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ABSTRACT

Pereira Bezerra, Luan Ph.D., Purdue University, May 2020. Quantum Toroidal Su-
peralgebras. Major Professor: Evgeny Mukhin.

We introduce the quantum toroidal superalgebra Em|n associated with the Lie

superalgebra glm|n and initiate its study. For each choice of parity s of glm|n, a

corresponding quantum toroidal superalgebra Es is defined.

To show that all such superalgebras are isomorphic, an action of the toroidal braid

group B̂m+n on the direct sum ⊕sEs is constructed.

The superalgebra Es contains two distinguished subalgebras, both isomorphic to

the quantum affine superalgebra Uqŝlm|n with parity s, called vertical and horizontal

subalgebras. We show the existence of Miki automorphism of Es, which exchanges

the vertical and horizontal subalgebras.

For m 6= n and standard parity, we give a construction of level 1 Em|n-modules

through vertex operators. We also construct an evaluation map from Em|n(q1, q2, q3)

to the quantum affine algebra Uqĝlm|n at level c = q
(m−n)/2
3 .
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1. INTRODUCTION

Quantum toroidal algebras are affinizations of quantum affine algebras. They were

first introduced 25 years ago in [19], motivated by the study of Hecke operators in

algebraic surfaces.

Since that time, several applications were discovered in geometry, algebra, and

mathematical physics. The quantum toroidal algebras appear as Hall algebras of

elliptic curves, [8], [38], they also act on equivariant K-groups of Hilbert schemes and

Laumon moduli spaces, [18], [39], [40]. The quantum toroidal algebras are natural

dual objects to double affine Hecke algebras, [45]. The quantum toroidal algebras

provide integrable systems of XXY–type, among them is a deformation of quantum

KdV flows, [16]. Characters of representations of quantum toroidal algebras appear

in topological field theory, [13], AGT conjecture, [2]. The full list is much longer.

However, the supersymmetric version of quantum toroidal algebras remained un-

explored. Our goal is to introduce the quantum toroidal superalgebras Em|n(q1, q2, q3)

related to the superalgebras glm|n, with m 6= n, and initiate their study. We ex-

pect these algebras to have many properties similar to the quantum toroidal algebras

Em|0(q1, q2, q3) associated with glm which can be used in similar way, but with various

new features occurring due to the supersymmetry. In particular, the Cartan matrix

of slm|n is not unique, and it depends on the choice of parity for slm|n. The parity

choices of slm|n are parameterized by sequences s = (s1, . . . , sm+n), where si = ±1,

and 1 occurs m times, −1 occurs n times. Let Sm|n be the set of all such sequences.

We often replace the index m|n by s ∈ Sm|n, for example, we denote the algebra slm|n

given in parity s by sls.

Many insights on quantum toroidal algebras have a geometric origin. For the

quantum toroidal superalgebras, the geometric point of view is not broadly available,

since very few results on the geometry of supersymmetric spaces are known. Our



2

approach is purely algebraic. We use known results on quantum affine superalgebras

and on quantum toroidal algebras to obtain their generalizations to quantum toroidal

superalgebras.

This text is organized as follows.

In Chapter 1, we recall definitions and well–known facts on Lie superalgebras.

Both Drinfeld–Jimbo and new Drinfeld realizations of the quantum affine superalge-

bras Uqŝlm|n, for any choice of parity, are recalled in Section 1.2. In Section 1.3, we

collect results of [46], where an action of the affine braid group of slm|n was used to

show that these two presentations are equivalent, and that Uqŝls are isomorphic for

all s ∈ Sm|n. The Drinfeld–Jimbo and new Drinfeld presentations of Uqŝlm|n are a

key ingredient in the definition of the quantum toroidal superalgebra Em|n, and their

equivalence motivates the Miki automorphism.

In Chapter 2, we define the quantum toroidal algebra associated with glm|n, for any

choice of parity, and give a few properties. The quantum toroidal superalgebras Em|n
were first introduced in [6] with standard parity, and in [7] for any choice of parity. As

in the even case, they depend on complex parameters q1, q2, q3 such that q1q2q3 = 1.

We require that the superalgebra Es has a “vertical” quantum affine subalgebra Uqŝls

given in new Drinfeld realization, and a “horizontal” quantum affine subalgebra Uqŝls

given in Drinfeld–Jimbo realization. We always have q2 = q2. In addition, we want

our construction to be invariant under rotations τ̂ of the Dynkin diagram which

connects Es with Eτs, where τs = (s2, . . . , sm+n, s1). This leads us to the generators

and relations presentation of Es, see Definition 2.1.1. Naturally, the algebra Es is

generated by currents Ei(z), Fi(z), and half currents K±i (z), i = 0, . . . ,m + n − 1,

labeled by nodes of the affine Dynkin diagram of type ŝls, and the relations are

written in terms of the corresponding affine Cartan matrix. Similar to the even case,

the quantum toroidal superalgebra Es has a two–dimensional center.

It is natural to expect that all algebras Es, s ∈ Sm|n, should be isomorphic. In

Chapter 3, we use the toroidal braid group B̂m+n to prove that this is indeed so, see

Corollary 3.1.2. As a byproduct, we also obtain the Miki automorphism, see Theorem
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3.1.9, which is central to the study of quantum toroidal algebras in the even case, see

[28], [14]. The Miki automorphism is the highly non–explicit automorphism which

maps vertical and horizontal subalgebras to each other. Note that the isomorphism

from Uqŝls in new Drinfeld realization to Uqŝls in Drinfeld–Jimbo realization is already

not explicit. The Miki automorphism originates in the well known Fourier transform

Φ for toroidal braid group, see Lemma 3.1.6, which maps commutative generators

Ŷi ∈ B̂m+n to Knizhnik-Zamolodchikov elements.

Recently, a promising application of quantum toroidal algebras and superalgebras

on toric Calabi–Yau manifolds has been noted on [48] and [25]. In particular, the

choice of parity of Em|n is identified with the choice of the toric diagram resolution,

and the isomorphism of the superalgebras Es, s ∈ Sm|n, corresponds to the statement

that different quiver gauge theories describe the same geometry.

In Chapter 4, we focus on Em|n in standard parity. We use bosonization techniques

to construct level one representations of Em|n, see Theorem 4.1.3. Our formulas are

built on work [21] and generalize the known result in the even case [37]. We expect

that the irreducible level one modules stay irreducible when restricted to the vertical

Uq ĝlm|n subalgebra. However, unlike the even case, the precise structure of irreducible

level one modules for the quantum affine glm|n is not fully understood, see [21], [24],

and Conjecture 4.1.5.

Finally, we proceed to the evaluation map. The evaluation map is a surjective

algebra homomorphism Em|n(q1, q2, q3) → Ũq ĝlm|n to the quantum affine algebra at

level c completed with respect to the homogeneous grading, where qm−n3 = c2, see

Theorem 4.2.2. The evaluation map has the property that its restriction to the

vertical subalgebra is the identity map. In the even case, the evaluation map was

found in [27], see also [15].

1.1 Superalgebras

In this section, we give a brief review on superalgebras. We follow [9].
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A vector superspace V is a vector space with a Z2-gradation, i.e., V decomposes

as a direct sum of vector subspaces V = V0 ⊕ V1. The parity of an element v ∈ Vi is

given by |v| = i, i ∈ Z2. The elements of V0 are called even and the elements of V1

are called odd. Throughout this text, the notation |v| will always assume that v is a

homogeneous element.

Let m,n ∈ Z≥0. The vector superspace with dimV0 = m and dimV1 = n is

denoted by Cm|n. If n = 0, we often write Cm instead of Cm|0. We use this convention

for other algebraic objects throughout this text.

Example 1.1.1. Let V and W be two vector superspaces. The space of linear trans-

formations from V to W is a superspace. In particular, the space of endomorphisms

End(V ) of V is a vector superspace.

A superalgebra is a vector superspace A = A0 ⊕ A1 with a bilinear multiplication

satisfying AiAj ⊆ Ai+j, i, j ∈ Z2.

A Lie superalgebra is a superalgebra whose product [·, ·], called supercommutator

or superbracket, satisfies

• [a, b] = −(−1)|a||b|[b, a] (super skew symmetry);

• (−1)|a||c|[a, [b, c]] + (−1)|b||c|[c, [a, b]] + (−1)|a||b|[b, [c, a]] = 0 (super Jacobi iden-

tity).

Example 1.1.2. Any associative superalgebra A can be given a Lie superalgebra

structure with superbracket defined on homogeneous elements by

[a, b] = ab− (−1)|a||b|ba, (1.1.1)

and extended to all elements by linearity. In particular, the superalgebra End(Cm|n),

equipped with the superbracket above, is a Lie superalgebra called the general linear

Lie superalgebra and denoted by glm|n.

The Lie superalgebra glm|n can be realized as follows.

For notation convenience, let N := m+ n.
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Fix a basis v1, . . . , vm, vm+1, . . . , vN of Cm|n such that |vi| = 0, if i = 1, . . . ,m, and

|vi| = 1, if i = m+ 1, . . . , N . A basis with this property is called standard.

Then, the Lie superalgebra glm|n is isomorphic to the superalgebra of N × N

matrices of the form A B

C D

 , (1.1.2)

with the superbracket (1.1.1), where A,B,C, and D are m×m, m× n, n×m, and

n× n matrices, respectively.

The even subalgebra (glm|n)0 is isomorphic to the superalgebra of N ×N matrices

of the form (1.1.2), with B = 0 and C = 0. Note that (glm|n)0
∼= glm ⊕ gln as Lie

algebras.

The subalgebra of N ×N diagonal matrices is the Cartan subalgebra of glm|n.

The supertrace of a matrix X of the form (1.1.2) is defined as

str(X) := tr(A)− tr(D),

where tr denotes the usual trace of square matrices.

It follows that str is linear and satisfies

str([X, Y ]) = 0 X, Y ∈ glm|n.

Hence, {X ∈ glm|n | str(X) = 0} is a subalgebra of glm|n, called the special linear Lie

superalgebra and denoted by slm|n. Let h be the Cartan subalgebra of slm|n, i.e, the

subalgebra of N ×N diagonal matrices and supertrace zero.

If m 6= n, the Lie superalgebra slm|n is simple. However, if m = n, the identity

matrix IdN×N generates the center of slm|m. The subalgebra slm|m/C IdN×N is called

the projective special linear Lie superalgebra and denoted by pslm|m.

The Lie superalgebras slm|n, m 6= n, and pslm|m are called the classical simple Lie

superalgebras of type A. We don’t discuss classical Lie superalgebras of other types

in this text.
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1.1.1 Root systems and Cartan matrices

Fix m 6= n. Let N := m+ n and I = {1, 2, . . . , N − 1}.

Let g = slm|n, and let h be its Cartan subalgebra.

For α ∈ h∗, define

gα := {x ∈ g | [h, x] = α(h)x, ∀h ∈ h}.

The root system of g is defined as

Φ := {α ∈ h∗ | gα 6= 0, α 6= 0}.

A root α is even if gα ∩ g0 6= 0, and odd if gα ∩ g1 6= 0. Let Φ0 be the set of even

roots, and Φ1 be the set of odd roots. The roots of g generate h∗. The set of simple

roots of g is defined by fixing a basis of h∗ composed of roots.

The supertrace str defines a non–degenerate supersymmetric bilinear form on g

by 〈x|y〉 := str(xy). The restriction of this bilinear form to the Cartan subalgebra h

is non–degenerate and symmetric. We use the same notation for the induced bilinear

form on h∗.

A root α is called isotropic if 〈α|α〉 = 0. Isotropic roots are always odd.

The Weyl group of g is defined as the Weyl group of g0. It is generated by the

(even) reflections

rα(x) := x− 2
〈x|α〉
〈α|α〉

α α ∈ Φ0, x ∈ h∗. (1.1.3)

It is isomorphic to Sm ×Sn, where Sn is the symmetric group on n letters.

Explicitly, the root system of g can be described as follows.

Let Eii, i = 1, . . . , N , denote the N ×N diagonal matrix with only non-zero entry

at position (i, i).

Define εi ∈ End(Cm|n)∗ by

εi := str(Eii) 〈Eii|·〉 =

〈Eii|·〉 i = 1, . . . ,m;

−〈Eii|·〉 i = m+ 1, . . . , N.
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Under this identification, we have

Φ0 := {±(εi − εj) | 1 ≤ i < j ≤ m, or m < i < j ≤ N},

Φ1 := {±(εi − εj) | 1 ≤ i ≤ m, and m < j ≤ N}.

The standard simple roots of g are defined by αi := εi − εi+1, i ∈ I, and the

standard Cartan matrix A of g is given by Ai,j := 〈αi|αj〉, i, j ∈ I. We have

A =



2 −1

−1
. . . . . .

. . . 2 −1

−1 0 1

1 −2
. . .

. . . . . . 1

1 −2


m

m

Note that αm is the only isotropic simple root.

The Dynkin diagram associated with the Cartan matrix A is constructed under the

usual conventions for simple Lie algebras, but simple isotropic roots are represented

by and non-isotropic simple roots by . For Lie superalgebras of other types,

non-isotropic odd roots can occur, but we don’t discuss them here.

The standard Dynkin diagram of g is

1 2 m− 1 m m+ 1 N − 2 N − 1

Fig. 1.1. Standard Dynkin diagram of slm|n.

Given a choice of simple roots ∆, the set Φ+ of positive roots is defined as (Z>0-

span of ∆) ∩ Φ. Define

n± :=
⊕

α∈±Φ+

gα.
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We have a triangular decomposition g = n− ⊕ h ⊕ n+. The Borel subalgebra corre-

sponding to this choice is defined by b = h⊕ n+.

In the Lie algebra (n = 0) setting, it is well known that the Cartan matrix is

unique, all choices of simple roots are equivalent under the Weyl group action, and

all Borel subalgebras are naturally isomorphic.

In the supersymmetric case, this is no longer true. Recall that the Weyl group

of g is defined as the Weyl group of its even subalgebra g0 and it is isomorphic to

Sm×Sn. The number of different choices of simple roots of slm|n and slN should be

the same, but the Weyl group of slN is isomorphic to SN .

In order to classify the
(
N
m

)
choices of simple roots that are not equivalent under

the Weyl group action it is useful to introduce parity sequences.

A parity sequence is a N -tuple of ±1 with exactly m positive coordinates. Set

Sm|n = {(s1, . . . , sN)| si ∈ {−1, 1}, #{i | si = 1} = m}.

The parity sequence of the form s = (1, . . . , 1,−1, . . . ,−1) is called the standard

parity sequence.

Given a parity sequence s ∈ Sm|n, we have the Cartan matrix As = (As
i,j)i,j∈I ,

where

As
i,j = (si + si+1)δi,j − siδi,j+1 − sjδi+1,j (i, j ∈ I). (1.1.4)

The symmetric group SN acts naturally on Sm|n by permuting indices, σs :=

(sσ−1(1), . . . , sσ−1(N)) for all σ ∈ SN , s ∈ Sm|n.

Let s be a parity sequence. The Lie superalgebra glm|n with parity s, denoted

by gls, can be identified as the superalgebra of N × N matrices by choosing a basis

v1, . . . , vN of Cm|n such that |vi| = (1−si)/2. It follows that the Lie superalgebras gls,

s ∈ Sm|n, are all isomorphic as Lie superalgebras. However, their Borel subalgebras

are not isomorphic, each s ∈ Sm|n yields a different Cartan matrix, and, consequently,

a different Dynkin diagram.
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The supertrace of a N ×N matrix X is defined by

str(X) =
N∑
i=1

siMii,

and all definitions discussed above for glm|n with standard parity are extended to gls

using this definition of the supertrace.

We will often use the parity sequence s as index instead of the dimensions m|n to

emphasize the dependence on s. Any superspace Xs should be understood as Xm|n

with parity choice given by s ∈ Sm|n.

