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ABSTRACT

Author: Yang, Teng-Yao Ph.D.
Institution: Purdue University
Degree Received: May 2020
Title: Detection and Exclusion of Faulty GNSS Measurements: A Parameterized
Quadratic Programming Approach And Its Integrity
Committee Chair: Dengfeng Sun

This research investigates the detection and exclusion of faulty global navigation

satellite system (GNSS) measurements using a parameterized quadratic programming

formulation (PQP) approach. Furthermore, the PQP approach is integrated with the

integrity risk and continuity risk bounds of the Chi-squared advanced receiver au-

tonomous integrity monitoring (ARAIM). The integration allows for performance

evaluation of the PQP approach in terms of accuracy, integrity, continuity, and avail-

ability, which is necessary for the PQP approach to be applied to the vertical naviga-

tion in the performance-based navigation (PBN). In the case of detection, the PQP

approach can also be integrated with the vertical protection level and the associated

lower and upper bounds derived for the solution separation ARAIM. While there are

other computationally efficient and less computationally efficient fault detection and

exclusion methods to detect and exclude faulty GNSS measurements, the strength of

the PQP approach can summarized from two different perspectives. Firstly, the PQP

approach belongs to the group of the computationally efficient methods, which makes

the PQP approach more favorable when it comes to detect and exclude multiple si-

multaneous faulty GNSS measurements. Secondly, because of the integration of the

PQP approach with the integrity risk and continuity risk bounds of the Chi-squared

ARAIM, the PQP approach is among the first computationally efficient fault de-

tection and exclusion methods to incorporate the concept of integrity, which lies in

the foundation of PBN. Despite the PQP approach not being a practical integrity
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monitoring method in its current form because of the combinatorial natural of the

integrity risk bound calculation and the rather conservative integrity performance,

further research can be pursued to improve the PQP approach. Any improvement

on the integrity risk bound calculation for the Chi-squared ARAIM can readily be

applied to the integrity risk bound calculation for the PQP approach. Also, the con-

nection between the PQP approach and the support vector machines, the application

of the extreme value theory to obtain a conservative tail probability may shed light

upon the parameter tuning of the PQP approach, which in turn will result in tight

integrity risk bound.
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1. INTRODUCTION

With the advent of the Global Positioning System (GPS) for civilian use and

the advancement of modern avionics, the navigation of aircraft over the continental

US (CONUS) has been moving from the routes defined by ground navigation aids to-

ward the more flexible routes that are less restricted by the ground navigation aids [1].

One of this trend is the concept of the performance-based navigation (PBN) [2].

Compared to the traditional navigation methods, PBN reduces the need to maintain

sensor-specific procedures, routes, and the associated costs. PBN also abstains from

the need for development of new sensor-specific operations. Furthermore, PBN allows

for more efficient use of airspace, which in turn results in benefits including shorter

traveling time and fuel-efficient routes. The three different types of flight routes that

are shown in Figure 1.1, Figure 1.2, and Figure 1.3 [3] illustrate the benefits of use

of PBN in civil aviation. The conventional NAVAID route in Figure 1.1 shows a

conventional flight route which is defined by the conventional ground navigation aids.

Such a conventional flight route is restricted by the locations of the ground navi-

gation aids and thus it may be an indirect flight route and does not result in the

most efficient use of the airspace. The area navigation (RNAV) routes form a class

of flight routes defined in PBN. Figure 1.2 illustrates a RNAV route. In addition to

the ground navigation aids, the use of the satellite-based navigation systems is taken

into consideration when defining the RNAV routes. The restrictions resulted from the

ground navigation are reduced with the use of satellite-based navigation systems. At

the same time, the reliance on ground navigation aids is also reduced. The required

navigation performance RNP routes belong to another kind of flight routes that are

defined in PBN. In addition to the use of ground navigation aids and the satellite-

based navigation systems, the navigation system performance monitoring and alerting

capabilities on-board of aircraft are taken into consideration when defining the RNP
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routes. Despite the use of satellite-based navigation systems reducing the restrictions

imposed by ground navigation aids, it imposes restrictions itself. In other words, the

performance of the satellite-based navigation systems depends on a number of factors

which may change during aircraft operations. Without any on-board performance

monitoring and alerting capabilities, the design of the RNAV routes are relatively

conservative so that the aviation safety is not compromised. Once the on-board per-

formance monitoring and alerting capabilities are considered, the RNP routes can be

designed to gain further benefits without compromising aviation safety.

One of the important aspects of the PBN is the use of the global navigation

satellite systems (GNSS) and the associated augmentation systems. The most com-

mon usages of GNSS in civil aviation involve the use of single constellation GNSS

and the augmentation systems. An example is the use of GPS and the wide-area

augmentation system (WAAS) to provide navigation over the CONUS. While single

constellation GNSS and the augmentation systems are commonly used in PBN, the

rapid development of the satellite navigation systems around the world is expected

to improve GNSS performance and further benefit PBN through the use of multi-

constellation GNSS together with the augmentation systems. At the same time, new

challenges arise which have to be carefully studied and resolved before the benefits of

multi-constellation GNSS can be exploited.

1.1 The Performance-Based Navigation Concept

The concept of the PBN can be described by its three major components, the

navigation application, the navigation specification, and the navaid infrastructure.

Among the components, the navigation application specifies the application in terms

of the navigation specification. The navaid infrastructure refers to the navigation aids

that support the application. The navigation specification is a set of requirements

that should be fulfilled to support the navigation application. In the PBN, the nav-

igation specification specifies the performance requirements defined in terms of four
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Figure 1.1. A conventional route.
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Figure 1.2. A RNAV route.
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Figure 1.3. A RNP route.
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parameters [4] accuracy, integrity, availability, continuity, and the required function-

ality to support the navigation application. The PBN navigation specification can

be divided into two categories, the RNAV specification and the RNP specification.

The RNAV specification specifies the requirements on the area navigation systems

using the four parameters and thus incorporates the existing area navigation systems

into the PBN. At the same time, the RNP specification is derived from the RNAV

specification by the addition of the requirement of on-board performance monitoring

and alerting capabilities.

1.1.1 Accuracy

Accuracy is a measure of position error, that is, the difference between the position

estimated by navigation systems and the actual position of the user. When the

position error is modeled as a random variable, the accuracy can be determined by

the distribution function of the random variable. In general, it is the 95th percentile

of the position error. The horizontal accuracy and vertical accuracy can be similarly

defined using the distribution functions of the horizontal and vertical position errors.

1.1.2 Integrity

Integrity is a measure of the trustworthiness of the position estimated generated

by the navigation systems. The fulfillment of the integrity requirement can be deter-

mined by the calculation of integrity risk bound or protection level, both of which will

be explained in detailed in the later chapters. For all PBN applications, the required

upper limit of the associated integrity risk and alert limit are specified in the RNAV

and RNP specifications. The integrity requirements are fulfilled if the calculated in-

tegrity risk bound does not exceed the required upper limit of integrity risk or if the

calculated protection level does not exceed the required alert limit. Otherwise, the

navigation systems must be able to provide timely warnings regard to the failure to

fulfill the integrity requirement.
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1.1.3 Continuity

Continuity refers to the ability of the navigation systems to provide the desired

navigation functions without unscheduled interruptions, over the entire course of op-

eration. Continuity can be characterized by continuity risk, which is the probability

that a procedure will be interrupted by a loss of services. Similar to integrity, the

fulfillment of the continuity requirement can be determined through the calculation

of continuity risk bound. The continuity risk requirement is fulfilled if the calculated

continuity risk bound does not exceed the required upper limit on continuity risk. Al-

ternatively, the mathematical characterization of the continuity risk bound and the

required upper limit on continuity can be incorporated into the integrity risk bound

calculation. This way, the integrity risk bound calculation can be designed such that

the continuity risk requirement is always fulfilled.

1.1.4 Availability

Availability is characterized by the probability that the requirements on accuracy,

integrity, and continuity are all fulfilled at the beginning of the intended operation.

1.1.5 The Instrument Approaches

One of the most demanding flight phases is the approach. During the flight phase

of approach, an aircraft is brought to the position that the pilot can initiate the

landing procedures. The instrument approaches can be categorized into the non-

precision approaches or the precision approaches. One of the main differences be-

tween the non-precision approaches and the precision approaches is that no vertical

guidance is provided to the aircraft during the non-precision approaches while it is

provided during the precision approaches [5]. Table 1.1 summaries the navigation

specification for different types of instrument approaches. In Table 1.1, the lateral

navigation (LNAV) belongs to the non-precision approaches, while the lateral nav-



19

Table 1.1. The NAS RNP

Typical
Operation

Horizontal
Accuracy

(95%)

Vertical
Accuracy

(95%)
Integrity Continuity

Horizontal
Alert Limit

(HAL)

Vertical
Alert Limit

(VAL)
Availability

Time to
Alert

LNAV
(NPA)

200m NA 1− 10−7/hr
1− 10−4/hr to

1− 10−8/hr
1852m NA

.99 to
.99999

10s

LNAV/
VNAV

200m 20m
1− 2× 10−7

/approach
1− 8× 10−6

/ 15s
566m 50m

.99 to
.999

10s

LPV 16m 20m
1− 2× 10−7

/approach
1− 8× 10−6

/ 15s
40m 50m

.99 to
.999

10s

APV-I 16m 20m
1− 2× 10−7

/approach
1− 8× 10−6

/ 10s
40m 50m

.99 to
.999

10s

APV-II 16m 8m
1− 2× 10−7

/approach
1− 8× 10−6

/ 15s
40m 20m

.99 to
.999

6s

CAT-I/
GLS

16m
6m to
/4m

1− 2× 10−7

/approach
1− 8× 10−6

/ 15s
40m

12m to
/10m

.99 to
.99999

6s

CAT-II and/
CAT-IIIa

6.9m 2.0 1− 2× 10−9/15s
1− 4× 10−6

/ 15s
17.3m 5.3m

.99 to
.99999

1s

igation/vertical navigation (LNAV/VNAV), the localizer performance with vertical

guidance (LPV), the approach with vertical guidance-I (APV-I), the approach with

vertical guidance-II (APV-II), the category-I (CAT-I) precision approach, the ground

based augmentation system landing system (GLS), the category-II (CAT-II) preci-

sion approach, and the category-IIIa (CAT-IIIa) precision approach all belong to

the precision approaches. This can be seen by noting that there’s no requirement

on the vertical accuracy for LNAV. Another remark to mention is that the naviga-

tion specification for each of the instrument approaches in Table 1.1 belongs to the

RNP specification, since there are requirements on the integrity and the time to alert

for each approach, and since such requirements are closely related to the on-board

performance monitoring and alerting capabilities.

Among the most commonly used navigation systems during approaches are the

instrument landing systems [6]. The instrument landing systems are comprised of

four components, including a localizer, a glide slope, marker beacons, and approach

lights. The localizer provides the horizontal guidance and the glide slope provides

the vertical guidance, while the marker beacons furnish the distance information

and the approach lights signal the transition from instrument to visual flight. The

instrument landing systems are capable of providing the (CAT-I) precision approach,
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the (CAT-II) precision approach, and the (CAT-III) precision approach. The need of

an instrument landing system in an airport to provide the three categories of precision

approaches, however, motivates the researches on using GNSS and the augmentation

systems to provide the three categories of precision approaches

1.2 The Global Navigation Satellite Systems

The term global navigation satellite system (GNSS) refers to any of the satellite

navigation systems providing positioning, navigation, and time (PNT) services. Cur-

rently, GNSS include the the Global Positioning System (GPS) of the United States [7],

the Beidou Navigation Satellite System (BDS) of the People’s Republic of China [8],

the Galileo of the European Union [9], and the Global Navigation Satellite Sys-

tem (GLONASS) of the Russian Federation [10] that provide global coverage. In addi-

tion, GNSS include the Indian Regional Navigation Satellite System (IRNSS)/Navigation

Indian Constellation (NavIC) of the Republic of India and the Quasi-Zenith Satellite

System (QZSS) of Japan that provide regional coverage [11]. From the PBN perspec-

tive, GNSS provide new options for navigation infrastructure. In order for the PBN

to benefit from GNSS, it is crucial that GNSS should be able to fulfill the performance

requirements specified in the navigation specification. However, GNSS alone are not

sufficient to fulfill the integrity requirements of the RNP specification, which re-

quires the on-board performance monitoring and alerting capabilities. Augmentation

systems are consequently proposed and developed. Depending on implementation,

augmentation systems can be categorized into the Satellite-Based Augmentation Sys-

tems (SBAS) [12], the Ground-Based Augmentation Systems (GBAS) [13], and the

Aircraft-Based Augmentation Systems (ABAS) [14].

1.2.1 Satellite-Based Augmentation Systems

In general, a SBAS is comprised of a network of ground reference stations, central

data processing stations, and geostationary satellites. The SBAS augment GNSS by
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providing differential corrections, integrity monitoring service, and additional ranging

signals [12]. The ground reference stations are located at precisely known locations

and are able to monitor anomalies, which are also called faults, by inspecting the re-

ceived GNSS measurements. From the measurements received at the ground reference

stations, the center data processing stations are able to generate vector corrections,

which are then uploaded to the geostationary satellites and then broadcast to the

users that are within its coverage. In addition, the signals broadcast from the geosta-

tionary satellites also serve as range measurements for the users inside the coverage.

With the wide area augmentation system (WAAS) [15] developed by the Federal Avi-

ation Administration of the Unite States, the GPS can be used to provide a type of

instrument approach, which is very similar to the (CAT-I) precision approach and is

called the localizer performance with vertical guidance approach, with decision height

down to 200 ft (LPV-200) [16].

1.2.2 Operational and Developing Satellite-Based Augmentation Systems

Currently, the operational and developing SBAS include the wide area augmenta-

tion system (WAAS) of the United States, the multi-function satellite augmentation

system (MSAS) of Japan [17], the European geostationary navigation overlay ser-

vice (EGNOS) [18] of the the European Union, the GPS aided GEO augmented

navigation (GAGAN) of the Republic of India [19], the system of differential correc-

tions and monitoring (SDCM) of the Russian Federation [20], the Beidou satellite-

based augmentation system (BDSBAS) of the People’s Republic of China [21], and

the Korean augmentation satellite system (KASS) of the Republic of Korea [22].

1.2.3 Ground-Based Augmentation Systems

Similar to the SBAS, a GBAS is comprised of multiple reference receivers and

antennas, all of which are located at precisely known locations whose observations

are used by a master control processor to generate corrections and to monitor the
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integrity of GNSS [13]. Unlike the SBAS that broadcast the corrections through the

geostationary satellites and therefore have wide coverage, the GBAS broadcast the

corrections through the very high frequency (VHF) data transmitters and antennas

and thus have local coverage. Consequently, the GBAS focus to serve particular loca-

tions, for example, airports. Like the instrument landing systems, the GBAS are able

to provide all three categories of precision approaches, including the (CAT-I) precision

approach, the (CAT-II) precision approach, and the (CAT-III) precision approach. As

in 2017, the Newark Liberty International Airport (EWR) and the Houston George

Bush Intercontinental Airport (IAH) are the two airports in the United States that

have obtained operational GBAS approved for public use [13].

