byzantine. (b) Initial max in non-Byzantine.

Figure 5.5. Consensus error for ten agents under maximum rule.

blacklisted the Byzantine agents by this point. Unless a Byzantine agent holds and

disseminates its maximum state before the blockchain can identify it (within the first

two time steps), it will not be able to affect the final agreement value. Therefore,

although consensus is reached in both cases, the Byzantine agents are much more

likely to affect the final agreement value in the standard case. The following plots

of the mean state value of cooperating agents vs time illustrate this effect. In the

(a) Initial max in Byzantine. (b) Initial max in non-Byzantine.

Figure 5.6. Mean state value for ten agents under maximum rule.

blockchain case of Figure 5.6(a), the mean state value decreases after the first time

step due to the blockchain’s identification of the Byzantine agents and their subse-

quent blacklisting. However, since one held the true maximum value, its state was
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already disseminated and adopted by non-Byzantine agents before it was detected

who then further distributed it. Convergence under the maximum value update is

unaffected by the presence of Byzantine agents as long as they do not isolate non-

Byzantine agents from the rest of the network. Further, inclusion of a blockchain of

this form does not prevent the network from converging on a state with Byzantine

origin. However, the Byzantine agents are correctly identified and recorded on the

blockchain, so backtracking and re-execution would allow the state originating from

Byzantine agents to be ignored at the expense of a restart.

5.3.3 Local Average Consensus

The most widely applied algorithm considered yet, local average consensus has

found use in flocking, multivehicle coordination, and sensor networks. For this sim-

ulation, the weight matrix, wij, was chosen to achieve a local direct average update.

Specifically,

wij =


1
di

j ∈ N〉

0 otherwise

(5.1)

where di is the number of neighbors of agent i. At each time step, each agent takes

the average of its neighbors’ states. This is a simple case of average consensus, but it

is still widely used. Choices for wij enable designers to tweak the convergence value

such as Metropolis weights for convergence to the initial global average [83] or Corless

weights for convergence to a desired convex combination of the initial states [84].

Similar to the maximum value consensus scenario, for fixed initial conditions, local

average consensus behavior should be the same for both the standard and blockchain

cases when no Byzantine agents are included. Figure 5.7(a) below validates this con-

clusion. When two of the agents are Byzantine, however, the standard case fails to

converge, as shown in Figure 5.7(b). When a blockchain is applied, convergence is

achieved in a similar fashion to the case when no Byzantine agents are included. This

is perhaps the clearest example of mitigation of Byzantine effects using blockchain.
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(a) No Byzantine agents. (b) Two Byzantine agents.

Figure 5.7. Consensus error for ten agents under local direct average rule.

This simulation suggests resilience to Byzantine faults is improved with the applica-

tion of a blockchain in networks under the local average update.

5.4 Distributed Solution of Systems of Linear Equations

The solution of linear algebraic equations is one of the most essential capabil-

ities for mathematical problems encountered in science and engineering. In many

situations, finding solutions in a distributed manner is advantageous for efficiency,

memory, or redundancy reasons. The parallel processing community has pursued

this ability for many years because the deconstruction of a large system of linear

equations into smaller ones on parallel processors allows faster and more accurate so-

lutions than a direct approach [85,86]. Further, a distributed method is necessary in

some applications due to the physical separation between processors onboard robots

or sensors, particularly in swarms [87], sensor networks [15, 88], and some filtering

applications [89,90].

