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ABSTRACT 

Methane (CH4) is the second most powerful greenhouse gas (GHG) behind carbon dioxide 

(CO2), and is able to trap a large amount of long-wave radiation, leading to surface warming. 

Carbon monoxide (CO) plays an important role in controlling the oxidizing capacity of the 

atmosphere by reacting with OH radicals that affect atmospheric CH4 dynamics. Terrestrial 

ecosystems play an important role in determining the amount of these gases into the atmosphere. 

However, global quantifications of CH4 emissions from wetlands and its sinks from uplands, and 

CO exchanges between land and the atmosphere are still fraught with large uncertainties, 

presenting a big challenge to interpret complex atmospheric CH4 dynamics in recent decades. In 

this dissertation, I apply modeling approaches to estimate the global CH4 and CO exchanges 

between land ecosystems and the atmosphere and analyze how they respond to contemporary and 

future climate change. 

Firstly, I develop a process-based biogeochemistry model embedded in Terrestrial 

Ecosystem Model (TEM) to quantify the CO exchange between soils and the atmosphere at the 

global scale (Chapter 2). Parameterizations were conducted by using the CO in situ data for eleven 

representative ecosystem types. The model is then extrapolated to global terrestrial ecosystems. 

Globally soils act as a sink of atmospheric CO. Areas near the equator, Eastern US, Europe and 

eastern Asia will be the largest sink regions due to their optimum soil moisture and high 

temperature. The annual global soil net flux of atmospheric CO is primarily controlled by air 

temperature, soil temperature, SOC and atmospheric CO concentrations, while its monthly 

variation is mainly determined by air temperature, precipitation, soil temperature and soil moisture.  
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Secondly, to better quantify the global CH4 emissions from wetlands and their uncertainties, 

I revise, parameterize and verify a process-based biogeochemical model for methane for various 

wetland ecosystems (Chapter 3). The model is then extrapolated to the global scale to quantify the 

uncertainty induced from four different types of uncertainty sources including parameterization, 

wetland type distribution, wetland area distribution and meteorological input. Spatially, the 

northeast US and Amazon are two hotspots of CH4 emissions, while consumption hotspots are in 

the eastern US and eastern China. The relationships between both wetland emissions and upland 

consumption and El Niño and La Niña events are analyzed. This study highlights the need for more 

in situ methane flux data, more accurate wetland type and area distribution information to better 

constrain the model uncertainty. 

Thirdly, to further constrain the global wetland CH4 emissions, I develop a predictive model 

of CH4 emissions using an artificial neural network (ANN) approach and available field 

observations of CH4 fluxes (Chapter 4). Eleven explanatory variables including three transient 

climate variables (precipitation, air temperature and solar radiation) and eight static soil property 

variables are considered in developing the ANN models. The models are then extrapolated to the 

global scale to estimate monthly CH4 emissions from 1979 to 2099. Significant interannual and 

seasonal variations of wetland CH4 emissions exist in the past four decades, and the emissions in 

this period are most sensitive to variations in solar radiation and air temperature. This study 

reduced the uncertainty in global CH4 emissions from wetlands and called for better characterizing 

variations of wetland areas and water table position and more long-term observations of CH4 fluxes 

in tropical regions. 

Finally, in order to study a new pathway of CH4 emissions from palm tree stem, I develop a 

two-dimensional diffusion model. The model is optimized using field data of methane emissions 
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from palm tree stems (Chapter 5). The model is then extrapolated to Pastaza-Marañón foreland 

basin (PMFB) in Peru by using a process-based biogeochemical model. To our knowledge, this is 

among the first efforts to quantify regional CH4 emissions through this pathway. The estimates 

can be improved by considering the effects of changes in temperature, precipitation and radiation 

and using long-period continuous flux observations. Regional and global estimates of CH4 

emissions through this pathway can be further constrained using more accurate palm swamp 

classification and spatial distribution data of palm trees at the global scale. 
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 INTRODUCTION 

Methane (CH4) is the second most powerful greenhouse gas behind CO2 and has contributed 

to about 20% of the observed warming since pre-industrial times (Ciais et al., 2013). According to 

the latest Intergovernmental Panel on Climate Change report (IPCC), the global warming potential 

(GWP) of CH4 is 28, about 25 times that of CO2 on a 100-year time period (IPCC AR5, Myhre et 

al., 2013). Atmospheric CH4 concentrations have risen from pre-industrial levels of 715 parts per 

billion (ppb) since the 1800s (Etheridge et al., 1998; MacFarling Meure et al., 2006) to over 1800 

ppb at the present. The increase of atmospheric CH4 concentrations has contributed ~23% (~0.62 

Wm-2) to the additional radiative forcing accumulated in the lower atmosphere since 1750 

(Etminan, et al., 2016). The growth rate of atmospheric CH4 has decreased, however, from 

approximately 13 ppb yr-1 during the early 1980s to near zero between 1999 and 2006. Since 2007, 

the growth rate of atmospheric CH4 has risen again (Dlugokencky et al., 2009; Nisbet, 

Dlugokencky, & Bousquet, 2014; Saunois et al., 2016; Schaefer et al., 2016; Zhang et al., 2018). 

The climatic sensitivity of biogenic CH4 sources has significantly influenced the inter-annual 

variability of atmospheric CH4 and the global wetland contributes 60–80% of natural CH4 

emissions (Quiquet et al., 2015; Hopcroft et al., 2017) and this large role is likely to persist into 

the future (Zhang et al., 2017). Therefore, it is important to improve existing CH4 emission 

quantifications to better understand the role of global CH4 cycling in the global climate system 

(Zhuang et al., 2004; Chen et al., 2013; Kirschke et al., 2013; Nisbet et al., 2014; Zhu et al., 2014). 

Carbon monoxide (CO) plays an important role in controlling the oxidizing capacity of the 

atmosphere by reacting with OH radicals and can directly and indirectly influence the fate of 

critical greenhouse gases such as CH4 and ozone (O3) (Logan et al., 1981; Crutzen, 1987; Khalil 
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& Rasmussen, 1990; Prather et al., 1995; Prather & Ehhalt, 2001; Tan and Zhuang, 2012). 

Although CO itself absorbs only a limited amount of infrared radiation from the Earth, the 

cumulative indirect radiative forcing of CO may be even larger than that of the third powerful 

greenhouse gas, nitrous oxide (N2O, Myhre et al., 2013). Current estimates of global CO emissions 

from both anthropogenic and natural sources range from 1550 to 2900 Tg CO yr -1, which are 

mainly from anthropogenic and natural direct emissions and from the oxidation of methane and 

other Volatile Organic Compounds (VOC) (Prather et al., 1995; Khalil et al., 1999; Bergamaschi 

et al., 2000; Prather & Ehhalt, 2001, Stein et al., 2014). Chemical consumption of CO by 

atmospheric OH and the biological consumption of CO by soil microbes are two major sinks of 

the atmospheric CO (Conrad, 1988; Lu & Khalil, 1993; Yonemura et al., 2000; Whalen & 

Reeburgh, 2001). Annually, 10-25% of total earth surface CO emissions were consumed by soils 

(Sanhueza et al., 1998; King, 1999a; Chan & Steudler, 2006). Thus, the better quantification of 

soil CO consumption could improve the atmospheric CO and OH estimate and further improve the 

quantification of atmospheric CH4. 

To date, three approaches have been used in estimating CH4 and CO exchanges between 

land and the atmosphere across different scales over the last few decades: 1) a bottom-up 

extrapolation approach by using simple empirical or statistical models and actual gas flux 

measurements; 2) a bottom-up approach with process-based models parameterized using flux 

measurements to quantify CH4 and CO dynamics, and 3) a top-down approach, which uses 

atmospheric inverse models to estimate the distribution of CH4 and CO sources and sinks by 

incorporating atmospheric observations, an atmospheric transport model and prior estimates of 

source distributions and magnitudes (Arneth et al., 2010; Anderson et al., 2010; Kirschke et al., 

2013; Zhu et al., 2014; Saunois, et al., 2019). Although top-down approach is widely thought to 
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be more accurate than bottom-up approach, the current top-down approach may inadvertently 

include some incomplete observations and error amplifications during inverse modelling processes 

(Chen and Prinn, 2005; Stevenson et al., 2006; Ciais et al., 2013). Process-based models can be 

used to improve CH4 and CO considering the effects of complex interactions between soil, 

vegetation, and hydrology on production and consumption processes.  

Specifically, for CH4 estimation, although great efforts have been made on estimating global 

natural wetland CH4 emissions in all three kinds of approaches, current quantifications still have 

large uncertainties. The Global Carbon Project (GCP) and the Wetland and Wetland CH4 Inter-

comparison of Models Project (WETCHIMP) estimated the global CH4 emission from natural 

wetlands, ranging from 102 to 284 Tg CH4 yr-1 during 2000-2017 (Kirschke et al., 2013; Melton 

et al., 2013; Saunois et al., 2016; Saunois et al., 2019). The uncertainty in these estimates could 

result from many sources including model structures, assumptions, parameterization, and choice 

of forcing data. Among these uncertainty sources, the paucity of CH4 flux measurements could be 

an important factor. The lack of sufficient measurements of CH4 fluxes and related environmental 

factors may limit the understanding of ecological processes in specific wetland ecosystems, the 

model assumptions, and the parameterization of models. In addition to the large uncertainty present 

in wetland CH4 emissions, the sensitivity of CH4 fluxes to environmental controls is not well 

understood, which also limits explicit representations of many mechanistic processes in models.  

For instant, undisturbed tropical wetlands emit 85-184 Tg of CH4 each year, accounting for two 

thirds of the global emissions from wetlands (Sjögersten, 2014). Recent studies indicate that plant 

stems are a particularly efficient means for releasing CH4 from wetland soils because the pathway 

bypasses highly active populations of methanotrophic bacteria situated at the oxic-anoxic interface 

in the subsurface (Pangala et al., 2013, 2017). However, due to the lack of CH4 flux observations 
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and understanding of palm tree stem CH4 emission process, tropical region estimates of CH4 

emissions are challenging (Sjögersten, 2014). During the past decades, although most of the field 

measurements of CH4 fluxes were made in high latitude regions, some measurements in temperate 

or tropical region started to accumulate. Currently, the in situ CH4 flux data are accumulating and 

the coordination networks for ecosystem-scale CH4 measurements at the global scale have been 

founded (e.g. FLUXNET, Knox et al., 2019). In addition, Artificial neural networks (ANN), one 

kind of bottom-up approaches, are among the most intelligent statistical methods and are widely 

used for a range of applications spanning across various scientific fields including Earth ecosystem 

modeling. ANNs have proved as robust surrogate models with flexible mathematical structure and 

is capable of identifying complex nonlinear behavior between model input and output (Delon et 

al., 2007; Dupont et al., 2008; Zhu et al., 2013; Liu et al., 2016; Bomers et al., 2019). With the 

CH4 flux data and new techniques, it is the time to improve the estimate of wetland CH4 emissions 

at the global scale. 

For soil CO dynamics, all existing estimates have large uncertainties and range from -640 to 

-16 Tg CO yr-1 (negative values represent the uptake from the atmosphere to soils, Sanhueza et al., 

1998; King, 1999; Bergamaschi et al., 2000). Similarly, the estimates of CO dry deposition 

velocities also have large uncertainties and range from 0 to 4.0 mm s−1, here positive values 

represent deposition to soils (King, 1999a; Castellanos et al., 2011). Most top-down atmospheric 

models applied a dry deposition scheme based on the resistance model of Wesely (1989). Only a 

few models (MOZART-4, Emmons et al., 2010; CAM-chem, Lamarque et al., 2012) have 

extended their dry deposition schemes with a parameterization for CO and H2 uptake through 

oxidation by soil microbes, following the work of Sanderson et al. (2003), which was based on 

extensive measurements from Yonemura et al. (2000). Current bottom-up CO modeling 
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approaches are mostly based on a limited number of CO in situ observations or laboratory studies 

to quantify regional and global soil consumption (Potter et al., 1996; Sanhueza et al., 1998; Khalil 

et al., 1999; King, 1999a; Bergamaschi et al., 2000; Prather & Ehhalt, 2001). To our knowledge, 

no detailed process-based model of soil-atmospheric exchange of CO has been published in the 

recent 15 years. The first study to report long-term and continuous field measurements of CO flux 

over grasslands using a micrometeorological eddy covariance (EC) method is Pihlatie et al. (2016). 

Laboratory studies on soil CO production and consumption processes have published in recent 

years, indicating that CO can be consumed by soil via microbial activities (Whalen and Reeburgh, 

2001; King and Weber, 2007), and can be produced from soils by abiotic processes such as 

thermal- and photo-degradation of organic matter or plant materials (Conrad and Seiler, 1985b; 

Tarr et al., 1995; Schade et al., 1999; Derendorp et al., 2011; Lee et al., 2012; van Asperen et al., 

2015; Fraser et al., 2015) ), except for a few cases of anaerobic formation. CO in situ data 

accumulation and better understanding of consumption and production processes present the 

possibility to develop a better process-based bottom-up biogeochemical model and use it to better 

estimate global CO soil dynamics. 

