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ABSTRACT 

Hyporheic exchange is key to buffer water quality and temperatures in streams and rivers, 

while also providing localized downwelling and upwelling microhabitats. In this research, the 

effect of geomorphological parameters on hyporheic exchange has been assessed from a physical 

standpoint: surface and subsurface flow fields, pressure distribution across the sediment/water 

interface and the residence time in the bed. 

First, we conduct a series of numerical simulations to systematically explore how the fractal 

properties of bedforms are related to hyporheic exchange. We compared the average interfacial 

flux and residence time distribution in the hyporheic zone with respect to the magnitude of the 

power spectrum and the fractal dimension of riverbeds. The results show that the average 

interfacial flux increases logarithmically with respect to the maximum spectral density whereas it 

increases exponentially with respect to fractal dimension. 

Second, we demonstrate how the Froude number affects the free-surface profile, total head 

over sediment bed and hyporheic flux. When the water surface is fixed, the vertical velocity profile 

from the bottom to the air-water interface follows the law of the wall so that the velocity at the air-

water interface has the maximum value. On the contrary, in the free-surface case, the velocity at 

the interface no longer has the maximum value: the location having the maximum velocity moves 

closer to the sediment bed. This results in increasing velocity near the bed and larger head gradients, 

accordingly. 

Third, we investigate how boulder spacing and embeddedness affect the near-bed 

hydrodynamics and the surface-subsurface water exchange. When the embeddedness is small, the 

recirculation vortex is observed in both closely-packed and loosely-packed cases, but the size of 

vortex was smaller and less coherent in the closely-packed case. For these dense clusters, the 

inverse relationship between embeddedness and flux no longer holds. As embeddedness increases, 

the subsurface flowpaths move in the lateral direction, as the streamwise route is hindered by the 

submerged boulder. The average residence time therefore decreases as the embeddedness increases.  

Lastly, we propose a general artificial neural network for predicting the pressure field at the 

channel bottom using point velocities at different level. We constructed three different data-driven 

models with multivariate linear regression, local linear regression and artificial neural network. 

The input variable is velocity in x, y, and z directions and the target variable is pressure at the 
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sediment bed. Our artificial neural network model produces consistent and accurate prediction 

performance under various conditions whereas other linear surrogate models such as linear 

multivariate regression and local linear multivariate regression significantly depend on input 

variable.  

As restoring streams and rivers has moved from aesthetics and form to a more holistic 

approach that includes processes, we hope our study can inform designs that benefit both structural 

and functional outcomes. Our results could inform a number of critical processes, such as 

biological filtering for example. It is possible to use our approach to predict hyporheic exchange 

and thus constrain the associated biogeochemical processing under different topographies. As river 

restoration projects become more holistic, geomorphological, biogeochemical and hydro-

ecological aspects should also be considered.  
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 INTRODUCTION  

Freshwater only accounts for 3% of global waters, but is essential for life. Rivers carry less 

than 1% of that freshwater, but are vital corridors transferring water, nutrients and sediment across 

landscapes, from mountains to oceans. Flowing waters interact with the surrounding alluvium: 

they are sustained by the adjacent aquifers that they sometimes also recharge. This bilateral 

exchange between surface and groundwater spans many scales, from entire regions to local 

processes at the grain scale (Stanford and Ward, 1988, 1993; Buffington and Tonina, 2009). The 

hyporheic zone (HZ) is a region near riverbeds where porous-media-flows are driven by the forces 

at the sediment / surface-water interface. Hyporheic zones are hotspots for ecohydrology and 

biogeochemistry, harboring the biofilms that regulate the cycling of major elements such as carbon, 

nitrogen and phosphorus (Triska et al., 1989; Mulholland et al., 1997; Battin et al., 2008). 

Orghidan first coined the term Hyporheic zone, from the Greek prefix “hypo” meaning under 

and the root “rheos” meaning flow. Hyporheic flow is the flow that enters the sediment from the 

surface water and returns to the surface (Harvey et al., 1996; Winter et al., 1998; Storey et al., 

2003; Gooseff, 2010). Hyporheic exchange includes the dissolved load and its organic and 

inorganic compounds. Upwelling water returning to the surface is enriched in reduced species 

while downwelling surface-water is usually rich in dissolved oxygen. The oxygen is used by the 

hyporheic microbiome to combust (i.e., respire) organic matter. After the available oxygen is used, 

other species such as nitrates provide the oxidative power that fuels the redox processes. 

Since Toth’s pioneering research (Toth, 1963), many others have studied the physics of 

groundwater-surface water interaction. Toth showed how the variation in topographic elevation of 

water table in a small basin drives groundwater flows at multiple scales (Figure 1.1). He 

approximated the water table as a combination of three components which are constant, linear and 

sinusoidal functions under the assumption the water table is in-phase with the land surface 

(Meneley, 1963; King 1892; Meinzer 1923; Wisler and Brater, 1959). The ‘three well pronounced 

vertical zones of groundwater flow’, namely local, intermediate, and regional systems, are 

observed in his model. Their characteristics are explained in Norvatov and Popov (1961) as follows: 

(1) ‘Upper zone of active flow, whose geographical zonality coincides with climatic belts. The 

lower boundary of this zone coincides with the local base levels of rivers; (2) ‘medium zone of 

delayed flow, subject to lesser climatic effect but also geographically zonal. The lower boundary 
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of this zone is the base level of large rivers; (3) ‘lower zone (of relatively stagnant water), 

geographically azonal and lying below the base level of large stream systems.’. 

 

Figure 1.1. Toth’s flow: Toth showed how the variation in topographic elevation of water table 

in a small basin drives groundwater flows at multiple scales. 

 

As new model interpretations were developed, the hydrologic exchange with stream waters 

and slowly moving waters confined in “dead zones”, was quantified by dye tracer experiments 

(Hays, 1966; Hays et al., 1966). It is assumed that (1) dead zones are stagnant compared to the 

streamwise channel flow and (2) the exchange between surface and dead zones water is 

proportional to the concentration gradient between the channel and storage zone. Many effective 

transport models, lumping all actual slow zones into a single conceptual dead zones were proposed 

in the 60ies and 70ies (Coates, 1966; Valentine and Wood, 1977; Thackston and Schnelle, 1970). 

Bencala and Walters (1983) applied such a model to solute transport in Uvas creek and coined the 

term transient storage model, replacing dead zones in the vocabulary.   

A more mechanistic model of hyporheic exchange, conceptually reminiscent of Toth flows, 

was put forth by Thibodeaux and Boyle (1987). They observed that flows over bedforms induce 

pressure imbalances across the sediment bed generating significant and nested convection flows 

inside the porous bed (Figure 1.2a). Such flows over bedforms are similar to the classic flows 
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around cylinders studied in fluid mechanics classes:  pressure increases as flow accelerates while 

climbing up the roughness (Figure 1.2b). From this analogy, they proposed an early model of 

convective hyporheic exchange: ‘the total pressure gradient is the sum of the wave contribution 

and the hydraulic gradient (slope of the water surface) contribution:’. The ‘wave contribution’ 

driven by the pressure drop across the bedform is approximated by 𝑐𝑝𝜌𝑉2/𝜆 where cp is a pressure 

coefficient, 𝜌 is the density of water, V is the average convective velocity, and 𝜆 is the wavelength 

of a bedform. The pressure gradient due to the hydraulic gradient is 𝜌𝑔𝑠 where 𝑔 is gravitational 

acceleration and 𝑠 is the slope of the water surface. They further apply Darcy’s law to estimate the 

porous flow velocity: 𝑉0 = 𝐾/𝜈(𝑐𝑝 𝑉
2/𝜆 + 𝑔𝑠) where K is the permeability of the bed sediment 

and 𝜈 is the kinematic viscosity of water. It follows from the analysis that hyporheic exchange 

caused by topography is proportional to the Froude number (V2), the hydraulic conductivity of the 

alluvium (K) and inversely proportional to the size (wavelength) of the bedforms.  

 

Figure 1.2. (a) Thibodeaux and Boyle (1987) observed that flow over bedforms induces pressure 

imbalances across the sediment bed generating significant and nested convection flow inside the 

porous bed sediment region (b) A similarity in flows passing over bedforms and cylinders: the 

pressure at the wall becomes maximum when the flow direction is perpendicular to the surface of 

the wall, and the pressure would drop down as the flow is accelerated while climbing up the 

roughness object (adapted from Thibodeaux and Boyle, 1987) 

 

Elliott and Brooks (1997) investigated the mechanisms and surface/subsurface exchange for 

sediment beds by conducting laboratory experiments under steady and uniform hydraulic 

conditions and his theoretical and experimental work remains a cornerstone of our fundamental 

understanding of bedform-driven hyporheic exchange. He used a formula to calculate dynamic 

head deviation based on experimental measurements of head over triangular solid shapes, ℎ𝑚 =

0.28(𝑉2/2𝑔)(𝐻/0.34𝑑)𝑛 where H is the bedform height, d the water depth, and n is a constant 
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determined by 𝐻/𝑑 (e.g. 𝑛 = 3/8 for 𝐻/𝑑 ≤ 0.34 and 𝑛 = 3/2 otherwise), and this formula has 

been widely used since to estimate the head drop across the bed.  The head in this formula (and by 

extension the amount of exchange) is still proportional to the Froude number, but also to the flow 

restriction caused by the bedform.  

As computational fluid dynamics (CFD) simulations became less expensive and more 

feasible, CFD has been utilized in estimating the channel flow field and pressure distribution across 

the sediment bed (or riverbed). CFD is capable of simulating turbulent flow and reduces 

laboratory/field experiment costs. Cardenas and Wilson (2007) first applied CFD simulation for 

channel flow and used the pressure distribution at the sediment bed to simulate hyporheic flow. 

Reynolds-Averaged Navier-Stokes equations were used to solve the surface flow field and the 

resulting pressure values across the sediment bed are fed to the upper boundary of a groundwater 

domain, where flow is modelled by Darcy’s law. Eddies generated by the bedform affects the near-

bed hydrodynamics altering the locations where the maximum/minimum pressure occurs. As the 

slope of dune (ratio of height to wavelength) gets steeper, the detachment length becomes longer 

and the interfacial exchange zone is thus shallower.  

CFD is also useful to simulate complex morphologies such as pool-riffle systems or various 

natural objects that cannot be included in analytical models. Sawyer et al. (2011) investigated the 

hyporheic exchange driven by a channel-spanning log. She used Reynolds-averaged Navier-stokes 

(RANS) turbulence model to simulate stream flow structures such as eddies and flow circulation 

behind the log. The water surface elevation was estimated with a Volume of Fluid (VoF) method, 

which is an air-water mixture model. The simulated head along the bed shows good agreement 

with the flume experiments. Results demonstrate the pressure difference between upstream and 

downstream of a log drives the hyporheic exchange. Trauth et al. (2013) studied the interaction 

between turbulent channel flow and hyporheic flow over pool-riffle sequences under various 

groundwater conditions using RANS model along with VoF method as well and these tools are 

now becoming the norm to study hyporheic exchange.  

Large-eddy simulation (LES) has been adopted for research which requires detailed flow 

structures or when the channel flow is in transitional state. Scalo et al. (2013) developed a dissolved 

oxygen (DO) surface/subsurface transport model under a transitional oscillatory channel flow 

based on LES. They used LES in order to represent the flow transition from a quasi-laminar to a 

fully turbulent accurately, which is difficult to achieve with RANS model. LES produces a reliable 
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estimation of the sediment-oxygen uptake (SOU) as it resolves the full range of solute transport 

processes. Han et al. (2018) used LES to deal with rough and permeable beds composed of 

arranged particles when simulating the solute transfer from stream water to sediment beds. 

Recently, Lian et al. (2019) simulated turbulent stream flows with LES model over a matrix of 

spheres submerged in the water in order to represent the porous water flow near the interface. LES 

model has shown the ability to capture the turbulent flow characteristics over rough and permeable 

bed.  

Recently, direct numerical simulations (DNS) has been used to fully resolve turbulent flow 

in an open channel and simulate associated hyporheic exchange processes. Shen et al. (in-press) 

used DNS to demonstrate the detailed effects of bed roughness in terms of scalar and momentum 

transfer including turbulent structures and averaged flow statistics. Consequently, the random 

interface produces significantly higher hyporheic flux than the regular one. Sherman et al. (2019) 

proposed a dual domain coupled model that estimates transport processes in open channels with 

hyporheic exchange. They compared breakthrough curve (BTC) predictions from the model with 

results obtained from DNS. They also utilized the spatio-temporally averaged DNS velocity and 

diffusivity profiles to parameterize the open channel flow to create joint probability density 

distributions of particle travel times and distances.  

Figure 1.3 illustrates the broad regime of hyporheic flow with spatial scales of hyporheic 

flow paths ranging from millimeters or centimeters (Elliott and Brooks, 1997; Marion et al., 2002; 

Tonina and Buffington, 2007) to meters or kilometers. The temporal scales also variously range 

from seconds to tens of years (Stanford and Ward, 1988; Wondzell and Swanson, 1996; Harvey 

and Wagner, 2000; Cardenas et al., 2004; Boano et al., 2006; Wörman et al., 2007; Revelli et al., 

2008; Hester and Doyle, 2008). This research focuses on the range where the dynamics of bio-

fluvial-geomorphic influences govern ranging from ripples to pool-riffle system. We especially 

look at the “transitional” state in terms of geomorphology and hydrodynamic conditions. This 

research aims to understand how the hyporheic exchange processes alter as geomorphic or 

hydrodynamic conditions change. By achieving this, we want to build a bridge between small scale 

and large scale under natural system which always changes.  
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Figure 1.3. The broad regime of hyporheic flow with spatial scales of hyporheic flow paths 

ranging from millimeters or centimeters to meters or kilometers. The temporal scales also 

variously range from seconds to tens of years (adapted from Boano et al., 2014) 

 

This thesis is composed of four different topics which are under the transitional states in 

terms of either geomorphology or hydrodynamics. The next sections in this chapter introduce each 

topic in more detail. Briefly, in chapter 4, we investigate the effect of surface roughness (the 

scaling of bedform topography) on hyporheic exchange. In chapter 5, we study how the Froude 

number affects the exchange of water between surface and subsurface when the water surface is 

fixed and when it is allowed to adjust. In chapter 6, we discuss how boulder spacing and 

embeddedness affect the near-bed hydrodynamics and hyporheic exchange. Finally, in chapter 7, 

a surrogate model relating point velocities to pressure at the sediment bed is developed using neural 

networks. A general procedure of chapter 4, 5, and 6 is (1) generate a channel topography, (2) 

simulate channel flow with CFD modeling, (3) solve for groundwater flow using the pressure 
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values obtained from CFD simulate, and (4) simulate the solute transport inside the hyporheic zone. 

We assess the hyporheic exchange process in terms of interfacial flux and residence time 

distribution of solute in the hyporheic zone.  

1.1 Multiscale Riverbed Morphology and Hyporheic Exchange 

Morphology driven hyporheic flows are inherently multiscale, with local head gradients 

influenced by features ranging from the grain scale to the regional topography (Wörman et al., 

2007; Cardenas et al., 2008; Buffington and Tonina, 2009; Boano et al., 2014). Hyporheic 

exchange due to multiscale riverbed morphology has been studied previously (Stonedahl et al., 

2012, 2013; Gomez-Velez and Harvey, 2014; Wörman et al., 2006, 2007; Aubeneau et al., 2015). 

Stonedahl et al. (2010) developed a multiscale model that included ripples, dunes and meanders 

and compared the residence time distributions in hyporheic zones associated with each feature. 

Wörman et al. (2006) showed that a hyporheic flow field could be calculated from the Fourier 

series representing riverbed elevation, and similarly showed the scaling of groundwater flow fields 

from the local to continental scale. Aubeneau et al. (2015) showed that the scaling of topography 

produced the scaling in residence time distributions in flume experiments, hinting at the 

importance of a relationship between the fractal dimension of riverbeds and their corresponding 

transit time distributions. 

Fractals are pervasive in nature, from coastlines, to snowflakes, to river networks 

(Mandelbrot, 1983). Fractal scaling is also observed in riverbed topography both in models 

(Turcotte, 1997; Jerolmack and Morhig, 2005) and in observed elevation profiles (Hino, 1968; 

Burrough, 1981; Robert, 1988; Coleman and Nikora, 2011; Martin and Jerolmack, 2013). The 

observed scaling of natural bedforms corresponds to Hurst exponents between 0.5 under transient 

conditions and 1 at equilibrium (Nikora and Hicks, 1997; Jerolmack and Mohrig, 2005). Nikora et 

al. (2019) used artificial bed models with varied topographic scaling and showed how surface 

roughness is associated with friction factor and hydraulic resistance. In hyporheic exchange studies, 

random bedform fields have used white noise, where the spectral density is constant (Elliott, 1991), 

or equilibrium scaling, where the spectral slope is -3 (Stonedhal et al., 2013).  

This study demonstrates the effect of fractal scaling of riverbed topography on hyporheic 

exchange. A set of synthetic fractal riverbeds with different scaling statistics was generated and 

used as inputs to sequentially-coupled numerical simulations of turbulent channel flow, hyporheic 
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flow. In the analysis, the maximum power spectrum (dune size) and the fractal dimension 

(topographic complexity) were considered as independent variables and we then investigated how 

interfacial fluxes and hyporheic travel times are functionally related to these variables. As the 

maximum power spectrum increases (i.e., dune height to flow depth ratio), the average interfacial 

flux increases logarithmically whereas it increases exponentially with an increase in fractal 

dimension. Hyporheic exchange is more sensitive to additional roughness (larger fractal 

dimensions) than to bedform size (larger maximum power). Our results imply that fractal 

properties of riverbeds are crucial to predicting hyporheic exchange. 

1.2 Hydrodynamics and Hyporheic Exchange 

The interaction of flow and sediment in rivers and streams shapes bedforms that in turn affect 

flow (Best, 2005; Venditti, 2013). Water accelerates on the stoss side upstream and slows down 

over the lee side downstream. Around the peak, flow separation can create recirculating zones in 

the lee side that affect head gradients over the sediment-water interface (SWI). Head gradients 

over the SWI force water in and out of the porous alluvium, defining a region known as the 

hyporheic zone. These interfacial zones are hotspots for ecohydrology and biogeochemistry, 

harboring the biofilms that regulate the cycling of major elements such as carbon, nitrogen and 

phosphorus (Triska et al., 1989; Mulholland et al., 1997; Battin et al., 2008).  

Potential and kinetic energy gradients at the stream bottom boundary drive hyporheic 

exchange. The total head at the streambed includes the hydrostatic (pressure and elevation head) 

and the hydrodynamic head (mean velocity head and unsteady motions related to bed roughness 

generating Reynolds stresses and momentum transfers) (Boano et al., 2014). Although both 

hydrostatic and hydrodynamic heads contribute to hyporheic flow, the hydrostatic forces tend to 

be more influential when it is associated with the streambed's larger topographic features, such as 

bars, steps, cascades, riffles, and meandering banks, which can change water surface profile 

spatially (Harvey and Bencala, 1993; Woessner, 2000; Tonina and Buffington, 2009; Gooseff, 

2010; Trauth et al., 2013). In contrast, the hydrodynamic head gradient is dominant in driving 

hyporheic flow when it is associated with relatively small-scale channel features, such as ripples 

and dunes, since the hydrostatic head changes little when the water surface is not perturbed. The 

hydrodynamic driving forces primarily depend on the flow conditions (e.g. the mean stream 
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velocity, Froude number, Reynolds number) whereas hydrostatic drivers are mainly influenced by 

the change in surface water elevation (SWE). 