We are interested in a network of agents as previously described, each with their

own processing capacity, finding the collective solution to a system of linear equations

of which each knows only a part. Specifically, each agent i has a state vector xi(t)

with values Rn and knowledge of the pair of real-valued matrices Ani×n
i and bni×1

i .
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Agents communicate locally to drive their state vectors to the solution of the linear

equation Ax = b where A =
[
A′1 A′2 · · · A′m

]′
n×n̄

, b =
[
b′1 b′2 · · · b′m

]′
1×n̄

,

and n̄ =
∑m

i=1 ni. Mou et al. proposed an elegant algorithm to achieve this based

on the “agreement principle” [90]. The algorithm forced agents to satisfy their own

private equations while iteratively working toward a consensus: the solution to the

entire system of equations. This algorithm is

xi(t+ 1) = xi(t)− Pi

(
xi(t)−

1

di

∑
j∈Ni

xj(t)

)
, j ∈ Ni (5.2)

where Pi is the projection matrix to the kernel of Ai and di denotes the cardinality

of Ni. An initialization step requires that xi(0) satisfies Aixi(0) = bi. The projection

matrix, Pi ensures each iteration remains in i’s local solution space. Therefore, xi(0)

must be initialized in the local solution space. Convergence is guaranteed from the

proof in [90] when no Byzantine agents are present. This algorithm was later improved

upon by Wang et al. to avoid the initialization step and enable convergence to

solutions closest to a particular point by adding another term [91]. This improved

algorithm, henceforth referred to as the Distributed Algorithm for Linear Equations

(DALE) will be used here and is given as

xi(t+ 1) = xi(t)− Pi

xi(t)− 1

di(t)

∑
j∈Nj(t)

xj(t)

− Ā′i (ĀiĀ′i)−1 (
Āixi(t)− b̄i

)
(5.3)

where [Āi b̄i] denotes a submatrix of [Ai bi] such that ker Ai = ker Āi and ĀiĀ
′
i is

nonsingular.

Here, Byzantine agents will be modeled as those which do not change their state in

accordance with the algorithm above. Instead, they hold their state values in order to

simulate innocent malfunction Byzantine fault or malicious Byzantine attack seeking

to disseminate their state value. In the blockchain approach, the DALE algorithm

exists on the chain in the form of a smart contract. At each time step, agents interact

with this smart contract to receive their new state in accordance with DALE. The

smart contract records this interaction, as well as the result of the update algorithm.
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When agents interact with the smart contract again at the next time step, their

current state is compared to the result of the update algorithm at the last step. This

allows detection of Byzantine agents which do not hold states in accordance with the

DALE algorithm. When these Byzantine agents are detected, they are blacklisted

and their states are not considered in future time steps when agents interact with the

smart contract to receive their state update. When a Byzantine agent is identified,

it is with 100% certainty. This prevents the Byzantine agents from affecting the

other agents once their behavior is identified, which requires one time step. The

update algorithm is secured to the level of the blockchain protocol, since its code and

execution exist on the blockchain itself. In the same way, the blacklist is also secured

to the level of the blockchain protocol and is both immutable and unalterable.

In the presence of Byzantine agents, it is expected that a solution to the entire

system of equations will be unattainable, since agents hold their own private equations

and those known only to the Byzantine agents would only be satisfied by chance.

However, it is expected that state convergence will be improved in the presence of

Byzantine agents when a blockchain is applied, which would drive the states toward

an accurate solution of the system of equations known by the non-Byzantine agents.

Two error measures will be used for analysis. First, the solution error shown below

measures the difference between the network’s states and the solution to the system

of linear equations for all non-Byzantine agents.

S(t) =
m∑
i=1

||xi(t)− x∗||2 (5.4)

where x∗ is the true solution to the system of linear equations. S(t) = 0 if and only

if all xi(t) = x∗. Second, the consensus error shown below measures the difference

between all non-Byzantine agents’ states.

V (t) =
∑

(i,j)∈E

||xi(t)− xj(t)||2 (5.5)

Similarly, V (t) is positive semi-definite and is equal to zero only when a consensus is

reached.
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The numerical simulation below uses a network of three agents with connectivity

corresponding to the adjacency matrix

AG =


1 1 0

1 1 1

0 1 1

 (5.6)

attempting to solve the system of linear equations shown below.