In this dissertation, I applied modeling approaches to assess global CH4 and CO exchanges 

between land and the atmosphere under both contemporary and future climate conditions. I first 

developed a CO dynamics module (CODM) embedded in a process-based biogeochemistry model, 

the Terrestrial Ecosystem Model (TEM) to investigate global soil CO dynamics (Chapter 2). Then, 

I used existing flux data at multiple sites to improve our revised methane biogeochemistry model 

TEM and extrapolated it to global scale to quantify CH4 emissions from wetland and consumptions 

into upland and locate their uncertainty sources (Chapter 3). Moreover, I developed and used a 

data-driven ANN approach to quantify wetland CH4 emissions from wetlands to further constrain 
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the uncertainty (Chapter 4). Finally, I developed and used a two-dimensional (2D) diffusion model 

by considering horizontal and vertical transport of gases inside tree stem to quantify CH4 fluxes 

from palm tree stem in Amazon Basin (Chapter 5). 
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 GLOBAL SOIL CONSUMPTION OF ATMOSPHERIC 

CARBON MONOXIDE: AN ANALYSIS USING A PROCESS-BASED 

BIOGEOCHEMISTRY MODEL 

2.1 Abstract 

Carbon monoxide (CO) plays an important role in controlling the oxidizing capacity of the 

atmosphere by reacting with OH radicals that affect atmospheric methane (CH4) dynamics. We 

develop a process-based biogeochemistry model to quantify the CO exchange between soils and 

the atmosphere with a 5-minute internal time step at the global scale. The model is parameterized 

using the CO flux data from the field and laboratory experiments for eleven representative 

ecosystem types. The model is then extrapolated to global terrestrial ecosystems using monthly 

climate forcing data. Global soil gross consumption, gross production, and net flux of the 

atmospheric CO are estimated to be from -197 to -180, 34 to 36, and -163 to -145   Tg CO yr-1 

(1Tg = 1012 g), respectively, when the model is driven with satellite-based atmospheric CO 

concentration data during 2000-2013. Tropical evergreen forest, savanna and deciduous forest 

areas are the largest sinks at 123 Tg CO yr-1. The soil CO gross consumption is sensitive to air 

temperature and atmospheric CO concentration while the gross production is sensitive to soil 

organic carbon (SOC) stock and air temperature. By assuming that the spatially-distributed 

atmospheric CO concentrations (~128 ppbv) are not changing over time, the global mean CO net 

deposition velocity is estimated to be 0.16-0.19 mm s-1 during the 20th century. Under the future 

climate scenarios, the CO deposition velocity will increase at a rate of 0.0002-0.0013 mm s-1 yr-1 

during 2014-2100, reaching 0.20-0.30 mm s-1 by the end of the 21st century, primarily due to the 

increasing temperature. Areas near the equator, Eastern US, Europe and eastern Asia will be the 

largest sinks due to optimum soil moisture and high temperature. The annual global soil net flux 
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of atmospheric CO is primarily controlled by air temperature, soil temperature, SOC and 

atmospheric CO concentrations, while its monthly variation is mainly determined by air 

temperature, precipitation, soil temperature and soil moisture. 

2.2 Introduction 

Carbon monoxide (CO) plays an important role in controlling the oxidizing capacity of the 

atmosphere by reacting with OH radicals (Logan et al., 1981; Crutzen, 1987; Khalil & Rasmussen, 

1990; Prather et al., 1995; Prather & Ehhalt, 2001). CO in the atmosphere can directly and 

indirectly influence the fate of critical greenhouse gases such as methane (CH4) and ozone (O3) 

(Tan and Zhuang, 2012). Although CO itself absorbs only a limited amount of infrared radiation 

from the Earth, the cumulative indirect radiative forcing of CO may be even larger than that of the 

third powerful greenhouse gas, nitrous oxide (N2O, Myhre et al., 2013). Current estimates of global 

CO emissions from both anthropogenic and natural sources range from 1550 to 2900 Tg CO yr-1, 

which are mainly from anthropogenic and natural direct emissions and from the oxidation of 

methane and other Volatile Organic Compounds (VOC) (Prather et al., 1995; Khalil et al., 1999; 

Bergamaschi et al., 2000; Prather & Ehhalt, 2001, Stein et al., 2014). Chemical consumption of 

CO by atmospheric OH and the biological consumption of CO by soil microbes are two major 

sinks of the atmospheric CO (Conrad, 1988; Lu & Khalil, 1993; Yonemura et al., 2000; Whalen 

& Reeburgh, 2001). 

Soils are globally considered as a major sink for CO due to microbial activities (Whalen and 

Reeburgh, 2001; King and Weber, 2007). A diverse group of soil microbes including 

carboxydotrophs, methanotrophs and nitrifiers are capable of oxidizing CO (King and Weber, 

2007). Annually, 10-25% of total earth surface CO emissions were consumed by soils (Sanhueza 
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et al., 1998; King, 1999a; Chan & Steudler, 2006). Potter et al. (1996) reported the global soil 

consumption to be from -50 to -16 Tg CO yr-1 (negative values represent the uptake from the 

atmosphere to soil), by using a single-box model over the upper 5 cm of soils. All existing 

estimates have large uncertainties and range from -640 to -16 Tg CO yr-1 (Sanhueza et al., 1998; 

King, 1999; Bergamaschi et al., 2000). Similarly, the estimates of CO dry deposition velocities 

also have large uncertainties and range from 0 to 4.0 mm s−1, here positive values represent 

deposition to soils (King, 1999a; Castellanos et al., 2011). Soils also produce CO mainly via abiotic 

processes such as thermal- and photo-degradation of organic matter or plant materials (Conrad and 

Seiler, 1985b; Tarr et al., 1995; Schade et al., 1999; Derendorp et al., 2011; Lee et al., 2012; van 

Asperen et al., 2015; Fraser et al., 2015, Pihlatie et al., 2016), except for a few cases of anaerobic 

formation. Photo-degradation is identified as radiation-dependent degradation due to absorbing 

radiation (King et al., 2012). Thermal-degradation is identified as the temperature-dependent 

degradation of carbon in the absence of radiation and possibly oxygen (Derendorp et al., 2011; 

Lee et al., 2012; van Asperen et al., 2015; Pihlatie et al., 2016). These major soil CO production 

processes, together with soil CO consumption processes, have not been adequately considered in 

global soil CO budget estimates.  

To date, most top-down atmospheric models applied a dry deposition scheme based on the 

resistance model of Wesely (1989). Such schemes provided a wide range of dry deposition 

velocities (Stevenson et al., 2006). Only a few models (MOZART-4, Emmons et al., 2010; CAM-

chem, Lamarque et al., 2012) have extended their dry deposition schemes with a parameterization 

for CO and H2 uptake through oxidation by soil microbes, following the work of Sanderson et al. 

(2003), which was based on extensive measurements from Yonemura et al. (2000). Potter et al. 

(1996) developed a bottom-up model to simulate CO consumption and production at the global 
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scale. Their model is a single box model, only considers top 5 cm depth of soil and does not have 

explicit microbial factors, therefore might have underestimated CO consumption (Potter et al., 

1996; King, 1999a). Current bottom-up CO modeling approaches are mostly based on a limited 

number of CO in situ observations or laboratory studies to quantify regional and global soil 

consumption (Potter et al., 1996; Sanhueza et al., 1998; Khalil et al., 1999; King, 1999a; 

Bergamaschi et al., 2000; Prather & Ehhalt, 2001). To our knowledge, no detailed process-based 

model of soil-atmospheric exchange of CO has been published in the recent 15 years. One reason 

is that there is an incomplete understanding of biological processes of uptake (King & Weber, 

2007; Vreman et al., 2011; He and He, 2014; Pihlatie et al., 2016). Another reason is that there is 

a lack of long-term CO flux measurements for different ecosystem types to calibrate and evaluate 

the models. CO flux measurements are mostly from short-term field observations or laboratory 

experiments (e.g. Conrad and Seiler, 1985a; Funk et al., 1994; Tarr et al., 1995; Zepp et al., 1997; 

Kuhlbusch et al., 1998; Moxley and Smith, 1998; Schade et al., 1999; King and Crosby, 2002; 

Varella et al., 2004; Lee et al., 2012; Bruhn et al., 2013; van Asperen et al., 2015). The first study 

to report long-term and continuous field measurements of CO flux over grasslands using a 

micrometeorological eddy covariance (EC) method is Pihlatie et al. (2016).   

To improve the quantification of the global soil CO budget for the period 2000-2013 and the 

CO deposition velocity for the 20th and 21st centuries, this study developed a CO dynamics 

module (CODM) embedded in a process-based biogeochemistry model, the Terrestrial Ecosystem 

Model (TEM) (Zhuang et al., 2003, 2004, 2007). CODM was then calibrated and evaluated using 

laboratory experiments and field measurements for different ecosystem types. The atmospheric 

CO concentration data from MOPITT (Gille, 2013) were used to drive model simulations from 

2000 to 2013. A set of century-long simulations of 1901-2100 were also conducted using the 
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atmospheric CO concentrations estimated with an empirical function (Badr & Probert, 1994; Potter 

et al., 1996).  Finally, the effects of multiple forcings on the global CO consumption and production, 

including the changes of climate and atmospheric CO concentrations at the global scale were 

evaluated with the model. 

2.3 Method 

2.3.1 Overview 

We first developed a soil CO dynamics module (CODM) on a daily time step that considers: 

(1) the soil-atmosphere CO exchange and diffusion process between soil layers, (2) the 

consumption by soil microbial oxidation, (3) the production by soil chemical oxidation, and (4) 

the effects of temperature, soil moisture, soil CO substrate and surface atmospheric CO 

concentration on these processes. Second, we used the observed soil temperature and moisture to 

evaluate TEM hydrology module and the soil thermal module in order to estimate soil physical 

variables. Then we used the data from laboratory experiments and CO flux measurements to 

parameterize the model using the Shuffled Complex Evolution (SCE-UA) method (Duan et al., 

1993). Finally, the model was extrapolated to the globe at a 0.5° by 0.5° resolution. We conducted 

three sets of model experiments to investigate the impact of climate and atmospheric CO 

concentrations on soil CO dynamics: 1) Simulations for 2000-2013 with MOPITT satellite 

atmospheric CO concentration data; 2) Simulations for 1901-2100 with constant atmospheric CO 

concentrations estimated from an empirical function and the historical climate data (1901-2013) 

and three future climate scenarios (2014-2100); and 3) Eight sensitivity simulations by increasing 

and decreasing a) constant CO surface concentrations by 30%, b) SOC  by 5%, c) precipitation by 

20% and d) air temperature by 3°C for each pixel, respectively, while holding other forcing data 

as they were, during 1999-2000. 
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2.3.2 Carbon Monoxide Dynamics Module (CODM) 

Embedded in TEM (Figure 2.1), CODM is mainly driven by: (1) soil organic carbon 

availability based on a carbon and nitrogen dynamics module (CNDM) (Zhuang et al., 2003); (2) 

soil temperature profile from a soil thermal module (STM) (Zhuang et al., 2001, 2003); and (3) 

soil moisture profile from a hydrological module (HM) (Bonan, 1996; Zhuang et al, 2004). The 

net exchange of CO between the atmosphere and soil is determined by the mass balance approach 

(net flux = total production – total oxidation – total soil CO concentration change). According to 

previous studies, we separated active soils (top 30 cm) for CO consumption and production into 1 

cm thickness layers (King, 1999a, 1999b; Whalen & Reeburgh, 2001; Chan & Steudler, 2006). 

Between the soil layers, the changes of CO concentrations were calculated as: 

𝜕(𝐶(𝑡, 𝑖))

𝜕𝑡
=

𝜕

𝜕𝑧
(𝐷(𝑡, 𝑖)

𝜕(𝐶(𝑡, 𝑖))

𝜕𝑧
) + 𝑃(𝑡, 𝑖) − 𝑂(𝑡, 𝑖)        (2.1) 

Where 𝐶(𝑡, 𝑖) is the CO concentration (mg m-3) in layer 𝑖 and at time 𝑡. 𝑧 is the depth of the soil 

(m). 𝐷(𝑡, 𝑖) is the diffusion coefficient (m2 s-1) for layer 𝑖.  𝑃(𝑡, 𝑖) is the CO production rate (mg 

m-3 s-1) and 𝑂(𝑡, 𝑖) is the CO consumption rate (mg m-3 s-1). 𝐷(𝑡, 𝑖) is calculated using the method 

from Potter et al. (1996), which is a function of soil temperature, soil texture and soil moisture. 

The upper boundary condition is the atmospheric CO concentration, which is estimated with an 

empirical function of latitude (Potter et al., 1996) or directly measured by the MOPITT satellite 

during 2000-2013. The lower boundary condition is assumed to have no diffusion exchange with 

the layer underneath. This partial differential equation (PDE) is solved using the Crank-Nicolson 

method for less time-step-sensitive solution.  

