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ABSTRACT

Friedman, Alex M. PhD, Purdue University, May 2020. Observability Analysis for
Space Situational Awareness. Major Professor: Carolin Frueh.

Space operations from the dawn of the Space Age have resulted in a large, and

growing, resident space object population. However, the availability of sensor re-

sources is limited, which presents a challenge to Space Situational Awareness appli-

cations. When direct communication with an object is not possible, whether that is

due to a lack of access for active satellites or due to the object being characterized

as debris, the only independent information source for learning about the resident

space object population comes from measurements. Optical measurements are often

a cost-effective method for obtaining information about resident space objects.

This work uses observability analysis to investigate the relationship between de-

sired resident space object characteristics and the information resulting from ground-

based optical measurements. Observability is a concept developed in modern control

theory for evaluating whether the information contained within measurements is suf-

ficient to describe the dynamical progression of a system over time. In this work,

observability is applied to Space Situational Awareness applications to determine

what object characteristic information can be recovered from ground-based optical

measurements and under which conditions these determinations are possible. In ad-

dition, the constraints and limitations of applying observability to Space Situational

Awareness applications are assessed and quantified.
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1. INTRODUCTION

Many definitions of Space Situational Awareness (SSA) exist, and these definitions

vary in scope and focus [1]. However, an overarching aim for SSA is to ensure the

sustainable use of near-Earth space. Moreover, sustainable use of near-Earth space

consists of

understanding and maintaining awareness of the Earth orbital population,

the space environment, and possible threats,

as defined by the European Space Policy Institute [2]. The Earth orbital popula-

tion, otherwise referred to as the resident space object (RSO) population, consists of

natural and human-made objects. Some definitions of SSA are restricted to aware-

ness of human-made objects only. Beyond natural objects, the RSO population is

composed of operational satellite assets and debris objects. Of the total number of

objects launched to near-Earth space from the beginning of the Space Age in 1957 to

present day, only a small fraction is operational satellites, and the remaining fraction

of the RSO population is characterized as orbital debris. The International Academy

of Astronautics defines orbital debris as

any [hu]man-made object, which is non-functional with no reasonable ex-

pectation of assuming or resuming its intended function, or any other

function for which it is or can be expected to be authorized, including

fragments and parts thereof [3, 4].

Therefore, orbital debris consists of not only fragments separated from satellites

or from satellite collisions, but also satellites which are no longer operational and

mission-related objects. The current U.S. Strategic Command (USSTRATCOM)

RSO catalog contains approximately 23,000 objects, consisting of both operational
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satellites and orbital debris [5]. However, this catalog is restricted to objects of ten

centimeters in diameter or larger in Low Earth Orbit (LEO) and one meter in diam-

eter or larger in Geosynchronous Earth Orbit (GEO) [6]. Also, it is known that even

within these size restrictions the catalog is incomplete. The addition of the Space

Fence is anticipated to track up to 200,000 objects of one centimeter in diameter or

larger in LEO [7]. If objects of one millimeter in diameter or greater could be included

in a space object catalog, National Aeronautics and Space Administration (NASA)

and European Space Agency (ESA) estimate that the number of objects in such a

catalog would be on the order of 100 million. However, current sensor capabilities

limit the generation of such a catalog, especially in higher altitudes [8, 9]. Although

small objects may not initially appear threatening, the potentially large relative ve-

locity differences between objects in orbit can lead to mission-ending collisions or

catastrophic events [10, 11]. In addition to the large number of debris objects in the

RSO population, increased capabilities of small satellites have led to plans for mas-

sive LEO satellite constellations, which will drastically increase the current number

of operational satellites [12]. As the overall RSO population increases due to larger

numbers of operational satellites and debris objects, the sustainable use of near-Earth

space will only become more challenging.

In order to avoid collisions in the growing population of RSOs for ensuring con-

tinued, sustainable use of near-Earth space, precise tracking and prediction of object

locations are required. The catalog of space objects distributed by USSTRATCOM

is generated from the U.S. Space Surveillance Network (SSN), which is a collection

of optical and radar sensors spread around the surface of the Earth [6]. In addition,

many other government and commercial entities operate their own space surveillance

networks. Nevertheless, even with the large increase in the number of tracked RSOs

from the Space Fence and other space surveillance networks, the size of the RSO pop-

ulation exceeds the tracking capabilities of these sensor networks [13]. Additionally,

these sensor networks all have differing amounts of inherent noise and capabilities,

resulting in varying measurement uncertainties and heterogeneous data sets. There-
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fore, the relationship between the required knowledge of RSOs and the sensor specific

observations of these objects needs to be understood and clarified, which can then

aid in numerous tasks, such as sensor tasking.

The information for each object resulting from optical sensors and radar sensors

is primarily in the form of angle and range measurements, respectively. However,

predicting the future locations of objects requires state information, typically consist-

ing of position and velocity. Moreover, obtaining object characteristic information,

such as shape or reflectivity properties, is important for precise orbit propagation

and object identification because an orbit can be perturbed significantly as a result

of these characteristics [14]. Achieving efficient and sustainable operations in near-

Earth space requires an in-depth knowledge of which measurements are necessary

for desired state information, when such measurements should be acquired, and how

varying measurement accuracy can be incorporated.

The relationship between measurements and state information is fundamental

to the evaluation of control systems. Kalman originally developed observability to

define conditions under which the optimal regulator problem has a solution [15]. In

general, observability is a method for ensuring that the measurements of a system are

sufficient for computing the state. As a result of the early work by Kalman, many

methods have been developed for analyzing observability of control systems. Ogata

[16], Friedland [17], Gajic [18], and Bay [19] provide a detailed overview of linear

observability methods. For linear, time-varying systems a common test computes an

observability Gramian or observability matrix for evaluating the observability. When

the observability matrix is non-singular, a system is observable. Many applications of

observability focus on implementation of linear observability methods, but nonlinear

observability methods have also been developed [20–22].

The original observability formulation from Kalman defined observability as a

binary criteria for a system, i.e. the system is either observable or it is not. However,

Kalman posed an open question for whether observability could be expanded for

use as a quantitative measure [15]. Brown expanded upon this by developing the
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degree of observability concept [23]. Brown’s work on degree of observability was

expanded further by Ablin [24] and extended to stochastic systems by Ham [25].

Many additional measures of observability have been developed, and many works

have evaluated the applicability of each observability measure [26–34]. For example,

the condition number [28, 35, 36], the determinant [37], and the pseudo-inverse [38]

of the observability matrix are a few of the measures implemented for quantifying

observability of a system.

In addition to extension of observability for use as a quantitative measure, deter-

ministic observability methods have been extended to include state and measurement

uncertainties. This extension is often referred to as stochastic observability. Within

the field of stochastic observability, a distinction must be made between analysis

methods which focus on system model matrices [36, 39–42] versus analysis methods

which focus on the covariance matrix of state estimation errors [25, 34, 43–48]. The

term stochastic observability has been applied to both types of analysis methods,

but the latter are more accurately described by the term estimability, which was first

coined by Baram & Kailath [44]. In addition, these applications of observability and

estimability are often implemented to predict and evaluate estimation accuracy and

performance. The form of the stochastic observability matrix is equal to the informa-

tion matrix in the linear, unbiased, minimum variance estimate [49,50]. In addition,

several works have evaluated the relationship between observability and estimation

through connection of the stochastic observability matrix and the Information Form

of the Kalman Filter [32, 51–53]. Furthermore, Dianetti, Weisman, & Crassidis im-

plemented observability for informing a Schmidt-Kalman Filter [42].

As a general control system concept, observability has been applied to many

aerospace applications. Within SSA applications, observability has been applied

extensively to Inertial Navigation Systems (INS) and Global Positioning Systems

(GPS) [28, 33, 37, 46, 48, 54–64]. Beyond INS and GPS applications, analysis of ob-

servability has focused on attitude [26,62,65,66], bearings-only navigation [61,67–70],

and coupled position-attitude determination [64, 71]. Moreover, observability has
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been applied for determining space object characteristics [42, 72]. The observability

analysis in the work by Linares & Crassidis [72] primarily focuses on attitude and

shape model parameters. Dianetti, Weisman, & Crassidis implement observability

in a Schmidt-Kalman Filter to determine when consider parameters should be esti-

mated [42]. However, the work by Dianetti, Weisman, & Crassidis primarily focuses

on the development of a multiple model adaptive estimator. To inform the Schmidt-

Kalman Filter, Dianetti, Weisman, & Crassidis defined a single, fixed value based on

the singular values of the observability matrix.

In the previous works, the validity of applying the linear observability measure to

the problem of SSA has not been shown nor tested. Furthermore, an unproven infer-

ence had been drawn between observability and Schmidt-Kalman Filter performance.

The previous SSA works have not used a realistic scenario including measurement

noise and the influence of a priori information within observability analysis. In ad-

dition, a direct connection of observability and the required conditions for allowing

shape characterization is absent.

In this work, an in-depth analysis of observability is conducted for determining

RSO characteristics with optical measurements. Rather than implement observability

purely as a tool for evaluating when state variables can be estimated, observability

is investigated to gain a deeper understanding of how the knowledge from optical

measurements is transformed when determining object characteristics. Furthermore,

many works do not estimate object reflectivity and shape variables as separate, solve-

for parameters because of the coupled nature in the solar radiation pressure perturba-

tion. However, in this work observability analysis is implemented to determine specific

conditions when the reflectivity coefficient and area-to-mass ratio can be determined

as separate parameters. Moreover, the connection of observability and estimation in

this work applies specifically to the orbit problem for evaluating object characteristics

and determining whether observability can be a predictor of estimation performance.

When implementing observability in a Schmidt-Kalman Filter, the rank of the ob-

servability matrix is used dynamically to insert and remove consider parameters from
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the estimation. Also, estimability methods inform the filter of which consider pa-

rameters should be estimated first. In addition, observability is applied in a novel

way for aiding in sensor tasking and for determining efficient measurement collection

strategies for a light curve inversion process. Portions of the work presented in this

dissertation have been published in [73–80].

1.1 Research Questions

This work seeks to address the aforementioned challenges facing SSA with ob-

servability analysis. As a general control system concept, observability determines

whether the knowledge contained within a set of measurements is sufficient for re-

solving desired state knowledge. This analysis considers the following questions.

1. How can linearized observability be utilized for the nonlinear orbit problem?

2. Can observability be used to evaluate whether optical measurements contain

sufficient knowledge to determine position and velocity as well as additional

object characteristics?

3. Is observability a predictor of estimation performance when applied to the orbit

problem, and what are the conditions thereof?

4. Can observability be implemented as a measure to aid in efficient sensor tasking,

and how does measurement uncertainty impact sensor tasking decisions?

5. Is observability able to determine when measurements sufficiently sample a sys-

tem for performing light curve inversion, and can observability aid in efficient

data collection for object shape characterization?

1.2 Outline of Dissertation

Linear observability methods are adopted in this work for answering these research

questions. The relationship between angles-only measurements and a state with ob-
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ject characteristics is explored through simulations of observability and estimation

of the orbit problem. In addition, the sampling of the observer-object-Sun geometry

in the light curve inversion problem is evaluated with simulations of realistic object

attitude dynamics and observation constraints.

Chapter 2 introduces the background information required for the simulations

and analysis performed in the subsequent chapters. Fundamentals of observability,

the orbit problem with and without perturbations, ground-based optical observations

and sensors, adaptation of the observability matrix for the orbit problem, estimation

methods, and the light curve inversion process are introduced. In addition, previous

work on observability for SSA is discussed where applicable.

Chapter 3 expands upon the deterministic observability matrix with the inclu-

sion of state and measurement uncertainties. Moreover, the stochastic observability

matrix is compared with the Information Form of the Kalman Filter. Next, several

simulations are performed to analyze the observability of the orbit problem. First,

the impact of measurement noise and propagation method on the time to become ob-

servable is explored. Next, solar radiation pressure (SRP) parameters are included in

a state vector consisting of position and velocity to determine the observability of ob-

ject characteristics. The system including SRP perturbations is investigated further

by comparing deterministic and stochastic observability results to estimation meth-

ods. In addition, a Monte Carlo approach is implemented for evaluating what orbit

problem estimation results can be guaranteed with observability analysis. Next, the

use of observability as a measure for sensor tasking is evaluated. Finally, observabil-

ity is analyzed for a system with multiple observers, each with differing measurement

uncertainties.

Chapter 4 analyzes the orbit problem with SRP perturbations in a different ap-

proach than observability. Instead of using the dynamic and measurement model

matrices, estimability methods are implemented for evaluation of the relative esti-

mation performance of state variables, including position, velocity, and SRP param-

eters. In addition, the knowledge gained from estimability of the orbit problem and
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the stochastic observability matrix rank are used to inform a Schmidt-Kalman Fil-

ter with the SRP parameters. Comparisons of the state estimation errors with and

without the observability-estimability informed Schmidt-Kalman Filter are shown.

Chapter 5 applies observability to the light curve inversion process for determin-

ing when an Extended Gaussian Image (EGI) has been sufficient sampled for EGI

minimization. An analogous observability Gramian to the common control system

observability Gramian is derived and implemented. Methods for evaluating and vi-

sualizing the observability of the EGI minimization are developed for Low Earth

Orbit (LEO), Medium Earth Orbit (MEO), and Geosynchronous Earth Orbit (GEO)

systems. Next, constraints are applied to the observability analysis for determining

realistic, efficient measurement strategies for light curve inversion. Finally, observ-

ability is conducted with knowledge of the mapping between the EGI and the original

object to evaluate the impact of an error in solar panel deployment on the system

geometry.

Chapter 6 presents the conclusions drawn from analysis of observability for SSA.

In addition, recommendations for future areas of research are given.



9

2. BACKGROUND

In order to analyze observability for Space Situational Awareness (SSA) applications,

several concepts must be introduced first. This chapter presents background mate-

rials on the fundamentals of observability, the orbit problem, ground-based optical

observations, estimation methods, and light curve inversion.

2.1 Observability Fundamentals

The history of control theory can be divided into two major periods of develop-

ment, each of which has an associated domain in which most methods focus [17].

The classical control theory period is defined by development of theories, from the

early 1940s to the late 1950s, which are characterized by analysis focusing on the

frequency-domain of control systems. Control theory development with emphasis

on the frequency-domain has continued past this classical control theory period, but

modern control theory became a major research area in the late 1950s and early 1960s.

Modern control theory is characterized by analysis focusing on the time-domain of

control systems, and more specifically, the state-space representation of control sys-

tems. A more thorough history of control theory, with additional references, can be

found in the work of Friedland [17].

As the name implies, the state-space representation of a control system uses the

concept of a state to describe a dynamical system. The state of a system contains

physical quantities which are necessary for describing the dynamical progression of

the system over time [17]. In actual, physical systems, noise and system inputs

confound the ability of the states to exactly define the evolution of the system, but

in general, the states of a system completely describe the dynamics. The states of

a system are often not or not directly measurable quantities for physical systems.
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For example, a simplified description of an orbit around the Earth requires a state

consisting of position and velocity, but measurements of an object in orbit typically

consist of angles or range from an observer to the object in orbit. In order to define

the state of an orbit system, the relationship between the measurements and states

must be known. In general, observability analysis explores this relationship between

the measurements and states of a system.

The concept of observability was originally introduced by one of the pioneers of

state-space modern control theory, Rudolph E. Kalman [15]. In the work by Kalman,

the main existence theorem states that the optimal regulator problem has a solution

if and only if the state dynamics are completely controllable and completely observ-

able. The optimal regulator problem defined by Kalman seeks to find a control for a

system which minimizes a performance index. Kalman also introduced the principal

of duality, which determines that the optimal regulator problem is the Wiener filter-

ing problem of the dual system. The principal of duality provides the connection of

controllability and observability. If a system is completely observable, then the dual

system is completely controllable. The reverse is also true. As a result, control theory

analysis typically investigates controllability or observability.

A system is said to be observable if the initial state can be determined with a

finite set of measurements. Kalman uses the term complete observability to describe

a system where the state at any arbitrary time can be determined with a finite set of

measurements [15]. After Kalman’s initial definition of observability was posed, many

similar definitions have been formulated for adaptation of observability to specific

classes of systems [16–20,81]. In a general sense, observability determines whether the

knowledge contained within the measurements of a system is sufficient for computing

the states.

The test for observability from Kalman is binary in nature, i.e. a system is either

observable or it is not observable. However, Kalman speculated that observability

could find use as a measure of control system performance. Quantification of ob-

servability as a measure for a system has been studied extensively. Brown [23] and
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Ablin [24] began to answer the question of how observable a system is through devel-

opment of a degree of observability. Various tests for observability as a binary criteria

and observability as a numeric measure have been developed [16–20,26–38,81]. Next,

the mathematical formulation of observability is presented, beginning with a general

nonlinear state-space control system representation.

2.1.1 State-Space Control System Representation

In the state-space representation of a control system, the dynamics are defined by

a first-order ordinary differential equation (ODE) of the state. For a general nonlinear

system with a state defined by xptq “ rx1, x2, . . . , xns
T , the state ODE is given by

9xptq “ fpt,xptq,uptqq, (2.1)

where fpt,xptq,uptqq is a nonlinear model of the system dynamics, which is a function

of time, the state, and the inputs, uptq. The state consists of n variables, and the

state ODE initial condition is defined by the state at time t0. The state-space system

representation models the relationship between the state and output of a system.

zptq “ hpt,xptqq ` νptq, (2.2)

where zptq “ rz1, z2, . . . , zrs
T is the output defined by r measurements, hpt,xptqq

is a nonlinear model of the output as a function of time and the state at time t, and

νptq is the continuous-time measurement noise. The dimension of the input is equal

to the dimension of the state, n, and the dimension of the measurement noise is equal

to the dimension of the output, r.

Most real, physical systems are nonlinear in nature. Hermann [20] and Casti [21]

use Lie derivatives, which is a generalization of the directional derivative, for deter-

mining the observability of nonlinear systems. Linear methods are often preferred for

application to linearized nonlinear systems due to computational efficiency and ease

of implementation [61, 63, 67–70]. Although linear observability methods are most

often applied to nonlinear systems which have been linearized, observability analysis
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methods have been developed for the true nonlinear system. Casti [21] and Son-

tag [22] show how the observability of a linearized system is a sufficient condition for

observability of the nonlinear system in the neighborhood of the linearization. The

observability of the linearized system is not a necessary condition for observability of

the nonlinear system because of the influence of the input, uptq, on nonlinear observ-

ability. In a linear system, observability does not depend on the control input, so the

input can be assumed to be zero, as shown by Ogata [16]. However, Casti discusses

how the input is important for nonlinear observability, and thus, observability of the

linearized system is not a necessary condition for nonlinear observability [21].

Linear observability methods are studied in this work for SSA due to the computa-

tional efficiency and ease of implementation of the methods. In addition, the systems

within SSA applications are commonly linearized for analysis. Two methods exist for

linearizing the nonlinear state-space equations. State and output deviations from a

reference can be used for the linearization, as in [14, 49, 50, 81, 82], or the Jacobian

of the nonlinear state and measurement model can be computed, as in [50]. Imple-

menting the Jacobian linearization method from Montenbruck & Gill, the linearized,

continuous-time state-space equations are given as

9xptq “ Aptq xptq, (2.3)

zptq “ rHptq xptq ` νptq, (2.4)

where Aptq is the Jacobian of the nonlinear state dynamics model in Equation 2.1,

and rHptq is the Jacobian of the nonlinear measurement model in Equation 2.2. Note

that the control input uptq is assumed to be the zero vector as it will not influence

the linear observability analysis. In addition, if the deviation linearization method

was implemented for obtaining the linear state-space equations, xptq and zptq would

represent the deviations in the state and output with respect to a reference.
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Discrete-time state-space equations can be defined through a discretization of

Equations 2.3 and 2.4. Following the discretization procedure from DeCarlo [83], the

discrete-time state-space equations are given by

xptkq “ Φptk, t0q xpt0q, (2.5)

zptkq “ rHptkq xptkq ` νptkq, (2.6)

where Φptk, t0q is the state transition matrix (STM), which transforms the state

from t0 to tk. The STM is a linear mapping of the state, which can be numerically

determined by solving the STM ODE in Equation 2.7.

9Φptk, t0q “ Aptkq Φptk, t0q, Φpt0, t0q “ Inˆn. (2.7)

A derivation of the STM is presented by Friedland [17]. Next, the observability

Gramian is derived with the state-spaced control system representation.

2.1.2 Observability Gramian

The output equations of the continuous-time and discrete-time systems, Equations

2.4 and 2.6, show the relationship between the measurements and states of a system.

However, in most cases, the linearized measurement model is non-singular and there

is measurement noise, so direct calculation of the state from the measurements is

not possible. Therefore, the output equation is manipulated to define the initial

state in terms of the measurements, and as a result, the observability Gramian is

obtained. A derivation of the observability Gramian follows for the discrete-time

system. The observability Gramian in the discrete-time system is commonly referred

to as the observability matrix. An analogous derivation exists for the continuous-time

observability Gramian, and details of both derivations can be found in the works of

Friedland [17], Ogata [16], Gajic [18], and Bay [19]. In addition, the derivation is

performed for the deterministic system, i.e. the measurement noise is not present in

the output equation. The stochastic observability matrix, including measurement

noise, is derived in Section 3.1.1.
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The derivation of the deterministic observability matrix begins by substituting

Equation 2.5 into Equation 2.6.

zptkq “ rHptkq Φptk, t0q xpt0q, (2.8)

Next, measurements from time t0 to time tm are accumulated, resulting in
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xpt0q or sz “ sH xpt0q, (2.9)

where Hptkq “ rHptkq Φptk, t0q. The sH matrix is not likely to be a square matrix,

and the required number of measurements, m, for computing the initial state is not

known. The initial state is solved for by first multiplying both sides of Equation 2.9

on the left by sHT .

sHT
sz “ sHT

sH xpt0q. (2.10)

Finally, the initial state can be determined by taking the inverse of sHT
sH, resulting

in

xpt0q “ psH
T
sHq´1

sHT
sz. (2.11)

Equation 2.11 relies upon the assumption that sHT
sH is invertible. Observability

defines whether sufficient knowledge of the initial state is contained within the mea-

surements of a system. In the discrete-time state-space system, observability depends

on the invertibility sHT
sH, otherwise known as the observability matrix, Opt0, tmq. A

common form of the observability matrix is given by

Opt0, tmq “
m
ÿ

k“0

Φptk, t0q
T
rHptkq

T
rHptkq Φptk, t0q, (2.12)

Therefore, a discrete-time state-space system is observable if the measurements con-

tain sufficient knowledge of the initial state such that Opt0, tmq is invertible.

This derivation of the discrete-time observability matrix is shown for a time-

varying system. Simplified time-invariant observability matrix forms exist, but the
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applications of interest in this work are time-varying. Similar derivations of the

observability matrix are provided by Ogata [16], Gajic [18], and Bay [19]. Following

a similar procedure, the analogous continuous-time observability Gramian is defined

by

Opt0, tmq “
ż tm

t0

Φpτ, t0q
T HpτqT Hpτq Φpτ, t0q dt. (2.13)

Typically the continuous-time matrix in Equation 2.13 is called the observability

Gramian and the discrete-time matrix in Equation 2.12 is called the observability

matrix. Next, the different conditions for observability and measures of observability

are introduced.

2.1.3 Conditions for Numerical Evaluation of Observability

For discrete, time-varying, linear systems, the common test for observability in-

volves the observability matrix. The observability matrix is defined within the com-

putation of the initial state vector from measurements in a control system in Equation

2.11. As part of the computation of the initial state vector, the observability matrix

is assumed to be invertible. Therefore, a system is observable, if the observability

matrix is non-singular.

There are many equivalent conditions for determining whether a matrix has an

inverse [84]. Common equivalent conditions used with observability analysis are ma-

trix rank, column linear independence, eigenvalues, singular values, and determinant.

For a square matrix with n ˆ n rows and columns, a matrix is invertible when the

rank is equal to n. Equivalently, if the determinant is not equal to zero, then the

matrix is invertible. In addition, if all of the eigenvalues are nonzero, then the ma-

trix is invertible. Many of the equivalent conditions for matrix invertibility can be

evaluated for determining system observability. In this work, matrix rank through

singular value decomposition and column linear independence are explored for ana-

lyzing observability.
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In observability literature, many different methods are implemented for analyzing

the observability of a system. These methods can be separated by methods which

determine a binary observability result and methods which determine a quantitative

measure for observability. The original definition of observability from Kalman fo-

cused on the binary criteria for observability, i.e. whether a system observable for

not. A common test for this binary criteria is the observability matrix rank test for

determining invertibility. If the observability matrix is full rank, i.e. the rank equals

n for a square n ˆ n matrix, then a system is observable, and if the observability

matrix is rank deficient, then the system is not observable. Within the introduc-

tory work of observability, Kalman raised an open question of whether observability

could be extended beyond the binary full rank criteria, as a numeric measure for

control system performance [15]. Quantifying observability through a numeric mea-

sure has been explored in many works within the field of state-space modern control

theory [19, 24, 26–33, 35, 37, 51, 60, 74–76, 85–87]. Some examples of measures of ob-

servability are the observability matrix determinant, condition number, and singular

values.

When linear observability methods are applied to linearized, time-varying systems,

analytical results can be challenging to achieve due to the linearized dynamics and

time-varying nature of the system. Therefore, observability analysis and measures

of observability are often computed numerically. Numerical determination of matrix

rank can be computed with several methods, the most commonly used methods are

eigenvalue decomposition or singular value decomposition. For a system to be full

rank, the eigenvalues or singular values must be nonzero, and the rank of a matrix

is equal to the number of nonzero eigenvalues or singular values. An advantage of

implementing singular values over eigenvalues for determining matrix rank is that

singular values are always greater than or equal to zero [88].
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The singular values of a matrix are determined through singular value decompo-

sition (SVD), which decomposes a matrix, square or rectangular, into several compo-

nents. For example, a matrix A is decomposed with SVD as

A “ U S VT , (2.14)

where U,V are orthogonal matrices and S is a diagonal matrix containing the singular

values. Restating the binary condition for observability, if the singular values of the

observability matrix are strictly positive, then a system is observable for a given

analysis time.

Numerical error, specifically rounding error, presents a challenge of implementing

this test for observability numerically. Due to numerical error accumulation over

time and precision limits, differentiating a number from zero is not well defined. The

machine epsilon, ε, is used to define a tolerance in Equation 2.15 for computing matrix

rank with singular values.

tol “ maxpsq ˆmaxpsizepOpt0, tmqqq ˆ ε, (2.15)

where s are the singular values of the observability matrix. Equation 2.15 is one of

many representations of numerical error approximation when computing matrix rank

using floating point arithmetic [89].

The ε represents the smallest value that can be added to one, where the resulting

summation can still be differentiated from one using floating point arithmetic. For a

double precision computer, ε “ 2´53 “ 1.11e ´ 16, and the minimum floating point

number which can be stored is 2´1074. The machine epsilon specifies the spacing

between two floating point numbers. The spacing between a value of one and the

adjacent floating point number is ε, but this spacing also depends on the floating

point number being evaluated. Higham defines the spacing between a floating point

number, x, and an adjacent number by β´1 ε |x|, where β is the base for the precision

of the computer, which is often two [90]. For example, the spacing between 10´30 and

the next adjacent number to 10´30 on a computer with double precision is defined



18

by 2´1 ˆ 2´53 ˆ 10´30 “ 5.55 ˆ 10´47. For determining the rank of a matrix with

singular values, the tolerance in Equation 2.15 approximates the rounding error and

computes the spacing between two values near the scale of the largest singular value

of the observability matrix.

When the observability matrix has singular values which are below the tolerance

line, the observability cannot be determined numerically due to rounding errors. This

distinction of not being able to determine the observability due to numerical errors

and deeming a system unobservable is important when evaluating observability nu-

merically. Even though understanding of a system may enable stating that a system

is unobservable given certain measurements and states, evaluation of the system nu-

merically will not prove that said system is unobservable. The cause for singular

values of the observability matrix being below the tolerance line cannot be distin-

guished between a lack of knowledge in the measurements and numerical rounding

errors. Although this distinction is minute, it is important to make for accurate

representation of numerical observability results. Through understanding of system

dynamics, comments on unobservability may be made, but these comments should

be made with thorough understanding of the dynamics and not based on the singular

values of the observability matrix alone.

The singular values of the observability matrix and the observability matrix rank

change over time as more measurements are added to the system. Therefore, these

quantities can be used as measures of observability, in addition to the full rank crite-

ria [29,53]. The observability matrix does not contain measurements, but the observ-

ability matrix is evaluated at each measurement time step and the model defining the

measurement-state relationship, the linearized measurement matrix, is a component

of the observability matrix. As the analysis time increases, which is directly related

to the time of each measurement, information is added to the system. When singular

values move from below to above the tolerance line, the rank of the observability

matrix increases, indicating the measurements provide more knowledge of the state.

Note that the relationship between the singular values and the state variables of the
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system is not one-to-one. As a singular value moves above the tolerance line, this

does not correspond to a single state becoming observable. Systems may exist where

the singular value and state relationship is one-to-one, but in general this is not true.

The condition number of a matrix, which is the ratio of the largest singular value

to the smallest singular value, is sometimes used with the observability matrix to give

a measure of the system observability. The condition number attempts to determine

how ill-conditioned a matrix is, i.e. how close the matrix is to not being invertible [91].

Therefore, the condition number is purely a relative measure and cannot give a binary

result of observability. Furthermore, the condition number of the observability matrix

is implemented with the notion that a smaller condition number indicates the system

has strong observability and a larger condition number indicates the system has poor

observability. The criteria for small or large condition numbers is not well defined,

and the notion of small or large condition numbers will change depending on the

system of interest.

Because the condition number does not have a clearly defined criteria for measur-

ing observability, it is not implemented in this work for evaluating whether a system

is observable or not. Analysis of the singular values compared to the tolerance line

is implemented in this work to provide more information about the system observ-

ability beyond the binary criteria of observable or not. This analysis of the singular

values of the observability matrix is not necessarily a measure of observability, but

it does provide more insight into the observability than a binary result. In addition

to comparing the singular values of the observability matrix to the tolerance line,

some of the results implement a different measure for analysis of observability. The

ratio of the smallest singular value of the observability matrix to the tolerance line is

implemented in Section 3.8 for comparing different observability analysis cases. This

ratio is related to the inverse of the matrix condition number; however, with the ad-

dition of the other components of the tolerance line, an estimation of the numerical

rounding error is also considered. When this ratio of the smallest singular value to

the tolerance line is implemented, the criteria for observability is given by whether
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this ratio is greater than one. Comparison of different observability cases with this

ratio as a measure of observability is explored in more detail in Section 3.8.

Finally, when the observability of the light curve inversion problem is explored

in Chapter 5, the equivalent condition of matrix observability which depends on

the linear independence of the columns of a matrix is exploited as an observability

measure. Section 5.1 derives the observability Gramian for the light curve inversion

problem. Due to the linear nature of this problem as it has been defined, the linear

independence of the columns of the observability matrix are used to determine how

specific surface normal directions of an object become observable. More in-depth

discussion and results implementing this observability measure are given in Section

5.4.

2.2 The Orbit Problem

The works of Kepler and Newton are fundamental to governing the motion of

objects in orbit. Johannes Kepler developed laws of planetary motion after acquiring

the extensive astronomical observations from Tycho Brahe, after his untimely death

[92, 93]. These laws of planetary motion describe how planetary bodies move in an

orbit, but not the dynamical explanation of why bodies move in this way. Sir Isaac

Newton developed the laws of motion and the law of universal gravitation which give

the mathematical basis for the motion of orbiting bodies [14, 49]. Therefore, this

background focuses on Newton’s contributions. Newton’s laws of motion and law of

gravitation are implemented for deriving the two-body equations of motion.

2.2.1 Two-Body Equations of Motion

Newton’s universal law of gravitation defines the force between two point masses

as

F “
GM1M2

d2
, (2.16)
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where F is the force on each body, G is the universal gravitation constant, Mi is

the mass of each body, and d is the distance between the two bodies [49]. Applying

Newton’s second law of motion and defining the relative vector relationship between

the position of the Earth and a resident space object (RSO), the equations of motion

for an RSO with respect to the Earth are defined as

:rCRSO “ ´
GpmC `mRSOq

r2
r̂CRSO, (2.17)

where mC is the mass of the Earth, mRSO is the mass of an RSO, and rCRSO is the

position vector from the Earth to an RSO. The mass of the Earth is many orders of

magnitude larger than the mass of an RSO, so the acceleration of an RSO due to the

Earth is can be reduced to

:r “ ´
µ

r3
r, (2.18)

where µ “ G mC is the universal gravitational constant. In Equation 2.18, the

position unit vector has been replaced with the equivalent position vector divided

by the magnitude of the position vector. In addition, the subscripts are removed

for simplicity and for agreement with commonly displayed forms of the two-body

equations of motion [14,49,50]. The nonlinear equations of motion in this section are

converted to the state-space control system representation and linearized in Section

2.4 to develop the observability matrix for the orbit problem.

Several assumptions were made for the derivation of the two-body equations of

motion in Equation 2.18. First, the mass of the RSO is assumed to be negligible.

Next, the coordinate system used in the derivation of the relative motion of an RSO

with respect to the Earth is assumed to be inertial. The Earth is not actually inertially

fixed, but for problems focused on the motion of a body around the Earth, this inertial

assumption is common. In order to apply Newton’s laws, the two bodies must be point

masses, so the assumption must be made that the bodies are spherically symmetric

with uniform density. Finally, the equations of motion defined by Equation 2.18

describe a system where no forces other than the gravitational force from the central

body act on the RSO [14].
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2.2.2 Perturbed Orbital Motion

For precisely describing the orbit of RSOs, the assumptions of the two-body model

can be too restrictive. The shape of the Earth is not a sphere with uniform density,

but an oblate spheroid. The Earth is not a truly inertial frame for an object orbiting

the Earth. In addition, other forces in addition to the gravitational force from a point

mass central body exist.

These forces in addition to the gravitational force from the central body can be

conservative or non-conservative. For example, a non-spherical Earth model results in

a conservative, perturbative force on an RSO. Forces from other celestial bodies, such

as the Sun and the Moon, are also conservative forces on an RSO. Non-conservative

forces modify the energy of the system, and some examples are solar radiation pressure

(SRP) and atmospheric drag. Montenbruck & Gill present a schematic of the relative

impact of various perturbations compared to the acceleration due to the central body,

in Figure 3.1 of [50]. The schematic shows how the perturbations on an RSO vary

with orbit altitude above the surface of the Earth. For RSOs in low Earth orbit

(LEO) atmospheric drag can be one of the largest perturbations depending on the

altitude and object size. For objects in geosynchronous Earth orbit (GEO), third-

body perturbations and the SRP perturbation can significantly impact orbital motion.

Another method for depicting the impact of various perturbations on orbit accuracy

has been shown by Beutler [94]. Beutler similarly gives relative accelerations of the

perturbations to the central body gravitational acceleration, and also shows how these

perturbations manifest in the orbit error after one day.

The equations of motion for an RSO, including the influence of perturbative ac-

celerations, can be defined as

:r “ ´
µ

r3
r`

ÿ

aperturb, (2.19)

where
ř

aperturb represents the perturbing accelerations due to any modeled perturb-

ing forces.
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When the assumption of a perfectly spherical Earth is relaxed, the oblateness

of the Earth can be modeled with spherical harmonics and a disturbing potential

function.

:r “ ∇U, (2.20)

where ∇ is the gradient operator and U is the potential function. This potential

function form of the equations of motion is equivalent to Equation 2.18 when U “ µ
r
.

The potential function for a non-spherical Earth model is defined by dividing the

Earth into a collection of differential masses. The total gravitational potential due to

the differential masses acting on an RSO is given by

U “ G

ż

C

1

ρq
dmq, (2.21)

where ρq is the relative distance between the differential mass, mq [14]. The integral

is performed over the entire central body. Equation 2.21 can be approximated with

Legendre polynomials and spherical harmonics of degree l and order m. A common

form of the potential function for a non-spherical Earth model is given by

U “
µ

r

8
ÿ

l“2

l
ÿ

m“0

ˆ

RC

r

˙l

Pl,m rsinφgc,sats pCl,m cospmλsatq ` Sl,m sinpmλsatq , (2.22)

where RC is the radius of the Earth, Pl,mr¨s are the Legendre polynomials, φgc,sat is the

geocentric latitude of the RSO, and λsat is the longitude of the RSO. The terms Cl,m

and Sl,m are gravitational coefficients in the spherical harmonics formulation [95].

In addition, other celestial bodies perturb the motion of an object in orbit around

Earth. The following third-body perturbation models can be included for a variety of

celestial bodies, but the most commonly included third-body perturbations are due

to the Sun and the Moon. The third-body perturbation due to the Sun is given by

:r3B@
“ ´µ@

ˆ

r´ r@

|r´ r@|
3
`

r@

r3
@

˙

, (2.23)

where µ@ is the gravitational constant for the Sun and r@ is the position of the Sun

with respect to the center of the Earth. Similarly, the third-body perturbation due

to the Moon is given by

:r3BK
“ ´µK

ˆ

r´ rK

|r´ rK|
3
`

rK

r3
K

˙

, (2.24)
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where µK is the gravitational constant for the Moon and rK is the position of the Moon

with respect to the center of the Earth [95]. For any additional celestial bodies, the

position vectors and gravitational constant can be substituted in for the corresponding

Sun or Moon terms. A general form of the third-body perturbation for n perturbing

bodies is given by

:r3B “ ´

n
ÿ

i“1

µ3Bi

ˆ

r´ r3Bi

|r´ r3Bi
|3
`

r@

r3
3Bi

˙

. (2.25)

The perturbing accelerations of a non-spherical Earth model and other celes-

tial bodies are independent of the RSO mass, area, and attitude. However, non-

conservative forces, such as atmospheric drag and SRP, often heavily depend on the

object mass, area, and attitude [50]. For example, an object with large solar panels

will experience a larger perturbing acceleration from SRP if the solar panel normal

vector is aligned with the Sun vector compared to an object with a smaller surface

area facing the Sun.

As shown by Montenbruck & Gill, atmospheric drag can be a dominant perturbing

force for objects in LEO. The perturbing acceleration due to drag is modeled by

:rdrag “ ´
1

2
CD

A

m
ρphqv2

relv̂rel, (2.26)

where CD is the drag coefficient, ρphq is the function for the air density at a given

altitude h, vrel is the velocity direction relative to the atmosphere. This model of the

drag perturbation assumes a spherical object [95].

For objects in GEO, SRP can be a large perturbing force depending on the area-

to-mass ratio (AMR) of an object and material reflectivity characteristics. The SRP

perturbation models the acceleration due to reflection of a light source off an object.

The so-called cannonball model, which approximates an object as a sphere, is often

applied as a first approximation for SRP. The SRP perturbation cannonball model is

defined by

aSRP,sphere “ ´
A

m
C (AU)2E

c

s

|s|3
, (2.27)

C “
1

4
`

1

9
Cd, (2.28)
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where A is the surface area, m is the mass, Cd is the diffuse coefficient, E is the solar

constant, c is the speed of light, AU is the astronomical unit, and s “ r ´ r@ is the

Sun-object vector. The diffuse coefficient is a component of a Lambertian-Specular

reflection model and represents how light reflects off an object in a diffuse manner [95].

If an object is a flat plate or is modeled as a composition of many flat facets, the

perturbing acceleration due to each flat face is modeled by

aSRP,flat “
A

m

E

c

(AU)2

|s|2
s ¨ nrp1´ Csqs` 2pCss ¨ n`

1

3
Cdqns, (2.29)

where n is the outward surface normal vector of the flat plate or facet and Cs is the

specular reflection coefficient. The SRP perturbation for a flat plate is constrained

by

0 ă arccospŝ ¨ n̂q ă
π

2
, (2.30)

which represents the fact that the surface normal vector and the Sun-object vector

must be in the same hemi-sphere to perturb the flat plate or facet [95].

This work predominately focuses on perturbation of the two-body motion with

SRP. In a small portion of the work, propagation is performed with the Simplified

General Perturbations 4 (SGP4) propagation model. The SGP4 propagator includes

perturbations from a non-uniform Earth model with zonal harmonics up to degree five

and an analytical drag model. Further details on the development and implementation

of SGP4 can be found in [6, 14, 96].

2.3 Ground-based Optical Observations

Ground-based optical observations are considered in this study of observability

analysis for SSA. Although ground-based observers have to contend with atmospheric

effects, the relatively low cost of establishing new observation systems and the ease

of access to hardware for maintenance often make ground-based observation systems

advantageous compared to spaced-based systems [97].
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2.3.1 Coordinate Systems

In Section 2.2, the equations of motion for an object in orbit around Earth were

derived with respect to an inertial frame, which is commonly defined as the Earth

Centered Inertial (ECI) reference frame. The ECI reference frame is defined by the

î-axis in the direction of the vernal equinox, the k̂-axis is aligned with the rotation

axis of the Earth, and the ĵ-axis completes the right-handed coordinate system [14].

While propagation of the equations of motion for an RSO typically occurs in the

ECI reference frame, ground-based observations are obtained from an observer on the

surface of the Earth. The frame of the observer differs from the ECI frame in two

ways. First, the Earth rotates compared to an inertial frame. Second, the observer

reference frame is centered on the surface of the Earth rather than the Earth center.

In order to explore the relationship between ground-based optical observations and

the state of an RSO with observability analysis, the relationship between the ECI

reference frame and the reference frame of the observer must be defined.

A ground-based observer is fixed to the surface of the Earth and rotates with the

Earth. As a result, the position of the observer is defined with respect to the Earth

Centered, Earth Fixed (ECEF) coordinate frame. The ECEF coordinate frame is

defined by the ê1 axis directed toward the Greenwich meridian from the center of

the Earth, the ê3 axis is aligned with the rotation axis of the Earth, and the ê2 axis

completes the right-handed coordinate system [14]. The ECI and ECEF coordinate

frames both share the rotation axis of the Earth as a coordinate axis. Therefore, a

position vector for an observer in the ECEF coordinate frame is rotated to the ECI

coordinate frame with a rotation about the rotation axis of the Earth. The angle

of rotation between these two coordinate systems is defined by the Greenwich Mean

Sidereal Time (GMST), θ. For example, the position of a ground station in the ECEF

coordinate frame, rECEF
gs , is rotated to the ECI coordinate frame by

rECI
gs “ R3pθq rECEF

gs , (2.31)
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where R3pθq is the rotation about the ê3 axis by the GMST. The GMST determines

the angle between the Greenwich meridian and the vernal equinox.

The rotation of an observer position vector from the ECEF coordinate frame

to the ECI coordinate frame assumes an inertially fixed rotation axis for the Earth.

