
TOWARDS UNDERSTANDING NEUROPATHY FROM CANCER

CHEMOTHERAPY AND PATHOPHYSIOLOGY OF PAIN SENSATION: AN

ENGINEERING APPROACH

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Parul Verma

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2020

Purdue University

West Lafayette, Indiana



ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Doraiswami Ramkrishna, Chair

Davidson School of Chemical Engineering

Dr. Sangtae Kim

Davidson School of Chemical Engineering

Dr. John A. Morgan

Davidson School of Chemical Engineering

Dr. Wanqing Liu

Wayne State University

Approved by:

Dr. John A. Morgan

Head of Graduate Program



iii

To my parents (Anoop Kumar and Renu Verma), my brother (Shivam Verma), and

my partner (Krishna Pillutla).



iv

ACKNOWLEDGMENTS

This thesis would not have been possible without the constant support and men-

torship of my advisor Prof. Doraiswami “Ramki” Ramkrishna. I want to thank him

for believing in me throughout and for providing me complete freedom to steer my

research projects in any direction that seemed interesting. I have learnt many virtues

from him: being able to think and not worry when research does not go the way I

had intended, to be rigorous and meticulous, and to question, among others. His

teachings have deepened my interest in applied mathematics. I am always inspired

by his passion for research and teaching and hope to follow his path in the future.

I would also like to thank my committee members: Dr. Kim, Dr. Morgan, and Dr.

Liu for their support and constructive feedback on my research projects.

There are many collaborators without whom this thesis would not have been pos-

sible. I would like to thank Dr. Jodi Skiles, Dr. Jamie Renbarger, and Dr. Tammy

Sajdyk for helping with the clinical data, and Dr. Bruce Cooper for helping with

metabolite profiling and training me to be able to use the relevant software. Dr.

Cooper has been very patient in teaching me some of the metabolite profiling tech-

niques. My collaborators from the MCMP department at Purdue: Muriel Eaton and

Dr. Yang Yang, have been tremendously helpful with driving the CIPN mechanism

project forward, as well. I want to thank Dr. Yang for having me attend some of

his group meetings through which I learnt more about experimental neuroscience.

Muriel has been very supportive and I want to thank her for believing that my re-

sults were worth validating in the first place. I feel most fortunate to have gotten

an opportunity to collaborate with Dr. Achim Kienle and Dr. Dietrich Flockerzi

from the Max Planck Institute. I have tremendously enjoyed collaborating with them

and have learnt substantially about numerical bifurcation theory from them. Both



v

of them have a contagious level of enthusiasm. I totally cherish my two visits to

Max Planck where I got an opportunity to work with them closely. I also want to

thank Dr. Kienle for welcoming me to Magdeburg and making my stay comfortable.

Furthermore, I want to thank Dr. Haroon Anwar from NJIT, for helping me during

the start of the model building of DRG neuron when I was feeling lost and did not

know how to proceed and enter the field of computational neuroscience. I would not

have been able to start the DRG neuron modeling work without his support. Nisheet

Patel and Dr. Andreas Voigt also provided ideas for my DRG neuron-related work.

In addition, there are several others with whom I have discussed my research projects

and sought feedback which have helped me in steering my research projects.

Next, I would like to thank current and previous group members. The older group

members include Dr. Frank DeVilbiss, Dr. Conor Parks, and Dr. Vu Tran. They were

very supportive during my starting years when I was just learning on how to conduct

research. My current group members include Akancha Pandey, Lina Aboulmouna,

Pelin Bulutoglu, Rubesh Raja, and newly joined member Sana Khanum. I especially

want to thank Akancha, Lina, and Pelin for lifting the spirit of the lab and for

those stimulating group discussions. I have truly enjoyed having them as my group

members. All three of them have tremendously supported me throughout. Akancha

has been my close friend from the very start; I especially want to thank her for being

my pillar of support all these years and for introducing me to the SKY club at Purdue

(mentioned later). Lina has been very supportive with helping me write my papers

and applications. I would have never learnt writing any better. Our latest addition

to the group meetings, Kunaal Joshi, also provided detailed feedback on my research

projects.

Purdue chemical engineering department provides a very supportive environment.

A special thanks to Bev Johnson, Corwin Green, Robin Waling, Lauren Hays, and

Betty Guerrero, and the GSO members. All of them have been very helpful and kind.

Bev is truly a mother to all.



vi

This journey would not have been complete without many friends I had through-

out, helping me through the darkest of the times. Some of my friends I had here

are Ravi Joshi, Murtuza Shergadwala, and Kshitiz Swaroop. Ravi helped me grow

both personally and professionally. I also want to thank my Tatvam band mates for

keeping the music alive: Ananya Sheth, Anamika Shreevastava, Sai Prashanth Bha-

lachandran, and Janav Udani. My housemates: Ananya, Anamika, Prashanth, and

Kanishka Misra, have been very supportive and created our apartment into a home

away from home. My journey here became smoother also thanks to the Purdue SKY

club; I learnt a breathing technique which kept me sane and energetic throughout

and I also made some close friends who have supported me these years: Shamiek

Mangipudi, Saurabh Misra, and my teachers Akshay Ponda and Annelies Richmond,

among others. Purdue CAPS has also been supportive. Moreover, I want to thank

Purdue karate club and my instructors Shihan Webb and Sensei Leaird; they en-

couraged me to seek perfection in every aspect of my life. My undergraduate friends

Animesh, Anish, Manju, and Prateek have also always lifted my spirits and have

always been just a phone call away.

My deepest thanks to my parents and my brother, Shivam, for all their sacrifices

and support. I am here because of them. I also want to thank my brother for teaching

me compassion and kindness. Finally, I want to thank my partner, Krishna Pillutla:

the pillar of constant rock-solid support. Thank you for encouraging and supporting

me all along. Without you, this thesis would not have been possible.



vii

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 CIPN diagnosis and prediction . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 CIPN mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Existing treatment strategies . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Pain sensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 A METABOLOMICS APPROACH FOR EARLY PREDICTION OF VINCRISTINE-
INDUCED PERIPHERAL NEUROPATHY . . . . . . . . . . . . . . . . . . 16
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Pediatric ALL patient data description . . . . . . . . . . . . . . 19
2.2.2 Longitudinal versus independent analysis of metabolite profiles . 21
2.2.3 Metabolite selection and model building . . . . . . . . . . . . . 23
2.2.4 Metabolite structure identification . . . . . . . . . . . . . . . . . 27
2.2.5 Pathway analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.1 ALL patient data collection [151] . . . . . . . . . . . . . . . . . 36
2.4.2 Metabolomics sample preparation and extraction . . . . . . . . 37
2.4.3 HPLC-MS analysis of metabolomics samples [152] . . . . . . . . 37
2.4.4 Vincristine quantitation [153] . . . . . . . . . . . . . . . . . . . 38
2.4.5 Metabolite profiling data analysis . . . . . . . . . . . . . . . . . 39

3 USING BIFURCATION THEORY FOR EXPLORING PAIN . . . . . . . . 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 The Neuroscience of Pain Sensation . . . . . . . . . . . . . . . . . . . . 43
3.3 Mathematical Model of a Pain-Sensing Neuron . . . . . . . . . . . . . . 47



viii

Page
3.4 Influence of external current Iext . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 Nav1.7 Channel Mutations . . . . . . . . . . . . . . . . . . . . . 58
3.4.2 Nav1.8 Channel Mutations . . . . . . . . . . . . . . . . . . . . . 59

3.5 Influence of Ion Equilibrium Potentials at Iext = 0 . . . . . . . . . . . . 63
3.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . 67

4 COMPUTATIONAL ANALYSIS OF A 9D MODEL FOR A SMALL DRG
NEURON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Model description and first simulation results . . . . . . . . . . . . . . 71
4.3 Numerical bifurcation analysis . . . . . . . . . . . . . . . . . . . . . . . 73
4.4 Mixed-mode oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 A MATHEMATICAL INVESTIGATION OF CHEMOTHERAPY-INDUCED
PERIPHERAL NEUROPATHY . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.2 Bifurcation analysis . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.3 Effect of Paclitaxel . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2.4 Experimental validation results . . . . . . . . . . . . . . . . . 108

5.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.4 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4.1 Model parameter values . . . . . . . . . . . . . . . . . . . . . 115
5.4.2 XPPAUT settings . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.4.3 MATCONT settings . . . . . . . . . . . . . . . . . . . . . . . 116
5.4.4 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.4.5 Primary Cell Culture . . . . . . . . . . . . . . . . . . . . . . . 116
5.4.6 Micro/multielectrode Array (MEA) . . . . . . . . . . . . . . . 117
5.4.7 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.5 Supporting information . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6 EXPLORING INTERACTIONS IN CIPN MECHANISMS . . . . . . . . . 121
6.1 Calcium homeostasis . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2 Oxidative stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3 Inflammation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4 Axonal degeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.1 A comprehensive approach to investigate CIPN . . . . . . . . . . . . 129
8.2 Developing personalized treatment strategy for cancer patients . . . . 131



ix

Page

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A SUPPLEMENTARY MATERIAL FOR CHAPTER 2 . . . . . . . . . . . . 163
A.1 Metabolite selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.2 Metabolite identification . . . . . . . . . . . . . . . . . . . . . . . . . 165
A.3 Pathway analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
A.4 Univariate analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A.4.1 Pathway analysis . . . . . . . . . . . . . . . . . . . . . . . . . 168

B DESCRIPTION OF MODEL EQUATIONS AND PARAMETER SETTINGS171
B.1 XPPAUT settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
B.2 Model equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

B.2.1 Nav1.8 kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . 173
B.2.2 K/KDR kinetics . . . . . . . . . . . . . . . . . . . . . . . . . 175
B.2.3 KA kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

B.3 Non-dimensional equations . . . . . . . . . . . . . . . . . . . . . . . . 175

C MATHEMATICAL MODELING OF INOSITOL 1,4,5-TRIPHOSPHATE
MEDIATED CALCIUM DYNAMICS: UNDERSTANDING PERTURBA-
TIONS DUE TO EXTERNAL TOXICITY . . . . . . . . . . . . . . . . . . 178
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
C.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

C.2.1 Data procurement and processing . . . . . . . . . . . . . . . . 179
C.2.2 Model development and parameter estimation . . . . . . . . . 179
C.2.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 181

C.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
C.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
C.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

D OPTIMIZING VINCRISTINE INFUSION RATE . . . . . . . . . . . . . . 187
D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
D.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
D.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
D.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

E MODELING VINCRISTINE TRANSPORT . . . . . . . . . . . . . . . . . 194
E.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
E.2 Data available . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
E.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
E.4 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
E.5 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

F A LIPIDOMICS APPROACH TO INVESTIGATE NON-ALCOHOLIC FATTY
LIVER DISEASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
F.1 Methods and materials . . . . . . . . . . . . . . . . . . . . . . . . . . 205



x

Page

F.1.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 205
F.1.2 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . 205

F.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
F.2.1 Clinical profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
F.2.2 Statistical results for hepatic lipids . . . . . . . . . . . . . . . 207
F.2.3 Hepatic lipid signature . . . . . . . . . . . . . . . . . . . . . . 207

F.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213



xi

LIST OF TABLES

Table Page

1.1 A summary of potential mechanisms involved in CIPN due to the men-
tioned chemotherapy agents. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Patient characteristics were defined according to gender, age, and body
mass index (BMI). For the day 8 treatment time point, 8 overall low neu-
ropathy (LN) samples were available, while for day 29 and month 6 time
points, 12 LN samples were available. 24 overall high neuropathy (HN)
samples were available at all the three time points. Age and BMI corre-
spond to that during the start of the treatment. Here, ”HN” implies that
the patient had a Total Neuropathy Score Pediatric Vincristine (TNS©-
PV) greater than 8 at least once, and ”LN” implies that the patient had
a TNS©-PV less than 3 throughout the treatment. SD: standard deviation. 21

2.2 Metrics obtained by performing RFE on the data sets at the three time
points. A: The set of metabolites found that can accurately predict over-
all neuropathy susceptibility (HN versus LN) at these time points before
manual integration of the chromatogram peaks. B: The set of metabolites
found that can accurately predict TNS©-PV intensity of either high or
low at that specific time point. C: The set of metabolites that can ac-
curately predict overall neuropathy susceptibility at the time points after
manual integration of peaks. AUROC: Area Under Receiver Operating
Characteristics Curve, AUROCSD: standard deviations for AUROC. See
Supplementary Table S1 for sensitivity and specificity corresponding to
each of these. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Cross validation accuracy metrics for the models with optimal tuning using
the final selected metabolites. These metrics were calculated after choosing
the probability thresholds for each of the time points. Cost = 4, 0.25, 0.25
for day 8, day 29, and month 6 models, respectively. . . . . . . . . . . . . . 28

2.4 Identified metabolites that can accurately predict neuropathy susceptibil-
ity at the day 29 time point. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Identified metabolites that can accurately predict neuropathy susceptibil-
ity at the month 6 time point. . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Values of Iext at the cyclic limit points (CLP) and the period doubling
bifurcation points (PD) in Fig. 4.6. . . . . . . . . . . . . . . . . . . . . . . 82



xii

Table Page

4.2 An illustration of MMOs solution sequences satisfying the Farey arithmetic. 88

5.1 Spontaneous neurons. Pax: Paclitaxel, Nav1.8-: Nav1.8 blocker, KDR+:
KDR enhancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Model parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.1 Metrics obtained by performing recursive feature elimination on the data
sets at the three time points. A. Set of metabolites found that can accu-
rately predict overall neuropathy susceptibility at these time points before
manual integration of peaks. B: Set of metabolites found that can ac-
curately predict TNS©-PV intensity at that specific time point. C: Set
of metabolites that can accurately predict overall neuropathy susceptibil-
ity at the time points after manual integration of peaks. AUROC: Area
Under Receiver Operating Characteristics Curve, Sens: Sensitivity, Spec:
Specificity, AUROCSD, SensSD, SpecSD are standard deviations for AU-
ROC, sensitivity and specificity. Sensitivity and specificity are calculated
by keeping 0.5 probability as the threshold. Note: positive class is over-
all susceptibility to high neuropathy (HN) for A and C, and TNS©-PV
greater than 8 for B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.2 Sample confusion matrix to explain terms used. . . . . . . . . . . . . . . 164

A.3 Confusion matrix generated after training the final models with the final
selected thresholds for each time point. . . . . . . . . . . . . . . . . . . . 165

A.4 Mass, retention time, and adduct information for the final set of Day 8
metabolites. None of them could be identified . . . . . . . . . . . . . . . 165

A.5 Mass, retention time, and adduct information for the final set of day 29
metabolites. 4 of them could be identified. . . . . . . . . . . . . . . . . . 166

A.6 Mass, retention time, and adduct information for the final set of month 6
metabolites. 9 of them could be identified. . . . . . . . . . . . . . . . . . 167

A.7 Table generated from Metaboanalyst for day 29 metabolites . . . . . . . 168

A.8 Table generated from Metaboanalyst for month 6 metabolites . . . . . . 168

A.9 Mass, retention time, adduct information, and HMDB guesses for the
metabolites that were significantly associated with VIPN at day 8 time
point of the treatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

A.10 Pathway analysis with HMDB0010395 as the guess for Mass 543.3312 . . 169

A.11 Pathway analysis with HMDB0010396 as the guess for Mass 543.3312. . . 169

B.1 Voltage dynamics equation parameter values . . . . . . . . . . . . . . . . 172



xiii

Table Page

B.2 Gating variables parameters . . . . . . . . . . . . . . . . . . . . . . . . . 174

D.1 Model parameter and their values . . . . . . . . . . . . . . . . . . . . . . 191

D.2 Initial conditions and parameters for the transition and death rates . . . 191

E.1 Vmax/Km (ml/min/g) for different genotypic scores . . . . . . . . . . . . 196

F.1 Lipids and FDR value in discovery set, all negatively associated . . . . . 208

F.2 Lipids and FDR value in validation set, all negatively associated . . . . . 208

F.3 Significant unsaturated lipid families and FDR value in discovery set . . 208

F.4 Significant unsaturated lipid families and FDR value in validation set . . 208

F.5 List of lipids found as biomarkers (in order of importance) . . . . . . . . 209

F.6 Overlapping lipids between discovery and validation set . . . . . . . . . 209



xiv

LIST OF FIGURES

Figure Page

1.1 Parts of a myelinated DRG neuron that can get impacted due to chemother-
apy agents. (Figure developed using Biorender (https://biorender.com/)) 6

1.2 The pain sensation pathway starts from a noxious stimulus being detected
by a small DRG neuron (nociceptor) at the skin. The input leads to the
generation of action potentials which are then transmitted to the spinal
cord. From the spinal cord, the input is further transmitted to the thala-
mus via the ascending pathway. The response is transmitted back to the
spinal cord via the descending pathway. It is finally transmitted to the
muscle cells via the motor neuron. The muscle cells respond in concor-
dance with the signal. The DRG neuron consists of a cell body, an axon
across which the action potential is transmitted, and ends at the synapse
which transmits information from one neuron to the other. . . . . . . . . 12

2.1 A bar plot showing distribution of the neuropathy score of patients over
time. A TNS©-PV less than 3 corresponds to low, a score between 3 and
8 corresponds to medium, and a score above 8 corresponds to high. The
first group shows the overall susceptibility of patients to neuropathy (LN
versus HN). The next three groups show the TNS©-PV intensity at that
particular time point. Since patients with an overall medium TNS©-PV
intensity were not considered in this study, the number of such patients
is zero in the first group. Some HN patients had medium TNS©-PV
intensity (TNS©-PV greater than 3 but lesser than 8) at some points
during the treatment, as seen in the next three groups. . . . . . . . . . . . 22

2.2 A dendogram created based on the Euclidean distance shows that the
metabolite profiles are clustered according to their corresponding time
points. Day 8 and day 29 metabolite profiles belong to the same primary
branch and are consequently closer to each other. . . . . . . . . . . . . . . 23

2.3 ROC plots for the final trained models at the three time points. a: Day
8, b: Day 29, c: Month 6. AUC: Area Under Curve. CI: Confidence Interval.26

https://biorender.com/


xv

Figure Page

2.4 A workflow showing a potential vincristine dose decision making strat-
egy based on the trained SVC models. Blood samples of patients can be
collected at day 8 and month 6 time points of the treatment. Samples
can then be analyzed using mass spectrometry for metabolite profiling of
the selected 2 and 21 metabolites at the day 8 and month 6 time points,
respectively. The metabolite profile data can then be used to predict over-
all neuropathy susceptibility from the trained SVC models. If the model
output probability is greater than a threshold value of 0.7, the patient
might be susceptible to overall high neuropathy (HN). This strategy en-
ables identification of patients susceptible to HN. The vincristine dose for
HN patients may require adjustment. . . . . . . . . . . . . . . . . . . . . . 33

3.1 A schematic of an action potential. When a stimulus is applied, an action
potential is generated due to activation of sodium channels leading to the
rise in membrane potential. Following this rise, sodium channels inactivate
and potassium channels activate, leading to a decrease in the potential.
Finally, all channels attain steady states and the membrane reverts back
to the resting membrane potential (RMP). . . . . . . . . . . . . . . . . . . 45

3.2 A schematic of a neuronal membrane. The membrane consists of a lipid
bilayer. The voltage-gated sodium and potassium channels are transmem-
brane pores. The extracellular concentration of sodium is greater, leading
to an inflow of sodium ions when the channel opens. The intracellular
concentration of potassium is greater, leading to an outflow of potassium
ions when the channel opens. . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Circuit diagram representing neuron membrane. Vin: intracellular po-
tential; Vout: extracellular potential; I1.7, I1.8, IK , IKA, Il: current due to
Nav1.7, Nav1.8, delayed rectifier potassium, A-type transient potassium
and leak channels respectively; Iext: external stimulus current; g1.7, g1.8, gK , gKA, gl:
conductance of Nav1.7, Nav1.8, delayed rectifier potassium, A-type tran-
sient potassium and leak channels respectively; ENa, EK , El: equilibrium
sodium, potassium and leak potentials respectively, C: membrane capac-
itance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 A: Action potential generated due to a constant external current Iext =
100 pA, B: Dynamics of activation and inactivation state variables, C-F:
Dynamics of potential-dependent time constants for the state variables. . . 52

3.5 Dynamic simulations for A: Iext = 102 pA, B: Iext = 110 pA, C: Iext = 150 pA54

3.6 Dynamic simulations for A: ENa = 125 mV, B: ENa = 128.2 mV, C:
ENa = 130 mV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



xvi

Figure Page

3.7 Dynamic simulations for A: EK = −74.5 mV, B: EK = −74 mV, C:
EK = −73 mV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.8 Partial bifurcation diagram with Iext as the bifurcation parameter. HB:
Subcritical Hopf bifurcation point (at Iext = 102.99 pA), LP: Limit point,
CLP: Cyclic limit point (at Iext = 116.98 pA for the stable periodic branch).57

3.9 Two parameter continuation for v0 in A: αm1.7(V ) and B: βm1.7(V ). The
plot shows how the bifurcation points vary upon changing v0. An approx-
imately 300% increase or more in k3 of αm1.7(V ) and a 28% increase or
more in k3 of βm1.7(V ) shifts the bifurcation points. . . . . . . . . . . . . . 59

3.10 There is a shift in m3
1.7∞ as a result of an increase in v0. . . . . . . . . . . . 60

3.11 Two parameter continuation for v0 in A: αm1.8(V ) and B: βm1.8(V ). The
plot shows how the bifurcation points vary upon changing v0. An approxi-
mately 170% increase or more in k3 of αm1.8(V ) and a 4% increase or more
in k3 of βm1.8(V ) shifts the bifurcation points. . . . . . . . . . . . . . . . . 61

3.12 There is a shift in m1.8∞ as a result of an increase in v0. . . . . . . . . . . . 62

3.13 Bifurcation diagram with A: ENa (HB at ENa = 128.04 mV and CLP of
stable periodic branch at ENa = 128.96 mV) and B: EK (HB at EK =
−74.37 mV and CLP of stable periodic branch at EK = −73.66 mV) as
primary bifurcation parameters. HB: Subcritical Hopf bifurcation point,
CLP: Cyclic limit point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Dynamic simulations of action potentials. For higher values of g1.8, MMOs
are observed. a.: Dynamic simulations for g1.8 at 7 mS/cm2, and Iext =
100, 106, 120 pA. b.: Dynamic simulations for g1.8 at 4.5 mS/cm2, and
Iext = 115, 215, 230 pA. No MMOs are observed in this case. . . . . . . . 72

4.2 Bifurcation diagrams for g1.8 = 4.5, 5, 7 and 8 mS/cm2 for diagrams a, b,
c and d, respectively. For lower values of g1.8 in diagram (a), MMOs are
not observed, and there is a region of bistability between steady state and
periodic firing of action potentials, as shown by the orange shaded region.
This bistability is not present in diagrams b, c, d. Instead, MMOs are
observed in these diagrams in the purple shaded region. MMOs solution
branches will be discussed separately in section 3 and are not included in
this figure. Note that the unstable blue periodic branch in diagram c ends
before the LP2 point which is not evident from the figure because of the
thickness of the branches. HB: Hopf bifurcation point, CLP: Cyclic limit
point, LP: limit point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



xvii

Figure Page

4.3 Two parameter plot with g1.8 as the secondary continuation parameter.
a.: Variation over a large interval of g1.8. b.: Zoomed in version of a. near
the intersection of the HB point and the CLP3 point. . . . . . . . . . . . . 77

4.4 Two parameter plot with the following secondary continuation parameters:
a.: g1.7, b.: gK and c.: gKA. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Basic MMOs solutions of the type: a.: 16, b.: 13, and c.: 11 for selected
values of Iext. Upper row: temporal evolution of membrane voltage, lower
row: orbits in the V , hka, nK phase space. . . . . . . . . . . . . . . . . . . 80

4.6 Basic periodic solution branches with one action potential per period in
the range of Iext from 105 to 120 pA. Solid lines: stable periodic solutions,
dashed line: unstable periodic solutions. . . . . . . . . . . . . . . . . . . . 81

4.7 a.: MMOs for Iext = 102.992 pA below the Hopf bifurcation point at Iext
= 102.9935 pA. b.: Representation of the solution in the V, hKA, nK phase
diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.8 A sequence of concatenated periodic solutions. a.: 1211 at Iext = 112.9
pA, b.: 12(11)2 at Iext = 113.1 pA, c.: 12(11)3 at Iext = 113.18 pA, d.:
12(11)4 at Iext = 113.2 pA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.9 Tree of selected periodic MMOs solutions. Numbers in parentheses are
values of Iext in pA corresponding to the solution on top of it. Solutions
highlighted in yellow are shown in Figure 4.8. . . . . . . . . . . . . . . . . 86

4.10 Selected periodic MMOs patterns observed below but close to the cyclic
limit point CLP3 in Figure 4.2c before small amplitude oscillations disap-
pear. Numbers in parentheses are the corresponding values of Iext in pA,
corresponding to the solution on top of it. . . . . . . . . . . . . . . . . . . 87

4.11 Simulations before and after the period doubling bifurcation at Iext =
108.9962 pA. Left column: Iext = 108.9 pA, right column: Iext = 109
pA. After the period doubling bifurcation, the system exhibits chaotic-
like behavior which is evident in the dynamics of s1.7. . . . . . . . . . . . . 90

5.1 Dynamic simulations obtained by varying g1.8. A: One action potential
followed by a steady state is observed for g1.8 = 10.2 mS/cm2, B: MMOs
are observed for g1.8 = 10.45 mS/cm2, and C: Continuous firing of action
potentials is observed for g1.8 = 11 mS/cm2 . . . . . . . . . . . . . . . . . . 97



xviii

Figure Page

5.2 A-D: Bifurcation diagrams obtained by keeping A: g1.7, B: g1.8, C: gKDR,
and D: gKA as the bifurcation parameters. E-F: Frequency versus maximal
conductance obtained in the periodic firing regime with E: g1.8 and F:
gKDR as the bifurcation parameters. The frequency of firing increases
with g1.8 and decreases with gKDR. The frequency of unstable periodic
solutions tends towards zero, implying that the unstable branch is ending
in a period-infinity solution. . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Two parameter continuations performed for the Hopf bifurcation point
HB, limit points LP1 and LP2, and cyclic limit point CLP2. A: Continua-
tion plot for g1.7 versus g1.8 show that the bifurcation points generated by
keeping g1.8 as the bifurcation parameter do not shift upon varying g1.7.
B: HB and LP’s of g1.8 bifurcation diagram do not shift upon varying gKA.
CLP2 shift rightwards upon decreasing gKA. This implies that the MMOs
region will be wider in this case. C: Bifurcation points of gKDR do not shift
upon varying g1.7. D: HP and LP’s of gKDR do not shift upon varying gKA.
CLP2 shifts leftwards upon decreasing gKA. This implies that the MMOs
region will become narrower in this case. E: A linear combinational effect
is seen between g1.8 and gKDR. Note that the thin gap between stable
steady state and continuous firing regimes is the MMOs region. . . . . . 104

5.4 A: Bifurcation diagram obtained by treating paclitaxel concentration as
the bifurcation parameter. B: A zoomed in version of the bifurcation di-
agram in A. HB1: subcritical Hopf bifurcation point, HB2: supercritical
Hopf bifurcation point, LP1 and LP2: limit points, CLP1, CLP2, CLP3,
and CLP4: cyclic limit points, PD: periodic doubling bifurcation point.
C: Frequency plot for the stable periodic firing region. Frequency first in-
creases and then decreases upon increasing paclitaxel concentration. Left
and right end points of this curve refer to CLP2 and PD, respectively. . . 107



xix

Figure Page

5.5 Multielectrode array (MEA) firing summary shows amelioration of hyper-
excitability after treatment of A-803467 (Nav1.8 blocker) and PIP2 (KDR
enhancer). All parameters are reported as fold change (treatment over
baseline of culture before treatment). A) Mean firing rate for different
dosages of paclitaxel. B) Mean firing rate reveals a significant increase
in paclitaxel firing from media control (p<0.0001), a decrease from pa-
clitaxel when A-803467 and PIP2 are administered separately (p=0.0449
and p<0.0001, respectively), but a significant increase from media when
administered together (p<0.0001). C) Heatmap of representative MEA
recordings with firing frequency of each active electrode colorcoded: warm
colors (red, orange, yellow) represent high firing frequency (white=10Hz);
cool colors (green, blue) represent low firing frequency (black=0Hz). Each
circle represents a spontaneous firing neuron within the 8 X 8 electrode
array. Top row is baseline at time 0 before treatment is added. Bottom
row is 24 hours after treatment was added. Asterisks denote statistical
significance from Mann-Whitney U test (*P<0.05, **P<0.01, ***P<0.001) 110

5.6 Effect of paclitaxel on conductances and firing. A: Effect of paclitaxel on
g1.7,new upon varying hn and GNa,max. Increasing GNa,max will widen the
parameter range of g1.7,new. Increasing hn alters the curve to become more

sigmoidal. B: Similar effect is seen with g1.8,new. Decreasing GNa,max will
reduce the parameter range of g1.8,new. C: Increasing paclitaxel concentra-
tion decreases gKDR,new. As before, increasing hn makes the curve more

sigmoidal. Decreasing GK,min increases the parameter range. D: Similar
effect is seen for gKA,new. Increasing GK,min decreases the parameter range
in this case. The blue curves correspond to the parameter values that were
considered for bifurcation analysis. Note that the blue and purple curves
are overlapping in in D, thus the blue curve is not visible. . . . . . . . . 119

5.7 Regions of stable steady state, MMOs, and continuous firing
upon varying hn, GNa,max, and GK,min with paclitaxel concentra-
tion [P]. A: Continuation of Hill’s coefficient hn. Upon increasing hn, the
spontaneous firing regime becomes narrower. B: Continuation of GNa,max.
Upon increasing GNa,max, the spontaneous firing regime becomes narrower.
C: Continuation ofGK,min. Upon increasingGK,min, the spontaneous firing
regime becomes wider . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.1 Potential interactions between different CIPN-related mechanisms based
on current literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



xx

Figure Page

A.1 The three plots show the metrics evaluated at different probability thresh-
olds. 1a, 2a and 3b show the plot of Youden’s J statistic (J) and distance
(dist) to best possible cutoff (i.e. sensitivity and specificity equal to 1) at
different probability thresholds, at day 8, day 29 and Month 6 data re-
spectively. The probability threshold is for high neuropathy. If the SVM
model output is greater than the threshold, the sample is classified as high,
and vice versa. 1b, 2b, and 3b show how the sensitivity and specificity
varies as a function of probability threshold. Vertical line corresponds to
the chosen threshold, based on minimum dist. . . . . . . . . . . . . . . . 170

C.1 First subplot is the frequency plot for the low pass filter. The second
subplot shows the raw and the filtered data. Order 5 and cutoff of 0.005
Hz was used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

C.2 Plot of simulated Ca2+ concentration (in blue) and the processed Ca2+

signal data (in green). Concentration is in µM. Though not evident from
the plot, the simulated and observed concentration at time = 0 s is the
same. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

C.3 A heatmap showing the sensitivity of model parameters with Ca2+ peak.
The diagonal elements show the sensitivities of individual parameters,
and the non-diagonal elements show the sensitivities of paired parame-
ters. Color closer to blue indicates low sensitivity, while color closer to
red indicates high sensitivity. From this figure, c0 and k3 seem to be most
sensitive to Ca2+ peak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

C.4 Ca2+ simulated with estimated model parameters (in blue), and with k3
reduced by a factor of 1.1 (in green). There is a visible decrease in Ca2+

spike. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

D.1 Vincristine mechanism in the cell cycle . . . . . . . . . . . . . . . . . . . 189

D.2 Plot of number of remaining cancer cells as a function of infusion time . 192

E.1 Vincristine PK/PD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

E.2 PK profile for one patient . . . . . . . . . . . . . . . . . . . . . . . . . . 200

E.3 PK model validation for patients . . . . . . . . . . . . . . . . . . . . . . 201

E.4 Heat map showing sensitivity of parameters . . . . . . . . . . . . . . . . 202



xxi

SYMBOLS

V Voltage

t time

C Capacitance

A Area of DRG neuron membrane

c Specific capacitance

Iext External stimulus current

g1.7 Maximal conductance of Nav1.7 channel

g1.8 Maximal conductance of Nav1.8 channel

gK/gKDR Maximal conductance of delayed rectifier potassium channel

gKA Maximal conductance of A-type transient potassium channel

gl Maximal conductance of leak channel

m1.7 Activation variable of Nav1.7 channel

h1.7 Inactivation variable of Nav1.7 channel

s1.7 Slow inactivation variable of Nav1.7 channel

m1.8 Activation variable of Nav1.8 channel

h1.8 Inactivation variable of Nav1.8 channel

nK/nKDR Activation variable of delayed rectifier potassium channel

nKA Activation variable of A-type transient potassium channel

hKA Inactivation variable of A-type transient potassium channel

ENa Equilibrium potential of sodium

EK Equilibrium potential of potassium

El Equilibrium potential of leak channel

hn Hill’s coefficient

[P] Paclitaxel concentration (in nM)



xxii

k0.5 Half maximal effective concentration



xxiii

ABBREVIATIONS

CIPN Chemotherapy-induced peripheral neuropathy

VIPN Vincristine-induced peripheral neuropathy

ALL Acute lymphoblastic Leukemia

TNS©-PV Total Neuropathy Score Pediatric Vincristine

HN High neuropathy

LN Low neuropathy

BMI Body mass index

LC-MS/MS Liquid chromatography with tandem mass spectrometry

SVC Support vector classifier

RFE Recursive feature elimination

AUROC Area under the receiver operating characteristics curve

AUROCSD Standard deviation for AUROC

NIR No Information Rate

m/z Mass-to-charge ratio

HMDB Human Metabolome Database

AMP Adenosine 5’-monophosphate

CMM CEU Mass Mediator

POG Pediatric Oncology Group

ESI Electrospray ionization

MRM Multiple Reaction Monitoring

CE Collision energy

KNN K-nearest neighbours

DRG Dorsal root ganglia

RMP Resting membrane potential



xxiv

K/KDR Delayed rectifer potassium

KA A-type transient potassium

MMOs Mixed-mode oscillations

HB Hopf bifurcation point

LP Limit point

CLP Cyclic limit point

MEA Multi electrode array

PIP2 L-alpha-phosphatidyl-D-myo-inositol 4,5-diphosphate, dioc-

tanoyl

ROS Reactive oxygen species



xxv

ABSTRACT

Verma, Parul Ph.D., Purdue University, May 2020. Towards Understanding Neu-
ropathy from Cancer Chemotherapy and Pathophysiology of Pain Sensation: An
Engineering Approach. Major Professor: Doraiswami Ramkrishna.