The parity of a simple root αi of sls is given by |αi| = (1− sisi+1)/2. For notation

convenience, we write |i| = |αi|, i ∈ I.

1.1.2 Odd reflections

Let ∆s = {αi | i ∈ I} be the set of simple roots of sls, for some s ∈ Sm|n, and let

Qs be the root lattice.

Let αj ∈ ∆s be an even simple root. Then, the definition of the reflection rαj , see

(1.1.3), on the simple roots of sls reads

rαj(αi) :=


αi i 6= j, j ± 1;

−αj i = j;

αi + αj i = j ± 1.

(1.1.5)

If αj ∈ ∆s is an odd simple root, we define the odd reflection rαj on the simple

roots of sls by (1.1.5), and extended the definition to all roots by linearity. However,

the action of an odd reflection does not preserve the parity. The action on the parity

is as follows.

If we forget the parity of the roots, i.e., if we assume that all roots are even,

the action of all reflections coincide with the action of the Weyl group of slN , which

is isomorphic to SN . The isomorphism between the Weyl group of slN and SN is

obtained by identifying the reflection rαj , for a simple root αj, with the transposition

(j, j + 1) ∈ SN .
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Let αj ∈ ∆s be a simple root. Then, rαj maps the roots of slm|n with parity s to

the roots of slm|n with parity rαjs. Note that, if αj is even, then rαjs = s.

Example 1.1.3. We illustrate all Dynkin diagrams of sl3|1 and how the odd reflections

affect the parity.

rα1

rα3

rα2

1 2 3 1 2 3

1 2 3 1 2 3

Fig. 1.2. Dynkin diagrams of sl3|1.

1.1.3 Chevalley generators of slm|n

The Lie superalgebra slm|n can be also defined by generators and relations. The

presentation of slm|n in terms of Chevalley generators will be a key ingredient in the

following chapters.

Fix a parity sequence s ∈ Sm|n.

The Lie superalgebra sls is isomorphic to the Lie superalgebra generated by ele-

ments ei, fi, hi, i ∈ I subject to the relations

[ei, fj] = δi,jhi, [hi, hj] = 0,

[hi, ej] = As
i,jej, [hi, fj] = −As

i,jfj,

[ei, ej] = [fi, fj] = 0 (As
i,j = 0),

for all i, j ∈ I, and the following Serre relations.

If |i| = 0 and As
i,j = ±1, then

[ei, [ei, ej]] = [fi, [fi, fj]] = 0.
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If |i| = 1 and i 6= 1, N − 1, i.e., i is not an extremal node of the Dynkin diagram,

then

[ei, [ei−1, [ei, ei+1]]] = [fi, [fi−1, [fi, fi+1]]] = 0.

The correspondence with the matrix realization is given by identifying ei = Ei,i+1,

fi = Ei+1,i, and hi = siEii − si+1Ei+1,i+1, for all i ∈ I. Also, if αi is a simple root,

(sls)αi = Cei and (sls)−αi = Cfi.

Note that this more abstract presentation of sls heavily depends on the parity

sequence s ∈ Sm|n, and it doesn’t follow automatically that the superalgebras sls

are all isomorphic. However, the presentation in terms of Chevalley generators is

convenient when dealing with deformations and generalizations of these algebras.

1.1.4 The quantum superalgebras Uqslm|n

Fix q ∈ C× not a root of unity and let [k] =
qk − q−k

q − q−1
, k ∈ Z.

We also use the notation [X, Y ]a = XY − (−1)|X||Y |aY X. For simplicity, we write

[X, Y ]1 = [X, Y ]. The bracket [X, Y ]a satisfy the following Jacobi identity

[[X, Y ]a, Z]b = [X, [Y, Z]c]abc−1 + (−1)|Y ||Z|c[[X,Z]bc−1 , Y ]ac−1 . (1.1.6)

The quantum superalgebra Uqslm|n is a deformation of the universal enveloping

algebra of slm|n with deformation parameter q.

Let s ∈ Sm|n.

The quantum superalgebra Uqsls is the unital associative superalgebra generated

by Chevalley generators ei, fi, t
±1
i , i ∈ I. The parity of the generators is given by

|ei| = |fi| = |i| = (1− sisi+1)/2, and |t±1
i | = 0.

The defining relations are as follows.

titj = tjti, tiejt
−1
i = qA

s
i,jej, tifjt

−1
i = q−A

s
i,jfj,

[ei, fj] = δi,j
ti − t−1

i

q − q−1
,

[ei, ej] = [fi, fj] = 0 (As
i,j = 0),
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for all i, j ∈ I, and the following Serre relations.

If |i| = 0 and As
i,j = ±1, then

Jei, Jei, ejKK = Jfi, Jfi, fjKK = 0,

where JX, Y K = [X, Y ]q−〈β|γ〉 if X, Y have weights β, γ ∈ Qs, i.e., if tiXt
−1
i = q〈αi|β〉X

and tiY t
−1
i = q〈αi|γ〉Y for i ∈ I.

If |i| = 1 and i 6= 1, N − 1, i.e., i is not an extremal node of the Dynkin diagram,

then

Jei, Jei+1, Jei, ei−1KKK = Jfi, Jfi+1, Jfi, fi−1KKK = 0.

1.2 The quantum affine superalgebras Uqŝlm|n

In this section, we review definitions of the quantum affine superalgebra Uqŝlm|n.

We consider two presentations of the quantum affine superalgebra Uqŝlm|n, the

Drinfeld-Jimbo realization and the new Drinfeld realization.

Roughly speaking, the Drinfeld-Jimbo presentation of Uqŝlm|n should be thought

as the Lie superalgebra with Chevalley type generators, and relations given in terms

of the affine Cartan matrix.

The affine Cartan matrix Â is obtained by including an even null root δ to the root

system of slm|n, such that 〈δ|δ〉 = 〈δ|αi〉 = 0, for all i ∈ I. Then, α0 := δ −
∑

i∈I αi

is regarded as a new simple root with parity |α0| =
∑

i∈I |αi|, and the affine Dynkin

diagram has an extra 0 node. Let Î := {0, 1, . . . , N − 1} be the set of Dynkin nodes.

We will consider the indices in Î module N .

In standard parity, the affine Dynkin diagram of ŝlm|n has the following shape.

0

1 m− 1 m m+ 1 N − 1

Fig. 1.3. Dynkin diagram of ŝlm|n in standard parity.
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On the other hand, the new Drinfeld realization of Uqŝlm|n should be thought

as the affinization of Uqslm|n, i.e., ŝlm|n is a central extension of slm|n ⊗ C[t±]. It

is generated by an invertible central element c and the coefficients of the currents

x±i (z) :=
∑

r∈Z x
±
i,rz
−r, k±i (z) = k±1

i exp
(
±(q − q−1)

∑
r>0 hi,±rz

∓r), i ∈ I. The

relations are given in terms of the Cartan matrix of slm|n. Note that the indices of

the currents are in I.

The presentations of the superalgebra Uqŝlm|n in Drinfeld-Jimbo and new Drinfeld

forms were given in [46]. We recall them here for an arbitrary choice of parity s ∈ Sm|n.

Drinfeld–Jimbo

Let s be a parity sequence.

In the Drinfeld-Jimbo realization, the superalgebra Uqŝls is generated by Chevalley

generators ei, fi, t
±1
i , i ∈ Î. The parity of generators is given by |ei| = |fi| = |i| =

(1− sisi+1)/2, and |t±1
i | = 0.

The defining relations are as follows.

titj = tjti, tiejt
−1
i = qA

s
i,jej, tifjt

−1
i = q−A

s
i,jfj,

[ei, fj] = δi,j
ti − t−1

i

q − q−1
,

[ei, ej] = [fi, fj] = 0 (As
i,j = 0),

Jei, Jei, ei±1KK = Jfi, Jfi, fi±1KK = 0 (As
i,i 6= 0),

Jei, Jei+1, Jei, ei−1KKK = Jfi, Jfi+1, Jfi, fi−1KKK = 0 (mn 6= 2, As
i,i = 0),

Jei+1, Jei−1, Jei+1, Jei−1, eiKKKK = Jei−1, Jei+1, Jei−1, Jei+1, eiKKKK (mn = 2, As
i,i 6= 0),

Jfi+1, Jfi−1, Jfi+1, Jfi−1, fiKKKK = Jfi−1, Jfi+1, Jfi−1, Jfi+1, fiKKKK (mn = 2, As
i,i 6= 0).

The element t0t1 . . . tN−1 is central.

The subalgebra of Uqŝls generated by ei, fi, ti, i ∈ I, is isomorphic to Uqsls.
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The superalgebra Uqŝls in the Drinfeld-Jimbo realization has a ZN -grading given

by

degh(x) =
(
degh0(x), degh1(x), . . . , deghN−1(x)

)
, (1.2.1)

where

deghi (ej) = δi,j, deghi (fj) = −δi,j, deghi (tj) = 0 (i, j ∈ Î).

New Drinfeld Realization

In the new Drinfeld realization, the superalgebra Uqŝls is generated by current

generators x±i,r, hi,r, k
±1
i , c±1, i ∈ I, r ∈ Z′. Here and below, we use the following

convention: r ∈ Z′ means r ∈ Z if r is an index of a non-Cartan current generator

x±i,r, and r ∈ Z′ means r ∈ Z \ {0} if r is an index of a Cartan current generator hi,r.

The parity of generators is given by |x±i,r| = |i| = (1− sisi+1)/2, and all remaining

generators have parity 0.

The defining relations are as follows.

c is central, kikj = kjki, kix
±
j (z)k−1

i = q±A
s
i,jx±j (z),

[hi,r, hj,s] = δr+s,0
[rAs

i,j]

r

cr − c−r

q − q−1
,

[hi,r, x
±
j (z)] = ±

[rAs
i,j]

r
c−(r±|r|)/2zrx±j (z),

[x+
i (z), x−j (w)] =

δi,j
q − q−1

(
δ
(
c
w

z

)
k+
i (w)− δ

(
c
z

w

)
k−i (z)

)
,

(z − q±As
i,jw)x±i (z)x±j (w) + (−1)|i||j|(w − q±As

i,jz)x±j (w)x±i (z) = 0 (As
i,j 6= 0),

[x±i (z), x±j (w)] = 0 (As
i,j = 0),

Symz1,z2Jx
±
i (z1), Jx±i (z2), x±i±1(w)KK = 0 (As

i,i 6= 0, i± 1 ∈ I),

Symz1,z2Jx
±
i (z1), Jx±i+1(w1), Jx±i (z2), x±i−1(w2)KKK = 0 (As

i,i = 0, i± 1 ∈ I),

where x±i (z) =
∑

k∈Z x
±
i,kz
−k , k±i (z) = k±1

i exp
(
±(q − q−1)

∑
r>0 hi,±rz

∓r).
The subalgebra of Uqŝls generated by x±i,0, ki, i ∈ I, is isomorphic to Uqsls.
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The superalgebra Uqŝls in the new Drinfeld realization has a ZN -grading given by

degv(x) =
(
degv1(x), . . . , degvN−1(x); degδ(x)

)
, (1.2.2)

where

degvi (x
±
j,r) = ±δi,j, degvi (kj) = degvi (hj,r) = degvi (c) = 0 (i, j ∈ I, r ∈ Z′),

degδ(x
±
i,r) = degδ(hi,r) = r, degδ(kj) = degδ(c) = 0 (i ∈ I, r ∈ Z′).

The isomorphism between Drinfeld-Jimbo and new Drinfeld realizations is de-

scribed in Proposition 1.3.3.

For J ⊂ I, we call the subalgebra of Uqŝls generated by aj,r, j ∈ J , r ∈ Z′ and

a = x+, x−, h, the diagram subalgebra associated with J and denote it by UJ
q ŝls. Any

diagram subalgebra is isomorphic to a tensor product of Uqŝlk|l algebras.

The quantum affine superalgebra Uq ĝls is obtained from Uq ŝls in the new Drinfeld

realization by including the currents k±0 (z) subject to the same relations.

1.3 Affine braid group

It is well known that the role of the Weyl group in the simple Lie algebras is played

by an appropriate braid group in the quantum setting, see [4], [26]. In this section, we

recall the action of extended affine braid group of type A in Uqŝl• =
⊕

s∈Sm|n Uqŝls.

We follow [46].

In this section, we always assume N ≥ 4.

1.3.1 Extended affine braid group of type A

We recall the extended affine braid group of type A.

Let BN be the group generated by elements τ , Ti, i ∈ Î, with defining relations

TiTj = TjTi (j 6= i, i± 1), (1.3.1)

TjTiTj = TiTjTi (j = i± 1), (1.3.2)

τTi−1τ
−1 = Ti (i ∈ Î). (1.3.3)
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The group BN is called the extended affine braid group of type A.

Alternatively, BN can be described as the group generated by elements Xi, Ti,

i ∈ I, with defining relations

TiTj = TjTi (j 6= i, i± 1), (1.3.4)

TjTiTj = TiTjTi (j = i± 1), (1.3.5)

XiXj = XjXi (i, j ∈ I), (1.3.6)

TiXj = XjTi (i 6= j), (1.3.7)

T−1
1 X1T

−1
1 = X2X−1

1 , (1.3.8)

T−1
N−1XN−1T

−1
N−1 = XN−2X−1

N−1, (1.3.9)

T−1
i XiT−1

i = Xi−1Xi+1X−1
i (2 ≤ i ≤ N − 2). (1.3.10)

An isomorphism γ between the two realizations is given by

γ : X1 7→ τTN−1 · · ·T1, Ti 7→ Ti (i ∈ I). (1.3.11)

We have a surjective group homomorphism

π : BN → SN , τ 7→ τ, Ti 7→ σi (i ∈ Î), (1.3.12)

where we denoted σi = (i, i + 1), i ∈ I, σ0 = (1, N), and, by an abuse of notation,

τ = (1, 2, . . . , N).

1.3.2 Action of BN on Drinfeld-Jimbo realization of Uqŝl•

The symmetric group SN acts naturally on Sm|n by permuting indices, σs :=

(sσ−1(1), . . . , sσ−1(N)) for all σ ∈ S, s ∈ Sm|n.

The extended affine braid group also acts on Sm|n by T s = π(T )s, for T ∈ BN ,

s ∈ Sm|n, see (1.3.12).

The next proposition describes a family of isomorphisms of quantum affine super-

algebras.
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Proposition 1.3.1 ([46]). We have the following.

(i) For i ∈ Î, s ∈ Sm|n, there exists an isomorphism of superalgebras Ti,s : Uqŝls →

Uqŝlσis given on Chevalley generators by

Ti,s(ti) = t−1
i , Ti,s(ti±1) = titi±1,

Ti,s(ei) = −sifiti, Ti,s(fi) = −si+1t
−1
i ei,

Ti,s(ei−1) = si+1q
−si+1Jei−1, eiK, Ti,s(fi−1) = −(−1)|fi||fi−1|Jfi−1, fiK,

Ti,s(ei+1) = siq
−si(−1)|ei||ei+1|Jei+1, eiK, Ti,s(fi+1) = −Jfi+1, fiK,

Ti,s(ej) = ej, Ti,s(fj) = fj, Ti,s(tj) = tj (j 6= i, i± 1).

The parities on the r.h.s. correspond to the generators of target algebra Uqŝlσis.

