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2.1 Single molecule experiments often generate time traces. The
goal is to infer models of single molecule behavior from these
time traces. a) A cartoon of a single molecule force spectroscopy setup
probing transitions between zipped and unzipped states of an RNA hairpin
[68]. Change-point algorithms, that we later discuss, were used in b)
to determine when the signal suddenly changes (red line). The signal
indicates the changes in the conformation of the RNA hairpin obscured
by noise. Clustering algorithms, also discussed later, were then used to
regroup the ”denoised” intensity levels (red line) into distinct states (blue
line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The posterior probability sharpens as more data are accumu-
lated. Here we sampled data according to a Poisson distribution with λ =
5 (designated by the dotted line). Our samples were D = {2, 8, 5, 3, 5, 2, 5, 10, 6, 4}.
We plotted the prior (Eq. (2.20) with α = 2, β = 1/7) and the resulting
posterior after collecting N = 1, then N = 5 and N = 10 points. . . . . . 21

2.3 Venn diagram depicting different information quantities and their
relationship. The value of each entropy is represented by the enclosed
area of different regions. H(x) and H(y) are both complete circles. . . . . 26

2.4 FCS may be used to model the dynamics of labeled particles
at many cellular locations (regions of interest (ROIs)), both in
the cytosol and in the nucleus. a) Merged image of a cerulean-CTA
fluorescent protein (FP) used to image the cytosol and mCherry red FP
used to tag BZip protein domains. In Ref. [10], we analyzed FCS data on
tagged BZips diffusing in the nucleus and the cytosol. We analyzed diffu-
sion in ROIs far from heterochromatin by avoiding red FP congregation
areas (bright red spots). MaxEnt analysis revealed details of the fluo-
rophore photophysics, crowding and binding effects that could otherwise
be fit using anomalous models. b) A cartoon of the cell nucleus illustrat-
ing various microenvironments in which BZip (red dots) diffuses (A: free
region; B: crowded region; C: non-specific DNA binding region; D: high
affinity binding region). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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2.5 Protein binding sites of different affinities yield a G(τ) that is well
fit by an anomalous diffusion model. A theoretical G(τ) (containing
150 points) was created from an anomalous diffusion model, Eq. (2.52)
with α = 0.9, to which we added 5% white noise (a, blue dots, logarithmic
in time). Using MaxEnt, we infer a p(τD) from this G(τ) (b) and, as a
sanity check, use it to reconstruct a G(τ) (a, solid curve). In the main
body, we discuss how protein binding sites of different affinities could give
rise to such a p(τD). Part of p(τD) is then excised, yielding a new p(τD)
(d, pink curve). Conceptually, this is equivalent to mutating a binding
site which eliminates some τD’s. We created a G(τ) from this theoretical
distribution with 8% white noise (c, blue dots, logarithmic in time). We
then extracted a p(τD) from this (d, blue curve) and we reconstructed a
G(t) from this p(τD) distribution as a check (c, solid curve). Time is in
arbitrary units. See text and Ref. [10] for more details. . . . . . . . . . . 40

2.6 Probability distributions of diffusion coefficients can be inferred
from FCS curves. a) p(D) for freely diffusing Alexa568 shows no “su-
perdiffusive plateau” (defined in the text) that arises from dye flickering.
Rather, it shows its main peak at 360µm2/s very near the reported value
of 363 µm2/s [187]. We attributed the smaller peak centered at ∼ 5 µm2/s
to dye aggregation [10]. b) + c) We analyzed p(D)’s obtained from FCS
data acquired on mCherry and mRuby2 diffusing freely in solution, and
d) + e) mCherry or mRuby2 tagged BZip protein domains in the cytosol
and f) + g) the nucleus far from heterochromatin [187]. Black curves are
averages of the red curves [total number of data sets: b:3,c:9,d:5,e:16,f:7,
and g:21]. The additional blue curve in (g) shows the analysis of the best
data set (i.e. the most monotonic G(τ)). See text and Ref. [10] for more
details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
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2.7 The AIC and BIC are often both applied to step-finding. a) We
generated 1000 data points with a background noise level, σb = 20. On top
of the background, we added 6 dwells (5 change points) with noise around
the signal having a standard deviation of σs = 5 (see inset). At this
high noise level, and for this particular application, the BIC outperforms
the AIC and the minimum of the BIC is at the theoretical value of 5
(dotted line). All noise is Gaussian and de-correlated. b) For our choice
of parameters, the AIC (green) finds a model that overfits the true model
(black) while the BIC (red) does not. However, as we increase the number
of steps (while keeping the total number of data points fixed), the AIC
does eventually outperform the BIC. This is to be expected. The AIC
assumes the model could be unbounded in complexity and therefore does
not penalize additional steps as much. The BIC, by contrast, assumes
that there exists a true model of finite complexity. We acknowledge K.
Tsekouras for generating this figure. . . . . . . . . . . . . . . . . . . . . . 47

2.8 Noise models can be adapted to treat outliers. We are given a
sequence of data points, D = {1, 1.8, 2.4, 5.5, 5.8} ± 0.25. We want to
find the posterior over µ. Blue: We assume the standard deviation is
fixed at 0.25 and use a Gaussian likelihood with a single variance for all
points. Orange: We assume that the standard deviation’s lower bound is
0.25, see Eq. (2.65), but that we still have a single variance for all points.
Green: We still assume the standard deviation’s lower bound is 0.25 but
that all points are assumed to have independent standard deviations, see
Eq. (2.66). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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2.9 BIC finds correct steps when the noise statistics are well char-
acterized. a) Our control. We generated synthetic steps (black line) and
added noise (white, decorrelated) with the same standard deviation for
each data point. We used a greedy algorithm [70] to identify and compare
models according to Eq. (2.73) and identify the correct step locations (red
line) from the noisy time trace (blue). b) Here we use a different, incor-
rect, likelihood that does not adequately represent the process that we
used to generate the synthetic data. That is, we correctly assumed that
the noise was white and decorrelated but also, incorrectly, assumed that
we knew and fixed σ (and therefore did not integrate over σ in Eq. (2.71)).
We underestimated σ by 12%. Naturally, we overfit (red) the true signal
(black). Green shows the step-finding algorithm re-run using the correct
noise magnitude. c) Here we use the BIC from Eq. (2.73) whose likeli-
hood assumes no noise correlation. However, we generated a signal (black)
to which we added correlated noise [by first assigning white noise, εt, to
each data point and then computing a new correlated noise, ε̃t, at time t
from ε̃t = 0.7εt + 0.1εt−1 + 0.1εt−2 + 0.1εt−3]. As expected, the model that
the BIC now selects (red) interprets as signal some of the correlated noise
from the synthetic data. We acknowledge K. Tsekouras for generating this
figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.10 Identifying states can be accomplished while detecting steps.
STaSI is applied to synthetic smFRET data. STaSI works by first it-
eratively identifying change-points in the data (successive steps shown by
arrows in panel (a). The mean of the data from change-point to change-
point defines an intensity (FRET) state. An MDL heuristic is subsequently
used to eliminate (or regroup) intensity levels (b). The MDL is plotted as
a function of the number of states (c). The final analysis – with change-
points and states identified – is shown in (d). For more details see Ref. [48].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.11 Maximum evidence can be used in model selection. a) For this
synthetic time trace, maximum likelihood (ML) will overfit the data. This
is clear from b) where it is shown that the log likelihood or probability of
the model – evaluated at θ = θ∗ – increases monotonically as we increase
the number of states, K. By contrast, maximum evidence (ME) – ob-
tained by marginalizing the likelihood over θ – identifies the theoretically
expected number of states, K = 3. Sample time traces are shown in (a)
and the log probability is plotted in (b). See details in text and Ref. [47]. 64
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2.12 The number of diffusive states detected using maximum evidence
can establish changes in interactions of Hfq upon treatment of
E. coli cells with rifampicin. a) vbSPT analysis of the RNA helper
protein Hfq tracking data. Three distinct diffusive states are detected and
sample trajectories are shown color-coded according to which state they
belong. The kinetic scheme shows the diffusion coefficient in each state
as well as transition rates between diffusion coefficients. b) When treated
with a transcription inhibitor (rif), vbSPT finds that the slowest diffusive
state vanishes suggesting that the slowest diffusive state of Hfq was related
to an interaction of Hfq with RNA. ∆t = 300Hz throughout the figure.
The scale bar indicates 0.5 µm2/s. See details in Ref. [46]. . . . . . . . . . 65

2.13 DPMMs can be used in deconvolution. a) A density generated from
N = 500 data points from the mixture of four exponential components.
b) After fewer than 200 MCMC iterations, the DPMM has converged to
four mixture components. c) The marginal distribution of the parameter
for each mixture component is shown with the red line indicating the
theoretical value used to generate the synthetic data (0.001, 0.01, 0.1, 10).
See Ref. [154] and main body for more details. . . . . . . . . . . . . . . . 73

2.14 iHMM Graphical Model [280]. . . . . . . . . . . . . . . . . . . . . . . 74

2.15 iHMM’s can learn the number of states from a time series. iH-
MMs not only parametrize transition probabilities as normal HMMs do.
They also learn the number of states in the time series [154]. Here they
have been used to find the number of states for a) ion (BK) channels in
patch clamp experiments [with downward current deflections indicating
channels opening]; b) conformational states of an agonist-binding domain
of the NMDA receptor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.16 A soft clustering algorithm based on RDT is used to deter-
mine states from smFRET trajectories. a) A crystal structure of
the AMPA ABD. The green and red spheres represent the donor and ac-
ceptor fluorophores, respectively. b) Detection of photons emitted in an
smFRET experiment. c) An experimental smFRET trajectory obtained
by binning the data in (b). d) Probability mass functions (pmfs) of the
blue and red segments highlighted in (c). e) Cumulative distribution func-
tion (cdfs) of the highlighted segments in (c). The shaded area represents
the Kantorovich distance. f) Visual representation of clusters in (c) based
on multidimensional scaling. g) Transition disconnectivity graph (TRDG)
resulting from the trajectory in (c). See details in text and Ref. [284]. . . 83



xiv

Figure Page

2.17 RDT clustering reveals differences in conformational dynamics
for the AMPA ABD. State distributions and TRDGs are given for the
full agonist-bound ABD (a); the partial agonist-bound ABD (b); and the
antagonist-bound ABD (c). 〈E〉 denotes the mean efficiency. See main
body and Ref. [284] for details. . . . . . . . . . . . . . . . . . . . . . . . . 88

2.18 The IB method can be used to construct dynamical models. a)
The IB method starts from the data to be clustered s (top left), clustering
then compresses the information contained in s by minimizing the rate
I(C, s) (from top left to top right). Instead of introducing an a priori dis-
tortion measure, the IB compression maximizes I(C,u) quantifying how
well another observable, u, is predicted (from top right to bottom). The
maximum achievable “relevance”, predicting u from s, is given by I(s,u).
b) To construct a predictive dynamical model from time series data, we
may define past sequences (top left) as the data to be clustered s and
future sequences (bottom) as the relevant observables u. . . . . . . . . . . 93

2.19 Diminishing returns: most data collected from additional experi-
ments does not result in information gain. The expected information
gained, Eq. (2.100), grows sub-linearly with the number of photon arrival
measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.1 Photon arrival times can characterize dynamical properties of
molecules on fast, photon-detection, timescales. (A) Schematic of
an illuminated confocal volume (blue) with fluorescent molecules emitting
photons based on their location within that volume. (B) Synthetic trace
containing ≈ 1500 photon arrivals produced by 4 molecules diffusing at
1 µm2/s for a total time of 30 ms under background and molecule pho-
ton emission rates of 103 photons/s and 4 × 104 photons/s, respectively.
(C) Autocorrelation curve, G(τ), of the trace in (B), binned at 100 µs.
On account of the limited data available in the trace, any reasonable fit
is impossible. Normally, in FCS analysis, much longer traces are used to
generate smoother G(τ) that are fitted to determine a diffusion coefficient.
In Fig. 3.14 of the Appendix, we show that the quality of the fit does not
improve considerably by fitting to a semi-logarithmic curve. (D) Com-
parison between diffusion coefficient estimates using our proposed method
(detailed later) and FCS as a function of the number of photon arrivals
in the analyzed trace. Since by 1.5× 104 photon arrivals our method has
converged, we avoid analyzing larger traces. . . . . . . . . . . . . . . . . 113
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3.2 Estimates of diffusion coefficients from photon arrival traces strongly
depend on the number of molecules assumed to be contributing
to the trace. The trace analyzed contained ≈ 1800 photon arrivals
produced by 4 molecules diffusing at 1 µm2/s for a total time of 30 ms
under background and molecule photon emission rates of 103 photons/s
and 4 × 104 photons/s, respectively. To estimate D parametrically, we
assumed a fixed number of molecules, N = 1 (A); N = 2 (B); N = 3 (C);
N = 4 (D); and N = 5 (E). The correct estimate in (D)–and the mis-
match in all others–underscores why it is critical to estimate the number
of molecules contributing to the trace to deduce quantities such as diffusion
coefficients from single photon arrivals. . . . . . . . . . . . . . . . . . . 116

3.3 BNP formulation used for the analysis of photon arrival traces.
Molecules, indexed n = 1, 2, . . . , evolve over the experimental time course
which is indexed by k = 1, 2, . . . , K. Here, Rn

k = (xnk , y
n
k , z

n
k ) indicates

the location of molecule n at time tk. During the experiment, only a
single observation (inter-arrival time) ∆tk is recorded, thereby combining
photon emissions from every molecule and the background. The diffusion
coefficient D determines the evolution of the molecular positions which
influence the photon emission rates and eventually the recorded ∆tk. The
indicator variables bn are introduced to infer the unknown molecule pop-
ulation size. In the graphical model, the measured data are highlighted
by grey shaded circles and the model variables, which require priors, are
designated by blue circles. . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.4 A higher number of total photon arrivals provide more photons
per unit time and sharper diffusion coefficient estimates. (A1) In-
stantaneous molecule photon emission rates µnk , normalized by µmol. (A2)
Photon arrival trace resulting from combining photon emissions from every
molecule and the background. This synthetic trace contains ≈ 2000 pho-
ton arrivals produced by 4 molecules diffusing at 1 µm2/s for a total time
of 30 ms under background and molecule photon emission rates of 103

photons/s and 4×104 photons/s, respectively. The dashed lines show the
initial 30%, 50%, 80%, and 100% portions of the original trace containing
≈ 600, ≈ 1000, ≈ 1600, ≈ 2000 photon arrivals, respectively. (B1-B4)
Posterior probability distributions drawn from traces with differing length
(shown in (A2)). As expected, for the longer traces, the peak of the pos-
terior matches with the exact value of D (dashed line). Gradually, as
we decrease the total number of photon arrivals analyzed, the estimation
becomes less reliable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
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3.5 A higher molecular concentration provides more photons per
unit time and sharper diffusion coefficient estimates. (A1, B1,
C1) Instantaneous molecule photon emission rates µnk , normalized by µmol.
(A2, B2, C2) Photon arrival traces resulting from combining photon emis-
sions from every molecule and the background. These are produced by
10 molecules containing ≈ 3000 photon arrivals (A2), 4 molecules contain-
ing ≈ 2000 photon arrivals (B2), and 1 molecules containing ≈ 1000 pho-
ton arrivals (C2), diffusing at 1 µm2/s for a total time of 30 ms un-
der background and molecule photon emission rates of 103 photons/s and
4 × 104 photons/s, respectively. (A3, B3, C3) Posterior probability dis-
tributions drawn from traces with differing number of molecules (shown
in (A2, B2, C2)). As expected, for the traces with higher number of
molecules, the peak of the posterior matches with the exact value of D
(dashed line). Gradually, as we decrease the total number of molecules
the estimation becomes less reliable. . . . . . . . . . . . . . . . . . . . . 126

3.6 A lower diffusion coefficient provides more photons per unit time
and sharper diffusion coefficient estimates. Posterior probability dis-
tributions drawn from traces containing ≈ 2000 photon arrivals produced
by 4 molecules diffusing at D = 0.01, 0.1, 1, 10 µm2/s for a total time
of 30 ms under background and molecule photon emission rates of 103

photons/s and 4 × 104 photons/s, respectively. For molecules diffusing
at D = 100 µm2/s, under similar conditions, we used a trace containing
≈ 3000 photons for a total time of 50 ms, since we needed a longer trace
to gather sufficient information for drawing a posterior. . . . . . . . . . 129

3.7 A higher molecule photon emission rate provides more photons
per unit time and sharper diffusion coefficient estimates. (A, B,
C, D) Posterior probability distributions drawn from traces produced by
4 molecules diffusing at 1 µm2/s for a total time of 30 ms under back-
ground photon emission rate of 103 photons/s and molecule photon emis-
sion rates 4×105, 4×104, 4×103, 103 photons/s, respectively. As expected,
under higher molecule photon emission rates, the peak of the posterior
matches sharply with the exact value of D (dashed line). Gradually, as we
decrease the molecule photon emission rate, the estimation becomes less
reliable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
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ton arrivals (B2). (A3, B3) Posterior probability distributions drawn from
traces with differing molecule photon emission rates (shown in (A2, B2)).
As expected, for the traces with higher molecule photon emission rate, the
peak of the posterior sharply matches with the exact value of D (dashed
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4.5 Effect of the number of detected photons on a single molecular
lifetime estimation. The more photons per unit time and thus
the sharper estimation of lifetime. (A) Here, we work on single
species lifetime while all molecules are immobilized. The synthetic trace
generated by τ = 1 ns. The blue dot represents a single photon arrival
time. The excitation pulses happen at frequency of 40 MHz and we con-
sider then to have a Gaussian shape with standard deviation of 0.1 ns. We
start with 50 photons (B1) and gradually increase the number of photons
to 100 (B2), 500 (B3), and 1000 (B4) photons. The ground truth for the
lifetime is known (as this is synthetic data) and it is shown by red dash
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ABSTRACT

Tavakoli, Meysam Ph.D., Purdue University, May 2020. Bayesian Nonparametrics
for Biophysics. Major Professor: Andrew D. Gavrin.

The main goal of data analysis is to summarize huge amount of data (as our

observation) with a few numbers that come up us with some sort of intuition into

the process that generated the data. Regardless of the method we use to analyze the

data, the process of analysis includes (1) create the mathematical formulation for the

problem, (2) data collection, (3) create a probability model for the data, (4) estimate

the parameters of the model, and (5) summarize the results in a proper way-a process

that is called ”statistical inference”.

Recently it has been suggested that using the concept of Bayesian approach and

more specifically Bayesian nonparametrics (BNPs) is showed to have a deep influ-

ence in the area of data analysis [1], and in this field, they have just begun to be

extracted [2–4]. However, to our best knowledge, there is no single resource yet avail-

able that explain it, both its concepts, and implementation, as would be needed to

bring the capacity of BNPs to relieve on data analysis and accelerate its unavoidable

extensive acceptance.

Therefore, in this dissertation, we provide a description of the concepts and imple-

mentation of an important, and computational tool that extracts BNPs in this area

specifically its application in the field of biophysics. Here, the goal is using BNPs to

understand the rules of life (in vivo) at the scale at which life occurs (single molecule)

from the fastest possible acquirable data (single photons).

In chapter 1, we introduce a brief introduction to Data Analysis in biophysics.

Here, our overview is aimed for anyone, from student to established researcher, who

plans to understand what can be accomplished with statistical methods to modeling
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and where the field of data analysis in biophysics is headed. For someone just getting

started, we present a special on the logic, strengths and shortcomings of data analysis

frameworks with a focus on very recent approaches.

In chapter 2, we provide an overview on data analysis in single molecule bio-

physics. We discuss about data analysis tools and model selection problem and mainly

Bayesian approach. We also discuss about BNPs and their distinctive characteristics

that make them ideal mathematical tools in modeling of complex biomolecules as they

offer meaningful and clear physical interpretation and let full posterior probabilities

over molecular-level models to be deduced with minimum subjective choices.

In chapter 3, we work on spectroscopic approaches and fluorescence time traces.

These traces are employed to report on dynamical features of biomolecules. The

fundamental unit of information came from these time traces is the single photon.

Individual photons have information from the biomolecule, from which they are emit-

ted, to the detector on timescales as fast as microseconds. Therefore, from confocal

microscope viewpoint it is theoretically feasible to monitor biomolecular dynamics

at such timescales. In practice, however, signals are stochastic and in order to de-

rive dynamical information through traditional meanssuch as fluorescence correlation

spectroscopy (FCS) and related methodsfluorescence time trace signals are gathered

and temporally auto-correlated over many minutes. So far, it has been unfeasible to

analyze dynamical attributes of biomolecules on timescales near data acquisition as

this requests that we estimate the biomolecule numbers emitting photons and their

locations within the confocal volume. The mathematical structure of this problem

causes that we leave the normal (”parametric”) Bayesian paradigm. Here, we utilize

novel mathematical tools, BNPs, that allow us to extract in a principled fashion the

same information normally concluded from FCS but from the direct analysis of sig-

nificantly smaller datasets starting from individual single photon arrivals. Here, we

specifically are looking for diffusion coefficient of the molecules. Diffusion coefficient

allows molecules to find each other in a cell and at the cellular level, determination

of the diffusion coefficient can provide us valuable insights about how molecules in-
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teract with their environment. We discuss the concepts of this method in assisting

significantly reduce phototoxic damage on the sample and the ability to monitor the

dynamics of biomolecules, even down to the single molecule level, at such timescales.

In chapter 4, we present a new approach to infer lifetime. In general, fluorescence

Lifetime Imaging (FLIM) is an approach which provides us information on the number

of species and their associated lifetimes. Current lifetime data analysis methods rely

on either time correlated single photon counting (TCSPC) or phasor analysis. These

methods require large numbers of photons to converge to the appropriate lifetimes

and do not determine how many species are responsible for those lifetimes. Here, we

propose a new method to analyze lifetime data based on BNPs that precisely takes

into account several experimental complexities. Using BNPs, we can not only identify

the most probable number of species but also their lifetimes with at least an order

magnitudes less data than competing methods (TCSPC or phasors). To evaluate our

method, we test it with both simulated and experimental data for one, two, three

and four species with both stationary and moving molecules. Also, we compare our

species estimate and lifetime determination with both TCSPC and phasor analysis

for different numbers of photons used in the analysis.

In conclusion, the basis of every spectroscopic method is the detection of photons.

Photon arrivals encode complex dynamical and chemical information and methods to

analyze such arrivals have the capability to reveal dynamical and chemical processes

on fast timescales. Here, we turn our attention to fluorescence lifetime imaging and

single spot fluorescence confocal microscopy where individual photon arrivals report

on dynamics and chemistry down to the single molecule level. The reason this could

not previously be achieved is because of the uncertainty in the number of chemical

species and numbers of molecules contributing for the signal (i.e., responsible for con-

tributing photons). That is, to learn dynamical or kinetic parameters (like diffusion

coefficients or lifetime) we need to be able to interpret which photon is reporting on

what process. For this reason, we abandon the parametric Bayesian paradigm and

use the nonparametric paradigm that allows us to flexibly explore and learn numbers
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of molecules and chemical reaction space. We demonstrate the power of BNPs over

traditional methods in single spot confocal and FLIM analysis in fluorescence lifetime

imaging.
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1. INTRODUCTION TO DATA ANALYSIS IN

BIOPHYSICS

Some parts of this section are coming from introduction part of below paper which
also appears in arXiv: https://arxiv.org/pdf/1606.00403.pdf, and published in Ad-
vances in Chemical Physics.
Meysam Tavakoli, J. Nicholas Taylor, Chun-Biu Li, Tamiki Komatsuzaki, Steve
Pressé*. (2017). Single Molecule Data Analysis: An Introduction. In Advances
in Chemical Physics (eds S.A. Rice and A.R. Dinner).
DOI:10.1002/9781119324560.ch4

The traditional route to model-building in chemistry and physics – a strategy by

which implausible hypotheses are eliminated to arrive at a quantitative framework

– has been successfully applied to the realm of biological physics [5]. For instance,

polymer models have predicted how DNA’s extension depends on externally applied

force [6] while thermodynamic models – with deep origin-of-life implications – explain

how lipid vesicles trapping long RNA molecules grow at the expense of neighboring

vesicles trapping shorter RNA segments in buffer [7].

Another modeling route is the atomistic – molecular dynamics (MD) – approach

in which one investigates complex systems by monitoring the evolution of their many

degrees of freedom. Novel algorithms along with machine architectures for high-speed

MD simulations of biological macromolecules have now even allowed small proteins

to be folded into their native state [8].

Both routes have important pros but they also have cons. For instance, poten-

tials in MD are constructed to reproduce behaviors in regimes for which they are

parametrized and cannot rigorously treat chemical reactions at the heart of biology.
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In general, the goal of experimental science is to relate data (i.e. observations)

into biological information (e.g., rate constants, lifetimes, and diffusion coefficients).

Unfortunately, the experimental methods are utilized in biological physics or similar

areas rarely and directly extract useful biological information [9]. Instead, the re-

searchers have to ”analyse” the data in such a way to extract biological information

from the data. Furthermore, it is not always clear how simple physics-based models

– while intuitive – should be adapted to treat complex biological data [10–12]. For

example, diffusion in complex environments – such as telomeres inside mammalian

cell nuclei [13]; bacterial chromosomal loci [14] and mRNA inside the bacterial cyto-

plasm [15]; and viruses inside infected cells [16] – has often been termed “anomalous”.

This is because “normal” diffusion models often fail in living systems where there is

molecular crowding [17–21], biomolecular interactions and binding [10, 22–26] and

active transport [27–31].

In the complement of above explanation, to the average of experimental physicists

and chemists, the area of data analysis is so complex that one simply refers data anal-

ysis to an expert or uses software packages to analyse the data [32]. The main issue

with this idea is the fact that data analysis experts and use of computer software

often have no real concept of the science behind the experiments [33,34]. The impor-

tant point here is to reveal that people can often effect a major transformation of the

amount of experimental information which can be acquired from a set of experiments

by direct incorporation of ”scientific concepts” into the analysis of the data [9, 35].

Drastic revolutions in the natural sciences have often been triggered by new ob-

servations and new observations, in turn, have presented important modeling chal-

lenges [36]. These challenges now include the heterogeneity of data collected at room

temperature or in living systems [10, 37, 38] and the noise that rattles nanoscale sys-

tems [39–43].
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Necessity is the mother of invention and these new challenges have motivated

statistical, data-driven, approaches to model-building in biophysics that explicitly

deal with various sources of uncertainty [44–52].

Statistical data-driven analysis methods are the focus of this dissertation. Statis-

tical approaches have been invaluable in generating detailed mechanistic insight into

realms previously inaccessible at every step along biology’s central dogma [53, 54].

They have also unveiled basic molecular mechanisms from noisy single molecule data

that have given rise to detailed energy landscape [55–61] and kinetic scheme [41,62–66]

models. Furthermore, one’s choice of analysis methods can deeply alter the interpre-

tation of experiment [67,68].

We focus this review on parametric as well as more recent information theoretic

and non-parametric statistical approaches to biophysical data analysis with an em-

phasis on single molecule applications. We review simpler parametric approaches

starting from an assumed model with unknown parameters. We later expand our

discussion to include information theoretic and non-parametric approaches that have

broadened our perspective beyond a strict “parametric” requirement that the model

be fully specified from the onset [10,11,47,69,70].

These more general methods have, under some assumptions, relaxed important

requirements to: know the fluorophore photophysics a priori to count single molecules

from superresolution imaging [45]; prespecify the number of states in the analysis of

single molecule fluorescence resonance energy transfer (smFRET) time traces [47];

or the number of diffusion components contributing to fluorescence correlation spec-

troscopy curves [10, 71, 72]; or the number of diffusion coefficients sampled by cyto-

plasmic proteins from single protein tracking trajectories [46]. In fact, these efforts

bring us closer towards a non-parametric treatment of the data.
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As so many model selection [73, 74] and statistical methods developed to tackle

problems in physics, and later biophysics, have been motivated by Shannon’s infor-

mation [75, 76], we take an information theoretic approach whenever helpful [77, 78].

Beyond model selection, topics we will discuss also include parameter estimation,

image deconvolution, outliers, change-point detection, clustering and state identifica-

tion.

In this review, we do not focus on how methods are implemented algorithmically.

Rather, we cite the appropriate literature as needed. Neither do we discuss the ex-

perimental methods from which the data are drawn [79]. Since our focus is on an

introduction to data analysis for single molecule, there are also many topics in data

analysis that we do not discuss at all or in much detail (p-values, type I and II errors,

point estimates, hypothesis testing, likelihood ratio tests, credible intervals, boot-

strapping, Kalman filtering, single particle tracking, localization, feature modeling,

aspects of density estimation, etc...).

Our review [79] is intended for anyone, from student to established researcher, who

wants to understand what can be accomplished with statistical approaches to mod-

eling and where the field of data analysis in biophysics is headed. For someone just

getting started, we place a special emphasis on the logic, strengths and shortcomings

of different data analysis frameworks with a focus on very recent approaches.
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2. SINGLE MOLECULE DATA ANALYSIS: AN

INTRODUCTION

Copyright: 2017 Tavakoli et al. This is an open access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.
This paper appears in arXiv: https://arxiv.org/pdf/1606.00403.pdf, and published
in Advances in Chemical Physics.
Meysam Tavakoli, J. Nicholas Taylor, Chun-Biu Li, Tamiki Komatsuzaki, Steve
Pressé*. (2017). Single Molecule Data Analysis: An Introduction. In Advances
in Chemical Physics (eds S.A. Rice and A.R. Dinner).
DOI:10.1002/9781119324560.ch4
Contribution: MT conceived, designed, and wrote the theory for sections ”Bayesian
Parametric Approaches”, ”Model Selection”, and ”Introduction to Bayesian Nonpara-
metrics”. SP conceived, designed, and wrote the theory for sections ”Final Thoughts
on Data Analysis”, and ”Information Theory”, and ”Information Theory as a Data
Analysis Tool”. JNT, CBL, and TK conceived, designed, and wrote the theory for
section ”Information Theory: State Identification and Clustering”. MT and SP ex-
panded and revised the write up. SP oversaw all aspects of the review.
This paper appears in arXiv: https://arxiv.org/pdf/1606.00403.pdf.

2.1 Author Summary

This chapter considers statistical data-driven analysis methods, and focuses on

parametric as well as more recent information theoretic and nonparametric statistical

approaches to biophysical data analysis with an emphasis on single-molecule applica-

tions. It then reviews simpler parametric approaches starting from an assumed model

with unknown parameters. Model selection criteria are widely used in biophysical data

analysis from image deconvolution to single-molecule step detection and continue to
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be developed by statisticians. The goal of successful model selection criteria is to pick

models whose complexity is penalized, in a principled fashion, to avoid overfitting and

that convincingly fit the data provided (the training set). The chapter summarizes

both information theoretic as well as Bayesian model selection criteria. Finally, the

chapter discusses efforts to use information theory in experimental design and ends

with some considerations on the broader applicability of information theory.

2.2 Frequentist and Bayesian Parametric Approaches: A Brief Review

2.2.1 Frequentist inference

Conceptually, the simplest data-driven approach is parametric and frequentist.

By “parametric”, we mean a model M is pre-specified and its parameters, θ =

{θ1, θ2, · · · , θK}, are unknown and to be determined from the data, D = {D1, D2, · · · , DN}.

By “frequentist”, we mean that model parameters are determined exclusively from

frequencies of repeated experiments by contrast to being informed by prior informa-

tion, which we will turn to shortly in our discussion of Bayesian methods.

Model parameters can, in principle, be determined by binning and subsequently

fitting histograms, such as histograms of photon arrivals. Fitting histograms is

avoided in data analysis in both frequentist and Bayesian methods.

In particular, to avoid selecting an arbitrary histogram bin size and having to

collect enough data to build a reliable histogram, model parameters are determined

by maximizing the probability, p(D|M), of observing the sequence of outcomes under

the assumptions of a model whose parameter values, θ, have yet to be determined.

This probability, p(D|M) = p(D|θ), is termed the likelihood which is a central object

in frequentist inference.
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For multiple independent data points, the likelihood is the product over each

independent observation

p(D|θ) =
∏
i

p(Di|θ). (2.1)

As an example of maximum likelihood estimation, suppose our goal is to estimate

a molecular motor’s turnover rate r from a single measurement of the number of

stepping events, n, in some time interval ∆T . We begin by pre-specifying a model:

the probability of observing n events is Poisson distributed. Under these assumptions,

our likelihood is

p(D = n|θ = r) =
(r∆T )n

n!
e−r∆T . (2.2)

Maximizing this likelihood with respect to r yields the estimator r̂ = n/∆T . That is,

it returns the most likely turnover rate under the assumptions of the model.

We can also write likelihoods to explicitly account for correlations in time in a

time series (a sequence of data points ordered in time) even for continuous time.

For instance, the likelihood – for a series of events occurring at times D = t =

{t1, t2, · · · , tN} in continuous time with possible time correlations – is

p(D = t|θ) = p(tN |tN−1, · · · , t1,θ) · · · p(t2|t1,θ)p(t1|θ) =
N∏
i=2

[p(ti|{tj}j<i,θ)]p(t1|θ).

(2.3)

Returning to our molecular motor example, we can also investigate how sharply

peaked our likelihood is around r = r̂ to give us an estimate for the variability around

r̂. A lower bound on the variance – with var(r) ≡ E(r2)−(E(r))2 where “≡” denotes

a definition, not an equality, and E denotes an expectation – evaluated at r̂ is given

by the inverse of the expectation of the likelihood’s curvature

var(r̂) ≥ 1

−E(∂2
r log p(n|r)) . (2.4)
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Intuitively, this shows that the variance is inversely proportional to the likelihood’s

sharpness at its maximum. This inequality is called the Cramér-Rao bound and the

denominator of the right hand side is called the Fisher information [80]. A formal

proof of this bound follows from the Cauchy-Schwarz inequality [80]. However, infor-

mally, the equality of the above bound can be understood as follows. Consider our

likelihood as a product of independent observations

p(D|r) =
∏
i

p(Di|r) ≡ eN log f(D|r) (2.5)

where we have defined f(D|r) through the expression above and f(D|r) is a function

that scales like N0. We then expand the likelihood around its maximum r = r∗

p(D|r) = eN log f(D|r) = eN log f(D|r∗)+N (r−r∗)
2!

2
∂2
r log f(D|r∗)+R (2.6)

where R is the remainder. For large enough N , a quadratic expansion of the like-

lihood, Eq. (2.6), is a sufficiently good approximation to the exact p(D|r). By this

same reasoning, the var(r) that we compute using the approximate p(D|r) is a good

approximation to the exact var(r). Only when the quadratic expansion is exact – and

R is zero – do we recover the lower Cramér-Rao bound upon computing the variance.

In fact, only in this limit do r∗ and r̂ coincide.

Maximum likelihood estimation: Applications to hidden and aggregated

Markov models

While our molecular motor example is simple and conceptual, this frequentist

approach, that we now discuss in more detail, has been used to learn kinetic rates of

protein folding [81] or protein conformational changes [82].
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As a more realistic example, we imagine a noisy two state trajectory with high

and low signal. Fig. (2.1a) is a cartoon of an experimental single molecule force

spectroscopy setup that generates the types of time traces – transitions of an RNA

hairpin between zipped, unzipped and an intermediate state – shown in Fig. (2.1b)

[68]. The noise level around the signal is high enough that the peaks of the intensity

histograms (shown in grey at the extreme right of Fig. (2.1b)) overlap. Thus, even in

the idealized case where there is no drift in the time trace over time, it is not possible

to draw straight lines through the time trace of Fig. (2.1b) in order to establish in what

state the system finds itself in at any point in time. In fact, looking for crossings of

horizontal lines as an indication of a state change would grossly overcount the number

of transitions between states.

microscopic states are Markov. There are unintended
consequences to these assumptions: since there are fewer
observables than there are microscopic states in AM models,
such models are under-determined. Even for very simple
problems, an infinite number of AM models can be consistent
with the data.20 Thus, relationships between some rates can be
specified (or rates assumed identical) to resolve this
indeterminacy.14

Furthermore, SM data is also noisy. For instance, in SM force
spectroscopy, it may not always be clear whether an apparent
excursion from the high force state to the low force state and
then back to the high force state is due to noise or due to an
actual conformational change in the single molecule. Hidden
Markov (HM) models have traditionally been used in SM
experiments to tackle this challenge.10 HM models start by
assuming (i) a model, for example, an AM model with all of its
built-in assumptions and (ii) statistics of the noise. Then, given
(i) and (ii), the HM model picks transitions between states
from the noisy time trace while simultaneously determining the
model parameters (for the case of AM models, the parameters
would be the rates of transition between states). To be clear,
HM and AM models are not mutually exclusive.19 Rather, we
can think of the hidden AM model as being a further
generalization of an AM model. Given multiple reasonable
models, Bayesian approaches have been developed to
discriminate between models.23

Our goal here is to build on this body of work and lift some
of its most stringent assumptions. In previous work, we
presented a method for tackling noisy SM data starting from a
very general non-Markov model class.35 The mathematics
which are relevant to this work are presented in a self-contained
way in the Appendix. Here our main focus is to apply our
method to single molecule force spectroscopy data and
interpret the results we obtain from our analysis.
Our method is called the non-Markov memory kernel

(NMMK) method because, as we will discuss, our dynamics are

governed by memory kernels which are not a priori assumed to
satisfy the Markov property. Our goal is to extract the memory
kernel from the data in a principled fashion from the force
spectroscopy data. We will do so in a two-step process. First, we
pick out transitions from the data in an objective, model-
independent way24,25 and obtain noisy dwell time histograms in
various states. Next, we extract from each histogram a memory
kernel. The memory kernels will turn out to be our model.
They contain a full description of the system dynamicsjust
like the topology and rates contain a full description of the
dynamics for AM models. To extract the memory kernel from
noisy histograms, we will adapt the method of image
reconstruction.26−29 In this way, we will show how we can let
the entire SM data set “speak for itself” by allowing it to select
for the best model. By not assuming a predetermined model,
we neither waste data nor bias our interpretation of the
transitions in the raw data. A Markov model will only emerge
from this analysis if it is warranted by the data; it is not assumed
a priori. Furthermore, the NMMK method provides a model
which is unique given the data, unlike AM models.
We will apply our method to SM force time traces obtained

from P5ab, a 22 base pair RNA hairpin taken from a
Tetrahymena thermophila ribozyme.33 From our analysis
emerges a more textured, complex dynamics than could
otherwise be obtained by forcing the data onto a simple
prespecified model. In particular, the analysis suggests that not
all transitions are Markov, implying the existence of an
intermediate state of the RNA hairpin. The NMMK method
presented here is general and could in principle be applied to
data originating from a wide variety of SM methods, as well as
bulk data. We will also discuss some improvements to the
method we suggest and some of its limitations and compare our
method to other approaches.

2. THEORETICAL METHODS
2.1. The Generalized Master Equation. In the NMMK

model, the dynamicsdescribed by a generalized master
equationare governed by a memory kernel κ(t)

∫ κ κ̇ = − − ≡ − *f t T T f t T t f t( ) d ( ) ( ) ( ) ( )
t

0 (1)

where f(t) denotes a dwell time distribution. This dwell time
distribution can be a marginal distribution in a particular state,
say A, or a conditional distribution for being in A for time t,
given that the system was previously in B for some time t′.
There is a memory kernel for each type of dwell time
distribution. AM models are a special type of model where the
kinetics are fully characterized by the set of marginal dwell time
distributions for each state and the set of conditional dwell time
distributions between all pairs of states.18 A renewal process is
fully described by its marginal dwell time distributions.
For simplicity, we will only consider stationary processes and

focus our attention on marginal dwell distributions. The
mathematics of the memory kernel formulation are developed
in some generality elsewhere.35 Here, we summarize important
highlights relevant to the RNA hairpin.
If f(t) is a single exponential, then the memory kernel, κ(t), is

a δ-function. That is, in such a state, there is no memory. This is
the signature of a Markov process. However, suppose f(t) is a
double exponential

= − + −f t a k t a k t( ) exp( ) exp( )1 1 2 2 (2)

Figure 1. Single molecule force spectroscopy is used to monitor RNA
hairpin zipping−unzipping transitions. This figure (adapted from ref
34) shows a SM force spectroscopy setup with a single P5ab RNA
hairpin33 as it undergoes transitions between a zipped and unzipped
state. The bottom bead in the diagram is held fixed by a micropipet.
The upper bead is held in an optical trap. In “passive mode
experiments”, the optical trap is held fixed. As the hairpin transitions
from the unzipped to the zipped state, it exerts force on the bead
which is converted into units of piconewtons (pN) using a worm-like-
chain model. See ref 34 for details.

The Journal of Physical Chemistry B Article
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the molecule spends most of its time at very well separated
discrete force levels. Usually these are a low force and a high
force level. One assumption made in invoking the SIC is that
the noise is uncorrelated in time. This assumption is not
realized in our data; the bead corner frequency, for instance, is
about 2 kHz (while the data collection frequency was 50 kHz).
However, there was little difference in the change points we
found by applying the SIC to the raw data versus the data
where the time trace was averaged down to remove this
correlation. This result was not surprising because the SIC is
known to underfit data (i.e., find fewer change points than are
actually present); see ref 24 for details.
As a check, we verified that all change points detected by

PELT coincide with change points detected using another
method, namely, an algorithm due to Kalafut.24

Next, we regroup the different force levels using a clustering
algorithm (k-means++) to automate the task of identifying
dwells as high or low force. The input to k-means++ is the
number of clusters desired. K-means++ relies on the
assumption that the traces do not substantially drift in time
(i.e., that the high force state, say, remains at approximately the
same value from the beginning to the end of the trace). This
assumption was reasonable for our time traces. Nonetheless we
also detrended our time traces as follows: (i) took the first 150
000 steps, (ii) took the lowest 10% of those values and found
their median, (iii) repeated the procedure on the last 150 000
steps and took the difference between those two numbers as an
estimate for the total drift, (iv) subtracted the linear drift, and
(v) subsequently removed any overall offset, so that the average
signal is zero.
We call the time traces to which we have applied k-means++

our “quantized time traces”. See Figure 4 for an example. We
can also use k-means++ to merge well separated states (such as
merge two distinct states into one) in order to verify whether
the aggregated state now exhibits conformational memory. We
add that both k-means++ and change-point algorithms depend
on the assumptions of noise statistics, though they are free from
the Markov assumption.

3. DISCUSSION: THE UNFOLDED (LOW FORCE) STATE
OF RNA SHOWS CONFORMATIONAL MEMORY

The SM force spectroscopy data we present was collected in
the passive mode, meaning the trap position is held fixed as the
P5ab RNA hairpin33 transitions between zipped and unzipped
states. See ref 34 for details. Multiple runs, all collected at 50
kHz over a period of 1 min, were carried out on different
physical RNA fibers and at different trap positions for each
fiber. Our focus here is on the majority of time traces collected
where the SM is populating both high force and low force states
for about equal time. Figures 5 and 6 are examples of such

traces which also illustrate just how noisy data can be.
Furthermore, some traces have larger noise amplitude than
others and some traces show excursions to an intermediate
state.
In addition, for simplicity, we only computed the memory

kernel for the marginal dwell time distributions in the low and
high force state. For a renewal process, these memory kernels
would be a complete description of the kinetics. While we
could, in principle, also compute the memory kernel for
conditional dwell distributions, we have not done so here where
our focus is, instead, on marginal distributions.