However, the rotation axis of the Earth is perturbed by the gravitational force of other

planets and the Moon. The perturbed motion of Earth’s rotation axis is defined by

components of gyroscopic motion, precession and nutation. The period of precession

and nutation are approximately 26,000 years and 18.6 years, respectively [14]. The

impact of these effects is often assumed negligible for short time scales. However,

for precise orbit determination, corrections for precession and nutation should be

considered. In this work, precession and nutation corrections are applied when SGP4

is implemented for propagation. Montenbruck & Gill provide a thorough derivation

and discussion of the precession and nutation corrections to the rotation axis of the

Earth [50]. Using these corrections with Equation 2.31 results in a more precise

observer position in ECI coordinates.

2.3.2 Right Ascension and Declination Measurements

The ground-based optical observations implemented in this work consists of right

ascension, α, and declination, δ, angles. These angles are defined for an observer

located with latitude φ and GMST θ by

α “ arctan

ˆ

ρy
ρx

˙

, (2.32)

δ “ arctan

˜

ρz
a

ρ2
x ` ρ

2
y

¸

, (2.33)

where,

ρx “ x´RC cosφ cos θ, (2.34)

ρy “ y ´RC cosφ sin θ, (2.35)

ρz “ z ´RC sinφ. (2.36)
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The x, y, and z variables are components of the object position in the ECI coordi-

nate frame, and RC is the radius of the Earth. The right ascension and declination

measurements are defined with the relative position vector from the observer to the

object, ρ “ rρx, ρy, ρzs
T in the ECI coordinate frame. Therefore, the state and

measurements are now both defined in the ECI coordinate frame.

Note that these angles are often called topocentric right ascension and declina-

tion because they are defined with the relative position vector from the observer, or

topocenter, to the object. This terminology differentiates the right ascension and

declination angles which are defined with respect to the geocenter and are often used

in astronomy. More information on common coordinate systems and other types of

measurements used in astrodynamics is provided by Vallado [14].

2.3.3 Optical Sensors and Measurement Noise Estimation

In real, physical systems, the right ascension and declination angles in Equations

2.32 and 2.33 are obtained from optical measurements, such as from a ground-based

telescope. A common type of optical sensor used in a full telescope setup is the

Charged Couple Device (CCD), which determines the electron counts due to photons

from various light sources impinging upon the sensor. The noise estimation performed

in this work uses observations taken with a CCD. Detail on the CCD sensor and

relevant equations are given in the work of Sanson & Frueh [98].

In any physical system, noise is inherent. Sources of noise in the CCD measure-

ment can be separated into noise sources which are internal to the CCD sensor and

noise due to external light sources. Two common sources of internal noise are dark

noise resulting from extra undesirable electron emissions, and read-out noise result-

ing from flaws in the CCD. External noise is modeled by various background light

sources, e.g. noise effects from the Sun, the Moon, zodiac light, stars, and galactic

light. Details on the background light sources is provided in [99]. The internal and
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external noise sources in a CCD both contribute to uncertainty in the right ascension

and declination measurements.

Uncertainty quantification methods from Sanson & Frueh are implemented in this

work to estimate realistic uncertainties in right ascension and declination measure-

ments. The methods from Sanson & Frueh quantify the uncertainty in pixel position

of an observation based on a Gaussian fit of a background corrected image and the

inversion of the Fisher Information Matrix [98, 100]. These methods quantify the

lower limit of the uncertainty in pixel position. Figure 2.1 depicts an observation of

a GEO satellite from the Purdue Optical Ground Station (POGS). The satellite is a

streak in the image because the optical telescope is moving with the stars, thus the

satellite is moving through the frame. Images of this type are used in the following

uncertainty quantification.

Figure 2.1. Image of a GEO satellite from POGS, taken in sidereal tracking mode

resulting in a streaked satellite observation.
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For quantification of the pixel position uncertainty in an observation with a satel-

lite streak, parameters for a two-dimensional Gaussian are estimated with the follow-

ing model

f “ A exp

„

´
1

2

`

c1px´ x0q
2
` 2c3px´ x0qpy ´ y0q ` c2py ´ y0q

2
˘



, (2.37)

where A defines the amplitude of the Gaussian fit, c1 and c2 define the size of the

fitted Gaussian in the x and y axes, c3 orients the Gaussian with respect to the x

and y axes, and x0 and y0 locate the center of the Gaussian in the image. Once

the parameters defining the two-dimensional Gaussian are estimated, the inverse of

the Fisher Information Matrix, which is calculated to determine the pixel position

uncertainties, is shown in Equation 2.38.

Kx0,y0 “
δxδy

pSNRq2
?
Dπ

3
2

ˆ

ˆ

»

–

2c2p
?
π ` 2

b

D
c2
ada ` 2

b

D
c1
ρ2bdbq ´2c3p

?
π ` 2

b

D
c2
ada ` 2

b

D
c1
ρ2bdbq

´2c3p
?
π ` 2

b

D
c2
ada ` 2

b

D
c1
ρ2bdbq 2c1p

?
π ` 2

b

D
c1
bdb ` 2

b

D
c2
ρ2adaq

fi

fl ,

(2.38)

Equation 2.38 also requires parameters of the CCD and parameters of the signal

truncation. In Equation 2.38, δx and δy are the pixel scales in the x and y directions,

SNR “ Aδxδy
σ

is the signal-to-noise ratio, σ is the standard deviation of the background

subtracted signal, D “ c1c2 ´ c2
3 is the determinant, ρ “ c3?

c1c2
is a correlation factor

between the x and y axes, a and b are image truncation parameters in the x and y

directions, da “ expp´Da2

c2
Dq, and db “ expp´Db2

c1
Dq. Details on the derivation of the

pixel position uncertainty quantification for space object observation are given in the

works of Sanson & Frueh [98,100].

Right ascension and declination angle measurements are implemented throughout

this work. The uncertainties in pixel position, given by the diagonal in Equation 2.38,

are transformed from the pixel position space to the right ascension-declination space.

The astronomical position of the image is determined by detecting the catalog stars in

the image in a process often called plate solving [101]. The transformation from pixel
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coordinates to right ascension-declination coordinates is computed during the plate

solving process. Next, this transformation matrix rotates the inverse of the Fisher

Information Matrix, Kx0,y0 , from the pixel space into the right ascension-declination

space with covariance rotation methods from Vallado and Alfano [102].

When this method for quantifying the right ascension and declination uncertainty

is implemented for a single image instead of the true mean of the distribution, a small

bias may be introduced. Therefore, the uncertainties from a set of seven compara-

ble images are averaged to overcome the potential small bias from determining the

uncertainty from a single measurement. Specific right ascension and declination mea-

surement uncertainties and SNR averages are presented and implemented in Section

3.6.3.

2.3.4 Apparent Magnitude Light Curve Measurements

Light curves, which are defined by the apparent magnitude of an object over time,

are another measurement type implemented in this work. The apparent magnitude of

an object is a measure of the irradiance received by a sensor relative to the irradiance

from a light source. The apparent magnitude is influenced by the geometry among

the observer, object, and Sun. In addition, the attitude of the object will influence

how light from the Sun is reflected towards the observer.

The magnitude and irradiance of the Sun are often used in apparent magnitude

calculations, as shown by

mag “ mag@ ´ 2.5 log10

ˆ

Isensor

I@

˙

, (2.39)

where mag@ “ ´26.74 is the apparent magnitude of the Sun at 1 AU, Isensor is the

irradiance received by a sensor, and I@ is the irradiance emmitted by the Sun at 1

AU [99]. The ratio of the irradiance values can be expanded to explain how Equation

2.39 captures the brightness of an object which is illuminated by the Sun.

Isensor

I@

“

ˆ

Iobjin

I@

˙ˆ

Iobjex

Iobjin

˙ˆ

Isensor

Iobjex

˙

. (2.40)
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The first fraction in Equation 2.40 corrects for differences between the Sun-object

distance and 1 AU. This term is necessary because the magnitude and irradiance

of the Sun are based on the value at 1 AU. The second fraction describes how the

incident irradiance, Iobjin , is reflected towards the observer as a result of the bi-

directional reflection distribution function (BRDF). The BRDF models diffuse and

specular reflection properties of a material. The final fraction corrects for differences

in the irradiance emitted from the object, Iobjex , compared to irradiance received by

the sensor. A detailed explanation of reflectance and optical radiation measurements

can be found in the works of Nicodemus [103,104].

In this work, light curve measurements are implemented in the observability of the

light curve inversion problem in Section 2.7. Observability is applied to light curve

inversion for determining when the observer-object-Sun geometry and attitude of the

object have been sufficiently sampled for performing light curve inversion. Evaluating

the sampling of the light curve geometry will improve the efficiency of generating

measurements for light curve inversion and thus, object characteristic determination.

2.3.5 Sensor Tasking

As discussed in Chapter 1, observing a rapidly growing population of RSOs is a

challenge for existing sensor networks. Therefore, efficient collection of observations

is important for maintaining a catalog of the orbit information for as many RSOs as

possible. A sensor tasking problem for SSA has been formulated by Frueh, Fiedler,

& Herzog [13]. Moreover, Little & Frueh have developed optimization strategies for

solving the sensor tasking problem [105]. A detailed explanation of the problem

formulation and application of various optimization strategies for solving the sensor

tasking problem can be found in [106].

Within the sensor tasking problem formulation, a weight can be specified for

indicating the importance of viewing a particular RSO. If observations of an object

have not been obtained for many days, propagation errors resulting from the inability
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to exactly model the true orbital dynamics may become large. Therefore, this weight

parameter could be set to a large value to increase the importance of observing this

object in the optimizer. Manual definition of this weight for each object is not feasible

for the entire RSO population. In this work, observability is evaluated as a theory-

based method for determining the weight parameter which indicates the importance

of viewing an object. Section 3.8 explores how the singular values of the observability

matrix can be used as a measure for the sensor tasking problem. Performing the

sensor tasking optimization itself is beyond the scope of this work.

2.4 Observability Matrix for the Orbit Problem

Observability has been extensively researched for Global Position Systems (GPS)

and Inertial Navigation Systems (INS) [28, 33, 37, 46, 48, 54–64], but few works have

looked at observability for SSA applications outside of GPS and INS [36, 42, 53, 66,

72,107]. In this section the observability matrix is derived for the orbit problem.

The equations of motion for a system are required to be first-order ODEs for rep-

resentation in the state-space form. Moreover, the observability matrix as derived in

Section 2.1.2 starts from a linearized, discrete-time state-space system. However, the

equations of motion for the orbit problem in Equation 2.18 are nonlinear, second-order

ODEs. Therefore, they must be manipulated to be used in the observability matrix.

The equations of motion are converted to a state-space representation by first reducing

the three second-order ODEs to six first-order ODEs. Next, the nonlinear, first-order

ODEs are linearized to obtain the state-space representation of the orbit problem.

The observability matrix for the linearized orbit problem is completed by computing

the STM and linearized measurement matrix. Finally, this process is repeated for a

state vector extended beyond position and velocity with SRP parameters.
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2.4.1 State-Space Representation of the Orbit Problem

For propagation of an orbit with a two-body model, a state consists of variables

which capture the position and velocity of an orbit. These state variables can be

Cartesian position and velocity components or they can be some other representation

of the orbit, such as orbital elements. An orbit can be represented in many different

ways, but this work focuses on a state consisting of Cartesian position and velocity.

The reduction of the three second-order ODEs to six first-order ODEs begins with

the following state definition.

x “

»

–

r

v

fi

fl “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

x1

x2

x3

x4

x5

x6

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (2.41)

where r is the position vector and v is the velocity vector, each with three components.

Because the time derivative of the position vector is the velocity vector, the following

relations exist for the xi components of the state vector

9x1 “ x4, 9x2 “ x5, 9x3 “ x6. (2.42)

With this state vector, the nonlinear state-space equation, Equation 2.1, becomes

9x “

»

–

9r

9v

fi

fl “

»

–

v

a

fi

fl , (2.43)
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where a is the acceleration vector. Next, the relationships among the state variables

from Equation 2.42 and the equations of motion from Equation 2.18 are substituted

into Equation 2.43, resulting in

9x “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

9x1

9x2

9x3

9x4

9x5

9x6

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

–

x4

x5

x6

´
µ
r2
x1

´
µ
r2
x2

´
µ
r2
x3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (2.44)

Equation 2.44 is the first-order ODE representation of the nonlinear orbit problem

equations of motion. For use with linear observability methods, the system must be

linearized, as shown in the following section.

2.4.2 State Transition Matrix

The next step in obtaining the linearized, discrete-time state-space equations for

the orbit problem is the derivation of the Aptkq for the STM ODE in Equation 2.7.

The Aptkq is defined by the Jacobian of the nonlinear dynamics with respect to the

state vector, otherwise stated as

Aptkq “
Bfptk,xptkqq

Bxptkq
. (2.45)

When the partial derivatives are performed with the state variables in Equation 2.44,

the linearized dynamics are defined by

Aptkq “

»

—

–

03ˆ3 I3ˆ3

Ggravptkq 03ˆ3

fi

ffi

fl

, (2.46)

where 03ˆ3 is a zero matrix with three rows and three columns and I3ˆ3 is the identity

matrix of dimension three. In addition, Ggravptkq is the Jacobian of the gravitational

accelerations due to the Earth with respect to the position components,

Ggravptkq “
µ

|r|5
`

3 r rT ´ |r|2 I3ˆ3

˘

. (2.47)
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This form of the Aptkq matrix is implemented in the STM ODE of Equation 2.7

to determine the STM which transforms the state from t0 to tk. Next, the output

equation, Equation 2.6, is derived for the orbit problem by linearizing the nonlinear

measurement model.

2.4.3 Measurement Matrix

The measurement matrix in the discrete-time observability matrix is defined with

a similar linearization procedure as the state dynamics. The Jacobian of the nonlinear

measurement model in Equation 2.2 with respect to the state vector is given by

rHptkq “
Bhpt,xptqq

Bxptkq
. (2.48)

For the orbit problem, the measurement vector is composed of right ascension and

declination angles, as defined in Equations 2.32 and 2.33. The partial derivatives of

the measurement vector with respect to the state vector are defined by

rHptkq “

»

—

–

´
ρy

ρ2x`ρ
2
y

ρx
ρ2x`ρ

2
y

0 0 0 0

ρx ρz

pρ2x`ρ
2
y`ρ

2
zq
?
ρ2x`ρ

2
y

´
ρy ρz

pρ2x`ρ
2
y`ρ

2
zq
?
ρ2x`ρ

2
y

?
ρ2x`ρ

2
y

pρ2x`ρ
2
y`ρ

2
zq

0 0 0

fi

ffi

fl

. (2.49)

This completes the derivation of the components of the discrete-time observability

matrix in Equation 2.12 for a state consisting of Cartesian position and velocity

modeled with two-body dynamics and measurements consisting of right ascension

and declination angles.

2.4.4 State Extension Beyond Position and Velocity

The previous derivation defined components of the observability matrix for the

orbit problem with a state consisting of position and velocity only. In this section, the

state is extended with additional parameters to improve the understanding of how

object characteristics are obtained from angles-only measurements. More specifically,

two SRP perturbation parameters, area-to-mass ratio, AMR, and the reflectivity
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coefficient, C, are added to the state vector for observability of the orbit problem. In

addition, the SRP perturbation, aSRP, is included in the orbit problem equations of

motion. The extended state and equations of motion are now defined as

x “

»

—

—

—

—

—

—

–

r

v

AMR

C

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, :r “ ´
µ

|r|3
r` aSRP. (2.50)

In Equation 2.50, the SRP perturbing acceleration can be modeled with the cannon-

ball model in Equation 2.27 or the flat plate model in Equation 2.29. The latter model

can be applied to a faceted 3D geometry to include the SRP perturbing acceleration

for a more complex shape.

Following a similar procedure to Sections 2.4.2 and 2.4.3, the STM and linearized

measurement matrix are derived for the new state vector, which is extended with

AMR and C. The first-order state vector ODEs are now defined as

9x “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

9x1

9x2

9x3

9x4

9x5

9x6

9x7

9x8

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

x4

x5

x6

´
µ
r2
x1 ` aSRPx1

´
µ
r2
x2 ` aSRPx2

´
µ
r2
x3 ` aSRPx3

9x7

9x8

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (2.51)

where aSRPx1
, aSRPx2

, and aSRPx3
are the x1, x2, and x3 position components of the SRP

perturbing acceleration.

The AMR of a debris object could vary with time if the object is not rigid. For

example, orbital debris composed of multilayer insulation (MLI) will change shape

over time because the object is not rigid. In addition, materials properties have been

shown to change with time due to the harsh space environment, and the materials
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which are illuminated on an object with a complex geometry could change over time,

resulting in a change in the reflectivity properties [108,109]. In this work, time-varying

AMR and C models are defined by

AMR “ AMRo ` αAMR cospωAMR tq, (2.52)

C “ Co ` αC cospωC tq, (2.53)

where α defines the amplitude of the oscillations and ω defines the frequency of the

oscillations. The specific values of α and ω used in this work are defined in Section

3.6.3 when the time-varying AMR and C models are implemented.

The derivation of the STM and linearized measurement matrix is continued with

AMR and C models which are time-varying, for generality. The Jacobian of the

nonlinear equations of motion in Equation 2.50 with respect to the extended state

vector becomes

Aptkq “

»

—

—

—

—

–

03ˆ3 I3ˆ3 03ˆ1 03ˆ1

Gtotptkq 03ˆ3
BaSRP

Bx7

BaSRP

Bx8

02ˆ3 02ˆ3 02ˆ1 02ˆ1

fi

ffi

ffi

ffi

ffi

fl

, (2.54)

where Gtotptkq “ Ggravptkq `GSRPptkq, and

GSRPptkq “ ´
A

m
C (AU)2E

c

1

|s|5
`

3 s sT ´ |s|2 I3ˆ3

˘

. (2.55)

The partial derivatives of the SRP perturbing acceleration with respect to the AMR

and C equal

BaSRP

Bx7

“
BaSRP

BAMR
“

aSRP

AMR
,
BaSRP

Bx8

“
BaSRP

BC
“

aSRP

C
. (2.56)

If the state is extended beyond position and velocity with only one SRP variable, the

row and column corresponding to the SRP variable which is not included in the state

is removed from Equation 2.54. In addition, Section 3.6 explores the impact of the

combined variable AMR¨C on observability of the orbit problem. For a state vector

extended by this combined SRP variable, the partial derivative of the SRP perturbing

acceleration with respect to this state variable is defined as

BaSRP

Bx7

“
BaSRP

BpAMR ¨ Cq
“

aSRP

pAMR ¨ Cq
, (2.57)
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for Equation 2.54.

The extension of the linearized measurement matrix is simply completed by adding

extra columns of zeros equal to the number of SRP variables by which the state is

extended. For example, if only AMR is included as an extra state variable, the

linearized measurement matrix has an extra column of zeros. The right ascension

and declination measurements do not explicitly depend on the SRP parameters, so

the partial derivatives of the measurements with respect to the SRP state variables

are equal to zero. The impact of extended state SRP variables on the observability

of the orbit problem is analyzed in Chapter 3.

2.5 Estimation Methods

This work implements three estimation methods: nonlinear batch least squares,

the Extended Kalman Filter (EKF), and the Schmidt-Kalman Filter (SKF). The

details of these estimation methods are presented in the following.

2.5.1 Nonlinear Batch Least Squares

The nonlinear batch least squares estimator follows the iterative process in Tapley,

Schutz & Born [49]. The linear, unbiased, minimum variance estimate (LUMVE) is

employed in the iterative batch process with and without a priori information. First,

the LUMVE without a priori is presented, where the estimate of x is computed with

the information matrix, Λ, and the normal matrix, N,

Λ x̂k “ N, (2.58)

Λ “ sHT R´1
sH (2.59)

N “ sHT R´1
sz. (2.60)

Note that x in the LUMVE formulation is a deviation from the reference or nominal

state. In Equation 2.58, the state estimate x̂k can be determined at any time and R
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is the covariance of the measurement noise. Recall from Equation 2.9, sz is a vector

of the measurements at multiple times. Typically, the initial state is estimated in the

LUMVE, but the state which is estimated depends on the mapping of the linearized

measurement matrix, rH, by the STM, Φ. This mapping occurs in sH, which is equal

to

sH “

»

—

—

—

—

—

—

–

rHpt1q Φptk, t1q

rHpt2q Φptk, t2q
...

rHptiq Φptk, tiq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (2.61)

where rHptiq is the linearized measurement matrix at some time ti, and tk is the time

for the state to be estimated. Next, a priori information is included in the LUMVE

by augmenting the R, sH, and sz matrices as

R “

»

–

R 0

0 Pk

fi

fl , sz “

»

–

sz

xk

fi

fl , sH “

»

–

sH

I

fi

fl (2.62)

In Equation 2.62, R is augmented with the covariance of the a priori state estimate,

Pk, and sz is augmented with the a priori state estimate xk. The matrix sH is aug-

mented with the identity matrix to maintain dimensional consistency in the LUMVE

formulation. Typically, the a priori state estimate and the covariance of the a priori

estimate are defined by an initial orbit determination process, thus k “ 0. However,

a priori estimates from different times can be used. When these augmented matrices

are used in the LUMVE formulation, the estimate of the state is given by

Λ x̂k “ N (2.63)

Λ “ P´1
k ` sHT R´1

sH (2.64)

N “ P´1
k xk ` sHT R´1

sz. (2.65)

The information matrix, Λ, and the normal matrix, N now contain the a priori state

information. This concludes the formulation of LUMVE, and this formulation is used

in an iterative procedure for the nonlinear batch least squares. Chapter 3 discusses
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similarities between the LUMVE and the stochastic observability matrix. In addition,

stochastic observability results are compared to state estimation with the nonlinear

batch least squares.

2.5.2 Extended Kalman Filter

Next, the required equations for the EKF are defined. The EKF is an extension

to the Kalman Filter for application to nonlinear systems by linearization of the

nonlinear state and measurement models [14,49,110]. The dynamical model and the

measurement model implemented in the EKF are given by

9xptq “ fpxptqq `Mptq wptq, (2.66)

zk “ hpxkq ` Lk νk, (2.67)

where fpxptqq is a nonlinear model of the state dynamics and wptq is a white noise

process for the state dynamics defined by

Etwptqu “ 0, Etwptq wpτqT u “ Qsptqδpt´ τq. (2.68)

The white noise, wptq, is zero-mean, Qsptq is the process noise power spectral density,

and δ is the Dirac delta function. In Equation 2.68, Et¨u is the expectation operator,

zk defines the measurements at time tk, and hpxkq is the nonlinear measurement

model given the state at time tk. Also, νk defines the measurement noise which is

assumed to be a zero-mean white noise process with covariance Rk, i.e.

Etνku “ 0, Etνk νTl u “ Rkδkl. (2.69)

Finally, the Mptq and the Lk matrices map the noise to the state and measurement

dynamics.

Next, the mean, m, and covariance, P, for initializing the EKF are defined by

m0 “ Etx0u, (2.70)

P0 “ Etpx0 ´m0qpx0 ´m0q
T
u. (2.71)
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The EKF requires an initial state and covariance for performing the estimation. The

mean and covariance are propagated with the numerical integration of the following

ODEs.

9mptq “ fpmptqq, (2.72)

9Pptq “ Fptq Pptq `Pptq FptqT `Mptq Qsptq MptqT , (2.73)

where Fptq is the Jacobian of the nonlinear dynamics evaluated at mptq. As mea-

surements are acquired in a system, the Kalman gain, Kk, is computed with

ẑk “ hpm´
k q, (2.74)

Wk “ Hpm´
k q P´

k Hpm´
k q

T
` Lk Rk LT

k , (2.75)

Ck “ P´
k Hpm´

k q
T , (2.76)

Kk “ Ck W´1
k , (2.77)

where ẑk is the expected measurement evaluated with mean state at time tk prior to

the measurement update in the nonlinear measurement model, Wk is the residual or

innovation covariance, and Ck is the cross-covaraince.

Finally, the measurement update of the mean and covariance estimates for the

EKF is given by

m`
k “ m´

k `Kk pzk ´ ẑkq, (2.78)

P`
k “ P´

k ´Ck KT
k ´Kk CT

k `Kk Wk KT
k . (2.79)

In Equations 2.74 through 2.79, the superscript ´ represents the mean and covariance

prior to the measurement update. Similarly, the` represents the mean and covariance

after the measurement update. The a priori mean state is updated with the Kalman

gain and the error in the expected measurement, zk ´ ẑk. This measurement error

is often referred to as the innovation or the residual. The a posteriori covariance is

computed by updating the a priori covariance with the Kalman gain, cross covariance,

and innovation covariance matrices. A detailed derivation of the EKF can be found

in [14, 49, 110]. The EKF is implemented in Chapters 3 and 4 for investigation of

observability and estimability of the orbit problem.
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2.5.3 Schmidt-Kalman Filter

The Schmidt-Kalman Filter, or Consider Filter (CF), is a modification of the KF

which seeks to improve estimation performance by designating some state variables as

consider parameters [111,112]. The consider parameters are components of the state

vector, but these parameters are not estimated initially. When the observability of

the system has improved, consider parameters are changed to be additional solve-for

parameters within the state vector. Schmidt developed the CF for real-time systems

with unobservable biases, and the CF is well suited for systems with low observability.

The state vector for a CF can be defined by

x “

»

–

s

p

fi

fl , (2.80)

where s is the vector of estimated states and p is the vector of consider parameters.

The dimension of the estimated states and consider parameters is ns and np, respec-

tively. Zanetti & D’Souza demonstrate how the gain calculation step of the CF is

simply given by setting the rows of the KF gain which correspond to the consider

parameters to zero, i.e.,

KCF “

»

–

Ks

0

fi

fl , (2.81)

where Ks is the Kalman gain for the estimated states s given by Equation 2.77

[113]. For the consider parameters, when the switch is made from considering these

parameters to estimating them, the corresponding rows of the Kalman gain are no

longer zero and the consider parameters will be estimated.

The consider approach to the KF must implement a method for determining when

parameters should be considered and when parameters should be estimated. In this

work, observability is implemented as a measure for indicating when consider param-

eters should be estimated. Dianetti also implements observability as a measure for

indicating when consider parameters should enter the state estimation [53]. Observ-

ability is implemented with the CF because states which are challenging to observe



44

can be detrimental to the overall estimation. Therefore, the CF may define param-

eters which are challenging to observe as consider parameters initially to improve

the observability of the system. Then, after some time, more difficult to observe

states can be estimated, reducing the detrimental impact these variables would have

if estimated initially.

The implementation of an observability measure for the CF differs from the work

by Dianetti in one significant way. To define when a consider parameter should be

estimated, Dianetti selected a specific numeric value for the singular value correspond-

ing to the consider parameter. When the singular value was larger than the selected

numeric value, the consider parameter was changed from considered to estimated [53].

However, as discussed in Section 2.1.3, determining which singular values of the ob-

servability matrix correspond to the state variables is often not possible. Rather

than using a fixed numeric value for defining when consider parameters should be

estimated, this work implements the rank of the observability matrix as a measure

for the CF. As the rank of the observability matrix increases beyond ns, consider

parameters become estimated in the state. One challenge with this approach is that

when multiple consider parameters exist, the observability rank measure does not

indicate which parameter to change from considered to estimated. Estimability is

implemented in an attempt to inform the CF of which consider parameters should be

estimated first.

2.6 Estimability

As introduced in Chapter 1, estimability compares the a posteriori and a pri-

ori state estimation error covariances. The term estimability was first introduced

by Baram & Kailath in 1988, who defined a system to be estimable when the a

posteriori state estimation error covariance is strictly less than the a priori state

estimation error covariance [44]. Therefore, if the difference between the a posteriori

state estimation error covariance and the a priori state estimation error covariance
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is positive definite, than a system is considered estimable [114]. From Baram &

Kailath’s early work, many methods have been developed for evaluating estimability

of a system [23–25,28,43,46,48,57]. Some of the preceding works label this method for

estimation performance as stochastic observability. In this work, the term estimabil-

ity applies to methods which evaluate estimation performance with the a priori and

a posteriori state estimation error covariances. Chapter 4 discusses the distinction

and terminology of observability and estimability in more detail.

The estimability method implemented in Chapter 4 of this work for evaluation

of relative state estimation performance originates from Ham [25]. Ham’s work is a

stochastic extension of the work from Brown [23] and Ablin [24]. The methods from

Brown and Ablin seek to determine a vector which is “most orthogonal” to what the

authors call the observability function [23,24]. Ham refers to the stochastic extension

of these methods as stochastic observability. As previously noted, this terminology

is considered a misnomer within the scope of this analysis of observability for SSA.

Therefore, the term estimability is used throughout the remainder of this work when

implementing the methods from Ham.

The estimability methods from Ham analyze the eigenvectors of a normalized state

estimation error covariance matrix to indicate “directions” of relative strong or weak

estimability. The normalization of the a posteriori state estimation error covariance

is conducted in two steps. First,

Pptkq
N`
“

n

trpPptkq1
`
q

»

—

—

—

—

—

—

–

p1
`

11 p1
`

12 . . . p1
`

1n

p1
`

21 p1
`

22 . . . p1
`

2n

...
...

...
...

p1
`

n1 p1
`

n2 . . . p1
`

nn

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (2.82)

where Pptkq
N` is the final normalized state estimation error covariance matrix and

n is the number of state variables. In Equation 2.82, tr represents the trace of the

Pptkq
1` matrix. The scalar multiplier in Equation 2.82 bounds the eigenvalues of the
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Pptkq
N` matrix between 0 and n. The second normalization step occurs within the

definition of Pptkq
1` .

Pptkq
1`
“

´

a

Ppt0q´
¯´1

Pptkq
`
´

a

Ppt0q´
¯´1

“

»

—

—

—

—

—

—

—

–

p11
p11pt0q´

p`12?
p11pt0q´p22pt0q´

. . .
p`1n?

p11pt0q´pnnpt0q´

p`21?
p22pt0q´p11pt0q´

p`22
p22pt0q´

. . .
p`2n?

p22pt0q´pnnpt0q´

...
...

...
...

p`n1?
pnnpt0q´p11pt0q´

p`n2?
pnnpt0q´p22pt0q´

. . . p`nn

pnnpt0q´

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (2.83)

In Equation 2.83, Ppt0q
´ is the a priori state estimation error covariance matrix at

epoch. Moreover, Ppt0q
´ is assumed to be uncorrelated resulting in a diagonal matrix.

The estimability method from Ham determines the directions of weak and strong

relative estimability from the eigenspace of the normalized covariance matrix in Equa-

tion 2.82. Eigenvectors associated with eigenvalues close to n indicate states or linear

combinations of states with weak relative estimability, and eigenvectors associated

with eigenvalues close to zero indicate states or linear combinations of states with

strong relative estimability. Chapter 4 evaluates the applicability of the estimability

methods from Ham to the orbit problem, and estimability results are implemented

for informing the CF.

2.7 Light Curve Inversion

The next application of observability in this work investigates the observability of

the light curve inversion process for determining when a system is sufficiently sam-

pled with light curve measurements. Due to the large distances between ground-based

observers and RSOs, optical observations of objects are typically non-resolved, i.e. ob-

ject attitude, material characteristics, and object shape are not explicitly available

in the images. An example of a non-resolved image is given in Figure 2.2 from the

Purdue Optical Ground Station (POGS).
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Figure 2.2. Titan 3C transtage rocket body, NORAD ID 9855, International Desig-

nator 1977-007C. Image from POGS on February 16, 2020.

Even though shape information is not apparent in the non-resolved images, the ap-

parent brightness of the object changes over time as the system geometry progresses.

Variation in the system geometry is attributed to the observer-object-Sun positions,

the object attitude, the object BRDF, the object size, the object material properties,

the object reflectivity characteristics, atmospheric attenuation, and the CCD sensor

noise. Light curves of astronomical objects have a long history of being used for

determining target shape and attitude information which is challenging to determine

from non-resolved images [115–123]. Furthermore, light curve measurements for SSA

applications have been used for determining RSO characteristic information, such as

attitude, shape, and reflectivity properties [72,124–137]. Characteristic properties of

RSOs are important for improving perturbation modeling accuracy for more accurate

object propagation and identification.

Because the observations are non-resolved, light curve inversion methods are re-

quired for extracting desired shape and reflectivity information from the light curve

measurements. A prominent method for light curve inversion comes from Kaasalainen

et al. and was originally developed for determining asteroid shape and spin mod-

els [138]. The light curve inversion techniques from Kaasalainen et al. have been

explored for SSA applications [79, 139–142]. Fan & Frueh apply the light curve in-
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version process from Kaasalainen et al., depicted in Figure 2.3, for RSO shape and

reflectivity information determination [142].

Figure 2.3. Light curve inversion process [142].

The light curve inversion process consists of several steps. First, an Extended

Gaussian Image (EGI) is constructed from the light curve measurements. Next,

adjacency information is determined with methods initially developed by Minkowski

[143, 144]. Finally, Little completed the light curve inversion process by utilizing

the adjacency information with the dual transform to construct the original object

shape [139–141].

The original concept of the EGI, developed by Gauss, was referred to as a spherical

image [145]. Smith applied the spherical image mapping for representation of objects

and referred to them as enhanced spherical images [146]. Next, Horn performed in-

depth analysis of the EGI for machine vision, which demonstrated that an arbitrary

shape can be projected onto a unit sphere [147, 148]. The discrete representation of

an EGI for an object defined by a polygon mesh, i.e. a non-smooth polygon with a

finite number of flat facets, is described by

EGI “
!

As “
ÿ

Ai|ni “ ns : 1 ĺ s ĺ m, 1 ĺ i ĺ n
)

, tns : 1 ĺ s ĺ mu, (2.84)

where n is the number of flat facets on the polygon mesh. Each flat facet has a normal

vector ni with associated area Ai. The number of EGI normal vectors, ns, is specified

during the construction of the EGI with the integer m. A more detailed explanation of

the EGI construction process is described in the early work of Horn [148] for machine

vision and the work of Fan & Frueh [142] for the light curve inversion process of

Figure 2.3.

Quad-cubed projection is one possible method for defining a sphere in a discrete

manner [149]. It is advantageous for discrete representation of a sphere because areas
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associated with each normal direction are similar in size. The quad-cubed projection

is implemented in this work to define a discrete EGI representation of the unit sphere,

and the number of facets on the EGI is given by m from Equation 2.84. For the quad-

cubed projection, an integer tessellation number, or the number of facets per row and

column on each side of the quad-cubed sphere, is specified to define the total number

of facets, m. Examples of EGI representations of objects are given in Figure 2.4.

Figure 2.4. Examples of shape representation with an EGI, adapted from Fan &

Frueh [142]. The cuboid EGI representation has 150 facets and the ASTRA box-wing

satellite EGI representation has 294 facets, corresponding to tessellation numbers of

5 and 7, respectively.

The first column of Figure 2.4 contains the original object shapes. The second

and third columns are different representations of the EGI, a dot representation and

a facet representation, respectively. Figure 2.4 is adapted from Fan & Frueh [142],

which explains the process for defining the EGI dot and facet representations in more

detail. The facet representation is used throughout this work. The color of each facet

on the EGI represents the associated albedo-area for each surface normal vector. For
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example, the cuboid shape in the first row of Figure 2.4 has an EGI representation

with all facets given in green except for six of the facets given in blue. The six blue

facets define the albedo-areas associated with the six surface normal vectors of the

original cuboid shape. As the cuboid is completely represented by the six surface

normal vectors, all other EGI surface normal vectors have albedo-areas equal to zero.

The ASTRA box-wing satellite EGI depiction in the second row of Figure 2.4 contains

many shades of blue and green as there more surface normal vectors with associated

albedo-areas which define the original object. Note that the EGI representations

of the cuboid and ASTRA box-wing satellite model are generated using the surface

normal vectors and associated albedo-areas of the original objects. In addition, for

a convex surface, the EGI is unique, but for a non-convex surface the EGI is not

unique.

In the light curve inversion process of Figure 2.3, the original object is unknown

because the ground-based observations only lead to non-resolved images. Therefore,

the EGI minimization step of the light curve inversion process is required to esti-

mate the albedo-area vector associated with the surface normal directions of the EGI

faceted sphere. The optimization problem for determining the albedo-area vector can

be posed with a linear least squares cost function as follows

min J “ ||L´G a||2 ,

subject to as ľ 0 @as in a “ ra1, . . . , ams
T , (2.85)

where L is a vector of light curve measurements, G is the reflection matrix, and a is

the albedo-area vector, which contains the albedo-area for each of the facets of the

discrete EGI. Note that the albedo-area vector is constrained to be greater than zero

as negative albedo-areas are not physically realizable. The reflection matrix is defined

for a specific reflection model in Section 5.1. In addition, a detailed analysis of the

EGI minimization is conducted in Section 5.1.

After determining the EGI representation of an object from the light curve mea-

surements, the Minkowski problem is solved to determine adjacency information. This
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Minkowski minimization step has been extensively studied by Little [139–141]. The

cost function for the Minkowski minimization can be posed as

min J “
1

3
rh ¨ a, (2.86)

subject to rh ¨ a “ constant, (2.87)

where rh is the vector of the support, hs, and the support is the distance of each

facet to the center of the object. The tilde over h indicates that the support vector

is defined in the dual space. In addition, the volume of the final inverted shape is

constrained with the hyperplane condition in Equation 2.87. Adjacency information

is determined by solving the Minkowski minimization for the support. Then, the

actual object shape is computed with the dual transform. More detailed descriptions

of the Minkowski minimization and dual transform can be found in the work of Fan

& Frueh [142].

The EGI minimization step within the light curve inversion process is the only

step where the light curve measurements are directly utilized, as shown in Equation

2.85. The Minkowski minimization step estimates the support vector, and as the

measurements for this system are non-resolved, the distance between the object and

observer are significantly larger than the support distances. Therefore, the observ-

ability of the Minkowski minimization cannot be determined due to the significant

differences in scale between the support and observer-object distance. Because light

curve measurements are directly used within the EGI minimization step of the light

curve inversion process, observability of the EGI minimization is the focus of this

work. Chapter 5 evaluates when light curve measurements are sufficient for light

curve inversion, through observability of the EGI minimization.
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3. OBSERVABILITY OF THE ORBIT PROBLEM

As introduced in Section 2.1, observability is a mathematically rigorous method for

exploring the relationship between measurements and states of a control system. This

chapter applies observability to the orbit problem for investigating the relationship

between optical, angles-only measurements and orbital states. The orbital states of

interest contain object information beyond position and velocity to determine the ap-

plicability of observability for object characterization. Moreover, analysis of dynami-

cal systems is often conducted without noise initially to understand the fundamental

mechanics before addition of noise, but noise can change the relationship between the

measurements and states of a system. Therefore, the impact of noise on stochastic

observability results is explored for the orbit problem with extended states.

In addition, the connection of observability and estimation is inherent to the def-

inition of observability from Kalman. The requirement of observability for guarantee

of an accurate estimate is validated with the extended state orbit problem. This

chapter shows that when the observability of a system cannot be determined, an ac-

curate estimate cannot be guaranteed. Furthermore, two observability use cases are

presented: observability for sensor tasking optimization and observability for multiple

sensor and observation evaluation.

3.1 Stochastic Observability

Stochastic observability can indicate two different types of analysis in the ob-

servability and estimation fields. First, stochastic observability, as applied in this

work, is the extension of deterministic observability to include measurement and

state uncertainties. Multiple methods exist for deriving stochastic observability forms

[36,39,40,52,53]. The specific method applied throughout this work is shown in Sec-
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tion 3.1.1. The second form of stochastic observability focuses on analysis of the

covariance matrix of state estimation errors. Although the main existence theorem

from Kalman defines a relationship between observability and estimation, this work

limits stochastic observability to analysis of the state and measurement model matri-

ces with uncertainties as defined in Section 2.4. As noted by Silva, the second form

of stochastic observability should be deemed estimability [48]. Chapter 4 analyzes

estimability of the orbit problem, and discusses the distinction between stochastic ob-

servability and estimability in more depth. For the remainder of this work, stochastic

observability refers to the extension of deterministic observability methods to include

measurement and state uncertainties.

Sections 3.1.1 and 3.1.2 derive the stochastic observability matrix with measure-

ment and state uncertainties through pre-whitening and Cholesky decomposition.

After derivation of the stochastic observability matrix form, the impact of measure-

ment uncertainties on observability of the orbit problem is explored in Section 3.4.

Moreover, a comparison of deterministic and stochastic observability for object char-

acterization is conducted in Section 3.6.3.

3.1.1 Measurement Noise Incorporation

The derivation of the stochastic observability matrix begins with incorporation of

measurement uncertainties. Frueh introduced the method of pre-whitening for folding

measurement noise into the measurement matrix for observability analysis [150], and

this method is also used in the work by Geeraert [36]. For both the continuous

and discrete systems, the measurement noise in the state-space output equations,

Equations 2.4 and 2.6, is assumed to be zero-mean with covariance given by

Erνptqs “ 0, (3.1)

Erνptq νpτqT s “ Rptq δpt´ τq, (3.2)
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for the continuous-time system, and

Erνptkqs “ 0, (3.3)

Erνptkq νptkqT s “ Rptkq, (3.4)

for the discrete-time system. The Rptkq is a covariance matrix for the discrete-time

system, but in a continuous-time system, Rptq is a power spectral density because of

the Dirac delta, resulting in different units for Rptq and Rptkq. As shown by Gelb,

the continuous-time measurement noise is a non-physically realizable process [151].

Although these differences exist between the covariance of the measurement noise

for the continuous-time and discrete-time systems, Rptkq approaches Rptq{∆t as the

discrete-time steps approach zero, ∆t Ñ 0. The analysis performed in this work

focuses on the discrete-time implementation of observability. Analogous continuous-

time observability forms are shown, but derivations are completed using the discrete

state space representation. When the continuous-time covariance of the measurement

noise is presented, the form will be shortened to Rptq to simplify notation, instead of

the true form given by Rptq δpt´ τq.

Pre-whitening, otherwise referred to as decorrelation, is the process of whitening

a covariance matrix to identity and simultaneously incorporating the covariance of

the measurement noise into the measurement model. The whitening process begins

by first decomposing the inverse of a general covariance matrix, or

R´1
“ L LT , (3.5)

where L a lower-triangular matrix. Several methods exist for creating such a de-

composition, e.g. eigendecomposition or Cholesky decomposition [152]. The latter

method, Cholesky decomposition or Cholesky whitening is implemented in this work.

A proof of the whitening of the covariance, R, using the similarity transformation
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from Vallado and Alfano is shown below [102]. The covariance is whitened with

W “ LT [152].