1.2.4 Aircraft-Based Augmentation System

While the SBAS and GBAS are able to provide precision approaches, respectively,

down to the CAT-I and CAT-III precision approaches, they require expensive ground

and/or space infrastructures. Unlike the SBAS and GBAS, the ABAS rely mostly

on aircraft onboard equipment. One of the most commonly used ABAS is the re-

ceiver autonomous integrity monitoring (RAIM) [23,24]. The RAIM uses redundant

GNSS measurements to performance consistent check and detect the existence of

faulty GNSS measurements. For a single constellation GNSS, at least four GNSS

measurements are required to estimate the three components of the user position

vector and the receiver clock bias. Consequently, at least five GNSS measurements

are required to provide the necessary redundancy to use the RAIM in the context of

single constellation GNSS.

1.2.5 Multi-Constellation Global Navigation Satellite Systems

One of the earliest studies regarding to multi-constellation GNSS is related to the

integrated use of the GPS and GLONASS in civil aviation [25]. It is reported in the

study that the integrated use of the GPS and GLONASS results in better satellite
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geometries and accuracy. The integrity supported by the RAIM also improved. It is

also reported in [26] that the use of multi-constellation GNSS may include the global

coverage of vertical guidance of aircraft, which not only provides more efficient use

of the airspace but also reduces the development and maintenance cost of the space

and ground infrasturcture.

1.2.6 Fault Detection and Exclusion of Faulty Measurements

GNSS measurements are vulnerable to interference, both unintentional and in-

tentional [27]. For example, interference can be caused by the multi-path effect [28],

the ionosphere scintillation [29], and the spoofing attacks [30]. Under the influence

of interference, the noise imposed on a GNSS measurement my deviate greatly from

the nominal measurement error model. In this case, the measurement is considered

as a faulty measurement. Faulty measurements, if any, may degrade significantly

the performance of GNSS. In this regard, it is important to be able to detect and

exclude faulty GNSS measurements. Despite that the RAIM supports the on-board

integrity monitoring capability, which is required by the RNP navigation specification,

by detecting the presence of faulty measurements, the problems that are caused by

the faulty measurements are not completely solved. Knowing the existence of faulty

measurements makes it possible to avoid the use of GNSS in safety-critical aviation

applications and thus the potential dangers, it suggests the need to recover, or at least

remove, those faulty measurements at the same time. Otherwise, alternative naviga-

tion systems available and can be used in place of the GNSS. Therefore, the crux of

the problem is that unless the performance can be brought back to the nominal state

after the detection of faulty measurements, by either exclusion or restoration, it will

be difficult to fully exploit the benefits GNSS have to offer. This problem has more

effect in the multi-constellation GNSS, since the probability that one or more mea-

surements received are faulty is increased in the multi-constellation GNSS. Recovery
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from or exclusion of the faulty measurements, and then bring the GNSS performance

back to nominal state is of great importance.

1.3 Sparse Approximation of Signals

A branch of research in signal processing that is seemingly unrelated to the PBN

and GNSS is the sparse approximations of signals. To be more precise, researches on

the sparse approximate solutions to underdetermined linear systems [31] are closely

related to the detection and exclusion of the faulty GNSS measurements. Since an

underdetermined linear system may have more than a single unique solution, different

types of methods are proposed for this task. For instance, regularization methods

can be leveraged to find solutions to underdetermined linear systems [32]. In signal

processing, a sparse approximation of a signal is a linear combination of a set of basis

signals such that most of the coefficients of the linear combination vanish. Finding a

sparse approximation of a signal is closely related to finding a sparse and appropriate

solution to a system of underdetermined linear system [33],

min
z∈Rn
‖z‖0, (1.1)

such that

y = Az. (1.2)

given A ∈ Rm×n, m,n ∈ N, and m < n.

1.3.1 Greedy Algorithms

Finding a sparse approximation of a signal amounts to solving for a solution

to (1.1). One common type of strategies employed involves the use of the greedy

algorithms [34], which iteratively construct a new and locally optimized approxima-

tion using a new basis signal and the most current approximation until the newly
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constructed approximation is good enough in some criterion. Some of the most com-

monly used greedy algorithms include the various variants of the pursuit algorithms,

including the matching pursuits [35] and the basis pursuit [36]. In particular, suf-

ficient conditions for exact recovery of the signals using the orthogonal matching

pursuit have been established in [37].

1.3.2 Convex Relaxation Algorithms

In addition to the greedy algorithms, (1.1) can also be solved exactly by exhaustive

search. However (1.1) has been proved to be of NP-hardness [38], and can be solved

exactly only by exhaustive search. Approaching the sparse approximate solution

to (1.1) by exhaustive search is therefore not practical. One method to overcome

this difficulty is to replace the objective function of the l0 minimization problem by

the l1-norm of the vector of coefficients [39]. The resulting l1 minimization problem

is convex, and it can be reformulated into a linear programming (LP) problem or a

quadratic programming (QP) problem and then be efficiently solved.

1.3.3 Exactly Recovery through the l1-minimization and the Restricted

Isometry Property

One question that naturally follows the convex relaxation algorithms is that, can

a signal be perfectly reconstructed by the solution to the l1-minimization problem?

For noiseless measurements, the question can be answered by the concept of the null

space property [40] of matrices. For a matrix M ∈ Rm×n, M satisfies the null space

property relative to a subset of the indices {1, 2, . . . , n}, denoted by S, if

‖vS‖1 < ‖vS‖1, (1.3)

for all v ∈ ker M \ vΘ, where vS is the vector formed using the components of the

vector v that correspond to the indices in S and vS is the vector formed using the
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components of that correspond to the indices not in S, ker M is the kernel of the

matrix M, and vΘ is the zero vector of Rn [41]. Given any x ∈ Rn such that the

support of x has cardinal number s and if

y = Mx, (1.4)

then x is the unique solution to

min
x∈Rn
‖x‖1, (1.5)

such that

y = Mx, (1.6)

if and only if M satisfies the null space property relative to all the subsets of the in-

dices {1, 2, . . . , n} that have cardinal number s. Two remarks are made here. Firstly,

checking whether or not a matrix M satisfies the null space property relative to a sub-

set of indices S can be difficult since it is necessary to wade through all the nontrivial

vector that are in the kernel of M and all the appropriate subsets of indices. Sec-

ondly, if a the necessary and sufficient conditions can be verified to be true, then the

solution to (1.5) reconstructs x from only the noiseless measurements. Unfortunately,

measurements are almost always corrupted in practical applications.

1.4 Issues Addressed and Dissertation Organization

This dissertation investigates the application of sparse approximations of signals

to the detection and exclusion of faulty GNSS measurements. To be more specific, the

detection and exclusion are modeled as a l0-minimization problem that takes the form

of (1.1). Convex relaxation is then adopted and the l0-minimization problem is turned

into a l1-minimization problem of the form of (1.5). The goal of the convex relaxation

is to make the l0-minimization problem tractable for real-time detection and exclusion
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of faulty GNSS measurements in aviation application, and accompanying the convex

relaxation are some important issues that are addressed in this dissertation.

1.4.1 The Parameterized Quadratic Programming Formulation of the

l1-minimization Problem

Since measurements in practical applications are corrupted by noise in general,

the variant of the l1-minimization problem described by (1.5) is considered

min
z∈Rn
‖z‖1, (1.7)

such that

‖y −Az‖2 ≤ ε. (1.8)

In (1.7), ε is a positive constant that is accommodated to reflect the fact the mea-

surements are corrupted by noise. Various methods to solve (1.7) are proposed and

studied extensively [42]. For example, (1.7) can be reformulated into a linear program-

ming (LP) problem [43]. The formulation adopted is the parameterized quadratic

programming problem proposed in [36]. The fault detection and exclusion algorithm

depends not only on the approximations of the sparse signals but also on the RAIM.

The parameterized quadratic programming allows for the integration of the approxi-

mations of the sparse signals and the RAIM, which in turn lead to the characterization

of the continuity risk and integrity risk bounds. Therefore, it is possible to evalu-

ate the performance of the proposed detection and exclusion algorithm when it is

intended to be used in PBN applications. The problem of detection and exclusion

of faulty GNSS measurements is stated in Chapter 2, together with the description

of the RAIM for fault detection. The l0-optimization, the l1-optimization, and the

parameterized quadratic formulation are presented in Chapter 3, in which the deriva-
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tion of the integrity risk bound for the parameterized quadratic formulation is also

shown.

1.4.2 Two Parameterized Tuning Methods

Parameter tuning plays a crucial role in the detection and exclusion of faulty

GNSS measurements using the parameterized quadratic programming formulation.

The two parameter tuning methods proposed are based on the fault detection prop-

erty of the parameterized quadratic programming formulation. The first parameter

tuning method makes use of an upper bound on the detection statistic associated

with the detection property and guarantees that the false alarm probability will be at

most some required value. In general, the first parameter tuning method will result

in more conservative integrity risk bounds. The second parameter tuning method

makes use of the detection statistic and the kernel density estimation [44] to estimate

the cumulative distribution function of the detection statistic. The second parame-

ter tuning method offers tighter integrity risk bound but the associated false alarm

probability is not necessarily bounded by the required value. Both the first and the

second parameter tuning methods are presented in Chapter 3.

1.4.3 Vertical Protection Level Calculation

In addition to integrity risk bound, the integrity performance of fault detection

and exclusion algorithms for vertical navigation can also be evaluated through the

calculation of vertical protection level. Since the vertical protection level can be

interpreted as the confidence interval of the vertical position estimate, it provides

a more intuitive characterization of the integrity performance as compared to the

integrity risk bound. With the aim to benefit vertical navigation with the parame-

terized quadratic programming, the calculation of the vertical protection level for the

parameterized quadratic programming is formulated. In particular, it is shown how

the vertical protection level calculation for the parameterized quadratic programming
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formulation can be integrated to that for the ARAIM in the case of fault detection.

The formulation of the vertical protection level calculation is shown in Chapter 3,

together with the vertical protection level calculation method for ARAIM in the case

of detection. It is also shown in Chapter 3 how the parameterized quadratic pro-

gramming formulation can be integrated to the vertical protection level calculation

method for ARAIM, in the case of detection.
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2. DETECTION AND EXCLUSION OF FAULTY GNSS

MEASUREMENTS AND RECEIVER AUTONOMOUS

INTEGRITY MONITORING

In this chapter, the problem of the detection and exclusion of faulty GNSS mea-

surements is formulated. In particular, the RAIM and its application to detect faulty

GNSS measurements are described in detail since they form a building block for the

proposed PQP method. Also shown in this chapter is the calculation of both the

horizontal and vertical protection levels, which can be used respectively to verify the

integrity requirements for horizontal navigation and vertical navigation.

2.1 GNSS Measurement Equations

2.1.1 Pseudorange Measurements

The pseudorange measurements are the range measurements a GNSS receiver

extracts from the received GNSS signals. Suppose that the received GNSS signals are

indexed by i and denote the satellite transmitting the ith signal by the ith satellite,

the pseudorange measurement of the ith satellite, ρi, can be modeled as [45]

ρi = r(pos,posi) + br,k − bi + dion,i + dtropo,i + µ. (2.1)

where

r(posr,posi) is the distance between user and the ith satellite,

posr is the vector of the three space coordinates of the user,

posi is the vector of the space coordinates of the ith satellite at the time the ith

signal is transmitted,
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br,k is the receiver clock bias relative to the reference time of the kth satellite

constellation, to which the ith satellite belongs,

bi is the satellite clock offset of the ith satellite relative to the reference time of

the kth satellite constellation,

dion,i is the ionospheric delay,

dtropo,i is the tropospheric delay, and

µ is the receiver thermal noise.

In (2.1), posi is considered known since it can be determined from the orbit param-

eters obtained from the ith signal. bi can also be obtained from the received signal,

while dion,i and dtropo,i can be estimated from the information contained in the re-

ceived signal and ionosphere delay model [46] and troposphere delay models [47, 48].

Because ρi is provided by the receiver, what are left unknown in (2.1) are posr and bk.

Under the context of single constellation GNSS, a set of nonlinear equations can be

formed with a minimum of four pseudorange measurements. Numerical methods in-

cluding the nonlinear weighted least-squares estimation [49] can be applied to solve

for the three components of posr and bk.

2.1.2 Linearized Observation Equations

The strategy that is employed to solve for posr and the receiver is clock biases

from the pseudorange measurements involves expanding the set of nonlinear equations

using Taylor series with respective to the three components of posr and the receiver

clock biases [50]. Corrections to the three components of posr and receiver clock bi-

ases are then calculated using the least squares method. The process is repeated until

the estimated posr and the receiver clock biases converge. The equations resulting

from the Taylor series expansion are called the linearized observation equations can

be written as
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y = Gx + εn. (2.2)

In (2.2), y is the the vector composed of the linearized pseudorange measurements and

can be obtained following the procedure reported in [51], G is the geometry matrix, x

is the column vector of corrections, and εn is the nominal error vector. For single

constellation and multi-constellation GNSS, G and x take slightly different forms.

Single Constellation GNSS

For single constellation GNSS, all the received GNSS measurements come from

the satellites that belong to the same constellation. Since the clocks on the satellites

are synchronized to the same time frame of reference, the pseudorange measurements

share an identical receiver clock bias and thus there is only one receiver clock bias to

be determined. Denoting the vector of corrections to the position by δposr and the

correction to the receiver clock bias by δb, the vector of corrections can be written as

x =
[
δposTr δb

]T
. (2.3)

For the purpose of illustration, suppose that there are n1 pseudorange measurements,

all of which are indexed by the index i and all come from the satellites belonging to

satellite constellation 1, the geometry matrix is of dimension n1 × 4, taking the form

of

G =


...

...

losTi 1
...

...

 . (2.4)

The losi in (2.4) is the line-of-sight unit direction vector from the ith satellite to the

estimated user position.
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Multi-Constellation GNSS

For multi-constellation, more than one receiver clock bias should be estimated.

Specifically, there is an unknown receiver clock bias for each satellite constellation.

Suppose that there are n1 and n2 pseudorange measurements from satellite constel-

lation 1 and satellite constellation 2 respectively. Assume further that G1 and G2

are the geometry matrices associated with the linearized pseudorange measurements

from only constellation 1 and those from only constellation 2. The geometry matrix

associated with all the linearized pseudorange measurements is a (n1 + n2)× 5 block

matrix, constructed from the submatrices of G1 and G2

G =

Gn1×3 1n1 0n1

Gn2×3 0n2 1n2

 . (2.5)

where,

G1 =
[
Gn1×3 1n1

]
, (2.6)

and

G2 =
[
Gn2×3 1n2

]
. (2.7)

In (2.5), 0n1 and 0n2 are the zero vectors of the appropriate dimensions, respectively.