Figure 4. We use a change-point algorithm to find transitions in the
raw SM force spectroscopy data. Left: Typical time trace obtained by
SM force spectroscopy in the passive mode34 showing the transitions
between a zipped and unzipped state of an RNA hairpin. The high
force (i.e., high signal) state coincides with the zipped state of the
hairpin. The raw data are gray, and their associated histogrammed
signal intensity, also gray, shows substantial overlap between low and
high force states. We apply PELT,25 a change-point algorithm, and
detect the steps in the data shown in red. The histogrammed signal
intensity of this de-noised time trace still shows finite breadth. K-
means++ is used to cluster each dwell to its closest cluster. Here we
specified three clusters, since the red histogram has three well
separated peaks. The resulting quantized steps are shown in blue, and
the resulting signal histogram is, by construction, an infinitely sharp
peak.

Figure 5. Some RNA time traces show apparent excursions to an
intermediate force state. Data is shown in red. The data shown are
only a fraction of the full trace which is collected over a period of 1
min. The offset green curve is the quantized time trace where three
clusters were specified.

Figure 6. Some RNA time traces show no excursions to an
intermediate force state. As with Figure 5, red is the data and green
is the offset quantized time trace. This trace shows no obvious
excursions to an intermediate state. These excursions could be
obscured by the noise. When we cluster the force levels of the time
trace into three states, we recover a state very similar in magnitude to
the high force state. This implies that k-means++ is having difficulty
finding the low intermediate force state it had recovered in Figure 5.

The Journal of Physical Chemistry B Article
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a b

Fig. 2.1. Single molecule experiments often generate time traces.
The goal is to infer models of single molecule behavior from
these time traces. a) A cartoon of a single molecule force spectroscopy
setup probing transitions between zipped and unzipped states of an RNA
hairpin [68]. Change-point algorithms, that we later discuss, were used in
b) to determine when the signal suddenly changes (red line). The signal
indicates the changes in the conformation of the RNA hairpin obscured
by noise. Clustering algorithms, also discussed later, were then used to
regroup the ”denoised” intensity levels (red line) into distinct states (blue
line).
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Markov models:

Time series analysis is an important topic in single molecule inference as is treating

noise explicitly on a pathwise basis in single particle tracking data [83,84] or in two-

level time traces [41]. Here we will not deal directly with single particle tracking

problems [85] nor the extensive literature on Kalman filtering in time series analysis

[86].

Rather, we immediately focus on Hidden Markov models, HMMs, commonly used

in time series analysis that deal directly with the types of time traces shown in

Fig. (2.1b). Before we tackle noisy time traces, we discuss idealized traces with no

noise (such as thermal noise that rattles molecules, effective noise from unresolved

motion on fast timescales as well as measurement noise). Our goal here is to ex-

tract transition rates between states observable in our noiseless time trace without

histogramming data.

Markov models start by assuming that the system can occupy a total of K states

and that transitions between these states are fully described by a transition matrix,

A, whose matrix elements, aij, coincide with the transition probability of state si to

state sj, aij = p(sj|si). Given idealized (noiseless) time traces for now, our goal is to

find the model parameters, θ, which consist of all transition matrix elements as well

as all initial state probabilities. That is, p(sj|si) for all pairs of states i and j and

p(si) for all i.

To obtain these parameters, we define a likelihood, for each trajectory, of having

observed a definite state sequence D = {s1, s2, ..., sN} – where {s1, s2, ..., sN} here are

numbers that serve as labels for states – in discrete time

L(θ|D) ≡ p(s1, s2, ..., sN |θ) =
N∏
i=2

[p(si|si−1)] p(s1). (2.7)
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We have written the transition probability from time t to t + δt as p(st+δt|st) where

st is the state the system finds itself in at time t. We subsequently maximize these

likelihoods with respect to all unknown parameters, θ. We add that we need more

than one trajectory to estimate the initial state probabilities.

Finally, while the likelihood is the probability of the data given the model, the

likelihood is typically maximized with respect to its parameters and its parameters

are treated as its variables. For this reason we write L(θ|D) not L(D|θ).

Hidden Markov models:

While Eq. (2.7) is used for theoretical illustrations [49,87,88], it must be augmented

to treat noise for real data analysis applications. These resulting models, HMMs

[41, 89, 90], have been broadly used in single molecule analysis including smFRET

studies [58, 91–95] and force spectroscopy [82].

In HMMs, the state of the signal in time, termed the state of the “latent” or

hidden variable, is provided indirectly through a sequence of observations D = y =

{y1, y2, ..., yN}. Often this relation is captured by the probability of making the

observation yi given that the system is in state si, p(yi|si).

We can use a distribution over observations of the form p(yi|si) under the assump-

tion that the noise is uncorrelated in time and that the observable only depends on the

state of the underlying system at that time. A Gaussian form for p(yi|si) – following

from the central limit theorem or as an approximation to the Poisson distribution –

is common [41,91].

The HMM model parameters, θ, now include, as before, all transition matrix

elements as well as all initial state probabilities. In addition, θ also includes the

parameters used to describe p(yi|si). For example, for a Gaussian distribution over
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observations, where µk and σk designate the mean and variance of the signal for the

system in state k at time point i, we have

p(yi|si = k) ∝ e
− (yi−µk)2

2σ2
k (2.8)

where the additional parameters include the means and variances for each state. For

this reason, to be clear, we may have chosen to make our probability over observations

depend explicitly on θ, p(yi|si,θ).

In discrete time, where i denotes the time index, the likelihood used for HMMs is

L(θ|D) = p(y|θ) =
∑
s

p(y, s|θ) =
∑
s

N∏
i=2

[p(yi|si)p(si|si−1)] p(y1|s1)p(s1) (2.9)

where s = {s1, · · · , sN}. Unlike in Eq. (2.7), in Eq. (2.9), the si are bolded as they are

variables not numbers. We sum over these state variables since we are not, in general,

interested in knowing the full distribution p(y, s|θ). Rather we are only interested in

obtaining the marginal likelihood p(y|θ) describing the probability of the observation

given the model irrespective of what state the system occupied at each point in time.

Put differently, while the system only occupies a definite state at any given time

point, we are unaware of what state the system is in. And, for this reason, we must

sum over all possibilities.

An alternative way to represent the HMM is to say

s1 ∼ p(s1)

si|si−1 ∼ p(si|si−1)

yi|si, θ ∼ p(yi|si,θ). (2.10)
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That is s1 – a number, i.e. a realization of s1 – is sampled from p(s1). Then

for any i > 1, si|si−1 – a realization of si conditioned on si−1 – is sampled from the

conditional p(si|si−1) while its observation yi|si, θ is sampled from p(yi|si,θ).

The goal is now to maximize the likelihood, Eq. (2.9), over each parameter θ.

There is a broad literature describing multiple strategies available to numerically

evaluate and maximize the likelihood functions generated from HMMs (as well as

AMMs described in the next section) [96] including the Viterbi algorithm [91,97], and,

most often used, forward-backward algorithms and expectation maximization [89,98].

Aggregated Markov models:

Aggregated Markov models (AMMs) [99] can be thought of as a special case of HMMs

in which many states of the latent variable have identical output.

AMMs were popularized in biophysics in the analysis of single ion-channel patch

clamp experiments [99–102] since, often, two or more distinct inter-converting molec-

ular states of an ion channel may not be experimentally distinguishable. For example,

both states may carry current.

Microscopic states that cannot be distinguished experimentally form an “aggre-

gate of states”. In its simplest formulation, AMMs describe transitions between two

aggregates (such as the open and closed aggregates of states). Each aggregate is com-

posed of multiple, possible interconverting, microscopic states that cannot be directly

observed. Instead, each aggregate of states belongs to an “observability class”. For

instance, one can say that a particular microscopic state belongs to the “open observ-

ability class” for an ion channel or the “dark observability class” for a fluorophore.

AMMs are relevant beyond ion channels. In smFRET, a low FRET state (the

“low fluorescence observability class”) could arise from photophysical properties of

the fluorophores or an internal state of the labeled protein [92]. In fact, most re-



14

cently, AMMs have been used to address the single molecule counting problem using

superresolution imaging data [45].

For simplicity, consider a rate matrix, Q, containing only two observability classes,

1 and 2,

Q =

Q11 Q12

Q21 Q22

 . (2.11)

The submatrices Qij are populated by matrix elements, indexed k` say, describing

the transition rates from state k in observability class i to state ` in observability

class j.

The logic from this point forward is identical to the logic of the previous section on

HMMs. We must write down a likelihood and subsequently maximize this likelihood

with respect to the model parameters. Ignoring noise, the likelihood of observing the

sequence of observability classes D = {a1, a2, ..., aN} in continuous time is [103]

L(θ|D) = 1T ·
N−1∏
j=1

Gajaj+1
(tj) · πa1 (2.12)

where the ith element of the column vector, πa1 , denotes the initial probability of

being in state i from the a1 observability class and where

Gab(tj) = Qabe
Qaatj . (2.13)

In other words, k`th element of Gab(tj) is the probability that you enter from the kth

state of observability class a, dwell there for time tj and subsequently transition to

the `th state of observability class b. The row vector, 1T , in Eq. (2.12) is used as a

mathematical device to sum over all final microscopic states of the observability class,

aN , observed at the last time point. We do so because we only know in which final



15

observability class we are at the N th measurement, not which microscopic state of

the system we are in.

The parameters, θ, here include transitions between all microscopic states across

all observability classes as well as initial probabilities for each state within each ob-

servability class. Since the number of parameters exceeds the number of observability

classes in AMMs, AMMs often yield underdetermined problems [104].

The AMM treatment above can be generalized to include noise or treated in

discrete time [105,106]. Both AMMs and HMMs can also be generalized to include the

possibility of missed transitions [45,107]. Missed transitions arise in real applications

when a system in some state (in HMMs) or observability class (in AMMs), say k,

undergoes rapid transitions – for example rapid as compared to td, the camera’s data

acquisition time – to another state, say `. Then the real transition probability in state

k must account for all possible missed transitions to ` and recoveries back to k that

could have occurred within td. We account for these missed transitions be resuming

over all possible events that could have occurred within the interval td. The technical

details are described in Refs. [45,107].

2.2.2 Bayesian inference

Frequentist inference yields model parameter estimates – like r̂ we saw earlier

which are called “point estimates” – and error bounds. Just as we’ve treated the

data in the previous section as random variables – that is, realizations of an experi-

ment – and model parameters as fixed quantities to be determined, Bayesian analysis

treats both the data as well as model parameters as random variables [108]. For the

same amount of data that is used in frequentist inference, Bayesian methods return

parameter distributions whose usefulness is contingent on the choice of likelihood and

prior, which we describe shortly.
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Bayesian methods are now widely used across biophysical data analysis [46, 47,

109–115]. For instance, they have been used to infer models describing how mRNA-

protein complexes transition between active transport and Brownian motion [110].

Of central importance in Bayesian analysis is the posterior, p(M|D): the condi-

tional probability over models M given observations, D, i.e. the probability of the

model after observations have been made. Since there may be many (choices of)

models, we have bolded the model variable, M. By contrast, the probability over M

before observations are made, p(M), is called a prior.

We construct the posterior from Bayes’ rule (or theorem) using the likelihood and

the prior as inputs. That is, we set

p(D,M) = p(M,D) (2.14)

p(M|D)p(D) = p(D|M)p(M)

p(M|D) =
p(D|M)p(M)

p(D)

where p(D) is obtained by normalization from

p(D) =

∫
dMp(D,M) =

∫
dMp(D|M)p(M) (2.15)

and p(D,M) is called the joint probability of the model and the data. Typically,

in parametric Bayesian inference, when there is a single model, the integration in

Eq. (2.15) is meant as an integration over the model’s parameters. However there are

cases where many parametric models M are considered and the integration is inter-

preted as a sum over models (if the models are discrete) and a subsequent integration

over their associated parameters (if the parameters are continuous).



17

Furthermore, we can marginalize (integrate over) posteriors to describe the pos-

terior probability of a particular model, say M`, from the broader set of models M

irrespective of its associated parameter values (θ`)

p(M`|D) ∝
∫
dθ`p(D|M`,θ`)p(θ`|M`)p(M`). (2.16)

Here we make it a point to distinguish a model from its parameters, while earlier M

re-grouped both models and their parameters. Furthermore, to be clear, we note that

the following notations are equivalent

∫
dθ` ↔

∫
dKθ ↔

∫ K∏
k=1

dkθ (2.17)

where K designates the total number of parameters, θ. The quantity p(M`|D) can

then be used to compare different models head-to-head. For instance, in single particle

tracking, we may be interested in computing the posterior probability that a particle’s

mean square displacement arises from one of many models of transport (Brownian

motion versus directed motion) irrespective of any value assigned to parameters such

as the diffusion coefficient [111].

Priors

As the number of observations, N , grows, the likelihood determines the shape of

the posterior and the choice of likelihood becomes critical as we will illustrate shortly

in Fig. (2.2). By the central limit theorem, for sufficiently independent observations,

the likelihood function’s breadth will narrow with respect to its mean as N−1/2.

Provided abundant data, more attention should be focused on selecting an appropriate

likelihood function than selecting a prior.



18

However, if provided with insufficient data, our choice of prior may deeply influ-

ence the posterior. This is perhaps best illustrated with the extreme example of the

canonical distribution in classical statistical physics where posterior distributions –

over Avogadro’s number of particle positions and velocities – are constructed from

just one data point (total average energy with vanishingly small error) [49,116–118].

That is, the error bar is below the resolution limit of the experiment on a macroscopic

system.

While the situation is not quite as extreme in biophysics, data may still be quite

limited. For instance, single particle (protein) tracks may be short because protein

labels photobleach or particles move in and out of focus [46] or the kinetics into

and out of intermediate states may be difficult to quantify in single molecule force

spectroscopy for rarely visited conformational states [68].

A good choice of prior is therefore also important. There are two types of priors:

informative and uninformative [108,119].

Uninformative priors

The simplest uninformative prior – inspired from Laplace’s principle of insufficient

reason when the set of hypotheses are complete and mutually exclusive, such as with

dice rolls – is the flat, uniform, distribution. Under the assumption that p(M) is

constant, or flat, over some range, the posterior and likelihood are directly related

p(M|D) ∝ p(D|M)p(M) ∝ p(D|M). (2.18)

That is, their dependence on M is identical. However, a flat prior over a model

parameter, say θ, is not quite as uninformative as it may appear [108] as, a coordi-

nate transformation to the alternate variable, say eθ, reveals that we suddenly know
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more about the random variable eθ than we did about θ since its distribution is no

longer flat. Conversely, if eθ is uniform on the interval [0, 1], then θ becomes more

concentrated at the upper boundary, 1.

The problem stems from the fact that, under coordinate transformation, if the

variable θ’s range is from [0, 1], then eθ’s range is from [1, e]. To resolve this problem,

we can use the Jeffreys prior [120–122] which is invariant under reparametrization of

a continuous variable.

The Jeffreys prior, as well as other uninformative priors, are widely used tools

across the biophysical literature [123–126]. As we will discuss shortly – as well as

in detail in the last section – the Shannon entropy itself can be thought of as an

uninformative prior (technically the logarithm of a prior) over probability distribu-

tions [49,127–129]. This prior is used in the analysis of data originating from a number

of techniques including fluorescence correlation spectroscopy (FCS) [10,71,72], Elec-

tron spin resonance (ESR) [130], fluorescence resonance energy transfer (FRET) and

bulk fluorescence [131–133].

Informative priors

One choice of informative prior is suggested by Bayes’ theorem that is used to

update priors to posteriors. Briefly, we see that when additional independent data

are incorporated into a posterior, the new posterior p(M|D2, D1) is obtained from the

old posterior, p(M|D1), and the likelihood as follows

p(M|D2, D1) ∝ p(D2|M)p(M|D1). (2.19)

In this way, the old posterior, p(M|D1), plays the role of the prior for the new

posterior, p(M|D2, D1). If we ask – on the basis of mathematical simplicity – that
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all future posteriors adopt the same mathematical form, then our choice of prior is

settled: this prior – called a conjugate prior – must yield a posterior of the same

mathematical form as the prior when multiplied by its corresponding likelihood. The

likelihood, in turn, is dictated by the choice of experiment.

Priors, say p(M|γ), may depend on additional parameters, γ, called hyperparam-

eters distinct from the model parameters θ. These hyperparameters, in turn, can

also be distributed, p(γ|η), thereby establishing a parameter hierarchy. For instance,

an observable (say the FRET intensity) can depend on the state of a protein which

depends on transition rates to that state (a model parameter) which, in turn, depends

on prior parameters determining how transition rates are assumed to be a priori dis-

tributed (hyperparameter). We will see examples of such hierarchies in the context

of later discussions on infinite Hidden Markov Models.

As a final note, before turning to an example of conjugacy, to avoid committing

to specific arbitrary values for hyperparameters we may assume they are distributed

according to a (hyper)prior and integrate over the hyperparameters in order to obtain

p(M|D) from p(M|D, γ, η, ...).

Now, we illustrate the concept of conjugacy by returning to our earlier molecular

motor example. The prior conjugate to the Poisson distribution with parameter λ –

Eq. (2.2) where λ is r∆T – is the Gamma distribution

Gamma(α, β) = p(λ = r∆T |α, β) =
βα

Γ(α)
λα−1e−βλ (2.20)

which contains two hyperparameters, α and β. After a single observation – of n1

events in time ∆T – the posterior is

p(λ|N,α, β) = Gamma(n1 + α, 1 + β) (2.21)
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while, after N independent measurements, with D = {n1, · · ·nN}, we have

p(λ|D, α, β) = Gamma

(
N∑
i=1

ni + α,N + β

)
. (2.22)

Fig. (2.2) illustrates how the posterior is dominated by the likelihood provided

sufficient data and how an arbitrary choice for the hyperparameters becomes less

important for large enough N .
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Fig. 2.2. The posterior probability sharpens as more data are
accumulated. Here we sampled data according to a Poisson distribution
with λ = 5 (designated by the dotted line). Our samples were D =
{2, 8, 5, 3, 5, 2, 5, 10, 6, 4}. We plotted the prior (Eq. (2.20) with α = 2,
β = 1/7) and the resulting posterior after collecting N = 1, then N = 5
and N = 10 points.

Single molecule photobleaching provides yet another illustrative example [134].

Here we consider the probability that a molecule has an inactive fluorophore (one

that never turns on) which, in itself, is a problem towards achieving quantitative

superresolution imaging [135,136]. We define θ as the probability that a fluorophore

is active (and detected). We, correspondingly, let 1 − θ be the probability that the
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fluorophore never turns on. The probability that y of n total molecules in a complex

turns on is then binomially distributed

p(y|θ) =
n!

(n− y)! y!
θy(1− θ)n−y. (2.23)

Over multiple measurements (multiple complexes each having n total molecules), y,

we obtain the following likelihood

p(y|θ) ∝
∏
i

n!

(n− yi)! yi!
θyi(1− θ)n−yi . (2.24)

One choice for p(θ) is the Beta distribution, a conjugate prior to the binomial,

p(θ) =
(a+ b− 1)!

(a− 1)! (b− 1)!
θa−1(1− θ)b−1. (2.25)

By construction (i.e. by conjugacy), our posterior now takes the form of the Beta

distribution

p(θ|y) ∝ θ
∑
i yi+a−1(1− θ)

∑
i(n−yi)+b−1. (2.26)

Given these data, the estimated mean, θ̂, obtained from the posterior is now:

θ̂ =

∑
i yi + a∑

i n+ a+ b
=

∑
i yi∑

i n+ a+ b
+

a∑
i n+ a+ b

(2.27)

which is, perhaps unsurprisingly, a weighted sum over the prior expectation and the

actual data.

Conjugate priors do have obvious mathematical appeal and yield analytically

tractable forms for posteriors but they are more restrictive. Numerical methods to

sample posteriors – including Gibbs sampling and related Markov chain Monte Carlo

methods [137,138] – continue to be used [134] and developed [139,140] for biophysical
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problems and have somewhat reduced the historical analytical advantage of conjugate

priors. However the advantage conferred by the tractability of conjugate priors has

turned out to be major advantage for more complex inference problems – such as

those involving Dirichlet processes – that we will discuss later.

2.3 Information Theory as a Data Analysis Tool

2.3.1 Information theory: Introduction to key quantities

In 1948 Shannon [75] formulated a quantitative measure of uncertainty of a dis-

tribution, p(x), later called the Shannon entropy

H(x) = −
K∑
i=1

p(xi) log p(xi) (2.28)

where xi, the observable, takes on K discrete numerical values {x1, x2, · · · , xK} such

as the intensity levels observed from a single molecule time trace. Often, −H(x), is

called the Shannon information.

The Shannon entropy is an exact, non-perturbative, formula whose mathematical

form, Eq. (2.28), has also been argued using the large sample limit of the multinomial

distribution and Poisson distribution (as we will show later) [49]. However, Shannon

made no such approximations and derived H(x) from a simple set of axioms that a

reasonable measure of uncertainty must satisfy [75].

The Shannon entropy behaves as we expect an uncertainty to behave. That is,

informally, when all probabilities are uniform, p(xi) = 1/K for any xi, then H(x) is at

its maximum, H(x) = log K. In fact, as K increases, so does the uncertainty, again

as we would expect. Conversely, when all probabilities, save one, are zero, then H(x)

is at its minimum, H(x) = 0. On a more technical note, Shannon also stipulated that

the uncertainty of a probability distribution must satisfy the “composition property”
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which quantifies how uncertainties should add if outcomes, indexed i, are arbitrarily

regrouped [49,75].

Later formalizations due to Shore and Johnson (SJ) [141], have independently

arrived at precisely the same form as H(x) (or any function monotonic with H(x)).

SJ’s work is closer in spirit to Bayesian methods [127, 128, 142–146]. We refer the

reader to the last section of this review for a simplified version of SJ’s derivation.

While we have so far dealt with distributions depending only on a single variable,

the Shannon entropy can also deal with joint probability distributions as follows

H(x, y) = −
Kx∑
i=1

Ky∑
j=1

p(xi, yj) log p(xi, yj). (2.29)

If both observables are statistically independent – that is, if p(xi, yj) = p(xi)p(yj) –

then H(x, y) is the sum of the Shannon entropy of each observable, i.e. H(x, y) =

−∑i,j p(xi)p(yj) log p(xi)p(yj) = −∑i p(xi) log p(xi)−
∑

j p(yj) log p(yj) = H(x)+

H(y). This property is called “additivity”.

On the other hand, if the two observables are statistically dependent – that is, if

p(xi, yj) 6= p(xi)p(yj) – then we can decompose the Shannon entropy as follows

H(x, y) = −
∑
i,j

p(xi, yj) log (p(xi|yj)p(yj)) = H(y) +H(x|y) (2.30)

where p(xi|yj) = p(xi, yj)/p(yj) is the conditional probability and in which we have

H(x|y) ≡ −∑i,j p(xi, yj) log p(xi|yj). H(x|y) is called the conditional entropy that

measures the uncertainty in knowing the outcome of x if the value of y is known. In

fact, this interpretation follows from Eq. (2.30): the total uncertainty in predicting

the outcomes of both x and y, H(x, y), follows from the uncertainty to predict y,

given by H(y), and the uncertainty to predict x after y is known, H(x|y).
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Fig. (2.3) illustrates the relationship between these entropies and, in particular,

provides a conceptual picture for the relation H(x, y) = H(y) + H(x|y) = H(x) +

H(y|x).

The Venn diagram provides us with another important quantity, the mutual infor-

mation I(x, y), which corresponds to the intersecting area between H(x) and H(y).

From Fig. (2.3), we can read out the following form of I(x, y) and its relation to other

entropies

I(x, y) = H(x) +H(y)−H(x, y)

= H(y)−H(y|x) = H(x)−H(x|y)

=
∑
i,j

p(xi, yj) log

(
p(xi, yj)

p(xi)p(yj)

)
. (2.31)

The second line of Eq. (2.31) provides an intuitive meaning for I(x, y) as the amount

of uncertainty reduction that knowledge of either observable provides about the other.

In other words, it is interpreted as the information shared by the two observables x

and y. From the last line of Eq. (2.31), we see that I(x, y) = 0 if and only if x and y

are statistically independent, p(xi, yj) = p(xi)p(yj), for all xi and yj.
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H(x)
H(y)

I(x,y)

H(x,y)H(y|x)H(x|y)

Fig. 2.3. Venn diagram depicting different information quantities
and their relationship. The value of each entropy is represented by
the enclosed area of different regions. H(x) and H(y) are both complete
circles.

Now that we have defined the mutual information, we define the Kullback-Leibler

(KL) divergence (or relative entropy) – a generalization of the mutual information –

defined as [147,148]

DKL[p(x)‖p(y)] =
∑
i,j

p(xi) log
p(xi)

p(yj)
. (2.32)

In Eq. (2.32), the probability distributions are distributions over single variables for

simplicity only. The KL divergence vanishes if and only if p(x) = p(y) but otherwise

DKL[p(x)‖p(y)] ≥ 0. We will see this quantity appear in our model selection section

interpreted as a measure of dissimilarity in information content between p(x) and

p(y). It is also interpreted as a pseudo-distance between p(x) and p(y) [149, 150]

though it is not generally symmetric with respect to its arguments, DKL[p(x)‖p(y)] 6=

DKL[p(y)‖p(x)].

Finally, we note that the Shannon entropy defined as a measure of uncertainty

is different from the entropy discussed in thermodynamics and statistical mechanics.
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Confounding these concepts has lead to important misconceptions [151] and we discuss

important differences between the Shannon and thermodynamic entropy in the last

section of this review.

2.3.2 Information theory in model inference

Feynman often remarked that Young’s double-slit experiment and its conceptual

implications captured the essence of all of quantum mechanics [152]. The following

thought experiment captures key aspects of information theory [142,153].

An information theorist once noted that a third of kangaroos have blue eyes (B)

and a quarter are left-handed (L). Thus three quarters are right-handed (R) and

two-thirds are not blue-eyed (N).

The information theorist was then asked to compute the joint probability that

kangaroos simultaneously be blue-eyed and right-handed (pBR). But, this is an un-

derdetermined problem. In fact, we have four unknown probabilities (pBR, pBL, pNR,

pNL) but only three constraints (i.e. constraints on blue eyes, left-handedness but

also a constraint on the normalization of probabilities). Thus, from these limited

constraints and some algebra, we find that pBR can take on any value from 1/12 to

1/3. Even for this simple example, there are an infinite number of acceptable models

(i.e. probabilities) lying within this range.

To resolve this apparent ambiguity, the information theorist recommended that

zero correlations between eye color and handedness be assumed a priori since none

are otherwise provided by the data. The only model that now satisfies this condition,

and falls within the previous range, is pBR = pBpR = (1/3)× (3/4) = 1/4.

Interestingly, this solution could equally well have been obtained by minimizing the

Shannon information introduced in the previous section – or equivalently maximizing

the Shannon entropy (H = −∑i pi log pi) – under the three constraints of the problem
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imposed using Lagrange multipliers where the index i labels each discrete outcome.

This short illustration highlights many important ideas relevant to biophysical data

analysis that we will use later and touches upon this critical point: information

theory provides a principled recipe for incorporating data – even absent data – in

model inference.

For our kangaroo example, information theory provides a recipe by which all data

– both present and absent – contributed to the model-building process. In fact, by

saying nothing about the structure of correlations between eye-color and handedness

– what we are calling “absent data” – we say something: all but one value for pBR

would have imposed correlations between the model variables.

In our kangaroo example, unmeasured correlations were set to zero as a prior

assumption to obtain pBR = 1/4. This assumption on absent data is built into the

process of model inference by maximizing the Shannon entropy (a process called

MaxEnt). The details of this reasoning follow from the SJ axioms discussed in the

last section of the review. But informally, for now, we say that MaxEnt only inserts

correlations that are contained in the data (through the constraints) and assumes no

other.

While the kangaroo example is conceptual, here is an example relevant to bio-

physics: master equations – the evolution equations describing the dynamics of state

occupation probabilities – also rigorously follow from maximizing the Shannon en-

tropy over single molecule trajectory probabilities by assuming structure of absent

data. While the mathematics are detailed elsewhere [87] and reviewed in a broader

context in Ref. [49], the key idea is simple. When we write a master equation with

rates (transition probabilities per unit time) from state to state, we presuppose that

the rates themselves – that is, conditional probabilities of hopping from one state to

another – are time-independent. In order for MaxEnt to arrive at time-independent
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rates, it must therefore have information on future, as of yet, unobserved transitions

which should exhibit no time dependence.

Once these basic constraints on the absent (future) data are incorporated in Max-

Ent, then master equations follow as a natural consequence [87]. The master equations

still only follow if the data provided on transition probabilities has no spatial depen-

dence and thus the system is, at least locally, well-stirred. Otherwise, we may need a

more detailed model with, for example, spatially dependent forces [11].

As we will discuss, the structure imposed on absent data [10] is related to the

concept of priors in Bayesian analysis [154] and model complexity penalties [73, 74]

which we will review in later sections.

2.3.3 Maximum Entropy and Bayesian inference

Maximum entropy (MaxEnt) is a recipe to infer probability distributions from

the data. The probability distributions inferred coincide with the maximum of an

objective function.

Historically, in its simplest realization, Jaynes [49, 116, 117, 155] used Shannon’s

entropy to infer the most probable distribution of equilibrium classical degrees of free-

dom (positions and momenta). He did so by asking which distribution, {pi}, max-

imized H given constraints (imposed using Lagrange multipliers) on normalization∑
i pi = 1 and the average energy. Mathematically, Jaynes maximized the following

objective function with respect to the {pi} and the Lagrange multipliers

−
∑
i

pi log pi −
∑
j

λj

(∑
i

aijpi − āj
)

(2.33)

where the λj are the Lagrange multipliers for the jth constraint, and āj are the

measured average of the quantity aj which, for outcome i, takes on the value aij. For
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example, the average dice roll would be constrained as: (
∑6

i=1 ipi−2.7) assuming the

average roll happens to be 2.7. Furthermore, if the jth constraint is normalization,

then it would be imposed by setting aij = āj = 1 for that constraint.

In fact, going back to our kangaroo example, we saw that acceptable values for

pBR that satisfied all 3 constraints were 1/12 to 1/3. We could have assumed that all

values in this range were equally acceptable. However, by enforcing no correlations

where none were warranted by the data, we arrived at 1/4 from MaxEnt.

To quantify just how good or bad 1/4 is, we need a posterior distribution over

models, {pi}, for the given data. In other words, we need to reconcile MaxEnt and

Bayesian inference by relating the entropy to a Bayesian prior.

To do so, we first note that maximizing the constrained Shannon entropy, Eq. (2.33),

is analogous to maximizing a posterior over the {pi}: H is a logarithm of a prior over

the {pi} while the constraints are the logarithm of the likelihood. The same restric-

tions that apply to selecting a likelihood in frequentist and Bayesian analysis hold for

selecting its logarithm (i.e. the constraints in MaxEnt). Thus, just as Bayesian infer-

ence generates distributions over parameters, {pi}, MaxEnt returns point estimates

(the maxima, {p∗i }, of the constrained Shannon entropy).

As we will see, the constraints that we imposed on Eq. (2.33) are highly unusual

and equivalent to delta-function likelihoods infinitely sharply peaked at their mean

value.

To quantitatively relate MaxEnt to Bayesian inference, we take a frequentist route

[128,142] and consider frequencies of the outcomes of an experiment by counting the

number of events collected in the ith bin, ni, assuming such independent events occur

with probability µi

P (n|µ) =
∏
i

µnii e
−µi

ni!
∼ e

∑
i(ni−µi)e−

∑
i ni log(ni/µi) (2.34)
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where, in the last step, we have invoked Stirling’s approximation valid when all ni are

large. We now define N as the total number of events,
∑

i ni, and define probabilities

pi ≡ ni/N and qi ≡ µi/N [49]. Then

P (p|q) ∼ eN
∑
i(pi−qi)e−N

∑
i pi log(pi/qi). (2.35)

By imposing normalization on both pi and qi, we have

P (p |q) ≡ P

(
p

∣∣∣∣∣q,∑
i

pi =
∑
i

qi = 1

)

=
e−N

∑
i pi log(pi/qi)δ∑

i pi,1
δ∑

i qi,1

Z

=
eNHδ∑

i pi,1
δ∑

i qi,1

Z
(2.36)

where Z = Z(q) is a normalization factor. That is, it is an integral of the numerator

of Eq. (2.36) over each pi from 0 to 1. In addition, H = −∑i pi log (pi/qi) and δx,y,

is the Kronecker delta (i.e. is zero unless x=y in which case it is one).

For our simple kangaroo example, we can now compute the posterior probability

over the model, p, given constraints from the data, D by multiplying the prior,

Eq. (2.36), with hard (Kronecker delta) constraints as our likelihood. This yields

P (p|D,q) =
δp1+p2,1/3δp3+p4,1/4 × P (p |q)

Z (2.37)

and Z is again a normalization and we have conveniently re-indexed the probabil-

ities with numbers rather than letters. Here P (p|D,q) is a posterior, P(p|q) is a

prior (which we have found depends on the Shannon entropy) and q are hyperpa-

rameters. Intuitively, we can understand q as being the values to which p defaults
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when we maximize the entropy in the absence of constraints. That is, maximizing

−∑i pi log(pi/qi) returns pi ∝ qi.

In fact, P (p|D,q) describes the probability over all allowed models. Furthermore,

given identical constraints from the data – i.e. the same likelihood – and given that

the normalization, Z, does not depend on p, the ratio of posterior probabilities then

only depends on the Shannon entropy of both models

P (p|D,q)

P (p′|D,q)
= eN (−H(p′|q)+H(p|q)). (2.38)

The factor of N quantifies the strength of our prior assumptions in much the same

way that the hyperparameters α and β of Eq. (2.20) set properties of the prior. In

other words, informally N tells us how many “data points” our prior knowledge is

worth.

Now, we can evaluate, for the kangaroo example, a ratio of posteriors for the

optimal MaxEnt model (p1 = 1/4, p2 = 1/12, p3 = 1/2, p4 = 1/6) and a variant

P (p1 = 1/4, p2 = 1/12, p3 = 1/2, p4 = 1/6|D)

P (p1 = 1/4− ε, p2 = 1/12 + ε, p3 = 1/2 + ε, p4 = 1/6− ε|D)
= eN (0.19) (2.39)

where we have assumed equal (uniform) qi’s and ε = 1/8.

While the maximum of the posterior, Eq. (2.37), is independent of N for the

kangaroo example – because of the artificiality of delta-function constraints – the

shape of the posterior and thus the credible interval (the Bayesian analogue of the

frequentist confidence interval) – certainly depend on N [127,144].

The MaxEnt recipe is thus equivalent to maximizing a posterior over a proba-

bility distribution. The prior in the MaxEnt prescription is set to the entropy for

fundamental reasons described in the last section of the review which also details the

repercussions of rejecting the principle of MaxEnt.
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MaxEnt does not assume a parametric form for the probability distribution. Also,

the model parameters – that is, each individual pi – can be very large for probability

distributions discretized on a very fine grid.

2.3.4 Applications of MaxEnt: Deconvolution methods

Often, to determine how many exponential components contribute to a decay

process, a decay signal is first fit to a single exponential and the resulting goodness-

of-fit is quantified. If the fit is deemed unsatisfactory, then an additional decay

component is introduced and new parameters (two exponential decay constants and

the relative weights for each exponential in this mixture model) are determined. As

described, this fitting procedure cannot be terminated in a principled way. That is,

an increasingly large number of exponentials will always improve the fit [145].

MaxEnt deconvolution methods are specifically tailored to tackle this routine prob-

lem of data analysis. To give a concrete example, imagine a decay signal, s(t), which

is related to the distribution of decay rates, p(r), through the following relation

s(t) =

∫ ∞
0

dre−rtp(r). (2.40)

MaxEnt deconvolution solves the inverse problem of determining p(r) from s(t). That

is, MaxEnt readily infers probability distributions such as unknown weights, the p(r),

which appear in mixture models [127]. These weights could include, for example,

probabilities for exponentials, as in Eq. (2.40), or probabilities that cytoplasmic

proteins sample different diffusion coefficients [10, 72, 156]. The fitting procedure

is ultimately terminated because MaxEnt insists on simple (minimum information or

maximum entropy) models consistent with observations.
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More generally, for discrete data, Di, we can write the discrete analog of Eq. (2.40)

Di =
∑
j

Gijpj + εi (2.41)

where Gij is the ijth matrix element of a general transformation matrix, G, and pj

is the model. Contrary to the noiseless Eq. (2.40) here, we have added noise, εi, to

Eq. (2.41).

All experimental details are captured in the matrix G. Here are examples of this

matrix:

GFluor · p =

∫ ∞
0

dre−rtp(r) (2.42)

GFRAP · p = −
∫ ∞

0

dDe−
(x−x0)2

2Dt p(D) (2.43)

GFCS · p = −
∫ ∞

0

dτD
1

n

1

(1 + τ/τD)3/2
p(τD) (2.44)

where the first can be used to determine decay rate distributions [131–133]; the sec-

ond is relevant to fluorescence recovery after photobleaching (FRAP) with an unde-

termined distribution over diffusion coefficients, D (assuming isotropic diffusion in

one dimension); the third is relevant to fluorescence correlation spectroscopy (FCS)

with an undetermined distribution over diffusion times, τD, through a confocal vol-

ume [10,72], assuming a symmetric Gaussian confocal volume with n diffusing parti-

cles.

If a Gaussian noise model is justified – where εi is sampled from a Gaussian

distribution with zero mean and standard deviation σi, i.e. εi ∼ N(0, σi) – then,

one could propose to find pj by minimizing the following log-likelihood (equivalent
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to maximizing the likelihood for a product of Gaussians) under the assumption of

independent Gaussian observations

χ2 ≡
∑
i

(
Di −

∑
j Gijpj

σi

)2

. (2.45)

This ill-fated optimization of Eq. (2.45), described in the first paragraph of this sec-

tion, overfits the model. Additionally, depending on our choice of discretization for

the index j of Eq. (2.41), we may select to have many more weights, pj, than we have

data points, Di, and, in this circumstance, a unique minimum of the χ2 may not even

exist. For this reason, we use the entropy prior and write down our posterior

P

(
p

∣∣∣∣∣D,q,∑
i

pi =
∑
i

qi = 1

)
∝ P (D|p)× P

(
p

∣∣∣∣∣q,∑
i

pi =
∑
i

qi = 1

)

∝ e−χ
2/2 × e−N

∑
i pi log(pi/qi)δ∑

i pi,1
δ∑

i qi,1
(2.46)

where the proportionality above indicates that we have not explicitly accounted for

the normalization, P (D|q). If we are only interested in a point estimate for our

model – i.e. the one that that maximizes the posterior given by Eq. (2.46) – then the

objective function we need to maximize is [49]

−N
∑
i

pi log (pi/qi)−
χ2

2
+ λ0

(∑
i

pi − 1

)
+ λ1

(∑
i

qi − 1

)
(2.47)

where we have used Lagrange multipliers (λ0, λ1) to replace the delta-function con-

straints. The variation of the MaxEnt objective function, Eq. (2.47), is now under-

stood to be over each pi as well as λ0 and λ1. Furthermore, if we are only interested in
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the maximum of Eq. (2.47), we are free to multiply Eq. (2.47) through by constants

or add constants as well. In doing so, we obtain a more familiar MaxEnt form

−
∑
i

pi log (pi/qi)− φ
(χ2 −N)

2
+ λ̃0

(∑
i

pi − 1

)
+ λ̃1

(∑
i

qi − 1

)
(2.48)

where N – the number of independent observations – and φ are constants. N or its

inverse, φ, is a hyperparameter that we must in principle set a priori.

One way to determine φ is to treat φ as a Lagrange multiplier enforcing the

constraint that χ2 be equal to its frequentist expectation

χ2 ∼ N. (2.49)

That is, summed over a large and typical number of data points – where, typically,(
Di −

∑
j Gijpj

)2

∼ σ2
i – we have χ2 ∼ N .

Skilling and Gull [128] have argued that this frequentist line of reasoning to de-

termine φ, and thus the posterior, undermines the meticulous effort that has been

put into deriving Shannon’s entropy from SJ’s self-consistent reasoning arguments

(that we discuss in the last section). Instead, they proposed [128] a method based

on empirical Bayes [108] motivating the choice of hyperparameter from the data.

If we take Eq. (2.49) for now, we now find a recipe for arriving at the optimal

model, p∗,

p∗ = max
p,φ,λ̃0,λ̃1

(
−
∑
i

pi log (pi/qi)− φ
(χ2 −N)

2
+ λ̃0

(∑
i

pi − 1

)
+ λ̃1

(∑
i

qi − 1

))
.

(2.50)

Often, we select a uniform distribution (flat q) though different choices are discussed

in the literature [145].
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Finally, for FCS, Eq. (2.44) is just a starting point that, for simplicity, ignores

confocal volume asymmetry and triplet corrections. More sophisticated FCS decon-

volution methods can account for these [10] and also explicitly account for correlated

noise and ballistic motion of actively transported particles [71]. And – in part be-

cause FCS is so versatile [157, 158] and can even be used in vivo in a minimally

invasive manner [24, 72, 159–168] – FCS data has been analyzed using multiple de-

convolution methods that have provided models for the dynamics of the human islet

amyloid polypeptide (hIAPP) on the plasma membrane [169] as well as the dynamics

of signaling proteins in zebrafish embryos [156].

MaxEnt deconvolution: An application to FCS

Here we briefly present an application where MaxEnt was used to infer the be-

havior of transcription factors in vivo [10] and used to learn about crowding, binding

effects and photophysical artifacts contributing to FCS.

Briefly in FCS, labeled proteins are monitored as they traverse an illuminated

confocal volume [170]. The diffusion time, τD, across this volume of width w is

obtained from the fluorescence time intensity correlation function, G(τ), according

to [168,170]

G(τ) =
1

n

(
1 +

τ

τD

)−1(
1 +

1

Q2

τ

τD

)−1/2

(2.51)

where n is the average number of particles in the confocal volume and Q characterizes

the confocal volume’s asymmetry. The diffusion constant, D, is related to τD by

τD = w2/4D [for simplicity, Eq. (2.51) ignores triplet corrections [171]] where w

designates the width of the confocal volume.

In complex environments, G(τ) often cannot be fit with a single diffusion compo-

nent (Eq. (2.51)). That is, τ is no longer simply proportional to a mean square
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displacement in the confocal volume, 〈δr2〉. Instead, G(τ)’s are constructed for

anomalous diffusion models – where 〈δr2〉 ∝ τα and α is different from one – as

follows [24,162–165]

G(τ) =
1

n

(
1 +

(
τ

τ̃D

)α)−1(
1 +

1

Q̃2

(
τ

τ̃D

)α)−1/2

(2.52)

where we have introduced an effective diffusion time, τ̃D, and asymmetry parameter,

Q̃.

Circumstances under which anomalous diffusion models – where 〈δr2〉 ∝ τα

strictly holds – over many decades in time are exceptional, not generic. For example,

fractional Brownian motion (FBM) – that can give rise to anomalous diffusion [172]

– may arise when proteins diffuse through closely packed fractal-like heterochromatin

structures [173] though it is unclear to what degree the structure of heterochromatin

actually is fractal. As another example, continuous time random walks (CTRW),

in turn, yield anomalous diffusion by imposing power law particle waiting time or

jump size distributions to describe a single particle’s trajectory [174–177] though

these power laws have only rarely been observed experimentally [174,175] and, what

is more, FCS does not collect data on single particle trajectories.