W R WT
“ LT R L (3.6)

“ LT
pL LT

q
´1 L (3.7)

“ LT LT´1

L´1 L (3.8)

W R WT
“ I. (3.9)

The whitening matrix W “ LT , defined with Cholesky decomposition, whitened the

covariance of the measurement noise to identity. In this work the measurement noise

covariance is assumed to be uncorrelated, resulting in a diagonal whitening matrix

and L “ LT . Next, this whitening matrix, LT , is applied to Equation 2.6 to incorpo-

rate measurement noise into the observability matrix. With Cholesky whitening, the

output equation is redefined as

z1ptkq “ H1
ptkq xpt0q ` rptkq, (3.10)

where,

z1ptkq “ LT zptkq, (3.11)

H1
ptkq “ LT Hptkq

“ LT
rHptkq Φptk, t0q, (3.12)

rptkq is the whitened measurement noise, resulting in zero-mean and covariance equal

to identity. The redefined output equation is used to derive the stochastic observabil-

ity matrix with covariance of the measurement noise following the same procedure as

Section 2.1.2 for deriving the deterministic observability matrix. Measurements at m

time steps are collected to form
»

—

—

—

—

—

—

–

z1pt0q

z1pt1q
...

z1ptmq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

H1pt0q

H1pt1q
...

H1ptmq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

xpt0q or sz1 “ sH1 xpt0q. (3.13)
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Next, the observability matrix with measurement uncertainty is defined by solving

for the initial state. Equation 3.16 shows the observability matrix which contains the

inverse of the covariance of the measurement noise as a result of pre-whitening with

Cholesky decomposition.

rOpt0, tmq “ sH1T
sH1, (3.14)

“

m
ÿ

k“0

Φptk, t0q
T
rHptkq

T Lptkq Lptkq
T
rHptkq Φptk, t0q, (3.15)

applying Equation 3.5, the observability matrix with meaurement uncertainty is given

by

rOpt0, tmq “
m
ÿ

k“0

Φptk, t0q
T
rHptkq

T Rptkq
´1

rHptkq Φptk, t0q. (3.16)

Note that this form of the observability matrix, using a variety of methods to in-

corporate the covariance of the measurement noise, is also given by Geeraert [36],

Dianetti [53], and Jazwinski [40]. In this work, the tilde on the observability matrix

variable, rOpt0, tmq, denotes the stochastic observability matrix form. A similar pro-

cess can be performed for the continuous-time observability Gramian as well, resulting

in the following.

rOpt0, tmq “
ż tm

t0

Φpτ, t0q
T
rHpτqT Rpτq´1

rHpτq Φpτ, t0q dτ. (3.17)

The observability matrix in Equation 3.16 is also called the information matrix or

normal equations matrix within the linear, unbiased, minimum variance estimator

[49,50].

3.1.2 Initial State Covariance Incorporation

In the estimation of nonlinear systems, initial information is required in order to

start the iterative estimation process. In linear systems, initial information is optional,

but it can lead to faster convergence. In this section, initial state uncertainties are

incorporated into the observability matrix. A similar procedure to incorporating
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prior information into the linear, unbiased, minimum variance estimator is followed

for incorporating the initial state uncertainties. The covariance of the measurement

noise is augmented with the covariance of the initial state. In order to maintain

dimensional consistency, the Hptkq matrix is augmented with the identity matrix of

size n.

Rptkq “

»

–

Rptkq 0

0 Ppt0q

fi

fl , (3.18)

Hptkq “

»

–

Hptkq

I

fi

fl . (3.19)

First, Cholesky whitening is applied to Equation 3.18. The covariance of the initial

state is also assumed to be uncorrelated, but this assumption is not strictly necessary.

The Cholesky whitening of the augmented covariance matrix is given by

Rptkq
´1
“

»

–

Rptkq
´1 0

0 Ppt0q
´1

fi

fl “ Lptkq Lptkq
T . (3.20)

The inverse of the augmented covariance matrix is defined by the inverse of each

matrix component if and only if each matrix is invertible. As the covariance of the

initial state is assumed to be uncorrelated, the whitening matrix is diagonal and

Lptkq “ Lptkq
T . Next, Equations 3.18, 3.19, and 3.20 are used in the same procedure

as Equations 3.10 through 3.16 to include measurement and initial state uncertainties

in the stochastic observability matrix.

rOpt0, tmq “ Ppt0q
´1
`

m
ÿ

k“0

Φptk, t0q
T
rHptkq

T Rptkq
´1

rHptkq Φptk, t0q. (3.21)

Augmenting the covariance of the measurement noise with initial state uncertainty

and performing pre-whitening of the output equation results in the information matrix

with a priori state information used in the least squares solution [49].

3.2 Information Form of the Kalman Filter

Prior to application of deterministic and stochastic observability analysis to the

orbit problem for object characterization and for estimation performance analysis, the
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connection of observability and the Kalman Filter (KF) is shown. More specifically,

the stochastic observability matrix is contained within the Information Form of the

KF, after manipulation for agreement with observability notions. Within the Infor-

mation Form of the KF, from Tapley, Schutz, and Born [49], the covariance update

is defined by

Pptk`1q
´1
“ Φptk`1, tkq Pptkq

´1 Φptk`1, tkq
T

`Φptk`1, tkq rHptkq
T Rptkq

´1
rHptkq Φptk`1, tkq

T , (3.22)

where Pptk`1q
´1 is the information matrix at time tk`1, Φptk`1, tkq is the STM which

transforms the state from time tk to time tk`1, rHptkq is the measurement matrix at

time tk, and Rptkq is the covariance matrix of the measurement noise at tk. Process

noise has been removed from Equation 3.22 to aid in the clarity of the connection to

the stochastic observability matrix.

As defined in Section 2.1, observability evaluates whether sufficient information

about the states exists within the measurements to determine the initial state of a

system. In order to show the connection of observability and the Information Form

of the KF, the Information Form of the KF is manipulated to reference the initial

state, rather than the previous time step as in Equation 3.22. The manipulation of

the Information Form of the KF begins with k “ 0 to solve for the information matrix

at k “ 1, or

Ppt1q
´1
“ Φpt1, t0q Ppt0q

´1 Φpt1, t0q
T

`Φpt1, t0q rHpt0q
T Rpt0q

´1
rHpt0q Φpt1, t0q

T . (3.23)

Next, the information at k “ 2 can be defined as

Ppt2q
´1
“ Φpt2, t1q Ppt1q

´1 Φpt2, t1q
T

`Φpt2, t1q rHpt1q
T Rpt1q

´1
rHpt1q Φpt2, t1q

T , (3.24)



59

and the information matrix at k “ 1 can be substituted into Equation 3.24, resulting

in

Ppt2q
´1
“ Φpt2, t0q Ppt0q

´1 Φpt2, t0q
T

`Φpt2, t0q rHpt0q
T Rpt0q

´1
rHpt0q Φpt2, t0q

T

`Φpt2, t1q rHpt1q
T Rpt1q

´1
rHpt1q Φpt2, t1q

T (3.25)

“ Φpt2, t0q Ppt0q
´1 Φpt2, t0q

T

`

1
ÿ

p“0

Φpt2, tpq rHptpq
T Rptpq

´1
rHptpq Φpt2, tpq

T . (3.26)

Extending the information matrix to the k ` 1 time step,

Pptk`1q
´1
“ Φptk`1, t0q Ppt0q

´1 Φptk`1, t0q
T

`

k
ÿ

p“0

Φptk`1, tpq rHptpq
T Rptpq

´1
rHptpq Φptk`1, tpq

T . (3.27)

Equation 3.27 contains the information matrix at time tk`1 which is a function of the

initial information matrix and the measurements at each previous time step, including

the measurement uncertainties. The stochastic observability matrix with state and

measurement uncertainties in Equation 3.21 can be obtained by multiplying Equation

3.27 on the left by Φptk`1, t0q
T and on the right by Φptk`1, t0q.

Φptk`1, t0q
T Pptk`1q

´1 Φptk`1, t0q “ Φptk`1, t0q
T
”

Φptk`1, t0q Ppt0q
´1 Φptk`1, t0q

T

`

k
ÿ

p“0

Φptk`1, tpq rHptpq
T Rptpq

´1
rHptpq Φptk`1, tpq

T
ı

Φptk`1, t0q.

(3.28)

Applying the following properties of the STM

Φptk, t0q
´1
“ Φptk, t0q

T , (3.29)

Φptk, t0q
T
“ Φpt0, tkq, (3.30)

Φpt2, t0q “ Φpt2, t1q Φpt1, t0q, (3.31)
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Equation 3.28 becomes

Φpt0, tk`1q Pptk`1q
´1 Φpt0, tk`1q

T
“ Ppt0q

´1

`

k
ÿ

p“0

Φpt0, tk`1q Φptk`1, tpq rHptpq
T Rptpq

´1
rHptpq Φptp, tk`1q Φptk`1, t0q. (3.32)

Next, Equation 3.32 is simplified and new variables are substituted in for the indices

to match Equation 3.21.

Φpt0, tm`1q Pptm`1q
´1 Φpt0, tm`1q

T
“ Ppt0q

´1

`

m
ÿ

k“0

Φptk, t0q
T
rHptkq

T Rptkq
´1

rHptkq Φptk, t0q. (3.33)

Equation 3.33 represents the information matrix at a future time, mapped to time t0.

The information matrix in Equation 3.33 is a function of the initial information matrix

and the accumulation of the measurements with uncertainty, mapped to time t0,

which is identical to the stochastic observability matrix with state and measurement

uncertainties given by Equation 3.21. Similar derivations for the connection of the

Information Form of the KF and observability can be found in [32,51–53].

Kalman’s original work on observability makes a statement for the requirement of

observability for a solution to the optimal regulator problem [15]. However, the orig-

inal definition of observability does not define any expectations for estimation results

when a system is not observable. Section 3.6.3 explore the connection of observability

and estimation further through simulations of stochastic observability, the extended

Kalman Filter (EKF), and nonlinear batch Least Squares (LS). In addition, Section

3.7 shows that accurate estimates cannot be guaranteed when the observability of a

system cannot be determined.

3.3 Simulation Orbit Definitions

The following sections analyze observability of the orbit problem with simulations

of deterministic observablity, stochastic observability, observability with extended

states, EKF state estimation, and nonlinear batch LS state estimation. The orbits
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of interest for many of the simulations are defined by five low Earth orbit (LEO)

objects and five geosynchronous Earth orbit (GEO) objects in Tables 3.1 and 3.2,

respectively. For each orbit, the orbital elements are defined and an area-to-mass

(AMR) value is assigned. For a typical GPS satellite, the AMR is approximately

0.02 m2/kg [94], but high area-to-mass ratio (HAMR) objects, with AMR above 1.0

m2/kg, have been found in GEO-like orbits [108, 153]. A range of AMR values were

selected for the five LEO and five GEO objects to explore the impact of AMR on the

observability of the orbit problem. For each of the orbit cases, the diffuse coefficient, a

component of the solar radiation pressure (SRP) perturbation, is assumed to equal to

0.5. Therefore, the C variable in Equation 2.27, which assumes a cannonball model,

is equal to 0.3056.

Table 3.1. Orbital elements and AMR for five LEO objects.

Orbit # 1 2 3 4 5

a [km] 8124.9673 7464.0111 7059.5685 7868.6408 7011.9387

e [-] 1.4686e-1 1.1651e-2 1.3704e-2 2.2336e-3 1.7747e-3

i [deg] 32.8687 28.3284 65.0611 74.0150 39.7500

Ω [deg] 55.8261 302.1046 18.5642 107.5861 28.6732

ω [deg] 53.8800 183.3909 176.8673 260.0122 58.1497

ν [deg] 0.0 0.0 0.0 0.0 0.0

AMR [m2/kg] 5.00 0.02 1.00 10.0 20.0
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Table 3.2. Orbital elements and AMR for five GEO objects.

Orbit # 1 2 3 4 5

a [km] 42170.238 42190.793 42164.796 42166.668 42308.743

e [-] 9.7343e-4 4.9220e-4 1.5716e-3 1.6556e-4 3.1852e-4

i [deg] 35.7448 2.6447 7.4310 0.051497 13.8121

Ω [deg] 359.3036 295.4140 52.7661 123.2611 30.9790

ω [deg] 124.1101 255.2388 114.5845 79.7058 346.1611

ν [deg] 0.0 0.0 0.0 0.0 0.0

AMR [m2/kg] 5.00 0.02 1.00 10.0 20.0

3.4 Impact of Measurement Noise on Orbit Observability

Section 3.1.1 derived the stochastic observability matrix, consisting of the observ-

ability matrix with the inverse of the covariance of the measurement noise. If the

measurement noise covariance is assumed to be uncorrelated and time-invariant, a

simple relation between the measurement noise variances can be defined. Given two

measurement variables, the variances of the measurement noise can be related with

σ2
2 “ c σ2

1, (3.34)

where c is a nonzero scalar and is the ratio of the measurement noise variances. Equa-

tion 3.16, the stochastic observability matrix with measurement noise, includes the

inverse of the measurement noise covariance matrix. Including the above relationship
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between two measurement variances, the inverse of the measurement noise covariance

can be stated as

R´1
“

»

—

–

1
σ2
1

0

0 1
σ2
2

fi

ffi

fl

(3.35)

“

»

—

–

1
σ2
1

0

0 1
c σ2

1

fi

ffi

fl

(3.36)

“
1

σ2
1

»

—

–

1 0

0 1
c

fi

ffi

fl

. (3.37)

The stochastic observability matrix with the new measurement noise covariance form

is reformulated as

rOpt0, tmq “
1

σ2
1

m
ÿ

k“0

Φptk, t0q
T
rHptkq

T

»

—

–

1 0

0 1
c

fi

ffi

fl

rHptkq Φptk, t0q. (3.38)

The stochastic observability matrix is now dependent on one of the measurement

noise variances and the ratio of the two measurement noise variances.

As c approaches one, the measurement noise variance values approach an equiv-

alent value, and the only impact the measurement noise has on the observability

matrix is the inverse of the first measurement noise variance. Theoretically, scaling

the observability matrix by a constant factor of 1
σ2
1

will not change the observability

of a system, when treating observability as a binary criteria. The typical test of ob-

servability is the rank of the observability matrix, which is a method for determining

whether the observability matrix is invertible or not. An equivalent condition for

the non-singularity of the observability matrix is computing the determinant of the

matrix. For a non-singular matrix the determinant of the matrix is nonzero. The

following property of a matrix determinant is used to show that the observability

result will not be theoretically change when the observability matrix is multiplied by
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a scalar constant. Given a matrix A with n rows multiplied by a scalar constant c,

the determinant of A can be states as follows

detpAq “ cn detpAq. (3.39)

Applying this matrix determinant feature to observability,

detp rOpt0, tmqq “ detp
1

σ2
1

Opt0, tmqq (3.40)

“
1

σ2
1

detpOpt0, tmqq. (3.41)

Substituting in for the observability determinant definition, detpOpt0, tmqq ‰ 0, the

determinant of the stochastic observability matrix with uncorrelated, time-invariant,

and equal measurement noise variances is equivalent to

detp rOpt0, tmqq ‰ 0. (3.42)

From the above proof, when the measurement noise variances are equal, the ob-

servability matrix is scaled by a constant and the observability result will not be

theoretically changed. Moreover, numerical evaluation of the observability will not

change given the observability test used in this work. The singular values of the

observability matrix will all be scaled by the scalar value due to the commutative

property for matrices multiplied by scalars. Recalling the definition of a matrix with

singular value decomposition,

c A “ c pU S VT
q “ U pc Sq VT . (3.43)

The singular values of c A are singular values of the matrix A multiplied by the scalar

c. As the tolerance for determining observability numerically, given by Equation 2.15,

is a function of the maximum singular value of the observability matrix, the tolerance

will also scale with the constant 1
σ2
1
, and the binary observability result will not change.

Methods for determining observability which do not use singular value decomposition

and the tolerance defined by Equation 2.15, may have a different numerical result
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for the observability matrix multiplied by a scalar due to the numerical error and

precision.

When the ratio of the measurement noise variances, c, is not equal to one, the ob-

servability matrix will be changed more significantly as the ratio of the measurement

noise variances will redistribute how information progresses from the measurements

to the states. The ratio of the measurement noise variances will influence the contri-

bution of the measurements for determining the states in a system. The impact of the

ratio of measurement noise variances on the time for a system to become observable

is explored in more detail for the LEO and GEO objects given in Tables 3.1 and 3.2.

The measurements implemented in this analysis are right ascension, α, and dec-

lination, δ. The variance in right ascension is kept fixed at σ2
α “ 1.0 arcsec2, and a

range of variances in declination, from 0.01 arcsec2 to 100.0 arcsec2, are analyzed for

impact on time for a state consisting of Cartesian position and velocity to become

observable with angles-only measurements. Stochastic observability analysis was per-

formed multiple times with the fixed right ascension measurement noise variance and

different values of declination measurement noise variance defined according to the

range of declination variance values.

For each observability result, the time for the system to become observable was

defined as the time for the smallest singular value to cross the tolerance line, which

is the time when the observability matrix becomes full rank. Figures 3.1 and 3.2

show the LEO and GEO observability results for the range of measurement noise

variances. The time for the system to become observable in seconds is plotted against

the variance ratio, i.e. σ2
δ{σ

2
α, on a log scale. Discussion of the impact of the ratio of

the measurement noise variances focuses on the LEO 1 and GEO 4 orbits, and these

two objects are highlighted in blue in Figures 3.1 and 3.2.
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Figure 3.1. LEO observability analysis with a range of declination measurement noise

variance ratios.

Figure 3.2. GEO observability analysis with a range of declination measurement noise

variance ratios.
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The trends for both objects are in alignment with understanding of the orbits

of the two cases and the ratio of the variances. As shown in Table 3.1, the LEO 1

object is in an inclined orbit, and as shown in Table 3.2, the GEO 4 object is in a

nearly circular, equatorial orbit. Because the inclination of both orbits is less than

45˝ the declination measurement includes more knowledge about the z-components

of position and velocity compared to the right ascension measurement. Therefore, as

the measurement noise variance on declination is larger than the measurement noise

variance on right ascension, logpcq ą 0 in Figures 3.1 and 3.2, the time to become

observable is expected to increase.

The shape of the time to become observable curve for the LEO 1 object is more

parabolic compared to the GEO 4 object due to the higher inclination for the LEO

1 object. Even though large differences in the measurement noise variances increases

the time to become observable for both σ2
δ ą σ2

α and σ2
δ ă σ2

α, the ratio with a

larger measurement noise variance in declination compared to right ascension has

a longer time to become observable compared to the opposite arrangement. This

comparison agrees with the notion that these orbits will depend on the knowledge

from the declination measurement more for recovering the z-components of position

and velocity.

The trends defined for the LEO 1 object become even more exaggerated for the

GEO 4 object. In Figure 3.2, when the measurement noise variance in right ascension

is greater than declination, logpcq ă 0, there impact on the time for the system to

become observable is small. This behavior also exists for the GEO 2 and GEO 3

objects, which have lower inclinations compared to the GEO 1 and GEO 5 objects.

For these higher inclination GEO objects, the time to become observable is affected

when the measurement noise variance in right ascension is greater than declination.

As the log of the variance ratio decreases, the measurement noise variance in

declination decreases because the measurement noise variance in right ascension is

kept fixed for this analysis. Therefore, the declination measurement becomes more

accurate, thus more representative of the truth, and the time to become observable
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does not increase for the GEO 4 object as the knowledge of the z-components of

position and velocity are well defined with the declination measurement. However,

when the declination measurement has a large noise variance, the time to become

observable increases considerably. For an optical sensor system, these results reveal

that a timing bias will impact the observability of a low inclination GEO object less

than a pixel bias.

This analysis is also performed for the case where the measurement noise variance

in declination is kept fixed, and the measurement noise variance in right ascension is

varied. The resulting curves of time to become observable versus variance ratio are

given in Appendix A.1. Since the right ascension measurement noise variance is now

changing, logpcq ă 0 corresponds to large right ascension noise variance values and

logpcq ą 0 corresponds to small right ascension noise variances. In Figures 3.1 and

3.2, logpcq ă 0 corresponds to small declination noise variance values and logpcq ą 0

corresponds to large declination noise variances. The trends of Figures 3.1 and 3.2 are

exactly the same for the fixed declination measurement noise variances in Appendix

A.1 except the plots are flipped.

3.5 Impact of Propagation Method and Linearization Reference on Orbit

Observability

Before exploring observability of a state extended beyond position and velocity

with SRP parameters, the state propagation method for the observability matrix

is analyzed. Recall the deterministic, discrete observability matrix equation from

Section 2.1.

Opt0, tmq “
m
ÿ

k“1

Φptk, t0q
T
rHptkq

T
rHptkq Φptk, t0q. (3.44)

The linearized measurement matrix, rHptkq, of Equation 3.44 is evaluated with state

at time tk, as the nonlinear measurement model is linearized about the true state.

As observability defines whether or not there is sufficient information in the mea-

surements to determine the state at t0, the state must be propagated from t0 to
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tk to evaluate the observability matrix, specifically for evaluation of the linearized

measurement matrix.

Two different propagation methods for computing the state at time tk are evalu-

ated for applicability to observability of the orbit problem. Due to the linearization

of the measurement model, the linearized measurement matrix is evaluated at a refer-

ence state, or rH|xptkq˚ , where |xptkq˚ denotes evaluation of the linearized matrix about

the reference state x˚ at time tk. The first method for propagating the reference uses

the STM to transform the state at time t0 to the state at time tk, shown in Equation

3.45.

xptkq
˚
“ Φptk, t0q xpt0q

˚. (3.45)

The second method numerically integrates the nonlinear dynamics to propagate state

from time t0 to tk. Both propagation methods in this analysis assume a two-body

model without perturbations for the state dynamics.

These two methods for propagating the state to time tk for evaluation of the

linearized measurement matrix are implemented for determining the observability

of a state consisting of position and velocity with angles-only measurements. The

singular values of the observability matrix for each propagation method are shown

in Figures 3.3 and 3.4. Analysis of the GEO 4 object is shown here, with a short

propagation time shown in Figure 3.3 and a longer propagation time shown in Figure

3.4. Similar analysis is shown in Appendix A.2.1 for the other orbits in Tables 3.1 and

3.2. Additional analytic STM formulations and propagation methods are explored in

Appendix A.2.2.

The singular values of the observability matrix in Figures 3.3 and 3.4 are ordered

from largest to smallest with corresponding tolerance lines given by the dashed lines

of the same color as the singular value curves. As introduced in Section 2.1.3, the

tolerance line implemented with the singular values of a matrix is an approximation

of the numerical error. The STM propagation method results are represented by the

blue curves, and the numerical integration propagation method results are represented

by the red curves.
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Figure 3.3. Singular values of the observability matrix using the STM propagated

state versus the numerically integrated state for the GEO 4 object.

With the shorter propagation time in Figure 3.3, the two propagation methods

have singular values which are indistinguishable over the analysis time except for

the smallest singular value, s6. The tolerance lines for the two propagation methods

over the short analysis time are also indistinguishable. Note that the time to become

observable for this system is different depending on the propagation method selected

as the smallest singular values cross the tolerance at different times. When the state

is propagated with the two methods for a longer time, larger differences arise in the

singular values of the observability matrix as depicted in Figure 3.4. The dashed

tolerance lines only correspond to the singular value curves of the same color.

The differences in the observability results exist because of the fundamental dif-

ferences in what each method represents for observability of the orbit problem. The

STM propagation is a linear mapping, so over longer analysis times, the resulting

state from this propagation method will not represent the true orbit as accurately.

Unlike the EKF, which updates the state estimate and covariance from the previous
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Figure 3.4. Singular values of the observability matrix using the STM propagated

state versus the numerically integrated state with a longer analysis time for the GEO

4 object.

time step, thus reducing detrimental effects from linearization, observability is de-

fined for the initial state of a system. As a result the STM in the observability matrix

is a transformation from the initial state to the state at time tk, which is the same

state used to evaluate the linearized measurement matrix with the STM propagation

method.

The numerical integration method maintains the nonlinear propagation of the

state to time tk for the evaluation of the linearized measurement matrix. Therefore,

the linearized measurement matrix is more representative of the true orbit; however,

the STM and the linearized measurement matrix then represent different orbits due

to the requirements of the STM to transform the state from time t0 for observability.

As this work investigates the applicability of linear observability methods to the

nonlinear orbit problem and focuses on observability for informing EKF estimation

performance, the numerical integration method is used for propagation of the state to
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time tk for evaluation of the linearized measurement matrix. This method of updating

the state through numerical integration is conventional in a sequential filter, such as

the EKF.

3.6 Observability of Object Characteristics

The orbit of an object is subject to perturbations, as introduced in Section 2.2.2,

and these perturbations can significantly alter the orbit over time. Non-conservative

perturbing forces, such as SRP, are often functions of object characteristics. There-

fore, extending the state vector beyond position and velocity to include object charac-

teristics provides crucial information for precise orbit propagation of RSOs. Determin-

ing which parameters, such as AMR or C in the SRP perturbation, or combinations

of parameters are observable is important. In this section, deterministic observabil-

ity is evaluated for five LEO and five GEO objects, defined in Tables 3.1 and 3.2,

with several configurations of extended states including SRP parameters. In addition,

the times required for each system to become observable are compared to determine

how a state should be configured for achieving observability of object characteristics

efficiently.

As introduced in Section 2.1.3, the invertibility of the observability matrix is

determined by computation of the matrix rank. Singular value decomposition (SVD)

is commonly implemented when determining the rank of matrix numerically. Due to

the error inherent in a numerical process, a tolerance is implemented to determine

when the singular values are numerically different from zero. The singular values of

the observability matrix for a state consisting of position and velocity with angles-

only optical measurements are shown in Figure 3.5. The tolerance line, defined as a

function of the largest singular value in Equation 2.15, is the black dashed line. The

number of singular values in Figure 3.5 is equal to the dimension of the observability

matrix. Note that a one-to-one correspondence of singular values to the state variables
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is unlikely. The singular values are more likely to correspond to linear combination

of the state variables.

When all of the singular values of the observability matrix are greater than the

tolerance line, the observability matrix is full rank, and therefore, the system is ob-

servable. As discussed in Section 2.1.3, when observability is determined numerically,

singular values below the tolerance line do not necessarily indicate a system which is

not observable, but the observability cannot be determined because the tolerance line

is an estimate of numerical error in the analysis. A system may be theoretically un-

observable when singular values remain below the tolerance line, but determining the

observability is prevented because of the numerical error in the numerical evaluation

method.

Figure 3.5. Singular values of the observability matrix for a state consisting of position

and velocity only for the GEO 4 object.

The rank of the observability matrix over time is another representation of the

system observability, which is shown in Figure 3.6. The rank of the observability

matrix is computed by determining how many singular values are greater than the
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tolerance line in Figure 3.5. Therefore, Figures 3.5 and 3.6 both show the same

observability matrix rank information.

Figure 3.6. Rank of the observability matrix for a state consisting of position and

velocity only for the GEO 4 object.

The singular values of the observability matrix above a tolerance line may suggest

observability can be a defined as a quantitative measure rather than purely a binary

criteria. Therefore, the trends the singular values of the observability matrix exhibit

over time provide knowledge of the system observability. However, the time when the

smallest singular value crosses the tolerance line can be challenging to see visually.

The depiction of the observability with the matrix rank over time shows the time to

become observable more clearly than the singular values. For the system given in

Figure 3.6, the system becomes observable after approximately 0.1 hours.

3.6.1 Extended State Observability Numerical Challenges

In this work on observability of object characteristics, the time required for the

observability matrix to become full rank is the measure of observability implemented

for comparing different extended state observability results. Four extended state
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vectors, beyond position and velocity, are considered in this analysis of observability:

AMR, C, AMR & C, and (AMR ¨ C). The first two extended state cases include

one SRP parameter in the state vector in addition to position and velocity. The

third state vector includes two extra state variables as separate solve-for parameters,

resulting in eight state variables. The final extended state case includes the combined

SRP parameter (AMR ¨ C) as these SRP parameters are multiplied within the SRP

perturbation implemented in this work. Initially, the state extended by AMR and

the state extended by C may be expected to have similar times required to achieve

observability. However, the order of magnitude of each SRP parameter has a large

impact on the time required to become observable, and the impact initially appears

contrary to what may be expected.

The AMR variable, which may realistically range from approximately 0.02 m2/kg

to 100.0 m2/kg, is much smaller in magnitude compared to C, position, and velocity.

In this work, C is assumed to be equal to 0.3056 and is a unit-less parameter. If

analysis of observability with a state extended by AMR is conducted with units of km,

the size of AMR for a typical GPS object would be defined as 2.0ˆ10´8 km2/kg. The

approximate order of magnitude differences of the AMR variable and the position and

velocity of LEO and GEO objects are on the order of 1011 and 1012, respectively. State

vectors with large order of magnitude differences can be challenging for evaluation

with numerical methods because of finite precision and numerical error inherent in

numerical systems [89].

Due to the large order of magnitude differences between the AMR variable and

the position variables, the time to become observable for a state extended by AMR

may be expected to be greater than the time to become observable for a state ex-

tended by C. However, this expected result is incorrect due to the formulation of

the observability matrix, and specifically the STM. As shown in Section 2.4.4, the

impact of the extended state variables within the observability matrix occurs with

the derivation of the STM. Recall that to define the STM ODE for this nonlinear

system, the Jacobian of the dynamics is computed. With a state extended by SRP
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parameters and an SRP perturbation on the dynamics, the Aptkq matrix of the STM

ODE is defined by

Aptkq “

»

—

—

—

—

–

03ˆ3 I3ˆ3 03ˆ1

Gtotptkq 03ˆ3
BaSRPptkq

Bxp7q

01ˆ3 01ˆ3 01ˆ1

fi

ffi

ffi

ffi

ffi

fl

, (3.46)

where Gtotptkq “ Ggrav ` GSRP is the sum of the Jacobians of the equations of

motion, when reduced to six first order differential equations. The partial derivatives

of the extra state element beyond position and velocity, e.g. AMR or C, are given

by
BaSRPptkq

Bxp7q
. Moreover, the partial derivative of the SRP perturbing acceleration

with respect to AMR or C explain the counter-intuitive extended state observability

results. The partial derivatives of the SRP perturbing acceleration with respect to

AMR or C are given as

BaSRP

BAMR
“

aSRP

AMR
, (3.47)

BaSRP

BC
“

aSRP

C
. (3.48)

The AMR partial derivative, Equation 3.47, does not contain AMR, which results in a

much larger partial derivative than it otherwise would be due to the scale of AMR. The

C partial derivative still contains AMR, so the scale is orders of magnitude smaller

than the other partial derivatives within the Aptkq matrix. As a result, observability

of a system consisting of a state extended with C is expected to be more challenging

to achieve than the state extended with AMR due to the large order of magnitude

differences within each state vector.

The impact of AMR on the time to become observable for the state extended with

C is explored in more detail by varying AMR for the LEO and GEO objects in Tables

3.1 and 3.2. For each orbit, observability is performed with AMR values ranging from

0.01 m2/kg to 100.0 m2/kg and a position and velocity state extended by C. The

time to become observable, given by the time where the rank of the observability

matrix first becomes seven, is determined for each AMR and object. Figures 3.7 and
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3.8 summarize the times to become observable for the LEO and GEO objects versus

the range of AMR values.

Figure 3.7. Impact of AMR on the time to become observable for a state extended

beyond position and velocity with C and the LEO objects of Table 3.1.

For the LEO and GEO objects, the time to become observable is less sensitive

to larger AMR values. Conversely, as the AMR values are smaller, given by the left

side of Figures 3.7 and 3.8, the impact of the SRP perturbation on the position and

velocity is smaller. Therefore, the time to become observable is larger because more

measurements are required to determine the relationship between the C variable and

the system dynamics. The combined impact of inclination and AMR is also apparent

in Figure 3.8. GEO objects 2, 3, and 4 all have inclination less than 10˝, and the

observability results in Figure 3.8 are similar.

AMR values less than 0.04 m2/kg do not have associated times to become ob-

servable for the LEO objects. The SRP perturbation has a larger affect on GEO

objects compared to LEO objects due to distance to the Sun and distance to the

central body, Earth in this case. The observability of a system consisting of a state

extended beyond position and velocity with C could not be determined for the given
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Figure 3.8. Impact of AMR on the time to become observable for a state extended

beyond position and velocity with C and the GEO objects of Table 3.1.

LEO objects when AMR is less 0.04 m2/kg due to the numerical challenges of states

which are approximately eleven orders of magnitude different. As the times to become

observable can increase significantly for smaller AMR with a state extended beyond

position and velocity with C, this extended state case is not included in the following

comparisons of observability for different state extensions. However, the following

results are replicated in the Appendix A.3 with the extended state case including C.

3.6.2 Extended State Observability with Constant SRP Parameters

Next, the times to become observable for the four extended state cases and the

state vector consisting of position and velocity only are compared in Figures 3.10

through 3.13. The observability results are grouped in two ways. Figures 3.10 and

3.11 group the observability results per orbit, and Figures 3.12 and 3.13 show the

same observability information, but the results are grouped per extended state case.
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For the extended state case with AMR and C as separate, solve-for variables,

the observability could not be determined because the eighth singular value is never

greater than the tolerance line. Figure 3.9 shows how the eighth singular value of

the observability matrix is strictly less than the tolerance line for the GEO 4 object.

Note that the singular values are ordered largest, s1, to smallest, s8. The s1 and s3

singular value curves are not visible because they are nearly identical to the s2 and

s4 curves.

Figure 3.9. Singular values of the observability matrix for the GEO 4 object and the

state extended by AMR and C.

Even if the analysis time was extended, the smallest singular value would not

progress above the tolerance line for this case with AMR and C as state variables.

This behavior is due to the fact that these parameters are both constants in the

SRP perturbing acceleration and the angles-only measurements are not sufficient to

differentiate between the two states. As the observability of the system cannot be

determined when the singular values are not all greater than the tolerance line, the

time when the second smallest singular value crosses the tolerance line is shown for
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the extended state case with AMR and C as separate variables, as denoted by the s7

in Figures 3.10 through 3.13.

For the five LEO objects in Figure 3.10 and the five GEO objects in Figure 3.11,

the time to become observable increases significantly when the state is extended

beyond position and velocity. The AMR and C variables affect the right ascension

and declination measurements through perturbations to the position and velocity of

the orbit. The scale of the SRP perturbation is approximately six orders of magnitude

smaller than the acceleration due to the central body gravitation for a LEO object

and approximately four orders of magnitude smaller than the acceleration due to

the central body gravitation for a GEO object. Therefore, longer times to become

observable are expected when the state is extended beyond position and velocity

because of the minimal affect of the AMR and C variables on the right ascension and

declination measurements.

Figure 3.10. Time to become observable for the LEO objects, grouped by orbit.
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Figure 3.11. Time to become observable for the GEO objects, grouped by orbit.

In addition, the time to become observable is larger for a state extended with the

variable (AMR¨C) compared to a state extended with AMR. In this work, C is a

function of the diffuse coefficient, Cd, and the variable C is defined for the cannonball

SRP assumption as C “ 1
4
` 1

9
Cd. The diffuse coefficient is bounded between zero

and one to maintain energy conservation in a classical Lambertian reflection model,

resulting in bounds of 0.250 and 0.361 for C. Therefore, AMR will always be greater

than (AMR¨C), and the time to become observable will be larger for a state extended

by the combined parameter (AMR¨C) compared to a state extended by AMR alone.

Moreover, this indicates that more measurements would be required to determine

the AMR and diffuse coefficient as a combined parameter versus assuming a diffuse

coefficient and determining the AMR of an object alone.

Another trend within the times to become observable for a state extended with

the variable (AMR¨C) compared to a state extended with AMR is the impact of

computing the observability of the combined AMR and C variable has a much larger
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impact on the time to become observable for the GEO objects compared to the LEO

objects. The differences in the times to become observable for these two extended

state cases and the LEO objects are on the order of seconds, but the time differences

are on the order of half an hour or greater, comparing the same extended state cases

for the GEO objects. The SRP perturbation has a larger impact on GEO objects

compared to LEO objects, and the affect of SRP parameters will be more significant on

the right ascension and declination measurements compared to the affect on the LEO

objects. Therefore, reducing the magnitude of the extended state variable through

multiplication of C has a larger impact on the time to become observable for a GEO

object compared to a LEO object.

Even though the observability of the extended state case with AMR and C as sepa-

rate, solve-for parameters could not be determined due to numerical error, knowledge

of how the observability of the orbit problem is impacted by the addition of extra

state parameters can be gained by analyzing the time when the seventh singular

value crosses the tolerance line. For all of the LEO and GEO cases, the time for the

seventh singular value of the observability matrix for a state extended by AMR and

C separately is longer than the time to become observable for a state extended by

AMR only. Although a one-to-one correspondence between the singular values of the

observability matrix and state variables is unlikely, the singular values of the observ-

ability matrix are negatively impacted by extending a state vector with parameters

which cannot be differentiated by the measurements.
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Figure 3.12. Time to become observable for the LEO objects, grouped by extended

state case.

Figure 3.13. Time to become observable for the GEO objects, grouped by extended

state case.
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3.6.3 Extended State Observability with Time-Varying SRP Parameters

In the previous section, observability analysis was conducted without state and

measurement uncertainties, and the position and velocity state vector was extended

with SRP parameters, AMR and C. When the state is extended with one of the

SRP parameters, defined as constants, the system is observable with the exception of

one of the LEO objects. However, when both SRP variables are added as separate,

solve-for parameters in the state vector, the observability of the system could not

be determined. However, Section 3.4 has shown that measurement noise can impact

observability results as the system dynamics are redistributed with the inverse of the

covariance of the measurement noise.

As noted in Section 2.2, there are occasions where AMR and the reflectivity prop-

erties of an object can change in orbit. When these variables are time-varying, dif-

ferences in the orbit of an object due to each SRP parameter may become evident

in angles-only measurements. Therefore, deterministic and stochastic observability

is analyzed with several constant and time-varying configurations of AMR and C

to determine whether the AMR and C object characteristics can be observable as

separate, solve-for parameters. In addition, the connection of stochastic observability

with state and measurement uncertainties and estimation, as shown in Section 3.2, is

explored in more detail for each of the AMR and C extended state cases.

Throughout this section, the GEO 4 object in Table 3.2, is used in the simulations

of observability and estimation for the four combinations of constant and time-varying
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AMR and C variables in Table 3.3. The time-varying models listed in Table 3.3 are

modeled by Equations 2.52 and 2.53, with

AMRo “ 1.0ˆ 10´5 km2
{kg, (3.49)

αAMR “ 2.0ˆ 10´6 km2
{kg, (3.50)

ωAMR “ 2.778ˆ 10´4 Hz, (3.51)

Co “ 0.306, (3.52)

αC “ 0.025, (3.53)

ωC “ 5.556ˆ 10´4 Hz. (3.54)

In addition, the observer is defined as the Purdue Optical Ground Station (POGS) in

New Mexico, USA. The following simulations consist of measurement batches spaced

by one hour with six measurements spaced by ten minutes within each batch.

Table 3.3. AMR and C constant and time-varying combinations.

Case # AMR C

1 Constant Constant

2 Time-Varying Time-Varying

3 Time-Varying Constant

4 Constant Time-Varying

As the stochastic observability matrix with state uncertainties, the nonlinear batch

least squares estimation with a priori information, and the EKF all utilize the co-

variance of the initial state, realistic initial state uncertainties were generated for this

system. In addition, the estimability methods implemented in Chapter 4 require an

uncorrelated covariance of the initial state. Details on how the initial state uncer-

tainties in Table 3.4 are discussed in Chapter 4.

The procedure defined in Section 2.3.3 for estimating the pixel uncertainties, and

thus the uncertainty in right ascension and declination is implemented to define the
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Table 3.4. Initial State Uncertainties.

x [m] y [m] z [m] vx [m/s] vy [m/s] vz [m/s] AMR [m2/kg] C [-]

172.527 522.305 51.338 0.0295 0.0388 0.0128 5.809 0.173

covariance of the measurement noise for this analysis. The observations of a GEO

object used in the uncertainty quantification and transformation were collected from

the POGS, and the resulting average standard deviations of right ascension and decli-

nation are estimated as 0.67 arcseconds and 0.045 arcseconds, respectively. Moreover,

the images used to estimate the uncertainty in right ascension and declination have

an average signal-to-noise ratio of 3.6. Although the right ascension uncertainty is

an order of magnitude larger than the declination uncertainty, Section 3.4 has shown

that there is minimal impact on the observability for the GEO4 object with this ratio

of measurement noise variances. In addition, the measurement uncertainties can be

explained by the fact that the images analyzed for the uncertainty quantification are

of a GEO object, which has a larger change in right ascension than declination over

time.

Deterministic and stochastic observability is analyzed for the extended state anal-

ysis cases in Table 3.3. As multiple observability results are compared in this analysis,

the rank of the observability matrix over time is presented for clarity of comparison

among the different observability methods. In addition, estimation of the same sys-

tems is performed with the nonlinear batch least squares and the EKF. The nonlinear

batch least squares is performed with and without a priori state information.

Constant AMR and C

As Section 3.6 has shown, the deterministic observability cannot be determined

for the case where the state vector is extended beyond position and velocity with con-
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stant AMR and C as separate state variables. Figure 3.14 shows the deterministic and

stochastic observability matrix rank over time. In Figure 3.14, the blue curve repre-

sents the deterministic observability matrix, the green curve represents the stochastic

observability matrix with measurement uncertainties, and the red curve represents

the stochastic observability matrix with state and measurement uncertainties. Re-

call that a system is considered observable when the rank of the observability matrix

is equal to the number of state variables. Therefore, this system, with two SRP

parameters included in the state consisting of position and velocity, must reach an

observability matrix rank of eight to be observable.

Figure 3.14. Rank of the deterministic and stochastic observability matrices for con-

stant AMR and C.

The deterministic observability results from Section 3.6 are confirmed in Figure

3.14. The rank of the stochastic observability matrix with measurement uncertainty

only does not reach a rank of eight as well. The covariance of the measurement noise

in the stochastic observability matrix with measurement uncertainties does cause the

rank over time to differ from the deterministic observability matrix rank over time

due to how the information from the measurements is redistributed to the states with

the measurement noise. Of the three observability matrices analyzed, the stochastic

observability matrix with initial state and measurement uncertainties does have a
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rank equal to the number of state variables during the analysis. This stochastic

observability matrix contains information about the states from the beginning of the

analysis because of the information matrix at epoch, Ppt0q
´1. However, the angles-

only measurements for this system do not contain any information on the AMR and C

variables separately. Therefore, as the measurements are accumulated over time, the

AMR and C information provided by the covariance of the initial state is diluted out

of the observability matrix. After approximately 24 hours, the rank of the stochastic

observability matrix with initial state and measurement uncertainties reduces from

eight to seven, and the observability of the system can no longer be determined.