The 1n1 and 1n2 are the column vectors of the appropriate dimensions, whose com-

ponents are all equal to one. If there is a third constellation with geometry matrix

G3 =
[
Gn3×3 1n3

]
, (2.8)

then the geometry matrix can be constructed in a similar fashion
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G =


Gn1×3 1n1 0n1 0n1

Gn2×3 0n2 1n2 0n2

Gn3×3 0n3 0n3 1n3

 . (2.9)

2.1.3 Detection and Exclusion of Faulty GNSS Measurements

Assume now that there a total of nsv pseudorange measurements, which come

from nc satellite constellations. Assume further that the associated system of lin-

earized observation equations is described by (2.2). Under the assumptions, the

dimensions of the geometry matrix G are nsv × (3 + nc). In addition, the convention

that is adopted is to model the nominal error vector εn as a vector whose components

are independent normal random variables with zero mean. Denoting the covariance

matrix of the independent normal random variables by W−1, the error vector as-

sociated with the estimated position and receiver clock biases, e, can be expressed

as [14]

e = P0G
T
0 W 1

2
εn. (2.10)

The G0 in (2.10) is defined by [52]

G0 = W 1
2
G, (2.11)

where

W 1
2
W 1

2
=
(
W−1

)−1
. (2.12)

In (2.12),
(
W−1

)−1
denotes the inverse of W−1. P0 is defined by G0 through

P0 =
(
GT

0 G0

)−1
. (2.13)
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Note that such P0 exists when the number of measurements is large enough to esti-

mate x from (2.2), using weighted least squares estimation [53]. In other words, when

the number of is large enough to allow for the weighted least squares estimation of x.

Vertical Position Error Under Nominal Conditions

If it is further assumed that the line-of-sight unit direction vectors contained in G

are expressed in the local East-North-Up (ENU) reference frame, the third component

of e represents the vertical position error. The vertical position error under nominal

conditions can thus be written as

ev,n = αTv P0G
T
0 W 1

2
εn, (2.14)

where αv is a (3 + nc) × 1 column vector, whose components vanish except for the

third component being one. Note that ev,n is also a normal random variable such that

E[ev,n] = 0, (2.15)

and

Var[ev,n] = αTv P0αv. (2.16)

In (2.15) and (2.16), E[ev,n] denotes the mean of ev,n and Var[ev,n] denotes the variance

of ev,n.

Vertical Position Error with Faulty Measurements

With the existence of faulty measurements, (2.2) no longer provides an accurate

model for the linearized pseudorange measurements. In cases of faulty measurements,

an unknown fault vector f can be added and (2.2) becomes
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y = Gx + f + εn. (2.17)

With the addition of the unknown fault vector f , the vertical position error becomes

ev,f = αTv P0G
T
0 W 1

2

(
f + εn

)
. (2.18)

Similar to ev,n, ev,f is also a normal random variable such that

E[ev,f ] = αTv P0G
T
0 W 1

2
f , (2.19)

and

Var[ev,f ] = αTv P0αv. (2.20)

Despite that ev,n and ev,f have the same variance, the mean of ev,n vanishes while

the mean of ev,f is non-vanishing in general. The existence of faulty measurements

degrades the distribution of vertical position error, and it motivates the detection and

exclusion of faulty GNSS measurements.

Problem Statement

The detection of faulty GNSS measurements amounts to determining if the fault

vector f in (2.17) is the zero vector or not, while the exclusion of faulty GNSS mea-

surement amounts to determining which of the components of f are nonzero.

2.2 Receiver Autonomous Integrity Monitoring (RAIM)

GNSS receivers with built in RAIM capability are able to detect the existence

of faulty measurements when redundant measurements are received. By redundant

measurements it means that there are more measurements than that are necessary to

estimate the position and receiver clock biases. The basic idea of fault detection using
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the RAIM is simple. For the purpose of vertical navigation, the RAIM computes a

test statistic using the vector y and the associated geometry matrix. Under nominal

conditions, the components of εn are independently and normally distributed with

zero means and has known covariance. It is thus possible to determine the distribution

functions of the RAIM test statistic. As a result, it is possible to decide upon the

acceptance or rejection of the hypothesis that the fault vector f is the zero vector

based on the likelihood of obtaining the test statistic with the calculated value [54].

Besides the simplicity in calculation, what makes the RAIM popular for the navigation

of aircraft is the characterization of the RAIM integrity by the calculation horizontal

and vertical protection levels

2.2.1 RAIM Test Statistic

There are three different but equivalent ways to calculate the RAIM test statis-

tic [55], namely, the range comparison method [56], the least-squares-residual method

[23], and the parity method [57]. Since the proposed PQP method is based on the

parity vector p that is used in the parity method, the parity vector and its role in

the RAIM is described in this subsection.

Parity Vector Formulation

The calculation of the parity vector p for a set of nsv GNSS measurements involves

the calculation of the parity matrix Q, which is derived from the geometry matrix.

For the weighted nsv×(3+nc) geometry matrix G0, the parity matrix Q is the (nsv−

3− nc)× nsv matrix such that

QG0 = 0, (2.21)

and
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QQT = I. (2.22)

In (2.21) and (2.22), 0 and I are the zero and the identity matrices, both of the

appropriate dimensions. From the singular value decomposition [58], such parity

matrix Q exists for a given weighted geometry matrix G0 if it is of full column

rank. The condition that G0 has a nonempty null space hinges upon the number

of received measurements. G0 has a nonempty null space if and only if there are

redundant measurements. Numerical methods for the calculation of Q includes QR

iterations and Jacobi iterations [59]. Once the parity matrix is found for a given

weighted geometry matrix G0, the parity vector can be calculated using

p = QW 1
2
y. (2.23)

The RAIM test statistic is defined as

qχ2 = pTp. (2.24)

Under nominal conditions, the parity vector is

p = QW 1
2
εn. (2.25)

Therefore

E[p] = 0, (2.26)

and

Var[p] = I. (2.27)
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It follows from (2.24), (2.25), (2.26), and (2.27) that qχ2 is also a random variable

and is distributed according to the central chi-squares distribution with (nsv−3−nc)

degrees of freedom [60].

Least-Squares-Residual Formulation

The parity vector formulation sheds light on the distribution of the RAIM test

statistic qχ2 and will be used in the PQP method proposed in this dissertation. How-

ever, it is not necessary to calculate the parity matrix Q and the parity vector p

to use the RAIM. As reported in [57], an equivalent formulation based on the least

squares residual is

qχ2 = yTW 1
2
R0W 1

2
y, (2.28)

where

R0 = I−G0P0G
T
0 . (2.29)

Note that R0 is the orthogonal projection matrix that projects the linearized pseu-

dorange measurement vector y to the weighted least squares residual. By substitut-

ing (2.23) into (2.24) and then comparing the result with (2.28), if follows that

R0 = QT
0 Q0, (2.30)

since R0 and QT
0 Q0 are symmetric.

2.2.2 RAIM Threshold Determination

Under fault-free, or nominal, condition, qχ2 is distributed according to the central

chi-squares distribution with (nsv − 3 − nc) degrees of freedom. In other words, it

is known what the cumulative distribution function of qχ2 is under the fault free
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conditions. When the solution of the nonlinear weighted least squares estimation

has converged, the RAIM can be applied to the resulting linearized pseudorange

measurements vector y and test for the existence of faulty measurements. To test for

the existence of faulty measurements one simply calculates the RAIM test statistic

from (2.28) and then calculates the likelihood of the calculated (2.28) under the fault

free hypothesis. The fault-free hypothesis is accepted if the likelihood is large enough.

Otherwise the fault-free hypothesis is rejected.

Probability of False Alarms and RAIM Threshold

The statement “the fault-free hypothesis is accepted if the likelihood is large

enough. Otherwise the fault-free hypothesis is rejected” is not very precise. In

practice, the RAIM test statistic qχ2 is directly compared to the threshold Tχ2 .

The fault-free hypothesis is accepted if and only if

qχ2 ≤ Tχ2 . (2.31)

The RAIM threshold can be determined by the probability of false alarms PFA. The

probability of false alarms is defined using the cumulative distribution function of qχ2

under the fault free hypothesis. Let

m = nsv − 3− nc, (2.32)

and denoting the cumulative distribution function of qχ2 , under the fault free hy-

pothesis and evaluated by q, by CDF0,m

(
q
)
, the probability of false alarms is defined

as

PFA = 1− CDF0,m

(
Tχ2

)
. (2.33)

If DRAIM is that event that
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qχ2 > Tχ2 , (2.34)

and H0 is the event that the fault free hypothesis is true, then PFA is the conditional

probability

PFA = P (DRAIM |H0). (2.35)

Note that the function CDF0,m is the cumulative distribution function of the central

chi-squares distribution with m degrees of freedom, the inverse of CDF0,m therefore

exists. Given a required probability of false alarms PFA,REQ and let CDF−1
0,m be the

inverse of CDF0,m, the RAIM threshold can be determined by

Tχ2 = CDF−1
0,m

(
1− PFA,REQ

)
. (2.36)

2.2.3 Horizontal and Vertical Protection Levels for RAIM

If the existence of faulty measurements is detected by the RAIM, then the set of

received GNSS measurements is considered problematic and the position estimated

obtained using the GNSS measurements should not be used for navigation. If no

faulty measurement is detected, then the GNSS position estimate can be used for

navigation. However, one of the necessary conditions that the GNSS estimate can

be used in PBN is that the RAIM must satisfy the integrity requirement. For the

RAIM, the fulfillment of integrity requirement can be checked by the calculation of the

horizontal protection level for horizontal navigation and the vertical protection level

for vertical navigation. Using the vertical navigation as an example and denoting the

RAIM vertical protection level by vplRAIM , then the integrity requirement for vertical

navigation is fulfilled only if

vplRAIM ≤ V AL, (2.37)
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Note the various values of vertical alarm limits for different types of instrument ap-

proaches are summarized in Table 1.1.

Vertical Protection Level Calculation for RAIM

The detailed calculation of the RAIM vertical protection level can be found in [61]

and it is briefly summarized here. The vertical protection level can be calculated from

vpl = Vslope,maxTχ2 + k(PMD)V RMS. (2.38)

In (2.38), Tχ2 is calculated using (2.36). Also, PMD is the desired probability of

missed detections and k(PMD) is the number of standard deviations corresponding to

the k(PMD). In addition

V RMS =
√
αTv P0αv. (2.39)

Finally, Vslope,max is the maximum of

Vslope,i =
|Kv,i|σi√

1− (I−R0)i,i
, (2.40)

where the index i runs through all the received measurements. In (2.39), σi is the ith

diagonal component of W 1
2

and (I − R0)i,i is the component of (I − R0) in the ith

row and ith column.
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3. DETECTION AND EXCLUSION OF FAULTY GNSS

MEASUREMENTS: THE PARAMETERIZED

QUADRATIC PROGRAMMING (PQP) APPROACH

Detection of faulty GNSS measurements using the RAIM can be extended to ex-

clusion. More generally, the algorithms that detect faulty GNSS measurements can

be used for exclusion. To exclude faulty GNSS measurements using a detection algo-

rithm, one simply applies the detection algorithm repeatedly and wade through all the

subsets formed by the received measurements and then select the most satisfactory

subset of measurements from the class of fault-free subsets. Such exhaustive search

strategy has been employed and the detection and exclusion of faulty GNSS are for-

mulated using the RAIM and ARAIM in [62]. The detection and exclusion algorithms

employing exhaustive search strategy work well when the maximum number of faulty

measurements to be excluded is small, but they are less ideal when the maximum

number of faulty measurements to be excluded becomes moderate or large. Suppose

for this moment that the goal is to exclude nf,max measurements for nsv measure-

ments. The number of all possible subsets, including the subset of all measurements,

is

nsubsets

nf,max∑
k=0

nsv!

k!(nsv − k)!
. (3.1)

Thus number of subsets is 1376 if at most 2 faulty measurements are to be excluded

from 31 measurements, but it grows to become 5871 if at most 3 faulty measurements

are to be excluded. In general, nsubsets and the time cost required by the FDE algo-

rithms which employ the exhaustive search strategy grow exponentially with increases

in nf,max.
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3.1 The PQP Approach

3.1.1 An Underdetermined Linear Systems of Equations

Both determining if the fault vector f is the zero vector and which of the compo-

nents of f are nonzero directly using (2.17) depend on x. As what has been done in

the RAIM, transforming from y to the parity vector p eliminates the dependence

p = QW 1
2
(f + εn). (3.2)

Notice that (3.2) can be derived from (2.17), (2.21), and (2.23). In addition, p is

a (nsv −m)× 1 column vector and f is a nsv×1 column vector. In other words, (3.2)

defines a system of underdetermined linear equations that depends only on f , despite

that the system is corrupted by noise.

l0 and l1 Regularizations

The problem, which is defined in (3.2), is an ill-conditioned problem since the

number of the unknown variables is more than the number of the equations. If

solutions exist then they may not be unique. A commonly adopted strategy is to

use l0 regularization. With an abuse of notation, denote the number of nonzero

components of f by ‖f‖0. After l0 regularization, (3.2) becomes

min
f
‖f‖0, (3.3)

subject to

p = QW 1
2
f . (3.4)

Unfortunately, solving for the solution to (3.3) requires exhaustive search and is of

non-deterministic polynomial-time (NP) hardness [38]. This nature of NP hardness

makes l0 regularization computationally intractable and leads to intensive efforts to
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find good alternatives to (3.3). A direction of the efforts is the convex relaxation,

which considers convex objective functions instead of the objective function in (3.2).

Among the convex relaxation algorithms, the l1 regularization is of interest

min
f
‖f‖1, (3.5)

subject to

p = QW 1
2
f . (3.6)

In (3.5), ‖f‖1 denotes the l1-norm of f . Since f belongs to Rnsv−m,

‖f‖1 =
nsv−m∑
i=1

|fi|, (3.7)

where fi is the ith component of f . Note that the ‖f‖1 is continuous and convex despite

it is not smooth. Note also that the constraints in (3.5) define the intersection of the

hyperplanes, which is also convex. As a result, (3.5) describes a convex optimization

problem.

Basis Pursuit Denoising (BPDN) Formulation

An equivalent formulation of (3.5) is the basis pursuit denosing formulation [36]

min
f∈Rnsv

1

2
‖QW 1

2
f − p‖2

2 + h‖W 1
2
f‖1. (3.8)

In (3.8), h is a positive parameter to be determined. The equivalence of (3.5) and (3.8)

can be seen by considering 1
2h

as the Lagrange multiplier of (3.5) and (3.6).

The Parameterized Quadratic Programming (PQP) Formulation

The BPDN formulation be reformulated into the standard form of quadratic pro-

gramming



46

min
ψ∈R2nsv

ψTMψ +ψTc, (3.9)

subject to

−ψ ≤ 0, (3.10)

by the change of variables (3.11), (3.12), and (3.13) [63,64]. In (3.9), ψ is the 2nsv×1

column vector, which is the concatenating of the two nsv×1 column vectors f+ and f−

ψ =

 f+

f−

 . (3.11)

Each component of f+ is obtained by comparing the corresponding component of f

and zero. Denoting f+
i and fi the ith components of f+ and f respectively, then

f+
i = max(fi, 0), (3.12)

where max(fi, 0) equals the larger of fi and zero. f−i is similarly defined by

f−i = max(−fi, 0). (3.13)

With the change of variables (3.11), (3.12), and (3.13), the M and c in (3.9) are

M =
1

2

 I

−I

W 1
2
QTQW 1

2

[
I −I

]
, (3.14)

and

c = −

 I

−I

W 1
2
QTp + h

 I

I

W 1
2
d. (3.15)

In (3.15), d is the nsv × 1 column vector whose components are all equal to one.