A method of analysis should deal with the data as it is provided. That is, for FCS,

a model should preferentially be inferred directly from G(τ) rather than conjecturing

behaviors for single particle trajectories – that are not observed – that may give rise

to a G(τ).

MaxEnt starts with the data at hand and provides an alternative solution to fitting

data using anomalous diffusion models [10]. Rather than imposing a parametric form

(Eq. (2.52)) on the data, MaxEnt has been used to harness the entire G(τ) to extract

information on crowding effects, photophysical label artifacts, cluster formation as
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Fig. 2.4. FCS may be used to model the dynamics of labeled
particles at many cellular locations (regions of interest (ROIs)),
both in the cytosol and in the nucleus. a) Merged image of a
cerulean-CTA fluorescent protein (FP) used to image the cytosol and
mCherry red FP used to tag BZip protein domains. In Ref. [10], we ana-
lyzed FCS data on tagged BZips diffusing in the nucleus and the cytosol.
We analyzed diffusion in ROIs far from heterochromatin by avoiding red
FP congregation areas (bright red spots). MaxEnt analysis revealed de-
tails of the fluorophore photophysics, crowding and binding effects that
could otherwise be fit using anomalous models. b) A cartoon of the cell
nucleus illustrating various microenvironments in which BZip (red dots)
diffuses (A: free region; B: crowded region; C: non-specific DNA binding
region; D: high affinity binding region).

well as affinity site binding in vivo, a topic that has been of recent interest [178–186];

see Fig. (2.4).

To extract information on basic processes that could be contributing to the G(τ),

we start with the observation that the in vivo confocal volume is composed of many

“microenvironments”; see Fig. (2.4b). In each microenvironment, the diffusion coeffi-
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a 

b 

c

d

Fig. 2.5. Protein binding sites of different affinities yield a G(τ)
that is well fit by an anomalous diffusion model. A theoretical G(τ)
(containing 150 points) was created from an anomalous diffusion model,
Eq. (2.52) with α = 0.9, to which we added 5% white noise (a, blue dots,
logarithmic in time). Using MaxEnt, we infer a p(τD) from this G(τ) (b)
and, as a sanity check, use it to reconstruct a G(τ) (a, solid curve). In the
main body, we discuss how protein binding sites of different affinities could
give rise to such a p(τD). Part of p(τD) is then excised, yielding a new p(τD)
(d, pink curve). Conceptually, this is equivalent to mutating a binding
site which eliminates some τD’s. We created a G(τ) from this theoretical
distribution with 8% white noise (c, blue dots, logarithmic in time). We
then extracted a p(τD) from this (d, blue curve) and we reconstructed a
G(t) from this p(τD) distribution as a check (c, solid curve). Time is in
arbitrary units. See text and Ref. [10] for more details.
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Figure 5: FP Flickering gives rise to the plateaus we see for larger D values. (a) The p(D) for
freely diffusing Alexa568 which shows not flickering (as expected) and thus no superdiffusive plateau.
Rather it shows a peak centered at 360µm2/s (the experimentally determined diffusion coefficient is
363µm2/s). The smaller peak is due to fluorophore aggregation [15]. (b) The p(D) for mRuby2 which
shows a superdiffusive plateau. See text for details.

as lower-affinity non-specific DNA binding [118]; 2) interactions with other chromatin binding
proteins [103]; 3) association with proteins forming subnuclear domains such as nucleoli [119,
120]. For instance, the BZip domain interacts with HP1↵ which in turn binds directly to histones
(interaction 3) [103, 120] and is expected to slow BZip’s diffusion. The results shown in Fig.
6(e,f) show the expected crowding peak and photobleaching plateau, though less prominent,
in p(D) as well as features arising from interactions. For instance, mCherry-BZip shows slow
diffusion coefficients with peaks centered at about 0.2 µm2/s, 0.8 µm2/s and 5 µm2/s. These
likely identify different types of nuclear interactions. The blue curve in Fig. 6(f) is for the
best data set for mRuby2-BZip nuclear diffusion [i.e. the most monotonic G(t) (which is what
G(t) ought to be in the absence of noise) as measured by the Spearman rank coefficient that
also yielded the smallest �2 of all experimental data sets examined]. This p(D) shows three
clear peaks corresponding to diffusion coefficients of ⇠ 1000 (flickering), ⇠ 80 (crowding) and
⇠ 2µm2/s (binding interaction with K ⇡ 500nM�1 assuming [S] = 0.1mM ).

Here are the data sets we will investigate:
Data Set I: BZip mutants – BZip proteins are evolutionarily conserved from plants to hu-
mans [121] and in humans, BZips play critical roles across a wide range of biological processes
making them attractive targets for selective inhibition [121]. For example, specific dominant-
negative (DN) heterodimer partners for the BZip proteins, called AZip, were designed to specif-
ically inhibit BZip DNA binding in equimolar competition [122–124]. FCS data from cells treated
with Azip as well as small molecules known to inhibit BZip DNA binding [125] will provide an
important benchmark for our method. It will reveal if and how different peaks (and areas un-
derneath peaks corresponding to bound fractions) in p(K) respond in treated cells. In addition,
we will also investigate how BZip’s diffusion is affected by the following mutations of its binding
partner HP1↵: HP1↵ WT; HP1↵ W41A [disrupts binding to Histone H3 meK9]; HP1↵ I165E
[dirupts dimerization interface]; HP1↵ W171A [disrupts PxVxL binding pocket].

Data Set II: Integrin crosstalk – Integrins are a family of glycosylated, heterodimeric trans-
membrane adherens receptors consisting of non-covalently bound ↵ and � subunits [126,127]
and play an essential role in the process of cell adhesion and their engagement regulates
gene expression, cell growth, differentiation and survival. The related biochemical signals are
usually induced by ligand-occupied and clustered integrins [126, 127]. As an example, the in-
tegrin ↵5�1 and ↵v�3 is believed to be significant for its role in cell migration, metastasis and
angiogenesis [128]. In FCS data sets provided, we will investigate the role of the lipid envi-
ronment and ligand binding on possible interaction between integrin ↵5�1 and ↵v�3 without
signalling cascades. We will determine the influence of the lipid environment on the diffusion
and, ultimately, the stoichiometry and crosstalk of the integrin clusters.

Data Set III: Dynamic linker assembly and Cadherin-mediated adhesions – Cell-cell ad-
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Fig. 2.6. Probability distributions of diffusion coefficients can be
inferred from FCS curves. a) p(D) for freely diffusing Alexa568 shows
no “superdiffusive plateau” (defined in the text) that arises from dye flick-
ering. Rather, it shows its main peak at 360µm2/s very near the reported
value of 363 µm2/s [187]. We attributed the smaller peak centered at ∼ 5
µm2/s to dye aggregation [10]. b) + c) We analyzed p(D)’s obtained
from FCS data acquired on mCherry and mRuby2 diffusing freely in so-
lution, and d) + e) mCherry or mRuby2 tagged BZip protein domains
in the cytosol and f) + g) the nucleus far from heterochromatin [187].
Black curves are averages of the red curves [total number of data sets:
b:3,c:9,d:5,e:16,f:7, and g:21]. The additional blue curve in (g) shows the
analysis of the best data set (i.e. the most monotonic G(τ)). See text and
Ref. [10] for more details.
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cient differs and diffusion may thus be described using a multi-component (mixture)

normal diffusion model [72,159–162]

G(τ) =
1

n

∑
τD

p(τD)

(
1 +

τ

τD

)−1(
1 +

1

Q2

τ

τD

)−1/2

. (2.53)

MaxEnt is then used to infer the full diffusion coefficient distribution, p(D), or,

equivalently p(τD), directly from the data. In particular, Fig. (2.5a)-(2.5b) illustrates

how mixture models and anomalous diffusion models may both fit the data equally

well. As a benchmark, a synthetic G(τ) (blue dots, Fig. (2.5a)) is generated with

an anomalous diffusion model [Eq. (2.52) with α = 0.9 with added 5% white noise].

Fig. (2.5b) shows the resulting p(τD) extracted from the noisy synthetic data. From

this p(τD), we re-create a G(τ) (solid line, Fig. (2.5a)) and verified that it closely

matches the original G(τ) (blue dots, Fig. (2.5a)).

An important advantage with the mixture model, is that it provides a p(τD) that

may be microscopically interpretable. For instance, suppose a binding site is removed

either by mutating/removing a particular DNA binding site or cooperative binding

partner. Based on the model [discussed in detail in Ref. [10]], we expect the resulting

p(τD) – or, equivalently, p(D) – to show a gap at some τD. The hypothetical p(τD),

expected after removal of a binding site, is shown with an exaggerated excision (pink

curve, Fig. (2.5d)). A corresponding noisy G(τ) is generated from this p(τD) (blue

dots, Fig. (2.5c)). Now we ask: had we been presented with such a G(τ), would we

have been able to tell that a site had been mutated? The inferred p(τD) (blue curve,

Fig. (2.5d)) shows a clear excision directly indicating that a mutated site would have

been detectable.

To illustrate here that MaxEnt also works on real data, we re-analyzed in vitro

data on the diffusion of the small dye Alexa568 (Fig. (2.6a)) as well as previously

published FCS data [24] on the diffusion of the BZip domain of a transcription factor
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(TF) [CCAAT/enhancer-binding C/EBPα] tagged with red fluorescent proteins (FPs)

[either mCherry or mRuby2]. We analyzed data on BZip’s diffusion both in solution

and a living mouse cells’ cytoplasm and nucleus (away from heterochromatin) that

appeared to show anomalous diffusion. The results are summarized in Fig. (2.6b)-

(2.6g).

Briefly, in solution (Fig. (2.6b)-(2.6c)) we identify the effects of protein flickering

on the p(D). Flickering is a fast, reversible photoswitching arising from FP chro-

mophore core instabilities [188]. Fast flickering [faster than the tagged protein’s τD]

registers as fast-moving (high diffusion) components. Since many particles flicker,

p(D) shows substantial density at high D values. As expected mRuby2 and mCherry

flickering appears in p(D) as a “superdiffusive plateau” at the highest values of D

in Fig. (2.6b)-(2.6c). The plateau’s lower bound coincides with the diffusion coeffi-

cient expected in the absence of flickering [10]. As a control, Alexa568 – which is

well-behaved in FCS studies [187,189] – shows no plateau; see Fig. (2.6a).

In the cytosol, we found label-dependent molecular crowding effects on protein

diffusion. Beyond the superdiffusive plateau, the cytosolic p(D) shows peaks for

mCherry-BZip and mRuby2-BZip at ∼ 20 − 40 µm2/s; see Fig. (2.6d)-(2.6e). This

peak’s location is consistent with results from FCS and FRAP experiments [187,190,

191] and is attributed to crowding since our labeled proteins are thought to have few

cytosolic interactions [187,192]; see Ref. [10] for details.

Finally, in the nucleus, while our data sets are well fit by anomalous diffusion

models [24], our method instead finds evidence of BZip’s DNA site-binding. For BZip,

we expect: 1) high affinity binding to specific DNA elements as well as lower-affinity

non-specific DNA binding [10, 24, 193]; 2) interactions with other chromatin binding

proteins [24]; and 3) association with proteins [194, 195] such as BZip’s interaction

with HP1α (which binds to histones) [24, 195]. The p(D) of Fig. (2.6f)-(2.6g) shows
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the less prominent but expected crowding peak (∼ 10 µm2/s) and photobleaching

plateau as well as features arising from interactions. For instance, for mCherry-

BZip we find slow diffusion coefficients with peaks centered at about 0.2 µm2/s, 0.8

µm2/s and 5 µm2/s identifying possible nuclear interactions. The blue curve in Fig.

(2.6g) displays “the best data set” for mRuby2-BZip nuclear diffusion [i.e. the most

monotonic G(τ) (which is what G(τ) ought to be in the absence of noise) as measured

by the Spearman rank coefficient]. This p(D) shows three clear peaks corresponding to

diffusion coefficients of ∼ 1000 (flickering), ∼ 80 (crowding) and ∼ 2 µm2/s (binding

interaction with K ≈ 500nM−1 assuming [S] = 0.1mM).

In summary, this section highlights the important mechanistic details that can be

drawn from MaxEnt deconvolution techniques.

While MaxEnt is focused on inferring probability distributions of an a priori

unspecified form, often we do have specific parametric forms for models in mind

when we analyze data. Selecting between different ”nested model” – models obtained

as a special case of a more complex model by either eliminating or setting conditions

on the complex model’s parameters – is the focus of the next section.

2.4 Model Selection

2.4.1 Brief overview of model selection

A handful of highly complex models may fit any given data set very well. By con-

trast, a combinatorially larger number of simpler models — with fewer and more flex-

ible parameters – provide a looser fit to the data. While highly complex models may

provide excellent fits to a single data set, they are, correspondingly, over-committed

to that particular data set.
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The goal of successful model selection criteria is to pick models: 1) whose complex-

ity is penalized, in a principled fashion, to avoid overfitting; and 2) that convincingly

fit the data provided (the training set).

Model selection criteria are widely used in biophysical data analysis from image

deconvolution [153, 196–199] to single molecule step detection [48, 70, 200, 201] and

continue to be developed by statisticians [202].

Here we summarize both Information theoretic [203–207] as well as Bayesian [46,

47,169,208–211] model selection criteria.

Information theoretic and Bayesian model selection

In information theory, h(x|θ) = − log p(x|θ) is interpreted as the information

contained in the likelihood for data points x given parameters θ [212]. Minimizing

this information over θ is equivalent to maximizing the likelihood for parametric

models. For problems where the number of parameters (K) is unknown, preference

is always given to more complex models. To avoid this problem, a cost function, L,

associated to each additional variable is introduced [213], − log p(x|θ) + L(θ). Put

differently, in the language of Shannon’s coding theory that we will discuss later, if

− log p(x|θ) measures the message length, then the goal of model selection is to find

a model of minimal description length (MDL) [214–216] or, informally, of maximum

compression [75].

Information theoretic model selection criteria – such as the Akaike Information

Criterion (AIC) [217–220] – start with the assumption that the data may be very

complex but that an approximate, candidate, model may minimize the difference in

information content between the true (hypothetical) model and the candidate model.

As we will see in detail later, models that overfit the data are avoided by parametrizing

the candidate model on a training data set and comparing the information between
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an estimate of the true model and candidate models on a different (validation) data

test set. In this way, the AIC is about prediction of a model for additional data points

provided beyond those data points used in the training step.

Since the data may be very complex, as the number of data points provided

grows, the complexity (number of parameters) of the model selected by the AIC

grows concomitantly. Complex models are not always a disadvantage. For instance,

they may be essential if we try to approximate an arbitrary non-linear function using

a high-order polynomial candidate model or for models altogether too complex to

represent using simple parametric forms [219].

Bayesian model selection criteria – such as the Bayesian (or Schwartz) information

criterion (BIC) [73] – instead select the model that maximizes a marginal posterior

[66, 221, 222]. In the marginalization step, we have integrated over all irrelevant or

unknown model parameters. This marginalization step is, as we will see, critical

in avoiding overfitting. This is because, by marginalizing over variables, our final

marginal posterior is a sum over models including models that fit the data poorly.

Unlike the AIC, the BIC assumes that there exists a true model and it searches

for this model [220, 223]. Since this model’s complexity is fixed – does not depend

on the number of data points N – the BIC avoids growing the dimensionality of the

model with N by penalizing the number of parameters of the model according to a

function of N , logN . This penalizing function is derived, it is not imposed by hand.

By contrast to the AIC, the BIC “postdicts” the model since, in using the BIC, we

assume that we already have access to all observed data [224].

As we will see later, for slightly non-linear models, the BIC may outperform the

AIC which overfits small features while for highly non-linear models – where small

features are important – the AIC may outperform the BIC [219]. The performance

of the AIC and BIC are illustrated for a simple example in Fig. (2.7).
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Fig. 2.7. The AIC and BIC are often both applied to step-finding.
a) We generated 1000 data points with a background noise level, σb = 20.
On top of the background, we added 6 dwells (5 change points) with noise
around the signal having a standard deviation of σs = 5 (see inset). At this
high noise level, and for this particular application, the BIC outperforms
the AIC and the minimum of the BIC is at the theoretical value of 5
(dotted line). All noise is Gaussian and de-correlated. b) For our choice
of parameters, the AIC (green) finds a model that overfits the true model
(black) while the BIC (red) does not. However, as we increase the number
of steps (while keeping the total number of data points fixed), the AIC
does eventually outperform the BIC. This is to be expected. The AIC
assumes the model could be unbounded in complexity and therefore does
not penalize additional steps as much. The BIC, by contrast, assumes
that there exists a true model of finite complexity. We acknowledge K.
Tsekouras for generating this figure.

2.4.2 Information theoretic model selection: The AIC

In this section, we sketch a derivation of the AIC [203, 212, 225, 226]. While this

section is theoretical and can be skipped upon a first reading, it does highlight: i) the

method’s limitations and applicability [227]; ii) that the penalty term follows from a

principled derivation (and is not arbitrarily tunable); iii) how it conceptually differs

from the BIC.
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Briefly, finding the real or true model that generated the data is not achievable,

and our goal is to seek a good candidate model. The AIC [74, 228], as one of the

important selection criteria, is based on estimation of the KL divergence [148] between

the (unknown and unknowable) true distribution that generated the data, f(x), and

a candidate distribution p(x|θ0) parametrized by θ0

DKL[f‖p] =

∫
dxf(x) log

(
f(x)

p(x|θ0)

)
=

∫
dxf(x) log f(x)−

∫
dxf(x) log p(x|θ0)

(2.54)

where θ0 is the best possible estimate for θ (obtainable in the limit of infinite data).

The KL divergence is always positive or – in the event only realizable with synthetic

data that both true model and candidate models coincide – zero. The proof of this

is well known and follows from Jensen’s inequality [229].

To achieve our goal – and select a model, p, that minimizes DKL[f‖p] – we must

first make some approximations as both f and θ0 are unknown.

Given a training data set, x, we may replace the hypothetical θ0 with its estimate

θ̂(x). However, using the same data set to evaluate both θ̂(x) and p(x|θ̂(x)) biases

our KL toward more complex models. To see this, we note that the numerical values

for the likelihood satisfy p(x|θ̂(x)) > p(x|θ̂(y)) since the numerical value for the

likelihood is clearly worse (smaller) for a data set (y) different from the one that was

used to parametrize the model. Thus, the KL is always smaller for p(x|θ̂(x)) than for

p(x|θ̂(y)) and becomes increasingly smaller as we add more and more parameters.

That is, as we grow the dimensionality of θ̂(x).



49

To avoid this bias, we (conceptually) estimate θ0 instead on a training set, y,

different from the validation set, x, and estimate the KL, D̂KL[f‖p], as follows [202]

D̂KL[f‖p] = const− T

T = EyEx[log p(x|θ̂(y))] (2.55)

where the constant, const, only depends on the hypothetical true model, see Eq. (2.54),

and is, therefore, independent of our choice of candidate model. Furthermore, the

expectation with respect to a distribution over some variable z is understood as

Ez[g(z)] =
1

N

N∑
i=1

g(zi) (2.56)

where the samples, zi, are drawn from that distribution. Furthermore, for clarity, if

f were known then

T →
∫
dyf(y)

∫
dxf(x) log p(x|θ̂(y)). (2.57)

Our goal is now to estimate and, subsequently, maximize T , with respect to candidate

models, in order to minimize D̂KL.

To evaluate T , we must compute a double expectation value. In the large data

set limit, where θ̂(y) is presumably near θ0, we expand θ̂(y) around θ0

T ∼ EyEx

[
log p(x|θ0) +

1

2
(θ̂(y)− θ0) ·

(
∇θ∇θ log p(x|θ̂(y))

)
θ̂(y)=θ0

· (θ̂(y)− θ0)

]
= EyEx[log p(x|θ0)]− 1

2
Ey[(θ̂(y)− θ0) · I(θ0) · (θ̂(y)− θ0)]

= Ex[log p(x|θ0)]− 1

2
Ey[(θ̂(y)− θ0) · I(θ0) · (θ̂(y)− θ0)] (2.58)
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where the expectation (not the value itself) of the first order term (which we have

not written) vanishes and I(θ0) is the Fisher information matrix. We will eventually

want to evaluate the expectation of the second order term by further simplification

(keeping in mind that any errors incurred will, by construction, be ever higher order).

However, for now, our focus is on the leading order term of Eq. (2.58), Ex[log p(x|θ0)],

which we expand around θ̂(x). The resulting T of Eq. (2.58) becomes

T ∼ Ex[log p(x|θ̂(x)]− 1

2
Ex[(θ0 − θ̂(x)) · I(θ̂(x)) · (θ0 − θ̂(x))]

− 1

2
Ey[(θ̂(y)− θ0) · I(θ0) · (θ̂(y)− θ0)]. (2.59)

By construction, the first order term of Eq. (2.59) vanished. Furthermore, to leading

order, both quadratic terms are identical such that

T ∼ Ex[log p(x|θ̂(x)]− Ey[(θ̂(y)− θ0) · I(θ0) · (θ̂(y)− θ0)]. (2.60)

Evaluated near its maximum, the expectation of (θ̂(y) − θ0)(θ̂(y) − θ0) is, again

to leading order, the inverse of the Fisher information matrix [202]. For a K × K

information matrix, we therefore have

T ∼ Ex[log p(x|θ̂(x))]−K = Ex[log p(x|θ̂(x))−K]. (2.61)

The model that maximizes T is then equivalent to the model minimizing the AIC [202]

AIC ≡ −2 log p(x|θ̂(x)) + 2K. (2.62)

In other words, as we increase the number of parameters in our model and the numer-

ical value for the likelihood becomes larger (and the AIC decreases), our complexity

cost (2 for each parameter for a total of 2K) also rises (and the AIC increases). Thus,
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our goal is to find a model with a K that minimizes the AIC where, ideally, K is

different from 0 or ∞.

The “penalty term” of Eq. (2.62), +2K, does not depend on N . This is very

different from the BIC, as we will now see, that selects an absolute model without

comparison to any reference true model and whose penalty explicitly depends on N .

2.4.3 Bayesian model selection

Parameter marginalization: Illustration on outliers

Parameter marginalization is essential to understanding the BIC. We therefore

take a brief detour to discuss this topic in the context of outliers [153].

Suppose, for simplicity, that we are provided a signal with a fixed standard devia-

tion as shown in the inset of Fig. (2.7a). The likelihood of observing a sequence of N

independent Gaussian data points, D = x, drawn from a distribution with unknown

mean, µ, and variance, σ2, is

p(x|µ, σ) =
N∏
i=1

1√
2πσ

e−
(xi−µ)2

2σ2 . (2.63)

The posterior is then

p(µ, σ|x) =
p(x|µ, σ)p(µ, σ)

p(x)
(2.64)

where p(µ, σ) is the prior distribution over µ and σ and the normalization p(x) =∫
dµdσp(x|µ, σ)p(µ, σ).

If we know – or can reliably estimate – the standard deviation, then we may fix σ

to that value, say σ0, and subsequently maximize the posterior to obtain an optimal µ.

The form of this posterior, p(µ|x, σ0) ≡ p(µ|x), is quite sensitive to outliers because

each data point is treated with the same known uncertainty [153]. For example,
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the distribution over µ – blue curve in Fig. (2.8) – is heavily influenced by the two

apparent outliers near 5-6.

If we have outliers, it may be more reasonable to assume that we are merely

cognizant of a lower bound on σ [153]. In this case, a marginal posterior over µ is

obtained by integrating σ starting from the lower bound σ0

p(µ|x) =
1

p(x)
·
∫ ∞
σ0

dσ p(x|µ, σ)p(µ, σ). (2.65)

As N grows, the likelihood eventually dominates over the prior and determines the

shape of the posterior. This posterior over µ – the orange curve of Fig. (2.8) – is

obtained using our previous likelihood (Eq. (2.63)) with p(µ, σ) = p(µ)p(σ) with a

flat prior on µ and, as a matter of later convenience, p(σ) = σ0/σ
2. As we no longer

commit to a fixed σ, the orange curve is much broader than the blue curve. However

it is still susceptible to the outliers near 5-6 since all points are treated as having the

same uncertainty though only a range for that uncertainty is now specified.

Relaxing the constraint that all points must have the same uncertainty, the marginal

posterior distribution over µ becomes

p(µ|x) =
1

p(x)
·
∫ ∞
σ0

∏
i

dσi p(xi|µ, σi)p(µ, σi). (2.66)

This marginal posterior – shown by the green line of Fig. (2.8) – is far less committal

than were the previous posteriors we considered. That is, this posterior can assume

a multimodal form with the highest maximum centered in the region with the largest

number of data points. Unlike our two previous marginal posteriors, the location of

this posterior’s highest maximum is not as deeply influenced by the outliers. While the

highest posterior maximum provides an estimate for µ largely insensitive to outliers,

the additional maxima may help identify a possible second candidate µ. This might
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be helpful to single molecule force spectroscopy say – where the noise properties

depend on the state of the system – and apparent occasional outliers may suggest the

presence of an additional force state.

This integration over parameters whose value we do not know – σ in the example

above – is key. Through integration, we allow (sum over) a broad range of fits to

the data. This naturally reduces the complexity of our model because it contributes

parameter values to our marginal posterior that yield both good and bad fits to the

data.
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Fig. 2.8. Noise models can be adapted to treat outliers. We are
given a sequence of data points, D = {1, 1.8, 2.4, 5.5, 5.8}±0.25. We want
to find the posterior over µ. Blue: We assume the standard deviation is
fixed at 0.25 and use a Gaussian likelihood with a single variance for all
points. Orange: We assume that the standard deviation’s lower bound is
0.25, see Eq. (2.65), but that we still have a single variance for all points.
Green: We still assume the standard deviation’s lower bound is 0.25 but
that all points are assumed to have independent standard deviations, see
Eq. (2.66).
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The BIC obtained as a sum over models

The BIC seeks a model that maximizes the posterior marginalized over irrelevant

or unknown model parameters θ. To compute this posterior, we define a likelihood,

p(D = x|θ), describing N independent – or, at worst, weakly correlated – identical

observations where p(D|θ) ≡ eN log f(D|θ). To be clear, if the data are completely

independent, then f is understood as the likelihood per observation.

We write down a marginal posterior

p(K|D) ∝
∫
dKθ eN log f(D|θ) (2.67)

where K is the total number of parameters.

Since we are interested in a general model selection criterion that does not care

about the particularities of the application, we consider the large N limit and, thus,

ignore the prior altogether as well.

To approximate the integral in Eq. (2.67), we invoke Laplace’s method as before

and expand log f(D|θ) around its maximum, θ∗, to second order. In other words, we

write

p(K|D) ∼ eN log f(D|θ∗)
∫
dKθ e−

N
2

(θ−θ∗)·∇θ∇θ log f(D|θ∗)·(θ−θ∗)

= eN log f(D|θ∗) (2π/N)K/2√
det ∇θ∇θ log f(D|θ∗)

. (2.68)

The BIC then follows directly from Eq. (2.68)

BIC ≡ −2 log p(K|D) = −2 log p(D|θ∗) +K logN +O(N0). (2.69)

By contrast to the AIC given by Eq. (2.62), the BIC has a penalty that scales as

logN . In a later section, we will relate this penalty to the predictive information
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provided by the model (Eq. (2.111)). Finally, we add that while the prior over θ

is not treated explicitly, this treatment is still distinctly Bayesian. This is because

the model parameters, over which we marginalize, are treated as continuous variables

rather than fixed numbers.

We now turn to an illustration of model selection drawn from change-point anal-

ysis.
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Fig. 2.9. BIC finds correct steps when the noise statistics are
well characterized. a) Our control. We generated synthetic steps (black
line) and added noise (white, decorrelated) with the same standard de-
viation for each data point. We used a greedy algorithm [70] to identify
and compare models according to Eq. (2.73) and identify the correct step
locations (red line) from the noisy time trace (blue). b) Here we use a
different, incorrect, likelihood that does not adequately represent the pro-
cess that we used to generate the synthetic data. That is, we correctly
assumed that the noise was white and decorrelated but also, incorrectly,
assumed that we knew and fixed σ (and therefore did not integrate over σ
in Eq. (2.71)). We underestimated σ by 12%. Naturally, we overfit (red)
the true signal (black). Green shows the step-finding algorithm re-run us-
ing the correct noise magnitude. c) Here we use the BIC from Eq. (2.73)
whose likelihood assumes no noise correlation. However, we generated a
signal (black) to which we added correlated noise [by first assigning white
noise, εt, to each data point and then computing a new correlated noise,
ε̃t, at time t from ε̃t = 0.7εt + 0.1εt−1 + 0.1εt−2 + 0.1εt−3]. As expected,
the model that the BIC now selects (red) interprets as signal some of the
correlated noise from the synthetic data. We acknowledge K. Tsekouras
for generating this figure.
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Illustration of the BIC: Change-point algorithms for a Gaussian process

Change-points algorithms locate points in the data where the statistics for a

process generating the data change. There is a broad literature, including reviews

[230–232], on change-point algorithms relying on the AIC [233–236], the BIC [200,

234, 235, 237–240], generalizations of the AIC [224, 227] and BIC [48, 241], wavelet

transforms [242–244] and related techniques [245–249].

Here we illustrate how model selection – and the BIC in particular – are applied

to a change-point detection problem for a Gaussian process like the one shown in

Fig. (2.7b) with fixed but unknown standard deviation – which is the same for all

data points – and with a discretely changing mean.

We begin by writing down the likelihood

p(x|K, σ,µ, j) =
K−1∏
i=0

ji+1−1∏
`=ji

1√
2πσ

e−
(x`−µi)

2

2σ2 (2.70)

where K denotes the number of change-points – points where the mean of the signal

changes – occurring at locations j = {j0, · · · , jK}. To be precise, since the standard

deviation is also a parameter to be determined, we have K+ 1 total parameters here.

The model maximizing this likelihood places a change-point at every step (x` = µi

for every `). That is, p(x|K, σ,µ, j) peaks when K = N and, expectedly, overfits the

data.
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To avoid overfitting and – since we are still largely ignorant of the correct values

for σ and µ – we integrate over all allowed values for σ and µ. This yields the

following marginal posterior

p(K, j|x) ∝
∫
dσdKµ p(x|K, σ,µ, j)

=

√
2π
−(N−K)

n
1/2
0 · · ·n1/2

K

· 1

2
·
(
S

2

)− (N−K−1)
2

·
(
N −K − 3

2

)
! (2.71)

where S ≡ n0σ̂
2
0 + · · ·+ nK σ̂

2
K and

σ̂2
i ≡

1

ni

ji+1−1∑
`=ji

x2
` −

1

n2
i

(
ji+1−1∑
`=ji

x`

)2

(2.72)

where ni counts the number of points contained in the ith step.

Eq. (2.71) reveals that p(K, j|x) may no longer be peaked at K = N . This is

expected since, conceptually, by summing over σ, grossly underfitting models (models

with large σ) now contribute to our marginal posterior.

Taking the further simplifying assumptions that: 1) ni ∼ N/K; 2) all ni are large;

and 3) σ̂2
0 ∼ σ̂2

1 · · · ∼ σ̂2
K are all equal to an expected standard deviation σ̂2, we

recover a form for a Gaussian process BIC seen in the literature [70]

BIC = −2 log p(K, j|x) = N log σ̂2 +K logN +O(N0) + const (2.73)

where the constants, const, capture all terms independent of model parameters (that

may depend on N).

Fig. (2.9) shows the detection of change-points in synthetic data and illustrates

just how sensitive the BIC is to the correct choice of likelihood. To address this

sensitivity, BIC’s have, for example, been tailored to detect change-points with time
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correlated noise as would be expected from methods such as single molecule force

spectroscopy [200].

Shortcomings of the AIC and BIC

We cannot compare data sets of different lengths: The objective functions

for both the AIC and BIC depend on N . For this reason, we cannot directly compare

numerical values for AICs and BICs obtained for data sets of different lengths [250].

This problem often arises when comparing data sets of originally the same length but

with a different number of outliers removed.

Correctly characterizing the likelihood is critical: We illustrate, in Fig. (2.9b)-

(2.9c), how a mischaracterization of the likelihood – and, ultimately, the process that

generates the noise – can yield incorrect models.

The curvature of the likelihood function may vanish: The curvature of

the likelihood arises in both the AIC and BIC. In the AIC, it appears through the

Fisher information (see the second term in Eq. (2.58)) while in the BIC it arises

from Laplace’s method [227, 251, 252]. For singular problems, those where the likeli-

hood’s curvature vanishes, the AIC and BIC diverge. In concrete terms, this signifies

that the model selection criterion becomes broadly insensitive to the model’s dimen-

sionality. A vanishing curvature occurs: i) when we have unidentifiable parameters.

That is at locations, x = x∗, where p(x∗|θ1, θ2) = p(x∗|θ1). In this case, at x∗,

∂θ1∂θ2 log p(x|θ1, θ2)|x=x∗= 0; ii) at change-points (changes in model parameter) lo-

cations in the data [253]. For instance, consider a force spectroscopy experiment

monitoring the stepping motion of a molecular motor. After a single step, the signal

appears to jump from a mean of µ to µ′. But, in practice, transitions may not be

so discrete. In the extreme case, if hypothetically we collected data with an infinite

time resolution, we may see the signal (i.e. a hypothetical noiseless time trace) pass
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through a region of zero curvature as it continuously transitions from a region of

negative to positive curvature. At this singular point, the AIC and BIC fail.

Despite vanishing curvatures at change-points, the AIC and BIC are commonly

used in change-point analysis, as we have seen for our illustrative example. In practice,

change-point methods ignore the point of zero curvature. That is, they treat the data

as piecewise continuous as we had in our example.

Alternatively, to avoid vanishing leading order (quadratic) corrections, we may

select a model by evaluating (often numerically) the full posterior rather than approx-

imating it (as a BIC). Or, we can use a generalized frequentist information criterion

(FIC) [224,254] by starting with a biased estimator for T

T ∼ log p(x|θ̂(x)) (2.74)

and quantifying its bias ExEy

[
log p(x|θ̂(y))− log p(x|θ̂(x))

]
.

Note on finite size effects

Both AIC and BIC are asymptotic statements valid in the large N limit. In

change-point methods, we have found that they may be reliable for modest N , even

below 50. In the case of the BIC, for instance – where Laplace’s approximation

is invoked – this is not surprising since the terms ignored are exponentially, not

polynomially, subdominant in N . For smaller N , higher order corrections to the

AIC – an example of which is called the AICc – depending only on K and N can

be computed [212]. By contrast, higher order corrections to the BIC, to order N0,

explicitly capture features of the prior and these corrections have previously been

applied to the detection of change-points from FRET data [48].
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Select AIC and BIC applications

Model selection criteria, whether frequentist (AIC) or Bayesian (BIC), deal di-

rectly with likelihoods of observing the data. Treating the data directly using likeli-

hoods avoids unnecessary data processing such as histogramming or data reduction

into moments, cumulants, correlation functions or other heuristic point statistics that

are otherwise common in the physics literature when dealing with macroscopic sys-

tems.

It is especially useful to treat the data directly in single molecule data analysis

where the data, on the one hand, are plentiful (because of high acquisition rates)

but where data, on the other hand, show too few discrete events to build a reliable

histograms to fit a model to the data [45,235].

The BIC has been widely used in biophysics [41, 52, 70, 255, 256] to determine:

the number of intensity states in single molecule emission time traces [237, 257]; the

number of steps in photobleaching data [238]; and the stepping dynamics of molec-

ular machines [239]. The AIC, in turn, has been used to determine the number

of diffusion coefficients sampled from labeled lipophilic dyes on a surface from single

molecule trajectories [236]; and the number of ribosomal binding states of tRNA from

single molecule FRET trajectories [233]. In addition, both the AIC and BIC have

provided complementary insight on a number of problems including: photon arrival

time kinetic parameters (such as rate of emission for different fluorophore states for an

unknown number of fluorophore states and transition kinetics between them) [235].

And, when compared head-to-head in identifying trapping potentials for membrane

proteins relevant to single particle tracking [234], the AIC and BIC perform differently

across potentials. This is because, by contrast to simple Brownian motion, confining

radial potentials, such as V ∝ r4, introduce nonlinear dynamics that are better ap-
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proximated by complex models that are less heavily penalized by the AIC than by

the BIC.

While the AIC and BIC have been useful, they are often used complementarily

specifically because they are treated as model selection heuristics. As a result, their

conceptual difference – and why their penalties differ – are rarely addressed [227] and

it is therefore common, though ultimately incorrect, to treat the complexity penalty

(2K for the AIC or the K logN for the BIC) as an adjustable form.

We end this section on model selection with a note on additional methods used in

single molecule analysis that have been directly inspired by the BIC [48, 52, 94, 200,

258]. For instance, Shuang et al. [48] have proposed an MDL heuristic – a method

called STaSI (Step Transition and State Identification) – not only to find steps but

subsequently identify states as well in time traces; see Fig. (2.10). The idea here is

not only to penalize both the number of change-points detected but also to discretize

the number of intensity levels (states) sampled in an smFRET trajectory. STaSI

has subsequently been used to explore equilibrium transitions among N-methyl-D-

aspartate receptor conformations by monitoring the distance across the glycine bound

ligand binding domain cleft [241].

Maximum Evidence: Illustration on HMMs

While we have previously discussed HMMs, we have not addressed the important

model selection challenge they pose [46, 47, 259]. That is, it appears paradoxical to

assume that while we have no a priori knowledge of the HMM’s model parameters,

we have perfect knowledge of the underlying state-space. To address this challenge, it

is possible to use a combination of maximum likelihood on the HMM and information

criteria to select the number of states [41].
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Fig. 2.10. Identifying states can be accomplished while detect-
ing steps. STaSI is applied to synthetic smFRET data. STaSI works
by first iteratively identifying change-points in the data (successive steps
shown by arrows in panel (a). The mean of the data from change-point
to change-point defines an intensity (FRET) state. An MDL heuristic
is subsequently used to eliminate (or regroup) intensity levels (b). The
MDL is plotted as a function of the number of states (c). The final analy-
sis – with change-points and states identified – is shown in (d). For more
details see Ref. [48].
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Fig. (2.11) illustrates a different strategy to infer the total number of states (K)

from a time trace. Fig. (2.11) compares the number of states inferred from a syn-

thetic FRET time trace using maximum likelihood and maximum evidence [47]. The

maximum likelihood, p(y|θ∗, K) – where θ∗ designates the parameter estimates that

maximize the likelihood – increases monotonically with the number of states. By

contrast, the maximum evidence – p(y|K) defined as the likelihood marginalized over

all unknown parameter values – peaks at the theoretically expected number of states.

While the concept of maximum evidence is not limited to HMMs, here we use

maximum evidence to illustrate model selection on HMMs.

Like the BIC, maximum evidence penalizes complexity by summing over all un-

known parameters not all of which fit the data very well. So, to construct the evidence

for our HMM example, we consider the joint likelihood for a sequence of observations,

y, and states populated at each time interval, s,

p(y, s|θ, K) =
N∏
i=2

[p(yi|si,θ, K)p(si|si−1, K)]p(y1|s1,θ, K)p(s1|K) (2.75)

where θ denotes a vector of parameters: the K-dimensional initial probability vector

of states, π ≡ p(s1|K); the K-dimensional observation parameters such as means,

µ, and standard deviations, σ, for each state assuming Gaussian p(yi|si,θ, K); and

the K × K matrix, A, of transition matrix elements aij = p(sj|si, K). Contrary to

Eq. (2.9), we have made all parameter dependencies of the probabilities contained in

Eq. (2.75) explicit.

The evidence then follows from Eq. (2.75)

p(y|K) =
∑
s

∫
dθp(y, s|θ, K)p(θ|K) (2.76)
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does not. We note, encouragingly, that for the ME inference,
jbzj always equaled K* as defined in Eq. 2.

We identify each inferred state with the true state that is
closest in terms of their means, provided the difference in
means is <0.1 FRET. Inferred states for which no true state
is within 0.1 FRET are considered inaccurate. Note that we
do not demand that one and only one inferred state be iden-
tified with the true state. This effective smoothing corrects
overfitting errors in which one true state has been inaccu-
rately described by two nearby states (consistent with the
convention of the field for analyzing experimental data).

For all synthetic traces, K0 ¼ 3 with means centered at
mz ¼ (0.25, 0.5, 0.75) FRET. Traces were made increasingly
noisy by increasing the standard deviation, s, of each state.
Ten different noise levels, ranging from s z 0.02 to s z
0.15, were used. Given the FRET states’ mean separation
and transition rates, and the lengths of the traces, this noise
range varies from unrealistically noiseless to unrealistically
noisy. Trace length, T, varied from 50 % T % 500 time
steps, drawn randomly from a uniform distribution. One
time step corresponds to one time-binned unit of an experi-
mental trace, which is typically 25–100 ms for most CCD-
camera-based experiments. Fast-transitioning (mean lifetime
of 4 time steps between transitions) and slow-transitioning
(mean lifetime of 15 time steps between transitions) traces
were created and analyzed separately. Transitions were
equally likely from all hidden states to all hidden states.
For each of the 10 noise levels and two transition speeds,
100 traces were generated (2000 traces in total). Traces for
which K0 ¼ 2 (Fig. S7) and K0 ¼ 4 (Fig. S8) were created

and analyzed as well. The results were qualitatively similar
and can be found in Section S7 of the Supporting Material.

As expected, both programs performed better on low noise
traces than on high noise traces. ME correctly determined the
number of FRET states more often than did ML in all cases
except for the noisiest fast-transitioning trace set (Fig. 2,
upper left). Of the 2000 traces analyzed here using ME
and ML, ME overfit one and underfit 232, and ML overfit
767 and underfit 391. In short, ME essentially eliminated
overfitting of the individual traces, whereas ML overfit
38% of individual traces. More than 95% (all but nine) of
ME underfitting errors occurred on traces with FRET state
noise >0.09, whereas ML underfitting was much more
evenly distributed (at least 30 traces at every noise level
were underfit by ML). The underfitting of noisy traces by
ME may be a result of the intrinsic resolvability of the
data, rather than a shortcoming of the inference algorithm;
as the noise of two adjacent states becomes much larger
than the spacing between them, the two states become indis-
tinguishable from a single noisy state (in the limit, there is no
difference between a one-state and a two-state system if the
states are infinitely noisy). The causes of the underfitting
errors by ML are less easily explained, but such errors
suggest that the ML algorithm has not converged to a global
optimum in likelihood (for reasons explained in Section S5.2
in the Supporting Material).

In analyzing the slow-transitioning traces, the methods
performed roughly equally on Probabilities 2–4 (always
within ~5% of each other). For the fast-transitioning traces,
however, ME was much better at inferring the true trajectory
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FIGURE 1 A single (synthetic) FRET trace analyzed by

ME and ML. The trace contains three hidden states. (A)
(Upper) Idealized traces inferred by ME when K ¼ 1,

K ¼ 3, and K ¼ 5, as well as the corresponding log(evi-

dence) for the inference. The data are underresolved

when K ¼ 1, but for both K ¼ 3 and K ¼ 5, the correct
number of states is populated. (Lower) Idealized traces in-

ferred by ML when K¼ 1, K¼ 3, and K¼ 5, as well as the

corresponding log(likelihood). Inferences when K ¼ 1 and

K¼ 3 are the same as for ME, but the data are overfit when
K ¼ 5. (B) The log (evidence) from ME (black) and log

likelihood from ML (gray) for 1 % K % 10. The evidence

is correctly maximized for K ¼ 3, but the likelihood
increases monotonically.