Next, the connection of the stochastic observability results and estimation is ex-

plored. Section 3.2 shows how the observability matrix with initial state and mea-

surement uncertainties exists within the Information Form of the KF. In addition,

this form of the stochastic observability matrix is known as the information matrix

in the batch LS estimator with a priori information. Figure 3.15 shows the state

estimation errors for the batch LS with a priori state information and the EKF. The

LS state estimation errors are given in green and the EKF state estimation errors

are given in red. Also, the 3σ bounds, defined by the square root of the state co-

variance matrix diagonal, for each estimator are shown in the same color as the state

estimation errors.

Presentation of the state estimation errors in this manner for the LS estimator is

atypical as the LS estimator determines a state estimate at epoch. The LS results

are presented in this way to have a similar representation of the state estimation

errors as the EKF results. As each measurement is added to the system, the state

estimate and covariance are computed by inverting the information matrix in the LS

solution. Then the estimated initial state and covariance are propagated to the time

of the current measurement. Note that this representation of the system information

at the time of the current measurement is equivalent to the stochastic observability

matrix with initial state and measurement uncertainties with the exception that the

LS information matrix implements the state estimate for evaluation of the STM and
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Figure 3.15. State estimation errors using the LS and EKF for the case with constant

AMR and C.

measurement matrix whereas the stochastic observability matrix implements the true

state.

When AMR and C are both constants, the 3σ bounds for the AMR and C state

estimation errors in Figure 3.15 are large for both estimators. The state estimation

errors are still within the 3σ bounds, but as discussed with the stochastic observability

results of Figure 3.14, the measurements do not contain information about the AMR

and C variables to determine them separately. As a result, the 3σ bounds for these

constant, extended state variables do not decrease as more measurements are added

to the system. There is a small decrease in the 3σ bounds for the AMR and C

variables within the first few batches of measurements as the information from the

covariance of the initial state has not yet been diluted. In addition, a bias is apparent

in the AMR and C state estimation errors. This bias is due to the fact that the

measurements only contain information on the combined AMR and C term in the

SRP perturbation.
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The LS results presented in Figure 3.15 contain a priori state information. How-

ever, LS estimation can be performed without a priori state information, but for this

state of constant AMR and C, the LS estimator without a priori information does

not converge and the estimate is inaccurate. This result agrees with the stochas-

tic observability matrix with measurement uncertainties only. As the measurements

are not sufficient for determining the states and no information is provided about

the states though the information matrix, the observability of the system cannot be

determined. Therefore, the performance of the LS estimator without a priori infor-

mation is expected from the stochastic observability results without covariance of the

initial state.

Time-Varying AMR and C

The next extended state case includes AMR and C which are both time-varying,

and the time-varying models for both variables are given by Equations 2.52 and 2.53

with variables defined in Equation 3.49 through Equation 3.54. Figure 3.16 shows

the deterministic and stochastic observability results for the time-varying AMR and

C extended state.

Figure 3.16. Rank of the deterministic and stochastic observability matrices for the

case with time-varying AMR and C.
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Similar to the previous observability results, the stochastic observability matrix

with initial state and measurement uncertainties has a full rank from the first mea-

surements in the analysis. The deterministic observability matrix and the stochastic

observability matrix with measurement uncertainties only require approximately two

batches of measurements to become observable for this system. As the AMR and

C states are time-varying, the SRP perturbation is influenced by each of these vari-

ables in a different way. This change is apparent in the deterministic and stochastic

observability results as there is sufficient knowledge of the states provided by the

measurements for the system to become observable.

The two stochastic observability matrices are full rank for the duration of the

analysis. Therefore, an estimator can be expected to perform well as the stochastic

observability matrices show an observable system. However, the deterministic observ-

ability matrix becomes rank deficient after approximately 23 hours, indicating that

in the absence of measurement noise, the observability of the system cannot be deter-

mined after some time. Earlier analysis of the impact of the measurement noise on

observability in Section 3.4 demonstrated how the time to become observable varies

with the covariance of the measurement noise in the observability matrix. For all

cases analyzed in that section, the binary observability result, observable or not, was

always observable, even though the time to become observable changed. However,

in this system with a state extended by time-varying AMR and C, the measurement

noise is responsible for the stochastic observability matrix maintaining full rank for

the analysis time.

The influence of the measurement noise on this system is verified by Figures 3.17

and 3.18. Figure 3.17 shows deterministic and stochastic observability results with

measurement noise on right ascension and declination which are equal, and Figure 3.18

shows deterministic and stochastic observability results with smaller right ascension

measurement noise compared to the declination measurement noise. Note that this

second case is the opposite of Figure 3.16 which has larger measurement noise on

right ascension than declination.
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Figure 3.17. Rank of the deterministic and stochastic observability matrices for the

case with time-varying AMR and C. Measurement noise on right ascension and

declination are equal.

Figure 3.18. Rank of the deterministic and stochastic observability matrices for the

case with time-varying AMR and C. Right ascension measurement noise is smaller

than declination measurement noise.

When the right ascension measurement noise is equal to the declination measure-

ment noise, the stochastic observability matrix with the covariance of the measure-

ment noise is equal to the deterministic observability matrix scaled by a constant, as

shown in Equation 3.38. Therefore, the deterministic observability matrix and the

stochastic observability matrix with measurement uncertainties should have the same
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matrix rank. Figure 3.17 confirms this behavior, where the rank of the deterministic

observability matrix and the rank of the stochastic observability matrix with measure-

ment uncertainties are identical. In addition, the stochastic observability matrix with

state and measurement uncertainties becomes rank deficient for this system when the

right ascension and declination measurement noise are equal.

When the right ascension measurement noise is smaller than the declination mea-

surement noise, the system is expected to talk a longer time to become observable

because for this GEO object, the declination measurements are important for deter-

mining the z-components of the state vector, as shown in Figure 3.2. The stochastic

observability matrix with measurement uncertainties of Figure 3.18 does take longer

than the deterministic observability matrix to achieve full rank. In addition, the

detrimental effect of the larger declination measurement noise is evident in Figure

3.18 because both stochastic observability matrices eventually have a rank deficiency

of two. These observability results of a state extended beyond position and velocity

with time-varying AMR and C show the influence measurement noise can have on

observability of a system.

Next, state estimation error results are presented for the time-varying AMR and

C extended state case. Figure 3.19 shows the LS and EKF state estimation errors for

the extended state case with time-varying AMR and C. Unlike previous estimation

results where only the LS results with the initial state covariance was shown, this

system is stochastically observable after some time, so the estimation results for the

LS without initial state covariance are also shown. The LS state estimation errors

without initial state covariance are given in blue, and the LS state estimation errors

with initial state covariance are given in green. The EKF state estimation errors and

3σ bounds are given in red.

Initially, the LS estimation without initial state covariance has large state es-

timation errors and 3σ bounds, outside the limits of the plots in Figure 3.19. As

information about the states is not included initially through the covariance of the

initial state, the observability of the system cannot be determined. Therefore, the in-
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Figure 3.19. State estimation errors using the LS and EKF for the case with time-

varying AMR and C.

formation matrix of the nonlinear batch LS is singular, which results in an inaccurate

initial state estimate. However, as this system becomes stochastically observable,

after several batches of measurements, the state estimation errors and 3σ bounds

reduce to be similar to the LS estimation results with initial state covariance.

Comparing the 3σ bounds of Figure 3.19 to the 3σ bounds of the case with constant

AMR and C in Figure 3.15, the 3σ bounds of the time-varying AMR and C system

reduce over time or are smaller than the corresponding 3σ bounds of the other system.

The EKF 3σ bounds for the AMR and C variables in Figure 3.19 continue to reduce

throughout the analysis time. Whereas, the EKF 3σ bounds for the AMR and C

variables in Figure 3.15 remain constant after the first few batches of measurements.

In addition, the C 3σ bounds decrease over time for all of the estimators in Figure

3.19. Moreover, the bias in the AMR and C state estimation errors is removed in this

analysis compared to the constant AMR and C estimation results. The impact of

stochastic observability on estimation results is seen with a comparison of the time-
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varying AMR and C extended state vector to the constant AMR and C extended

state vector results.

Time-Varying AMR, Constant C

The final two cases in Table 3.3 contain one constant SRP parameter and one time-

varying SRP parameter. The case of a position and velocity state vector extended

with time-varying AMR and constant C is presented here. Figure 3.20 shows the

rank of the deterministic and stochastic observability matrices over time.

Figure 3.20. Rank of the deterministic and stochastic observability matrices for the

case with time-varying AMR and constant C.

The observability results of Figure 3.20 are similar to the time-varying AMR and

C case of Figure 3.16, where the stochastic observability matrix is full rank for the

duration of the analysis and the deterministic observability matrix becomes rank

deficient after approximately 23 hours. The differences between the stochastic and

deterministic observability results for this system is explained in the same way as

the time-varying AMR and C system, i.e. the measurement noise changes how the

measurement information is distributed to the states of the system. As the stochastic

observability results indicate an observable system, the estimation performance is

expected to be accurate for this system.
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Figure 3.21 shows the LS and EKF results for this system with time-varying

AMR and C. The LS estimation is performed with and without covariance of the

initial state. As expected because of the similar observability results to the time-

Figure 3.21. State estimation errors using the LS and EKF for the case with time-

varying AMR and constant C.

varying AMR and C case, the estimation results of Figure 3.21 reflect the stochastic

observability results for this system. The LS estimation errors without initial state

covariance are large initially, but as the system becomes observable, the errors reduce

to be similar to the LS estimation with initial state covariance. In addition, the 3σ

bounds reduce for the C variable and the bias in the state estimation errors of AMR

and C is not apparent.

Time-Varying C, Constant AMR

The final case combining time-varying and constant SRP parameters extends the

position and velocity state vector with time-varying C and constant AMR. Figure

3.22 shows the deterministic and stochastic observability results for this case.
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Figure 3.22. Rank of the deterministic and stochastic observability matrices for the

case with time-varying C and constant AMR.

The observability of this system at the end of the analysis is similar to the observ-

ability of the system consisting of constant AMR and C. The deterministic observ-

ability matrix and the stochastic observability matrix with measurement uncertainties

are full rank for a few batches of measurements before becoming rank deficient, and

the stochastic observability matrix with state and measurement uncertainties is full

rank for approximately 26 hours before becoming rank deficient. Note that the deter-

ministic observability matrix and stochastic observability matrix with measurement

uncertainties were always rank deficient for the constant AMR and C case.

Next, the LS and EKF estimation results are presented in Figure 3.23 for the case

with time-varying C and constant AMR. Because the stochastic observability matrix

for this system becomes rank deficient, the LS estimation is only performed with a

priori information. Therefore, Figure 3.23 is comparable to Figure 3.15, where a bias

is present in the state estimation errors, and the 3σ bounds for the AMR and C

variables do not continue to decrease after the first few measurement batches.

The differences in the AMR and C cases with one time-varying parameter and

one constant parameter are explained by the observability results of Section 3.6.1.

Within the STM formulation, the partial derivatives of the dynamics with respect to
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Figure 3.23. State estimation errors using the LS and EKF for the case with time-

varying C and constant AMR.

C are many orders of magnitude smaller than the partial derivatives of the dynamics

with respect to AMR. Moreover, Section 3.6 showed that observability of a state

extended with constant AMR had a smaller time to become observable compared

to observability of a state extended with constant C. Therefore, the behavior of

the stochastic observability results with one constant SRP parameter and one time-

varying SRP parameter are expected. When C is time-varying and AMR is constant,

the impact on the STM, and thus the observability matrix, is minor because of the

small partial derivative with respect to the C variable. Hence, this extended state case

is similar to the case with constant AMR and C. However, the case with time-varying

C and constant AMR does become stochastically observable for a short period because

the time-varying nature of C does improve the impact of the C partial derivative on

the observability. For a similar reason, the case with time-varying AMR and constant

C is comparable to the time-varying AMR and C case as the influence of AMR on

the system is more evident in the observability as a result of the partial derivative of

the dynamics with respect to the AMR variable.
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Summary

In this section, the connection of observability and estimation of two SRP pa-

rameters as separate, solve-for parameters was explored. The impact of state and

measurement uncertainties on observability was evident in deterministic and stochas-

tic observability results which differed. The covariance of the measurement noise

redistributes the information from the measurements in the observability matrix.

This change in the observability matrix can result in an observable system, even if

the deterministic observability matrix is rank deficient. Also, the covariance of the

initial state provides information on the state variables which may not necessarily

exist within the measurements, as shown in the constant AMR and C extended state

case. This analysis has shown that AMR and C can be estimated separately when

modeled as time-varying parameters in a state vector extended beyond position and

velocity. However, if AMR and C are defined as constants, this analysis and the

results of Section 3.6.2 show that estimating a single object characteristic or the com-

bined AMR¨C parameter within the SRP perturbation is advantageous for improved

estimation performance.

Based on the definition of observability from Kalman, when a system is stochas-

tically observable, accurate estimates can be expected as the measurements contain

sufficient information about the states. However, when the stochastic observability

matrix is rank deficient, the expected accuracy of estimation results is not clearly

defined. In the case of constant AMR and C, the state estimation errors remained

within the 3σ bounds, which could be considered a positive estimation result, but a

bias existed for the AMR and C variables and the 3σ bounds did not improve with

more measurements.

3.7 Observability as a Predictor of Estimation Performance

From Kalman’s original definitions, the optimal regulator problem is guaranteed

to have a solution for an observable problem. Conversely, this would indicate that
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the optimal regulator problem is not guaranteed to have a solution for an unobserv-

able system. As Section 3.6 has shown, determining observability numerically can

result in cases where the observability cannot be determined because of numerical

error estimates with the tolerance line. As the Kalman Filter and other estimators

have become widely used for a variety of applications, estimation is often applied

without much consideration of the system observability. Moreover, whether or not

a system has been tested for observability, estimation is applied. Unless the estima-

tion fails to converge, an estimation solution, which is likely to appear reasonable,

will be produced. However, for the systems presented in the following simulations,

this analysis seeks to show that observability should always be considered before per-

forming estimation because an accurate estimation result is not guaranteed for these

systems if the observability cannot be determined. Furthermore, the cases presented

here demonstrate how an estimation result may appear accurate when evaluating

measurement estimation errors, even in the presence of some poorly estimated states.

In order to validate the definition that accurate estimates are not guaranteed for

systems which are not observable, a Monte Carlo (MC) analysis is performed with

the estimation of two systems, one observable and one where the observability cannot

be determined numerically. The observable system consists of a state composed of

Cartesian position and velocity components. From previous analysis of the extended

state with SRP parameters and knowledge of the system dynamics, when AMR and

C are both constant, separate solve-for parameters, the observability cannot be de-

termined numerically with angles-only measurements. The SRP variables cannot be

determined separately within the SRP perturbation because the measurements do

not help differentiate them and the terms are multiplied in the SRP perturbation.

The covariance of the initial state is sampled 10,000 times for each system. The mean

and standard deviation, σ used for generating the 10,000 samples are shown in Table

3.5. The mean state in Table 3.5 represents the truth in this analysis. Therefore,

the MC analysis implemented in this work samples the state uncertainties only, and

there is only one true state compared to the sampled initial state estimates. The
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MC sampling for the observable system utilizes the position and velocity uncertain-

ties only. Seven measurement batches with four hours between each batch and each

batch consisting of 60 right ascension and declination angle measurements spaced by

20 seconds are implemented for this analysis. The object defined by the mean state

in Table 3.5 is the GEO 4 object of Table 3.2.

Table 3.5. Initial State Mean and Standard Deviation.

State Mean Standard Deviation

x [km] -38817.694 0.1

y [km] -16450.667 0.1

z [km] 37.283 0.1

vx [km/s] 1.200 0.001

vy [km/s] -2.831 0.001

vz [km/s] 4.939ˆ 10´4 0.001

AMR [km2/kg] 1.0ˆ 10´5 5.0ˆ 10´6

C [-] 0.3056 0.5

Except otherwise noted, the following results do not include process noise in the

EKF. The process noise in the KF is an additive white noise on the state dynamics,

but it is often used to compensate for differences between the true dynamics and the

modeled dynamics [49]. The true dynamics of these simulations are known exactly.

Therefore, the modeled dynamics reflect the true dynamics of the simulated system,

and thus, process noise is not required for matching the modeled and true state

dynamics. For some of the MC analysis results, additional results are included which

have implemented process noise in the MC analysis for comparison to the analysis

without process noise.

The observability results for each system are given in Section 3.6, specifically

Figure 3.5 for the system with a state consisting of position and velocity and Figure
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3.9 for the system with a state extended by two constant SRP parameters. The

singular values of the observability matrix are used to show the observability of each

system.

In order to evaluate and summarize the MC analysis, several measures are imple-

mented. First, root mean square error (RMSE), given by Equation 3.55, is often used

for summarizing the MC performance. However, as Li & Zhao [154] show, RMSE is

considered a pessimistic measure of error because large error values tend to dominate

the RMSE. If a large number of MC iterations all have low error values, but a few MC

iterations have high error values, the RMSE would be large. In addition, Li & Zhao

address how the RMSE does not have a physical interpretation when states contain

different units.

RMSEpx̃q “

g

f

f

e

1

M

M
ÿ

i“1

||x̃i||2, (3.55)

where,

||x̃i|| “ px̃
T
i x̃iq

1
2 . (3.56)

In Equation 3.55, x̃i “ x´ x̂i is the state estimation error, M is the total number of

MC samples, and i is the index for each MC sample. Because the RMSE has potential

shortcomings, specifically for systems with states with largely different scales or units,

as in the case with a state extended by AMR and C, another measure was defined for

summarizing the MC performance. A challenge of this system is the large order of

magnitude difference between the position states and the AMR state. The position

and velocity of this system could be non-dimensionalized with a characteristic distance

and velocity, but a characteristic value does not exist for AMR or C. Therefore, large

errors in AMR may not appear in RMSE measures because the overall impact on the

position is small. If a goal of the estimation is to determine characteristic parameters

such as AMR, RMSE may not be a suitable measure of estimation accuracy when

such a large order of magnitude difference exists in the states.

Since the RMSE combines the estimation errors of the different state variables

together in a single measure, which could lead to challenges with dimensions, another
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measure, called root mean square error per state, was implemented. The RMSE per

state keeps the estimation errors separate for each state variable. The measure is

similar to RMSE, but there is a different error measure for each state. The form of

the measure is given by Equation 3.57.

RMSE per state “

g

f

f

e

1

M

M
ÿ

i“1

x̃2
i . (3.57)

Note that with this measure, systems may not be as directly comparable for systems

with different state variables. Since the average estimation errors for the MC analysis

are kept separate, unlike RMSE, the RMSE per state measure is not susceptible

to large order of magnitude differences among state variables. If one of the SRP

parameters is poorly estimated but the positions are estimated well, then the RMSE

per state will reflect this difference and not hide the potential SRP errors in an overall

measure.

The next method for summarizing the MC analysis uses the 1σ and 3σ state

estimation error bounds. For a one dimensional normal distribution, there is a proba-

bility of 0.6827 that a sample is within 1σ of the mean and a probability of 0.997 that

a sample is within 3σ of the mean. This is often referred to as the 68-95-99.7 rule,

representing the probabilities a sample is within 1σ, 2σ, and 3σ of the mean. When

the dimension of the problem increases, the probabilities of a sample being within 1σ

and 3σ of the mean change. For higher dimensions, the Mahalanobis distance is used

to compute the probabilities [155]. The system in this work has dimensions of six to

eight depending on whether the SRP parameters are included in the state with the

position and velocity. The percentages for 1σ, 2σ, and 3σ for a range of dimensions

are given in Figure 3.24.

The 1σ percentages are given by the blue curve, the 2σ percentages are given

by the red curve, and the 3σ percentages are given by the yellow curve. With six

dimensions, the 1σ probability is 0.1438 and the 3σ probability is 0.8264. These

values are significantly different from the one dimensional probabilities.
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Figure 3.24. 1σ, 2σ, and 3σ probabilities per dimension.

For the EKF, the 1σ and 3σ bounds for the state estimation errors are based on

the diagonal of the a posteriori state covariance. Therefore, defining the σ bounds

in this way assumes uncorrelated states, and the 68-95-99.7 rule applies to each of

the states. Given that the initial state covariance is sufficiently sampled for the

MC analysis, the samples for each state should abide by the 68-95-99.7 rule. This

method of summarizing the MC analysis hypothesizes that an observable system will

maintain these percentages for the MC samples throughout the analysis time, but

an unobservable system will not due to poor estimation performance. For each MC

iteration and time step, the state and measurement estimation error σ bounds in the

EKF are calculated from Equations 3.58 and 3.59, respectively.

σstate “

b

diagpP`k q, (3.58)

σmeas “
a

diagpWkq, (3.59)
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where,

Wk “ Hpx̂´k q P´
k Hpx̂´k q

T
` Lk Rk LT

k , (3.60)

Ck “ P´
k Hpx̂´k q

T , (3.61)

Kk “ Ck W´1
k , (3.62)

P`
k “ P´

k ´Ck KT
k ´Kk CT

k `Kk Wk KT
k . (3.63)

The EKF matrices defined in Equation 3.58 through Equation 3.59 have been intro-

duced in Section 2.5.2. The σ bounds change for each MC iteration as Wk and P`
k

are functions of the estimated state, x̂, at time tk. Therefore, each MC iteration will

compare the state and measurement estimation errors to a different σ value per time

step. The method for visualizing the 68-95-99.7 rule for this analysis determines the

number of MC samples which are contained within the different σ bounds for each

time step. Then, percentages are computed per time step to determine whether the

68-95-99.7 rule is maintained throughout the analysis time.

The previously introduced measures for the MC analysis intuitively follow from

the estimation errors and the σ bounds of the estimation errors. Another method

for analyzing the MC results is implemented in this work. This additional method

may not be as intuitive as the other methods, but it is concise. The final method

implemented for analyzing the MC results uses a ratio to depict when the filter is

conservative or over-confident [156,157]. Note that the term smug is sometimes used

in the place of over-confident. When a filter is conservative, the state estimation

errors may reduce slowly, but the σ bounds of the estimation errors will not condense

too rapidly for the measurements to provide sufficient information for estimating the

state. When a filter is over-confident, the information supplied by the measurements

is not consistent with how well the filter thinks the state is being estimated. Ideally,

a filter will be neither conservative nor smug, but because a filter is stochastic in

nature, this will not be the case. In general, a conservative filter is advantageous

because the confidence in the state uncertainty will not lead to ill-informed decisions

based on the estimated state.
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This measure for determining whether a filter is conservative or smug will be

referred to as the average filter ratio in this work. The average filter ratio is defined

by the average of the 1σ bounds in the MC divided by the standard deviation of the

distribution of the state estimation errors in the MC. The numerator in the average

filter ratio is average confidence bound over the MC iterations, and the denominator

measures how the state estimation errors are distributed. When the average filter

ratio is greater than one, the filter is conservative, and when the average filter is less

than one, the filter is smug. A more detailed explanation is provided for each of the

MC implementations that follow.

3.7.1 Observable System

Figure 3.25 through Figure 3.35 show the MC estimation results for the observable

orbit problem with a state vector consisting of position and velocity. The singular

values of the observability matrix for this system are shown in Figure 3.5. All of the

singular values progress above the tolerance line, indicating an observable system.

EKF estimation was performed 10,000 times using samples from the mean and the

initial state covariance given in Table 3.5. As this system is observable, the estimation

results are all expected to produce accurate state estimates.

The RMSE over time for the 10,000 MC iterations is shown in Figure 3.25. Be-

tween each measurement batch the RMSE grows as there are no measurements to

improve the confidence in the state estimate. After the third batch of measurements,

the RMSE does not change as significantly with each new batch of measurements.

As dimensional differences exist between the states in this system, the RMSE

per state is computed to determine the RMSE per state in the MC iterations for

each state. The RMSE per state over time is shown in Figure 3.26. In this case, the

RMSEs per state all reduce with time, but if a velocity state was poorly estimated, the

RMSE measure may not identify this issue because of the relative order of magnitude

differences between the position and velocity states. This potential challenge of using
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Figure 3.25. Estimated state RMSE for the observable system.

RMSE as a measure for the MC analysis will become more apparent for the system

with a state extended with AMR and C.

Figure 3.26. RMSE per state for the observable system.
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Next, the state estimation errors for all of the MC iterations are shown in Figure

3.27. All of the colored lines represent the state estimation errors for each of the 10,000

MC iterations. The 1σ and 3σ bounds are defined by the black dashed lines. Note that

there are 1σ and 3σ bounds for each MC iteration, but the curves are nearly identical,

resulting in the appearance of only one line for the 1σ and 3σ bounds. Different σ

bounds are defined for each MC iteration because the state and measurement σ

bounds, defined in Equation 3.58 through 3.63, are functions of the estimated state.

Figure 3.27. State estimation errors for the observable system. All MC runs shown

in different colors.

From visual inspection, a few of the MC runs can be seen outside of the 3σ bounds.

From the 68-95-99.7 rule this is expected for 10,000 sample points. Throughout the

analysis time, only a few of the estimation error curves appear outside of the 3σ

bounds.
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As the σ bounds vary for each MC iteration, this representation of the state

estimation errors may not be indicative of the overall MC results. To more accurately

summarize the state estimation error performance for the 10,000 MC points, the

percentage of state estimation errors at each time step which are less than or equal

to the 1σ and 3σ bounds are shown in Figure 3.28. Two curves, one for each σ

bound, are presented for each state. Since the σ bounds are defined by assuming the

a posteriori covariance is uncorrelated, the percentages for each state are expected to

follow the 68-95-99.7 rule.

Figure 3.28. Percentage of MC runs within the state estimation error σ bounds for

the observable system.

Table 3.6 shows the average percentages over the analysis time for each state and

σ bound. For this observable system, the average percentages of MC sample points

per state are consistent with the 68-95-99.7 rule. The exact percentages for the 1σ

and 3σ bounds are 68.270% and 99.730%, respectively. Performing the same analysis
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with a larger number of MC sample points is expected to produce percentages which

are closer to the exact values for a normal distribution.

Table 3.6. Percentage of state estimation errors less than or equal to the σ bounds

averaged over time for the observable system.

x y z vx vy vz

1σ % 68.106 68.344 67.977 68.199 68.226 68.488

3σ % 99.721 99.747 99.721 99.710 99.720 99.750

For comparison, the same MC analysis is performed with process noise in the

EKF. Process noise is white noise on the dynamics of the state in the Kalman Filter,

as shown by Equation 2.66, but it is often included or tuned to account for unmodeled

dynamics in a system. For this simulated system, the modeled dynamics reflect the

true dynamics. Although process noise is not required for this simulated system, it is

included to evaluate the impact on the MC estimation results. Figure 3.29 and Table

3.7 show the analogous results to Figure 3.28 and Table 3.6, but with process noise

included in the estimation. For this observable system, the addition of process noise

does not change the average percentages of MC iterations which are less than the 1σ

and 3σ bounds for each state variable.

Table 3.7. Percentage of state estimation errors less than or equal to the σ bounds

averaged over time for the observable system with process noise.

x y z vx vy vz

1σ % 68.106 68.344 67.977 68.199 68.226 68.488

3σ % 99.721 99.747 99.721 99.710 99.720 99.750

Next, the average filter ratio is calculated for the observable system. Figure 3.30

depicts the average filter ratio for the MC analysis of the observable system. The
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Figure 3.29. Percentage of MC runs within the state estimation error σ bounds for

the observable system with process noise.

average filter ratio is split between position and velocity. The position and velocity

average filter ratios are defined by first computing the average for the square root

of the trace of the state estimation error covariance matrix. The trace of the state

estimation error covariance matrix represents the sum of the variances for each of

the state variables. Therefore, the average filter ratio is separated into position and

velocity by limiting the trace to the respective position and velocity components. The

denominator of the average filter ratio is calculated with the covariance of the position

and velocity state estimation errors. The square root of the trace of the covariance

matrix at each time step completes the components of the average filter ratio.

In Figure 3.30, the average filter ratio for position and velocity is given by the

black line. The green region, where the ratio is greater than one, indicates that a

filter is conservative. The red region, where the ratio is less than one, indicates that a

filter is smug. Because the EKF is a sequential filter, the average filter ratio can move



112

Figure 3.30. Position and velocity average filter ratios for the observable system.

between the conservative and smug regions as the time progresses and measurements

are processed. For this observable system, the average filter ratio is nearly one. Note

that the y-axis scale of these results is set to reflect the y-axis scale of the unobservable

system for comparison. The filter for the observable system is often more conservative

than smug. Next, the average filter ratio with process noise is shown in Figure 3.31.

Similar to the percentage plots of the observable system, the average filter ratio

is not significantly different when process noise is included. Moreover, the differences

between the average filter ratio with and without process noise are on the order of

the process noise. The average filter ratio with and without process noise in the EKF

indicates that the filter is performing well in terms of conservativeness and smugness.

Next, the MC analysis measurement estimation errors are analyzed.

When estimating a state vector with real measurements from an optical telescope,

and not simulating the measurements from the truth, some of the performance mea-

sures and plots presented thus far cannot be determined because knowledge of the

true state is not known. As a result, measurement estimation errors, defined by the
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Figure 3.31. Position and velocity average filter ratios for the observable system with

process noise.

difference between the acquired measurements and measurements evaluated with the

a priori estimated state, are implemented for evaluation of estimation performance.

Although these simulation use the true state for estimation performance evaluation,

the MC analysis is also summarized with the measurement estimation errors to depict

estimation evaluation methods which are common when a true state is not known.

The RMSE and the RMSE per measurement in the measurement space are given

by Figures 3.32 and 3.33. These measures are computed in a similar way as the

state estimation errors, i.e. the difference in the true measurement and the estimated

measurement is used in Equations 3.55 and 3.57 instead of the state estimation errors.

In this simulation, the true measurements are defined with the nonlinear measurement

model evaluated at the true state with added noise sampled from the covariance of

the measurement noise. The estimated measurement is computed with the nonlinear

measurement model evaluated at the state estimate.
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Figure 3.32. Estimated measurement RMSE for the observable system.

Figure 3.33. RMSE per measurement for the observable system.

Similar to the state estimation RMSE, the measurement estimation RMSE and

RMSE per measurement decrease over the analysis time, and between measurement

batches the errors increase. As the measurements both have units of arcseconds,

the RMSE and RMSE per measurement both have units of arcseconds. For the

RMSE per measurement in Figure 3.33, there is a large difference in the RMSE per

measurement when comparing right ascension and declination. The covariance of
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the measurement noise for this system has an almost order of magnitude difference

between the right ascension and declination noise, with the right ascension noise being

larger. Although the noise on the right ascension measurement is larger than the noise

on the declination measurement, the ratio of the measurement noise variances has a

small impact on the time to become observable for this GEO 4 object when the

measurement noise on right ascension is larger than declination, as shown in Figure

3.2.

Next, the measurement estimation errors are shown in Figure 3.34. Similar to

the state estimation errors, there is little variation in the measurement σ bounds and

most of the curves from each MC iteration are contained within the σ bounds.

Figure 3.34. Measurement estimation errors for the observable system. All MC runs

show in different colors.

As the σ bounds do change with each MC iteration, the measurement estima-

tion errors of Figure 3.34 are summarized in Figure 3.35. For each MC iteration,

the mapped estimation errors are compared to the corresponding σ bounds and the

percentage of state estimation errors which are within their respective σ bounds are
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shown. This analysis is performed at each time step. Once again, the estimation

errors in the measurement space show a similar result for the MC analysis of the

observable system. The 68-95-99.7 rule also applies for the measurement estimation

error percentage plots as the assumption of uncorrelated measurements is also made

to define the 1σ and 3σ measurement bounds. Table 3.8 summarizes Figure 3.35,

averaging over time.

Figure 3.35. Percentage of MC runs within the measurement estimation error σ

bounds for the observable system.

Table 3.8. Percentage of measurement estimation errors less than or equal to the σ

bounds averaged over time for the observable system.

Right Ascension Declination

1σ % 68.238 68.242

3σ % 99.731 99.733

This analysis of the percentage of MC iterations which are within the measurement

σ bounds is also conducted with EKF results which include process noise. Figure
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3.36 and Table 3.9 show that the addition of process noise in the estimation of the

observable system does not impact the percentage of MC iterations which are within

the measurement σ bounds.

Figure 3.36. Percentage of MC runs within the measurement estimation error σ

bounds for the observable system with process noise.

Table 3.9. Percentage of measurement estimation errors less than or equal to the σ

bounds averaged over time for the observable system with process noise.

Right Ascension Declination

1σ % 68.238 68.242

3σ % 99.731 99.733

Similar conclusions can be drawn from the estimation error analysis in the state

space and in the measurement space for the observable system. The preceding analysis

showed a statistically significant percentage of the MC iterations accurately estimated

the state consisting of position and velocity.



118

3.7.2 Unobservable System

The same analysis is performed for a system with a state extended beyond position

and velocity with AMR and C. The singular values of the observability matrix are

shown in Figure 3.9. Recall that the observability of this system cannot be determined

numerically as all of the singular values do not progress above the tolerance line. The

tolerance line is an approximation of the numerical error in the problem. However,

due to the nature of the coupling of constant AMR and C in the SRP perturbation,

this system is unobservable because the differences between the AMR and C variables

can not be differentiated with optical angles measurements alone.

The initial state covariance in Table 3.5 for this system is sampled 10,000 times

for the MC analysis with the EKF. The two metrics, RMSE and RMSE per state,

for summarizing the MC analysis are shown in Figures 3.37 and 3.38. Similar to the

observable system, the state estimation RMSE curve shows a general decrease in the

error for each batch of measurements and an increase in error between measurements.

There is an increase in the error for the last batch of measurements. As the following

results will demonstrate, the estimation of the AMR and C variables is not accurate

for many of the MC iterations. However, the RMSE is only indicative of a poor

estimate in the last batch of measurements when the RMSE increases slightly.

Figure 3.37. Estimated state RMSE for the unobservable system.
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Figure 3.38 shows on average for the MC analysis which states are estimated more

accurately and which are not. After approximately eight hours in the analysis, the

AMR and C states exhibit a large increase in the RMSE per state. In addition, near

the end of the analysis time, the x position and velocity have an increase in the RMSE

per state. A potential shortcoming of the RMSE and RMSE per state measures is

that an average is computed over all of the MC iterations. Therefore, there is no

indication of how poorly the states are estimated based on the statistically significant

sampling of the initial covariance.

Figure 3.38. RMSE per state for the unobservable system.

Next, the state estimation errors for all of the MC iterations are presented in

Figure 3.39. Many of the MC runs can be clearly seen outside of the 3σ bounds in

the AMR and C state estimation error plots. Furthermore, some curves can be seen
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outside of the position and velocity 3σ bounds. Unlike the observable system state

estimation errors, the 1σ and 3σ bounds have visible differences per MC iteration.

The large variations in the σ bounds for this system are due to the MC iterations

which result in poor estimates of the states because the state estimation error σ

bounds are functions of the state estimates, as shown in Equations 3.58 through 3.63.

Figure 3.39. State estimation errors for the unobservable system. All MC runs show

in different colors.
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The large variation in the σ bounds makes evaluation of the performance of each

MC iteration difficult through visualization alone. An estimation error curve in Figure

3.39 outside of one of the black dashed lines does not necessarily indicate a poor

estimate because the estimation error curve and the σ bound may not correspond

to the same MC sample. Therefore, the corresponding state estimation errors and σ

bounds are compared for each MC iteration at each time step in Figure 3.40.

Figure 3.40. Percentage of MC runs within the state estimation error σ bounds for

the unobservable system.

After only a couple of measurement batches, the percentage of the MC runs within

the 1σ and 3σ bounds for the AMR and C variables are much lower than 68% and

99.7%, respectively. In addition, the position and velocity percentages do not follow

the statistically significant σ percentages due to the impact of the poorly estimated
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AMR and C. Table 3.10 shows the averages over time for each of the curves in Figure

3.40. When presenting the percentage of the MC samples which remain within the σ

bounds for the unobservable system, the poor performance of the estimation becomes

clear.

Table 3.10. Percentage of state estimation errors less than or equal to the σ bounds

averaged over time for the unobservable system.

x y z vx vy vz AMR C

1σ % 57.981 50.057 52.181 62.318 55.497 40.542 23.343 23.911

3σ % 89.613 79.928 83.826 94.819 87.301 67.055 38.474 38.460

Even with the addition of process noise to the EKF, the percentage of the estima-

tion error curves which stay within the σ bounds does not remain at the statistically

significant 1σ and 3σ percentages. Figure 3.41 shows the percentage of state esti-

mation errors within the σ bounds when process noise is included in the estimation.

The percentages for the AMR and C variables do not go to zero as was the case

in Figure 3.40 without process noise, but there is still considerable variation in the

estimation errors with respect to the σ bounds. In addition, Table 3.11 shows the

averages percentages over time when process noise is included.

Table 3.11. Percentage of state estimation errors less than or equal to the σ bounds

averaged over time for the unobservable system with process noise.

x y z vx vy vz AMR C

1σ % 69.244 69.684 81.077 68.696 73.701 84.041 40.766 40.325

3σ % 99.486 99.593 99.663 99.509 99.551 99.571 75.440 69.814

The average filter ratio for the unobservable system is shown in Figure 3.42. The

position and velocity average filter ratios in Figure 3.42 are near one for approximately
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Figure 3.41. Percentage of MC runs within the state estimation error σ bounds for

the unobservable system with process noise.

the first half of the analysis. The average filter ratios within the first 50 measurements

indicate a filter which is more conservative when compared to the corresponding ratios

in the observable system. However, the filter for the unobservable system is smug for

the second half of the analysis. This trend is reflected in Figure 3.40. The filter

appears to perform well initially, but then the influence of the poorly estimated AMR

and C variables causes the σ bounds to be an over-confident representation of the

state estimation errors.

When process noise is included in the MC analysis of the unobservable system, the

average filter ratio indicates the filter is not as smug compared to when process noise

is not included. Figure 3.43 shows the average filter ratio over time for the analysis
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Figure 3.42. Position and velocity average filter ratios for the unobservable system.

with process noise. In a filter, the process noise is commonly manipulated to inflate

the covariance to compensate for model mismatch. In this system a model mismatch

does not exist, but right ascension and declination measurements are not sufficient for

estimating a state containing AMR and C as separate state variables. By including

process noise, the filter does not become over-confident in estimating the position

and velocity. Moreover, the velocity average filter ratio tends to be conservative after

approximately 200 measurements have been processed. This trend is reflected in the

plots for the percentage of the MC iterations with state estimation errors within the

σ bounds in Figure 3.41. Because the filter is conservative, a larger percentage of the

MC iterations have velocity state estimation errors which are within the σ bounds

compared to the expected percentage indicated by the 68-95-99.7 rule.

Although the position and velocity average filter ratios appears to indicate that

the filter is not over-confident when process noise is included, the average filter ratio

for the AMR and C variables indicate a filter which is over-confident. Note that

the average filter ratio for the AMR and C variables is the ratio of the standard
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Figure 3.43. Position and velocity average filter ratios for the unobservable system

with process noise.

deviation of the 1σ bounds to the standard deviation of the state estimation errors in

each variable because multiple state components are not combined as in the position

and velocity ratios. Figures 3.44 and 3.45 show the AMR and C average filter ratios

over time when process noise is not included in the EKF and when process noise is

included in the EKF. In both cases, the filter becomes smug after the first batch of

measurements, which consists of 60 measurements. When process noise is included,

the AMR and C average filter ratios are closer to one compared to when process noise

is not included. However, even if the process noise was increased more to obtain a

more conservative filter, this would not necessarily indicate that the AMR and C

variables are estimated more accurately. When the average filter ratio is close to

one, this indicates that the confidence in the state uncertainty reflects how well the

state is estimated. Therefore, the average filter ratios in Figure 3.45, which are closer

to one than the average filter ratios of Figure 3.44, indicates that the filter is not

as over-confident in the estimation of AMR and C, but as other representations of
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the state estimation errors have shown, the AMR and C variables are not accurately

estimated.

Figure 3.44. AMR and C average filter ratios for the unobservable system.

Next, Figures 3.46 through 3.49 show the evaluation of the MC analysis using the

measurement estimation errors only. Similar to the state estimation error RMSE,

the measurement estimation error RMSE in Figure 3.46 only has a small indication

that the some of the MC iterations result in poor estimates. The last batch of

the measurements have a larger RMSE than the previous batch of measurements.

However, the general trend of the RMSE decreases with more measurements, which

is not an accurate representation of the MC results.

When the MC average measurement estimation errors are split per measurement,

the poor estimates for this system become more apparent. The right ascension RMSE

does not appear to indicate poor estimation performance, but comparing the decli-

nation RMSE to the observable system in Figure 3.33 differences in scale and trend

appear. The observable system has a declination RMSE which reduces with each mea-

surement batch and is less than 0.5 arcseconds throughout the analysis. However,
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Figure 3.45. AMR and C average filter ratios for the unobservable system.

Figure 3.46. Estimated measurement RMSE for the unobservable system.

the declination RMSE for the unobservable system continues to increase significantly

between measurement batches throughout the analysis and the error is often greater

than 0.5 arcseconds. This representation of the RMSE for the MC results shows that

the poorly estimated AMR and C variables have a larger impact on the declination
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estimation errors compared to the right ascension estimation errors. Moreover, the

importance of the declination measurement relates back to the observability mea-

surement noise analysis in Section 3.4 showing the importance of the declination

measurement for the time required for a system to become observable.

Figure 3.47. RMSE per measurement for the unobservable system.

Similar trends appear for the measurement estimation errors and the percentage of

MC iterations which remained within the measurement σ bounds. Figure 3.48 shows

the measurement estimation errors for each of the MC iterations and the correspond-

ing σ bounds. The σ bounds have a large variation for each MC iteration, and when

comparing the right ascension and declination σ bounds variation, the declination σ

bounds appear to vary more.

Figure 3.48 is summarized in Figure 3.49 by counting the number of MC iterations

which are less than the corresponding σ bounds for each time step. Compared to the

observable system, the percentages within the σ bounds are smaller, i.e. fewer MC

iterations follow the 68-95-99.7 rule, for the system with a state extended by AMR

and C. In addition, the declination percentages are smaller than the right ascension

percentages, reaffirming the notion that the declination measurements have a larger
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Figure 3.48. Measurement estimation errors for the unobservable system. All MC

runs show in different colors.

impact on the system observability than the declination measurements. Also, Table

3.12 averages Figure 3.49 over time.

Table 3.12. Percentage of measurement estimation errors less than or equal to the σ

bounds averaged over time for the unobservable system.