Given a parameter h, the parameterized quadratic programming problem (3.9) can
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be formed and then solved by numerical methods, for example, the interior-point

methods [65,66]. Suppose that ψ̂ is the solution to (3.9). Assume also that

f̂+ =
[
I 0

]
ψ̂, (3.16)

and

f̂− =
[
0 I

]
ψ̂, (3.17)

then the solution to (3.8) is

f̂ = f̂+ − f̂−. (3.18)

3.1.2 The PQP Algorithm

The proposed PQP approach for detection and exclusion of faulty GNSS measure-

ments can be formulated using the algorithm below.
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Algorithm 1 The PQP Algorithm

Calculate W 1
2

such that (2.12) holds.

Calculate G0 according to (2.11).
Calculate Q such that (2.21) and (2.22) hold.
Calculate p according to (2.23).
Determine the PQP parameter h.
Calculate M and c according to (3.14) and (3.15).
Solve for ψ̂, the solution to (3.9).
Calculate f̂ according to (3.16), (3.17), and (3.18).
if f̂ = 0 then

Claim no detection.
(Optional) calculate integrity risk bound or protection level.

else
Calculate Aex and Bex

Calculate qχ2,ex accordint to (3.63), with index j replaced by the value of the
index ex.
Calculate Tex accordint to (3.94), with index j replaced by the value of the
index ex.
if qχ2,ex ≤ T 2

ex then
Claim exclusion.
(Optional) calculate integrity risk bound or protection level.

else
Claim detection.

end if
end if
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Figure 3.1. The parameterized quadratic programming (PQP) method summarized
in a flowchart.
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In a nutshell, an instance of problem (3.8) can be constructed with a set of received

GNSS measurements and then it can be solved. If the solution f̂ is the zero vector then

the PQP approach claims that the set of measurements is fault-free. Otherwise, a new

linear system of equations is formed by excluding the GNSS measurements that are

associated with the nonzero components of f̂ . The RAIM test statistic qχ2,ex and the

RAIM threshold Tχ2,ex are calculated for the RAIM detection test. If the new system

passes the RAIM detection test, the new measurements that are associated with the

new system are claimed to be fault-free by the PQP approach. If the new system fails

to pass the test then the PQP approach claims the existence of faulty measurements

but is not able to exclude the faulty measurements. Figure 3.1 summarizes the PQP

approach in the flowchart. Up to this point, some topics related to the PQP approach

remain not clarified. More precisely, the impact exclusion has on position estimate,

the tuning of the parameter h, the definition of integrity risk for the PQP approach,

and the calculation of integrity risk bounds or protection levels for the PQP approach.

Therefore, the rest of this chapter is devoted to the aforementioned topics.

3.2 Two Parameter Tuning Methods

The first topic that is dealt with is the tuning of the parameter h. Two parameter

tuning methods are proposed in this dissertation, both of which are based on the

detection property of the PQP approach. In particular, associated with the PQP

approach there exist a test statistic and detection threshold for fault detection. The

PQP parameter is closely related with the detection threshold associated with the

PQP approach, which in turn depends upon the necessary and sufficient conditions

for f̂ to be equal to the zero vector.
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3.2.1 The Detection Property of the PQP Approach

The Existence of the Solutions to (3.8)

A sufficient condition to establish the existence of the solution to (3.9) and (3.10),

and thus (3.8), is what follows [67, 68]. If the feasible set of (3.9) is nonempty and

the optimal value is bounded below, then the minimum is attained in the feasible set.

The proof of the existence of solution can be found in [67,69]. Notice that the feasible

set of the problem in (3.9) and (3.10) is nonempty and that (3.8) and the problem

in (3.9) and (3.10) have identical optimal values. Notice that they are bounded below.

The existence of the solutions to (3.8) and the problem in (3.9) and (3.10) can be

estabilished.

Characterization of f̂

While (3.9) is constrained by (3.10), (3.8) is unconstrained and it could be solved

by directly differentiating the objective function and then checking the objection

function values at the point where the derivatives vanish, if the objective function

was differentiable. However, the l1-norm is not smooth because its first derivative

does not exist at the origin. Fortunately, the objective function is convex and (3.8)

can be approached by the subgradient method [70, 71]. If the objective function

of (3.8) is denoted by Fobj : Rnsv → R, then the epigraph of Fobj is the set

epi Fobj =
{

(fT , t)T |f ∈ dom Fobj, Fobj(f) ≤ t
}
, (3.19)

where dom Fobj is the domain of Fobj. A vector g is a subgradient at some point f

in dom Fobj if and only if the augmented vector
(
gT ,−1

)T
is the normal vector of a

supporting hyperplane of epi Fobj at
(
fT , Fobj(f)

)T
[66]. For (3.8)

Fobj(f) =
1

2
‖QW 1

2
f − p‖2

2 + h‖W 1
2
f‖1. (3.20)
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A vector f is the solution to (3.8) if and only if the zero vector is a subgradient of Fobj

at f . Therefore

W 1
2
QT (QW 1

2
f̂ − p) + hW 1

2
u = 0. (3.21)

In (3.21), u is the subgradient of ‖W 1
2
f‖1. To be more specific,

uTW 1
2
f̂ = ‖W 1

2
f̂‖1, (3.22)

and

‖u‖∞ ≤ 1. (3.23)

Necessary and Sufficient Conditions on h

To determine the necessary and sufficient conditions on h such that f̂ vanishes,

let

f̂ = 0, (3.24)

and search for h and u that satisfy (3.22) and (3.23). Now, if

h ≥ ‖QTp‖∞, (3.25)

and

u =
1

h
QTp, (3.26)

then (3.21), (3.22), and (3.23) are satisfied. As a result, (3.25) is the necessary

and sufficient conditions on h such that f̂ vanishes. This connection between the

detection and the estimation of the l2-l1 regularized criterion used in BPDN is pointed

out in [72]. The detection property of the PQP method is a manifestation of such
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connection. In particular, note that the PQP method claims that the set of all

received measurements is fault-free, or equivalently it claims no detection, only when f̂

equals 0. At the same time, f̂ equals 0 if and only if (3.25) is satisfied. The PQP

parameter h and ‖QTp‖∞ can therefore be considered as the detection threshold

and the test statistic respectively. The detection property provides a perspective

for parameter tuning. That is, if the probability distribution function of ‖QTp‖∞ is

known, under the assumption that the measurements are fault-free, then it is possible

to tune the threshold, or equivalently the PQP parameter h, such that the probability

of false alarms stays below some required value.

3.2.2 Parameter Tuning: Bounding the Probability of False Alarms

Tuning the PQP parameter h by bounding the probability of false alarms is en-

capsulated by

h2 = χ−2
(
1− PFA,REQ, nsv −m

)
, (3.27)

where χ−2
(
1−PFA,REQ, nsv−m

)
is the inverse of the cumulative distribution function

of the central Chi-squared distribution with nsv−m degrees of freedom and PFA,REQ

is the required upper bound on the probability of false alarms. The rest of this

subsection is devoted to explain the parameter tuning method shown in (3.27).

From Figure 3.1, the PQP method claims no fault is detected is the set of all

measurements (no detection) if and only if f̂ is the zero vector. The PQP method

alarms the users, either of detection or exclusion, if f̂ is not the zero vector. In

this sense, the probability of false alarms is defined as the conditional probability

that f̂ is not the zero vector, under the condition that f is actually the zero vector.

Suppose for now that a value of the parameter h is given, it will be shown what the

probability of false alarms associated with the given h is and how an upper bound can

be determined. The upper bound on the probability of false alarms in turn bridges

the parameter tuning method that is presented in this subsection. From (3.25), it
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is suggested that h and ‖QTp‖∞ should be considered as the test threshold and the

test statistic, respectively. The PQP method claims no detection if and only if the

threshold bounds the test statistic from the above. The conditional probability that f̂

is not the zero vector, under the condition that f is actually the zero vector

PFA(h) = P
(
h ≤ ‖QTp‖∞|f = 0

)
. (3.28)

(3.28) says that the probability of false alarms is a function of h and can be con-

structed if the distribution of the random variable ‖QTp‖∞, under the condition that f

vanishes, is known. Unfortunately, QTp is a normal random vector with correlated

components and it is generally difficult to determine the distribution of ‖QTp‖∞.

The proposed parameter tuning method in this and the upcoming subsections conse-

quently revolve around this issue. Consider the relation

‖QTp‖∞ ≤ ‖QTp‖2. (3.29)

It follows that the event

h ≤ ‖QTp‖∞ (3.30)

implies the event

h ≤ ‖QTp‖2. (3.31)

Thus,

P
(
h ≤ ‖QTp‖∞

)
≤ P

(
h ≤ ‖QTp‖2

)
, (3.32)

and

PFA(h) ≤ P
(
h ≤ ‖QTp‖2|f = 0

)
. (3.33)
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Because Q is selected so that QQT is the identity matrix, (3.31) is equivalent to

h2 ≤ pTp. (3.34)

Under the assumption that f vanishes, pTp distributes according to the central

Chi-squared distribution with nsv −m degrees of freedom [60]. Note that it is possible

to tune h so that

P
(
h2 ≤ pTp|f = 0

)
≤ PFA,REQ (3.35)

holds. If h is tuned such that (3.35) holds, then it follows from (3.33) that

PFA(h) ≤ PFA,REQ. (3.36)

3.2.3 Parameter Tuning: Using Kernel Density Estimation

Despite that it is difficult to determine analytically how ‖QTp‖∞ distribute, it is

possible to numerically construct the cumulative distribution of ‖QTp‖∞, under the

assumption that f vanishes. Under such assumption,

QTp = QTQW 1
2
εn. (3.37)

For a given satellite geometry and nominal measurement model, samples of QTp

can be simulated, which in turn can be used to obtain samples of ‖QTp‖∞. Using

the samples of ‖QTp‖∞, a numerical approximation of the cumulative distribution

function of ‖QTp‖∞ can be constructed by kernel density estimation (KDE) [44],

together with a selected kernel function.
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3.2.4 Remarks on the Parameter Tuning Methods

While tuning the PQP parameter by bounding the probability of false alarms can

be efficiently done and is suitable for real-time applications, it will been seen from the

simulation results in the next chapter that tuning the PQP parameter by bounding

the probability of false alarms generally leads to more conservative integrity perfor-

mance. On the contrary, tuning the PQP parameter using KDE results in better

integrity performance but it requires the a certain amount of simulated samples or

GNSS measurements that are known to be fault-free. In addition, there’s no guar-

antee that the resulting probability of false alarm will be bounded by the required

probability of false alarms. Tuning the parameter using KDE is therefore not suit-

able for real-time applications in this sense. Instead, tuning the parameter using

KDE provides a means of assessing the expected integrity performance of the PQP

method. If the expected integrity performance is similar to the more conservative

one resulted from the bounding the probability of false alarms method, then there’s

no need to pursuit further parameter tuning method for real-time applications. An-

other remark is for every instance of the problem in (3.9) and (3.10), an equivalent

support vector machine (SVM) [73, 74] can be constructed [75, 76]. The equivalence

between the SVM and the PQP suggests that it may be possible for the PQP approach

to benefit from the researches and studies conducted for the SVM.

3.2.5 An Equivalent Support Vector Machine

As reported in [75], there’s an equivalence between sparse approximation and

support vector machines (SVM). Since the PQP method stems from sparse approxi-

mation, the equivalence leads to an equivalent SVM for the detection and exclusion

of faulty GNSS measurements. Given a set of N data points
{

(ωi, zi)
}N
i=1

which are

sampled from a function

z = f
(
ω
)
, (3.38)
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the SVM finds an approximation of the function f of the form

f
(
ω
)

=
∞∑
i=1

ciφi(ω). (3.39)

In (3.39), each φi is a known function that comes from an set of basis function of

a Reproducing Kernel Hilbert Space (RKHS) [77] H and the corresponding ci is

what is to be sought. The strategy employed to determine the countably infinite

set of coefficients, using only a finite number of data points, is to minimize the cost

function

min
f∈H

C
N∑
i=1

V
(
zi − f(ωi)

)
+

1

2
Ψ
(
f
)
. (3.40)

In (3.40), C is a positive constant, and V
(
zi−f(ωi)

)
is an error function whose input

argument is the difference between zi and f(ωi). Finally,

Ψ
(
f
)

=
∞∑
i=1

c2
i

λi
, (3.41)

where each λi belongs to a decreasing sequence of positive constants. It is shown

in [75] that the solution to (3.40) is always

f
(
ω
)

=
N∑
i=1

aiK
(
ω,ωi

)
, (3.42)

regardless of the error function used. The K
(
ω,ωi

)
in (3.46) is the kernel function

associated with the RKHS H,

K
(
ω,ωi

)
=
∞∑
j=1

λjψ(ω)jψ(ωi)j. (3.43)

Given ω and ωi, the calculation of K
(
ω,ωi

)
, according to (3.43), involves summing a

infinite number of terms. Fortunately, the theory of RKHS says that such calculations

can be avoided if the RKHS H is known. For example, if H is the RKHS of Gaussian

radial basis function, then the kernel function is of the form
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K
(
ω,ωi

)
= exp(−‖ω − ωi‖2

2). (3.44)

It is further shown if the error function is the ε-insensitive cost function [78] according

V
(
z
)

= |z|ε

0 if |z| < ε

|z| − ε otherwise

, (3.45)

then the solution to (3.40) is

f
(
ω,α+,α−

)
=

N∑
i=1

(
α+
i − α−i

)
K
(
ω,ωi

)
, (3.46)

where α+
i and α−i are the ith components of α+ and α−, respectively. Also, α+

and α− are to solution to the QP

min
α+,α−

ε
N∑
i=1

(
α+
i + α−i

)
−

N∑
i=1

zi
(
α+
i − α−i

)
+

1

2

N∑
i,j=1

(
α+
i − α−i

)(
α+
j − α−j

)
K
(
ωi,ωj

)
, (3.47)

subject to

0 ≤ α+
i ≤ C, ∀i ∈ {1 . . . N}, (3.48)

0 ≤ α−i ≤ C, ∀i ∈ {1 . . . N}, (3.49)

and

α+
i α
−
i = 0,∀i ∈ {1 . . . N}, (3.50)
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Comparing (3.47), (3.48), (3.49), and (3.50) with (3.9), (3.10), (3.14), and (3.15),

it shows that

α+
i = wif

+
i , (3.51)

α+
− = wif

−
i , (3.52)

and

K
(
ωi,ωj

)
= Mi,j, (3.53)

where Mi,j is the component of the in the ith row and the jth column of QTQ. In

addition,

z = QTp, (3.54)

and

ε = h. (3.55)

3.3 The Integrity of the PQP Approach

The PQP approach detects and excludes faulty GNSS measurements with a goal

to improve the distribution of vertical position error. With the weighted least squares

estimation, the vertical position error of the system (2.17) is the random variable ev,f

in (2.18). Suppose now that a subset of measurements of y are excluded and a new

system is formed

yex = BT
exy = BT

ex

(
Gx + f + εn

)
. (3.56)

In (3.56), Bex is the rectangular matrix, which is composed of zeros and ones, such

that BT
exy is the vector of measurements that are to be retained after exclusion. Note

that Bex can be constructed by the inspecting the indices of the nonzero components
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of f̂ . The vertical position error associated with the weighted least squares estimation

is

ev,f,ex = αTv PexG
T
exB

T
exW 1

2

(
f + εn

)
. (3.57)

In order to write down expressions of Gex and Pex explicitly, Bex, 1
2

is introduced

Bex, 1
2

= W 1
2
Bex. (3.58)

After Bex, 1
2

is defined,

Gex = BT
ex, 1

2
G, (3.59)

and

Pex =
(
GT
exGex

)−1
. (3.60)

Now, ev,f,ex is a normal random variable with mean

E[ev,f,ex] = αTv PexG
T
exB

T
exW 1

2
f , (3.61)

and variance

Var[ev,f,ex] = αTv Pexαv. (3.62)

If the all the faulty measurements are excluded by Bex then BT
exf vanishes and so

does E[ev,f,ex]. If Bex removes all the faulty measurements in y, then the exclu-

sion improves the distribution of vertical position error by reducing its mean to zero.