Biophysical Journal 97(12) 3196–3205

vbFRET: Bayesian Inference for smFRET 3201

Fig. 2.11. Maximum evidence can be used in model selection. a)
For this synthetic time trace, maximum likelihood (ML) will overfit the
data. This is clear from b) where it is shown that the log likelihood or
probability of the model – evaluated at θ = θ∗ – increases monotonically
as we increase the number of states, K. By contrast, maximum evidence
(ME) – obtained by marginalizing the likelihood over θ – identifies the
theoretically expected number of states, K = 3. Sample time traces are
shown in (a) and the log probability is plotted in (b). See details in text
and Ref. [47].
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To extract the number of binding states and transition rates from 
the Hfq tracking data, we applied the vbSPT analysis with an 
uninformative prior distribution to a data set of 12,130 trajecto-
ries from a single experiment on approximately ten cells. The best 
fit was achieved by a three-state model (Fig. 4a), with diffusion 
constants of approximately 3 m2 s−1, 0.7 m2 s−1 and 0.2 m2 s−1.  
We repeated the experiment, obtaining an unaltered outcome, 
and determined the accuracy of the parameter estimates by boot-
strap analysis13 (Supplementary Table 6). Next we performed 
experiments on cells treated with the antibiotic rifampicin (rif), 
which inhibits transcription and leads to global RNA decay, as 
we confirmed by RNA decay studies (Supplementary Note 5). 
For the rif-treated cells we obtained a two-state model, in which 
the two states have diffusion constants corresponding to the 
two faster states for untreated cells (3 m2 s−1 and 0.7 m2 s−1)  
(Fig. 4b and Supplementary Table 7).

To interpret the model, we mapped the different states of Hfq 
diffusion to states of Hfq binding. As Hfq is found mostly in its 
hexameric form14,15, we propose that the fastest state (3 m2 s−1) 
corresponds to the 223-kDa Hfq-Dendra2 hexamer. After rif 
treatment, the slowest state vanishes, and the fraction occupying 
the intermediate state decreases substantially (Fig. 4), indicating 
that these states may represent interactions of Hfq with different 
RNA species, either free or under processing. The slowest state 
may represent Hfq bound to RNA being transcribed, which would 
be expected to disappear upon transcription inhibition.

The decrease in the transition rate from the fast to the slow state 
after rif treatment (Fig. 4) could be explained by the decreasing 
number of RNAs available for binding. The conversion from the 
slow to the fast state could reflect the rates of Hfq dissociation 
from RNA and/or of RNA degradation, both of which should not 
be altered much by rif treatment.

When analyzing the combined data from both Hfq experi-
ments on untreated cells (23,756 trajectories), we obtained suf-
ficient evidence to split the intermediate state into two states 
(Supplementary Note 1). This is consistent with our inter-
pretation that the intermediate state represents binding to mRNA 
molecules of varying lengths and consequently varying rates of 
diffusion. After we added another 18,903 trajectories from an 
additional experiment, the four state model remained the most 
likely, but we observed by bootstrap analysis that the likelihood 
of higher-state models increased in this case (Supplementary  
Note 1). We did not observe state splitting upon pooling data 
from rif-treated cells, most probably because the RNA-associated 
pool of Hfq is diminished under this condition because of global 
RNA decay (Supplementary Note 5).

DISCUSSION
The vbSPT method opens new possibilities for objective charac-
terization of intracellular processes on the basis of single-molecule 
tracking data. With vbSPT it is possible to obtain kinetic infor-
mation from a system at steady state, which is important because 
most intracellular systems are impossible to perturb gently and 
with high specificity. We note that the intracellular environment 
in many cases will include interactions that cannot be found using 
purified components in the test tube. These include transient or 
rare interactions as well as complex interactions in uncharted path-
ways that can be probed only by altering the genetic background 
or growth conditions.

The vbSPT algorithm currently defines states by diffusion con-
stants and state lifetimes. However, the variational framework is 
flexible and could be extended to many types of more complex 
state descriptions by, for example, taking state-dependent locali-
zation errors into account.

The current analysis method can resolve states with average 
lifetimes of one time step, but accurate inference of kinetics is 
 limited to lifetimes of several time steps. Limitations on slow 
kinetics are set by the data and factors including the underlying 
model, trajectory lengths, localization error and amount of data. 
The range of accessible kinetics might be extended by modifying 
the algorithm to combine data acquired at different frame rates.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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Figure 4 | vbSPT analysis of experimental tracking data on Hfq.  
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inhibitor rifampicin (b). Top, typical super-resolution localization plot 
from a single cell. Scale bars, 0.5 m. Center, ~1,500 trajectories taken 
from an arbitrary cell. Trajectories longer than seven steps are color  
coded by the most likely state found by vbSPT analysis. Bottom, models 
including transition rates, diffusion constants (D) and mean dwell times 
( ) found by the analysis. The area represents the relative occupation 
of each state. (For standard errors from a bootstrap analysis, see 
Supplementary Tables 6 and 7.) The dashed transitions represent rare 
and therefore uncertain transitions (Supplementary Note 1).
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Fig. 2.12. The number of diffusive states detected using maxi-
mum evidence can establish changes in interactions of Hfq upon
treatment of E. coli cells with rifampicin. a) vbSPT analysis of the
RNA helper protein Hfq tracking data. Three distinct diffusive states
are detected and sample trajectories are shown color-coded according to
which state they belong. The kinetic scheme shows the diffusion coeffi-
cient in each state as well as transition rates between diffusion coefficients.
b) When treated with a transcription inhibitor (rif), vbSPT finds that
the slowest diffusive state vanishes suggesting that the slowest diffusive
state of Hfq was related to an interaction of Hfq with RNA. ∆t = 300Hz
throughout the figure. The scale bar indicates 0.5 µm2/s. See details in
Ref. [46].
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where the prior is p(θ|K) = p(π|K)p(A|K)p(µ,σ|K) and an example of how this

prior is selected is given in Ref. [47].

A numerical variational Bayesian (vb) procedure called vbFRET [47] was imple-

mented to evaluate the maximum evidence with sample results shown in Fig. (2.11).

The method has gained traction because it learns the number of states by comparing

the probability of observation given different values of K, p(y|K) [208,260–262]. The

interested reader should refer to a general discussion of variational approximations in

Ref. [98].

Using a method similar to vbFRET, maximum evidence applied to a HMM model

was used to extract the number of diffusion coefficients – “diffusive states” – sampled

from intracellularly diffusing proteins as well as transition rates describing the hop-

ping kinetics between the diffusive states [46]. Using single particle tracking (SPT)

data, the method was also implemented using a variational Bayesian procedure called

vbSPT and applied to infer the diffusive dynamics of an RNA helper protein, Hfq, me-

diating the interaction between small regulatory RNAs and their mRNA targets [46].

Fig. (2.12) details the analysis of the Hfq tracking done on a control E. coli cell and

one treated with a transcription inhibitor [rifampicin (rif)]. Fig. (2.12b) shows the

disappearance of the slow diffusion component for treated cells suggesting that this

sluggish component was associated with Hfq-RNA interactions in the untreated cell.

Finally, using a method called variational Bayes HMM for time-stamp FRET (VB-

HMM-TS-FRET), the methods above can be generalized to treat time stamp photon

arrival (as opposed to assuming binned data in intervals ∆t) as well as time-dependent

rates [261].
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2.5 An Introduction to Bayesian Nonparametrics

We have already seen how flexible (nested) models – models that can be refined

by the addition or removal of parameters – were critical to change-point analysis

and enumeration of states in HMMs. Likewise, we have also seen how free-form

probability distributions, {p1, · · · , pK} could be inferred from MaxEnt even if K,

the number of parameters, largely exceeded the number of measured data points.

Inferring a large number of parameters, i.e. a distribution on a fine grid, is useful

even if many probabilities inferred from MaxEnt have small numerical values. For

example, these probabilities may predict the relative weight of sampling a biologically

relevant albeit unusual protein fold – as compared to its native conformation – based

on free energy estimates alone even if such conformations are highly unlikely.

These previous treatments went beyond parametric modeling where models have

a given mathematical structure with a fixed number of parameters, such as Gaussians

with means and variances.

While the maximum evidence methods we presented earlier provided model prob-

abilities (marginal likelihoods p(y|K)) for a fixed number of states or parameters (K),

in this section we investigate the possibility of averaging over all acceptable K to find

posteriors p(θ|y).

These posteriors – p(θ|y) obtained by averaging over all possible starting models

– are the purview of Bayesian nonparametrics, a reasonably new (1973) approach to

statistical modeling [263]. Bayesian nonparametrics are poised to play an important

role in the analysis of single molecule data since so few model features – such as the

number of states of a single molecule in any time trace – are known a priori.

Contrary to their name, nonparametric models are not parameter-free [263]. Rather,

they have an a priori infinite number of parameters that are subsequently winnowed

down – or, more precisely as we will see, selectively sampled – by the available
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data [263–266]. This large initial model-space attempts to capture all reasonable

starting hypotheses [267] and avoids potentially computationally costly model se-

lection and model averaging [268]. In other words, they let the model complexity

adapt to the information provided by the raw data and can efficiently and rigorously

promote sparse models through the priors considered.

2.5.1 The Dirichlet process

An important object in Bayesian nonparametrics is the prior process and the most

widely used process is the Dirichlet process (DP) prior [263]. Much, though not all of

Bayesian nonparametrics, relies on generalizations of the DP and its representations;

see first graph of Ref. [269]. These representations include the infinite limit of a Gibbs

sampling for finite mixture models, the Chinese restaurant process and the stick-

breaking construction [266,270]. We will later discuss the stick-breaking construction.

Samples from a DP are distributions much like samples from the exponential of

the entropy that we saw earlier are distributions as well. Density estimation [271]

and clustering [272] are natural applications of the DP.

To introduce the DP, we start with a parametric example and first consider a prob-

ability of outcomes indexed k, π = {π1, π2, · · · , πk} – with Σkπk = 1 and πk ≥ 0 for

all k – distributed according to a Dirichlet distribution, π ∼ Dirichlet(α1, · · · , αK).

That is, with a distribution over π given by

p(π|α) =
Γ(
∑

k αk)∏
k Γ(αk)

K∏
k=1

παk−1
k . (2.77)
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The Dirichlet distribution is conjugate to the multinomial distribution. Thus, a se-

quence of observations, z = {z1, z2, · · · zN}, is distributed according to a multinomial

having K unique bins with populations n = {n1, n2, · · · , nK}

p(z|π) =
Γ(
∑

k nk + 1)∏
k Γ(nk + 1)

K∏
k=1

πnkk . (2.78)

The resulting posterior obtained from the prior, Eq. (2.77), and likelihood, Eq. (2.78),

is

p(π|z,α) =
p(z|π)p(π|α)∫
dπp(n|π)p(π|α)

=
Γ(
∑

k nk +
∑

k αk)∏
k Γ(nk + αk)

K∏
k=1

πnk+αk−1
k . (2.79)

Now, imagine a sequence of N − 1 observations, {z1, z2, · · · zN−1}. Using the

posterior above, we can calculate the probability of adding an observation to a pre-

existing cluster, j, with probability πj given the occupation {n1, · · · , nK−1} of all

pre-existing clusters K − 1 clusters.

For simplicity we assume all αk identical and equal to α/K. Then

p(zN = j|{z1, · · · , zN−1}, α) =

∫
dπ p(zN = j|π)p(π|{z1, · · · , zN−1}, α)

=

∫
dπ πjp(π|{z1, · · · , zN−1}, α). (2.80)

We can evaluate both: i) the probability that our observation populates an existing

cluster with nj members; or ii) that our observation populates a new cluster. In

the non-parametric limit – where we allow an a priori infinite number of clusters

(K →∞) – these probabilities are [269]

nj
α +N − 1

vs.
α

α +N − 1
(2.81)
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respectively. Thus α – predictably called a concentration parameter – measures the

preference for creating a new cluster. The DP therefore tends to populate clusters

according to the number of current members.

The DP describes the infinite dimensional (K →∞) generalization of the Dirichlet

distribution and describes the distribution over π, or equivalently, the distribution

over G defined as

G ≡ π · 1 =
∞∑
k=1

πkδθk (2.82)

where the Kronecker delta, δθk , denotes a mass point for parameter value θk [270,273].

The θk themselves are iid (identical independently distributed) samples from

a base distribution H (e.g. a Gaussian). In other words, the base distribution

parametrizes the density from which the θk are sampled, i.e.

G ∼ DP (α,H)

θk ∼ H. (2.83)

Thus as α → ∞, we have G → H. The idea is to use H as the hypothetical

parametric model we would have started from and use α to relax this assumption [266].

The stick-breaking construction, which we mentioned earlier, is a representation

of the DP that can be implemented. If we follow [269]

vk ∼ Beta(1, α)

πk = vk

k−1∏
j=1

(1− vj)

θk ∼ H

G = Σ∞k=1πkδθk (2.84)
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then, without proof, we find that G ∼ DP (α,H).

The analogy to stick-breaking follows from the steps given in Eq. (2.84). We begin

with a stick of unit length and break the stick at location, v1 , sampled from a Beta

distribution v1 ∼ Beta(1, α). We assign π1 = v1. The remainder of the stick has

length (1 − v1). The value of θ1 that we then assign to π1 is sampled from H. We

then reiterate to determine π2.

The πk sampled according to the stick-breaking construction are now decreasing

on average but not monotonically so. In practice, the procedure is terminated when

the remaining stick is below a predesignated threshold. In the statistics literature, it

is said that π is sampled according to π ∼ GEM(α) where GEM stands for Griffiths-

Engen-McClosky [274].

2.5.2 The Dirichlet process mixture model

We have used the DP, thus far, to generate discrete sample distributions, G. In

order to treat continuous random variables, like y, we generalize our treatment and

introduce the Dirichlet Process Mixture Model (DPMM) [275,276] where a continuous

parametric distribution, F , is convolved with G, given by Eq. (2.82),

y ∼
∫
G(θ)F (y|θ)dθ = Σ∞k=1

∫
πkδθkF (y|θ)dθ =

∑
k

πkF (y|θk). (2.85)

In other words [277]

y|θk ∼ F (y|θk)

θk ∼ H

G ∼ DP (α,H).
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The full posterior we want to determine is now

p(θ|y) ∝
∫
dπp(y|θ, π, F )p(θ|H)p(π|α). (2.86)

where, to be explicit, π ∼ GEM(α). In practice, in order to sample from this

posterior, we must first sample the distribution G, then, given this G, we construct

the mixture model involving F . Then, to sample y, we must determine from which

mixture component, k, the random variable y was selected and subsequently sample

y from the designated F (y|θk). We must then repeat over multiple G’s.

Many specific Markov chain Monte Carlo (MCMC) methods such as the simple

approach above – called Gibbs sampling – are discussed for the DPMM in Ref. [277].

A more general discussion on sampling from posteriors using MCMC can be found in

Ref. [98].

Fig. (2.13) illustrates the ability of DPMMs to infer rates from a density generated

by sampling 500 data points, y, from y ∼∑i πie
−yθi with four exponential components

[154]. The DPMM then tries to determine how many components there were and

correctly converges to four mixture components after fewer than 200 MCMC iterations

with values for the rates closely matching those used to generate the synthetic data;

see Fig. (2.13) for more details.

In comparison to MaxEnt deconvolution methods applied to exponential processes

discussed earlier, MaxEnt would have generated a very large number of components

(since MaxEnt generates smooth distributions) typically tightly centered at the cor-

rect values for the rates at low levels of noise in the data. The DPMM, on the other

hand, converges to four discrete components with broader distributions over rates

instead.
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Fig. 2.13. DPMMs can be used in deconvolution. a) A density
generated from N = 500 data points from the mixture of four exponen-
tial components. b) After fewer than 200 MCMC iterations, the DPMM
has converged to four mixture components. c) The marginal distribu-
tion of the parameter for each mixture component is shown with the red
line indicating the theoretical value used to generate the synthetic data
(0.001, 0.01, 0.1, 10). See Ref. [154] and main body for more details.

2.5.3 Dirichlet processes: An application to infinite hidden Markov model

As we mentioned earlier, one important challenge with HMMs is their reliance on

a predefined number of states. To overcome this challenge, we may use the DP from
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which to sample the HMM transition matrix, p(st|st−1) [270, 278, 279]. That is, the

prior probability of starting from st−1 and transitioning to any of an infinite number

of states is sampled from a DP. This is the idea behind the infinite hidden Markov

model (iHMM) which we now discuss.

S0 S1 S2 ST· · ·

· · ·y0 y1 y2 yT�k

⇡k

P

↵

H�

Fig. 2.14. iHMM Graphical Model [280].

The most naive formulation of the iHMM – one that samples from a DP the prior

probability of the final state ` = st from a given initial state m = st−1, p(`|m) – does

not sufficiently couple states. In other words, the state ` is preferentially revisited

under the DP process if transitions from m to ` have already occurred. But, because

at every time step, m is a new state then, under the DP prior, the same states are

never revisited.



75

To address this problem, the hierarchical DP (HDP) is used [270]. Briefly, under

a HDP, we have

G ∼ DP (α,H)

H ∼ GEM(γ)

where γ is a hyperparameter that plays the role of a concentration parameter on the

prior of the base distribution of the DP. The HDP enforces that the probability of st

starting from m = st−1 is sampled from a DP whose base has a common distribution

amongst all transition probabilities. We summarize iHMM’s as follows [259]

H ∼ GEM(γ)

πk ∼ DP (α,H)

φk ∼ P

st|st−1 ∼Multinomial(πst−1)

yt|st ∼ F (y|φst)

where πk are transitions out of state k, F (φst) describes the probability of observing

yt under the condition we are in state st, P is a prior distribution over observa-

tion parameters. A graphical model illustrating the parameter inter-dependencies is

shown in Fig. (2.14). While parameters can be inferred on an iHMM using Gibbs

sampling [98], recent methods have been developed [85,280], for example to increase

the computational efficiency of implementing the iHMM by limiting the number of

states sampled at each time point [280].
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distribution (mean and variance) and the dynamics of the
states. Even if a state is visited extremely rarely (such
as in the left trace), we are able to confidently assert the ex-
istence of distinct conformational states. Additionally, we
could use the posterior distribution over the number of hid-
den states as a simple way to quantify confidence in an inter-
pretation of the data (see Fig. S6). An interesting extension
of this model would be to combine an ensemble of different
traces into a hierarchal model (46). In such a model, we ima-
gine each trace provides a brief snapshot of some underlying
hidden distribution from which all the traces are drawn.
Then the traces, taken in aggregate, provide information
about the total conformational space and transition dy-
namics. Future work remains to be done in this area.

As a final application, we turn to single-molecule photo-
bleaching. In this setting, we observe photon counts over
time and are interested in detecting photobleaching events
that reveal themselves as sudden decreases in photon inten-
sity. We are particularly interested in counting the number of
photobleaching events in a data trace. This setting is well
suited for the iHMM because we want to detect transitions

between an unknown number of states (corresponding to
bleaching events). Fig. 4 (bottom) shows example traces
from fluorophore-tagged TRIP8b proteins (see Materials
and Methods). We can see that photobleaching events are
apparent, but in regimes of low signal/noise, it might be
quite difficult to tell by eye when bleaching events occur.
After analysis with the iHMM, the data points are colored
corresponding to the hidden state to which they were as-
signed. The poster distributions over the number of inferred
transitions are shown in Fig. S7. It is clear that the iHMM is
an excellent tool for this task. Even in settings where photo-
bleaching events are very difficult to detect by eye (right),
the iHMM is able to identify likely transitions in the data.
Using the iHMM provides a rigorous and unbiased method
to analyze all these single-molecule time series.

Application of iAMM to single ion channel
recordings

Next, we demonstrate the use of the iAMM to analyze single
ion channel recordings. We previously analyzed BK single

FIGURE 4 Application of iHMM to single-
molecule time series. (Top) Electrophysiological
recording of a patch containing multiple channels
and downward current deflections indicate channel
opening events. (Middle) Traces from single-mole-
cule FRET. (Bottom) Traces from single-molecule
photobleaching. In each case, the data points are
colored corresponding to the hidden state from
which they are likely drawn. Algorithm parame-
ters: a ¼ 1 and g ¼ 1.

Biophysical Journal 108(3) 540–556
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a b

Fig. 2.15. iHMM’s can learn the number of states from a
time series. iHMMs not only parametrize transition probabilities as
normal HMMs do. They also learn the number of states in the time se-
ries [154]. Here they have been used to find the number of states for a)
ion (BK) channels in patch clamp experiments [with downward current
deflections indicating channels opening]; b) conformational states of an
agonist-binding domain of the NMDA receptor.

Most recently, the potential of iHMMs in biophysics has been illustrated by ap-

plying iHMMs for parameter determination and model selection in single and mul-

tichannel electrophysiology (Fig. (2.15a)), smFRET (Fig. (2.15b)) as well as single

molecule photobleaching [154]. The colors in both time traces shown in Fig. (2.15)

denote the different states that the system visits over the course of the time trace.

While most transitions can be detected by eye in the first time trace, the second time

trace demonstrates the potential of iHMMs to go beyond what is possible by visual

inspection. There remain some clear challenges. For instance, it is conceivable that

iHMM’s willingness to introduce new states may over-interpret drift, say, in a time

trace as the population of new states.

2.6 Information Theory: State Identification and Clustering

Single-molecule time-series measurements are often modeled using kinetic, or

state-space, networks. As we have already seen, HMMs presuppose a kinetic model,

and – once all parameters are determined – assign a probability of being in a partic-
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ular state along a time series. Other methods such as DPMMs and iHMMs are more

flexible and do not start with fixed kinetic models a priori. Information theory, by

contrast, provides a alternative to non-parametric methods in identifying probabili-

ties of states (thought of as data “clusters”) populated along time series, that does

not rely on prior processes.

Here we focus on information theoretic clustering [281–283] that follow directly

from Shannon’s rate-distortion theory (RDT) [75].

2.6.1 Rate-Distortion Theory: Brief outline

Shannon [75] conceived of rate-distortion theory (RDT) to quantify the amount

of information that should be sent across noisy communication channels in order to

convey a message within a set error margin. Although RDT was developed for both

continuous as well as discrete transmissions, here – in the interest of single-molecule

data analysis and for sake of brevity – we will restrict our discussion to discrete

signals.

Shannon considered a transmission (a message) consisting of discrete signals from

a source to a recipient. For example, if the message were intended to convey words in

the English language, then each discrete signal would transmit a letter of the Latin

alphabet. However, the letters comprising the words being transmitted cannot be

sent directly; the communication channel requires that the transmitted information

be encoded. That is, the set of letters being transmitted needs to be transformed

into a set of codes that represent the letters being sent. For example, the letter A

could be encoded by a set of binary symbols such as 0000. After transmission, the

encoded signals are collected by the recipient and are then translated back into their

representation in the original set of symbols. In this example, the average length of

the binary sequences that encode the letters being sent corresponds roughly to the
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“rate” (of information) and the potential for misinterpreting the encoded sequence

by the recipient corresponds to the “distortion.”

Put differently, the rate quantifies the amount of information about the intended

message that is being transmitted across the channel. For example, consider encoding

the letter A in two ways: a single binary character 0 and a binary sequence 00. Be-

cause the single binary character is of shorter length than the two-character sequence,

it contains less information about the intended transmission (the letter A) than the

longer sequence. Increasing the length of the encoded representation of the intended

message thus increases the amount of information being transmitted.

The distortion, on the other hand, quantifies the potential for misinterpreting a

transmission. For example, the encoded message may be transmitted as A = 00, but

noise on the channel distorts the transmission, resulting in the signal being interpreted

as 01, which may coincide with another letter, say B.

As a rudimentary example, consider a one-word message, “kangaroo”, being trans-

mitted from a source to a recipient as a set of binary symbol groups with each group

representing a single letter of the alphabet. The intended message, “kangaroo”, is

first transformed at the source from the letters of the alphabet to a sequence of binary

symbol groups, which are then transmitted to the recipient and decoded (translated)

back into letters from the message.

Because the message will most likely be understood even if one or two letters is

misinterpreted in the decoding process, some small level of distortion may be accept-

able, e.g. “kongaroo” versus “kangaroo”. On the other hand, if several letters of

the message received are misinterpreted, then the correct translation of the intended

message is unlikely. This latter situation is undesirable, and may be remedied by

increasing the lengths of the binary sequences – i.e. by increasing the rate of informa-
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tion – that encode the letters, thereby increasing the probability of correctly decoding

the intended message and decreasing the level of distortion.

Then, given a level of acceptable distortion, such as one in eight letters (“konga-

roo” vs. “kangaroo”) we may then determine how short the binary symbol groups

must be in order to accurately convey the intended message. Finding the optimal

length of letters is the subject of RDT.

More formally, RDT poses the following question: what is the minimum rate of

information required to convey the intended message at the desired level of distortion?

RDT’s main result is that a lower-bound on the rate of information is provided by the

mutual information between the set of possible transmissions at the source and the

set of observations at the recipient. In our example above, this quantity is the mutual

information between the letters of the alphabet and the set of binary sequences that

encode each letter. The minimum rate of information is then obtained by minimizing

this mutual information given an acceptable level of distortion.

RDT and data clustering

We now discuss the relationship between RDT and data clustering. Data cluster-

ing is the grouping of elements of a data set into a subsets of elements, i.e. clusters,

containing elements that have similar properties. This is often accomplished through

the minimization of an average statistical distance between the elements assigned to

particular clusters and their center by, for example, a method called k-means clus-

tering [98]. Since there are typically fewer clusters than there are elements in the

data set, clustering is a form of compression. In other words, data clustering seeks to

compress the data with respect to some statistical distance.

In RDT, minimization of the rate of information is also a form of compression. In

effect, by minimizing the rate we are minimizing the length of the encoded message to
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be transmitted, thereby compressing the message. This compression is not performed

directly, however, but with respect to a desired (or, as we will discuss, observed)

level of distortion. For an infinite compression, there could be substantial distortion.

Likewise, if every element belongs to its own cluster the distortion vanishes.

By contrast to “hard” partitioning algorithms – where probabilities of elements

belonging to clusters are restricted to 0 or 1 – soft clustering algorithms allow elements

to exist across all clusters with some probability of membership assigned to each

cluster. These more general algorithms are particularly useful for cases where clusters

may overlap. This is especially advantageous in the context of high-noise single-

molecule measurement and allows estimation of errors associated with any parameter

extracted from the experimental data. For instance, the smFRET example that we

will explore later will have two important sources of error: empirical error (photon

counting and fluctuations in the irradiance intensity) and sampling eror (the number

of data points are finite).

Since, as we will see in the next section, RDT clustering directly returns con-

ditional probabilities that each data point belongs to each cluster [283, 284], soft

partitioning is directly built into the RDT framework.

RDT clustering: Formalism

RDT returns conditional probabilities, p(Ck|si), of cluster k, selected from a set

of n clusters C = {C1, · · · , Cn}, given observation i selected from the set of N obser-

vations s = {s1, · · · , sN}.



81

As discussed above, the rate is the average amount of information needed to specify

an observation si within the set of clusters C, computed as the mutual information

between the set of clusters C and observations s as follows

I(C, s) =
n∑
k=1

N∑
i=1

p(Ck|si)p(si) log
p(Ck|si)
p(Ck)

. (2.87)

By minimizing the rate, we maximize the compression. However, if the minimization

of the rate is not bounded, then we will over-compress and any information that

clusters contain on the observations will vanish (i.e. I (C, s)→ 0). Our minimization

of the rate thus needs to be informed, or constrained, by another quantity. This

quantity is the mean distortion among the observations within the set of clusters

C, 〈D(C, s)〉, defined as the average of the pairwise distortions between all pairs of

observations in s [281,284]

〈D(C, s)〉 =
n∑
k=1

p(Ck)
N∑

i,j=1

p(si|Ck)p(sj|Ck)dij. (2.88)

The pairwise distortion between two observations, dij, is a measure of the dissimilarity

between them, and its choice is problem-specific. For example, the dissimilarity

between two probability (mass or density) functions can be measured as the area

between their respective cumulative distribution functions, which corresponds to a

metric known as the Kantorovich distance [285].

To obtain the minimum rate of information – constrained by the mean distortion

– we define an objective function to be minimized

I(C, s) + β〈D(C, s)〉 (2.89)
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where β is a Lagrange multiplier that controls which term is favored in the minimiza-

tion. A small value of β favors minimization of the rate over distortion and, thus, high

compression. Conversely, large values of β will cause the minimization to favor the

distortion, returning a less compressed clustering result in which the clusters contain

a relatively large amount of information about the set of observations.

The formal solution to the minimization of Eq. (2.89) with respect to the condi-

tional probabilities p(Ck|si) is a Boltzmann-like distribution [283]

p(Ck|si) =
p(Ck)

Z(si, β)
exp

[
−β

N∑
j=1

p(si|Ck)dij
]
. (2.90)

The conditionals p(si|Ck) of Eq. (2.90) are obtained, in turn, using Bayes’ formula;

p(Ck) is the marginal probability of the cluster Ck

p(Ck) =
N∑
i=1

p(si)p(Ck|si) (2.91)

and Z(si, β) of Eq. (2.90) is the normalization [283]

Z(si, β) =
n∑
k=1

p(Ck) exp

[
−β

N∑
j=1

p(si|Ck)dij
]
. (2.92)

As can be seen from Eqns. (2.90)-(2.91), the conditional probabilities p(Ck|si) and

the marginal probabilities p(Ck) must be self-consistent. This self-consistency is ex-

ploited to obtain numerical solutions to the variational problem through an iterative

procedure (Blahut-Arimoto algorithm) [286,287]. The procedure begins by randomly

initializing each of the conditionals p(Ck|si) followed by normalization over C and con-

tinuing with iterative calculations of the marginals and conditionals, via Eqns. (2.90)-

(2.91), until the objective function, Eq. (2.89), has converged. In practice, this algo-
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Fig. 2.16. A soft clustering algorithm based on RDT is used to
determine states from smFRET trajectories. a) A crystal struc-
ture of the AMPA ABD. The green and red spheres represent the donor
and acceptor fluorophores, respectively. b) Detection of photons emitted
in an smFRET experiment. c) An experimental smFRET trajectory ob-
tained by binning the data in (b). d) Probability mass functions (pmfs)
of the blue and red segments highlighted in (c). e) Cumulative distribu-
tion function (cdfs) of the highlighted segments in (c). The shaded area
represents the Kantorovich distance. f) Visual representation of clusters
in (c) based on multidimensional scaling. g) Transition disconnectivity
graph (TRDG) resulting from the trajectory in (c). See details in text
and Ref. [284].
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rithm may converge to a local, rather than the global, minimum requiring that it be

re-initialized multiple times with random seeds.

RDT analysis on sample data

Both β and the number of clusters are inputs to RDT. We can use the distortion

and rate of RDT as model selection tools to choose these input.

To do so, we may first obtain an appropriate estimate of the amount of distortion

arising from errors in the data. The errors must be treated carefully on a case-by-case

basis; this is detailed for the case of smFRET data in Ref. [284].

Once this estimate is obtained, it is used as a benchmark against which to compare

the distortion, 〈D(C, s)〉, arising from other models (i.e. solutions obtained with

different numbers of clusters and/or values of β). Any model having 〈D(C, s)〉 less

than this benchmark is retained for model complexity comparison.

Model complexity is then assessed by comparing the values of the mutual informa-

tion I (C, s) arising from each model. Specifically, the model satisfying the distortion

criterion having the smallest value of I (C, s) is the least complex model retained for

further analysis. Details are provided in Ref. [284].

Fig. (2.16) sketches key steps in using RDT to identify states (i.e. clusters) of

an smFRET trajectory for a protein domain (AMPA ABD) that we will discuss

shortly. Briefly, we segment the trajectory into “elements”. Our goal is to cluster

these elements shown as short stretches of data in Fig. (2.16c). Fig. (2.16d) shows

the probability mass function (pmf) of these elements; while Fig. (2.16e) illustrates

the Kantorovich distance that we use in our distortion. We subsequently use mul-

tidimensional scaling [288] to map clusters into two dimensions (Fig. (2.16f)). This

gives us visual insight into cluster overlap as well as the breadth of the conditional

distributions p(Ck|si) detailed in Ref. [284].
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Fig. (2.16g) captures another useful representation of the conformational space

beyond clusters: the free energy landscape. A free energy landscape depicts the con-

formational motions of proteins (or their domains) such as the AMPA ABD, that

we will discuss shortly, as diffusion on a multidimensional free energy surface, with

conformational states represented as energy basins on the landscape and the tran-

sition times being characterized by the heights of the energy barriers among the

set of basins [289, 290]. Because conformational motion in smFRET experiments is

projected on a 1-dimensional coordinate, we approximate the free energy landscape

with a transition disconnectivity graph (TRDG) [289,290]. A simple, 3-state TRDG

is shown in Fig. (2.16g). The nodes represent relative free energies of the confor-

mational states while the horizontal lines represent free energies at the barriers for

transitions among the conformational states. Briefly, the TRDG is constructed by

first identifying the slowest transition (i.e. the highest energy barrier) between two

disjoint sets in the network [284]. Each subsequently faster transition between dis-

joint sets is then identified resulting in the branching structure of the TRDG detailed

in Refs. [284,289,290].

Application of RDT to single molecule time-series

We apply RDT clustering to extract kinetic models from smFRET time traces

[284, 291, 292]. In the example we now discuss, smFRET monitors the conforma-

tional dynamics of binding domains of a single AMPA receptor, an agonist-mediated

ion channel prevalent in the central nervous system. In the context of RDT, each

smFRET trajectory is viewed as a noisy message received from the source, i.e. the

underlying conformational network. RDT is used to decode the message sent by the

source and to classify intervals along the time trace into underlying clusters (confor-

mational states).
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AMPA receptors are among the most abundant ion-channel proteins in the cen-

tral nervous system [291]. They are comprised of extracellular N-termini and agonist

binding domains (ABDs) [involved in ion channel activation [291]], transmembrane

domains and intracellular C-terminal domains. They are agonist-mediated ion chan-

nels and interaction of the ABDs with neurotransmitters – such as glutamate – in-

duces conformational motion in the protein which, in turn, triggers the activation of

ion transmission through the cellular membrane.

X-ray crystal structures [293] show that ABD has two lobes that form a cleft

containing the agonist-binding site [284]. X-ray studies also suggest that the degree

of cleft closure controls the activation of the ion channel [293], with a closed cleft

corresponding to an activated channel, but exceptions to this conjecture exist [294].

Molecular dynamics simulation [295,296] further suggest that ABD is capable of con-

formational motion even when bound to the full agonist glutamate, and that confor-

mational fluctuations are increased in the absence of a bound agonist. What is more,

smFRET studies of the apo and various agonist-bound forms of the AMPA ABD

support this theoretical result [291] and, together, suggest that the activation mecha-

nism is more complex. In order to gain deeper insight into this allosteric mechanism,

we used RDT clustering along with time series segmentation and energy landscape

theory to analyze the data [284].

Here we discuss the results of RDT clustering applied to smFRET trajectories

of the AMPA ABD while bound to three different agonists: a full agonist, a partial

agonist, and an antagonist [284]. The properties extracted from each of these sys-

tems, including population distributions and TRDGs, are shown in Fig. (2.17) [284].

Parameters estimated from the clustering results, including mean efficiencies, oc-

cupation probabilities, escape times and free energies of the basins are shown in

Table (2.1) [284].
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As shown by the transition networks, TRDGs, and state distributions in Figs. (2.17a)-

(2.17c), the model selection process results in the assignment of 4, 5, and 6 states for

the ABDs bound to the full agonist, partial agonist, and antagonist, respectively.

As shown in Fig. (2.17), and Table (2.1) [284], the most dominant state when the

ABD is glutamate-bound has 74% occupation probability and a mean efficiency of

0.85, which corresponds to a relatively short interdye distance of ∼ 38 Å, in com-

parison to the apo form of the ABD [291]. Other states have smaller occupation

probabilities (< 10%) which, along with the relatively slow escape times from the

states, suggest that, although conformational dynamics are observed, the glutamate-

bound ABD possesses a relatively stable and closed ABD.

By contrast, the most populated state in the partial agonist-bound ABD system

shown in Fig. (2.17b) has a smaller mean efficiency of 0.74 and a smaller occupation

probability of 52%, indicating a longer interdye distance and a less stable confor-

mation. Furthermore, the TRDG indicates a smaller transition barrier out of many

states in the network which, along with the increase in the number of significantly

populated states, suggests that ABD is more active when bound to the partial agonist.

Lastly, the results of the antagonist-bound ABD returned six states displaying

a broader interdye range and a larger relative occupation at lower efficiencies. The

most populous state (41%), however, has a high mean efficiency of 0.88, suggesting

that the channel should be activated while occupying this closed cleft conformation as

defined in Ref. [292]. Inspection of the TRDG shows relatively smaller (∼ 1 kcal/mol)

transition barriers and we found escape times for all states that are relatively faster

(200-500 ms), suggesting a conformationally active ABD relative to the full and partial

agonist-bound systems. It is this fast and frequent conformational motion that is the

source of the ion channel’s lack of activation.
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Fig. 2.17. RDT clustering reveals differences in conformational
dynamics for the AMPA ABD. State distributions and TRDGs are
given for the full agonist-bound ABD (a); the partial agonist-bound ABD
(b); and the antagonist-bound ABD (c). 〈E〉 denotes the mean efficiency.
See main body and Ref. [284] for details.
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Table 2.1.
RDT clustering returns state properties for the AMPA ABDs.

These properties include mean efficiencies (〈E〉), occupation probabilities
(p(Sk)), free energies (Fi), and escape times with 95% confidence inter-
vals, for the full agonist (glutamate), the partial agonist (nitrowillardiine),
and the antagonist (UBP282). See main body and ref [284] for details.
Sapporo(Nick: Removed hypothesis test results from table.)

〈E〉 p(Sk) Fi escape time
(%) (kcal/mol) (ms)

Full Agonist
0.97 10 1.21 308 (220,425)
0.85 74 0 674 (589,753)
0.75 8 1.31 185 (145,220)
0.64 8 1.29 310 (240,384)

Partial Agonist
0.93 16 0.68 807 (690,928)
0.84 17 0.68 288 (260,300)
0.74 52 0 664 (618,698)
0.66 12 0.88 290 (260,308)
0.47 3 1.75 502 (388,634)

Antagonist
0.88 41 0 490 (458,519)
0.76 27 0.26 223 (207,236)
0.62 16 0.56 207 (193,217)
0.51 11 0.78 220 (203,236)
0.32 3 1.47 250 (217,283)
0.11 2 1.71 512 (420,619)
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In summary, RDT clustering applied to these three systems provides broader

insight into the activation mechanism of the AMPA receptor [284]. The antagonist-

bound ABD exhibits fast conformational fluctuations and a relatively unstable struc-

ture that explores a broad range of interdye distances while the most stable conforma-

tion of the partial agonist-bound ABD displays a relatively large interdye distance,

indicating a weaker, and/or sterically distorted structure. By comparison, the full

agonist-bound ABD displays a relatively stable and static structure with a small in-

terdye distance, suggesting a strong and stable interaction of the full agonist with

the ABD. It is the ability of the full agonist to hold the cleft of the ABD closed in

a stable manner that causes the full activation of, i.e. the maximum ionic current

through, the ion channel.

2.6.2 Variations of RDT: Information-based clustering

Similar in spirit to RDT is a general method known as information-based cluster-

ing that has been used on gene expression data [281]. Information-based clustering

uses a similarity measure – rather than a distortion measure – to quantify how alike

elements are [281].

However, unlike in RDT, the quantity that plays the role of RDT’s distortion in

information-based clustering – a quantity termed “multi-information”– is a multidi-

mensional mutual information.

An advantage of information-based clustering is that multidimensional relation-

ships among the data to be clustered are naturally incorporated into the clustering

algorithm. The objective function to be maximized is

〈S(C, s)〉 − TI(C, s) (2.93)
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where C are again the set of clusters and s the set of observations and T is a “trade-

off” parameter.

In Eq. (2.93), 〈S(C, s)〉 is the average multidimensional similarity among the set

of observations within the set of clusters [281], I(C, s) is the mutual information

between the set of clusters and the set of observations.

2.6.3 Variations of RDT: The information bottleneck method

There exists another variation of RDT proposed by Tishby et al. [282], termed

the information bottleneck (IB) method, which focuses on how well the compressed

description of the data, i.e. the clusters or states, can predict the outcome of another

observation, say u. It is similar to information-based clustering however its focus is

on predicting the outcome of another variable and the “distortion” term is given by

the mutual information between the clusters and u.

In other words, the information contained in s is squeezed (compressed) through

the “bottleneck” of clusters C which is then used to explain u. The advantage with

IB is that there is no need for a problem-specific distortion.

Just like in RDT, minimizing the mutual information between s and C generates

broad overlapping clusters. However maximizing the mutual information between u

and C tends to create sharper clusters.

Mathematically the objective function in IB to be maximized is

I(C, s)− βI(C,u) (2.94)
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where, as before, I(C, s) =
∑

k,i p(Ck, si) log(p(Ck|si)/p(Ck)) [likewise for I(C,u)]

and β is a trade-off parameter. The maximization of Eq. (2.94) yields [282]

p(Ck|si) =
p(Ck)

Z(si, β)
exp

[
−β

M∑
j=1

p(uj|si) log
p(uj|si)
p(uj|Ck)

]

≡ p(Ck)

Z(si, β)
exp [−βDKL[p(u|si)‖p(u|Ck)]] (2.95)

where DKL[p(u|si)‖p(u|Ck)] is the KL divergence, and

Z(si, β) =
∑
k

p(Ck) exp[−βDKL[p(u|si)‖p(u|Ck)]] (2.96)

is the normalization. When comparing Eq. (2.95) with the formal solution of the

conventional RDT, Eq. (2.90), we see that the KL divergence, DKL[p(u|si)‖p(u|Ck)],

serves as an effective distortion function in the IB framework. This means that

by minimizing the distortion DKL[p(u|si)‖p(u|Ck)], one obtains a compression of s

(through C) that preserves as much as possible the information provided by the

relevant observable u.

For illustrative purposes, we consider two special limiting values for the trade-off

parameter: β → 0 and β → ∞. As β → 0, we have Z(si, β → 0) =
∑

k p(Ck) =

1. Eq. (2.95) then implies p(Ck|si) = p(Ck). Using Bayes’ rule, one then obtains

p(si|Ck) = p(si). This means that the probability to find si in a cluster is the same

for all clusters, implying that all clusters overlap or, effectively, we have just one

cluster.

The opposite extreme, β → ∞, is the limit of hard-clustering where, to leading

order, the normalization becomes Z(si, β) → p(Ck∗) exp[−βDKL[p(u|si)‖p(u|Ck∗)]],

where Ck∗ is the cluster with p(uj|Ck∗) = p(uj|si). Substituting this approximate

normalization back into Eq. (2.95), we arrive at: p(Ck|si) = 1 if p(uj|si) = p(uj|Ck),
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s = {s1, ..., sN} C = {C1, ..., Cn}

minimize I(C, s)
(compression)

I(s, u)

u = {u1, ..., uM}

data to be clustered clusters

relevant observable

max. 
achievable
relevance 

x = {x1, ..., xN} C = {C1, ..., Cn}

I(x, x)

x = {x1, ..., xM}

past sequences 
to be clustered clusters

future sequences as
relevant observable

max. 
achievable

predictability 

a b

minimize I(C, x)
(compression)

maximize I(C, u)
(relevance)

maximize I(C, x)
(predictability)

Fig. 2.18. The IB method can be used to construct dynamical
models. a) The IB method starts from the data to be clustered s (top
left), clustering then compresses the information contained in s by mini-
mizing the rate I(C, s) (from top left to top right). Instead of introducing
an a priori distortion measure, the IB compression maximizes I(C,u)
quantifying how well another observable, u, is predicted (from top right
to bottom). The maximum achievable “relevance”, predicting u from s,
is given by I(s,u). b) To construct a predictive dynamical model from
time series data, we may define past sequences (top left) as the data to
be clustered s and future sequences (bottom) as the relevant observables
u.
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and p(Ck|si) = 0 otherwise. Since the conditional probability is either one or zero,

the limit β →∞ coincides precisely with the hard clustering case.