(ii) The left-inverse of Ti,s , (Ti,s)
−1 : Uqŝlσis → Uqŝls , is given by

(Ti,s)
−1(ti) = t−1

i , (Ti,s)
−1(ti±1) = titi±1,

(Ti,s)
−1(ei) = −si+1t

−1
i fi, (Ti,s)

−1(fi) = −sieiti,

(Ti,s)
−1(ei−1) = siq

−si(−1)|ei||ei−1|Jei, ei−1K, (Ti,s)
−1(fi−1) = −Jfi, fi−1K,

(Ti,s)
−1(ei+1) = si+1q

−si+1Jei, ei+1K,

(Ti,s)
−1(fi+1) = −(−1)|fi||fi+1|Jfi, fi+1K,

(Ti,s)
−1(ej) = ej, (Ti,s)

−1(fj) = fj, (Ti,s)
−1(tj) = tj (j 6= i, i± 1).

The parities on the r.h.s. correspond to the generators of target algebra Uqŝls.

(iii) For s ∈ Sm|n, there exist an isomorphism of superalgebras τs : Uqŝls → Uqŝlτs

given on Chevalley generators by

τs(xi) = xi+1 (x = e, f, t).

We note the following useful formula

(Ti Ti±1)s(xi) = xi±1 (x = e, f, t). (1.3.13)
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The isomorphisms Ti,s and τs change the grading in the Drinfeld-Jimbo realization

as follows.

If degh(x) = (d0, d1, . . . , di−1, di, di+1, . . . , dN−1), then

degh(Ti,s(x)) = (d0, d1, . . . , di−1, di−1 + di+1 − di, di+1, . . . , dN−1) (i ∈ Î),

degh(τs(x)) = (dN−1, d0, d1, . . . , dN−2).

(1.3.14)

The isomorphisms generate a groupoid if one considers the category whose objects

are the superalgebras Uqŝls, s ∈ Sm|n, and whose morphisms are τs, Ti,s, i ∈ Î,

s ∈ Sm|n, their compositions and inverses.

In our situation, the groupoid structure is equivalent to the group action as follows.

Define the following automorphisms of Uqŝl• =
⊕

s∈Sm|n Uqŝls

τ =
⊕

s∈Sm|n

τs , Ti =
⊕

s∈Sm|n

Ti,s (i ∈ Î). (1.3.15)

Note that, by abuse of notation, we denote by τ both the automorphism above and

the element of SN .

Proposition 1.3.2 ([46]). The automorphisms τ , Ti, i ∈ Î, define an action of

the extended affine braid group BN on Uqŝl•, i.e., they satisfy the relations (1.3.1)–

(1.3.3).

We adopt the following convention. For T ∈ BN , we denote Ts the restriction

of T to the Uqŝls summand in Uqŝl•. Note that the image of Ts is also a particular

summand in Uqŝl•, namely UqŝlT s. For example, (τTiTjTk)s = τσiσjσksTi,σjσksTj,σksTk,s

is mapping Uqŝls to Uqŝlτσiσjσks. We use a similar convention with other maps, see,

for example, Theorem 3.1.1 below.

Note that the action of BN on Sm|n is transitive. In particular, Proposition 1.3.1

implies that all superalgebras Uqŝls, s ∈ Sm|n, are isomorphic.
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1.3.3 Action of BN on new Drinfeld realization of Uqŝl•

We have an action of extended affine braid group BN on Uqŝl• given in Chevalley

generators, see Section 1.3.2. The group BN contains elements Xi, i ∈ I, see Section

1.3.1. The elements Xi preserve the parity, Xis = s, for all s ∈ Sm|n, and, therefore,

(Xi)s is an automorphism of Uqŝls. These automorphisms are used to obtain an

isomorphism between the two different realizations of Uqŝls.

Proposition 1.3.3 ([46]). There exists an isomorphism ιs between new Drinfeld and

Drinfeld-Jimbo realizations of Uqŝls mapping:

ki 7→ ti, c 7→ t0t1 · · · tN−1,

x+
i,r 7→ (−1)irX−ri,s (ei), x−i,r 7→ (−1)irX r

i,s(fi) (r ∈ Z, i ∈ I).

The identifications ιs allow us to study the action of BN on the new Drinfeld

realization. One can describe action of the Xi,s in current generators explicitly.

Proposition 1.3.4 ([46]). For i ∈ I, s ∈ Sm|n, the action of Xi,s in current generators

is given by

Xi,s(x±j,r) = (−1)iδijx±j,r∓δij , Xi,s(kj) = c−δijkj,

Xi,s(hj,r) = hj,r, Xi,s(c) = c (r ∈ Z′, j ∈ I).

For the action of Ti,s in current generators we have some partial information.

Lemma 1.3.5. For i ∈ I, we have

Ti,s(aj,r) = aj,r (r ∈ Z′, j ∈ I, i 6= j, j ± 1, a = x+, x−, h). (1.3.16)
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Moreover,

Ti,s(x
+
i+1,r) = siq

−si(−1)|i||i+1|Jx+
i+1,r, x

+
i,0K (r ∈ Z), (1.3.17)

Ti,s(x
+
i−1,r) = si+1q

−si+1Jx+
i−1,r, x

+
i,0K (r ∈ Z), (1.3.18)

Ti,s(x
−
i+1,r) = −Jx−i+1,r, x

−
i,0K (r ∈ Z), (1.3.19)

Ti,s(x
−
i−1,r) = −(−1)|i||i−1|Jx−i−1,r, x

−
i,0K (r ∈ Z). (1.3.20)

The parities on the r.h.s. correspond to the generators of target algebra Uqŝlσis.

We also have, Ti,sU
{i}
q ŝls ⊂ U

{i}
q ŝlσis if i 6= 1, N − 1.

Finally, T1,sU
{1}
q ŝls ⊂ U

{1,2}
q ŝlσ1s and TN−1,sU

{N−1}
q ŝls ⊂ U

{N−1,N−2}
q ŝlσN−1s.

Proof. Equations (1.3.16)-(1.3.20) follow from relation (1.3.7) and Proposition 1.3.1.

To prove the last part, we note that if i 6= 1 then the algebra generated by U
{i}
q ŝls,

is a subalgebra of the algebra generated by x±i,0 and hi−1,±1. Therefore Ti,sU
{i}
q ŝls ⊂

U
{i,i−1}
q ŝlσ1s. Similarly, if i 6= N − 1, we have Ti,sU

{i}
q ŝls ⊂ U

{i,i+1}
q ŝlσ1s.

We can also write the inverse of the isomorphism ιs.

Lemma 1.3.6. The isomorphism ι−1
s maps

ei 7→ x+
i,0, fi 7→ x−i,0, ti 7→ ki (i ∈ I), (1.3.21)

t0 7→ c(k1k2 · · · km+n−1)−1, (1.3.22)

e0 7→
(
X1TN−1 · · ·T2T

−1
1

)
s
(x+

1,0), (1.3.23)

f0 7→
(
X1TN−1 · · ·T2T

−1
1

)
s
(x−1,0). (1.3.24)

Proof. It is sufficient to use (1.3.11).

Note that in Lemma 1.3.6 we apply Ti only to Chevalley generators, therefore the

formulas are explicit.

The correspondence between the ZN -grading in the two realizations of Uqŝls is as

follows.
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If x ∈ Uqŝls is given in the new Drinfeld realization and the grading is degv(x) =

(dv1, . . . , d
v
N−1; dδ), then the grading in the Drinfeld-Jimbo realization is

degh(ιs(x)) = (dδ, d
v
1 + dδ, . . . , d

v
N−1 + dδ). (1.3.25)

Similarly, if x ∈ Uqŝls is given in the Drinfeld-Jimbo realization and degh(x) =

(dh0 , d
h
1 , . . . , d

h
N−1), then the grading in the new Drinfeld realization is

degv(ι−1
s (x)) = (dh1 − dh0 , . . . , dhN−1 − dh0 ;−dh0). (1.3.26)

1.3.4 The anti-automorphisms ϕ and η

We have two anti-automorphisms of Uqŝls which will be used in Sections 2.1 and

3.1.

Lemma 1.3.7. For s ∈ Sm|n, we have a superalgebra anti-automorphism ϕs : Uqŝls →

Uqŝls given on Chevalley generators by

ϕs(ei) = ei, ϕs(fi) = fi, ϕs(ti) = t−1
i (i ∈ Î).

Moreover, the anti-automorphisms ϕs, s ∈ Sm|n, satisfy

(ϕTi ϕ)s = (Ti,σis)
−1 (i ∈ Î).

Proof. This is checked by a straightforward computation.

Note that ϕs preserves the grading (1.2.1).

Lemma 1.3.8. For s ∈ Sm|n, we have a superalgebra anti-automorphism ηs : Uqŝls →

Uqŝls given on current generators by

ηs(c) = c, ηs(k
±
i (z)) = k∓i (cz−1), ηs(x

±
i (z)) = x±i (z−1) (i ∈ I).

Moreover, the anti-automorphisms ηs, s ∈ Sm|n, satisfy

(η Ti η)s = (Ti,σis)
−1 (i ∈ I).
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Proof. The existence of this anti-automorphism is checked directly.

For the last equality, note that ηs coincides with ϕs on the subalgebra generated

by x±i,0, ki, c, i ∈ I. Also, by the isomorphism between the new Drinfeld and Drinfeld–

Jimbo realizations of Uqŝls, it is sufficient to check the identity on x±1,∓1.

We verify (η Ti η)s = (Ti,σis)
−1 on x−1,1 for i = 1, 2. The remaining values of i are

trivial. The check for x+
1,−1 is analogous.

Using the relation (1.3.8) we have

(ηT1η)s(x
−
1,1) = −(ηT1X−1

1 )s(x
−
1,0) = −(ηX1X−1

2 T−1
1 )s(x

−
1,0) = ησ1s(−s1c

−1x+
1,−1k1)

= −s1c
−1k−1

1 x+
1,1,

(T1,σ1s)
−1(x−1,1) = −(T−1

1 X1)s(x
−
1,0) = −(X2X−1

1 T1)s(x
−
1,0) = −s1c

−1k−1
1 x+

1,1.

And using the relation (1.3.7) we have

(ηT2η)s(x
−
1,1) = −(ηT2X−1

1 )s(x
−
1,0) = (ηX−1

1 )σ2s((−1)|1||2|Jx−1,0, x
−
2,0K) = −Jx−2,0, x

−
1,1K,

(T2,σ2s)
−1(x−1,1) = −(T−1

2 X1)s(x
−
1,0) = X1,σ2s(Jx

−
2,0, x

−
1,0K) = −Jx−2,0, x

−
1,1K.

This completes the proof.

Note that, if x ∈ Uqŝls is given in the new Drinfeld realization and degv(x) =

(d1, . . . , dN−1; dδ), then

degv(ηs(x)) = (d1, . . . , dN−1;−dδ). (1.3.27)

Both anti-automorphisms ϕs and ηs are anti-involutions: ϕ2
s = η2

s = 1.
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2. THE QUANTUM TOROIDAL SUPERALGEBRAS

2.1 Quantum toroidal superalgebra Es

In this section, we introduce the quantum toroidal superalgebra Es associated with

glm|n for any choice of parity s ∈ Sm|n. We give a few properties of these algebras.

2.1.1 Definition of Es

Fix d, q ∈ C× and define

q1 = d q−1, q2 = q2, q3 = d−1q−1.

Note that q1q2q3 = 1. In this text, we always assume that q1, q2 are generic,

meaning that qn1
1 qn2

2 qn3
3 = 1, n1, n2, n3 ∈ Z, iff n1 = n2 = n3. Fix also d1/2, q1/2 ∈ C×

such that (d1/2)2 = d, (q1/2)2 = q.

Recall the affine Cartan matrix Âs = (As
i,j)i,j,∈Î , see (1.1.4).

We also define the matrix M s = (M s
i,j)i,j∈Î by M s

i+1,i = −M s
i,i+1 = si+1, and

M s
i,j = 0, i 6= j ± 1.

For example, if s is the standard parity sequence, we have

Âs =



0 −1 1

−1 2 −1

−1
. . . . . .
. . . 2 −1

−1 0 1

1 −2
. . .

. . . . . . 1

1 1 −2


, M̂ s =



0 −1 −1

1 0 −1

1
. . . . . .
. . . 0 −1

1 0 1

−1 0
. . .

. . . . . . 1

1 −1 0


m m

m

0
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Definition 2.1.1. The quantum toroidal algebra associated with glm|n and parity

sequence s is the unital associative superalgebra Es = Es(q1, q2, q3) generated by Ei,r,

Fi,r, Hi,r, and invertible elements Ki, C, where i ∈ Î, r ∈ Z′, subject to the defining

relations (2.1.1)-(2.1.16) below. The parity of the generators is given by |Ei,r| =

|Fi,r| = |i| = (1− sisi+1)/2, and all remaining generators have parity 0.

We use generating series

Ei(z) =
∑
k∈Z

Ei,kz
−k, Fi(z) =

∑
k∈Z

Fi,kz
−k,

K±i (z) = K±1
i exp

(
±(q − q−1)

∑
r>0

Hi,±rz
∓r
)
.

Let also δ (z) =
∑
n∈Z

zn be the formal delta function.

Then, the defining relations are as follows.

C,K relations

C is central, KiKj = KjKi, (2.1.1)

KiEj(z)K−1
i = qA

s
i,jEj(z), KiFj(z)K−1

i = q−A
s
i,jFj(z). (2.1.2)

K-K, K-E and K-F relations

K±i (z)K±j (w) = K±j (w)K±i (z), (2.1.3)

dM
s
i,jC−1z − qAs

i,jw

dM
s
i,jCz − qAs

i,jw
K−i (z)K+

j (w) =
dM

s
i,jqA

s
i,jC−1z − w

dM
s
i,jqA

s
i,jCz − w

K+
j (w)K−i (z), (2.1.4)

(dM
s
i,jz − qAs

i,jw)K±i (C−(1±1)/2z)Ej(w) = (dM
s
i,jqA

s
i,jz − w)Ej(w)K±i (C−(1±1)/2z),

(2.1.5)

(dM
s
i,jz − q−As

i,jw)K±i (C−(1∓1)/2z)Fj(w) = (dM
s
i,jq−A

s
i,jz − w)Fj(w)K±i (C−(1∓1)/2z).

(2.1.6)
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E-F relations

[Ei(z), Fj(w)] =
δi,j

q − q−1
(δ
(
C
w

z

)
K+
i (w)− δ

(
C
z

w

)
K−i (z)). (2.1.7)

E-E and F -F relations

[Ei(z), Ej(w)] = 0 , [Fi(z), Fj(w)] = 0 (As
i,j = 0), (2.1.8)

(dM
s
i,jz − qAs

i,jw)Ei(z)Ej(w) = (−1)|i||j|(dM
s
i,jqA

s
i,jz − w)Ej(w)Ei(z) (As

i,j 6= 0),

(2.1.9)

(dM
s
i,jz − q−As

i,jw)Fi(z)Fj(w) = (−1)|i||j|(dM
s
i,jq−A

s
i,jz − w)Fj(w)Fi(z) (As

i,j 6= 0).

(2.1.10)

Serre relations

Symz1,z2JEi(z1), JEi(z2), Ei±1(w)KK = 0 (As
i,i 6= 0), (2.1.11)

Symz1,z2JFi(z1), JFi(z2), Fi±1(w)KK = 0 (As
i,i 6= 0), (2.1.12)

If mn 6= 2,

Symz1,z2JEi(z1), JEi+1(w1), JEi(z2), Ei−1(w2)KKK = 0 (As
i,i = 0), (2.1.13)

Symz1,z2JFi(z1), JFi+1(w1), JFi(z2), Fi−1(w2)KKK = 0 (As
i,i = 0). (2.1.14)

If mn = 2,

Symz1,z2Symw1,w2
JEi−1(z1), JEi+1(w1), JEi−1(z2), JEi+1(w2), Ei(y)KKKK = (2.1.15)

= Symz1,z2Symw1,w2
JEi+1(w1), JEi−1(z1), JEi+1(w2), JEi−1(z2), Ei(y)KKKK (As

i,i 6= 0),

Symz1,z2Symw1,w2
JFi−1(z1), JFi+1(w1), JFi−1(z2), JFi+1(w2), Fi(y)KKKK = (2.1.16)

= Symz1,z2Symw1,w2
JFi+1(w1), JFi−1(z1), JFi+1(w2), JFi−1(z2), Fi(y)KKKK (As

i,i 6= 0).
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The relations (2.1.3)-(2.1.6) are equivalent to

[Hi,r, Ej(z)] =
[rAi,j]

r
d−rMi,jC−(r+|r|)/2 zrEj(z) , (2.1.17)

[Hi,r, Fj(z)] = − [rAi,j]

r
d−rMi,jC−(r−|r|)/2 zrFj(z) , (2.1.18)

[Hi,r, Hj,s] = δr+s,0 ·
[rAi,j]

r
d−rMi,j

Cr − C−r

q − q−1
, (2.1.19)

for all r ∈ Z′, i, j ∈ Î.