A =


1 −1 0

1 0 −1

0 1 1

 , b =


−6

−9

15

 (5.7)

which has the unique solution

x∗ =


0

6

9

 (5.8)

When no Byzantine agents are present, this system of equations is solved identi-

cally by the standard and blockchain methods, as shown below. Since S(t) goes to

zero, all state vectors have converged to x∗.

Figure 5.8. Solution error for example simulation without inclusion
of Byzantine agents.
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However, when one agent is Byzantine, the standard method fails to converge at

all, let alone converge near x∗. The errors shown here only consider the non-Byzantine

agents ({̄i ∈ i : ī is non-Byzantine}).

Figure 5.9. Solution error for example simulation with a single Byzantine agent.

As expected, the blockchain method also fails to reach S(t) = 0, but it does exhibit

different behavior than the standard case. S(t) indicates that the blockchain method

increases solution accuracy, presumably due to the improvement of state convergence

expected. Since the states of the non-Byzantine agents converge, their private equa-

tions are satisfied simultaneously, whereas the failure of state convergence in the

standard case only ensures each agent’s private equations are satisfied independently

by arbitrary state vectors. Examination of the consensus error supports this finding,

indicating state convergence is achieved in the blockchain approach as opposed to the

standard approach.

When no Byzantine agents are present, both methods converge to the correct

solution. The slight trace differences are only due to the number precision difference

for the blockchain case, since Ethereum does not support fixed point operations.

When Byzantine agents are considered, the standard case has no hope of converging,

let alone to the correct solution. In the blockchain case, convergence is achieved, but

since some information from the problem is lost (only the Byzantine agents know
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Figure 5.10. Consensus error for example simulation with a single Byzantine agent.

(a) Consensus error. (b) Solution error.

Figure 5.11. Consensus and solution error with no Byzantine agents.

their equation rows), convergence to the correct solution is not guaranteed. Instead,

the cooperating agents will converge upon a solution to the problem posed by the

remaining known equation rows, which will likely have multiple solutions. The figures

below show convergence to the correct solution by chance (when initial values were

close to x∗) and a different solution. In both cases, all known equations in the system

are satisfied.

This simulation suggests resilience to Byzantine faults is improved with the appli-

cation of a blockchain in networks under the DALE algorithm. Further, the converged
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(a) Convergence to x∗. (b) Convergence to different solution.

Figure 5.12. Consensus and solution error with a single Byzantine agent.

solution will satisfy the private equations of all non-Byzantine agents, unlike the stan-

dard case in which all private equations are only satisfied independently.

5.5 Constrained Distributed Optimization

Yet another desirable ability for multiagent systems is distributed constrained

optimization. In these problems, the goal is to optimize a global objective function

which is the sum of local agent objective functions, subject to a constraint set given

by the intersection of the local agent constraint sets. Particularly, each agent i holds

a state vector, xi(t), which is its estimate of the solution to the optimization problem.

Each agent knows only its own local objective function fi, its own constraint set Xi,

and the states of its neighbors at the last time step xj(t). We seek to utilize only

local interaction for the agents to cooperatively solve the constrained optimization

problem

minimize
m∑
i=1

fi(x)

subject to x ∈
m⋂
i=1

Xi

(5.9)

where fi : Rn → R is a convex objective function and Xi ⊆ Rn is a closed convex

constraint set. Let the optimal value of this problem be denoted as f ∗ which occurs

at x∗.
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The ability to solve optimization problems in a distributed manner opens the

door for extremely capable distributed networks. This process could be applied to

wireless sensor networks and even robot swarms to accomplish global objectives in

an optimal manner. Still, the distributed nature of the problem allows calculation

to take place over many agents with potentially decreased processing capabilities.

Applications of distributed constrained optimization include traffic control [92], en-

vironment parameter estimation [93], smart grid resource allocation [94], and even

artificial intelligence [95].