Information bottleneck method: Application to dynamical state-space net-

works

The IB framework has been applied directly to time series data to construct dy-

namical state-space network models [62, 63]. Here we briefly describe important fea-

tures of the IB-based state-space network construction detailed elsewhere [50,62].

Intuitively, state-space networks derived from the IB construction, must preserve

maximum information relevant to predicting the future outcome of the time series.

More precisely, they must be minimally complex but, simultaneously, most predictive

[50,282,283].

As an illustration, we consider a time series x sampled at discrete times. We have

both past, ←−x = {←−x1, · · · ,←−xN}, and future, −→x = {−→x1, · · · ,−→xM}, sequences of different

total length. We have bolded the elements of ←−x and −→x because each element can

itself be a vector of some length, say L and L′ respectively.

To construct a minimal state-space network with maximal predictability from

the IB framework, we identify the data to be clustered s as the past sequences ←−x

and the relevant observable u as the future sequences −→x (see Fig. (2.18a)-(2.18b)).

The clusters C obtained in Fig. (2.18b) represent constructed network states. In

principle, the length of the past and future sequences L and L′ should be chosen to

be long enough as compared to all dynamical correlations in the time series. However,

this may cause some practical sampling problems if L and L′ are too large. These

problems are addressed using multiscale wavelet based CM described in detail in

Refs. [50, 62,63].
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Multiscale state-space networks developed from IB methods may capture dynam-

ical correlations of conformational fluctuations covering a wide range of timescales

(from millisecond to second) [62,63]. Moreover, the topographical features of the net-

works constructed, including the number connections among the states and the het-

erogeneities in the transition probabilities among the states, depend on the timescale

of observation, namely, the longer the timescale, the simpler and more random the

underlying state-space network becomes. These insights provides us with a network

topography perspective to understand dynamical transitions from anomalous to nor-

mal diffusion [62,63].

We end this brief section by mentioning that clustering past sequences to form

state-space networks in which the relevant variable are future sequences was proposed

separately by Crutchfield et al. [297,298], and termed computational mechanics (CM).

The states and resulting state-space network are called causal states and epsilon

machine, respectively. We refer the interested readers to an excellent review of CM

[299].

2.7 Final Thoughts on Data Analysis and Information Theory

We have previously seen how information theory can be used in deconvolution,

model selection and clustering. In this purely theoretical section, we discuss efforts

to use information theory in experimental design and end with some considerations

on the broader applicability of information theory.

2.7.1 Information theory in experimental design

Just as information theory can be used in model selection after an experiment has

been performed, it may also be used to suggest an experimental design, labeled ξ.



96

The goal, in this so far theoretical endeavor, is to find a design that optimizes

information gain [300–302]. For instance, a choice of design may involve tuning data

collection times, bin sizes, choice of variables under observation and sample sizes

[303,304]. Fig. (2.19) illustrates – for a concrete example we will discuss shortly – how

the number of observations can be treated as a design variable and how information

gained grows as we tune this variable (repeat trials).

To quantify the information gained, we first consider the expected utility, U(ξ) –

depending on the experimental design ξ – defined as the mutual information between

the data, y, and model, θ [300]

U(ξ) ≡ I(y,θ|ξ) =

∫
dθdyp(y,θ|ξ) log

(
p(y,θ|ξ)

p(y|ξ)p(θ|ξ)

)
(2.97)

which we must now maximize with respect to our choice of experiment, ξ.

More concretely, the choice of experiments dictates the mathematical form for

p(y|ξ) and p(y,θ|ξ). Thus maximizing with respect to ξ may imply comparing differ-

ent mathematical forms dictated by the experimental design for p(y|ξ) and p(y,θ|ξ).

Our utility function, U(ξ), is simply the difference in Shannon information before

and after the data y was used to inform the model

I(y,θ|ξ) = I(θ|y, ξ)− I(θ|ξ) (2.98)

where

I(θ|y, ξ) ≡
∫
dθdyp(y,θ|ξ) log p(θ|y, ξ)

I(θ|ξ) ≡
∫
dθdyp(y,θ|ξ) log p(θ|ξ). (2.99)
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As an illustration of this formalism, we can now quantify whether future experi-

ments – repeated trials yielding data y′ – appreciably change the expected information

gain. We begin by iterating Eq. (2.98) and write

I(y′,θ|y, ξ) = I(θ|y′,y, ξ)− I(θ|y, ξ). (2.100)

As a concrete example, suppose we monitor photon arrival times in continuous time.

We write the likelihood, i.e. the probability of observing a sequence of photon arrivals

with arrival times t = {t1, t2, · · · , tN},

p(y = t|θ = r, ξ) = re−rt1 × re−rt2 × · · · × re−rtN (2.101)

where r is the rate of arrival and ξ is implicitly specified by our choice of experiment

(and thus by the form of our likelihood). For sake of concreteness, we take a simple

exponential prior distribution over r, p(r|ξ) = φe−rφ where φ is a hyperparameter.

Now, our joint distribution, p(t, r|ξ) = p(t|r, ξ)p(r|ξ), as well as our marginal distri-

bution over data, p(t|ξ) =
∫
drp(t, r|ξ), are fully specified. We tune the design here

by selecting N .

The expected information gained can now be explicitly calculated from Eq. (2.100).

The integrals are over all allowed r and arrival times. All, but the last time, tN , are

considered as y. The last time, tN , is y′.

The expected information gained, I(y′,θ|y, ξ), increases monotonically but sub-

linearly with the number of trials and, for our specific example, independently of

φ. See Fig. (2.19). The monotonicity is expected because we have averaged over all

possible outcomes (i.e. photon arrival times). The sub-linearity however quantifies

that future experiments result in diminishing returns [305]. Put differently, insofar
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as the expected information gained allows to build a predictive model, most of the

information gathered has little predictive value.
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Fig. 2.19. Diminishing returns: most data collected from ad-
ditional experiments does not result in information gain. The
expected information gained, Eq. (2.100), grows sub-linearly with the
number of photon arrival measurements.

2.7.2 Predictive information and model complexity

The result from Fig. (2.19) in the previous section suggested that most repeated

experiments yield little information gain.

Here we want to quantify this concept by calculating the predictive value of pre-

viously collected data on future data. We consider the mutual information linking

past, i.e. previously collected, data, yp, and future, yf , data [300,305]

Ipred(yf ,yp|ξ) ≡
∫
dyfdypp(yf ,yp|ξ) log

(
p(yf ,yp|ξ)

p(yf |ξ)p(yp|ξ)

)
. (2.102)
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We wish to simplify Eq. (2.102) and derive Ipred(yf ,yp|ξ)’s explicit dependence

on the total number of data points collected in the past, Np. We call Nf the total

number of data points collected in the future.

To simplify Eq. (2.102), we re-write Eq. (2.102) as follows

Ipred(yf ,yp|ξ) = Ijoint − Ifuture − Ipast

=

∫
dyfdypp(yf ,yp|ξ) log p(yf ,yp|ξ)

−
∫
dyfdypp(yf ,yp|ξ) log p(yf |ξ)−

∫
dyfdypp(yf ,yp|ξ) log p(yp|ξ)

(2.103)

and express p(yf ,yp|ξ) as

p(yf ,yp|ξ) =

∫
dK` p(yf ,yp,θ|ξ) (2.104)

where K enumerates model parameters. We can similarly re-write both p(yf |ξ) and

p(yp|ξ). Next, we simplify p(yf ,yp|ξ) by assuming that individual data points, both

past and future, are sufficiently independent. As the number of total data point,

Nf +Np, grows we invoke Laplace’s method – and using the notation for the rescaled

logarithm of the likelihood f introduced earlier, Eq. (2.5) – to simplify p(yf ,yp|ξ).

This yields

p(yf ,yp|ξ) =

∫
dKθ p(yf ,yp,θ|ξ) ≡

∫
dKθ e(Nf+Np) log f(yf ,yp,θ|ξ)

∼ 1√
det ((Nf +Np)[−(log f(yf ,yp,θ

∗|ξ)))′′]
× e(Nf+Np) log f(yf ,yp,θ

∗|ξ)

∝ 1

(Nf +Np)K/2
e(Nf+Np) log f(yf ,yp,θ

∗|ξ) (2.105)
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where θ∗ is the value of θ maximizing the integrand. Similarly, p(yf |ξ) and p(yp|ξ)

can be re-written as follows

p(yf |ξ) ∝
1

N
K/2
f

eNf log f(yf ,θ
∗
f |ξ) (2.106)

p(yp|ξ) ∝
1

N
K/2
p

eNp log f(yp,θ
∗
p|ξ) (2.107)

where θ∗f and θ∗p are those parameter values that maximize their respective inte-

grands. But, for sufficiently large enoughNf andNp, log f(yf ,θ
∗
f |ξ) and log f(yp,θ

∗
p|ξ)

are both well-approximated by log f(yf ,yp,θ
∗|ξ). This is true to the extent that yf

and yp are typical. Thus [305]

p(yf |ξ) ∝
1

N
K/2
f

eNf log f(yf ,yp,θ
∗|ξ) (2.108)

p(yp|ξ) ∝
1

N
K/2
p

eNf log f(yf ,yp,θ
∗|ξ). (2.109)

Inserting these simplified probabilities, Eq. (2.105), (2.108) and (2.109), into

Eq. (2.103) yields an extensive part that scales with the number of data points (first

two lines) and, to next order, a portion scaling with the logarithm of the number of

data points (third line) [305]

Ipred(yf ,yp|ξ) ∼ (Nf +Np)

∫
dyfdypp(yf ,yp|ξ) log f(yf ,yp,θ

∗|ξ)

−Np

∫
dyfdypp(yf ,yp|ξ) log f(yf ,yp,θ

∗|ξ)

−Nf

∫
dyfdypp(yf ,yp|ξ) log f(yf ,yp,θ

∗|ξ)

− K

2
log(Nf +Np) +

K

2
logNf +

K

2
logNp +O(N0

f ) +O(N0
p ).

(2.110)
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The extensive portion of Ipred, Eq.(2.110), cancels to leading order. This directly

implies that the vast majority of data collected provides no predictive information.

If we then ask what the past data collected tells us about the entirety of future

observations (Nf →∞), upon simplifying Eq. (2.110), we find

Ipred =
K

2
logNp. (2.111)

In other words, the predictive information grows logarithmically with the data col-

lected and linearly with K.

Asymptotically, the predictive information is directly related to features of the

model (in this case, the number of parameters) drawn from the data. In addition,

Eq. (2.111) provides an interpretation to the penalty term of the BIC [73] as twice

the predictive information.

2.7.3 The Shore & Johnson axioms

While we’ve discussed the Shannon entropy in the context of its information the-

oretic interpretation, the SJ axioms provide a complementary way to understand the

central role of information theory in model inference.

The key mathematical steps in deriving the Shannon entropy from the SJ axioms

concretely highlight what assumptions are implicit when using H = −∑i pi log pi

that go beyond the illustration of the kangaroo example with eye-color and hand-

edness. Conversely, they clarify which assumptions must be violated in rejecting

H = −∑i pi log pi in inferring models for {pi} [151,306].

Briefly, SJ wanted to devise a prescription to infer a probability distribution, {pi}.

Thus they constructed an objective function which, when maximized, would guarantee

that inferences drawn from their model – the probability distribution, {p∗i }, which



102

maximizes their objective function – would satisfy basic self-consistency conditions

that we now define.

SJ suggested that the maximum of their objective function must be: 1) unique; 2)

coordinate transformation invariant; 3) subset-independent (i.e. if data are provided

on subsets of a system independently, then the relative probabilities on two subsets

of outcomes within a system should be independent of other subsets); 4) system-

independent (i.e. if data are provided for systems independently, the joint probability

for two independent systems should be the product of their marginal probabilities).

The starting point is a function H (to be determined by the axioms) constrained

by data (using Lagrange multipliers). SJ considered general equality and inequality

constraints for the data.

For concreteness, here we consider a single constraint on an average ā of a quantity

a. Then SJ’s starting point is the following objective function

H({pi, qi})− λ
(∑

i

aipi − ā
)
. (2.112)

To find the specific form for H, we first invoke SJ’s axiom on subset independence.

Subset independence states that unless the data are coupled, then the maximum of

Eq. (2.112) with respect to each pi can only depend on this index, namely i. This is

only guaranteed if H is a sum over i’s, i.e. outcomes. That is,

H =
∑
i

f(pi, qi). (2.113)

To further specify the function f , we must apply SJ’s second axiom of coordinate

invariance. To do this, we use a continuum representation for the probabilities and

write Eq. (2.113) as

H =

∫
D[x]f(p(x), q(x)) (2.114)
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where D[x] denotes the integration measure. Our goal is to show that the maximum

of H − λ
(∫
D[x]p(x)a(x)− ā

)
with respect to p(x) – where we have used an average

constraint only as a matter of simplicity– is equivalent to the maximum of the co-

ordinate transformed H ′ − λ′
(∫
D′[y]p′(y)a′(y)− ā

)
with respect to p′(y) where the

primes denote a coordinate transform from x→ y. That is

δ

δp(x)

(
H − λ

(∫
D[x]p(x)a(x)− ā

))
=

δ

δp′(y)

(
H ′ − λ′

(∫
D′[y]p′(y)a′(y)− ā

))
(2.115)

where the δ denotes a functional derivative. To simplify Eq. (2.115), we note that,

under coordinate transformation

D′[y] = D[x]J (2.116)

where J is the corresponding Jacobian. It then follows that one acceptable rela-

tionship between the transformed and untransformed probabilities and observables

is [141]: p′ = J−1p, q′ = J−1q (from normalization of the coordinate transformed

distributions); and a′ = a (from the conservation of
∫
D[x]p(x)a(x) under coordinate

transformation). Selecting these relations, we find H ′ =
∫
D[x]Jf(J−1p(x), J−1q(x)).

Thus Eq. (2.115) simplifies to

− λa(x) + g(p(x), q(x)) = −λ′a(x) + g(J−1p(x), J−1q(x)) (2.117)

where g(p, q) = δf(p, q)/δp. Since a(x) and the Jacobian, J , are arbitrary functions

of x, then Eq. (2.117) can only be true if g(p, q) = g(p/q) and λ = λ′. By integrating

g, it then follows that f(p, q) = ph(p/q) up to an arbitrary constant in q where h is

some function of p/q. The fourth axiom on system independence ultimately fixes the

functional form for h.
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To see this, we consider independent constraints on two systems described by

coordinates x1 and x2 as follows

∫
D[x]ak(xk)p(x1, x2) = āk (k = 1, 2). (2.118)

We then define H =
∫
D[x]p(x)h(r) where r(x) ≡ p(x)/q(x) and x ≡ {x1, x2}.

Variation of H with respect to p under the constraints given in Eq. (2.118) yields

δ

δp(x)

(
H − λ1

∫
D[x]p(x1, x2)a1(x1)− λ2

∫
D[x]p(x1, x2)a2(x2)

)
= h(r(x)) + r(x)h′(r(x))− λ1a1(x1)− λ2a2(x2)

= h(r1(x1)r2(x2)) + r1(x1)r2(x2)h′(r1(x1)r2(x2))− λ1a1(x1)− λ2a2(x2) = 0

(2.119)

where, from system independence, we’ve set r(x) to r1(x1)r2(x2) and h′ = δh/δr. To

obtain a simple differential equation in terms of h(r), we take derivatives of the last

line of Eq. (2.119) with respect to both x1 and x2 which yields

r′1(x1)r′2(x2)(r2
1r

2
2h
′′′(r1r2) + 4r1r2h

′′(r1r2) + 2h′(r1r2)) = 0 (2.120)

which further simplifies to

r2h′′′(r) + 4rh′′(r) + 2h′(r) = 0 (2.121)

from which we find h(r) = −K log(r) + B + C/r with constant K, B and C. From

H =
∫
D[x]p(x)h(r), we find that H assumes the following form

H = −K
∫
D[x]p(x) log(p(x)/q(x)) (2.122)
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up to a positive multiplicative factor K, and additive constants (independent of our

model parameters p(x)) that we are free to set to zero. In discrete form, this becomes

[141]

H = −K
∑
i

pi log(pi/qi). (2.123)

Thus any function with a maximum identical to that of H can be used in making

self-consistent inferences – that is, inferences that satisfy the SJ axioms – about

probability distributions. In the absence of any constraint, maximizingH with respect

to each pi returns the corresponding hyperparmeter qi up to a normalization constant.

The hyperparameters are therefore understood to be a probability distribution.

Finally, a note on axiom 1 is in order: while our derivation was for a special type of

constraint, our arguments above hold and, in particular, maximizing the constrained

H returns a unique set of {pi} if the constraints do not change the overall convexity

of the objective function.

The mathematics above help clarify the following important points about the

principle of MaxEnt and, more broadly, the philosophy of data analysis.

1) While historically MaxEnt has been closely associated to thermodynamics and

statistical mechanics in physics, nothing in H’s derivation limits the applicability of

MaxEnt to equilibrium phenomena. In fact, MaxEnt is a general inference scheme

valid for any probability distributions whether they be probability distributions over

trajectories or equilibrium states [49]. In fact, MaxEnt’s application to dynamical

system is reviewed in Ref. [49]. To reiterate, MaxEnt is no more tied to equilibrium

than are Bayes’ theorem or even the concept of probability itself.

2) While the H derived from SJ’ axioms is additive, in that H({pij = uivj}) =

H({ui})+H({vj}), H can be used to infer probability distributions for either additive

or non-additive systems [151]. The SJ axioms only enforce that if no couplings are

imposed by the data, then no couplings should be imposed by hand. Put differently,
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the function H that SJ have derived is not only valid for independent systems. It

only says that if the data do not couple two outcomes i and j, then the probabilities

inferred must also be independent and satisfy the normal addition and multiplication

rule of normal probabilities. In this way, spurious correlations unwarranted by the

data are not introduced into the model inferred. Conversely, if data couples two

outcomes, then this H constrained by coupled data generates coupled outcomes.

This fundamentally explains why it is incorrect to use other unconventional en-

tropies in model inference which specifically enforce couplings by hand [151]. What

is more, parametrizing ad hoc couplings (the q-parameter, say, in the Tsallis en-

tropy [307]) in a prior (equivalently the entropy) from data is tautological since the

data are used to then inform the prior and, simultaneously, the likelihood [306].

3) As a corollary to 2, H is not a thermodynamic entropy [49]. The thermody-

namic entropy, S, is a number not a function. S is H evaluated at its maximum, {p∗i },

under equilibrium (thermodynamic) constraints. While H is additive, the thermody-

namic entropy S, derived from H, may not be. The non-additivity of S originates

from the non-additivity of the constraints.

4) Historically, constraints used on H to infer probabilistic models were limited

to means and variances [116,117] and, in order to infer more complex models, exotic

ad hoc constraints were developed leading to problems detailed in Refs. [308–311].

But, as we have explained earlier, H is the logarithm of a prior and constraints on H

are the logarithm of a likelihood. Selecting constraints should be no more arbitrary

than selecting a likelihood. Classical thermodynamics, as it arises from MaxEnt, is

therefore atypical. It is a very special (extreme) example where data (such as average

energy or, equivalently, temperature) is provided with vanishingly small error bar and

the likelihoods are delta-functions.
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2.7.4 Repercussions to rejecting MaxEnt

Since the time when Jaynes provided a justification for the exponential distribution

in statistical mechanics from Shannon’s information theory [116,117], other entropies

have been invoked to justify more complex models in the physical and social sciences

such as power laws [307, 312–320]. The most widely used of these entropies is the

Tsallis entropy [307].

It has been argued that the Tsallis entropy generalizes statistical mechanics be-

cause it is not additive [317, 319, 321]. That is, H({pij = uivj}) = H({ui}) +

H({vj}) + εH({ui})H({vj}), where ε measures the deviation from additivity (though

the choice of ε has been criticized because it is selected in an ad hoc manner by fitting

data [306,322,323]).

Non-additive entropies do not follow from the SJ axioms. In fact, the Tsallis

entropy explicitly violates the fourth axiom [151]. Thus, we can ascertain that the

resulting H no longer generates self-consistent inferences about probability distribu-

tions.

To see this, we start from the discrete analog of Eq. (2.114) dictated by the third

axiom

H(p) =
∑
k

f(pk) (2.124)

and, for simplicity only, we assume a uniform prior qj which we exclude from the

calculation. Now we consider bringing together two systems, indexed i and j, with

probability pij.

The fourth axiom – system independence – says that bringing together two systems

having marginal probabilities u = {ui} and v = {vj} gives new probabilities pij that

are factorizable as pij = uivj unless the data couples the systems.
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That is, under independent constraints, on {ui} and {vj} we have

H(p)− λa
(∑

i,j

pijai − ā
)
− λb

(∑
i,j

pijbj − b̄
)
. (2.125)

Taking a derivative with respect to pij = uivj then yields

f ′(pij)− λaai − λbbj = 0. (2.126)

Subsequently taking two more derivatives of Eq. (2.126) (with respect to ui and vj)

yields

f ′′(pij) + pijf
′′′(pij) = 0. (2.127)

Defining f ′′(pα) ≡ g(pα), where α ≡ (i, j), yields from Eq. (2.127) g(pα) = −1/pα from

which we obtain f(pα) = −pα log pα + pα and, ultimately, H = −∑α pα log pα + C,

where C is a constant.

By contrast, the Tsallis entropy is defined as

H ≡ K

1− q

(∑
k

pqk − 1

)
. (2.128)

This entropy satisfies SJ’s third axiom (by virtue of still being a sum over outcomes)

but not the fourth axiom. That is, even if data do not couple systems indexed i and

j, it is no longer true that pij = uivj. Rather, the Tsallis entropy assumes a coupling

pij = p(ui, vj) even if no such coupling has yet been imposed by the data. What is

more, the constant q is fitted to the data from which it (problematically) follows that

both prior and likelihood are informed by the data [306].
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To find precisely what the form of this coupling is, we repeat steps that lead us

from Eqns. (2.125)-(2.127) except treating pij as a general function of p(ui, vj) and

using the f(pij) dictated by Eq. (2.128). This yields

(2− q)−1pij
∂2pij
∂ui∂vj

=
∂pij
∂ui

∂pij
∂vj

. (2.129)

As a sanity check, in the limit that q approaches 1 (i.e. when the Tsallis entropy

approaches the usual Shannon information) we immediately recover pij = uivj.

The solution to Eq. (2.129) is [151]

pij =
(
uq−1
i + vq−1

j − 1
)1/(q−1)

. (2.130)

This exercise can be repeated for other entropies (such as the Burg entropy [324])

and the explicit form for the correlations such entropies impose can be calculated [151].

Eq. (2.130) captures the profound consequence of invoking the Tsallis entropy, or

other entropies not consistent with the SJ axioms, in probabilistic model inference.

By virtue of violating SJ’s fourth axiom the Tsallis entropy imposes coupling be-

tween events where none are yet warranted by the data. By contrast, couplings can

be introduced in models from the normal Shannon entropy by either systematically

selecting a prior distribution, {qk}, with couplings or letting the data impose those

couplings.

2.8 Concluding Remarks and the Danger of Over-interpretation

Throughout this review we have discussed multiple modeling strategies. We began

by investigating how model parameters may be inferred from data. We then explored

more sophisticated formalisms that have allowed us to infer not only model parame-

ters, but models themselves starting from broader model classes. We discussed how
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information theory is useful across data analysis and how it connects to Bayesian

methods.

While the formalisms we have presented are powerful and perform well on test

(synthetic) data sets used to benchmark the data, it is difficult to determine how well

they perform on real data.

For instance, it may be difficult to quantify if Bayesian-inspired parameter aver-

aging – which is critical in model selection – ultimately rejects models on the basis of

parameter values that may be unphysical (such as infinite standard deviations) and

should not have been considered in the first place.

What is more, we often do not know the exact likelihood in any analysis either.

Thus, the more we ask of a model inference scheme, the more sensitive we become to

over-interpretation because noise properties may not be well captured by our approx-

imate likelihood. We gave as a concrete example that inference methods that do not

start with a fixed number of states in the analysis of time series data, may interpret

drift as the occupation of new states over the course of the time trace.

Likewise, inferences made under one choice of noise model are biased by this choice.

So, in practice, non-parametric mixture models are still limited by the parametric

choice for their distribution over observations which then determine the states that

will be populated.

Despite these apparent shortcomings, the analysis methods presented here out-

perform methods from the recent past and broaden our thinking. Furthermore, the

mechanistic insights provided from statistical modeling may ultimately help inspire

new theoretical frameworks to describe biological phenomena.

The mathematical frameworks we’ve described here are helpful and worth inves-

tigating in their own right. They suggest what model features should be extractable

from data and, in this sense, may even help inspire new types of experiments.
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3. PITCHING SINGLE-FOCUS CONFOCAL DATA

ANALYSIS ONE PHOTON AT A TIME WITH

BAYESIAN NONPARAMETRICS
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3.1 Abstract

Fluorescence time traces are used to report on dynamical properties of molecules.

The basic unit of information in these traces is the arrival time of individual photons,

which carry instantaneous information from the molecule, from which they are emit-

ted, to the detector on timescales as fast as microseconds. Thus, it is theoretically

possible to monitor molecular dynamics at such timescales from traces containing

only a sufficient number of photon arrivals. In practice, however, traces are stochas-

tic and in order to deduce dynamical information through traditional means–such as

fluorescence correlation spectroscopy (FCS) and related techniques–they are collected

and temporally autocorrelated over several minutes. So far, it has been impossible
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to analyze dynamical properties of molecules on timescales approaching data acquisi-

tion without collecting long traces under the strong assumption of stationarity of the

process under observation or assumptions required for the analytic derivation of a cor-

relation function. To avoid these assumptions, we would otherwise need to estimate

the instantaneous number of molecules emitting photons and their positions within

the confocal volume. As the number of molecules in a typical experiment is unknown,

this problem demands that we abandon the conventional analysis paradigm. Here,

we exploit Bayesian nonparametrics that allow us to obtain, in a principled fashion,

estimates of the same quantities as FCS but from the direct analysis of traces of

photon arrivals that are significantly smaller in size, or total duration, than those

required by FCS.

3.2 Introduction

Methods to capture static molecular structures, such as super-resolution microscopy

[325–327], provide only snapshots of life in time. Yet life is dynamical and obtaining

a picture of life in action–one that captures diffraction-limited biomolecules as they

move, assemble into and disassemble from larger bimolecular complexes–remains an

important challenge [328]. In fact, the creative insights directly leading to fluores-

cence correlation spectroscopy (FCS) [329, 330]–and related methods such as FCS-

FRET [331, 332] and FCCS [333]–have shown that deciphering dynamical informa-

tion from molecules, often biomolecules, does not demand spatial resolution or spatial

localization. Rather, the key is to inhomogeneously illuminate a sample over a small

volume.

As fluorescently-labeled molecules diffuse across this inhomogeneously illuminated

volume, they emit photons (i.e., they fluoresce) in a way that is proportional to the

illumination at their respective locations [334]. Single photon detectors, often photo-
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Fig. 3.1. Photon arrival times can characterize dynamical prop-
erties of molecules on fast, photon-detection, timescales. (A)
Schematic of an illuminated confocal volume (blue) with fluorescent
molecules emitting photons based on their location within that vol-
ume. (B) Synthetic trace containing ≈ 1500 photon arrivals produced
by 4 molecules diffusing at 1 µm2/s for a total time of 30 ms under back-
ground and molecule photon emission rates of 103 photons/s and 4× 104

photons/s, respectively. (C) Autocorrelation curve, G(τ), of the trace in
(B), binned at 100 µs. On account of the limited data available in the
trace, any reasonable fit is impossible. Normally, in FCS analysis, much
longer traces are used to generate smoother G(τ) that are fitted to deter-
mine a diffusion coefficient. In Fig. 3.14 of the Appendix, we show that
the quality of the fit does not improve considerably by fitting to a semi-
logarithmic curve. (D) Comparison between diffusion coefficient estimates
using our proposed method (detailed later) and FCS as a function of the
number of photon arrivals in the analyzed trace. Since by 1.5×104 photon
arrivals our method has converged, we avoid analyzing larger traces.



114

multiplier tubes or avalanche photodiodes, are then used to record these photons.

In principle, with the appropriate electronics, photons can be recorded within µs-

ms. This suggests that information on the molecules’ motion could be drawn from

the data on fast timescales that approach data acquisition, i.e. no more than a few

µs-ms.

The fundamental quantities measured in a confocal optical setup are individ-

ual photon arrival times, from which photon inter-arrival times, i.e., the intervals

between adjacent photon arrivals, can be readily obtained [335]. When imaging

molecules fixed in space and under homogeneous (uniform) illumination, these inter-

arrival times–excluding other experimental and label artifacts such as detector noise,

background photons, and label photo-physical kinetics–are independent and identi-

cally distributed and so uncorrelated with each other. However, inter-arrival times

measured in conventional confocal experiments encode the number of molecules in the

vicinity of the confocal volume, their diffusion dynamics, their position with respect

to the confocal center in addition to an array of experiment specific artifacts such

as detector characteristics and label photo-kinetics. Consequently, inter-arrival times

are correlated with each other and, in principle, these correlations can be exploited

to characterize the dynamics of the underlying molecular system.

Thus far, correlations in the inter-arrival times are exploited by collecting pho-

tons over long periods [336] and temporally autocorrelating the resulting fluorescence

intensity measurements [329, 330, 337, 338]. For sufficiently long intensity traces, the

stochasticity in the number of labeled molecules contributing photons, as well as their

positions in the illuminated volume and their instantaneous photon emission rates,

are averaged out. As such, the mathematical expression for the fluorescence intensity

time-autocorrelation function takes a simple form that–under strong assumptions on
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the illuminated volume’s geometry and the molecules’ photon emission rate–can be

summarized in analytic formulas that are fitted on the acquired measurements.

However, despite the elegance and simplicity of the mathematics involved in the

derivation of the time-autocorrelation function [329,330,337,338], a critical limitation

of autocorrelative methods, including all those within the FCS framework, remains

the stark timescale separation between data collection (e.g., typical time between

successive photon arrivals) and the timescale required to deduce a meaningful dy-

namical interpretation (e.g., typical duration between first and last photon arrivals

used); see Fig. (3.1). A method that takes direct advantage of single photon arrivals,

without using intensity traces (i.e., downsampled photon arrivals), has the poten-

tial to reveal dynamical information on timescales several orders of magnitude faster

than traditional FCS analysis. As a result, rapid or non-equilibrium processes and,

as such, abrupt changes in molecular chemistry, could be studied. Furthermore, pro-

vided such a method can utilize substantially shorter traces, the total duration of

experiments can be shrunk and the phototoxic damage induced on biological samples

can be reduced substancially [327, 339–341]. This is especially relevant for in vivo

FCS applications [342–345].

Previously proposed methods to analyze single photon measurements [66,208,235,

346–351] make assumptions that render them inappropriate for imaging molecules

moving through inhomogeneously illuminated volumes [349]. For example, for the

analysis of single molecule fluorescence resonance energy transfer (FRET), existing

methods assume that the photon inter-arrival times reflect only biomolecular confor-

mational transitions [346,349,352] but not diffusive motion of the entire biomolecule

[346,353–355], and so are appropriate only for experiments on immobilized molecules.

Along the same lines, existing methods combine FRET with FCS [356] to quantify ns

dynamics; however, they do not directly exploit single photon measurements. Rather,
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Fig. 3.2. Estimates of diffusion coefficients from photon arrival
traces strongly depend on the number of molecules assumed
to be contributing to the trace. The trace analyzed contained ≈
1800 photon arrivals produced by 4 molecules diffusing at 1 µm2/s for
a total time of 30 ms under background and molecule photon emission
rates of 103 photons/s and 4 × 104 photons/s, respectively. To estimate
D parametrically, we assumed a fixed number of molecules, N = 1 (A);
N = 2 (B); N = 3 (C); N = 4 (D); and N = 5 (E). The correct estimate
in (D)–and the mismatch in all others–underscores why it is critical to
estimate the number of molecules contributing to the trace to deduce
quantities such as diffusion coefficients from single photon arrivals.
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they operate on downsampled measurements, achieved through binning, similar to

traditional FCS, and therefore inherit the same limitations and drawbacks.

To be able to use single photon arrival times to estimate the diffusion coefficient

of labeled molecules in a confocal experiment, as in most biological applications, we

must be able to determine the particular number of molecules responsible for the

observed photon arrival time trace. Otherwise, naively, many molecules with low

diffusion coefficients emitting photons at the periphery of the illuminated confocal

volume could be mistaken for fewer molecules with higher diffusion coefficients in the

center region which is most illuminated. As we illustrate in Fig. (3.2), misidentifying

the number of molecules, or incorrectly assessing their positions, may give rise to

incorrect diffusion coefficient estimates.

More concretely, to obtain quantitative estimates of the diffusion coefficient, we

need to formulate a likelihood [357–359]. In turn, to formulate a likelihood for photon

arrival data demands that we know the number of molecules contributing photons

as well as their locations across time. As the number of molecules instantaneously

located within the confocal volume is unknown, all reasonable possibilities need to be

considered and rank-ordered using expensive pre- or post-processing model selection

heuristics [79,328]. This has not been achieved yet, in part, because of the prohibitive

computational cost it entails. Analyzing single photon arrivals from a confocal setup

to derive dynamical information therefore demands fundamentally new tools.

The conceptually novel framework that we propose in this study can winnow down

infinite possibilities (i.e., infinite populations of molecules potentially contributing

photons) to a finite, computationally manageable, number in a mathematically exact

manner. Such a framework avoids compromising temporal resolution, as it requires

no intensity trace to be formed (i.e., no downsampling), and allows us to directly

deduce dynamical quantities, such as diffusion coefficients, efficiently from raw single
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photon arrivals. The underlying theory, Bayesian nonparametrics (BNPs) [263], is

a powerful set of tools still under active development and largely unknown to the

Physical Sciences [2–4,79,328,360–364].

Mathematical devices within BNPs, such as the beta-Bernoulli process [365–367],

allow us to place priors not only on parameters themselves, as traditional paramet-

ric Bayesian methods, but also on distributions over an infinite number of candidate

models to which parameters are associated [368]. Concretely, for the case of our single

photon time traces, BNPs and in particular beta-Bernoulli processes can be used to

assign posterior probabilities over an array of quantities including all possible number

of molecules responsible for producing the data and their associated locations at each

photon arrival time. With these devices, as we describe herewith, we turn the oth-

erwise difficult problem of model-selection–that is, determining how many molecules

contribute photons–into a parameter estimation problem that remains computation-

ally tractable [365–367].

3.3 Materials and Methods

Here, we describe the mathematical formulation of our BNPs method for the

analysis of confocal single photon data. We begin with the overall input which con-

sists of photon inter-arrival times, ∆t = (∆t1,∆t2, . . . ,∆tK−1) where ∆tk represents

the time interval between adjacent observations of photons, which occur at times tk

with k = 1, . . . , K. We also use as input the illuminated confocal volume’s shape

and background photon emission rate which we can determine separately through

calibration [369].

To derive estimates for the diffusion coefficient from ∆t, we need to determine

intermediate quantities which include: i) photon emission rates of molecular labels;

and, most importantly, ii) the unknown number of molecules contributing photons
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Fig. 3.3. BNP formulation used for the analysis of photon arrival
traces. Molecules, indexed n = 1, 2, . . . , evolve over the experimental
time course which is indexed by k = 1, 2, . . . , K. Here, Rn

k = (xnk , y
n
k , z

n
k )

indicates the location of molecule n at time tk. During the experiment,
only a single observation (inter-arrival time) ∆tk is recorded, thereby com-
bining photon emissions from every molecule and the background. The
diffusion coefficient D determines the evolution of the molecular positions
which influence the photon emission rates and eventually the recorded ∆tk.
The indicator variables bn are introduced to infer the unknown molecule
population size. In the graphical model, the measured data are highlighted
by grey shaded circles and the model variables, which require priors, are
designated by blue circles.
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to the trace ∆t, as well as their location with respect to the center of the confocal

volume.

A graphical summary of our formulation is shown in Fig. (3.3). Below, we explain

briefly each step involved. More details, and an implementation of the whole method,

are available in the Appendix. In addition, source code and a GUI version of our

implementation are provided through the Supplementary Materials.

3.3.1 Model Formulation

We begin with the distribution according to which the kth observation, ∆tk, is

derived

∆tk ∼ Exponential (µk) . (3.1)

Accordingly, ∆tk follows an exponential probability distribution [352, 370] with rate

µk. In fact, the rate µk gathers the photon emission rates of all molecules which

depend on their respective locations relative to the confocal center (see below) [369].

In addition to the molecule photon emissions rates, µk also includes background

photons

µk = µback +
∑
n

µnk , (3.2)

where
∑

n µ
n
k is the sum over photon emission rates µnk gathered from the individual

molecules, that we index with n = 1, 2, . . . , and µback is the background photon

emission rate. In our formulation, µnk and µback are the emission rates of photons that

reach our detectors which, due to optical and detector limitations, are typically lower

than the rates of actual photon emissions [371,372].
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Next, we incorporate the dependency of the emission rate µnk on location [373–375]

with other effects such as camera pinhole shape and size, the laser intensity, laser

wavelength, and quantum yield [369] into a characteristic point spread function

(PSF). To be more precise, a PSF characterizes the optical response of an imaging

system [335,376,377]. Although this term is mostly used for wide-field microscopes to

describe the emission PSF, here, we follow the FCS literature, and use it to describe

the confocal microscope, i.e., both emission and detection PSFs. Consistent with

FCS [329,330,337,338], we assume a 3D Gaussian geometry [334]

µnk = µmol exp

(
−2

(xnk)2 + (ynk )2

ω2
xy

− 2
(znk )2

ω2
z

)
, (3.3)

where (xnk , y
n
k , z

n
k ) is the position of the nth molecule at time tk and the parameter

µmol indicates the brightness of a single molecule. This is the rate of detected photon

emissions achieved when the molecule is at the center of the confocal volume where

illumination is highest.

Finally, for a molecule diffusing along one direction, the probability distribution

p(x, t) of its position x at time t satisfies the diffusion equation [378–380]

∂p

∂t
= D

∂2p

∂x2
. (3.4)

To solve this equation, we assume that the molecule is located at xk−1 at time tk−1

and we obtain

p(x, t) =
exp

(
− (x−xk−1)2

4(t−tk−1)D

)
√

4π(t− tk−1)D
, (3.5)
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which is the probability density of a normal random variable with mean xk−1 and

variance 2(t− tk−1)D. Therefore, at time t = tk, we write

xk ∼ Normal (xk−1, 2D∆tk−1) , (3.6)

where ∆tk−1 = tk − tk−1 and D is the molecule’s diffusion coefficient. Similarly,

solving the diffusion equation for molecules following isotropic diffusion in free space

along all three Cartesian directions, we obtain

xnk ∼ Normal(xnk−1, 2D∆tk−1) (3.7)

ynk ∼ Normal(ynk−1, 2D∆tk−1) (3.8)

znk ∼ Normal(znk−1, 2D∆tk−1). (3.9)

3.3.2 Model Inference

All quantities which we need to infer–such as the diffusion coefficient, D, locations

of molecules through time, (xnk , y
n
k , z

n
k ) and the molecule photon emission rate µmol–

are formulated as model variables. We estimate these variables within the Bayesian

paradigm [79, 328, 358]. The model parameters such as D and µmol require priors.

Additionally, we have to consider priors on the initial molecule locations, i.e., at the

time of the very first photon arrival, (xn1 , y
n
1 , z

n
1 ). Options for these priors are straight-

forward and, for computational convenience, we adopt the distributions described in

the Appendix.

Meanwhile, before we proceed any further with our BNPs formulation, we need

to revise eq. (3.3) as follows

µnk = bnµmol exp

(
−2

(xnk)2 + (ynk )2

ω2
xy

− 2
(znk )2

ω2
z

)
. (3.10)
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The variables bn, defined for each model molecule, take only values 1 or 0. Specifi-

cally, we have bn = 0 when the nth model molecule does not contribute photons to

the measurements as in this case the molecule is decoupled from the overall photon

emission rate µk. This indicator variable allows us to operate on an arbitrarily large

population of model molecules; technically, an infinite population. The ability to

recruit, from a potentially infinite pool of model molecules, the precise number that

contributes to the measured trace ∆t is the chief reason we abandon the parametric

Bayesian paradigm and adopt BNPs. After introducing the indicators bn, we can es-

timate the number of molecules that contribute photons, i.e., those molecules where

bn = 1, simultaneously with the remaining of the parameters simply by having each

bn as a separate parameter and estimating its value.

To estimate bn, we consider a Bernoulli prior with a beta hyper-prior

bn|qn ∼ Bernoulli(qn), (3.11)

qn ∼ Beta(Aq, Bq), (3.12)

whereAq andBq are (hyper-hyper-)parameters specifically chosen to allow for n→∞.

In this limit, eqs. (3.11) and (3.12) can be combined resulting in a beta-Bernoulli

process [365–367]; see Appendix for more details.

With the specified priors, we can now form a joint posterior probability including

all unknown variables which we seek to determine, p(D,µmol, (x
n
k , y

n
k , z

n
k )nk , (b

n, qn)n|∆t).

Nevertheless, the nonlinear dependence of the PSF on the molecules’ positions (xnk , y
n
k , z

n
k )nk

and the nonparametric prior on the indicators (bn)n exclude a closed form for our pos-

terior. For this reason, we develop a Markov Chain Monte Carlo scheme [358,381,382]

that exploits results from the theory of Computational Statistics and Non-linear filter-

ing to generate pseudo-random samples from this posterior that we use in obtaining

our estimates [358, 381]. A technical description of this scheme can be found in the
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Fig. 3.4. A higher number of total photon arrivals provide more
photons per unit time and sharper diffusion coefficient estimates.
(A1) Instantaneous molecule photon emission rates µnk , normalized by
µmol. (A2) Photon arrival trace resulting from combining photon emis-
sions from every molecule and the background. This synthetic trace con-
tains ≈ 2000 photon arrivals produced by 4 molecules diffusing at 1 µm2/s
for a total time of 30 ms under background and molecule photon emission
rates of 103 photons/s and 4 × 104 photons/s, respectively. The dashed
lines show the initial 30%, 50%, 80%, and 100% portions of the original
trace containing ≈ 600, ≈ 1000, ≈ 1600, ≈ 2000 photon arrivals, respec-
tively. (B1-B4) Posterior probability distributions drawn from traces with
differing length (shown in (A2)). As expected, for the longer traces, the
peak of the posterior matches with the exact value of D (dashed line).
Gradually, as we decrease the total number of photon arrivals analyzed,
the estimation becomes less reliable.

Appendix and a ready-to-use implementation is available through the Supplementary

Materials.
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3.3.3 Data Acquisition

Acquisition of Synthetic Data for Figs. (3.4)-(3.7)

We acquire the synthetic data shown in the Results section by computer simula-

tions [383–387] that represent Brownian motion of point molecules moving through a

typical illuminated confocal volume. We provide finer details and complete parameter

choices in the Appendix.