The relations (2.1.11) and (2.1.12) are also satisfied if As
i,i = 0, due to the quadratic

relations (2.1.8).

The element K := K0K1 · · ·KN−1 is central.

In standard parity, the poles of the correlation functions of currents Ei(z) are

depicted in Figure 2.1. For example, the correlation function of E0(z)E1(w) has a

pole at z = q1w, while the correlation function of E1(z)E0(w) has a pole at z = q3w.

m + n− 1 m + 2 m + 1

m− 121

0 m

q1

q3

q1

q3
q1

q3

q−1
1

q−1
3

q−1
1

q−1
3

q−1
1

q−1
3

Fig. 2.1. Standard Dynkin diagram of type ŝlm|n with poles of correlation
functions for the Ei(z) currents of Em|n.

The poles of the correlation functions of the currents Fi(z) are obtained from the

Figure 2.1 replacing q by q−1, i.e., q±1
1 is replaced by q∓1

3 , and q±1
3 by q∓1

1 .

For other choices of parity, as a general rule, the poles are reversed in every odd

node. See, for example, the changes on the nodes 0 and m in the Figure 2.1.
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For any J ⊂ Î, let EJs ⊂ Es be the subalgebra generated by Ei(z), Fi(z), C, i ∈ J .

We call EJs the diagram subalgebra associated with J of Es.

2.1.2 Some properties of Es

For each i ∈ Î, the superalgebra Es has a Z-grading given by

degi(Ej,r) = δi,j, degi(Fj,r) = −δi,j, degi(Hj,r) = degi(Kj) = degi(C) = 0,

for all j ∈ Î , r ∈ Z′.

There is also the homogeneous Z-grading given by

degδ(Ej,r) = degδ(Fj,r) = r, degδ(Hj,r) = r, degδ(Kj) = degδ(C) = 0,

for all j ∈ Î , r ∈ Z′.

Thus, the superalgebra Es has a ZN+1-grading given on a homogeneous element

X ∈ Es by

deg(X) =
(
deg0(X), deg1(X), . . . , degN−1(X); degδ(X)

)
. (2.1.20)

The superalgebra Es has a graded topological Hopf superalgebra structure given

on generators by

∆Ei(z) = Ei(z)⊗ 1 +K−i (z)⊗ Ei(C1z),

∆Fi(z) = Fi(C2z)⊗K+
i (z) + 1⊗ Fi(z),

∆K+
i (z) = K+

i (C2z)⊗K+
i (z),

∆K−i (z) = K−i (z)⊗K−i (C1z),

∆C = C ⊗ C,

ε(Ei(z)) = ε(Fi(z)) = 0, ε(K±i (z)) = ε(C) = 1,

S(Ei(z)) = −
(
K−i (C−1z)

)−1
Ei(C

−1z),

S(Fi(z)) = −Fi(C−1z)
(
K+
i (C−1z)

)−1
,

S(K±i (z)) =
(
K±i (C−1z)

)−1
, S(C) = C−1,
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where C1 = C ⊗ 1, C2 = 1 ⊗ C. The maps ∆ and ε are extended to algebra

homomorphisms, and the map S to a superalgebra anti-homomorphism, S(xy) =

(−1)|x||y|S(y)S(x). Note that the tensor product multiplication is defined for homo-

geneous elements x1, x2, y1, y2 ∈ Es by (x1⊗ y1)(x2⊗ y2) = (−1)|y1||x2|x1x2⊗ y1y2 and

extended to the whole algebra by linearity.

2.1.3 Horizontal and vertical subalgebras

Let s be a parity sequence. For i ∈ I, define µs(i) = −
∑i

j=1 sj. Define the vertical

homomorphism of superalgebras vs : Uqŝls → Es by

vs(x
+
i (z)) = Ei(d

µs(i)z), vs(x
−
i (z)) = Fi(d

µs(i)z),

vs(k
±
i (z)) = K±i (dµs(i)z), vs(c) = C (i ∈ I).

Note that if x ∈ Uqŝls and degv(x) = (d1, d2, . . . , dN−1; dδ), then

deg(vs(x)) = (0, d1, d2, . . . , dN−1; dδ). (2.1.21)

Proposition 2.1.2. The vertical homomorphism vs is injective for generic values of

parameters.

Proof. In standard parity, the evaluation map constructed in Theorem 4.2.2 produces

a left-inverse of vs for generic values of parameters, see Lemma 4.2.1. Thus, vs is an

embedding with image Uqŝls.

For other parity choices, an evaluation map is constructed in [7].

The image of the vertical homomorphism coincides with EIs . We denote this

subalgebra U ver
q ŝls and call it the vertical quantum affine slm|n.

The vertical subalgebra U ver
q ŝls is a Hopf subalgebra of Es.

The vertical quantum affine glm|n, denoted by U ver
q ĝls, is obtained by including the

currents K±0 (z). Note that U ver
q ŝls and U ver

q ĝls are given in new Drinfeld realization.

The currents K±0 (z) do not commute with U ver
q ŝls. To obtain a current in U ver

q ĝls

commuting with U ver
q ŝls we proceed as follows.
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For each r ∈ Z×,

det
(
[rAs

i,j]d
−rMs

i,j
)
i,j∈Î = [r]m+n

(
dr(m−n) + dr(n−m) − qr(m−n) − qr(n−m)

)
6= 0.

Thus, the system ∑
i∈Î

γi,r[rA
s
i,j]d

−rMs
i,j = 0 (j ∈ I) , (2.1.22)

has a one-dimensional space of solutions. The element Hver
r =

∑
i∈Î γi,rHi,r ∈ U ver

q ĝls

commutes with U ver
q ŝls ⊂ U ver

q ĝls. Such element is unique up to scalar. We fix a

normalization by requiring γ0,r = 1, r ∈ Z<0, and

[Hver
r , Hver

s ] = δr+s,0[(n−m)r]
1

r

Cr − C−r

q − q−1
.

Set Hver(z) =
∑

r∈Z× H
ver
r z−r. This current will be used in Section 4.2.

Corollary 2.1.3. Let J ⊂ Î, J 6= Î. Then the diagram subalgebra EJs is isomorphic to

tensor product of quantum affine superalgebras Uqŝlk|l for generic values of parameters.

We denote Uhor
q ŝls the subalgebra of Es generated by Ei,0, Fi,0, Ki, i ∈ Î, and we

call it the horizontal quantum affine slm|n.

We have a horizontal homomorphism of superalgebras hs : Uqŝls → Es given by

ei 7→ Ei,0 , fi 7→ Fi,0 , ti 7→ Ki (i ∈ Î),

with image Uhor
q ŝls.

We will later prove (for N > 3) that, for generic values of parameters, the hori-

zontal homomorphism hs is injective, see Corollary 3.1.10. Note that it is not a Hopf

algebra map.

Note that, if x ∈ Uqŝls and degh(x) = (d0, d1, d2, . . . , dN−1), then

deg(hs(x)) = (d0, d1, d2, . . . , dN−1; 0). (2.1.23)

Lemma 2.1.4. The quantum toroidal algebra Es is generated by the vertical and

horizontal subalgebras U ver
q ŝls and Uhor

q ŝls.
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Proof. The only generators which are not generators of either the vertical or horizontal

subalgebras are E0,r, F0,r, r ∈ Z×. These generators are obtained as commutators of

E0,0 and F0,0 with H1,±1, see (2.1.17), (2.1.18).

We often use a shortcut notation

X+
0 (z) := E0(z), X−0 (z) := F0(z), K̃±0 (z) := K±0 (z),

X±i (z) := vs(x
±
i (z)), K̃±i (z) := vs(k

±
i (z)) (i ∈ I).

(2.1.24)

2.1.4 Morphisms

We list some symmetries of the superalgebras Es.

Given s ∈ Sm|n, let s′ = (sm−1, sm−2, . . . , s−n). Then, the diagram isomorphism

ωs : Es(q1, q2, q3)→ Es′(q3, q2, q1) defined by

ωs(C) = C, ωs(Ai(z)) = Am−i(z) (i ∈ Î , A = K±, E, F ),

changes d to d−1.

Given s ∈ Sm|n, let −s = (−s1,−s2, . . . ,−sN) ∈ Sn|m. The change of parity

isomorphism νs : Es(q1, q2, q3)→ E−s(q−1
3 , q−1

2 , q−1
1 ) defined by

νs(C) = C, νs(K
±
i (z)) = −K±−i(z),

νs(Ei(z)) = E−i(z), νs(Fi(z)) = F−i(z) (i ∈ Î),

changes q to q−1.

For u ∈ C×, the shift of spectral parameter γu,s : Es → Es is an isomorphism

defined by

γu,s(C) = C, γu,s(Ai(z)) = Ai(uz) (i ∈ Î , A = K±, E, F ).

For s ∈ Sm|n, there exists an isomorphism of superalgebras τ̂s : Es → Eτs given by

τ̂s(C) = C, τ̂s(Ai(z)) = Ai+1(−d−sN z) (i ∈ Î , A = K±, E, F ). (2.1.25)

Recall our notation (2.1.24). In this notation, the map τ̂s takes the form

τ̂s(C) = C, τ̂s(Ai(z)) = Ai+1(−d(n−m)δi,N−1z) (i ∈ Î , A = K̃±, X+, X−).
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Proposition 2.1.5. The isomorphisms τ̂s, s ∈ Sm|n, satisfy

(τ̂ h)s = (h τ)s, (2.1.26)

(τ̂ v)s(ai(z)) = vτs(ai+1(−z)) (i ∈ I \ {N − 1}, a = k±, x±). (2.1.27)

(τ̂ v Ti)s (aj(z)) = (v Ti+1)τs (aj+1(−z)) (i, j ∈ I \ {N − 1}, a = k±, x±). (2.1.28)

The maps τ̂s preserve the homogeneous grading and degi(τ̂s(X)) = degi−1(X), i ∈ Î.

Proof. A straightforward computation shows that τ̂s preserve the homogeneous grad-

ing, satisfy equality (2.1.26), and degi(τ̂s(X)) = degi−1(X), i ∈ Î, if X ∈ Es is

homogeneous.

We check (τ̂ v)s(x
+
i (z)) = vτs(x

+
i+1(−z)) for 1 ≤ i ≤ N − 2.

By definition, we have

(τ̂ v)s(x
+
i (z)) = τ̂s(Ei(d

µs(i)z)) = Ei+1(−dµs(i)−sN z),

vτs(x
+
i+1(−z)) = Ei+1(−dµτs(i+1)z).

But τs = (sN , s1, . . . , sN−1), thus

µτs(i+ 1) = −sN − s1 − · · · − si = µs(i)− sN .

The proofs for x−i (z) and k±i (z) are analogous.

Equation (2.1.28) for i 6= j follows from Lemma 1.3.5 and equation (2.1.27).

To show (2.1.28) with i = j, set l = i−1 if i 6= 1, and l = 2 if i = 1. In particular,

As
l,i 6= 0. Then, since l 6= i, we have

(τ̂ v Ti)s (hl,±1) = −(v Ti+1)τs (hl+1,±1).

Also, by a direct computation, we have

(τ̂ v Ti)s (x±i,0) = (v Ti+1)τs (x±i+1,0).

Therefore, the constant terms of left hand side and right hand side of (2.1.28) coincide.

The equality of other terms follow from the commutator

[hl,±1, x
+
i (z)] = [As

l,i]c
−(1±1)/2z±1x±i (z)

and a similar one for x−i (z).
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The homomorphism vs, hs and τ̂s previously defined correspond to the algebra

Es(q1, q2, q3). Let v′s, h
′
s and τ̂ ′s be the analogous homomorphisms corresponding to

the algebra Es(q3, q2, q1), i.e., the parameter d is switched to d−1.

The map ηs defined on Lemma 1.3.8 has the following toroidal counterpart.

For s ∈ Sm|n, there exists an anti-isomorphism of superalgebras η̂s : Es(q1, q2, q3)→

Es(q3, q2, q1) given by

η̂s(C) = C, η̂s(K
±
i (z)) = K∓i (Cz−1),

η̂s(Ei(z)) = Ei(z
−1), η̂s(Fi(z)) = Fi(z

−1) (i ∈ Î).

The anti-isomorphism η̂s preserves degi, i ∈ Î, and degδ(η̂s(X)) = − degδ(X) if

X ∈ Es is homogeneous.

Lemma 2.1.6. The anti-isomorphisms η̂s, s ∈ Sm|n, satisfy

(η̂ v)s = (v′ η)s, (η̂ h)s = (h′ ϕ)s, (η̂ τ̂)s = (τ̂ ′ η̂)s.

Proof. The equality (η̂ h)s = (h′ ϕ)s is clear.

We check, for example, (η̂ v)s = (v′ η)s on x+
i (z) and (η̂ τ̂)s = (τ̂ ′ η̂)s on Ei,r. The

other cases are analogous. Note that η̂s interchanges the parameters q1 and q3, i.e., d

and d−1 are interchanged. Thus,

(η̂ v)s(x
+
i,r) = η̂s(d

−rµs(i)Ei,r) = d−rµs(i)Ei,−r = v′s(x
+
i,−r) = (v′ η)s(x

+
i,r),

(η̂ τ̂)s(Ei,r) = η̂τs(−dr sNEi+1,r) = −dr sNEi+1,−r = τ̂ ′s(Ei,−r) = (τ̂ ′ η̂)s(Ei,r).

The maps Xi,s defined on Proposition 1.3.4 also have toroidal analogs as follows.

There exist automorphisms of superalgebras X̂i,s : Es → Es, i ∈ Î, s ∈ Sm|n, given

by

X̂i,s(C) = C, X̂i,s(K±j (z)) = C∓δijK±j (z),

X̂i,s(X±j (z)) = ((−1)iz∓1)δijX±j (z), (j ∈ Î).
(2.1.29)
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The automorphism X̂i,s preserves degj, j ∈ Î, and degδ(X̂i,s(X)) = degδ(X) −

degi(X) if X ∈ Es is homogeneous. Let also X̂ ′i,s be the analogous automorphism

corresponding to the algebra Es(q3, q2, q1).

Let ζs : Es → Es, s ∈ Sm|n, be the rescaling automorphism given by

ζs(C) = C, ζs(X
±
i (z)) = ((−1)Ndn−m)±δi,0X±i (z), ζs(K

±
i (z)) = K±i (z) (i ∈ Î).

Proposition 2.1.7. The automorphisms X̂i,s, ζs satisfy

(η̂′ X̂ ′i η̂)s = X̂−1
i,s , (X̂j v)s = (vXj)s (i ∈ Î , j ∈ I), (2.1.30)

(τ̂ X̂j−1)s = (X̂j τ̂)s , (τ̂ X̂N−1)s = (ζ X̂0 τ̂)s (j ∈ I). (2.1.31)

Proof. Identities (2.1.30) and the first equality of (2.1.31) are clear.