However, two problems arise. Firstly, there’s no guarantee that the variance of the

vertical position error will necessarily decrease. That is, Var[ev,f,ex] is not necessar-

ily smaller than Var[ev,f ], even if BT
exf is the zero vector. Secondly, BT

exf will not
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necessarily be the zero vector. These problems justify the need of the mathematical

characterizations of the integrity and continuity risks of the PQP approach.

3.3.1 The Building Blocks and the Integrity and Continuity Risks of FDE

In order to introduce the general integrity and continuity risks, some events and

the associated remarks, which serve as the building blocks of the integrity and conti-

nuity risks, are introduced.

The Events

H0: the fault-free hypothesis, which is the event that f is the zero vector.

Hi: the ith of the total nFH fault hypotheses. Suppose, for example, that there are

totally 31 measurements and that H32 is the fault hypothesis such that the measure-

ments associated with the first and second components of y are faulty, then H32 is

the event that all the components of f equal zero, except that the first and second

components of f are nonzero.

ND: the event that the PQP method claims no detection in Figure 3.1. Since the

PQP method claims no detection if and only if f̂ is the zero vector,ND is characterized

by (3.25). Note that this event depends on the PQP parameter h.

D: the complement of ND.

Ej: the event such that

qχ2,j = yTBj, 1
2
RjB

T
j, 1

2
y ≤ T 2

j . (3.63)

In (3.63)

Bj, 1
2

= W 1
2
Bj, (3.64)
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where Bj is the rectangular matrix which is composed of zeros and ones. In addi-

tion, BT
j y is the vector of measurements that are assumed to be faulty-free by Hj.

Also

Gj = BT
j, 1

2
G, (3.65)

Pj =
(
GT
j Gj

)−1
, (3.66)

and

Rj = I−GjPjG
T
j . (3.67)

Note that the T 2
j is a parameter that acts as the threshold, just like h. The deter-

mination of T 2
j depends on the required upper limit on continuity risk and is defined

in (3.94).

ND: the event such that

h ≥ 1
√
nsv
‖QTp‖2. (3.68)

HI0: the event such that the magnitude the vertical position error associated with the

weighted least squares estimate resulted from all the received measurements, shown

in (2.18), exceeds a given alarm limit lal. That is

|ev,f | = |αTv P0G
T
0 W 1

2

(
f + εn

)
| > lal. (3.69)

HIj: the event such that the magnitude the vertical position error, that is associated

with the weighted least squares estimate resulted from the measurements that are

assumed to be fault-free by Hj, exceeds lal. That is,

|ev,f,j| = |αTv PjG
T
j Bj, 1

2

(
f + εn

)
| > lal. (3.70)
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Two Remarks on the Events

Firstly, ND implies ND, since

nsv‖QTp‖2
∞ ≥ ‖QTp‖2

2. (3.71)

Consquently,

P (ND) ≤ P (ND), (3.72)

where P (ND) and P (ND) denote the probabilities of ND and ND respectively.

Secondly, HI0 and ND are independent. To prove the independence, the following

result in used [79] Let v1 be a n1×1 normal random vector and v2 be a n2×1 normal

random vector. Consider the normal random vector

v =

v1

v2

 , (3.73)

then v1 and v2 are independent if and only if the covariance of v1 and v2 vanishes.

Now, if

v1 = αTv P0G
T
0 W 1

2

(
f + εn

)
, (3.74)

v2 = QTp = QTQW 1
2

(
f + εn

)
, (3.75)

then

v =

αTv P0G
T
0 W 1

2

QTQW 1
2

(f + εn
)
, (3.76)

is a normal random vector. Denote the mean of v1 by

µv,1 = αTv P0G
T
0 W 1

2
f , (3.77)
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and the mean of v2 by

µv,2 = QTQW 1
2
f , (3.78)

the covariance of v1 and v2

cov(v1,v2) = E
(
v1 − µv,1

)(
v2 − µv,2

)T
(3.79)

vanishes because Q is selected such that (2.21) holds. Therefore HI0 and ND are

independent and

P
(
HI0, ND

)
= P

(
HI0

)
P
(
ND

)
. (3.80)

Similarly, HIj and Ej are independent. Let

u1 = αTv PjG
T
j Bj, 1

2

(
f + εn

)
, (3.81)

u2 =
(
Bj, 1

2
RjB

T
j, 1

2

) 1
2
(
f + εn

)
, (3.82)

where
(
Bj, 1

2
RjB

T
j, 1

2

) 1
2 denotes the positive square root of the matrix Bj, 1

2
RjB

T
j, 1

2

.

Also, let

u =

u1

u2

 , (3.83)

If follows that µu,1 and µu,2 are

µu,1 = αTv PjG
T
j Bj, 1

2
f , (3.84)

and

µu,2 =
(
Bj, 1

2
RjB

T
j, 1

2

) 1
2 f . (3.85)
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Thus, the covariance of u1 and 2 cov(u1,u2) vanishes, and HIj and Ej are indepen-

dent. Consequently,

P
(
HIj, Ej

)
= P

(
HIj

)
P
(
Ej
)
. (3.86)

The Integrity and Continuity Risks

The general integrity and continuity risks a generic FDE method have been derived

in [62]. To be more precise, the general integrity risk is

PIR =

nFH∑
i=0

P (HI0, ND|Hi)P (Hi)

+

nFH∑
i=0

nEH∑
j=1

P (HIj, D,Ej|Hi)P (Hi),

(3.87)

and the general continuity risk is

PCR =P (D,NE|H0)P (H0)

+

nFH∑
i=1

P (D,NE|Hi)P (Hi),
(3.88)

In both (3.87) and (3.88), the notation P
(
EV NT1, EV NT2|EV NT3

)
denotes the

conditional probability that EV NT1 and EV NT2 happen simultaneously, under the

condition that EV NT3 has happened. In other words, PIR is the probability that the

the vertical position error exceeds lal when the FDE method claims that there’s no

faulty measurement or when the FDE method claims that all the faulty measurements

are excluded, while PCR is the probability that the generic FDE method claims that

there are faulty measurements but is unable to exclude the faulty measurements.

Both the PIR and PCR take into account the considered fault hypotheses.
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3.3.2 An Integrity Risk Bound for the PQP approach

A way to verify the integrity of the PQP method for an application is to cal-

culate the integrity risk PIR and then to check if the calculated integrity risk is

bounded from the above by the required integrity risk associated by the application.

In this subsection, the PQP method is integrated with the integrity risk bound of

the Chi-squared ARAIM derived in [62], and the integrity risk bound then allows for

the verification of the integrity of the PQP method. Because ND implies ND and

since HI0 and ND are statically independent,

P
(
HI0, ND|Hi

)
≤ P

(
HI0|Hi

)
P
(
ND|Hi

)
, (3.89)

for all considered fault hypotheses. Also,

P
(
HIj, D,Ej|Hj

)
≤ P

(
HIj, Ej|Hj

)
(3.90)

As a result, an upper bound on PIR is

PIRB =

nFH∑
i=0

P (HI0|Hi)P (ND|Hi)P (Hi)

+

nFH∑
i=0

nEH∑
j=1

P (HIj|Hi)P (Ej|Hi)P (Hi).

(3.91)

Before further simplifications of the PIRB are pursuit, a few things are noted. While

both P (HI0|Hi) and P (HIj|Hi) depend on lal, P (ND|Hi) depends on h, and P (Ej|Hi)

depends on T 2
j . The value of lal is given as a part of the integrity requirement, the

parameter h can be tuned according to either the probability of false alarms or KDE,

but it remains unclear how T 2
j can be tuned.
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The Determination of T 2
j

Similar to the integrity requirement, the continuity requirement is fulfilled if

the PCR, calculated according to (3.88), is bounded by the specified upper limit

of continuity risk. Since P
(
D,NE|H0

)
is less than or equal to P

(
D|H0

)
, which

is just the probability of false alarms and should stay below some required upper

limit PFA,IRQ, and since P
(
D,NE|Hi

)
does not exceed P

(
NE|Hi

)
, an upper bound

for the continuity risk is

PCR = PFA,REQP (H0) +

nFH∑
i=1

P (NE|Hi)Pmax, (3.92)

where

Pmax = max
i∈{1,...,nFH}

P
(
Hi

)
. (3.93)

From (3.92), a naive way to determine the T 2
j in (3.63) is

T 2
j = χ−2

(
1− PC,REQ − PFA,REQP (H0)

Pmax
, nsv −m− nj

)
. (3.94)

To be more precise, if the PQP method sets the jth fault hypothesis as the

candidate for exclusion, T 2
j is the threshold used in the RAIM test in Figure 3.1.

In (3.94), χ−2(prob, µ) represents the inverse cumulative distribution function of the

Chi-squared distribution with prob probability and µ degrees of freedom, and nj is

the number of the candidates of faulty measurements assumed by the jth fault hy-

pothesis. A few remarks about the T 2
j shown in (3.94). Firstly, the T 2

j in (3.94) is

naive because it uses Pmax instead of the actual prior probability, say P
(
Hj

)
for Hj,

for each individual fault hypothesis. Also, the actual PCR exceed PCRB with the use

of the T 2
j in (3.94). A way to determine T 2

j such that the PCR does not exceed PCRB

is to consider the PCRB as a budget to be distributed to the fault hypotheses [62].

That is, to find a set of non-negative coefficients βi such that
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nFH∑
i=i

βi = 1, (3.95)

and determine T 2
j by

T 2
j = χ−2

(
1− PC,REQ − PFA,REQP (H0)

βiPmax
, nsv −m− nj

)
. (3.96)

The determination of the coefficients leads to interesting research topics but is out of

the scope of this work. In this work, the T 2
j in (3.94) is used.

The Worst Faults for the Fault Hypotheses

The PIRB in (3.91) can be further simplified by finding the worst fault for each fault

hypothesis, as derived and explained in [62]. Following the derivations, it is concluded

that the worst fault that maximizes P (HI0|Hi)P (ND|Hi) lies in the direction

f i,0 = Ai

(
AT
i W 1

2
R0W 1

2
Ai

)−1
AT
i W 1

2
G0P0α. (3.97)

Consequently, P (HI0|Hi)P (ND|Hi) can be maximized by optimizing the magnitude

of the fault vector along f i,0. Similarly, the worst fault that maximizes P (HIj|Hi)P (Ej|Hi)

lies in the direction

f i,j = Ai

(
AT
i W 1

2
BjRjB

T
j W 1

2
Ai

)−1
AT
i W 1

2
BjGjPjα, (3.98)

and P (HIj|Hi)P (Ej|Hi) can be maximized by finding the magnitude of the fault

vector along f i,j. Writing the found magnitudes ωi,0 and ωi,j of P (HIj|Hi)P (Ej|Hi)

and P (HIj|Hi)P (Ej|Hi), respectively. The PIRB in (3.91) becomes
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PIRB =

nFH∑
i=0

P (HI0|f = ωi,0fi,0)P (ND|f = ωi,0fi,0)P (Hi)

+

nFH∑
i=0

nEH∑
j=1

P (HIj|f = ωi,jfi,j)P (Ej|f = ωi,jfi,j)P (Hi).

(3.99)

The proofs of the worst faults (3.97) and (3.97) follow from those shown in [62,80],

and are outlined here. As reported in [80,81], it is necessary that the worst fault f i,0

maximizes the ratio

si,0(f) =
µv,1

Tµv,1

µv,2
Tµv,2

=
fTNvf

fTDvf
. (3.100)

where

Nv = nTv nv, (3.101)

nv = αTv P0G
T
0 W 1

2
, (3.102)

and

Dv = W 1
2
QTQW 1

2
= W 1

2
R0W 1

2
. (3.103)

Now, consider the change of variables

Dv, 1
2
Aif̃ = f , (3.104)

Since ATDvA is symmetric and positive definite, it can be factored into DA,v, 1
2
DA,v, 1

2
,

where DA,v, 1
2

is the positive square root of ATDvA. Now consider another change of

variables

f = Dv, 1
2
Aif̃ , (3.105)
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and denote
(
Dv, 1

2

)−1
Ai by D−1

A,v, 1
2

, si,0(f) becomes

si,0(f) =
f
T

(D−1
A,v, 1

2

)T (AT
i NvAi)(D

−1
A,v, 1

2

)f

f
T
f

. (3.106)

Let

Ms = (D−1
A,v, 1

2

)T (AT
i NvAi)(D

−1
A,v, 1

2

)

= (D−1
A,v, 1

2

)T (nvAi)
T (nvAi)(D

−1
A,v, 1

2

)
(3.107)

and notice that Ms is symmetric, it follows from the spectral theorem that Rni ,

where ni is the number of faulty measurements assumed by the ith fault hypothesis,

admits an orthonormal basis consisting the eigenvector of Ms [58], which in turn

shows that si,0(f) can be maximized over the set of nonzero f that belongs to Rni . To

be more precise

max
f 6=0

si,0(f) = max
f 6=0

f
T
Msf

f
T
f

= λmax, (3.108)

where λmax is the largest eigenvalue of Ms, and λmax can be attained by the eigen-

vector corresponding to λmax. From (3.107), the singular value decomposition of Ms

is

Ms =
(D−1

A,v, 1
2

)T (nvAi)
T

‖(nvAi)(D
−1
A,v, 1

2

)‖2

(
‖(nvAi)(D

−1
A,v, 1

2

)‖2

)2
(nvAi)(D

−1
A,v, 1

2

)

‖(nvAi)(D
−1
A,v, 1

2

)‖2

, (3.109)

and it shows that Ms has only one nonzero eigenvalue and

(D−1
A,v, 1

2

)T (nvAi)
T (3.110)

is an eigenvector in Rni that corresponds to the eigenvalue λmax. In Rnsv , the direction

of the eigenvector shown by (3.110) is
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Ai(D
−1
A,v, 1

2

)(D−1
A,v, 1

2

)T (nvAi)
T = (Ai)(A

T
i DvAi)

−1(Ai)
T (nv)

T . (3.111)

Upon substitutions of nv and Dv by (3.102) and (3.103) respectively, the f i,0 in (3.97)

results.

For the proof for the f i,j in (3.98), consider

si,j(f) =
µu,1

Tµu,1

µu,2
Tµu,2

=
fTNuf

fTDuf
. (3.112)

In (3.112),

Nu = nTunu, (3.113)

nu = αTv PjG
T
j BjW 1

2
, (3.114)

and

Du = Bj, 1
2
RjB

T
j, 1

2

= W 1
2
BjRjB

T
j W 1

2

. (3.115)

Using the change of variables

Du, 1
2
Aif̃ = f , (3.116)

where Du, 1
2

is the positive square root of Du then

si,j(f̃) =
f̃TAT

i NuAif̃

f̃TAT
i DuAif̃

. (3.117)

Now, consider a second change of variables

f = Du, 1
2
Aif̃ , (3.118)
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where Du, 1
2

is the positive square root of Du. If
(
Du, 1

2

)−1
Ai is denoted by D−1

A,u, 1
2

,

then

si,j(f) =
f
T

(D−1
A,u, 1

2

)T (AT
i NuAi)(D

−1
A,u, 1

2

)f

f
T
f

. (3.119)

From the discussion for if follows that worst fault direction f i,j is

Ai(D
−1
A,u, 1

2

)(D−1
A,u, 1

2

)T (nuAi)
T = (Ai)(A

T
i DuAi)

−1(Ai)
T (nu)

T , (3.120)

which is equal to the one shown in (3.98).