This thesis addresses chemotherapy-induced peripheral neuropathy (CIPN)- a

form of pain sensation and a prevalent dose-limiting side-effect of several chemother-

apy agents such as vincristine, paclitaxel, and oxaliplatin. These agents are used

for treating various cancers such as leukemia, brain tumor, lung cancer. Peripheral

neuropathy is a numbing, tingling, and burning sensation felt in the palms and feet,

which occurs due to damage to neurons (nerve cells). Prolonged CIPN can impact the

quality of life of cancer patients. Occasionally, severe CIPN can result in termination

of chemotherapy treatment altogether. Currently, there are no established strategies

for treating CIPN due to a lack of understanding of its mechanisms. Moreover, differ-

ent patients react differently to the same treatment; a subgroup of patient population

may never experience CIPN, while another may experience severe CIPN for the same

dose. In addition, there are no established strategies for predicting CIPN either. This

thesis addresses both prediction and mechanisms of CIPN.

The following paragraphs reflect the organization of this thesis. Each paragraph

introduces a research problem, the approaches taken to investigate it, and states the

key results.

First, a metabolomics-based approach was used to investigate CIPN prediction.

Blood samples of pediatric leukemic cancer patients who underwent treatment with a

chemotherapy agent - vincristine were provided. These blood samples were analyzed

at different treatment time points using mass spectrometry to obtain the metabolite

profiles. Machine learning was then employed to identify specific metabolites that
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can predict overall susceptibility to peripheral neuropathy in those patients at spe-

cific treatment time points. Subsequently, selected metabolites were used to train

machine learning models to predict neuropathy susceptibility. Finally, the models

were deployed into an open-source interactive tool- VIPNp- that can be used by

researchers to predict CIPN in new pediatric leukemic cancer patients.

Second, the focus was shifted to the pathophysiology of pain and the pain-sensing

neuron; specifically: (i) investigating pain sensation mutations and the dynamics of

the pain-sensing neuron, and (ii) exploring chemotherapy-induced peripheral neu-

ropathy mechanisms.

While pain is a common experience, genetic mutations in individuals can alter

their experience of pain, if any at all (certain mutations yield individuals insensitive

to pain). Despite its ubiquity, we do not have a complete understanding of the onset

and/or mechanisms of pain sensation. Pain sensation can be broadly classified into

three types: (i) nociceptive, (ii) neuropathic, and (iii) inflammatory. Nociceptive pain

arises due to a noxious external stimulus (e.g., upon touching a hot object). Neuro-

pathic pain (which is felt as a side-effect of the aforementioned chemotherapy agents)

is the numbing and tingling sensation due to nerve damage. Inflammatory pain occurs

due to damage to internal tissues. Pain in any form can be characterized in terms

of electrical signaling by the pain-sensing neuron. Signal transmission regarding pain

occurs through generation of an electrical signal called the action potential- a peak

in neuron membrane potential. Excessive firing of action potentials by a pain-sensing

neuron indicates pain of a specific form and intensity. In order to investigate this

electrical signaling, a mathematical modeling approach was employed. The neuron

membrane was assumed to be an electrical circuit and the potential across the mem-

brane was modeled in terms of the sodium and potassium ions flowing across it via

voltage-gated sodium and potassium channels, respectively. Generation of a single

action potential followed by a resting state corresponds to a normal state, whereas

periodic firing of action potentials (an oscillatory state) corresponds to pain of some

form and intensity in vitro. Therefore, an investigation into the switch from a resting
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state to an oscillatory state was proposed. A bifurcation theory approach (generally

useful in exploring changes in qualitative behavior of a model) was used to explore

possible bifurcations to explain this switch. Firstly, genetic mutations that can shift

the pain sensation threshold in the pain-sensing neuron were explored. The detected

bifurcation points were found to be sensitive to specific sodium channels model pa-

rameters, implying sodium channels sensitivity towards the pain sensation threshold.

This was corroborated by experimental evidence in existing literature. Secondly, a

theoretical analysis was performed to explore all possible bifurcations that can ex-

plain the dynamics of this pain-sensing neuron model. The mathematical modeling

simulations revealed a mixture of small amplitude and large amplitude membrane

potential oscillations (mixed-mode oscillations) for specific parameter values. The

onset and disappearance of the oscillations were investigated. Model simulations

further demonstrated that the mixed-mode oscillations solutions belonged to Farey

sequences. Furthermore, regions of bistability- where stable steady state and periodic

solutions coexisted- were explored. Additionally, chaotic behavior was observed for

specific model parameters.

Finally, this thesis investigated the role of voltage-gated ion channels in inducing

CIPN using the same mathematical model. Repetitive firing of action potentials in

the absence of any external stimulus was used as an indicator of peripheral neuropa-

thy. Bifurcation analysis revealed that specific sodium and potassium conductances

can induce repetitive firing without any external stimulus. The findings were supple-

mented by recording the firing rate of a sensory neuron culture. Next, a chemotherapy

agent - paclitaxel, was introduced in the model to investigate its potential effects on

the firing behavior. It was seen that a medium dose of paclitaxel increased repetitive

firing. This was supported by the firing rate recordings of the sensory neuron culture.

In summary, this thesis presents a prediction strategy for CIPN. Moreover, it

presents a bifurcation theory-based framework that can be used to investigate pain

sensation, in particular, genetic mutations related to pain sensation and chemotherapy-

induced peripheral neuropathy. This framework can be used to find potential voltage-
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gated ion channels that can be targeted to control the pain sensation threshold in

individuals, and can be extended to investigate various degeneracies in CIPN mech-

anisms to find therapeutic cures for it.
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1. INTRODUCTION

Currently, cancer is the second leading cause of mortality in the United States. It is

estimated that there will be approximately 4,950 new cancer cases each day in the year

2020 [1]. Cancer is primarily treated using surgery, chemotherapy, radiation therapy,

or a combination of these. While chemotherapy is one of the most common ways of

treating cancer, it is like a double-edged sword. It can induce adverse side-effects

such as fatigue, hair loss, constipation, among others, which can potentially impact

the quality of life of these patients. This thesis focuses on one specific side-effect of

multiple chemotherapy agents: peripheral neuropathy.

Chemotherapy-induced peripheral neuropathy (CIPN) is a painful, dose-limiting

side effect of chemotherapy cancer treatment that affects more than 85% and 60% of

patients during [2] the treatment and three months post chemotherapy treatment [3],

respectively. Several chemotherapy agents, such as vinca alkaloids, taxane derivatives,

platinum derivatives, epothilone, thalidomide, and bortezomib have been suggested

to cause CIPN [4]. Each of these drugs induce CIPN as an undesired side effect.

Patients administered with these drugs report enduring pin and needle paresthesias

(i.e., tingling, numbness) in the peripheral nervous system (hands and feet) [5]. The

onset of symptoms can range from one day to two years after treatment and can

persist throughout the life, causing a significant decrease in the quality of life of can-

cer survivors [6, 7]. It impacts the domestic, work, and social life of patients [6].

On an emotional level, it has been shown to result in depression, frustration and a

sense of loss of purpose among these patients [8]. To improve quality of life of cancer

patients, it is imperative to find CIPN preventive agents. Since there is currently

no FDA-approved treatment for CIPN, management of CIPN-induced pain includes

many options such as antidepressants, anticonvulsants, anti-inflammatory, and opioid
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therapies. However, the American Society of Clinical Oncology only recommends the

antidepressant duloxetine which causes severe withdrawal symptoms when treatment

is discontinued [9]. In addition to not being a viable long-term solution, these treat-

ments focus on reducing the pain symptom of CIPN but not treating the neuropathy

itself.

CIPN is difficult to manage because of lack of established strategies for predicting

or treating it. Different patients experience CIPN with a different level of severity.

While some patients do not experience any neuropathy, others experience severe neu-

ropathy soon after the treatment starts. The complications increase further because

multiple drugs are administered in combination to treat a specific type of cancer. As

a result, the root cause of CIPN cannot be isolated and investigated many times. An

added complication arises for patients with preexisting conditions that are related to

the peripheral nervous system, such as diabetes, alcohol consumption, inherited neu-

ropathy [10,11]. In this thesis, an attempt is made to both predict CIPN in patients

and investigate therapeutic cures for it. Below, both the areas will be addressed in

more detail.

1.1 CIPN diagnosis and prediction

CIPN is diagnosed using multiple grading scales that are calculated based on clin-

ical symptoms. These scales are Total Neuropathy Score (TNS), Eastern Clinical

Oncology Group (ECOG) scale, National Cancer Information Center-Common Tox-

icity Criteria (NCIC-CTC) scale, and Ajani sensory scale. Scoring is based on the

symptoms associated with peripheral neuropathy and the extent of spread. Details of

these scales can be found in [12]. None of these scales have been established as being

comprehensive. In case of severe CIPN, dose reduction, slower infusion rates, and

increasing the interval between chemotherapy dose are potential remedies. Besides,

neuroprotective agents can be explored, the details of which will be discussed in the

next section.
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While some potential clinical risk factors have been identified to contribute to

CIPN, none of them are accurate predictors of CIPN severity [11, 13]. Cumulative

dose, age, obesity, baseline neuropathy due to conditions such as diabetes, and race

are some identified clinical risk factors [3, 11, 13]. In order to find accurate predic-

tors, the focus has primarily been on genetic polymorphisms. It is hypothesized that

genes related to drug pharmacokinetics and mechanisms related to electrophysiology

of peripheral sensory neurons may be associated with CIPN severity [13]. Various

genetic polymorphisms have been found to be associated with CIPN due to various

antineoplastic agents, however, associations have either not been reproducible in sub-

sequent studies or have not yet been validated in larger clinical studies [13]. Multiple

hindrances are potentially responsible the lack of predictors, all of which are men-

tioned in a review by Chan et al. [13]. These are: (i) lack of a uniform CIPN scoring

system, (ii) not being able to find predictors separately for motor, sensory, and neu-

ropathic pain as symptoms of CIPN, (iii) not including phenotypic variabilities, (iv)

combination therapies, (v) sample size of studies, among others. In this thesis, an

attempt is made to address one of these shortcomings, namely, not including pheno-

typic variabilities. A metabolomics study was performed to find potential metabolites

that could accurately predict CIPN due to a chemotherapy agent: vincristine. More

details on this study can be found in the next chapter.

1.2 CIPN mechanism

CIPN mechanism is complex and occurs due to a myriad of events such as alter-

ations in calcium signaling, ion channels, axonal transport, and occurrence of oxida-

tive stress and inflammation [4, 14]. It primarily occurs due to damage on and near

the peripheral sensory neurons, or the nerve cells. These neurons are responsible for

transmitting information regarding touch, temperature, pain, etc., through genera-

tion of electrical signals which are governed by various mechanisms. Apart from the

damage on the peripheral neurons, these chemotherapy agents can also potentially
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impact the spinal cord, the details of which are described in a review by Carozzi and

coworkers [4]; this is beyond the scope of this thesis.

All these antineoplastic agents can lead to CIPN due to a poor blood nerve bar-

rier. This allows these agents to travel to these neurons and impact them. Moreover,

drug transporters are also involved in allowing these agents to attack these cells. Pe-

ripheral sensory neurons are called dorsal root ganglia (DRG) neurons. These are

further subdivided based on their sizes into small, medium, and large DRG neurons.

These are pseudounipolar with a cell body outside of the cell axon. These may or may

not be myelinated, i.e., the axon may or may not be insulated by a myelin sheath.

Figure 1.1 shows a myelinated DRG neuron. It consists of a cell body, a long axon

which branches into dendrites and finally ends at synapses. These neurons are re-

sponsible for mechanosensation, thermosensation, nociception (sensing pain-causing

dangerous stimuli), etc. They are long, starting from the periphery and ending at

the spinal cord. Information regarding any form of sensation is transmitted in the

form of electrical signals due to activation and inactivation of voltage-gated ion chan-

nels on its membrane. The details of the electrophysiology can be found in Chapter

3. Apart from the electrical signaling, other cellular mechanisms which are common

across all the generic cells also occur. Neurons have a cell body; they have mito-

chondria which is responsible for generation of adenosine triphosphate (ATP), the

energy molecule. Mitochondria are also responsible for apoptotic signaling pathways,

regulation of intracellular Ca2+ and reactive oxygen species (ROS). A unique fea-

ture of these neurons is axonal transport. Due to the long length of these neurons,

active transport of organelles from one end of the neuron to the other occurs via

microtubules along the axon. These neurons are surrounded by glial cells, primarily

Schwann cells, which can release pro-inflammatory cytokines and chemokines that can

lead to neuroinflammation. Apart from voltage-gated ion channels, ATP-dependent

pumps, transient receptor potential (TRP) channels, and various other ion channels

are also present on the neuronal membrane. TRP channels are responsible for ther-

mosensation and mechanosensation, the details of which can be found in a review by
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Ramsey et al [15]. Different chemotherapy drugs lead to peripheral neuropathy via

different mechanisms. Below, major neuropathy-causing agents and their potential

mechanisms are summarized and tabulated in Table 1.1. Details of these mechanisms

can be found in several review papers [4, 14]. Specific reviews can also be found for

role of cytokines [16,17], oxidative stress [18], mitochondrial dysfunction [19], and ion

channels [20] in CIPN.

The first class of such chemotherapy agents are vinca alkaloids which include vin-

cristine, vinblastine, vinorelbine, and vindesine. Vincristine leads to most severe side

effects, and used to treat several cancers such as acute lymphoblastic leukemia. It acts

as an antineoplastic drug by binding to the tubulins and blocking its polymerization

into microtubules. This mechanism also impacts the peripheral neuron and impairs

axonal transport, leading to axonal swelling and degeneration [21, 22]. Vincristine

also alters Ca2+ homeostasis as a result of mitochondrial dysfunction [23–25]. Mito-

chondrial dysfunction also leads to oxidative stress and generation of ROS [26]. Fur-

thermore, evidence suggests the involvement of MAP-kinases in vincristine-induced

peripheral neuropathy [27]. It is suggested that other inflammatory pathways may

also be involved [16,28].

The second class of such agents are platinum-based, namely, oxaliplatin, cisplatin,

and carboplatin. These are primarily used for solid tumors. They act on tumor cells

by binding with nuclear DNA by forming platinum adducts, leading to cell apoptosis.

Cisplatin and oxaliplatin also lead to oxidative stress as a result of mitochondrial dys-

function [29–35]. Mitochondrial dsyfunction occurs through alteration of mitochon-

drial respiratory chain and induction of apoptotic mitochondrial pathway. Besides,

they impact the transient potential receptors [36–39]. Transient potential receptors

are involved in neurogenic inflammation [4]. These agents are also involved in eleva-

tion of pro-inflammatory cytokines [16,40]. Oxaliplatin can also modulate the sodium

and potassium ion channels [41–46], calcium homeostasis [25, 47], MAP-kinases [48],

and protein-kinase C [49], and can elevate chemokines and their receptors [50–54].
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Figure 1.1.: Parts of a myelinated DRG neuron that can get impacted due to

chemotherapy agents. (Figure developed using Biorender (https://biorender.

com/))
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Another type of antineoplastic agent is thalidomide, an immunomodulatory drug.

It is used for the treatment of multiple myeloma [55]. It is conjectured that it may

block the production of tumor necrosis factor alpha (TNF-α) and activation of nuclear

factor kappaB (NF-kB) to induce cell death [14, 56]. It also blocks tumor angiogen-

esis [57]. The mechanism of thalidomide-induced peripheral neuropathy is unclear.

Potential mechanisms of thalidomide-induced peripheral neuropathy include its ac-

tion on TNF-α and NF-kB which can lead to neuronal cell death [58], and include

the release of ROS [59].

The next class of agents is taxanes, which includes paclitaxel, docetaxel, and

cabazitaxel. They are used for various cancers such as lung cancer, breast cancer,

gastric cancer, bladder cancer, among others [60]. Their antineoplastic mechanism is

via interference with microtubule depolymerization and repolymerization which leads

to cell death. The highest CIPN incidence among these drugs is of paclitaxel. The ac-

tion of microtubule disruption can also lead to peripheral neuropathy due to paclitaxel

by impacting the axonal transport [61–63]. Paclitaxel can also result in mitochon-

drial dysfunction. It can alter mitochondrial Ca2+ homeostasis [64,65], mitochondrial

permeability [66–68], mitochondrial respiratory chain [69], and can lead to induction

of apoptotic mitochondrial pathway [70]. This leads to oxidative stress and release of

ROS [18, 71, 72]. Dysregulation of Ca2+ homeostasis can also lead to axon degener-

ation [73]. Paclitaxel can also induce release of pro-inflammatory cytokines [18, 71].

Moreover, it can regulate expression of various sodium [74, 75], potassium [74], cal-

cium [76], and TRP [77–79] channels, which can impact the excitability behavior of

peripheral sensory neurons.

Another class of agents is the protease inhibitor, named, bortezomib. It is used for

treatment of multiple myeloma [80]. Bortezomib also leads to tubulin polymerization

and microtubule stabilization that leads to cell death [81,82]. This mechanism can also

induce peripheral neuropathy [4]. It also leads to alteration of mitochondrial Ca2+

homeostasis [83] and mitochondrial respiratory chain [84] which can subsequently

lead to production of ROS. Likewise, bortezomib can also induce oxidative stress and
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release of ROS that can then damage the mitochondria [85]. Moreover, it is involved in

inducing inflammation [82], increasing TRPV1 levels [86], and in impairing Na+/K+-

ATPase dependent pump [87].

1.3 Existing treatment strategies

There are two potential strategies for addressing CIPN: i) using neuroprotectant

agents to prevent CIPN, ii) using therapeutic agents to treat established CIPN. Ex-

ample neuroprotectants are calcium and magnesium infusions, vitamin E which is an

anti-oxidant, glutamine, glutathione, however there is a lack of an established neu-

roprotectant for all the chemotherapy agents. Potential treatments for established

CIPN include tricyclic antidepressants, gabapentin, and acetyl-L carnitine. Again,

no effective treatments for established CIPN exist. More details on these neuroprotec-

tant agents and potential treatments can be found in multiple review papers [88–90].

Existing treatment and neuroprotective strategies of CIPN are based on addressing

a single event associated with peripheral neuropathy. For example, calcium and mag-

nesium infusions can increase the concentration of extracellular calcium and thereby

close sodium channels, reducing the hyperexcitability [91]. Antioxidants such as vita-

min E can reduce the oxidative stress. Glutamine can up-regulate nerve growth fac-

tor mRNA [92]. However, a myriad of events such as alteration in calcium signaling,

voltage-gated ion channels, axonal transport, and occurrence of oxidative stress and

inflammation [4] have all been linked with CIPN. Moreover, they are interlinked in a

complex fashion. For example, both voltage-gated ion channels and intracellular bio-

chemical reactions play a role in dynamics of neuronal spiking and excitability. This

complexity might explain the failure of potential preventive agents in clinical trials,

since they target only one of these events. Even if one of the events is brought under

control, CIPN can occur because of all other events. Hence, this thesis hypothesizes

that this system is degenerate. Degeneracy implies that multiple pathways can lead

to the same output [93]. Several biological processes are evidenced to be degenerate,

including onset of neuropathic pain [94] and ion channel regulation in general [95]. To
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Table 1.1.: A summary of potential mechanisms involved in CIPN due to the men-

tioned chemotherapy agents.

Chemotherapy agents Mechanisms Reference

Vincristine

Microtubule disruption

Ca2+ homestasis

Oxidative stress

Inflammation

[21,22]

[23–25]

[26]

[16,27,28]

Cisplatin

Oxidative stress

Transient potential receptors

Inflammation

[29–35]

[36–39]

[16,40]

Oxaliplatin

Oxidative stress

TRP

Inflammation

Ca2+ homestasis

Na+/K+ ion channels

[29–35]

[36–39]

[16,40,48–54]

[25,47]

[41–46]

Thalidomide
Inflammation

Oxidative stress

[58]

[59]

Paclitaxel

Microtubule disruption

Ca2+ homeostasis

Oxidative stress

Inflammation

Sodium, potassium, calcium, TRP channels

[61–63]

[64,65]

[18,71,72]

[18,71]

[74,74–79]

Bortezomib

Microtubule disruption

Ca2+ homeostasis

Oxidative stress

Inflammation

TRP

Na+/K+-ATPase dependent pump

[81,82]

[83]

[84,85]

[82]

[86]

[87]
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investigate degeneracy more effectively, it is imperative to investigate all the events

together. While it is difficult to control multiple events in an experimental setting,

it is reasonable to do so using a mathematical model. A mathematical model pro-

vides the freedom to combine events and to observe how the system behavior changes

upon any external perturbation. Furthermore, using a mathematical model, one can

predict multiple possible ways of reversing neuropathy. All the events (such as ax-

onal transport, action potential generation, intracellular biochemical reactions) can

be investigated independently or together using mathematical models. At the same

time, experimental validation of the results obtained from mathematical models is

needed for practical application. Hence, a collaboration across multiple disciplines is

necessary. This thesis focuses on exploring degeneracies in the electrophysiology of

a pain-sensing neuron by investigating a mathematical model representing dynamics

of a pain-sensing neuron and by supplementing the work with experimental support

from collaborators. A pain-sensing neuron is a nerve cell that can detect signals that

are interpreted as neuropathy. Further details regarding electrophysiology and an

introduction to the working of this neuron can be found in Chapter 3. The work on

exploring degeneracies in electrophysiology can be found in Chapter 5. A discussion

of possible interactions in CIPN mechanisms can be found in chapter 7.

Peripheral Neuropathy is one form of pain sensation. In order to understand

CIPN mechanism, it will be helpful to understand general pain sensation mechanism.

Moreover, cancer itself causes pain due to the tumor. Thus, this thesis also develops

an approach that can be used to explore pain sensation of any form. Below is an

introduction to pain sensation and the pathway.

1.4 Pain sensation

Pain can be of three types: (i) nociceptive, (ii) neuropathic, and (iii) inflammatory.

Nociceptive pain is the pain arising due to a noxious (potentially harmful) stimulus,

such as touching an extremely hot or cold object. Neuropathic pain arises due to

any nerve related injury, which may lead to hypersensitivity, tingling, or a burning
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sensation. This is the form of pain that was investigated in the previous chapter.

Inflammatory pain arises due to release of inflammatory molecules (e.g. TNFα) as a

result of internal tissue damage. Any form of sensation occurs through transmission

of information across neurons in the nervous system, starting from the peripheral

nervous system, reaching the central nervous system, and then transmitting back

to the peripheral nervous system. Sensation is detected at the periphery by the

sensory neurons, which is first converted to a chemical signal and subsequently to

an electrical signal. The electrical signal is then transmitted to the spinal cord.

In the case of a noxious stimulus, sensation is detected at the skin by the endings

of specialized neurons. These specialized neurons are called nociceptive neurons,

or nociceptors, which have receptors that can detect such a noxious stimulus, first

proposed by Sherrington more than 100 years ago [96]. A nociceptor can detect

noxious stimuli due to temperature, harmful chemicals such as acid, and extreme

mechanical pressure. At the spinal cord, it is connected to another neuron to transmit

the signal to the brain. There are a series of neuronal connections from the spinal

cord to the brain. From the spinal cord, it first reaches the thalamus which relays the

signal to the sensory cortex and thence to the motor cortex. From the motor cortex,

the signal is sent back to the thalamus, then to the spinal cord and it finally reaches

the targeted muscle cells through the motor neurons. The motor neurons control how

the muscle cells will react to the noxious stimulus. If an individual touches something

noxious, for example, a burning object, the following series of events will occur. The

hot temperature sensation by the nociceptive neurons results in a signal to the brain

and then back to the muscles at which point the individual feels a burning sensation

and releases contact with the burning object. This pain sensation pathway is shown

in Figure 1.2. There are primarily two processes involved in pain: sensation and

perception. The nerve endings at the skin sense a noxious stimulus and eventually

transmit the signal to the brain. The brain decodes and perceives the stimulus as

painful and accordingly generates a response to be sent back to the motor neurons.
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Figure 1.2.: The pain sensation pathway starts from a noxious stimulus being detected

by a small DRG neuron (nociceptor) at the skin. The input leads to the generation

of action potentials which are then transmitted to the spinal cord. From the spinal

cord, the input is further transmitted to the thalamus via the ascending pathway.

The response is transmitted back to the spinal cord via the descending pathway. It

is finally transmitted to the muscle cells via the motor neuron. The muscle cells

respond in concordance with the signal. The DRG neuron consists of a cell body, an

axon across which the action potential is transmitted, and ends at the synapse which

transmits information from one neuron to the other.

Throughout this paper, we focus on sensation, rather than perception. Details on the

pain pathway can be found in multiple review papers [97–101].
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Most small dorsal root ganglia (DRG) neurons are nociceptors [102], shown in

Figure 1.2. In this work, the focus is only on small DRG neurons. Specific alterations

or injury in this neuron can lead to change in the nociceptive pain threshold (gain

or loss of pain sensation), neuropathic pain, inflammatory pain, or a combination of

these. These neurons consist of a cell body, an axon, and synapses at the branch

endings, as described earlier. Furthermore, all DRG neurons are pseudo-unipolar,

which means that that they have two axons branching out from the main cell body,

one reaching the periphery and the other reaching the central nervous system. Unlike

other DRG neurons, small DRG neurons are primarily unmyelinated. This implies

that their speed of conduction is slower.

There is ongoing research on developing drugs that can control the pain sensation

threshold. Currently, it is unclear how pain sensation threshold can be controlled

and how this threshold varies among individuals, specifically among those with ge-

netic mutations related to pain sensation. This thesis presents a specific framework

that can be used to explore how pain sensation threshold can vary. This framework

consists of analyzing mathematical modeling of a neuron’s electrophysiology by us-

ing bifurcation theory. The mathematical model explains the electrophysiology of

the membrane of a small dorsal root ganglia (DRG) which is a pain-sensing neuron

present in the peripheral nervous system. Electrical firing by this neuron carries infor-

mation that is transmitted across from one neuron to the next. Repetitive electrical

firing corresponds to pain of some form and intensity. Details of neuron firing can be

found in Chapter 3. In this thesis, bifurcation theory is used to find the bifurcation

points that can be indicative of repetitive firing. Furthermore, sensitivity of these bi-

furcation points is investigated to analyze their role in controlling the pain sensation

threshold.

1.5 Objectives

This thesis focuses both on chemotherapy-induced peripheral neuropathy and

generic pain sensation. The objective of this thesis is to expand the understanding
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of CIPN and pain sensation, and to provide approaches to investigate them further.

This is done by accomplishing the following specific aims.

Specific Aim 1: Find metabolites that can predict vincristine-induced peripheral

neuropathy accurately in order to aid in dosage decision making for pediatric acute

lymphoblastic leukemia patients. In this work, metabolomics approach was used to

find potential metabolites that can accurately predict CIPN susceptibility at various

time points during the treatment. This work is primarily based on machine learning

and is described in Chapter 2.

Specific Aim 2: Present a bifurcation theory-based approach that can be used to

investigate potential parameters that can control the pain sensation threshold. This

work is described in Chapter 3, where an introduction to neuronal electrophysiology,

working of a pain-sensing neuron, a mathematical model representing a pain-sensing

neuron, and how bifurcation theory can be used to find potential model parameters

that can shift the bifurcation points and can therefore be indicative of mutations

related to pain sensation, are described. This and the subsequent two chapters are

based on mathematical modeling and bifurcation theory.

Specific Aim 3: Provide a deeper investigation of the dynamics of the mathemat-

ical model representing a pain-sensing neuron. In this work, various solution regimes

and patterns of the dynamics were identified. Role of a specific sodium channel was

also elaborated. This work is described in chapter 4.

Specific Aim 4: Investigate the electrophysiology of a pain-sensing neuron and

how they can be used to find potential therapeutic measures for treating CIPN. In

this work, role of various voltage-gated ion channels in regulating the excitability of

this neuron are explored. A chemotherapy agent paclitaxel is also introduced in the

model and analyzed. The results are supplemented by recording firing rate of DRG

neuron culture. This work is described in chapter 5.



15

In chapter 6, interactions in CIPN mechanisms are elucidated. In chapter 7, all

the previous chapters are summarized and in chapter 8, future work are enlisted.
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2. A METABOLOMICS APPROACH FOR EARLY PREDICTION OF

VINCRISTINE-INDUCED PERIPHERAL NEUROPATHY

This work has been submitted to Scientific Reports and is currently under review

Vincristine is a core chemotherapeutic drug administered to pediatric acute lym-

phoblastic leukemia patients. Despite its efficacy in treating leukemia, it can lead to

severe peripheral neuropathy in a subgroup of the patients. Peripheral neuropathy is

a debilitating and painful side-effect that can severely impact an individual’s quality

of life. Currently, there are no established predictors of peripheral neuropathy inci-

dence during the early stage of chemotherapeutic treatment. As a result, patients

who are not susceptible to peripheral neuropathy may receive sub-therapeutic treat-

ment due to an empirical upper cap on the dose, while others may experience severe

neuropathy at the same dose. Contrary to previous genomics based approaches, in

this chapter, a metabolomics approach is employed to identify small sets of metabo-

lites that can be used to predict a patient’s susceptibility to peripheral neuropathy

at different time points during the treatment. Using those identified metabolites, a

novel strategy is developed to predict peripheral neuropathy and subsequently ad-

just the vincristine dose accordingly. In accordance with this novel strategy, a free

user-friendly tool, VIPNp, is created for physicians to easily implement the predic-

tion strategy. The results showed that focusing on metabolites, which encompasses

both genotypic and phenotypic variations, can enable early prediction of peripheral

neuropathy in pediatric leukemia patients.

2.1 Introduction

Acute lymphoblastic leukemia (ALL) is the most common cancer among children,

accounting for approximately 26% of all pediatric cancers in the USA [103]. Although
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the 5-year survival rate of pediatric leukemia patients is as high as 86%, the side-

effects of the treatment can severely impact the quality of life of survivors [104].

In particular, vincristine, a core chemotherapeutic drug administrated as part of

the ALL therapy that has been in use for more than 50 years, has a dose-limiting

toxicity: peripheral neuropathy. Vincristine-induced peripheral neuropathy (VIPN)

is characterized primarily by numbness, tingling, and a painful sensation felt in the

hands and feet, muscle weakness, and constipation due to its effect on the sensory,

motor, and autonomic nerves [105–107]. In some instances, VIPN can be prolonged

and may last even after discontinuation of the treatment, impairing patients’ motor

skills [108–111] which results in limitation of their daily life activities for many years

after completion of therapy [112]. While VIPN is severe in a subpopulation of patients,

another subpopulation experiences negligible neuropathy. Currently, there are neither

established ways of predicting susceptibility to VIPN in patients, nor ways to treat

it effectively, resulting in a suboptimal management for both the cohorts. Predicting

VIPN susceptibility in patients will enable better dosage decision making tools for

physicians and in turn may improve the quality of life of these patients.

Several researchers have studied the association between genomics and VIPN in-

cidence; however, the majority of the results have been controversial. Most of the

studied differences are based on race, CYP3A5, ABC transporter, and, more recently,

CEP72 expression. While some studies have reported a significant association between

race and VIPN incidence [113–116], others could not confirm those results [107,117].

CYP3A5 metabolizes vincristine and some studies have reported a significant associa-

tion between CYP3A5 expression and VIPN [115,118,119]; however, one study could

not establish such an association [120]. Similarly, there is evidence for association be-

tween the ABCB1 transporter and VIPN [121,122]; and there also exists evidence to

the contrary [120]. Additional details on the associations and non-associations found

between VIPN and other variables is addressed by Velde et al. [106] and Mora et

al. [105]. Correlations between pharmacokinetics or other patient-specific co-variates

and VIPN have also been evasive due to a large variability in the available interpa-
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tient and intrapatient data, making interpretation of these pharmacokinetic studies

difficult [123–127]. Recently, significant correlation was discovered of a SNP in the

promoter region of the CEP72 gene with VIPN, during the maintenance phase of the

treatment. CEP72 expression was associated with VIPN in human neurons derived

from human induced pluripotent stem cells, as well [114]. While some studies have

been able to reproduce this finding during the late phase of the treatment [128,129],

this association was not found in the earlier phase of therapy [130,131]. The literature

clearly shows that an established predictor for the early stage of the treatment is still

lacking.

In this chapter, a detour from the previous genomics and pharmacokinetics related

studies is taken and a novel approach using metabolomics is employed to predict VIPN

at an earlier stage of the treatment. The need to go beyond genomics has been raised

before [132], and, specifically, the role of metabolomics in predicting drug response

has garnered more attention [133,134] in recent years. The recent interest in pairing

metabolomics and drug response is a result of phenotypic variations that can be

captured at the downstream metabolite level. These phenotypic variations arise due

to differences in environment, lifestyle, stochasticity in biochemical reactions, etc.,

and may be as important as, if not more important than, the upstream genomics to

predict drug response [132]. Information transfer for expression of a disease outcome

takes place at various stages, starting from transcription of a gene to mRNA, then

translation to a protein, and, finally, to the synthesis of metabolites. Variations at

any stage may induce a different response to any drug. Because of this, drug response

of a homogeneous population of patients with a similar genome may vary. Moreover,

variations at the genetic level may not get transferred to the downstream metabolite

level because of the robustness of the metabolic pathways. Therefore, a metabolomics

approach is employed to find metabolites that can accurately predict VIPN in a cohort

of pediatric patients who underwent ALL treatment, with vincristine as the core

chemotherapy drug. Small sets of metabolites were determined that can accurately

predict VIPN at different stages of the treatment and they were subsequently used
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to develop a strategy to identify patients that are highly susceptible to VIPN. Using

this strategy, a free user-friendly tool was developed, VIPNp [135,136], for physicians

to apply these models for prediction of VIPN susceptibility at different stages of a

patient’s chemotherapy treatment.

2.2 Results

In this section, the workflow and the results are elaborated upon. The neuropa-

thy data obtained was categorized from physician evaluations of VIPN severity ex-

perienced by patients. Then, hierarchical clustering was performed to differentiate

between metabolite profiles measured at both early and late time points of the treat-

ment process. Based on their metabolite profiles measured at different time points, a

small subset of biomarker metabolites was found which was used to build a predictive

model of VIPN susceptibility. The molecular structure of some of the biomarkers

were identified and then pathway analysis was performed.