We check (τ̂ X̂N−1)s = (ζ X̂0 τ̂)s applied to X±N−1,r:

(τ̂ X̂N−1)s(X
±
N−1,r) = τ̂s((−1)N−1X±N−1,r∓1) = (−1)N+rd(r±1)(m−n)X±0,r∓1,

(ζX̂0 τ̂)s(X
±
N−1,r) = (ζX̂0)s((−1)rdr(m−n)X±0,r) = ζs((−1)rdr(m−n)X±0,r∓1)

= (−1)N+rd(r±1)(m−n)X±0,r∓1.

The check on the remaining generators is similar.
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3. BRAID GROUP ACTIONS

3.1 Toroidal braid group

We construct an action of the toroidal braid group B̂N associated with slm|n on

E• =
⊕

s∈Sm|n Es. As a consequence, we show that the algebras Es, s ∈ Sm|n, are all

isomorphic. It also gives us the Miki automorphism of Es, which interchanges the

horizontal and vertical subalgebras.

In this section, we assume N ≥ 4.

3.1.1 Action of BN on E•

We start with extending the action of affine braid group BN from the vertical

subalgebra U ver
q ŝl• given in Proposition 1.3.1 to the toroidal algebra E•.

Note that the map τ̂s was already defined in (2.1.25). We also recall that the prime

symbol ′ indicates the action of the operator with q3 and q1 switched, see Section 2.1.4.

Theorem 3.1.1. Let N > 3. For i ∈ Î, s ∈ Sm|n, there exists an isomorphism of

superalgebras T̂i,s : Es → Eσis satisfying

(T̂i v)s = (vTi)s (i ∈ I), (3.1.1)

(T̂i h)s = (hTi)s (i ∈ Î), (3.1.2)

(τ̂ T̂i)s = (T̂i+1τ̂)s (i ∈ Î), (3.1.3)

(η̂′ T̂ ′i η̂)s = (T̂−1
i )s (i ∈ Î). (3.1.4)

Moreover, the isomorphisms T̂i,s satisfy the Coxeter relations

(T̂i+1T̂iT̂i+1)s = (T̂iT̂i+1T̂i)s (i ∈ Î), (3.1.5)

(T̂iT̂j)s = (T̂jT̂i)s (i 6= j ± 1). (3.1.6)
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Finally, T̂i,s are graded with respect to homogeneous grading.

Proof. Throughout this proof we write similar formulas for X±i (z) and K̃±i (z). To

avoid repeating the same formula four times, we use the letters Ai(z) to denote X±i (z)

or K̃±i (z), and ai(z) to denote x±i (z) or k±i (z) . Note that Ai(z) and ai(z) in the same

formula are all of the same kind – e.g. all X+
i (z) and x+

i (z).

Define the map T̂1,s on generators of Es by

T̂1,s(A0(z)) = (τ̂−1vT2)τs (a1(−z)), T̂1,s(Ai(z)) = (vT1)s (ai(z)) (i ∈ I).

Note that T̂1,s(Ai(z)) = Ai(z) if i = 3, . . . , N − 1. Moreover, the action of T̂1,s on

A0(z), A2(z), A1,0 is explicit by Lemma 1.3.5. The map T̂1,s respects homogeneous

grading because T1,s and T2,s do.

We claim that this extends to an isomorphism of superalgebras. In fact, all rela-

tions which do not involve node 1 (that is, the ones which do not contain E1(z), F1(z),

K±1 (z)) can be checked by a direct computation. To check the relations which do in-

volve node 1, and to reduce the calculations in other cases, we can use the following

arguments.

The relations not involving node 0 are satisfied since we can compute in the vertical

algebra and T1,s is a homomorphism.

To check the relations involving node 0, note that by Proposition 2.1.5 we have

τ̂s(AN−1(z)) = A0(−dn−mz), τ̂s(Ai(z)) = Ai+1(−z) (i 6= N − 1),

T̂1,s(Ai(z)) = (τ̂ 1−kvTk)τk−1s(ak+i−1((−1)1−kz)) (k, k + i− 1 ∈ I),

T̂1,s(AN−1(dm−nz)) = (τ̂−2vT3)τ2s(a1(z)) = (τ̂−3vT4)τ3s(a2(−z)) (N > 4),

T̂1,s(AN−2(dm−nz)) = (τ̂−3vT4)τ3s(a2(−z)) (N > 4).

Let us first assume that N > 4.

We prove the relations involving the nodes 0, 1, and 2 by moving these nodes to

1, 2 and 3 using τ and τ̂ . Namely, by (1.3.3) and (2.1.27), we have

T̂1,s(Ai(z)) = (τ̂−1vT2)τs(ai+1(−z)) (i = 0, 1, 2).
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Observe that the defining relations between generators of Es involving nodes 0, 1, 2 are

the same as the defining relations in Uqŝlτs involving nodes 1, 2, 3. Since (τ̂−1vT2)τs

is a homomorphism, it maps the the relations of Uqŝlτs involving the nodes 1, 2, 3 to

zero. Therefore T̂1,s maps defining relations of Es involving nodes 0, 1, 2 to zero.

The relations involving the nodes N − 1, 0, 1 are treated similarly: we go to nodes

1, 2, 3 again by using

T̂1,s(Ai(z)) = (τ̂−2vT3)τ2s(ai+2(z)) (i = 0, 1),

T̂1,s(AN−1(dm−nz)) = (τ̂−2vT3)τ2s(a1(z)).

Note that the defining relations between generators of Es involving nodes N − 1, 0, 1

are the same as the defining relations in Uqŝl τ2s involving nodes 1, 2, 3 if the shift of

spectral parameter in the generating series related to node N−1 is taken into account.

Therefore, as before, T̂1,s maps defining relations of Es involving nodes N − 1, 0, 1 to

zero.

For the relations involving the nodes N − 2, N − 1, 0 we proceed in the same way

by using

T̂1,s(AN−i(d
m−nz)) = (τ̂−3vT4)τ3s(a3−i(−z)) (i = 1, 2),

T̂1,s(A0(z)) = (τ̂−3vT4)τ3s(a3(−z)).

and reducing to nodes 1, 2, 3 once again. We omit further details. Thus for N > 4 all

relations follow without extra computations.

If N = 4, the previous argument applies for the relations involving the nodes

0, 1, 2, or −1, 0, 1, or 0, 1 or the nodes involving 2, 0. The additional relations (2.1.13)

and (2.1.14) for i = 3 in the case As
3,3 = 0 are checked directly. We check (2.1.13)

with i = 3 as an example.

First, by identity (1.1.6) and relation (2.1.13) we have

0 = Symz1,z2JJJE3(z1), JE0(w1), JE3(z2), E2(w2)KKK, E1,0K, E1,0K

= (q + q−1)Symz1,z2JJE3(z1), JE0(w1), E1,0KK, JE3(z2), JE2(w2), E1,0KKK.
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Using Lemma 1.3.5 we can compute the action of T̂1,s on (2.1.13) explicitly. Note

that As
3,3 = 0, N = 4, m 6= n imply mn = 3 and |1| = 0. We have

T̂1,s(Symz1,z2JE3(z1), JE0(w1), JE3(z2), E2(w2)KKK)

= T̂1,s(Symz1,z2JJE3(z1), E0(w1)K, JE3(z2), E2(w2)KK)

= q−A
s
1,1Symz1,z2JJE3(z1), JE0(w1), E1,0KK, JE3(z2), JE2(w2), E1,0KKK = 0.

This shows that T̂1,s is a homomorphism.

For i ∈ Î define

T̂i,s = (τ̂ i−1 T̂1 τ̂
1−i)s. (3.1.7)

Since T̂1,s and τ̂s are homomorphisms for all s ∈ Sm|n, the maps T̂i,s are well defined

homomorphisms for all i ∈ Î and s ∈ Sm|n.

Note that

T̂i,s(Aj(z)) = Aj(z) (j 6= i, i± 1). (3.1.8)

Also, T̂i,s(Aj(z)) is explicit if j = i± 1 and so is T̂i,s(Ai,0).

Now, we show that the homomorphisms T̂i,s satisfy equations (3.1.1) using induc-

tion on i. For i = 1 the statement follows from definition of T̂1. Suppose (3.1.1) is

true for i = j ≤ N − 2. Let us prove it for i = j + 1.

If l ∈ I, l 6= 1, we have

(T̂j+1v)s(al(z)) = (τ̂ T̂j τ̂
−1v)s(al(z)) = (τ̂ T̂jv)τ−1s(al−1(−z))

= (τ̂ v Tj)τ−1s(al−1(−z)) = (v Tj+1)s(al(z)).

Here the second equality is (2.1.27), the third equality is the induction hypothesis,

and the last equality is (2.1.28).

If l = 1 then

(T̂j+1 v)s(a1(z)) = (τ̂ T̂j τ̂
−1)s(A1(z)) = (τ̂ T̂j)τ−1s(A0(−z)) = (vTj+1)s(a1(z)).
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Here the last equation is a definition if j = 1 and a trivial statement if j > 1 since in

that case T̂j,s(A0(z)) = A0(z) and Tj+1,s(a1(z)) = a1(z).

Thus, T̂i,s satisfy equation (3.1.1).

Next we show (3.1.4) for i = 1. By (3.1.1), Lemmas 1.3.8 and 2.1.6, we have

(T̂1η̂
′T̂ ′1η̂)s(Ai(z)) = (v T1 η T1 η)s(ai(z)) = vs(ai(z)) = Ai(z) (i ∈ I),

(T̂1η̂
′T̂ ′1η̂)s(A0(z)) = (τ̂−1v T2 η T2 η)τs(a1(−z)) = (τ̂−1 v)τs(a1(−z)) = A0(z).

Thus, equation (3.1.4) holds for i = 1. In particular, it implies that T̂1,s has an inverse

and therefore is an isomorphism.

By Lemma 2.1.6, η̂s commutes with τ̂s. It implies (3.1.4) for all i ∈ Î. In particular,

T̂i,s is isomorphism for all i ∈ Î.

By (2.1.26), the isomorphisms T̂i,s satisfy equation (3.1.2).

Finally, we show Coxeter relations (3.1.5) and (3.1.6). By equation (3.1.3), it

is sufficient to show these relations when i = 1 and j 6= 0. By Proposition 1.3.2,

Coxeter relations are satisfied by the homomorphisms Ti,s. Then by (3.1.1), relations

(3.1.5) and (3.1.6) are satisfied on the image of vs. By (3.1.2), these relations are also

satisfied on the image of hs. Since horizontal and vertical subalgebras generate the

whole algebra Es, we obtain the proof of (3.1.5) and (3.1.6)

Corollary 3.1.2. The superalgebras Es are isomorphic for all s ∈ Sm|n.

Proof. The corollary follows from Theorem 3.1.1.

Remark 3.1.3. The corollary above treats the case N ≥ 4. For N = 3, the isomor-

phisms between all three algebras Es are given by the map τ̂ .

Define the following automorphisms of E• =
⊕

s∈Sm|n Es

T̂i =
⊕

s∈Sm|n

T̂i,s , τ̂ =
⊕

s∈Sm|n

τ̂s (i ∈ I).

Corollary 3.1.4. Let N > 3. The automorphisms τ̂ , T̂i, i ∈ Î, define an action of the

extended affine braid group BN on E•, i.e., they satisfy the relations (1.3.1)-(1.3.3).
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3.1.2 Toroidal braid group

We recall the definition of the toroidal braid group of slN , see [28].

Definition 3.1.5. The toroidal braid group B̂N of slN is the group generated by

elements τ̂ , T̂i, Ŷj, i ∈ I, j ∈ Î, satisfying the relations

T̂iT̂j = T̂jT̂i (j 6= i, i± 1), (3.1.9)

T̂jT̂iT̂j = T̂iT̂jT̂i (j = i± 1), (3.1.10)

ŶiŶj = ŶjŶi, (3.1.11)

T̂iŶj = ŶjT̂i (j 6= i, i+ 1), (3.1.12)

T̂−1
i ŶiT̂−1

i = Ŷi+1 (i ∈ I), (3.1.13)

τ̂ T̂iτ̂
−1 = T̂i+1, (1 ≤ i ≤ N − 2), (3.1.14)

τ̂ 2T̂N−1τ̂
−2 = T̂1, (3.1.15)

τ̂ Ŷiτ̂−1 = Ŷi+1 (i ∈ I). (3.1.16)

We remark that the toroidal braid group B̂N quotient by the relation τ̂ Ŷ0τ̂
−1 = Ŷ1

is isomorphic to double affine Hecke group with central element set to 1, see Definition

4.1 in [10].

The toroidal braid group has the following Fourier transform given by qKZ ele-

ments.

Lemma 3.1.6 ([10],[28]). There exists an automorphism Φ of B̂N given by

Φ(T̂i) = T̂i, Φ(Ŷj) = T̂−1
j−1 · · · T̂−1

1 τ̂ T̂N−1 · · · T̂j, Φ(τ̂) = Ŷ−1
1 T̂1 · · · T̂N−1.

Note that the subgroup G ⊂ B̂N generated by T̂1 and τ̂ , and the subgroup H ⊂ B̂N
generated by T̂1 and Ŷ1 are both isomorphic to the extended affine braid group BN .

The isomorphism γ between these two presentations of BN is described in (1.3.11).

Let iG be the inclusion iG : G ∼= BN → B̂N given by

iG(T1) = T̂1, iG(τ) = τ̂ ,
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and iH be the inclusion iH : H ∼= BN → B̂N given by

iH(T1) = T̂1, iH(X1) = Ŷ1.

The following lemma is easily checked on generators.

Lemma 3.1.7. The homomorphism γ, iG, iH and Φ satisfy the following commutative

diagram

B̂N B̂N

BN BN

∼
Φ

iH

∼
γ

iG

Recall automorphisms ζs, X̂i,s of Es described in Proposition 2.1.7. Define the

following automorphisms of Es

Ŷ0,s = (ζX̂0X̂−1
N−1)s , Ŷi,s = (X̂iX̂−1

i−1)s (i ∈ I). (3.1.17)

Let also

Ŷi =
⊕

s∈Sm|n

Ŷi,s (i ∈ Î).

Proposition 3.1.8. The automorphisms τ̂ , T̂i, Ŷj, i ∈ I, j ∈ Î, define an action of

the toroidal braid group B̂N on E•.

Proof. The relations for T̂i and τ̂ follow from Theorem 3.1.1. Relation (3.1.16) be-

tween Ŷi and τ̂ follows from (2.1.31). Relations (3.1.12) are clear due to (3.1.8).

Equation (3.1.13) between Ŷi and T̂j on vertical subalgebra follows from (1.3.10)

and (1.3.8) (note that (X̂0 v)s = vs). To check the relations on A0(z) we write

A0(z) = τ̂−1
s (A1(−z)) and use the already established relations with τ̂ .
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3.1.3 Miki automorphism

Now we are ready to prove the existence of the Miki automorphism of Es which

switches horizontal and vertical subalgebras.

Recall the isomorphism ιs identifying the new Drinfeld and Drinfeld-Jimbo real-

izations of Uqŝls, see Proposition 1.3.3.

Theorem 3.1.9. Let N > 3. There exists a superalgebra automorphism ψs of Es
satisfying

(ψ v)s = (h ι)s, (ψ h ι)s = (v η ι−1 ϕ ι)s, ψ−1
s = (η̂′ ψ′ η̂)s, (3.1.18)

where the first two equalities are equalities of maps from the new Drinfeld realization

of Uqŝls to Es.

Proof. We often write equation of maps from Uqŝls to Es, similar to (3.1.18). We

understand that new Drinfeld realization is identified with the Drinfeld-Jimbo real-

ization via map ι and do not distinguish between them. In particular, we skip ι from

our formulas.