Acquisition of Experiment data for Figs. (3.8)-(3.12)

For these experiments we used Cy3 fluoresent dyes. Solutions were made by

suspending Cy3 dye in glycerol/buffer (pH 7.5, 10 mM Tris-HCl, 100 mM NaCl and

10 mM KCl, 2.5 mM CaCl2) at various v/v, to a final concentration of either 100

pM or 1 nM. The solution was placed in a glass- bottomed fluid-cell, assembled on

a custom designed confocal microscope [388] and a 532 nm laser beam was focused

to a diffraction-limited spot on the glass coverslip of the fluid-cell using a 60x, 1.42

N.A., oil-immersion objective (Olympus). In our setup, the laser beam is focused at

the glass-water/glycerol interface and the beam is refocused by visual inspection at

the beginning of every measurement. Emitted fluorescence was collected from the

same objective and focused onto a Single Photon Avalanche Diode (SPAD, Micro

Photon Devices) with a maximum count rate of 11.8 Mc/s. A bandpass filter placed

in front of the detector blocked all back-scattered excitation light and relayed only

fluorescence from Cy3. Individual photon arrivals on the detector triggered TTL

pulses and were both timestamped and registered at 80 MHz. This was achieved using

a field programmable gate array (FPGA, NI Instruments) and custom LabVIEW

software [389].
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Fig. 3.5. A higher molecular concentration provides more pho-
tons per unit time and sharper diffusion coefficient estimates.
(A1, B1, C1) Instantaneous molecule photon emission rates µnk , normal-
ized by µmol. (A2, B2, C2) Photon arrival traces resulting from combin-
ing photon emissions from every molecule and the background. These
are produced by 10 molecules containing ≈ 3000 photon arrivals (A2),
4 molecules containing ≈ 2000 photon arrivals (B2), and 1 molecules con-
taining ≈ 1000 photon arrivals (C2), diffusing at 1 µm2/s for a total
time of 30 ms under background and molecule photon emission rates of
103 photons/s and 4 × 104 photons/s, respectively. (A3, B3, C3) Pos-
terior probability distributions drawn from traces with differing number
of molecules (shown in (A2, B2, C2)). As expected, for the traces with
higher number of molecules, the peak of the posterior matches with the
exact value of D (dashed line). Gradually, as we decrease the total number
of molecules the estimation becomes less reliable.
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Acquisition of Experimental Data for Fig. (3.13)

For these experiments we used 5-TAMRA fluorescent dyes. The excitation source

was a supercontinuum fiber laser Fianium WhiteLase SC480 (NKT Photonics, Birkerod,

Denmark) operating at a repetition rate of 40 MHz. The excitation wavelength

(550 nm) was selected by an acousto-optic tunable filter (AOTF), and the exiting

beam was collimated and expanded by approximately a factor of three to slightly

overfill the back aperture of the objective lens. The light was reflected into the ob-

jective lens (Zeiss EC Plan-Neofluar 100x oil, 1.3 NA pol M27, Thornwood, NY,

USA) by a dichroic mirror (Chroma 89016bs). The same objective was used to col-

lect the fluorescence from the sample, and passed through a band pass filter (Chroma

ET575/50m) before being focused into a position motorized pinhole wheel set at

25 µm. The output of the pinhole was focused on a multimode hybrid fiber optic

patch cable (M18L01, Thorlabs, NJ, USA) which was coupled to a single-photon

avalanche diode (SPCM AQRH-14, Excelitas Technologies, Quebec, Canada). The

detected photons were recorded by a TimeHarp 200 time-correlated single photon

counting board (PicoQuant, Berlin, Germany) operating in T3 mode. The sample

(≈50 µL) was contained in a perfusion chamber gasket (CoverWell) adhered on a

glass coverslip. The sample was 20 nM 5-Carboxytetramethylrhodamine (5-TAMRA,

purchased from Sigma-Aldrich, USA) dissolved in doubly distilled water at room

temperature.

3.4 Results

Our goal is to characterize quantities that describe molecular dynamics, especially

dynamics encountered in biological samples, such as diffusion coefficients, at the data-

acquisition timescales of conventional single-focus confocal setups. Our input consists
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of: i) the measured photon inter-arrival times ∆t = (∆t1,∆t2, ...,∆tK−1); ii) the

background photon emission rate; and iii) the geometry of the illuminated volume

specified through a characteristic PSF.

As we explain in the Methods section, in order to estimate the molecules’ diffu-

sion coefficient, D, we also estimate intermediate quantities (namely, molecule pho-

ton emission rates, molecule positions over time and the molecule numbers in the

first place). These intermediate quantities demand that we use BNPs to determine

quantities that a priori may be arbitrarily large such as the number of molecules

contributing photons to our datasets ∆t.

Within the Bayesian paradigm [328,359], our estimates take the form of posterior

probability distributions over the unknown quantities. These distributions combine

parameter values, probabilistic relations among different parameters, as well as the

associated uncertainties. According to the common statistical interpretation [358,

359], the sharper the posterior, the more conclusive (and certain) the estimate. To

quantify the uncertainty, we compute a posterior variance and use the square root of

this variance to construct error-bars (i.e., credible intervals) [358, 359]. In Table 3.2

in the Appendix, we summarize the mean values and error bars of our analyses.

Below, we validate first our method on synthetic data where the ground truth

is available. For these, we use a confocal volume of typical size ωxy = 0.3 µm and

ωz = 1.5 µm [335]. We then test our method on experimental data collected in

two labs utilizing different FCS setups. For the latter cases, we demonstrate the

advantages of our method by comparing our results to the results obtained from

autocorrelative methods used in FCS analysis.



129

Fig. 3.6. A lower diffusion coefficient provides more photons per
unit time and sharper diffusion coefficient estimates. Posterior
probability distributions drawn from traces containing ≈ 2000 photon
arrivals produced by 4 molecules diffusing at D = 0.01, 0.1, 1, 10 µm2/s
for a total time of 30 ms under background and molecule photon emission
rates of 103 photons/s and 4× 104 photons/s, respectively. For molecules
diffusing at D = 100 µm2/s, under similar conditions, we used a trace
containing ≈ 3000 photons for a total time of 50 ms, since we needed a
longer trace to gather sufficient information for drawing a posterior.
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3.4.1 Method Validation using Simulated Data

To demonstrate the robustness of our approach, we simulate raw single photon

arrival traces under a broad range of: i) total photon arrivals, Fig. (3.4); ii) con-

centrations of labeled molecules, Fig. (3.5); iii) diffusion coefficients, Fig. (3.6); and

iv) molecule photon emission rates, Fig. (3.7). The parameters not varied are held

fixed at the following baseline values: diffusion coefficient of 1 µm2/s which is typ-

ical of slower in vivo conditions [345, 390–392], molecule photon emission rates of

4 × 104 photons/s [347, 393], and 4 as the number of labeled molecules contributing

photons. We chose 4, a small number of molecules (as opposed to a larger number of

molecules), because this scenario presents the greatest analysis challenge as very few

photons, and thus little data, are gathered to aid the analysis.

As illustrated in Fig. (3.1), a critical and recurring point throughout this section is

that the traces we analyze are shorter than those that could be meaningfully analyzed

using FCS. While we focus on the diffusion coefficient estimation here, we note that

our framework supports more detailed parameter estimation which we provide in the

Appendix.

Total Photon Arrivals

We evaluate the robustness of our method with respect to the length of the trace

(i.e., the total number of photon arrivals recorded) at a fixed number of molecules,

diffusion coefficient, and molecule photon emission rates. The first important finding

is that, for the values of parameters selected, we need 2 orders of magnitude less

data than FCS; see Fig. (3.1D). For instance, to obtain an estimate of the diffusion

coefficient within 10% of the ground truth value, we require ≈ 103 photons (directly

emitted from the labeled molecule), while FCS requires ≈ 105 photons. Under our
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Fig. 3.7. A higher molecule photon emission rate provides more
photons per unit time and sharper diffusion coefficient estimates.
(A, B, C, D) Posterior probability distributions drawn from traces pro-
duced by 4 molecules diffusing at 1 µm2/s for a total time of 30 ms under
background photon emission rate of 103 photons/s and molecule photon
emission rates 4 × 105, 4 × 104, 4 × 103, 103 photons/s, respectively. As
expected, under higher molecule photon emission rates, the peak of the
posterior matches sharply with the exact value of D (dashed line). Grad-
ually, as we decrease the molecule photon emission rate, the estimation
becomes less reliable.
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Fig. 3.8. Higher molecular concentrations in experimental traces
provide more photons per unit time resulting in sharper diffusion
coefficient estimates. Estimates shown are drawn from experimental
traces with a low (100 pM) (A) and high (1 nM) (B) concentration of Cy3
dye molecules and 75% glycerol at a fixed laser power of 100 µW . Similarly
to Fig. (3.1), we compare our method’s diffusion coefficient estimate (circle
green dots) to FCS (blue asterisk) as a function of the number of photons
used in the analysis. Since by 1.5 × 104 photon arrivals our method has
converged, we avoid analyzing larger traces. The red dash line is the FCS
estimate produced from the entire 5 min trace containing ≈ 3×106 photon
arrivals.
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simulated scenario, these correspond to traces of total duration 30 − 50 ms and

50 s, respectively. To determine our error, we chose the mean value of the diffusion

coefficient’s marginal posterior, p(D|∆t), and measure the percentage difference of

this mean value to the ground truth.

In general, the precise photon numbers demanded by our method and traditional

FCS depend on a broad range of experimental parameter settings. This is the reason,

we explore different settings in subsequent subsections as well as the Appendix.

An important overarching concept is the concept of a photon arrival as a unit of

information. The more photon arrivals we have in the analyzed trace, the sharper

our diffusion coefficient estimates become. This is valid, as we see in Fig. (3.1D) and

Fig. (3.4), for increasing total photon arrivals. Similarly, as we see in subsequent

subsections, we also collect more photons as we increase the concentration of labeled

molecules (and thus the number of molecules contributing photons to the trace),

increase the molecule photon emission rates of molecular labels, or decrease diffusion

coefficients of molecules. In the latter case, a slower diffusion coefficients provides

more time for each molecule to traverse the illuminated region, in turn, resulting in

more photon arrivals.

Molecule Concentration

To test the robustness of our method under different concentrations of labeled

molecules at fixed diffusion coefficient, and molecule photon emission rates, we simu-

late molecules diffusing at 1 µm2/s for a total time 30 ms with: i) average concentra-

tions of 10 molecules/µm3, Fig. (3.5A1, A2); ii) 4 molecules/µm3, Fig. (3.5B1, B2);

and iii) 1 molecule/µm3, Fig. (3.5C1, C2). The molecule and background photon

emission rates are taken to be 4 × 104 photons/s and 103 photons/s respectively,

which are typical of confocal imaging [347].
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Fig. 3.9. Lower diffusion coefficients in experimental traces pro-
vide more photons per unit time and sharper diffusion coeffi-
cient estimates. Estimates shown are drawn from experimental traces
with 99% glycerol (A), 94% glycerol (B), 75% glycerol (C), 67% glycerol
(D), 50% glycerol (E), and 0% glycerol (F) with fixed concentration 1 nM
of Cy3 dye molecules and laser power of 100 µW . Similarly to Fig. (3.1),
we compare our method’s diffusion coefficient estimate (circle green dots)
to FCS (blue asterisk) as a function of the number of photons used in the
analysis. Since by 1.5 × 104 photon arrivals our method has converged,
we avoid analyzing larger traces. The red dash line is the FCS estimate
produced from the entire 5 min trace containing ≈ 3×106 photon arrivals.
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Figure (3.5) summarizes our results and suggests that posteriors over diffusion co-

efficients are broader–and thus the accuracy with which we can pinpoint the diffusion

coefficient drops–when the concentration of labeled molecules is lower. Intuitively,

we expect this result as fewer molecules within the confocal volume provide fewer

photons arrivals.

Diffusion Coefficients

We repeat the simulations of the previous subsection to demonstrate, using syn-

thetic data, the robustness of our method with respect to the diffusion coefficient

magnitude at fixed number of molecules, and molecule photon emission rates; see

Fig. (3.6). Intuitively, and again on the basis of the fact that photon arrivals carry

information, we expect that faster moving molecules give rise to broader posterior

distributions as these emit fewer photons, and thus provide less information, while

they traverse the confocal volume.

Molecule Photon Emission Rates

Figure (3.7) illustrates the robustness of our method with respect to the molecule

photon emission rates (i.e., set by the laser power used in the experimental setting and

the choice of fluorescent label) by fixing the number of molecules, diffusion coefficient

(1 µm2/s), and background emission (103 photons/s). To accomplish this, we simulate

increasingly dimmer molecules until the molecule signature is effectively lost in the

background. As expected, dimmer molecules lead to broader posterior estimates over

diffusion coefficients as these traces are associated with higher uncertainty.
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3.4.2 Estimation of Physical Parameters from Experimental Data

To evaluate our BNPs method on real data, we used experimental single photon

traces collected under a broad range of conditions. That is, we used measurements

from two different experimental setups and different fluorescent dyes, that are com-

monly used in labeling biological samples, as well as diffusing labeled proteins. Addi-

tional differences between the setups include different numerical apertures (NA), laser

powers, and overall detection instrumentation as detailed in the Methods section.

Figures (3.8)-(3.11) were collected using the Cy3 dye and these results were used to

benchmark the robustness of our method on dye concentration, diffusion coefficients,

and laser power. Moreover, to evaluate the proposed approach beyond free dyes, in

Fig. (3.12), we used labeled proteins, namely freely diffusing streptavidin labeled with

Cy3. For Fig. (3.13), photon arrivals were collected using 5-TAMRA dye in order to

test the robustness of our method on a different fluorophore.

Benchmarking on Experimental Data using Cy3

We begin by verifying our method on mixtures of water and glycerol. While we

only use short segments in our analysis, the collected traces are long enough (≈5 min

each) to be meaningfully analyzed by traditional autocorrelative analysis used in FCS

for sake of comparison. The result of the analysis of the full trace by FCS yields a

diffusion coefficient that we treat as an effective ground truth. We then ask how

long of a trace our method requires, as compared to FCS, in order for our diffusion

coefficient estimate to converge to this ground truth.

Our strategy addresses the following complication: we anticipate that the PSF

may be distorted from the idealized shape assumed especially with increasing amounts

of glycerol [394]. However, the same (possibly incorrect) PSF is used in both FCS and
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our method in order to compare both methods head-to-head. Thus, concretely, we

are asking: how many photon arrivals do we need to converge to the same result as

FCS (irrespective of whether the FCS result is affected by PSF distortion artifacts)?

Our single photon traces are obtained under a range of conditions, namely dif-

ferent: i) dye concentrations, Fig. (3.8); ii) diffusion coefficients, Fig. (3.9); and iii)

laser powers, Fig. (3.10). As before, longer traces, higher concentrations, lower diffu-

sion coefficients, and higher laser powers result, on average, in sharper estimates with

the results still converging with at least 2 orders of magnitude fewer photon arrivals

than FCS for equal accuracy in Figs. (3.8), (3.9), and Fig. (3.10), respectively. We

mention “on average” as individual traces are stochastic. Thus, some traces under

higher concentrations of fluorescent molecules may happen to have fewer molecules

contribute photons to the traces than experiments with lower concentrations.

Figures (3.8) recapitulates our expectations derived from the synthetic data shown

earlier (Fig. (3.5)), where dye concentrations are low yielding a wider posterior for

our diffusion coefficient and correspondingly sharper posteriors for the higher concen-

tration. Here, similarly to Fig. (3.1), we compare our method’s diffusion coefficient

estimate to FCS as a function of the number of photon arrivals used in the analysis,

Fig. (3.8A) and Fig. (3.8B), both in good agreement with FCS estimates, produced

by the entire traces which is ≈ 103 times longer.

Similar to the analysis of synthetic data, by comparing different diffusion coeffi-

cients, the slower a diffusing molecule is, the more time it spends within the confocal

volume, the more photons are collected providing us with a sharper posterior estimate

of its diffusion coefficient (see Fig. (3.9)).

Similarly to the synthetic data shown earlier (Fig. (3.7)), Fig. (3.10) illustrates

the robustness of our method to lower laser power which, as expected, yields a wider

posterior for our diffusion coefficient and correspondingly sharper posteriors for higher
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Fig. 3.10. Higher laser powers in experimental traces provide
more photons per unit time and sharper diffusion coefficient es-
timates. Estimates shown are drawn from experimental traces with high
(100 µW ) (A) and low (25 µW ) (B) laser power with fixed concentration
1 nM of Cy3 dye molecules and 75% glycerol. Similarly to Fig. (3.1), we
compare our method’s diffusion coefficient estimate (circle green dots) to
FCS (blue asterisk) as a function of the number of photons used in the
analysis. Since by 1.5 × 104 photon arrivals our method has converged,
we avoid analyzing larger traces. The red dash line is the FCS estimate
produced from the entire 5 min trace containing ≈ 3×106 photon arrivals.

laser power. Here, we compare our method’s diffusion coefficient estimate to FCS as

a function of the number of photon arrivals used in the analysis, Fig. (3.10A) and

Fig. (3.10B), both in good agreement with FCS estimates, produced from the entire

trace.
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Fig. 3.11. Background photon emission rates are artificially
added to experimental traces yielding challenging imaging con-
ditions and broader diffusion coefficient estimates. Experimental
traces with fixed concentration 1 nM of Cy3 dye molecules and 67% glyc-
erol and fixed laser power 100 µW . The same total number of photons
analyzed under differing (artificially increased) background photon emis-
sion rates (0 (A1), 500 (B1), 1000 (C1) photons/s). (A2, B2, C2) Simi-
larly to Fig. (3.1), we compare our method’s diffusion coefficient estimate
(green dots) to FCS (blue asterisk) as a function of the number of pho-
tons used in the analysis. Since by 1.5× 104 photon arrivals our method
has converged, we avoid analyzing larger traces. The red dash line is the
FCS estimate obtained from the entire, 5 min, trace containing ≈ 3× 106

photon arrivals.
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Fig. 3.12. Diffusion coefficient estimates of labeled protein. Esti-
mates shown are drawn from experimental traces with fixed concentration
1 nM of Cy3-labeled streptavidin molecules and laser power 100 µW . Sim-
ilarly to Fig. (3.1), we compare our method’s diffusion coefficient estimate
(green dots) to FCS (blue asterisk) as a function of the number of pho-
tons used in the analysis. Since by 1.5× 104 photon arrivals our method
has converged, we avoid analyzing larger traces. The red dash line is the
FCS estimate obtained from the entire, 5 min, trace containing ≈ 3× 106

photon arrivals.

As further controls, Fig. (3.11) demonstrates a set of analysis where the back-

ground photon emission rate is artificially added to real data. In these cases, we

test the limits of our method on more challenging imaging conditons. Furthermore,

we repeat our analysis on single photon traces produced by a labeled biomolecule.

Specifically, in Fig. (3.12), we use streptavidin proteins labeled with Cy3.

Benchmarking on Experimental Data using 5-TAMRA

Finally, we switch to a different dye, different setup and acquisition electronics as

detailed in the Methods section. Our sample contained 20 nM of 5-TAMRA dissolved
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Fig. 3.13. Diffusion coefficient estimates of 5-TAMRA dye. Esti-
mates shown are drawn from experimental traces with fixed concentration
20 nM of 5-TAMRA dye molecules. Similarly to Fig. (3.1), we compare
our method’s diffusion coefficient estimate (green dots) to FCS (blue as-
terisk) as a function of the number of photons used in the analysis. Since
by 1.5×104 photon arrivals our method has converged, we avoid analyzing
larger traces. The red dash line is the FCS estimate obtained from the
entire, 10 min, trace containing ≈ 6× 106 photon arrivals.

in water. As previously, we successfully benchmark our estimates of the diffusion

coefficient versus the value obtained from FCS on much longer (≈10 min) traces, see

Fig. (3.13).

3.5 Discussion

A single photon arriving at a detector mounted to a confocal microsocope en-

codes information that reports on the fastest timescale achievable for spectroscopic

and imaging applications [335,395]. Directly exploiting this information can help un-

cover the dynamics of physical or biological systems at fast timescales with accuracy
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superior to that obtained from derived quantities such as down-sampled intensity

traces.

Our method takes a Bayesian nonparametrics (BNPs) approach to tackling single

photon arrival data to characterize dynamical quantities from as few as hundreds to

thousands of datapoints from confocal imaging. This is by contrast to conventional

autocorrelative methods used in FCS [329–332] that require dramatically more data,

i.e., datasets several orders of magnitude larger in either total duration or total num-

ber of photon arrivals, to characterize dynamical quantities with similar accuracy.

There have been partial solutions to the challenge of interpreting single molecule

data at the single photon level often outside FCS applications. Indeed, existing

methods make assumptions that render them inapplicable to diffusion through in-

homogenesouly illuminated volumes. For example, they assume uniform illumina-

tion [347, 349], apply downsampling or binning and thereby reduce temporal res-

olution to exploit existing mathematical frameworks such as the hidden Markov

model [66, 208, 346, 396, 397], or focus on immobile molecules [346, 353–355]. More

recently, fluorescence-based nanosecond FCS approaches, in which the data are still

correlated under the assumption that the time trace reports on processes at equilib-

rium, have been used to obtain information on rapid fluctuations in proteins [356]. As

such, correlative methods largely continue to dominate confocal data analysis almost

half a century beyond their inception [329,330,334].

To take full advantage of single photon data, new Mathematics are required.

These must treat the inherent non-stationarity between photon arrivals arising due

to molecular diffusion in an inhomogeneously illuminated volume and the stochastic

number of molecules contributing photons. In particular, analyzing data derived from

mobile molecules within an illuminated confocal region breaks down the perennial

parametric Bayesian paradigm that has been the workhorse of data analysis [79,208,
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328,345,396,398,399]. We argue here that BNPs–which provide principled extensions

of the Bayesian methodology [263, 400]–show promise in Physics [1, 79, 328, 360–362,

401] and give us a working solution to fundamental parametric challenges.

Our new tools open up the possibility to explore at the single photon level non-

equilibrium processes resolved on fast timescales [402,403], reaching ms or even below,

that have been the focus of recent attention [404]. Moreover, and of immediate

relevance for biophysical applications, if a single molecule photobleaches after emitting

just a few hundred photons, then our novel method can still provide a diffusion

coefficient estimate. Additionally, by analyzing single photon data pointwise, as we do

in this study, we obtain a better handle on error bars than analyzing post-processed,

such as correlated, data where the error bars can become difficult to compute or

interpret [405, 406]. As such, a sharp diffusion coefficient posterior may not only

suggest a good estimate of the diffusion coefficient but also suggest that the underlying

model, such as normal diffusion, is appropriate and vice versa a broad posterior may

suggest a poor estimate or an inappropriate motion model.

Furthermore, armed with a transformative framework, founded upon rigorous

Statistics, it is now possible to extend the proof-of-principle study to treat effects that

lie beyond the current scope of this work. In particular, we can extend our frame-

work to treat multiple color imaging [407], triplet effect and complex molecule pho-

tophysics [408] (such as molecular blinking [363, 409] and photobleaching [410, 411]),

more complex molecule motion models [77, 412] other than free diffusion [364], dis-

torted or abberated PSF models [413], or even incorporate chemical reactions among

the molecules [414, 415]. As our BNP framework explicitly represents the instanta-

neous position of each involved molecule throughout the experiment’s time course,

these are extensions that require modest modifications.
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Appendix

Additional Analysis Results

In Fig. (3.15) we illustrate the weakness of FCS analysis when applied on limited

datasets such as those in the scope of our method. Additionally, using synthetic data,

in Fig. (3.16) we estimate diffusion coefficients faster than those in the Results section

and in Fig. (3.17) we estimate photon emission rates. Finally, using experimental

data of Cy3 and 5-TAMRA dyes obtained as described in the Methods section, in

Figs. (3.18) and (3.19), respectively, we benchmark the same estimates on real data.

Detailed Methods Description

Description of Fluorescence Correlation Spectroscopy (FCS)

In FCS the primary quantity of interest is the spontaneously fluctuating fluores-

cence intensity [416,417]. Correlations in fluorescence intensities are used to determine

physical parameters such as diffusion coefficients. The normalized time autocorrela-

tion function of the fluorescence intensity is defined as

G(τ) =
〈δI(t)δI(t+ τ)〉
〈δI(t)〉2

=
〈I(t)I(t+ τ)〉
〈I(t)〉2

− 1,

where I(t) is the fluorescence intensity, δI(t) is intensity fluctuations at time t, and

τ is the lag time. The intensity fluctuations of the fluorescence intensity are defined

as the deviations from the average of the intensity, δI(t) = I(t) − 〈I(t)〉. For freely
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A

B

Fig. 3.14. FCS curves resulting from exceedingly short traces
(same synthetic data as Fig. 3.1) with linear (A) and semi-
logarithmic (B) binning. Due to the limited data, the quality of the
fitted autocorrelation curve, G(τ), does not improve considerably for (B)
as compared to (A).
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B

D

Fig. 3.15. FCS curves resulting from exceedingly short traces.
Shown are autocorrelation curves, G(τ), of 5-TAMRA experimental
traces, binned at 10 µs, for 100 ms and ≈ 500 photon arrivals (A); 200 ms
and ≈ 1000 photon arrivals (B); 300 ms and ≈ 3000 photon arrivals (C);
2 s and ≈ 15000 photon arrivals (D); 30 s and ≈ 15 × 105 photon ar-
rivals (E); 100 s and ≈ 15× 106 photon arrivals (F). Even a visual inspec-
tion illustrates how poorly FCS applies on traces as sort as those analyzed
by our BNP method.
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Fig. 3.16. A larger molecule photon emission rate provides more
photons per unit time and sharper diffusion coefficient estimates.
(A1, B1) Instantaneous molecule photon emission rates µnk , normalized
by µmol. (A2, B2) Photon arrival trace resulting from combining photon
emissions from every molecule and the background. These traces are
produced by 10 molecules diffusing at 10 µm2/s for a total time of 50 ms
under background photon emission rate of 103 photons/s and molecule
photon emission rate 4×105 photons/s containing ≈ 3000 photon arrivals
(A2), and molecule photon emission rate 4 × 104 photons/s containing
≈ 2000 photon arrivals (B2). (A3, B3) Posterior probability distributions
drawn from traces with differing molecule photon emission rates (shown
in (A2, B2)). As expected, for the traces with higher molecule photon
emission rate, the peak of the posterior sharply matches with the exact
value of D (dashed line). Gradually, as we decrease the molecule photon
emission rate, the estimation becomes less reliable.
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Fig. 3.17. A higher molecule photon emission rate provides more
photons per unit time and sharper emission rate estimates. (A1,
B1, C1) Instantaneous molecule photon emission rates µnk , normalized by
µmol. (A2, B2, C2) Photon arrival traces resulting from combining photon
emissions from every molecule and the background. These traces produced
by 10 molecules diffusing at 10 µm2/s for a total time of 50 ms under
background photon emission rate of 103 photons/s and molecule photon
emission rate 4× 105 photons/s containing ≈ 3000 photon arrivals (A2),
molecule photon emission rate 4×104 photons/s containing≈ 2000 photon
arrivals (B2), and molecule photon emission rate 4 × 103 photons/s con-
taining ≈ 1000 photon arrivals (C2). (A3, B3, C3) Posterior probability
distributions drawn from traces with differing molecule photon emission
rates (shown in (A2, B2, C2)). As expected, for the traces with higher
molecule photon emission rate, the peak of the posterior sharply matches
with the exact value of µmol (dashed line). Gradually, as we decrease the
molecule photon emission rate, the estimation becomes less reliable.
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2

A

B

C

D

Fig. 3.18. Estimation of the diffusion coefficient and molecule
photon emission rate for Cy3 dyes. (A) Experimental intensity trace
(binned at 100 µs) with concentration 1 nM of Cy3 dye molecules and
61% glycerol. A background photon emission rate of 600 photons/s is
known from calibration. (B) Analyzed portion of the trace containing
≈ 3000 photon arrivals. (C) Posterior probability distributions and the
value (red dash line) of molecule photon emission rate determined by
the photon counting histogram (PCH) method on the entire trace [374].
(D) Similarly to Fig. (3.1), we compare our method’s diffusion coefficient
estimate (green dots) to FCS (blue asterisk) as a function of the number
of photons used in the analysis. Since by 1.5 × 104 photon arrivals our
method has converged, we avoid analyzing larger traces. The red dash
line is the FCS estimate obtained from the entire, 5 min, trace containing
≈ 3× 106 photon arrivals.
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C

Fig. 3.19. Estimation of the diffusion coefficient and molecule
photon emission rate for 5-TAMRA dyes. (A) Experimental in-
tensity trace (binned at 10 µs) with concentration 20 nM of 5-TAMRA
dye molecules. A background photon emission rate of 300 photons/s is
known from calibration. (B) Analyzed portion of the trace containing
≈ 8000 photon arrivals. (C) Posterior probability distributions and the
value (red dash line) of molecule photon emission rate determined by the
photon counting histogram (PCH) method on the entire trace [374]. (D)
Similarly to Fig. (3.1), we compare our method’s diffusion coefficient es-
timate (green dots) to FCS (blue asterisk) as a function of the number of
photons used in the analysis. Since by 1.5×104 photon arrivals our method
has converged, we avoid analyzing larger traces. The red dash line is the
FCS estimate obtained from the entire, 10 min, trace containing ≈ 6×106

photon arrivals.
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diffusing molecules in a 3D Gaussian confocal volume, the autocorrelation, which we

use in this study, is

G(τ) =
1

〈N〉
1

1 + 4Dτ
ω2
xy

1√
1 + 4Dτ

ω2
z

,

where 〈N〉 is the average number of molecules in the confocal volume, D is the

diffusion coefficient, ωxy and ωz are the confocal volume axes along the xy and z

directions. Further details on correlative analysis are contained in the cited litera-

ture [329,330,337,338,416,417].

Explanation of Data Simulation

To generate synthetic traces we simulate molecules moving through a three dimen-

sional illuminated volume. The number of moving molecules, N , is predefined in each

simulation. We apply periodic boundaries to our volume of Lxy and Lz parallel to the

focal plane and optical axis, respectively, to keep a relatively stable concentration of

molecules near the confocal volume.

We denote the locations of the molecules as xnk , y
n
k and znk , where k labels time

levels and n = 1, 2, . . . , N labels molecules. The total trace duration Ttotal = tK − t0,

is predefined. The time intervals between successive recorded photons ∆tk−1 = tk −

tk−1, are generated through pseudo-random computer simulations and recorded for

subsequent analysis.

The locations of the molecules xn0 , y
n
0 , z

n
0 at the first evaluation time t0 are ran-

domly sampled from the uniform distribution with borders identical to the bound-

aries ±Lxy and ±Lz of the prescribed simulation region. Locations xnk , y
n
k , z

n
k , for

k = 1, . . . , K, at times tk are generated according to the diffusion model explained

above under a predefined diffusion coefficient D.
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We obtain photon inter-arrival times, ∆t = (∆t1,∆t2, . . . ,∆tK−1), by simulating

exponential random variables of rate µk. For independent background and molecule

photon emission rates, the corresponding exponential emission mean rates µk depend

on a Gaussian PSF as eqs. (3.2)–(3.3). Both background, µback, and the molecule

photon emission rate, µmol, are predefined.

Definition of Molecule Photon Emission Rate

In this study the emission rate of detected photons for a single fluorophore at

position x, y, z is used. This is formulated as the product µ(x, y, z) = µ0ϕdϕdeϕfσ ×

EXC(x, y, z)CEF(x, y, z). Here, µ0 and ϕd are the maximum excitation intensity

and the efficiency of the photon collection at the center of the confocal volume, re-

spectively, ϕde is the efficiency of the detector, ϕf is the quantum efficiency of the

fluorophore, σ is the fluorophore absorption cross-section, EXC(x, y, z) is the excita-

tion profile and CEF(x, y, z) is the detection profile [418]. By revising the definition

of µ(x, y, z), we obtain µ(x, y, z) = µmolPSF(x, y, z) where µmol = µ0ϕdϕdeϕfσ and

PSF(x, y, z) = EXC(x, y, z)CEF(x, y, z).

To relate our single molecule photon emission rate µmol to the average photon

count rate typically determined in bulk experiments, we compute a spatial average

〈µ(x, y, z)〉 = µmol〈PSF(x, y, z)〉 = µmol

〈
exp

(
−2

x2 + y2

ω2
xy

− 2
z2

ω2
z

)〉

= µmol

∫ +∞
−∞

∫ +∞
−∞

∫ +∞
−∞ exp

(
−2 x2

ω2
xy
− 2 y2

ω2
xy
− 2 z

2

ω2
z

)
dxdydz

V

= µmol

√
π

2
ω2
xy

√
π

2
ω2
xy

√
π

2
ω2
z

1

V
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where V denotes our PSF’s effective volume [335, 336] which is equal to V =

π
3
2ω2

xyωz. As a result, our molecule photon emission rate µmol is related to 〈µ(x, y, z)〉

according to µmol =
√

8 〈µ(x, y, z)〉.

Description of Wilson-Hiferty Approximation

To perform the necessary computations of the next section, we use a Wilson-

Hiferty transform [419] to approximate the probability density of exponential random

variables. We use this approximation to sample the locations of the molecules within

our overall Gibbs sampler (see next).

To apply the Wilson-Hiferty approximation, first we transform our observation

random variable ∆tk to a new random variable ρk, where ρk = 2µk∆tk. A change

of variables, indicates that ∆tk|µk ∼ Exponential(µk) implies ρk|µk ∼ χ2 (2), where

χ2(2) denotes the chi-square probability distribution with 2 degrees of freedom. By

applying another transformation, where ξk = 3
√
ρk/2, according to [419], ξk follows an

approximately normal probability distribution ξk ∼ Normal
(

8
9
, 1

9

)
. So, by ξk = 3

√
ρk/2

and ρk = 2µk∆tk, we conclude 3
√

∆tk = ξk/ 3
√
µk. Therefore, since 3

√
∆tk = ξk/ 3

√
µk,

we establish the approximation

p
(

3
√

∆tk|µk
)

= p
(
ξk = 3

√
∆tk 3
√
µk

)
3
√
µk

≈ 3
√
µk Normal

(
3
√

∆tk 3
√
µk;

8

9
,
1

9

)
= Normal

(
3
√

∆tk;
8

9 3
√
µk
,

(
1

3 3
√
µk

)2
)
.
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Detailed Description of the Inference Framework

Prior Probability Distributions

Within the Bayesian paradigm, all unknown model parameters need priors. These

parameters are: the diffusion coefficient D; the molecule photon emission rate µmol;

the initial molecule locations xn1 ,yn1 ,zn1 ; as well as the indicator prior weights qn.

Prior on the Diffusion Coefficient To make sure that D sampled in our formu-

lation attains only positive values, we choose an Inverse-Gamma prior

D ∼ InvGamma (αD, βD) . (3.13)

This prior is conjugate to the motion model which simplifies the computations shown

below.

Priors on Molecule Photon Emission Rate To guarantee that µmol sampled in

our formulation also attains only positive values, we choose a Gamma prior

µmol ∼ Gamma (αmol, βmol) . (3.14)

Priors on Initial Molecule Locations Because of the symmetries inherent to

the confocal volume, e.g., a molecule at a location (x, y, z) gives rise to the same

photon emission rate as a molecule at location, (−x,−y,−z), we use priors on the
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initial locations that respect these symmetries. To simplify the computations, we use

independent symmetric normal distributions

xn1 ∼ SymNormal
(
µxy, σ

2
xy

)
, (3.15)

yn1 ∼ SymNormal
(
µxy, σ

2
xy

)
, (3.16)

zn1 ∼ SymNormal
(
µz, σ

2
z

)
. (3.17)

Priors and Hyperpriors for the Indicators To simplify the computations de-

scribed in the next section, we use a finite, but large, model population of N molecules

that contain contributing and noncontributing ones. These molecules are collectively

indexed by n = 1, 2, . . . , N . As described in the Methods section, inferring how many

molecules are actually warranted by the data analyzed is the same as estimating

how many of those N molecules are active, i.e., bn = 1, while the rest are inactive,

i.e., bn = 0, and so have no influence and are applied just for computational reasons.

We use a Bernoulli prior of weight qn to make sure that each indicator bn takes

only values 0 or 1. Moreover, on each weight qn, we assign a beta hyperprior

bn|qn ∼ Bernoulli (qn) , (3.18)

qn ∼ Beta (Aq, Bq) . (3.19)

To make sure that the resulting formulation avoids overfitting, we make the specific

selections Aq = αq/N and Bq = βq(N − 1)/N . For these choices [365–367, 420], and

in the limit that N → ∞ (that is, when the assumed molecule population is large),

this prior/hyperprior choice converges to a non-parametric beta-Bernoulli process.

Therefore, for N � 1, the posterior is well defined and becomes independent of the

selected value of N . In other words, provided N is large enough, its effect on the

results is negligible; while its precise value has only computational implications.
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Description of the Computational Implementation

Here, p(D,µmol, {qn, bn, xn, yn, zn}n|∆t) is the joint probability distribution of our

framework where molecular trajectories and measurements are gathered in

xn = (xn1 , x
n
2 , . . . , x

n
K),

yn = (yn1 , y
n
2 , . . . , y

n
K),

zn = (zn1 , z
n
2 , . . . , z

n
K),

∆t = (∆t1,∆t2, . . . ,∆tK−1).

Posterior samples are generated according to Gibbs sampling [79,358,359,381,421].

We achieve this by sampling a variable conditioned on all other variables and the

given photon inter-arrival times ∆t. Conceptually, the steps in the generation of

each posterior sample (D,µmol, {qn, bn, xn, yn, zn}n) are:

1. For each n of the active molecules

(a) Update trajectory xn of active molecule n

(b) Update trajectory yn of active molecule n

(c) Update trajectory zn of active molecule n

2. Update jointly the trajectories xn, yn, zn for all n of the inactive molecules

3. Update the diffusion coefficient D

4. Update jointly the prior weights qn for all model molecules and simultaneously

update jointly the indicators bn for all model molecules

5. Update the molecule photon emission rate µmol

Sampling Active Molecules Locations To sample the location of an active

molecule (xn, yn, zn), we use forward filtering and backward sampling [364,422–424].
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In particular, we update each dimension sequentially from the following full condi-

tional probability distributions p(xn|D,µmol, {bn′ , yn′ , zn′}n′ , {xn′}n′ 6=n,∆t), p(yn|D,

µmol, {bn′ , xn′ , zn′}n′ , {yn′}n′ 6=n, ∆t), and p(zn|D,µmol, {bn′ , xn′ , yn′}n′ , {zn′}n′ 6=n,∆t).

Below, we show in detail the calculation only for sampling xn, since for sampling yn

and zn they are similar.

To sample the trajectory xn, we rely on the factorization

p(xn|D,µmol, {bn
′
, yn

′
, zn

′}n′ , {xn
′}n′ 6=n,∆t)

= p(xnK |D,µmol, {bn
′
, yn

′
, zn

′}n′ , {xn
′}n′ 6=n,∆t)

× p(xnK−1|xnK , D, µmol, {bn
′
, yn

′
, zn

′}n′ , {xn
′}n′ 6=n,∆t)

× · · ·

× p(xn2 |xn1 , D, µmol, {bn
′
, yn

′
, zn

′}n′ , {xn
′}n′ 6=n,∆t)

× p(xn1 |D,µmol, {bn
′
, yn

′
, zn

′}n′ , {xn
′}n′ 6=n,∆t)

and, according to this factorization, we sample individual locations xnk sequentially

xnK ∼ p(xnK |D,µmol, {bn
′
, yn

′
, zn

′}n′ , {xn
′}n′ 6=n,∆t)

xnk ∼ p(xnk |xnk+1, D, µmol, {bn
′
, yn

′
, zn

′}n′ , {xn
′}n′ 6=n,∆t),

where, k = 1, . . . , K − 1. However, to be able to perform these steps, we first need to

compute the involved probability distributions. We describe below a computationally

efficient way to do so that proceeds in a forward filtering and a backward sampling

step.

Before we start the sampling of the locations, we determine each one of the in-

dividual probability distributions that are needed. To do this in a computationally

tractable manner [424,425], we compute filter distributions p(xnk |D,µmol, {bn
′
, yn

′
, zn

′}n′
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, {xn′}n′ 6=n, {∆tk′}k′<k). In our case, both dynamic (eqs. (3.7)–(3.9))) and observation

(eq. (3.1)) probability distributions provide equal probabilities for +xnk and −xnk .

Therefore, the filter distribution consists of two modes symmetrically placed across

the origin [364]. Accordingly, we compute an approximate bimodal symmetric filter

of the form

p
(
xnk |D,µmol, {bn

′
, yn

′
, zn

′}n′ , {xn
′}n′ 6=n, {∆tk′}k′<k

)
≈ SymNormal (xnk ;mn

k , c
n
k)

where SymNormal (mn
k , c

n
k) describes the symmetric normal distribution. The filter,

that is the values of mn
k and cnk , is updated iteratively according to

p
(
xnk |D,µmol, {bn

′
, yn

′
, zn

′}n′ , {xn
′}n′ 6=n, {∆tk′}k′<k

)
∝ p

(
∆tk−1|xnk , ynk , znk , µmol, {bn

′
, xn

′
, yn

′
, zn

′}′n
)

×
∫
xnk−1

p
(
xnk−1|D,µmol, {bn

′
, yn

′
, zn

′}n′ , {xn
′}n′ 6=n, {∆tk′}k′<k−1

)
p
(
xnk |xnk−1, D

)
dxnk−1.

(3.20)

To be able to carry out these computations efficiently, similar to [364], we work on

an approximate model where the exponential emission equation, eq. (3.1), is replaced

by a normal one using the Wilson-Hiferty approximation as we discussed earlier. Our

approximate emission equation is

Tdata (∆tk) |{xnk , ynk , znk , bn}n, µmol

∼ Normal
(
Tmean(µk), S(µk)

2
)
, k = 1, . . . , K − 1.

where µk is given in eq. (3.2); while Tdata (∆tk), Tmean(µk) and S2(µk) are given by the

Wilson-Hiferty approximation [419]. As explained earlier, the approximation is given
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by Tdata(∆tk) = ∆t
1/3
k , Tmean(µk) = 8/(9µ

1/3
k ), and S2(µk) = 1/(9µ

2/3
k ). Because of

the specific choices of our problem (i.e., diffusive molecules, symmetric normal filter

at the proceeding time, and normal likelihood), eq. (3.20) reduces to

p
(
xnk |D,µmol, {bn

′
, yn

′
, zn

′}n′ , {xn
′}n′ 6=n, {∆tk′}k′<k

)
= Normal

(
Tdata(∆tk);Tmean(µk), S(µk)

2
)

×SymNormal
(
xnk ;mn

k−1, c
n
k−1 + 2D∆tk

)
. (3.21)

Finally, to obtain the values of mn
k and cnk , we linearize the product in eq. (3.21) as

described next. From eq. (3.21), we have

Normal
(
Tdata(∆tk);Tmean(µk), S(µk)

2
)
× SymNormal

(
xnk ;mn

k−1, c
n
k−1 + 2D∆tk

)

∝ exp

 log µ(xnk)

3
−

(
8
9
− 3

√
µ(xnk)∆tk−1

)2

2
9

− (xnk −mn
k−1)2

2(cnk−1 + 2D∆tk−1)



+ exp

 log µ(xnk)

3
−

(
8
9
− 3

√
µ(xnk)∆tk−1

)2

2
9

− (xnk +mn
k−1)2

2(cnk−1 + 2D∆tk−1)

 . (3.22)

The density in eq. (3.22) consists of two modes, one on the positive semi-axis of

x and one on the negative semi-axis of x. Considering f(xnk) = 3

√
µ(xnk)∆tk−1) and



160

g(xnk) = 1
3

log µ(xnk) and linearizing them around the previous filter’s mode, +mn
k−1

or −mn
k−1, the modes of eq. (3.22) are approximated by

exp

 log µ(xnk)

3
−

(
8
9
− 3

√
µ(xnk)∆tk−1

)2

2
9

− (xnk −mn
k−1)2

2(cnk−1 + 2D∆tk−1)


≈ exp

v1x
n
k −

(xnk − h1)2

2σ2

f ′(−mnk−1)2

− (xnk −mn
k−1)2

2(cnk−1 + 2D∆tk−1)

 ,

exp

 log µ(xnk)

3
−

(
8
9
− 3

√
µ(xnk)∆tk−1

)2

2
9

− (xnk +mn
k−1)2

2(cnk−1 + 2D∆tk−1)


≈ exp

v2x
n
k −

(xnk − h2)2

2σ2

f ′(−mnk−1)2

− (xnk +mn
k−1)2

2(cnk−1 + 2D∆tk−1)

 .