Right Ascension Declination

1σ % 66.489 60.218

3σ % 98.429 92.895

Figure 3.50 and Table 3.13 show the measurement error percentages which remain

within the σ bounds when process noise is included in the estimation. Even though

the average values in Table 3.13 show percentages which are consistent with the 1σ
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Figure 3.49. Percentage of MC runs within the measurement estimation error σ

bounds for the unobservable system.

and 3σ statistically significant values, Figure 3.50 shows that the percentages are not

always near the average values throughout the analysis time.

Figure 3.50. Percentage of MC runs within the measurement estimation error σ

bounds for the unobservable system with process noise.
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Table 3.13. Percentage of measurement estimation errors less than or equal to the σ

bounds averaged over time for the unobservable system with process noise.

Right Ascension Declination

1σ % 68.315 68.550

3σ % 99.720 99.718

3.7.3 Summary

According to Kalman’s initial definition of observability, an observable system

has a solution to the optimal regulator problem. The MC analysis of the observable

system presented in this section, with a state consisting of position and velocity only,

confirms this definition. The percentage of estimation errors within the σ bounds in a

MC approach are consistent with the percentages in the 68-95-99.7 rule. In addition,

among the MC iterations, the σ bounds show little variation.

A potentially dangerous aspect of estimation is that an estimate can often be pro-

duced for any system, whether or not observability has been analyzed. The resulting

estimation may not converge, but when the estimation does converge, the estimation

could be considered somewhat successful at determining a state estimate. Through

the MC estimation analysis, this work has shown that when the orbit problem with

an extended state is not observable, estimation accuracy cannot be guaranteed. Fig-

ures 3.40 and 3.49 have shown how a percentage of the estimation results in a MC

approach for a system which is not observable may produce seemingly accurate es-

timates within σ bounds. Moreover, measures of estimation performance when the

true state is unknown may not clearly show that an estimate is not accurate. For

example, the measurement estimation error RMSE and RMSE per measurement of

Figures 3.46 and 3.47 appear to have errors which follow a pattern where the error

decreases successfully with each measurement batch.
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When a true state is not known, the estimation errors in the measurement space

are relied upon for determining whether the estimates are accurate. However, order of

magnitude differences among states, as is the case with the AMR and C extended state

system, may not show poor estimates for some of the states within the measurement

estimation errors. The SRP perturbations have an impact on an orbit, but they are

small compared to the impact of the central body. Therefore, estimation of AMR and

C may be inaccurate but measurement estimation errors may still appear to indicate

an accurate estimate. This MC analysis has shown the necessity for determining

observability of this system because accurate estimation is not guaranteed if the

observability cannot be determined.

3.8 An Observability Use Case: Sensor Tasking Optimization

In order to maintain a catalog for the large and growing RSO population, measure-

ments should contain as much knowledge of the desired state variables as possible. In

addition, measurements should be collected efficiently. In this section, observability is

investigated for use as a tool in a sensor tasking optimizer. The sensor tasking prob-

lem formulation from Frueh, Fiedler, & Herzog [13] contains a weighting parameter

for adjusting the importance of obtaining observations for each object. Obtaining

frequent observations of the entire RSO population is a challenge because of the size

of the RSO population compared to the number of available sensors. In addition,

each sensor will have limited windows of observation due to availability of resources,

the nature of orbits, and the rotation of Earth. Therefore, the sensor tasking problem

posed by Frueh, Fiedler, & Herzog contains a weighting parameter for the importance

of acquiring observations of an object. As the time from the last observation of an

RSO increases, the uncertainty in the state of the object grows. In order to maintain

accurate knowledge of where objects are located and where they will be located in

the future, additional observations must be obtained.
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In the most general sense, six measurement quantities are required at a minimum

to determine an orbit because an orbit is composed of six state quantities. Whether

the state vector is composed of Cartesian position and velocity, orbital elements, or

some other representation, these six state variables uniquely define an orbit. Many

classical initial orbit determination (IOD) methods exist for using a small set of mea-

surements to determine an orbit. Although the measurement quantities implemented

in the IOD methods may differ, they all contain six measurement quantities. For

example, Gauss’ and Laplace’s methods for IOD use three astrometric, angles-only

observations for determining an orbit. Whereas, Gibbs’ and Herrick-Gibbs’ methods

use three position vectors, calculated from a line-of-sight vector and range, to deter-

mine an orbit [14,158]. In this work, observability is analyzed for orbit determination

with three astrometric, angles-only observations which are defined by right ascension

and declination.

In most classical orbit determination methods, no strict requirements are placed

on the spacing between measurements. Theoretically, measurements could be close

together and a unique orbit could still be determined. However, in the presence of

uncertainties, measurements which are close together may result in an inaccurately

determined orbit. The Herrick-Gibbs orbit determination method does maximally

bound the spacing of the three position vectors because a Taylor series expansion

is implemented in the algorithm. However, in general, these orbit determination

methods do not specify how measurements should be spaced for determining an orbit.

This work implements observability analysis for determining how measurements

should be spaced for determining an orbit. The relative impact of selecting different

measurement spacings on an orbit determination solution is explored with analysis

of the observability matrix singular values. In addition, a MC analysis is performed

with a nonlinear batch least squares estimator for evaluating how the relative heights

of the observability matrix singular values translate to the MC estimation root mean

square errors.
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3.8.1 Observability Results

Observability is analyzed for a system defined by the GEO 4 object in Table 3.2

and three equally spaced batches of measurements. Each measurement batch consists

of 30 measurements spread over one minute of observation. The observability of

this system is analyzed by varying the time between the equally spaced batches of

measurements. Therefore, observability simulations are performed many times for

each measurement batch spacing case. Each observability iteration is summarized by

the singular values at the final measurement in the analysis.

Figure 3.51 shows the smallest singular value of the deterministic observability

matrix, s6, versus different measurement batch spacing cases. Each point in Figure

3.51 represents an observability simulation for the measurement spacing defined by

the time between measurement batches on the x-axis. Therefore, a measurement

batch spacing of one hour would have the first measurement batch at epoch, the

second measurement batch one hour from epoch, and a third measurement batch two

hours from epoch. Figure 3.51 also contains the value of the tolerance line at the

time of the last measurement for each of the observability simulations. Recall that a

system is considered observable when the smallest singular value of the observability

matrix is greater than the tolerance line.

The observability of this system changes as the time between measurement batches

changes. When measurements are spaced by six hours, the system is observable, but

when measurement batches are spaced by 12 hours, the system is not observable.

The latter result is expected because the GEO4 object has a period which is ap-

proximately 24 hours. Therefore, the third batch of measurements does not provide

more knowledge of the system geometry compared to the first batch of measurements.

This measurement batch spacing behavior resulting in poor system observability is

repeated every orbital period, e.g. measurement batches spaced every 24 hours, 36

hours, and so on.
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Figure 3.51. Smallest singular value of the deterministic observability matrix versus

time between measurement batches.

The preceding observability analysis in this chapter has shown how measurement

uncertainty can significantly change the observability results for a system. As ex-

pected, this representation of observability is no different. In Figure 3.52, the stochas-

tic observability matrix with measurement uncertainty is analyzed in the same manner

as Figure 3.51. The uncertainty in measurement noise is the same as Section 3.6.3,

where the standard deviations of the right ascension and declination measurements

are 0.67 arcseconds and 0.045 arcseconds, respectively. When measurement uncer-

tainties are included in this analysis of observability, the shape of the observability

results change considerably. The measurement batch spacing cases which correspond

to an observable system are approximately the same, but instead of sharp peaks like

in Figure 3.51, the peaks of the observability results in Figure 3.52 tend to be more

rounded. For a telescope operator planning observations for orbit determination, ob-

servability results with a more rounded peak are advantageous because a range of

potential observation spacings could be selected which will result in a well observed
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system. However, it should be noted that this rounding of the peaks is due to the

measurement uncertainties and not the orbital dynamics.

Figure 3.52. Smallest singular value of the stochastic observability matrix with mea-

surement uncertainties versus time between measurement batches.

Next, this work evaluates whether the height of the smallest observability matrix

singular values can be used as an indicator of estimation accuracy. Since the tolerance

line in Figures 3.51 and 3.52 changes with time, this analysis of the singular value

height computes the ratio of the smallest singular value to the tolerance line. The

observability results for the deterministic and stochastic systems are shown with this

representation in Figures 3.53 and 3.54. The condition for system observability is

now defined by a tolerance line at one because the smallest singular value is greater

than the numerical error estimate when the ratio of the smallest singular value to the

tolerance line is greater than one.

In the deterministic and stochastic systems, the ratio of the smallest singular

value to the tolerance decreases as the time between measurement batches increases.

Although the tolerance line grows in Figures 3.51 and 3.52 the relative height of the
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smallest singular value above the tolerance is not apparent. Therefore, for comparing

the impact of different measurement batch spacing cases on the observability of a

system, this representation of the observability with the ratio of the smallest singular

value to the tolerance is used.

Figure 3.53. Ratio of the smallest singular value of the deterministic observability

matrix to the tolerance line versus time between measurement batches.

Another observability representation implemented in this analysis uses the condi-

tion number of the observability matrix. The condition number of a matrix is defined

by the ratio of the largest singular value to the smallest singular value. Therefore,

the condition number of the observability matrix is proportional to the ratio of the

smallest singular value to the tolerance line. Recall the definition of the tolerance line

introduced in Section 2.1.3.

tol “ maxpsq ˆmaxpsizepOpt0, tmqqq ˆ ε, (3.64)

where s contains the singular values of the observability matrix, O, and ε is the

machine epsilon. In this system, the observability matrix has dimension six by six
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Figure 3.54. Ratio of the smallest singular value of the stochastic observability matrix

with measurement uncertainties to the tolerance line versus time between measure-

ment batches.

because of the six state variables. In addition, the smallest singular value is defined by

s6, and the largest singular value is defined by s1. The ratio of the smallest singular

value of the observability matrix to the tolerance is given by

s6

tol
“

s6

6εs1

“
1

6εcondpOq
, (3.65)

where condpOq “ s1
s6

is the condition number of the observability matrix. The condi-

tion number of a matrix indicates how close a matrix is to singularity. The condition

number does not specify whether a matrix is singular or not. Therefore, a tolerance is

not shown in the observability results represented by the condition number of the ob-

servability matrix because a system can not be defined as observable or not with the

condition number. However, the condition number is used in this work as a method

for comparing the observability results for the different measurement batch spacing

cases and for relating to the mean square error (MSE) of a MC analysis.
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Figures 3.55 and 3.56 show the condition number of the deterministic and stochas-

tic observability matrix for a range of measurement batch spacing cases. These condi-

tion number results are inversely proportional to the singular value-tolerance ratio as

defined by Equation 3.65. When the condition number of a matrix is large, a matrix

is more ill-conditioned. Therefore, in Figures 3.55 and 3.56 the peaks now indicate

measurement spacing cases which may be ill-advised for orbit determination.

Figure 3.55. Condition number of the deterministic observability matrix versus time

between measurement batches.
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Figure 3.56. Condition number of the stochastic observability matrix with measure-

ment uncertainties versus time between measurement batches.

3.8.2 Comparison of Observability and Nonlinear Batch Least Squares

Monte Carlo Analysis

A MC analysis is performed to evaluate the impact of singular value height on the

orbit determination accuracy. Similar to the structure of the observability analysis in

the previous section, each point in the following simulation represents a different MC

simulation for a range of measurement batch spacing cases. In addition, nonlinear

batch least squares estimation is implemented in the MC analysis because the observ-

ability results in the previous section are representative of the observability matrix

singular values at the time of the last measurement. Batch estimation methods use all

of the measurements in a system to estimate a single state, rather than sequentially

updating the state as in the EKF.

MC analysis is performed for each measurement spacing case given in the observ-

ability results of the previous section. Each MC run consists of 1,000 samples of the

initial state estimate. The samples are generated from the mean and covariance in
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Table 3.14. Note that the mean corresponds to the true initial state of the GEO 4 ob-

ject for an epoch of 53159.5 Modified Julian Date (MJD). In addition, the nonlinear

batch LS estimation implemented in this work follows the iterative estimation pro-

cess of the linear, unbiased, minimum variance estimate (LUMVE) given by Tapley,

Schutz, & Born [49]. This estimation method improves the estimation accuracy by

iterating for a fixed number of iterations or until a convergence criteria is achieved.

This work limits the number of iterations to five to ensure that the MC analysis is

computationally efficient.

Table 3.14. Mean and Standard Deviation for defining the MC samples.

State Mean Standard Deviation

x [km] -38817.694 0.1

y [km] -16450.667 0.1

z [km] 37.283 0.1

vx [km/s] 1.200 0.001

vy [km/s] -2.831 0.001

vz [km/s] 4.939ˆ 10´4 0.001

Recall the estimate of the initial state in the LUMVE is defined by

x̂pt0q “ xrefpt0q ` psH
T
sHq´1

sHT
sR´1

psz´ sẑq, (3.66)
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where,

xrefpt0q “ mpt0q, (3.67)

sH “

»

—

—

—

—

—

—

–

Φpt1, t0q rHpmpt1qq

Φpt2, t0q rHpmpt2qq
...

Φptk, t0q rHpmptkqq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, sR´1
“

»

—

—

—

—

—

—

–

R´1

R´1

...

R´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.68)

sz “

»

—

—

—

—

—

—

–

zpt1q

zpt2q
...

zptkq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

hpxpt1qq ` νpt1q

hpxpt2qq ` νpt2q
...

hpxptkqq ` νptkq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, sẑ “

»

—

—

—

—

—

—

–

ẑpt1q

ẑpt2q
...

ẑptkq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

hpmpt1qq

hpmpt2qq
...

hpmptkqq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.69)

xptkq is the true state at time tk, and mptkq is the propagated initial state estimate,

i.e. reference state, from t0 to tk. The mean square error (MSE) for the MC analysis

is defined by

MSE “
1

M

M
ÿ

i“1

pxpt0q ´ x̂pt0qiq
T
pxpt0q ´ x̂pt0qiq, (3.70)

where M is the number of MC samples, x̂pt0qi is the estimated initial state after five

iterations in the nonlinear batch LS for each MC sample, and xpt0q is the true initial

state. The following simulation results compare the trends of the MSE to the trends

of the observability matrix condition number and the observability matrix singular

value-tolerance ratio. As discussed in Section 3.1.1, the LUMVE solution in Equation

3.66 contains the observability matrix sHT
sH evaluated at the reference rather than

the true state. Moreover, the inverse of this matrix is used to define estimated initial

state. Therefore, the inverse of the MSE will be compared to the observability matrix

singular value-tolerance ratio. Furthermore, the MSE will be directly compared to

the condition number of the observability matrix because the condition number is

inversely proportional to the observability matrix singular value-tolerance ratio.

Figures 3.57 and 3.59 show the MSE for the MC analysis and the condition number

of the observability matrix for each measurement batch spacing case. Figures 3.58

and 3.60 show the inverse of the MSE and the observability matrix smallest singular
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value to tolerance ratio for each batch spacing case. The stochastic observability

matrix with measurement uncertainty is implemented in this analysis because of the

stochastic nature of the nonlinear batch LS. The following observability results are

equal to the observability results in Figures 3.56 and 3.54.

In each figure, the observability results are given in blue, the position MSEs are

given in yellow, and the velocity MSEs are given in green. The MSE curves are scaled

to reflect the range of the observability results in Figures 3.57 and 3.58. The scaling

of the MSE curves is accomplished with linear interpolation of the MSE values to be

contained within the minimum and maximum of the observability matrix results.

Figure 3.57. Comparison of the scaled nonlinear batch LS MC mean square error to

the condition number of the stochastic observability matrix.

In Figures 3.57 and 3.58, the trends in the nonlinear batch LS MC mean square

error reflect the trends of the observability results. The position and velocity MSEs

have a maximum value when three measurement batches are equally spaced by 12

hours, and the position and velocity MSEs have a minimum value when three mea-

surement batches are equally spaced by approximately 6.333 hours. Because trends of

the observability matrix reflect the trends in the MSE, differences in the observability
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Figure 3.58. Comparison of the scaled nonlinear batch LS MC mean square error to

the ratio of the smallest singular value in the observability matrix to the tolerance

line.

smallest singular value height for two different measurement spacing cases could be

used to determine which measurement spacing case will provide a more accurate orbit

estimate. Furthermore, these observability results could be used to identify regions of

measurement batch spacing to avoid so the likelihood of less accurate orbit estimates

is reduced.

Next, the MSE results which have not been scaled to match the observability

results are shown in Figures 3.59 and 3.60. In addition, Table 3.15 shows the root

mean square error (RMSE) for various measurement batch spacing cases. The position

and velocity RMSEs increase rapidly when the spacing between three measurement

batches is near 12 hours. The position and velocity RMSEs corresponding to the best

time between measurement batches indicated by the observability results are 79.793

m and 0.00556 m/s, respectively. The position and velocity RMSEs corresponding to

the worst time between measurement batches indicated by the observability results

are 8718.500 m and 0.634 m/s, respectively. For this system, selection of the best or
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worst measurement batch spacing could result in a two order of magnitude difference

in the position and velocity RMSEs.

Figure 3.59. Comparison of the nonlinear batch LS MC mean square error to the

condition number of the stochastic observability matrix.

Table 3.15. Position and velocity RMSE for several measurement batch spacing cases.

Time [h] Position RMSE [m] Velocity RMSE [m/s]

6.333 (minp s6
tol
pOqq) 79.793 0.00556

12.0 (maxp s6
tol
pOqq) 8718.500 0.634

Table 3.16 shows measurement batch spacings which meet two conditions for the

position RMSE. If a maximum position RMSE of 0.1 km is required, measurement

batch spacings within 3.900 and 8.776 hours could be selected. Moreover, if a max-

imum position RMSE of 1.0 km is required, measurement batch spacings which are

between 0.699 and 11.669 hours could be selected. Measurement batch spacings

greater than 12.325 hours could also be selected, but an upper bound has not been
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Figure 3.60. Comparison of the nonlinear batch LS MC mean square error to the

ratio of the smallest singular value in the observability matrix to the tolerance line.

determined due to the limited analysis time in this simulation. For this system, there

is a small region of measurement batch spacings which will result in large position

RMSE errors greater than 1.0 km, but position RMSEs less than 1.0 km can be

achieved with a range of measurement batch spacing cases which span approximately

11 hours. However, the observability and MSE results indicate that the later batch

spacing cases have the caveat that extending the time between measurements further

may result in a large increase in the estimation errors.

Table 3.16. Time between measurement batches for two position RMSE conditions.

Position RMSE = 0.1 km Position RMSE = 1.0 km

3.900 h 0.699 h

8.776 h 11.669 h

– 12.325 h
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The ratio of the observability matrix smallest singular value to the tolerance is

significant for comparing the expected estimation errors of different measurement

batch spacing cases. Therefore, observability analysis can be implemented for defining

the weight parameter in the sensor tasking problem formulation from Frueh, Fiedler,

& Herzog [13]. The observability of multiple RSOs could be analyzed to generate

these curves of the observability matrix smallest singular value to the tolerance. For

example, the observability results for the five GEO objects and the five LEO objects

defined in Tables 3.2 and 3.1 are shown in Figures 3.61 and 3.62. The singular value-

tolerance ratio is implemented for this analysis instead of the condition number of the

observability matrix because the singular value-tolerance ratio includes a tolerance

for determining whether the system is observable, in addition to the relative heights

of the singular values for each measurement batch spacing case.

Each curve in Figures 3.61 and 3.62 represents a different object. Similarities in the

different GEO and LEO objects are apparent with this observability representation.

For example, GEO 2 and GEO 4 both have small inclinations and the observability

matrix singular value-tolerance ratio curves are similar. Note that in Figure 3.62 the

tolerance line at a value of one is not visible because all of the curves are above the

tolerance.

An optimizer could use the curves in Figures 3.61 and 3.62 to select the measure-

ment spacing cases for each object to maximize the overall singular value-tolerance ra-

tio height. Note that this analysis has been limited to a single sensor which generates

three measurement batches that are equally spaced. Both of these restrictions could

be removed, but the results may no longer be as intuitive for a nearly-geostationary

object, such as the GEO 4 object. Observability with multiple sensors is analyzed in

Section 3.9.
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Figure 3.61. Observability matrix smallest singular-tolerance ratio versus time be-

tween measurement batches for the five GEO objects in Table 3.2.

Figure 3.62. Observability matrix smallest singular-tolerance ratio versus time be-

tween measurement batches for the five LEO objects in Table 3.1.
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3.8.3 Summary

For the GEO 4 object, the singular value-tolerance ratio has a region near the

maximum value, at approximtely 6.333 hours, which does not rapidly reduce. There-

fore, measurement batch spacing cases in the neighborhood of the maximum would

be expected to have similar state estimation errors. In addition, regions of potentially

large state estimation errors can be identified with the observability analysis. When

measurement batches are spaced by 12 hours, there is a sharp decline in the singular

value-tolerance ratio which indicates that the state estimation errors for an estimator

with this measurement sequence may result in an inaccurate state estimate.

This analysis has shown that observability analysis results can be related to the

mean square errors in a nonlinear batch least squares Monte Carlo analysis. When

the observability matrix singular value-tolerance ratio or the condition number of the

observability matrix is computed for a range of measurement batch spacing cases, the

relative heights of these measures are indicative of the state estimation error trends

in the nonlinear batch least squares solution. Therefore, these measures could be

implemented in a sensor tasking optimizer to aid in determining when each object

should be observed.

3.9 An Observability Use Case: Multiple Sensor and Observation Eval-

uation

As government and commercial entities develop and expand their sensor networks

for Space Situational Awareness (SSA), large amounts of data will become available.

Furthermore, the United States Air Force Research Laboratory, Air Force Space Com-

mand, Space and Missile Systems Center have developed the Unified Data Library

(UDL) in an attempt to create a single source for storing and purchasing relevant SSA

related data [159]. Within the UDL, SSA sensor network operators can upload their

observations, processed data, and sensor services for purchase. In addition, details

on the sensors which obtained the data can be provided through the UDL.
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Although a catalog of the growing RSO population will continue to be a challenge,

the UDL can be used to obtain observations from multiple data sources for SSA. With

vast amounts of data, from many sources, comes the challenge of determining which

data sources should be selected. A sensor network from one data provider may have

more accurate sensors than another sensor network, but a second sensor network may

have observations from a larger number of sensors. If observations are to be purchased

given a limited budget, a purchaser will want to determine which data sources are most

advantageous for a particular application. The following simulation analyzes a system

with multiple observers compared to a system with a single observer to determine the

impact on observability. In addition, the accuracy of multiple observers is varied to

determine if a single, more accurate sensor or multiple, less accurate sensors are more

beneficial.

In the following simulations the observability of an Atlas V upper stage, identi-

fied by NORAD satellite number 40295 and international designator 2014-068B, is

analyzed. The position and velocity of the Atlas V object at an epoch of 58932.0974

MJD are defined in Table 3.17. In addition, two observers, otherwise known as

ground stations, are implemented in these simulations of observability. The latitude

and longitude of two fictitious ground stations are defined in Table 3.18.

Table 3.17. Atlas V upper stage position and velocity at epoch.

x [km] y [km] z [km] vx [km/s] vy [km/s] vz [km/s]

-20189.516 7946.505 16631.776 0.487 -3.108 2.167

The simulations in this analysis compare the observability of two systems: two,

less accurate ground stations and a single, more accurate ground station. The first

ground station location, designated by GS1, is used in both systems. For the system

with one ground station only, the measurement noise is defined by a standard devia-

tion of 0.1 arcseconds in the right ascension measurements and a standard deviation
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Table 3.18. Ground station coordinates.

Ground Station Latitude [˝] Longitude [˝]

GS1 37.5 -115.0

GS2 25.0 -105.0

of 0.05 arcseconds in the declination measurements. When two ground stations are

used in the observability analysis, a range of measurement uncertainties are imple-

mented to compare advantages of multiple observers for observability in the presence

of measurement uncertainties. Recall from Section 3.4 that the ratio of the measure-

ment uncertainty between the right ascension and declination measurements has an

impact on the time to become observable. When the measurement noise is equal

between the two measurement variables, the binary criteria of observability will not

be theoretically impacted. Figure 3.63 shows the impact of the variance ratio on

the time to become observable for the Atlas V object and ground station one only.

For the Atlas V object, the impact on the time to become observable due to the

measurement noise variance ratio is similar to the inclined orbits in Figures 3.1 and

3.2. Moreover, when the measurement uncertainty in declination is larger than the

measurement uncertainty in right ascension, the time to become observable increases

more than the opposite case.

Because the system observability is impacted by the measurement noise variance

ratio, this quantity is varied to define sensors with more or less accuracy. Table 3.19

shows the standard deviation in the right ascension and declination measurements

for each case in this analysis. When two observers are implemented, both observers

have the same measurement noise given by the values in Table 3.19.

Three simulations, differing in measurement sequence and length, are shown in

the following. First, the observability of the Atlas V object with one observer and

with two observers is compared for an analysis time of 100 seconds. The goal of this
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Figure 3.63. Time to become observable versus measurement noise variance ratio,

σ2
δ{σ

2
α, for the Atlas V object.

Table 3.19. Different right ascension and declination measurement noise standard

deviation cases.

Ground Station σα [arcsec] σδ [arcsec] σδ{σα

GS1 0.1 0.05 0.5

GS1 & GS2 0.1 0.05 0.5

GS1 & GS2 0.1 1.0 10.0

GS1 & GS2 0.1 100.0 1000.0

GS1 & GS2 0.1 1.0ˆ 105 1.0ˆ 105

GS1 & GS2 0.1 1.0ˆ 106 1.0ˆ 107

simulation is to determine the impact of adding a second observer on the time to

become observable. In addition, the influence of the measurement noise ratio with

two observers on the time to become observable is analyzed.
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Figure 3.64 shows the smallest singular value of the observability matrix and the

tolerance line for several systems. The blue line represents the single observer with

a more accurate sensor. The remaining curves represent systems with two observers

but less accurate sensors compared to the single observer case. A tolerance line is also

defined for each system, in the corresponding color, as defined by Equation 2.15. The

single observer case becomes observable in approximately 50 seconds. The systems

defined by two observers with a measurement noise standard deviation ratios of 1000.0

and 1.0 ˆ 105 become observable within the first few measurements. The final, two

observer system in brown does not become observable in this analysis time.

Figure 3.64. Comparison of the observability matrix smallest singular values for a

case with one observer and several cases with two observers.

The observability results are presented in a different way in Figure 3.65. The

previous section investigated the importance of the height of the observability matrix

singular values above the tolerance line. Therefore, instead of showing both the small-

est singular value and the tolerance line, the observability matrix smallest singular

value-tolerance ratio is shown in Figure 3.65. With this ratio, a system is considered
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observable when the ratio is larger than one. For the remaining simulations, this

representation of the observability results is implemented.

For the cases with two observers, there is a large initial spike in the singular value-

tolerance ratio, and then this value slowly reduces for the remainder of the simulation.

This decrease in the singular value-tolerance ratio is not due to a decrease in the

singular values of the observability matrix. When comparing to the singular values

in Figure 3.64, the singular values continue to increase in the analysis but the rate at

which they increase reduces.

Figure 3.65. Singular value-tolerance ratio for short time span.

The percent increase in the smallest singular value resulting from the GS2 mea-

surement is shown in Figure 3.66 to explain this behavior in more detail. For the

cases with two observers, measurements are processed from both observers at the

same time. Initially, the percent increase from a second observer is large, but as time

progress the percent increase reduces. This behavior occurs because an observer at

a different location creates a larger geometric difference in the measurements of the

Atlas V object. Therefore, the system becomes observable much quicker. However,
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as more measurements are acquired and the orbit of the Atlas V object is more re-

solved by the measurements, the percent increase in the singular values attributed

to the second observer is not as significant. Note that the larger measurement noise

ratio case has a larger percent increase in the smallest singular value compared to

the other measurement noise cases because the less accurate sensors require more

measurements to improve the knowledge of the orbit.

Figure 3.66. Percent increase in the smallest singular value due to the second observer.

Over a short analysis time, two observers with less accurate sensors compared to a

single, more accurate sensor, are advantageous for achieving observability. The second

sensor provides a large geometrical advantage for gaining knowledge of an orbit from

right ascension and declination angles. A comparison of the single observer to two

observer systems continues with a longer analysis time. Figure 3.67 shows the smallest

singular value-tolerance ratio for the single observer system and several two observer

systems with differing measurement noise variance ratios. All of the measurement

noise cases in Table 3.19 are shown in Figure 3.67.

The blue curve represents the single observer case, and the yellow curve represents

the system with two observers where both sensors are as accurate as the single observer
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Figure 3.67. Singular value-tolerance ratio over longer time scales.

case. Similar to the previous observability results, the two observer case has a large

increase in the singular value-tolerance ratio initially, but the ratio decreases with

time. In contrast, the single observer case has a singular value-tolerance ratio which

continues to increase throughout the analysis. After three hours of analysis, the single

observer case and the two observer case with the same measurement noise ratio have

the same singular value-tolerance ratios. This indicates that the second observer

initially provides a large amount of knowledge about the orbit due to the geometric

difference of the second ground station, but after three hours, the advantages resulting

from the second observer are no longer significant when the single observer case has

the same ratio value.

When the noise is increased in the declination measurement for the two observers,

the system still becomes observable faster than the single observer system, except

for the largest measurement noise case. However, when two sensors are less accurate

than a single sensor, the singular value-tolerance ratio will be smaller after some time

due to the influence of the measurement noise on the system. In the three most
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extreme measurement noise variance ratio cases for the two observers, the singular

value-tolerance ratios at the end of the analysis time are all the same.

Next, the percent increase in the smallest singular value of the observability matrix

due to the second observer is shown in Figure 3.68. The percent increase in the first

few measurements is large compared to the percent increase later in the analysis. As

previously discussed, this large change in the percent increase is due to the initial

geometric diversity provided by the second observer, and when the orbit knowledge

is resolved with the measurements, the impact of the second observer reduces.

Figure 3.68. Percent increase in the smallest singular value over longer time span.

Figure 3.69 shows the percent increase after the first few measurements in more

detail. Similar to the shorter simulation, the percent increase in the smallest singular

value of the observability matrix is lower at the end of the analysis when the mea-

surement noise variance ratio is lower because of the influence of the measurement

noise on the observability.
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Figure 3.69. Percent increase in the smallest singular value over longer time span,

zoomed in to show detail.

The final simulation is the same length as the previous simulation, but measure-

ments are more sparse. For the single observer and the two observer cases, mea-

surements are spaced every half hour. Figure 3.70 shows the singular value-tolerance

ratio for the systems given in Table 3.19. When this system contains two observers,

observability is still achieved faster than the single observe case, except for the two

most extreme measurement noise variance ratio cases. However, after a few time

steps, the single observer has a higher singular value-tolerance ratio than each of the

two observer cases except for the sensors with accuracy equal to the single observer.

Finally, Figure 3.71 shows the percent increase in the smallest singular value due

to the second observer. For the two most extreme measurement noise cases in Figure

3.71 the percent increase grows after the first time step because these cases are still

unobservable during the first time step. However, after the first time step, the percent

increase begins to reduce similarly to the other measurement noise cases. When the

measurements in this system are more sparse, the advantages of a second observer

for observability are not as evident.
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Figure 3.70. Singular value-tolerance ratio over longer time scales with sparse mea-

surements.

This analysis compared the observability of a system consisting of a single, more

accurate sensor and a system consisting of two, less accurate sensors. The observ-

ability results have shown that a second sensor provides a large geometric advantage

for obtaining sufficient knowledge of an orbit. This advantage is large initially, and

even large measurement noise variance ratios still result in a faster time to become

observable, except for extreme measurement noise cases. However, for the Atlas V

object after approximately three hours, the advantages of two sensors are no longer

apparent in the singular values of the observability matrix when compared to the

single sensor case. When the single sensor and two sensor cases both have the same

measurement noise variance ratios, the singular value-tolerance ratios are the same

after three hours. This indicates that the single observer measurements are able to

obtain the same knowledge of the orbit through right ascension and declination mea-
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Figure 3.71. Percent increase in the smallest singular value over longer time span

with sparse measurements.

surements. However, when the two sensors are less accurate than the single sensor,

the singular value-tolerance ratio is smaller at the end of the analysis.

These findings could be applied to data purchasing decisions. For example, the

UDL provides information on what data products are available from various sen-

sors at different locations around the Earth. Assuming that the measurement noise

covariance for each sensor is also provided, stochastic observability analysis could

be performed with different combinations of sensors. A trade-off analysis between

cost and desired observability results could be performed to determine if fewer, more

accurate sensors are advantageous over many, less accurate sensors. Similarly, this ob-

servability analysis could aid in sensor network development decisions. More sensors

will be able to provide greater geometrical diversity for observability, but if these sen-

sors are less accurate than only a few, more accurate sensors, the initial geometrical

advantages may not be as significant. Overall, these observability analysis methods

can be implemented to inform cost-performance based decisions for SSA.



161

4. OBSERVABILITY-ESTIMABILITY INFORMED

CONSIDER FILTER

The previous chapter on observability of the orbit problem demonstrated the power of

observability analysis for prediction of estimation accuracy. Observability utilizes the

state and measurement dynamical models for a system to determine whether measure-

ments are sufficient for obtaining knowledge of the states. Therefore, observability

is primarily thought of as an analysis tool prior to performing estimation. Where

observability is a predictive tool for estimation, estimability is a post-evaluation tool

for estimation. Estimability is applied to the orbit problem with extended states to

evaluate what knowledge can be gained from the method.

In addition, observability and estimability are applied in a Consider Filter ap-

proach to the orbit problem with an extended state. Observability is implemented

as a measure for indicating when consider parameters should be estimated, and es-

timability is implemented to evaluate the order in which consider parameters should

be estimated. Accuracy of state estimates are compared for the Extended Kalman

Filter (EKF) and observability-estimability informed Consider Filter.

4.1 Estimability

Many methods exist for evaluating deterministic observability, stochastic observ-

ability, and estimability for dynamical control systems. As introduced in Section

2.6, the terminology for stochastic observability versus estimability is not always con-

sistent. Some works analyzing the a priori and a posteriori state estimation error

covariance label this analysis as stochastic observability, but in the scope of this work,

stochastic observability is limited to analysis of the state and measurement models

with initial state and measurement uncertainties. Therefore, methods analyzing a
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priori and a posteriori state estimation error covariance for evaluating estimation

performance are considered as estimability analysis.

In this work, the distinction between observability and estimability is defined by

what aspects of a system is analyzing. Observability analyzes the system models to

determine whether measurement information is sufficient for acquiring the states of a

system. Even though observability has been shown to be an integral part of estimation

in Chapter 3, the fundamental concept of observability is a method for exploring the

measurement to state relationship through dynamical models. Moreover, Silva notes

that the term observability should be restricted to investigation of a system with the

system model matrices as in the observability matrix rank test [48].

Estimability, as applied in this work, focuses on evaluation of estimation perfor-

mance, and common methods for this evaluation focus on the state estimation error

covariance matrix over time [28, 39, 45, 47, 48, 52–54, 57, 59, 86]. Many of these works

implement measures which consider a large decrease in state estimation error covari-

ance as an indicator for an observable system. However, Hong et. al. [28] has shown

that such a measure can be misleading due to the sensitivity to the initial error covari-

ance of the state. In this work, the test for estimability is restricted to the methods

developed by Ham [25, 43]. More specifically, the methods from Ham determine the

relative estimation performance among the state variables with the eigenvalues and

eigenvectors of a normalized error covariance matrix. Therefore, estimability is re-

stricted to defining a relative result among the state variables and not an absolute

result for the system as a whole.

4.2 Observability-Estimability Informed Consider Filter

Section 2.5.3 introduces the Schmidt-Kalman Filter (SKF), otherwise known as

the Consider Filter (CF), as a method for improving the estimation of a system with

parameters which are challenging to estimate. The stochastic observability matrix

rank is implemented in this work as a measure for determining when consider pa-
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rameters should change from considered to estimated. The system of interest for

application of the CF is the state vector extended beyond position and velocity with

SRP parameters, AMR and C. Previous analysis of this system has shown how the

SRP perturbation has a small impact on the position and velocity of the orbit. There-

fore, the SRP variables are more challenging to estimate compared to the position

and velocity states, in general. While the rank of the stochastic observability matrix

is less than or equal to six, the number of Cartesian position and velocity states in

this system, the SRP extended state variables are defined as consider parameters.

When the rank increases to seven, one of the SRP variables is changed from a con-

sider parameter to an estimated state. If the rank of the observability matrix reaches

eight, both SRP variables become estimated states.

However, a challenge exists for determining which consider parameters are esti-

mated first. The CF approach thus far is informed by observability measures alone.

Estimability is implemented for determining which SRP parameter should be changed

from considered to estimated first when the rank of the stochastic observability ma-

trix is increased from six to seven. Section 4.3 investigates estimability applied to the

extended state orbit problem for determining the order in which the SRP parameters

should be estimated in the CF approach.

4.3 Estimability of the Orbit Problem Results

Prior to applying observability and estimability for informing a CF, estimability

analysis is investigated for the extended state system of Section 3.6.3. The estima-

bility methods from Ham are applied to this system with the EKF, and the relative

estimability of the state variables is evaluated. In addition, a fictitious problem is

defined for exploring the relationship between uncorrelated states and estimability

results.

An important feature of the estimability analysis is the covariance of the initial

state because the normalization procedure of Equation 2.83 divides the a posteriori
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state estimation error covariance matrix by the components of the initial state es-

timation error covariance matrix. In the estimability method from Ham, the initial

state estimation error covariance matrix is assumed to diagonal, thus have uncorre-

lated state variables. As the initial state estimation error covariance is an important

feature of the estimability analysis method, the initial state uncertainties should be

defined with realistic values for an orbit and object. For the orbit problem, the a

posteriori state estimation error covariance is typically non-diagonal, with correlated

components among the state variables. Therefore, uncorrelated components of a real-

istic state estimation error covariance must be determined for use as the initial state

estimation error in the estimability analysis. A method developed by List is imple-

mented for splitting a covariance matrix into correlated and uncorrelated parts [160].

The GEO 4 object, defined in Table 3.2, with a state extended beyond position

and velocity with time-varying AMR and C was estimated over five orbits with the

EKF to define the initial state estimation error for estimability analysis. The uncor-

related part of the a posteriori state estimation error covariance matrix from that

EKF simulation was computed with the method from List. Next, the uncertainties

from the uncorrelated part of the covariance were scaled up by 1.0 ˆ 105 to define

the initial state estimation error for this investigation of estimability of the orbit

problem. Table 3.4 gives the initial state uncertainties implemented throughout this

analysis of estimability. In addition, the same measurement uncertainties, observer,

and extended state cases from Section 3.6.3 are used in the following simulations.

4.3.1 Estimability with an Uncorrelated State

An eigenvector for the Pptkq
N` matrix shows a vector direction in the eigenspace,

and the vector direction can depend on a single state component or multiple state

components. The former case would clearly define the relative estimability of a state

variable depending on the eigenvalue associated with the eigenvector. However, the

latter case represents a linear combination of states which is more or less estimable,
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rather than representing the estimability of a single state variable. Therefore, the

correlated nature of the state estimation error covariance matrix in the orbit problem

can result in challenging interpretation of the system estimability. Prior to applying

estimability methods with a state vector extended by the AMR and C variables, which

are correlated within the SRP perturbation, a system is defined as an example for

demonstrating how uncorrelated states result in more clear estimability eigenvector

directions.

In the following analysis, the variable β is completely uncorrelated from the state

dynamics and measurements. A thorough discussion of the eigenvalue and eigenvec-

tor curves for estimability is left for the extended state results with AMR and C in

Sections 4.3.2 and 4.3.3. For this example problem, only a few of the eigenvectors

of the normalized state estimation error covariance matrix are presented to demon-

strate the affect of uncorrelated states on estimability. Figure 4.1 shows two of the

eigenvectors of the normalized state estimation error covariance matrix after EKF

estimation of this system with a state extended beyond position and velocity with β.

The different curves in Figure 4.1 represent the values of the eigenvector components

associated with each state variable over time.

Figure 4.1. Two eigenvectors of the normalized state estimation error covariance

matrix for the example problem with an uncorrelated state, β.
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In this system, the β variable is completely uncorrelated from the other states

in the dynamics. Therefore, one of the eigenvectors in the estimability analysis is

expected to be directed towards the β state. The second eigenvector, on the right of

Figure 4.1, confirms this expected behavior. This eigenvector direction indicates the

relative estimability of the β state variable rather than the estimability of a linear

combination of states. For a system which is highly correlated, the estimability eigen-

vector directions are not as clearly interpreted. For example, the first eigenvector, on

the left of Figure 4.1 has components associated with each of the position and velocity

states. Therefore, these eigenvector directions indicate the relative estimability of the

linear combination of the state variables.

For a system with an uncorrelated state or multiple uncorrelated states, the es-

timability methods from Ham clearly show the relative estimability of the uncorre-

lated state or states. However, for a system with highly correlated states, as is the

case of the Cartesian position and velocity states of the orbit problem, the interpreta-

tion of the estimability results is more challenging, but improved understanding of a

system can still be achieved with estimability analysis. Next, estimability analysis is

applied to the state cases of Section 3.6.3 to determine the relative estimability of the

states in a system extended with SRP parameters. In addition, this analysis focuses

on utilizing estimability for informing CF decisions.

4.3.2 Constant AMR and C

The following estimability analysis is performed in conjunction with the EKF

estimation analysis of Section 3.6.3. The initial state uncertainty from Table 3.4 and

the a posteriori state estimation error covariance in each of the extended state cases

is used to compute the normalized state estimation error covariance of Equation 2.82.

The eigenspace is determined for the normalized state estimation error covariance

matrix at the time of each measurement within the estimation.
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The interpretation of the normalized state estimation error eigenspace defines the

relative estimability of the state variables. Figure 4.2 presents the eigenvalues of the

normalized state estimation error covariance matrix. The eigenvalues are bounded

between zero and eight, the number of state variables. Large eigenvalues correspond

to eigenvector directions with weak relative estimability, and small eigenvalues cor-

respond to eigenvector directions with strong relative estimability. The estimability

results are relative among the state variables.

Figure 4.2. Eigenvalues of the normalized covariance matrix of the state estimation

error for constant AMR and C.

The eight eigenvectors associated with the eigenvalues of Figure 4.2 are shown in

Figure 4.3. The numbers assigned to each eigenvalue curve are associated with the

same eigenvector number in Figure 4.3. For example, the largest eigenvalue curve, e1,

of Figure 4.2 corresponds to eigenvector one of Figure 4.3. Therefore, the direction

with the strongest relative estimability is depicted with eigenvector one, and the

direction with the strongest relative estimability is depicted with eigenvector eight.