The classification of hyporheic exchange drivers by the size of topographic features has been 

used since the variation of water surface profile, which can be considered as an indicator of 

hydrostatic head gradient, depends on the riverbed elevation by basic principles of open channel 

flows: small features such as bedforms induce small water surface profile change and large features 

such as meandering banks cause large water surface profile variation. The modeling of hyporheic 

exchange driven by small features often ignores the variation in water surface profile (Cardenas 

and Wilson, 2007; Hardy et al., 2009; Chen et al., 2018). However, for flows having large Froude 

number (~0.5), macroturbulence caused by a flow separation in lee side can create boils on the 

water surface, affecting flow patterns and head distributions (Best, 2005). We hypothesize that 

shallower, faster flows near critical conditions may promote more hyporheic exchange than 

expected if the SWE is not allowed to adjust.  

1.3 Boulder-driven Hyporheic Exchange 

Debris and obstacles in streams and rivers are ubiquitous. Trees and wood clog waterways, 

blocks eroded from canyon walls tumble down to the valley floor, high flows leave behind coble 

jams and bars, braided channels are but an obstacle… Examples are endless. Natural debris provide 

beneficial structural and functional diversity: more habitats harbor more species (Gorman and Karr, 

1978; McGuiness and Underwood, 1986, Stoll et al., 2016), natural dams and large scale roughness 

dissipate energy (Pagliara and Chiavachini, 2006), head gradients around obstacles drive 

surface/subsurface exchange (Sawyer et al., 2011), buffering temperatures and improving water 

quality (Hutchinson and Webster, 1998; Sawyer and Cardenas, 2012; Briggs et al. 2013).  

After decades of degrading lotic environments, river restoration has become a major 

endeavor, generating billions in business and occupying many water resources engineers and 

scientists (Wohl et al., 2015). Stream restoration often targets fish habitat and populations, but 

improving water quality has now become preponderant (Bernhardt et al., 2005). As the importance 

of the hyporheic zone in improving water quality has been recognized over the past twenty years 

(Fischer et al., 2005), incorporating near bed water mixing in the design of restoration projects 

could lead to healthier hydro-ecosystems (Hester and Gooseff, 2010, Palmer et al., 2014). 

Salmonid redds have been linked to strong interstitial flows that supply oxygen and prevent 
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clogging, and the connection between hyporheic flows and the breeding and survival of sensitive 

fish species is well documented (Cooper, 1965; Baxter and Hauer, 2000).  We suggest that large 

stable features such as boulders intended to improve fish habitat could also increase hyporheic 

flows, hence further benefiting ecosystems by improving water quality.  

If boulders influence the near-bed hydrodynamics, boulder clusters can also affect the 

surrounding flow fields (Yager et al. 2007). As boulders are closer, the wake they generate can 

extend to their neighbors and interfere with the wakes of the adjacent elements. Fang et al. (2017) 

investigated the effects of boulder concentration on hydrodynamics and turbulent flow properties. 

They showed that boulders influence the mean flow and the near bed turbulence, but also that the 

streamwise spacing played an important role on the surface flow field. In particular, when boulders 

were near each other, wake interference and skimming flow were observed, greatly reducing bed 

shear. Since spacing changes the near bed hydrodynamics, we expect it will also affect hyporheic 

exchange. More specifically, we hypothesize that hyporheic exchange will increase with boulder 

spacing as wake interference disappears.  

Boulder embeddedness, the extent boulders are sunken into the stream bed (Barbour et al., 

1999) is also expected to influence surface-subsurface water exchange. We hypothesize that 

boulder embeddedness will influence hyporheic exchange processes because (1) flow patterns will 

change with embeddedness (e.g. a whole sphere placed on the bed vs. a half-buried sphere) and (2) 

the embedded part of the boulder is impermeable and thus changes the makeup of the hyporheic 

zone. More specifically, we predict that embeddedness will shorten flowpaths and thus decrease 

residence times if the flux is the same. However, the flux is expected to decrease with 

embeddedness, as the more the boulders protrude in the surface flow, the more head gradients can 

drive hyporheic flows. It is possible that the increase in flux compensates the decrease in flowpath 

length, resulting in similar residence times. 

1.4 Neural networks for predicting the bed pressure 

Artificial neural networks (ANNs) have been widely utilized as a prediction and forecast 

model in various areas including aerospace, finance, manufacturing, medicine, water resources 

and environmental sciences. Although the basic principles of artificial neurons were introduced in 

1940s, employments of ANNs have blossomed after the application of the back-propagation (BP) 

training algorithm for feedforward ANNs during 1980s, and advances in computer capability 
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accelerated the use of ANNs. More recently, data-driven and machine learning techniques have 

been applied for turbulence modeling in fluid dynamics. Numerical modeling of fluid flows 

primarily depends on solving the partial differential equation systems in a discretized form. 

approach, which is often computationally expensive.  

As an early data-driven model, Willcox and Peraire (2002) suggested a use of model 

reduction method via the Proper Orthogonal Decomposition (POD) to represent the high-fidelity 

system (e.g. turbulent flow) with relatively small amount of basis vectors. The projection model 

reduction methods became popular tools in parameterizing dynamical systems and high fidelity 

models. On the other hand, ANN has been used as a surrogate model to represent the nonlinear  

relationship between flow variables (e.g. pressure, velocity, dynamic reattachment) (Faller et al., 

1995; Bonakdari et al., 2011; Jin et al., 2018; Bhatnagar et al., 2019). 

Over the decades, cost-effective surrogate models have been suggested as alternatives to 

resolve those challenges in water resources engineering (Cheng et al., 2002; Lin et al., 2006; Muttil 

and Chau, 2006; Muzzammil, 2008; Wu et al., 2008; Harter and Velho, 2010; Ghosh et al., 2010; 

Safikhani et al., 2011). Bhattacharya et al. (2007) applied neural networks in sedimentation 

modeling for the channel of the port area of Rotterdam. They used wave energy, flow discharge 

and sedimentation potential to predict the sedimentation. Bilgil and Altun (2008) estimated the 

friction coefficient of smooth open channels via ANN. The proposed ANN model outperformed 

the conventional method, Manning’s equation, in predicting friction coefficient. Kocabas et al. 

(2008) suggested an ANN approach to predict the critical submergence of intake pipe for 

permeable and impermeable bottom. They compared ANN model with Multiple Linear Regression 

(MLR) approaches and the proposed ANN model showed more accurate prediction ability. 

Emiroglu et al. (2011) applied ANN to estimate the discharge capacity of triangular labyrinth side-

weirs. Similar to Kocabas et al. (2008), they compared the performance of the ANN model with 

MLR models and ANN outperformed MLR. 

In this study, we propose a general artificial neural network (ANN) based data-driven model 

for predicting the pressure field at the channel bottom using point velocities at different level. We 

constructed three different data-driven models with multivariate linear regression, local linear 

regression and ANN. The input variable is velocity in x, y, and z directions and the target variable 

is pressure at the sediment bed. We show that ANN based surrogate models can estimate the 

pressure field compared to other linear regression model. Comparing ANN with LMLR, ANN 
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predicted the pressure field across the bed more accurately than LMLR based on the point velocity 

data. Both ANN and LMLR are able to model the general trend of pressure variation, but only 

ANN captures the nonlinear relationship between the velocity and pressure near the boulder.  
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 RESEARCH QUESTIONS, STATEMENTS AND OBJECTIVES  

2.1 How does the fractal dimension of riverbed morphology affect HE processes? 

Given that riverbeds are fractals, the relationship between topographic scaling and hyporheic 

exchange deserves further attention. In this chapter, we considered a broad range of fractal 

topographies described by their spectral properties to ascertain the relationship between scaling 

and hyporheic exchange. We addressed the question: How do the fractal properties of riverbeds 

influence hyporheic exchange? We hypothesize that bed roughness is a primary control of 

hyporheic exchange in terms of both interfacial flux and bed residence time, and that the influence 

of the fractal dimension is stronger than the influence of bedform size. We designed numerical 

experiments on a set of fractal riverbeds having different sizes for the same scaling or different 

fractal dimensions for the same size. We then quantified the differences in the average interfacial 

flux (qint) and residence time distribution (RTD) associated with each condition. 

2.2 How are the hydrodynamic and hydrostatic drivers of HE related? 

The main objective of this chapter is to investigate how coherent flow structures interact 

with a free surface under different flow conditions and how this affects hyporheic exchange. We 

this address the following question: How does the SWE change as the Froude number increases to 

near critical conditions and how much does it affect hyporheic exchange? We use computational 

fluid dynamics to simulate the two-phase (air-water) turbulent flow under various Froude number. 

The volume of fluid method is used to model the surface water wave and hydraulic jumps. A 

groundwater flow model is then sequentially coupled with the free-surface water flow model. We 

then compared the results of the free surface simulations to cases with a fixed SWE. 

2.3 How do the spacing and embeddedness of boulders control HE? 

In this chapter, we investigate how boulder spacing and embeddedness affect the near bed 

hydrodynamics and in turn the hyporheic flux and residence time. We use Computational Fluid 

Dynamics (CFD) to simulate the stream flow and a groundwater model is then sequentially 

coupled with the surface flow model. Hyporheic flux is computed as the sum of the inward Darcy 

fluxes at the sediment water interface, and hyporheic residence time distributions are calculated 
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from the hyporheic flow-field. Our results show that as boulders are more embedded, flowpaths 

are shorter and so are the associated travel times. Spacing increases hyporheic flux without 

affecting the subsurface domain, thus systematically decreasing residence times.  Fluxes decreased 

with increasing embeddedness, but less so as clusters were tighter. Together, our results suggest 

that there is an optimal configuration that enhances hyporheic flux when boulders are not 

embedded and sufficiently far away. Our findings could help better manage and conserve riverine 

ecosystems by optimizing hyporheic processes during restoration projects. 

2.4 Can we predict the pressure across the bed using point velocities? 

ANNs have shown great potential to tackle high-dimensional nonlinear problems in fluid 

dynamics. This chapter focuses on developing a prediction model using ANNs based on the 

numerical simulation results from the previous chapter on boulder-driven hyporheic exchange. We 

firstly extract flow velocities at various locations and corresponding pressure values at the 

sediment bed. Then we train neural networks with velocities as an input and bed pressure as an 

output variable with 70% of the extracted data. Lastly we test the neural network model with the 

test dataset whether it accurately models the nonlinear relationship between velocity and pressure. 

 

  



 

 

36 

 THEORETICAL BACKGROUND 

3.1 Navier-Stokes equations for incompressible, Newtonian fluid 

The governing principles of the fluid flow are the conservation of mass, momentum, and 

energy (Kundu et al., 2012). In this chapter, the Navier-Stokes (NS) equations are presented which 

associates mass and momentum conservation laws. We model river flow with NS equations 

assuming the water is incompressible and Newtonian.  

3.1.1 Conservation of mass 

The derivation of conservation of mass in a fluid flow are based on the assumption that the 

mass collected from neighboring fluid particles is constant. Consider the mass flow through a small 

control volume. Conservation of mass for the control volume in a flowing fluid is: 

 
∂

∂𝑡
∫ 𝜌(𝐱, 𝑡)𝑑𝑉
𝑉(𝑡)

= 0  (3.1) 

where 𝜌 is the fluid density, 𝐱 is the location vector, 𝑡 is time and 𝑉(𝑡) is the total volume at time 

t. By Reynolds transport theorem,  

 ∫
∂𝜌(𝐱, 𝑡)

∂𝑡
𝑑𝑉

𝑉(𝑡)

+ ∫ 𝜌(𝐱, 𝑡)𝐮(𝐱, 𝑡) ⋅ 𝐧𝑑𝐴
𝐴(𝑡)

= 0  (3.2) 

By applying Gauss’ divergence theorem to Eq. (3.2) for the surface integration, 

 ∫ {
∂𝜌(𝐱, 𝑡)

∂𝑡
+ ∇ ⋅ (𝜌(𝐱, 𝑡)𝐮(𝐱, 𝑡))}𝑑𝑉

𝑉(𝑡)

= 0  (3.3) 

Since Eq. (3.3) requires the integrand to be zero: 

 
∂𝜌(𝐱, 𝑡)

∂𝑡
+ ∇ ⋅ (𝜌(𝐱, 𝑡)𝐮(𝐱, 𝑡))  (3.4) 

This equation is called the continuity equation. For the incompressible case, the density for 

the fluid is constant and thus we can simplify the continuity equation to 

 𝛁 ⋅ 𝐮 = 0  (3.5) 

Volume of Fluid (VoF) Method 

The volume of fluid (VoF) method is to simulate free boundary configuration (Hirt and 

Nichols, 1981). We use VoF in the cases where the water surface profile changes in response to 
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the channel geometry when the Froude number is sufficiently large. The density 𝜌 and viscosity 𝜇 

in the domain are given by 

 𝜌 = 𝐹𝜌1 + (1 − 𝐹)𝜌2 (3.6) 

 𝜇 = 𝐹𝜇1 + (1 − 𝐹)𝜇2 (3.7) 

where 𝐹 is the volume fraction function for the two fluids (air and water) defined by  

 
𝐹 = {

 0     if volume occupied by air 
 1    if volume occupied by water

 (3.8) 

Volume fraction F is transported by the fluid velocity field. The equation for the volume 

fraction scalar F is a conservation law: 

 𝜕𝐹

𝜕𝑡
+ ∇ ⋅ (𝐮𝐹) + ∇ ⋅ (𝐮R𝐹(1 − 𝐹)) = 0 (3.9) 

where 𝐮 is the velocity of air-water mixture and 𝐮R is the relative velocity between air and water 

phases to compress the interface. 

3.1.2 Conservation of momentum 

For the derivation of the conserved momentum equation, we use Newton’s second law which 

is the fundamental law governing fluid momentum:  

 
∂

∂𝑡
∫ 𝜌(𝐱, 𝑡)𝐮(𝐱, 𝑡)𝑑𝑉
𝑉(𝑡)

= ∫ 𝜌(𝐱, 𝑡)𝐠𝑑𝑉
𝑉(𝑡)

+ ∫ 𝐟(𝐧, 𝐱, 𝑡)𝑑𝐴
𝐴(𝑡)

 (3.10) 

where 𝜌𝐮 is the momentum per unit volume, 𝐠 is the body force per unit mass, 𝐟 is the surface 

force per unit area acting on A(t), and 𝐧 is the normal vector of A(t). By applying Reynolds 

transport theorem, 

 

∫
∂

∂𝑡
(𝜌(𝐱, 𝑡)𝐮(𝐱, 𝑡))𝑑𝑉

𝑉(𝑡)
+ ∫ 𝜌(𝐱, 𝑡)𝐮(𝐱, 𝑡)(𝐮(𝐱, 𝑡) ⋅ 𝐧)𝑑𝐴

𝐴(𝑡)

= ∫ 𝜌(𝐱, 𝑡)𝐠𝑑𝑉
𝑉(𝑡)

+ ∫ 𝐟(𝐧, 𝐱, 𝑡)𝑑𝐴
𝐴(𝑡)

 

(3.11) 

Using Gauss’ theorem, we convert the surface integrals to volume integrals: 

 

∫ 𝜌(𝐱, 𝑡)𝐮(𝐱, 𝑡)(𝐮(𝐱, 𝑡) ⋅ 𝐧)𝑑𝐴
𝐴(𝑡)

= ∫ 𝛁 ⋅ (𝜌(𝐱, 𝑡)𝐮(𝐱, 𝑡)𝐮(𝐱, 𝑡))𝑑𝑉
𝑉(𝑡)

 

(3.12a) 

 ∫ 𝐟(𝐧, 𝐱, 𝑡)𝑑𝐴
𝐴(𝑡)

= ∫ 𝛁 ⋅ 𝝉𝑑𝑉
𝑉(𝑡)

 (3.12b) 

where 𝛕 is stress tensor. Thus, Eq. (3.11) becomes 
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𝜕𝜌𝐮

𝜕𝑡
+ 𝛁 ⋅ (𝜌𝐮𝐮) − 𝛁 ⋅ 𝛕 = −𝛁𝑝 + 𝜌𝐠 (3.13) 

Assuming Newtonian fluid,  

 𝛕 = 2𝜇𝐒 −
2

3
𝜇(𝛁 ⋅ 𝐮)𝐈 (3.14) 

where S is the strain rate tensor which is defined by 𝐒 = [∇𝐮 + (∇𝐮)𝑇]/2. 

For incompressible flow, Equation (3.13) is further simplified as 

 
𝜕𝜌𝐮

𝜕𝑡
+ ∇ ⋅ (𝜌𝐮𝐮) − ∇ ⋅ (2𝜇𝐒) = −∇𝑝 + 𝜌𝐠 (3.15) 

since 𝛁 ⋅ 𝐮 = 0. 

3.2 Reynolds-averaged Navier-stokes (RANS) equations 

Turbulent flows are associated with unpredictable fluctuations, and they have not been fully 

understood by deterministic or statistical analysis. In this chapter, we focus on the Reynolds-

Averaging approach which was introduced by Osborne Reynolds. The dependent-field quantities 

can be separated into two components representing the mean 𝜙̅  and its fluctuation  𝜙′  that is 

oscillating around the mean value: 

 𝜙(𝐱, 𝑡) = 𝜙̅(𝐱, 𝑡) + 𝜙′(𝐱, 𝑡) (3.16) 

where  

 
𝜙̅(𝐱, 𝑡) = lim

𝑇→∞

1

𝑇
∫ 𝜙(𝐱, 𝑡)𝑑𝑡

𝑡+𝑇

𝑡

 (3.17) 

 𝜙′̅̅ ̅(𝐱, 𝑡) = 0 (3.18) 

The time-averaged incompressible mass conservation equation can be obtained by 

substituting 𝐮 = 𝐮̅ + 𝐮′ in Eq. (3.4),  

 𝛁 ⋅ 𝐮̅ = 0 (3.19) 

The time-averaged incompressible momentum conservation equation is then 

 𝜕𝜌𝐮̅

𝜕𝑡
+ ∇ ⋅ (𝜌𝐮̅𝐮̅) − ∇ ⋅ (2𝜇𝐒) = −∇𝑝 + 𝜌𝐠 − 𝜌𝛁 ⋅ (𝐮′𝐮′̅̅ ̅̅ ̅̅ ) (3.20) 

These equations are known as Reynolds-Averaged-Navier-Stokes equations (RANS). 