Combining both approximations, the density of eq. (3.22), is approximated by

exp

 log µ(xnk)

3
−

(
8
9
− 3

√
µ(xnk)∆tk−1

)2

2
9

− (xnk −mn
k−1)2

2(cnk−1 + 2D∆tk−1)



+ exp

 log µ(xnk)

3
−

(
8
9
− 3

√
µ(xnk)∆tk−1

)2

2
9

− (xnk +mn
k−1)2

2(cnk−1 + 2D∆tk−1)


≈ exp

v1x
n
k −

(xnk − h1)2

2σ2

f ′(+mnk−1)2

− (xnk −mn
k−1)2

2(ckn−1 + 2D∆tk−1)


+ exp

v2x
n
k −

(xnk − h2)2

2σ2

f ′(−mnk−1)2

− (xnk +mn
k−1)2

2(cnk−1 + 2D∆tk−1)

 (3.23)

where h1 =
8
9
−f(+mnk−1)+mnk−1f

′(+mnk−1)

f ′(+mnk−1)
, v1 =

µ′(+mnk−1)

3µ(+mnk−1)
, and h2 =

8
9
−f(−mnk−1)−mnk−1f

′(−mnk−1)

f ′(−mnk−1)
,

v2 =
µ′(−mnk−1)

3µ(−mnk−1)
.
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Equation (3.23) describes a symmetric normal distribution. Equating this distri-

bution with our filter, i.e., SymNormal (mn
k , c

n
k), we obtain cnk =

(
1

cnk−1+2D∆tk−1
+ 9

2
f ′(mn

k−1)2
)−1

,

and mn
k =

(
v1 + 9h1f

′(mn
k−1)2 +

mnk−1

cnk−1+2D∆tk−1

)
cnk . These apply for k = 2, . . . , K and

are used to update the filter. To begin, we use eq. (3.15)–(3.17) and set cn1 = σ2
xy and

mn
1 = µxy.

Having computed the filter distributions above, we are able to sample the individ-

ual locations by starting from xnK and moving backward towards xn1 . In particular,

by applying the Bayes’ rule, each one of the individual distributions factorize as

p(xnk |xnk+1, D, µmol, {bn
′
, yn

′
, zn

′}n′ , {xn
′}n′ 6=n,∆t) ∝ (3.24)

p
(
xnk |D,µmol, {bn

′
, yn

′
, zn

′}n′ , {xn
′}n′ 6=n, {∆tk′}k′<k

)
× p

(
xnk |xnk+1, D

)
.

The first term is given by the filter distribution which is replaced by our approximate

SymNormal(mn
k , c

n
k), and the second term is our motion model Normal (xnk , 2D∆tk−1),

all of which are known at this stage. Therefore, backward sampling starts at xnK and

continues for xnk−1 with

xnK ∼
1

2
Normal (+mn

K , c
n
K) +

1

2
Normal (−mn

K , c
n
K)

xnk−1 ∼
exp

[
(xnk−mnk)

2

cnk+2D∆tk−1

]
2
√

2π(cnk + 2D∆tk−1)
Normal

(
xnkc

n
k + 2D∆tk−1m

n
k

cnk + 2D∆tk−1

,
2D∆tk−1c

n
k

cnk + 2D∆tk−1

)

+

exp

[
(xnk+mnk)

2

cnk+2D∆tk−1

]
2
√

2π(cnk + 2D∆tk−1)
Normal

(
xnkc

n
k − 2D∆tk−1m

n
k

cnk + 2D∆tk−1

,
2D∆tk−1c

n
k

cnk + 2D∆tk−1

)
.

Sampling Inactive Molecule Trajectories To update the trajectories of the in-

active molecules, we sample from the corresponding conditionals p(xn, yn, zn|D,µmol,

{qn, bn}n,∆t). Since the inactive molecules are not associated with the observations
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in ∆t, these reduce to p(xn, yn, zn|D, {qn, bn}n) which we simulate as standard 3D

Brownian motion [426].

Sampling the Diffusion Coefficient We sample the diffusion coefficient from

the conditional probability distribution p(D|µmol, {qn, bn, xn, yn, zn}n,∆t). Because

of the specific dependencies of the variables in this formulation, e.g., eq. (3.13) and

eqs. (3.7)–(3.9), the conditional distribution simplifies to p(D|{xn, yn, zn}n,∆t). Us-

ing Bayes’ rule, this distribution becomes D ∼ InvGamma(α′D, β
′
D) where α′D =

αD + 3N(K−1)
2

and β′D = βD +
∑K

k=2

∑N
n=1

(
(xnk−xnk−1)

2
+(ynk−ynk−1)

2
+(znk−znk−1)

2
)

4∆tk−1
.

Sampling Molecule Indicators For each molecule n we sample its indicator prior

weight, qn, from the corresponding conditional distribution p(qn|µmol, D, {bn, xn, yn, zn}n
,∆t), which simplifies to p(qn|bn). For this we use eq. (3.19) and eq. (3.18). Accord-

ing to Bayes’ rule, the latter distribution becomes qn ∼ Beta(α′, β′) where α′ = α
N

+bn

and β′ = βN−1
N

+ 1− bn. Subsequently, we update the indicators bn by sampling from

the corresponding conditional distribution p({bn}n|D,µmol, {qn, xn, yn, zn}n,∆t) us-

ing a Methropolis-Hasting algorithm [427, 428]. For this, we use a proposal bnnew ∼

Bernoulli(qn). With this proposal, the acceptance ratio becomes

r =
K−1∏
k=1

µback + µmol
∑N

n=1 b
n
new exp

(
−2

(xnk )2+(ynk )2

ω2
xy

− 2
(znk )2

ω2
z

)
µback + µmol

∑N
n=1 b

n
old exp

(
−2

(xnk )2+(ynk )2

ω2
xy

− 2
(znk )2

ω2
z

) ×
e
−
[
µback+µmol

∑N
n=1 b

n
new exp

(
−2

(xnk )2+(ynk )2

ω2
xy

−2
(znk )2

ω2
z

)]
∆tk

e
−
[
µback+µmol

∑N
n=1 b

n
old exp

(
−2

(xn
k

)2+(yn
k

)2

ω2
xy

−2
(zn
k

)2

ω2
z

)]
∆tk

.

Sampling the Molecule Photon Emission Rate In the last step, after updating

the locations and indicators of the molecules, we sample the molecule photon emission

rate from the corresponding conditional distribution p(µmol|D, {qn, bn, xn, yn, zn}n,∆t).

To sample this distribution, we also use a Metropolis-Hastings step. For this, we use
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proposals of the form µnewmol ∼ Gamma
(
α, µoldmol/α

)
where µoldmol denotes the current

sampled value. Using both eqs. (3.1) and (3.2), the acceptance ratio becomes

r = exp

K−1∑
k=1

log

µback + µnewmol

∑N
n=1 b

n exp
(
−2

(xnk )2+(ynk )2

ω2
xy

− 2
(znk )2

ω2
z

)
µback + µoldmol

∑N
n=1 b

n exp
(
−2

(xnk )2+(ynk )2

ω2
xy

− 2
(znk )2

ω2
z

)


× exp

[
K−1∑
k=1

[
(µoldmol − µnewmol )∆tk

N∑
n=1

bn exp

(
−2

(xnk)2 + (ynk )2

ω2
xy

− 2
(znk )2

ω2
z

)]]

× exp

[
(αmol − 1) log

(
µnewmol

µoldmol

)
+

1

βmol
(µoldmol − µnewmol ) + (2α− 1) log

(
µoldmol
µnewmol

)]
× exp

[
α

(
µnewmol

µoldmol
− µoldmol
µnewmol

)]
.
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Table 3.1.
Here, we list point estimates of our analyses, which we obtain from

the marginal posterior probability distributions p(D|∆t) and p(µmol|∆t).
Estimates are listed according to figure.

D µmol
mean std mean std
µm2/s µm2/s photons/s photons/s

Fig. (3.2A) 4.54 4.49 - -
Fig. (3.2B) 4.17 4.11 - -
Fig. (3.2C) 1.14 1.12 - -
Fig. (3.2D) 1.02 1.01 - -
Fig. (3.2E) 4.75 4.64 - -
Fig. (3.4B1) 1.03 0.25 - -
Fig. (3.4B2) 0.95 0.63 - -
Fig. (3.4B3) 0.75 0.68 - -
Fig. (3.4B4) 0.45 0.77 - -
Fig. (3.5A3) 1.01 0.27 - -
Fig. (3.5B3) 1.09 0.51 - -
Fig. (3.5C3) 1.65 1.59 - -
Fig. (3.6) 1.05 ×10−2 0.22 ×10−2 - -

1.21 ×10−1 0.34×10−1 - -
1.06 0.19 - -
9.87 2.33 - -

117.62 35.13 - -
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Table 3.2.
Here, we continue above list point estimates of our analyses, which we

obtain from the marginal posterior probability distributions p(D|∆t) and
p(µmol|∆t). Estimates are listed according to figure.

D µmol
mean std mean std
µm2/s µm2/s photons/s photons/s

Fig. (3.6) 1.05 ×10−2 0.22 ×10−2 - -
1.21 ×10−1 0.34×10−1 - -

1.06 0.19 - -
9.87 2.33 - -

117.62 35.13 - -
Fig. (3.7A) 0.99 0.34 - -
Fig. (3.7B) 0.96 0.51 - -
Fig. (3.7C) 2.92 2.68 - -
Fig. (3.7D) 3.26 2.95 - -
Fig. (3.16A3) 10.02 1.17 - -
Fig. (3.16B3) 9.96 2.19 - -
Fig. (3.17A3) - - 4.11 ×105 1.61 ×103

Fig. (3.17B3) - - 4.37 ×104 2.84 ×103

Fig. (3.17C3) - - 1.28 ×105 1.25×104



166

Table 3.3.
Summary of notation.

Description Variable Units
Diffusion coefficient D µm2/s
α parameter of the diffusion coefficient prior αD -
β parameter of the diffusion coefficient prior βD µm2/s
Photon inter-arrival time ∆t s
Total trace duration Ttotal s
molecule photon emission rate (maximum) µmol photons/s
α parameter of the molecule photon emission rate’s prior αmol -
β parameter of the molecule photon emission rate’s prior βmol photons/s
Emission rate of molecule n at time tk µnk photons/s
Combined photon emission rate at time tk µk photons/s
Background photon emission rate µback photons/s
Minor semi-axis of confocal PSF (focal plane) ωxy µm
Major semi-axis of confocal PSF (optical axis) ωz µm
Location of molecule n at time tk in x-coordinate xnk µm
Location of molecule n at time tk in y-coordinate ynk µm
Location of molecule n at time tk in z-coordinate znk µm
Recorded photon inter-arrival time between tk and tk−1 ∆tk s
Indicator variable for molecule n bn -
Prior weight for bn qn -
α parameter of prior weight qn αq -
β parameter of prior weight qn βq -
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Table 3.4.
Summary of notation.

Description Variable Units
Upper bound for the number of model molecules N -
Mean value of initial molecule position’s prior in the xy-plane µxy µm
Mean value of initial molecule position’s prior on the z-axis µz µm
Variance of the initial molecule position’s prior in the xy-plane σ2

xy µm
Variance of the initial molecule position’s prior on the z-axis σ2

z µm
Periodic boundary in the xy-plane Lxy µm
Periodic boundary on the z-axis Lz µm

Table 3.5.
Probability distributions used and their densities. Here, the correspond-
ing random variables are denoted by x. We use ”;” to separate random
variables from parameters. For example, Normal(x;µ, σ2) means that x
is the random variable (e.g.

∫ +∞
−∞ dxNormal(x;µ, σ2) = 1), and µ and σ2

are parameters characterizing this density.

Distribution Notation Probability density function Mean Variance

Normal Normal(µ, σ2) 1√
2πσ2

e−
(x−µ)2

2σ2 µ σ2

Symmetric
Normal

SymNormal(µ, σ2) 1
2
e
− (x+µ)2

2σ2√
2πσ2

+ 1
2
e
− (x−µ)2

2σ2√
2πσ2

0 µ2 + σ2

Exponential Exponential(µ) µe−µx
1

µ

1

µ2

Chi-square χ2(α, 2)
1

Γ(α
2

)2
α
2
x
α
2
−1e−

x
2 α 2α

Gamma Gamma(α, β) 1
Γ(α)βα

xα−1e−
x
β αβ αβ2

Inverse-
Gamma

InvGamma(α, β)
βα

Γ(α)
x−α−1e−

β
x

β
α−1

β2

(α−1)2(α−2)

Beta Beta(α, β)
Γ(α+β)

Γ(α)Γ(β)
xα−1(1− x)β−1 α

α+β
αβ

(α+β)2(α+β+1)

Bernoulli Bernoulli(q) (q − 1)δ0(x) + qδ1(x) q q(1− q)
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Table 3.6.
Parameter values used in the generation of the synthetic traces. Choices
are listed according to figures.

Lxy Lz ωxy ωz N D µmol µback Ttotal
Units µm µm µm µm - µm2/s photons/s photons/s s
Fig. (3.2A) 1 2 0.3 1.5 4 1 4× 104 103 0.03
Fig. (3.2B) 1 2 0.3 1.5 4 1 4× 104 103 0.03
Fig. (3.2C) 1 2 0.3 1.5 4 1 4× 104 103 0.03
Fig. (3.2D) 1 2 0.3 1.5 4 1 4× 104 103 0.03
Fig. (3.2E) 1 2 0.3 1.5 4 1 4× 104 103 0.03
Fig. (3.4A) 1 2 0.3 1.5 4 1 4× 104 103 0.03
Fig. (3.5A) 1 2 0.3 1.5 10 1 4× 104 103 0.03
Fig. (3.5C) 1 2 0.3 1.5 4 1 4× 104 103 0.03
Fig. (3.5E) 1 2 0.3 1.5 1 1 4× 104 103 0.03
Fig. (3.6) 1 2 0.3 1.5 4 10−2 4× 104 103 0.03
Fig. (3.6) 1 2 0.3 1.5 4 10−1 4× 104 103 0.03
Fig. (3.6) 1 2 0.3 1.5 4 1 4× 104 103 0.03
Fig. (3.6) 1 2 0.3 1.5 4 10 4× 104 103 0.03
Fig. (3.6) 1 2 0.3 1.5 4 100 4× 104 103 0.03
Fig. (3.7A) 1 2 0.3 1.5 4 1 4× 105 103 0.03
Fig. (3.7B) 1 2 0.3 1.5 4 1 4× 104 103 0.03
Fig. (3.7C) 1 2 0.3 1.5 4 1 4× 103 103 0.03
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Table 3.7.
Here, we continue above parameter values used in the generation of the
synthetic traces. Choices are listed according to figures.

Lxy Lz ωxy ωz N D µmol µback Ttotal
Units µm µm µm µm - µm2/s photons/s photons/s s
Fig. (3.7D) 1 2 0.3 1.5 4 1 103 103 0.03
Fig. (3.16A) 1 2 0.3 1.5 10 10 4× 105 103 0.05
Fig. (3.16C) 1 2 0.3 1.5 10 10 4× 104 103 0.05
Fig. (3.17A) 1 2 0.3 1.5 10 10 4× 105 103 0.05
Fig. (3.17C) 1 2 0.3 1.5 10 10 4× 104 103 0.05
Fig. (3.17E) 1 2 0.3 1.5 10 10 4× 103 103 0.05
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Table 3.8.
Parameter values used in the analyses of the traces. Choices are listed
according to figures.

ωxy ωz N αD βD αmol βmol αq βq µxy µz σ2
xy σ2

z

Units µm µm - - µm2/s - phts/s - - - µm µm µm2

Fig. (3.2A) 0.3 1.5 - 1 1 1 105 - - 0.1 0.1 1 1
Fig. (3.2B) 0.3 1.5 - 1 1 1 105 - - 0.1 0.1 1 1
Fig. (3.2C) 0.3 1.5 - 1 1 1 105 - - 0.1 0.1 1 1
Fig. (3.2D) 0.3 1.5 - 1 1 1 105 - - 0.1 0.1 1 1
Fig. (3.2E) 0.3 1.5 - 1 1 1 105 - - 0.1 0.1 1 1
Fig. (3.4) 0.3 1.5 20 1 1 1 105 1 1 0.1 0.1 1 1
Fig. (3.5A3)0.3 1.5 20 1 1 1 105 1 1 0.1 0.1 1 1
Fig. (3.5B3)0.3 1.5 20 1 1 1 105 1 1 0.1 0.1 1 1
Fig. (3.5C3)0.3 1.5 20 1 1 1 105 1 1 0.1 0.1 1 1
Fig. (3.6) 0.3 1.5 20 1 1 1 105 1 1 0.1 0.1 1 1
Fig. (3.6) 0.3 1.5 20 1 1 1 105 1 1 0.1 0.1 1 1
Fig. (3.6) 0.3 1.5 20 1 1 1 105 1 1 0.1 0.1 1 1
Fig. (3.6) 0.3 1.5 20 1 100 1 105 1 1 0.1 0.1 1 1
Fig. (3.7A) 0.3 1.5 20 1 1 1 105 1 1 0.1 0.1 1 1
Fig. (3.7B) 0.3 1.5 20 1 1 1 105 1 1 0.1 0.1 1 1
Fig. (3.7C) 0.3 1.5 20 1 1 1 105 1 1 0.1 0.1 1 1
Fig. (3.7D) 0.3 1.5 20 1 1 1 105 1 1 0.1 0.1 1 1
Fig. (3.8) 0.23 0.55 20 1 1 1 105 1 1 0.1 0.1 1 1
Fig. (3.9) 0.23 0.55 20 1 1 1 105 1 1 0.1 0.1 1 1
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Table 3.9.
Here, we continue above parameter values used in the analyses of the
traces. Choices are listed according to figures.

ωxy ωz N αD βD αmol βmol αq βq µxy µz σ2
xy σ2

z

Units µm µm - - µm2/s - phts/s - - - µm µm µm2

Fig. (3.10) 0.23 0.55 20 1 1 1 105 1 1 0.1 0.1 1 1
Fig. (3.11) 0.23 0.55 20 1 1 1 105 1 1 0.1 0.1 1 1
Fig. (3.12) 0.27 4.51 20 1 1 1 105 1 1 0.1 0.1 1 1
Fig. (3.13) 0.22 3.90 20 1 100 1 105 1 1 0.1 0.1 1 1
Fig. (3.16) 0.3 1.5 20 1 1 1 105 1 1 0.1 0.1 1 1
Fig. (3.17) 0.3 1.5 20 1 1 1 105 1 1 0.1 0.1 1 1
Fig. (3.18) 0.23 0.55 20 1 1 1 105 1 1 0.1 0.1 1 1
Fig. (3.19) 0.22 3.90 20 1 100 1 105 1 1 0.1 0.1 1 1
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4. PHOTON-BY-PHOTON ANALYSIS OF TCSPC DATA

WITH BAYESIAN NONPARAMETRICS

Meysam Tavakoli, Sina Jazani, Ioannis Sgouralis, Heo Wooseok, Kunihiko Ishii, Tahei
Tahara, and Steve Pressé ”Photon-by-photon Analysis of TCSPC Data with Bayesian
Nonparametrics” Manuscript under review in Cell Reports Physical Science (2020).
Contribution: MT analyzed data and developed analysis software; MT, SJ, IS devel-
oped computational tools; HW, KI, TT contributed experimental data; MT, SJ, IS,
SP conceived research; SP oversaw all aspects of the projects.

4.1 Abstract

Fluorescence Lifetime Imaging (FLIM) is an experimental imaging technique yield-

ing excited state lifetimes of chemical species recorded over multiple pixels. Within

one pixel, the determination of the number of species can be achieved either through

fitting time correlated single photon counting (TCSPC) histograms or phasor anal-

ysis. Both methods yield lifetimes in a computationally efficient manner. However,

they also have drawbacks that we address here. First, they do not yield the number

of chemical species. Yet the number species is specifically encoded in the photon

time of arrival. Next, even to determine lifetimes under the assumption of a known

number of species, both methods rely on heavy data post-processing of the signal

thereby requiring large amounts of data to retrieve lifetimes. As a result the sample

is exposed to light orders of magnitude longer than required and temporal resolu-

tion is compromised. Here we propose a direct photo-by-photon analysis strategy

to infer, simultaneously and self-consistently, the number of species and their asso-

ciated lifetimes from as few as on the order of 3000 photons for two species. We do
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so by leveraging new mathematical tools within the Bayesian nonparametric (BNP)

paradigm that we have previously exploited in the analysis of single photon arrivals

from single spot confocal. We benchmark our method on simulated as well as exper-

imental data for one, two, three, and four species with both immobilized and freely

diffusing molecule data sets.

4.2 Introduction

Fluorescence microscopy has provided us with the ability to monitor the dynam-

ics of molecules by allowing for the selective detection of fluorophores or labeled

molecules [429, 430]. A number of fluorescence approaches–such as confocal mi-

croscopy [431], two-photon microscopy [432] and super-resolution widefield applica-

tions [433]–use constant illumination to provide information on chemical kinetics [434–

436], diffusional dynamics [401,437,438] or spatial locations of molecules [439,440].

Other fluorescence methods use illumination that varies in time [414, 441–447]

where the time of arrival of the photon now encodes critical information, say, on the

excited state lifetime or the number of different chemical species. This is the basis of

lifetime imaging [440]. Local variations in lifetimes across cells reveal information on

the local pH [448,449], oxygenation [448] and other metabolic traits [450,451] of the

cell.

There are different ways to achieve time-varying illumination [452–454]. The

first is through pulsed illumination [455, 456]. Here the time of arrival of a pho-

ton can be analyzed directly [352, 457–459], under the assumption of a fixed and

known number of molecular species, to determine the lifetime of each species. Meth-

ods of analysis include Bayesian approaches but always under the assumption of

a known number of species [460–464]. The photon arrival times can also be his-

togrammed; an approach termed time-correlated single photon counting (TCSPC)
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histogram method [430,465–467]. These histograms are typically fitted using a multi-

exponential fit [468, 469] to identify the lifetime of each species. Various metrics,

depending on the experiment under investigation, are then minimized to improve fit-

ting [462]. While such methods yield lifetimes in a computationally efficient manner,

they have several drawbacks. Not least of which is the specification of the number of

species that, while in principle encoded in the data, cannot be learned independently.

Additionally, these methods are data inefficient. The latter drawback is especially

problematic if temporal resolution is important, the sample is light sensitive, or mul-

tiple lifetimes are fairly similar requiring long photon arrival traces to discriminate

one from the other.

A second way to illuminate a sample is by modulating the intensity at a fixed

frequency [470–473]. As a result of the modulated excitation intensity, the emission

is also modulated but otherwise phase shifted [452]. For this reason, phasor analy-

sis [474] has been used to extract lifetimes from the modulated emission intensity.

A variant of phasor analysis also holds for pulsed excitation [475–477]. The advan-

tages and drawbacks here are similar to those of the methods we discussed in the

previous paragraph. What is more, and perhaps more strikingly, is that the retrieval

of lifetime information from phasor analysis requires independent knowledge of not

only the number of species but also the lifetime of all but one unknown species whose

lifetime is to be determined from a mixture of chemical species [477–479].

Fig. 4.1 captures just how sensitive the accuracy of TCSPC and phasor analysis

are to the number of photons available to the analysis.

What we have available in the community for lifetime analysis are methods that

can learn lifetimes at minimal computational cost. What we also know is that in-

formation on the number of species is encoded in the photon arrivals. At higher

computational cost, we could learn these, and full distributions over species and their
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Fig. 4.1. FLIM reveals excited state lifetimes provided a large
number of photons are available. Very preliminarily here we com-
pare our method relying on Bayesian nonparametric (BNP) which we
discuss in greater depth later to TCSPC and phasor analysis with limited
data available for analysis. (A1-A3) Here we use just 50 photons from
experimental time trace Rhod-6G to compare all three methods: (A1)
BNPs, (A2) TCSPC, and (A3) phasor analysis. In (B1-B3) and (C1-C3)
we repeat the analysis for 100 and then 1000 photons.
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associated lifetimes as well, but it would require a different mathematical paradigm

that goes beyond the parametric Bayesian paradigm.

We have previously exploited the Bayesian nonparametric (BNP) paradigm [263,

267] to analyze single photon arrival traces in order to learn diffusion coefficients

from minimal photon numbers drawn from single spot confocal experiments [401,

480]. Traditionally, such photon arrivals were analyzed using tools from fluorescence

correlation spectroscopy where very long traces were collected and auto-correlated in

time. The direct photon-by-photon analysis demanded a different approach as the

stochastic number of molecules contributing photons was unknown and an estimate

of that number deeply impacted our diffusion coefficient estimate. It is for this reason

that we invoked the nonparametric paradigm there.

Similarly the BNP paradigm is also required to infer the number of species and

their associated lifetimes. This is because assuming an incorrect number of species

leads to incorrect lifetime estimates for each species; see Fig. 4.2. BNP reshapes our

interpretation of biophysical data as they fundamentally go beyond the parametric

paradigm. In the “normal” (i.e., parametric) paradigm, we assume models and,

given these models, write down likelihoods used in data analysis. Yet a growing

number of biophysical applications, such as fluorescence correlation spectroscopy that

we’ve published on [401, 480] and lifetime analysis which is the focus here, present a

critical challenge where the model itself is unknown. In lifetime analysis, this model

is the number of species. Just as we treat model parameters as random variables in

the parametric Bayesian paradigm, we treat models themselves here as the random

variables and try to learn full posterior distributions over the number of species.

Here we propose a protocol that exploits BNPs to learn species and their associated

lifetimes with as few photons as possible. The advantages are four-fold: 1) we can

learn the number of species; 2) by resolving lifetimes and species with fewer photons
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we can minimize photo-damage; 3) we can monitor processes out-of-equilibrium where

only few photons are available before chemical conversion into another species; 4)

given long traces, we can exploit the additional data, if need be, to discriminate

between species of similar lifetimes that could not otherwise be previously discerned.
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Fig. 4.2. The number of species assumed in analysis directly
impacts the lifetimes ascribed to those species. Thus, we need
an independent method to estimate species numbers. (A-F) We
generate synthetic traces with three species with a total of 2×104 photon
arrivals and lifetimes, τ , of 0.5 ns, 2 ns, and 10 ns. To estimate the τ
within the normal (i.e., parametric) Bayesian paradigm, we start by as-
suming the following number of species, N = 1 (A), N = 2 (B), N = 3
(C), N = 4 (D), . . ., N = 10 (E), . . ., and N = 20 (F). The good fit pro-
vided by N > 2 and the mismatch in the peak of the posterior distribution
over the lifetime and correct value of the lifetime (red dotted line) in all
others underscores why it will be critical for us, or any method analyzing
single photon data in the context of confocal microscope experiments, to
correctly estimate the number of species contributing to the trace in order
to deduce chemical parameters such as lifetime.
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4.3 Methods

Here, we describe the mathematical formulation of our analysis method of TCSPC

data. For clarity we focus on measurements obtained on a fluorescence setup that

utilizes a train of identical excitation pulses. Following each pulse, one of more

molecules located near the illuminated region may be excited from their ground state.

As the excited molecules decay back to their ground state they may emit photons

and we record the detection time. Below we describe how we analyze such recorded

times.

We start from single photon detection times which consist of the raw output in

a TCSPC experiment. Similarly, these are measured based on the time difference

between excitation pulses, which are time stamped, and the detection time of the

first photon arriving after each pulse [452,455,481]. Precisely, our raw input is ∆t =

(∆t1,∆t2, . . . ,∆tK) where ∆tk is the time interval between the preceding pulse’s

time and the photon detection time of the kth detection. In the literature, each ∆tk is

often termed micro-time. Because, some pulses may not lead to a photon detection,

in general the micro-times in ∆t are fewer than the total number of pulses applied

during an experiment.

4.3.1 Model description

We assume that, once excited, each molecule remains excited for a time period that

is considerably lower (typically few nanoseconds) as compared to the time between

two successive pulses (typically more than four times of the longest decay time in the

sample [452]). This condition allows us to consider that any photon which is detected

stems from an excitation caused by the very previous pulse and not from earlier pulses.

Also, as excitation pulses in TCSPC experiments are weak [467, 482], and typically
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one in ≈ 100 pulses results in a photon detection [452], we ignore, to a very good

approximation, multiple photon arrivals. As the number of detected photons coming

from the background is considerably lower than the number of detected photons

coming from the excited molecules, typically one to≈ 1000, we also ignore background

photons. However, background photons can be dealt with straightforwardly as we

show in the discussion, Sec. 4.5.

To analyze the recordings ∆t, we assume that the sample contains in total M dif-

ferent molecular species that are characterized by different lifetimes τ1, . . . , τM . Since

molecules of each species may be excited by the pulses with different probabilities (be-

cause of different fraction of molecules contributing photons from different species),

we consider a probability vector π̄ = (π1, . . . , πM) that gathers the probabilities of

each species giving rise to a photon detection. Allowing sk to be a tag attaining

integer values 1, . . . ,M , that indicates which species triggered the kth detection, we

may write

sk|π̄ ∼ Categorical1:M (π̄) . (4.1)

With this convention, the lifetime of the molecule triggering the kth detection is τsk .

Of course, the number of molecular species M and the precise values of the lifetimes

τ1, . . . , τM are unknown and our main task is to estimate them using the recordings

in ∆t.

For clarity, we denote with tpul,k the application time of the pulse that triggers the

kth photon detection. More precisely, tpul,k is the time of the pulse’s peak. Because, in

general pulses last for some non-zero duration, and so they may excite the molecules

at slightly different times, we denote with text,k the absorption time of the molecule

triggering the kth detection. Further, we denote with tems,k the emission time of

the photon triggering the kth detection. Finally, due to the measuring electronics,
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the detection time, which we denote with tdet,k, might be different from tems,k; see

Fig. 4.3 for more details.

Fig. 4.3. Cartoon of the factors that contribute to the recorded
photon arrival times. Here, tpul,k is the time of the pulse’s peak. Since
pulses last for some time, they may excite the molecules at slightly dif-
ferent times. As such, we denote with text,k the absorption time of the
molecule triggering the kth detection. Moreover, we denote with tems,k
the emission time of the photon triggering the kth detection. At last, on
account of electronics limitations, the detection time, which we denote
with tdet,k, might be different from tems,k.

With this convention, our measured output consists of the time lags ∆tk =

tdet,k−tpul,k. These time lags include: (i) the time until absorption occurs, text,k−tpul,k;

(ii) the time until fluorescence emission occurs, tems,k − text,k; (iii) delays and errors

introduced by the measuring electronic devices, tdet,k − tems,k. Below, we denote

the middle period with ∆text,k = tems,k − text,k; while, we denote with ∆terr,k =

(text,k − tpul,k) + (tdet,k − tems,k) the sum of the others. From these two, ∆text,k is

the time the molecule spends in the excited state; while, ∆terr,k gathers any artifacts

caused by our setup either in the excitation or detection pathway. The advantages

of considering these two periods separately, as we explain below, is that (i) these

represent independent physical processes, and (ii) each one is theoretically and ex-

perimentally characterized well [452].



182

In particular, ∆terr,k is characterized by the instrument response function (IRF)

that, in each set-up, is readily obtained with calibration measurements. [452] In this

study, we approximate the IRF as a Gaussian

∆terr,k ∼ Normal(τIRF, σ
2
IRF). (4.2)

In this approximation, τIRF is the IRF’s peak time and σIRF = FWHM/2.355 where

FWHM is the IRF’s full-width-at-half-maximum. In the supplementary information,

we explain the IRF’s calibration in detail.

Upon excitation, the time the molecule remains excited, ∆text,k, is memory-

less [452], and so it follows the exponential distribution. Therefore,

∆text,k|λsk ∼ Exponential(λsk) (4.3)

where λsk is the fluoresce rate of the molecule triggering the detection of ∆text,k. Of

course, the fluorescence rate depends upon the lifetime by λsk = 1/τsk .

Because ∆text,k and ∆terr,k are independent variables, the statistics of our mea-

surements, which are given by ∆tk = ∆text,k + ∆terr,k, follow

∆tk|λsk ∼ Normal(τIRF, σ
2
IRF) ∗ Exponential(λsk) (4.4)

where ∗ denotes a convolution [483], and specifically has the probability density

p (∆tk|λsk) =
λsk
2

exp

[
λsk
2

(
2 (τIRF −∆tk) + λskσ

2
IRF

)]
erfc

(
τIRF −∆tk + λskσ

2
IRF

σIRF

√
2

)
(4.5)

where erfc(·) denotes the complementary error function. In the supplementary infor-

mation, we show analytically how Eq. (4.5) arises from Eqs. (4.2) and (4.3).



183

In the next section we describe how Eqs. (4.1) and (4.5) can be used in conjunction

with BNP to obtain the estimates we are after.

4.3.2 Model inference

All quantities which we wish to infer, for example the species fluorescence rates

λ1, . . . , λM and excitation probabilities in π̄, are represented by model variables in

the preceding formulation. We infer values for these variables within the Bayesian

paradigm [79, 328, 358]. Accordingly, on the fluorescence rates we place independent

priors

λm ∼ Gamma (αλ, βλ) , m = 1, . . . ,M (4.6)

that ensure strictly positive values. As the total number of species contributing

photon detections in an experiment is unknown, we consider a symmetric Dirichlet

prior [79, 360] on π̄ of the form

π̄ ∼ DirichletM

( α
M
, . . . ,

α

M

)
(4.7)

where α is a positive scalar hyper-parameter. A graphical summary of the whole

formulation is shown on Fig. 4.4.

The distribution in Eq. (4.7) ensures that π̄ are valid probability vectors. Further,

Eq. (4.7) is specifically chosen to allow for a large, M →∞, number of species. This

is particularly important because the total number of molecular species contributing

to the detections in a FLIM experiment is typically unknown, and so choosing a finite

M may lead to under-fitting. Specifically, at the limiting case M →∞, the prior on

Eq. (4.7), combined with Eq. (4.1), results in a Dirichlet process [263, 271, 360, 484].



184

In other words, provided M is sufficiently large, the estimates obtained through our

model are independent of the particular value chosen (i.e., overfitting cannot occur).

With the nonparametric model just presented, although the total number of model

molecular species is infinite, the actual number of molecular species contributing

photons to the measurements is finite. Specifically, the number of contributing species

coincides with the number of different tags sk associated with ∆t. In other words,

instead of asking how many species contribute to the measurements?, with our model,

we ask how many of the represented species actually contribute at least one photon?

Further, instead of asking what are the lifetimes of these species? we ask what are the

lifetimes of the species contributing at least one photon? Of course, as we estimate

rates instead of lifetimes, we obtain the latter by τm = 1/λm.

With these priors, we form p (π̄, s1, . . . , sK , λ1, λ2, . . . |∆t) which is the joint pos-

terior probability distribution that includes all unknown variables. To compute this

posterior, we develop a Markov Chain Monte Carlo (MCMC) scheme [358, 381] that

generates pseudo-random samples with the appropriate statistics. The scheme is

described in the supplementary information and a working implementation is also

provided.
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Fig. 4.4. Graphical representation of the proposed model. A simple
graphical representation of the model, where ∆tk is the micro time k with
k = 1, . . . , K. The molecular emission rate of species m is shown by λm,
m = 1, . . . ,M . The label sk tells us which of the species is contributing
the kth photon. In the graphical model, the measured data are denoted
by grey shaded circles and the model variables, which require priors, are
designated by blue circles. Each one of the labels has a prior which is a
Dirichlet probability π.

4.3.3 Acquisition of Synthetic Data

The synthetic data presented in this study are obtained by standard pseudo-

random computer simulations [383, 384, 386, 387, 485] that simulate a common flu-

orescence lifetime imaging modality with a conventional single-spot confocal setup.

Further, in the simulations we consider confocal regions created with pulsed excita-

tion. To generate data mimicking as closely as possible the measurements obtained

in real experiments, we simulate freely diffusing molecules of different species charac-

terized by different diffusion coefficients and lifetimes. Details and parameter choices

are provide in the supplementary information, Tables 4.3 and 4.4.
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4.3.4 Acquisition of Experiment Data

The synthetic data presented in this study are obtained as described below.

Sample preparation

Sample solutions of Rhodamine B (Rhod-B, Wako Pure Chemical Industries),

Rhodamine 6G (Rhod-6G, Sigma-Aldrich), and tetramethylrhodamine-5-maleimide

(TMR, Invitrogen), and Cy3 monofunctional NHS-ester (Cy3, GE Healthcare) were

prepared with Milli-Q water at 1 µM concentration. Nonionic surfactant (0.01%

Triton X-100) and 2 mM Trolox were added to prevent adsorption of dye molecules

to the glass surface and reduce photophysical artifacts, respectively.

Experiments

Fluorescence lifetime measurements were carried out using a confocal fluorescence

microscope with super continuum laser (Fianium SC-400-4, frequency of 40 MHz).

The output of the laser was filtered by a bandpass filter (Chroma Technology D525/30

m), and focused onto the sample solution using a 60× objective lens (Nikon Plan Apo

IR) with NA of 1.27. The excitation power was set to be 0.3 µW at the entrance port

of the microscope. Fluorescence photons ware collected by the same objective lens and

guided through a confocal pinhole as well as a bandpass filter (Chroma Technology

D585/40 m), and then detected by a hybrid detector (Becker & Hickl HPM-100-

40-C). For each photon signal detected, the routing information was appended by a

router (Becker & Hickl HRT-82). The arrival time of the photon was measured by

a TCSPC module (Becker & Hickl SPC-140) with the time-tagging mode [466]. The

time resolution was evaluated by detecting the scattering of the incident laser light

at a cover glass, and it was typically 180 ps at full width half maximum.
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4.4 Results

Our goal is to characterize quantities that describe molecular chemistry at the

data-acquisition timescales of FLIM with a focus on obtaining lifetime estimates. In

order to estimate lifetimes, we also estimate intermediate quantities (namely molecule

emission rates, and the fraction of interacting molecules) detailed in the method

section.

Within the Bayesian nonparametric approach [328, 359, 360], our estimates take

the form of posterior probability distributions over unknown quantities. These distri-

butions combine parameter values, probabilistic relations among different parameters,

as well as the associated uncertainties. To quantify this uncertainty, we calculate a

posterior variance and use this variance to construct error-bars (i.e., credible inter-

vals). According to the common statistical interpretation [358, 359], the sharper the

posterior, the more conclusive (and certain) the estimate [480].

We first validate our approach on synthetic data where the ground truth is avail-

able. We then test our method on experimental data. For the latter case, we compare

our analyses to the results obtained from both TCSPC and phasor plot methods used

in FLIM.

4.4.1 Method Validation using Synthetic Data

To show the robustness of our method, we generate synthetic traces where molecules

are immobilized under a broad range of: i) different number of photon arrivals, Fig. 4.5

with multiple species, Fig. 4.6; ii) different fraction of molecules contributing photons

from different species, Fig. 4.7; and iii) resolution of lifetime (or the two closest life-

times) as a number of photons obtained grows, Fig. 4.8. All parameters not explicitly

varied are held constant across all figures. The parameters not varied are held fixed
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at the following baseline values: lifetime between 1 ns and 10 ns which is the typical

lifetime range of a fluorophore [452,486], two species which is most frequent in related

studies [442, 451, 452], and fraction of molecules contributing photons from different

species 50% : 50%.

Also, in the supplementary information, we worked cases with three and four

different species (as opposed to a just one or even two species) as this scenario presents

the greatest analysis challenge because very few photons, and thus little information,

is gathered on each species. In a similar spirit, we also default to short traces that

cannot meaningfully be analyzed using TCSPC and phasor approaches as illustrated

in Fig. 4.1. Moreover, since the mathematics is identical, our proposed method applies

also in the case when molecules are diffusing inside the confocal volume. We show

in the supplementary information, Figs. 4.11 and 4.12, the results for freely diffusive

molecules.

Number of photons

We benchmark the robustness of our approach with respect to the length of the

trace (i.e., the total number of photon arrivals) at fixed number of species, lifetime,

and molecule photon emission rate. The first important conclusion is that, for the

values of parameters selected, we need at least one order of magnitude less data than

both TCSPC and phasor analysis; see Fig. 4.1. For instance, to obtain an estimate

of the lifetime within 10% of the correct result in the one species case, our method

requires ≈ 100 photons (emitted from the species of interest), while both TCSPC

and phasor require ≈ 1000 photons to determine the lifetime to within the same error

bar. In the case of two species traditional approaches need at least 3 × 104 photons

in comparison to ≈ 3000 for our proposed BNP approachs; see Figs. 4.5 and 4.6.
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To determine how many photons were required for our method, we chose the mean

value of the lifetime posterior, and measure the percentage difference of this mean to

the ground truth known for these synthetic traces. For FLIM, in one species lifetime

analysis case we require ≈ 1000 photons for same accuracy as our approach, and

for the case of mixture of double species analysis this number arise to 104 or more

photons [482,487].

In general, the difference in the photon numbers demanded by our method and

traditional analysis depend on a broad range of experimental parameter settings.

This is the reason, we explore different settings–holding all other settings fixed–in

subsequent subsections as well as the supplementary information.

Another important concept, illustrated in Figs. 4.1, 4.5, and 4.6 that will keep re-

appearing in subsequent sections, is the concept of a photon as a unit of information.