There are eight curves corresponding to each of the state directions for each of

the eigenvectors. Over time, the eigenvector curves for each state variable depict how

much the state contributes to the weak or strong relative estimability. Therefore, at

each time step, the relative estimability can be compared for the linear combinations

of states defining the eigenvector direction at each time step. When the states of
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a system are strongly correlated, the interpretation of the eigenvector directions is

challenging. If a state is uncorrelated from the dynamics of the system, the relative

estimability of that state alone is easier to interpret as shown in Section 4.3.1.

Figure 4.3. Eigenvectors of the normalized covariance matrix of the state estimation

errors for constant AMR and C.

Within the first batch of measurements, up until one hour from epoch, two of the

eigenvalues in Figure 4.2 are smaller compared to the other six eigenvalues. These two

eigenvalues correspond to eigenvector directions which have stronger relative estima-
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bility. In Figure 4.3, the corresponding eigenvectors to the two smallest eigenvalues

within the first batch of measurements are dominated by position vector components.

The dominant position component of eigenvector seven is the y position component,

and the dominant component of eigenvector eight is the z position component. For

the estimation of an orbit given angles-only measurements, estimation of the posi-

tion is expected to be initially better than the estimation of the velocity. This is

confirmed through estimability analysis. A linear combination of the position state

variables has a stronger relative estimability than linear combinations of the other

states in the system.

The directions of weakest relative estimability are given by eigenvectors one through

three as the corresponding eigenvalues are larger than the other eigenvalues in Figure

4.2. The first eigenvalue is much larger than the other seven eigenvectors, but the

second and third eigenvalues are also larger than the remaining five eigenvalues. The

direction of weakest relative estimability, as shown by the first eigenvector of Figure

4.3, is a linear combination of all of the state variables over the first batch of mea-

surements. However, the velocity components of the state, the x position state, and

the AMR state dominate the first and second eigenvector directions. By comparing

the first and second eigenvectors to the seventh and eighth eigenvectors, the weaker

relative estimability of the velocity compared to position is evident.

The third eigenvector direction is initially dominated by AMR and C, and after

several batches of measurements, the second eigenvector direction is dominated by the

extended state SRP variables. Note that the C variable contributes more to the linear

combinations of AMR and C in these two weaker relative estimability directions.

This behavior follows the findings from Section 3.6 where the observability of a state

extended with C took longer to become observable than a state extended with AMR.

In this system with constant AMR and C, these extended state SRP variables are

expected to have weaker relative estimability because the SRP perturbation has a

small impact on the position and velocity. However, the estimability analysis of Fig-

ures 4.2 and 4.3 do not show the AMR and C state variables as possessing the weakest
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relative estimability compared to the position and velocity states. Initially, the mea-

surement are not sufficient for computing the position and velocity state variables of

the system, so a linear combination of all of the states as the direction of weakest

relative estimability is in agreement with the initial estimation challenges. Over a

longer analysis time, the AMR and C variables are expected to be the directions of

weakest relative estimability.

Figures 4.4 and 4.5 show the estimability results for the constant AMR and C

case for a longer analysis time. Two of the eigenvalues in Figure 4.4 are significantly

larger than the other eigenvalues. The corresponding eigenvector directions in Fig-

ure 4.5 show the directions of weakest relative estimability. Note that the absolute

value of the eigenvector components is presented in Figure 4.5 to make the dominant

components more clear.

As expected, a linear combination of the AMR and C variables have the weakest

relative estimability after approximately 14 hours in the first eigenvector. Moreover,

the AMR and C variables are the only components defining the weakest relative

estimability direction in the first eigenvector after approximately 14 hours. In the

second eigenvector, a linear combination of the AMR and C states is the dominant

direction from approximately 2 hours to 14 hours. Earlier in the analysis, a lin-

ear combination of all of the states, with x position and velocity components being

dominant, has the weakest relative estimability, but over time, the estimability of

the position and velocity states improves and the estimability of the SRP variables

weakens. As this analysis primarily focuses on the relative estimability of the SRP

variables, the remaining eigenvectors are shown in Appendix B.1.1.

4.3.3 Time-Varying AMR and C

Next, the estimability is analyzed for the state extended beyond position and

velocity with time-varying AMR and C. The eigenvalues and eigenvectors for the

time-varying AMR and C case are nearly identical over three batches of measurements
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Figure 4.4. Eigenvalues of the normalized covariance matrix for the constant AMR

and C case with a longer analysis time.

Figure 4.5. 1st and 2nd eigenvectors of the normalized covariance matrix for the

constant AMR and C case with a longer analysis time.

to the eigenvalues and eigenvectors of the constant AMR and C case. Due to the

similarity of the estimability results for the constant AMR and C case compared to

the time-varying AMR and C case, focus is placed on differences in the estimability

results. The full estimability results for the constant AMR and C case are shown in

Appendix B.1.2.

Figure 4.6 shows the eight eigenvalues of the normalized state estimation error

covariance matrix for the time-varying AMR and C case. Similar to Figure 4.4,

three of the eigenvalues are larger compared to the other five. Figure 4.7 shows the

first two eigenvectors of the normalized state estimation error covariance matrix over



172

time, which correspond to the two largest eigenvalues in Figure 4.6 and indicate the

directions of weakest relative estimability.

Figure 4.6. Eigenvalues of the normalized covariance matrix for the time-varying

AMR and C case.

Figure 4.7. 1st and 2nd eigenvectors of the normalized covariance matrix for the

time-varying AMR and C case.

When comparing the weakest relative estimability directions of Figures 4.5 and

4.7, the trends in the linear combinations of the states initially appear the same. The

first eigenvectors are a linear combinations of all the state components, and after

approximately eight hours, the x component of position and velocity dominates the

linear combination of the states. Significant differences arise between the first eigen-

vector for the extended state cases after approximately 14 hours. The SRP variables

begin to dominate the linear combination of states for constant AMR and C case and
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continue to be the largest components of the weakest relative estimability direction.

However, in the time-varying AMR and C case, the SRP variables are only dominant

components of the first eigenvector for a few hours. In Figure 4.7, a linear combi-

nation of all of the states dominates the direction of weakest relative estimability,

except for hours 18 through 22, where the AMR and C states dominate the weakest

eigenvector direction. In the second eigenvector, the AMR and C components are

more dominant when compared to the constant AMR and C estimability results.

This change in the dominant components of the direction of weakest relative es-

timability for the time-varying AMR and C extended state case compared to the

constant AMR and C extended state case agrees with the findings of Section 3.6.3.

The SRP perturbation is affected by the SRP variables differently because the AMR

and C variables vary with time. Therefore, the contribution of AMR and C can be

identified within the measurements. Also, C still has a larger eigenvector component

in the first and second eigenvectors compared to the AMR contribution, which aligns

with the comparison of the times to become observable for the state extended by

AMR and the state extended by C in Section 3.6.1.

The extended state cases with one time-varying SRP parameter and one constant

SRP parameter are shown in Appendix B.1.3 and Appendix B.1.4. Similar to the

analysis in Section 3.6.3, these cases with one time-varying SRP parameter and one

constant SRP parameter have similar results to the constant and time-varying AMR

and C cases. The estimability results for the time-varying AMR and constant C

extended state case are nearly identical to the estimability results of the time-varying

AMR and C extended state case. The estimability results for the constant AMR and

time-varying C extended state case are nearly identical to the estimability results of

the constant AMR and C extended state case.
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4.3.4 Summary

Estimability analysis methods from Ham shows how well the states of a system are

estimated relative to one another. The a posteriori state estimation error covariance

matrix is normalized with the initial state uncertainty, which must be uncorrelated.

The normalization makes the estimability analysis sensitive to the initial state un-

certainty. Unlike observability analysis, an overall binary result does not exist with

estimability analysis where a system could be said to be estimable or not. However,

the estimability analysis does show how well the states of a system are estimated com-

pared to one another. This knowledge of state performance relative to other states is

not defined for observability analysis in general.

A major challenge facing estimability for the orbit problem is the correlated nature

of the Cartesian position and velocity state variables. When a state is uncorrelated,

the estimability analysis clearly indicates where the estimability of that uncorrelated

state resides compared to the other states. However, when many of the state variables

are correlated, the directions of relative estimability shown with the eigenvectors are

linear combinations of the state variables. Even with this challenge of correlated

state variables, general trends appear in the estimability results which align with

knowledge of the orbit problem. For example, linear combinations of the position

state variables have stronger estimability than linear combinations of the velocity

state variables, in general. Also, the difficulty in estimating the SRP parameters in

this system is evident with the estimability analysis. Moreover, the C eigenvector

component is often more dominant than the AMR eigenvector component, which

agrees with the time to become observable for a system extended with C compared

to a system extended with AMR. This knowledge of the estimability of the AMR

and C state variables is utilized in a CF approach in an attempt to improve state

estimation errors.
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4.4 Observability-Estimability Informed Consider Filter Results

Estimability analysis has shown that the SRP extended state variables are chal-

lenging to estimate for the system extended beyond position and velocity with AMR

and C. Observability analysis in Section 3.6 has shown that the time to become

observable increases when a state consisting of Cartesian position and velocity is ex-

tended by AMR, C, or a combination of the two SRP parameters. In addition, when

both parameters are included in the state vector as separate, solve-for variables, the

time for the seventh singular value of the observability matrix to cross the tolerance

line increases compared to the combined AMR¨C case. This indicates that a system

with more state variables which are more difficult to observe is detrimental to the

time to become observability.

The knowledge gained from estimability and observability is applied to the CF

approach in an effort to improve the state estimation errors resulting from the EKF.

Stochastic observability with measurement uncertainty is implemented as a measure

for determining when consider parameters should be estimated. The state vector for

the consider approach is given by Equation 2.80, where the state components are

defined as

s “
”

x y z 9x 9y 9z
ıT

, p “
”

AMR C
ıT

, (4.1)

The states to be estimated, s, are the Cartesian position and velocity, and the consider

parameters, p, are the SRP variables, AMR and C. The AMR and C cases in Table

3.3 are implemented in the CF. The stochastic observability measure is implemented

such that one of the consider parameters is added to the estimated states each time

the rank of the stochastic observability matrix increases beyond six. For example,

when the rank of the stochastic observability matrix is seven, either AMR or C is

added to the estimated states, and when the rank of the observability matrix is eight,

both SRP parameters are added to the estimated states. In addition, if the rank of

the observability matrix decreases, the consider parameter which was most recently

turned into an estimated state is changed to a consider parameter once again.
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With this consider approach, a decision must be made as to which consider pa-

rameter should be added to the state first when the rank of the observability matrix

increases to seven. The observability rank measure for determining when to move

a consider parameter to the estimated states is not sufficient for determining which

consider parameter should be added first when multiple consider parameters exist.

Estimability analysis has shown that the C state is more difficult to estimate relative

to the AMR state. The impact of estimating the C variable first in the consider

approach compared to estimating the AMR variable first is explored for each of the

AMR and C cases of Table 3.3. In addition, the state estimation errors without the

CF approach are shown to determine if the consider approach improves the estimation

of this system.

4.4.1 Constant AMR and C

First, recall the rank of the stochastic observability matrix with measurement

uncertainties in Figure 3.14. When AMR and C are both constants, the rank of

stochastic observability matrix changes from six to seven after approximately two

hours of analysis, and the rank of the observability remains at seven until the end of

the analysis. Therefore, with the observability matrix rank as a measure for the CF,

one of the SRP state variables will be added to the estimated states after approxi-

mately two hours, and the second SRP parameter will remain as a consider parameter

for the duration of the analysis.

Figure 4.8 shows the absolute value of the state estimation errors for the three

estimations. The state estimation errors resulting from the EKF with all of the states

estimated is given in red, the state estimation errors from the CF with AMR added

first to the estimated states is given in blue, and the state estimation errors from the

CF with C added first to the estimated states is given in green.

For the position and velocity state variables, the state estimation errors for each

approach are all similar. The largest differences among the position and velocity
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Figure 4.8. Consider filter state estimation errors for the constant AMR and C case.

state estimation errors exist with the z component of velocity. The CF approach

where C is added first to the estimated states, has larger state estimation errors

than the other approaches. The most significant state estimation error differences
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appear in the AMR and C plots of Figure 4.8. For both variables, the approach

with C added first has the largest state estimation errors. In addition, the EKF

estimation without a consider approach has lower state estimation errors compared

to both consider approaches. Also, the state estimation errors in the AMR variable

are constant for the approach where C is added to the estimated state first in the CF.

Likewise, the state estimation errors are constant in the C variable for the approach

where AMR is added to the estimated state first in the CF. These constant state

estimation errors show how these variables remain as consider parameters because

the rank never reaches eight for the constant AMR and C system.

The consider approach for the system with a state extended by constant AMR and

C is detrimental to the state estimation because the stochastic observability matrix

never reaches full rank. As a result, one of the SRP variables is not estimated. Since

the AMR and C variables are multiplied together in the SRP perturbation, a bias

will exist in the estimation of the other SRP variable which is added to the estimated

states in the consider approach. Therefore, this system is highly sensitive to the initial

estimate of the SRP parameters when the consider approach is implemented.

4.4.2 Time-Varying AMR and C

Next, state estimation errors for the time-varying AMR and C extended state case

are given in Figure 4.9. Recall the stochastic observability results of Figure 3.16. The

rank of the stochastic observability matrix with measurement uncertainties changes

from six to seven after approximately two hours of analysis. Shortly thereafter the

rank increases from seven to eight. Even though the deterministic observability matrix

rank decreases to seven after 23 hours, the stochastic observability matrix remains

at eight for the rest of the analysis. This change in the observability matrix rank is

applied to the CF for adding SRP parameters to the vector of estimated states.

This system is stochastically observable as demonstrated by the full rank stochas-

tic observability matrix. Therefore, the state estimation errors for the AMR and C
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Figure 4.9. Consider filter state estimation errors for the time-varying AMR and C

case.

variables should be improved when compared to the constant AMR and C system,

as shown in Figure 4.9. The state estimation errors for the position and velocity

states are nearly identical for the three estimation approaches. For the AMR and C
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variables, the CF with the AMR added first to the analysis has lower state estima-

tion errors than the approach estimating all of the state variables, given by the red

curve, for the majority of the analysis. Although the state estimation error differ-

ence is minor between the two estimation approaches, keeping the SRP parameters

as consider parameters until the rank of the observability matrix increased beyond

seven, improved the estimation of the SRP parameters when they were changed from

consider parameters to estimated states.

4.4.3 Time-Varying AMR, Constant C

Similar to the corresponding observability analysis and estimability analysis, the

following comparison of the state estimation errors for the three estimation approaches

with a state extended by time-varying AMR and constant C is similar to the results

of the time-varying AMR and C extended state case. Figure 4.10 shows the state

estimation errors for the EKF estimation and the two CF approaches. The analysis

of the observability of a system with a state extend by C has shown that the partial

derivatives of the dynamics with respect to C for the STM computation are consid-

erably smaller than the other partial derivatives due to the units of AMR. When the

C variable is time-varying or constant, this partial derivative will not change signifi-

cantly due to the large order of magnitude differences among the partial derivatives

of the dynamics for the STM computation. Hence, the state estimation errors for this

case are expected to be similar to the time-varying AMR and C extended state case.
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Figure 4.10. Consider filter state estimation errors for the time-varying AMR and

constant C case.
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4.4.4 Time-Varying C, Constant AMR

The final extended state case, with time-varying C and constant AMR, does differ

from previous CF results. The rank of the stochastic observability matrix over time

is shown in Figure 3.22. The rank increases from six to seven after approximately

one hour, and the rank increases from seven to eight after approximately two hours.

However, after approximately ten hours, the rank of the stochastic observability ma-

trix decreases to seven. The CF approach follows this change for adding, and in this

case removing, consider parameters to the estimated states.

Figure 4.11 shows the state estimation errors for each state variable and each

estimation approach. As with the other AMR and C cases, the position and velocity

state estimation errors are nearly identical for the three estimation approaches. Small

differences do appear in the z velocity state estimation errors for the case where C is

added to the state first when the rank of the observability matrix reaches seven.

The observability-estimability informed CF shows improved performance in the

state estimation errors of the AMR and C variables when AMR is added to the

estimated states first. The AMR state estimation errors with the consider approach

are only slightly lower than the state estimation errors for the approach without

consider parameters. However, the C state estimation errors remain constant for the

CF approach with AMR estimated first because the observability matrix rank reduces

from eight to seven after ten hours. The variable C is changed from an estimated

state to a consider parameter at that time. Therefore, the consider approach reduced

the detrimental effect of the C variable when the measurements no longer provided

sufficient information to determine the observability of the system.
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Figure 4.11. Consider filter state estimation errors for the time-varying C and con-

stant AMR case.
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4.4.5 Summary

The observability-estimability informed CF implemented the rank of the stochastic

observability matrix as a measure for determining when consider parameters should

be estimated. In the case of multiple consider parameters, this observability mea-

sure does not indicate which consider parameter should be estimated first because

a one-to-one mapping of the singular values of the observability matrix to the state

variables of the system typically does not exist. Therefore, estimability analysis was

explored for informing the CF of the order in which the consider parameters should

be estimated. Due to the challenge of correlated state variables, the estimability

results are not always clear for the orbit problem. However, for the constant AMR

and C extended state case, a linear combination of the AMR and C state variables

has the weakest relative estimability compared to the other state variables or linear

combinations of state variables in the system after some time. Also, the C compo-

nent in the linear combination of AMR and C is dominant in defining the eigenvector

direction of weakest relative estimability. Therefore, the estimability analysis could

be interpreted as indicating that C is more difficult to estimate than AMR. From an

observability perspective, this has been shown with the time to become observable

for the C extended state versus the AMR extended state.

Two CFs have been implemented for the different constant and time-varying cases

of AMR and C. The CFs differ by which extended state variable is changed from a

consider parameter to an estimated state first. In most cases, the state estimation

errors from the EKF without the consider approach are less than or equal to the state

estimation errors when the consider approach is implemented. When the system is

observable, as in the case of time-varying AMR and C, there is a small improvement

in the state estimation errors for the AMR and C variables compared to the EKF

without the consider approach. The most significant state estimation error differences

occurs with the C variable for the time-varying C and constant AMR extended state

case. The stochastic observability matrix rank increases to eight, but then reduces to
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seven after ten hours of analysis. As a result, detrimental effects of poorly estimated

extended states are reduced for the case where AMR is added to the state first because

the C state is changed back from an estimated state variable to considered parameter.

For some systems with low observability, the observability-estimability informed CF

may aid in reducing the state estimation errors. For the orbit problem, only minor

improvements in the state estimation errors exist for some extended state systems,

and some extended state cases do not benefit from the consider approach.
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5. OBSERVABILITY OF LIGHT CURVE INVERSION

The general principle of observability is exploration of the relationship between the

measurements and the states of a system, as introduced in Section 2.1. Rather than

using observability as a concept specifically for control systems, observability is ana-

lyzed for light curve inversion in this chapter. Moreover, observability is applied in a

general sense to the challenge of obtaining light curve measurements which sufficiently

sample the observer-object-Sun geometry and object attitude profile.

If the light curve measurements do not sufficiently cover the observer-object-Sun

geometry and the object attitude profile, light curve inversion may not produce accu-

rate object representations. The method for overcoming this challenge and ensuring

sufficient sampling of the system has historically been to collect large amounts of

data [136,161,162]. However, due to darkness constraints for many optical telescopes

and high demand for optical telescope resources, collecting large sets of data for light

curve inversion is not sustainable for the growing resident space object (RSO) popula-

tion. Moreover, the times at which light curves may be collected are often influenced

by telescope operational constraints and resource demands, leading to a more or less

random selection of times for generating shorter light curves.

The challenge of sufficiently sampling the light curve system geometry for light

curve inversion and the high demand for telescope resources led to the investigation

of observability as a method for improving the efficiency of collecting measurements

for light curve inversion. The analysis of observability seeks to determine the num-

ber of measurements required and when measurements should be acquired for light

curve inversion. As discussed in Section 2.7, the Extended Gaussian Image (EGI)

minimization step is the only component of the light curve inversion process which

directly utilizes the light curve measurements. Therefore, this work focuses on the

observability of the EGI minimization.
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5.1 EGI Minimization Observability Derivation

The EGI minimization step of the light curve inversion process estimates the

albedo-area vector associated with the surface normal directions of the EGI faceted

sphere. Recall the form of the optimization problem for determining the albedo-area

vector, which was presented in Section 2.7,

min J “ ||L´G a||2 ,

subject to as ľ 0 @as in a “ ra1, . . . , ams
T , (5.1)

where L is a vector of light curve measurements, G is the reflection matrix, and a is

the albedo-area vector.

The reflection model implemented in the observability of light curve inversion is a

classical Lambertian model. The reflection matrix models the contribution from each

surface normal vector with associated albedo-area under specific light and observer-

object-Sun conditions to the light curve measurement. The reflection matrix is defined

by

Gptkq “ I@

1

π||optkq||2

”

ôptkq ¨ n̂s

` λ δ
´

ôptkq ¨ n̂s ´ n̂s ¨ ŝptkq
¯

δ
´

ŝptkq ˆ n̂s ´ n̂s ˆ ŝptkq
¯ı

, (5.2)

where I@ is the mean solar irradiance, otherwise known as the solar constant, optkq

is the object-observer vector, ns is the EGI surface normal vector for each s facet,

sptkq is the object-Sun vector, and λ is a constant defining the relationship between

the diffuse and specular components of the reflection model [95,99]. The EGI normal

vectors are not time-varying because the reflection model is computed in the body

frame. The δ function is defined as

δpxq “

$

’

&

’

%

1, x “ 0

0, otherwise.

(5.3)

The rows of the reflection matrix correspond to the time of each light curve measure-

ment in L. In addition, the columns of the reflection matrix correspond to each of
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the EGI surface normal vectors as a result of the following relationship between the

diffuse and specular coefficients.

A linear relationship between the reflection matrix and the albedo-area vector

exists because a fixed relationship is assumed for the specular coefficient, Cs, and

diffuse coefficient, Cd, in the reflection model. The relationship between the specular

and diffuse coefficients is defined by

Cs “ λ Cd. (5.4)

For the Lambertian reflection model, energy conservation states that the following

relation holds

Cs ` Cd ` Ca “ 1, (5.5)

where Ca is the absorption coefficient. This work assumes an object which does not

reflect specularly, i.e. Cs “ 0. Therefore, with these assumptions, the reflection

matrix simplifies to

Gptkq “ I@

1

π||optkq||2
rôptkq ¨ n̂ss , (5.6)

and the albedo-area vector equals

a “ rCdA1, . . . , CdAs, . . . , CdAms
T , (5.7)

where As is the area associated with each surface normal vector on the EGI.

This EGI minimization problem assumes a known attitude profile. The origi-

nal object shape is not required, but the reflection matrix is defined by the object-

observer-Sun geometry and attitude motion. Therefore, given the input values under

which light curve measurements are acquired and an assumed attitude profile, the

albedo-area vector, a, can be determined by solving Equation 5.1.

When solving the EGI minimization problem in a linear least squares approach,

common forms of observability appear. The following derivation defines the albedo-

area least squares solution and defines an observability Gramian for the light curve

inversion problem. First, Equation 5.1 is expanded as

“ LT L´ 2 aT GT L` aT GT G a. (5.8)
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To find the least squares solution, â, the first derivative of the cost, J , with respect

to the albedo-area vector, a, is set equal to zero.

BJ

Ba
“
B

Ba

“

LT L´ 2 aT GT L` aT GT G a
‰

, (5.9)

“ ´2 GT L`
B

Ba

“

aT GT G a
‰

, (5.10)

“ ´2 GT L`
B

Ba

“

pG aqT pG aq
‰

, (5.11)

“ ´2 GT L` 2 GT G â “ 0. (5.12)

Finally, solving for â.

â “
`

GT G
˘´1

GT L. (5.13)

The estimated albedo-area of Equation 5.13 requires the inversion of GT G. The

assumption that this matrix is non-singular is a fundamental aspect of observability.

The matrix GT G is considered an observability Gramian in this work. Therefore, if

the observability Gramian can be inverted, this system is considered observable.

For EGI minimization, an observable system depends on the observer-object-Sun

geometry, object attitude profile, and spacing of observations. However, the light

curve inversion process implemented in this work requires a known attitude profile

for executing the inversion process. Methods exist to extract attitude information

from light curve measurements [163–166]. Therefore, the observability of the EGI

minimization assumes a known attitude profile and focuses on the analysis of the

reflection matrix, G, for determining the number of observations and spacing required

for sufficient sampling of the EGI to estimate the albedo-area vector.

The following simulations, presented in Sections 5.2, 5.3, and 5.4, demonstrate

the applicability of observability for light curve observation planning to perform light

curve inversion. Observability of the system is evaluated by computing the rank of

the observability Gramian, GTG, for various measurement spacing sequences. In

addition to the evaluation of the observability Gramian matrix rank, the linearly

independent columns of G are determined with each measurement to visualize the

facets of the EGI which have been sufficiently sampled. This method of visualizing the

observability will be discussed in more detail when simulation results are presented.
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Two methods of applying observability to the light curve inversion problem are

presented. First, observability is analyzed independent of the original object shape

in Sections 5.2 and 5.3. This application of observability focuses on determining

when the EGI is sufficiently sampled to estimate the albedo-area vector. The second

method of observability, presented in Section 5.4, assumes the original object shape

is known in order to determine when critical features of an object, such as solar

panels, become observable. This observability analysis focuses on differences in time

to become observable for specific features when there are slight differences in an object

model, e.g. errors in the deployment of solar panels resulting in not fully deployed

solar panels.

5.2 EGI Observability Independent of Original Object Shape

The first EGI minimization observability simulations presented in this work con-

sider low Earth orbit (LEO), medium Earth orbit (MEO), and geosynchronous Earth

orbit (GEO) objects. Table 5.1 defines the orbital elements and epoch for the three

objects. Cartesian position and velocity are propagated with two-body motion. Two

attitude profiles are applied to each object: one is a simple, single-axis rotation about

the body z-axis and one is a three-axis rotation. The rotation rates for each of the

two attitude profiles are given in Table 5.2. In addition, an example of the three-axis

rotation motion is shown in Figure 5.1. The color gradients depict the motion of the

body-fixed axes over time. The body z-axis is tilted 30˝ from the inertial z-axis, and

the rotation rate about the body z-axis is defined in Table 5.2.

The analysis of the LEO, MEO, and GEO objects focuses on the impact of the

time between measurements and the EGI tessellation number on the observability of

the EGI minimization. Therefore, observability analysis is performed for each object

with a range of times between measurements and EGI tessellation numbers, given in

Table 5.3. Recall that the EGI tessellation number defines the number of facets per
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Table 5.1. LEO, MEO, and GEO orbit definitions.

Object a [km] e [-] i [˝] Ω [˝] ω [˝] ν [˝] Epoch [MJD]

LEO 8124.967 0.147 32.869 55.826 53.880 0.0 53159.1

GEO 42170.238 9.734e-4 35.745 359.304 124.110 0.0 53159.1

MEO 26378.137 0.0001 40.0 60.0 50.0 0.0 58270.0

Table 5.2. LEO, MEO, and GEO attitude profiles.

Attitude Profile Rotation Rate [˝/s] Spin Axis Angle [˝]

single-axis 12.072 0.0

three-axis 25.096 30.0

Figure 5.1. Body-fixed axes over time for the three-axis rotation case.

row and column on each side of the quad-cubed sphere, which is implemented for

defining the discrete EGI representation.
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Table 5.3. Measurement spacing and EGI tessellation numbers analyzed for the LEO,

MEO, and GEO objects.

Object Measurement Spacing [s] EGI Tessellation Numbers

LEO 1, 2.5, 5, 10, 20 5, 7

GEO 1, 2.5, 5, 10, 20 5, 7

MEO 1, 2.5, 5, 10, 20 5, 7

5.2.1 LEO Object with Single-Axis Rotation

The analysis of the EGI minimization observability begins with a simulation of a

LEO object with a simple, single-axis rotation. The rank of the observability Gramian

in Equation 5.13 is calculated for a range of measurement spacing cases as defined in

Table 5.3. For each case, measurements are spaced equally for a total analysis time

of two hours. Figure 5.2 depicts the LEO simulation observability results with each

line representing a different measurement spacing. This analysis is performed with

a tessellation number of seven, which is equal to 294 surface normal directions on

the EGI. The black dashed line in Figure 5.2 represents the number of EGI surface

normal directions.

For this system to be observable, the rank of the observability Gramian must be

equal to the number of EGI surface normal directions. Theoretically, the minimum

number of observations required for the observability Gramian to be full rank is

equal to the number of surface normal directions. However, the observer-object-Sun

geometry and attitude profile over time may result in a system which requires a greater

number of measurements than the number of surface normal directions. Moreover,

the geometry and attitude profile may result in a system which never becomes full

rank within the analysis time, which is the case for this LEO object with a single-

axis rotation. All of the measurement spacing cases in Figure 5.2 do not reach full
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Figure 5.2. Rank of the observability Gramian versus time for the LEO object with

single-axis rotation and 294 surface normal directions.

rank due to insufficient sampling of the EGI as the observer-object-Sun geometry and

attitude change.

The complex relationship between the observer-object-Sun geometry, attitude pro-

file, and the spacing of measurements is shown in more detail in Figure 5.3, which

depicts the three smallest measurement spacing cases with a shorter analysis time.

When the time between measurements is one second, there is a plateau in the observ-

ability Gramian rank curve from approximately 0.05 to 0.14 hours from the analysis

epoch. During this plateau, more measurements are acquired, but the system geom-

etry has not change sufficiently to increase the rank of the observability Gramian.

Another method of presenting the observability results for selection of efficient

measurement spacing is a comparison of the observability Gramian rank to the number

of measurements, as in Figure 5.4. As with the observability Gramian rank versus

time, Figure 5.5 shows how redundant measurements exist for the 1 second and 2.5

second measurement spacing cases. The 1 second measurement spacing case has

approximately 300 redundant measurements which do not increase the rank of the

observability Gramian as shown by the plateau region in Figure 5.5. The 2.5 second
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Figure 5.3. Rank of the observability Gramian versus time for the LEO object with

shorter analysis time showing more detail of the smaller measurement spacing cases.

measurement spacing case does not have a single plateau for an extended period of

time like the 1 second measurement spacing case, but the 2.5 second measurement

spacing case does have measurements which do not increase the rank, and therefore,

are redundant measurements.

Figure 5.4. Rank of the observability Gramian versus number of measurements for

the LEO object with single-axis rotation and 294 surface normal directions.
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Figure 5.5. Rank of the observability Gramian versus number of measurements for

the LEO object with single-axis rotation and 294 surface normal directions, zoomed

in to show detail.

As expected, measurement spacing cases with longer times between each measure-

ment result in fewer measurements to reach the maximum observability Gramian rank

for this system. However, the conclusion that longer times between measurements

will result in reaching a maximum matrix rank faster is not necessarily always true.

Due to the connection of the observer-object-Sun geometry and the attitude profile,

time between measurements could be selected which are detrimental to achieving a

maximum matrix rank due to reoccurring surface normal directions being visible to

the observer with each measurement.

The results presented thus far for the LEO object examined an EGI with 294

surface normal directions. Another method for analyzing the observability of the

EGI minimization determines how the EGI tessellation number impacts rank of the

observability Gramian. For the LEO object, EGI tessellation numbers of five and

seven, which result in 150 and 294 surface normal directions, are analyzed. Because

the number of surface normal directions is different, a direct rank comparison does

not accurately show the impact of the EGI tessellation number on the observability.
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Instead, it is more relevant to compare the different EGI tessellation number cases

using the percentages of the matrix rank with respect to the total number of surface

normal directions.

Figure 5.6 shows the percentage of the matrix rank over time with respect to the

total number of surface normal directions. For each measurement spacing case, an

(a) 20 seconds. (b) 10 seconds.

(c) 5 seconds. (d) 2.5 seconds.

(e) 1 second.

Figure 5.6. Comparison of the percentage of the EGI albedo-area which is linearly

independent for EGIs with 150 and 294 surface normal directions and the LEO object.

EGI defined by a tessellation number equal to seven takes longer to reach a maximum
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rank compared to an EGI defined by a tessellation number equal to five, with the

exception of the 1 and 2.5 second spacing cases because of the redundant measure-

ments. This behavior is expected because the number of surface normal directions

increases with the EGI tessellation number, requiring more measurements to reach

the maximum rank. Given a system where the observer-object-Sun geometry and at-

titude profile were sufficiently sampled, the number of required measurements would

be theoretically equal to the number of surface normal directions.

As introduced in Section 2.7, the EGI tessellation number relates to the resolution

of the EGI. The EGI approximates the unit sphere more closely when the EGI tes-

sellation number is larger because the EGI tessellation number defines the number of

facets in each row and column of the quad-cubed sphere. As the time between mea-

surements decreases in Figure 5.6, the two EGI tessellation cases progress similarly

in terms of the percentage of EGI albedo-area. Therefore, for larger times between

measurements, the EGI tessellation number has a larger impact on the increase of

the matrix rank over time. Comparing the observability rank results for multiple

EGI tessellation numbers for each measurement spacing case shows which factors in

the system are limiting the progression of the rank to a maximum value. The larger

measurement spacing cases are limited by the number of surface normal directions

since the different tessellation numbers require significantly different times to reach

a maximum rank. However, smaller measurement spacing cases are limited by the

rotation rate of the object as the two tessellation number cases have similar curves,

both exhibiting a plateau for the one second spacing case. In general, an EGI will

better approximate an object with more surface normal directions. Therefore, finding

a balance between being limited by the EGI tessellation number and limited by the

measurement sampling rate will improve the efficiency of collecting measurements for

light curve inversion.
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5.2.2 GEO Object with Single-Axis Rotation

The preceding analysis of the LEO object is repeated for the GEO object with

single-axis rotation. Figure 5.7 shows the rank of the observability Gramian over

time for the GEO object with 294 EGI surface normal directions. Each measurement

spacing reaches a maximum rank of 285 within 2.5 hours, resulting in a system which

is not sufficiently sampled for EGI minimization.

Figure 5.7. Rank of the observability Gramian versus time for the GEO object with

single-axis rotation and 294 surface normal directions.

Unlike the LEO object observability results, the rank curves for each measurement

case have a similar trend for the GEO object. The rank increases with an apparent

constant slope for each measurement spacing before reaching a plateau. The differ-

ences in the behavior of the rank between the LEO object and GEO object are due to

the differences in observer-object-Sun geometry for the two objects. The GEO object

has small geometry changes over a 2.5 hour period, whereas the LEO object geome-

try will change significantly during the two hour analysis. In general, more geometric

diversity can be considered as advantageous for observability. However, in the case

of the LEO object compared to the GEO object, the rapidly changing geometry of
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the LEO object system is detrimental for increasing the rank due to the relationship

between the observer-object-Sun geometry and attitude.

Next, the rank of the observability Gramian is plotted against the number of

measurements for the GEO object in Figure 5.8. As the time between measurements

decreases, the number of required measurements to reach a maximum rank increases.

This is expected because larger measurement spacing cases require more time than

smaller measurement spacing cases for an equal number of measurements. The rank

of the observability Gramian versus time and number of measurements could be

used to select a measurement spacing which efficiently achieves a maximum rank

depending on operator requirements for efficient observation planning. However, the

GEO object system also does not reach full rank, so no matter which measurement

spacing is selected for the given system and analysis time, the accuracy of the albedo-

area estimates cannot be guaranteed.

Figure 5.8. Rank of the observability Gramian versus number of measurements for

the GEO object with single-axis rotation and 294 surface normal directions.

The impact of the EGI tessellation number on the rank of the GEO object system

is shown in Figure 5.9. The trends for the impact of the EGI tessellation number

for the GEO object are similar to the trends for the LEO object. As the time be-
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tween measurements decreases, the EGI tessellation number impacts the observability

results less.

(a) 20 seconds. (b) 10 seconds.

(c) 5 seconds. (d) 2.5 seconds.

(e) 1 second.

Figure 5.9. Comparison of the percentage of the EGI albedo-area which is linearly

independent for EGIs with 150 and 294 surface normal directions and the GEO object.

Analysis of the observability Gramian was also conducted for the MEO object

with single-axis rotation. The observability results for the MEO object with single-

axis rotation are nearly identical to the GEO object results. This is because both
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orbit cases have significantly longer orbital periods than the LEO object. Therefore,

the MEO results are shown in Appendix C.1.

5.2.3 Rank Deficiency of the Single-Axis Rotation Systems

For each of the LEO, MEO and GEO objects with single-axis rotations, the max-

imum values of the observability Gramian matrix rank do not equal the number of

surface normal directions of the EGI for the given analysis time. Even though the

rank of the observability Gramian is close to full rank for the LEO object, full rank

is not achieved and the observability Gramian is non-singular. Therefore, accurate

estimation of the albedo-area vector cannot be reliably guaranteed, potentially re-

sulting in a poor object reconstruction through light curve inversion. In order to

understand what aspects of this system result in the inability to achieve full rank of

the observability Gramian, the reflection matrix is explored in more detail.

A limiting aspect of analyzing the matrix rank of the observability Gramian over

time is that the matrix rank only quantifies the matrix as a whole. Therefore, the

information about how each measurement is mapped to the surface normal directions

is lost. However, as shown in Section 2.1.3, there are many mathematically equivalent

methods for presenting the observability of a system. The singular values of the

observability Gramian over time present greater insight into how the matrix rank

varies with time. However, the singular value methods for depicting observability are

not clear for the observability analysis of the light curve inversion as a result of the

high dimension due to the number of EGI surface normal directions.

Another equivalent method for determining invertibility of a matrix is the linear

independence of the columns of a matrix. As the EGI minimization has been defined

as a linear problem, the linear independence of the columns of the reflection matrix,

G, directly correspond to each albedo-area value associated with each surface normal

direction. The linear independence of the columns of the reflection matrix can be
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visualized in a three-dimensional method for inspecting which aspects of the EGI do

not have sufficient sampling.

QR factorization is implemented to determine which columns of the reflection

matrix are linearly independent for each measurement [91]. Figure 5.10 shows a 3D

representation of the linear independence of the reflection matrix columns over time

for the LEO object with one second between measurements. The colorbar represents

the measurement indices in the analysis, and in this case, also the analysis time. The

EGI is defined by a tessellation number of seven, resulting in 294 surface normal

directions. As measurements are accumulated and the columns of reflection matrix

become linearly independent, the associated surface normal directions are assigned a

color corresponding to the measurement index. Note that the EGI is viewed in the

body frame viewed down the observer vector towards the object.

From the 3D visualization, the period of redundant measurements for increasing

the rank, which is equivalent to the plateau in Figure 5.3, is clearly shown. The

bottom row of Figure 5.10 contains a gap of color between blue and yellow which is

another way the measurement redundancy is shown with the one second measurement

spacing case. This visualization appears to show how the object becomes visible to

the observer, but this is not the case. The color change of the facets over time is an

indication of the linear independence of the reflection matrix columns.

Unlike the matrix rank of the observability Gramian, the specific regions of insuf-

ficient sampling of the system geometry are apparent in the 3D visualization. A gray

region at the bottom of the EGI remains after all of the measurements have been

accumulated, indicating that the columns of the reflection matrix associated with

those specific surface normal directions have not been sampled sufficiently. This LEO

object has an attitude profile defined by a simple rotation about the body z-axis.

Therefore, the bottom of the EGI does not become illuminated and visible to the

observer during the analysis time.

The linear independence of the reflection matrix is also analyzed for the GEO

object with single-axis rotation to improve the understanding of why this system
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is not sufficiently sampled. Figure 5.11 shows the 3D visualization of the linearly

independent columns in the reflection matrix at several points along the analysis.

The 10 second measurement spacing case is shown with 294 surface normal directions

on the EGI. Similar to the LEO 3D visualization, the bottom of the GEO object

remains gray for the analysis, indicating that the bottom of the EGI is not visible

and illuminated for the observer throughout the analysis. Although there does not

appear to be any changes in the 3D visualization after the 4th EGI depicted, the last

image has a yellow colored facet on the top of the EGI. This region corresponds to

the small increase in the matrix rank after approximately 1.25 hours in Figure 5.7.

A similar visualization is presented for the MEO object in Appendix C.1.

Although full rank of the observability Gramian was not achieved with LEO,

MEO, and GEO objects with single-axis rotation, the various presentations of the

observability Gramian matrix rank demonstrate how observability analysis can be

implemented for observation planning for light curve inversion. Efficient measurement

selection can be thought of in several different ways with analysis of light curve

inversion observability. One goal for efficient observation planning could be to reduce

the time required to achieve full rank of the observability Gramian. Based on this

goal, Figure 5.3 indicates that time between measurements of 1 second or 2.5 seconds

will reach a maximum rank in approximately 0.26 hours. However, the plateau region

of the one second spacing case has redundant measurements which do not increase

the rank, so it may be advantageous for a telescope operator to not image this object

during the period of the plateau in the matrix rank. To avoid the plateau of the

one second measurement spacing case, a different measurement spacing could be

selected or another object could be observed during the plateau region. If another

measurement spacing case is selected, the 2.5 second or 5 second cases are efficient

choices because each case has limited redundant measurements for increasing the

matrix rank, and the time required to reach a maximum rank is close to the one second

spacing case. The second option of observing another object during the plateau of

the one second spacing case enables a telescope operator to collect light curves of this
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LEO object quickly, but not use valuable resources on this object when the rank of

the observability Gramian will not be improved.

Another goal for efficient light curve collection for light curve inversion might be

to limit the number of measurements required. In this LEO case, Figure 5.5 indicates

that the five second and larger measurement spacing cases reach the maximum rank

with approximately the same number of measurements. However, the five second

measurement spacing case reaches a maximum rank in less than half the time than

the ten second measurement spacing case. For the GEO object with single-axis ro-

tation, the 20 second measurement spacing case required the fewest measurements

for achieving the maximum rank as a result of the small increases in rank in Figure

5.7 at approximately 1.25 and 1.75 hours. The shorter measurement spacing cases

could be advantageous for reaching a large rank quickly, but the GEO object with a

single-axis rotation requires the system geometry to change for several hours to reach

a maximum rank. Next, the LEO, MEO, and GEO objects are analyzed with a more

complex attitude profile.
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Figure 5.10. 3D visualization of the linearly independent columns in the reflection

matrix for the LEO object with single-axis rotation, 294 surface normal directions,

and one second between measurements, where the colorbar represents measurement

indices.
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Figure 5.11. 3D visualization of the linearly independent columns in the reflection

matrix for the GEO object with single-axis rotation, 294 surface normal directions,

and 10 seconds between measurements, where the colorbar represents measurement

indices.
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5.2.4 LEO Object with Three-Axis Rotation

The single-axis rotation results indicated that a region of the EGI was not suffi-

ciently sampled due to the interaction of the object attitude and the observer-object-

Sun geometry. Therefore, the observability of the EGI minimization is performed

for the same LEO, MEO, and GEO objects with a more complex attitude profile to

determine whether a sufficient measurement sequence for reaching full rank of the

observability Gramian is possible. When the LEO object has an attitude profile de-

fined by three-axis rotation, it is possible to sufficiently sample the system geometry

for EGI minimization, as shown in Figure 5.12.