2.2.1 Pediatric ALL patient data description

A total of 36 patients’ data was collected. These were pediatric patients treated

with AALL0932 protocol for B-ALL enrolled in a study from 2010 to 2014 (see Meth-

ods for details). Vincristine was part of the core chemotherapeutic treatment. All

subjects were phenotyped for peripheral neuropathy using the Total Neuropathy Score

Pediatric Vincristine (TNS©-PV) [137]. Twenty-four of the 36 patients (67%) were

phenotyped as patients experiencing high neuropathy (HN), while the remaining 12

patients (33%) were classified as patients experiencing low neuropathy (LN) after the

treatment completion. Patient demographics are described in Table 2.1. Non-fasting

blood samples for these patients were collected prior to administration of drugs at

three time points of the treatment: during the induction phase (day 8 and day 29)

and the consolidation phase (around 6 months).
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Patients were assessed regularly using the TNS©-PV scoring scheme throughout

the 2-3 years of treatment. A score less than 3 was considered of low intensity and a

score greater than 8 was considered of high intensity. A patient was classified as LN if

the TNS©-PV intensity remained low throughout the entire duration of treatment,

regardless of the drug amount. A patient was classified as HN if the TNS©-PV

intensity was high at any time point during the treatment. This classification scheme

matched the course of treatment for patients experiencing severe neuropathy. A

patient who presents a score of 8 or higher at least once indicates susceptibility for

severe neuropathy. The degree of neuropathy may improve during later phases of

treatment when the drug is given less frequently or after dose modifications have

been made for severe VIPN. However, these adjustments do not make a patient less

susceptible to neuropathy in the future; if a patient was susceptible to high neuropathy

even once, we classified the patient as HN. As a result of this classification system,

patients who never had a TNS©-PV greater than 8 but had a TNS©-PV greater

than 3 at some point (medium intensity) were not considered for the purposes of this

study. This classification, as well as, threshold scores of 3 and 8 TNS©-PV were

delineated to ensure a clear demarcation between patients who were susceptible to

severe neuropathy and those who experienced negligible neuropathy.

Figure 2.1 shows how the neuropathy score changed during the course of the

treatment time points considered and how it compared to the overall neuropathy

susceptibility of a patient. At day 8, most of the patients had a low TNS©-PV

intensity (TNS©-PV less than 3) while the incidence of high neuropathy (TNS©-

PV greater than 8) increased with time. However, one patient had low TNS©-PV at

day 8, high TNS©-PV at day 29, and low again at the month 6 time point. Figure 2.1

shows that by 6 months, 17 out of 24 HN (TNS©-PV greater than 8 at least once

during the treatment) patients had already experienced high neuropathy, indicating

a need for dosage adjustment earlier in the treatment process. Consequently, this

data shows it is imperative to find biomarkers that enable the prediction of overall

neuropathy susceptibility during the early stage of the treatment. The focus of this
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Table 2.1.: Patient characteristics were defined according to gender, age, and body

mass index (BMI). For the day 8 treatment time point, 8 overall low neuropathy (LN)

samples were available, while for day 29 and month 6 time points, 12 LN samples were

available. 24 overall high neuropathy (HN) samples were available at all the three

time points. Age and BMI correspond to that during the start of the treatment. Here,

”HN” implies that the patient had a Total Neuropathy Score Pediatric Vincristine

(TNS©-PV) greater than 8 at least once, and ”LN” implies that the patient had a

TNS©-PV less than 3 throughout the treatment. SD: standard deviation.

Day 8 Day 29 and Month 6

HN LN HN LN

Total 24 8 24 12

Females/Males 11/13 4/4 11/13 5/7

Age, in years (Mean, SD) 9.6,4.8 4.3,2.4 9.6,4.8 4.4,2.6

BMI, in Kg/m2 (Mean, SD) 24.4,12.4 14.5,2.6 24.4,12.4 15.1,2.8

study is on finding metabolites that can differentiate between HN and LN during

these time points.

2.2.2 Longitudinal versus independent analysis of metabolite profiles

Following the collection of patient blood samples, metabolite profiling was per-

formed using liquid chromatography with tandem mass spectrometry (LC-MS/MS)

(refer to Methods for description). Then, metabolite profile across the three time

points were analyzed, initially using hierarchical clustering. The hierarchical cluster-

ing dendogram showed that the profiles clustered according to the time points, as

shown in Figure 2.2. Each branch in the figure corresponds to a sample. Since the

samples were clearly demarcated according to the time points, it implies that the

metabolite profiles were distinctly expressed at the three time points. Following the

hierarchical clustering, an algorithm to develop a longitudinal support vector classifier
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Figure 2.1.: A bar plot showing distribution of the neuropathy score of patients

over time. A TNS©-PV less than 3 corresponds to low, a score between 3 and 8

corresponds to medium, and a score above 8 corresponds to high. The first group

shows the overall susceptibility of patients to neuropathy (LN versus HN). The next

three groups show the TNS©-PV intensity at that particular time point. Since

patients with an overall medium TNS©-PV intensity were not considered in this

study, the number of such patients is zero in the first group. Some HN patients had

medium TNS©-PV intensity (TNS©-PV greater than 3 but lesser than 8) at some

points during the treatment, as seen in the next three groups.

(SVC) [138] model was used to further confirm the distinct expression of metabolites

at the three time points. The algorithm was used to estimate a parameter β according

to the following equation:

Y = f(X̃t1 + βX̃t2), (2.1)

where, t1 and t2 are two time points, Y is the neuropathy response, and X̃ is the

metabolite expression matrix. This algorithm was used to estimate β by minimizing
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the error between the predicted and actual response. For different combinations of the

time points, β was approximately zero, regardless of the initial guess, implying that

no identical set of metabolites can accurately predict neuropathy at different time

points. Based on these two results, it was hypothesized that different metabolites

should be predictive of neuropathy at the different time points; the profiles were

analyzed separately as discussed in the next section.

Figure 2.2.: A dendogram created based on the Euclidean distance shows that the

metabolite profiles are clustered according to their corresponding time points. Day

8 and day 29 metabolite profiles belong to the same primary branch and are conse-

quently closer to each other.

2.2.3 Metabolite selection and model building

In order to find a small set of metabolites that can accurately predict overall

susceptibility to neuropathy, recursive feature elimination (RFE) along with cross
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validation was used to develop a linear SVC model. Since hierarchical clustering

and longitudinal SVC modeling (described in the previous section) indicated that the

metabolite profiles are distinctly expressed across the three time points, RFE was

applied separately on each of the time point-specific metabolite profile matrix. The

matrix of features included metabolite expression and vincristine concentration at the

three time points: 5 metabolites at day 8, 46 metabolites at day 29, and 42 metabolites

at the month 6 time point were chosen, with an area under the receiver operating

characteristics curve (AUROC) of 0.97, 0.95, and 0.96, respectively. The vincristine

concentration was not one of the selected features at any time point. As shown in

Table 2.2A, these selected metabolites performed well at predicting neuropathy at

all the three time points, with an average AUROC greater than 0.90 and standard

deviation of AUROC less than 0.1.

RFE was also performed to find metabolites that can predict time point-specific

neuropathy (i.e., high or low intensity of TNS©-PV) in patients (Table 2.2B). Since

only 1 patient had high TNS©-PV during day 8, analysis was not performed on that

data set. From the day 29 metabolite profile data, only 2 metabolites were chosen

that could predict TNS©-PV intensity at that point, with an AUROC of 0.83 (lower

accuracy than that obtained from the previous analysis shown in Table 2.2A). From

the month 6 data, a small set of metabolites could not be selected; 1955 metabo-

lites were chosen (Table 2.2B) with a lower accuracy (AUROC 0.81) as compared to

the previous case (Table 2.2A). This implies that the metabolites are more effective

in classifying patients based on the overall VIPN susceptibility, rather than VIPN

intensity at the specific time points.

After selecting the small set of metabolites, that can classify between HN and LN,

using RFE, integration of their chromatogram peaks at the corresponding retention

times was investigated to ensure that they were correctly integrated and were not

chosen because of any potential error in integration. In order to rigorously validate

the selected metabolites as biomarkers, integration of peaks at the retention times

was manually reviewed of every selected metabolite, for every sample, and at all the
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Table 2.2.: Metrics obtained by performing RFE on the data sets at the three time

points. A: The set of metabolites found that can accurately predict overall neuropa-

thy susceptibility (HN versus LN) at these time points before manual integration of

the chromatogram peaks. B: The set of metabolites found that can accurately pre-

dict TNS©-PV intensity of either high or low at that specific time point. C: The

set of metabolites that can accurately predict overall neuropathy susceptibility at

the time points after manual integration of peaks. AUROC: Area Under Receiver

Operating Characteristics Curve, AUROCSD: standard deviations for AUROC. See

Supplementary Table S1 for sensitivity and specificity corresponding to each of these.

Time point Predictors AUROC AUROCSD

A

Day 8 5 0.968 0.048

Day 29 46 0.946 0.060

Month 6 42 0.963 0.043

B
Day 29 2 0.831 0.120

Month 6 1955 0.812 0.086

C

Day 8 6 0.938 0.047

Day 29 48 0.861 0.122

Month 6 45 0.923 0.069

time points. Agilent ProFinder software was used for this purpose. The peaks were

found by matching the m/z and retention time from the metabolite profile matrix to

the data loaded in ProFinder and then each of the peaks were manually visualized.

If any integration was not precise, that peak was re-integrated. This resulted in a

polished metabolite profile matrix.

RFE was repeated with this polished metabolite profile matrix to find metabo-

lites that can classify between HN and LN. Using this polished data, 6 metabolites

were selected at day 8, 48 metabolites at day 29, and 45 metabolites at month 6

time point, with AUROC of 0.94, 0.86, and 0.92, respectively. Table 2.2C shows the

metrics obtained from the model fitting. In this case, the day 8 and month 6 metabo-
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a b c

Figure 2.3.: ROC plots for the final trained models at the three time points. a: Day

8, b: Day 29, c: Month 6. AUC: Area Under Curve. CI: Confidence Interval.

lites performed better than those from the day 29 data, based on the AUROC and

corresponding standard deviation.

To obtain the final list of correctly integrated and predictive metabolites, metabo-

lites that were selected both from the polished (2.2C) and the unpolished data (2.2A)

using RFE on each of them were chosen. Further, the metabolites whose peaks looked

erroneous and were difficult to properly integrate were discarded. This refined proce-

dure provided a final list of 2, 14, and 21 metabolites from day 8, day 29, and month

6 data, respectively. Repeated cross validation was performed again to train an SVC

model using these final set of metabolites. Repeated cross validation was performed

to estimate the predictability of the model and to find the optimal tuning parameter

(the “cost” parameter) for the SVC model. The average cross validation AUROC was

0.93, 0.75, and 0.91 for day 8, day 29, and month 6 data, respectively. The average

ROC’s for the trained models are shown in Figure 2.3.

After training the model corresponding to each time point using repeated cross

validation, an optimal probability threshold was chosen to classify patients based on

the output from the SVC model. To find the optimal probability threshold, the cross

validation trained models’ accuracy was evaluated upon varying the threshold value.

Evaluation of an appropriate threshold is needed since our data is unbalanced; keeping

a threshold of 0.5 will lead to a bias towards HN. Supplementary Figure A.1 (shown
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in Appendix A) shows sensitivity, specificity, Youden’s J statistic, and distance from

best possible cutoff (i.e. sensitivity and specificity equal to 1) for the day 8, day 29,

and month 6 trained models, where the models were built with the optimal tuning

parameters obtained from cross validation. The threshold was chosen based on the

minimum of distance from the best possible cutoff which led to thresholds of 0.7,

0.65, and 0.7 for the three respective time points. Finally, the cross validated trained

models’ performance was evaluated based on this newly determined threshold. Model

performance was based on a confusion matrix (provided in Table A.3 in Appendix A)

and metrics calculated as shown in Table 2.3. The metrics shown in Table 2.3 show

the ability of the models to make predictions when trained using a subset of the

data. Only reported cross validation accuracy metrics has been reported test data

set to assess the performance of the final trained model was not available. Finally,

the model was trained using the whole data set and the optimal tuning parameters,

which can be used to test new patient data.

Multiple metrics were used to determine the accuracy and validity of the predictive

models. First, the p value of the one sided test for an accuracy greater than the No

Information Rate is less than 0.05 for all the three time point models. This implies

that the models predict better than simply random guessing. However, with accuracy

as a metric, day 8 and month 6 data outperform. The balanced accuracy ( (sensitivity

+ specificity)/2 ) is higher for day 8 and 6 month data as well, indicating that the

model for day 8 and month 6 data seems to be more reliable in predicting overall

VIPN susceptibility. A user-friendly interface, named VIPNp, was developed to use

the trained models for day 8 and month 6 time points, freely available at GitHub [136]

and the Shinyapps server [135].

2.2.4 Metabolite structure identification

After obtaining the final list of 2, 14, and 21 metabolites at day 8, day 29, and

month 6, respectively, identification of the molecular structure of these metabolites

was performed based on their mass-to-charge ratio (m/z), retention times, and tandem
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Table 2.3.: Cross validation accuracy metrics for the models with optimal tuning

using the final selected metabolites. These metrics were calculated after choosing the

probability thresholds for each of the time points. Cost = 4, 0.25, 0.25 for day 8, day

29, and month 6 models, respectively.

Model Metric Day 8 Day 29 Month 6

Accuracy 0.842 0.753 0.815

95% CI (0.812, 0.870) (0.720, 0.784) (0.785, 0.843)

No Information Rate (NIR) 0.750 0.667 0.667

P-Value [Accuracy > NIR] 1.07e-08 3.14e-07 < 2.20e-16

Kappa 0.6093 0.448 0.625

McNemar’s Test P-Value 3.41e-4 0.600 < 2.20e-16

Sensitivity 0.856 0.806 0.754

Specificity 0.800 0.646 0.938

Positive Predictive Value 0.928 0.820 0.960

Negative Predictive Value 0.650 0.625 0.656

Prevalence 0.750 0.667 0.667

Detection Rate 0.642 0.538 0.503

Detection Prevalence 0.692 0.656 0.524

Balanced Accuracy 0.828 0.726 0.846

mass spectrometry (MS/MS) spectra. MS/MS spectra was available for only a subset

of the final list: 1 metabolite from the day 8 list, 5 metabolites from the day 29 list,

and 8 metabolites from the month 6 list. MS/MS spectra was compared to the

METLIN [139] database and the Human Metabolome Database (HMDB) [140]. No

match was found for the day 8 metabolite; for day 29, one metabolite matched with

Adenosine 5’-monophosphate (AMP) for all the collision energies; for month 6 data,

one metabolite matched with L-pipecolic acid for one of the collision energies. In

order to confirm the identity of these metabolites, MS/MS of commercially sourced

AMP and pipecolic acid standards was performed to determine the retention times.



29

The retention times of the external compounds matched with that from the patient

data (1 min of commercially sourced pipecolic acid versus 0.802 min as identified

from the data, 1.4 min versus 1.77 min for AMP) confirming the identity of these two

metabolites.

The LC-MS CEU Mass Mediator (CMM) search tool [141, 142] was used with

m/z value, adduct, and retention time inputs in the HMDB database to identify

remaining metabolites. The most reasonable options were shortlisted. For example,

if one of the searches was a metabolite that could only be found due to consumption

of alcohol, it was discarded as a potential option since our focus in this study is on

pediatric patients. Except for 1,7-Dimethylguanosine and Phenylalanylproline, all

other potentially identified metabolites were at least previously detected in blood,

according to HMDB. Using these approaches, 4 and 9 metabolites in the day 29 and

month 6 lists, respectively were identified. Tables 2.4 and 2.5 define the identified

metabolites from the day 29 and month 6 lists (Supplementary Tables A.4, A.5,

and A.6 contain the complete list of metabolites, their mass, retention time, and

adduct information, shown in Appendix A).

Table 2.4.: Identified metabolites that can accurately predict neuropathy susceptibil-

ity at the day 29 time point.

HMDB ID Name KEGG ID

HMDB0003357 N-Acetylornithine C00437

HMDB0000757 Glycogen C00182

HMDB0000045 Adenosine monophosphate C00020

HMDB0001341 Adenosine diphosphate C00008

2.2.5 Pathway analysis

In order to investigate the relevance of the chosen and identified metabolites, he

pathway analysis tool in Metaboanalyst 4.0 [143,144] was used. The hypergeometric
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Table 2.5.: Identified metabolites that can accurately predict neuropathy susceptibil-

ity at the month 6 time point.

HMDB ID Name KEGG ID

HMDB0000716 L-Pipecolic acid C00408

HMDB0013464 SM(d18:0/16:1(9Z)) C00550

HMDB0000670 Homo-L-arginine C01924

HMDB0001961 1,7-Dimethylguanosine

HMDB0010383 LysoPC(16:1(9Z)) C04230

HMDB0003337 Oxidized glutathione C00127

HMDB0011170 gamma-Glutamylisoleucine

HMDB0001855 5-Hydroxytryptophol

HMDB0011177 Phenylalanylproline

test for over representation analysis and the relative-betweeness centrality for pathway

topology analysis were selected.

For day 29, two metabolites (Adenosine diphosphate, Adenosine monophosphate)

were identified to be part of purine metabolism, and one metabolite (N-Acetylornithine)

was identified to be part of the arginine biosynthesis (details in Supplementary Ta-

ble A.7 in Appendix A). Since there were very limited metabolites to perform pathway

analysis and only one or two of them belonged to a specific pathway which originally

consisted of several metabolites, none of the metabolite to pathway associations were

statistically significant after adjustment of the p values required to account for mul-

tiple testing. Furthermore, no evidence was found for the role of these pathways in

chemotherapy-induced peripheral neuropathy in the existing literature.

For the set of month 6 metabolites, SM(d18:0/16:1(9Z)), Oxidized glutathione,

LysoPC(18:1(9Z)), and Pipecolic acid were identified to be part of the sphingolipid

metabolism, glutathione metabolism, glycerophospholipid metabolism, and lysine

degradation, respectively (details in Supplementary Table A.8 in Appendix A). Again,
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none of the pathway and metabolite associations were statistically significant after

adjustment of the p values to account for multiple testing. However, evidence was

found for the role of sphingolipid metabolism in chemotherapy-induced peripheral

neuropathy [145–147]. Moreover, glutathione is a popular antioxidant tested as a

therapeutic for chemotherapy-induced peripheral neuropathy, with various related

studies mentioned in a review by Starobova and Vetter [148]. There is also evidence

for the involvement of glycerophospholipid metabolism [149] which indicates that

these metabolites may be biologically relevant to VIPN.

2.3 Discussion

Peripheral neuropathy is a painful and debilitating side-effect of vincristine, a

common chemotherapeutic drug used for treatment of pediatric ALL patients, as

well as, many other pediatric and adult cancers. Currently, there is no established

way of predicting VIPN during the initial stage of the treatment. Identification of

specific biomarkers will aid in adjusting the vincristine dose according to susceptibility

of patients to VIPN in order to improve their quality of life. Even though all previous

omics related studies have focused on genomics, it is imperative to include phenotypic

variabilities to find VIPN predictors given their known impact on drug response. In

this study, the role of metabolites in predicting susceptibility of ALL pediatric patients

to VIPN was investigated.

Metabolite profiling of ALL patients was performed for three time points during

the treatment: day 8, day 29, and month 6. First, it was found that the metabolite

profiles were distinctly expressed at the three time points, as shown by hierarchical

clustering (Figure 2.2) and longitudinal SVC modeling, indicating that the overall

metabolite profile varied as a direct response to the treatment. Second, preliminary

analysis using RFE resulted in sets of 5, 46, and 42 metabolites that accurately pre-

dicted overall VIPN susceptibility. Since the vincristine concentration was not one

of the selected features from RFE, it was concluded that regardless of the vincristine

concentration at the time points, a small set of metabolites can accurately predict
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overall neuropathy susceptibility in these patients at these time points. Third, chro-

matogram peaks of these selected metabolites were manually integrated and RFE

was performed again with the polished matrix. Subsequently, the metabolites that

overlapped from the analysis with unpolished and polished data were chosen. Then,

final sets of 2, 14, and 21 metabolites were found that could predict overall VIPN

susceptibility at day 8, day 29, and month 6, respectively.

Metabolites could not predict time point-specific TNS©-PV intensity as accu-

rately as overall susceptibility to VIPN (LN versus HN). This further strengthened

the hypothesis that specific downstream metabolites can be potential biomarkers of

overall neuropathy susceptibility due to treatment with vincristine. Furthermore, the

final models built with the chosen metabolites were more accurate in predicting neu-

ropathy at day 8 and month 6 as compared to the model built for the day 29 data

(Table 2.3), implying that the developed predictive models can be used to evaluate

VIPN susceptibility at the day 8 and month 6 time points during the treatment.

Based on the final developed models at the day 8 and month 6 time points, a

framework is presented for predicting a patient’s overall VIPN susceptibility dur-

ing ALL treatment (Figure 2.4). On day 8 of the treatment, blood samples can

be collected for metabolite profiling, specifically to obtain expression of the 2 cho-

sen metabolites. The expression of these metabolites can be used to predict overall

neuropathy susceptibility from the trained model. If the output of the model is a

probability greater than the threshold value of 0.7, the physician may need to lower

the vincristine dose as that sample might correspond to an HN patient. A follow up

evaluation can be performed after 6 months by obtaining expression of the 21 chosen

metabolites (Supplementary Table S5). If the output from the two trained models

is consistently a probability greater than 0.7, the physician could consider lowering

the vincristine dose. This framework can aid in vincristine dose decision making for

the physicians. The user-friendly tool, VIPNp [135,136], can be used to execute this

strategy.
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Day 8

Month 6

Performmetabolite profiling
for selected 2 and 21
compounds at the two time
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Check SVC model
probability output (P )

P > 0.7? Adjust
dose

Yes

Figure 2.4.: A workflow showing a potential vincristine dose decision making strategy

based on the trained SVC models. Blood samples of patients can be collected at

day 8 and month 6 time points of the treatment. Samples can then be analyzed

using mass spectrometry for metabolite profiling of the selected 2 and 21 metabolites

at the day 8 and month 6 time points, respectively. The metabolite profile data

can then be used to predict overall neuropathy susceptibility from the trained SVC

models. If the model output probability is greater than a threshold value of 0.7, the

patient might be susceptible to overall high neuropathy (HN). This strategy enables

identification of patients susceptible to HN. The vincristine dose for HN patients may

require adjustment.

In the foregoing suggested strategy, a significant caveat is that these models can

only classify patients as susceptible to HN or LN. Some patients might be suscep-

tible to “medium” VIPN (TNS©-PV greater than 3 but lesser than 8) during the

treatment. Such cases have not been included here, implying that the models have

limited predictability and that they should be used with caution. As a result, it is

only suggested that if the output of the model is greater than 0.7 at both day 8 and

month 6 predictions, then there may be a need to adjust vincristine dose, since such

patients are most likely classified as HN.

Even though a list of metabolites using RFE (Supplementary Tables A.4, A.5,

and A.6 in Appendix A) was finalized, all of them could not be identified. This greatly

reduced the capability to find the biological relevance of these chosen metabolites.
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MS/MS spectra could not be found for all of them, which may be a result of their

presence in smaller quantities. Even after obtaining the MS/MS spectra, matches

from existing databases could not be found for most of these metabolites. As a result,

only the available m/z value, retention time, and adduct information for the remaining

unidentified metabolites was used, which does not ensure that the metabolites were

identified correctly. For a thorough identification, MS/MS spectra is needed for all

of the chosen metabolites and subsequently the retention times of those compounds

need to be validated using authentic standards. Since only a few metabolites could

be identified and consequently used for pathway analysis, none of the associations

between the metabolites and their pathways found were statistically significant. Even

though some of the identified metabolites for the month 6 data belonged to pathways

that are relevant to chemotherapy-induced peripheral neuropathy, their biological

relevance could not be established with certainty.

The peak integration of chromatograms also needs to be interpreted with caution.

It was observed that some peaks may not be integrated correctly or may simply be

difficult to integrate for only a few metabolites. This has two implications: 1) The

chosen metabolites may be predictive of neuropathy because they were improperly in-

tegrated. This possibility was eliminated by manually integrating and repeating RFE

with a polished metabolite profile matrix. 2) Some potential biomarker metabolites

might not have been chosen because of poor integration. It is not feasible to man-

ually inspect every peak for every sample given that there were approximately 2000

metabolites and 104 samples (including all the time points), leaving a possibility

that all potential predictors might not have been identified. Regardless, the current

metabolites found at day 8 and month 6 are certainly potential predictors since they

accurately predict VIPN susceptibility.

It should also be noted that the metabolite profile matrix is defined as high

dimensional–with several metabolites and very few samples. This leaves a possibil-

ity that, despite using feature selection machine learning algorithms, some potential

metabolites may have been overlooked. Moreover, the patient dataset does not have
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balanced samples; having an equal number of high and low neuropathy patients will

allow for a more accurate model. There is also lack of a test set to validate the model.

It is critical to perform this study with more samples and additional datasets in order

to test and validate the model. VIPNp [135, 136] can be used to test the trained

models on new datasets in the future. There is also a need to include ”medium” neu-

ropathy patients to accurately predict multiple outcomes of the treatment. Since this

is the first metabolomics based pilot study for VIPN, focus was only on HN and LN

patients to explore the potential of this approach in predicting VIPN susceptibility.

Lastly, it is assumed that these plasma samples are accurate representations of the

metabolite profiles during the treatment. It needs to be noted that these samples

were kept frozen in the biobank. For a more accurate analysis, newer samples need

to be collected.

Another approach that can be taken is to perform a univariate analysis, keeping

the patient characteristics as control variable. This analysis was performed for the

data at every time point, keeping covariates age, gender, and BMI as control. 9

metabolites were found significant after p-value adjustment for multiple testing for

day 8 data. Interestingly, 2 of them were the ones which were also identified as

potential biomarkers for the day 8 data. However, none of the metabolites were

significant for day 29 and month 6 data. See the Appendix A for details on the

univariate analysis performed.

Despite these limitations, this preliminary study has shown that ALL treatment

can alter the metabolite profiles, and a few selected metabolites can accurately predict

the overall VIPN susceptibility. A strategy has also been provided (Figure 2.4) to

adjust the vincristine dose based on VIPN susceptibility at two time points: day

8 and month 6. This work shows that metabolomics can aid in predicting VIPN

susceptibility during the early stage of treatment. Although it must be admitted

that the prediction of high and low neuropathy could have had a stronger statistical

backing with a larger cohort of patients, it is contended that the numbers in this study

were not so unreasonably small as to challenge this major conclusion. Based on an
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exhaustive literature review, all previous studies have only focused on genomics and

pharmacokinetics in the prediction of chemotherapy-induced peripheral neuropathy

with the exception of one proteomics study [150]. This pilot study is the first of

its kind focused on metabolomics to predict VIPN. In order for this methodology

to be more effective, there is a need for a balanced and large number of fasting

samples, accurate integration of chromatogram peaks, MS/MS spectra for all the

chosen metabolites, and a more exhaustive database to identify these metabolites.

Peripheral neuropathy is not just limited to vincristine but is a dose-limiting tox-

icity of several other chemotherapy drugs (paclitaxel, taxane, and cisplatin), as well.

A problem of this scale requires expertise and continued collaboration of individuals

across multiple disciplines. An integrative approach involving better quantitation of

all the omics data, large patient cohorts, careful phenotyping of patient data, and

state of the art machine learning and statistical techniques is necessary in order to

find a robust prediction of VIPN and any other chemotherapy-induced peripheral

neuropathy, even before the start of the treatment.

The subsequent chapters of this thesis are focused on understanding pain sensation

and the dynamics of a pain-sensing neuron, and the mechanism of chemotherapy-

induced peripheral neuropathy.

2.4 Methods

2.4.1 ALL patient data collection [151]

Children with newly diagnosed precursor B-cell ALL were recruited from four

academic medical centers: Indiana University School of Medicine/Riley Hospital for

Children, the University of Michigan Comprehensive Cancer Center/Mott Childrens

Hospital, Vanderbilt University Medical Center/Monroe Carell Jr. Childrens Hospi-

tal, and George Washington University/Childrens National Medical Center. Partic-

ipants were between the ages of 1 and 18 at the time of diagnosis and received vin-

cristine according to a Childrens Oncology Group (COG) treatment trial for acute
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lymphoblastic leukemia. The standard vincristine dosage received was 1.5 mg/m2

(capped at 2-mg maximum dose). Toxicity-based dose modifications were defined ac-

cording to the specific COG protocol guiding the individual childs leukemia treatment.

Patients were excluded if they had any of the following criteria: baseline peripheral

neuropathy score greater than grade 1 per the NCI CTCAE©version 4.0; currently

receiving erythropoietin, itraconazole, or vitamin supplement greater than 100% of

the recommended daily allowance; Downs syndrome; pregnancy; or a history of co-

existing serious illness that would limit neurological assessments. The protocol was

reviewed and approved by the Institutional Review Boards at all four participating

centers. All the methods were performed in accordance with the relevant guidelines

and regulations. Informed consent was obtained from a parent and/or legal guardian

for study participation.

2.4.2 Metabolomics sample preparation and extraction

Protein removal and sample extraction were performed by adding 200 µL methanol

to 100 µL of plasma. Solutions were sonicated for 2 minutes, chilled at -20 ◦C for 1

hour, and centrifuged at 16,000 ×g for 8 minutes. The supernatants were transferred

to separate vials and evaporated to dryness in a vacuum concentrator. The dried

fractions were reconstituted in 75 µL of diluent composed of 95% water and 5%

acetonitrile, containing 0.1% formic acid. Solutions were sonicated for 5 minutes,

centrifuged at 16,000 ×g for 8 minutes, and the supernatants were transferred to

plastic HPLC total recovery autosampler vials.

2.4.3 HPLC-MS analysis of metabolomics samples [152]

Separations were performed on an Agilent 1290 system (Palo Alto, CA), with a

mobile phase flow rate of 0.45 mL/min. The metabolites were assayed using a Waters

HSS T3 UPLC column (1.8 µm, 2.1 x 100 mm), where the mobile phase A and B

were 0.1% formic acid in ddH2O and acetonitrile, respectively. Initial conditions were
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100:0 A:B, held for 1 minute, followed by a linear gradient to 70:30 at 16 min, then

5:95 at 21 min. Column re-equilibration was performed by returning to 100:0 A:B at

22 minutes and holding until 27 minutes. The mass analysis was obtained using an

Agilent 6545 Q-TOF mass spectrometer with electrospray ionization (ESI) capillary

voltage +3.2 kV, nitrogen gas temperature 325 ◦C, drying gas flow rate 8.0 L/min,

nebulizer gas pressure 30 psig, fragmentor voltage 130 V, skimmer 45 V, and OCT

RF 750 V. Mass data from m/z 70-1000 scans were collected at 5 Hz using Agilent

MassHunter Acquisition software (v. B.06). Mass accuracy was improved by infusing

Agilent Reference Mass Correction Solution (G1969-85001). To assist with compound

identification, MS/MS was performed in a Data-dependent Acquisition mode. Five

precursors per cycle were obtained using fixed collision energies of 10, 20, and 40 eV.

Peak deconvolution, integration, and alignment was performed using Agilent ProFinder

(v. B.06). Peak annotations were performed using the METLIN (www.metlin.scripps.edu)

and HMDB (www.hmdb.ca) metabolite databases, with a mass error of less than 15

ppm.

2.4.4 Vincristine quantitation [153]

Sample preparation 100 µL plasma was pipetted to a microcentrifuge tube. Pro-

tein precipitation was performed by adding 200 µL cold methanol. The mixture was

vortexed for 2 minutes, chilled at -20 ◦C for 1 hour, and then centrifuged at 13,000

g for 8 minutes. Supernatant was transferred to a fresh microcentrifuge tube and

vacuum concentrated to dryness. Reconstituted in 75 µL of diluent (95% water and

5% acetonitrile, with 0.1% formic acid), sonicated for 5 minutes, centrifuged at 13,000

rpm for 8 minutes, and supernatant was transferred to HPLC vials.

HPLC/MS-MS analysis Vincristine plasma levels were quantitated by HPLC/MS-

MS. Separation was performed on an Agilent Rapid Res 1200 HPLC system using an

Agilent Zorbax XDB-C18 (2.1 × 50 mm, 3.5 µm) column. Mobile phase A was water

with 0.1% formic acid and mobile phase B was acetonitrile with 0.1% formic acid.
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Initial conditions were 95:5 A:B, held for 0.5 minute, followed by a linear gradient

to 0:100 at 8 min, and held until 10 min. Column re-equilibration was performed by

returning to 95:5 A:B at 11 minutes and held until 15 minutes. Column flow rate was

0.3 mL/min. Retention time for vincristine was 5.9 minutes.

Analytes were quantified by MS/MS utilizing an Agilent 6460 triple quadrupole

mass spectrometer with electrospray ionization (ESI). Quantitation was based on

Multiple Reaction Monitoring (MRM). ESI positive mode was used with a transition

of 825.2 to 807.7 (quantifier) and 825.2 to 765.3 (qualifier), with a collision energy

(CE) of 45 and 40 V, respectively. A fragmentor energy of 135 V and a dwell time of

80 ms was used. Source parameters were as follows: nitrogen gas temperature = 330

◦C and flow rate = 10 L/min, nebulizer pressure = 35 psi, sheath gas temperature =

250 ◦C, sheath gas flow rate = 7 L/min, and capillary potential = 3.5 kV. All the data

were collected and analyzed with Agilent MassHunter B.03 software. Quantitation

was based on a 6 point standard curve, with concentration range from 0.1 to 500

ng/mL, by spiking vincristine into unmedicated human plasma (Sigma). Standard

curves were fit to a quadratic function, with a 1/x curve fit weighting. Correlation

coefficients > 0.99 were obtained.

2.4.5 Metabolite profiling data analysis

Data analysis was performed in R [154]. First, metabolites that were not present

in at least 75% of the patients in at least one group were discarded. Subsequently,

missing data imputation was performed using a modified k-nearest neighbours (KNN)

imputation as specified in [155]. Impute package in R was used to perform the KNN

imputation [156]. Hierarchical clustering was performed using hclust, with ward.D2

as the method and Euclidean distance as the metric. For metabolite selection, recur-

sive feature elimination (RFE) along with repeated 5-fold cross validation support

vector classifier was used. Repetition was done 20 times. This was further iterated

100 times and the model was chosen based on highest AUROC and lowest specificity

standard deviation. For recursive feature elimination, all sizes of number of predic-
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tors between 1 to 50 were allowed. Caret [157] package from R was used for this.