3.3.3 Vertical Protection Level Calculations for the PQP Approach

In addition to calculating the integrity risk bounds and then comparing them

to the required integrity risk, vertical protection levels facilitate a different way to

verify the integrity of FDE for vertical navigation. Simply put, vertical protection

levels can be calculated from the integrity risk bounds and then compared with the

required alert limit. In subsection, it is demonstrated that a vertical protection level

can be calculated from the PIRB in (3.91). In particular, it will be shown how upper

and lower bounds of vertical protection levels can be calculated using the method

proposed in [82].

The Vertical Protection Level for Detection and Exclusion Using the PQP

Method

Instead of calculating PIRB in (3.91) and then comparing the result with PIR,REQ,

the alert limit lAL is first considered as a variable l and the integrity risk bound is

regarded as a function of l, which is denoted by PIRB(l). The PIRB(l) is then equated

with PIR,REQ and solved for the solution, which is denoted by lPL. Finally, lPL is

compared with lAL. The integrity risk requirement is satisfied if lPL is not greater
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than lAL. For the purpose of illustration, P (HI0|Hi), P (HIj|Hi), P (ND|Hi)P (Hi),

and P (Ej|Hi)P (Hi) are denoted by

P (HI0|Hi) = PHI0,i(l), (3.121)

P (HIj|Hi) = PHIj,i(l), (3.122)

P (ND|Hi)P (Hi) = c0i, (3.123)

and

P (Ej|Hi)P (Hi) = cji. (3.124)

Now, calculating lPL is equivalent to solving for the lPL from

nFH∑
i=0

c0,iPHI0,i(lPL) +

nEH∑
j=1

nFH∑
i=0

cj,iPHIj,i(lPL) = PIR,REQ. (3.125)

One of the most commonly used methods to solve (3.125) is to consider PIR,REQ as a

budget to be distributed to PHI0(l) and PHIj(l) in (3.125) [82]. That is, we formulate

the lPL calculation into the optimization problem

lPL = max{lj,i}, (3.126)

cj,iPHIj(lj,i) = αj,iPIR,REQ, (3.127)

0 < αj,i < 1, (3.128)

and
nEH∑
j=1

nFH∑
i=0

αj,i = 1, (3.129)

for all i ∈ {0, . . . , nFH} and j ∈ {1, . . . , nFH}.
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The Vertical Protection Level for Detection Using the PQP Method

In this subsection, the vertical protection level calculation of the solution separa-

tion ARAIM proposed in [82] is briefly described. In particular, it is explained the

how the associated lower and upper bounds derived in [82] can be used to calculate

a lower bound and an upper bound for the lPL of PQP method. For detection only,

the PHMI in (3.91) reduces to

PIRB =

nFH∑
i=0

P (HI0, ND|Hi)P (Hi). (3.130)

Similar to the calculation of right hand side terms in (3.129), the calculation of PIRB

in (3.130) takes lAL, T0, and all Ti as its input parameters. Again, the lAL in (3.130)

is replaced with a variable l and PHMI is considered as a function of l, PHMI(l).

Calculating lPL amounts to solving

PHMI(lPL) = PIR,REQ, (3.131)

for lPL. In [82], a lPL and the associated lower and upper bounds are proposed. The

first step to calculate lPL using the simplified calculation is to check if

pTp ≤ T0. (3.132)

The detection threshold T0 is determined by

T0 = χ−2(1− PFA,REQ, nsv −m), (3.133)

where χ−2(1 − PFA,REQ, nsv − m) is the inverse cumulative distribution function of

the central Chi-squared distribution with nsv −m degrees of freedom and the prob-

ability 1− PFA,REQ. If (3.132) is true, the next step is to calculate for each Hi, i ∈

{1, . . . , nFH},

Ti = σss,i
√
T0. (3.134)
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In (3.134),

σss,i = αT (Si − S0)(Si − S0)Tα, (3.135)

where

S0 = P0G0W 1
2
, (3.136)

and

Si = PiGiW 1
2
. (3.137)

Also calculated for each Hi is

σi =
√
αTPiα. (3.138)

The lPL can be solved using a half interval search, and a lower bound lPL,LB and an

upper bound lPL,UB can also be calculated [82]. The calculations of lPL,LB and lPL,UB

start with

lPL,low,init = max
{
Q−1(vl,0)σ0,max{Q−1(vl,i)σi + Ti}

}
, (3.139)

and

lPL,up,init = max
{
Q−1(vu,0)σ0,max{Q−1(vu,i)σi + Ti}

}
, (3.140)

whereQ−1(p) denotes the (1−p)-quantile of the standard normal distribution. Also, vl,0

equals
PIR,REQ

2
, vl,i equals

PIR,REQ

P (Hi)
, vu,0 equals

PIR,REQ

2(nFH+1)
, and vu,i equals

PIR,REQ

P (Hi)(nFH+1)
.

From (3.139) and (3.140), we can calculate a lower bound and an upper bound by

lPL,LB =lPL,low,init

+

((
PIR,REQ − Pexceed(lPL,low,init)

)

× lPL,up,init − lPL,low,init
Pexceed(lPL,up,init)− Pexceed(lPL,low,init)

)
,

(3.141)
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and

lPL,UB =lPL,up,init

+

((
log
(
PIR,REQ

)
− log

(
Pexceed(lPL,low,init)

))
× lPL,up,init − lPL,low,init
Pexceed(lPL,up,init)− Pexceed(lPL,low,init)

)
,

(3.142)

respectively. In (3.141) and (3.142)

Pexceed(l) = 2Q

(
l

σ0

)
+

nFH∑
i=1

P (Hi)Q

(
l − Ti
σi

)
, (3.143)

where Q(l) is the tail probability of the zero mean unit variance normal distribu-

tion [83], evaluated at l.

In order to calculate lPL,LB and lPL,UB for fault detection using the PQP method

by (3.141) and (3.142), two changes are made. The first change is related to (3.132).

Instead of checking if (3.132) is true, we check if f̂ is the zero vector. The calcu-

lated lPL,LB and lPL,UB are valid only if f̂ is the zero vector. The second change is to

replace T0 in (3.133) and (3.134) by

T0 = nsvh
2. (3.144)

The idea behind these two changes is that if the f̂ is the zero vector, then the received

measurement will pass the solution separation test in [82] with the T0 equal to nsvh
2

and all Ti equal to σss,ih
√
nsv. In this case, we can calculate the corresponding lPL,LB

and lPL,UB using (3.141) and (3.142).

Using the KDE Parameter Tuning Method

Tuning the PQP parameter, h, according to (3.27) guarantees that the probability

of false alarm will not exceed PFA,REQ [52]. Such PQP parameter is not optimal in
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the sense that it does not result in tight vertical protection level and the associated

bounds, given the probability of false alarm is no more than PFA,REQ. The crux

of this problem is that it is unclear how the PQP detection statistic, ‖QTp‖∞, dis-

tributes analytically under the fault-free hypothesis, H0. Fortunately, the fault vector

in (2.17) vanishes under H0. In this case, it is possible to simulate samples of ‖QTp‖∞
using (2.17) and (2.23). Then, the cumulative distribution function can be estimated

using the simulated samples and a selected kernel function [44, 84, 85]. Denoting the

resulting estimate of the cumulative distribution function by CDFKDE, h can be

tuned according to

hKDE = CDF−1
KDE(1− PFA,REQ), (3.145)

where CDF−1
KDE(1 − PFA,REQ) is the inverse of CDFKDE evaluated at 1 − PFA,REQ.

The h obtained from (3.145) is less conservative and results in lower vertical protec-

tion level and lPL,LB and lPL,UB. A final remark about the h obtained from (3.145)

is that, unlike the h tuned according to (3.27), the probability of false alarm may

exceed PFA,REQ. [86].
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4. NUMERICAL EXAMPLES

In this chapter, numerical examples, which include the FDE using the PQP

method, the integrity risk bound of the PQP method, and both the lower and upper

bounds of the vertical protection level in the case of detection, are presented. The

examples are taken from a paper that has been accepted for publication [52] and a

paper that is currently under review [86].

The software tools used to generate the numerical examples are developed us-

ing the Qt Creator [87] , the Eigen C++ template library [88] , the boost C++

libraries [89,90] , and the gurobi optimization library [91] .

The satellite measurements used in the examples come from the GPS, GLONASS,

and Beidou satellites, all of which are extracted from a GNSS receiver that is con-

nected to a antenna at a fixed and known location. The line-of-sight (LOS) direction

vectors are obtained using the satellites and user positions, which are contained in the

receiver output. The LOS direction vectors are summarized in Table 4.1, Table 4.2,

and Table 4.3, respectively. The values in Table 4.1, Table 4.2, and Table 4.3 are used

to construct the tested satellite geometries summarized in Table 4.4. Suppose for now

that Gtwo is the geometry matrix for satellite geometry 2, then Gtwo is a 12×4 matrix

that takes the following form

Gtwo =


...

...
...

...

Ei Ni Ui 1
...

...
...

...

 . (4.1)
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Table 4.1. Line-of-Sight components of the GPS Satellites

Constellation
Line-of-Sight components

E N U
GPS 8.5334× 10−1 −2.1582× 10−3 −5.1807× 10−1

GPS 3.7866× 10−1 8.6053× 10−1 −3.4119× 10−1

GPS −.2.1614× 10−1 3.9521× 10−1 −8.9280× 10−1

GPS 3.5034× 10−1 −1.7313× 10−1 −9.2048× 10−1

GPS −9.0776× 10−1 1.5131× 10−1 −3.9125× 10−1

GPS 7.7386× 10−1 3.4472× 10−1 −5.3134× 10−1

GPS 5.4021× 10−1 −6.0939× 10−1 −5.8037× 10−1

GPS −3.0590× 10−3 −4.3559× 10−1 −9.0014× 10−1

GPS 7.6416× 10−2 6.40192× 10−1 −7.6441× 10−1

GPS −5.7118× 10−1 −7.0984× 10−1 −4.1216× 10−1

GPS −5.0147× 10−1 −2.9867× 10−1 −8.1199× 10−1

GPS −3.8672× 10−1 6.9339× 10−1 −6.0800× 10−1

Table 4.2. Line-of-Sight components of the GLONASS Satellites

Constellation
Line-of-Sight components

E N U
GLONASS 2.5858× 10−1 6.8390× 10−1 −6.8222× 10−1

GLONASS −6.6621× 10−1 −5.2417× 10−1 −5.3049× 10−1

GLONASS −9.9014× 10−2 −6.7353× 10−1 −7.3250× 10−1

GLONASS 7.3723× 10−1 −4.2378× 10−1 −5.2622× 10−1

GLONASS −6.1703× 10−1 1.1442× 10−1 −7.7858× 10−1

GLONASS −3.0099× 10−1 7.5154× 10−1 −5.8702× 10−1

GLONASS −6.0027× 10−1 −5.7338× 10−1 −5.5759× 10−1
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Table 4.3. Line-of-Sight components of the Beidou Satellites

Constellation
Line-of-Sight components

E N U
Beidou −3.3759× 10−1 3.5243× 10−1 −8.7283× 10−1

Beidou 5.9029× 10−1 3.4358× 10−1 −7.3042× 10−1

Beidou 1.6708× 10−1 3.8715× 10−1 −9.0675× 10−1

Beidou −6.4008× 10−1 2.9773× 10−1 −7.0828× 10−1

Beidou 8.7910× 10−1 2.0743× 10−1 −4.2913× 10−1

Beidou 9.0053× 10−2 4.7952× 10−1 −8.7290× 10−1

Beidou 1.3906× 10−1 −4.3905× 10−1 −8.8764× 10−1

Beidou −2.4136× 10−1 8.7690× 10−1 −4.1568× 10−1

Beidou 3.0684× 10−1 1.06955× 10−1 −9.4573× 10−1

Beidou 5.3570× 10−1 −2.8382× 10−1 −7.9528× 10−1

Beidou −2.6773× 10−1 5.3405× 10−1 −8.0194× 10−1

Beidou 1.1111× 10−1 9.6186× 10−1 −2.4997× 10−1

In (4.1), Ei, Ni, and Ui are the E, N , and U components of the ith row of Table 4.1.

The geometry matrix for satellite geometry 1 can be similarly constructed by using

only the first eight satellites in Table 4.1. To construct the geometry matrix Gthree

for satellite geometry 3, let’s suppose GT2 is the geometry for constructed using all

and only all the satellites shown in Table 4.2. Note that GT2 is thus a 7× 4 matrix.