Figure 5.12. Rank of the observability Gramian versus time for the LEO object with

three-axis rotation and 294 surface normal directions.

Similar to the single-axis rotation results, the 1 second and 2.5 second cases have

measurements which are redundant in terms of increasing the observability Gramian

matrix rank. Figure 5.13 shows the plateau region of the 1 second measurement spac-

ing case in more detail. The redundancy in the 1 second and 2.5 second measurement

spacing cases is more apparent in Figure 5.13 because the regions where the rank

does not increase can be seen in greater detail.
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Figure 5.13. Rank of the observability Gramian versus time for the LEO object with

three-axis rotation and 294 surface normal directions, zoomed in to show detail.

Figure 5.14 shows the rank of the observability Gramian versus the number of

measurements. The 5, 10, and 20 second measurement spacing cases are all on top of

one another in Figure 5.14 and contain no redundant measurements. This indicates

that the 5, 10, and 20 second measurement spacing cases require the theoretical

minimum number of measurements for achieving full rank. Analysis of the impact of

the EGI tessellation number for the LEO object with three-axis rotation is shown in

Appendix C.2 because the trends are comparable to the single-axis rotation results.

5.2.5 GEO Object with Three-Axis Rotation

Figures 5.15 and 5.16 show the observability matrix rank results for the GEO

object with three-axis rotation. All of the measurement spacing cases reach full

rank within two hours of analysis. In addition, the theoretical minimum number

of measurements is sufficient for sampling the system geometry, as the number of

measurements required for each measurement spacing case equals the number of EGI

surface normal directions, 294. The impact of the EGI tessellation number on this
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Figure 5.14. Rank of the observability Gramian versus number of measurements for

the LEO object with three-axis rotation and 294 surface normal directions.

case and the three-axis rotation results for the MEO object are presented in Appendix

C.3 and Appendix C.4, respectively.

Figure 5.15. Rank of the observability Gramian versus time for the GEO object with

three-axis rotation.
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Figure 5.16. Rank of the observability Gramian versus number of measurements for

the GEO object with three-axis rotation.

5.2.6 Three-Axis Rotation Summary

While the orbits for the LEO, MEO, and GEO objects remain the same compared

to the single-axis rotation cases, the change in the attitude profiles from simple,

single-axis rotation to more complex three-axis rotation results in systems which are

sufficiently sampled for EGI minimization. The sampling of the object geometries is

further explained by the 3D visualizations of the linear independence of the reflection

matrix columns in Figures 5.17 and 5.18.

The 3D visualizations of the LEO object with three-axis rotation are similar to

the single-axis rotation results in Figure 5.10. However, the single-axis rotation visu-

alizations contained a gray region at the bottom of the EGI at the end of the analysis,

representing the linear dependence of some columns in the reflection matrix, and the

three-axis rotation results do not. The similarity of the 3D visualizations is a result

of the 32.8˝ inclination of the LEO object used in this analysis. The 30˝ axis of

rotation for the three-axis attitude profile appears as a nearly flat spin in Figure 5.17

because of the inclination, but the slight difference between the axis of rotation and
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the inclination results in the bottom of the EGI becoming visible and illuminated to

the observer.

The 3D visualization of the linearly independent columns of the reflection matrix

over time for the GEO object with three-axis rotation is significantly different than the

single-axis rotation case. With a simple, single axis rotation about the body z-axis,

the 3D visualization of the linearly independent columns of the reflection matrix for

the GEO object contained a region at the bottom of the EGI which was not visible

nor illuminated for the observer throughout the analysis time. The more complex

attitude profile results in sufficient sampling of all surface normal directions of the

EGI, as shown in Figure 5.18.

Simulations of the LEO, MEO, and GEO objects have demonstrated how analy-

sis of the rank of the observability Gramian can improve the understanding of how

measurement spacing impacts the observability of a complex system. Also, a novel

method for visualizing the linearly independent columns of the reflection matrix re-

vealed which region of the EGI was insufficiently sampled for the simple, single-axis

rotation cases. When the observability Gramian of the EGI minimization step of the

light curve inversion process is full rank, the light curve measurements are sufficient

for estimating the EGI albedo-area vector. In addition, comparison of the observ-

ability Gramian rank from different measurement spacing sequences can be used for

efficient observation planning. For the LEO object with three-axis rotation, Figure

5.12 depicts how the five second measurement spacing case is efficient for reducing the

number of redundant measurements, while still achieving full rank of the observabil-

ity Gramian. Moreover, as all of the measurement spacing cases for the GEO object

with three-axis rotation reached full rank with 294 measurements, i.e. the theoreti-

cal minimum number of required measurements for an EGI with 294 surface normal

directions, any case could be considered efficient depending on telescope operation

requirements.

Through analysis of the reflection matrix and the observability Gramian, the in-

sufficient sampling of LEO, MEO, and GEO objects with single-axis rotation was
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shown. Furthermore, the relationship between the attitude profile and the observ-

ability was shown when changing the attitude profile from a single-axis rotation to

three-axis rotation resulted in full rank observability Gramians for all three objects.

These methods for analyzing the observability of the EGI minimization step of the

light curve inversion process confirm the understanding of the relationship between

the orbital dynamics, reflection model, and attitude profile. Next, observability is

analyzed for a more realistic system, with visibility and lighting constraints.

Figure 5.17. 3D visualization of the linearly independent columns in the reflection

matrix for the LEO object with three-axis rotation, 294 surface normal directions, and

1 second between measurements, where the colorbar represents measurement indices.
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Figure 5.18. 3D visualization of the linearly independent columns in the reflection

matrix for the GEO object with three-axis rotation, 294 surface normal directions,

and 10 seconds between measurements, where the colorbar represents measurement

indices.

5.3 Observability for LCI Sensor Tasking: Atlas V

Observability analysis of the EGI minimization step of the light curve inversion

process is extended to include realistic constraints on measurements and perturbed

orbit propagation. Collaborators at the Astronomical Institute of the University of

Bern (AIUB) provided light curve measurements of an Atlas V upper stage, identified

by NORAD satellite number 40295 and international designator 2014-068B. The goal

of the observability analysis of the Atlas V upper stage is to determine if the provided

light curve measurements are sufficient for light curve inversion of a real object. The

orbit of the Atlas V upper stage for these simulations is defined by a two-line element

(TLE) from 09 May 2015 and the epoch of the simulations is 10 May 2015 22:51:00

UTC. Throughout this observability analysis of the Atlas V, measurements are sim-

ulated in 20 minute batches, and within each measurement batch, measurements are
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spaced every two seconds, resulting in 600 measurements per batch. Measurement

batches are defined to be 20 minutes long to approximate the provided light curve

measurements from AIUB. In addition, two seconds between measurements is con-

sistent with the Charged Coupled Device (CCD) camera subframe technique used

at the AIUB ZIMLAT telescope. Prior to performing observability analysis with

constraints, similar analysis to Section 5.2 is performed to explore the impact of mea-

surement batches and different measurement batch spacing cases on the observability

of the Atlas V. Table 5.4 shows the various observability simulations of the Atlas V

upper stage without constraints on when the measurements can be acquired. Each

measurement spacing corresponds to the time between measurement batches defined

by 20 minutes of measurements.

Table 5.4. Atlas V upper stage measurement spacing cases.

EGI Tessellation Numbers Measurement Spacing [h]

5 0, 2, 4, 6, 8

7 0, 2, 4, 6, 8

13 2, 4, 6, 8, 10

Two-body propagation is implemented for orbit propagation for these initial cases

of EGI minimization observability. For the EGI tessellation number equal to 13, or

1014 EGI facets, additional simulations, beyond the simulations defined in Table 5.4,

are performed. First, an unconstrained case is simulated in attempt to select a mea-

surement spacing which achieves full rank of the EGI gramian in the least amount

of time and fewest measurement batches as possible. Next, two different arrange-

ments of measurement batches were implemented based on visibility constraints at

the AIUB ZIMLAT observatory. Table 5.5 shows the arrangements of the measure-

ment batches in the presence of visibility constraints. The first constrained case is

defined with two batches in each visibility window, and the second constrained case
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is defined with only one measurement batch per visibility window. The Atlas V orbit

for the additional analysis cases, given by Table 5.5, is propagated with the Simplified

General Perturbations 4 (SGP4), which was introduced in Section 2.2.2. Two poten-

tial attitude profiles were determined for this Atlas V upper stage. The measurement

cases presented in Table 5.5 are simulated for both attitude profiles. The methods

implemented for determining the attitude profiles are described in the next section.

Table 5.5. Atlas V upper stage unconstrained and constrained batch start times,

given in hours.

Batch # Unconstrained Constrained 1 Constrained 2

1 0.0 0.0 0.0

2 6.333 1.8333 24.0

3 70.667 73.1667 48.0

4 – 75.0 74.0

5 – – 99.0

6 – – 124.05

7 – – 213.5

5.3.1 Attitude Profiles

The light curve inversion process studied in this work requires a known attitude

profile. Techniques for determining the attitude of the Atlas V upper stage were

implemented by collaborators at AIUB and colleagues at Purdue University. Two

different methods for determining the attitude profile of an object using light curves

were applied to the Atlas V object. The first method for determining the attitude

profile assumes that an object model and a rotation period are known, but only

requires one light curve. The assumed object model for the first method is given in

Figure 5.19, where the different colors correspond to different surface materials, based
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on known object properties. The second attitude determination method requires three

light curves to determine the attitude from the intersection of three loci.

Figure 5.19. Three material Atlas V upper stage model.

Past observations have suggested that for a cylindrical body with length at least

three times larger than diameter, stable motion is likely spinning about the maximum

moment of inertia axis [167]. The maximum moment of inertia axis is defined inertially

using right ascension and declination with respect to the J2000 vernal equinox. Since

the object is likely spinning about its maximum moment of inertia axis, the ratio of

maximum brightness and minimum brightness is a function of the orientation of the

spin axis and the phase angle. Phase angle, i.e. the angle between the object-Sun

vector and the object-observer vector, is often assumed information from either the

observation or the orbit propagation. Therefore, it is possible to generate a locus of

potential right ascension and declination angles of the spin axis from a single set of

observation. If another observation is made at a different observation location, and

thus a different phase angle, another locus can be traced out. The attitude can be

concluded from the intersection of two loci because the spin axis of the same object

at the same time must agree. If, however, the different observations are made at

different times, the object attitude motion is assumed to be the same throughout. In

actual application, error is allowed in the observation, and an intersection of regions

is determined instead of an intersection of curves [165].

The attitude determination method using the object shape is a brute-force search

method for determining the spin axis. The potential spin axis orientations, in right
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ascension and declination, were sampled at a resolution of 1˝ using the assumption

that the upper stage is exhibiting stable main-axis rotation. The rotation period

of 64.7 seconds, determined with the previously described attitude determination

method, was required for the brute-force attitude determination. For each sampled

spin axis, using the assumed object model and rotation period, a light curve was

simulated and compared to an actual light curve of the Atlas V upper stage from the

ZIMLAT telescope operated by AIUB. The attitude profile which simulated a light

curve which most resembled the actual light curve is defined by right ascension and

declination of 318˝ and 9˝, respectively. This spin axis orientation is labeled attitude

A in this work.

The second attitude profile was determined in the work by Koller, where the

attitude profile of the Atlas V upper stage is derived with methods from Williams

and three light curve observations [165]. In the work by Koller, no shape information

is necessary, but multiple light curves are required. The orientation of the spin axis

determined by Koller is defined by right ascension of 298˝ and declination of 9˝ using

observations from multiple nights from one location. This spin axis orientation is

labeled attitude B in this work. The solution by Koller was also determined to be

a viable solution using the brute-force search method. However, attitude A, defined

by right ascension and declination of 318˝ and 9˝, respectively, reproduced the actual

light curve more closely. Table 5.6 shows the spin axis orientations for each of the

attitude profiles.

Table 5.6. Atlas V attitude profiles.

Profile Right Ascension [˝] Declination [˝]

Attitude A (Brute-Force) 318 9

Attitude B (Koller) 298 9
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The observability analysis of the Atlas V upper stage system begins with simu-

lations of several measurement spacing cases and EGI tessellation numbers without

constraints on when the measurements occur. The unconstrained observability anal-

ysis is simulated using attitude profile A. Next, constraints are applied to determine

the observability of the EGI minimization in a more realistic observation scenario.

The minimum elevation which the Atlas V upper stage could be observed is set at

15˝. Observations are also restricted to astronomical dark which requires a solar de-

pression angle of at least 18˝. These constraints are applied to determine observation

windows for the Atlas V upper stage and observation sequences are defined based on

the visibility windows. The different measurement cases for the constrained analysis

are given in Table 5.5.

5.3.2 Unconstrained Analysis

The tessellation numbers used in this analysis, 5, 7 and 13, equate to 150, 294,

and 1014 surface normal directions, respectively. The measurement spacing cases

analyzed for the unconstrained observability are given in Table 5.4. The time between

batches is increased for the 1014 surface normal direction case to counter the increased

computational time required for the greater number of surface normal directions on

the EGI. Figure 5.20 through Figure 5.27 compare the spacing between batch cases

without constraints on the measurement times.

For the unconstrained analysis of the Atlas V upper stage EGI minimization ob-

servability, approximately five hours is required for the system geometry to progress

enough to achieve a full rank observability Gramian. Figure 5.20 presents the observ-

ability Gramian rank in the same manner as Section 5.2, where the rank over time

is shown for each measurement batch spacing case and the number of EGI surface

normal directions is defined by the black dashed line. These observability results are

generated with an EGI defined by a tessellation number equal to five, or 150 surface

normal directions.
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Figure 5.20. Rank of the observability Gramian versus time for several measurement

batch spacing cases with an EGI tessellation number equal to five or 150 facets.

After one 20 minute batch of measurements, 600 measurements in total, the ob-

servability Gramian rank is 146, which can be seen more clearly in Figure 5.21. Figure

5.22 shows the rank of the observability Gramian compared to the number of mea-

surements, which more clearly depicts the rank of the observability Gramian after

the first batch of measurements. Even with continuous measurements, given by the

zero hour measurement spacing case, the observability Gramian does not reach full

rank until approximately five hours from epoch. The large difference between the

first batch of measurements resulting in a matrix rank which is near full and the long

time until full rank is actually achieved indicates that the geometry of the system

must progress for all of the EGI surface normal directions to be sufficiently sampled.

Therefore, for this EGI tessellation number and epoch, measurements after the

first batch and before approximately five hours are redundant for light curve inversion.

This knowledge of the system observability can be analyzed for developing an efficient

light curve observation collection strategy of future measurements for light curve

inversion. As the six and eight hour batch spacing cases do not have measurements
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Figure 5.21. Rank of the observability Gramian versus time for several measurement

batch spacing cases with an EGI tessellation number equal to five or 150 facets,

zoomed in to show detail.

within the five hour window where the rank is not increased for this system, only two

batches of measurements are required to achieve full rank, as shown in Figure 5.23.

Therefore, a telescope operator may find that observing this system with two batches

spaced greater than five hours reduces the number of required measurements for light

curve inversion.
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Figure 5.22. Rank of the observability Gramian versus number of measurements for

several measurement batch spacing cases with an EGI tessellation number equal to

five or 150 facets.

Figure 5.23. Rank of the observability Gramian versus number of measurements for

several measurement batch spacing cases with an EGI tessellation number equal to

five or 150 facets, zoomed in to show detail.
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Next, observability Gramian rank curves are presented for various measurement

batch spacing cases with an EGI tessellation number equal to seven in Figure 5.24

through Figure 5.26. Initially, the rank curves of the observability Gramian with 294

surface normal directions appear to be similar to the rank curves of the observability

Gramian with 150 surface normal directions. Figure 5.25 shows how the first batch of

measurements increases the rank to 288, indicating that the geometry is well sampled

in the first batch with the exception of a few surface normal directions. However,

after the second batch of measurements, the six and eight hour measurement batch

spacing cases do not reach full rank, but have a rank deficiency of one. During the

third batch of measurements, the six and eight hour batch spacing cases reach full

rank of the observability Gramian. Figure 5.26 shows the rank of the observability

Gramian versus the number of measurements for the different measurement batch

spacing cases and an EGI defined with 294 surface normal directions.

Figure 5.24. Rank of the observability Gramian versus time for several measurement

batch spacing cases with an EGI tessellation number equal to seven or 294 facets.

For the case with an EGI defined by 294 facets, the six and eight hour measurement

spacing cases take significantly longer than the other spacing cases due to the required
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Figure 5.25. Rank of the observability Gramian versus time for several measurement

batch spacing cases with an EGI tessellation number equal to seven or 294 facets,

zoomed in to show detail.

third batch to reach full rank, as shown in Figure 5.25. Therefore, for this system,

the four hour batch spacing case may be advantageous for collecting light curves for

inversion since the time to reach full rank for the observability Gramian is shorter

than the six and eight hour spacing cases, and the number of measurements required

for the four hour spacing case is less than the zero or two hour spacing cases.

For an EGI with 150 surface normal directions, only two batches are required for

the six and eight hour spacing cases to reach full rank, but for an EGI with 294 surface

normal directions, three batches are required. This comparison of the rank for two

different EGIs, indicates how sensitive the EGI minimization step of the light curve

inversion can be to the EGI tessellation number. Moreover, a higher EGI tessellation

number is advantageous for capturing all features of an object through light curve

inversion.
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Figure 5.26. Rank of the observability Gramian versus number of measurements for

several measurement batch spacing cases with an EGI tessellation number equal to

seven or 294 facets, zoomed in to show detail.

Finally, the unconstrained case is presented for a larger EGI tessellation number.

Figure 5.27 through Figure 5.30 show rank of the observability Gramian versus time

and number of measurements, for an EGI with 1014 surface normal directions. With

one batch of measurements for each measurement spacing case, the rank of the ob-

servability Gramian reaches a rank of 600, as shown in Figure 5.27. As there are 600

measurements per batch, this is the theoretical maximum rank that can be achieved

within one batch, which indicates sufficient sampling of the EGI over the first batch

of measurements.

The rank of the observability Gramian reaches 1013, a rank deficiency of one,

within three batches of measurements for each spacing case, which can be seen in

Figures 5.28 and 5.30. The six hour spacing case requires only two batches of mea-

surements to reach a rank of 1013, but the other batch spacing cases require three

batches to reach a rank of 1013. Since each batch of measurements consists of 600

measurements, a minimum of two batches is required to sufficiently sample the 1014
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Figure 5.27. Rank of the observability Gramian versus time for several measurement

batch spacing cases with an EGI tessellation number equal to 13 or 1014 facets.

EGI surface normal directions. Although all of the spacing cases reach a rank of 1013

after only three batches, full rank is not achieved until approximately 62 hours from

the analysis epoch, and full rank is not achieved within the analysis time for the 10

hour spacing case.

For larger EGI tessellation numbers, as shown with the 294 and 1014 surface

normal direction observability results, one surface normal direction is not sufficiently

sampled early in the analysis given measurement batches that are equally sampled.

The system geometry requires a significant amount of time to progress so that full

rank of the observability Gramian can be achieved by sufficient sampling of the EGI

surface normal directions. Therefore, if measurement batches were spaced equally

until the observability Gramian reaches full rank, many of the measurements would be

redundant as the geometry has not progressed enough during the plateaus of Figures

5.24 and 5.27. Instead of equally spaced measurement batches, which result in many

redundant measurements for this system, three different spacing cases with uneven
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Figure 5.28. Rank of the observability Gramian versus time for several measurement

batch spacing cases with an EGI tessellation number equal to 13 or 1014 facets,

zoomed in to show detail.

spacing are proposed and analyzed. Furthermore, two of the new measurement batch

spacing cases are constrained to windows of object visibility from the ground station.
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Figure 5.29. Rank of the observability Gramian versus number of measurements for

several measurement batch spacing cases with an EGI tessellation number equal to

13 or 1014 facets.

Figure 5.30. Rank of the observability Gramian versus number of measurements for

several measurement batch spacing cases with an EGI tessellation number equal to

13 or 1014 facets, zoomed in to show detail.
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5.3.3 Constrained Analysis: Attitude Profile A

Rather than limit the measurement batch spacing to equal time between batches,

knowledge gained from the unconstrained analysis in the previous section is employed

to determine an efficient light curve observation strategy for light curve inversion.

This section uses the same attitude profile, as the unconstrained analysis, attitude

A defined by right ascension and declination of 318˝ and 9˝, respectively. The ob-

servability of three batch spacing cases with unequal measurement spacing, defined

in Table 5.5, is determined for an EGI with 1014 surface normal directions. Two

of the cases analyzed are constrained by the solar depression angle and the object

visibility given elevation constraints at the AIUB ground station. These constraints

assume that if the object is illuminated and above the elevation constraints of the

ground station, then it will be visible to the observer. The solar depression angle is

given by 18˝ or astronomical dark, and the minimum elevation for the object to be

visible to the observer is 15˝. In addition, as more realistic measurement sequences

and constraints are applied for this analysis, the fidelity of the orbit propagation is

also increased through the implementation of SGP4 rather than two-body propaga-

tion. The impact of propagation method on these observability results is discussed in

Section 5.3.6 with results shown in Appendix C.6.

The unconstrained batch spacing is defined from the knowledge gained in the pre-

vious analysis of an EGI with 1014 surface normal directions and the same attitude

profile. Two batches are spaced by 6 hours and then a third batch is 64 hours after

the end of the second batch. This gap between the second and third measurement

batch accounts for the plateau in Figure 5.30 where the rank does not increase. The

first constrained measurement spacing case places two batches within two different

visibility windows, resulting in four total batches of measurements. The two batches

within each window are separated by approximately 1.5 hours, starting at the begin-

ning of the visibility window. The second set of measurement batches for the first

constrained spacing case occurs in the next available window after the period where
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the rank of the observability Gramian does not increase in Figure 5.30. The second

constrained measurement spacing case places one batch of measurements in each vis-

ibility window, spaced by approximately 24 hours. Note that there is a large gap

between the sixth and seventh batches due to visibility windows which are not long

enough to contain the 20 minute batch of measurements, or do not exist for a given

night.

Figure 5.31 shows the rank of the observability Gramian for the three unequal

measurement spacing cases. Night hours and object visibility times are defined by

the gray and green bars, respectively. The two constrained measurement spacing

cases have measurements only within the green regions. The unconstrained case with

unequal spacing is not restricted to the green or gray regions.

Figure 5.31. Rank of the observability Gramian versus time with visibility constraints

and attitude A.

The unconstrained case reaches a rank of 1012 after two batches of measurements

in Figure 5.32, which is nearly identical to the six hour spacing case in Figure 5.27, and

full rank of the observability Gramian is achieved with a third batch of measurements.

The first constrained case does not achieve as high of rank after two measurement
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batches when compared to the unconstrained case. As the second batch of the first

constrained case is approximately 1.5 hours from the first batch, the geometry and

attitude does not change as much as the time between the first and second batches of

the unconstrained spacing case. The first constrained case reaches full rank within the

fourth batch measurements, after approximately 75 hours. The second constrained

case reaches a rank of 1013 after three batches of measurements, but full rank is not

achieved until the seventh measurement batch after approximately 215 hours from

epoch. The number of batches required for the second constrained case was selected

so that full rank was achieved in the last batch of measurements. Note that more

optimal placements of each measurement batch in the visibility windows may exist

for the second constrained case where only one measurement batch occurred in each

window. Differences in the required number of observations between the measurement

spacing cases is more clearly shown in Figure 5.33.

Figure 5.32. Rank of the observability Gramian versus time with visibility constraints

and attitude A, zoomed in to show detail.

For this system with an EGI defined by 1014 facets, multiple batches of measure-

ments within each visibility window resulted in a more efficient observation plan for
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Figure 5.33. Rank of the observability Gramian versus number of measurements with

visibility constraints and attitude A.

light curve inversion compared to one batch of measurements per visibility window.

Multiple measurement batches per visibility window improve the chances of greater

geometric diversity among the measurements. When one batch of measurements oc-

curs in each visibility window, there is a potential for selecting measurement times

which do not add geometric diversity to the measurement space. This analysis of

observability for EGI minimization with realistic constraints on windows of object

visibility have shown that light curves do not have to be taken continuously or for

many hours to achieve sufficient sampling of an object for light curve inversion.

5.3.4 Constrained Analysis: Attitude Profile B

The same unconstrained and constrained measurement batch cases from Table

5.4 are applied with the second attitude profile to determine the sensitivity of the

observability results to changes in attitude. Figure 5.34 through 5.37 reproduce the

observability analysis from the previous section with attitude B, defined by right
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ascension and declination of 298˝ and 9˝, respectively. With this different attitude

profile, the rank of the observability Gramian fails to equal the number of EGI surface

normal directions, 1014, for the three spacing cases. The second constrained case,

with one batch of measurements per visibility window, reaches the highest rank, but

is still short of full rank. Such a significant difference in the observability results

from a change in the attitude profile prompted a more detailed investigation of the

observability of this system with the second attitude profile.

Figure 5.34. Rank of the observability Gramian versus time with visibility constraints

and attitude B.

5.3.5 Rank Deficiency of Attitude Profile B

In order to understand the rank deficiency of this system with attitude B for

EGI minimization, the linear independence of the columns of the reflection matrix

is visualized for the first constrained spacing case in Figure 5.38. This method of

visualizing the linear independence of the reflection matrix columns is analogous to

the results in Appendix 5.2.3. Figure 5.38a shows the view from the observer to the
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Figure 5.35. Rank of the observability Gramian versus time with visibility constraints

and attitude B, zoomed in to show detail.

Figure 5.36. Rank of the observability Gramian versus number of measurements with

visibility constraints and attitude B.
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Figure 5.37. Rank of the observability Gramian versus number of measurements with

visibility constraints and attitude B, zoomed in to show detail.

object at the end of the last measurement. A second view of the visualization at

the same time of the last measurement is given in Figure 5.38b, showing a region

where the second batch of measurements sufficiently sampled the surface normal di-

rections of the EGI. At first it appears that all surface normal directions have all

been sampled, but Figure 5.38c, a different orientation of the visualization at the

same time, shows a region of surface normal directions which were insufficiently sam-

pled. Therefore, this one region of the EGI was not illuminated and visible to the

observer or did not have enough measurements to sufficiently sample the EGI surface

normal directions for EGI minimization. The rank deficiency of attitude profile B is

explored further in Appendix C.5 with unconstrained, equally spaced measurements.

Even with constraints removed, this attitude profile remains rank deficient for the

given observer-object-Sun geometry. For comparison, the visualization of the linearly

independent columns of the reflection matrix for attitude A with the same measure-

ment sequence, shown in Figure 5.39. All surface normal directions of the EGI are

sufficiently sampled after four batches of measurements.
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(a) Observer view to the observer after

last measurement.

(b) Orientation depicting region sampled

during second batch of measurements.

(c) Insufficiently sampled region after last

measurement.

Figure 5.38. 3D visualization of the observability Gramian rank for the Atlas V upper

stage with attitude B and the first constrained measurement case.
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(a) Observer view to the observer after

last measurement.

(b) Orientation depicting region sampled

during second batch of measurements.

(c) Orientation depicting region sampled

during last batch of measurements.

Figure 5.39. 3D visualization of the observability Gramian rank for the Atlas V upper

stage with attitude A and the first constrained measurement case.
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5.3.6 Atlas V Constrained Analysis Summary

The observability of the EGI minimization was analyzed for the Atlas V rocket

body with realistic constraints and measurement spacing. A requirement of this

observability analysis of the EGI is a known attitude profile. Two different methods

were implemented for determining potential attitude profiles for the Atlas V given

light curve measurements from collaborators at AIUB. Attitude profiles A and B

in Table 5.6 were both determined as viable profiles using the brute-force sampling

method. Through observability analysis with realistic constraints and attitude A, an

efficient measurement sequence was determined for sufficient sampling of the Atlas

V system geometry to perform light curve inversion. In addition, the sensitivity of

the observability results to different attitude profiles was explored by also analyzing

a system defined by attitude B, and this system was found to be sensitive to different

spin axes because the same measurement sequence for the attitude A profile resulted

in insufficient sampling for attitude B.

Further analysis was conducted on the sensitivity of the observability results to

the orbit propagator used for the object position. Observability results with two-body

propagation and SGP4 propagation are presented in Appendix C.6. Over shorter anal-

ysis periods, the impact of the orbital propagator, two-body propagation or SGP4, is

minimal as the orbit geometry difference with the two propagators is small. However,

as the propagation time is increased to 180 days between two sets of measurement

batches, the two-body propagated orbit and SGP4 propagated orbits result in signif-

icant differences in the observability results. For the system analyzed in this work,

the SGP4 propagated orbit was detrimental to the rank of the observability Gramian.

Greater geometric diversity from a perturbed orbit reduced the observability of the

EGI surface normal vectors. As a result, two-body propagation may be sufficient

for observability of the EGI minimization over short analysis times, but when longer

propagation is desired, more realistic orbit propagation is important for analysis of

the EGI minimization observability.
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This analysis has shown that observability can be applied to light curve inver-

sion for determining when an EGI is sufficiently sampled for estimating albedo-areas.

Under realistic observation constraints and with attitude profile A, four 20 minute

batches of measurements are sufficient for sampling the EGI surface normal directions.

Although the observability of this system was found to be sensitive to changes in the

geometry over time, the application of observability successfully demonstrated that

hours of continuous light curve measurements are not required for light curve inver-

sion. In addition, these observability methods can be applied to planned observation

campaigns to determine efficient measurement sequences for light curve inversion.

5.4 Observability for Investigating Satellite Deployment, Given Original

Object Shape

Previous analysis of observability in Sections 5.2 and 5.3 were conducted without

knowledge of the original object shape. Note that the analysis of the Atlas V upper

stage did include assumptions of the object shape to determine the attitude pro-

file. The observability analysis of the EGI minimization independent of object shape

focuses on ensuring the sampling of the EGI is sufficient for light curve inversion.

When an object is represented by an EGI, many of the surface normal directions

on the EGI may not have associated albedo-areas as the original object may not

have corresponding surface normal directions. This relationship between the original

object and EGI is exploited in this section. The mapping matrix developed during the

generation of the EGI is used to determine when specific surface normal directions of

the original object become observable. The term observable is used loosely here as the

observability Gramian matrix may not be full rank in this analysis, but conclusions

are drawn on the observability of specific object features. This notion of deeming

specific features observable is possible because the EGI minimization is linear with

respect to the albedo-area vector. Therefore, specific features are deemed observable
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when the linearly independent columns associated with surface normal directions are

mapped back to specific features on the original object.

The time for specific features of a box-wing satellite to become observable is

explored in this work. The mapping of a box-wing satellite to an EGI is shown in

the bottom row of Figure 2.4 in Chapter 2. This box-wing satellite is modeled after

the Astra 1D satellite which is composed of a main satellite bus with two antennae

and two solar panels. The attitude profile for a typical box-wing satellite, e.g. a

GPS or a communication satellite, is to align the solar panel normal vector with the

Sun vector for maximum power generation, and the antenna are directed towards the

Earth [168]. Therefore, both the solar panels and antenna articulate over time. The

box-wing model is simplified for this observability analysis, and a faceted, simplified

Astra 1D model is shown in Figure 5.40. The antenna are removed from the model

and the solar panels are kept fixed with the orientation of the satellite bus, resulting

in an attitude profile which maintains alignment with the Sun vector over time.

Figure 5.40. Simplified Astra 1D model with antennae removed.

In order to determine when specific features of the original model become ob-

servable, the mapping matrix from the original model to the EGI is used in reverse.

First, observability analysis of the reflection matrix is performed to determine which

EGI surface normal directions are sufficiently sampled. Next, the linearly indepen-

dent columns of the reflection matrix, which are associated with the surface normal

directions of the EGI, are mapped back to the original object. Note that the map-

ping from the original object to the EGI is not one-to-one, i.e. many of the EGI

surface normal directions do not have associated albedo-areas with respect to the

original object. The EGI representation examples of Figure 2.4 shows how many of

the EGI surface normal directions may have associated albedo-areas equal to zero.
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For the cuboid shape, only six of the EGI surface normal directions have non-zero

albedo-areas. In addition, multiple facets of the original object may have the same

surface normal direction, so they are mapped to a single surface normal direction on

the EGI. For example, in Figure 2.4, the box-wing model has one face of the satellite

bus with a normal vector which is the same as the solar panel surface normal vectors,

and therefore, the facets defined by this surface normal vector are associated with

one surface normal vector on the EGI.

When observability analysis is applied for identifying key features mapped from

the EGI to the original model, focus is placed on the solar panels. Two box-wing

satellite models are generated, one with fully deployed solar panels and one with an

error in the solar panel deployment, to analyze the impact of solar panel misalignment

on the time to become observable. Deployed solar panels are defined by an angle of

90˝ between the satellite bus and the solar panel. However, if an error were to occur

in the deployment of the solar panels, this alignment angle could be different from

90˝. The box-wing model with fully deployed solar panels is shown in Figure 5.41a,

and the box-wing model with an error of 5˝ in the alignment angle of the solar panels

is shown in Figure 5.41b. As the solar panels do not have the same normal vector

when there is an error in the deployment angle, the attitude profile in this work aligns

one of the solar panel normal vectors with the Sun vector. Therefore, the second solar

panel exhibits a 10˝ yaw error in the pointing of the solar panel which is not aligned

with the Sun vector, due to the deployment error of 5˝.

(a) Panels deployed 90˝ from bus. (b) Panels deployed 85˝ from bus.

Figure 5.41. Two solar panel orientation cases, fully deployed and deployed with an

error of 5˝.
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The impact of measurement spacing and EGI tessellation number is investigated

for the box-wing model in Figures 5.42, 5.43, and 5.44. The measurement spacing

and EGI tessellation numbers analyzed for this object are given in Table 5.7. The

linearly independent columns of the reflection matrix and the original model to EGI

mapping matrix are used to compute the percent of the box-wing albedo-area which

is sufficiently sampled over time.

Table 5.7. Astra 1D cases analyzed.

Measurement Spacing [s] EGI Tessellation Numbers

3, 5, 10, 20 5, 7, 9, 11

Figure 5.42 shows the percent of the Astra 1D model albedo-area which is as-

sociated with the surface normal directions of the EGI which have been sufficiently

sampled. For this system and Astra 1D model with fully deployed solar panels, time

between measurements ranging from 3 seconds to 20 seconds does not have an impact

on the observability of the box-wing model. The diamond marker in the plot repre-

sents the time when the solar panels are sufficiently sampled. For approximately 6

hours, none of the EGI surface normal directions which were sufficiently sampled are

associated with surface normal directions on the Astra 1D model. The solar panels

are sufficiently sampled after approximately 9.5 hours from epoch. When the solar

panels are sufficient sampled, there is slight variation in the different measurement

spacing cases, as shown in Figure 5.43.

Next, different EGI tessellation numbers, from 5 to 11, are analyzed for the Astra

1D model. The number of surface normal directions for these EGIs range from 150 to

726. As the EGI resolution increases, surface normal directions on the original model

which are close in direction are more likely to be mapped to different directions on the

EGI. When the original model can be mapped to the EGI with higher resolution, the

light curve inversion result is likely to be better. Therefore, a range of EGI tessellation
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Figure 5.42. Astra 1D albedo-area associated with the EGI rank for various measure-

ment spacing cases.

Figure 5.43. Astra 1D albedo-area associated with the EGI rank for various measure-

ment spacing cases, zoomed in to show details.

numbers are analyzed for the Astra 1D model with an error in the alignment of

the solar panels to determine when major components are visible separately in the

observability analysis. For the fully deployed model, the solar panels and a side of

the satellite bus have the same surface normal vector so they are mapped to the same

EGI surface normal direction, thus prompting the use of the other Astra 1D model.

Figure 5.44 shows the percentages of the Astra 1D albedo-area which have become

observable with time.
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The angle between surface normal directions on the EGI can be approximated by

the EGI tessellation number. This angle gives an indication of how different features

of a model will be grouped and mapped to the EGI. For an EGI tessellation number

of 5, the angle between adjacent surface normal directions is 10˝; whereas, for an EGI

tessellation number of 11, the angle is approximately 5˝. For the Astra 1D model

with a 5˝ error in the solar panel deployment angle, the angle between the two solar

panels is 10˝ due to the error in each panel. Therefore, the observability results for

an EGI tessellation number of five should show two solar panel percentage increases

together, but the EGI tessellation number of 11 results should show the solar panel

percentages increasing separately.

Figure 5.44. Astra 1D albedo-area associated with the EGI rank for several EGI

tessellation numbers.

This behavior is confirmed in Figure 5.44. For the m “ 729 results, the percentage

of the Astra 1D albedo-area which has become observable increases by approximately

17.5% initially, which is the albedo-area percent of one solar panel. Next, three

smaller increases of approximately 5% occur, which is representative of the faces of

the satellite bus. Finally, the second solar panel becomes observable as represented

by the last increase of approximately 17.5% for m “ 729 results. The smallest EGI
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tessellation, with m “ 150, has a significantly different profile for how the percentage

of the Astra 1D albedo-area increases with time. Two of the satellite bus facets

become observable as given by the two increases of 5%. The next increase in percent

is approximately 40% which contains both of the solar panels and one of the satellite

bus faces. The structure of the increase percent albedo-area for each EGI tessellation

number case can be explained by the angle between adjacent surface normal directions

on the EGI. This analysis shows that the selection of the EGI tessellation number

can have a large impact on identifying when specific features of the original model

become observable.

Next, the observability of the two Astra 1D models is compared. Prior to com-

paring when specific features of the two box-wing models become observable, the

observability of each EGI associated with the attitude profiles is evaluated. An EGI

tessellation number of 11, or 726 surface normal directions, and the spacing between

measurements of 10 seconds is used for this analysis unless specified otherwise. Figure

5.45 shows the percentage of the total EGI albedo-area for the two box-wing models.

The percentage of the EGI albedo-area is used instead of matrix rank because this

work focuses on identifying specific features in the observability analysis over time.

Figure 5.45. Percentage of the EGI albedo-area over time for the two different solar

panel alignment angles.
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The EGI representations of the two box-wing models have similar percentages over

time, as shown in Figure 5.45. The different orientations of the solar panels results

in two EGIs with different attitude profiles. The small difference in the solar panel

alignment angle cause the differences in the percentage of the EGI albedo-area over

time. In addition, as the attitude profile aligns the box-wing models and EGIs with

the Sun vector, only half the model is ever illuminated, and therefore, only half of

the model becomes observable.

Although the EGI albedo-area percentages are similar for the two Astra 1D mod-

els, the differences in the attitude profiles and differences in the model geometries

may result in significantly different times to become observable for specific features

on the original models. Figure 5.46 shows the percentage of the albedo-area which is

sufficiently sampled for the fully deployed box-wing model and the model with a 5˝

error in the deployment angle.

Figure 5.46. Solar panel alignment angle comparison.

The model with fully deployed solar panels only has two occasions where the

percentage of the albedo-area increases for this analysis time. This occurs because

the solar panels and one of the bus faces have the same surface normal direction,

and when the surface normal direction on the EGI corresponding to that surface

normal direction is sufficiently sampled, the percentage of the albedo-area increases
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with a value representative of those three components. The model with a solar panel

deployment error has five occasions where the albedo-area percent increases, as a

result of the greater geometric diversity of the surface normal directions on this model.

Also, a comparison of the percentages after 12 hours shows a different total for the

two models. The model with an error in the solar panel deployment has a greater

percentage at the end of the analysis due to a more diverse model geometry and a

different attitude profile.

The times for features of the Astra 1D models to become observable can also

be shown with the 3D visualization methods of Sections 5.2 and 5.3. Figure 5.47

shows the 3D representation of the reflection matrix linearly independent columns

on the EGI. The surface normal directions which are associated with the linearly

independent columns of the reflection matrix are mapped back to the original model

using the mapping matrix from the original model to the EGI. The 3D visualizations

for the Astra 1D model with an error in the deployment angle of the solar panels are

shown in Figure 5.48.

The side-by-side comparison of the EGIs and the original Astra models demon-

strates how many of the EGI surface normal directions may be sampled without

corresponding surface normal directions on the original models. Each 3D visualiza-

tions of the EGIs and Astra models represent the same time in the analysis when

comparing the two sets of images. Note that the last row of each figure is not the end

of the analysis because at the end of the analysis the Astra model solar panels are

oriented approximately 90˝ from the observer so the facet colors are difficult to see.

For the model with the fully deployed solar panels, the solar panels and the satellite

bus face with the same normal vector all have the same color in the last row of Figure

5.47. However, the model with an error in the solar panel deployment angle has a

different color for the solar panel and satellite bus facet with a surface normal vector

close in angle. The second solar panel does not have a color because this solar panel

becomes observable for this model near the end of the analysis, after the time of this

visualization.
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Figure 5.47. Progression of the rank of the Gramian as more measurements are added

for the box-wing model with fully deployed solar panels.

When the original object shape is implemented with observability analysis of the

EGI minimization for light curve inversion, the time for major features of a model

to become observable can be determined. This analysis has shown how many surface
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Figure 5.48. Progression of the rank of the Gramian as more measurements are added

for the box-wing model with a 5˝ error in the solar panel alignment angle.

normal directions of the EGI may have an associated albedo-area equal to zero because

of the mapping from an object to the EGI representation. Furthermore, small errors
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in an object model may have a significant impact on the time for major features of a

model to become observable.

5.5 Summary

This work has demonstrated how observability can be applied to light curve in-

version, specifically EGI minimization, for albedo-area estimation and for operational

support regarding satellite deployment. Analysis of observability was conducted in-

dependent of the original object shape to determine when light curve measurements

sufficiently sample the system geometry. When the system geometry is sufficiently

sampled, the albedo-area vector can be estimated and then the rest of the light curve

inversion process can be completed. A challenge of sampling the system geometry

is the complex relationship between the measurement sequence, observer-object-Sun

geometry, and the attitude profile of the object. However, through analysis of observ-

ability, efficient measurement sequences can be established which capture all aspects

of the EGI surface normal vectors.

Throughout this analysis, a novel 3D visualization method of the linearly indepen-

dent columns of the reflection matrix was shown to investigate how the observability

of the system progresses over time. The 3D visualization provides more informa-

tion than the rank of the observability Gramian as the specific regions of the EGI

which are sufficiently sampled or not can be identified. Knowledge of the system

geometry from the observability Gramian matrix rank and the 3D visualization of

the reflection matrix linearly independent columns can be combined to determine ef-

ficient measurement sampling which does not include redundant measurements, but

still achieves sufficient sampling of the system geometry.