The method specified in caret for this algorithm is svmLinear2, from the package

e1071 [158]. Tunelength was kept as 1 and hence the cost parameter was fixed to

0.25. SVM with linear kernel was chosen because more tuned parameters would be

needed for nonlinear kernels. Since our dataset had few samples, that may have lead

to overfitting. Final model fitting results specified in Table 2.2 were based on resam-

pling from bootstrapping 25 times, using the selected number of predictors. This was

the default model fitting mode in caret while performing RFE.

For model training after finalizing the set of metabolites, 5-fold repeated cross val-

idation was used, repeated 20 times. The metric for accuracy was kept as AUROC.

Here, tuneLength was kept as 10. Cost function of the SVM model was tuned using

this. After model training, for deciding the probability threshold, thresholds between

0.5 and 1 were explored. The one corresponding to minimum distance from perfect

sensitivity and specificity (i.e. both of them equal to 1) was chosen. Subsequently,

confusion matrix and its metrics were generated using caret package’s confusion ma-

trix generator.

Please see Appendix A for extra details of the work presented in this chapter.



41

3. USING BIFURCATION THEORY FOR EXPLORING PAIN

This work is published in Industrial & Engineering Chemistry Research [159]

Pain is a common sensation which inescapably arises due to injuries, as well as,

various diseases and disorders. However, for the same intensity of disturbance arising

due to the foregoing causes, the threshold for pain sensation and perception varies

among individuals. Here, a computational approach using bifurcation theory is pre-

sented to understand how the pain sensation threshold varies and how it can be

controlled, the threshold being quantified by the electrical activity of a pain-sensing

neuron. To this end, the bifurcations arising from a mathematical model representing

the dynamics of this neuron are explored. The findings in this chapter indicate that

the bifurcation points are sensitive to specific model parameters. This demonstrates

that the pain sensation threshold can change as shown in experimental studies found

in literature. Further investigation using this bifurcation approach coupled with ex-

perimental studies can facilitate rigorous understanding of pain response mechanism

and provide strategies to control the pain sensation threshold.

3.1 Introduction

Nonlinear dynamics has been an integral element of the methodology of process

control. Traditionally, nonlinear dynamics and bifurcation theory have had many

practical applications in chemical engineering involving dynamics and stability in

chemically reacting systems [160], in particular, dynamics and control of polymeriza-

tion reactions [161] including multiple steady states and oscillatory behavior, pattern

formation on catalytic surfaces [162], multiple steady states in nonreactive [163, 164]

and reactive distillation processes [165], nonlinear oscillations in population bal-

ance systems including continuous crystallization [166, 167] and fluidized bed gran-



42

ulation [168–170], electrochemical processes including fuel cell systems [171], and

bioreactors [172–174], among others. A model based analysis aims at understanding

particular nonlinear phenomena, and it often builds the basis to design and control

the processes so that they behave in a desired way. A constructive approach for

the latter has been proposed by Marquardt and Mönnigmann [175]. In the last few

decades, however, the implications of nonlinear phenomena have expanded to even

areas of translational significance with a potential for impact on health sciences. In

this regard, as a reflection of this development, an example is cited here, Christini

et al. [176] who deliberated on the role of nonlinear dynamics in cardiac arrhythmia

control. Likewise, the field of neuronal dynamics has been under active study through

the noted Hodgkin-Huxley equations [177], which were developed more than 60 years

ago. The objective in this chapter is to address this latter area in a direction that has

high therapeutic significance for alleviating pain which invariably accompanies any

form of injury and of various diseases. As pain is the body’s mechanism of protection

from external danger, it must be regarded as inevitable. However, the threshold for

pain can vary across individuals. In this work, how this threshold can be controlled

using bifurcation theory is investigated.

The domain of pain and its level of intensity are inherently subjective in nature.

The subjectivity of pain is in regard to its perception by a given individual; however,

its reality is dependent on an objective external perturbation . This chapter views

pain as the consequence of a certain type of response by a neuron to an electrical

perturbation for which there is much support in the literature [178]. The electrical

perturbation is the result of an external stimulus, e.g. touch, which can excite the

neuron. The response to the electrical perturbation is known to be governed by several

electrical and biochemical factors. The Hodgkin-Huxley equations account for many

of the electrical factors. These equations have the means to understand the generation

of electrical signal in a neuron which is called an action potential. The temporal

pattern of action potentials carries information that is ultimately transmitted to the

brain, where it can be perceived as pain. The voltage-gated ion channels located
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in a neuron cell membrane play a significant role in the generation of these action

potentials. This work will examine the role of specific sodium and potassium voltage-

gated ion channels as potential contributors to the generation of pain. The aim of

this chapter is to promote the general exploration of pain using bifurcation theory by

providing its application to a relatively simple scenario for pain mechanism.

Through this approach, one can identify parameters that can alter the pain sen-

sation threshold. The results of this approach can be used to aid in designing experi-

ments and subsequently exploring therapeutic strategies to control the threshold. In

this chapter, the following are addressed: i) biological mechanism of pain sensation, ii)

mathematical model representing dynamics of a pain-sensing neuron, iii) bifurcation

analysis of the model equations, iv) identification of sensitive parameters in setting

pain sensation threshold, and v) discussion of results with implications for a cure.

This chapter is intended for engineers new to computational neuroscience, the details

of which can be found in books by Izhikevich, Keener, Dayan, Jaeger, Ermentrout,

Schutter and Johnston [179–185].

3.2 The Neuroscience of Pain Sensation

Neuron signal transmission occurs when it becomes excitable due to an adequate

electrical perturbation and consequently generates action potentials. An action po-

tential is a brief peak in potential dynamics observed across a neuronal membrane.

The temporal pattern (consisting of frequency and duration) and source of action po-

tential generation determine the message being transmitted. A schematic of an action

potential is shown in Figure 3.1. Action potential transmission occurs within a neu-

ron across the length of the axon and subsequently in between two neurons via their

synapses. The action potential is generated due to opening and closing of voltage-

gated ion channels on a neuronal membrane. The neuronal membrane consists of

a lipid bilayer, and the voltage-gated ion channels are transmembrane proteins with

pores that are selectively permeable to specific ions (e.g. sodium, potassium, calcium,

or chloride). These ions have their respective equilibrium potentials. Sodium has a
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positive while potassium has a negative equilibrium potential. The resting membrane

potential of a neuron is negative. These channels are shown in Figure 3.2.

When an external stimulus is applied, sodium channels get activated and open

up. This leads to a flux of sodium ions across the membrane into the neuron, raising

the membrane potential towards the positive equilibrium potential of sodium. This

inflow continues until it reaches a threshold which corresponds to a peak in the action

potential. While reaching the peak, sodium channels start to inactivate by closing

while potassium channels activate and open. Activation of potassium channels lead

to an inflow of potassium ions, lowering the membrane potential towards the negative

equilibrium potential of potassium. Subsequently, most of the channels close, reaching

a steady state and bringing the membrane potential back to the resting membrane

potential. These series of events correspond to the generation of one action potential.

The timing associated with opening or closing of these channels is a function of

time constants of activation and inactivation. Sodium activation has a smaller time

constant and as a result activates first. Sodium inactivation and potassium activation

have relatively larger time constants resulting in a time lag. This interplay of fast

and slow dynamics leads to the generation of an action potential.

A stimulus can either be an interim, pulse-like disturbance in which case the

membrane potential will return to the same rest point, as shown in Figure 3.1. Or,

it can be a permanent disturbance in which case the membrane potential will return

to a new rest point which is discussed in the next section. In both the cases, action

potentials are only fired if the stimulus exceeds a threshold value.

Hodgkin and Huxley were the first researchers to develop a mathematical model

describing action potential generation via interplay of one sodium and one potassium

channel. They developed this model for a squid giant axon. Since then, Hodgkin-

Huxley type models have been developed for several other neurons, incorporating

multiple channels. In this chapter, focus is on a Hodgkin-Huxley type model repre-

senting dynamics of a pain-sensing neuron.
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Figure 3.1.: A schematic of an action potential. When a stimulus is applied, an

action potential is generated due to activation of sodium channels leading to the rise

in membrane potential. Following this rise, sodium channels inactivate and potassium

channels activate, leading to a decrease in the potential. Finally, all channels attain

steady states and the membrane reverts back to the resting membrane potential

(RMP).
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Figure 3.2.: A schematic of a neuronal membrane. The membrane consists of a lipid

bilayer. The voltage-gated sodium and potassium channels are transmembrane pores.

The extracellular concentration of sodium is greater, leading to an inflow of sodium

ions when the channel opens. The intracellular concentration of potassium is greater,

leading to an outflow of potassium ions when the channel opens.
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3.3 Mathematical Model of a Pain-Sensing Neuron

Here, a model representing dynamics of a small DRG neuron is described. As

previously mentioned, the model equations are of Hodgkin-Huxley type. There are

multiple types of ion channels present in the human nervous system. For every ion

type, a variation of channel subtypes exist, each having different kinetic properties.

For this model, two sodium channels: Nav1.7 and Nav1.8, and two potassium chan-

nels: delayed-rectifier potassium channel (K channel) and A-type transient potas-

sium channel (KA channel), are included. Nav1.7 and Nav1.8 are simply two types

of sodium channels with different kinetic properties, but both consist of fast activat-

ing and slow inactivating gating variables. The K channel is a Hodgkin-Huxley type

potassium channel with only one activating gate variable which is activated later

than the sodium channels. The KA channel has both activating and inactivating

gating variables, similar to sodium channels. Further, a non-gated leak channel is in-

cluded, as was done for the original Hodgkin-Huxley models. These specific channels

were chosen since they are most prominent in a small DRG neuron membrane, and,

therefore, models consisting only of these channels have been developed and analyzed

previously [186,187].

The aforementioned components of the neuronal membrane can be represented

as an electrical circuit, as shown in Figure 3.3.The membrane is assumed to have

a specific capacitance c (= C/A, C being the membrane capacitance and A the

membrane surface area) with some potential V (= Vin−Vout) across it. Traditionally,

the extracellular potential is assigned as zero which then defines the intracellular

resting potential as negative. Iext(t) , where t is time, is the external stimulus current.

The direction of this current is opposite to the direction of current due to the ion

channels. As shown in the figure, the sodium and potassium channels have variable

conductance, while the leak channel has a constant conductance, implying it is non-

gated. The equilibrium potential of the leak channel is negative as well, in order to

bring the membrane potential back to the negative resting membrane potential. The
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Figure 3.3.: Circuit diagram representing neuron membrane. Vin: intracellular poten-

tial; Vout: extracellular potential; I1.7, I1.8, IK , IKA, Il: current due to Nav1.7, Nav1.8,

delayed rectifier potassium, A-type transient potassium and leak channels respec-

tively; Iext: external stimulus current; g1.7, g1.8, gK , gKA, gl: conductance of Nav1.7,

Nav1.8, delayed rectifier potassium, A-type transient potassium and leak channels

respectively; ENa, EK , El: equilibrium sodium, potassium and leak potentials respec-

tively, C: membrane capacitance.

variable conductance are functions of the membrane potential, described by Hodgkin-

Huxley type equations.

Using Kirchhoff’s law, the equation for potential dynamics can be written as the

following:

c
dV

dt
=
Iext(t)

A
− (i1.7 + i1.8 + iK + iKA + il) (3.1)

The individual specific ionic currents are defined as following:

1. i1.7 = g1.7m
3
1.7h1.7s1.7(V − ENa)

2. i1.8 = g1.8m1.8h1.8(V − ENa)
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3. iK = gKnK(V − EK)

4. iKA = gKAnKAhKA(V − EK)

5. il = gl(V − El)

Here, g1.7, g1.8, gK , gKA, gl are the maximal specific conductance, taken as constants.

The gating variables m1.7, h1.7, s1.7, m1.8, h1.8, nK , nKA, hKA lie between 0 and 1,

and are functions of V . ENa, EK and El are ion equilibrium potentials. The final

equation for membrane potential is the following:

c
dV

dt
=
Iext(t)

A
− (g1.7m

3
1.7h1.7s1.7(V − ENa) + g1.8m1.8h1.8(V − ENa)

+ gKnK(V − EK) + gKAnKAhKA(V − EK)

+ gl(V − El))

The gating variables correspond to fractions of ion channels that are open. Sup-

pose x is a gating variable, where x = m1.7, h1.7, s1.7, m1.8, h1.8, nK , nKA, hKA. Then,

the equation for x is written as:

dx

dt
= αx(V )(1− x)− βx(V )x, (3.2)

where, αx(V ) is the rate of opening of gate x and βx(V ) is the rate of closing. On

rearranging this equation, the following equation is obtained:

dx

dt
=
x∞(V )− x
τx(V )

, (3.3)

where, x∞(V ) =
αx(V )

αx(V ) + βx(V )
and τx(V ) = 1

αx(V ) + βx(V )
. τx(V ) is the potential-

dependent time constant. Typically, αx(V ) and βx(V ) are assumed to be of the

following form:

k1 +
k2

1 + exp
(V + k3

k4

) , (3.4)

where, for each x, the corresponding k1 to k4 are constants. In total, this model

consists of 9 ordinary differential equations.
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When Iext = 0, the resting membrane potential of this system will be the following,

by setting all the derivatives to zero:

(g1.7m
3
1.7∞h1.7∞s1.7∞ + g1.8m1.8∞h1.8∞)ENa + (gKnK∞ + gKAnKA∞hKA∞)EK + glEl

g1.7m
3
1.7∞h1.7∞s1.7∞ + g1.8m1.8∞h1.8∞ + gKnK∞ + gKAnKA∞hKA∞ + gl

(3.5)

Leak current kinetics, area, membrane capacitance, and equilibrium potential val-

ues for a small DRG neuron were extracted from [187]. Maximal specific conductances

gK and gKA were estimated to ensure that their corresponding currents were 6 nA

and 1 nA at 0 mV when the cell is initially depolarized to -120 mV, and g1.7 was set to

18 mS/cm2, based on [187]. g1.8 was set to 7 mS/cm2, which led to the generation of

one action potential (current threshold) at 100 pA when the neuron is at the resting

membrane potential (RMP), which is determined by simulating the model for Iext = 0

pA. The current threshold of 100 pA was chosen based on approximate values from

previous experiments and simulations [186,188]. The parameter values of this model

and the equations can be found in appendix B. These parameter values result in an

RMP of -66.48 mV which belongs to the physiological range of RMP recorded in small

DRG neurons in [189], and the resulting action potential amplitude (approximately

120 mV) is comparable to that reported in [190]. Typically, channel kinetics (values

of k1, k2, k3, k4) are obtained from voltage-clamp experiments. In these experiments,

the potential across a neuron is fixed and then it is stepped to a different value, and

the corresponding current pattern evolution is observed. This data is fit to the model

equations to determine the constants. k1 corresponds to offset, k2 to amplitude, k3

to V1/2 (voltage for half-maximal activation) and k4 to slope in the variable versus

voltage plot. The details of voltage-clamp experiments and subsequent parameter

estimation are not described here here, but the seminal paper by Hodgkin and Hux-

ley for details on how the original equations were obtained [177], and the book by

Johnston and Wu for more details on the neurophysiology [185] are recommended.

Throughout this thesis, the units of potential are mV, specific capacitance mS/cm2,

current pA, and time ms.



51

m1.7 and m1.8 are fast activation variables of sodium, h1.7 and h1.8 are slow inacti-

vation variables of sodium, and s1.7 is ultra-slow inactivation of sodium 1.7 channel.

nK and nKA are activation variables of potassium channels and hKA is inactivation

variable of KA channel. The gating variables nK and nKA are slower than those of

sodium channels, which ensures the descent after the peak in the action potential.

This is discussed below by comparing Figure 3.4C-F and by evaluating approximate

time scale of evolution of these variables in the supplementary document.

Upon simulating the system with a constant external current source of 100 pA

(starting from t = 0 ms), an action potential is generated, shown in Figure 3.4A. The

initial conditions here correspond to those for Iext = 0. At around 5 ms, membrane

potential begins to shoot up drastically. At this time, as shown in Figure 3.4B, the

state variables m1.7 and m1.8 begin to increase. Simultaneously, h1.7 and h1.8 start

decreasing and remain low in the region between around 7-12 ms, corresponding to

the relatively flat region in the descent of the action potential. During the descent,

both nK and nKA increase, corresponding to opening of potassium channels. The

temporal pattern of hKA is similar to h1.7 and h1.8. s1.7 remains relatively constant

in this time frame. Eventually, these state variables reach steady state values, and

the updated resting membrane potential, for a given external input (in the form of a

step function), is the following:

Iext/A+ (g1.7m
3
1.7∞h1.7∞s1.7∞ + g1.8m1.8∞h1.8∞)ENa + (gKnK∞ + gKAnKA∞hKA∞)EK + glEl

g1.7m
3
1.7∞h1.7∞s1.7∞ + g1.8m1.8∞h1.8∞ + gKnK∞ + gKAnKA∞hKA∞ + gl

(3.6)

The temporal pattern of the potential-dependent time constants are shown in

Figure 3.4C-F. m1.7 and m1.8 have relatively smaller time constants, implying faster

kinetics as seen in Figure 3.4B, ensuring activation of sodium channels first. The

remaining time constants for nKA, hKA, h1.7, h1.8 are larger, implying slow activation

of the KA channel and slower inactivation of KA and both the sodium channels. The

K channel inactivates even slower, as seen in Figure 3.4F by the magnitude of its

time constant. s1.7 is the slowest with time constant larger than all other variables,
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Figure 3.4.: A: Action potential generated due to a constant external current Iext =

100 pA, B: Dynamics of activation and inactivation state variables, C-F: Dynamics

of potential-dependent time constants for the state variables.

leading to ultra-slow inactivation of Nav1.7 channel. Therefore, s1.7 remains relatively

constant as shown in Figure 3.4B.
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Periodic firing of action potentials by this neuron is associated with pain of some

degree. Moreover, pain increases with the frequency of firing [191, 192]. In order

to understand the onset of periodic firing (indicating the onset of pain), bifurcation

theory is applied to this model, using Iext, ENa, and EK as the primary bifurcation

parameters. In this section, some dynamic simulations are demonstrated to show how

the system dynamics vary upon changing these parameters. First, Iext was varied,

assuming it to be a time-independent step function. As shown in Figure 3.5A, for a

small value of Iext, one action potential is produced after which the system approaches

a steady state. Upon increasing Iext, the system displayed various types of mixed-

mode oscillations (MMOs) consisting of small amplitude oscillations around the lowest

unstable steady state solution (see Figure 3.8) and full-blown action potentials, as

shown in Figure 3.5B. For specific values of Iext, more complicated attractors were

observed which will not be investigated here. They are investigated in the next

chapter. Upon further increasing Iext, the system displayed periodic firing of action

potentials (Figure 3.5C), indicative of pain of higher intensity as compared to that

in Figure 3.5B. In general, dynamical simulations suggest that the average frequency

of the large amplitude oscillations is increasing with Iext (corresponding to increase

in pain intensity). The bottom sub-figures show phase portraits with three state

variables: V , nK and hKA. For Figure 3.5A, since there are no oscillations, a closed

curve is not formed in the phase portrait. The phase portrait in Figure 3.5B consists

of a closed curve with extra smaller loops to take into account the small amplitude

oscillations. The phase portrait in Figure 3.5C is a single closed curve corresponding

to the large amplitude oscillations of action potentials.

Similar dynamical patterns are observed upon varying ENa and EK . For smaller

values of ENa, a single action potential is generated, as shown in Figure 3.6A. In-

creasing ENa leads to MMO and then periodic firing, as shown in Figure 3.6B and

Figure 3.6C respectively. A similar pattern is observed in the case of EK , as shown

in Figure 3.7. The phase portraits look similar as well.



54

Figure 3.5.: Dynamic simulations for A: Iext = 102 pA, B: Iext = 110 pA, C: Iext = 150

pA

Figure 3.6.: Dynamic simulations for A: ENa = 125 mV, B: ENa = 128.2 mV, C:

ENa = 130 mV
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Figure 3.7.: Dynamic simulations for A: EK = −74.5 mV, B: EK = −74 mV, C:

EK = −73 mV
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3.4 Influence of external current Iext

First, a one-parameter continuation of solutions was performed with Iext as the

primary bifurcation parameter, using XPPAUT [193]. Iext is assumed to be time

independent. The partial bifurcation diagram is shown in Figure 3.8. First, a contin-

uation of steady state solutions was done starting from a stable steady state at the

left of Figure 3.8. The red branch of stable steady state solutions loses its stability at

a subcritical Hopf bifurcation point (HB in Figure 3.8 at around Iext = 103 pA) and

undergoes subsequent hysteresis with two limit points (LP in Figure 3.8) leading to a

multiplicity of unstable steady state solutions in between (in black). At the HB point,

a branch of stable steady states coalesces with a branch of unstable period solutions

(in blue), with the blue branch undergoing a cyclic limit point (CLP in Figure 3.8) at

its turning point. Starting at the HB point, the blue periodic branch has two unstable

directions, and beyond the CLP, it has either one or three unstable directions due

to one real characteristic value passing through zero. At the end of this branch, the

period increases massively. It is, therefore, conjectured that this branch ends in a

period-infinity solution.

Furthermore, there is a branch of stable large amplitude oscillations indicated

by the green circles in Figure 3.8, which corresponds to the periodic firing of action

potentials as illustrated in Figure 3.5C. The branch of large amplitude oscillations

becomes unstable at a CLP (Figure 3.8 at around Iext = 117 pA) and ends shortly after

a period-infinity solution. Between the HB point and this CLP, MMOs (Figure 3.5B)

are observed as well as more complicated patterns of behavior associated with these

types of MMOs. Bifurcations and solution branches corresponding to the MMOs

region are currently under investigation and are, therefore, not shown in Figure 3.8.

In this chapter, the focus is on how these detected bifurcation points are helpful

in understanding the pain sensation. The bifurcation points separate the “no-pain”

(stable steady state) region from the “painful” (oscillation of action potentials) region,

where the intensity of pain increases upon increasing Iext since it is determined by the
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Figure 3.8.: Partial bifurcation diagram with Iext as the bifurcation parameter. HB:

Subcritical Hopf bifurcation point (at Iext = 102.99 pA), LP: Limit point, CLP: Cyclic

limit point (at Iext = 116.98 pA for the stable periodic branch).

frequency of firing of action potentials. Hence, understanding how these bifurcation

points can shift can indicate how the pain threshold changes, due to factors such

as external injury or genetic mutations. In order to explore this, focus is on the

following bifurcation points: HB point, LP on the unstable steady state branch, and

CLP of the stable periodic branch. Two-parameter continuations of these points

was performed to demonstrate how they shift on changing specific model parameters,

possibly shifting the pain sensation threshold.

Further, the focus is on finding specific kinetic parameters in sodium channels that

can shift the bifurcation points. This is because several mutations in sodium channels

have been found to be associated with loss or gain of pain sensation [194–196]. Most of

the previous work in this field is based on experiments and computational modeling.

There is limited literature on use of bifurcation theory to understand the role of pain

sensation [94, 197, 198]. Here, an approach using bifurcation theory is presented to

examine some of these mutations.
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3.4.1 Nav1.7 Channel Mutations

Nav1.7 is a widely studied channel and a myriad of mutations in Nav1.7 have been

found to be associated with gain or loss of pain sensation [199]. Gain of pain sensation

implies that the pain sensation threshold is relatively lower, while individuals with

loss of pain sensation might not feel any pain even after severe injury. Such a mutation

was identified in specific individuals who had never experienced pain [200]. The gain

of pain sensation case is associated with discomfort even without being in a dangerous

scenario. The loss of pain sensation is associated with multiple severe injuries with

little to no reaction. In both cases, the pain sensation threshold no longer meets the

physiological requirements. In order to understand how the pain threshold can change

due to mutations in Nav1.7, specific parameters in the activation variable m1.7 are

varied. The kinetics of m1.7 is described by αm1.7(V ) and βm1.7(V ), which are written

in the form of Eq. (3.4). To investigate mutation in kinetics of m1.7, k3 was varied

by introducing a dummy variable v0, first in the equation for αm1.7(V ), such that it

becomes:

k1 +
k2

1 + exp
(V + k3 + v0

k4

) , (3.7)

Then, a two-parameter continuation of bifurcation points is performed with v0 and

Iext, shown in Figure 3.9A. Similarly, mutation in βm1.7(V ) kinetics is investigated,

by introducing the dummy variable exclusively in its kinetics. Again, two-parameter

continuation is performed with v0 and Iext, shown in Figure 3.9B. For both the cases,

it can be seen that the bifurcation points shift to the left upon increasing v0. This

leads to a lower bifurcation point, implying the neuron will start periodic firing of

action potentials with a lesser stimulus. This would lead to a decrease in the threshold

for pain sensation.

Increasing v0 shifts the steady state activation variable (m3
1.7∞) versus potential

plot to the left, as shown in Figure 3.10. Figure 3.10 is a plot of activation variable

versus potential during the ascent of the action potential. Association between the

leftward shift of the steady state activation variable and the gain of pain sensation has
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Figure 3.9.: Two parameter continuation for v0 in A: αm1.7(V ) and B: βm1.7(V ). The

plot shows how the bifurcation points vary upon changing v0. An approximately

300% increase or more in k3 of αm1.7(V ) and a 28% increase or more in k3 of βm1.7(V )

shifts the bifurcation points.

been seen in several experiments, where mutations in Nav1.7 such as I848T, L858H,

F1449V, F216S, A863P, N395K, G856R, and L858F led to chronic pain associated

with a burning sensation in individuals [186, 201–206]. Thus, these results are in

concordance with existing experimental findings. Focus was only on k3 instead of k1,

k2, and k4 because k3 corresponds to V1/2; varying k3 would shift the activation versus

voltage curve in the horizontal direction. A leftward shift in the horizontal direction

of this plot has been associated with gain of pain sensation mutations.

3.4.2 Nav1.8 Channel Mutations

Nav1.8 channel has also been associated with alterations in pain sensation [207].

However, it is not as well studied as Nav1.7. Nav1.8 is associated primarily with

inflammatory pain. Here, similarly, dummy variable v0 was introduced one by one in

both αm1.8(V ) and βm1.8(V ). As shown in Figure 3.11, the bifurcation points shift to

the left, indicative of a decrease in pain sensation threshold. Furthermore, for lower
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Figure 3.11.: Two parameter continuation for v0 in A: αm1.8(V ) and B: βm1.8(V ).

The plot shows how the bifurcation points vary upon changing v0. An approximately

170% increase or more in k3 of αm1.8(V ) and a 4% increase or more in k3 of βm1.8(V )

shifts the bifurcation points.

values of v0, the CLP is to the left of the HB point (see Figure 3.11), which indicates

bistability.

Similar to the Nav1.7 analysis, a leftward shift in the plot of steady state acti-

vation variable m1.8∞ versus membrane potential can be seen in Figure 3.12. Again,

such a shift has been reported in literature, corresponding to gain of sensation muta-

tions such as A1304T and I1706V in Nav1.8, associated with painful neuropathy in

individuals [208,209].

The above channel mutation analyses demonstrated the use of bifurcation theory.

In particular, two-parameter continuation of bifurcation points identified specific pa-

rameters that can shift the bifurcation points and impact the excitability of this

neuron.
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3.5 Influence of Ion Equilibrium Potentials at Iext = 0

In this section, the results with ENa and EK as the bifurcation parameters and

keeping Iext = 0 are presented. These equilibrium potentials are functions of intra-

cellular and extracellular ionic concentrations [180, 183]. A nerve injury can change

the ion concentration, subsequently impacting the equilibrium ion potential. A com-

putational study on the nerve injury has been done with Hodgkin-Huxley type equa-

tions [198], where alterations in ion concentrations changed the excitability of the

neuron. Here,how sodium and potassium equilibrium ion potentials can potentially

alter the pain sensation threshold is demonstrated, using bifurcation theory.

The partial bifurcation diagrams are shown in Figure 3.13. The structures are

similar to the previous bifurcation diagram in Figure 3.8. The diagram consists of

a HB with unstable periodic solutions arising from it. There are two LP’s leading

to hysteresis in the unstable steady state solution branch. The unstable periodic

solution branch emanating from the HB point ends at an unstable steady state branch,

with a turning point (CLP) in between. This end point represents a homoclinic

orbit, which is a specific type of periodic solution with infinite period. Another CLP

separates unstable and stable periodic solutions. MMOs are observed between the HB

point and this CLP. In both the cases, an increase in the equilibrium potential leads

to generation of periodic firing even without any external stimulus. This is called

spontaneous firing, and is indicative of neuropathic pain. In case of neuropathic

pain, one may experience a tingling and burning sensation even without any external

stimulus. Experimental or computational analysis of equilibrium ion potentials and

their relation to pain has not been performed before, although this has been studied

theoretically for nerve injury which can lead to pain [198]. The above results suggest

a direct link between equilibrium sodium and potassium potential and the periodic

firing threshold of a pain-sensing neuron. Further computational and experimental

investigation of these results can provide strategies for alleviating neuropathic pain.
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Figure 3.13.: Bifurcation diagram with A: ENa (HB at ENa = 128.04 mV and CLP

of stable periodic branch at ENa = 128.96 mV) and B: EK (HB at EK = −74.37

mV and CLP of stable periodic branch at EK = −73.66 mV) as primary bifurcation

parameters. HB: Subcritical Hopf bifurcation point, CLP: Cyclic limit point
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3.6 Discussions

Pain is an unavoidable aspect of the average human experience. Any form of injury

can lead to localized pain. This is the body’s mechanism to begin healing the injured

area. However, the pain threshold varies among individuals. The same intensity of a

noxious stimulus may not be painful for one individual but may be extremely painful

for another. In this chapter, a computational approach to understand pain sensa-

tion and to detect possible parameters that can shift the pain sensation threshold, is

presented. To this end, bifurcation theory was used to understand the bifurcations

arising in a mathematical model representative of a small DRG neuron’s (pain-sensing

neuron) dynamics. The bifurcations of this model can establish the boundary between

the sensation of pain and no pain; a stable steady state solution is indicative of no

pain, while a periodic solution indicates pain. The frequency of the large amplitude

periodic firing further captures the degree of pain. Using this theory, potential mu-

tation points were identified in sodium channels that can alter the pain sensation

threshold. Evidence in literature was found for Nav1.7 and Nav1.8 mutations which

were associated with conditions such as chronic pain associated with a burning sen-

sation. It was also found that an increase in sodium or potassium equilibrium ion

potential can lead to spontaneous firing, an indicator of neuropathic pain. Identifying

such sensitive parameters can aid in developing therapeutic drugs that can control

the pain sensation threshold.

This bifurcation analysis has some limitations based on its assumptions. The

model used for this study is relatively simple from a physiological point of view. Sev-

eral other ion channels in addition to the four channels addressed in this paper are

present in a small DRG neuron as well. For example, Nav1.9, also plays a role in the

pain sensation [194–196] and is present in small DRG neurons but was not included

in this model. Furthermore, neuron activity is not only a function of electrochemical

reactions but also of biochemical reactions that occur within a neuron and at the

synapse, where biochemicals in the form of neurotransmitters participate in synaptic
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transmission. Additionally, a mutation can also occur at the central nervous system

instead of the periphery. In this case, analyzing the synaptic ending can become essen-

tial. Since these neurons are relatively long compared to any other cell, starting from

the periphery and reaching the spinal cord, organelles are actively transported from

one end of the axon to the other. This is called axonal transport. This transport can

also get disrupted due to any injury, genetic disorder, or disease, which may lead to

neuropathic pain [210]. Lastly, biochemical processes such as release of cytokines and

other inflammatory molecules are also involved in generation of inflammatory pain.

All the aforementioned mechanisms are potential areas that can benefit from com-

putational modeling and bifurcation theory to find sensitive parameters that impact

the pain sensation threshold.

Much variability has been observed in electrical recordings of small DRG neu-

rons [188, 189, 211]. Some of these neurons display MMOs, while others do not.

Therefore, eventually there is a need for an ensemble of parameter values in order to

capture such variations. This model is representative of a specific sub-type of small

DRG neurons and is robust in the sense that the dynamical patterns are conserved

even after increasing all the maximal conductances proportionately. Recording of

currents due to each ion channel along with the structure of the action potential for

various small DRG neurons will enable building a more accurate model. This can be

achieved using voltage-clamp experiments.

The two parameter approach presented here was useful in identifying potential

alterations that can occur in the fast activation of Nav1.7 and Nav1.8 and can shift

the bifurcation points, consequently impacting the pain sensation threshold, which

have been observed experimentally in the literature. This approach’s limitation is in

the number of parameters that can be varied simultaneously. Most numerical tools

are designed for one and two parameter continuations corresponding to codimension

0 or 1 bifurcation points. For the continuation of higher codimensions, see Krasnyk

et al. [212] and references therein.
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This work demonstrates the use of bifurcation theory in understanding the vari-

ation associated with pain: a vital physiological phenomenon. It was identified that

alterations in specific model parameters can shift the bifurcation points, which can

consequently impact the excitability of a pain-sensing neuron. A thorough analysis

using the foregoing approach outlined in this chapte corroborated with experimental

studies can advance the understanding of the mechanism of pain sensation.

The next chapter focuses on a detailed investigation of the dynamics of this model.

In particular, MMOs are elaborated upon.

3.7 Supplementary Information

XPPAUT [193] was used for numerical integration and bifurcation analysis, MAT-

CONT [213] for performing two-parameter continuation of bifurcation points, and

MATLAB [214] for generating the plots. The XPPAUT and MATLAB codes are

publicly available on ModelDB (http://modeldb.yale.edu/264591). Biological fig-

ures in this chapter and chapter 1 were developed using Motifolio (https://www.

motifolio.com/) and somersault18:24 (https://www.somersault1824.com/).

http://modeldb.yale.edu/264591
https://www.motifolio.com/
https://www.motifolio.com/
https://www.somersault1824.com/
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4. COMPUTATIONAL ANALYSIS OF A 9D MODEL FOR A SMALL DRG

NEURON

This work has been submitted to Journal of Computational Neuroscience and is cur-

rently under review.