3.2.1 Eddy viscosity approximation 

Joseph Boussinesq related the Reynold-Stresses (𝝈𝑡̅̅ ̅), which is −𝜌𝐮′𝐮′̅̅ ̅̅ ̅̅ , to the mean values 

of the velocities and the kinetic energy of the turbulence k as: 

 
𝝈̅𝑡 = 2𝜇𝑡𝐒̅ −

2

3
𝜇𝑡(𝛁 ⋅ 𝐮̅)𝐈 −

2

3
𝜌𝐈𝑘 (3.21) 
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where k is defined as 

 
𝑘 =

1

2
𝐮′ ⋅ 𝐮′̅̅ ̅̅ ̅̅ ̅̅  (3.22) 

The turbulence kinetic energy and turbulence energy dissipation rate are then computed by 

solving the following differential equations: 

 
𝜇𝑡 = 𝐶𝜇

𝑘

𝜖
 (3.23) 

 𝜕(𝜌𝑘)

𝜕𝑥𝑗
+ ∇ ⋅ (𝜌𝐮𝑘) = ∇ [

𝜇𝑡

𝜎𝑘
∇𝑘] + 2𝜇𝑡|∇𝐮|2 − 𝜌𝜖 (3.24) 

 𝜕(𝜌𝜖)

𝜕𝑥𝑗
+ ∇ ⋅ (𝜌𝐮𝜖) = ∇ [

𝜇𝑡

𝜎𝑘
∇ϵ] + 2𝐶1𝜇𝑡|∇𝐮|2

𝜖

𝑘
 − 𝐶2𝜌

𝜖2

𝑘
 (3.25) 

where 𝜇𝑡 is the eddy viscosity, 𝑘 is turbulence kinetic energy, 𝜖 is turbulence energy dissipation 

rate. The constants 𝐶𝜇 , 𝐶1, 𝐶2, 𝜎𝑘 , 𝜎𝜖  take the values of 0.09, 1.44, 1.92, 1.9, 1.3 respectively. 

3.3 Porous flow modeling 

The potential and flow field for groundwater flow are modeled by Darcy’s law: 

 
−∇ ⋅ [

𝐾

𝜇
∇ℎ − 𝜌𝐠] = 0 (3.26) 

where K is intrinsic permeability and h is potential head. We set ℎ̃ = ℎ − 𝜌𝐠𝐳 to render boundary 

condition simple, e.g. ∇ℎ̃ ⋅ 𝑛⃗ = 0 at the wall where 𝑛⃗  is the normal vector at the boundary. Then 

Eq. (3.26) becomes:  

 
−∇ ⋅ [

𝐾

𝜇
∇ℎ̃] = 0 (3.27) 

The Darcy flux, given constant intrinsic permeability, can be sequentially computed by 

 
𝐪s = −

𝐾

𝜇
[∇ℎ̃]  (3.28) 

The interfacial flux is then calculated by 

 
𝑞𝑖𝑛𝑡(𝑥) = {

𝐪s ⋅ 𝐧     if 𝐪s ⋅ 𝐧 > 0
0        if 𝐪s ⋅ 𝐧 ≤ 0

 (3.29) 

where 𝐧 is the unit vector normal to the bed surface into the bed. 

  



 

 

40 

3.4 Solute transport modeling 

The advection-diffusion-dispersion equation is 

 𝜕𝑐

𝜕𝑡
= −∇(𝐔c) + ∇(𝐃∇c) (3.30) 

where 𝑐 = 𝑐(𝐱, 𝑡) is concentration, 𝐔 = 𝐔(𝐱, 𝑡) is a velocity field, 𝐃(𝐱, 𝑡) is dispersion 

coefficient at location x and time t. For the dispersion coefficient, we assume  

 𝐃 = (𝐷𝑚 + 𝛼𝑉|𝐔(𝐱(t))|)𝐈 +
𝛼𝐿 − 𝛼𝑉

|𝐔(𝐱(𝑡))|
𝐔 ⊗ 𝐔 (3.31) 

where Dm is the molecular diffusion coefficient, 𝛼𝐿 and 𝛼𝑉 are longitudinal and vertical 

dispersivities, U is the pore velocity vector and I is the identity matrix (Bear, 1961). The 

longitudinal dispersitivty is assumed to be equal to 𝛼𝐿 = 0.5 m and the transverse dispersivity is 

approximated by 𝛼𝑇 = 0.1𝛼𝐿 (Cardenas et al., 2008; Moltyaner and Killey, 1988).  

3.4.1 Fokker-Planck-Kolmogorov Equation (FPKE) 

We can rewrite the advection-diffusion-dispersion equation as 

 𝜕𝑐

𝜕𝑡
= −∇[(𝐔 + ∇𝐃) ⋅ 𝑐] + ∇2(𝐃𝑐) (3.32) 

for ∇2(𝐃𝑐) = ∇(𝐃∇c + c∇𝐃) Particle tracking methods solve the Fokker-Planck-Kolmogorov 

Equation (FPKE): 

 𝜕𝑃

𝜕𝑡
= −∇(𝐀𝑃) +

1

2
∇2(𝐁𝑃) (3.33) 

where 𝑃 = 𝑃(𝐱, 𝑡) is the probability density for a particle to be at location x at time t. 𝐀(𝐱) and 

𝐁(𝐱) can be interpreted as the mean velocity and the statistical dispersion respectively. By 

equating (18) and (19), we get 𝐀(𝐱) ≡ 𝐔 + 𝜕𝐃/ ∂𝐱 and 𝐁(𝐱) ≡ 𝐃. This yields an algorithm for 

the new location of a particle after time t : 

 𝐱(𝑡 + Δ𝑡) = 𝐱(𝑡) + [𝐔(𝐱(𝑡)) + ∇𝐃(𝐱(𝑡))] ⋅ Δ𝑡 + (2𝐃(𝐱(𝑡)) ⋅ Δ𝑡)
1/2

⋅ 𝛏 (3.34) 

where x is the location of particle, 𝛏 is a vector of random numbers drawn from a standard 

normal distribution (Delay et al., 2005). 

3.4.2 Residence time  

Assume the initial concentration value, c0, is uniformly distributed over the upper boundary 

of groundwater domain, which is the sediment-water interface, and the solute is transported by 



 

 

41 

advection-dispersion equation as given in Eq. (3.30). The solute mass in the bed is computed by 

integrating concentration inside the bed, 

 
𝑅(𝑡) = ∫ 𝑐(𝐱, 𝑡) 𝑑𝑉

𝑉𝑜𝑙𝑏𝑒𝑑

 (3.35) 

The average residence time function, 𝑅̅(𝜏), which denotes the fraction of solute which 

entered the bed in a short time near t = 0 and remains in the bed at time 𝜏 is 

 
𝑅̅(𝜏) =

∫ 𝑞𝑖𝑛𝑡𝑅(𝑥0, 𝜏)𝑑𝑠
𝐿

∫ 𝑞𝑖𝑛𝑡𝑑𝑠
𝐿

 (3.36) 

where 𝑅(𝑥0, 𝜏) denotes the fraction of solute particles which entered the bed at an arbitrary point 

at SWI, 𝑥0, and remains in the bed after an elapsed time 𝜏, L is the length of sediment-water 

interface. The residence time distribution is the time derivative of 𝑅̅(𝜏). 
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 THE SENSITIVITY OF HYPORHEIC EXCHANGE TO  

FRACTAL PROPERTIES OF RIVERBEDS  

Hyporheic exchange in riverbeds is driven by current-bed topography interactions. Because 

riverbeds exhibit roughness across scales, from individual grains to bedforms and bars, they can 

exhibit fractal patterns. This study analyzed the influence of fractal properties of riverbeds on 

hyporheic exchange. A set of synthetic fractal riverbeds with different scaling statistics was used 

as inputs to sequentially-coupled numerical simulations of turbulent channel flow and hyporheic 

flow (Figure 4.1). In the analysis, the maximum power spectrum (dune size) and the fractal 

dimension (topographic complexity) were considered as independent variables and we then 

investigated how interfacial fluxes and hyporheic travel times are functionally related to these 

variables. As the maximum power spectrum increases (i.e., dune height to flow depth ratio), the 

average interfacial flux increases logarithmically whereas it increases exponentially with an 

increase in fractal dimension. Hyporheic exchange is more sensitive to additional roughness (larger 

fractal dimensions) than to bedform size (larger maximum power). Our results imply that fractal 

properties of riverbeds are crucial to predicting hyporheic exchange. The predictive relationships 

we propose could be integrated with reduced complexity, large scale models. They can also be 

used to design artificial topographies that target hyporheic ecosystem services. 

 

 

Figure 4.1. Illustration of the sequentially coupled surface-subsurface model framework. The 

channel flow field was calculated using OpenFOAM. The interfacial pressure fields from 

OpenFOAM simulations were used as the upper boundary to solve the groundwater flow field 

using FEniCS. 
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4.1 Fractal riverbed profiles  

The self-similarity of fractals is indicated by the power-law relationship between their power 

spectral density (PSD) and wave number (or spatial frequency), i.e., |𝑋(𝑞)2| = 𝐶𝑞−𝛽   where X(q) 

is the Fourier transform of surface elevation at wave number q and C and 𝛽 are positive constants 

(Malinverno and Gilbert, 1989). The power-law dependence of the PSD on wave number is 

indicated by 𝛽 and is often expressed as a Hurst exponent (H): 𝛽 = 2𝐻 + 1. The fractal dimension 

(D) of the topography is also related to the spectral slope by: 𝛽 = 5 − 2𝐷 so that the smaller D is, 

the higher 𝛽 is and the signal with small wavelength (high frequency) has less amplitude (Turcotte, 

1997). These small D cases correspond to smooth bedforms with high spatial correlation in their 

elevation profile. Conversely, high fractal dimensions (and lower 𝛽) correspond to rougher (noisier) 

surfaces, with less short-range correlation in elevation. 𝛽 =0 corresponds to random white noise 

profiles.  

 

Figure 4.2.Types of low Froude number bedforms that are typically present as channel flow 

velocity increases: (a) typical ripple pattern (0.1 < Fr < 0.3), (b) compound dunes (0.3 < Fr < 

0.6), and (c) dunes (0.6 < Fr < 0.84) The sketch of bedforms were adapted from Simons & 

Richardson (1966). The upper and lower limit of Froude number for each configuration is 

roughly estimated by the depth/velocity diagrams suggested by Southard and Boguchwal (1990) 

illustrating the fields of bedforms stability for grain size = 0.4 – 0.6 mm.  

 

Surface flow velocity controls the shape of natural bedforms and thus also their fractal 

dimension in nature. Plane beds are followed by a sequence across increasing Froude number: 

plane bed → ripples → ripples on dunes (compound dunes) → dunes → transition or washed-out 

dunes → plane bed → antidune standing waves → antidune breaking waves → chutes and pools 

(Simons and Richardson, 1966; Tonina and Buffington, 2009). If we consider the elevation profile 

as a signal, compound dunes (Figure 4.2b) have more energy in the small wavelength (high 

frequency) than dunes (Figure 4.2c); the amplitude of the signal with small wavelength is thus 

smaller in the dunes, resulting in larger spectral slopes 𝛽 (smaller D) and smoother, more spatially 
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correlated profiles. In the next two subsections, we first describe the statistical properties of two 

observed riverbeds (4.1.1) to inform the parameter sets we selected for the computer-generated 

riverbeds (4.1.2). 

4.1.1 Previous Observations of Riverbeds and their Fractal Characterization 

The experimental design in this study is based on and inspired by observations of two 

contrasting sand riverbeds measured by Aubeneau et al. (2015) in a large flume (Figure 4.3a); one 

had small and irregular dunes while the other had larger and smoother bedforms. These 

experiments are referred to as M1 and M2 hereafter. Bedforms were generated by a steady water 

discharge, 40 L/s (velocity ~ 0.2 m/s) and 80 L/s (velocity ~ 0.4 m/s) forM1 and M2, respectively. 

In M1, the average height and length of bedforms were 6 cm and 66 cm whereas they were 20 cm 

and 90 cm, respectively, in M2. To describe these riverbeds, metrics that characterize fractals are 

used, and these are defined below.  

 

Figure 4.3. Measured bedforms and their characteristics: (a) Cross section of two sand beds 

generated in a flume and (b) Schematic power spectra of the elevation profiles, showing the 

location of the scaling regime between the wavelengths qr and qc, which corresponds to the 

spectral density Cqr and Cqc (original figure in Aubeneau et al., 2015). Note the steeper slope for 

the smoother dunes and the higher spectral density for the larger dunes compared to the smaller 

compound dunes. (c) Behavior of the phase for increasing wavelengths. Note the linear increase 

that we use to generate realistic artificial profiles. 

 

A Discrete Fourier Transform (DFT) yields the Power Spectral Density (PSD) (Figure 4.3b)  

 

𝑋(𝑞) =
1

𝑁
∑ 𝑒

−𝑗2𝜋
𝑁 𝑞𝑛𝑥(𝑛),

𝑁−1

𝑛=0

 (4.1) 

where x(n) is the surface profile measurement (m) which consists of N values. We identify the 

scaling regime between qr and qc (m-1) with corresponding spectral density Cqr and Cqc (m3). The 
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slope of the PSD between qr and qc is 𝛽. In addition, we also introduce the mean-square 

roughness, 𝛿2 (m2), which is defined by the mean square of the elevation: 

 

𝛿2 =
1

𝑁
∑ 𝑥2(𝑛),

𝑁−1

𝑛=0

 (4.2) 

This value is also known as a power signal, which is an averaged energy signal. 𝛿2 is equivalent 

to the area under the PSD (Eq. (4.3)) by Parseval’s theorem (Eq. (4.4)): 

 

𝛿2 =
1

𝑁2
∑|𝑋(𝑞)|2
𝑁−1

𝑞=0

=
1

𝐿𝑥

∑ 𝑃(𝑞)

𝑁−1

𝑞=0

 (4.3) 

 

𝑁 ∑ 𝑥2(𝑛)

𝑁−1

𝑛=0

= ∑|𝑋(𝑞)|2
𝑁−1

𝑘=0

 (4.4) 

where PSD is defined as 𝑃(𝑞) = |𝑋(𝑞)|2(𝐿𝑥/𝑁
2), 𝑋(𝑞) is the Fourier transform of x(n), Lx is 

the length of the surface profile (m). 

The wavenumber and power density (m3) varied from 0.5 to 5 and from 1×10-7 to 6.5×10-3 

for the M1 and M2 riverbeds. 𝛽=2, D=1.5, H=0.5, and 𝛿2=2.3×10-2 m2 for M1, and 𝛽=3, D=1, 

H=1 and 𝛿2=4.5×10-4 m2 for M2. Cq is larger for M2 (large features) than for M1 (small features), 

reflecting the difference in dune elevation. D is also smaller for M2, indicating the change from 

compound dunes (M1) to dunes-dominated riverbed (M2). 

As D is larger (which also means there is a shallower slope in the PSD), the amplitude of 

fluctuations with small wavelengths has a higher influence on the spectra and vice versa. Smaller 

D corresponds to the disappearance of small wavelengths resulting in a smoother, more correlated 

topography associated with steeper power spectral slopes. In summary, Cq reflects the magnitude 

of the bedforms whereas D captures their roughness, or complexity 

4.1.2 Generation of Synthetic Riverbeds based on Observations 

Because Cq and D are the main characteristics of the bed topography PSD, we generated two 

sets of PSD: one with different maximum PSDs (referred to as the Cq cases hereafter) but constant 

D; the second with different D (referred to as the D cases hereafter) but constant Cq. We built both 

sets of cases using qr and qc values from M1. The tailing in PSD after qc is ignored so that 

hyporheic exchange only depends on Cq or D.  Cq is varied from the minimum to the maximum 

observed in M1 and M2, while D values range from 0 to 2. The middle parameter value is used for 

Cq and D when they are held constant (Cq =10-3 m3 when D is varied and D=1 when Cq changes; 
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see Figure 4.4). The PSD method is useful in that it can create multiscale bedforms and the fractal 

dimension of the dune fields can be easily controlled. A total of twelve cases were considered, six 

in each suite. In increasing order, the six Cq cases had values of 10-4 (for case Cq1), 10-3.6(Cq2), 10-

3.2(Cq3), 10-2.8(Cq4), 10-2.4(Cq5), and 10-2(Cq6); the D cases had D values of 0 (for case D1), 0.4 

(D2), 0.8 (D3), 1.2 (D4), 1.6 (D5), and 2.0 (D6).  A relative trend and relationship between phase 

and frequency found in the observed bed topography was also implemented when creating artificial 

riverbeds. In order to replicate the phase behavior, we assigned random values varying from −𝜋 

to 𝜋 before qr and −𝜋/4 to 𝜋/4 after qr with an increasing linear trend (see Figures 4.3c and 4.4e). 

In addition, the same phase values were used for all riverbeds within the range of wavenumber = 

0 ~ qr m-1. 

 

  

Figure 4.4. Bed profile of (a) Case Cq (b) Case D and power spectral density of (c) Case Cq (d) 

Case D (e) Phases for both Cq and D cases. The Cq cases show the effect of maximum power 

spectral density or the amplitude of bedform whereas the D cases show the impact of fractal 

dimension of riverbeds. The phase of the signal is artificially generated to have a large variance 

up to the roll-off frequency and then increase linearly afterwards. 
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The two sets of six different power spectra described above were inverse Fourier transformed 

to a 2-dimensional spatial morphology (longitudinal direction and vertical direction). The discrete 

inverse Fourier transform x(n) is 

 

𝑥(𝑛) =
1

𝑁
∑ 𝑒

𝑗2𝜋
𝑁 𝑞𝑛𝑋(𝑞),

𝑁−1

𝑞=0

 𝑛 = 0,… ,𝑁 − 1 (4.5) 

The total length of the simulated domain is 15 m, with N=1500 discrete points. Figure 4.4 

illustrates the morphology of the two sets of computer-generated riverbeds. As mentioned in 

Section 4.1.1, Cq reflects the size or the elevation of dunes while D indicates their roughness. These 

characteristics are clearly apparent in Figure 4.4.  

4.2 Simulation conditions 

The two-dimensional steady-state Reynolds-average Navier-Stokes (RANS) model is used 

to simulate the surface flow to obtain the pressure distribution imposed upon the sediment-water 

interface (SWI). We used OpenFOAM 5.0 to solve the CFD model introduced in this section. In 

the natural fluvial system, surface water controls the size and shape of bedforms. However, in 

order to demonstrate the effects of roughness on hyporheic exchange, we used fixed beds for our 

simulations, and assumed constant water depth and velocity of 1 m and 0.3 m/s respectively. We 

note that the influence of water depth is not considered. In addition, the flow velocity is under the 

threshold shear for bedload for a coarse sand. A uniform velocity profile was used at the inlet and 

the simulation was run until reaching steady-state to isolate the effects of dune morphology 

(statistical properties). To minimize boundary effects, the upstream-most 3 meters were discarded 

from the results. A no-slip condition was applied at the sediment-water interface. We adopted a 

Low-Reynolds number treatment for the viscous boundary layer instead of using wall functions at 

the sediment bed. The near-wall grid points are positioned such that the dimensionless wall 

distance is less than 1 (y+ < 1) everywhere which will give a finer mesh than the wall function 

approach (Versteeg and Malalasekera, 2007). The mesh is composed of hexahedral cells and the 

total number of cells is approximately 50,000. 