Now we can partition GT1 and GT2 according to

GT1 =
[
Gs1 1s1

]
, (4.2)

and

GT2 =
[
Gs2 1s2

]
. (4.3)

In (4.2) and (4.3), 1s1 and 1s2 are column vectors whose components are all ones

and both 1s1 and 1s2 are of the appropriate dimensions. Also Gs1 and Gs2 are

the submatrices that fit into the partitions. Now, the geometry matrix for satellite

geometry 3 can be written as



81

Table 4.4. Satellite Geometries

Satellite
Geometry

nsv Discription

1 8 first 8 GPS satellites
2 12 all GPS satellites
3 19 all GPS and GLONASS satellites
4 24 all GPS and Beidou satellites
5 31 all GPS, GLONASS, and Beidou satellites

Gthree =

Gs1 1s1 0s1

Gs2 0s2 1s2

 , (4.4)

where 0s1 and 0s2 are the respective zero vectors of the appropriate dimensions. If

the geometry matrix for the satellites in Table 4.3 is

GT3 =
[
Gs3 1s3

]
, (4.5)

then the geometry matrix for satellite geometry 5 is

Gfive =


Gs1 1s1 0s1 0s1

Gs2 0s2 1s2 0s2

Gs3 0s3 0s3 1s3

 . (4.6)

Once again, 0s3 is the zero vector of the appropriate dimensions To be more precise,

the geometry matrix for satellite geometry 1 is
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Gone =



8.5334× 10−1 −2.1582× 10−3 −5.1807× 10−1 1.0

3.7866× 10−1 8.6053× 10−1 −3.4119× 10−1 1.0

−2.1614× 10−1 3.9521× 10−1 −8.9280× 10−1 1.0

3.5034× 10−1 −1.7313× 10−1 −9.2048× 10−1 1.0

−9.0776× 10−1 1.5131× 10−1 −3.9125× 10−1 1.0

7.7386× 10−1 3.4472× 10−1 −5.3134× 10−1 1.0

5.4021× 10−1 −6.0939× 10−1 −5.8037× 10−1 1.0

−3.0590× 10−3 −4.3559× 10−1 −9.0014× 10−1 1.0



. (4.7)

The geometry matrix for satellite geometry 2 is

Gtwo =



8.5334× 10−1 −2.1582× 10−3 −5.1807× 10−1 1.0

3.7866× 10−1 8.6053× 10−1 −3.4119× 10−1 1.0

−2.1614× 10−1 3.9521× 10−1 −8.9280× 10−1 1.0

3.5034× 10−1 −1.7313× 10−1 −9.2048× 10−1 1.0

−9.0776× 10−1 1.5131× 10−1 −3.9125× 10−1 1.0

7.7386× 10−1 3.4472× 10−1 −5.3134× 10−1 1.0

5.4021× 10−1 −6.0939× 10−1 −5.8037× 10−1 1.0

−3.0590× 10−3 −4.3559× 10−1 −9.0014× 10−1 1.0

7.6416× 10−2 6.4019× 10−1 −7.6441× 10−1 1.0

−5.7118× 10−1 −7.0984× 10−1 −4.1216× 10−1 1.0

−5.0147× 10−1 −2.9867× 10−1 −8.1199× 10−1 1.0

−3.8672× 10−1 6.9339× 10−1 −6.0800× 10−1 1.0



. (4.8)

The geometry matrix for satellite geometry 3 is
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Gthree =



8.5334× 10−1 −2.1582× 10−3 −5.1807× 10−1 1.0 0.0

3.7866× 10−1 8.6053× 10−1 −3.4119× 10−1 1.0 0.0

−2.1614× 10−1 3.9521× 10−1 −8.9280× 10−1 1.0 0.0

3.5034× 10−1 −1.7313× 10−1 −9.2048× 10−1 1.0 0.0

−9.0776× 10−1 1.5131× 10−1 −3.9125× 10−1 1.0 0.0

7.7386× 10−1 3.4472× 10−1 −5.3134× 10−1 1.0 0.0

5.4021× 10−1 −6.0939× 10−1 −5.8037× 10−1 1.0 0.0

−3.0590× 10−3 −4.3559× 10−1 −9.0014× 10−1 1.0 0.0

7.6416× 10−2 6.4019× 10−1 −7.6441× 10−1 1.0 0.0

−5.7118× 10−1 −7.0984× 10−1 −4.1216× 10−1 1.0 0.0

−5.0147× 10−1 −2.9867× 10−1 −8.1199× 10−1 1.0 0.0

−3.8672× 10−1 6.9339× 10−1 −6.0800× 10−1 1.0 0.0

2.5858× 10−1 6.8390× 10−1 −6.8222× 10−1 0.0 1.0

−6.6621× 10−1 −5.2417× 10−1 −5.3049× 10−1 0.0 1.0

−9.9014× 10−2 −6.7353× 10−1 −7.3250× 10−1 0.0 1.0

7.3723× 10−1 −4.2378× 10−1 −5.2622× 10−1 0.0 1.0

−6.1703× 10−1 1.1442× 10−1 −7.7858× 10−1 0.0 1.0

−3.0099× 10−1 7.5154× 10−1 −5.8702× 10−1 0.0 1.0

−6.0027× 10−1 −5.7338× 10−1 −5.5759× 10−1 0.0 1.0



. (4.9)

The geometry matrix for satellite geometry 4 is
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Gfour =



8.5334× 10−1 −2.1582× 10−3 −5.1807× 10−1 1.0 0.0

3.7866× 10−1 8.6053× 10−1 −3.4119× 10−1 1.0 0.0

−2.1614× 10−1 3.9521× 10−1 −8.9280× 10−1 1.0 0.0

3.5034× 10−1 −1.7313× 10−1 −9.2048× 10−1 1.0 0.0

−9.0776× 10−1 1.5131× 10−1 −3.9125× 10−1 1.0 0.0

7.7386× 10−1 3.4472× 10−1 −5.3134× 10−1 1.0 0.0

5.4021× 10−1 −6.0939× 10−1 −5.8037× 10−1 1.0 0.0

−3.0590× 10−3 −4.3559× 10−1 −9.0014× 10−1 1.0 0.0

7.6416× 10−2 6.4019× 10−1 −7.6441× 10−1 1.0 0.0

−5.7118× 10−1 −7.0984× 10−1 −4.1216× 10−1 1.0 0.0

−5.0147× 10−1 −2.9867× 10−1 −8.1199× 10−1 1.0 0.0

−3.8672× 10−1 6.9339× 10−1 −6.0800× 10−1 1.0 0.0

−3.3759× 10−1 3.5243× 10−1 −8.7283× 10−1 0.0 1.0

5.9029× 10−1 3.4358× 10−1 −7.3042× 10−1 0.0 1.0

1.6708× 10−1 3.8715× 10−1 −9.0675× 10−1 0.0 1.0

−6.4008× 10−1 2.9773× 10−1 −7.0828× 10−1 0.0 1.0

8.7910× 10−1 2.0743× 10−1 −4.2913× 10−1 0.0 1.0

9.0053× 10−2 4.7952× 10−1 −8.7290× 10−1 0.0 1.0

1.3906× 10−1 −4.3905× 10−1 −8.8764× 10−1 0.0 1.0

−2.4136× 10−1 8.7690× 10−1 −4.1568× 10−1 0.0 1.0

3.0684× 10−1 1.0696× 10−1 −9.4573× 10−1 0.0 1.0

5.3570× 10−1 −2.8382× 10−1 −7.9528× 10−1 0.0 1.0

−2.6773× 10−1 5.3405× 10−1 −8.0194× 10−1 0.0 1.0

1.1111× 10−1 9.6186× 10−1 −2.4997× 10−1 0.0 1.0



. (4.10)

The geometry matrix for satellite geometry 5 is
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Gfive =



8.5334× 10−1 −2.1582× 10−3 −5.1807× 10−1 1.0 0.0 0.0

3.7866× 10−1 8.6053× 10−1 −3.4119× 10−1 1.0 0.0 0.0

−2.1614× 10−1 3.9521× 10−1 −8.9280× 10−1 1.0 0.0 0.0

3.5034× 10−1 −1.7313× 10−1 −9.2048× 10−1 1.0 0.0 0.0

−9.0776× 10−1 1.5131× 10−1 −3.9125× 10−1 1.0 0.0 0.0

7.7386× 10−1 3.4472× 10−1 −5.3134× 10−1 1.0 0.0 0.0

5.4021× 10−1 −6.0939× 10−1 −5.8037× 10−1 1.0 0.0 0.0

−3.0590× 10−3 −4.3559× 10−1 −9.0014× 10−1 1.0 0.0 0.0

7.6416× 10−2 6.4019× 10−1 −7.6441× 10−1 1.0 0.0 0.0

−5.7118× 10−1 −7.0984× 10−1 −4.1216× 10−1 1.0 0.0 0.0

−5.0147× 10−1 −2.9867× 10−1 −8.1199× 10−1 1.0 0.0 0.0

−3.8672× 10−1 6.9339× 10−1 −6.0800× 10−1 1.0 0.0 0.0

2.5858× 10−1 6.8390× 10−1 −6.8222× 10−1 0.0 1.0 0.0

−6.6621× 10−1 −5.2417× 10−1 −5.3049× 10−1 0.0 1.0 0.0

−9.9014× 10−2 −6.7353× 10−1 −7.3250× 10−1 0.0 1.0 0.0

7.3723× 10−1 −4.2378× 10−1 −5.2622× 10−1 0.0 1.0 0.0

−6.1703× 10−1 1.1442× 10−1 −7.7858× 10−1 0.0 1.0 0.0

−3.0099× 10−1 7.5154× 10−1 −5.8702× 10−1 0.0 1.0 0.0

−6.0027× 10−1 −5.7338× 10−1 −5.5759× 10−1 0.0 1.0 0.0

−3.3759× 10−1 3.5243× 10−1 −8.7283× 10−1 0.0 0.0 1.0

5.9029× 10−1 3.4358× 10−1 −7.3042× 10−1 0.0 0.0 1.0

1.6708× 10−1 3.8715× 10−1 −9.0675× 10−1 0.0 0.0 1.0

−6.4008× 10−1 2.9773× 10−1 −7.0828× 10−1 0.0 0.0 1.0

8.7910× 10−1 2.0743× 10−1 −4.2913× 10−1 0.0 0.0 1.0

9.0053× 10−2 4.7952× 10−1 −8.7290× 10−1 0.0 0.0 1.0

1.3906× 10−1 −4.3905× 10−1 −8.8764× 10−1 0.0 0.0 1.0

−2.4136× 10−1 8.7690× 10−1 −4.1568× 10−1 0.0 0.0 1.0

3.0684× 10−1 1.0696× 10−1 −9.4573× 10−1 0.0 0.0 1.0

5.3570× 10−1 −2.8382× 10−1 −7.9528× 10−1 0.0 0.0 1.0

−2.6773× 10−1 5.3405× 10−1 −8.0194× 10−1 0.0 0.0 1.0

1.1111× 10−1 9.6186× 10−1 −2.4997× 10−1 0.0 0.0 1.0



.

(4.11)
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4.1 Example 1

The performance of the PQP method is evaluated with three different sets of

simulations and the results are presented in this section. In all of the simulations,

the components of εn are simulated as the independent and identically distributed

normal random variables, each of which has mean 0 meters and standard deviation 1

meter. In the first and second sets of simulations, fr, is simulated by first assuming a

maximum number of possible nonzero components. Then a compatible support of fr

is selected. The nonzero components of fr are then modeled by the independent and

identically distributed normal random variables, each of which has mean 25 meters

and standard deviation 1 meter. All the measurements are weighted equally and W

is the identity matrix of the appropriate dimensions. In addition, the parameter of

the PQP is tuned using the bounding the probability of false alarms method. In other

words, the parameter is tuned according to (3.27).

4.1.1 Test Case I

In the first test case of the first example, the PQP method, the exhaustive search

method, and the Linear Program (LP) formulation of the l1-minimization method pro-

posed in [92] are compared in terms of computation time. The test satellite geometry

is the satellite geometry 5, which consists of 12 GPS, 7 GLONASS, and 12 Beidou

satellites. For all the methods, PFA,REQ is set to 1.0× 10−6 while PC,REQ is set to

2.0× 10−6. P (H0) is set to 9.95× 10−1, and P (Hi), as well as Pmax, is assumed to

be 1.0× 10−5. The results for all the methods are summarized in Table 4.5. From Ta-

ble 4.5, the computation time of the PQP method remains to be a few milliseconds

and the LP formulation formulation computation time remains to be approximately

one millisecond, as nfault increases. The computation time of the exhaustive search

method, however, increases exponentially as nfault grows. For the tested satellite ge-

ometry with a total number of 31 satellites, the exhaustive search method becomes

intractable when nfault grow to be 3 or more.



87

Table 4.5. The Computation Time of The Three FDE Methods

nfault
computation time (ms)

PQP Exhaustive Search LP
1 3.563× 100 5.792× 101 1.166× 100

2 3.576× 100 8.915× 102 1.175× 100

3 3.319× 100 7.154× 103 9.910× 10−1

4 3.383× 100 4.354× 104 9.850× 10−1

5 3.446× 100 7.716× 105 9.580× 10−1

6 3.369× 100 4.449× 106 1.041× 100

4.1.2 Test Case II

In the second test case of the first example, the vertical position error of the

PQP method is simulated and compared with the results obtained using all of the

simulated measurements (No FDE) and the results obtained using only the fault-free

subset measurements (Exact FDE). In addition, the results by the exhaustive search

method are also included for small nfault. The test satellite geometry is the satel-

lite geometry 5 and the simulation settings are identical to those used the first test

case of the first example. For each value of the maximum numbers of possible

faults nfault,max, 1.0× 103 simulations are repeated and the vertical position errors

are recorded. In each of the simulations, nfault is selected, with equal probability, to

be one of the possible numbers of faults. The possible numbers of faults includes 0

for the fault-free hypothesis. After nfault is determined, the support of the true fault

vector fr is selected from all of the compatible faulty hypothesis Hi, with equal prob-

ability. Thus,

Pmax =
1

31(nfault,max + 1)
. (4.12)

The results for the simulations are summarized in Table 4.6. Despite the fact that

the exhaustive search method is able to reduce the standard deviation of the vertical

position error close to that obtained by the exact FDE, the computation time is too
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Table 4.6. Simulation Results: Vertical Position Errors - 1

standard deviation (m)
nfault No FDE Exact FDE PQP Exhaustive Search

1 1.950× 100 9.809× 10−1 1.005× 100 9.808× 10−1

2 2.546× 100 9.817× 10−1 1.004× 100 9.818× 10−1

3 5.458× 100 1.011× 100 1.073× 100 -
4 6.361× 100 1.019× 100 1.086× 100 -
5 6.692× 100 1.022× 100 1.098× 100 -
6 7.308× 100 1.041× 100 1.113× 100 -
7 7.907× 100 1.068× 100 1.135× 100 -
8 8.168× 100 1.070× 100 1.131× 100 -
9 8.537× 100 1.059× 100 1.134× 100 -

long and it makes the exhaustive search method not practical for nfault,max greater

than 2. On the other hand, the PQP method is able to provide reduction in the

standard deviation without long computation time.

Also included in the second test case of the first example is a comparison of

the vertical position error of the PQP method and that of the LP formulation of

the l1-minimization method proposed in [92]. The results are presented in Table 4.7.

For each value of the maximum numbers of possible faults nfault,max, 1.0× 105 simu-

lations are repeated and the vertical position errors are recorded. The LP formulation

shows better performance in terms of the vertical position error. Such results agree

with the simulation results reported in [92], which shows that the LP formulation is

comparable to the exhaustive search method in terms of vertical positioning perfor-

mance. While being fast and having good performance in terms of vertical positioning

error, the integrity risk bound of the LP formulation remains to be an open challenge.

Compared to the LP formulation, the PQP method addresses the integrity by the cal-

culation of the integrity risk bound.
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Table 4.7. Simulation Results: Vertical Position Errors - 2

standard deviation (m)
nfault PQP LP nfault PQP LP

1 1.025× 100 6.131× 10−1 5 1.098× 100 6.684× 10−1

2 1.049× 100 6.250× 10−1 6 1.103× 100 6.914× 10−1

3 1.071× 100 6.429× 10−1 7 1.116× 100 7.053× 10−1

4 1.082× 100 6.640× 10−1

Table 4.8. Simulation Results: Integrity Risk Bounds

nsv VDOP Integrity Risk Bound nsv VDOP Integrity Risk Bound
26 1.215 1.319× 10−2 29 1.062 3.727× 10−4

26 1.207 1.163× 10−2 29 1.056 4.175× 10−4

26 1.203 1.101× 10−2 29 1.029 2.587× 10−4

27 1.138 2.815× 10−3 30 1.001 2.880× 10−4

27 1.131 2.391× 10−3 30 0.994 2.450× 10−4

27 1.118 1.675× 10−3 30 0.988 2.009× 10−4

28 1.101 9.883× 10−4 31 0.983 1.529× 10−5

28 1.098 8.808× 10−4 31 0.979 1.088× 10−5

28 1.092 7.021× 10−4 31 0.976 8.015× 10−6

4.1.3 Test Case III

In the third test case of the first example, the integrity risk bounds are calculated

for the test satellite geometries. The simulation settings are identical to those used in

the first and the second test cases, and the alarm limit lAL is set to be 30 meters. The

hypotheses considered include the fault-free hypothesis, all the one-fault hypotheses,

and all the two-fault hypotheses. The calculated integrity risk bounds are summarized

in Table 4.8. The calculated integrity bounds show a general trend of decreasing with

an increase in the number of measurements nsv. The numbers of measurements for

the test geometries used in the third set of simulations range from 26 to 31, which

are relatively small or moderate numbers of measurements, when compared to what
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Table 4.9. Parameters for Test Case IV

PIR,REQ 9.8× 10−8

PHi
(one-fault) 1.0× 10−4

PHi
(two-fault) 1.0× 10−8

PFA 4.0× 10−6

are available now and will be in the future. Lower integrity risk bounds are expected

when more GNSS measurements are included.