In this chapter, focus on the same model as the one in the previous chapter. This

chapter delves deeper into the bifurcations that can explain the dynamics of this neu-

ron. The dynamics of this model strongly depends on the maximal conductances of

the voltage-gated ion channels and the external current, which can be adjusted ex-

perimentally. It is shown that the neuron dynamics are most sensitive to the Nav1.8

channel maximal conductance (g1.8). Numerical bifurcation analysis shows that de-

pending on g1.8 and the external current, different parameter regions can be identified

with stable steady states, periodic firing of action potentials, mixed-mode oscillations

(MMOs), and bistability between stable steady states and stable periodic firing of

action potentials. This chapter illustrates and discusses the transitions between these

different regimes. Further, the behavior of MMOs are analyzed. As the external cur-

rent is decreased, MMOs appear after a cyclic limit point, as shown in the previous

chapter. Within this region, bifurcation analysis shows a sequence of isolated periodic

solution branches with one large action potential and a number of small amplitude

peaks per period. For decreasing external current, the number of small amplitude

peaks is increasing and the distance between the large amplitude action potentials is

growing, finally tending to infinity and thereby leading to a stable steady state. A

closer inspection reveals more complex concatenated MMOs in between these periodic

MMOs branches, forming Farey sequences. Lastly, small solution windows with ape-

riodic oscillations are also found, which seem to be chaotic. The dynamical patterns

found here as a function of different parameters contain information of translational
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importance as their relation to pain sensation and its intensity is a potential source

of insight into controlling pain.

4.1 Introduction

Neurons display a variety of rich dynamics such as repetitive firing of action po-

tentials, bursting, mixed-mode oscillations, and bistability. The diversity of dynamics

displayed by a multitude of neurons has led several researchers to bifurcation theory

to understand the transition from one dynamical pattern to the other for more than

40 years [179, 215–217]. Starting with the analysis of low dimensional models such

as Hodgkin-Huxley and Fitzhugh-Nagumo equations, it has recently been used for

higher dimensional models such as a 14D model of a pyramidal cell [218], as well. In

this chapter, we employ numerical bifurcation analysis to understand the dynamics

of a 9D model of a small dorsal root ganglion (DRG) neuron.

Small DRG neurons are primary nociceptors, i.e., they are responsible for sensing

pain [96], as described in the previous chapter. From a theoretical point of view, pain

corresponds to repetitive firing of action potentials [191, 192]. To understand how

pain can be controlled, it is therefore essential to determine how the transition to

periodic firing of action potentials depends on the physiological parameters and how

these parameters can be manipulated in a suitable way.

While limited numerical [186, 187, 219] and extensive experimental [211, 220–222]

studies have been executed for this type of neuron, a detailed bifurcation analysis has

not been undertaken so far. The importance of using bifurcation theory to understand

pain is emphasized in the works of [197] and [94] where 2D and 3D models of an affer-

ent sensory neuron were analyzed with regard to neuropathic pain and, subsequently,

bifurcation theory aided in finding parametric regions of pain and no-pain. Previous

work on a model of a small DRG neuron [159] (explained in the previous chapter) also

illustrates the utility of bifurcation theory for understanding pain. In that chapter,

genetic mutations in sodium channels that are associated with pain sensation were

also investigated.
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In this chapter, the aforementioned theory is used extensively to find the bifurca-

tions explaining the excitability patterns of this model. Both one-parameter and two-

parameter continuation of model solutions is performed, with external current as the

primary bifurcation parameter and maximal conductance of one of the voltage-gated

ion channels as the secondary parameter. Here, different solution regimes are found,

consisting of stable steady states, periodic firing of action potentials, and mixed-mode

oscillations (MMOs). The latter are periodic or aperiodic oscillatory solutions consist-

ing of small amplitude (subthreshold) and large amplitude (action potential) peaks.

They have been recorded in DRG neuron cultures before [188, 211]. Besides, they

have been observed in many other chemical and neuronal systems [223,224], and are

therefore of broader interest. We elaborate on the mechanisms of onset and disappear-

ance of MMOs, and compare them to other extensively analyzed MMO-generating

systems.

This chapter is organized as follows. In Sec. 4.2, the model is described and various

patterns of behaviour are shown using dynamic simulation for selected parameter

values. Sec. 4.3 identifies different parameter regions corresponding to the different

patterns of behavior using one- and two-parameter continuation with external current

as the primary bifurcation parameter and maximal conductance of the Nav1.8 sodium

channels as the secondary bifurcation parameter. To account for model uncertainties,

sensitivity with respect to the other model parameters are also studied afterwards

using two-parameter continuation of critical boundaries. In Sec. 4.4, the focus is on

MMOs. Periodic continuation is used to calculate a sequence of periodic solution

branches with one large amplitude action potential and various numbers of small

amplitude subthreshold peaks per period. Further, dynamic simulations illustrate

the existence of more complex concatenated periodic and aperiodic MMOs. Lastly,

Sec. 4.5 discusses and concludes the results, providing remarks on problems that still

need to be addressed.
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4.2 Model description and first simulation results

In this chapter, we focus on a single compartment minimal conductance model as

mentioned in the previous chapter. Following [187], the model accounts for currents

due to two sodium channels: Nav1.7 (I1.7) and Nav1.8 (I1.8), two potassium channels:

a delayed rectifier (IK) and an A-type transient (IKA) channel, and a leak channel

(Il). These are the primary ion channels found on the membrane of a small DRG

neuron. The equation for membrane voltage dynamics are written in the following

Hodgkin-Huxley [177] type of form. Refer to the previous chapter and appendix for

details of this model.

In a first step, selected dynamic simulations are presented of the above equations

to illustrate some characteristic patterns of behavior, to be analyzed in more detail in

the remainder. Results are shown in Figure 4.1. Initial condition for all simulations

was the stable steady state for Iext = 0 pA.

In the first row of Fig. 4.1 the maximum conductance of the Nav1.8 channel equals

7 mS/cm2 and the value of the external current is increased from 100 pA in the left

diagram, to 106 pA in the middle, to 120 pA in the right diagram. In the left diagram,

for the lowest value of Iext, a stable steady state is attained after the firing of an action

potential, whereas periodic firing of large amplitude action potentials is observed for

the highest value of Iext in the right diagram. For values of Iext in between, there is

a region where mixed mode oscillations (MMOs) are observed as illustrated in the

middle diagram. There, after some initial transient, a periodic regime is attained with

one large amplitude action potential and eight small amplitude subthreshold peaks

per period.

A different situation is seen in the second row of Figure 4.1 with some representa-

tive simulations. There, the maximum conductance of the Nav1.8 channel is equal to

4.5 mS/cm2. Again the values of the external current are increasing from the left to

the right. The qualitative behavior in the left and the right diagrams, for the lowest

and the highest value of Iext, is similar to the behavior shown in the corresponding
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Figure 4.1.: Dynamic simulations of action potentials. For higher values of g1.8,

MMOs are observed. a.: Dynamic simulations for g1.8 at 7 mS/cm2, and Iext = 100,

106, 120 pA. b.: Dynamic simulations for g1.8 at 4.5 mS/cm2, and Iext = 115, 215,

230 pA. No MMOs are observed in this case.
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diagrams of Figure 4.1a. However, in contrast to Figure 4.1a, no MMOs are found

in the intermediate range of Iext. This is illustrated in the middle diagram for one

specific value of Iext of 215 pA, where the cell potential decays to a stable steady

state after firing of three action potentials. It will be shown in more detail in the

next section that MMOs do not exist for any value of the intermediate range for g1.8

equal to 4.5 mS/cm2.

Both of the cases shown in Figure 4.1 have been observed in DRG culture record-

ings. See [189] for recordings resembling Figure 4.1b, and [211] and [188] for recordings

displaying MMOs as in Figure 4.1a.

4.3 Numerical bifurcation analysis

In order to explain the transitions between different dynamical patterns observed

in this model, one-parameter and two-parameter continuation of solutions are per-

formed, with Iext as the primary bifurcation parameter, and g1.8 as the secondary

bifurcation parameter. First, one-parameter continuations of steady state and peri-

odic solutions upon varying the primary bifurcation parameter Iext are performed.

Results are shown in Figure 4.2 for four different values of g1.8. The first diagram in

Figure 4.2a is for a value of 4.5 mS/cm2 corresponding to the scenario in Figure 4.1b,

whereas the third diagram in Figure 4.2c is for a value of 7 mS/cm2 corresponding to

the scenario in Figure 4.1a. Two additional scenarios for values of 5 and 8 mS/cm2

are shown in Figures 4.2b and 4.2d.

In all the four diagrams of Figure 4.2, a branch of stable steady states is obtained

for low values of Iext starting from the left boundary of the corresponding diagram.

It is indicated by the red solid line and correspond to the behavior shown in the

left diagrams of Figures 4.1a, b. The stable steady states become unstable at a

subcritical Hopf bifurcation point (HB), from where a branch of unstable periodic

solutions emerges indicated by the blue circles in Figure 4.2.

Furthermore, in all the four diagrams of Figure 4.2, a branch of stable periodic

solutions is observed for high values of Iext at the right boundary of the corresponding
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diagrams. It is indicated by the green filled circles and correspond to periodic firing

of action potentials as shown in the right diagrams of Figures 4.1a, b. In all the four

cases, these branches of stable periodic solutions lose their stability at a cyclic limit

point (CLP3), giving rise to a branch of unstable periodic solutions.

Qualitative differences in the four diagrams of Figure 4.2 occur with respect to the

unstable periodic branches indicated by the blue circles. In the first two diagrams,

the unstable periodic solution branches are connected and show two more cyclic limit

points (CLP1 and CLP2); after the third cyclic limit point (CLP3), they turn into the

stable periodic solution branch with periodic firing of action potentials as described

above. In contrast to this, in the last two diagrams, the unstable periodic solution

branches are disconnected and CLP2 disappears. At the end points of these branches,

the period of the unstable periodic solutions is increasing rapidly during continuation

with XPPAUT and MATCONT, indicating the presence of a period infinity solution

at the end points.

Another difference occurs with respect to the unstable steady state branches indi-

cated by the dashed lines in Figure 4.2. They display hysteresis with two limit points

(LP1 and LP2) in Figure 4.2c, one of which (LP2) has moved out of the positive range

for Iext in Figure 4.2d.

Further, it is seen that the Iext value of the bifurcation points varies significantly

between the four diagrams of Figure 4.2, indicating a high sensitivity to g1.8. For the

increasing values of g1.8 from Figure 4.2a to 4.2d, the bifurcation points are shifted

to lower values of Iext. Besides the absolute Iext value, it is found that the relative

position of the HB point and the CLP3 point is of major importance for the qualitative

differences reported in Figure 4.1. In Figure 4.2a, the Iext value of HB is higher than

that of CLP3, leading to an overlap between stable steady state and stable periodic

solutions indicated by the orange region of Figure 4.2a. An increase of Iext will lead

to the periodic firing of action potentials when the HB point is crossed as shown in

the scenario in Figure 4.1b. A transition back to stable steady states will occur at

the value of the CLP3 point if Iext is decreased again afterwards. Between the CLP3
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Figure 4.2.: Bifurcation diagrams for g1.8 = 4.5, 5, 7 and 8 mS/cm2 for diagrams a, b,

c and d, respectively. For lower values of g1.8 in diagram (a), MMOs are not observed,

and there is a region of bistability between steady state and periodic firing of action

potentials, as shown by the orange shaded region. This bistability is not present in

diagrams b, c, d. Instead, MMOs are observed in these diagrams in the purple shaded

region. MMOs solution branches will be discussed separately in section 3 and are not

included in this figure. Note that the unstable blue periodic branch in diagram c ends

before the LP2 point which is not evident from the figure because of the thickness of

the branches. HB: Hopf bifurcation point, CLP: Cyclic limit point, LP: limit point
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and the HB point in Figure 4.2a, the system is bistable, i.e., the initial conditions

regulate whether a stable periodic or a stable steady state solution is attained.

The situation is fundamentally different in Figures 4.2c and 4.2d. Here, the Iext

value of the HB point is lower than the value of the CLP3 point, leading to a situation

where no stable attracting solutions are shown in the purple shaded region of these

diagrams. This is the region where various types of stable periodic and aperiodic

MMOs exist. The MMOs solution branches are missing in Figure 4.2 and will be

discussed in the next section. Further, it will be shown that in these cases, the CLP3

point provides a strict upper limit of the MMOs region, whereas the lower limit is

not determined by the HB point but by a value close by where the time between

subsequent large amplitude action potentials of the MMOs tends to infinity.

To map out the regions in the Iext and g1.8 parameter space with different patterns

of behavior, a two-parameter continuation of the relevant critical points HB, CLP3,

LP1, and LP2 is performed. The results are shown in Figure 4.3. As mentioned

above, the upper boundary of the MMOs region is the curve of the CLP3 points,

whereas the lower boundary is a solution where the time between subsequent action

potentials tends to infinity close to the HB curve. These boundaries are seen best

in Figure 4.3b. A direct calculation and continuation of the lower boundary is sub-

stantially challenging and was not done. Instead, the lower boundary of the MMOs

region is determined by point-wise dynamic simulation over a prolonged time period.

In summary, it is found that the transition from the stable steady state region (“no

pain”) to the repetitive firing of action potentials (“pain”) differs depending on the

value of g1.8. For high values of g1.8, MMOs occur. As it will be shown in the next

section, the frequency of action potentials in this region is increasing step by step as

the stimulus Iext is increased. In contrast to this, for values of g1.8 below the intersec-

tion of the HB and the CLP3 curve, there is the orange bistable region with a ‘hard’

onset of the periodic firing of action potentials with high frequency.

This analysis suggests that the small DRG neuron dynamics depend strongly

on the expression of Nav1.8. For lower expression of Nav1.8, it may not display
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Figure 4.3.: Two parameter plot with g1.8 as the secondary continuation parameter.

a.: Variation over a large interval of g1.8. b.: Zoomed in version of a. near the

intersection of the HB point and the CLP3 point.
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Figure 4.4.: Two parameter plot with the following secondary continuation parame-

ters: a.: g1.7, b.: gK and c.: gKA.

subthreshold oscillations. This can explain the variability in DRG culture recordings

reported in [188,189,211].

The influence of the other maximal conductances gi (i = 1.7, K,KA) is also inves-

tigated using two-parameter continuations of the critical bifurcation points with Iext

as the primary bifurcation parameter and the corresponding maximal conductance

as the secondary bifurcation parameter. Results are shown in Fig. 4.4. As seen in

Figure 4.4a and Figure 4.4c, g1.7 and gKA have negligible effect on the HB and the LP

points. The CLP3 point is sensitive only to lower values of gKA. All the bifurcation

points are sensitive to gK , as seen in Figure 4.4b. Here, the CLP3, HB, and LP points

vary substantially from 0 to 300 pA in a small range of gK .

4.4 Mixed-mode oscillations

In this section, the focus is on the periodic and aperiodic MMOs solutions already

mentioned in the previous sections. For the characterization of periodic MMOs so-

lutions, the nomenclature introduced, for example, in [225] is applied. Basic MMOs

patterns consist of L large amplitude peaks (action potentials) followed by S small

amplitude (subthreshold) peaks per period, termed as LS patterns in this notation. In

particular, L is equal to one in the remainder of this section. More complex patterns
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arise due to the concatenation of different basic patterns, for example, a pattern of

the form LS1
1 L

S2
2 can occur between the basic patterns LS1

1 and LS2
2 . It consists of L1

action potentials, followed by S1 subthreshold peaks, followed by L2 action potentials,

followed by S2 subthreshold peaks in each period.

Some characteristic basic patterns of MMOs are shown in Figure 4.5 for different

values of Iext. In the remainder of this section, the default parameter values from

Table B.1 and B.2 and the value of g1.8 is equal to 7 mS/cm2 corresponding to

Figure 4.2c. According to this figure and our previous results, MMOs are expected

in the range of Iext of roughly 103 to 117 pA. More precise values will be given in

the course of this discussion. According to the nomenclature mentioned above, the

patterns in Figure 4.5 can be characterized as 16 for Iext = 107 pA, 13 for Iext = 110

pA, and 11 for Iext = 114 pA. In this series, the number of small subthreshold peaks

is decreasing with increasing external current, and the distance between the action

potentials is decreasing with increasing external current.

For the dynamic simulation of MMOs, it is important to note that the system has

multiple time scales. The s1.7 variable is by far the slowest variable. Therefore, all the

dynamic simulations in this section are performed with a startup phase of 100,000 ms

to achieve the desired asymptotic behavior of all variables. The time window shown,

for example, in Figure 4.5, starts after this startup phase of 100,000 ms.

To add more details to the picture presented in Figure 4.5, a one-parameter con-

tinuation of the basic MMOs patterns illustrated in Figure 4.5 is performed. Results

are shown in Figure 4.6. The maximum amplitude of these periodic solutions is al-

most constant and therefore not compelling; instead of the amplitude, the period of

different solutions is used for graphical representation of the results.

Figure 4.6 shows a sequence of isolated periodic solution branches, with one ac-

tion potential per period. The number of small amplitude peaks between the action

potentials and the period increases from the right to the left in the direction of de-

creasing external current. The right most branch with label 10 corresponds to the

periodic firing of action potentials without any small amplitude peaks in between, as
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Figure 4.5.: Basic MMOs solutions of the type: a.: 16, b.: 13, and c.: 11 for selected

values of Iext. Upper row: temporal evolution of membrane voltage, lower row: orbits

in the V , hka, nK phase space.
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Figure 4.6.: Basic periodic solution branches with one action potential per period in

the range of Iext from 105 to 120 pA. Solid lines: stable periodic solutions, dashed

line: unstable periodic solutions.



82

Table 4.1.: Values of Iext at the cyclic limit points (CLP) and the period doubling

bifurcation points (PD) in Fig. 4.6.

Solution type CLP (pA) PD (pA)

111 105.1554 105.2914

110 105.3609 105.5277

19 105.6055 105.8133

18 105.9013 106.1649

17 106.2657 106.6072

16 106.7246 107.1787

15 107.3185 107.9409

14 108.1125 108.9962

13 109.2164 110.5166

12 110.8213 112.7732

11 113.2577 115.9832

10 116.9811

illustrated in the right diagram of Figure 4.1a. This periodic solution branch becomes

unstable at a cyclic limit point at Iext = 116.9811 pA, which corresponds to the CLP3

point in Figure 4.2c. On every other branch in Figure 4.6, the corresponding periodic

solution becomes unstable at a cyclic limit point on the left and at a period doubling

bifurcation point on the right. The values of Iext at the cyclic limit points are indi-

cated by the red lines and the values at the period doubling bifurcation points by the

green lines in Figure 4.6. These values are also listed in Table 4.1.

Solutions below 105 pA are not shown in this figure. Below 105 pA, the distance

between the large amplitude action potentials becomes larger and larger as we in-

crease Iext and finally tends to infinity close to the subcritical Hopf bifurcation point,

for which Iext equals 102.9935 pA. Accordingly, the number of subthreshold peaks

becomes larger and larger and their amplitude smaller and smaller as the critical



83

Figure 4.7.: a.: MMOs for Iext = 102.992 pA below the Hopf bifurcation point at Iext

= 102.9935 pA. b.: Representation of the solution in the V, hKA, nK phase diagram.

point is approached. As an example, dynamic simulations are shown for a value

of Iext = 102.992 pA which is slightly below the subcritical Hopf bifurcation point,

shown in Figure 4.7. The distance between two action potentials is roughly 40,000

ms. However, as shown in the phase diagram in Figure 4.7b, the orbit is a narrow

band and does not seem to be strictly periodic. For Iext slightly below this value,

MMOs finally vanish and a stable steady state is obtained.

Concatenated periodic solutions are found in the gaps of the basic periodic pat-

terns in Figure 4.6 between the period doubling points and the cyclic limit points

of the subsequent solution branches on the right. Further, the dynamic behavior in

these regions is studied for selected values of Iext using dynamic simulations. Again,

it is crucial to account for the long transient phase introduced by the very slow s1.7

variable as described above. Some characteristic patterns of behavior in the range of

112.9 to 113.2 pA are shown in Figure 4.8. According to the aforementioned nomen-

clature, the solution in Figure 4.8a can be characterized as a concatenation between

the basic 12 pattern on the left of this value and the basic 11 on the right of this value

in Figure 4.6, leading to a 1211 solution with two action potentials per period. Accord-
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Figure 4.8.: A sequence of concatenated periodic solutions. a.: 1211 at Iext = 112.9

pA, b.: 12(11)2 at Iext = 113.1 pA, c.: 12(11)3 at Iext = 113.18 pA, d.: 12(11)4 at

Iext = 113.2 pA.

ingly, Figure 4.8b demonstrates a 12(11)2 pattern with 3 action potentials per period,

Figure 4.8c a 12(11)3 pattern with 4 action potentials per period, and Figure 4.8d a

12(11)4 pattern with 5 action potentials per period.

Subsequently, the MMOs solutions which were found for selected values of Iext

are ordered in a tree like structure in Figure 4.9 containing basic and concatenated
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MMOs patterns as described above. The corresponding values of Iext in pA are

given in parentheses. The solutions highlighted in yellow correspond to those shown

in Figure 4.8. It is worth noting that the solution tree is not complete, since only

selected values of Iext have been considered. For example, it is expected that between

the solution 16(15)2 at Iext = 107.27 pA and the solution 16(15)4 at Iext = 107.3 pA,

another solution of the form 16(15)3 can be found for some suitable value of Iext, so

that the solutions form a regular so-called Farey sequence [225]. Furthermore, it is

expected that even higher order concatenated solutions can be found for some suitable

values of Iext.

Close to the cyclic limit point at Iext = 116.9811 pA in Figure 4.6 corresponding

to CLP3 in Figure 4.2c before the MMOs disappear, the solution consists of one

small amplitude peak and multiple large amplitude peaks. If n is the number of

large amplitude peaks, this can be written as a concatenation of one 11 solution and

(n − 1) 10 solutions as 11(10)n−1. Selected solutions for this region are shown in

Figure 4.10. The number of large amplitude action potentials per period is increasing

in this sequence from the left to the right.

The solution tree in Figure 4.10 is also not complete. For example, it is expected

that one can also find solutions of the form 11(10)12 and 11(10)13 between 11(10)11 and

11(10)14 for some suitable value of Iext in between.

For an additional characterization of periodic MMOs, we introduce a firing number

F . Following [225], F is defined as the number of small amplitude subthreshold peaks

per total number of peaks in a period. For a basic LS pattern, F is given by:

F =
S

L+ S
. (4.1)

Accordingly, 1−F is the firing rate of action potentials per period, which is even

more interesting from the physiological point of view.
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Figure 4.9.: Tree of selected periodic MMOs solutions. Numbers in parentheses are

values of Iext in pA corresponding to the solution on top of it. Solutions highlighted

in yellow are shown in Figure 4.8.
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Figure 4.10.: Selected periodic MMOs patterns observed below but close to the cyclic

limit point CLP3 in Figure 4.2c before small amplitude oscillations disappear. Num-

bers in parentheses are the corresponding values of Iext in pA, corresponding to the

solution on top of it.
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Table 4.2.: An illustration of MMOs solution sequences satisfying the Farey arith-

metic.

MMOs solution Firing number p1q2 − p2q1
111 11

12

111110 11
12 ⊕

10
11 = 21

23 1

111(110)2 21
23 ⊕

10
11 = 31

34 1

111(110)3 31
34 ⊕

10
11 = 41

45 1

110 10
11 1

The firing number of concatenated MMOs solutions can be calculated using the

Farey arithmetic [226]. According to this arithmetic, the Farey sum ⊕ of two rational

numbers p1/q1 and p2/q2 is defined as:

p1
q1
⊕ p2
q2

=
p1 + p2
q1 + q2

. (4.2)

Using this definition, the firing number F of a concatenated solution LS1
1 L

S2
2 is,

for example, obtained from the following:

F = F1 ⊕ F2 =
S1 + S2

L1 + S1 + L2 + S2

. (4.3)

Furthermore, for the firing numbers of two adjacent solutions in a regular Farey

sequence p1/q1 and p2/q2, the following condition holds:

|p1q2 − p2q1| = 1. (4.4)

An illustration of the Farey arithmetic for specific MMOs solutions sequence is

shown in Table 4.2.

Finally, aperiodic MMOs are also found in the gaps between the stable solution

branches in Figure 4.6 for values of Iext slightly above the period doubling points. This

is illustrated in Figure 4.11 by two simulations. The diagrams on the left demonstrate

the dynamic behavior after the startup phase at Iext = 108.9 pA, below the period

doubling point at Iext = 108.9962 pA, with a stable periodic 14 MMOs solution.
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The diagrams on the right demonstrate a second solution at Iext = 109 pA after the

startup phase, slightly above the period doubling point. The aperiodic, seemingly

chaotic behavior, is not so obvious from the voltage dynamics; however, irregularity

is seen in the dynamics of the s1.7 variable. In Figure 4.11c, s1.7 forms a thick straight

band over a long time period, implying that no variation is seen in the s1.7 oscillations.

However, in Figure 4.11d, irregularity in s1.7 is found over this long time period and

no repeating patterns are observed.

4.5 Discussion

In this work, an attempt is made to understand the dynamics of a 9D model

representative of a small DRG neuron. Small DRG neurons are primary nociceptors

and can sense pain. Any damage to them due to injuries, diseases, or genetic disor-

ders, can lead to conditions such as loss or gain of nociceptive pain sensation, and

neuropathic or inflammatory pain. A bifurcation analysis of this model can aid in

understanding the transition of this system from steady state to mixed-mode oscilla-

tions, and finally to full blown periodic firing of action potentials, where oscillations

of any frequency indicate pain of a specific form and intensity [191,192].

The model displays rich dynamics, which is investigated by studying the bifur-

cations numerically using the external applied current as the primary bifurcation

parameter and the maximal conductances gi (i = 1.7, 1.7, K,KA) of the sodium and

potassium channels as secondary parameters. It is shown that, in particular, g1.8 and

gK are the most sensitive maximal conductances. A detailed analysis for g1.8 as the

secondary parameter is provided. It is shown that there is a hard onset of periodic

firing of action potentials due to hysteresis between stable steady state and periodic

firing of action potentials for low values of g1.8. This pattern of behavior can also be

found in the original Hodgkin-Huxley equations (see, for example, [217]). For high

values of g1.8, the frequency of firing of action potentials is increasing step by step as

we pass through a region of MMOs where the distance between the action potentials

is getting smaller and smaller as the number of subthreshold peaks between the action
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Figure 4.11.: Simulations before and after the period doubling bifurcation at Iext =

108.9962 pA. Left column: Iext = 108.9 pA, right column: Iext = 109 pA. After

the period doubling bifurcation, the system exhibits chaotic-like behavior which is

evident in the dynamics of s1.7.
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potentials is reduced step by step until they finally vanish. Although the region of

MMOs is rather narrow in terms of Iext for the parameter values considered in this

chapter, it represents a second, and a fundamentally different path to pain.

Using selected dynamic simulations, it is conjectured that the periodic MMOs

build Farey sequences. Such Farey sequences have also been observed for various

other systems displaying MMOs (see [225, 227–230] for examples); however, they

have not been widely studied for neuron models (see [231] for an example). Given

the diversity and abundance of neuron models that can generate MMOs [223], it will

be interesting to explore the existence of Farey sequences in other neuron models as

well.

Besides periodic, aperiodic MMOs were also found for very small ranges of Iext.

It is conjectured that these aperiodic MMOs solutions are chaotic. Further investi-

gations are required to validate this hypothesis. From a mechanistic point of view,

it would be interesting to record such chaotic behavior in DRG cultures and find its

implications on pain sensation.

From the mathematical point of view, the 9D model used in this study is rather

complex and prohibits further analytical insight as demonstrated for example in [232]

for a lower dimensional problem. To gain further theoretical insight it would therefore

be desirable to reduce the present model to a lower dimensional problem showing

similar patterns of behavior.

From the physiological point of view, the model used in this study is still relatively

simple. Towards a more realistic description of small DRG neurons, additional ion

channels should be taken into account such as Nav1.9, inward rectifier potassium, and

calcium channels. Furthermore, this neuron is long and therefore spatially distributed.

A more elaborate model needs to be considered in order to perform a further detailed

bifurcation analysis and to capture other dynamical behaviours such as bursting [211].

Moreover, in order to build a more realistic model, experimental validation of the

observed dynamical patterns along with the current due to each of the ion channels

needs to be done, using patch clamp experiments. Lastly, there is vast heterogeneity in
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the characteristics of action potentials observed in small DRG neuron cultures. While

some of these neurons spontaneously fire (repetitive firing at Iext = 0 pA), others do

not [190]. This indicates that simply fixing maximal conductances as constants will

not suffice, and there is a need to analyze an ensemble of possible parameter values to

capture the heterogeneity observed in electrical recordings. These points have been

raised in the previous chapter as well.

Mathematical understanding of the sensing of pain is necessarily an evolving pro-

cess of manipulating model scale to suitably match the minimum physiological details

associated with pain. Each step in this process involves comparing predictions with

experimental observations and identifying how parameters connected with various

ion channels relate to pain. Thus both model elaboration and reduction are potential

future areas of interest, and can enable a rigorous investigation of possible dynamics

that can be displayed by this system. This can further shape our understanding of

pain sensation and how it can be controlled.
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5. A MATHEMATICAL INVESTIGATION OF CHEMOTHERAPY-INDUCED

PERIPHERAL NEUROPATHY

This work has been submitted to elife and is currently under review. It is jointly

first-authored with Muriel Eaton.

Chemotherapy-induced peripheral neuropathy (CIPN) is a prevalent, painful side

effect which arises due to a number of chemotherapy agents. CIPN can have a pro-

longed effect on quality of life. occasionally, chemotherapy treatment is reduced or

stopped altogether because of the severe pain. Currently, there are no FDA-approved

treatments for CIPN due to its complex pathogenesis in multiple pathways involving

a variety of channels, specifically, voltage-gated ion channels. An indicator of neuro-

pathic pain in an in vitro setting is hyperexcitability in dorsal root ganglia (DRG)

peripheral sensory neurons. This study employs bifurcation theory to investigate the

role of voltage-gated ion channels in inducing hyperexcitability as a consequence of

spontaneous firing, due to the common chemotherapy agent paclitxel. The mathe-

matical investigation here suggests that sodium channel Nav1.8 and delayed rectifier

potassium channel conductances are most critical for hyperexcitability. Introducing

paclitaxel into the model, the bifurcation analysis predicts that hyperexcitability is

extreme for a medium dose of paclitaxel, which is validated by multi-electrode array

recordings. The findings are supplemented using multi-electrode array experiments

that reveal that Nav1.8 blocker A-803467 and delayed rectifier potassium enhancer

L-alpha-phosphatidyl-D-myo-inositol 4,5-diphosphate, dioctanoyl (PIP2) have a pro-

tective effect on firing rate in DRG when administered separately together with pa-

clitaxel.
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5.1 Introduction

In this study, the focus is on the chemotherapy agent paclitaxel (brand name

Taxol). Paclitaxel is a microtubule-binding cancer agent used for several solid tumor

cancers such as breast, ovarian, and lung. The conjecture concerning the paclitaxel-

induced CIPN (PIPN) mechanism is that it reduces axonal transport of mRNA which

can lead to axonal degeneration, alters expression of membrane ion channels, and in-

duces inflammation and oxidative stress [4]. Several agents have been tested in clinical

trials, but their ability to prevent PIPN is still unclear [233]. The hypothesis of this

thesis is that, even if one of the effects is brought under control, CIPN can still occur

because of degeneracies, i.e., multiple pathways can lead to the same output [93].

Several biological processes are evidenced to be degenerate, including the onset of

neuropathic pain [94]. While it is difficult to control and examine multiple events in

an experimental setting, it is reasonable to do so by using a mathematical model to in-

vestigate degeneracies more effectively by providing the possibility to combine effects

and to observe how the system behavior changes upon any external influences. In this

study, the role of voltage-gated ion channels and paclitaxel are analyzed using math-

ematical modeling and bifurcation theory, and the results are supplemented in vitro.

In particular, degeneracy in neuronal electrophysiology is explored by investigating

the role of voltage-gated ion channels in inducing hyperexcitability via spontaneous

firing. The hypothesis is that multiple ion channels can lead to hyperexcitability and

therefore all of them should be to be taken into account.

Neurons in both the peripheral and central nervous system (PNS and CNS, re-

spectively) are involved in the pain sensing and relay pathway. Although there is

some role of the CNS in CIPN, treatments targeting CNS-based pain pathways have

not been sufficient to reduce CIPN [234,235]. Mainly, CIPN has been studied in the

dorsal root ganglia (DRG) peripheral sensory neuron model. Since DRG are pseudo-

unipolar, they can relay to other neurons in both the central and peripheral nervous

system, thus allowing the different subpopulations of DRG to respond to different
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nociceptive stimuli including mechanical, thermal, and chemical [191]. Specifically,

a nociceptive pain response can be identified through hyperexcitability, through in-

creased spontaneous firing in voltage-gated sodium channels Nav1.6-1.9 [236] and

potassium channels [237]. DRG are more susceptible to chemotherapy agents than

the central nervous system neurons because DRG do not have an extensive neurovas-

cular barrier to limit drug entry [17, 238]. Thus, DRG is chosen to be the model

system for this study. In particular, the focus is on the mathematical model of a

small DRG neuron, and the results are validated on a DRG neuron culture.

5.2 Results

5.2.1 Model description

The mathematical model is same as the one used in the previous two chapters. It

consists of the two sodium channels: Nav1.7 and Nav1.8; and two potassium channels:

delayed rectifier (KDR) and A-type transient (KA); and one leak channel. Note that

the delayed rectifier was denoted as K in the previous two chapters and is denoted as

KDR in this chapter. The main equation for membrane voltage is written as:

C
dV

dt
=
Iext
A
− (i1.7 + i1.8 + iKDR + iKA + il), (5.1)

where, Iext is the external applied current, i1.7, i1.8, iKDR, iKA, il are specific ionic

currents due to Nav1.7, Nav1.8, delayed rectified potassium, A-type transient potas-

sium, and leak channels. C is the specific membrane capacitance, A is the area, V

the membrane voltage, and t is time. These ionic currents are written as following:

i1.7 = g1.7m
3
1.7h1.7s1.7(V − ENa), (5.2)

i1.8 = g1.8m1.8h1.8(V − ENa), (5.3)

iKDR = gKDRnKDR(V − EK), (5.4)

iKA = gKAnKAhKA(V − EK), (5.5)

il = gl(V − El), (5.6)
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where, gi (i = 1.7, 1.8, KDR,KA, l) are maximal conductances and are constants.

ENa, EK , and El are equilibrium ion potentials. All the activation and inactivation

gating variables x (x = m1.7, h1.7, s1.7,m1.8,

h1.8, nKDR, nKA, hKA) are written in the following in Hodgkin-Huxley form [239]:

dx

dt
=
x∞ − x
τx

. (5.7)

The expressions of x∞ and τx, and the parameter values are specified in the ap-

pendix B. All the equation forms have been extracted from literature [187].