The two-dimensional groundwater potential and flow field are modeled by the finite element 

method. The boundary value problem and the finite element discretization is constructed and 

solved by FEniCS (Logg et al., 2012). The unstructured triangular mesh is generated automatically 

by the built-in mesh generation function and the number of elements is about 10,000 for the 15 m 
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(streamwise) × 4 m (vertical) domain. The second order Lagrange element is adopted for both trial 

and test function. The hydraulic conductivity is assumed isotropic and set at 1.5×10-3 m/s, typical 

of coarse to very coarse sand 

We used particle tracking to approximate the transported solute mass in the subsurface flow 

field (Kitanidis, 1994), which in turn yields the time spent by the particles in the bed. The 

molecular diffusion coefficient is set to 5×10-11 m2/s, the longitudinal dispersivity is assumed to be 

equal to 𝛼𝐿 = 0.5 m and the transverse dispersivity is approximated by 𝛼𝑇 = 0.1𝛼𝐿 (Cardenas et 

al., 2008; Moltyaner and Killey, 1988). The maximum spatial step is set to 0.001 m (Stonedahl et 

al., 2010) and the time step ( t ) is calculated for a Courant number of 0.5: Δ𝑡 = Co ⋅

Dstep/|𝐪𝑝|𝑚𝑎𝑥  where |𝐪𝑝|𝑚𝑎𝑥  is the magnitude of maximum velocity of particles, Dstep is the 

distance for one particle to move in one step, 0.001 m.  

4.3 Results and Discussion 

4.3.1 Modeled pressure and flow fields 

Figure 4.5 shows the channel flow field and the subsurface hydraulic head. In the Cq suite 

of cases, the surface flow is essentially uniform for small amplitudes (Figure 4.5a and 4.5b). As 

bedforms become more prominent (as in Cq5 and Cq6), eddies appear and develop behind the larger 

features where the flow separates (Figure 4.5e and 4.5f). Flow separation seemed to initiate when 

the lee side slope was 0.2 or greater, and eddies were more prominent where the distance between 

two neighboring peaks was large. We observed similar patterns in the D suite of cases, but because 

the bedforms were smaller, we did not see large, well developed eddies. In the subsurface, local 

head gradients between the stoss and lee sides drive hyporheic flow. In the Cq cases, as bedform 

size grew, flow cells represented by the white equipotential lines also grew and assimilated some 

of the smaller features. Conversely, for the D cases, more and more local cells appear as the fractal 

dimension increases, reflecting the additional transport scales introduced by the added scaling.  

The pressure at the sediment-water interface is closely related to the morphology of the 

riverbeds. Since the surface flow is consistent across simulations (0.3 m/s, 1 m water depth), the 

head at the bed is controlled by the changes in bed elevation. The side view of riverbed elevation 

and pressure distribution for different Cq and D are shown in Figure 4.6. The magnitude of the 

pressure gradient resulting from the elevation difference between peak and trough is largest for the 
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Cq6 case, as shown in Figure 4.6b. Figure 4.6a illustrates that the local bedform peak corresponds 

to a local minimum pressure and that the local bedform trough to a local maximum pressure. 

 

Figure 4.5 Channel flow velocity and subsurface hydraulic head for all cases:  

(a) ~ (f) for Cq1 ~ Cq6, (g) ~ (l) for D1 ~ D6. The surface flow is consistent throughout 

simulations (0.3 m/s, 1 m water depth). The flow separation starts revealing in (d) Cq4, and 

becoming prominent in (e) Cq5 and (f) Cq6. The occurrence of flow separation depends on the 

size of bedform. In the Cq cases, the hydraulic head equipotential lines under a local bedform are 

combined (smaller and smoother gradients) as bedform size grows (Cq1→Cq6) whereas they tend 

to split apart (spatially complex and steeper gradients) as fractal dimension increases (D1→D6) 
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However, local peaks do not always match with the local pressure drop, as seen at x = 1.64 m in 

Cq6 for example. There, the flow velocity has decreased due to the large upstream dune blocking 

the flow. In this case, we cannot directly relate the head to mean flow characteristics used in simple 

empirical formulae (Elliot, 1991). CFD simulations are able to model the flow separation and 

recirculation zones behind bedforms and provide more accurate estimates of the head at the bed. 

The riverbed elevation profile and pressure distributions of D1 and D6 are depicted in Figure 4.6c 

and 4.6d. The maximum or minimum elevations are not significantly different between cases, but 

there are more bedforms in case D6, and thus more local pressure gradients associated with the 

rougher surface. 

 

 

Figure 4.6 Pressure at the sediment-water interface and riverbed elevation for (a) Cq1 (b) Cq6 (c) 

D1 (d) D6. The pressure field is closely related to the morphology of riverbeds when the 

bedform size is small (e.g. (a), (c)). In the cases with large bedforms, they are not directly related 

due to the flow separation (e.g. (b), (d)). 

4.3.2 Effects of Topography on Hyporheic Flux 

The average interfacial flux into the hyporheic zone (qint) computed by Eq. 4.22 for each 

case is shown in Figure 4.7. In both cases, the average interfacial flux increases as Cq or D increases, 

but with different functional relationships: in Case Cq, the average interfacial flux increases 

logarithmically with Cq whereas it increases exponentially with D. The logarithm and exponential 
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function curves are fitted to the data with a coefficient of determination (r2) greater than 0.99. A 

linear increase in fractal dimension (D) results in an exponential increase in hyporheic flux, 

whereas an increase in bedform size (Cq) does not induce much additional flux (e.g., a saturation 

effect).  

 

Figure 4.7 Hyporheic exchange with respect to (a) Maximum power spectrum density, Cq 

(logarithmic function) (b) Fractal dimension, D (exponential function) (c) Surface roughness, 𝛿2 

(logarithmic function). Hyporheic flux increases with increasing 𝛿2, and this increase happens 

more rapidly for the D cases than the Cq cases. 

 

Figure 4.7c illustrates the influence of the mean-square roughness 𝛿2 on qint. The blue and 

pink dotted lines indicate the fitting curve for the Cq and D cases, respectively. Both graphs show 

an increase in flux with increasing 𝛿2, but with a much faster increase for the D cases than Cq 

cases. The additional roughness at larger D is more effective at promoting hyporheic exchange 

than the mere size of the bedforms (Cq). Moreover, the difference between the two graphs can be 

interpreted as an additional flux introduced by additional surface roughness (e.g. D6 has rougher 

bed profile compared to D1). This is similar to the difference between plane beds vs. beds with 

bedforms (Elliott, 1991; Marion et al., 2002). We also note that the same amount of hyporheic 

exchange is achieved for the high D case and the high Cq case, but the bedforms in the high D case 

are only half as big as those in the high Cq case. We conclude from these results that bed roughness, 

or complexity, is a very strong driver of hyporheic exchange. 

4.3.3 Effects of Topography on Residence Time Distributions 

The fraction of particles remaining in the bed (R̅) and residence time distributions (RTD) for 

each case are shown in Figure 4.8a to 4.8d. In addition, the shortest and average residence time 



 

 

52 

are shown in Figure 4.8e and 4.8f. The observed RTDs conform with the usual power law 

distributions for hyporheic exchange in bedforms (Cardenas et al., 2008). We observed that the 

shortest and average residence time decreases as Cq or D increase. Taller bedforms (higher Cq) 

produce larger head gradients and faster pore water velocity. The multitude of small scales added 

by increasing D introduces shorter flowpaths and thus shorter travel times. For the Cq cases, 

especially for Cq6, the slope in R̅ starts to change at t = 0.0346 hr (≈125 s) whereas the change in 

slope is at t = 0.033 hr (≈118 s) for D6. It took 95.8 sec and 80.3 sec for particles to circulate 

through the smallest bedforms for Cq6 and D6 respectively. Since the bedforms in D6 are relatively 

small and since the local head gradients are larger than those of Cq6, particles expectedly travel 

faster.  

The slope of the RTD curve changes, and these are indicated by dotted lines on Figures 4.8c 

and 4.8d. These inflections are due to stagnation points where the flow velocities are small so that 

they trap particles (Uffink, 1990). This can happen when ∂𝐃/ ∂𝐱 is small compared to U in zones 

located between the peak and trough where the direction of flow changes (i.e., at a stagnation zone). 

Theoretically, this transition in flow direction would not be observed in a flat-bed, but only in beds 

with topographic features. Since riverbeds are multiscale, multiple stagnation zones are formed 

and this results in multiple inflection points. The time between two inflection points indicates the 

travel time from the current to the next stagnation zone. For both D and Cq cases, the riverbed with 

higher amplitude (e.g., D6, Cq6) have the earliest inflection because of the higher Darcy flux. 
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Figure 4.8 Fraction remaining in the bed (𝑅̅) for (a) Cq cases and (b) D cases; Residence time 

distribution for (c) Cq cases and (d) D cases; The shortest and average residence time for (e) Cq 

cases and (f) D cases. A couple of inflection points are shown in (a) ~ (d) due to the stagnation 

point trapping particles for a while and then later releasing them. Both the shortest and average 

residence times decrease as Cq or D increases for the large bedforms because these increase flow 

velocity. 
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4.4 Discussion  

Our results demonstrate that the fractal scaling of bedforms exerts a primary control on 

hyporheic exchange. Hyporheic flux increased exponentially with fractal dimension, whereas it 

only increased logarithmically with bedform size (Cq cases). This is the first reported systematic 

investigation quantifying the linkages between the scaling of topography and the exchange 

behavior. Our findings are consistent with previous studies on the effect of multiscale bedforms 

on hyporheic exchange. Stonedahl et al. (2013) investigated the contribution of meanders, bars 

and dunes and showed that small morphologic features (e.g., ripples and dunes) increase hyporheic 

flux significantly. Similarly, Wörman et al. (2007) showed that smaller-scale features tend to 

control the surface/subsurface water exchange in fractal landscapes.  

Our results could inform a number of critical processes, such as biological filtering for 

example. The hyporheic zone is a biocatalytic filter that can buffer water quality and influence 

global nutrient cycles (Fischer et al., 2005, Battin et al., 2008; Huettel et al., 2014; Azizian et al. 

2015). Application of our approach requires detailed bed topography in order to extract the fractal 

scaling and maximum amplitude. These data are becoming easier to collect using green Lidar, 

multi-beam sonar, and photogrammetry, to name a few relevant methods (Okino and Higashi, 1986; 

Bufton et al., 1991; Costa et al., 2009; Dietrich, 2017). Given the riverbed topography, it is possible 

to use our approach to predict hyporheic exchange and thus constrain the associated 

biogeochemical processing under different topographies. As such, our results could be used to 

design more efficient biological filters.  

The flow separation on the lee side of larger bedforms decreased hyporheic exchange by 

reducing the pressure variations behind these features. The Bernoulli equation can describe the 

total head over bedforms with small to mild slopes, but turbulent eddies become important behind 

larger and steeper bedforms. The Bernoulli equation can be applied to streamlines even near the 

riverbed where the shearing stresses are not strong enough to disrupt the flow when the slope is 

mild. The wake observed behind the crest of steeper bedforms indicates the prevalence of frictional 

forces and this can only be simulated by solving rotational flow equations using CFD. This could 

help explain the tapering off (logarithmic saturation) of exchange with increasing bedform sizes 

we observed.  

In this study, we used a separate solver for the surface and the subsurface flow, effectively 

assuming an impermeable interface. Blois et al. (2014) showed that flow separation is very 



 

 

55 

different above a coarse material than above an impermeable boundary. This suggests that our 

results may not be valid for coarser and more permeable bed material. We note however that 

natural bedforms and pumping mechanisms are most important in sand beds (Thibodeaux and 

Boyle, 1987) while for coarser materials, reach scale channel morphology dominate exchange 

(Tonina and Buffington, 2009). As the influence of turbulence on hyporheic exchange is critical 

(Grant et al., 2018), we suggest that using the appropriate surface flow processes (but not 

systematically the complete Navier-Stokes equations) will become essential to better understand 

and predict hyporheic exchange. Extending the turbulent domain into the porous space remains an 

additional important challenge in coarser materials (Roche et al., 2019).   

Natural bedforms are complex with superimposed scales and multiple brink points (Catano-

Lopera et al., 2009; Lefebvre et al., 2016; Reesink et al., 2018). The roughness is often lacking in 

the idealized shapes often used in simulations (Cardenas and Wilson, 2007; Trauth et al., 2013; 

Chen et al., 2018). This simplification can result in underestimating the hyporheic flux by ignoring 

the head variation driven by the ever-smaller scales such as small ripples on compound dunes for 

example. The power spectral methods we used can generate artificial riverbeds with multiscale 

topography and thus better account for the different scales impacting the exchange processes.  

In order to isolate the effects of geomorphology on hyporheic exchange, we used the same 

surface flow conditions in all our simulations. Natural flows are unsteady and often non-uniform, 

altering hyporheic exchange in space and time (Cardenas and Wilson, 2007; Sawyer et al., 2011; 

Janssen et al., 2012; Trauth et al., 2013). Assuming constant surface flow conditions also ignores 

the feedback between hydraulic conditions and bed morphology (Exner, 1925). Incorporating these 

dynamic feedbacks between flow and morphology may be important in sand riverbeds where 

bedload and turnover can dominate exchange (Elliott, 1991; Martin and Jerolmack, 2013) and 

when the hysteresis in the morphological response to unsteady flow controls exchange during 

crucial flow transitions (Harvey et al., 2012). Finally, because of these nonlinear responses, relict 

morphology such as bars and other features shaped during high flows but persisting at base flow 

are also important and can control hyporheic processes and their associated biogeochemical 

processes (Zarnetske et al., 2011).  

Natural bedforms are asymmetrical with a small stoss slope and a large lee-side slope (repose 

angle), but since we used statistical methods to create our artificial riverbeds, our bedforms are 

composed of superimposed sinusoids (Fourier series), resembling bedforms created under tidal 
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currents rather than river flow (Komarova and Newell, 2000; Morelissen et al., 2003; Lefebvre et 

al., 2011). In symmetrical bedforms, the flow separates at the dune peak but soon reattaches at the 

lee side (Cardenas and Wilson, 2007). One possible way to resolve this issue is to manipulate the 

phase spectra in a way that can generate asymmetrical dunes, since phases carries information on 

the shape of a signal. The phase shift of topography has been poorly studied since it has been often 

considered to be random (Fox and Hayes, 1985). However, the phase spectra have strong 

correlations (Figure 4.3c), which should not be regarded as a stationary random process. The 

relationship between phase spectra and dune shape should be better understood to generate more 

realistic bedforms. 

4.5 Summary and Conclusions 

We conducted a series of numerical simulations to systematically explore how the fractal 

properties of bedforms are related to hyporheic exchange. We compared the average interfacial 

flux (qint) and RTD in the hyporheic zone with respect to the magnitude of the power spectrum (Cq) 

and the fractal dimension (D) of riverbeds. First, we created two sets of fractal riverbed topologies: 

one with different maximum power spectrum density Cq and the other with different fractal 

dimension D. We then numerically simulated the turbulent flow field over the synthetic riverbeds 

and used the resultant head distribution as a boundary condition in simulations of hyporheic zone 

(groundwater) flow fields. Finally, random walk particle tracking simulations were used to 

quantify residence time distributions in the hyporheic zone.  

The results show that the average interfacial flux increases logarithmically with respect to 

Cq whereas it increases exponentially with respect to D. In addition, qint generally increased with 

mean-square roughness (𝛿2), yet the increases in flux remained more sensitive to increases in D 

than Cq. The additional roughness at larger D is more important than Cq at increasing qint. These 

findings confirm that small features tend to dominate hyporheic exchange and imply that 

roughness is a significant driver of hyporheic exchange.   

4.6 References 

Aubeneau, A. F., Martin, R. L., Bolster, D., Schumer, R., Jerolmack, D., and Packman, A. I. 

(2015). Fractal patterns in river morphology produce fractal scaling of water storage times. 

Geophys. Res. Lett., 42, 5309–5315. https://doi.org/10.1002/2015GL064155 



 

 

57 

Azizian, M., Grant, S. B., Kessler, A. J., Cook, P. L., Rippy, M. A., and Stewardson, M. J. 

(2015), Bedforms as biocatalytic filters: A pumping and streamline segregation model for 

nitrate removal in permeable sediments. Environmental science and technology, 49(18), 

10993-11002. 

Battin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Marti, E., Packman, A. I., et al. 

(2008). Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geoscience, 

1, 95-100. https://doi.org/10.1038/ngeo101 

Blois, G., Best, J. L., Smith, G. H. S., and Hardy, R. J. (2014). Effect of bed permeability and 

hyporheic flow on turbulent flow over bed forms. Geophys. Res. Lett., 41, 6435-6442. 

https://doi.org/10.1002/2014GL060906 

Bufton, J. L., Garvin, J. B., Cavanaugh, J. F., Ramos-Izquierdo, L. A., Clem, T. D., and Krabill, 

W. B. Airborne lidar for profiling of surface topography. Optical Engineering, 30(1), 

https://doi.org/10.1117/12.55770 

Cardenas, M. B., and Wilson, J. L. (2007). Dunes, turbulent eddies, and interfacial exchange 

with permeable sediments. Water Resour. Res., 43, W08412, 

https://doi.org/10.1029/2006WR005787. 

Cardenas, M. B., Wilson, J. L., and Haggerty, R. (2008). Residence time of bedform-driven 

hyporheic exchange. Advances in Water Resources, 31(10), 1382-1386. 

https://doi.org/10.1016/j.advwatres 

Catano-Lopera, Y. A., Abad, J. D. and Garcia, M. H. (2009). Characterization of bedform 

morphology generated under combined flows and currents using wavelet analysis. Ocean 

Eng., 36(9-10), 617-632. https://doi.org/10.1016/j.oceaneng.2009.01.014 

Chen, X., Cardenas, M. B., and Chen, L. (2018). Hyporheic exchange driven by three-

dimensional sandy bedforms: sensitivity to and prediction from bedform geometry. Water 

Resources Research, 54(6), 4131-4149. https://doi.org/10.1029/2018WR022663. 

Costa, B. M., Battista, T. A. and Pittman, S. J. (2009) Comparative evaluation of airborne 

LiDAR and ship-based multibeam SoNAR bathymetry and intensity for mapping coral reef 

ecosystems. Remote Sensing of Environment, 133(5), 1082-1100. 

doi:10.1016/j.rse.2009.01.015 

Dietrich, J. T. (2017) Bathymetric Structure-from-Motion: extracting shallow stream bathymetry 

from multi-view stereo photogrammetry. Earth Surf. Process. Landforms, 42, 355-364. 

doi:10.1002/esp.4060 

Elliott, A. H. (1991) Transfer of solutes into and out of streambeds, (Doctoral dissertation). 

Retrieved from CaltechTHESIS. (http://resolver.caltech.edu/CaltechETD:etd-07092007-

074127). Pasadena, CA: California Institute of Technology.  