Here, we will consider the work of Nedić et al. and use a distributed subgradient

method for solving the distributed optimization problem above. Similar to DALE

discussed previously, this algorithm is rooted in the agreement principle and consensus

is used as a mechanism for distributing computations among agents. Each agent

updates its state by combining the states of its neighbors, taking a subgradient step

to minimize its objective function, fi, and finally by projecting on its constraint set

Xi [96]. Each agent starts with an initial estimate of the solution which satisfies its

own constraints, xi(0) ∈ Xi. The distributed update algorithm is

vi(t) =
m∑
j=1

aji (t)xj(t) (5.10)

xi(t+ 1) = PXi
[vi(t)− αtgi(t)] (5.11)

where the scalar aji (t) is the nonnegative weight of the edge from agent i to agent j,

αt is the step size, gi(t) is the vector subgradient of fi(x) at x = vi(t). In [96], it is

shown that this algorithm converges without the presence of Byzantine agents for the

case of uniform weights aji (t) = (1/m) for all i and j, i.e., G is fully connected.

When no Byzantine agents are present, both methods converge to the correct

solution. When Byzantine agents are included, again the standard case has no hope

of convergence or convergence to a solution. The blockchain case converges to the

optimal value of the known objective function, which is different from the actual

objective function since the local objective functions of the Byzantine agents are not

known to the system. Still, the converged upon value is very close to x∗ since the
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(a) Consensus error. (b) Solution error.

Figure 5.13. Consensus and solution error with no Byzantine agents.

global objective function is the sum of all local ones. In the blockchain case, both

consensus and solution error increase in the time step that the Byzantine agents are

identified. This is expected from the lag before they are blacklisted, since Byzantine

behavior must first occur to be recognized on the blockchain. They quickly recover

once this happens, however.

(a) Consensus error. (b) Solution error.

Figure 5.14. Consensus and solution error in the presence of Byzantine agents.
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5.6 Associated Cost

Even though blockchain has been hailed as the way of the future for many fields,

its mechanisms impose a significant computational cost. In the applications consid-

ered here, each agent would act as a miner working to add transactions and new

blocks to the chain. The traditional method which keeps this process secure, proof

of work, relies on computational capacity being expended by each miner. Therefore,

by simply seeking to solve the proof of work problem posed by each block, additional

computations are required compared to the standard method. The difficulty of these

problems can be regulated by the protocol’s source code. Reducing the difficulty

would decrease the amount of computational expense spent mining blocks but would

increase the block generation rate. An increased block generation rate could result in

a higher risk of agents holding forked chain versions. Additionally, blocks might be

created before there are any transactions to include in them, wasting storage space

on each node which still must store its header. Normally, blockchain protocols adjust

mining difficulty to achieve a desired block generation rate. On the main Ethereum

blockchain, this is about one block every 15 seconds. A balance must be found be-

tween mining difficulty and block generation rate to achieve a reasonable number of

transactions per block. The expected rate of transactions depends on the particu-

lar application and implementation. More computationally efficient alternatives to

the proof of work algorithm are in development. Ethereum plans to implement the

proof of stake algorithm which replaces solving a math problem by brute force with

establishing stake-holding measures to determine which miner creates the next block.

Proof of stake drastically reduces the computational cost of mining on the blockchain,

and it is expected to be implemented in the very near future [97].

Perhaps the greatest computational cost of using a blockchain for these applica-

tions is the replication of operations performed in each transaction. The Ethereum

protocol was designed to be a distributed computer focused solely on trust rather than

speed. By allowing executable code to exist on the blockchain, computations can be
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performed and information shared between completely trustless nodes. Effectively,

it is a protocol which ensures that processes are carried-out in accordance with pre-

defined rules among any agents. It replaces the need for institutional, administrative,

or other sources of trust between agents. Here, rule enforcement in the form of prop-

erly updating state values in accordance with the prescribed algorithm is mechanical

and transparent as opposed to private calculations done on each agent’s processor.

To accomplish this, the Ethereum protocol requires that transactions are validated

on every node when chain information is updated. This means each agent will per-

form the calculations of all preceding transactions under this protocol. In distributed

systems with limited processing power, this does not scale well with network size.