The CO consumption was modeled in unsaturated soil pores as: 

𝑂(𝑡, 𝑖) = 𝑉𝑚𝑎𝑥 ∙ 𝑓1(𝐶(𝑡, 𝑖)) ∙ 𝑓2(𝑇(𝑡, 𝑖)) ∙ 𝑓3(𝑀(𝑡, 𝑖))       (2.2) 
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Where 𝑉𝑚𝑎𝑥  is the ecosystem specific maximum oxidation rate and was estimated previously 

ranging from 0.3 to 11.1 µg CO g-1 h-1 for different ecosystems (Whalen & Reeburgh, 2001).  

𝑓𝑖  represents the effects of soil CO concentration 𝐶(𝑡, 𝑖), temperature 𝑇(𝑡, 𝑖) and moisture 𝑀(𝑡, 𝑖) 

on the CO soil consumption. Considering the CO consumption as the result of microbial activities, 

we calculated  𝑓1(𝐶(𝑡, 𝑖)) , 𝑓2(𝑇(𝑡, 𝑖)) and 𝑓3(𝑀(𝑡, 𝑖)) in a similar way to Zhuang et al. (2004): 

𝑓1(𝐶(𝑡, 𝑖)) =
𝐶(𝑡, 𝑖)

𝐶(𝑡, 𝑖) + 𝑘𝐶𝑂
        (2.2.1) 

𝑓2(𝑇(𝑡, 𝑖)) = 𝑄10

𝑇(𝑡,𝑖)−𝑇𝑟𝑒𝑓

10             (2.2.2) 

𝑓3(𝑀(𝑡, 𝑖)) =
(𝑀(𝑡, 𝑖) − 𝑀𝑚𝑖𝑛)(𝑀(𝑡, 𝑖) − 𝑀𝑚𝑎𝑥)

(𝑀(𝑡, 𝑖) − 𝑀𝑚𝑖𝑛)(𝑀(𝑡, 𝑖) − 𝑀𝑚𝑎𝑥) − (𝑀(𝑡, 𝑖) − 𝑀𝑜𝑝𝑡)2
         (2.2.3) 

Where 𝑓1(𝐶(𝑡, 𝑖))  is a multiplier that enhances the oxidation rate with increasing soil CO 

concentrations using a Michaelis-Menten function with a half-saturation constant 𝑘𝐶𝑂, and their 

values were previously estimated ranging from 5 to 51 µl CO l -1 for different ecosystems (Whalen 

& Reeburgh, 2001); 𝑓2(𝑇(𝑡, 𝑖)) is a multiplier that enhances the CO oxidation rate with increasing 

soil temperature using a Q10 function with 𝑄10 coefficients (Whalen & Reeburgh, 2001). 𝑇𝑟𝑒𝑓 is 

the reference temperature, units are °C (Zhuang et al., 2004, 2013). 𝑓3(𝑀(𝑡, 𝑖)) is a multiplier to 

estimate the biological limiting effect that diminishes the CO oxidation rates if the soil moisture is 

not at an optimum level (𝑀𝑜𝑝𝑡). 𝑀𝑚𝑖𝑛, 𝑀𝑚𝑎𝑥 and 𝑀𝑜𝑝𝑡 are the minimum, maximum and optimum 

volumetric soil moistures of oxidation reaction, respectively. Equation (2.2.2) will overestimate 

the CO consumption at high temperature because in reality the CO consumption will decrease 

when temperature is higher than optimum temperature, while 𝑓2 will keep increasing with rising 

temperature. However, the CO consumption is constrained by the CO production, and equation 

(2.1) is used to represent this constraint.  
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We modeled the CO production rate (𝑃(𝑡, 𝑖)) as a process of chemical oxidation constrained 

by the soil organic carbon (SOC) decay (Conrad and Seiler,1985; Potter et al. 1996; Jobbagy & 

Jackson, 2000; van Asperen et al., 2015):  

𝑃(𝑡, 𝑖) = 𝑃𝑟(𝑡, 𝑖) ∙ 𝐸𝑆𝑂𝐶 ∙ 𝐶𝑆𝑂𝐶(𝑡) ∙ 𝐹𝑆𝑂𝐶             (3) 

Where 𝑃𝑟 (𝑡, 𝑖) is a reference soil CO production rate which has been normalized to the rate at 

reference temperature (the production rate at temperature (𝑡, 𝑖) divided by the production rate at 

the reference temperature), which is affected by soil moisture and soil temperature (Conrad and 

Seiler,1985; van Asperen et al., 2015). 𝐸𝑆𝑂𝐶 is an estimated nominal CO production factor of 3.5 

± 0.9 X 10-9 mg CO m-2 s-1 per g SOC m-2 (to 30 cm soil depth) (Potter et al., 1996). 𝐶𝑆𝑂𝐶(𝑡) is a 

SOC content (mg m-2), which is provided by CNDM module in TEM. 𝐹𝑆𝑂𝐶  is a constant fraction 

of top 30cm SOC compared to the total amount of SOC, which is 0.33 for shrubland areas, 0.42 

for grassland areas and 0.50 for forest areas, respectively (Jobbagy & Jackson, 2000). 𝑃𝑟(𝑡, 𝑖) was 

calculated as: 

𝑃𝑟 (𝑡, 𝑖) = exp (𝑓4(𝑀(𝑡, 𝑖)) ∙ 𝐸𝑎𝑟𝑒𝑓/𝑅 ∙ (
1

273.15 + 𝑃𝑇𝑟𝑒𝑓
−

1

𝑇(𝑡, 𝑖) + 273.15
))        (2.3.1) 

𝑓4(𝑀(𝑡, 𝑖)) =  
𝑃𝑀𝑟𝑒𝑓

𝑀(𝑡, 𝑖) + 𝑃𝑀𝑟𝑒𝑓
            (2.3.2) 

Where equation (2.3.1) is derived from the Arrhenius equation for chemical reactions and 

normalized using the reference temperature 𝑃𝑇𝑟𝑒𝑓 . 𝐸𝑎𝑟𝑒𝑓/𝑅 is the reference activation energy 

divided by gas constant 𝑅, units are K.  𝑓4(𝑀(𝑡, 𝑖)) is the multiplier that reduces activation energy 

using a regression approach based on the laboratory experiment of moisture influences on CO 

production (Conrad and Seiler,1985). 𝑃𝑀𝑟𝑒𝑓  is the reference volumetric soil moisture, ranging 

from 0.01 to 0.5 volume/volume (v/v).  We assumed the thermal-degradation as the main CO 



 

31 

 

producing process due to lack of photo-degradation data and hard to distinguish photo-degradation 

from observations. In order to reduce the bias from the thermal-degradation to the total abiotic 

degradation, the equation (2.3.1) is parameterized by comparing with the total production rate. For 

instance, 𝑃𝑟 (𝑡, 𝑖) calculation can perfectly fit the experiment results in Van Asperen et al. (2015) 

with proper 𝑃𝑇𝑟𝑒𝑓(18°C), 𝐸𝑎𝑟𝑒𝑓/𝑅(14000 K), and 𝑃𝑀𝑟𝑒𝑓(0.5 v/v). 

 The CO deposition velocity was modeled in the same way as equation (19.1) in Seinfeld et 

al. (1998): 

𝑣𝑑 = −𝐹𝑛𝑒𝑡/𝐶𝐶𝑂,𝑎𝑖𝑟             (2.4) 

Where 𝑣𝑑 is the CO deposition velocity (mm s-1). 𝐹𝑛𝑒𝑡 is the model estimated CO net flux rate 

(mg CO m-2 day-1). 𝐶𝐶𝑂,𝑎𝑖𝑟 is the CO surface concentration (ppbv). 𝐶𝐶𝑂,𝑎𝑖𝑟 can be MOPITT CO 

surface concentration data or the derived CO surface concentrations using the same method as 

Potter et al. (1996). Positive values of 𝑣𝑑 represent soil uptake (deposition from air to soils) and 

negative values represent soil emissions. 

2.3.3 Model Parameterization and Extrapolation 

The model parameterization was conducted in two steps: 1) Thermal and hydrology modules 

embedded in TEM were revised, calibrated and evaluated by running model driven by 

corresponding local meteorological or climatic data at four representative sites, including boreal 

forest, temperate forest, tropical forest and savanna (Table 2.1, site No.1 to 4, Figure 2.2) to 

minimize model-data mismatch in terms of soil temperature and moisture. 2) CODM module was 

parameterized by running TEM for observational periods driven with the corresponding local 

meteorological or climatic data at each reference site (Table 2.1, Figure 2.3), and using the 

Shuffled Complex Evolution Approach in R language (SCE-UA-R) (Duan et al., 1993) to 

minimize the difference between the simulated and observed net CO flux. Eleven parameters 
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including 𝑘𝐶𝑂 , 𝑉𝑚𝑎𝑥 , 𝑇𝑟𝑒𝑓 , 𝑄10 , 𝑀𝑚𝑖𝑛 , 𝑀𝑚𝑎𝑥 , 𝑀𝑜𝑝𝑡 , 𝐸𝑆𝑂𝐶 , 𝐸𝑎𝑟𝑒𝑓/𝑅 , 𝑃𝑀𝑟𝑒𝑓 and 𝑃𝑇𝑟𝑒𝑓 were 

optimized (Table 2.2). To be noticed, 𝐹𝑆𝑂𝐶  was not involved in the calibration process. Parameter 

priors were decided based on previous studies (Conrad & Seiler, 1985; King, 1999b; Whalen & 

Reeburgh, 2001; Zhuang et al., 2004).  The SCE-UA-R was used for site No. 6, 8, 10, 11 (Table 

2.1). In parameter ensemble simulations, we have run 50 times SCE-UA-R with 10000 maximum 

loops for each site, and all of them have reached stable state before the end of the loops.  For 

wetlands, the only available data for calibration is from site No.12. We used the trial-and-error 

method to make the simulated results in the range of observed flux rates, with a 10% tolerance. 

For tropical sites, since tropical savanna vegetation type is treated as a combination type of tropical 

forest and grassland in our simulations, we first used Site No. 13 to set priors to fit the experiment 

results with a 10% tolerance and then evaluated by running our model comparing with site No.7 

results. Site No. 9 and 5 were used to evaluate our model results for temperate forest and grassland. 

Besides the observed climatic and soil property data, we used the ERA-Interim reanalysis data 

from The European Centre for Medium-Range Weather Forecasts (ECMWF) (Dee et al., 2011), 

AmeriFlux observed meteorology data (http://ameriflux.lbl.gov/) and reanalysis climatic data from 

Climatic Research Unit (CRU, Harris et al., 2014) to fill the missing environmental data. To sum 

up, parameters for various ecosystem types in Table 2.2 were the final results of our 

parameterization. Model parameterization was conducted for ecosystem types including boreal 

forest, temperate coniferous forest, temperate deciduous forest, and grassland using SCE-UA-R. 

In contrast, for tropical forest and wet tundra, we used a trial-and-error method to adjust parameters 

to allow model simulation best fit the observed data. Due to limited data availability, we assumed 

temperate evergreen broadleaf forests have the same parameters as temperate deciduous forest 

ecosystems. 

http://ameriflux.lbl.gov/
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2.3.4 Data Organization 

To get the spatially and temporally explicit estimates of the CO consumption, production 

and net flux at the global scale, we used the data of land cover, soils, climate and leaf area index 

(LAI) from various sources at a spatial resolution of 0.5° latitude X 0.5° longitude to drive TEM. 

The land cover data include the potential vegetation distribution (Melillo et al., 1993) and soil 

texture (Zhuang et al., 2003), which were used to assign vegetation- and texture-specific 

parameters to each grid cell. 

For the simulation of the period 1901-2013, the monthly air temperature, precipitation, 

clouds fraction and vapor pressure data sets from CRU were used to estimate the soil temperature, 

soil moisture and SOC with TEM (Figure 2.4). The monthly LAI data from TEM were required to 

simulate soil moisture (Zhuang et al., 2004). During this period time, we used an empirical function 

of latitude, which was derived from the observed latitudinal distribution of tropospheric carbon 

monoxide (Badr and Probert, 1994) to calculate static CO surface concentration distribution 

(equation (2.7), Potter et al., 1996): 

𝐶𝐶𝑂,𝑎𝑖𝑟 = 82.267856 + 0.8441503𝐿 + 1.55934 × 10−2𝐿2 + 2.37 × 10−5𝐿3 − 2.3 ×

10−6𝐿4                            (2.5) 

Where 𝐶𝐶𝑂,𝑎𝑖𝑟 is the derived surface CO concentration (ppbv), L represents latitudes with 

negative degrees for southern hemisphere and positive degrees for northern hemisphere. We also 

used the atmospheric CO data from MOPITT satellite during 2000-2013 (Figure 2.5). We averaged 

day-time and night-time monthly mean values of CO surface level 3 retrieval data (variables 

mapped on 0.5° latitude X 0.5° longitude grid scales with monthly time step, Gille, 2013) to 

represent the CO surface concentration level in each month.  The pixels with missing values were 

filled with the average values of those pixels that were inside 1.5 times of the distance between the 



 

34 

 

missing-value pixel and the nearest pixel with values. These global mean values shown in Figure 

2.5 do not include ocean surfaces, thus there are differences between our surface CO concentration 

results and Yoon and Pozzer’s report in 2014, which is as low as 99.8 ppb. From 2014 to 2100, we 

used the Intergovernmental Panel on Climate Change (IPCC) future climate scenarios from 

Representative Concentration Pathways (RCPs) climate forcing data sets RCP2.6, RCP4.5 and 

RCP8.5 (Figure 2.6). RCP2.6, 4.5 and 8.5 datasets are future climate projections with 

anthropogenic greenhouse gas emission radiative forcing of 2.6 W m-2, 4.5 W m-2 and 8.5 W m-2, 

respectively, by 2100. Since RCPs did not have water vapor pressure data, we used the specific 

humidity and sea level air pressure from the RCPs and elevation of surface to estimate the monthly 

surface vapor pressure (Seinfeld & Pandis, 1998). 