An indicator of peripheral neuropathy is spontaneous firing: repetitive firing of

action potentials for Iext = 0. In this work, the parameters that can lead to sponta-

neous firing and can be potentially impacted by paclitaxel are explored. The maximal

ion conductances are varied to explore whether they can induce spontaneous firing

since current literature indicates that paclitaxel can manipulate the expression of

voltage-gated ion channels [74]. A bifurcation analysis of this model with Iext as the

bifurcation parameter can be found elsewhere [159].

First, dynamic simulations for different parameter values were performed. The

initial conditions correspond to the stable steady state solution obtained for the pa-

rameter values mentioned in Table 5.2. Figure 5.1 demonstrates how the voltage

dynamics vary upon increasing g1.8. For a low value of g1.8, only a single action

potential is observed and the system settles down to a steady state, shown in Fig-

ure 5.1A. For a higher value of g1.8, mixed-mode oscillations (MMOs) are observed,

shown in Figure 5.1B. MMOs consist of both small amplitude (subthreshold) and

large amplitude (action potential) oscillations. For a higher value, continuous firing

of action potentials is observed, shown in Figure 5.1C. In the next section, the focus

is on the switch from steady state to continuous firing by treating different channel

conductances as bifurcation parameters. Mixed-mode oscillations were investigated

in the previous chapter.
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Figure 5.1.: Dynamic simulations obtained by varying g1.8. A: One action potential

followed by a steady state is observed for g1.8 = 10.2 mS/cm2, B: MMOs are observed

for g1.8 = 10.45 mS/cm2, and C: Continuous firing of action potentials is observed for

g1.8 = 11 mS/cm2
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5.2.2 Bifurcation analysis

XPPAUT is used to perform preliminary bifurcation analysis, and confirmation of

results is done using MATCONT. Parameter settings for XPPAUT and MATCONT

are mentioned in the methods section. As mentioned before, bifurcation diagrams are

generated by setting the maximal conductance as the bifurcation parameter, one by

one, for each voltage-gated ion channel involved in this model (Nav1.7, Nav1.7, KDR,

and KA).

5.2.2.1 One-parameter continuation

Firstly, a one-parameter continuations is performed to find bifurcation points

which could separate steady state from MMOs, and MMOs from continuous firing

of action potentials. A partial bifurcation diagram is shown in Figure 5.2. As seen

in Figure 5.2A and D, no bifurcation points are generated upon varying g1.7 and

gKA. A single red line, representing stable steady state solutions, is observed. On

the contrary, bifurcation points are observed in Figure 5.2B and C. In Figure 5.2B,

a subcritical Hopf bifurcation point (HB) is detected upon increasing g1.8. Beyond

this point, steady state solutions become unstable, shown by the black branch. Two

turning points/limit points (LP1, LP2) are also detected on the black branch of un-

stable steady state solutions. Since the Hopf bifurcation point is subcritical, unstable

periodic solutions emanate from it, as shown by the blue branch. This branch first

turns at a cyclic limit point (CLP1) and then meets the unstable steady state branch,

indicating a homoclinic orbit. This turning is not obvious from the figure, however,

it can be observed upon zooming into the branch. Upon moving in the backward

direction starting from a large value of g1.8 resulting in stable periodic solutions, a

stable periodic solution branch is generated, indicated in green, finally leading to a

cyclic limit point (CLP2) beyond which the periodic solutions become unstable, indi-

cated in blue. This unstable periodic branch abruptly ends due to the period of the

branch increasing substantially, indicating that it may tend towards a period-infinity
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solution, as shown in Figure 5.2E. The stable periodic solution branch indicates the

spontaneous firing parameter regime. The frequency of spontaneous firing increase

with g1.8, as shown in Figure 5.2E. MMOs are found in some region between the Hopf

bifurcation point (HB) and the cyclic limit point (CLP2), shown by the shaded pink

region. A detailed discussion for a similar situation can be found in the previous

chapter.

A similar, although horizontally flipped, bifurcation diagram is generated with

gKDR as the bifurcation parameter, shown in Figure 5.2C. Upon decreasing gKDR, a

subcritical Hopf bifurcation point (HB) is detected with unstable periodic solutions

emanating from it. These unstable periodic solutions also intersect the unstable

steady state branch, indicating a homoclinic orbit. Similarly to Figure 5.2B, a stable

periodic solution branch (indicated by green circles) is detected as well which becomes

unstable after a cyclic limit point (CLP2). As shown in Figure 5.2F, the unstable

periodic solution again seems to tend towards a period-infinity solution. Moreover,

the frequency of spontaneous firing decreases with increase in gKDR.

These bifurcation diagrams indicate that manipulating g1.8 or gKDR can induce

spontaneous firing, while manipulating g1.7 or gKA will not decrease hyperexcitability.

Therefore, to reverse hyperexcitability, Nav1.8 and KDR channels should be targeted.

These channels were targeted in case of paclitaxel-induced hyperexcitability, in a DRG

culture, the results of which are described in the Experimental validation results

section.
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5.2.2.2 Two-parameter continuation

Two-parameter continuation was also performed in order to explore the combina-

tional effects of these conductances. To this end, the changes in the detected bifurca-

tion points upon changing another maximal conductance are observed. In particular,

continuation of HB, LP1, LP2, and CLP2 was performed. These results are shown in

Figure 5.3.

As seen in Fig 5.3A and 5.3B, g1.7 and gKA do not impact the bifurcation points

substantially even in combination with g1.8. Decrease in gKA can shift the cyclic

limit point of g1.8 to the right, as seen in Fig 5.3B, which implies that the MMOs

regime will become wider. In both the cases, the bifurcation points vary within a

narrow range of g1.8. Similarly, Fig 5.3C and 5.3D show that g1.7 and gKA do not

impact the bifurcation points substantially even in combination with gKDR. In these

two cases, increase in g1.7 and gKDR can lead to a region of bistability where stable

steady state and continuous firing of action potentials solutions coexist. However,

the bifurcation points only vary within a narrow range of gKDR. Upon varying g1.8

and gKDR together, the bifurcation points vary linearly, as shown in Fig 5.3E. This

indicates that decreasing g1.8 and increasing gKDR can eliminate spontaneous firing.



101

Figure 5.2.: A-D: Bifurcation diagrams obtained by keeping A: g1.7, B: g1.8, C: gKDR,

and D: gKA as the bifurcation parameters. E-F: Frequency versus maximal conduc-

tance obtained in the periodic firing regime with E: g1.8 and F: gKDR as the bifurca-

tion parameters. The frequency of firing increases with g1.8 and decreases with gKDR.

The frequency of unstable periodic solutions tends towards zero, implying that the

unstable branch is ending in a period-infinity solution.
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Figure 5.2.: (Caption described in previous page.)
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5.2.3 Effect of Paclitaxel

Current literature suggests that paclitaxel can impact gene expression of various

voltage-gated ion channels [20, 74]. However, it is not known whether the impact is

direct or indirect. Evidence suggests that paclitaxel impacts inflammatory cytokines,

which can subsequently manipulate the ion channels [20]. For example, these in-

flammatory signals can increase sodium current [16]. Moreover, a sigmoidal dose-

dependent relation is observed between paclitaxel and macrophage IL-12, as seen in

Fig 3 in [240]. Based on these evidences, a Hill’s kinetics type relation between pacli-

taxel and ion channel maximal conductances is assumed in this work. Hill’s kinetics

are widely used to model dose-response curves. It is assumed that the conductances

will vary as a function of paclitaxel dosage. Moreover, it is assumed that paclitaxel

will lead to an increase in maximal conductance of both the sodium channels, while it

would lead to a decrease in maximal conductance of both the potassium channels since

these cases would lead to spontaneous firing. Therefore, the following relationships

are considered:

g1.7,new = g1.7 + (GNa,max − g1.7)
[P]hn

[P]hn + k0.5
hn

(5.8)

g1.8,new = g1.8 + (GNa,max − g1.8)
[P]hn

[P]hn + k0.5
hn

(5.9)

gKDR,new = gKDR + (GK,min − gKDR)
[P]hn

[P]hn + k0.5
hn

(5.10)

gKA,new = gKA + (GK,min − gKA)
[P]hn

[P]hn + k0.5
hn

(5.11)

where, hn is Hill’s coefficient, [P] is the paclitaxel concentration (in nM), k0.5 is

the half maximal effective concentration, gi,old (i = 1.7, 1.8, KDR,KA) is the original

maximal conductance value, gi,new is the updated maximal conductance value from

the above equation. GNa,max and GK,min stand for the upper or the lower limit of the

maximal conductances.
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Figure 5.3.: Two parameter continuations performed for the Hopf bifurcation point

HB, limit points LP1 and LP2, and cyclic limit point CLP2. A: Continuation plot

for g1.7 versus g1.8 show that the bifurcation points generated by keeping g1.8 as

the bifurcation parameter do not shift upon varying g1.7. B: HB and LP’s of g1.8

bifurcation diagram do not shift upon varying gKA. CLP2 shift rightwards upon

decreasing gKA. This implies that the MMOs region will be wider in this case. C:

Bifurcation points of gKDR do not shift upon varying g1.7. D: HP and LP’s of gKDR do

not shift upon varying gKA. CLP2 shifts leftwards upon decreasing gKA. This implies

that the MMOs region will become narrower in this case. E: A linear combinational

effect is seen between g1.8 and gKDR. Note that the thin gap between stable steady

state and continuous firing regimes is the MMOs region.
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Figure 5.3.: (Caption described in previous page.)
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Depending on Gj (j = Na,max, K,min) and hn, the relationship between [P]

and gi,new (i = 1.7, 1.8, KDR,KA) will vary, as shown in Supplementary figure S1

FigA, S1 FigB, and S1 FigC. Increasing or decreasing Gj increases or decreases the

maximal conductance parameter (gi,new) range covered upon varying [P]. Large hn

creates sigmoidal curves. Decreasing hn makes the curve seem exponential. The

values of Gj and hn are assumed. See supplementary figure S2 Fig for a sensitivity

analysis of these parameters with respect to the bifurcation points.

Following this, numerical bifurcation analysis with paclitaxel concentration [P] as

the bifurcation parameter was performed. A partial bifurcation diagram is shown

in Figure 5.4A. Figure 5.4A shows that upon stable steady state solution continua-

tion, a subcritical Hopf bifurcation point (HB1) is found beyond which the solutions

become unstable. Unstable periodic solutions emanate from this Hopf bifurcation

point. Upon continuation of the unstable steady state solution branch in black, a

supercritical Hopf bifurcation point (HB2) is found, beyond which the steady state

solutions become stable again. Stable periodic solutions (indicated in green) emanate

from this point. The paclitaxel-interval between these two Hopf bifurcation points

constitutes the spontaneous firing regime. The subinterval where the periodic and

the steady state branch are unstable (between PD and CLP4) corresponds to the

MMOs regime. MMOs of this model have been studied in some detail in the previous

chapter. A detailed investigation of the MMOs shown in Figure 5.4A was beyond

the scope of this work. Stable periodic solutions with a small amplitude arise from

the supercritical Hopf bifurcation point which turn unstable after a cyclic limit point

(CLP4). The unstable periodic solutions finally become stable after a subcritical pe-

riod doubling bifurcation point (PD) when going in the direction of decreasing [P].

The stable periodic solutions become unstable again after a cyclic limit point (CLP2).

The frequency of firing in the first stable periodic solutions regime (between CLP2

and PD) is shown in Figure 5.4B. It is shown that upon increasing paclitaxel con-

centration, frequency of firing first increases, and then decreases after reaching a
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Figure 5.4.: A: Bifurcation diagram obtained by treating paclitaxel concentration as

the bifurcation parameter. B: A zoomed in version of the bifurcation diagram in A.

HB1: subcritical Hopf bifurcation point, HB2: supercritical Hopf bifurcation point,

LP1 and LP2: limit points, CLP1, CLP2, CLP3, and CLP4: cyclic limit points, PD:

periodic doubling bifurcation point. C: Frequency plot for the stable periodic firing

region. Frequency first increases and then decreases upon increasing paclitaxel con-

centration. Left and right end points of this curve refer to CLP2 and PD, respectively.

maximum firing rate. Beyond the PD point, the frequency of firing decreases further

since the solutions are of MMOs type.
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5.2.4 Experimental validation results

A high-throughput way to continuously record neuronal firing patterns is to use

multielectrode array (also referred to as microelectrode array, MEA). This system

is capable of recording of extracellular voltage potentials with millisecond temporal

resolution of neurons in cultures grown on a 768 array of electrodes up to 96 well

format, which makes it high-throughput.

To validate the mathematical modeling of the effect of paclitaxel dose on hy-

perexcitability, the firing for different doses of paclitaxel was measured. Low doses

(10 nM) and high doses (1 µM) of 24-hour paclitaxel administration caused lower

firing than 250 nM paclitaxel as expected (Fig 5.5A). Thus, 250 nM was decided

as the dose of paclitaxel for the subsequent experiments. Nav1.8 blocker A-803467

and KDR enhancer L-alpha-phosphatidyl-D-myo-inositol 4,5-diphosphate, dioctanoyl

(PIP2) when administered separately together with paclitaxel reduces the number of

spontaneous firing neurons (Table 5.1) and firing rate (Fig 5.5B). Similarly, the repre-

sentative heat maps of firing frequency reveals the same trend qualitatively (Fig 5.5C).

However, when A-803467 and PIP2 are administered simultaneously together with pa-

clitaxel, it causes a significant increase in mean firing rate compared to the media

control. Specifically, the mean firing rate fold change from baseline is 1.16 ± 0.07

for media control and increases to 1.50 ± 0.10 for paclitaxel (p<0.0001 compared to

media). Nav1.8 blocker A-803467 decreases the firing rate to 1.28 ± 0.07 (p=0.0449

compared to paclitaxel). Similarly, KDR enhancer PIP2 reduced paclitaxel-induced

hyperexcitability to 1.28 ± 0.09 (p<0.0001 compared to paclitaxel). These results

match the prediction from the bifurcation analysis that blocking Nav1.8 and enhanc-

ing KDR will protect against paclitaxel-induced hyperexcitability. However, when

Nav1.8 blocker A-803467 and KDR enhancer PIP2 are administered in combination,

the mean firing fold change from baseline is 1.56 ± 0.09 (p<0.0001 compared to media

control).
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Table 5.1.: Spontaneous neurons. Pax: Paclitaxel, Nav1.8-: Nav1.8 blocker, KDR+:

KDR enhancer

Treatment Paclitaxel (nM) Fold change Percent change

Media None 0.94 -3.64 %

Pax 250 1.42 21.09%

Nav1.8- 250 1.27 11.83%

KDR+ 250 1.28 5.64%

Nav1.8- and KDR+ 250 2.53 50.49%

5.3 Discussions

CIPN is a debilitating experience for cancer patients with no current established

methods of preventing or treating it due to minimal understanding of its pathophys-

iology [5]. In this work, a novel mathematical approach is applied using bifurcation

theory to understand the role of sodium and potassium ion channels in CIPN. To

this end, a mathematical model representative of a small DRG neuron is analyzed.

Maximal conductances were kept as bifurcation parameters to identify those that

can induce spontaneous firing (an indicator of peripheral neuropathy). Furthermore,

MEA experiments were used to support the findings.

Using bifurcation theory, it is found that, increasing g1.8 and decreasing gKDR can

induce spontaneous firing (see Fig 5.2). The effect may be aggravated in combina-

tion, as seen from the two parameter plot in Fig 5.3E. These results indicate that a

Nav1.8 blocker should reduce spontaneous firing which supports the role of Nav1.8

in contributing to the increased excitability in peripheral neuropathy [241,242]. The

significance of blocking Nav1.8 in PIPN was also observed in our MEA experiment

in that Nav1.8 blocker A-803467 had a neuroprotective effect on paclitaxel-induced

hyperexcitability when administered together in DRG neuron culture (Fig 5.5). Sim-

ilarly, KDR was indicated in the model and MEA finding to be involved with hy-

perexcitability which is supported by literature [237]. Although these results are for
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Figure 5.5.: Multielectrode array (MEA) firing summary shows amelioration of hyper-

excitability after treatment of A-803467 (Nav1.8 blocker) and PIP2 (KDR enhancer).

All parameters are reported as fold change (treatment over baseline of culture before

treatment). A) Mean firing rate for different dosages of paclitaxel. B) Mean firing

rate reveals a significant increase in paclitaxel firing from media control (p<0.0001),

a decrease from paclitaxel when A-803467 and PIP2 are administered separately

(p=0.0449 and p<0.0001, respectively), but a significant increase from media when

administered together (p<0.0001). C) Heatmap of representative MEA recordings

with firing frequency of each active electrode colorcoded: warm colors (red, orange,

yellow) represent high firing frequency (white=10Hz); cool colors (green, blue) rep-

resent low firing frequency (black=0Hz). Each circle represents a spontaneous firing

neuron within the 8 X 8 electrode array. Top row is baseline at time 0 before treat-

ment is added. Bottom row is 24 hours after treatment was added. Asterisks denote

statistical significance from Mann-Whitney U test (*P<0.05, **P<0.01, ***P<0.001)
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Figure 5.5.: (Caption described in previous page.)
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specific dosages of A-803467 and PIP2 to observe the change in excitability, this elec-

trophysiology data support the trends found in the bifurcation analysis. Depending

on the amount of A-803467 and PIP2, hyperexcitability should change. Interestingly,

Nav1.8 and KDR channels were found to be sensitive even with Iext as the primary

bifurcation parameter [243] as mentioned in previous Chapter 4. It will be of interest

to investigate their protective effects on CIPN due to other chemotherapy agents such

as vincristine and oxaliplatin, as well.

A Hill’s type kinetics is assumed for the effect of paclitaxel on the ion chan-

nels. Based on this, a partial bifurcation diagram is generated, treating paclitaxel

concentration as the bifurcation parameter. This bifurcation diagram indicates that

spontaneous firing should arise for a mid-range of paclitaxel dosage. Moreover, fir-

ing rate should first increase and then decrease, seen from the frequency diagram in

Fig 5.4C. A similar trend is seen in the MEA recordings, shown in Fig 5.5A. Firing

rate is larger for the middle values of paclitaxel concentration in the range considered

here. The frequency diagram (Fig 5.4C) may not reflect the actual reason for this

trend. It may be that the cells died at a higher concentration, or they may not fire

because of manipulation of the ion channels as shown by a mathematical relation-

ship with paclitaxel. Further investigation is required to establish with certainty the

reason behind this observation.

The parameters for the relationship between paclitaxel and ion channel maximal

conductances are also assumed (see Table 5.2). In the supplementary figure S2 Fig,

it is shown how the behavior of the model varies upon changing these parameters.

Upon varying hn, GNa,max, or GK,min, the qualitative behavior of the diagram does not

change for the range of parameters considered here; stable steady states, MMOs, and

continuous firing regimes are observed. Assuming that Hill’s kinetics is a reasonable

relationship between paclitaxel and ion channel conductance, defined upper and lower

limits of how much the conductances can vary may exist. These parameters can be

estimated by recording currents due to each of these ion channels for different doses

of paclitaxel, using patch-clamping experiments. Lastly, the value of k0.5 used in
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this mathematical model (500 nM) is different from the paclitaxel dose amount used

for the MEA experiment (250 nM). This is because the value was estimated from

literature which was based on the IC50 value for iPSC-derived human neurons and

clinical data based on paclitaxel’s toxicity on cancer cells [244,245]. However, as seen

in 5.4C, maximum spontaneous firing is observed around 200 nM. Since the only

intention is to perform a qualitative comparison between the bifurcation diagram

(Fig 5.4A) and MEA paclitaxel dose trend (Fig 5.5A), the value of k0.5 assumed is

not important. A different value of k0.5 will shift the complete bifurcation diagram,

however, the qualitative structure of the diagram will remain the same.

The mathematical model that is considered here is a minimal model representing

dynamics of one type of peripheral neurons: small DRG neurons (as mentioned in

previous chapters). In vivo, many more ion channels such as inward rectifier potas-

sium and calcium channels are present in this neuron, and they need to be added to

the model in future studies. More detailed mathematical models have been developed

previously and can be used for this purpose [246]. Paclitaxel can also induce cytoso-

lic calcium oscillations [65], which can again be analyzed using bifurcation theory.

Another factor to add in future models is the impairment of axonal transport that

occurs due to paclitaxel and its effect on microtubules [247], which can be modeled

using cable equations [248]. As mentioned previously, the effect of paclitaxel on ion

channels may be indirect and due to other inflammatory cytokines [20]. In the future,

this can also be included in the model. Lastly, this model consists of only small DRG

neurons. However, paclitaxel impacts medium and large DRG neurons as well [74]. It

will be of interest to evaluate models representing different subtypes of DRG neurons

and investigate the role of voltage-gated ion channels specific to each of them. The

experimental setup recorded firing of all DRG subtypes. The blocker and enhancer

may have regulated ion channels in other DRG neurons as well. However, it can be

said with certainty that Nav1.8 blocker acted on small DRG neurons since it is only

present in them. PIP2 may have acted on other ion channels of other DRG subtypes.
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Similarly, paclitaxel may have impacted the firing rate of all DRG subtypes. This will

require further investigation in the future by recording DRG subtype-specific firing.

DRG neuron firing has been correlated with neuropathic pain in vitro [190, 249],

thus analyzing changes in firing patterns allows for a surrogate to study “pain in a

dish”. Recent advances in neuroelectrophysiology technology have allowed for more

temporal and spatial dynamic data collection on live cells. A non-invasive method was

chosen here to measure the electrophysiological properties (spontaneous/non-evoked

firing rate) of a network of neurons through microelectrode array (MEA) recording.

Therefore, MEA was used to support our model outputs by recording the neuronal

activity of the effect of paclitaxel on cultured DRG neurons, as shown in Fig 5.5.

From the MEA recordings, molecule antagonism is observed that is not accounted

for in the mathematical model. There was an increase in firing rate when the Nav1.8

blocker and K enhancer were both administered together concurrently with paclitaxel.

Various mechanisms could have led to this antagonism. Here, one possibility is stated.

A-803467 acts on Nav1.8 in the inactivation state [250]. However, the potassium en-

hancer PIP2 is not specific to the delayed rectifier. It can potentially activate protein

kinase C (PKC) [251], which can regulate Kv3.4 (an A-type potassium channel en-

riched in small DRG neurons [252]) and reduce the action potential duration [253].

This would lead to a reduction of the availability of Nav1.8 in the inactivated state.

Therefore, an increase in firing rate could be seen since one drug (PIP2) can counter-

act the action of the other (A-803467). This is based on the guarded receptor [254]

or the modulated receptor [255] hypotheses, and such an increase in firing, when such

drugs are administered in combination, has been observed in case of arrhythmia [256].

Therefore, more factors seem to be involved, and this needs further investigation. As

of now, any small DRG neuron delayed rectifier enhancers are not known. PIP2

can also regulate inward rectifying potassium channels, transient receptor potential

(TRP), and voltage-gated calcium channels [251]. It is, therefore, unclear if a reduc-

tion in spontaneous firing was indeed due to enhancement of the delayed rectifier.

For an accurate validation of the bifurcation analysis, specific channel blockers and
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Table 5.2.: Model parameter values

Parameter Value Units Reference

k0.5 500 nM [244,245]

hn 1 Unitless Assumed

GNa,max 100 mS/cm2 Assumed

GK,min 0.1 mS/cm2 Assumed

enhancers will be needed. Moreover, it is expected that adding more of A-803467 or

PIP2 should counteract this molecular antagonism.

The bifurcation analysis identified that Nav1.8 and KDR are involved with the

induction of spontaneous firing, associated with paclitaxel-induced hyperexcitability.

This approach, along with patient-specific pharmacokinetics of paclitaxel, can be

applied to the clinic by obtaining the patients electrophysiological profile using patch

clamp or MEA and using those values as parameters in our model to determine the

optimal dose of paclitaxel based on the individual, and for examining acute versus

chronic onset of PIPN. Also, treatments can be designed to specifically block Nav1.8

or enhance KDR conductance to reduce hyperexcitability caused by paclitaxel since

the corresponding channels have been identified as the most relevant ones.

5.4 Materials and methods

5.4.1 Model parameter values

The model parameter values and the corresponding references are mentioned in

Table 5.2. Remaining parameter values can be found in appendix B.

5.4.2 XPPAUT settings

All the bifurcation diagrams were primarily generated from XPPAUT [193]. Con-

firmation of the results were done using MATCONT [213]. Moreover, two parameter
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continuation was performed using MATCONT. All the plots were generated using

MATLAB [214].

NTST = 100, Method = Stiff, Tolerance = 1e-07, EPSL, EPSU, EPSS = 1e-07, ITMX,

ITNW = 20, Dsmin = 1e-05, Dsmax = 0.05 (there may be a need to adjust Dsmax to

0.1). There may be a need to adjust Ds to 0.01. All other settings were same as

default.

5.4.3 MATCONT settings

MaxCorrIters = 20, MaxTestIters = 20, FunTolerance = 1e-6, VarTolerance

= 1e-6, TestTolerance = 1e-5, MaxStepsize = 0.01.

When keeping paclitaxel as the bifurcation parameter, following settings are changed

from the above:

MaxStepsize = 0.001, InitStepsize = 0.0001, MinStepsize = 1e-7.

5.4.4 Reagents

200 nM A-803467 (Nav1.8 inhibitor) and 100 µM L-alpha-phosphatidyl-D-myo-

inositol 4,5-diphosphate, dioctanoyl (PIP2, KDR enhancer) were diluted in NbActiv4

recording media (BrainBits, Springfield, IL, USA). Complete saline solution (CSS)

was made from 137 mM NaCl, 5.3 mM KCl, 1 mM MgCl2-6H2O, 25 mM sorbitol, 10

mM HEPES, and 3 mM CaCl2 equilibrated to pH 7.2.

5.4.5 Primary Cell Culture

Dorsal root ganglia (DRG) was extracted from wild-type Sprague-Dawley rat pups

7-14 days old. Animals were maintained in the norovirus-negative facility of the

Centrally Managed Animal Facilities at Purdue University. They were housed in at a

constant temperature and humidity on a 12:12 light-dark cycle (lights on 0600-1800)

with ad lib access to food and water according to as approved by the Purdue Animal

Care and Use Committee and the Institutional Animal Care and Use Committee
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(IACUC) and will be conducted in accordance with the National Institutes of Health

Guide for the Care and Use of Laboratory Animals. Pups were placed on a paper towel

on ice for two minutes before decapitation. The spinal cord was extracted and the

DRG was dissected and placed in complete saline solution (CSS). Cells were prepared

by centrifuging at 2.5 g for 30 seconds then adding 1.5 mg/mL of collagenase A in CSS

with 0.05 mM EDTA. After rotating in the 37C incubator for 20 minutes, cells were

spun at 2.5×g for 30 seconds. 1.5 mg/mL collagenase D and 30U papain in CSS were

added then placed in the incubator rotator for 20 minutes. Cells were spun at 2.5×g

for 3 minutes. DRG were triturated in 1 mL of 0.15% trypsin inhibitor and 0.15%

bovine serum albumin (BSA) in Dulbeccos Modification of Eagles Medium (DMEM)

medium with 10% fetal bovine serum (FBS) (Corning, Corning, NY, USA) then

spun again at 2.5×g for three minutes before placing in a 40µM filter before seeding

on a coated plate. DRG from one pup was divided into six wells. Culture media

was changed after two days to NbActiv4 recording media (BrainBits, Springfield, IL,

USA). Four days after seeding, culture was recorded.

5.4.6 Micro/multielectrode Array (MEA)

Firing properties was recorded using a Maestro Pro (Axion BioSystems, Atlanta,

GA, USA). Twelve well plates of 64 electrodes per well used for culture. Plates were

coated the day of seeding by incubating with poly-d-lysine for two hours, washing

with sterile milli-q water three times, then incubating with laminin for one hour. All

recordings were at 37°C. The plate was recorded before treatment and 24 hours after

treatment. Then 200 µL of 1.0 µM capsaicin was added and recorded for two minutes

as a positive control. Analysis was performed using the manufacturers software, Axion

BioSystems Integrated Studio (AxIS) and NeuroMetric Tool. An electrode (n=1) was

considered active if there was more than two action potentials in the baseline, response

to buffer, or response to capsaicin. Mean firing rate (Hz) was calculated for active

electrodes. An electrode will be considered active (n=1) if it has >1 spikes per 200

seconds. Chili pepper compound capsaicin will be added into the system to trigger
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a sensory response. Fold change of response to treatment was calculated based on

baseline of the culture before treatment (treatment after 24 hours)/(cells at time zero

before treatment). Recordings were compiled from different cultures extracted from

different animals on different days.

5.4.7 Statistics

A Shapiro-Wilk test determined that the data was not normal so Krushal-Wallis

and Mann-Whitney U test were used to determine statistical significance of treatment

differences. Results are presented as mean ± S.E.M. Effect size is Cohens D. P-value

was set at p*≤0.05 (*), p≤0.01 (**), and p≤0.001 (***). P-value is the probability

that the means of two groups are either the same or different based on a threshold

level of marginal significance (p=0.05). If p<0.05, one can be 95% confident that

the means are significantly different. GraphPad Prism 8.3.0 was used to determine

statistical significance.

5.5 Supporting information

S1 Fig.

S2 Fig.
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Figure 5.6.: Effect of paclitaxel on conductances and firing. A: Effect of paclitaxel

on g1.7,new upon varying hn and GNa,max. Increasing GNa,max will widen the param-

eter range of g1.7,new. Increasing hn alters the curve to become more sigmoidal. B:

Similar effect is seen with g1.8,new. Decreasing GNa,max will reduce the parameter

range of g1.8,new. C: Increasing paclitaxel concentration decreases gKDR,new. As be-

fore, increasing hn makes the curve more sigmoidal. Decreasing GK,min increases the

parameter range. D: Similar effect is seen for gKA,new. Increasing GK,min decreases

the parameter range in this case. The blue curves correspond to the parameter values

that were considered for bifurcation analysis. Note that the blue and purple curves

are overlapping in in D, thus the blue curve is not visible.
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Figure 5.7.: Regions of stable steady state, MMOs, and continuous firing

upon varying hn, GNa,max, and GK,min with paclitaxel concentration [P].

A: Continuation of Hill’s coefficient hn. Upon increasing hn, the spontaneous firing

regime becomes narrower. B: Continuation of GNa,max. Upon increasing GNa,max,

the spontaneous firing regime becomes narrower. C: Continuation of GK,min. Upon

increasing GK,min, the spontaneous firing regime becomes wider
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6. EXPLORING INTERACTIONS IN CIPN MECHANISMS

Degeneracy, as mentioned before, is “the ability of elements that are structurally dif-

ferent to perform the same function or yield the same output” [93]. In case of CIPN,

this would imply that multiple mechanisms/routes can lead to peripheral neuropa-

thy. Indeed, multiple mechanisms are involved, as pointed out in chapter 1 and

summarized in Table 1.1. It has been pointed out that oxidative stress [18], inflam-

mation [16], mitochondrial dysfunction [19], ion channel modulation [20], are common

mechanisms that can result in peripheral neuropathy. The aim of this chapter is to

demonstrate how these mechanisms have been evidenced to be interlinked and how

various pathways can lead to the same outcome, indicating towards degeneracy in

CIPN mechanisms. It is pointed out here that since CIPN is degenerate, there is a

need for a holistic approach to find therapeutic cures for it. In the previous chapter,

degeneracy in the electrophysiology was explored. It was seen that modulating either

Nav1.8 or KDR can increase/decrease hyperexcitability. It is illustrated below that

electrophysiology is interlinked to various biochemical reactions, thus increasing the

complexity of the system. The intent of this chapter is not to point out to all possi-

ble mechanisms that are potentially interlinked, but illustration specific examples to

incite research in this direction.

6.1 Calcium homeostasis

Various chemotherapy agents, in particular, the mitrotubule disrupting agents,

also impact calcium homeostasis. Calcium has multiple roles to play in a cell, and in

particular a neuronal cell. It is a second messenger, involved in energy metabolism,

neurotransmission, among other functions. In case of neurons, apart from calcium

signaling pathways, voltage-gated calcium channels and calcium-activated potassium
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ion channels are also present. The dynamics of these channels are a function of

calcium concentration, where the intracellular calcium concentration is in turn a

function of calcium dynamics controlled by receptors such as inositol triphosphate

(IP3R) and ryanodine (RyR) receptors. Additionally, calcium can control other ion

channels as well [257]. Calcium can regulate voltage-gated sodium ion channels,

possibly through calmodulin which is a sensor protein that is involved in calcium

signaling [258]. Likewise, it can regulate voltage-gated calcium channels as well.

Apart from modulating voltage-gated potassium ion channels via calmodulin, it can

directly activate calcium-activated potassium channels, which activate as a direct

consequence of calcium. See [257] for a review on the role of calcium in modulating

ion channels. Likewise, ion channels can regulate calcium homestasis as well, for

example, by regulating the resting membrane potential [259]. The above evidences

suggest that calcium and ion channel regulation are closely interlinked.

6.2 Oxidative stress

Oxidative stress commonly occurs due to mitochondrial disruption as a result of

various chemotherapy drugs [18]. It is suggested that oxidative stress can regulate

IP3Rs and RyRs activity, both of which can impact calcium signaling [260]. As de-

scribed in the previous section, calcium signaling can in turn lead to ion channel

modulation. Oxidative stress can both be the cause or the outcome of the damage.

This is because ROS production can lead to a feedback loop leading to further dam-

age of the mitochondria [85]. ROS can also induce inflammation by production of

pro-inflammatory mediators [261]. Moreover, oxidative stress can also modulate ion

channels either by directly impacting the channel proteins (e.g. oxidation of cysteine

residues on the membrane) or indirectly by impacting the signaling pathways involved

in channel regulation [262–264]. These evidences suggest that calcium regulation, ox-

idative stress, and ion channel modulation are interlinked.
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Figure 6.1.: Potential interactions between different CIPN-related mechanisms based

on current literature.

6.3 Inflammation

Ion channels and transporters can regulate intracellular calcium concentration

which can in turn regulate the immune response [265–267]. Immune response can

trigger inflammatory response. As seen earlier, calcium concentration can also be

regulated by altering calcium permeability of calcium channels or transporters such

as voltage-gated calcium ion channels or the receptors such as IP3Rs and RyRs.

Besides, specific ion channels and transporters can also regulate generation of ROS

which can subsequently lead to regulation of the immune response [268,269]. On the

other hand, immune cells can also regulate ion channels to release pro-inflammatory

cytokine IL-1β [270–272]. Additionally, multiple TRP channels can modulate inflam-

mation [273–276]. They can also modulate intracellular calcium flux [274]. Alterna-

tively, inflammatory molecules can increase sodium currents, thus modulating the ion

channels as well [16]. These evidences suggest that calcium regulation, inflammation,

and ion channel modulation are interlinked.