Recall notation (2.1.24). For i ∈ I, let Zi,s = (Ŷ1 · · · Ŷi)s.

Using equations (1.3.11), (2.1.26) and (3.1.2) we get

Φ(Ŷ1,s)hs = hs(τTN−1 · · ·T1)s = (hX1)s .

And, by relations (1.3.8)-(1.3.10), we have

Φ(Ŷi,s)hs = (hXiX−1
i−1)s (i ∈ I \ {1}).

Thus,

Φ(Zi,s)hs = hsXi,s (i ∈ I). (3.1.19)

Define ψs on the Es generators by

ψs(X
±
i,r) = (−1)irΦ(Z∓ri )s(X

±
i,0), ψs(Ki) = Ki (i ∈ I, r ∈ Z),

ψs(X
±
0,r) = (−1)rΦ(τ̂−1Z∓r1 )τs(X

±
1,0), ψs(K0) = Φ(τ̂−1)τs(K1) (r ∈ Z).



42

For i ∈ I, r ∈ Z′, by equation (3.1.19), we have

(ψ v)s(x
±
i,r) = (−1)irΦ(Z∓ri )s(X

±
i,0) = (−1)ir(Φ(Z∓ri )h)s(x

±
i,0)

= (−1)irhsX∓ri,s (x±i,0) = hs(x
±
i,r).

This implies ψsvs = hs. Thus, ψs extends to a homomorphism U ver
q ŝls → Es.

We now check that ψs satisfy the relations involving the node 0. This is done in

a similar way as in Theorem 3.1.1. For i ∈ I, using (1.3.13) and the relations in the

group, we obtain

Φ(τ̂)s(X
±
i,0) = (Ŷ−1

1 T̂1 · · · T̂N−1)s(X
±
i,0) = X±i+1,0 (i 6= N − 1),

Φ(τ̂ 2)s(X
±
N−1,0) = (Z−1

2 T̂2T̂1T̂3T̂2 · · · T̂N−1T̂N−2)s(X
±
N−1,0) = X±1,0.

Thus, the relations involving the nodes 0, 1 and 2 follow from the relations involving

the nodes 1, 2 and 3 in U ver
q ŝl τs using the equation

ψs(X
±
i,r) = (−1)rΦ(τ̂−1)τsψτs(X

±
i+1,r) (i ∈ Î). (3.1.20)

For the relations involving the nodes 0, 1 and N − 1 we use

ψs(X
±
i,r) = (−1)r(dm−n)±rδi,N−1Φ(τ̂−2)τ2sψτ2s(X

±
i+2,r) (i = 0, 1, N − 1).

And for the relations involving the nodes 0, N − 1 and N − 2 we use

ψs(X
±
i,r) = (−1)r(dm−n)±r(1−δi,0)Φ(τ̂−3)τ3sψτ3s(X

±
i+3,r) (i = 0, N − 1, N − 2).

We check the equation (ψ h)s = (v η ϕ)s on the Chevalley generators ei, i ∈ Î.

The proof for fi, ti, i ∈ Î, is analogous. By (1.3.11) and (1.3.23), we have

(ψ h)s(ei) = ψs(X
+
i,0) = X+

i,0 = vs(x
+
i,0) = (v η ϕ)s(ei) (i ∈ I),

(ψ h)s(e0) = ψs(X
+
0,0) = Φ(τ̂−1)τs(X

±
1,0) = (T̂−1

N−1 · · · T̂
−1
1 X̂1X̂−1

2 )τs(X
+
1,0)

= (T̂−1
N−1 · · · T̂

−1
1 X̂1)τs(X

+
1,0),

(v η ϕ)s(e0) = vsηs(TN−1 · · ·T1X−1
1 )s(x

+
1,0) = vs(T

−1
N−1 · · ·T

−1
1 X1)τs(x

+
1,0)

= (T̂−1
N−1 · · · T̂

−1
1 X̂1)τs(X

+
1,0).
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Finally, we show ψ−1
s = (η̂′ ψ′ η̂)s.

By Lemma 2.1.6 and the identities (ψ v)s = hs, (ψ h)s = (v η ϕ)s, we have

(ψ η̂′ ψ′(η̂ v))s = (ψ η̂′(ψ′ v′)η)s = (ψ(η̂′ h′)η)s = ((ψ h)ϕη)s = (v η ϕϕ η)s = vs ,

(ψ η̂′ ψ′(η̂h))s = (ψ η̂′(ψ′ h′)ϕ)s = (ψ(η̂′ v′)η)s = (ψ v)s = hs .

Thus, (ψ η̂′ ψ′ η̂)s = 1s on both U ver
q ŝls and Uhor

q ŝls, but they generate Es. There-

fore (ψ η̂′ ψ′ η̂)s = 1s on Es.

This completes the proof.

Since the Miki automorphism sends the vertical subalgebra U ver
q ŝls to the hori-

zontal subalgebra Uhor
q ŝls, from Proposition 2.1.2 we obtain the following corollary.

Corollary 3.1.10. Let N > 3. For generic values of parameters, horizontal map

hs : Uqŝls → Es is injective. In particular, Uhor
q ŝls is isomorphic to Uqŝls.

The key property used in the proof of Theorem 3.1.9 was the compatibility of ψ

with the braid group action which we describe in the next proposition.

Proposition 3.1.11. The automorphism ψs satisfies

(ψB)s = (Φ(B)ψ)s (B ∈ B̂N , ). (3.1.21)

Proof. If B = T̂i, i ∈ I, we use (3.1.1), (3.1.2) and the first two equalities of (3.1.18)

to show (3.1.21) is satisfied on the horizontal and vertical subalgebras. We have

(ψ T̂i v)s = (ψ v Ti)s = (hTi)s = (T̂i h)s = (T̂i ψ v)s = (Φ(T̂i)ψ v)s,

(ψ T̂i h)s = (ψ hTi)s = (v η ϕTi)s = (T̂i v η ϕ)s = (T̂i ψ h)s = (Φ(T̂i)ψ h)s.

Since the horizontal and vertical subalgebras generate Es, we have (ψT̂i)s = (Φ(T̂i)ψ)s

on Es.

The case B = τ̂ is equation (3.1.20).

Since B̂N is generated by T̂i, Ŷ1 and τ̂ , it it remains to check the case B = Ŷ1.

From the previous cases we have

(ψ τ̂)s = (Φ(τ̂)ψ)s = (Ŷ−1
1 T̂1 · · · T̂N−1 ψ)s.



44

Thus,

(τ̂−1 ψ−1)s = (ψ−1 T̂−1
N−1 · · · T̂

−1
1 Ŷ1)s = (T̂−1

N−1 · · · T̂
−1
1 ψ−1 Ŷ1)s,

or equivalently

(ψ−1 Ŷ−1
1 )s = (τ̂ T̂−1

N−1 · · · T̂
−1
1 ψ−1)s.

By the first equality of (2.1.30), equation (3.1.4), and the last equalities of (2.1.6)

and (3.1.18), we have

(ψ Ŷ1)s = (η̂′(ψ′)−1(Ŷ ′1)−1η̂)s = (η̂′ τ̂ ′(T̂ ′N−1)−1 · · · (T̂ ′1)−1(ψ′)−1η̂)s

= (τ̂ T̂N−1 · · · T̂1 ψ)s = (Φ(Ŷ1)ψ)s.

Finally, we describe how Miki automorphism changes the grading.

Proposition 3.1.12. If X ∈ Es is homogeneous, then

degδ(ψs(X)) = − deg0(X),

degi(ψs(X)) = degδ(X) + degi(X)− deg0(X) (i ∈ Î).
(3.1.22)

Proof. The proposition follows from (1.3.25), (1.3.27), (2.1.21), and (2.1.23).

Note that, if X ∈ U ver
q ŝls, then (3.1.22) reduces to (1.3.25). And, similarly, if

X ∈ Uhor
q ŝls, then (3.1.22) reduces to (1.3.26).
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4. REPRESENTATIONS

A version of this chapter is pending publication in “Algebras and Representation

Theory”, see [6].

In this chapter, all superalgebras are considered with standard parity.

4.1 Level (1,0) modules, bosonic picture

In this section, we construct Em|n-modules of level (1, 0) using vertex operators.

It will be useful to consider the following notation. Let Î+ = {1, . . . ,m − 1},

Î− = {m+ 1, . . . , N − 1}, Î1 = {0,m} and Î = Î+ ∪ Î− ∪ Î1. In particular, if n = 1,

we have Î− = ∅, and if m = 1, Î+ = ∅.

4.1.1 Heisenberg algebra

Let H be the associative algebra generated by Hi,r, cj,r, i ∈ Î, j ∈ Î− ∪ {m},

r ∈ Z×, satisfying

[Hi,r, Hj,s] = δr+s,0 ·
[rAi,j][r]

r
d−rMi,j , (4.1.1)

[ci,r, cj,s] = δi,jδr+s,0 ·
[r]2

r
,

[Hi,r, cj,s] = 0.

Note that (4.1.1) is equivalent to equation (2.1.19) with C = q.

Denote by H± the (commutative) subalgebra generated by Hi,r, cj,r with ±r > 0,

i ∈ Î, j ∈ Î− ∪ {m}.

Let F be the Fock space generated by a vector v0 satisfying Hi,rv0 = cj,rv0 = 0,

for r > 0, i ∈ Î, j ∈ Î− ∪ {m}. Thus, F is a free H−-module of rank 1

F = Hv0 = H−v0.
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Moreover, since det
(
[rAi,j]d

−rMi,j
)
i,j∈Î 6= 0, F is an irreducible H-module.

4.1.2 Level (1,0) Em|n-modules

Let Qm|n be the slm|n root lattice and let C{Qm|n} be a twisted group algebra of

Qm|n generated by invertible elements eαi , i ∈ I, satisfying the relations

eαieαj =

(−1)〈αi|αj〉eαjeαi (i, j ∈ Î+ ∪ {m}),

eαjeαi (i or j ∈ Î−).

Define ε : Î × Î → {±1} by

ε(i, j) =


(−1)〈αi|αj〉 (i, j ∈ Î+ ∪ {m}, i > j),

(−1)1+δm,1 (i = 0, j ∈ {1,m}),

1 (otherwise).

Note that

eαieαj = ε(i, j)ε(j, i)eαjeαi (i, j ∈ Î).

Let Qc be the integral lattice generated by elements ci, i ∈ Î− ∪ {m}, with bilinear

form given by

〈ci|cj〉 = δi,j.

Define Q = Qm|n ⊕ Qc and extend the bilinear forms on Qm|n and Qc to Q by

requiring 〈αi|cj〉 = 0. Set also 〈Λ|cj〉 = 0, for any glm|n weight Λ.

Let C[Qc] be the (commutative) group algebra of Qc, generated by elements eci ,

i ∈ Î− ∪ {m}, and define C{Q} = C{Qm|n} ⊗ C[Qc].

For α =
∑

l∈I rlαl +
∑

k∈Î−∪{m} skck ∈ Q, define

eα = (eα1)r1 · · · (eαm+n−1)rm+n−1(ecm)sm · · · (ecm+n−1)sm+n−1 . (4.1.2)

Then, {eα |α ∈ Q} is a basis of C{Q}.
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Let Q̃ ⊂ Q be the sublattice of rank N−1 generated by αi, αm+cm, αj +cj−cj−1,

i ∈ Î+, j ∈ Î−, and let C{Q̃} be the subalgebra of C{Q} spanned by eα, α ∈ Q̃.

Following [20], a ŝlm|n weight Λ is a level 1 partially integrable weight if and only

if Λ = Λi, i 6∈ Î1, or Λ = (1− a)Λ0 + aΛm, a ∈ C.

Set

Λ̃ = Λi (Λ = Λi, i ∈ Î+),

Λ̃ = Λj −
m+n−1∑
i=j

ci (Λ = Λj, j ∈ Î−),

Λ̃ = aΛm − a
m+n−1∑
i=m

ci (Λ = (1− a)Λ0 + aΛm, a ∈ C).

Given a level 1 partially integrable weight Λ, define the vector superspace

FΛ := F ⊗ C{Q̃}eΛ̃.

For v ∈ F , α ∈ Q̃, the parity of v ⊗ eαeΛ̃ ∈ FΛ is |v ⊗ eαeΛ̃| = (1− (−1)rm)/2, where

rm is the multiplicity of αm in α as in (4.1.2).

Define an action of the algebras H and C{Q̃} on FΛ as follows.

For v ∈ F , α ∈ Q̃, set

x(v ⊗ eαeΛ̃) = (xv)⊗ eαeΛ̃ (x ∈ H),

eβ(v ⊗ eαeΛ̃) = v ⊗ (eβeαeΛ̃) (β ∈ Q̃).

In particular, FΛ is a free H− ⊗ C{Q̃}-module of rank 1.

Introduce the zero-mode linear operators z±Hi,0 , q±αi,0 , z±cj,0 , i ∈ Î , j ∈ Î−∪{m},

acting on FΛ as follows.

For v ⊗ eαeΛ̃ ∈ FΛ, with α =
∑

l∈I rlαl +
∑

k∈Î−∪{m} skck, set

z±Hi,0(v ⊗ eαeΛ̃) = z±〈αi|α+Λ̃〉d±
1
2

∑
l∈I rlAi,lMi,lv ⊗ eαeΛ̃,

q±αi,0(v ⊗ eαeΛ̃) = q±〈αi|α+Λ̃〉v ⊗ eαeΛ̃,

z±cj,0(v ⊗ eαeΛ̃) = z±〈cj|α+Λ̃〉v ⊗ eαeΛ̃.



48

For i ∈ Î and j ∈ Î− ∪ {m}, let

H±i (z) =
∑
r>0

Hi,±r

[r]
z∓r,

c±j (z) =
∑
r>0

cj,±r
[r]

z∓r,

and define

Γ+
i (z) = z exp

(
H−i (q−1z)

)
exp
(
−H+

i (z)
)
eαizHi,0 ,

Γ−i (z) = z exp
(
−H−i (z)

)
exp
(
H+
i (q−1z)

)
e−αiz−Hi,0 ,

C±j (z) = exp
(
±c−j (z)

)
exp
(
∓c+

j (z)
)
e±cjz±cj,0 .

Note that these currents act on the larger space F ⊗ C{Q}eΛ̃. However, their

products considered on Theorem 4.1.3 below preserve the subspace FΛ ⊂ F⊗C{Q}eΛ̃.

The following is proved by a direct computation.

Lemma 4.1.1. For i, j ∈ Î, r ∈ Z×, we have

[Hi,r,Γ
±
j (z)] = ± [rAi,j]

r
d−rMi,jq−(r±|r|)/2zr Γ±j (z). (4.1.3)

Define the normal ordering by

: xrys :=

xrys (r < 0)

ysxr (r ≥ 0)

(xr, yr ∈ {Hi,r, ci,r}),

: Aeα :=: eαA := eαA (α ∈ Q,A ∈ {z±Hi,0 , q±αi,0 , z±cj,0}),

: eαieαj := ε(i, j)eαi+αj (i, j ∈ Î),

and extended inductively from right to left on larger products, e.g., : abc :=: a(: bc :) :.

Given two currents X(z) and Y (w), we say that the product X(z)Y (w) has con-

traction 〈X(z)Y (w)〉 if

X(z)Y (w) = 〈X(z)Y (w)〉 : X(z)Y (w) : .