2.3.5 Model Experiment Design 

We conducted two sets of core simulations and eight sensitivity test simulations for a 

historical period. The two core sets of simulations were driven with the MOPITT CO surface 

concentrations data for the period 2000-2013 (experiment E1) and with the spatially distributed 

CO surface concentrations assuming as constant over time estimated from an empirical function 

of latitude for the period 1901-2100 (experiment E2), respectively. Specifically, in experiment E2 

we used the CRU climate forcing for the historical period 1901-2013 and the climate data of 

RCP2.6, RCP4.5 and RCP8.5 for different future scenarios to examine the responses of CO flux 

to changing climates. Eight sensitivity simulations were driven with varying different forcing 

variables while keeping others as they were: 1) with constant CO surface concentrations ± 30%, 

2) SOC ± 5%, 3) precipitation ± 20% and 4) air temperature ± 3°C for each pixel, respectively, 

during 1999-2000 (E3).  
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2.4 Results 

2.4.1 Site Evaluation 

Both the magnitude and variation of the simulated soil temperature and moisture from cold 

areas to warm areas are compared well to the observations (Figure 2.2). The magnitude of the 

simulated CO flux is comparable and correlated with the observations (R is about 0.5, p-value < 

0.001, Figures 2.3, a2, b2, c2, d2). Estimated CO fluxes for different ecosystem types range from 

-28.4 to 1.7 mg CO m-2 day-1, and the root mean square error (RMSE) between simulation and 

observation at all sites is below 1.5 mg CO m-2 day-1. RMSE for site No. 7 is bigger than 2.0 mg 

CO m-2 day-1 when compared with transparent chamber observations.  For boreal forest site, we 

only had 8 acceptable points in 1994 and 1996 (Figure 2.3c2). 

2.4.2 Global Soil CO Dynamics During 2000-2013 

Using the MOPITT CO surface concentration data during 2000-2013 (E1), the estimated 

mean soil CO consumption, production and net flux (positive values indicate CO emissions from 

soils to the atmosphere) are from -197 to -180, 34 to 36 and -163 to -145 Tg CO yr-1, respectively 

(Figure 2.7a). The consumption is about 4 times larger than the production. The annual 

consumption and net flux trends follow the atmospheric CO concentration trends (Figure 2.5b, 

Figure 2.7a), with a small interannual variability (< 10%). The latitudinal distributions of the 

consumption, production and net fluxes share the same spatial pattern. Around 20°S-20°N and 20-

60°N are the largest and second largest areas for production and consumption, while the 45°S-

45°N area accounts for nearly 90% of the total consumption and production (Figure 2.7b, Table 

2.3). The Southern and Northern Hemispheres have 41% and 59% of the total consumption, and 

47% and 53% of the total production, respectively (Table 2.3).  The highest rates of the 

consumption and production are located in areas close to the equator, and the consumption from 
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areas such as eastern US, Europe and eastern Asia also is high (< -1000 mg m-2 yr-1) (Figure 2.8a, 

b). Global soils serve as an atmospheric CO sink (Figure 2.8c). Some areas, such as western US 

and southern Australia, are CO sources, all of which are grasslands or experiencing dry climate. 

Tropical evergreen forests are the largest sinks, consuming 86 Tg CO yr-1, and tropical savanna 

and deciduous forest are the second and third largest sinks, consuming a total of 37 Tg CO yr -1 

(Table 2.4). These three ecosystems account for 66% of the total consumption. Tropical evergreen 

forests are also the largest source of soil CO production, producing 16 Tg CO yr-1, while tropical 

savanna has a considerable production of 6 Tg CO yr-1 (Table 2.4). Moreover, tropical areas, 

including forested wetlands, forested floodplain and evergreen forests, are most efficient for the 

CO consumption, ranging from -18 to -13 mg CO m-2 day-1.  They are also most efficient for the 

CO production at over 2 mg CO m-2 day-1 (Table 2.4, calculated by fluxes divided by area). 

2.4.3 Global Soil CO Dynamics During 1901-2100 

Using the constant CO surface concentration, the estimated global mean CO deposition 

velocities are 0.16-0.19 mm s-1 for the period 1901-2013. For the period 2014-2100, the deposition 

velocities are 0.18-0.21, 0.18-0.24 and 0.17-0.31 for RCP2.6, 4.5 and 8.5 scenarios, respectively 

(Figure 2.9).  During 2014-2100, there are significant trends of increasing deposition velocities for 

nearly all scenarios (Figure 2.9). The rates of increasing are 0.0002, 0.0005 and 0.0013 mm s-1 yr-

1, and will reach 0.20, 0.23 and 0.30 mm s-1 by the end of the 21st century for the RCP2.6, RCP4.5 

and RCP8.5 scenarios, respectively (Figure 2.9). These increasing trends are similar to the air 

temperature increasing trends (Figure 2.6a). The global distribution patterns of the CO deposition 

velocity are similar to the net flux distribution for the period 2000-2013 but there are significant 

differences among the 1901-2013, RCP2.6, RCP4.5 and RCP8.5 scenarios (Figure 2.10). The 

deposition velocities are increasing from the RCP2.6 to RCP8.5 and larger than that in the 
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historical periods in areas near the equator (Figure 2.10). Areas near the equator and eastern Asia 

become big sinks of the atmospheric CO, while northeastern US becomes a small source in the 

21st century (Figure 2.10). Different vegetation types have a large range of the deposition velocity, 

from 0.008 to 1.154 mm s-1 (Table 2.4). The tropical forested wetland, tropical forested floodplain 

and tropical evergreen forest have top three largest deposition velocity of 1.154, 1.117 and 0.879 

mm s-1, respectively, while desert, short grasslands, and wet tundra have the smallest deposition 

velocity of 0.008, 0.010 and 0.015 mm s-1, respectively.  

2.4.4 Sensitivity test 

The soil CO consumption is most sensitive (changing 29%) to air temperature while the 

production is most sensitive to both air temperature (changing up to 36%) and SOC (5%). The net 

CO fluxes have the similar sensitivities as the consumption. The annual CO consumption, 

production and net flux follow the change of air temperature (Table 2.5). In addition, a 30% change 

in precipitation will not lead to large changes in the CO flux (< 3%). 

2.5 Discussion 

2.5.1 Comparison with Other Studies 

Previous studies estimated a wide range of the global CO consumption from -16 to -640 Tg 

CO yr-1. Our estimates are from -197 to -180 Tg CO yr-1 for 2000-2013 using the MOPITT satellite 

CO surface concentration data. Previous studies also provided a large range for the CO production 

from 0 to 7.6 mg m-2 day-1 (reviewed in Pihlatie et al., 2016). Our results showed the averaged CO 

production ranging from 0.01 to 2.29 mg m-2 day-1.  The existing estimates of the CO deposition 

velocities for different vegetation types ranged from 0.0 to 4.0 mm s-1 while our simulations 

showed an averaged CO deposition velocity ranging from 0.006 to 1.154 mm s-1 for different 
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vegetation types.  The large uncertainty of these estimates is mainly due to different considerations 

of the microbial activities, the depth of the soil, and the parameters in the model. In contrast to the 

estimates of -57 to -16 Tg CO yr-1 which were based on top 5 cm soils (Potter et al., 1996), our 

estimates considered 30 cm soils, which were used in Whalen & Reeburgh (2001).  In addition, 

we used a thinner layer division (1 cm each layer) for diffusion process, and used the Crank-

Nicolson method to solve partial differential equations to avoid time step influences. We also 

included the microbial CO oxidation process to remove the CO from the soil and considered the 

effects of soil moisture, soil temperature, vegetation type and soil CO substrate on microbial 

activities. Our soil thermal, soil hydrology and carbon and nitrogen dynamics simulated in TEM 

provided carbon substrate spatially and temporally for estimating the soil CO dynamics. Overall, 

although a few previous studies have examined the long-term impacts of climate, land use and 

nitrogen deposition on the CO dynamics (Chan & Steudler, 2006, Pihlatie et al., 2016), the global 

prediction of the soil CO dynamics still has a large uncertainty. 

2.5.2  Major Controls to Soil CO Dynamics 

The sensitivity tests indicate that the consumption is normally much larger than the CO 

production so that the former will determine the dynamics of the net flux (Table 2.5). Model being 

sensitive to air temperature explains the small increasing trends after the 1960s, the significant 

increasing trend in the 21st century and the large sinks over tropical areas (Table 2.5, Figure 2.9). 

SOC did not directly influence the CO consumption. For instance, increasing SOC led to an 

increase in soil CO substrate, implying that more CO in soils can be consumed. To be noticed, an 

extra 3 Tg CO yr-1 was taken up from the atmosphere to the soil in the sensitivity test when SOC 

increasing by 5% (Table 2.5), which will be discussed in detail in Section 2.5.3. CO surface 
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concentrations will only influence the uptake rate and soil CO substrate concentrations, thus 

influencing the soil CO consumption rate.  

The annual CO consumption and net flux have a similar correlation coefficient with forcing 

variables and both are significantly correlated with air temperature, soil temperature SOC and 

atmospheric CO concentration (R > 0.91 globally, Table 2.6). Increasing temperature will increase 

microbial activities, while more SOC will increase soil CO substrate level. The annual CO 

consumption and net flux have low correlations with annual precipitation and soil moisture, 

especially at 45°N-45°S (R < 0.54 Table 2.6). The annual CO production is strongly correlated 

with annual mean SOC, air temperature and soil temperature (R > 0.91), while is less correlated 

with precipitation, soil moisture and atmospheric CO concentration. Meanwhile, the monthly CO 

consumption, production and net flux are well correlated with air temperature, soil temperature, 

precipitation, and soil moisture (R > 0.69 globally Table 2.6). The soil moisture is significantly 

influenced by temperature at a monthly time step since the increasing temperature would induce 

higher evapotranspiration. The monthly CO consumption, production and net flux have low 

correlations with SOC because it will not change greatly within a month.  

The R between the annual soil CO consumption and atmospheric CO concentration is 0.91 

at the global scale because the atmospheric CO concentration, air temperature, and soil temperature 

dominate the annual consumption rate. At monthly scale, this R is -0.48 because the global 

atmospheric CO concentrations are high in winter and low in summer while the simulated soil CO 

consumption shows an opposite monthly variation (Table 2.6, Figure 2.11), suggesting that other 

factors such as precipitation, air temperature, and soil temperature are major controls for the 

monthly CO fluxes.  
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2.5.3 Model Uncertainties and Limitations 

There are a number of limitations, contributing to our simulation uncertainties. First, due to 

lacking long-period observational data of the CO flux and associated environmental factors, the 

model parameterization can only be conducted for 4 ecosystem types including boreal forest, 

temperate coniferous forest, temperate deciduous forest and grassland. Tropical forest calibration 

is only conducted using a very limited amount of laboratory experiment data, but tropical areas are 

hotspots for CO soil-atmosphere exchanges. Besides, the amount of tropical forest SOC for top 30 

cm can be very large according to observations. TEM model may underestimate the top 30 cm 

SOC, which will underestimate the production rates, especially in tropical regions. Tropical 

regions typically have high temperature during the whole year, which may result in overestimation 

of the CO consumption using equation (2.2.2). The large deviation of model simulations to 

observations in tropical savanna (which is mosaic of tropical forest and grassland ecosystems) may 

be due to using outside air temperature to represent inside air temperature of transparent chamber 

observations (Varella et al., 2004), and uncertain tropical forest parameterization. Second, we used 

the conclusion from van Asperen et al. (2015) and only considered the thermal-degradation process 

for the CO production in this study. The photo-degradation process and biological formation 

process were not considered due to lacking the understanding of these processes. Third, the static 

CO surface concentration derived from the empirical function is lower than the MOPITT CO 

surface concentration, which will lead to underestimation of CO deposition velocity during 1901-

2100. Fourth, from the sensitivity test (Table 2.5) we notice that an increase in SOC by 5% resulted 

in a net flux increase from the atmosphere to the soil by 2.57%. The SOC increase enhanced CO 

production (Equation 2.3), CO concentrations (Equation 2.1), and CO oxidation (Equation 2.2). 