Exner, F. M. (1925). U ̈ber die Wechselwirkung zwischen Wasser undGeschiebe in Flu ̈ssen (in 

German),Sitz. Acad. Wiss. Wien Math. Natur-wiss. Abt. 2a,134, 165–203 

https://doi.org/10.1002/2014GL060906
https://doi.org/10.1117/12.55770
https://doi.org/10.1029/2018WR022663
http://resolver.caltech.edu/CaltechETD:etd-07092007-074127
http://resolver.caltech.edu/CaltechETD:etd-07092007-074127


 

 

58 

Fischer, H., Kloep, F., Wilzcek, S. and Pusch, M. T. (2005). A River's Liver – Microbial 

Processes within the Hyporheic Zone of a Large Lowland River. Biogeochemistry, 76: 349. 

https://doi.org/10.1007/s10533-005-6896-y 

Fox, C. G., and Hayes, D. E. (1985). Quantitative methods for analyzing the roughness of the 

seafloor. Rev. Geophys., 23, 1-48. https://doi.org/10.1029/RG023i001p00001. 

Grant, S. B., Gomez-Velez, J. D., and Ghisalberti, M. (2018). Modeling the effects of turbulence 

on hyporheic exchange and local-to-global nutrient processing in streams. Water Resources 

Research, 54, 5883–5889. https://doi.org/10.1029/2018WR023078 

Harvey, J. W., Drummond, J. D., Martin, R. L., MacPhillips, L. E., Packman, A. I., Jerolmack, 

D. J., et al. (2012). Hydrogeomorphology of the hyporheic zone: Stream solute and fine 

particle interactions with a dynamic streambed. J. Geophys. Res.,117, G00N11, 

https://doi.org/10.1029/2012JG002043. 

Huettel, M., Berg, P. and Kostka, J. E. (2014). Benthic Exchange and Biogeochemical Cycling in 

Permeable Sediments. Annu. Rev. Mar. Sci., 6, 23−51. 

Janssen, F., Cardenas, M. B., Sawyer, A. H., Dammrich, T., Krietsch, J., and de Beer, D. (2012). 

A comparative experimental and multiphysics computational fluid dynamics study of coupled 

surface–subsurface flow in bed forms. Water Resour. Res., 48, W08514, 

https://doi.org/10.1029/2012WR011982. 

Kitanidis, P. K. (1994). The concept of the Dilution Index. Water Resour. Res., 30(7), 2011–

2026. https://doi.org/10.1029/94WR00762. 

Komarova, N., and Newell, A. (2000). Nonlinear dynamics of sand banks and sand waves. 

Journal of Fluid Mechanics 415, 285–321. 

Lefebvre, A., Ernstsen, V. B., and Winter, C. (2011). Bedform characterization through 2D 

spectral analysis. J. of Coast. Res., SI 64 (Proceedings of the 11 th International Coastal 

Symposium), 781-785. Szczecin, Poland, ISSN 0749-0208. 

Lefebvre, A., Paarlberge, A. J., and Winter, C. (2016). Characterising natural bedform 

morphology and its influence on flow. Geo-Mar. Lett., 36, 379–393. 

https://doi.org/10.1007/s00367-016-0455-5 

Logg, A., Mardal, K. A., and Wells, G.N (eds.) (2012). Automated Solution of Differential 

Equations by the Finite Element Method: The FEniCS Book. Springer: Berlin 

Malinverno, A., and Gilbert, L. E. (1989). A stochastic model for the creation of abyssal hill 

topography at a slow spreading center. J. Geophys. Res., 94(B2), 1665–1675. 

https://doi.org/10.1029/JB094iB02p01665. 

Marion, A., Bellinello, M., Guymer, I., Packman, A. I. (2002). Effect of bed form geometry on 

the penetration of nonreactive solutes into a streambed. Water Resour. Res, 38(10), 1209, 

https://doi.org/doi:10.1029/2001WR000264. 

https://doi.org/10.1029/RG023i001p00001
https://doi.org/10.1029/2012JG002043


 

 

59 

Martin, R. L., and Jerolmack, D. J. (2013). Origin of hysteresis in bed form response to unsteady 

flows. Water Resour. Res.,49, 1314–1333. https://doi.org/10.1002/wrcr.20093. 

Moltyaner, G. L., and Killey, R. W. D. (1988). Twin Lake Tracer Tests: Transverse dispersion. 

Water Resour. Res., 24(10), 1628–1637. https://doi.org/10.1029/WR024i010p01628. 

Morelissen, R., Hulscher, S. J. M. H., Knaapen, M. A. F., Németh, A. and Bijker, R. (2003). 

Mathematical modeling of sand wave migration and the interaction with pipelines. Coastal 

Engineering 48, 197–209. 

Okino, M. and Higashi, Y. (1986) Measurement of seabed topography by multibeam sonar using 

CFFT. 11(4), 474-479. doi: 10.1109/JOE.1986.1145209 

Reesink, A. J. H., Parsons, D. R., Ashworth, P. J., Best, J. L., Hardy, R. J., Murphy, B. J., et al. 

(2018). The adaptation of dunes to changes in river flow, Earth-Science Reviews, 185, 1065-

1087. ISSN 0012-8252, https://doi.org/10.1016/j.earscirev.2018.09.002 

Roche, K. R., Li, A., Bolster, D., Wagner, G. J., and Packman, A. I. (2019). Effects of turbulent 

hyporheic mixing on reach‐scale transport. Water Resources Research, 55, 3780-3795. 

https://doi.org/10.1029/2018WR023421 

Sawyer, A. H., Cardenas, M. Bayani, and Buttles, J. (2011). Hyporheic exchange due to channel-

spanning logs. Water Resour. Res., 47, W08502, https://doi.org/10.1029/2011WR010484 

Simons, D. B., and Richardson, E. V. (1966). Resistance to flow in alluvial channels. 

Professional Paper 422-J, U.S. Geological Survey, Washington D.C.  

Southard, J. B. and Boguchwal, L. A. (1990). Bed configurations in steady unidirectional water 

flows. Part 2. Synthesis of flume data. Journal of Sedimentary Petrology 60, 649–657. 

Stonedahl, S. H., Harvey, J. W., and Packman, A. I. (2013). Interactions between hyporheic flow 

produced by stream meanders, bars, and dunes. Water Resour. Res., 49, 5450–5461. 

https://doi.org/10.1002/wrcr.20400. 

Stonedahl, S. H., Harvey, J. W., Wörman, A., Salehin, M., and Packman, A. I. (2010). A 

multiscale model for integrating hyporheic exchange from ripples to meanders. Water Resour. 

Res., 46, W12539, https://doi.org/10.1029/2009WR008865. 

Thilbodeaux, L. J. and Boyle, J. D (1987). Bedform-generated convective transport in bottom 

sediment, Nature, 325, 341-343. https://doi.org/10.1038/325341a0 

Trauth, N., Schmidt, C., Maier, U., Vieweg, M., and Fleckenstein, J. H. (2013). Coupled 3-D 

stream flow and hyporheic flow model under varying stream and ambient groundwater flow 

conditions in a pool-riffle system. Water Resour. Res., 49, 5834–5850.  

https://doi.org/10.1002/wrcr.20442. 

https://doi.org/10.1029/2018WR023421


 

 

60 

Tonina, D. and Buffington, J. M. (2009) Hyporheic exchange in mountain rivers I: Mechanics 

and Environmental Effects. Geography Compass, 3(3):1063–1086. 

https://doi.org/10.1111/j.1749-8198.2009.00226.x. 

Turcotte, D. (1997). Fractals and Chaos in Geology and Geophysics, Cambridge University 

Press, The Edinburgh Building, Cambridge CB2 8RU, UK 

Uffink, G. J. M. (1990). Analysis of dispersion by the random walk method, (Doctoral 

dissertation). Retrieved from Institutional Repository. (http://resolver.tudelft.nl/uuid:cef0af43-

fda7-4ce4-907a-87027ccb67be). Delft, Netherlands: Delft University of Technology. 

Versteeg, H. K. and Malalasekera, W. (2007). An Introduction to Computational Fluid 

Dynamics: The Finite Volume Method. John Wiley and Sons Inc., New York. 

Wörman , A., Packman, A. I., Marklund, L., Harvey, J. W., and Stonedahl, S. H. (2007). Fractal 

topography and subsurface water flows from fluvial bedforms to the continental shield. 

Geophys. Res. Lett., 34, L07402, https://doi.org/10.1029/2007GL029426. 

Zarnetske, J. P., Haggerty, R., Wondzell, S. M. and Baker, M. A. (2011). Dynamics of nitrate 

production and removal as a function of residence time in the hyporheic zone. J. Geophys. 

Res.,116, G01025, https://doi.org/10.1029/2010JG001356 

 

  

http://resolver.tudelft.nl/uuid:cef0af43-fda7-4ce4-907a-87027ccb67be
http://resolver.tudelft.nl/uuid:cef0af43-fda7-4ce4-907a-87027ccb67be


 

 

61 

 HYPORHEIC EXCHANGE THROUGH DUNES IN HIGH FROUDE 

NUMBER CHANNEL FLOWS WITH A FREE WATER SURFACE  

Hyporheic exchange in streams and rivers affects water quality and biogeochemical cycles. 

Hyporheic exchange is driven by head gradients arising from changes in water depth or velocity. 

Since the Froude number expresses the ratio of inertial forces to gravitational forces, it is a concise 

description of the main drivers of hyporheic exchange. Through simulations, this research explores 

how the hyporheic exchange between the overlying flow and a dune changes with the Froude 

number. We hypothesize that accounting for two-phase flow at the air-water interface will result 

in relationships between Froude number and hyporheic exchange that have so far been missed by 

previous studies which ignored the free water surface. We conducted coupled numerical open 

channel and hyporheic flow simulations which compare cases with a free water surface (two-phase 

air and water flow) with corresponding rigid-lid top boundaries for the channel (Figure 5.1). Our 

results show that hyporheic flux increases linearly with average Froude number in the fixed-

surface case but nonlinearly when the water surface is free. This means that consideration for two-

phase flow might be critical under certain Froude number conditions. Otherwise, model results are 

inaccurate and not representative. 

 

Figure 5.1 A sequentially coupled surface-subsurface model: Both the channel (surface) flow and 

groundwater (subsurface) flow were solved using OpenFOAM. The pressure values from the 

channel flow simulations were imposed at the upper boundary of groundwater which is the 

sediment-water interface. We compare two different simulations, one with fixed water surface 

and the other with free water surface, in terms of the channel flow field, total head at the 

sediment-water interface and hyporheic flux under various flow conditions. We hypothesize (1) 

the hydrostatic pressure would increase at the dune trough and decrease at the dune peak 

generating larger head gradient when the water is free to move and (2) the frictional force 

between air-water would change the velocity field for the flow with free-surface flow. 
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5.1 Generation of synthetic riverbed morphology 

The morphodynamic model developed by Jerolmack and Mohrig (2005) was used to 

generate fluvial dunes. The surface-evolution equation including stochastic noise term has the form 

of: 

 𝜕𝜂
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(5.1) 

where 𝜂 is bed elevation, ⟨ℎ⟩ is sediment flux with dimensions L2/T, 𝜙 is porosity, n is an 

exponent for sediment transport which generally has a value of 1.5, ⟨ℎ⟩ is spatially averaged 

depth of flow, A and B are shape parameters, D is lateral diffusion coefficient and 𝜁(𝑥, 𝑦, 𝑡) is 

Gaussian-distributed low-amplitude white noise. The parameters used to generate the 

morphology are the following: Δ𝑥 = 0.1, Δ𝑡 = 0.002, 𝐴 = 4.3, 𝐵 = 4.3, 𝐷 = 0.025, 𝜁 = 0.1, 𝑛 =

1.5, 𝜙 = 0.4. The same model parameters values from Jerolmack and Mohrig (2005) were used. 

The morphology is then rescaled so that the dune spacing (length, L) is 1.4 m and the dune 

height (H) is 0.1 m. The dune spacing and the height were estimated by a bedform stability 

diagrams from Southard and Boguchwal (1990). The mean flow velocity and the mean flow 

depth used to determine the dune spacing are 0.6 m/s and 0.3 m, respectively.  

 

Figure 5.2 Riverbed morphology generated from Jerolmack and Mohrig (2005) with the 

following parameters: Δ𝑥 = 0.1, Δ𝑡 = 0.002, 𝐴 = 4.3, 𝐵 = 4.3, 𝐷 = 0.025, 𝜁 = 0.1, 𝑛 =
1.5, 𝑝 = 0.4. The length and height of dune are rescaled to 1.4 m and 0.1 m, respectively. (a) The 

plan view (x-y) of the riverbed profile (b) The cross-sectional view (x-z) of the riverbed profile. 
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5.2 Simulation conditions 

The surface water flow is modeled by solving the Navier-Stokes equations with a k − ϵ 

turbulence closure model. An air-water mixture model, the Volume of Fluid (Hirt and Nichols, 

1981) method, is used to simulate open-channel flows. The simulation platform used in this 

research is the open source CFD package OpenFOAM (https://openfoam.org/). The interFoam 

solver within OpenFOAM was used to simulate the free surface flow in the surface domain. A new 

solver was written using the OpenFOAM platform to solve the porous media flow equation. The 

simulations were conducted in a two-dimensional domain, with cardinal directions x-dir 

(streamwise direction) and z-dir (gravitational force direction). For the surface flow, we compared 

two different cases: one with a fixed-surface and the other with a free-surface in order to see how 

they produce different head distributions and hyporheic flux. 

Open-channel flows are naturally driven by the x-dir component of gravitational force, 𝜌𝐠𝑥 

as in Eq. (5.2). However, since the simulation domain in this work is periodic in the x-dir, special 

treatment is used to make the pressure field compatible with the periodicity requirement. Indeed, 

in all simulations, a desired mean flow velocity, 𝐔̅, (equivalently desired discharge) is enforced 

through an adjustable body force in the momentum equation. At every time step, the gravity term 

in the streamwise direction (adjustable body force) in the momentum equations of surface and 

subsurface flow, Eq. (3.15) and (3.26), is calculated as follows: 

 
𝜌𝐠𝑥 = 𝜔

(|𝐔̅| − |𝑈𝑎𝑣𝑔|)

𝑎𝑃
 (5.2) 

where 𝜔 is a relaxation factor which is 0.2 in this study,  |𝑈𝑎𝑣𝑔| is the magnitude of the volume-

averaged streamwise velocity, and 𝑎𝑃  is the diagonal elements of the linear system of equation 

for velocity. In this study, the mean flow velocity, 𝐔̅, varies from 0.1 to 1.5 m/s with a 0.2 m/s 

interval.  

The length (x-dir) and height (z-dir) of the bedform are 1.4 m and 0.06 m while the average 

channel water depth and the depth of the groundwater domain (z-dir) are set to 0.3 m and 1 m, 

respectively. We tested three different meshes satisfying y+ = 5, 10, 30 near the bed and the one 

with y+ = 10 is chosen for accuracy and efficiency. A cyclic (periodic) boundary condition is 

applied to the inlet and outlet for both surface and subsurface flow models. A no-slip boundary is 

used at the bottom boundary of the surface flow (e.g., sediment-water interface) and subsurface 

https://openfoam.org/
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flow domains. The simulated pressure values at the bottom of the surface water flow domain are 

imposed as the upper boundary condition (Dirichlet boundary) of the subsurface flow model. 

The dimensionless Froude number expresses the ratio of inertial forces to gravitational 

forces, and is thus a concise description of the main drivers of hyporheic exchange. The Froude 

number is defined as: 

 
𝐹𝑟 =

U̅

√𝑔ℎ𝑚

 (5.3) 

where U̅ and ℎ𝑚 are the averaged flow velocity and hydraulic mean depth, and 𝑔 is gravitational 

acceleration. Since we assume two-dimensional flow and the channel is considered as a wide-

rectangular shape, ℎ𝑚 is approximated as water depth (h). In Figure 5.3, we denote 𝐹𝑟𝑎𝑣𝑔 as 

U̅/√𝑔ℎ𝑎𝑣𝑔, where ℎ𝑎𝑣𝑔 = 0.3 m.  

5.3 Model validation 

We validated our model with the measured velocity and surface water elevation data 

obtained by van Mierlo and de Ruiter (1988). They created an artificial dune and measured flow 

properties such as time-averaged water velocity eddy viscosity. We used one of the experiment 

results named T6 to validate how our numerical model. The discharge of this experiment is 0.257 

m3/s. Figure 5.3 shows the riverbed elevation along with the measured and simulated water surface 

profile: the simulated profile shows a good agreement with the measured profile.  

 

 

Figure 5.3 The riverbed elevation (Yellow line with asterisks) along with the measured (magenta 

circle) and simulated water surface profile (Blue solid line): the simulated profile shows a good 

agreement with the measured profile. 
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Figure 5.4 depicts the measured and simulated flow velocity profiles where z* is the 

elevation normalized by the water depth at location 1 and U* is the velocity normalized by the 

depth-averaged flow velocity. The blue line represents the water surface elevation. The number 

for each subfigure denotes the reference location which corresponds to the number in Figure 5.2. 

The simulated velocity profile also showed a great agreement with the experimental data. 

 

Figure 5.4 The measured (Blue circle) and simulated flow velocity (orange solid line) profiles 

where z* is the elevation normalized by the water depth at location 1 and U* is the velocity 

normalized by the depth-averaged flow velocity. The blue line represents the water surface 

elevation. The simulated flow velocity shows a good agreement with the experiment data. 

5.4 Results  

5.4.1 Water surface profiles and surface flow fields  

Figure 5.5 shows the results for a range of Froude numbers. Depicted are the channel velocity 

fields with the free-surface profile for the surface flow model (upper domain) and the dynamic 

pressure fields and streamlines for the subsurface flow model (lower domain). By definition, the 

surface water elevation for the fixed case was held constant and flat. On the other hand, the free-

surface elevation for the cases where the surface moved required additional analysis. The surface 

was mapped by extracting the iso-surface of the time-averaged F = 0.9 from the simulation results 

(see Eq. (3.8)).  

At small Froude numbers (e.g., 𝐹𝑟𝑎𝑣𝑔< 0.5, Figure 5.5a-d), the water surface profile is almost 

flat, except a small undulation in Figure 5.5d. Starting from Figure 5.5e with 𝐹𝑟𝑎𝑣𝑔 = 0.52, the 
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water surface profile starts to change with respect to the bedform shape. For larger Froude numbers 

(e.g., 𝐹𝑟𝑎𝑣𝑔 > 0.5, Figure 5.5e-h), we observe a boil on the water surface downstream of the crest. 

In addition, the water profile undulates more as 𝐹𝑟𝑎𝑣𝑔 increases.  

Flow separation is observed except for cases with the highest Froude number, 𝐹𝑟𝑎𝑣𝑔 = 0.87. 

For the cases with 𝐹𝑟𝑎𝑣𝑔 < 0.5 (Figure 5.5a ~ 5.5d), the detachment length representing the scale 

of recirculation zone gets larger as Froude number increases. For the cases with 𝐹𝑟𝑎𝑣𝑔 > 0.5  

(Figure 5.5e ~ 5.5h), the recirculation zone starts to shrink as the Froude number increases. The 

shallower depth at the dune crest and lee side because of the adjusting water surface results in 

increasing velocity near the bed. For the cases with high Froude numbers such as Figure 5.5g and 

5.5h, the separation zone is further reduced in size and the surface elevation resembled a 

dampened and shifted dune profile. 

Figure 5.6. depicts the velocity profile at the peak of the dune for cases having 𝐹𝑟𝑎𝑣𝑔 > 0.5. 