In addition, constraints on the measurement geometry were applied to evaluate the

observability for a realistic scenario. Even with measurement constraints, sufficient

sampling of the EGI for albedo-area estimation in the light curve inversion process

was achieved in three 20 minute batches of measurements. Therefore, continuous
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measurements for many hours are not required for performing light curve inversion.

Furthermore, the observability analysis with constraints determined that multiple

measurement batches within a single visibility window is advantageous for sufficiently

sampling the system geometry compared to only one measurement batch per visibility

window.

The observability of the EGI minimization was found to be sensitive to the attitude

profile of an Atlas V rocket body. For a system with the same measurement sequence

but two different assumed attitude profiles, one attitude profile resulted in a full

rank observability Gramian and the other attitude profile resulted in a rank deficient

observability Gramian. The 3D visualization of the observability over time showed

that a small region of the EGI was not illuminated and visible to the observer for the

rank deficient attitude profile case.

Observability was also applied including knowledge of the original object shape

to identify when major features of the original object become observable. As the

EGI may contain many surface normal directions with associated albedo-areas equal

to zero, major features of an original object may be sufficiently sampled even if an

EGI is not sufficiently sampled. Therefore, the mapping from the original object to

the EGI was exploited for mapping the linearly independent columns of the reflection

matrix back to the original object. Two box-wing satellites were analyzed in this

analysis, one with fully deployed solar panels and a second with an error in the angle

of the solar panel deployment. As the attitude profile of the box-wing satellite was

defined to align the solar panels with the Sun vector, differences in the observability

of the two models were apparent due to the error in the solar panel deployment of

the one model. Although the error in the solar panel deployment may result in a

reduction in the energy received by the solar panels, the difference in the solar panel

angle is advantageous from an observability perspective as there is greater geometric

diversity in the model and system geometry.
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6. CONCLUSIONS

As the resident space object population continues to grow, the risk of collision among

the objects increases, thus threatening the sustainable use of near-Earth space. The

observability methods and measures developed in this work are suitable for the prob-

lem of Space Situational Awareness to ensure that measurements are acquired most

efficiently and that the knowledge contained within the measurements can be uti-

lized for maximum knowledge about resident space objects. With an improved un-

derstanding of the relationship between the measurements and the states in these

systems through observability analysis, decisions on how and when to acquire mea-

surements are informed, instead of random decision making or decisions dictated by

heuristics or local constraints only. Observability methods have been developed to

exactly quantify measurement and sensor trade-offs, and as a result, observability

has become a beneficial tool for improving knowledge of object characteristics for

precise orbit propagation and for improving the efficiency of measurement acquisition

for Space Situational Awareness applications. Observability of the orbit problem and

observability of light curve inversion are two primary areas of focus in this work.

Although two-body motion is commonly used as a method for propagating an

orbit, perturbations are known to significantly change an orbit over time. Non-

conservative perturbing forces are often directly dependent on object characteristics,

such as area-to-mass ratio, material reflectivity properties, and shape. Therefore,

accurate knowledge of object characteristics is vital for precise orbit propagation.

In this work, observability of a system with a state extended beyond position and

velocity with area-to-mass ratio, AMR, and the reflectivity coefficient, C, has been

analyzed to improve the knowledge of how object characteristics can be determined

with optical angle measurements. The state extension significantly increases the time

to become observable compared the time to become observable for a state with po-
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sition and velocity only. When AMR and C are both defined as constants, a state

vector extended with these variables as separate parameters is not observable using

optical angle measurements alone. This observability result agrees with current un-

derstanding of the ability to determine these two parameters separately when optical

angle measurements are used in the orbit problem. However, through observability

analysis, this work has found conditions where AMR and C can be determined as

two independent and separate parameters. If AMR and C are time-varying parame-

ters, a state extended beyond position and velocity with these parameters has been

shown to be observable with optical angle measurements. Therefore, observability

can be implemented to determine the conditions under which knowledge of object

characteristics is contained within measurements.

As computational capabilities have grown, the Kalman Filter and other estima-

tors have become more widely used in many engineering applications, including Space

Situational Awareness. Observability was initially developed by Kalman to determine

when a solution is guaranteed for the optimal regulator problem. However, observabil-

ity is not always considered when estimation is performed, and unless the estimator

fails to converge, an estimation solution is produced. This solution may appear to be

reasonable, but it may not be an accurate representation of the truth. In this work,

the connection between observability and estimation of the orbit problem has been

explored through a Monte Carlo approach to demonstrate how estimation accuracy

is not always guaranteed for a system which is not observable. For a state consisting

of position and velocity only, the observability matrix with measurement uncertain-

ties, otherwise known as the stochastic observability matrix, indicated an observable

system. Also, the distribution of the state estimation errors from the Monte Carlo

analysis followed the statistically significant standard deviation percentages defined

by the 68-95-99.7 rule. However, the stochastic observability matrix did not indicate

an observable system for an extended state with constant AMR and C, and the dis-

tribution of the estimation errors did not adhere to the 68-95-99.7 rule. Some of the

estimation errors remained within the estimation error standard deviation bounds,
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but the distribution of the errors did not maintain statistical significance. There-

fore, this work has shown that when the orbit problem with an extended state is

not observable, estimation accuracy is not guaranteed. In the absence of the ground

truth, those inaccurate estimation results may appear reasonable, which could lead

to detrimental results and potentially false decision-making.

Measurements should be acquired efficiently for Space Situational Awareness ap-

plications because the resident space object population is large compared to the

limited number of sensors dedicated for Space Situational Awareness. In addition,

planned, large constellations of satellites will drastically increase the number of non-

debris objects in the resident space object population. For determining an orbit, six

measurement quantities are required, relating to the three position and three velocity

state components. However, classical orbit determination methods do not strictly

define how measurements should be spaced relative to one another. This work has

evaluated whether observability could indicate relative accuracy of orbit determina-

tion for different measurement spacing cases. Observability analysis and Monte Carlo

analysis with nonlinear batch least squares estimation have both been performed for

multiple measurement spacing cases, where the time between three equally spaced

measurement is different for each case. The trends in the observability results reflect

the trends in the mean square error for the Monte Carlo results with the same mea-

surement spacing cases. Therefore, the relative heights in the observability matrix

singular values for different measurement spacing cases are indicative of potential or-

bit determination accuracy. Moreover, these observability analysis results could be

used to inform a sensor tasking optimizer of the importance of observing objects at

specific times based on their likelihood of resulting in accurately determined orbits.

An explicit connection to such a sensor tasking optimizer has been outlined in this

work.

As more sensor networks are developed for Space Situational Awareness, purchas-

ing an abundance of data will become easier through systems like the Unified Data

Library. The different sensors in such a data library have vastly different capabilities,
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advantages, and disadvantages, which are not straight forward to evaluate against

each other. Simple heuristics are bound to fail. This work has implemented observ-

ability analysis for determining how two sensors at different locations affected the

observability of position and velocity compared to observability with a single sensor.

Even in the presence of large measurement noise, the position and velocity of an

object becomes observable faster with two sensors at different locations compared to

one sensor due to the geometrical differences provided by measurements from the two

sensors. When the measurement noise for two sensors is the same as a single sensor,

the singular values of the observability matrix eventually converge to the same value

for the system analyzed in this work. This indicates that a single sensor would be

able to provide the same knowledge of the position and velocity as two sensors, but a

single sensor would require more time. The observability analysis is readily scalable

to a large number of sensors, allowing quantification of the full trade-space. There-

fore, observability analysis can aid in a cost-benefit analysis for evaluating whether

many, less accurate sensors are more beneficial than fewer, more accurate sensors.

Although observations of resident space objects from ground-based observers are

often non-resolved because of the large distances between the objects and the ob-

servers, the brightness of an object over time, i.e. a light curve, can be utilized for

recovering object shape and reflectivity characteristics. The light curve inversion pro-

cess requires sufficient sampling of the observer-object-Sun geometry and the attitude

profile of an object with light curve measurements. If light curve measurements do

not sufficiently capture the system geometry, the resulting shape and characteristic

estimates are not guaranteed to be accurate. Previous methods for increasing the like-

lihood of sufficient sampling involve acquisition of unfeasibly large amounts of light

curve data, which binds valuable sensor resources to focus on one object for long pe-

riods of time. In this work, observability of the light curve inversion process has been

analyzed to determine when light curve measurements sufficiently sample the system

geometry and to develop efficient measurement strategies. Because the Extended

Gaussian Image minimization step of the light curve inversion process is the only one
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which utilizes light curve measurements, the Extended Gaussian Image minimization

has been the focus of the observability analysis in this work. Simulations of orbits

in three orbital regimes, low Earth orbit, medium Earth orbit, and geosynchronous

Earth orbit, have been preformed with single-axis rotation and three-axis rotation to

determine when these systems have been sufficiently sampled for light curve inversion.

Regions where the knowledge of the system geometry does not increase have been

identified with observability analysis. Therefore, efficient measurement sequences can

be selected based on the observability analysis to avoid measurements which do not

improve the knowledge of the system geometry. A more realistic orbit and attitude

motion have been implemented to determine whether supplied light curve measure-

ments of an Atlas V upper stage from collaborators at the Astronomical Institute at

the University of Bern are sufficient for light curve inversion. Simulations of the ob-

servability have been performed with measurement batches modeled after the supplied

light curve measurements. In addition, realistic constraints, based on astronomical

dark and telescope elevation constrains, have been placed on measurement batches

acquisition times. For an attitude profile determined with light curve measurements

by a colleague at Purdue, an efficient and realistic measurement sequence consisting

of four measurement batches spread over two nights has been found which sufficiently

sampled the Extended Gaussian Image for estimation of the albedo-area. However,

this system has been determined to be sensitive to the attitude motion of the object.

A second, valid attitude profile, determined through a different method, has been

analyzed, but a measurement sequence which sufficiently sampled the system has not

been found.

This work developed a novel method for visualizing the insufficient sampling of

the Extended Gaussian Image to demonstrate which albedo-area vector components

have been insufficiently sampled. Overall, the observability of the Extended Gaus-

sian Image minimization provided extensive insight into the acquisition of light curve

measurements for light curve inversion. In the use case of the Atlas V upper stage un-

der realistic constraints, a drastic reduction of the required number of measurements
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and the measurement time has been obtained. This opens the horizon for efficient

and effective object characterization on a routine basis within a sensor network, thus

making dedicated, several night-long observations of one object for characterization

obsolete. This observability method can be implemented for generation of efficient

light curve measurement sequences rather than collection of large sets of data for light

curve inversion.

6.1 Recommendations

This section defines recommendations for how the findings in this work should be

implemented, and also suggests areas of research to expand upon in the future. If

the solar radiation pressure parameters, AMR and C, are constants and are sought

to be determined with angles-only measurements, a state consisting of position and

velocity should only be extended by a single variable, i.e. AMR, C, or the combined

parameter AMR¨C, to ensure an observable system. Of these three state extensions,

observability will be achieved fastest with AMR as an extended state variable. If

AMR and C must be determined as separate solve-for parameters, an observable

system can only be achieved if one or both of these variables are time-varying in the

actual system, e.g. an object is tumbling with a non-stable attitude.

Because real systems are stochastic in nature, observability should also include

uncertainties. If a system is unobservable, an accurate estimation result is not guar-

anteed and should not be utilized because in the absence of the ground truth, the

estimation result may still appear reasonable. Moreover, observability can be used to

inform a Schmidt-Kalman Filter, but for a state extended beyond position and veloc-

ity with AMR and C, improvements to the state estimation errors compared to not

using a Schmidt-Kalman Filter approach may be minimal. In the sensor tasking prob-

lem defined by Frueh, Fiedler, & Herzog and other weighted sensor tasking schemes,

the weighting parameter for each object could be computed from the observability

analysis trends for different resident space objects. Moreover, observability analysis
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can be part of a cost-benefit analysis for developing a sensor network or selecting

measurement data from existing sensor networks.

When object characterization through light curve measurements is sought, heuris-

tic assumptions lead to prohibitively long measurement times. Observability analysis

is integral to finding the best times to collect characterization information. This

greatly reduces required overall observation times. It should be noted that character-

ization measurements are sensitive to specific time intervals, as mapped out by the

observability and dictated by a specific attitude profile. Sensor tasking for orbital

and extended state parameters is more robust, which is inherent to the orbit versus

the characterization problem.

Future work could determine when the accuracy of results presented here break

down due to linearization errors. Additional perturbing forces could be implemented

in these methods to evaluate the sensitivity of the observability results to additional

perturbations. The steps required for implementing observability results for each

object in a sensor tasking optimizer must be determined. In order to complement the

existing observability characterization results, observability of reflectivity parameters

could be investigated.
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APPENDIX A. OBSERVABILITY OF THE ORBIT

PROBLEM ADDITIONAL RESULTS

A.1 Impact of Measurement Noise on Orbit Observability

Figures A.1 and A.2 show the impact of measurement noise variance on time to

become observable for the ten LEO and GEO objects given in Tables 3.1 and 3.2.

The measurement noise variances are specified in Section 3.4 except for these results

the declination measurement noise variance is kept fixed and the right ascension

measurement noise variance is varied.

Figure A.1. LEO observability analysis with a range of right ascension measurement

noise variance ratios.



271

Figure A.2. GEO observability analysis with a range of right ascension measurement

noise variance ratios.

A.2 Impact of Propagation Method on Orbit Observability

A.2.1 Numerical Integration versus STM Propagation

The following results compare the singular values of the observability matrix for a

state consisting of position and velocity, propagated with two different methods. The

linearized measurement matrix is defined with the state at tk as discussed in Section

3.5. One method propagates the state from t0 to tk with the state transition matrix

(STM) and the second method propagates the state with numerical integration of the

two-body dynamics. The following orbits are defined in Tables 3.1 and 3.2.

Figures A.3 and A.4 show the singular values of the observability matrix with two

different propagation methods with short and long propagation times. Figures A.5

and A.6 show similar results for the LEO 2 object. Figures A.7 and A.8 show similar

results for the LEO 3 object. Figures A.9 and A.10 show similar results for the LEO

4 object. Figures A.11 and A.12 show similar results for the LEO 5 object.



272

Figure A.3. Singular values of the observability matrix using the STM propagated

state versus the numerically integrated state for the LEO 1 object.

Figures A.13 and A.14 show similar results for the GEO 1 object. Figures A.15

and A.16 show similar results for the GEO 2 object. Figures A.17 and A.18 show

similar results for the GEO 3 object. Figures A.19 and A.20 show similar results for

the GEO 5 object.
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Figure A.4. Singular values of the observability matrix using the STM propagated

state versus the numerically integrated state with a longer analysis time for the LEO

1 object.

Figure A.5. Singular values of the observability matrix using the STM propagated

state versus the numerically integrated state for the LEO 2 object.
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Figure A.6. Singular values of the observability matrix using the STM propagated

state versus the numerically integrated state with a longer analysis time for the LEO

2 object.

Figure A.7. Singular values of the observability matrix using the STM propagated

state versus the numerically integrated state for the LEO 3 object.
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Figure A.8. Singular values of the observability matrix using the STM propagated

state versus the numerically integrated state with a longer analysis time for the LEO

3 object.

Figure A.9. Singular values of the observability matrix using the STM propagated

state versus the numerically integrated state for the LEO 4 object.
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Figure A.10. Singular values of the observability matrix using the STM propagated

state versus the numerically integrated state with a longer analysis time for the LEO

4 object.

Figure A.11. Singular values of the observability matrix using the STM propagated

state versus the numerically integrated state for the LEO 5 object.
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Figure A.12. Singular values of the observability matrix using the STM propagated

state versus the numerically integrated state with a longer analysis time for the LEO

5 object.

Figure A.13. Singular values of the observability matrix using the STM propagated

state versus the numerically integrated state for the GEO 1 object.
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Figure A.14. Singular values of the observability matrix using the STM propagated

state versus the numerically integrated state with a longer analysis time for the GEO

1 object.

Figure A.15. Singular values of the observability matrix using the STM propagated

state versus the numerically integrated state for the GEO 2 object.
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Figure A.16. Singular values of the observability matrix using the STM propagated

state versus the numerically integrated state with a longer analysis time for the GEO

2 object.

Figure A.17. Singular values of the observability matrix using the STM propagated

state versus the numerically integrated state for the GEO 3 object.
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Figure A.18. Singular values of the observability matrix using the STM propagated

state versus the numerically integrated state with a longer analysis time for the GEO

3 object.

Figure A.19. Singular values of the observability matrix using the STM propagated

state versus the numerically integrated state for the GEO 5 object.
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Figure A.20. Singular values of the observability matrix using the STM propagated

state versus the numerically integrated state with a longer analysis time for the GEO

5 object.
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A.2.2 Comparison of Other Propagators and STMs

Other STM formulations beyond numerical integration of the two-body STM

ODE are presented for further comparison of the impact of propagation method

on the observability matrix singular values. Three analytic STM formulations from

Danby [169], Hitzl [170], and Der [171] are described in the following. In addition

to these three analytic STM formulations, SGP4 propagation is implemented in a

similar manner to the two-body propagation for observability analysis. Instead of

propagation of the state for evaluation of the linearized measurement matrix with a

two-body model, SGP4 is used for the propagation. In addition, an STM is formu-

lated by propagating the dynamics with SGP4 and then solving the STM ODE based

on the SGP4 propagated dynamics.

Danby STM

Danby develops STMs for several classes of orbits, i.e. elliptic orbits, nearly cir-

cular orbits, parabolic orbits, and hyperbolic orbits through modification of Bower’s

[172] method of differential corrections. The elliptical STM formulations are focused

on for this work. Danby’s STM formulation is based on an orbital reference system

with the x-axis points towards periapsis and the y-axis is in the direction of 90˝ true

anomaly, otherwise known as the perifocal coordinate system. In order to transform a

state from a location that is not periapsis to another non-periapsis location, Danby’s

STM formulation requires a transformation to periapsis first and then a transforma-

tion to the final desired time.

Hitzl STM

Hitzl develops a STM with the f & g formulation of orbit propagation. The peri-

focal coordinate system is also used in this STM formulation. As with Danby’s STM,
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Hitzl’s STM requires an intermediate transformation to periapsis prior to transform-

ing to the final time.

Der STM

Der’s STM formulation uses a universal anomaly and using Laguerre’s method

instead of Newton’s method as in the STMs from Danby and Hitzl. However, Der

also formulates a STM from the f & g solution, but universal variables are used. The

universal variable is defined by

x “
θ
?
α
, a ą 0, α ą 0, for ellipses, (A.1)

x “ σ ´ σ0, aÑ 8, α “ 0, for parabolas, (A.2)

x “
θ

?
´α

, a ă 0, α ă 0, for hyperbolas, (A.3)

where θ is the angle between the position vectors r0 and r, α is the inverse of the

semi-major axis, a, and the σ variables are defined by

σ “
r ¨ v
?
µ

and σ0 “
r0 ¨ v0
?
µ
. (A.4)

In Equation A.4, the initial velocity vector and the velocity vector are given by v0

and v, respectively. Der’s STM formulation begins with solving Kepler’s equation by

using Laguerre’s method which is given by the following

xn`1 “ xn ´
5F pxnq

F 1pxnq `
F 1pxnq
|F 1pxnq|

a

16pF 1pxnqq2 ´ 20F pxnqF 2pxnq
, (A.5)

where n “ 0, 1, 2, . . .. The F function and derivatives are given by Equations 5, 8, and

9 of Der which use universal functions and are a function of the universal variable, x.

An initial guess of x0 “ α
?
µpt´ t0q is used in Equation A.5. Der’s STM formulation

does not require transition to and from periapsis.

Observability with Various Propagators and STMs

Figures A.21 and A.22 show the observability matrix smallest singular value for

each propagation case described above and the GEO 4 object of Table 3.2. Figure
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A.22 has a longer propagation time than Figure A.21. The blue line, described by

“Num. Int.”, corresponds to the case when the state is numerically integrated for eval-

uation of the linearized measurement matrix. The orange line, described by “STM”,

corresponds to the case when the state is propagated with an STM evaluated through

numerical integration of the STM ODE. The green, red, and purple lines correspond

to the Danby, Der, and Hitzl STM propagation methods for the linearized measure-

ment matrix. The brown line, described by “SGP4”, corresponds to the propagation

of the state with SGP4 for evaluation of the linearized measurement matrix. Finally,

the pink line, described by “SGP4 STM”, corresponds to the propagation of the state

with an STM formulated by solving the STM ODE with a state propagated with

SGP4. The tolerance line for each case has the same corresponding color.

Figure A.21. Smallest singular value of observability matrices defined by several

propagation methods and STM formulations over a shorter analysis time. GEO 4

object with a state consisting of position and velocity only.
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Figure A.22. Smallest singular value of observability matrices defined by several

propagation methods and STM formulations. GEO 4 object with a state consisting

of position and velocity only.

In Figure A.21, some of the curves are on top of one another, and the “Num. Int.”

and “SGP4” curves are on top of one another. For short analysis periods, many of

the smallest singular value curves are similar, but some of the times for the smallest

singular value to cross the tolerance line do differ. In addition, over longer analysis

periods, the different STM and propagation methods for evaluation of the linearized

measurement matrix vary more significantly. As discussed in Section 3.5, each STM

formulation and propagation method has positive and negative attributes for applying

observability to the linearized orbit problem.
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A.3 Extended State Observability Results Including the C State Exten-

sion Case

The following figures reproduce the extended state observability with the extended

state case with C as a state variable beyond position and velocity. The orbits imple-

mented in this analysis are given in Tables 3.1 and 3.2.

Figures A.23 and A.24 show the times to become observable for the LEO objects

and different extended state cases. For the LEO 2 object in Figures A.23 and A.24,

the extended state case with C does not have a value because the observability could

not be determined as the six singular value remained below the tolerance line.

Figure A.23. Time to become observable for the LEO objects, grouped by orbit.

Figures A.26 and A.25 show the times to become observable for the GEO objects

and different extended state cases.
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Figure A.24. Time to become observable for the LEO objects, grouped by extended

state case.
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Figure A.25. Time to become observable for the GEO objects, grouped by extended

state case.

Figure A.26. Time to become observable for the GEO objects, grouped by orbit.
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APPENDIX B. OBSERVABILITY-ESTIMABILITY

INFORMED CONSIDER FILTER ADDITIONAL

RESULTS

B.1 Estimability of the Orbit Problem

The following estimability results expand upon the results of Section 4.3. The

GEO 4 object from Table 3.2 is implemented with the EKF and estimability methods

from Ham. The eigenvalues and eigenvectors of the normalized state estimation error

covariance matrix are shown for the extended state cases in Table 3.3. Initial state

uncertainties used in the EKF and estimability analysis are given in Table 3.4.

B.1.1 Constant AMR and C

Figure B.1 show the eigenvalues of the normalized state estimation error covariance

matrix for the constant AMR and C extended state case. This figure is repeated from

Section B.1.1 to analyze with the eigenvectors of Figure 4.5. Figure 4.5 contains all

eight eigenvectors instead of only the first two eigenvectors in Figure 4.5.

B.1.2 Time-Varying AMR and C

Figures B.3 and Figure B.4 show the estimability results for the time-varying

AMR and C extended state case. Similar to the Section B.1.1, all eight eigenvectors

are shown instead of only the first two eigenvectors.
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Figure B.1. Estimability eigenvalues for the constant AMR and C case.

Figure B.2. Estimability eigenvectors for the constant AMR and C case.
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Figure B.3. Estimability eigenvalues for the time-varying AMR and C case.

Figure B.4. Estimability eigenvectors for the time-varying AMR and C case.

B.1.3 Time-Varying AMR, Constant C

Figures B.5 and Figure B.6 show the estimability results for the time-varying AMR

and constant C extended state case. These estimability results are nearly identical

to the time-varying AMR and C extended state estimability results.
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Figure B.5. Estimability eigenvalues for the time-varying AMR and constant C case.

Figure B.6. Estimability eigenvectors for the time-varying AMR and constant C case.
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B.1.4 Time-Varying C, Constant AMR

Figures B.7 and Figure B.8 show the estimability results for the time-varying C

and constant AMR extended state case. These estimability results are nearly identical

to the constant AMR and C extended state estimability results.
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Figure B.7. Estimability eigenvalues for the time-varying C and constant AMR case.

Figure B.8. Estimability eigenvectors for the time-varying C and constant AMR case.
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APPENDIX C. OBSERVABILITY OF LIGHT CURVE

INVERSION ADDITIONAL RESULTS

C.1 MEO Object with Single-Axis Rotation

Figures C.1 through C.3 show the observability results for the MEO object with

single-axis rotation. The orbit and attitude motion are defined in Tables 5.1 and

5.2, respectively. Figure C.1 shows the rank of the observability Gramian versus

time, and Figure C.2 shows the rank of the observability Gramian versus number of

measurements.

Figure C.1. Rank of the observability Gramian versus time for the MEO object with

single-axis rotation and 294 surface normal directions.

Next, the impact of the EGI tessellation number on the observability Gramian is

shown in Figure C.3.

Figure C.4 shows the rank deficient regions of the EGI through visualizing the lin-

early independent columns of the reflection matrix for the MEO object with single-axis
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Figure C.2. Rank of the observability Gramian versus number of measurements for

the MEO object with single-axis rotation and 294 surface normal directions, zoomed

in for detail.

rotation. The top of the EGI corresponds to the slight increase in the observability

Gramian rank after approximately 2.5 hours in Figure C.1. In addition, the rank

deficiency is apparent in Figure C.4 where the bottom of the EGI is still gray at the

end of the analysis time.



297

(a) 20 seconds. (b) 10 seconds.

(c) 5 seconds. (d) 2.5 seconds.

(e) 1 second.

Figure C.3. Comparison of the percentage of the EGI albedo-area which is linearly

independent for EGIs with 150 and 294 surface normal directions and the MEO object

with single-axis rotation.
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Figure C.4. 3D visualization of the linearly independent columns in the reflection

matrix for the MEO object with single-axis rotation, 294 surface normal directions,

and 20 seconds between measurements, where the colorbar represents measurement

indices.
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C.2 LEO Object with Three-Axis Rotation

Figure C.5 shows the comparison of the percentage of EGI albedo-areas for the

LEO object with three-axis rotation and different EGI tessellation numbers. The

orbit and attitude for the LEO object are defined in Tables 5.1 and 5.2, respectively.

(a) 20 seconds. (b) 10 seconds.

(c) 5 seconds. (d) 2.5 seconds.

(e) 1 second.

Figure C.5. Comparison of the percentage of the EGI albedo-area which is linearly

independent for EGIs with 150 and 294 surface normal directions and the LEO object

with three-axis rotation.
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C.3 GEO Object with Three-Axis Rotation

Figure C.6 shows the comparison of the percentage of EGI albedo-areas for the

GEO object with three-axis rotation and different EGI tessellation numbers. The

orbit and attitude for the GEO object are defined in Tables 5.1 and 5.2, respectively.

(a) 20 seconds. (b) 10 seconds.

(c) 5 seconds. (d) 2.5 seconds.

(e) 1 second.

Figure C.6. Comparison of the percentage of the EGI albedo-area which is linearly

independent for EGIs with 150 and 294 surface normal directions and the GEO object

with three-axis rotation.
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C.4 MEO Object with Three-Axis Rotation

Figures C.7 and C.8 show the rank of the observability Gramian over time for

the MEO object with three-axis rotation. The EGI tessellation number shown here

equals 7, or 294 EGI surface normal directions. The second plot, Figure C.8 shows

more detail of the region near full rank.

Figure C.7. Rank of the observability Gramian versus time for the MEO object with

three-axis rotation and 294 surface normal directions.

Figure C.9 shows the rank of the observability Gramian versus number of mea-

surements for the MEO object with three-axis rotation.

Figure C.10 compares the percentage of the EGI albedo-areas which become lin-

early independent in the observability Gramian for different EGI tessellation numbers

The 3D visualization of the linearly independent columns of the reflection matrix

for the MEO object with three-axis rotation and 10 seconds between measurements

is shown in Figure C.11.
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Figure C.8. Rank of the observability Gramian versus time for the MEO object with

three-axis rotation and 294 surface normal directions, zoomed in for detail.

Figure C.9. Rank of the observability Gramian versus number of measurements for

the MEO object with three-axis rotation and 294 surface normal directions, zoomed

in for detail.
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(a) 20 seconds. (b) 10 seconds.

(c) 5 seconds. (d) 2.5 seconds.

(e) 1 second.

Figure C.10. Comparison of the percentage of the EGI albedo-area which is linearly

independent for EGIs with 150 and 294 surface normal directions and the MEO object

with three-axis rotation.
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Figure C.11. 3D visualization of the linearly independent columns in the reflection

matrix for the MEO object with three-axis rotation, 294 surface normal directions,

and 20 seconds between measurements, where the colorbar represents measurement

indices.
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C.5 Rank Deficiency of Attitude Profile B

More detailed analysis of several unconstrained measurement spacing cases are

presented in an attempt to uncover the cause of the rank deficiency with the second

attitude profile. Figure C.12 through Figure C.15 show measurement spacing cases

with a range of two to ten hours between each batch of measurements, which are

comparable to Figure 5.27 through Figure 5.30 with a different attitude profile. All

of the unconstrained, equally spaced measurement cases for the second attitude profile

do not reach full rank. The two and four hour measurement spacing cases reach a rank

of 996, resulting in a rank deficiency of 18. After approximately 17 hours, all of the

measurement spacing cases do not increase rank any more with more measurements

for this attitude profile. The rank deficiency in this problem indicates that the attitude

profile and system geometry changes in a way which excludes a portion of the model

from the observer for this analysis time.

Figure C.12. Rank of the observability Gramian versus time with attitude B and

without visibility constraints.

Large computation times resulting from the large number of EGI surface normal

directions and the long analysis time resulted in an alternative approach for deter-
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Figure C.13. Rank of the observability Gramian versus time with attitude B and

without visibility constraints., zoomed in to show detail.

Figure C.14. Rank of the observability Gramian versus number of measurements with

attitude B and without visibility constraints.

mining if the geometry changes sufficiently over a long time for observability of the

EGI minimization. Instead of equally spaced measurement batches, two sets of two
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Figure C.15. Rank of the observability Gramian versus number of measurements with

attitude B and without visibility constraints, zoomed in to show detail.

measurement batches were placed in visibility windows with varying time between

each window. Also, the measurements are placed at the extremes of each visibility

window, i.e. the first batch begins at the start of the visibility window and the last

measurement of the second batch is at the end of the visibility window. This new

arrangement of the measurements keeps the computational time semi-constant as the

number of measurements remains the same for each case. The computational time

does increase slightly as the time between visibility windows increases, but the ob-

server, object, and Sun propagation is performed prior to analysis of the observability

Gramian.

Figures C.16, C.17, and C.18 show the observability results for the new measure-

ment sequence. The time between visibility windows is varied from approximately

5 days to 180 days. Each spacing is approximate because the visibility window of

the second set of measurement batches may not be long enough to contain two 20

minute measurement batches, which would result in an earlier visibility window be-

ing selected for the second set of measurement batches. Furthermore, the time of the
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second set of measurement batches is referenced from epoch, so the spacing between

the end of the second and third batches of measurement is one day less than the listed

separation.

In Figure C.16, the spacing between visibility windows of 5 days and 180 days have

the highest observability Gramian rank at the end of four batches of measurements.

Figure C.17 shows the 180 day spacing case in more detail. Figure C.18 shows the

rank of the observability Gramian versus the number of measurements. For this

system, the 180 day spacing between visibility windows has the highest rank thus far,

but full rank is not achieved for the EGI with 1014 surface normal directions.

Figure C.16. Rank of the observability Gramian versus time with visibility constraints

and attitude B for a range of days between measurement batches.

In order to understand the rank deficiency of this system for EGI minimization,

the linear independence of the columns of the reflection matrix is visualized for the

180 day spacing case in Figure C.19. Figure C.19a shows the view from the observer

to the object at the end of the last measurement. A second view of the visualization

at the same time of the last measurement is given in Figure C.19b which shows

a region where the second batch of measurements sufficiently sampled the surface

normal directions of the EGI. At first it appears that all surface normal directions
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Figure C.17. Rank of the observability Gramian versus time with visibility constraints

and attitude B for two sets of measurement batches spaced by approximately 180 days.

Figure C.18. Rank of the observability Gramian versus number of measurements

with visibility constraints and attitude B for a range of days between measurement

batches, zoomed in to show detail.

have all been sampled, but Figure C.19c, a different orientation of the visualization at

the same time, shows six surface normal directions which were insufficiently sampled.



310

Therefore, this one region of the EGI was not illuminated and visible to the observer

or did not have enough measurements to sufficiently sample the EGI surface normal

directions for EGI minimization.

(a) Observer view to the observer after

last measurement.

(b) Orientation depicting region sampled

during second batch of measurements.

(c) Insufficiently sampled region.

Figure C.19. 3D visualization of the linearly independent columns in the reflection

matrix for the Atlas V upper stage with 1014 surface normal directions. Attitude B,

two sets of two batches spread over approximately 180 days.
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Further analysis of attitude profile B has shown the sensitivity of the EGI mini-

mization to the spin axis orientation. Moreover, the resulting rank deficiency of the

observability Gramian for this attitude profile shows the importance of observability

analysis for collecting light curve measurements for light curve inversion. More anal-

ysis is needed to determine how the Atlas V object with attitude B can be sufficiently

sampled. Analysis of alternative observation sites and measurement sequences may

aid in sufficient sampling of the system geometry for light curve inversion.

C.6 Propagation Comparison for Constrained Analysis

Observability of the EGI minimization was performed with two orbit propaga-

tors, two-body and SGP4, for investigation of the impact of propagation method on

observability of this system. The results shown in Figures C.16, C.17, and C.18 im-

plement the SGP4 propagator for orbit propagation. The same measurement spacing

cases are repeated with two-body propagation.

Figure C.20 compares the rank of the observability Gramian for the two propaga-

tion types. As the three measurement spacing cases have large differences in the time

of the third and fourth batches of measurements, the x-axis for the rank comparison

is the measurement number in each measurement sequence. Also, the rank difference

subtracts the SGP4 results from the two-body propagation results. Therefore, posi-

tive values represent times when the rank of the observability Gramian with two-body

propagation of the orbit is larger than that of the SGP4 orbit propagation.

Over the first two measurement batches, up to 1200 measurements, the observ-

ability Gramian rank is the same for all three measurement spacing cases. There are

several points around 1000 measurements where there are differences in the rank for

the two propagation methods. However, this rank difference is only one and each

measurement spacing case has the same values. The biggest differences in the rank

for the two propagation methods occurs for the 180 days measurement spacing case,

as expected. Over a long time period, the perturbations in the SGP4 propagator will
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Figure C.20. Difference in the rank of the observability Gramian for two-body and

SGP4 propagation of the orbit.

have a large effect on the orbital geometry when compared to a two-body propagated

orbit. Note that the SGP4 propagation over 180 days results in an observability

Gramian rank which is less than the rank for the two-body propagation. In some

cases, more geometric diversity in a system can benefit observability analysis, but for

the system of interest here, this is not the case.

Next, Figure C.21 through Figure C.23 compare the orbital elements of the three

measurement cases with the two propagation methods. Figure C.21 shows the semi-

major axis, eccentricity, and inclination of each measurement spacing case and prop-

agation method. The rows represent the orbit shape defining orbital elements, and

the columns represent each measurement spacing case. Figure C.22 presents the same

comparison of the propagation methods for the orbit orientation defining orbital ele-

ments. For Figures C.21 and C.22, the average orbital element value over each batch

of measurements is computed for each propagation method. Moreover, the absolute

value of the differences between each propagation method is shown.

In Figures C.21 and C.22, the orbital elements from the orbit propagated with

two-body propagation are constant, with the exception of the true anomaly, ν. For
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many of the orbital elements, the differences between the SGP4 propagated orbit and

two-body propagated orbit are small. The biggest changes in the orbital elements

over the analysis time occur in the eccentricity, right ascension of the ascending node,

argument of perigee, and true anomaly for the 180 days measurement spacing case.

A large change in true anomaly results in a different orbit location at the time of

the measurements, and therefore, the orbital geometry which is captured with the

measurement is significantly different.

Figure C.21. Comparison of orbital elements defining orbit shape for the three mea-

surement cases and two propagation methods.

Figure C.23 shows the average true anomaly value for each measurement batch,

batch spacing case, and propagation method. The two-body propagation results are

given in blue and the SGP4 propagation results are given in orange. For the 5 and

20 day batch spacing cases, the true anomaly values are comparable between the

two-body propagation and SGP4 propagation. Note that the fourth measurement

batch has a similar true anomaly average value as the first measurement batch. As
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Figure C.22. Comparison of orbital elements defining orbit orientation for the three

measurement cases and two propagation methods.

a result, less new information is provided by the third batch of measurements. In

the 180 day batch spacing case, the third and fourth average true anomaly values are

different from the other cases. The true anomaly for the third batch of the SGP4

propagation is similar to the first batch. However, the true anomaly values of the

third and fourth batches using two-body propagation are different from the first and

second batches. This uniqueness of the measurement batch true anomaly values for

the two-body propagation case resulted in the larger observability Gramian rank in

Figure C.20.

Depending on the length of analysis, the orbit propagator implemented for ob-

servability of the EGI minimization can have a significant impact on the rank of the

observability Gramian. An orbit propagator with perturbations, such as SGP4, will

result in more geometric diversity in the system as the orbit shape and orientation

may change over time. The greater geometric diversity caused by a propagator with
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Figure C.23. Comparison of the average true anomaly values per batch of measure-

ments for the three measurement cases and two propagation methods.

perturbations cannot be expected to improve the observability of the EGI minimiza-

tion. In this analysis, the SGP4 propagation resulted in lower observability Gramian

rank values for the 180 day measurement spacing case. Over shorter analysis times,

the differences in the rank of the observability Gramian were minimal. Although

change in the system geometry due to the SGP4 propagator was detrimental for the

rank of the observability Gramian in this system, other systems may benefit from

increased geometric diversity. Therefore, depending on the analysis length, this prob-

lem is sensitive to the orbit propagator used, and a comparison of the observability

Gramian matrix rank with different propagators is important for observability of the

EGI minimization.



316

VITA

Alex attended Virginia Polytechnic Institute and State University (Virginia Tech)

from 2009 to 2015. He earned a BS in Engineering Science and Mechanics in 2013 and

a MS in Aerospace Engineering in 2015. He joined the Space Information Dynamics

group at Purdue University to pursue a PhD in 2015.


	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	Research Questions
	Outline of Dissertation

	BACKGROUND
	Observability Fundamentals
	State-Space Control System Representation
	Observability Gramian
	Conditions for Numerical Evaluation of Observability

	The Orbit Problem
	Two-Body Equations of Motion
	Perturbed Orbital Motion

	Ground-based Optical Observations
	Coordinate Systems
	Right Ascension and Declination Measurements
	Optical Sensors and Measurement Noise Estimation
	Apparent Magnitude Light Curve Measurements
	Sensor Tasking

	Observability Matrix for the Orbit Problem
	State-Space Representation of the Orbit Problem
	State Transition Matrix
	Measurement Matrix
	State Extension Beyond Position and Velocity

	Estimation Methods
	Nonlinear Batch Least Squares
	Extended Kalman Filter
	Schmidt-Kalman Filter

	Estimability
	Light Curve Inversion

	OBSERVABILITY OF THE ORBIT PROBLEM
	Stochastic Observability
	Measurement Noise Incorporation
	Initial State Covariance Incorporation

	Information Form of the Kalman Filter
	Simulation Orbit Definitions
	Impact of Measurement Noise on Orbit Observability
	Impact of Propagation Method and Linearization Reference on Orbit Observability
	Observability of Object Characteristics
	Extended State Observability Numerical Challenges
	Extended State Observability with Constant SRP Parameters
	Extended State Observability with Time-Varying SRP Parameters

	Observability as a Predictor of Estimation Performance
	Observable System
	Unobservable System
	Summary

	An Observability Use Case: Sensor Tasking Optimization
	Observability Results
	Comparison of Observability and Nonlinear Batch Least Squares Monte Carlo Analysis
	Summary

	An Observability Use Case: Multiple Sensor and Observation Evaluation

	OBSERVABILITY-ESTIMABILITY INFORMED CONSIDER FILTER
	Estimability
	Observability-Estimability Informed Consider Filter
	Estimability of the Orbit Problem Results
	Estimability with an Uncorrelated State
	Constant AMR and C
	Time-Varying AMR and C
	Summary

	Observability-Estimability Informed Consider Filter Results
	Constant AMR and C
	Time-Varying AMR and C
	Time-Varying AMR, Constant C
	Time-Varying C, Constant AMR
	Summary


	OBSERVABILITY OF LIGHT CURVE INVERSION
	EGI Minimization Observability Derivation
	EGI Observability Independent of Original Object Shape
	LEO Object with Single-Axis Rotation
	GEO Object with Single-Axis Rotation
	Rank Deficiency of the Single-Axis Rotation Systems
	LEO Object with Three-Axis Rotation
	GEO Object with Three-Axis Rotation
	Three-Axis Rotation Summary

	Observability for LCI Sensor Tasking: Atlas V
	Attitude Profiles
	Unconstrained Analysis
	Constrained Analysis: Attitude Profile A
	Constrained Analysis: Attitude Profile B
	Rank Deficiency of Attitude Profile B
	Atlas V Constrained Analysis Summary

	Observability for Investigating Satellite Deployment, Given Original Object Shape
	Summary

	CONCLUSIONS
	Recommendations

	REFERENCES
	OBSERVABILITY OF THE ORBIT PROBLEM ADDITIONAL RESULTS
	Impact of Measurement Noise on Orbit Observability
	Impact of Propagation Method on Orbit Observability
	Numerical Integration versus STM Propagation
	Comparison of Other Propagators and STMs

	Extended State Observability Results Including the C State Extension Case

	OBSERVABILITY-ESTIMABILITY INFORMED CONSIDER FILTER ADDITIONAL RESULTS
	Estimability of the Orbit Problem
	Constant AMR and C
	Time-Varying AMR and C
	Time-Varying AMR, Constant C
	Time-Varying C, Constant AMR


	OBSERVABILITY OF LIGHT CURVE INVERSION ADDITIONAL RESULTS
	MEO Object with Single-Axis Rotation
	LEO Object with Three-Axis Rotation
	GEO Object with Three-Axis Rotation
	MEO Object with Three-Axis Rotation
	Rank Deficiency of Attitude Profile B
	Propagation Comparison for Constrained Analysis

	VITA