The computational complexity of this verification process for each individual agent is

O(n), where n is the number of nodes on the network, since each agent must validate

each applyUpdate transaction. Still, this is a framework to ensure all agents play

by the same rules in a completely trustless network and could be especially useful

in applications which favor trust and accountability over speed. This is only true

for the Ethereum protocol, however, so custom protocols could be developed which

require less validation calculations on a private network. This would most likely be

the best way to apply these techniques in a real-world scenario. While inefficient

due to the validation burden, Ethereum is used here as a proof-of-concept. Addition-

ally, research into implementing the same concept in protocols which do not require

verification on every node and drastically reduce the imposed computational cost is

ongoing [79].

Additionally, there are communication and storage costs associated with the blockchain

case, since agents no longer simply exchange state information but entire block in-

formation, which includes data overhead in the form of headers and raw transaction

information like public keys, gas costs, and previous states. On the main Ethereum

blockchain, blocks sizes are about 25 kilobytes and the entire chain length is about 8.5

million blocks as of July 2019. On a private network for the applications considered

here, however, both the block size and the chain length would likely be just a fraction
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of this since the main Ethereum network supports transactions for millions of users

and decentralized applications. In the simulations presented here, the average block

size is 500 bytes for the local average unconstrained consensus problems. The chain

length depends mostly on the number of time steps required to achieve consensus,

which will vary widely across applications based on factors like the spread of initial

values and network topology. At each time step, agents do not exchange entire ver-

sions of the blockchain including all recorded data, but rather only new blocks are

exchanged and deconflicted. Therefore, the communication cost is the message size

of the new block information and its recorded transactions, and the storage cost is

the entire preceding portion of the blockchain. For each agent, these also scale with

O(n), where n is the number of agents, since each agent requires a transaction at

each time step. The continual growth of data on the blockchain is known as bloat,

and it also afflicts the main Ethereum chain as well on a much larger scale. Since the

nodes in a multi-agent system are likely to have limited memory capacity, storing the

entire blockchain might be infeasible. To retain the blockchain’s integrity, however,

block’s must be linked to all of those preceding it by their proof of work. In order to

limit storage requirements while also assuring the blockchain’s integrity, only essential

block information could be retained as the blocks age. For blocks whose recorded data

(like outdated state information or gas costs) is no longer relevant, only the headers

which link blocks together could be stored instead, which would reduce the memory

requirements for individual agents.

5.7 Conclusion

While applying blockchain technology to UAV swarms offers many potential ben-

efits, there are difficulties associated with using blockchain in UAV networks. [98]

identifies a number of technical challenges related to blockchain, some of which may

be of particular importance when attempting to use it in resource-limited networks

like UAV swarms. In particular, latency seems like the biggest technical problem to



94

face, particularly in very large networks. In a blockchain, latency is the difference in

time between execution of a transaction and its acceptance into the blockchain. [5]

notes that Bitcoin blocks take about ten minutes to be processed before they are

added to the chain. Many swarm applications (e.g. flocking) require very quick in-

formation exchange between network agents to accomplish. Excessive latency could

result in very poor flocking ability and even collisions. Much of the time it takes to

process a Bitcoin block is spent calculating the block’s proof of work. Alternatives

to computationally difficult problems for proof of work equivalents include concepts

such as “proof of stake” [99]. Another possible solution to this problem is affiliation

trust, where agents belonging to a specific organizations might be trusted more easily

than others, but this might have potential security concerns. [5] calls for innovative

research in the security versus speed tradeoff area. Another challenge associated with

using blockchain technology is size and throughput. Especially in large networks,

the blockchain might grow to the point where all of its information cannot fit in the

agents’ memory. The Bitcoin community refers to this problem as “bloat” [5, 100].

This is especially important in UAV networks, where each agent’s storage size and

processing power is limited compared to networks of computers.
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