When the water surface elevation is fixed, the velocity profile at the dune peak is distributed in a 

way that the velocity is zero at the sediment bed and has a maximum value at the water-air interface. 

In the free-surface case, the location where the velocity is maximum moves closer to the bed (away 

from the surface) at high Froude number. This is because the water-mixture model considers 

frictional forces between water and air reducing the velocity at the water-air interface. The mean 

flow maps presented in Best (2005) show a similar pattern which has a maximum velocity near 

the bed rather than the water-surface elevation. 

The total head at the sediment-water interface for the fixed and free-surface case are depicted 

in Figure 5.5. The total head at the riverbed for both fixed-surface and free-surface is computed by 

summing the dynamic and hydrostatic heads. Note the summation of hydrostatic pressure head 

and elevation head is constant in the fixed-surface cases. For both fixed-surface and free-surface 

case, the head drop at the peak becomes larger as Fr increases. This is because the magnitude of 

dynamic pressure driven by a bedform gets larger as the flow velocity increases. This can be partly 

explained by the Bernoulli equation: for two points lying on a streamline near the bed, we can 

write 

 
(
𝑝

𝛾
+ 𝑧 +

𝑣2

2𝑔
)

1

= (
𝑝

𝛾
+ 𝑧 +

𝑣2

2𝑔
)

2

 (5.4) 

where p is pressure, 𝛾 is the specific weight of water, z is elevation, and v is velocity. 
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6
7
 

 

Figure 5.5 The channel velocity field with free-surface (surface flow, upper domain) and dynamic pressure field (subsurface flow, 

lower domain) are depicted for various flow conditions: Fravg = (a) 0.06 (b) 0.17 (c) 0.29 (d) 0.41 (e) 0.52 (f) 0.64 (g) 0.76 (h) 0.87. 

White lines represent the flowpath in both surface and subsurface domain. In the surface domain, the total head for the fixed-surface 

case (Red) and for the free-surface case (Purple) are drawn along with bedform elevation (solid black line). The dotted black line 

indicates the critical depth and the asterisks (∗) local flow regime changes (e.g. sub→sup, sup→sub) wherever this line intercepts the 

water level. We observe an increase in flow velocity near the bed inducing a large head drop at the peak when the water surfa ce is free 

to move.
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6
8
 

 

 

Figure 5.6  The vertical velocity profile of channel flow at the peak of the dune for fixed-surface (blue dotted line) and free-surface 

case (orange solide line) for various flow conditions: Fravg = (a) 0.52 (b) 0.64 (c) 0.76 (d) 0.87. The upper x-axis represents the 

magnitude of horizontal velocity (green) and the lower x-axis is x-dir distance (purple). When the water surface elevation is fixed, the 

velocity profile at the dune peak is distributed in a way that the velocity is zero at the sediment bed and has maximum value at the 

water-air interface. In the free-surface case, the location where the velocity is maximum moves closer to the bed (away from the 

surface) at high Froude number.
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The total head (pressure head + elevation head) difference between two points is then   

 
∇ℎ =

𝑝2 − 𝑝1

𝛾
+ 𝑧2 − 𝑧1 =

(𝑣1
2 − 𝑣2

2)

2𝑔
 (5.5) 

The head drop at the dune crest is always larger in free-surface case. For fixed-surface 

case, since the log-law profile is applicable throughout the surface domain, the difference in 

𝑣2 between two points near the bed (e.g. 𝑣1
2 − 𝑣2

2 in Eq. (5.5)) is proportional to the squared 

mean velocity, U̅2. However, this scaling relationship between ∇ℎ and U̅2 is no longer valid in 

free-surface case as 𝐹𝑟𝑎𝑣𝑔 increases. This is because the velocity profile at the dune crest does 

not follow the conventional log-law profile when 𝐹𝑟𝑎𝑣𝑔 is large. As shown in Figure 5.6, the 

velocity near the bed in free-surface case rapidly increases compared to that in fixed-surface 

case. We found that friction between air and water at the interface is one of the reasons causing  

this nonlinear increase in near-bed velocity. 

5.4.2 Hyporheic flux 

The relationship between 𝐹𝑟𝑎𝑣𝑔 and total interfacial flux normalized by mean velocity is 

shown in Figure 5.7. The blue dots and dotted line represent the hyporheic flux and 

corresponding fitted line for the fixed-surface cases and the red symbols are for the free-surface 

cases. The normalized flux increases almost linearly as 𝐹𝑟𝑎𝑣𝑔 increases in the fixed-surface 

case. A regression analysis shows that y = 2.69×10-5x (R-squared: 0.9990, RMSE: 2.32×10-7) 

with x and y being 𝐹𝑟𝑎𝑣𝑔 and averaged flux, respectively. In contrast, the normalized flux in 

the free-surface case increases nonlinearly as 𝐹𝑟𝑎𝑣𝑔 increases. Since there are two different 

patterns in free-surface case, the former part with small 𝐹𝑟𝑎𝑣𝑔 and the latter part with large 

𝐹𝑟𝑎𝑣𝑔, we divided them into two groups. For the former 5 cases, the power-law fitting curve is 

y = 3.77×10-5x1.17 (R-squared: 0.9482, RMSE: 1.67×10-6). Dots in the latter part with large 

𝐹𝑟𝑎𝑣𝑔 do not follow the regression line fitted for the former 5 cases, yet increased significantly.  



 

70 

 

Figure 5.7 Relationship between the average Froude number (Fravg) and the normalized 

hyporheic flux (qint/𝑈). The hyporheic flux increases linearly with Fravg in fixed surface case 

(blue circular dots, a linear regression line (skyblue dotted line) = 2.69×10-5x, R2 = 0.9993) . 

In free-surface case, the power-law fitting curve is y = 3.77×10-5x1.17 (R-squared: 0.9482, 

RMSE: 1.67×10-6) for the former 5 cases  

 

Sawyer et al. (2011) proposed the relationship between Froude number and mean 

hyporheic flux (𝑞∗), 𝑞∗ ∝ 𝐹𝑟2. In this study, we also observed the relationship between the 

normalized hyporheic flux and Froude number, 𝑞𝑖𝑛𝑡/U̅ ∝ 𝐹𝑟, for the fixed-surface case. These 

two relationships are equivalent since 𝐹𝑟𝑎𝑣𝑔 ∝ U̅ . As mentioned in 3.2, since the log-law 

profile is applicable throughout the surface domain for fixed-surface case, the total head 

gradient is proportional to the squared mean flow velocity, ∇ℎ ∝ U̅2, and consequently, 𝑞∗ ∝

U̅2. In free-surface case, this correlation between 𝑞∗ and U̅2 is no longer valid since the velocity 

profile at the dune peak does not follow the conventional log-law profile when 𝐹𝑟𝑎𝑣𝑔 is large. 

Figure 5.6 shows the velocity near the bed in free-surface case rapidly increases compared to 

that in fixed-surface case. One of the reasons for this nonlinear increase in near-bed velocity is 

that the air-water mixture model considers the interaction between air and water, such as 

frictional forces. 

5.5 Discussion 

We observed the flow field was very different when the water was free to move for 

𝐹𝑟𝑎𝑣𝑔 > 0.5. Since the air-water mixture model takes into account the frictional force between 

air and water, the velocity at the air-water interface is reduced, resulting in a disproportionate 
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increase in flow velocity at the dune peak compared to the fixed surface. This mechanism 

induces a decrease in total head at the peak, bringing an increased hyporheic flux. The (static) 

head gradients introduced by the change in water levels was not considerable, but instead the 

change in velocities drove the hyporheic flux increase. In other words, using the air-water 

mixture model does not just change the SWE, but it changes the entire channel flow field by 

considering the frictional effects between air and water and their cascading effects at depth. 

For two-dimensional stream flow and morphology as in this research or in Sawyer et al. (2011), 

the relationship between hyporheic flux and channel Froude number is highly correlated. In 

contrast, for three-dimensional case, it is difficult to derive a meaningful relationship between 

hyporheic flux and channel Froude number (Trauth et al., 2013). Our future work is to study 

the mechanism of three-dimensional channel flow over complex geometry to analyze how the 

flow interacts with morphology. 

By examining the relationship between the Froude number and hyporheic exchange, and 

by comparing the fixed-surface cases with the free-surface cases, we are able to provide a 

simple criterion for when a fixed surface model can be used. Especially, when it comes to large-

scale hyporheic exchange simulation as in Zhou (2018), the computational effort can be 

reduced depending on the Froude number of channel flow. When the average Froude number 

is smaller than 0.5, the hyporheic flux was not much different, and the extra effort to run a VoF 

simulation is not needed. However, when the average Froude number is larger than 0.5, the 

hyporheic flux increases considerably and nonlinearly. In that case, the air-water mixture 

model should be used in order to take the interaction between air and water into account and 

calculate hyporheic exchange. For example, at the highest Fr number we simulated, the 

normalized flux was more than three times higher when using the free surface model.  

We coupled the surface and subsurface model by imposing the head values obtained from 

the surface water flow simulation to the sediment-water interface. We assumed the velocity is 

zero at the sediment-water interface when simulating the channel flow while water actually 

seeps in and out of the subsurface. The assumption is reasonable because the maximum 

subsurface flow velocity with highest mean velocity was 3.9e-4 m/s, which is trivial compared 

to the average stream flow velocity, 1.5 m/s. Nevertheless, the development of fully-coupled 

surface-subsurface model is needed since up and downwelling fluxes play a key role for the 

transport of pollutants at the surface/groundwater interfaces (Layton et al., 2002; Cesmelioglu 

et al., 2020). Analytical methods to couple Stokes flow (homogeneous fluid flow, e.g. channel 

flow) with Darcy flow (porous media flow) have been developed (Ochoa-Tapia and Whitaker, 
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1995; Vafai and Kim, 1990; Alazmi and Vafai, 2001; Discacciati et al., 2002; Gatica and 

Sequeira, 2017) for almost a half century since Beavers and Joseph (1967), but the channel 

flow condition is limited to laminar. It remains challenging to couple turbulent flows across 

the porous boundary because the no-slip boundary condition is no longer applicable at the 

streambed but around individual grains, rendering simulations prohibitively expensive for most 

practical situations.  

5.6 Summary and conclusions 

We conducted a series of numerical simulations to explore how the Froude number 

affects the free-surface profile, total head over sediment bed and hyporheic flux. For larger 

Froude numbers (e.g. 𝐹𝑟𝑎𝑣𝑔 > 0.5), a boil on the water after the peak is observed. The water 

profile undulates more as 𝐹𝑟𝑎𝑣𝑔 increases. The difference between the fixed-surface and free-

surface case becomes significant as Froude number increases. For larger 𝐹𝑟𝑎𝑣𝑔, the head at the 

peak of the dune for free-surface case is smaller than that of fixed-surface case inducing larger 

head gradient. This is mainly because they have different velocity profile at the dune peak: in 

the fixed-surface case, the vertical velocity profile from the bottom to the air-water interface 

follows the law of the wall so that the velocity at the air-water interface has the maximum value. 

On the contrary, in the free-surface case, the velocity at the interface no longer has the 

maximum value: the location having the maximum velocity moves closer to the sediment bed. 

This results in increasing velocity near the bed and larger head gradients, accordingly.  

Finally, we found that the normalized hyporheic flux increases linearly as 𝐹𝑟𝑎𝑣𝑔 

increases in the fixed-surface case which is also suggested by Sawyer et al. (2011). This can 

be explained by applying Bernoulli equation for a streamline near the riverbed for any two 

points on the streamline. The total head difference between two points is then ∇ℎ ∝ U̅2, and 

consequently, 𝑞∗ ∝ U̅2. In the free surface case, ∇ℎ and 𝑞∗ ∝ U̅3 and in near critical flows, the 

normalized flux is several times higher than predicted by the classic fixed surface simulations. 

These differences in hyporheic fluxes could have important consequences in evaluating the 

fluxes of major elements at the surface/groundwater interfaces.  
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 BOULDER-DRIVEN HYPORHEIC EXCHANGE  

The hyporheos is a subsurface space near riverbeds inundated by stream and groundwater. 

These ecotones are important drivers of ecosystem functions and services, influencing water 

quality and biogeochemical cycles. Stream restoration projects often use large boulders to 

reshape waterways or provide fish habitat. We investigate how boulder configuration (spacing 

and embeddedness) affects the near-bed flow. When boulders are mostly embedded, they do 

not affect the surface flow hydrodynamics enough to have a strong impact on hyporheic 

processes, regardless of their spacing. As the stones protrude more, recirculation eddies appear 

downstream but are smaller and less coherent where boulders are closer together. The 

interfacial flux (hyporheic exchange) increases as embeddedness decreases and spacing 

increases. As boulders are more embedded, the subsurface water moves more laterally and 

hyporheic flowpaths (and the associated travel times) are shortened. We also observe nonlinear 

dynamics between spacing and embeddedness; when boulders are close enough, there is a 

quiescent zone around them and little hyporheic exchange regardless of embeddedness. Our 

results suggest that increasing spacing and decreasing embeddedness could result in improved 

hyporheic flux and longer residence times, suggesting that stream restoration projects could 

improve fish habitat and water quality synergistically.  

6.1 Boulder array configuration and Hydraulic conditions 

We generated an artificial fluvial channel with an array of four boulders placed upon the 

sediment bed in a staggered manner. Figure 6.1. shows the boulder array setting along with the 

surface and subsurface flow domains. The shape of fluvial boulder is modelled as an ellipsoid 

(Krumbein, 1941) with a typical ratio of axial diameters of fluvial boulders, Dx : Dy : Dz = 10 

cm : 8 cm : 6 cm, followed by (Graham and Midgley, 2000). The distance between the center 

of two adjacent boulders is dx (x-axis) and dy (y-axis), respectively. We define the parameter 

boulder spacing as S = dx/Dx = dy/Dy. The boulder spacing is related to the boulder concentration 

and it varies depending on the fluvial channel type. Another key parameter we are interested 

in is the boulder embeddedness. Davis et al. (2001) defined embeddedness as “qualitative 

estimate of the percent of substratum particles covered by fine materials.”. We adopted BSK-

orig computational method to quantify embeddedness which is 100∙De/Dz where Dz is the total 

height of boulder and De is the embedded height, respectively. We varied the spacing (S) and 
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embeddedness (E) of boulders: for the spacing, S = 2, 3, and 7 and for the embeddedness, E = 

5, 20, 35, 50, 65, 80 and 95 %. The average velocity is assumed to be steady, 𝐔̅ = 0.1 m/s. We 

set the water surface elevation to be constant throughout the surface domain, h = 0.3 m, and 

the groundwater depth is limited to hg = 1 m.  

 

 

Figure 6.1 A conceptual diagram of a coupled surface-subsurface system with a boulder array 

with S = 5, E = 35 %. h (surface flow water depth) = 0.3 m, hg (Groundwater depth) = 1 m. 

(a) A geometry of a roughness element modelled by an ellipsoid having a ratio of axial 

diameters, Dx : Dy : Dz = 10 cm : 8 cm : 6 cm. (b) An example of computational domain for 

As S increases, the distance between two adjecent boulders increases. As E increases, the 

boulder is more embedded into the sediment bed.  

6.2 Experimental setup and boundary conditions 

We used OpenFOAM 5.0 to solve a coupled surface-subsurface flow field and solute 

transport across the subsurface domain. Since we used four different settings for spacing and 

seven for embeddedness, 4x7=28 simulations were conducted in total. The smallest periodic 

domain found covers from the center of one boulder to the center of the next boulder in both 

streamwise (x-dir) and spanwise (y-dir) direction. The size of the domain is S∙dx (x-dir) and 

S∙dy (y-dir) where S is the boulder spacing. The average channel water depth and the depth of 

groundwater (z-dir) set to 0.3 m and 1 m while the flow velocity is set to 0.1 m/s. The highest 

Reynolds number and Froude number we can have under such condition is when the embedded 

is the smallest, which results in Re = 17,142 and Fr = 0.046, respectively. With such low Froude 

number, the effect of water depth on the bed pressure variation or hyporheic exchange 
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processes can be assumed to be negligible. In addition, we assumed no sediment transport 

under such hydraulic conditions. 

No-slip boundary is used at the bottom of the surface/subsurface domain and at the 

boulder boundaries (e.g. boulder-water interface, boulder-sediment interface). The rough wall 

function is applied at the channel bed. We imposed a periodic boundary condition for 

inlet/outlet (streamwise direction) and east/west walls (spanwise direction) in both surface and 

subsurface domain. The pressure fields at the bottom of surface water flow are prescribed to 

the upper boundary of subsurface flow. The mesh is generated in such a way that y+ = 4 near 

the bed and boulder. 

Natural river flows are driven by the x-dir component of gravitational force, 𝜌𝐠𝑥 . 

However, since the simulation domain in this work is periodic in the x-dir, special treatment is 

used to make the pressure field compatible with the periodicity requirement. Indeed, in all 

simulations, a desired mean flow velocity, 𝐔̅, (equivalently desired discharge) is enforced 

through an adjustable body force in the momentum equation. At every time step, the gravity 

term in the streamwise direction (adjustable body force) in the momentum equations of surface 

and subsurface flow, Eq. (3.15) and (3.26), is calculated as follows: 

 
𝜌𝐠𝑥 = 𝜔

(|𝐔̅| − |𝑈𝑎𝑣𝑔|)

𝑎𝑃
 (6.1) 

where 𝜔 is relaxation factor which is 0.2 in this research,  |𝑈𝑎𝑣𝑔| is the  magnitude of volume 

averaged streamwise velocity, and 𝑎𝑃  is the diagonal elements of the linear system equation 

for velocity. In this study, the mean flow velocity, 𝐔̅, is set to 0.1 m/s. 

The boulder configuration such as spacing and embeddedness determines the turbulent 

flow regime (e.g. smooth, semi-smooth, or quasi-smooth). In particular, the embeddedness of 

boulder controls the surface roughness height, which often characterizes the channel flow field. 

Thus, we introduce the Reynolds number associated with the height of the boulder, 𝑅𝑒ℎ, as  

 
𝑅𝑒ℎ =

𝑈𝑎𝑣𝑔𝐻

𝜈
 (6.2) 

where 𝑈𝑎𝑣𝑔 is the averaged velocity which is 0.1 m/s, H is the height of a boulder and 𝜈 is 

kinematic viscosity of water. Table 1. shows the corresponding Reynolds number to the 

embeddedness. 
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Table 6.1. Embeddedness and corresponding Reynolds number (𝑅𝑒ℎ). 𝑅𝑒ℎ decreases as the 

boulder more embedded.  

Embeddedness 5 % 20 % 35 % 50 % 65 % 80 % 95 % 

𝑹𝒆𝒉 3,631 3,057 2,484 1,911 1,338 764 191 

6.3 Result 

6.3.1 Effect of boulder array configuration on the flow field 

Figure 6.2. depicts three-dimensional streamlines colored based on the magnitude of the 

velocity with various spacing and embeddedness conditions. A typical cycle of flow passing 

by an emergent obstacle is characterized by a sequence of zones of (1) flow acceleration and 

detachment near the boulder’s crest, (2) flow deceleration and recirculation behind the boulder, 

and (3) flow reattachment and recovering further downstream from the boulder (Buffin-

Belanger and Roy, 1998). Depending on the spacing and embeddedness condition, however, 

some of phenomena within the sequence would become insignificant or vanish. For the cases 

with large embeddedness (small surface roughness), the recirculation zone would disappear as 

the flow is hardly detached at the boulder’s crest regardless of the distance between boulders. 