4.2 Example 2

In this second example, test cases are presented for lPL,LB and lPL,UB in the case

of detection.

4.2.1 Test Case I

In the first test case of the second example, lPL,LB and lPL,UB are calculated for

the satellite geometries summarized in Table 4.4. The parameters used is summarized

in Table 4.9.

For all the satellite geometries, PIR,REQ is set to be 9.8 × 10−8. Also, PHi
is set

to be 1.0× 10−4 for all the one-fault hypotheses and 1.0× 10−8 for all the two-fault

hypotheses. The false alarm probability PFA is set to be 4.0 × 10−6. The calcu-

lated lPL,LB and lPL,UB for the satellite geometries are shown in Table 4.10.

In Table 4.10, both the lPL,LB and lPL,UB show trends of decreasing with increases

in number of measurements. Therefore, it suggests that increasing the number of

GNSS measurements improves the integrity performance. The vertical alert lim-

its for the Approach with Vertical Guidance-I (APV-I), the Approach with Vertical

Guidance-II (APV-II), and the Category I precision approach [5] are summarized in

Table 4.11.
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Table 4.10. lPL,LB and lPL,UB Calculated Using h

Satellite
Geometry

nsv nc h lPL,LB (m) lPL,UB (m)

1 8 1 5.5164 66.9641 71.5893
2 12 1 6.2835 40.2435 40.2435
3 19 2 7.1480 34.2639 35.7778
4 24 2 7.7401 32.9910 32.9988
5 31 3 8.3598 30.5461 32.7683

Table 4.11. Vertical Alert Limits for Different Types of Approaches [5]

Type of Approach Vertical Alert Limit (m)
APV-I 50
APV-II 20

Category I precision approach 35− 10

For all three types of approaches, the required integrity is 1 − 2 × 10−7 in any

approach and the required continuity is 1−8×10−6 per 15 seconds. Except for satellite

geometry 1, the results show that the PQP method is worthy of further studies

to support fault detection for vertical guidance in the APV-I and the Category I

precision approach. For all the satellite geometries, the calculated lPL,LB suggests that

the PQP method may not be used for fault detection for vertical guidance in APV-II.

The values of the parameter h in Table 4.10 are determined using the bounding the

probability of false alarms method. That is, h is tuned according to (3.27). Ideally, h

should be determined using

h = CDF−1(1− PFA,REQ), (4.13)

where CDF−1(1−PFA,REQ) is the inverse cumulative distribution function of ‖QTp‖∞,

evaluated at 1 − PFA,REQ under the faulty-frees hypothesis. However, it is not clear
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Table 4.12. lPL,LB and lPL,UB Calculated Using hKDE

Satellite
Geometry

nsv nc hKDE lPL,LB (m) lPL,UB (m)

1 8 1 3.5711 44.0581 49.4812
2 12 1 3.8631 24.4915 24.4919
3 19 2 4.0112 20.0656 23.1093
4 24 2 4.2510 18.2951 18.9668
5 31 3 4.3145 17.0422 19.0148

how ‖QTp‖∞ distributes analytically. As a result, (3.27) is used to tune h [52]. How-

ever, the values of h determined using (3.27) are relatively conservative.

4.2.2 Test Case II

In the second test case of the second example, the values of h tuned using the

kernel density estimation method. In other words, the values of h are determined

using estimations of the cumulative distribution function, which is generated by the

simulated samples of ‖QTp‖∞. To be more specific, 10000 samples of ‖QTp‖∞ are

simulated for each of the satellite geometries. Then estimates of the cumulative

distribution function, which are obtained using kernel density estimation with the

normal kernel smoothing functions [44]. The resulting values of h, denoted as hKDE,

and the lPL,LB and the lPL,UB are summarized in Table 4.12.

The lPL,LB and the lPL,UB in Table 4.12 show significant improvement compared

to those shown in Table 4.10. Lower and thus more practical lPL,LB and lPL,UB are

to be expected if the cumulative distribution function of ‖QTp‖∞ can be accurately

estimated.
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Table 4.13. Simulation Results: Vertical Position Errors - 3

nfault,max
standard deviation (m)

No FDE Exact FDE h = 8.3598 hKDE = 4.3145
1 3.2885× 100 9.8634× 10−1 1.0031× 100 1.0031× 100

2 4.4747× 100 9.9638× 10−1 1.0279× 100 1.0279× 100

3 5.3852× 100 1.0073× 100 1.0522× 100 1.0522× 100

4 6.1143× 100 1.0179× 100 1.0769× 100 1.0769× 100

5 6.7638× 100 1.0289× 100 1.0997× 100 1.0997× 100

6 7.3559× 100 1.0429× 100 1.1287× 100 1.1287× 100

7 7.8401× 100 1.0528× 100 1.1621× 100 1.1621× 100

8 8.2698× 100 1.0677× 100 1.2214× 100 1.2214× 100

4.2.3 Test Case III

In the third test case of the second example, the standard deviation of the ver-

tical position error resulting from hKDE is studied using the satellite geometry 5 in

Table 4.4. One million simulations were conducted for each nfault,max in Table 4.13.

In Table 4.13, nfault,max is the number of maximum faulty measurements. For

example, if nfault,max is 2, then it means that the measurements may be fault-free,

may contain one faulty measurement, or may contain two faulty measurements. For

each nfault,max, the number of faulty measurements is determined using the prior prob-

abilities described below. The prior probability that all measurements are fault-free

is set to be

P0 =
1

nfault,max + 1
, (4.14)

and the prior probability that nfault measurements are faulty is set to be

Pnfault
=

1− P0

nfault,max
. (4.15)

The fault hypothesis imposed in each simulation is selected with equal probability

after the number of faulty measurements, nfault, is determined. To be specific, the
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Table 4.14. Parameters for Test Case III

PC,REQ 2.0× 10−6

PFA 1.0× 10−6

P (H0) 1
nfault,max+1

Pmax
1

31(nfault,max+1)

Table 4.15. Noise Parameters

mean standard deviation
εn 0 meters 1 meter
fr 0 meters 25 meters

fault hypothesis is selected with equal probability from all the fault hypotheses that

have exactly nfault faulty measurements. The parameters related to the threshold

calculations are summarized in Table 4.14. In this test case, εn is modeled as a normal

random vector whose components are independent and each has 0 meters mean and 1

meter standard deviation. Also fr is modeled as a normal random vector whose

components are independent and each has 0 meters mean and 25 meters standard

deviation. These values are summarized in Table 4.15. The values in the No FDE

column are the standard deviations of the vertical position error resulting from all

the measurements and the values in the Exact FDE column are those resulting from

the fault-free measurements only, while the values in the h and hKDE columns are

those resulting from the PQP method with the corresponding values of the PQP

parameter. From Table 4.13, the standard deviations of the vertical position error,

which are resulting from hKDE, are almost identical to those from h. This is because

the same measurements have been excluded for both h and hKDE in most of the

simulations. For the purpose of illustration, the PQP method is applied to satellite

geometry 5 with different values of the PQP parameter. Starting from 1, the PQP
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Table 4.16. Different PQP Parameters and the Exclusion

PQP Parameter Measurements Excluded
1.00 4,5,6,8,11,12,15,18,26,27,29,30,31
1.25 4,5,6,11,12,15,18,26,27,29,30,31
1.50 4,5,6,11,12,15,18,27,29,30,31
1.75 4,5,6,11,12,18,27,29,31
3.00 4,5,11,12,18,27,29,31
8.50 4,5,11,12,18,29,31
9.50 4,5,11,12,18,27,29,31
11.50 4,5,11,12,18,29,31

Table 4.17. Parameters for Test Case IV

number of faulty measurements 5
value of each nonzero components 20 meters

method is applied and the set of measurements excluded by the PQP method is

recorded. The PQP method is then repeated with a 0.25 increment in the PQP

parameter, while εn and fr remain unchanged. The set of excluded measurements is

recorded if it is different from the one in the previous iteration. The results are shown

in Table 4.16.

From Table 4.16, the set of measurements excluded remains unchanged for the

PQP parameter ranging from 3.00 to 8.25. Therefore, using hKDE instead of h as the

PQP parameter has a very limited impact on the vertical positioning accuracy. At

the same time, comparing Table 4.12 and Table 4.10 suggests that the use of hKDE

leads to great reductions in vertical protection level.

4.2.4 Test Case IV
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In the fourth test case of the second example, the use of the PQP method to

estimate the number of faulty measurements is demonstrated. The setting is identical

to the previous test case of the second example except for that the nonzero components

of the fault vector now have constant values. In order to obtain an estimate of the

number of the faulty measurements, the PQP is first solved with a small h. If the

result of the PQP method is no detection, then there is no faulty measurement. If the

result of the PQP method is exclusion, then the value of h is increased and the PQP

is solved again with the new h, whose value has been increased. The number of the

nonzero components of the solution is recorded. The process of increasing the value

of h and solving the PQP is repeated until the result of the PQP is detection. To

illustrate the process, simulations are conducted with 5 faulty measurements, and the

values of the nonzero components of the fault vector are set to be 20 meters. These

values are summarized in Table 4.17. The results are shown in Table 4.18.

From the results in Table 4.18, the estimated number of faulty measurements

is 5, which is the number of candidates of faulty measurements when the value of h

ranges from 2.75 to 13.25. The idea behind this estimation of the number of faulty

measurements is that increasing the value of h generally reduces the number of the

nonzero components of the solution to the PQP, which is reported in [39]. Under the

assumption that the received measurements are not fault-free, increasing the value

of h eventually results in one or more faulty measurements not associated with the

nonzero components of the solution to the PQP, which in turn lead to failure of passing

the RAIM test in Figure 3.1. The magnitude of the nonzero components that are

not associated with the nonzero components of the solution to the PQP consequently

affect the quality of the estimate of the number of faulty measurements. It suffices to

lead to the result of detection in Figure 3.1 if there is a faulty measurement associated

with any of the nonzero components of the PQP solution and the magnitude of the

corresponding component of the fault vector is large. In this case, the estimate of

the number of faulty measurements is more accurate. However, it may take two or

more faulty measurements with smaller magnitudes of the corresponding components
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Table 4.18. Estimating the Number of Faulty Measurements

PQP Parameter
Candidates of

Faulty Measurements
1.00 1,2,3,4,7,8,12,19,21,22,28,31
1.25 1,2,3,4,7,8,12,19,21,22,28
1.50 1,2,3,4,7,8,19,21,22
1.75 1,2,3,4,7,19
2.00 1,2,3,4,19
2.25 1,2,3,4,7,19
2.75 1,2,3,4,19
13.50 detection claimed

Table 4.19. The Effect of the Magnitudes of the Nonzero Fault Vector Components
(An Example with 5 Faulty Measurements)

Magnitude of the Nonzero
Fault Vector Components (m)

Estimated Number of
Faulty Measurements

50.00 5
25.00 5
20.00 5
15.00 5
10.00 5
5.00 2
2.50 1

of the fault vector to lead to the result of detection in Figure 3.1, and the estimated

number of faulty measurements is therefore less than the actual number of faulty

measurements. Table 4.19 demonstrates this effect of the magnitudes of the nonzero

components of fault vector.
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5. SUMMARY

The use of the multi-constellation GNSS offers performance improvements but

also poses new challenges in safety-critical applications, which include civil aviation.

The increased numbers of measurements provide not only better satellite geometries

but also better redundancy for considerations beyond positioning accuracy. In this

work, the redundancy is considered for vertical navigation of aircraft through the

PQP method that detects and excludes faulty GNSS measurements and the integra-

tion of the PQP method with the integrity risk and the continuity risk bounds for

fault detection and exclusion using the ARAIM. The PQP method is able to detect

and exclude faulty measurements in a computationally efficient fashion, and the in-

tegration of the PQP method with the integrity risk and the continuity risk moves

the PQP method forward to the goal of integrity monitoring for vertical navigation,

despite the calculation of the integrity risk bound is still combinatorial. The integra-

tion of the PQP method with the continuity risk bound allows for a way to tune the

parameter for the PQP approach according to the requirements on false alarm prob-

ability, and integration of the PQP approach with the integrity risk bound facilitates

the determination of fulfillment of integrity requirement, both of which are necessary

for evaluating the PQP approach for safety-critical applications. With the test satel-

lite geometries, the first numerical example and the test cases show that the PQP

approach is fast and effective in improving vertical positioning accuracy. Also, the

calculated integrity risk bounds show a general decreasing trend with an increasing

number of measurements. However, the numerical values of preliminary simulation

results also suggest that improvements should be made to tighten the integrity risk

bound for the PQP approach. It is emphasized that while detection and exclusion

of faulty GNSS measurements with the PQP approach avoids exhaustive search, but

the calculation of integrity risk bound is still combinatorial. Consequently, the PQP
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approach is not a practical integrity monitoring method despite it is able to detect

and exclude faulty measurements in a computationally efficient fashion. Nevertheless,

improvements to reduce the computational load of the integrity risk bound calcula-

tion for the Chi-squared RAIM fault detection and exclusion can be applied readily to

the integrity risk bound calculation PQP approach. Moreover, further researches on

the PQP parameter tuning methods can be pursued to tighten the current integrity

bound for the PQP approach.

In addition to the integrity risk bound, the vertical protection level calculation

for the PQP approach is formulated. Integrated with the vertical protection level

calculation of the solution separation ARAIM, similar vertical protection level and

the associated upper and lower bounds are formulated for the fault detection using

the PQP approach. The second numerical example and the test cases which consists

of GPS, GLONASS, and Beidou measurements show that, in general, increasing the

number of measurements reduces the calculated upper and lower bounds of vertical

protection level. Also, the results suggest that it may be possible to use the PQP

approach for fault detection for the vertical navigation of aircraft in the APV-I and

the category I precision approach.

Furthermore, there is still room for further enhancement of the integrity perfor-

mance for fault detection and exclusion with the PQP approach. One direction for

the enhancement is related to the estimation of the cumulative distribution function

of ‖QTp‖∞. If the cumulative distribution function can be accurately estimated,

then h can be determined using the estimated cumulative distribution function and

reductions in lPL,LB and lPL,UB will result. Lower and more practical lPL can therefore

be obtained. The application of extreme value theory and the conservative estimation

of the tail probability are believed to be the key elements of further researches in this

direction [76,93,94]. In addition, the connection between the PQP approach and the

SVM may shed light upon researches related to the parameter tuning for the PQP

approach.
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Another direction for the enhancement is to find more efficient methods to solve

the vertical protection level for the detection and exclusion of faulty GNSS measure-

ments using the PQP approach. To be more precise, more efficient numerical methods

and algorithms should be sought and carefully studied to solve the problem described

by (3.126), (3.127), (3.128), and (3.129).
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