In this text, all contractions 〈X(z)Y (w)〉 are Laurent series converging to rational

functions in the region |z| � |w|.
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Lemma 4.1.2. For i, j ∈ Î, k, l ∈ Î− ∪ {m} we have

〈
Γ±i (z)Γ±i (w)

〉
=
(
(z − w)(z − q∓2w)

)Ai,i/2 , (4.1.4)〈
Γ±i (z)Γ±j (w)

〉
= ε(i, j)

(
z − d−Mi,jq∓1w

)Ai,j
dAi,jMi,j/2 (i 6= j), (4.1.5)〈

Γ±i (z)Γ∓i (w)
〉

=
(
(z − qw)(z − q−1w)

)−Ai,i/2 , (4.1.6)〈
Γ±i (z)Γ∓j (w)

〉
= ε(i, j)

(
z − d−Mi,jw

)−Ai,j
d−Ai,jMi,j/2 (i 6= j), (4.1.7)〈

C±k (z)C±l (w)
〉

= (z − w)δk,l , (4.1.8)〈
C±k (z)C∓l (w)

〉
= (z − w)−δk,l . (4.1.9)

Proof. Let ε ∈ {±1}.

Equations (4.1.4)-(4.1.7) follow from

〈
z±εHi,0eεαj

〉
= z±Ai,jd±Ai,jMi,j/2,〈

exp
(
±εH+

i (z)
)

exp
(
εH−i (w)

)〉
=
(

1− qw
z

)∓Ai,i/2 (
1− q−1w

z

)∓Ai,i/2
,〈

exp
(
±εH+

i (z)
)

exp
(
εH−j (w)

)〉
=
(

1− d−Mij
w

z

)∓Ai,j
(i 6= j).

The equations (4.1.8) and (4.1.9) follow from

〈
z±εck,0eεcl

〉
= z±δk,l ,〈

exp
(
±εc+

k (z)
)

exp
(
εc−l (w)

)〉
=
(

1− w

z

)∓δk,l
.

These contractions are checked by a straightforward computation.

Let ∂z be the q-difference operator

∂zf(z) =
f(qz)− f(q−1z)

(q − q−1)z
.
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Theorem 4.1.3. The following expressions define a graded admissible Em|n−module

structure of level (1, 0) on FΛ.

C = q, K±1
i = q±αi,0 , Hi,r = Hi,r (i ∈ Î),

Ei(z) = Γ+
i (z) (i ∈ Î+),

Fi(z) = Γ−i (z) (i ∈ Î+),

Em(z) = dmΓ+
m(z)C+

m(dmz) ,

Fm(z) = Γ−m(z) ∂z[C
−
m(dmz)] ,

Ei(z) = d(2m−i)Γ+
i (z) : C+

i (d2m−iz) ∂z[C
−
i−1(d2m−iz)] : (i ∈ Î−),

Fi(z) = d(2m−i)Γ−i (z) : C+
i−1(d2m−iz) ∂z[C

−
i (d2m−iz)] : (i ∈ Î−),

E0(z) = Γ+
0 (z) ∂z[C

−
m+n−1(dm−nz)] ,

F0(z) = dm−nΓ−0 (z)C+
m+n−1(dm−nz).

Proof. The C,K relations are clear.

The H-H, H-E and H-F relations follow from Lemma 4.1.1. Note that Hi,r

commutes with cj(z) for all possible i, j.

We now check the E-E relations.

If i = j ∈ Î+, it follows from (4.1.4) that

Γ+
i (z)Γ+

i (w) = Γ+
i (w)Γ+

i (z)

(
z − q−2w

q−2z − w

)Ai,i/2
,

which is equivalent to the E-E relation.

If i ∈ Î+, j ∈ Î and i 6= j we use (4.1.5) to get

Γ+
i (z)Γ+

j (w) = Γ+
j (w)Γ+

i (z)

(
dMi,jz − q−1w

w − dMi,jq−1z

)Ai,j ε(i, j)
ε(j, i)

,

but in this case ε(i, j) = (−1)Ai,jε(j, i), which is the needed sign.

The cases with i ∈ Î− or i = j ∈ Î1 follow from the above equations noting that

ε(i, j) = ε(j, i) and, by (4.1.8) and (4.1.9),〈
C±i (z)C±j (w)

〉
= (−1)δi,j

〈
C±j (w)C±i (z)

〉
,

(z − w)
〈
C±i (z)C∓j (w)

〉
= (−1)δi,j(z − w)

〈
C∓j (w)C±i (z)

〉
.
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For example, if i = m+ 1 and j = m, let ε ∈ {±1}, we have

(dqz − w)
〈
Γ+
m+1(w)Γ+

m(z)
〉 〈
C−m(dm−1qεw)C+

m(dmz)
〉

= d−1/2 (dqz − w)(w − dq−1z)

(dm−1qεw − dmz)

= d1/2−m(dz − q−εw),

and

(dz − qw)
〈
Γ+
m(z)Γ+

m+1(w)
〉 〈
C+
m(dmz)C−m(dm−1qεw)

〉
= d1/2 (dz − qw)(z − d−1q−1w)

(dmz − dm−1qεw)

= d1/2−m(dz − q−εw).

This shows (dz − qw)Em(z)Em+1(w) = (dqz − w)Em+1(w)Em(z).

If i, j ∈ Î1 and i 6= j, we have ε(i, j) = (−1)δm,1+1ε(j, i). Thus,

Ei(z)Ej(w) = (−1)δn,1+δm,1+1Ej(w)Ei(z)

(
dMi,jz − q−1w

w − dMi,jq−1z

)Ai,j
.

Therefore, the E-E relations hold for all i, j ∈ Î.

The F -F relations are analogous.

The E-F relations are trivial for |i− j| > 1. For i or j ∈ Î+ with i 6= j, it follows

directly from (4.1.7).

If i ∈ Î− ∪ {m} and j = i+ 1, we have

〈Ei(z)Fi+1(w)〉 = 〈Fi+1(w)Ei(z)〉

= d4m−2i−1
〈
Γ+
i (z)Γ−i+1(w)

〉 〈
C+
i (d2m−iz)C+

i (d2m−i−1w)
〉

= d6m−3i−3/2.

Thus, [Ei(z), Fi+1(w)] = 0.

The case i ∈ Î− ∪ {0} and j = i − 1 is treated similarly. Due to the presence

of the q-difference operators ∂z and ∂w in a non-trivial contraction, the expansion of

: Ei(z)Fj(w) : has four normal-ordered summands. However, the coefficient of each

summand is a Laurent polynomial. Thus, [Ei(z), Fi−1(w)] = 0.

If i = j ∈ Î+, we have〈
Γ+
i (z)Γ−i (w)

〉
=

(
1

(z − qw)(z − q−1w)

)
(|z| � |w|),

〈
Γ−i (w)Γ+

i (z)
〉

=

(
1

(z − qw)(z − q−1w)

)
(|w| � |z|).
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We can change the region where the second rational function is expanded to the

same region as the first one by adding δ-functions

(
1

(z − qw)(z − q−1w)

)
(|w|�|z|)

= (4.1.10)

=

(
1

(z − qw)(z − q−1w)

)
(|z|�|w|)

− 1

qw2(q − q−1)
δ
(
q
w

z

)
− 1

qz2(q−1 − q)
δ
(
q
z

w

)
.

Now,

1

qw2(q − q−1)
δ
(
q
w

z

)
: Γ+

i (z)Γ−i (w) :=
1

(q − q−1)
δ
(
q
w

z

)
K+
i (w),

1

qz2(q−1 − q)
δ
(
q
z

w

)
: Γ+

i (z)Γ−i (w) := − 1

(q − q−1)
δ
(
q
z

w

)
K−i (z).

Therefore, the E-F relations follow for i = j ∈ Î+.

For i = j = 0 we have

E0(z)F0(w) = dm−n : Γ+
0 (z)Γ−0 (w) : ∂z[C

−
m+n−1(dm−nz)]C+

m+n−1(dm−nw),

F0(w)E0(z) = dm−n : Γ−0 (w)Γ+
0 (z) : C+

m+n−1(dm−nw) ∂z[C
−
m+n−1(dm−nz)].

By (4.1.9), we have

dm−nC−m+n−1(dm−nz)C+
m+n−1(dm−nw) =

1

z − w
(|z| � |w|),

dm−nC+
m+n−1(dm−nw)C−m+n−1(dm−nz) =

1

w − z
(|w| � |z|).

Then,

[E0(z), F0(w)] =: Γ+
0 (z)Γ−0 (w) : ∂z

[
1

w
δ
(w
z

)
: C+

m+n−1(dm−nw)C−m+n−1(dm−nz) :

]
.

Now, for all j ∈ Î− ∪ {m}, we have

δ
(w
z

)
: C+

j (w)C−j (z) := δ
(w
z

)
exp
(
c−j (w)− c−j (z)

)
exp
(
c+
j (z)− c+

j (w)
)

= δ
(w
z

)
.

Thus,

[E0(z), F0(w)] =: Γ+
0 (z)Γ−0 (w) : ∂z

[
1

w
δ
(w
z

)]
=

1

zw(q − q−1)

(
δ
(
q
w

z

)
− δ

(
q
z

w

))
: Γ+

0 (z)Γ−0 (w) : .
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Therefore, the E-F relations also follow for i = 0. The case i = m is analogous and

the case i ∈ Î− is longer, but checked by the same procedure.

In any admissible representation, it is enough to check the quadratic relations,

then the Serre relations follow automatically. Namely, the Serre relations are checked

by commuting each summand and passing to a common region of convergence of

the rational functions by adding suitable δ-functions. We check the quartic relation

(2.1.13) with i = m as an example.

Write the ten summands in (2.1.13) as follows. Let

Em(z1)Em+1(w1)Em(z2)Em−1(w2) = E. (4.1.11)

Then, using the E-E relations, write the remaining terms of (2.1.13) in the form

Em+1(w1)Em(z2)Em−1(w2)Em(z1) = −(dz1 − q−1w2)(dz1 − qw1)

(dq−1z1 − w2)(dqz1 − w1)
E, (4.1.12)

Em(z1)Em−1(w2)Em(z2)Em+1(w1) =
(dz2 − q−1w2)(dqz2 − w1)

(dz2 − qw1)(dq−1z2 − w2)
E, (4.1.13)

Em+1(w1)Em(z1)Em−1(w2)Em(z2) =
(dz2 − q−1w2)(dz1 − qw1)

(dq−1z2 − w2)(dqz1 − w1)
E, (4.1.14)

Em−1(w2)Em(z1)Em+1(w1)Em(z2) =
(dz2 − q−1w2)(dz1 − q−1w2)

(dq−1z2 − w2)(dq−1z1 − w2)
E, (4.1.15)

Em−1(w2)Em(z2)Em+1(w1)Em(z1) =

= −(dz1 − q−1w2)(dz1 − qw1)(dqz2 − w1)(dz2 − q−1w2)

(dq−1z1 − w2)(dqz1 − w1)(dz2 − qw1)(dq−1z2 − w2)
E,

(4.1.16)

Em(z2)Em+1(w1)Em(z1)Em−1(w2) = −(dz1 − q−1w2)(dz1 − qw1)(dqz2 − w1)

(dqz1 − w1)(dz2 − qw1)(dz1 − q−1w2)
E,

(4.1.17)

Em(z2)Em−1(w2)Em(z1)Em+1(w1) = −(dz1 − q−1w2)(dqz2 − w1)(dqz1 − w1)

(dq−1z1 − w2)(dqz1 − w1)(dz2 − qw1)
E,

(4.1.18)

− [2]Em(z1)Em+1(w1)Em−1(w2)Em(z2) = −[2]
(dz2 − q−1w2)

(dq−1z2 − w2)
E, (4.1.19)

− [2]Em(z2)Em+1(w1)Em−1(w2)Em(z1) = [2]
(dz1 − q−1w2)(dz1 − qw1)(dqz2 − w1)

(dq−1z1 − w2)(dqz1 − w1)(dz2 − qw1)
E

(4.1.20)
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The rational functions of the r.h.s. of the equations (4.1.12)-(4.1.20) are expanded

in the region given by the increasing order of appearance of the coordinates in the

l.h.s.. For example, the rational function in equation (4.1.12) is expanded in the

region |w1| � |z2| � |w2| � |z1|.

Summing up l.h.s. of equations (4.1.11)-(4.1.20) we get the expansion of (2.1.13).

The sum of the rational functions in the r.h.s. vanishes as a rational function. How-

ever, similar to E-F relation, we must switch to the common convergence region and

verify that the coefficients of the delta functions yielded also vanish at the respective

support, cf., (4.1.10).

For example, we choose |z2| � |w2| � |z1| � |w1| as a common region. The

rational function in the r.h.s. (4.1.14) in this region becomes

(dz2 − q−1w2)(dz1 − qw1)

(dq−1z2 − w2)(dqz1 − w1)
+ (1− q−2)(1− q2)δ

(
dqz1

w1

)
δ

(
dz2

qw2

)
−

−(dz2 − q−1w2)(1− q2)

q(dq−1z2 − w2)
δ

(
dqz1

w1

)
− (1− q−2)(dz1 − qw1)

q−1(dqz1 − w1)
δ

(
dz2

qw2

)
.

Other terms are similar. After changing the region of convergence of all rational

functions the δ-functions yielded are δ
(
dz2
qw2

)
, δ
(
dqz1
w1

)
, δ
(
dqz1
w2

)
, δ
(
dqz1
w2

)
δ
(
dqz1
w1

)
and

δ
(
dz2
qw2

)
δ
(
dqz1
w1

)
, and the coefficient of each one vanishes at the respective suport.

Thus, (2.1.13) with i = m is proved.

4.1.3 Screenings

The Em|n-modules obtained in Theorem 4.1.3 are not irreducible in general. To

find their irreducible quotient, we follow [23],[21], and introduce the following ξ–η

system.

We set Resz(
∑

i∈Z aiz
−i) = a1.
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For i ∈ Î− ∪ {m}, introduce the screening operators

ξi = Resz
(
z−1C−i (z)

)
,

ηi = Resz C
+
i (z),

acting on FΛ, with Λ = Λj, j 6∈ Î1, or Λ = (1− a)Λ0 + aΛm, a ∈ Z.

The odd operators ξi, ηi, satisfy

[ξi, ηj] = δi,j,

[ξi, ξj] = [ηi, ηj] = 0,

FΛ = ξiηiFΛ ⊕ ηiξiFΛ,

for all i, j ∈ Î− ∪ {m}.

Define

ξ =
∏

i∈Î−∪{m}

ξi , η =
∏

i∈Î−∪{m}

ηi.

Proposition 4.1.4. If Λ = Λi, i 6∈ Î1 or Λ = (1− a)Λ0 + aΛm, a ∈ Z, the screening

operators ηi, i ∈ Î− ∪ {m}, (super)commute with the Em|n-action on FΛ given by

Theorem 4.1.3. Thus, ker η and coker η are Em|n-modules.

Proof. It is enough to show [ηi, C
+
i (w)] = [ηi, ∂wC

−
i (w)] = 0.

Using (4.1.8) we have

[ηi, C
+
i (w)] = Resz[C

+
i (z), C+

i (w)] = 0,

and by (4.1.9)

[ηi, ∂wC
−
i (w)] = ∂w

(
Resz[C

+
i (z), C−i (w)]

)
= ∂w (1) = 0.

Level 1 partially integrable representations of Uq ŝlm|n with m 6= n were con-

structed in [21] using the formulas in Theorem 4.1.3 for i ∈ I and d = 1. Our

space FΛ differs from theirs by the extra current H0(z) present in U ver
q ĝlm|n. The

conjectural identification given in [24] and [21] in our context is the following.
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Conjecture 4.1.5. We have the following identifications

V (Λi) = ker η = ηξFΛi (i ∈ I),

V ((1− a)Λ0 + aΛm) = F(1−a)Λ0+aΛm (a ∈ C \ Z),

V ((1− a)Λ0 + aΛm) = coker η = ξηF(1−a)Λ0+aΛm (a ∈ Z>0),

V ((1− a)Λ0 + aΛm) = ker η = ηξF(1−a)Λ0+aΛm (a ∈ Z≤0),

where V (Λ) is the irreducible highest weight U ver
q ĝlm|n-module with highest weight Λ.