Since the flow has not been separated, we do not expect the flow reattachment but the flow 

recovers its velocity profile shortly after passing by a boulder. For the cases with small 

embeddedness (large surface roughness), the recirculation vortex is observed in both closely-

packed and loosely-packed cases, but the size of vortex was smaller and less coherent in the 

closely-packed case. This is because the flow passing by an array of small-spaced boulders is 

a quasi-smooth or skimming flow whose roughness element wake is strongly interfered by the 

next boulder, decelerating the streamwise flow velocity greatly. Due to this mechanism, the 

velocity profile is not fully recovered within the inter-boulder space, forming the enclosed 

pockets of dead fluid (Morris, 1959). The roughness element wake is rarely affected by the 

next element in the large-spacing case, which insinuates the flow is a semi-smooth turbulent or 

isolated-roughness flow.  
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Figure 6.2 Channel flow fields depicted with three-dimensional streamlines colored with the 

magnitude of the velocity with various spacing (S) and embeddedness (E) conditions: 

(a) S = 2, E = 5% (b) S = 3, E = 5% (c) S = 7, E = 5% (d) S = 2, E = 50% (e) S = 3, E = 50% 

(f) S = 7, E = 50% (g) S = 2, E = 80% (h) S = 3, E = 80% (i) S = 7, E = 80%. For the cases 

with large embeddedness, the recirculation zone would disappear as the flow is hardly 

detached at the boulder’s crest regardless of the distance between boulders. For the cases with 

small embeddedness, the recirculation vortex is observed in both closely- and loosely-packed 

cases, but the size of vortex was smaller and less coherent in the closely-packed case. 

 

Within the vicinity of boulders, the streamwise velocity either accelerates or decelerates 

depending on the relative location to the boulder element: the streamwise velocity is 

accelerated above the boulder’s crest (z/Dc > 1.0) whereas it decreases below the boulder’s 

crest (z/Dc < 1.0). Dey et al. (2011) suggested the difference in streamwise velocity between 

simulations with boulders and without boulders, Δ𝑢, is significant in the area below z/Dc = 0.9 

where the effect of boulders is noticeable. In addition, below the boulder’s crest, the streamwise 

velocity is strongly decelerated in both upstream and downstream of the boulder. The 

mechanism causing deceleration behind the boulder is different from that of upstream of the 

boulder: in the downstream of the obstacle, the streamwise velocity is reduced by the flow 

separation and recirculation while the obstacle physically blocks the water flow to pass through. 

it, transferring kinematic energy to static energy in front of the obstacle. The presence of 
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boulder even changes the flow path to move along the lateral side of the boulder rather than 

the vertical side when the boulder is less embedded as it provides shorter and smoother passage. 

6.3.2 Pressure variation across the sediment bed and interfacial flux 

The near-bed flow structures create the pressure variation at the channel bottom, thus 

controlling the interfacial flux. Figure 6.3. shows the pressure field across the bed with different 

boulder settings. For all cases, we observe the high-pressure area in front of the boulder and 

the low-pressure zone alongside the boulder. The presence of boulder accounts for such high 

pressure region, transferring the form of energy from kinetic to static. The flow deceleration 

results in raising up the pressure and this can be explained by the Bernoulli’s principle: along 

the streamline, the pressure rises as the velocity decelerates. By the same principle, an 

acceleration in velocity results in lowering the pressure which can be seen alongside the 

boulder. 

 

Figure 6.3 The pressure distribution over the sediment bed for various boulder embeddedness 

(E) with constant spacing (S), S = 7, (a) E = 5% (b) E = 20% (c) E = 35% (d) E = 50% (e) E 

= 65% (f) E = 80% (g) E = 95%. The size of both high- and low-pressure zone is larger and 

spread out across the sediment bed when the boulder embeddedness is small. The small 

embeddedness also produces more complicated low-pressure variation since an additional 

factor, a funnel vortex, contributes to the flow acceleration near the bed. 

 

Some distinctive features of pressure distribution are observed in the case with small 

boulder embeddedness, E < 0.5Dz. When E > 0.5Dz, it exhibits a typical pressure distribution 

around a cylinder, or a hemisphere: high-pressure region facing upstream and low-pressure 
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area around the perimeter of boulder boundary. In both small and large embeddedness cases, 

we observe that the maximum pressure occurs at the most front-side of the boulder, e.g. x = -

0.5Dx. For the cases with small embeddedness, the low-velocity zone beneath the center of 

boulder (x > -0.5Dx, z < 0.5Dy) is generated so that the high-pressure area can be further 

extended to the boulder-sediment interface. In other words, high-pressure zones are larger and 

more spread out across the sediment bed when the boulder embeddedness is small. The small 

embeddedness also produces more complicated low-pressure variation since an additional 

factor, a funnel vortex, contributes to the flow acceleration near the bed. The size of low-

pressure zone is also enlarged compared to the case with large embeddedness and this is due 

to the change in flow path, from vertical to lateral direction. If the embeddedness is large, the 

flow tends to pass over the boulder’s crest (vertical movement) whereas the flow goes around 

the boulder (lateral movement) if the embeddedness is small, especially when E < 0.5Dz. 

Figure 6.4. shows the effect of boulder array setting on the hyporheic exchange rate. The 

interfacial flux increases as the embeddedness decreases (Figure 6.4a) and as the spacing 

increases (Figure 6.4b) except for the case with the smallest spacing. Generally, as boulders 

are less embedded, pressure variations increase, generating larger gradients across the riverbed, 

thus driving more hyporheic flux. For the smallest spacing setting, the inverse relationship 

between the embeddedness and flux no longer holds. This implies there is nonlinear dynamics 

between the spacing and embeddedness contributing to the exchange rate between surface and 

subsurface domain. When boulders are densely packed, the flow trapped in the dead zone 

between boulders does not accelerate or decelerate as much as it does in the loosely-packed 

case. In other words, in the smallest spacing case, the effect of the dead zone becomes 

significant preventing the flow recovery as the boulder less embedded.  
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Figure 6.4 The dependence of hyporheic flux on (a) Embeddedness (E) and (b) Spacing (S). 

The interfacial flux increases as the embeddedness decreases and as the spacing increases 

except for the case with the smallest spacing. This implies there is nonlinear dynamics 

between the spacing and embeddedness contributing to the exchange rate between surface 

and subsurface domain. 

6.3.3 Solute transport and residence time distribution 

We simulated the mass transport through the subsurface domain to investigate how the 

boulder array configuration affect the residence time of solute inside the hyporheic zone. Figure 

6.5. presents the normalized solute mass inside the bed (a) with different spacing (S) while the 

embeddedness is the smallest, E = 5 % and (b) with different embeddedness (E) while the 

spacing is the smallest, S = 2. The figure shows the average residence time (RT) decreases 

from S = 2 to S = 3, but increases from S = 3 to S = 7. The residence time is directly proportional 

to the flow velocity and inversely proportional the length of flow path. A decrease in the 

average RT from S = 2 to S = 3 can be explained by an increase in the flux resulting in increase 

in velocity. The length of flow paths also increased, but it is compensated by a significant 

increase in flux. We observed a fast decrease of the mass in the bed for S = 7 before 1 day, but 

the rate of change becomes milder after then. The fast decrease is associated with the solute 

particles traveling through the region with small flow paths with fast flow velocities, so called 

“Region of local system of groundwater flow” in Toth’s flow. After then, the solute particles 

within the “region of intermediate or regional system” started leaving from the bed, resulting 

in a slow decrease in the total mass inside the bed. We see clearer pattern for the case with 

different embeddedness. The average residence time decreases as the embeddedness increases. 

Since the interfacial flux, which represents groundwater velocity, does not vary significantly 
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with respect to embeddedness (Figure 6.4b), the variation in residence time distribution is due 

to the difference in length of flow path.  

 

Figure 6.5 The normalized solute mass inside the bed (a) with different spacings (S) while the 

embeddedness is the smallest, E = 1 and (b) with different embeddednesses (E) while the 

spacing is the smallest, S = 2. The average residence time decreases as the embeddedness 

increases. As the boulder is embedded, the lateral movement of tracer becomes dominant 

making the path shorter, reducing the residence time of solute in the bed. 

 

Figure 6.6. shows tracer paths of solute released at the centerline of the sediment bottom. 

In the case with the smallest embeddedness, most of paths move along the streamwise direction. 

As the boulder embeddedness increases, the path starts to move in lateral direction (Figure 6.6b, 

6.6c) as the streamwise route is hindered by the submerged boulder. As the boulder is more 

embedded, the lateral movement of tracer becomes dominant making the path even shorter, 

reducing the residence time of solute in the bed. Thus, increases in embeddedness can 

negatively affect the hydro-ecosystem in reducing not only the space for aquatic organism but 

also the residence time of solute inside the bed.  
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Figure 6.6 Tracer paths of solute released at the centerline of the sediment bottom: for various 

boulder embeddedness (E) settings with constant spacing (S = 1): (a) E = 5% (b) E = 20% (c) 

E = 35% (d) E = 50% (e) E = 65% (f) E = 80% (g) E = 95%. As the boulder embeddedness 

increases (b, c), the path starts to move in lateral direction as the streamwise route is hindered 

by the submerged boulder. As the boulder is more embedded (e, f, g), the lateral movement of 

tracer becomes dominant making the path even shorter, reducing the residence time of solute 

in the bed. 

6.4 Discussion 

Roughness elements such as bedforms, vegetation, large woody debris and fluvial rocks 

provide flow resistance and diversify water depths and velocities across the channel. In stream 

restoration, boulders are often used to promote low-velocity pockets and eddies to provide fish 

passage and habitat (Gorman and Karr, 1978; Gregory et al., 1991; Gordon et al., 1992; Rabeni 

and Jacobson, 1993; Maddock, 1999; Allan and Castillo, 2007). Our study on the effect of 

boulder spacing and embeddedness on hyporheic exchange can further inform guidelines on 

designing engineered systems in terms of water/solute exchange and transport processes 

between the surface and subsurface region. For example, we showed that frequent boulder 

elements caused short hyporheic flow paths under each boulder whereas broader spacing 

resulted in longer hyporheic circulation. We also demonstrated that embeddedness has a 

significant impact on hyporheic exchange processes in terms of both interfacial flux and 

residence time.  

Large woody debris (LWDs) are ubiquitous large roughness elements, often used in 

restoration projects to add channel complexity and provide ecological benefits (Valett et al., 

2002; Curran and Wohl 2003; Gippel, 1995; Gurnell et al. 1995; Miller et al. 2010). Boulders 

and LWDs are similar in that they disturb the flow field, generate pressure gradients across the 

bed, and drive hyporheic exchange (Kasahara et al, 2009; Krause et al., 2014). Natural wood 
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however rarely lies directly on the channel bottom as limbs can hold it up. If water can flow 

though the woody debris, the velocity upstream can accelerate and scour through the gaps 

(Sawyer et al., 2011), whereas it decelerates upstream of the boulder and reaches a maximum 

on the sides. The wake generated by the LWD does not expand to the sediment bed surface 

since it reattaches with the flow going under the log, while the boulder wake can interact with 

the sediment bed.  

We did not explore changing hydraulic conditions (e.g. water depth, flow velocity) or the 

shape and size of the boulders in order to isolate the effects of spacing and embeddedness. 

However, hydraulic conditions can greatly alter the surface flow field and associated hyporheic 

exchange processes since (1) water surface elevation will change due to the presence of boulder 

as Fr increases (Shamloo et al, 2001; Dermisis and Papanicolaou, 2014), (2) vortex/turbulent 

structures will be more complicated as Re increases (Dargahi, 1989; Sumer and Fredsoe, 2006) 

and (3) scour will developed around the solid object (Liu, 2008; Euler and Herget, 2012; 

Schlomer et al., 2020). In addition, the particle size distribution of the substrate is an important 

factor controlling the hydro-ecosystem (Schneck et al., 2011). Cooper (1965) showed that 

extremely uniform gravels, except in coarse gravels, reduce the survival rate of salmon eggs. 

In order to provide sufficient dissolved oxygen to the eggs and other organisms, it is essential 

to understand the linkage between the substrate size distribution and the hyporheic exchange 

processes. Our results suggest that adding boulders in a reach could enhance hyporheic fluxes 

and thus benefit sensitive species. 

In this study, we assessed the effect of boulder spacing and embeddedness on hyporheic 

exchange from a physical standpoint: surface and subsurface flow fields, pressure distribution 

across the sediment/water interface and the residence time in the bed. As river restoration 

projects become more holistic, geomorphological, biogeochemical and hydro-ecological 

aspects should also be considered. For example, we show that embeddedness reduced 

hyporheic exchange, which could negatively affect oxygen sensitive fish or macroinvertebrate 

species. Embeddedness also reduces hyporheic flow paths and residence times, which in turn 

could also limit the amount of biogeochemical reactions that proceed. In this case, a potential 

benefit on water quality is lost.   

6.5 Summary and conclusions 

We investigated how boulder spacing and embeddedness affect the near-bed 

hydrodynamics and the surface-subsurface water exchange. Depending on the spacing and 
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embeddedness, the flow pattern passing over a boulder array changed significantly. For the 

cases with large embeddedness, the recirculation zone would disappear as the flow is hardly 

detached at the boulder’s crest regardless of the distance between boulders. For the cases with 

small embeddedness, the recirculation vortex is observed in both closely-packed and loosely-

packed cases, but the size of vortex was smaller and less coherent in the closely-packed case. 

For these dense clusters, the inverse relationship between embeddedness and flux no longer 

holds. There is thus nonlinear dynamics between the spacing and embeddedness contributing 

to the exchange rate between the surface and subsurface domain. As embeddedness increases, 

the subsurface flowpaths move in the lateral direction, as the streamwise route is hindered by 

the submerged boulder and the average residence time therefore decreases. As restoring 

streams and rivers has moved from aesthetics and forms to a more holistic approach that 

includes processes, we hope our study can inform designs that benefit both structural and 

functional outcomes. Hyporheic exchange is key to buffer water quality and temperatures in 

streams and rivers, while also providing localized downwelling and upwelling microhabitats.  

This study provides evidence that improving exchange while reaching other restoration goals 

is possible. 
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 PREDICTING CHANNEL BED PRESSURE USING POINT 

VELOCITY DATA WITH DATA-DRIVEN MODELS  

Numerical modeling of fluid flows primarily depends on solving the partial differential 

equation systems in a discretized form, which is known as computational fluid dynamics (CFD). 

This approach typically involves solving partial differential equations, such as the Navier-

Stokes equations of fluid flow. While conventional CFD methods give high-accuracy results, 

they are often computationally expensive. In many applications, CFD simulations are 

considered one of the most intensive and time-consuming processes. Thus, it is difficult to 

apply CFD models into real-time predictions and many-query analysis (e.g., optimization 

design of aircrafts with large parameter variations) and forward/inverse uncertainty 

quantification (UQ).  In this study, we propose a general artificial neural network (ANN) based 

data-driven model for predicting the pressure field at the channel bottom using point velocities 

at different level. We show that ANN based surrogate models can estimate the pressure field 

compared to other linear regression model. Overall, ANN produces consistent and accurate 

prediction performance under various conditions whereas other linear surrogate models 

significantly depend on input variable 

7.1 Methods 

We generated an artificial fluvial channel with an array of four boulders placed upon the 

sediment bed in a staggered manner then simulated channel flow field using computational 

fluid dynamics. The numerical simulation has been completed in Chapter 6, so we collected 

velocity and pressure values for every 0.01 m interval in both x and y directions except the 

region where the boulder is placed, resulting in 3869 in total. We chose the one with largest 

spacing and smallest embeddedness as it shows various flow characteristics such as flow 

separation at the stagnation point, wakes behind the boulder, flow deceleration and acceleration.  

We constructed three different data-driven models with multivariate linear regression 

(MLR), local multivariate linear regression (LMLR) and artificial neural network (ANN). The 

input variable is velocity in x, y, and z directions, U, and the target variable is pressure at the 

sediment bed. Multivariate Linear Regression (MLR) 
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7.1.1 Multivariate Linear Regression (MLR) 

MLR, one of the fundamental supervised learning algorithm, is an important algorithm 

in the field of machine learning. If it is assumed that the variable y is affected by m independent 

variables, 𝐱 = (𝑥1, … , 𝑥𝑑)
T, then the linear model for regression is: 

 𝑦(𝐱, 𝐰) = 𝑤0 + 𝑤1𝑥1 + ⋯ + 𝑤𝑑𝑥𝑑 + 𝜖 (7.1) 

where 𝜖 is an error and 𝑤0, … , 𝑤𝑑  are coefficients of the linear model. Given an 𝑁 

independent and identically distributed (i.i.d.) data set  {y(𝑖), 𝑥1
(𝑖)

, … , 𝑥𝑑
(𝑖)} for 𝑖 = 1, … , 𝑁, 

regression coefficients are estimated by minimizing the objective function, the sum of the 

distances of observation points from the plane: 

 

𝐽𝑀𝐿𝑅 = arg min
𝐰

∑(𝑦(𝑖) − 𝑤0 − 𝑤1𝑥1
(𝑖)

− ⋯− 𝑤𝑑𝑥𝑑
(𝑖)

)
2

𝑁

𝑖=1

= arg min
𝐰

∑(𝜖(𝑖))2 

𝑁

𝑖=1

= arg min
𝐖

‖𝑌 − 𝑋𝑊‖2 

(7.2) 

where ‖⋅‖ the indicates Euclidean norm,  

 

𝑌 = [
𝑦1

⋮
𝑦𝑁

] , 𝑋 = [
1 
⋮
1
 
𝑥1

1

⋮
𝑥1

𝑁

𝑥2
1

⋮
𝑥2

𝑁
⋯

𝑥𝑑
1

⋮
𝑥𝑑

𝑁
] , 𝑎𝑛𝑑 𝑊 = [

𝑤0

⋮
𝑤𝑑

] (7.3) 

By setting the gradient of the objective function to zero, the estimate 𝑊̂ is calculated as 

follows: 

 𝑊̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 (7.4) 

It is well known that the solution of MLR is optimal estimate when the errors 𝜖1 , … , 𝜖𝑁  are 

Gaussians. 