When the change of total oxidation is larger than the difference between the change of total 
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production and the change of total soil CO concentration (Equation 2.1), the estimate of the net 

flux change is negative (from the atmosphere to soil) using a mass balance approach (Section 

2.3.2), which leads to a 2.57% increase in the net flux in our SOC sensitive test. This is due to the 

fact that CO production (Equation 2.3) is calculated independently from oxidation (Equation 2.2). 

This will not influence our general findings since SOC varies only slightly during our simulation 

periods with a 3% increase from 1900 to 2013 (Figure 2.4d) and up to a 4% increase from 2014 to 

2100 (Figure 2.6g). This model artifact that is apparent in the SOC sensitivity test can be alleviated 

using a very fine time step (e.g., 1 second), because in this case CO concentrations change only 

slightly within the short time. Therefore, when a short time step is used, the net flux roughly equals 

the difference between production and oxidation. If the change of production is bigger than the 

change of oxidation, the change of net flux will be positive, leading to a decrease of deposit ion to 

the soil. The downside is that running the model at a time step of one second will require a 

significantly large amount of computing time. Fifth, our model structure still has a large potential 

to improve. In this study we divided the top 30 cm soil into 30 layers (layer thickness dz = 1 cm), 

but a finer division will increase the accuracy (Figure 2.12). We chose 1 cm thickness because if 

thicker than 1 cm, the model vertical CO concentration profile will deviate from reality and 

diffusion process will be influenced significantly. If thinner than 1 cm, it will need much more 

computing time but doesn’t have much improvement compared to thickness set to 1 cm (Figure 

2.12a-e). We notice that the 30-layer division well represents the soil CO concentration profile not 

only in the days of soil CO net uptake, but also in the days of CO net emission (Figure 2.12c, f). 

Sixth, Michaelis-Menten function (equation 2.2.1) is used in this model and we notice that 𝑘𝐶𝑂 is 

normally much larger than 𝐶(𝑡, 𝑖) in those days of net soil uptake (over ten times larger, Figure 

2.12). However, we can’t simplify equation (2.2.2) to 𝑓1(𝐶(𝑡, 𝑖)) =
𝐶(𝑡,𝑖)

𝑘𝐶𝑂
 , because the CO 
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concentrations in the soil can be larger than in the atmosphere in the days of net emissions and 

𝐶(𝑡, 𝑖)  may be close to 𝑘𝐶𝑂, and then the simplified equation may lead to overestimation of CO 

oxidation (Figure 2.12f). Finally, although we focused on natural ecosystems in this study, the 

land-use change, agriculture activity, and nitrogen deposition also affect the soil CO consumption 

and production (King, 2002; Chan & Steudler, 2006). For instance, the soil CO consumption in 

agriculture ecosystems is from 0 to 9 mg CO m-2 day-1 in Brazil (King & Hungria, 2002). In this 

study, we used grassland or forest ecosystem to represent agriculture areas in CODM module. Our 

future study shall include these processes and factors.  

2.6 Conclusions 

We analyzed the magnitude, spatial pattern, and the controlling factors of the atmosphere-

soil CO exchanges at the global scale for the 20th and 21st centuries using a process-based 

biogeochemistry model. Major processes include the atmospheric CO diffusion from the 

atmosphere to the soil and inside the soil of terrestrial ecosystems, microbial oxidation removal of 

CO, and CO production through chemical reaction. We found that air temperature and soil 

temperature play a dominant role in determining the annual soil CO consumption and production 

while precipitation, air temperature, and soil temperature are the major controls for the monthly 

consumption and production. The atmospheric CO concentrations are important for annual CO 

consumption. We estimated that the global annual CO consumption, production and net fluxes for 

2000-2013 are from -197 to -180, 34 to 36 and -163 to -145 Tg CO yr-1, respectively, when using 

the MOPITT CO surface concentration data. Tropical evergreen forest, savanna and deciduous 

forest areas are the largest sinks accounting for 66% of the total CO consumption, while the 

Northern Hemisphere consumes 59% of the global total. During the 20th century, the estimated 
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CO deposition velocity is 0.16-0.19 mm s-1. The predicted CO deposition velocity will reach 0.20-

0.30 mm s-1 in the 2090s, primarily because of the increasing air temperature. The areas near the 

equator, eastern Asia, Europe and eastern US will become the hotspots of sink because they have 

warm and moist soils. This study calls for long-period observations of CO flux for various 

ecosystem types and better projection of atmospheric CO surface concentrations from 1901-2100 

to improve future estimates of global soil CO consumption. The effects of land-use change, 

agriculture activities, nitrogen deposition, photo-degradation and biological formation shall also 

be considered to improve future quantification of soil CO fluxes.   
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Table 2.1. Model parameterization sites for the thermal and hydrology modules (site No. 1-4) and for the CODM 

module (site No. 5-13) 

No. Site Name Location Vegetation Driving Climate Observed Data Source and Comments 

1 Poker Flat Research Range 

Black Spruce Forest 

(US_PRR) 

147°29'W/65°7'N Boreal Evergreen Needle 

Leaf Forests 

Site Observation & ERA Interim Soil Temperature and 

Moisutre of 2011-2014 

Suzuki (2016) 

2 Morgan Monroe State 

Forest (US_MMS) 

86°25W/39°19'N Temperate Deciduous 

Broadleaf Forests 

Site Observation & ERA Interim Soil Temperature and 

Moisutre of 1999-2014 

Philip and Novick (2016) 

3 Santarem, Tapajos National 

Forest (STM_K83) 

54°56'W/3°3'S Tropical Moist Forest Site Observation & ERA Interim Soil Temperature and 

Moisutre of 2000-2004 

SALESKA et al. (2013) 

4 Bananal Island Site 
(TOC_BAN) 

50°08'W/9°49'S Tropical Forest-Savanna Site Observation & ERA Interim Soil Temperature and 
Moisutre of 2003-2006 

SALESKA et al. (2013) 

5 Eastern Finland (EF) 27°14E/63°9'N Boreal Grassland Site Observation & ERA Interim CO flux of April-
November,2011 

Pihlatie et.al. (2016) 

6 Viterbo, Italy (VI) 11°55'E/42°22'N Mediterranean Grassland Site Observation & ERA Interim CO flux of August, 2013 van Asperen et al. (2015) 

7 Brasilia, Brazil (BB) 47°51'W/15°56'S Tropical Savanna Site Observation & CRU  CO flux of October 1999 

to July 2001 

Varella et al. (2004) 

8 Orange County, North 

Carolina (OC) 

79°7'W/35°58'N Temperate Coniferous 

Forest 

AMF_US-Dk3 2002-2003 CO flux of March 2002 to 

March 2003 

Fisher (2003) 

9 Tsukuba Science City, 
Japan (TSC) 

140°7'E/36°01'N Temperate Mixed Forest Site Observation & ERA Interim CO flux of July 1996 to 
September 1997 

Yonemura et. al. (2000) 

10 Manitoba, Canada (CBS) 96°44'W/56°09'N Boreal Pine Forest Site Observation & AMF_CA-
Man 

CO flux of June-August, 
1994 

Kuhlbusch et. al (1998) 

11 Scotland, U.K. (SUK) 3°12'W/55°51'N Temperate Deciduous 

Forests 

ERA Interim 1995 CO flux of 1995 Moxley and Smith (1998) 

12 Alaska, USA (AUS) 147°41'W/64°52'

N 

Boreal wetland CRU 1991 CO flux of Lab 

Experiment,1991 

Funk et al. (1994) 

13 Guayana Shield,Bolivar 
State,Venezuela (GBV) 

62°57'W/7°51'N Tropical Smideciduous 
Forest 

CRU 1985 CO flux of Lab 
Experiment,1985 

Scharffe et al. (1990) 
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Table 2.2. Ecosystem-specific parameters in the CODM modulea 

   
Ecosystem Type 
 
 

𝑘𝐶𝑂 

(𝑢𝑙 
𝐶𝑂 𝑙−1) 

𝑉𝑚𝑎𝑥 

(𝑢𝑔 𝐶𝑂 

𝑔−1ℎ−1) 

𝑇𝑟𝑒𝑓 

(℃) 

𝑄10 

(𝑈𝑛𝑖𝑡𝑙𝑒𝑠𝑠) 
 

𝑀𝑚𝑖𝑛
 

(
𝑣

𝑣
) 

𝑀𝑚𝑎𝑥 

(
𝑣

𝑣
) 

𝑀𝑜𝑝𝑡 

(
𝑣

𝑣
) 

𝐸𝑆𝑂𝐶 𝐹𝑆𝑂𝐶 

(
𝑔

𝑔
) 

 

𝐸𝑎𝑟𝑒𝑓

𝑅
 

(𝐾) 
 

𝑃𝑀𝑟𝑒𝑓 

(
𝑣

𝑣
) 

 

𝑃𝑇𝑟𝑒𝑓 

(℃) 

1 Alpine Tundra & Polar 
Desert 

36.00 0.78 4.00 1.80 0.10 1.00 0.55 3.00 0.33 7700 0.25 30.00 

2 Wet Tundra 36.00 0.70 4.00 1.80 0.25 1.00 0.55 3.00 0.42 7700 0.25 30.00 

3 Boreal Forest 27.34 1.18 9.81 1.60 0.15 0.64 0.53 2.98 0.50 8827 0.35 26.99 

4 Temperate Coniferous 
Forest 

42.64 2.15 6.90 1.87 0.02 0.96 0.53 2.86 0.50 8404 0.38 31.52 

5 Temperate Deciduous 
Forest 

40.16 2.43 8.54 1.51 0.17 0.81 0.51 2.45 0.50 8801 0.35 37.44 

6 Grassland 42.41 0.49 11.27 1.65 0.16 0.82 0.51 3.09 0.42 14165 0.24 12.29 

7 Xeric Shrublands 8.00 0.30 4.00 1.50 0.10 1.00 0.55 3.00 0.33 7700 0.25 30.00 

8 Tropical Forest 45.00 2.00 4.00 1.50 0.10 1.00 0.55 3.80 0.50 14000 0.50 18.00 

9 Xeric Woodland 8.00 0.30 4.00 1.50 0.10 1.00 0.55 3.00 0.50 7700 0.25 30.00 

10 Temperate Evergreen 
Broadleaf Forest 

40.16 2.43 8.54 1.51 0.17 0.81 0.51 2.45 0.50 8801 0.35 37.44 

11 Mediterranean Shrubland 45.00 1.50 4.00 1.50 0.10 1.00 0.55 3.00 0.33 7700 0.25 30.00 

** Largest Potential Value 51.00 11.1 15.00 2.00 0.30 1.00 0.60 3.80 -- 15000 0.60 40.00 

 
  

a 𝑘𝐶𝑂is the half-saturation constant for soil CO concentration; 𝑉𝑚𝑎𝑥 is the specific maximum CO oxidation rate; 𝑇𝑟𝑒𝑓 is the reference temperature to account 

for the soil temperature effects on the CO consumption; 𝑄10 is the an ecosystem-specific Q10 coefficient to account for soil temperature effects on the CO 

consumption; 𝑀𝑚𝑖𝑛, 𝑀𝑚𝑎𝑥 , 𝑀𝑜𝑝𝑡  are the minimum, optimum, and maximum volumetric soil moistures of oxidation reaction to account for soil moisture 

effects on the CO consumption; 𝐸𝑆𝑂𝐶  is an estimated nominal CO production factor, similar as Potter et al. (1996) (10-4 mg CO m-2 d-1 per g SOC m-2); 𝐹𝑆𝑂𝐶  

is a constant fraction of top 20cm SOC compared to total amount of SOC to account for SOC effects on the CO production;  𝐸𝑎𝑟𝑒𝑓 /𝑅 is the is the 

ecosystem-specific activation energy divided by gas constant to account for the reaction rate of production; 𝑃𝑀𝑟𝑒𝑓  is the reference moisture to account for 

soil temperature effects on the CO production; 𝑃𝑇𝑟𝑒𝑓  is the reference temperature to account for soil temperature effects on the CO production 
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Table 2.3. Regional soil CO consumption, net flux and production (Tg CO yr-1) during 2000-

2013  
 

South-45S 45S-0 0-45N 45N-North Global 

Consumption 0.22 75.77 91.66 18.90 186.55 

Net flux 0.13 59.34 77.17 14.63 151.27 

Production 0.09 16.43 14.49 4.27 35.28 

  



 

47 

 

Table 2.4. Annual total soil CO consumption, net flux and production in different ecosystems 

during 2000-2013 (E1) and mean CO deposition velocity in different ecosystems during 1901-

2013 (E2) 

 

Vegetation Type Area     
(106 km2) 

Pixels Consump
tion (Tg 
CO yr-1) 

Net flux 
 (Tg CO yr-

1) 

Productio
n (Tg CO 

yr-1) 

Depositio
n velocity  
(mm s-1) 