6.4 Axonal degeneration

Chemotherapy agents can also impact axonal transport by their interference with

microtubules, as described in chapter 1. This can subsequently lead to axonal degen-

eration. Axonal degeneration in itself can be a result of multiple mechanisms. While
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interference with microtubules can lead to axonal degeneration, other mechanisms can

lead to this final outcome as well. Mitochondrial dysfunction, a common CIPN mech-

anism, can also lead to axonal degeneration. This is because a dysfunction can be a

result of a change in the morphology such as swelling and vacuolation [68,84,277,278].

Furthermore, calcium dysregulation can activate caspase, subsequently leading to ax-

onal degeneration [73]. See the review by Fukuda at al. [235] for potential mechanisms

that can lead to chemotherapy-induced axonal degeneration. These evidences imply

that axonal degeneration is a degenerate process since multiple pathways can lead to

the same final outcome.

The above survey indicates that calcium signaling, ion channel modulation, ox-

idative stress, and inflammation are interlinked. A perturbation on any one of these

can impact the other processes. Moreover, multiple pathways can lead to the same

final outcome as seen in case of axonal degeneration. Thus, it is imperative to investi-

gate CIPN in a holistic manner, taking such interactions into account. Mathematical

modeling can be helpful in integrating such events. This is discussed in chapter 8

which is based on potential future work that can sprout out from this thesis.
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7. CONCLUSIONS

This thesis focuses on chemotherapy-induced peripheral neuropathy and pain sensa-

tion. Chemotherapy-induced peripheral neuropathy is a dose-limiting toxicity that

arises due to several chemotherapy agents such as vincristine, paclitaxel, cisplatin,

among others. Peripheral neuropathy is a numbing and tingling sensation felt in

the palm and feet. Its intensity, duration, and symptoms vary depending on various

clinical factors, the individual, and the antineoplastic agent being used. Different

individuals experience CIPN of varying intensity. It is of interest to predict CIPN

severity to personalize the treatment for individual patients. Moreover, it is of interest

to investigate potential mechanisms that can lead to CIPN to develop a therapeutic

cure for it. Peripheral neuropathy is a form of pain. In this thesis, pain sensation

mutations and dynamics of a pain-sensing neuron were also explored. Various pain

sensation mutations can shift the pain sensation threshold, due to which certain in-

dividuals experience chronic pain, while others do not experience pain at all. Pain

sensation mutations parameters that lead to a decrease in pain sensation threshold

were identified.

Firstly, a metabolomics approach was undertaken to identify potential metabolite

biomarkers that can predict vincristine-induced peripheral neuropathy. Vincristine

is a common chemotherapy drug, used for several cancers including pediatric acute

lymphoblastic leukemia (ALL). In this work, blood samples and neuropathy score of

pediatric ALL patients were provided. Blood samples were used to perform metabolite

profiling. The metabolite profiles were subsequently used to find metabolites that

could accurately classify patients into high or low neuropathy, using recursive feature

elimination on a support vector classifier model. Small sets of metabolites on day 8

and month 6 of the treatment were found. Predictive models were developed that
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could be used in the future to classify patients into high or low neuropathy based on

their metabolite profile. This work emphasized on the use of metabolomics to aid in

developing personalized treatments for patients.

The second focus of this thesis was on analyzing the dynamics of a single pain-

sensing neuron and exploring pain sensation and mechanism of chemotherapy-induced

peripheral neuropathy. In particular, bifurcation theory was applied to analyze a

mathematical model representing dynamics of a small DRG neuron, a pain-sensing

neuron. An introduction to computational neuroscience and pain sensation was also

provided. Thereafter, firstly, bifurcation theory was applied to explore how perturba-

tions in the kinetics of specific sodium channels Nav1.7 and Nav1.8 can lead to a shift

in bifurcation points of this model, implying a shift in the pain sensation threshold.

Specific model parameters were found that could shift the bifurcation points left-

wards, implying a decrease in the pain sensation threshold. This was corroborated

by experimental observations which showed a similar shift in the model parameter

that was associated with mutations in these sodium channels that lead to chronic

burning pain. Thus, a framework was presented in this work that can be further

used to explore other pain related mutations as well. Role of equilibrium sodium and

potassium ion potentials were also elucidated. It was shown that increasing these

potentials can lead to generation of bifurcation points without any external stimulus,

implying that they may lead to neuropathic pain.

The dynamics of this model were further explored and a relatively theoretical

approach was undertaken in Chapter 4. In particular, mixed-mode oscillations and

role of Nav1.8 channel maximal conductance were elaborated upon. It was shown that,

MMOs were observed for only higher values of g1.8. Bifurcation analysis showed that

for lower values of g1.8, bistability between stable steady state and periodic firing of

action potentials was observed. MMOs solutions belonged to isolated branches, each

ending on a cyclic limit point on the left and a period doubling bifurcation point on

the right. Small windows of chaotic-like solutions were observed after every period

doubling bifurcation point. Besides, these MMOs solutions followed a pattern where
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a concatenated solution of two parent solutions could always be observed in between

them. These solutions formed a Farey sequence, satisfying the Farey arithmetic.

These are theoretical results and that need to be validated using patch-clamp or

voltage-clamp experiments.

Lastly, this model was used and modified to explore the role of ion channels in

inducing peripheral neuropathy, in particular, paclitaxel-induced peripheral neuropa-

thy. Bifurcation theory was applied again, but by keeping the maximal conductances

as bifurcation parameters. Moreover, external current was kept as zero since sponta-

neous firing was being analyzed. It was found that increasing g1.8 or decreasing gKDR

can induce spontaneous firing, and in turn induce peripheral neuropathy. This implies

that out of the four voltage-gated ion channels, there is a need to focus on these two

channels to reduce hyperexcitability. This was supplemented by multi-electrode array

recordings where it was shown that upon administering a Nav1.8 blocker or a delayed

rectifier potassium enhancer concurrently with paclitaxel, mean firing rate in a DRG

culture reduced. Furthermore, paclitaxel was introduced in the model, assuming that

it will impact maximal conductance of each of the ion channels, and then it treated

as the bifurcation parameter. It was shown that spontaneous firing only occurred

for a medium dose of paclitaxel. Moreover, firing frequency was highest in between.

A similar result was seen in the multi-electrode array experiments, where the mean

firing rate was maximum for a medium dose of paclitaxel. This work presents a novel

framework that can be used to explore CIPN mechanisms by investigating the role of

various voltage-gated ion channels in inducing hyperexcitability.

In Chapter 6, interactions in CIPN mechanisms were discussed, suggesting a need

to integrate multiple mechanisms for a comprehensive investigation of CIPN. Various

mechanisms are involved such as alteration of voltage-gated ion channels, dysregula-

tion of calcium signaling, mitochondrial dysfunction, axonal transport impairment,

release of inflammatory cytokines, oxidative stress. Every chemotherapy agent has

varying pathophysiologies, however, there are common underlying mechanisms that

are observed due to each of these agents. In this chapter, interaction between each
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of these mechanisms was explored. It was shown how multiple mechanisms are in-

terlinked, implying that CIPN occurs due to various interlinked events. This may

explain the failure of clinical trials in treating CIPN since they are focused on only

one of these mechanisms. It was argued that there is a need for a more comprehensive

approach to find therapeutic cures for CIPN. Mathematical modeling and bifurcation

theory can help in integrating these mechanisms and identifying the parameters that

are sensitive to CIPN. A minimal version of this approach was shown in chapter 5

and this approach is discussed further in the next chapter.
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8. FUTURE WORK

Potential future work for every specific project is mentioned in the corresponding

chapters 2 to 5. Additionally, here, a mathematical modeling approach is proposed

that can be used for a thorough investigation of interactions in CIPN mechanisms.

8.1 A comprehensive approach to investigate CIPN

As shown in chapter 6, multiple mechanisms are involved in CIPN that can be

potentially interlinked, based on prior evidence. It was argued that mathematical

modeling can aid in investigating multiple mechanisms together. For example, elec-

trophysiology and calcium signaling can be integrated using a mathematical modeling

approach. For this, voltage-gated calcium ion channels and calcium dependent potas-

sium channels should be included in the electrophysiology part of the model. IP3Rs

and RyRs mediated calcium signaling can then be integrated with the electrophysi-

ology. This is linked because calcium and calcium-activated potassium currents will

be a function of calcium concentration which is in turn controlled by the intracellular

receptors. Sensitivity analysis as well as bifurcation analysis can be performed to find

sensitive parameters that can be associated with peripheral neuropathy. Application

of bifurcation theory has been shown in chapter 5. Sensitivity analysis of a model

of IP3R induced calcium is also shown in appendix C. Many other mathematical

models of calcium signaling exist [279–281] and can be explored. In appendix C, the

parameters that were sensitive to calcium peak were explored. Both of these models

can be integrated. Prior evidence suggests that acute paclitaxel exposure can induce

cytosolic calcium oscillations [65]. Bifurcation theory can be used to explore model

parameters that can induce such oscillations, as well. Paclitaxel also affects mitochon-

drial permeability, which leads to opening up of mitochondrial permeability transition
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pore (mPTP). This then leads to mitochondrial depolarization, calcium release and

vacuolated and swollen mitochondria [64, 68, 282, 283]. Since calcium flux also gets

dysregulated because of the mitochondria, mitochondria can also be included in the

model as a separate compartment. Previously, it has been reported that this may

alter the calcium oscillations amplitude and lead to more complex dynamics such as

chaos and bursting [284]. It will be of interest to explore how the dynamics vary upon

introduction of mitochondria in the mathematical model discussed here. These results

can be validated experimentally using calcium real time live imaging. Moreover, live

dynamic mitochondrial membrane potential and ATP production can be recorded,

which can be potentially used to validate mitochondrial calcium flux dynamics of our

model and to monitor mitochondria’s health. IP3R mediated calcium signaling is a

common signaling mechanism observed even in non neuronal cells. It is being widely

studied in the heart cells and the hepatocytes, where calcium oscillations are observed

due to muscle cell contraction [285] and hormone stimulation [286,287], respectively.

This analysis can suggest potential bifurcation parameters, which are more widely

applicable in the study of these systems.

In addition to integrating electrophysiology and calcium signaling, inflammatory

cytokines can also be introduced in the model. Potentially, these cytokines may

be impacting the ion channels and calcium signaling. To include these events in

the model, a cybernetic modeling approach can be undertaken [288]. Application of

cybernetic modeling in inflammation has been demonstrated in the past [289]. Next,

oxidative stress can also be included. Various mathematical models of oxidative stress

exist [290]. Axonal transport can also be integrated by converting these equations into

partial differential equations and introducing cable equations [248]. Axonal transport

impairment mathematical models exist [291] and can be used in this case.

Apart from simply extending the model, there is a need to validate the model at

every step. This can be performed using voltage-clamp experiments and recording the

action potentials. This will also require investigating each isolated mechanism sepa-

rately before integrating. This is to ensure that the model is accurate before adding
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more compartments. Moreover, the electrophysiology model considered here is not

mechanistic; a potential future work is to develop a mechanism-based model. After

validation of the model at every step, MEA experiments can be used to supplement

model findings in a similar fashion as demonstrated in chapter 5.

In summary, the model complexity can be increased by introducing intracellular

biochemical reactions, ion channels, compartments such as mitochondria, and ax-

onal transport. From a physiological point of view, a model incorporating multiple

mechanisms will be more realistic. Sensitivity analysis, bifurcation theory or high

codimension bifurcation points continuation can then be performed to identify the

important model parameters. These can then be targeted in experiments to confirm

their sensitivity. The sensitive parameters can then be targeted to alleviate CIPN.

8.2 Developing personalized treatment strategy for cancer patients

It will also be of interest to investigate if CIPN mechanism and its onset in spe-

cific individuals are related. It is possible that specific drug transporters may be

responsible for both the onset and the intensity of CIPN in specific individuals. Al-

ternatively, CIPN pathogenesis may be associated with the primary action of the

drugs on a paticular cell. For example, in case of VIPN, a genetic polymorphism in

CEP72 was an indicator of VIPN during the later stage of the treatment [114]. This

gene encodes a centrosome involved in microtubule formation. Vincristine’s primary

action is microtubule disruption. This example indicates that the mechanism and its

onset in only specific individuals may share a common root.

It will also be of interest to investigate pharmacokinetics of these agents. Fur-

thermore, pharmacokinetics can be integrated with omics to develop a personalized

treatment strategy for individual patients. An example of this idea is demonstrated

in appendix E. Pharmacokinetic variables can be derived from the omics data to de-

velop an individualized treatment profile. In appendix E, since the pharmacokinetics

data was only available for initial time points, results were not conclusive. This work

can be repeated with a more detailed dataset. Specific clinical parameters can also
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be optimized for a more optimal treatment which can reduce chances of CIPN. In

appendix D, a population balance approach was demonstrated which can be used

to find an optimal infusion time for vincristine administration. It was shown that

slower infusion times can kill more cancer cells. Apart from genomics, proteomics,

and metabolomics, lipidomics can also be investigated to explore their potential role

in drug metabolism in the liver. An example of lipidomics investigation on a different

disease (non-alcoholic fatty liver disease) is demonstrated in appendix F. Ultimately,

optimal treatment regime for individual patients derived from their profiles can im-

prove treatment outcomes and their quality of lives. Thus, there is a need to com-

bine neurophysiology, neuropharmacology, omics, and systems biology to thoroughly

understand this dose-limiting toxicity of these chemotherapy agents and to develop

therapeutic cures for it.
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A. SUPPLEMENTARY MATERIAL FOR CHAPTER 2

A.1 Metabolite selection

In this section, we have provided details on feature selection by recursive feature

elimination (RFE). Supplementary Table A.1 describes the model accuracy along

with sensitivity and specificity for each time point.

After the final feature selection preceded by manual peak integration, models

were evaluated using cross validation. Subsequently, models were trained using the

complete data and then the threshold for probability was selected. For this selection,

various thresholds were tried and specific metrics were evaluated. See Figure A.1 for

model performance upon changing the probability threshold. Threshold of 0.7, 0.65,

and 0.7 was chosen for day 8, day 29, and month 6 models respectively.

After selection of probability threshold, model accuracy was estimated based on

the confusion matrices. Confusion matrices for the three time points are shown in

Table A.3.

Following are the definitions of the terms used, based on the sample confusion

matrix shown in Supplementary Table A.2.

Sensitivity =
A

A+ C

Specificity =
D

B +D

Prevalence =
A+ C

A+B + C +D

PPV =
sensitivity × prevalence

((sensitivity × prevalence) + ((1− specificity)× (1− prevalence))

NPV =
specificity × (1− prevalence)

((1− sensitivity)× prevalence) + ((specificity)× (1− prevalence))

Detectionrate =
A

A+B + C +D
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Table A.1.: Metrics obtained by performing recursive feature elimination on the data

sets at the three time points. A. Set of metabolites found that can accurately predict

overall neuropathy susceptibility at these time points before manual integration of

peaks. B: Set of metabolites found that can accurately predict TNS©-PV intensity

at that specific time point. C: Set of metabolites that can accurately predict over-

all neuropathy susceptibility at the time points after manual integration of peaks.

AUROC: Area Under Receiver Operating Characteristics Curve, Sens: Sensitivity,

Spec: Specificity, AUROCSD, SensSD, SpecSD are standard deviations for AUROC,

sensitivity and specificity. Sensitivity and specificity are calculated by keeping 0.5

probability as the threshold. Note: positive class is overall susceptibility to high

neuropathy (HN) for A and C, and TNS©-PV greater than 8 for B.

Time point Predictors AUROC Sens Spec AUROCSD SensSD SpecSD

A

Day 8 5 0.968 0.906 0.793 0.048 0.122 0.255

Day 29 46 0.946 0.936 0.781 0.060 0.090 0.182

Month 6 42 0.963 0.900 0.918 0.043 0.076 0.152

B
Day 29 2 0.831 0.464 0.865 0.120 0.259 0.092

Month 6 1955 0.812 0.776 0.617 0.086 0.206 0.204

C

Day 8 6 0.938 0.883 0.677 0.047 0.130 0.261

Day 29 46 0.861 0.865 0.618 0.122 0.210 0.208

Month 6 42 0.923 0.844 0.830 0.069 0.119 0.159

Table A.2.: Sample confusion matrix to explain terms used.

Reference

Predicted Event No Event

Event A B

No Event C D
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DetectionPrevalence =
A+B

A+B + C +D

BalancedAccuracy =
sensitivity + specificity

2

Table A.3.: Confusion matrix generated after training the final models with the final

selected thresholds for each time point.

Time points Day 8 Day 29 Month 6

Prediction

Reference
High Low High Low High Low

High 411 32 387 85 362 15

Low 69 128 91 155 118 225

A.2 Metabolite identification

After the metabolites were finally chosen and models were trained using them, we

attempted to identify the metabolites based on their m/z, retention time, MS/MS

when available, and adduct information. Table A.4 shows m/z, retention time, and

adduct information information for the final 2 chosen metabolites. Table A.5 shows

the aforementioned information along with HMDB ID, when possible, for day 29

metabolites. Table A.6 shows m/z, retention time, adduct information and HMDB

ID for month 6 metabolites.

Table A.4.: Mass, retention time, and adduct information for the final set of Day 8

metabolites. None of them could be identified

Mass (Da) Retention time (min) Adducts

674.0002 11.99401 Not specified

272.1622 13.85099 M+Na
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Table A.5.: Mass, retention time, and adduct information for the final set of day 29

metabolites. 4 of them could be identified.

Mass (Da) Retention time (min) Adducts HMDB ID

174.1012 0.956001 Not specified HMDB0003357

378.1285 8.478009 Not specified

188.0794 0.981001 M+H

228.1216 0.877999 M+H

508.2309 19.18899 M+Na

331.3234 19.89402 M+H

239.2243 18.43899 Not specified

666.2225 1.045999 M+Na HMDB0000757

996.6191 19.91397 Not specified

271.2508 18.65903 M+H

347.0629 1.77 Not specified HMDB0000045

320.1222 7.380997 Not specified

159.0681 4.028006 Not specified

427.0289 1.273001 2M+H HMDB0001341

A.3 Pathway analysis

We used Metaboanalyst to perform pathway analysis for the identified metabolites

for day 29 and month 6 data. Tables A.7 and A.8 show the results from metaboanalyst

for these two time points respectively. None of the pathways were significant.

A.4 Univariate analysis

Univariate analysis was performed by keeping age, gender, BMI as control. AN-

COVA was used to perform the analysis. P-value adjustment was done using FDR

as the method. 9 metabolites were found to be significant at day 8, however, none of
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Table A.6.: Mass, retention time, and adduct information for the final set of month

6 metabolites. 9 of them could be identified.

Mass (Da) Retention time (min) Adducts HMDB ID

147.089 0.8 M+H

129.0789 0.802 M+Na HMDB0000716

128.0476 5.724 M+H

385.2012 20.22098 M+H

700.5516 20.26798 M+H HMDB0013464

368.1754 20.22302 M+Na

188.1267 0.710999 Not specified HMDB0000670

310.1162 5.135994 M+H HMDB0001961

301.2614 19.797 Not specified

523.2933 20.203 M+H

803.5453 20.15502 Not specified

493.3173 19.99401 M+Na HMDB0010383

612.152 3.328002 Not specified HMDB0003337

496.2249 10.36499 Not specified

294.1104 19.604 M+H

428.2253 9.986008 M+Na

260.1371 6.119996 Not specified HMDB0011170

177.0788 1.277 Not specified HMDB0001855

414.2041 19.96998 Not specified

262.1315 8.763993 Not specified HMDB0011177

208.1098 19.21399 M+H

the metabolites were found to be significant at day 29 and month 6 treatment time

points. Details of the 9 metabolites are specified in Table A.9.
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Table A.7.: Table generated from Metaboanalyst for day 29 metabolites

Pathway Name Total Expected Hits Raw p -log(p) Holm adjust FDR Impact

Purine metabolism 65 0.17 2 9.84E-3 4.62 8.27E-1 8.27E-1 0.09

Arginine biosynthesis 14 0.04 1 3.57E-2 3.33 1 1 0

Table A.8.: Table generated from Metaboanalyst for month 6 metabolites

Pathway Name Total Expected Hits Raw p -log(p) Holm adjust FDR Impact

Sphingolipid metabolism 21 0.07 1 6.60E-2 2.72 1 1 0

Glutathione metabolism 28 0.09 1 8.72E-2 2.44 1 1 0.03

Glycerophospholipid metabolism 36 0.12 1 1.11E-1 2.20 1 1 0.02

Lysine degradation 25 0.08 1 7.82E-2 2.55 1 1 0

Table A.9.: Mass, retention time, adduct information, and HMDB guesses for the

metabolites that were significantly associated with VIPN at day 8 time point of the

treatment.

Mass (Da) Retention time (min) Adducts HMDB ID

137.0833 4.648852 M+H

180.0758 6.138951 M+H HMDB0001860

674.3345 11.99333 M+H

674.0003 11.996841 Not specified

272.1622 13.852877 M+H (Found M+Na in MS/MS Spectra)

583.3265 18.979704 Maybe M+NH4

958.6447 20.601473 Not specified

543.3312 20.601473 Not specified HMDB0010395/HMDB0010396

437.2916 20.60355 M+H HMDB0011152

463.3069 20.81195 M+H

A.4.1 Pathway analysis

Pathway analysis was done using the same procedure as before. Tables A.10

and A.11 show the result obtained from Metaboanalyst for either HMDB0010395

or HMDB0010396 as the potential guess for Mass 543.3312, respectively. Both the

results show that caffeine metabolism and glycerophospholipid metabolism are the

pathways to which the metabolites belong, although none of these pathways were
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significant. Moreover, given that the patients were pediatric, it is unlikely that caffeine

metabolism will be of interest. However, glycerophospholipid metabolism might be

of interest.

Table A.10.: Pathway analysis with HMDB0010395 as the guess for Mass 543.3312

Pathway Name Total Expected Hits Raw p -log(p) Holm adjust FDR Impact

Caffeine metabolism 10 0.012903 1 0.012866 4.3532 1 1 0.69231

Glycerophospholipid metabolism 36 0.046452 1 0.045927 3.0807 1 1 0.01736

Table A.11.: Pathway analysis with HMDB0010396 as the guess for Mass 543.3312.

Pathway Name Total Expected Hits Raw p -log(p) Holm adjust FDR Impact

Caffeine metabolism 10 0.012903 1 0.012866 4.3532 1 1 0.69231

Glycerophospholipid metabolism 36 0.046452 1 0.045927 3.0807 1 1 0.01736
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Figure A.1.: The three plots show the metrics evaluated at different probability

thresholds. 1a, 2a and 3b show the plot of Youden’s J statistic (J) and distance

(dist) to best possible cutoff (i.e. sensitivity and specificity equal to 1) at different

probability thresholds, at day 8, day 29 and Month 6 data respectively. The proba-

bility threshold is for high neuropathy. If the SVM model output is greater than the

threshold, the sample is classified as high, and vice versa. 1b, 2b, and 3b show how

the sensitivity and specificity varies as a function of probability threshold. Vertical

line corresponds to the chosen threshold, based on minimum dist.
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B. DESCRIPTION OF MODEL EQUATIONS AND PARAMETER SETTINGS

B.1 XPPAUT settings

Numerical integration and bifurcation analysis were primarily done in XPPAUT [193]

and cross checked with MATCONT [213]. In XPPAUT, default settings were used

except for the following: NTST = 100, Method = Stiff, Tolerance = 1e-7, EPSL, EPSU,

EPSS = 1e-7, ITMX, ITNW = 20, PARMIN = 0, PARMAX = 300. In MATCONT, the fol-

lowing settings were kept: MaxCorrIters = 20, MaxTestIters = 20, FunTolerance

= 1e-6, VarTolerance = 1e-7, TestTolerance = 1e-7, NTST = 300, tolerance =

1e-4, MaxStepsize = 1 for steady state continuation and 10 for periodic solution

continuation. Integration was performed using ode15s. Integration option RelTol

was set to 1e-8. In MATCONT, the equations were re-scaled as shown in Sec. B.3.

B.2 Model equations

As described in the main text, the equation for voltage can be written as:

c
dV

dt
=
Iext(t)

A
− (i1.7 + i1.8 + iK + iKA + il), (B.1)

where, A is the membrane surface area, t is time and c is the specific capacitance. cdV
dt

is the specific capacitive current, Iext(t)
A

is the external current per surface area, and

i1.7 + i1.8 + iK + iKA + il is the ionic current per surface area. The parameter values

for this equation are mentioned in Table B.1. The model equations were obtained

from literature [186,187,292].

The channel specific ionic currents are defined as following:

1. i1.7 = g1.7m
3
1.7h1.7s1.7(V − ENa)

2. i1.8 = g1.8m1.8h1.8(V − ENa)

3. iK = gKnK(V − EK)
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Table B.1.: Voltage dynamics equation parameter values

Parameter Value Units

A (area) 2168.00 µm2

C 20.20 pF

ENa 67.10 mV

EK -84.70 mV

El -58.91 mV

g1.7 18.00 mS/cm2

g1.8 7.00 mS/cm2

gK 4.78 mS/cm2

gKA 8.33 mS/cm2

gl 0.0575 mS/cm2
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4. iKA = gKAnKAhKA(V − EK)

5. il = gl(V − El)

The final equation for voltage is the following:

c
dV

dt
=
Iext(t)

A
− (g1.7m

3
1.7h1.7s1.7(V − ENa) + g1.8m1.8h1.8(V − ENa)

+ gKnK(V − EK) + gKAnKAhKA(V − EK)

+ gl(V − El))

For any gating variable x (x = m1.7, h1.7, s1.7,m1.8, h1.8, nK , nKA, hKA), the equa-

tion for gating variable dynamics can be written as:

dx

dt
=
x∞(V )− x
τx(V )

, (B.2)

where

x∞(V ) =
αx(V )

αx(V ) + βx(V )
, (B.3)

and

τx(V ) =
1

αx(V ) + βx(V )
(B.4)

The general form of αx(V ) and βx(V ) is the following:

k1 +
k2

1 + exp
V + k3
k4

, (B.5)

where, k1, k2, k3, k4 are constants. Most of the variables follow the above form, how-

ever, there are some exceptions, which we will mention in the following subsections.

For the rest, the parameter values are mentioned in Table B.2.

B.2.1 Nav1.8 kinetics

τh1.8(V ) = 1.218 + 42.043 exp

(
−(V + 38.1)2

2× 15.192

)
(B.6)

h1.8∞(V ) =
1

1 + exp

(
V + 32.2

4

) (B.7)
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Table B.2.: Gating variables parameters

Parameter k1 (ms−1) k2 (ms−1) k3 (mV) k4 (mV)

αm1.7 0 15.5 -5 -12.08

βm1.7 0 35.2 72.7 16.7

αh1.7 0 0.38685 122.35 15.29

βh1.7 -0.00283 2.00283 5.5266 -12.70195

αs1.7 0.00003 0.00092 93.9 16.6

βs1.7 132.05 -132.05 -384.9 28.5

αm1.8 2.85 -2.839 -1.159 13.95

βm1.8 0 7.6205 46.463 8.8289
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B.2.2 K/KDR kinetics

αnK
(V ) =

0.001265 (V + 14.273)

1− exp

(
−V + 14.273

10

) (B.8)

If V = −14.273, αnK
(V ) = 0.001265× 10

βnK
(V ) = 0.125 exp

(
−V + 55

2.5

)
(B.9)

nK∞(V ) =
1

1 + exp

(
−V + 14.62

18.38

) (B.10)

τnK
(V ) =

1

αnK
+ βnK

+ 1 (B.11)

B.2.3 KA kinetics

nKA∞(V ) =

 1

1 + exp

(
−V + 5.4

16.4

)


4

(B.12)

τnKA
(V ) = 0.25 + 10.04 exp

(
−(V + 24.67)2

2× 34.82

)
(B.13)

hKA∞(V ) =
1

1 + exp

(
V + 49.9

4.6

) (B.14)

τhKA
(V ) = 20 + 50 exp

(
−(V + 40)2

2× 402

)
(B.15)

If τhKA
(V ) < 5, τhKA

(V ) = 5.

B.3 Non-dimensional equations

To non-dimensionalize, let us introduce some constants kv, kt, g, Tx (x = m1.7, h1.7,

s1.7,m1.8, h1.8, nK , nKA, hKA). The non-dimensional variables will be: V = kv · v,
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EX = kv · ẼX , (X = Na,K, l), t = kt · t̃, gy = g · g̃y (y = 1.8, 1.7, K,KA, l),

Iext = Ĩext/(kv · g · A), τx = Tx · τ̃x. Then, the equations will be:

dv

dt̃
=
kt · g
c

[
Ĩext − (g̃1.7m

3
1.7h1.7s1.7(v − ẼNa) + g̃1.8m1.8h1.8(v − ẼNa)

+ g̃KnK(v − ẼK) + g̃KAnKAhKA(v − ẼK) (B.16)

+ g̃l(v − Ẽl))
]

dm1.7

dt̃
=

kt
Tm1.7

(m1.7∞(v)−m1.7)

τ̃m1.7(v)
(B.17)

dh1.7

dt̃
=

kt
Th1.7

(h1.7∞(v)− h1.7)
τ̃h1.7(v)

(B.18)

ds1.7

dt̃
=

kt
Ts1.7

(s1.7∞(v)− s1.7)
τ̃s1.7(v)

(B.19)

dm1.8

dt̃
=

kt
Tm1.8

(m1.8∞(v)−m1.8)

τ̃m1.8(v)
(B.20)

dh1.8

dt̃
=

kt
Th1.8

(h1.8∞(v)− h1.8)
τ̃h1.8(v)

(B.21)

dnK

dt̃
=

kt
TnK

(nK∞(v)− nK)

τ̃nK
(v)

(B.22)

dnKA

dt̃
=

kt
TnKA

(nKA∞(v)− nKA)

τ̃nKA
(v)

(B.23)

dhKA

dt̃
=

kt
ThKA

(hKA∞(v)− hKA)

τ̃hKA
(v)

(B.24)

kv is set to 150 mV (approximately the difference between ENa and EK), kt

as 30 ms (approximately the time covered by one action potential) and g as the

g1.7 = 18 mS/cm2 (largest value of maximal conductance). Approximate values of

the remaining constants can be set as: Tm1.7 = 0.2, Th1.7 = 40, Ts1.7 = 9000, Tm1.8 = 1,

Th1.8 = 40, TnK
= 300, TnKA

= 10, ThKA
= 70 ms. The approximate time scale of
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evolution of the variables v,m1.7, h1.7, s1.7,m1.8, h1.8, nK , nKA, hKA can be calculated

from the constants on the right hand side of each of these equations, which are equal

to 580, 150, 0.75, 0.0033, 30, 0.75, 0.1, 3, 0.42 respectively. The order of magnitude

provides insight into the speed of each of these variables. v and m1.7 are the fastest

and s1.7 the slowest.

The XPPAUT and MATLAB codes for these equations are publicly available on

ModelDB (http://modeldb.yale.edu/264591).

http://modeldb.yale.edu/264591
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C. MATHEMATICAL MODELING OF INOSITOL 1,4,5-TRIPHOSPHATE

MEDIATED CALCIUM DYNAMICS: UNDERSTANDING PERTURBATIONS

DUE TO EXTERNAL TOXICITY

Inositol 1,4,5-triphosphate (IP3) mediated calcium ions (Ca2+) release is an essential

phenomenon observed in the neurons. Due to an external stimulation by Adeno-

sine Triphosphate (ATP), IP3 gets activated and releases Ca2+ from the endoplasmic

reticulum to the cytosol. Ca2+ ions concentration reaches a peak in the cytosol, and

the ions are then transfered back to the endoplasmic reticulum via pumps. The peak

Ca2+ concentration is lower when the cell is subjected to a chemotherapeutic drug

(Paclitaxel), which induces cytotoxicity [73]. A mathematical modeling approach

is used to explore the parameters responsible for the decrease in the peak. Sensi-

tivity analysis showed that a parameter related to pump dynamics affects the peak

concentration.

C.1 Introduction

Chemotherapy-induced peripheral neuropathy (CIPN) affects both pediatric and

adult cancer patients, and affects their daily life in a severe manner. Currently, there

are no predictors or cure for CIPN. Doctors usually reduce dosage of drugs, or ter-

minate the treatment altogether, depending on severity of the toxicity [293]. The

mechanism underlying CIPN is still unknown, but it has been shown that calcium

signaling in neurons is involved in CIPN incidence [294]. A recent study showed

deregulation of inositol 1,4,5-triphosphate (IP3) mediated calcium signaling induces

a cascade of events, which finally leads to CIPN [73].
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IP3 is an essential receptor present in endoplasmic reticulum (ER), responsible

for release of Ca2+, a second messenger ion. Agonists like Adenosine Triphosphate

(ATP) enable activation of Phospholipase C (PLC) via G-protein-coupled receptor

(GPCR). This leads to hydrolysis of Phosphatidylinositol 4,5-bisphosphate (PIP2),

and produces IP3. IP3 leads to release of Ca2+ from endoplasmic reticulum (ER).

Following the release, sarcoendoplasmic reticulum (SR) calcium transport ATPase

(SERCA) pumps bring Ca2+ back to the the ER. Without any external toxic agent,

ATP stimulation leads to a peak Ca2+ release and then back. However, when a neuron

is exposed to paclitaxel, a chemotherapy drug, the Ca2+ spike upon ATP activation

lowers down [73]. It is of interest to identify factors leading to a lowering down of the

peak. Such factors can provide potential cures to CIPN. In this study, a mathematical

model is used to explore parameters sensitive to the peak. Raw Ca2+ signaling data

is processed, and then fit to a model to estimate model parameters. Then, sensitivity

analysis is performed to identify parameters sensitive to Ca2+ peak.

C.2 Methods

C.2.1 Data procurement and processing

Raw Ca2+ signal data is obtained from Yao and coworkers [295]. Ca2+ imaging

was performed on nontumorigenic human mammary epithelial cell line (MCF10A)

upon stimulation of 10 µM ATP. This was done using a Fluo-4 calcium indicator.

Ca2+ imaging was done every five seconds. This obtained raw data was processed

using a low pass filter with order 5 and cutoff of 0.005 Hz. Butter filter with forward

backward filter was used to avoid group delay. Python scipy was used for filtering.