4.2 Evaluation homomorphism

In this section, we construct an evaluation map from Em|n to a suitable completion

Ũq ĝlm|n of Uq ĝlm|n. We follow the strategy used in [15].

4.2.1 A completion of Uq ĝlm|n

For r ∈ Z×, let

βi,r =


q(m−n−i)r + qir

qr − q−r
(i ∈ Î+ ∪ Î1),

q(i−m−n)r + q(2m−i)r

qr − q−r
(i ∈ Î−).

(4.2.1)

The coefficients βi,r are solutions of the system∑
i∈Î

βi,r[rAi,j] = 0 (j ∈ I) .

Then, the elements hr =
∑

i∈Î βi,rhi,r ∈ Uq ĝlm|n commute with Uq ŝlm|n ⊂ Uq ĝlm|n

and satisfy

[hr, hs] = δr+s,0[(n−m)r]
1

r

cr − c−r

q − q−1
.

Set h(z) =
∑

k∈Z× hkz
−k.

We use a completion of Uq ĝlm|n, denoted by Ũq ĝlm|n, obtained by performing the

following two steps.
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Let Q̂m|n be the root lattice of ŝlm|n. The algebra Uq ĝlm|n contains the group

algebra C[Q̂m|n] of the root lattice Q̂m|n generated by ki = qαi , i ∈ Î. As a first step,

we extend it to the weight lattice in a straightforward way. Namely, let P be the

ŝlm|n weight lattice and C[P ] the corresponding group algebra spanned by qΛ,Λ ∈ P .

We have an inclusion of algebras C[Q̂m|n] ⊂ C[P ]. Let UP be the superalgebra

UP = Uq ĝlm|n ⊗C[Q̂m|n] C[P ] with the relations

qΛqΛ′ = qΛ+Λ′ , q0 = 1 , qΛx±i (z)q−Λ = q±〈Λ|αi〉x±i (z) (Λ,Λ′ ∈ P ).

For each i ∈ I, the superalgebra UP has a Z-grading given by

degi(x
±
j,k) = ±δi,j, degi(hj,r) = degi(q

Λ) = degi(c) = 0 (j ∈ I, k ∈ Z, r ∈ Z×).

There is also the homogeneous Z-grading given by

degδ(x
±
j,k) = k, degδ(hj,r) = r, degδ(q

Λ) = degδ(c) = 0 (j ∈ I, k ∈ Z, r ∈ Z×).

Thus, the superalgebra UP has a Zm+n-grading given by

deg(X) =
(
deg1(X), . . . , degm+n−1; degδ(X)

)
, X ∈ UP .

As the second step, we define Ũq ĝlm|n to be the completion of UP with respect

to the homogeneous grading in the positive direction. The elements of Ũq ĝlm|n are

series of the form
∑∞

j=s gj, with gj ∈ UP , degδ gj = j.

Lemma 4.2.1. We have an embedding

Uq ĝlm|n → Ũq ĝlm|n.

A Uq ĝlm|n-module V is admissible if for any v ∈ V there exist N = Nv > 0 such

that xv = 0 for all x ∈ Uq ĝlm|n with degδ x > N . Any admissible Uq ĝlm|n-module is

also an Ũq ĝlm|n-module.

A Uq ĝlm|n-module V is called highest weight module if V is generated by the

highest weight vector v:

V = Uq ĝlm|nv, eiv = 0, k+
0 (z)v = qλ0v, tjv = qλjv, i ∈ Î , j ∈ I.

Highest weight Uq ĝlm|n-modules are admissible.
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4.2.2 Fused currents

Introduce the following fused currents in Ũq ĝlm|n

X+(z) =

[
m+n−2∏
i=1

(
1− zi

zi+1

)]
x+
m+n−1(q−m+n−1c−1zm+n−1) · · ·x+

m+i(q
−m+ic−1zm+i) · · ·

· · ·x+
m(q−mc−1zm) · · · x+

i (q−ic−1zi) · · · x+
1 (q−1c−1z1)

∣∣∣
z1=···=zm+n−1=z

,

X−(z) =

[
m+n−2∏
i=1

(
1− zi+1

zi

)]
x−1 (q−1c−1z1) · · ·x−i (q−ic−1zi) · · ·x−m(q−mc−1zm) · · ·

· · ·x−m+i(q
−m+ic−1zm+i) · · · x−m+n−1(q−m+n−1c−1zm+n−1)

∣∣∣
z1=···=zm+n−1=z

,

k±(z) =
m∏
i=1

k±i (q−ic−1z)
m+n−1∏
j=m+1

k±j (q−2m+jc−1z).

See [14] for the details on fused currents.

The homomorphism v = vs, where s is standard, defined in the Lemma 2.1.2 maps

the element h0,r in the following way

v(h0,r) =
1

β0,r

γ0,rH0,r +
∑

i∈Î+∪{m}

(γi,r − βi,rdir)Hi,r +
∑
j∈Î−

(γj,r − βj,rd(2m−j)r)Hj,r

 ,

where {γi,r}i∈Î and {βi,r}i∈Î are the fixed solutions of the systems (2.1.22) and (4.2.1),

respectively.

For each r ∈ Z×, define

h̃0,r =
1

γ0,r

β0,rh0,r +
∑

i∈Î+∪{m}

(βi,r − γi,rd−ir)hi,r +
∑
j∈Î−

(βj,r − γj,rd−(2m−j)r)hj,r

 .

Thus, v(h̃0,r) = H0,r for all r ∈ Z×.
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Define A±r, B±r, r ∈ Z>0 by

Ar = − q − q
−1

cr − c−r

(
h̃0,r +

m∑
i=1

(c2qi)rhi,r +
m+n−1∑
j=m+1

(c2q2m−j)rhj,r

)
,

A−r =
q − q−1

cr − c−r
c−r

(
h̃0,−r +

m∑
i=1

q−irhi,−r +
m+n−1∑
j=m+1

q(−2m+j)rhj,−r

)
,

Br =
q − q−1

cr − c−r
cr

(
h̃0,r +

m∑
i=1

qirhi,r +
m+n−1∑
j=m+1

q(2m−j)rhj,r

)
,

B−r = − q − q
−1

cr − c−r

(
h̃0,−r +

m∑
i=1

(c−2q−i)rhi,−r +
m+n−1∑
j=m+1

(c−2q−2m+j)rhj,−r

)
,

and let A±(z) =
∑

r>0A±rz
∓r, B±(z) =

∑
r>0B±rz

∓r.

Let also K = q−Λm+n−1−Λ1 . We have Kx±i (z)K−1 = q∓(δ1,i+δm+n−1,i)x±i (z).

Theorem 4.2.2. Fix u ∈ C×. The following map is a surjective homomorphism of

superalgebras evu : Em|n → Ũq ĝlm|n with C2 = qm−n3 :

K 7→ 1, C 7→ c, Hver(z) 7→ h(z),

Ei(z) 7→ x+
i (diz), Fi(z) 7→ x−i (diz), K±i (z) 7→ k±i (diz) (i ∈ Î+ ∪ {m}),

Ej(z) 7→ x+
j (d2m−jz), Fj(z) 7→ x−j (d2m−jz), K±j (z) 7→ k±j (d2m−jz) (j ∈ Î−),

E0(z) 7→ u−1eA−(z)X−(z)eA+(z)K,

F0(z) 7→ uK−1eB−(z)X+(z)eB+(z).

Moreover, the evaluation map evu is graded. More precisely, if X ∈ Em|n and

deg(X) = (d0, d1, . . . , dm+n−1; dδ), then deg(evu(X)) = (d1 − d0, . . . , dm+n−1 − d0; dδ).

Proof. For simplicity, we fix u = 1 and write ev1 = ev. The relations with no index

0 are clear.
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For i ∈ Î , r > 0, we have

[hi,r, e
A+(z)] = 0,

[hi,r, e
A−(z)] = zreA

−(z)c−r

 ∑
j∈Î+∪Î1

[rAi,j]

r
q−jr +

∑
j∈Î−

[rAi,j]

r
q−(2m−j)r

 ,

[hi,r,X
−(z)] = −zrX−(z)c−r

 ∑
j∈Î+∪{m}

[rAi,j]

r
q−jr +

∑
j∈Î−

[rAi,j]

r
q−(2m−j)r

 .

Thus,

ev([Hi,r, E0(z)]) = zrc−r
[rAi,0]

r
ev(E0(z)).

The H-E relations with r < 0 and the H-F relations can be checked in the same way.

To check the E-E relations we first use (A.1) and (A.2) to get

ev(E0(z)Ei(w)) = eA
−(z)X−(z) ev(Ei(w))eA

+(z)K
(
z − q−1

3 w

z − q1w

)δi,1
q−δi,m+n−1−δi,1 ,

ev(Ei(w)E0(z)) = eA
−(z) ev(Ei(w))X−(z)eA

+(z)K
(
w − q3z

w − q−1
1 z

)δi,m+n−1

.

For i 6= 1,m+ n− 1, ev([E0(z), Ei(w)]) = 0 by (A.13).

For i = 1, the E-E relation reduces to

(
q−1z − dw

)
eA
−(z)[X−(z)x+

1 (dw)]eA
+(z)K = 0,

which follows from (A.18). The case i = m + n − 1 is similar. The case i = 0 is

checked using (A.3), (A.4) and (A.9).

The F -F relations are verified by the same argument.

For the E-F relations

ev([E0(z), Fi(w)]) = 0 (i 6= 0),

we proceed as in the E-E case by bringing A−(z) to the left and A+(z) to the right

using (A.3) and (A.4). The relations then follow from (A.13), (A.16) and (A.17). The

same is done for ev([Ei(z), F0(w)]) = 0 (i 6= 0).
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For the i = 0 case, using (A.1),(A.6) and (A.10), we get

ev(E0(z)F0(w)) = eA
−(z)eB

−(w)X−(z)X+(w)eA
+(z)eB

+(w),

and similarly

ev(F0(w)E0(z)) = eA
−(z)eB

−(w)X+(w)X−(z)eA
+(z)eB

+(w).

By (A.20),

ev([E0(z), F0(w)]) =
eA
−(z)eB

−(w)

q − q−1

(
δ
(
c
w

z

)
k−(w)− δ

(
c
z

w

)
k+(z)

)
eA

+(z)eB
+(w).

The relation (2.1.7) with i = j = 0 follows from

eA
−(z)eB

−(cz) = k̃−0 (z), eA
−(cw)eB

−(w) = k0(k−(w))−1,

eA
+(cw)eB

+(w) = k̃+
0 (w), eA

+(z)eB
+(cz) = k−1

0 (k+(z))−1,

where k̃±0 = exp
(
±(q − q−1)

∑
r>0 h̃0,±rz

∓r
)

.

Finally, we check the Serre relations.

For the relation

ev
(
Symz1,z2 [E1(z1), [E1(z2), E0(w)]q]q−1

)
= 0

we use (A.1) and (A.18) to obtain

ev (E1(z1)E0(w)E1(z2)) = q

(
z2 − q3w

z2 − q−1
1 w

)
ev (E1(z1)E1(z2)E0(w)) ,

ev (E0(w)E1(z1)E1(z2)) = q2

(
z1 − q3w

z1 − q−1
1 w

)(
z2 − q3w

z2 − q−1
1 w

)
ev (E1(z1)E1(z2)E0(w)) .

Thus,

Symz1,z2(ev [E1(z1), [E1(z2), E0(w)]q]q−1) =

(1− q2)w

q3(w − q1z1)(w − q1z2)
Symz1,z2

(
(z1 − q2z2) ev (E1(z1)E1(z2)E0(w))

)
= 0,

where the last equality follows from the quadratic relation for x+
1 (dz1)x+

1 (dz2).

The Serre relations in all the remaining cases are checked in the same way.

The statement about grading is straightforward.

By Theorem 4.2.2, any admissible Uq ĝlm|n-module of generic level c can be pulled

back by evu to a representation of Em|n with qm−n3 = c2 and q2 = q2. Such Em|n
modules are called evaluation modules.
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[30] A. Neguţ. Affine Laumon spaces and a conjecture of Kuznetsov.
arXiv:1811.01011 [math.AG].
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Commutation relations

In this appendix, we collect some useful formulas for commutation relations of various

currents.

Lemma A.0.1. For i ∈ I, we have

eA
+(z)x+

i (dw)e−A
+(z) = x+

i (dw)

(
z − q−1

3 w

z − q1w

)δi,1
, (A.1)

e−A
−(z)x+

i (dm−n+1w)eA
−(z) = x+

i (dm−n+1w)

(
w − q3z

w − q−1
1 z

)δi,m+n−1

, (A.2)

eA
+(z)x−i (dw)e−A

+(z) = x−i (dw)

(
z − cq1w

z − cq−1
3 w

)δi,1
, (A.3)

e−A
−(z)x−i (dm−n+1w)eA

−(z) = x−i (dm−n+1w)

(
w − cq−1

1 z

w − cq3z

)δi,m+n−1

, (A.4)

eB
+(z)x+

i (dm−n+1w)e−B
+(z) = x+

i (dm−n+1w)

(
z − c−1q1w

z − c−1q−1
3 w

)δi,m+n−1

, (A.5)

e−B
−(z)x+

i (dw)eB
−(z) = x+

i (dw)

(
w − c−1q−1

1 z

w − c−1q3z

)δi,1
, (A.6)

eB
+(z)x−i (dm−n+1w)e−B

+(z) = x−i (dm−n+1w)

(
z − q−1

3 w

z − q1w

)δi,m+n−1

, (A.7)

e−B
−(z)x−i (dw)eB

−(z) = x−i (dw)

(
w − q3z

w − q−1
1 z

)δi,1
, (A.8)

eA
+(z)eA

−(w) = eA
−(w)eA

+(z) (z − w)2

(z − q2w)(z − q−1
2 w)

, (A.9)

eA
+(z)eB

−(w) = eB
−(w)eA

+(z) (z − cq2w)(z − c−1q−1
2 w)

(z − cw)(z − c−1w)
, (A.10)

eB
+(z)eB

−(w) = eB
−(w)eB

+(z) (z − w)2

(z − q2w)(z − q−1
2 w)

, (A.11)

eB
+(w)eA

−(z) = eA
−(z)eB

+(w) (z − c−1q2w)(z − cq−1
2 w)

(z − cw)(z − c−1w)
. (A.12)
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Lemma A.0.2. The fused currents X±(z) satisfy

[x±i (z),X±(w)] = [x±i (z),X∓(w)] = 0 (i 6= 1,m+ n− 1), (A.13)

q(w − c−1q3z)X+(z)x+
1 (dw) = (w − c−1q−1

1 z)x+
1 (dw)X+(z), (A.14)

q(z − c−1q1w)X+(z)x+
m+n−1(dm−n+1w) = (z − c−1q−1

3 w)x+
m+n−1(dm−n+1w)X+(z),

(A.15)

q(z − cq1w)X−(z)x−1 (dw) = (z − cq−1
3 w)x−1 (dw)X−(z), (A.16)

q(w − cq3z)X−(z)x−m+n−1(dm−n+1w) = (w − cq−1
1 z)x−m+n−1(dm−n+1w)X−(z), (A.17)

(z − q−1
3 w)[X−(z), x+

1 (dw)] = (w − q3z)[X−(z), x+
m+n−1(dm−n+1w)] = 0, (A.18)

(w − q3z)[X+(z), x−1 (dw)] = (z − q−1
3 w)[X+(z), x−m+n−1(dm−n+1w)] = 0, (A.19)

[X+(w),X−(z)] =
1

q − q−1

(
−δ
(
c
z

w

)
k+(z) + δ

(
c
w

z

)
k−(w)

)
, (A.20)

[X±(z),X±(w)] = 0. (A.21)
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