The more photons we have, the sharper our lifetime estimates. This is true, as we see

in these figures, for increasing trace length. Similarly, as we will see in subsequent

subsections, we also collect more photons as we increase the contribution of labeled

molecules (and thus the number of molecules contributing photons to the trace).
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Fig. 4.5. Effect of the number of detected photons on a single
molecular lifetime estimation. The more photons per unit time
and thus the sharper estimation of lifetime. (A) Here, we work on
single species lifetime while all molecules are immobilized. The synthetic
trace generated by τ = 1 ns. The blue dot represents a single photon
arrival time. The excitation pulses happen at frequency of 40 MHz and
we consider then to have a Gaussian shape with standard deviation of
0.1 ns. We start with 50 photons (B1) and gradually increase the number
of photons to 100 (B2), 500 (B3), and 1000 (B4) photons. The ground
truth for the lifetime is known (as this is synthetic data) and it is shown
by red dash line.
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Fig. 4.6. Effect of the number of detected photons on two molec-
ular lifetimes estimation. The larger trace length has more pho-
tons per unit time and thus sharper estimation of lifetime for
two species case. (A) Here, we work on double species lifetimes while all
molecules are immobilized. The synthetic trace generated by τ = 1 ns and
τ = 10 ns with fraction of contributing molecules from different species
of 50% for each of them (50% − 50%). The blue dot represents a single
photon arrival time. We start with 1500 photons (B1) and gradually in-
crease the number of photons to 2000 (B2), 5000 (B3), and 10000 (B4)
photons. Here, all other features such as the frequency of acquisition and
width of pulse are the same as in Fig. 4.5. Also, we follow the same red-
dashed line convention. To see the results for more than two species see
the supplementary information, Figs. 4.14 and 4.15.
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Fraction of molecules contributing photons from different species

To test the robustness of our method when different species contribute an uneven

number of photons, we simulate data with 70% of the population in species 1 and

30% in species 2 (Fig. 4.7A). We also considered fractions of contributing molecules

from different species of 50% : 50% (Fig. 4.7 B), and 30% : 70% (Fig. 4.7 C). For

all cases, the lifetimes were fixed at 1 ns and 10 ns for ≈ 3000 photon arrivals.

Fig. 4.7 summarizes our results and suggests that posteriors over lifetimes are broader–

and thus the accuracy with which we can pinpoint the lifetimes drops–when the

contribution of labeled molecule is lower. Intuitively, we expect this result as fewer

species within the confocal volume provide fewer photons and each photon carries

with it information that helps refine our estimated lifetimes.



193

Fig. 4.7. Effect of the relative fraction of contributing molecules
from different species on molecular lifetime estimation. Higher
molecular contributions provide more photons per unit time and
thus sharper lifetimes estimates. (A-C) The posterior probability
distributions of traces with lifetimes of 1 ns and 10 ns, with 3000 total
photons and fraction of contributing molecules from different species of
70% − 30%, 50% − 50% and 30% − 70% respectively. Here, all other
features such as the frequency of acquisition and width of pulse are the
same as in Fig. 4.5. Also, we follow the same red-dashed line convention.
For more details see supplementary information Fig. 4.16.
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Lifetime resolution

We repeat the simulations with two species and ask about how many photons

are required to resolve similar lifetimes. Here, we have shown the dependency of

the time resolution to the number of collected photons in Fig. 4.8. As expected,

the number of photons required to resolve increasingly similar lifetimes grows as the

ratio of lifetimes approaches unity. However, this also suggests that if we were to

resolve species of similar lifetimes, we could use the amount of data typically used

in TCSPC or phasor analysis to resolve these while TCSPS or phasor analysis would

still require an additional order of magnitude more data. As a note, they had to

impose by hand how many species we have while in our method, number of species

were learnt. Moreover, if we know number of species we require even less number of

photons that we have claimed.
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Fig. 4.8. Lifetime resolution for double species lifetimes. The
synthetic traces are acquired for total of 3000 to 20000 photon arrivals and
start with lifetimes of 1 ns and 10 ns (≈ 3000 photons) and gradually make
the lifetimes closer to each other. (B) 1 ns and 5 ns (≈ 3000 photons), (C)
1 ns and 2 ns (≈ 10000 photons), and (D) 1 ns and at last 1.5 ns (≈ 20000
photons). The fraction of molecules contributing photons from different
species in the total photon budget is equal (50%− 50%). Here, all other
features such as the frequency of acquisition and width of pulse are the
same as in Fig. 4.5. Also, we follow the same red-dashed line convention.
Posterior probability distribution over the lifetimes estimated from the
trace has been shown.
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4.4.2 Estimation of physical parameters from experimental data

To evaluate our approach on real data, we used experimental data collected under a

broad range of conditions. That is, we used measurements from different fluorophores,

namely Cy3, TMR, Rhod-B, and Rhod-6G. Figs. 4.9 and 4.10 were collected using the

Rhod-B and Rhod-6G dyes and these results were used to benchmark the robustness

of our method on individual species as well as mixtures of species with different frac-

tion of molecules contributing photons from different species. In the supplementary

information, Fig. 4.17, we have shown more experimental result for the case of more

than two species.

In Fig. 4.1, we verified our method on Rhod-6G with respect to the total number

of photon arrivals. The first important conclusion is that we need at least one order

of magnitude less data than both TCSPC and phasor analysis to obtain an estimate

of the lifetime within 10% of the correct result. That is, we need ≈ 100 photons,

while both TCSPC and phasor require ≈ 1000 photons. For two or more species the

situation for both TCSPC and phasor grows more challenging for two reasons. First,

the number of species cannot be independently determined and, even if known, at

least ≈ 10000 photons are required to determine lifetimes to within 10% of the correct

result. The percent to within the correct result is computed just as we had before in

Sec. 4.4.1.

In general, the difference in the photon numbers demanded by our method and

traditional analyses depend on a broad range of experimental parameter settings.

This is the reason, we explore different settings–holding all other settings fixed–just

as we did with synthetic data in subsequent subsections as well as the supplementary

information.
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Benchmarking on experimental data using a different number of photons

for mixtures of Rhod-B and Rhod-6G

Similarly to the synthetic data analysis appearing in Fig. 4.6, we benchmark the

robustness of our approach with respect to the length of the trace (i.e., the total

number of photon arrivals) given fixed lifetimes and fraction of interacting molecules

at 50% : 50%. Again the important conclusion is that, for the values of parameters

selected, we need at least one order of magnitude less data than both TCSPC and

phasor analysis; see Fig. 4.1 for the analysis of one species, Rhod-6G, and Fig. 4.9 for

the analysis of two species. For instance, to obtain an estimate of the lifetime within

10% of the correct result for the case of two species, our method requires ≈ 3000

photons, while both TCSPC and phasor require ≈ 3× 104 photons.
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Fig. 4.9. Comparison of number of photons needed to assess the
lifetimes of mixtures of Rhod-B and Rhod-6G. In (A1-A3) we use
2000 photons and compare all three methods: (A1) BNPs, (A2) TCSPC,
and (A3) phasor analysis. In (B1-B3) and (C1-C3) we repeat the analysis
for 4000 and then 104 photons.

Benchmarking on experimental data using different fractions of Rhod-B

and Rhod-6G

We start by evaluating our method on mixtures of Rhod-B and Rhod-6G but

present in different amounts. Similarly to Fig. 4.7 for the analysis of two species

from synthetic data, we show estimates of the lifetimes for two species, Rhod-B and

Rhod-6G, at 70% : 30% fraction (Fig. 4.10A), at 50% : 50% fraction (Fig. 4.10B),
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and at 30% : 70% fraction (Fig. 4.10C). Fig. 4.10 summarizes our results and suggests

that posteriors over lifetimes are broader–and thus the accuracy with which we can

pinpoint the lifetimes drops–when the contribution from the dye concentration for

that species is lower. Same as before, we need at least one order of magnitude less

data than both TCSPC and phasor analysis; see Fig. 4.10. For instance, to obtain an

estimate of the lifetime within 10% of the correct result, our method requires ≈ 3000

photons directly emitted from the dye, while both TCSPC and phasor analyses be-

come more challenging and for two species case requires at least ≈ 3 × 104 photons

(assuming the number of species is known). In the supplementary information we

show additional results for the case of three and four species with different contribu-

tion where the number of photons required for analysis grows substantially in phasor

and TCSPC analysis.
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Fig. 4.10. Effect of the fraction of molecules contributing photons
from different species on molecular lifetime estimates. Higher
molecular contributions provide more photons per unit time and
thus sharper lifetime estimates. (A1-A3) The experimental trace is
selected using two species, Rhod-B and Rhod-6G, with a total of about
3000 photon arrivals with fraction of molecules contributing photons from
different species (70%−30%). (A1) BNPs, (A2) TCSPC, and (A3) phasor
estimations. In (B1-B3) and (C1-C3) we repeat the analysis for fraction
of (50%− 50%) and (30%− 70%)
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4.5 Discussion

Across all spectroscopic and imaging applications, the photon is the basic unit

of information [395, 480]. Decoding information directly from single photon arrivals,

with as few photons as possible without binning or correlating or other pre-processing

of the data, is the main focus of all data-centric analysis strategies. Yet decoding

information directly from single photon arrivals presents fundamental model selection

problems.

For example, in the case of FCS, if we are to learn diffusion coefficients directly

from limited photon arrivals, we must know how to write down a likelihood or, put

differently, we must know the number of molecules contributing photons that, in turn,

dictate the form for the likelihood [480]. As we do not know how many molecules

we have, and what the appropriate likelihood should be, we have a model selection

problem. Similarly, for lifetime imaging, if we are to learn the lifetime of the chemical

species contributing photons, we must also know the number of species in order to

write down a conventional likelihood.

Traditional Bayesian methods do not have a direct solution to the model selection

problem [79,328] as they also require us to be able to write down a likelihood. That is,

they consider a fixed model (and a fixed likelihood) and treat the model’s parameters

as random variables of the posterior distribution. By contrast, BNP, which are a

direct logical extension of parametric Bayesian methods, treat models alongside their

parameters as random variables [263,488–492].

This ability to treat models themselves as random variables is the key technical

innovation that prompted the development of BNP in the first place. It makes it is

possible to avoid the computationally infeasible task of first enumerating and second

comparing all models for any associated parameter values to all other competing

models and their associated parameter values.
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The BNP approach to tackling lifetime image analysis that we propose here cannot

replace phasor analysis [443,451,472,474,476,477] or TCSPC [430,445,456,467,482]

for simple one component systems on account of their computational efficiency. How-

ever, at an acceptable computational cost, BNP approaches provide an alternative.

They give us the ability to: determine the number of species; use much less data

to obtain lifetime estimates (and thus reduce photo-toxic damage to a light-sensitive

sample); use longer photon arrival traces, if available, to tease out small differences

in lifetimes between species as BNP-based methods are more data efficient; probe

processes resolved on faster timescales (again, as we require fewer photons); exploit

all information encoded in the photon arrivals (and thus not require separate control

experiments, as needed in phasor approaches, for the measurement of the lifetime

of one species to determine the lifetime of a second species when a mixture of two

species, say, is present).

As for the computational cost, obtaining lifetimes (to within 10% of the ground

truth lifetime for a one-species for the parameters we used in Figs. 4.5 and 4.1 requiring

≈100 photons) takes 5 minutes on a typical desktop (based on a system with 6G RAM,

Core (TM) i7-2.67 GHz CPU). For a two-species mixture, Figs. 4.6 and 4.9 , under

the same parameters and requiring 3000 photons, it was a modest increase to 15

minutes. The point, here, is that the analysis of single or multi-species data can be

performed with an average desktop computer and it does not necessarily require high

performance computing facilities.

The real strength of BNP becomes clear when we reach two, three, four or possibly

even more species. Beyond being able to work with low photon counts, another key

advantage of our method is its flexibility. The ability to use BNP, and treat models

as random variables, in lifetime imaging is the real point here and, as such, our

framework can be adapted to treat a range of experimental setups.
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In particular, our framework can straightforwardly be adapted to treat: any IRF

by modifying Eq. 4.2 as appropriate; and any background photon arrival statistics

or detector dark counts by modifying Eq. 4.3 especially relevant to in vivo imaging.

In the supplementary information, Fig. 4.13, we evaluated our method respect to

different background levels to see how it behaves with different number background

photons.More significant, and challenging, extensions of our work would be to consider

lifetime changes over the timescale of data acquisition as may be expected in complex

in vivo environments [493,494].

We may not be able to provide answers for dealing with these types of complex

questions yet. However, BNP gives us a genuinely different way to think about

problems. They suggest productive paths forward to tentatively formulate inverse

strategies to unravel processes of life that we already know to be encoded within in

vivo photon arrival traces.

Supplementary Information

In this supplement, we present additional analyses and technical details expand-

ing upon the material presented in the main text. These include: (i) additional

analysis of synthetic and experimental traces that include the estimation of lifetimes

and the fraction of interacting molecules; (ii) additional details on the theoretical

approaches used; and (iii) a complete description of the inference framework devel-

oped that includes choices for prior probability distributions and a computational

implementation.
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Additional results

Analysis of additional synthetic data

In the main text we focused on the estimation of: lifetime, τ , with values less than

10 ns which are typical lifetime values in in vivo applications [493]. Here, we explore

broader parameter ranges from freely diffusive molecules, Figs. 4.11 and 4.12 to the

case when we have different background photons, Fig. 4.13, which we evaluated our

method respect to different background levels to see how it behaves with different

number background photons. Moreover, we evaluated our method in the cases with

more than two species, Figs. 4.14 and 4.15, and estimate the fraction of molecules

contributing photons from different species, Fig. 4.16, that we explain in the main

text in Sec. 4.4.1.
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Fig. 4.11. Effect of the number of detected photons on a single
diffusive molecular lifetime estimation. The more photons per
unit time and thus the sharper estimation of lifetime. Here,
we work on single species lifetime while all molecules are diffusing with
diffusion coefficient, D = 10 µm2/s. The synthetic trace generated by
τ = 1 ns. We start with 50 photons (A) and gradually increase the
number of photons to 100 (B), 500 (C), and 1000 (D) photons. The
excitation pulses occur at a frequency of 40 MHz and we assume that
these pulses assume a Gaussian shape with standard deviation of 0.1 ns.
The ground truth for the lifetimes are known (as this is a synthetic data)
and they are shown by red dash lines.
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Fig. 4.12. Effect of the number of detected photons on a double
diffusive molecular lifetime estimation. The more photons per
unit time and thus the sharper estimation of lifetime. Here,
we work on single species lifetime while all molecules are diffusing with
diffusion coefficient, D = 10 µm2/s. The synthetic trace generated by
τ = 1 ns and τ = 10 ns. We start with 1500 photons (A) and gradually
increase the number of photons to 2000 (B), 5000 (C), and 10000 (D)
photons. Here, all other features such as the frequency of acquisition and
width of pulse are the same as in Fig. 4.11. Also, we follow the same
red-dashed line convention.
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Fig. 4.13. Effect of the number of background photons on a
double diffusive molecular lifetimes estimation. The more back-
ground photons per unit time and thus the poorer estimation of
lifetime. Here, we work on double species lifetime while all molecules
are diffusing with diffusion coefficient, D = 10 µm2/s. The synthetic
trace generated by τ = 1 ns and τ = 10 ns with total 3000 photons. We
start with 3 background photons (A) and gradually increase the number
of background photons to 30 (B), 150 (C), and 300 (D) photons. Here,
all other features such as the frequency of acquisition and width of pulse
are the same as in Fig. 4.11. Also, we follow the same red-dashed line
convention.
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Fig. 4.14. Lifetime estimation with three different species using
synthetic data. Here, we generate a synthetic trace with three species
having lifetimes τ = 1 ns, τ = 4 ns and τ = 10 ns with equal fraction of
molecules contributing photons from different species of 33% for each of
them and total 2×105 photon arrivals. Here, all other features such as the
frequency of acquisition and width of pulse are the same as in Fig. 4.11.
Also, we follow the same red-dashed line convention.



209

Fig. 4.15. Lifetime estimation with four different species in syn-
thetic data. Here, we work with four species lifetimes while all molecules
are immobilized. The synthetic trace generated by τ = 0.5 ns, τ = 2 ns,
τ = 6 ns and τ = 12 ns with equal fraction of interacting molecules of
25% for each of them and total 3 × 105 photon arrivals. Here, all other
features such as the frequency of acquisition and width of pulse are the
same as in Fig. 4.11. Also, we follow the same red-dashed line convention.



210

Fig. 4.16. Estimation of the fraction of molecules contributing
photons from different species. (A-C) Using same synthetic traces
as Fig. 4.7, the posterior probability distribution over the fraction of
molecules contributing photons from different species (weight) with life-
times of 1 ns and 10 ns, 3000 total number of detected photons and frac-
tion of interacting molecules of 70% − 30%, 50% − 50% and 30% − 70%
respectively. Here, all other features such as the frequency of acquisition
and width of pulse are the same as in Fig. 4.11. Also, we follow the same
red-dashed line convention.
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Analysis of additional experimental data

Here, we used real measurements, obtained as explained in the method sec-

tion, from different fluorescent dyes, namely Cy3, TMR, Rhod-B, and Rhod-6G.

In Fig. 4.17 we considered a mixture of all four species. In Fig. 4.18 we show that we

can correctly identify the fraction of molecules contributing photons from different

species.

Fig. 4.17. Lifetime estimation for the case of four different species
from experimental data. Here, we work on four species lifetimes while
all molecules are immobilized. The experimental trace generated by four
different dyes including Cy3, Rhod-B, TMR, and Rhod-6G with a total of
≈ 3 × 105 photon arrivals. The excitation pulses occur with a frequency
of 40 MHz and we assume that these pulses assume a Gaussian shape
with standard deviation of 0.1 ns. The ground truth estimates (as we do
not have real ground truths for real data) for the lifetimes are determined
using the whole trace which includes total 1.4 × 106 photon arrivals and
they are shown by red dash lines.
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Fig. 4.18. Estimation of the different fraction of molecules con-
tributing photons from different species for the experimental
trace. (A-C) Using same traces as Fig. 4.10, the posterior probability
distributions of fraction of interacting molecules (weight) for experimen-
tal dyes, RhodB and Rhod6G, with total ≈ 3000 total number of detected
photons and fraction of interacting molecules of 70% − 30%, 50% − 50%
and 30%−70% respectively. The excitation pulses happen at frequency of
of 40 MHz and we consider then to have a Gaussian shape with standard
deviation of 0.1 ns. The ground truth estimates (as we do not have real
ground truths for real data) for the lifetimes are determined using the
whole trace which includes total 1.4 × 106 photon arrivals and they are
shown by red dash lines.
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Brief description of FLIM analyses with TCSPC and phasor plots

Time domain

In typical time-domain lifetime imaging, a pulsed laser is used to excite the sample

periodically, causing fluorescence emission for those pulses where a molecule is excited

and decays back to the ground state radiatively. Experimentally, based on the data

we presented in Fig. 4.19, this is typically 1 in 40 pulses [452].

The fluorescence decay of different species with distinct fluorescence lifetimes can

be modeled by a mixture of exponential distributions though whew we need to be

careful to convolve the fluorescence intensity with the measured IRF; see Eq. 4.16.

At present most of time-domain measurement analysis is performed using TC-

SPC [452,467,482].

Frequency Domain

Frequency-domain or phase-modulation experiments constitute an alternative way

to measure excited state lifetimes. In this case, the sample is excited with an intensity-

modulated light, typically a sine-wave modulation [452]. When a fluorescent sample

is excited in this way, the emission intensity follows a shifted modulation (m) pattern

with the phase shift (φ) and peak height that both encode information on the excited

state lifetime [452].
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Fig. 4.19. Comparison between time-domain and frequency-
domain FLIM analysis. Mapping frequency-domain (left) and TCSPC
(right) data to the phasor plot (middle).

The modulation of the excitation is given by e
E

, where e is the average intensity

and E is the peak-to-peak height of the incident light (Fig. 4.19). The modulation

of the emission is defined similarly, f
F

, except using the intensities of the emission

(Fig. 4.19). The shifted modulation between emission and excitation, m =
f
F
e
E

. The

other experimental observable is the phase shift, (φ) which is the phase difference

between excitation and emission. Both phase shift (φ) and the shifted modulation

between emission and excitation (m) can be employed to calculate the lifetime using

tanφ = ωτφ (4.8)

m =
1√

1 + ω2τ 2
m

(4.9)

These expressions can be also be used to calculate the phase (τφ) and shifted

modulation (τm) lifetimes for the curves shown in Fig. 4.19. If the intensity decay

is a single exponential, then Eqs. 4.8 and 4.9 yield the correct lifetime. In this case,

both τφ and τm are equal. For more than one species these two are not same and we
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have more calculation to extract the lifetimes. For more details regarding more than

one species we refer interested readers to see Ref. [452]

Description of the pulsed excitation and microtimes simulation

Fig. 4.20. Pictorial representation of the experimental setup a
sample with mixture of two species. (A) The Brownian motion
of two species in space versus time. Excitation and emission points are
shown with different arrows. (B) The pulses and emission times will result
in the micro-times as our observation which is the time between peak of
pulse tpul,k that trigger the kth photon detection and detection time tdet,k.
The time between the excitation text,k and emission tems,k of the molecule,
∆text,k follows the molecular lifetime.

To simulate experimentally realistic microtimes, for mobile particles, we simulate

diffusive molecules which freely traverse through an illuminated confocal volume.

We define periodic boundaries [] (±Lx, ±Ly, ±Lz) which are much larger than the

confocal radii to maintain a constant concentration of molecules. The confocal volume
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itself is pulsed on and off and the probability of excitation of a molecule depends on

its location within that volume during the pulse. Here we consider the confocal

volume (the combined excitation and emission point spread function, PSF) to be a

3D Gaussian, with radii of ωx = 0.3 µm, ωy = 0.3 µm, ωz = 3.5 µm and centered at

the point of origin. The precise formula for this PSF is

PSF (x, y, z) = exp

(
−2

((
x

ωx

)2

+

(
y

ωy

)2

+

(
z

ωz

)2
))

. (4.10)

So, the emission that received by molecule n of the mth is species

µm,n = µm,extPSF (x, y, z) (4.11)

where, µm,ext is the maximum excitation rate of the molecule n of species m which

occurs when the molecule is at the center of the confocal volume [418].

Assuming that molecules do not move significantly over the duration of the pulse

(of typical width 0.1 ns [495]), the probability of excitation of molecule n of species m

is qm,n = µm,nδtp where, δtp is the duration of the pulse. So, for any pulse excitation,

we need to determine if the nth molecule of species m is excited or not. We define

the variable bm,n to be either 1 or 0 if the molecule emits or does not emit a photon

and consider this variable to be Bernoulli distributed

bm,n ∼ Bernoulli (qm,n) . (4.12)

At the end, when a molecule is excited by each pulse bm,n = 1, we need to consider

the delays and errors introduced by the measuring electronic devices, tdet,k − tems,k.

Since, we consider these errors follow a normal distribution, and the excitation time
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is normal distributed as well, we denote both effects with ∆terr,k = (text,k − tpul,k) +

(tdet,k − tems,k) and as the result, we sample it from a normal distribution

∆terr,k ∼ Normal(τIRF , σ
2
IRF ) (4.13)

where τIRF is the mean of IRF and σIRF is the standard deviation of the IRF (see

Eq. 4.2 for comparison). In this simulation we considered σ = δtp
2

as the width of the

pulse.

After sampling the error time, we sample the emission time of each molecule from

the exponential distribution with corresponding molecule emission rate belongs to

species m

∆text,k|λm ∼ Exponential (λm) (4.14)

and as we have shown in the Fig. 4.20 the detection time of each molecule will be

sum of these two times

∆tk = ∆text,k + ∆terr,k (4.15)

which is determined by the convolution of emission profile, Eq. 4.13, and excitation

pulse, Eq. 4.14.

IRF approximation

To incorporated the effect of the IRF on the measured photon arrival times we

approximated it with a Gaussian function [460] (See Fig. 4.21). Centrally symmetric

pulses such as the Gaussian, are obtained from electronics as used in most modern

instruments [462]. However, for non-symmetrical IRF it could be handled by proper

modifications to Eq. 4.2 in the main text.
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Fig. 4.21. The actual IRF (blue color) fitted with with a Gaussian
function (magenta color). The fitted IRF is used for the analyses.

Derivation of model likelihood

As we mentioned in the main text, Sec. 4.3.1, measurements ∆tk = ∆text,k+∆terr,k,

follow

∆tk|λsk ∼ Normal(τIRF, σ
2
IRF) ∗ Exponential(λsk). (4.16)
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In this case we have

∆tk|λsk ∼
∫ ∞
−∞

Normal(τIRF, σ
2
IRF)Exponential(λsk)d∆text

=
λsk√

2πσ2
IRF

∫ ∞
−∞

e
− (∆tk−∆text−τIRF)2

2σ2
IRF e∆textλskd∆text

=
λsk
2

exp

[
λsk
2

(
2 (τIRF −∆tk) + λskσ

2
IRF

)]
erfc

(
τIRF −∆tk + λskσ

2
IRF

σIRF

√
2

)
(4.17)

where erfc(·) denotes the complementary error function.

Detailed description of the inference framework

Description of prior probability distributions

Within the Bayesian approach, all unknown model parameters need priors. The

model parameters in our framework that require priors are: the molecular emission

rates {λm}m; labels on each species s; and probability on the labels of species π

(fraction of molecules contributing photons from different species). Our choices of

priors are described below.

Molecular emission rate, {λm}m In FLIM we are faced with different species

which have different lifetimes. In this study, for computational reasons, we consider

emission rates instead of lifetimes, τm = 1
λm

, where the τm is the molecular lifetime

and λm is the molecular emission rate of species m.

To be able to learn emission rates, and to guarantee that their sampled values in

our formulation also attain only positive values, we place a Gamma distribution prior

over them as follows

λm ∼ Gamma (αλ, βλ) , (4.18)
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where, αλ and βλ are the prior parameters on the molecular emission rates.

Weights, π The weight on each species comes from the Dirichlet distribution

π ∼ DirichletM

( α
M
, . . . ,

α

M

)
(4.19)

where α is the scalar parameter of the Dirichlet distribution. This prior is conjugate

to the labeled species, sk, which simplifies the computations shown below.

Labels on each species, sk

Since we have many species, we define a label for each molecule which will tell us

that molecule belongs to which species

sk|π ∼ Categorical1:M (π) (4.20)

where π = (π1, . . . , πM) is the weight (which they actually are the fraction of molecules

contributing photons from different species) on each species.

Summary of model equations

For concreteness, below we summarize all equations used in our framework, in-

cluding a complete list of priors.
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λm ∼ Gamma (αλ, βλ) (4.21)

π ∼ DirichletM

( α
M
, . . . ,

α

M

)
(4.22)

sk|π ∼ Categorical1:M (π) (4.23)

∆tk|λm, sk ∼
λsk
2

exp

[
λsk
2

(
2 (τIRF −∆tk) + λskσ

2
IRF

)]
erfc

(
τIRF −∆tk + λskσ

2
IRF

σIRF

√
2

)
(4.24)

Inverse problem

Within the Bayesian paradigm, our goal is to sample from the following posterior

probability distribution P ({λm}m, s, π|∆t). Since, it is not possible to directly com-

pute this distribution, we will sample the random variables {λm}m, s, and π from

their conditional distributions through a Gibbs sampling scheme [79,358,359,381,421].

Accordingly, posterior samples are generated by updating each one of the variables

involved sequentially by sampling conditioned on all other variables and the measure-

ments ∆t.

Conceptually, the steps involved in the generation of each posterior sample ({λm}m, s, π)

are:

Update the weights on each species π

Update the labels on species s

Update the molecular emission rates {λm}m.

Sampling of the weights π To update the weights of the labels on the species s,

we sample them from the corresponding conditional probability P (π|{λm}m,∆t, s, ),

which simplifies to P (π|s).
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π ∼ P (π|s) ∝ P (s|π)P (π)

=

[
K∏
k=1

P (sk|π)

]
P (π) =

[
K∏
k=1

πsk

]
DirichletM

( α
M
, . . . ,

α

M

)

=

[
K∏
k=1

πsk

]
Γ
(∑M

m=1
α
M

)
∑M

m=1 Γ
(
α
M

) M∏
m=1

π
α
M
−1

m

= DirichletM

(
α

M
+

K∑
k=1

I(sk = 1), . . . ,
α

M
+

K∑
k=1

I(sk = M)

)
.

Sampling of the labels s To sample the labels on species, we sample them from

the conditional probability distribution P (sk|∆tk, {λm}m, π).

sk ∼ P (sk|∆tk, {λm}m, π) ∝ P (∆tk|{λm}m, sk)P (sk|π)

= Categorical1:M

(
π1
λsk
2

exp

[
λsk
2

(
2 (τIRF −∆tk) + λskσ

2
IRF

)]
×

erfc

(
τIRF −∆tk + λskσ

2
IRF

σIRF

√
2

)
,

...

, πM
λsk
2

exp

[
λsk
2

(
2 (τIRF −∆tk) + λskσ

2
IRF

)]
×

erfc

(
τIRF −∆tk + λskσ

2
IRF

σIRF

√
2

))
, k = 1, . . . , K
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Sampling the molecule emission rates {λm}m To sample λm, we sample from

the corresponding conditional probability distribution P ({λm}m|∆t, s).

{λm}m ∼ P ({λm}m|∆t, s) ∝ P (∆t|{λm}m, s)

[
M∏
m=1

P (λm)

]

=

[
K∏
k=1

λsk
2

exp

[
λsk
2

(
2 (τIRF −∆tk) + λskσ

2
IRF

)]
erfc

(
τIRF −∆tk + λskσ

2
IRF

σIRF

√
2

)]

×
[

M∏
m=1

Gamma (λm;αλ, βλ)

]
.

(4.25)

Since, there is no close form to sample {λm}m, we sample it using the Metropolis

algorithm with the proposal

λprop
m ∼ Gamma

(
αprop
λm

,
λold
m

αprop
λm

)
, m = 1, . . . ,M

where, the αprop
λm

is the parameter of the proposal distributions for the molecular

emission rate. Then, the acceptance ratio is equal to

rλ =
P ({λprop

m }m|∆t, s)

P ({λold
m }m|∆t, s)

Proposal
(
{λold

m }m|{λprop
m }m

)
Proposal ({λprop

m }m|{λold
m }m)

.

Also, to avoid numerical underflow, we work with the logarithm of the acceptance

ratio

log rλ =

[
K∑
k=1

log

(
λprop
sk
− λold

sk

2

)
+ (∆tk − τIRF)

(
λold
sk
− λprop

sk

)
+
σ2

2

(
λ2prop

sk
− λ2old

sk

)]

+ log

erfc
(
τIRF−∆tk+λ

prop
sk

σ2
IRF

σIRF

√
2

)
erfc

(
τIRF−∆tk+λold

sk
σ2

IRF

σIRF

√
2

)


+

[
M∑
m=1

(
2αprop

λm
− αλ

)
log

(
λold
m

λprop
m

)
+

(
λold
m − λprop

m

βλ

)
+ αprop

λm

(
λprop
m

λold
m

− λold
m

λprop
m

)]
.

(4.26)
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So, at the end we will accept or reject the proposal if

log rλ ≥ 0⇒ λnew
m = λprop

m , m = 1, . . . ,M

log rλ < 0⇒ λnew
m = λold

m , m = 1, . . . ,M

Label switching correction of the molecular lifetimes Label switching is a

well-known feature of BNP [496]. It arises when we are exploring complex posterior

distributions by MCMC algorithms and the likelihood of the model is invariant to the

relabelling of mixture components [497]. For example, here, due to exchangeability

of the molecular lifetimes, at any iteration (i) of the Gibbs sampling scheme, the

corresponding lifetime of the species m might switch with the molecule’s lifetime of

the species m′. These cases happen because the posterior probability of these events

is equal, so, the sampler switches between the lifetimes. This label switching does

not effect the joint posterior of all lifetimes. Since, at the end we need to report

the posterior of each individual lifetime, we need to be sure that the sampler is not

hopping from one mode to the other one.

To undo such label switching, at any iteration of the Gibbs sampling we compare

the sampled lifetimes {τ (i)
m }m and their weights {π(i)

m }m with a fixed set of lifetimes

{τ ∗m}m and weights {π∗m}m. Based on the distances of the lifetimes at iteration (i)

from the fixed set of lifetimes, which we chose, we correct for label switching. The

simple choice for this distance can be the distance between the lifetimes, but, since

label switching happens in the sampled lifetimes, and subsequently the weights of

each molecular lifetime, the particular distance we use incorporates the emission

probability and the weights of each molecular lifetime

dm,m′ = |πmExp (τm)− π∗mExp (τ ∗m) | (4.27)
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and we solve the assignment problem is minimizing this distance over the species∑M
m=1 dm,m′ . This problem and its computation can be done efficiently by applying

the Hungarian algorithm [498–500].
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Table 4.1.
Probability distributions used and their densities. Here, the corresponding
random variables are denoted by x.

Distribution Notation Probability density function Mean Variance

Normal Normal(µ, σ2) 1√
2πσ2

e−
(x−µ)2

2σ2 µ σ2

Exponential Exponential(µ) µe−µx
1

µ

1

µ2

Gamma Gamma(α, β) 1
Γ(α)βα

xα−1e−
x
β αβ αβ2
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Table 4.2.
Here, we list point estimates of our analyses for synthetic data, which

we obtain from the marginal posterior probability distributions p(τ |∆t).
Estimates are listed according to figure.

τ
mean std

ns ns
Fig. 4.2C 0.51 , 2.19, 10.51 0.14 , 1.42 , 6.45
Fig. 4.2D 0.52 , 2.36 , 13. 01 0.26 , 1.65 , 12.59
Fig. 4.2E 0.52 , 2.51 , 9.74 0.31 , 2.33 , 15.74
Fig. 4.2F 0.51 , 2.10 , 11.06 0.32 , 0.65 , 6.71
Fig. 4.5B1 1.17 0.29
Fig. 4.5B2 1.03 0.23
Fig. 4.5B3 1.04 0.05
Fig. 4.5B4 1.01 0.03
Fig. 4.6B1 0.82 , 8.88 0.41 , 10.31
Fig. 4.6B2 1.10 , 10.37 0.33 , 6.31
Fig. 4.6B3 1.07 , 10.08 0.15 , 4.98
Fig. 4.6B4 1.01 , 10.1 0.05 , 5.23
Fig. 4.7A 0.95 , 9.21 0.21 , 8.91
Fig. 4.7B 1.10 , 10.13 0.35 , 7.11
Fig. 4.7C 1.07 , 10.08 0.15 , 10.18
Fig. 4.8A 1.05 , 10.12 0.14 , 3.84
Fig. 4.8B 1.10 , 5.11 0.25 , 3.11
Fig. 4.8C 0.87 , 2.18 0.98 , 2.06
Fig. 4.8D 1.13 , 1.48 0.26 , 0.68
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Table 4.3.
Here, we continue above list point estimates of our analyses for synthetic

data, which we obtain from the marginal posterior probability distribu-
tions p(τ |∆t). Estimates are listed according to figure.

τ
mean std

ns ns
Fig. 4.11A 0.85 0.31
Fig. 4.11B 1.03 0.39
Fig. 4.11C 0.99 0.48
Fig. 4.11D 1.01 0.11
Fig. 4.14 1.01 , 4.10 , 10.06 0.12 , 0.35 , 5.21
Fig. 4.15 0.51 , 1.97 , 6.16 , 12.25 0.14 , 0.55 , 3.41 , 7.43

Table 4.4.
Here, we list point estimates of our analyses for experimental data, which

we obtain from the marginal posterior probability distributions p(τ |∆t).
Estimates are listed according to figure.

τ
mean std

ns ns
Fig. 4.1A1 3.14 2.49
Fig. 4.1B1 3.84 1.84
Fig. 4.1C1 3.85 0.37
Fig. 4.9A1 1.44 , 3.39 1.14 , 1.52
Fig. 4.9B1 1.42 , 3.56 0.46 , 1.05
Fig. 4.9C1 1.41 , 3.81 0.30 , 1.10
Fig. 4.10A1 1.44 , 3.42 0.48 , 1.62
Fig. 4.10B1 1.42 , 3.91 0.39 , 1.24
Fig. 4.10C1 1.37 , 3.71 1.12 , 1.15
Fig. 4.17 0.21 , 1.37 , 2.06 , 3.89 0.25 , 0.72 , 1.41 , 2.44
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5. SUMMARY

BNPs are proved to have a remarkable effect in the analysis of single molecule data

since they give posterior probabilities over whole models consistent with the given

data, not just model parameters of one preferred model. In this thesis, we employed

BNPs and proposed a novel formulation to model and analyze fluorescence time traces.

In fact, their unique characteristics make them ideal mathematical tools in modeling

complex biomolecules as they suggest explicit physical interpretation and give full

posterior probabilities over molecular models to be derived with minimum subjective

choices.

In chapter 2, we introduced an overview on data analysis in single molecule bio-

physics. Here, we discussed statistical data-driven analysis approaches, and concen-

trated on parametric as well as more recent information theoretic and nonparametric

statistical methods to biophysical data with a reliance on single-molecule applica-

tions. We talked about data analysis tools and model selection problem and mainly

Bayesian approach. Moreover, we built a new theoretical framework to study BNPs.

Here, we provided a description of the concepts and implementation of an important,

and computational tool that extracts BNPs in the area of biophysics.

In chapter 3, we used our proposed BNPs to analyse fluorescence time traces to

extract dynamical information (mainly diffusion coefficient) of molecules. Overall, the

basis of every spectroscopic method is the detection of photons. Single photon arrivals

encode complex dynamical information and approaches to analyze such arrivals have

the capability to disclose dynamical processes on fast timescales. Here, we turned our

attention to confocal methods where individual photons report on dynamics down
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to the single molecule level. While photons reveal dynamics at ms timescales, or

faster, data came from confocal methods are collected for many minutes to obtain

stable fluorescence traces from which kinetic parameters are deduced. Here, instead

we proposed a method to analyze single photon arrival traces using novel tools of

BNPs. Using this method, we extract dynamical information efficiently with orders

of magnitude less data than traditional correlative methods.

In chapter 4, we built a direct photo-by-photon analysis strategy to infer, simul-

taneously and self-consistently, the number of species and their associated lifetimes

from as few as on the order of 3000 photons for two species. In general, Fluores-

cence Lifetime Imaging is an experimental imaging technique yielding excited state

lifetimes of chemical species recorded over multiple pixels. Within one pixel, the

determination of the number of species can be achieved either through fitting time

correlated single photon counting histograms or phasor analysis. Both methods yield

lifetimes in a computationally efficient manner. However, they also have drawbacks

that we address here. First, they do not yield the number of chemical species. Yet

the number species is specifically encoded in the photon time of arrival. Next, even to

determine lifetimes under the assumption of a known number of species, both meth-

ods rely on heavy data post-processing of the signal thereby requiring large amounts

of data to retrieve lifetimes. Here, we presented new mathematical tools within the

BNPs paradigm we have previously exploited in the analysis of single photon arrivals

from single spot confocal. We showed that the proposed approach is valid for both

simulated as well as experimental data for one, two, three, and four species with both

immobilized and freely diffusing molecule data sets.
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the thousand word picture: An introduction to super-resolution data analysis,”
Chemical Reviews, 2017.

[329] E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. conceptual
basis and theory,” Biopolymers, vol. 13, no. 1, pp. 1–27, 1974.

[330] D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spec-
troscopy. II. an experimental realization,” Biopolymers, vol. 13, no. 1, pp. 29–61,
1974.

[331] K. Remaut, B. Lucas, K. Braeckmans, N. Sanders, S. De Smedt, and J. De-
meester, “FRET-FCS as a tool to evaluate the stability of oligonucleotide drugs
after intracellular delivery,” Journal of Controlled Release, vol. 103, no. 1, pp.
259–271, 2005.

[332] T. Torres and M. Levitus, “Measuring conformational dynamics: a new FCS-
FRET approach,” The Journal of Physical Chemistry B, vol. 111, no. 25, pp.
7392–7400, 2007.

[333] P. Schwille, F.-J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-
correlation spectroscopy for multicomponent diffusional analysis in solution,”
Biophysical Journal, vol. 72, no. 4, pp. 1878–1886, 1997.

[334] O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the tech-
nique and its applications,” Reports on Progress in Physics, vol. 65, no. 2, p.
251, 2002.

[335] J. R. Lakowicz, Principles of fluorescence spectroscopy. Springer, 2006.

[336] R. Rigler and E. S. Elson, Fluorescence correlation spectroscopy: theory and
applications. Springer Science & Business Media, 2012, vol. 65.

[337] G. R. Bright, G. W. Fisher, J. Rogowska, and D. L. Taylor, “Fluorescence ratio
imaging microscopy,” Methods in Cell Biology, vol. 30, pp. 157–192, 1989.



254

[338] J. A. Fitzpatrick and B. F. Lillemeier, “Fluorescence correlation spectroscopy:
linking molecular dynamics to biological function in vitro and in situ,” Current
Opinion in Structural Biology, vol. 21, no. 5, pp. 650–660, 2011.

[339] M. Purschke, N. Rubio, K. D. Held, and R. W. Redmond, “Phototoxicity of
hoechst 33342 in time-lapse fluorescence microscopy,” Photochemical & Photo-
biological Sciences, vol. 9, no. 12, pp. 1634–1639, 2010.

[340] V. Magidson and A. Khodjakov, “Circumventing photodamage in live-cell mi-
croscopy,” in Methods in cell biology. Elsevier, 2013, vol. 114, pp. 545–560.

[341] J.-Y. Tinevez, J. Dragavon, L. Baba-Aissa, P. Roux, E. Perret, A. Canivet,
V. Galy, and S. Shorte, “A quantitative method for measuring phototoxicity of
a live cell imaging microscope,” in Methods in enzymology. Elsevier, 2012, vol.
506, pp. 291–309.

[342] P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, “Molecular dynamics in
living cells observed by fluorescence correlation spectroscopy with one-and two-
photon excitation,” Biophysical Journal, vol. 77, no. 4, pp. 2251–2265, 1999.

[343] P. Dittrich, F. Malvezzi-Campeggi, M. Jahnz, and P. Schwille, “Accessing
molecular dynamics in cells by fluorescence correlation spectroscopy,” Biological
Chemistry, vol. 382, no. 3, pp. 491–494, 2001.

[344] R. D. Phair and T. Misteli, “Kinetic modelling approaches to in vivo imaging,”
Nature Reviews Molecular Cell Biology, vol. 2, no. 12, p. 898, 2001.

[345] K. Tsekouras, A. P. Siegel, R. N. Day, and S. Pressé, “Inferring diffusion dy-
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F. Koberling, J. Enderlein, and M. Sauer, “Multi-target spectrally resolved
fluorescence lifetime imaging microscopy,” Nature Methods, vol. 13, no. 3, p.
257, 2016.

[431] J. Pawley, Handbook of biological confocal microscopy. Springer Science &
Business Media, 2010.

[432] W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluo-
rescence microscopy,” Science, vol. 248, no. 4951, pp. 73–76, 1990.

[433] M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochas-
tic optical reconstruction microscopy (STORM),” Nature Methods, vol. 3,
no. 10, p. 793, 2006.

[434] A. Ghosh, N. Karedla, J. C. Thiele, I. Gregor, and J. Enderlein, “Fluorescence
lifetime correlation spectroscopy: Basics and applications,” Methods, vol. 140,
pp. 32–39, 2018.

[435] S. T. Hess, S. Huang, A. A. Heikal, and W. W. Webb, “Biological and chemical
applications of fluorescence correlation spectroscopy: a review,” Biochemistry,
vol. 41, no. 3, pp. 697–705, 2002.



261

[436] G. I. Redford and R. M. Clegg, “Polar plot representation for frequency-domain
analysis of fluorescence lifetimes,” Journal of Fluorescence, vol. 15, no. 5, p. 805,
2005.

[437] S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts
in confocal fluorescence correlation spectroscopy,” Biophysical Journal, vol. 83,
no. 4, pp. 2300–2317, 2002.

[438] U. Haupts, S. Maiti, P. Schwille, and W. W. Webb, “Dynamics of fluorescence
fluctuations in green fluorescent protein observed by fluorescence correlation
spectroscopy,” Proceedings of the National Academy of Sciences, vol. 95, no. 23,
pp. 13 573–13 578, 1998.

[439] S. Jazani, I. Sgouralis, and S. Pressé, “A method for single molecule track-
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