C.2.2 Model development and parameter estimation

Model was based on the simplified version of the system specified in [295]. ATP is

assumed to activate a GPCR receptor, which hydrolyzes PIP2 and leads to production

of IP3. IP3 stimulates Ca2+ out of ER into the cytosol and reaches a peak production.
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Following this, Ca2+ is sent back to ER using pumps. Buffers are present both in

cytosol and ER, and they are incorporated in the model. The model equations are

shown below.

d[PLC]

dt
= Kon,ATP [ATP ]e−KATP t −Koff,PLC [PLC] (C.1)

d[IP3]

dt
= VPLC

[PLC]2

K2
IP3 + [PLC]2

−Koff,IP3[IP3] (C.2)

dh

dt
= a([Ca2+] + dinh)(

dinh
[Ca2+ + dinh]

− h) (C.3)

d[Ca2+]

dt
= β(ε(η1m

3
∞h

3 + η2)(c0 − (1 + ε)[Ca2+])− η3
[Ca2+]2

k23 + [Ca2+]2
) (C.4)

β = (1 +
Ke[Be]

(Ke + [Ca2+])2
)−1 (C.5)

m∞ = (
[IP3]

d1 + [IP3]
)(

[Ca2+]2

d5 + [Ca2+]
) (C.6)

Equation (C.1) corresponds to formation of PLC due to activation by ATP. The

first term in this equation is associated with activation due to ATP, and second term

due to switching off of PLC. Equation (C.2) is written for formation of IP3. The

first term in the equation is for formation of IP3 due to PLC following Hill’s kinetics.

The second term corresponds to switching off of IP3. Equation (C.3) is written for h,

the fraction of activated sites on IP3. This is a function of Ca2+ and a dissociation

constant (dinh). Equation (C.4) is for the formation of Ca2+. This is a function of

Ca2+, h, IP3, ER leak, pump permeability constants, total calcium concentration,

and constants related to buffers.

Model parameters were estimated using PYOMO [296, 297] and IPOPT [298].

There were 18 unknown parameters in total. Initial guesses for the parameters were

used from [295].
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C.2.3 Sensitivity analysis

SOBOL sensitivity analysis was performed with sampling 250 times using Saltelli

method for sampling. In sensitivity analysis, the peak Ca2+ concentration is observed

by varying different parameters within specified bounds. If by varying a parameter,

the peak concentration varies significantly, it implies that the peak concentration

is sensitive to that parameter. Sensitivity analysis was performed for all the 18

parameters and ATP concentration. A heatmap was generated to display sensitivities

of parameters to Ca2+ spike. Python SALib library was used to perform sensitivity

analysis.

C.3 Results

The filtered and raw data is shown in Figure C.1. Low pass filter smoothened the

data, which enabled better parameter fitting.

Model fit is shown in Figure C.2. An optimal solution was found using PYOMO

and IPOPT. All 18 parameters were estimated within reasonable bounds. The model

follows the trend, however, it does not fit very well. This is because the model used

is a simplified version. If more rigorous form as mentioned in [299] was used, the fit

would have been better. Since the concern was sensitivity of parameters with the

peak, a simpler model was used. In this simpler version, stimulation of GPCR was

ignored.

The heatmap in Figure C.3 shows the sensitivities of individual (diagonal ele-

ments) and paired (non-diagonal parameters) parameters with Ca2+ peak. As seen

from the heatmap, the most sensitive parameters are c0 and k3. c0 corresponds to

total Ca2+ concentration and k3 corresponds to pump dissociation constant. It is

mentioned in [73] that the total Ca2+ concentration did not change because of pa-

clitaxel. Hence, k3 seemed to be a more feasible parameter to vary. Ca2+ peak was

estimated with k3 and k3/1.1 as the pump dissociation constants. Figure C.4 shows

the Ca2+ concentration profile at the estimated value of k3 and k3/1.1. The peak
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Figure C.1.: First subplot is the frequency plot for the low pass filter. The second

subplot shows the raw and the filtered data. Order 5 and cutoff of 0.005 Hz was used.

is lower with lower k3. This observation may have biological implications. Through

mathematical modeling, we intend to find parameters with therapeutic significance

that can be explored as potential cures to CIPN. This implies that the pump may

not be functioning well upon administration of paclitaxel.

C.4 Discussions

Agonists such as ATP activate IP3 in the ER, which leads to release of Ca2+ in

the cytosol. Ca2+ concentration reaches a peak, and then is sent back to ER via a

pump. The peak Ca2+ release is seen to be lowered when a neuron is subjected to

paclitaxel, a chemotherapy drug. This has been associated with axon degeneration,

which ultimately leads to peripheral neuropathy. CIPN becomes a hindrance to the
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Figure C.2.: Plot of simulated Ca2+ concentration (in blue) and the processed Ca2+

signal data (in green). Concentration is in µM. Though not evident from the plot,

the simulated and observed concentration at time = 0 s is the same.
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Figure C.3.: A heatmap showing the sensitivity of model parameters with Ca2+ peak.

The diagonal elements show the sensitivities of individual parameters, and the non-

diagonal elements show the sensitivities of paired parameters. Color closer to blue

indicates low sensitivity, while color closer to red indicates high sensitivity. From this

figure, c0 and k3 seem to be most sensitive to Ca2+ peak.
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Figure C.4.: Ca2+ simulated with estimated model parameters (in blue), and with k3

reduced by a factor of 1.1 (in green). There is a visible decrease in Ca2+ spike.
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treatment, and impacts daily life of cancer patients. It is imperative to understand

the mechanisms involved in CIPN. In this study, a mathematical model was used to

understand the parameters which might be responsible for the lower peak. Sensitivity

analysis enabled finding the important parameters. The results of this study show

that perturbation of pump dissociation constant might be leading to a lower Ca2+

peak. Exploring drugs that can perturb pump’s dissociation ability might serve as a

therapeutic tool to treat CIPN.

This study used Ca2+ signaling data for only one cell. This needs to be repeated

for multiple cells, following which a statistical test can be performed to establish a

significant difference in the peak by lowering k3. Moreover, the Ca2+ signaling data

used here was obtained from mammary epithelial cell line, rather than from neurons.

IP3 mediated Ca2+ is similar in both the epithelial cells and the neurons, hence, it is

reasonable to perform a sensitivity analysis by using epithelial cells data. It will be

of interest to observe the difference in model parameters when neuron cell data is fit

to the model. In the future, data from [73] can be used to estimate parameters and

estimate the lowered k3 value.

C.5 Conclusions

In conclusion, pump dissociation constant is sensitive to Ca2+ peak concentration.

This analysis needs to be repeated on more data and on neurons’ Ca2+ data. The

model needs to be made more rigorous. However, this model along with sensitivity

analysis provides a potential tool to explore therapeutic measures to avoid CIPN.
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D. OPTIMIZING VINCRISTINE INFUSION RATE

This work was done in collaboration with three undergraduate students: Rohan Sharma,

Yuqi Fang, and KS Reshma.

Vincristine (VCR) is a core chemotherapeutic drug administered to pediatric

Acute Lymphoblastic Leukemia (ALL) patients. It is administered via an IV bolus

injection or via a minibag for approximately 10 minutes. In a subgroup of popu-

lation, it leads to vincristine-induced peripheral neuropathy (VIPN), which is the

dose-limiting toxicity. For few patients, VIPN is severe with long-term effects. Even

though VCR has been used as a chemotherapeutic drug for more than 50 years now,

predictors and mechanism of VIPN induction are unclear. VIPN incidence seems to

be associated with VCR cumulative dosage. Hence, it is of interest to find an optimal

infusion time that would lead to a reduction in VCR dosage.

A population balance model is developed to describe the mechanism of VCR in

cells in different phases. The model is a function of time and cell age. The mechanism

model was combined with pharmacokinetics of VCR. Infusion time was optimized to

maximize the number of cancer cells being killed by the end of the induction phase,

with VCR being administered weekly.

D.1 Introduction

Vincristine is a cell-cycle specific drug. It implies that VCR kills cells when they

are in a particular phase. In the past, it has been shown that VCR attacks cells when

they are in the M phase [300–309]. Only recently, it was shown in a cell line that when

VCR attacks cells in the G1 phase, it leads to death directly. If it attacks in any other

phase, the cells will continue the cycle till the M phase, and then undergo a mitotic

arrest first, followed by either death or any other possible fates [310, 311]. A model
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was built to describe VCR killing cells in the different phases. G1 phase was kept

separately and all other phases were lumped together in the M phase. Quiescent phase

was ignored for now. An attempt was made to optimize infusion time of Vincristine

during the induction phase, to maximize killing of cancer cells. If the same efficacy

can be achieved with lesser amount of drug just by optimizing infusion time, chances

of peripheral neuropathy in the patient will be lesser. An optimized infusion time is

something the clinicians are interested in as well.

D.2 Model

If vincristine attacks in G1 phase, cells die immediately. If it attacks in any other

phase, cells will continue to cycle till the M phase, and then it will lead to mitotic

arrest. Followed by mitotic arrest, cells may die, or join the cell cycle back without

division. It may also lead to unequal division or interphase arrest, which has been

ignored for now. Cells in G1 phase (NG1 number of cells with number density nG1)

will enter the M phase at a rate of γ1. They may die in G1 phase at a rate of k1(C).

Cells in M phase (NM number of cells with number density nM) may enter G1 phase

at a rate of γ2, or die at a rate of k2(C).

This process has been written in the form of population balance equations [312].

The populations of cells in G1 phase, G2, S, and M phases lumped together, are

considered. The number density of cells are modeled as a function of transition and

death rates.

The drug concentration is represented by the following equation [313,314]:

For jth dose of ith drug:

Ci(t) =


yij
λi

(1− e−λi(t−tAD,ij)) + Ci,residual(t), during jthapplication

Ci,residual(t) =
∑PA

j=1
yij
λi
e−λi(t−tAD,ij)(eλihij − 1), between applications

(D.1)

where,

• Ci(t) (mg) is the amount of ith drug at time t
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Figure D.1.: Vincristine mechanism in the cell cycle
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• yij is the dose administration rate (mg/m2/h) during the jth dose of ith drug

• hij (h) is the duration for which the the jth dose of ith drug was administered

• PA stands for previous applications

• tAD,ij (h) is the time when jth dose of ith drug was administered

• λi (h−1) is the decay constant of the ith drug

The dose administration rate was multiplied by body surface area. The body surface

area was assumed to be 1 m2 and volume of blood was assumed as 262 l. The total

amount of drug administered was assumed to be 2 mg. It was divided by the body

surface area and infusion time to calculate the dose administration rate.

For the model considered in Figure D.1, population balance equations were writ-

ten. The number density was assumed to be a function of time (t) and cell age (τ),

the internal coordinate. The cell age is the time a cell has spent in a particular phase.

∂nG1

∂t
+
∂nG1

∂τ
+ γ1nG1 + k1(C)nG1 = 0 (D.2)

∂nM
∂t

+
∂nM
∂τ

+ γ2nM + k2(C)nM = 0 (D.3)

Here, nG1 and nM are the number densities of cells in G1 and M phase, respectively.

The boundary conditions for the number densities (flux of cells of zero age) will be

the following equations.

nG1(t, 0) = 2γ2

∫ ∞
0

nM(t, τ)dτ (D.4)

In equation (D.4), a factor of 2 is incorporated to account for cell division.

nM(t, 0) = γ1

∫ ∞
0

nG1(t, τ)dτ (D.5)

The values of the parameters (transition rates and death rates) were estimated

from experimental studies. The transition rates γi (i = 1, 2) are assumed to be of

lognormal distribution form with mean µi and standard deviation σi [313]. They are

described as the following:
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Table D.1.: Model parameter and their values

Parameter Value Units Reference

λ 0.0416 h−1 [315]

a 0.1 l/mol Assumed

Table D.2.: Initial conditions and parameters for the transition and death rates

Parameter G1 phase M phase Units Reference

µ 1.25 1.25 days Assumed

σ 0.4 0.3 days Assumed

ki,max 0.1429 0.1845 hr−1 [310]

Γi(τ) =

√
2

π

1

σiτ

exp(−1/2((logτ − µi)/σi)2

1 + erf((µi − logτ)/
√

2σi)
(D.6)

The rate of cell death ki are given by the following (for i drugs given in combina-

tion) [313]:

ki(Ci) = ki,max(1−
drugs∏
i=1

SFi(Ci))in day
−1, (D.7)

where the survival function SF is described as:

SFi(Ci) =

exp(−ai Ci(t)) susceptible phase,1 otherwise

(D.8)

Here, i = 2 for the two phases. The parameter ai corresponds to the drug resistance

developed due to drug. The larger the value of ai, the lesser the cell resistance. This

value is kept constant at 0.1 l/nmol for both the phases.

The initial number density distributions gG1(τ) and gM(τ) are assumed to be

exponential.

gG1(τ) = 0.75 ∗ 109e−τ (D.9)

gM(τ) = 0.1 ∗ 109e−τ (D.10)
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Figure D.2.: Plot of number of remaining cancer cells as a function of infusion time

These equations are solved using method of successive generations, described

in [312].

D.3 Results

It is assumed that the treatment regime consists of 2 mg of vincristine adminis-

tration weekly for one month. The infusion time was varied between 10 to 60 minutes

with an interval of 10 minutes. Number of cancer cells by the end of one month

was compared. Current infusion time administered to patients is approximately 10

minutes. As shown in Figure D.2, slower infusion time is more effective in killing the

cancer cells.
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D.4 Discussions

This work can be extended by introducing quiescent phase, dynamics of normal

cells, and patient-specific VCR pharmacokinetics parameters. Other chemotherapy

drugs that are administered in combination with VCR can also be included.
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E. MODELING VINCRISTINE TRANSPORT

E.1 Introduction

Pharmacokinetic (PK) modeling is a prevalent methodology in personalized medicine.

The idea is to develop a dynamic model with individualized parameters which can

predict drug dynamics in the body. Pharmacodynamics (PD) is further incorporated

with PK modeling to take into account the effect of drug on the body (e.g. adverse

drug reactions). A PK/PD model can predict the drug effect on a body for a given

dose. Further, once individual patient parameters are obtained, the model can be

used to suggest individualized dosage of a drug to minimize its side effect. In this

work, a PK/PD model is developed, which also takes into account key genotypic

information of patients.

Vincristine is administered via an IV bolus injection or infusion mini-bag. From

the periphery, it gets transported to the tissues where it kills the cycling cells, includ-

ing normal as well as cancerous cells. It is transported via the blood to the liver, where

it gets metabolized. A transport model as shown in Figure E.1 was developed. It is

assumed that the blood transports VCR to the neurons as well, which is speculated to

be causing neuropathy if VCR is more than a threshold amount in the neurons [316].

Vincristine gets diffused to tissues, liver and neurons. It is effluxed back via ABC

transporter proteins. Vincristine, along with its metabolites, are finally excreted via

bile. Elimination and metabolism are lumped together, and liver is not considered as

a separate compartment here. This is because Vmax and Km for metabolism can be

extracted from literature, and, using those values, hepatic clearance can be directly

estimated.
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E.2 Data available

PK data was provided for the same patients for which metabolomics data was

provided. For some patients, PK data was available at 4 time points and for 2

visits. For the rest, it was available for 3 or less time points, and for 2 or less visits.

Along with VCR PK, patients’ genotypic score was provided for key genes involved.

Genotypic score of CYP3A5 (VCR metabolizing enzyme) and MDR1 (transports

VCR) was provided. Patient height, weight, and the dose administered was provided

as well. Using the data available, the PK-PD model was formulated.

E.3 Model

Reaction differential equations were written for each compartment. The rate con-

stants need to be estimated. The hepatic clearance was estimated based on expression

of CYP3A5. Hepatic clearance is a function of intrinsic clearance and liver weight.

Liver weight was estimated using the following formula [317], where weight is in grams

and body surface area (BSA) is in m2:

W =

772 ∗ BSA, if BSA ≥ 1

772 ∗ BSA− 38, otherwise
(E.1)

Body surface area is calculated using the Mosteller formula [318]:

BSA(m2) =

√
body weight (kg)× height (cm)

3600
(E.2)

An estimate of hepatic blood flow (Q) is 104 mL/min per 100 grams of liver

mass [319]. Dennison and coworkers [320] estimated Vmax/Km for human liver mi-

crosomes which were low and high expressers of CYP3A5. The methodology used

in [320] was used to calculate intrinsic and hepatic clearance. Average Vmax/Km for

different genotypic scores are shown in Table E.1.
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Table E.1.: Vmax/Km (ml/min/g) for different genotypic scores

CYP3A5 genotype High/Low expresser Vmax Km Vmax/Km Number of patients

∗1/∗1 High 1262 14 90.14 1

∗1/∗3 High 335.62 19.34 17.35 7

∗3/∗3 Low 121.8 19.88 6.13 27

∗1/∗7 Low 50 15.8 3.16 1
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Figure E.1.: Vincristine PK/PD

Intrinsic clearance was calculated according to the following formula [321], where,

CLint is the intrinsic clearance:

CLint =
Vmax
Km

∗W ∗ 45 mg microsomal protein/g liver (E.3)

Using the intrinsic clearance, hepatic clearance was calculated according to the

following formula (well stirred model) [322], where Hcl is the hepatic clearance, fu,p

is the plasma fraction unbound and ρ is the blood-to-plasma ratio:

Hcl =
Q ∗ fu,pCLint

ρ ∗ (Q+ fu,p
ρ
∗ Clint)

, fu,p = 0.51, ρ = 1.2 (E.4)

A microsomal mass of 45 mg per 1 g of liver was assumed as done in the study by

Dennison and coworkers [320]. Similarly, fu,p is taken to be 0.51 [323] and ρ is taken

to be 1.2 [324].

Using this, a patient’s weight, height, and CYP3A5 genotypic information was

incorporated to calculate hepatic clearance for each one of them. MDR1 genotypic

information was not incorporated into the model as of now.
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The rate equations for the model were the following:

dvp
dt

=
d(t)

Vd
− kptvp + ktpvt − kpnvp + knpvn −

Hcl

Vd
vp (E.5)

dvt
dt

= kptvp − ktpvt (E.6)

dvn
dt

= kpnvp − knpvn (E.7)

kpt, ktp, kpn, knp are the rate constants. Vd is the plasma volume. Hcl is the hepatic

clearance. d(t) is the rate of drug administration. In this case, VCR is administered

via a minibag in 10 minutes. vp is the VCR plasma concentration. vt and vn are

concentrations in tissue and neurons, respectively.

The value of kpt was taken to be 0.104, average of k12 and k13 obtained from

another PK study done by Sethi and coworkers [325].

E.4 Parameter estimation

For every patient Hcl was calculated as shown above. kpt was assumed to be the

same for every patient. ktp, knp, kpn and Vd were estimated by optimization, given

the PK data. This estimation was done for every patient for which PK data was

available at 4 time points, including the initial time point. There were 13 patients

for which the data was available at 4 time points. Ideally, 3 parameters should have

been estimated using these time points. However, by keeping one of the parameters as

constant, the fit generated was not as good. It seems that by letting the optimizer find

4 parameters, it is being given more freedom to fit the model better. At the same

time, reasonable constraints were given for all the parameters, hence, the system

wasn’t fully underdetermined. All the rate constants were constrained to lie between

(0,10) (1/min) and the plasma volume was constrained to lie between (1000, 30000)

(ml). The parameter estimation was done using pyomo [296, 326] and ipopt [298] in

python.

The PK profile and the fit for one patient is shown in Figure E.2. The model fit

well with the PK data. For some patients, optimization was difficult since PK data
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was available at far-off time points. For most of the patients, PK data was available

after around every 15 minutes. For 3 patients, few time points were available at

an interval of around 50 minutes or more. For one patient, this might have lead to

inefficient optimization. The time points need to be confirmed with the clinicians

once. Further, a confirmation of the dose infusion time is needed as well.

The next step was to validate the model. We used PK data of the same patients

when they came for another round of VCR dose administration. During that round,

height and weight were noted down again. Hence, hepatic clearance was calculated

again. The parameter values were assumed to be the ones found from optimization.

The PK data was available only for two time points, one of them being the initial

time point. Furthermore, data was available only for 4 patients. Figure E.3 shows

the fit of the model with the validation data points. The model fits reasonably well,

except for the patient GW-05.

Next, a first approximation sensitivity analysis was done for all the parameters

in the model. The model output was compared only at one fixed time point (t=30

minute), for vincristine plasma concentration. The complete time profile was ignored.

SOBOL method in python was used [327]. Figure E.4 shows a heat map, with the

numbers in the boxes representing the relative variance due to the parameter. The

first order variance is due to individual parameters, shown in the diagonal elements,

and the remaining variances are due to interaction of two parameters. As seen from

the heat map, the model is insensitive to kpt, hence, assuming kpt to be constant for

all the patients is reasonable.

E.5 Future work

It has not been completely resolved why estimation of 4 parameters lead to a

better fitted model. A steady state VCR concentration time point can be added to

enhance model accuracy. Further, infusion time for individual patients need to be

confirmed. PK profile of 3 patients need to be confirmed. Upon confirmation and
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Figure E.4.: Heat map showing sensitivity of parameters
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incorporation of a steady state time point, parameter estimation can be performed

again.

Rigorous sensitivity analysis needs to be done to find important parameters. Then,

these parameters will be fixed while the rest can be estimated for the remaining pa-

tients (for whom PK data was not available at 4 time points). Further, concentration

of vincristine in the neuron compartment can be compared for the low and high

neuropathy patients. In the present cohort of patients considered, 12 were high neu-

ropathy and 1 was low neuropathy patient. Once the concentration distribution is

available for all the patients, the comparison can be made. Vincristine concentration

in neuron compartment can be an indicator of neuropathy. Hence, it is imperative to

analyze it.

MDR1 information needs to be included as well. It is unclear as of now on how

to incorporate it. Patients can be classified into high and low efflux patients. The

drug efflux rate constants can be constrained to lie within a certain range for the two

categories of patients. Incorporating these can make the model more comprehensive.
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F. A LIPIDOMICS APPROACH TO INVESTIGATE NON-ALCOHOLIC FATTY

LIVER DISEASE

This work was done in collaboration with Dr. Wanqing Liu.

Non-Alcoholic Fatty Liver Disease (NAFLD) is a prevalent disease, especially

in western countries. It is characterized by substantial accumulation of fat in the

hepatocytes. It is similar to alcohol-induced liver damage but in patients who do

not over-consume alcohol. NAFLD has a huge spectrum, ranging from mild to a very

severe condition. It ranges from simple steatosis, steatohepatitis, fibrosis and to finally

advanced fibrosis or even cirrhosis [328]. There is no fixed medication or treatment

available. Doctors primarily advise to control diet and reduce weight. Cirrhosis is

the final stage of NAFLD when liver tissues get completely scarred. Intermittently

at that stage, liver transplantation is the only possible treatment.

Around 10-24% of the general population suffer from NAFLD in different coun-

tries [329]. It is also associated with obesity, type 2 diabetes and hyperlipidemia.

Most of the patients do not show any typical symptom during diagnosis. They may

complain of fatigue or feeling of fullness. Some abnormalities are found in laboratory

tests. Elevated serum levels of aspartate aminotransferase or alanine aminotrans-

ferase, or both can be found in NAFLD patients [329]. Ultrasonography [330] and

magnetic resonance spectroscopy [331] are used to identify fatty infiltration in liver.

NAFLD stage can only be identified using liver biopsy. Liver biopsy checks for steato-

sis, mixed inflammatory-cell infiltration, hepatocyte ballooning and necrosis, glycogen

nuclei, Mallory’s hyaline, and fibrosis [329].

Pathogenesis of NAFLD is very complex and unclear. The main driving factor

is accumulation of lipids within hepatocytes because of an imbalance. Fatty acid

uptake and de novo synthesis of fatty acid exceeds oxidation and resecretion [332].
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Experiments indicate that it is a feature of the metabolic syndrome [333]. It has

been shown that insulin resistance may lead to NAFLD [333]. Insulin resistance is

associated with de novo lipogenesis and hyperlipidemia [334]. It is speculated that

increase in intrahepatic levels of fatty acids may be responsible for oxidative stress,

which in turn may lead from steatosis to cirrhosis [329]. The transition may also

be involving cytochrome P450 activation, lipid peroxidation, increased inflammatory

cytokine production, activation of hepatic stellate cells and apoptosis [335]. This

transition is not completely clear.

Here, machine learning and statistics are used to analyze role of lipids in NAFLD

progression. It was discovered that all significant PCs are negatively associated with

NASH. Further, the saturation level was analyzed and it was discovered that unsatu-

ration was negatively associated with NASH. A small set of potential lipid biomarkers

was also identified which can accurately classify NASH. All of these were validated

using an independent data set.

F.1 Methods and materials

F.1.1 Data acquisition

Two independent data sets (discovery sample size = 120, validation sample size

= 106) of liver tissue samples were collected from transplantation donors, and char-

acterized for histology.

F.1.2 Statistical analysis

Samples were divided into classes: no NAFLD and NAFLD belonged to one class,

borderline NASH and NASH belonged to another. For all the lipids, logistic regres-

sion was performed to find significant association between lipids and class, keeping

demographics as control. Benjamini and Hochberg FDR correction was performed

and lipids with false discovery (FDR) <= 0.05 were kept. These lipids were then

segregated based on the lipid family. For every family, fisher test was performed to
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determine if the family was significant compared to all other lipids. For validation

set, age and sex were kept as control. For discovery set, age, sex and race were kept

as control. For serum samples, age, sex, BMI, race were kept as control.

For saturation analysis, logistic regression was performed to find significant asso-

ciation between ratio of lipids within families and class, with demographics as control.

An FDR cutoff of 0.1 was kept. Level of saturation was estimated for each lipid based

on the number of double or triple bonds. All the ratios were converted such that the

numerator was either less or equally saturated. Following this, fisher test was per-

formed to determine if more unsaturation was associated with lower level of NASH

within every lipid family. This was repeated for validation data set. MATLAB was

used for all the statistical analysis.

To understand if a set of lipids together predict NASH, machine learning was

used. Elastic net logistic regression along with 10 fold cross validation, repeated 5

times, was used. Top 10 of those lipids were used to build a model both in discovery

and validation set, to confirm predictability. R package CARET was used for this

algorithm.

F.2 Results

F.2.1 Clinical profile

In the discovery hepatic lipidomics set, 70 samples belonged to healthy individuals,

6 to individuals with NAFLD, 29 to those with borderline NASH and 15 to those with

NASH. Hence, 76 were categorized as no-NASH and 44 were categorized as NASH

samples. The age distribution was huge, varying from 0 to 80 years. There were equal

number of males and females. However, the population was majorly white, with 111

individuals being white, and 9 being black racially.

In the validation hepatic lipidomics set, none of them were healthy, 52 of them

had NAFLD, 9 had borderline NASH, and 22 had NASH. Hence, 52 of them were

categorized as no-NASH and 54 were categorized as NASH samples. The age distri-
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bution was huge in this data set as well, varying from 0 to 80 years. 57 of them were

males and 49 of them were females. All of them were white racially.

F.2.2 Statistical results for hepatic lipids

In discovery set, PC (FDR < 0.15), SM and DSM (FDR < 0.01), ePC (FDR <

10E-6) were found to be significantly associated with NASH, keeping demographics

as control. Interestingly, each of them were negatively associated. In validation set,

PC (FDR < 0.01) and ePC (FDR < 0.12) were significantly associated with NASH.

All of them were negatively associated as well. This implies that hepatic PCs and

ePCs are significantly negatively associated with NASH.

Saturation analysis showed that unsaturated PC (FDR < 0.01), PE (FDR < 0.12),

and PI (FDR < 0.1) were significantly negatively associated with NASH in discovery

set. In the validation set, PC (FDR < 0.01), and PE (FDR < 0.1) were significantly

negatively associated with NASH. This implies that hepatic unsaturated PCs and

PEs are negatively associated with NASH. Four of these PC ratios and five of these

PE ratios were common between discovery and validation sets.

F.2.3 Hepatic lipid signature

Elastic net logistic regression identified a set of 25 lipids which can create a pre-

dictive model with an average AUROC of 0.826 in cross validation sets (10 fold CV

repeated 5 times). Top 10 of these lipids were finally used. Upon model building

with these 10 lipids in discovery set, AUROC of 0.895 was obtained. In validation

set, AUROC of 0.861 was obtained. This can be used as a potential strategy to clas-

sify NASH, even though invasive, because it can still remove the bias due to sampling

error.
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Table F.1.: Lipids and FDR value in discovery set, all negatively associated

Lipid family FDR

PC 0.14

SM and DSM 0.008

ePC 6.33E-6

Table F.2.: Lipids and FDR value in validation set, all negatively associated

Lipid family FDR

PC 0.002

ePC 0.12

Table F.3.: Significant unsaturated lipid families and FDR value in discovery set

Lipid family FDR

PC 0.0064

PE 0.11

PI 0.0625

Table F.4.: Significant unsaturated lipid families and FDR value in validation set

PC 0.0021

PE 0.0575

PI 0.213
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Table F.5.: List of lipids found as biomarkers (in order of importance)

Lipid Mass Formula

SM(18:1) 729.6 C41H81N2O6P

SM(18:0) 731.6 C41H83N2O6P

PI(34:1) 854.5 C43H81O13P

PA(38:4) 742.5 C41H73O8P

PI(34:2) 852.5 C43H79O13P

SM(16:0) 703.6 C39H79N2O6P

LPC(20:0) 552.4 C28H58O7PN

PG(36:1) 794.6 C42H81O10P

ePC(38:2) 800.6 C46H90O7PN

SM(24:1) 813.7 C47H93N2O6P

Table F.6.: Overlapping lipids between discovery and validation set

Lipid

PC(40:8)

PC(40:7)

PC(40:3)

PC(40:2)

PC(42:10)

PC(42:5)

PC(42:4)

PC(42:3)

ePC(34:0)

ePC(36:3)

ePC(38:6)

ePC(38:2)

ePC(40:4)

PG(36:4)
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F.3 Discussions

NAFLD is a prevalent disease with a wide spectrum. Pathobiology of NAFLD

and its transition to NASH remains elusive. The role of lipids in understanding the

pathobiology has been widely discussed. In this study, lipidomics data was analyzed

to understand their role at a molecular level. Significant amount of research has

focused on lipidomics association with NAFLD and NASH [336–338]. However, only

one of them performed the analysis at the molecular level [336]. The study here is

focused majorly on liver tissue lipidomics. Moreover, different classes of lipids were

analyzed separately. The role of lipid classes in progression from no-NASH to NASH

was analyzed. Further, the results were validated in an independent data set.

Role of PC in NAFLD progression has been emphasized extensively [339,340]. It

is also shown to be involved in hepatic TG synthesis [341, 342], which is associated

with NAFLD. The authors in [343] have provided a comprehensive review on role

of PC and stress on the importance of a balance of SAMe and PC. Importance of

choline in diet to prevent NAFLD and NASH has also been discussed [344, 345]. In

this study, these lipid families were focused on separately. It was observed that all

significant PCs are negatively associated with NASH. This supports the observation

that choline deficiency can lead to NAFLD [346,347]. There is evidence of role of PC

in preventing HCC as well [348–350]. Interestingly, not just the overall amount of PC,

but all the significant individual PCs are negatively associated with NASH. This was

confirmed in the independent validation set. This implies that synthesis of several

PCs is reduced in NASH. There was also an overlap of 8 such PCs in the discovery

and validation sets (out of 14 and 20 respectively). Most of them had either 40 or

42 primary carbon chains. The overlap strengthens the conclusion that several PCs

are negatively associated with NASH. A similar result was also observed for ePC.

All of the significant ones were negatively associated in both the validation and the

discovery set. This implies that both PC and ePC follow a similar trend and are

similarly synthesized in NASH samples. There was an overlap of 5 of them in the
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discovery and validation sets (out of 17 and 10 respectively). They had either 34,

36, 38, or 40 primary carbon chains. To our knowledge, targeted study on ePC and

its role in NAFLD progression has not been done. Based on these results, it seems

worthwhile to focus on ePC alone as well.

Several studies have shown the role of saturated fatty acids in NAFLD progression.

The review article by Leamy et al [351] elucidates on the mechanisms of saturated

fatty acids. However, based on our knowledge, only one study has explored the

role of saturation in phospholipids [352]. They concluded that increased saturation

in phospholipids may lead to lipotoxicity, which can indicate NAFLD. Our findings

agree with them, and it was found that increased saturation is associated with NASH.

Moreover, it was identified that increased hepatic PC and PE are associated with

NASH. A thorough targeted validation on a larger cohort may provide a possible

therapeutic solution to reverse NASH. It needs to be noted that the FDR cutoff for

this analysis was not stringent (FDRcrit = 0.1). Hence, there is a need to validate

the findings on a larger data set.

Previous studies have come up with different lipids in both liver and serum as po-

tential biomarkers. Here, machine learning was used to identify a 10 lipid signature,

and it was validated on the validation set. A set of 10 lipids can accurately discrim-

inate NASH and non-NASH both in discovery and validation set. Although these

biomarkers are invasive, they still provide insight into which lipids are important in

predicting NASH accurately. From the list of biomarkers, SM seemed to play a major

role in a multivariate sense. The role of SM in NAFLD has been discussed in [353].

The exact role of SM is unclear, however. PI also seemed to play a role. PI has been

shown to be involved in prevention of NAFLD [354].

This study has limitations because of the demographics. Both the discovery and

validation sets consisted primarily of a white race population. However, there is a

wide age distribution, and the population consists of almost equal males and females.

We performed a rough power calculation for the sample size based on the variance

in these populations. An average power of 90% was estimated for the discovery set.
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However, power for the validation set was low and highly varied, varying between

70-99%. A larger sample size may help in better validation. Further, BMI was not

available for all the samples in the discovery set. Hence, we did not include it in our

analysis for both the discovery and validation sets. A rough estimate showed that

BMI varied from approximately 7 to 65 in both the sets. BMI needs to be included

in future studies to arrive at a stronger conclusion. Another major limitation is

the identification of lipids. Lipids were analyzed using MS, and the true structures

are unknown. In spite of the limitations, this study shows some interesting trends

regarding the association of lipids with NASH, and the role of level of saturation with

respect to NASH. Focused molecular level analysis of PCs, ePCs, PEs, and PIs will

provide further biological insights.

In conclusion, all significant hepatic PC and ePC were identified to be negatively

associated with NASH. A 10 hepatic lipid signature was found that can accurately

discriminate NASH and no-NASH. Hepatic lipidomics analysis was validated in an

independent data set. This analysis indicates individual hepatic phospholipids and

their saturation level may play a role in progression to NASH. Further, the lipid

signature indicates that few phospholipids may together play a role in progression to

NASH. Lastly, various classes of saturated phospholipids liver tissue were positively

associated with NASH.
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