Alpine Tundra & Polar Desert 5.28 3580 -0.92 -0.69 0.23 0.023 

Wet Tundra 5.24 4212 -1.00 -0.42 0.58 0.015 

Boreal Forest 12.47 7578 -7.76 -6.01 1.75 0.070 

Forested Boreal Wetland 0.23 130 -0.14 -0.09 0.04 0.109 

Boreal Woodland 6.48 4545 -2.48 -1.54 0.94 0.036 

Non-Forested Boreal Wetland 0.83 623 -0.35 -0.18 0.17 0.029 

Mixed Temperate Forest 5.25 2320 -10.49 -9.98 0.51 0.204 

Temperate Coniferous Forest 2.49 1127 -3.51 -3.21 0.30 0.185 

Temperate Deciduous Forests 3.65 1666 -5.07 -4.83 0.25 0.151 

Temperate Forested Wetland 0.15 60 -0.35 -0.35 0.01 0.281 

Tall Grassland 3.63 1567 -1.66 -0.65 1.01 0.021 

Short Grassland 4.71 2072 -1.05 -0.27 0.78 0.010 

Tropical Savanna 13.85 4666 -21.86 -15.88 5.98 0.234 

Xeric Shrubland 14.71 5784 -1.95 -1.64 0.31 0.021 

Tropical Evergreen Forest 17.77 5855 -85.90 -69.66 16.24 0.879 

Tropical Forested Wetland 0.55 178 -3.59 -3.09 0.50 1.154 

Tropical Deciduous Forest 4.69 1606 -14.81 -11.78 3.03 0.532 

Xeric Woodland 6.85 2387 -8.48 -7.44 1.04 0.246 

Tropical Forested Floodplain 0.15 50 -0.89 -0.77 0.12 1.117 

Desert 11.61 4170 -0.62 -0.57 0.05 0.008 

Tropical Non-forested Wetland 0.06 19 -0.03 -0.02 0.01 0.067 

Tropical Non-forested 
Floodplain 

0.36 120 -0.35 -0.24 0.10 0.083 

Temperate Non-Forested 
Weland 

0.34 120 -0.33 -0.20 0.14 0.089 

Temperate Forested Floodplain 0.10 48 -0.13 -0.12 0.00 0.197 

Temperate Non-forested 
Floodplain 

0.10 45 -0.05 -0.03 0.02 0.050 

Wet Savanna 0.16 59 -0.39 -0.32 0.07 0.434 

Salt Marsh 0.09 35 -0.05 -0.03 0.03 0.035 

Mangroves 0.12 38 -0.49 -0.41 0.08 0.809 

Temperate Savannas 6.83 2921 -3.83 -3.22 0.61 0.076 

Temperate Evergreen Broadleaf 3.33 1268 -7.17 -6.95 0.22 0.252 

Mediterranean Shrubland 1.47 575 -0.86 -0.71 0.16 0.100 

Total 133.56 59424 -186.55 -151.27 35.28 -- 
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Table 2.5. Sensitivity of the global CO consumption, net flux and production (Tg CO yr-1) to the 

changes in atmospheric CO, soil organic carbon (SOC), precipitation (Prec) and air temperature 

(AT) 

  Baseline CO +30% CO 
-30% 

SOC +5% SOC 
-5% 

Prec 
+30% 

Prec 
-30% 

AT +3°C AT -3°C 

Consumption  -147.65 -164.14 -131.12 -152.27 -143.03 -150.72 -143.50 -190.59 -114.83 
Change (%) 0.00 11.17 -11.19 3.13 -3.13 2.08 -2.81 29.09 -22.23 

Net flux -113.65 -130.15 -97.12 -116.58 -110.73 -116.97 -109.32 -144.23 -89.58 

Change (%) 0.00 14.51 -14.54 2.57 -2.57 2.92 -3.81 26.90 -21.18 
Production  33.99 33.99 33.99 35.69 32.29 33.74 34.17 46.36 25.25 

Change (%) 0.00 0.00 0.00 5.00 -5.00 -0.75 0.53 36.39 -25.72 
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Table 2.6. Correlation coefficients between forcing variables (precipitation (Prec), air 

temperature (Tair), soil organic carbon (SOC), soil temperature (Tsoil), soil moisture (Msoil) and 

atmospheric CO (CO air)) and absolute values of consumption, production and net flux for 

different regions and the globe  

  

    Monthly Annual 

  
  North-

45°N 
45°N-0° 0°-45°S 45°S-

South 
Global North-

45°N 
45°N-0° 0°-45°S 45°S-

South 
Global 

Prec 

Consumption 0.91 0.96 0.92 -0.34 0.87 0.65 0.21 0.26 0.13 0.52 

Production 0.91 0.70 0.45 -0.34 0.82 0.63 0.10 0.15 -0.11 0.47 

Net flux 0.91 0.97 0.94 -0.33 0.87 0.65 0.25 0.31 0.32 0.54 

Tair 

Consumption 0.97 0.98 0.91 0.96 0.95 0.92 0.93 0.88 0.84 0.91 

Production 0.96 0.83 0.72 0.98 0.94 0.92 0.92 0.91 0.95 0.91 

Net Flux 0.97 0.97 0.88 0.90 0.95 0.91 0.92 0.85 0.62 0.91 

SOC 

Consumption -0.19 0.07 0.21 -0.01 0.15 0.68 0.90 0.92 0.47 0.92 

Production -0.19 0.31 0.47 -0.02 0.24 0.72 0.92 0.92 0.50 0.93 

Net Flux -0.19 0.03 0.14 0.00 0.13 0.67 0.88 0.91 0.38 0.91 

Tsoil 

Consumption 0.97 0.98 0.92 0.96 0.95 0.94 0.93 0.88 0.85 0.95 

Production 0.97 0.83 0.72 0.98 0.94 0.94 0.92 0.91 0.96 0.95 

Net Flux 0.98 0.97 0.88 0.90 0.95 0.93 0.93 0.86 0.63 0.95 

Msoil 

Consumption 0.85 0.96 0.92 0.19 0.76 0.03 0.22 0.14 0.26 0.22 

Production 0.85 0.75 0.44 0.14 0.69 -0.02 0.12 0.02 0.05 0.17 

Net Flux 0.84 0.96 0.95 0.25 0.77 0.04 0.26 0.19 0.40 0.24 

CO Air 

Consumption -0.66 -0.76 -0.29 0.14 -0.48 0.87 0.88 0.81 0.98 0.91 

Production -0.70 -0.66 0.08 -0.40 -0.66 -0.36 -0.48 -0.54 -0.44 -0.57 

Net Flux -0.64 -0.73 -0.35 0.55 -0.41 0.92 0.91 0.88 0.99 0.94 
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Figure 2.1. The model framework includes a carbon and nitrogen dynamics module (CNDM), a 

soil thermal module (STM) from Terrestrial Ecosystem Model (TEM) 5.0 (Zhuang et al., 2001, 

2003), a hydrological module (HM) based on a Land Surface Module (Bonan, 1996; Zhuang et 

al., 2004), and a carbon monoxide dynamics module (CODM). The detailed structure of CODM 

includes land surface CO concentration as top boundary and thirty 1 cm thick layers (totally 30 

cm) where consumption and production take place. 
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Figure 2.2. Evaluation of thermal and hydrology module at four sites: (a) Boreal Evergreen 

Needle Leaf Forests, (b) Temperate Deciduous Broadleaf Forests. (1) shows the soil temperature 

comparison between the model simulations (gray line) and observations (black line) and (2) 

shows the soil moisture comparison between the model simulations (gray line) and observations 

(black line). Specifically, the volumetric soil moisture is converted from the water content 

reflectometry (WCR) probe output period using an empirical calibration function of Bourgeau-

Chavez et al. (2012) for 5cm-30cm layer. Some of them resulted in calculations of values greater 

than 100% VSM in Nakai et al. (2013) study. Our model estimated high VSM (close to 80%) is 

due to top 10 cm moss in the model which has a saturation VSM of 0.8 
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Figure 2.2.Contd. Evaluation of thermal and hydrology module at four sites: (c) Tropical Moist 

Forest, (d) Tropical Forest-Savanna. (1) shows the soil temperature comparison between the 

model simulations (gray line) and observations (black line) and (2) shows the soil moisture 

comparison between the model simulations (gray line) and observations (black line)
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Figure 2.3. Parameter ensemble experiment results: Each parameter has 50 calibrated values 

generated from running SCE-UA-R 50 times independently. Parameters are normalized to their 

largest potential values described in Table 2. (a1) and (a2) are temperate coniferous forest 

normalized parameter distribution boxplots and CO flux comparisons between the model 

simulations (solid line, using mean value of parameters) and observations (green diamond, red 

lines represent error bar, site No.8), respectively. For each box, line top, box top, horizontal line 

inside box, box bottom and line bottom represent maximum, third quartile, median, first quartile 

and minimum of 50 parameter values. Red dot represents the mean value of 50 parameter values. 

(b1) and (b2) are plots for temperate deciduous forest (site No.11).  

(a1) (a2) 

(b1) (b2) 
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Figure 2.3. Contd. Parameter ensemble experiment results: Each parameter has 50 calibrated 

values generated from running SCE-UA-R 50 times independently. Parameters are normalized to 

their largest potential values described in Table 2. (c1) and (c2) are boreal forest normalized 

parameter distribution boxplots and CO flux comparisons between the model simulations (solid 

line, using mean value of parameters) and observations (green diamond, red lines represent error 

bar, site No. 12), respectively. For each box, line top, box top, horizontal line inside box, box 

bottom and line bottom represent maximum, third quartile, median, first quartile and minimum 

of 50 parameter values. Red dot represents the mean value of 50 parameter values. (d1) and (d2) 

are for grassland (site No.6). Grassland observation data is the sum of hourly observations so 

error bar represented the standard deviation. 

 

(c1) (c2) 

(d1) (d2) 
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Figure 2.4. Historical global land surface (excluding Antarctic area and ocean area) mean 

climate, and simulated global mean soil moisture, soil temperature and SOC for the period 1901-

2013.   
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Figure 2.5. CO surface concentration data from MOPITT satellite (ppbv): (a) the global mean 

CO surface concentrations from MOPITT during 2000-2013; (b) the CO annual surface 

concentrations from both MOPITT and empirical functions (Potter et al., 1996).  

(b) 

(a) 
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Figure 2.6. Global land surface (excluding Antarctic area and ocean area) mean climate from the 

RCP2.6, RCP4.5 and RCP8.5 data sets and simulated mean soil temperature, moisture and SOC: 

(a)-(g) are land surface air temperature (°C), soil temperature (°C), precipitation (mm), soil 

moisture (%), surface water vapor pressure (hpa), cloud fraction (%), and SOC (mg m-2), 

respectively. 
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Figure 2.7. Global mean soil CO consumption, production and net flux: (a) the annual time series 

during 2000-2013and (b) the latitudinal distribution during 2000-2013. 

(a) 

(b) 
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Figure 2.8. Global annual mean soil CO fluxes (mg CO m-2 yr-1) during 2000-2013 using the 

MOPITT CO atmospheric surface concentration data   
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Figure 2.9. Global mean annual time series of CO deposition velocity (mm s-1) using constant in 

time and spatially distributed CO concentration data during 1901-2013 (left side of the dot line) 

and under the future climate scenarios RCP2.6, RCP4.5 and RCP8.5 during 2014-2100 (right 

side of the dot line) 
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Figure 2.10. Global annual mean CO deposition velocity using constant in time and spatially 

distributed CO concentration data (mm s-1) a) during 1901-2013 and b), c), d) under the future 

climate scenarios RCP2.6, RCP4.5 and RCP8.5 during 2014-2100, respectively  
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Figure 2.11. Global mean monthly time series of the MOPITT surface atmospheric CO 

concentration (ppbv) and soil CO consumption from model simulations E1 (Tg CO mon -1) 
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Figure 2.12. Daily mean vertical soil CO concentration profiles of top 30 cm. In the soil (depth < 

0 cm), black diamonds represent the soil CO concentration (mg CO m-3). Above the surface 

(depth>=0 cm), black diamonds represent the atmospheric CO concentration. a), b), c), d) and e) 

are the results from the same day when soils are a net sink of CO, but using different layer 

thickness (dz = 10 cm, 2 cm, 1 cm, 0.1 cm and 0.01 cm, respectively); f) is the result from the 

day when soils are a net source of CO, with dz = 1 cm. 
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 UNCERTAINTY QUANTIFICATION OF GLOBAL NET 

METHANE EMISSIONS FROM TERRESTRIAL ECOSYSTEMS USING A 

MECHANISTICALLY-BASED BIOGEOCHEMISTRY MODEL 

3.1 Abstract 

Quantification of methane (CH4) emissions from wetlands and its sinks from uplands is still 

fraught with large uncertainties. Here, a methane biogeochemistry model was revised, 

parameterized and verified for various wetland ecosystems across the globe. The model was then 

extrapolated to the global scale to quantify the uncertainty induced from four different types of 

uncertainty sources including parameterization, wetland type distribution, wetland area 

distribution and meteorological input. We found that global wetland emissions are 212 ± 62 and 

212 ± 32 Tg CH4 yr-1 (1Tg = 1012 g) due to uncertain parameters and wetland type distribution, 

respectively, during 2000-2012. Using two wetland distribution datasets and three sets of climate 

data, the model simulations indicated that the global wetland emissions range from 186 to 212 CH4 

yr-1 for the same period. The parameters were the most significant uncertainty source. After 

combining the global methane consumption in the range of -34 to -46 Tg CH4 yr-1, we estimated 

that the global net land methane emissions are 149 - 176 Tg CH4 yr-1 due to uncertain wetland 

distribution and meteorological input.  Spatially, the northeast US and Amazon were two hotspots 

of methane emission, while consumption hotspots were in the eastern US and eastern China . 