7.1.2 Local Multivariate Linear Regression (LMLR) 

All of the data is used to fit a single model in MLR. Instead, local data sets can be used 

to combine multiple regression models to find the relationship between input and output 

variables. Given an 𝑁  i.i.d. data set, regression coefficients of LMLR are estimated by 

minimizing the objective function given by 

 

𝐽𝐿𝑀𝐿𝑅 = arg min
𝐖

∑‖𝑌𝑖 − 𝑋𝑖𝑊𝑖‖
2

𝑀

𝑖=1

 (7.5) 

where 𝑀 is a number of local data sets, 

 

𝑌1 = [
𝑦1

⋮
𝑦𝑊𝑆

] , 𝑌2 = [
𝑦𝑊𝑆+1

⋮
𝑦2×𝑊𝑆

] ,⋯ , 𝑌𝑀 = [
𝑦𝑀×𝑊𝑆+1

⋮
𝑦𝑁

] (7.6) 
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𝑋1 = [
1 
⋮
1
 
𝑥1

1

⋮
𝑥1

𝑊𝑆
⋯

𝑥𝑑
1

⋮
𝑥𝑑

𝑊𝑆
] , 𝑋2 = [

1 
⋮
1
 
𝑥1

𝑊𝑆+1

⋮
𝑥1

2×𝑊𝑆
⋯

𝑥𝑑
𝑊𝑆+1

⋮
𝑥𝑑

2×𝑊𝑆
] , ⋯,  

𝑋m = [
1 
⋮
1
 
𝑥1

𝑀×𝑊𝑆+1

⋮
𝑥1

𝑁
⋯

𝑥𝑑
𝑀×𝑊𝑆+1

⋮
𝑥𝑑

𝑁
] 

(7.7) 

 

𝑊1 = [
𝑤0

1

⋮
𝑤𝑑

1
] , 𝑊2 = [

𝑤0
2

⋮
𝑤𝑑

2
] ,⋯ , 𝑊𝑀 = [

𝑤0
𝑀

⋮
𝑤𝑑

𝑀
] (7.8) 

and 𝑊𝑆 is the preassigned size of the local data. Reducing in 𝑊𝑆 gives more accurate 

prediction result, however, it may cause overfitting problems since it becomes linear 

interpolation scheme as 𝑊𝑆 gets closer to 1. Then, the estimates 𝑊1̂ ,⋯ , 𝑊̂𝑀 are computed as 

follows:  

 𝑊1̂ = (𝑋1
𝑇𝑋1)

−1𝑋1
𝑇𝑌1 

(7.9) ⋮ 
𝑊̂𝑀 = (𝑋𝑀

𝑇 𝑋𝑀)−1𝑋𝑀
𝑇 𝑌𝑀 

LMLR is appropriate to model complex processes for nonlinear systems based on the 

simple MLR method.  

7.1.3 Artificial Neural Networks (ANNs) 

The multi-perceptron is one of artificial neural network models that imitates the nonlinear 

relationship between input and output variables. The model aims to obtain the optimized 

weights of the network using a training algorithm designed to minimize the error between the 

output and target variables by modifying the mutually connected weights. In this study, the 

multi-perceptron with one hidden layer composed of 10 neurons is used.  

The initial weights in the hidden layer are set to have random values between -1 and 1, 

and the initial biases are all set to zero. The next step is to multiply the weight matrix by the 

input data, x, and add the bias so that 

 

𝑛𝑘
ℎ = ∑ 𝑤𝑘𝑗

ℎ 𝑥𝑗 + 𝑏𝑘
ℎ

𝐽

𝑗=1

, 𝑘 = 1 to 𝐾 (7.10) 

where J and K are the number of input variables and hidden neurons, respectively, and x, 

bh and wh are the input variable, bias, and weight in the hidden layer, respectively. The 

subscripts of the weight 𝑤𝑘𝑗
ℎ  are written in such a manner that the first subscript denotes the 

neuron in question and the second one indicates the input variable to which the weight refers. 
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The 𝑛𝑘
ℎ  calculated by Equation (5) is fed into an activation function, 𝑓ℎ , to calculate 𝑎𝑘

ℎ  . 

Hyperbolic tangent sigmoid function is used as the activation function so that 

 
𝑎𝑘

ℎ =
𝑒𝑛𝑘

ℎ
− 𝑒−𝑛𝑘

ℎ

𝑒𝑛𝑘
ℎ
+ 𝑒−𝑛𝑘

ℎ (7.11) 

In the output layer, the same procedure as that in the hidden layer is used except that only 

one neuron is used so that 

 

𝑛1
𝑜 = ∑𝑤1𝑗

𝑜 𝑎𝑗
ℎ + 𝑏1

𝑜

𝐾

𝑗=1

 (7.12) 

and the linear activation function is used to calculate 𝑎1
𝑜 so that 

 𝑈 = 𝑛1
𝑜 (7.13) 

The weights and biases are modified by the training to minimize the difference between 

the model output and target (observed) values. To train the network, the error function is 

defined as 

 𝜖 = ||𝑌 − 𝑈||
2
 (7.14) 

where 𝑌 is the target value vector to be sought. To minimize the error function, the 

Levenberg-Marquardt algorithm is used, which is the standard algorithm of nonlinear least-

squares problems. We stop the training when the epoch reaches 1000. 

7.2 Result and discussion 

We constructed three different data-driven models with multivariate linear regression, 

local linear regression and ANN. The input variable is velocity in x, y, and z directions and the 

target variable is pressure at the sediment bed. From the CFD simulation, we collected velocity 

and pressure values for every 0.01 m interval in both x and y directions except the region where 

the boulder is placed, resulting in 3869 in total. The velocity extracted at different level, z = 

0.05, 0.15, 0.3 m, are used in order to compare how much the velocity at each level contribute 

to the pressure at the bed. We test our models with different training/test ratio, 0.7/0.3 and 

0.5/0.5, to see whether the suggested data-driven model is reliable when the training data is 

insufficient. Training data are randomly sampled from the entire dataset and the rest of data are 

used as test data. All the data used in developing data-driven models is normalized within a 

range of [-1, 1] to consider the relative variance of variables.  

The correlation coefficient (r) and root mean squared error (RMSE) between model 

output values (T) and target values (Y) of the test data are used to evaluate the performance of 

the models. The correlation coefficient and RMSE are defined as 
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𝑟 =
∑

(𝑌𝑖 − 𝑌̅)(𝑈𝑖 − 𝑈)
𝑁 − 1

𝑁
𝑖

√∑
(𝑌𝑖 − 𝑌̅)
𝑁 − 1

𝑁
𝑖

√∑
(𝑈𝑖 − 𝑈)2

𝑁 − 1
𝑁
𝑖

 (7.15) 

 

𝑅𝑀𝑆𝐸 =  ∑
(𝑌𝑖 − 𝑈𝑖)

2

𝑁

𝑁

𝑖

 (7.16) 

As r value becomes closer to 1, the correlation between model prediction and true value is 

strong. As RMSE goes to 0, the discrepancy between the model output and target is small.  

Table 1 shows the performance of suggested surrogate models, MLR, LMLR, and ANN 

for the test dataset. Overall, ANN outperforms MLR and LMLR resulting in the highest r and 

lowest RMSE values. In terms of degrees of freedom (DOF), the traditional linear regression 

model, MLR, has only four DOF, (𝛽0, 𝛽1, 𝛽2, 𝛽3), while LMLR and ANN have 28 and 51, 

respectively. Furthermore, ANN is capable of capturing the underlying structure of the 

nonlinear data whereas MLR and LMLR are linear models. The prediction of MLR in Case 1 

is not successful compared to that of Case 2 because underfitting occurs when the nonlinear 

data are included in the training dataset in Case 1. From the sensitivity analysis, we also find 

out velocities near the bed directly influences the pressure at the bed more than velocities at 

higher elevation do. This result accords with physical aspects of fluid flow for the flow field is 

spatially correlated so that the closer the distance between two locations, the more they interact.   

Table 7.1. Performance of multivariate linear regression (MLR), local multivariate linear 

regression (LMLR), and artificial neural network (ANN) for test data. The cases where the 

MLR and LMLR show the best performance are colored in light orange. ANN produces 

consistent and accurate prediction performance under various conditions (light blue). 

 
Input 

Case 1: 0.7/0.3 Case 2: 0.5/0.5 

r RMSE r RMSE 

MLR 

U(z=0.05 m) 0.235 0.156 0.295 0.163 

U(z=0.15 m) 0.123 0.159 0.149 0.169 

U(z=0.3 m) 0.019 0.160 0.059 0.171 

LMLR 

U(z=0.05 m) 0.619 0.126 0.512 0.155 

U(z=0.15 m) 0.634 0.124 0.504 0.148 

U(z=0.3 m) 0.713 0.112 0.589 0.138 

ANN 

U(z=0.05 m) 0.779 0.100 0.777 0.108 

U(z=0.15 m) 0.757 0.105 0.781 0.107 

U(z=0.3 m) 0.777 0.102 0.802 0.102 

 

Overall, ANN produces consistent and accurate prediction performance under various 

conditions whereas MLR and LMLR significantly depends on input variable. Interestingly, the 

performance of LMLR rises to the peak point when it uses the farthest velocities as an input 
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and the training/test data ratio is 0.7/0.3. One thing to notice is that MLR and ANN incorporate 

with the data across the whole domain whereas LMLR uses subsets of the entire data when 

developed. Compared with MLR, the near-bed velocity explains bed pressure when it comes 

to the global or universal relationship whereas the velocity apart from the bed accounts for the 

pressure across the bed within the subdomain. In other words, the nonlinear structure is 

dominant in global scale whereas a linear trend explains the relationship between input and 

output in regional scale.  

Figure 7.1. shows the pressure obtained from CFD simulation and the difference between 

the model output and target data for Case 1 (training/test = 0.7/0.3). The pressure and error is 

normalized within the range, [-1, 1] and the boulder is depicted as a black ellipse. In Figure 

2(a), the pressure around the boulder shows the similar pattern observed in the flow around a 

cylinder: the flow is stagnated in front of the boulder resulting in high-pressure region and the 

flow accelerates as it passes the obstacle causing a decrease in pressure. In Figure 2(b1) ~ 2(d3), 

the highest error is observed near the boulder, especially right in front of the obstacle, where 

the pressure is rapidly changing due to the unexpected disturbance created by boulder. While 

LMLR and ANN are able to model the general shape of pressure distribution, MLR barely 

captures the variation of pressure as shown in Figure 2(b1) ~ 2(b3) where the error plot shows 

almost the same pattern as the actual pressure. Still, LMLR is not able to predict the extreme 

change in pressure near the boulder unlike ANN. This is because of underfitting meaning that 

LMLR cannot represent the data having nonlinear structures. 

Comparing ANN with LMLR, ANN predicted the pressure field across the bed more 

accurately than LMLR based on the point velocity data. Both ANN and LMLR are able to 

model the general trend of pressure variation, but only ANN captures the nonlinear relationship 

between the velocity and pressure near the boulder. Furthermore, the performance of LMLR 

depends on the training/test data ratio and the elevation where the velocity is extracted from 

whereas ANN gives more stable prediction result under various conditions. Lastly, since 

LMLR is a piecewise regression function, the regression formula is only applicable for the 

region where it is developed whereas ANN provides general function for the entire domain. 

 



 

 

9
5
 

 

Figure 7.1. (a) The normalized pressure obtained from CFD simulation (b1) ~ (d3) The normalized difference between the model output and 

target data for Case 1 which uses 70% of data for training and 30% of data for test. The boulder is depicted as a black ellipse. The highest 

error is observed upstream and near the boulder.  While LMLR and ANN are able to model the general shape of pressure distribution, MLR 

barely captures the variation of pressure where the error plot shows almost the same pattern as the actual pressure. Still, LMLR is not able to 

predict the extreme change in pressure near the boulder unlike ANN. This is because of underfitting meaning that LMLR cannot represent the 

data having nonlinear structures. 
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In this study, we developed and tested our surrogate models based on one single numerical 

simulation. This approach can be used when recovering missing data or when estimating pressure 

values using available velocity measurement data. Future research may incorporate with 

implementing the developed models to other numerical simulations under different conditions (e.g. 

mean flow velocity, boulder spacing, and boulder embeddedness) to test their performance. If the 

surrogate model can predict the relationship between pressure and velocity accurately under 

various conditions, then designers can utilize ANN to quickly iterate over multiple design 

alternatives to make decisions instead of conducting high-fidelity simulations during the early 

design stages. 

7.3 Summary and conclusions 

In this study, we propose a general artificial neural network (ANN) based data-driven model 

for predicting the pressure field at the channel bottom using point velocities at different level. We 

constructed three different data-driven models with multivariate linear regression, local linear 

regression and ANN. The input variable is velocity in x, y, and z directions and the target variable 

is pressure at the sediment bed.  

We show that ANN based surrogate models can estimate the pressure field compared to 

other linear regression model. Comparing ANN with LMLR, ANN predicted the pressure field 

across the bed more accurately than LMLR based on the point velocity data. Both ANN and LMLR 

are able to model the general trend of pressure variation, but only ANN captures the nonlinear 

relationship between the velocity and pressure near the boulder. Overall, ANN produces consistent 

and accurate prediction performance under various conditions whereas other linear surrogate 

models significantly depend on input variable 
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 SUMMARY AND CONCLUSIONS 

This research investigated the dynamics of bio-fluvial-geomorphic influences on hyporheic 

exchange processes in various fluvial systems. We look at the “transitional” state in terms of 

geomorphology and hydrodynamic conditions. This thesis is composed of four different topics 

which are under the transitional states in terms of either geomorphology or hydrodynamics. In 

chapter 4, we investigate the effect of surface roughness (the scaling of bedform topography) on 

hyporheic exchange. In chapter 5, we study how the Froude number affects the exchange of water 

between surface and subsurface when the water surface is fixed and when it is allowed to adjust. 

In chapter 6, we discuss how boulder spacing and embeddedness affect the near-bed 

hydrodynamics and hyporheic exchange. Finally, in chapter 7, a surrogate model relating point 

velocities to pressure at the sediment bed is developed using neural networks. We assess the 

hyporheic exchange process in terms of interfacial flux and residence time distribution of solute 

in the hyporheic zone.  

In chapter 4, we conducted a series of numerical simulations to systematically explore how 

the fractal properties of bedforms are related to hyporheic exchange. We compared the average 

interfacial flux (qint) and residence time distribution in the hyporheic zone with respect to the 

magnitude of the power spectrum (Cq) and the fractal dimension (D) of riverbeds. First, we created 

two sets of fractal riverbed topologies: one with different maximum power spectrum density  Cq 

and the other with different fractal dimension D. We then numerically simulated the turbulent flow 

field over the synthetic riverbeds and used the resultant head distribution as a boundary condition 

in simulations of hyporheic zone (groundwater) flow fields. Finally, random walk particle tracking 

simulations were used to quantify residence time distributions in the hyporheic zone. The results 

show that the average interfacial flux increases logarithmically with respect to Cq whereas it 

increases exponentially with respect to D. In addition, qint generally increased with mean-square 

roughness (𝛿2), yet the increases in flux remained more sensitive to increases in D than Cq. The 

additional roughness at larger D is more important than Cq at increasing qint. These findings 

confirm that small features tend to dominate hyporheic exchange and imply that roughness is a 

significant driver of hyporheic exchange.  

In chapter 5, we demonstrated how the Froude number affects the free-surface profile, total 

head over sediment bed and hyporheic flux. For larger Froude numbers (e.g. average Froude 
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number (𝐹𝑟𝑎𝑣𝑔) > 0.5), a boil on the water after the peak is observed. The water profile undulates 

more as 𝐹𝑟𝑎𝑣𝑔 increases. The difference between the fixed-surface and free-surface case becomes 

significant as Froude number increases. For larger 𝐹𝑟𝑎𝑣𝑔, the head at the peak of the dune for free-

surface case is smaller than that of fixed-surface case inducing larger head gradient. This is mainly 

because they have different velocity profile at the dune peak: in the fixed-surface case, the vertical 

velocity profile from the bottom to the air-water interface follows the law of the wall so that the 

velocity at the air-water interface has the maximum value. On the contrary, in the free-surface case, 

the velocity at the interface no longer has the maximum value: the location having the maximum 

velocity moves closer to the sediment bed. This results in increasing velocity near the bed and 

larger head gradients, accordingly. Our future work is to study the mechanism of three-dimensional 

channel flow over complex geometry to analyze how the flow interacts with morphology. 

In chapter 6, we investigated how boulder spacing and embeddedness affect the near-bed 

hydrodynamics and the surface-subsurface water exchange. Depending on the spacing and 

embeddedness, the flow pattern passing over a boulder array changed significantly. For the cases 

with large embeddedness, the recirculation zone would disappear as the flow is hardly detached at 

the boulder’s crest regardless of the distance between boulders. For the cases with small 

embeddedness, the recirculation vortex is observed in both closely-packed and loosely-packed 

cases, but the size of vortex was smaller and less coherent in the closely-packed case. For these 

dense clusters, the inverse relationship between embeddedness and flux no longer holds. There is 

thus nonlinear dynamics between the spacing and embeddedness contributing to the exchange rate 

between the surface and subsurface domain. As embeddedness increases, the subsurface flowpaths 

move in the lateral direction, as the streamwise route is hindered by the submerged boulder. The 

average residence time therefore decreases as the embeddedness increases.  

Lastly, in chapter 7, we propose a general artificial neural network (ANN) based data-driven 

model for predicting the pressure field at the channel bottom using point velocities at different 

level. We constructed three different data-driven models with multivariate linear regression, local 

linear regression and ANN. The input variable is velocity in x, y, and z directions and the target 

variable is pressure at the sediment bed. We show that ANN based surrogate models can estimate 

the pressure field compared to other linear regression model. Comparing ANN with LMLR, ANN 

predicted the pressure field across the bed more accurately than LMLR based on the point velocity 

data. Both ANN and LMLR are able to model the general trend of pressure variation, but only 



 

 

99 

ANN captures the nonlinear relationship between the velocity and pressure near the boulder. ANN 

produces consistent and accurate prediction performance under various conditions whereas other 

linear surrogate models significantly depend on input variable. Future research may incorporate 

with implementing the developed models to other numerical simulations under different conditions 

(e.g. mean flow velocity, boulder spacing, and boulder embeddedness) to test their performance. 

If the surrogate model can predict the relationship between pressure and velocity accurately under 

various conditions, then designers can utilize ANN to quickly iterate over multiple design 

alternatives to make decisions instead of conducting high-fidelity simulations during the early 

design stages. 

Overall, we assessed the effect of geomorphological parameters on hyporheic exchange from 

a physical standpoint: surface and subsurface flow fields, pressure distribution across the 

sediment/water interface and the residence time in the bed. As restoring streams and rivers has 

moved from aesthetics and forms to a more holistic approach that includes processes, we hope our 

study can inform designs that benefit both structural and functional outcomes. Hyporheic exchange 

is key to buffer water quality and temperatures in streams and rivers, while also providing localized 

downwelling and upwelling microhabitats. This study provides evidence that improving exchange 

while reaching other restoration goals is possible. Our results could inform a number of critical 

processes, such as biological filtering for example. It is possible to use our approach to predict 

hyporheic exchange and thus constrain the associated biogeochemical processing under different 

topographies. As such, our results could be used to design more efficient biological filters. In a 

similar vein, as river restoration projects become more holistic, geomorphological, 

biogeochemical and hydro-ecological aspects should also be considered. For example, we show 

that embeddedness reduced hyporheic exchange, which could negatively affect oxygen sensitive 

fish or macroinvertebrate species. Embeddedness also reduces hyporheic flow paths and residence 

times, which in turn could also limit the amount of biogeochemical reactions that proceed. In this 

case, a potential benefit on water quality is lost.   
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