During 1950-2016, both wetland emissions and upland consumption increased during El Niño 

events and decreased during La Niña events.  This study highlights the need for more in situ 

methane flux data, more accurate wetland type and area distribution information to better constrain 

the model uncertainty.  
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3.2 Introduction 

Methane (CH4) is the second most powerful greenhouse gas behind CO2 and has contributed 

to about 20% of the observed warming since pre-industrial times (Ciais et al., 2013). Atmospheric 

CH4 concentrations have risen from pre-industrial levels of 715 parts per billion (ppb) since the 

1800s (Etheridge et al., 1998; MacFarling Meure et al., 2006) to over 1800 ppb at the present. The 

growth rate of atmospheric CH4 has decreased, however, from approximately 13 ppb yr-1 during 

the early 1980s to near zero between 1999 and 2006. Since 2007, the growth rate of atmospheric 

CH4 has risen again (Dlugokencky et al., 2009; Nisbet, Dlugokencky, & Bousquet, 2014; Saunois 

et al., 2016; Schaefer et al., 2016; Zhang et al., 2018). The inter-annual variability of atmospheric 

CH4 is strongly related to the climatic sensitivity of biogenic CH4 sources, of which global wetland 

CH4 contributes 60–80% of natural emissions (Quiquet et al., 2015; Hopcroft et al., 2017) and this 

large role is likely to persist into the future (Zhang et al., 2017). Wetlands are an important 

component of the earth system and play a vital role in the global CH4 cycling (Zhang et al., 2002; 

Zhuang et al., 2004; Ciais et al., 2013). CH4 emissions from natural wetlands are the main drivers 

of the global interannual variability of CH4 emissions with high confidence and contribute largely 

to interannual variations and anomalies of atmospheric CH4 concentrations (Zhuang et al., 2004; 

Ciais et al., 2013). Therefore, it is important to improve existing CH4 emission quantifications to 

better understand the role of global CH4 cycling in the global climate system (Zhuang et al., 2004; 

Chen et al., 2013; Kirschke et al., 2013; Nisbet et al., 2014; Zhu et al., 2014). 

To date, three approaches have been used in estimating CH4 emissions from wetlands across 

different scales over the last few decades: 1) an extrapolation of flux measurements approach, 

which uses actual CH4 emission measurements to scale up to global wetlands; 2) a bottom-up 

approach, which uses process-based models to quantify CH4 fluxes, and 3) a top-down approach, 
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which uses atmospheric inverse models to estimate the distribution of CH4 sources and sinks by 

incorporating atmospheric observations, an atmospheric transport model and prior estimates of 

source distributions and magnitudes (Arneth et al., 2010; Anderson et al., 2010; Kirschke et al., 

2013; Zhu et al., 2014). Although top-down approach is widely thought to be more accurate than 

bottom-up approach, the current top-down approach may inadvertently include some incomplete 

observations and error amplifications during inverse modelling processes (Chen and Prinn, 2005; 

Ciais et al., 2013).  

Process-based models can be used to improve CH4 emission estimation considering the 

effects of complex interactions between soil, vegetation, and hydrology on CH4 production and 

consumption processes. Process-based modeling became a practical alternative approach to scaling 

up site-level observation to regional or global scales (Cao et al., 1996; Li, 2000; Zhang et al., 2002; 

Zhuang et al., 2004). To date, a number of process-based models have been developed. Each has 

its own ways to implement wetland system complexity and CH4 flux processes (Li, 2000; Walter 

and Heimann, 2000; Zhuang et al., 2004; Meng et al., 2012; Zhu et al., 2014). For instance, Cao 

et al. (1995, 1996) developed a CH4 emission model for rice paddies based on C substrate level, 

soil organic matter (SOM) degradation and environmental control factors and improved it for 

global natural wetland simulation; but the model has no specific CH4 emission process. Walter and 

Heimann (2000) and Walter et al. (2001a, b) developed a 1-D process-based climate sensitive 

model to estimate global long-term CH4 emissions from natural wetlands, forced with net primary 

production derived from a separate model. Li (2000) developed a denitrification–decomposition 

model (DNDC) to simulate CH4 emissions but only for rice paddies. Later, Zhang et al. (2002) 

adopted the DNDC model and some of its key components to simulate wetland ecosystem 

emissions. A process model (PEATLAND) was developed to simulate CH4 flux from peat soils 
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(van Huissteden et al., 2006) and up-scaled for boreal and Arctic wetland simulations (Petrescu et 

al., 2010), although the model did not include explicit soil biogeochemical processes. Wania et al. 

(2010) integrated a CH4 emission module into the modified dynamic global vegetation model 

Lund-Potsdam-Jena (LPJ) to simulate CH4 emissions from northern peatlands with consideration 

of permafrost dynamics, peatland hydrology and peatland vegetation. This model was then 

modified to simulate global net CH4 emissions for northern peatlands, naturally inundated 

wetlands and rice agriculture soils (Spahni et al., 2011). To characterize uncertainties and 

feedbacks between CH4 flux and climate, Riley et al. (2011) developed a CH4 biogeochemistry 

model (CLM4Me) and integrated it into the land component of the Community Earth System 

Model (CESM) and further analyses were conducted by Meng et al. (2012), but specific plant 

functional types have not been incorporated in their wetlands. In contrast, Zhu et al. (2014) 

developed a processed CH4 biogeochemistry model based on the Integrated Biosphere Simulator 

(IBIS) (TRIPLEX-GHG), considering plant functional types, but didn’t consider the emissision 

differences between various wetland types across the landscape. The Global Carbon Project (GCP) 

and the Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP) estimated 

the global methane emission from natural wetlands, ranging from 102 to 284 Tg CH4 yr-1 during 

2000-2017 (Kirschke et al., 2013; Melton et al., 2013; Saunois et al., 2016; Saunois et al., 2019). 

The above review of the past study suggests that, although significant efforts have been made 

on development of bottom-up process models, current quantifications of methane emission from 

natural sources still have large uncertainties. Zhuang et al. (2004) have considered the important 

freeze-thaw processes and integrated methanogenesis modules into the Terrestrial Ecosystem 

Model (TEM) to estimate net CH4 emissions from northern high latitudes. Zhuang et al. (2013) 

further revised the model and extrapolate it to the global scale to quantify soil methane 
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consumption. The hydrology and soil thermal model (HM and STM) in TEM were revised and 

evaluated in Liu et al. (2018). In summary, the existing bottom-up estimates still have large 

uncertainties using various models (Cao et al., 1996; Woodward and Lomas 2004; Hodson et al., 

2011; Spahni et al., 2011; Ringeval et al., 2010; Kleinen et al., 2012; Ito and Inatomi, 2012; Melton 

and Arora, 2016). Further those estimates have not fully taken advantage of multiple in situ flux 

data for parameterizing and evaluating their models before conducting global simulations, 

although a few recent studies have used some site level observations (Riley et al., 2011; Zhu et al., 

2014; Tian et al., 2010, 2015; Xu et al., 2016). 

In this study, we made a step forward to use existing flux data at multiple sites to improve 

our revised methane biogeochemistry model TEM.  The revised model was extensively 

parameterized and verified and then extrapolated to the global scale. To investigate the uncertainty 

sources of methane emissions, model simulations were conducted with different sets of parameters 

and climate forcing and wetland distribution data for the period 2000-2012.  Land methane sources 

and sinks during 1950-2016 were then analyzed.  

3.3 Method 

3.3.1 Overview 

We first revised the TEM-MDM model (Zhuang et al., 2003, 2004, 2007, 2013) by 

considering: 1) various types of wetlands based on their plant functional types and climates in 

boreal, temperate and tropical regions; 2) the influence of standing water above the surface on 

methane transport; 3) accumulated vertical methane concentrations in soils; and 4) finer time step 

in the MDM model (1 hour) and hydrological model (5 minutes). Second, we used the data of CH4 

flux measurement to calibrate the model with the Shuffled Complex Evolution (SCE-UA) method 

(Duan et al., 1993) for different wetland types in different climatic regions (Arctic, temperate and 
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tropical regions). The model was then evaluated using in situ data from different climatic regions. 

Finally, the model was extrapolated to the globe at a 0.5° by 0.5° resolution. We conducted five 

sets of model experiments to investigate the impact of parameters, wetland type distribution, 

climate, atmospheric CH4, and wetland distribution data on soil CH4 dynamics: 1) Ten sensitivity 

simulations by increasing and decreasing: a) CH4 surface concentrations by 30%, b) NPP by 30%, 

c) precipitation by 30%, d) air temperature by 3°C and e) inundation area fraction by 30% for each 

pixel, respectively, while holding other forcing data as they were, during 2000-2012; 2) parameter 

uncertainty test simulations during 2000-2012; 3) wetland type uncertainty test simulations during 

2000-2012; 4) forcing data uncertainty simulations using three sets of climate forcing data and two 

sets of wetland distribution data during 2000-2012; and 5) historical methane emission and 

consumption simulations during 1950-2012 to analyze CH4 responses during El Niño and La Niña 

events. 

3.3.2 Model Modification 

We revised the previous version of TEM-MDM (Zhuang et al., 2003, 2004, 2007, 2013) by 

considering several more detailed land methane cycling processes. First, standing water effects 

have not been explicitly modeled previously in TEM-MDM. However, the standing water limits 

atmospheric oxygen diffusion into soils, reducing oxidation, and affecting methane transport from 

soils and water column to the atmosphere.  In this revision, a new algorithm to account for the 

effects on methane dynamics was incorporated into TEM-MDM. Specifically, the standing water 

results in smaller methane diffusivity in water (Tang et al., 2010):   

𝐷𝑤 = 1.5 × 10−9 × (
𝑇

298.0
)            (3.1) 

𝐷𝑎 = 1.9 × 10−5 × (
𝑇

298.0
)

1.82

            (3.2) 
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𝐷 =
1

𝜏

𝜖𝐷𝑎 + 𝛼𝜃𝐷𝑤

𝜖 + 𝛼𝜃
            (3.3) 

𝛼 = 𝐻 ×
𝑇

12.2
          (3.4) 

𝐻 =   1.3 × 10−3exp [−1700(
1

𝑇
−

1

298.0
)]       (3.5) 

Where the Dw is the diffusivity of methane in water (m2 s-1); T is the temperature at each 

layer (K);  D is the combined diffusivity of methane in specific bulk medium (m2 s-1); Da is the 

diffusivity of methane in air (m2 s-1); 𝜏 is the tortuosity factor in the soil, taken as 1.5 throughout 

the study (Arah and Stephen, 1998); ϵ is air-filled porosity (m3 air m−3 soil); α is the Bunsen 

coefficient for methane; θ is the volumetric soil moisture (m3 water m−3 soil); H is the Henry’s law 

constant (M atm-1). The D is used as diffusivity of methane in the model. We can notice that 

normally Da is 1000 times larger than Dw. Thus, when there is standing water above soil surface, 

the D will be much smaller. Besides, the standing water supplies water to soils and change soil 

moisture in two situations: 1) when there is standing water above the soil surface, the soil will 

always be saturated; 2) when there is no standing water, the previous day’s standing water will 

seep into soils and be treated as extra water supply besides precipitation. In the revised TEM-

MDM, the simulated transient standing water is used to account for these effects.  

Second, previous TEM-MDM has not considered the effects of accumulated methane in soil 

columns on methane fluxes. In this revision, this effect on soil methane oxidation and transport 

are incorporated into the model.  Third, in this revision, a finer time step (5 minutes) instead of 1 

hour is used for methane dynamics because gases and water would change rapidly at fine time 

steps. Finer time steps will reduce partial differential equation (PDE) solution errors.  

For regional simulations, we used the five wetland types from Matthews and Fung (1987), 

including forested bog, non-forested bog, forested swamp, non-forested swamp and alluvial 
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formations to represent wetland types across the landscape. In addition, using a static wetland 

distribution data, we also used wetland inundation area data that vary across space and time.  These 

detailed model developments and applications were documented in Appendix A. 

3.3.3 Model Parameterization and Extrapolation 

Wetland methane production and oxidation processes involve fifteen key parameters in 

TEM-MDM (Table 3.1). TEM-MDM was calibrated by running it for observational periods driven 

with the corresponding meteorological data at each site (Table 3.2, Figure 3.1 upper panel), and 

using the Shuffled Complex Evolution Approach in R language (SCE-UA-R) (Duan et al., 1993) 

to minimize the difference between the simulated and observed net CH4 fluxes. Each site was run 

50 times using the SCE-UA-R with 10,000 maximum loops, and all of them reached a stable state 

before the end of the loops.  In addition to using in situ meteorological and soil data, we also used 

the ERA-Interim reanalysis data from the European Centre for Medium-Range Weather Forecasts 

(ECMWF), and reanalysis climatic data from Climatic Research Unit (CRU TS4.01, Harris et al., 

2014, CRU for short) to fill any missing environmental data. Parameter values for various wetland 

types were summarized in Table 3.3.  

The parameterized model was then evaluated at 14 sites (no. 16-29 in table 3.2), located in 

different climatic regions. For sites no.16-23, 26 and 27, we used nearest stations to the evaluation 

sites in the global data set of Global Summary of the Day (GSOD) 

(http://www7.ncdc.noaa.gov/CDO/cdoselect.cmd?datasetabbv=GSOD&countryabbv=&georegio

nabbv=) to drive the model, and the station IDs are 020200, 020200, 022740, 029290, 029450, 

716278, 718270, 718113, 724675, and 948990, respectively. For sites no.18, we used the station 

022860 together with 022740 to fill the missing data of precipitation. If the data from GSOD 

missed a few days of observation, we would fill the missing points by linear interpolation. For 
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longer data gaps (longer than 15 days), we filled the data with CRU data. For other sites, we used 

CRU data to drive the model. Since the GSOD data didn’t provide cloud fraction or solar radiation 

data, we used the CRU cloud fraction data for all sites. Vegetation type, wetland type, soil texture, 

and elevation information have been set based on site observations.  

3.3.4 Data Organization 

To get the spatially and temporally explicit estimates of CH4 consumption and emission at 

the global scale, we used the data of land cover, soils, climate and leaf area index (LAI) from 

various sources at a spatial resolution of 0.5° latitude X 0.5° longitude to drive TEM-MDM. The 

land cover data include the potential vegetation distribution (Melillo et al., 1993) and soil texture 

(Zhuang et al., 2003), which were used to assign vegetation- and texture-specific parameters to 

each grid cell.  

In order to map the global methane fluxes from natural wetland and investigate the  

uncertainties from different sources, we used climate forcing data including the monthly CRU data 

during 1950-2012, the daily ERA Interim data from European Centre for Medium-Range Weather 

Forecasts (ECMWF;  Dee et al., 2011), during 2000-2012, and the daily reanalysis data from 

National Centers for Environmental Prediction (NCEP; Kalnay et al., 1996) during 2000-2012 

(Figure 3.2). The resolutions of CRU and ECMWF data are 0.5° latitude X 0.5° longitude. The 

NCEP data with an original spatial resolution of 2.5° latitude X 2.5° longitude were re-gridded to 

0.5° latitude X 0.5° longitude resolution. We also used wetland distribution data including static 

wetland map from Matthews and Fung (1987) (M&F), and the transient wetland inundation area 

fraction data derived from previous study of merging Surface WAter Microwave Product Series 

(SWAMPS; Schroeder et al 2015) with the static inventory of wetland area from the Global Lakes 

and Wetlands Database (GLWD; Lehner and Doll 2004) by Poulter et al. (2017) (SWAMPS-
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GLWD) during 2000-2012, (Figure 3.3). The spatial resolutions of these datasets are 0.5° latitude 

X 0.5° longitude. Observed CO2 concentrations from in situ air measurements taken at Mauna Loa 

Observatory by Earth System Research Lab of National Oceanic and Atmospheric Administration 

(NOAA/ESRL, https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html) were used for the period 

covering 1958–2012. Observed atmospheric CH4 concentration data from NOAA/ESRL 

(www.esrl.noaa.gov/gmd/ccgg/trends_ch4/) cover 1984-2012. CO2 data before 1984 were from 

summary of United States Environment Protection Agency (EPA, https://www.epa.gov/climate-

indicators/climate-change-indicators-atmospheric-concentrations-greenhouse-gases). El Niño and 

La Niña event data were derived from Zhu et al. (2017).  

3.3.5 Model Experimental Design 

To investigate the uncertainty from different sources, we conducted five experiments: 1) the 

sensitivity and correlations during 2000-2012 using CRU and SWAMPS_GLWD data. Ten 

sensitivity simulations were driven with varying different forcing variables while keeping others 

as they were, by increasing or decreasing: a) CH4 surface concentrations by 30%, b) NPP by 30%, 

c) precipitation by 30%, d) air temperature by 3°C and e) inundation area fraction by 30% for each 

pixel, respectively, during 2000-2012. The magnitudes of changes in the input data were chosen 

to ensure they do not exceed the values identified in the field or based on previous model studies 

(Zhuang et al., 2004; Zhuang et al., 2013; Liu et al., 2018). Modifications were applied to the 

forcing data by multiplying a factor (e.g., 1.3 to NPP) to every value used in model simulations. 

Correlations were calculated from sensitivity baseline simulation (experiment E1).; 2) the 

uncertainty of parameters during 2000-2012 using CRU and SWAMPS-GLWD data. We 

conducted 100 simulations with parameters randomly chosen in optimized ranges and compared 

the results with the baseline simulation which uses the mean value of each parameter (experiment 
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E2); 3) the uncertainty of wetland type distribution during 2000-2012 using CRU and SWAMPS-

GLWD data. M&F wetland data could only identify the wetland type for half of the pixels. Other 

pixels could have a period with inundated area as SWAMPS-GLWD indicated and were first 

grouped by their climate and vegetation types. Each group would then randomly choose possible 

wetland types. In this way, totally 770 simulations were conducted with different wetland type 

distributions (experiment E3); 4) the uncertainty from forcing data using CRU, ECMWF, NCEP, 

M&F wetland data and SWAMPS-GLWD inundation data during 2000-2012. Six forcing data 

uncertainty test simulations were driven with different forcing data sets while keeping others as 

they were: a) using CRU climate data with static M&F wetland data and transient SWAMPS-

GLWD inundation data, b) using ECMWF climate data with static M&F wetland data and transient 

SWAMPS-GLWD inundation data, and c) using NCEP climate data with static M&F wetland data 

and transient SWAMPS-GLWD inundation data (experiment E4); and 5) historical methane 

emission and consumption simulation using CRU data during 1950-2012 and compare to El Niño 

and La Niña events. The inundation area fraction data for the period 2000-2012 are from 

SWAMPS-GLWD data.  We used the inundation data of year 2000 to represent the inundation 

distribution and area for each year during 1950-1999 (experiment E5).  

3.4 Results 

3.4.1 Site Calibration and Evaluation 

We use p-value < 0.05, t-value > 2.0, and relatively large R2 to determine if the model 

simulations are well correlated with the observation at calibration sites. Our overall calibration and 

evaluation results are significant. The R2 is 0.44 with p-value < 0.01 and T value = 24.8 for overall 

calibration results. R2 is 0.41 with p-value<0.01 and t-value=16.7 for overall evaluation results. For 

most sites, the model captures the magnitude and the variation of the observation in model 
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evaluations (Table 3.4). Significant correlations are found for most sites except three sites from the 

boreal region (site 16, 17 and 22) and one site from the temperate region (site 24, Table 3.4). The 

poor performance for those sites is discussed in Appendix A Text A.2. The simulated and observed 

mean values are comparable with root mean square errors (RMSE) less than 270 mg CH4 m-2 day-

1.  For site 28 and 29, simulations indicate the average emissions are 25 mg CH4 m-2 day-1 with 

variation of 14 mg CH4 m-2 day-1, while observations range from 4 to 217 mg CH4 m-2 day-1.  

3.4.2 Sensitivity analysis 

Modeled methane emissions are sensitive to NPP, air temperature and inundation area 

fraction globally, and also sensitive to precipitation in 45°S-0 latitude regions. Simulated methane 

consumption is sensitive to atmospheric methane concentration, precipitation and air temperature 

(Table 3.5). Simulated methane emissions are highly correlated with NPP, air temperature, 

inundation area fraction and soil temperature globally, while methane consumption is highly 

correlated with NPP, precipitation, air temperature, inundation area fraction and soil temperature 

globally. Annual correlations showed that the interannual variability of methane emissions are 

correlated with air temperature and soil temperature, while the interannual variability of methane 

consumption is correlated with inundation area fraction and soil moisture (Table 3.6). 

3.4.3 Global emission uncertainty due to uncertain parameters 

Global gross methane emission uncertainty increases during summer and decreases in winter, 

with a large uncertainty range surrounding the baseline simulation (Figure 3.4a). Globally, annual 

methane emission mean values (red dots) are close to the baseline with standard deviation (STD) 

of 62 Tg CH4 yr-1 (Figure 3.4b, Table 3.7). Temperate forest bog (type 6), tropical forested swamps 

(type 13) and boreal forested bog (type 1) contribute most of the uncertainty due to their uncertain 

parameters, with annual mean STDs  of 23, 22 and 15 Tg CH4 yr-1, respectively (Table 3.7). The 
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temperate region (0-45°N) in Northern Hemisphere contributes most to the parameter uncertainties 

while boreal region (45°N-90°N) in the Northern Hemisphere contributes second most, with 

annual mean STDs of 40 and 19 Tg CH4 yr-1, respectively (Figure 3.4c, Table 3.8). 

3.4.4 Global emission uncertainty due to uncertain wetland type distribution 

Global gross methane emission uncertainty due to uncertain wetland type distribution 

increases during summer and decreases in winter, with a large uncertainty range surrounding the 

baseline simulation (Figure 3.5a). Globally, methane emissions are lower than the baseline with 

STD of 32 Tg CH4 yr-1 (Figure 3.5b, Table 3.8). The temperate region (0-45° N) in the Northern 

Hemisphere contributes most to the wetland type uncertainty (Figure 3.5c, Table 3.8). 

3.4.5 Uncertainty due to uncertain forcing data 

Driven with CRU data, the global wetland methane emissions are 186 and 212 Tg CH4 yr-1 

by using M&F static wetland distribution data and SWAMPS-GLWD dynamical inundation data, 

respectively, during 2000-2012.  The respective emissions using static and dynamic inundation 

data are 195 and 210 Tg CH4 yr-1 driven by NCEP data, and 195 and 212 Tg CH4 yr-1 driven by 

ECMWF data (Table 3.9, Figure 3.6). These result in the global wetland emissions ranging from 

186 to 212 Tg CH4 yr-1 for the study period. The global soil consumption ranges from -34 to -46 

Tg CH4 yr-1, resulting in global net land methane budget ranging from 149 to 176 Tg CH4 yr-1 

during 2000 – 2012 (Table 3.9). Among these simulations the seasonal emissions and consumption 

are similar, while emissions from using transient inundation area fraction data are always higher 

during summer and lower during winter comparing with the simulations using static wetland data 

(Figure 3.6 upper panel). The peak value of seasonal emissions has shifted a little from July to 

June when using transient wetland data (Figure 3.6 upper panel). Using different wetland 

distribution data result in large differences in global emissions (Figure 3.6 lower panel).  Methane 
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emissions from simulations using CRU and static wetland map are lowest in all simulations (Figure 

3.6 lower panel, figure 3.7a, c, e). Methane emissions are similar when using different climate 

forcing data, but have large differences when using different inundation data (Figure 3.7a, c, e). 

Methane emission flux increases in regions like middle of Northern America and eastern Asia, and 

decreases in regions like northern high latitudes (Figure 3.7b, d, f). Methane consumptions increase 

in Europe, Eastern US and Eastern Asia when using ECMWF and NCEP climate forcing and 

comparing with baseline with CRU climate forcing (Figure 3.8a, c, e). When using transient 

wetland inundation data, the methane consumption fluxes increases in temperate region of the 

Northern hemisphere and Eastern Australia, and decrease in boreal region of the Northern 

Hemisphere and tropical regions (Figure 3.8b, d, f). 

3.4.6 Global land methane budget estimates during 1950-2012 

Model estimates of annual methane emissions are 198 Tg CH4 yr-1 and consumption is -32 

Tg CH4 yr-1  during 1950-2012 (Table 3.10). Temperate regions (0-45° N) contribute most to the 

global methane emission and consumption (Table 3.10). Eastern US, Eastern Asia and Amazonia 

regions are emission hotspots, while consumption hotspots are eastern US, middle east and eastern 

China (Figure 3.9a, b). For instance, three methane emission peaks show up around 30° N, 45° N 

and the equator, while one consumption peak shows around 35° N (Figure 3.9c). Temporally, both 

methane emission and the consumption increased during El Niño events and decreased during La 

Niña events (Figure 3.10). 
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3.5 Discussion 

3.5.1 Major controls to the global land methane budget 

Methane emissions are globally sensitive to changes in NPP, air temperature and wetland 

distributions (Table 3.5). The global annual emissions are more than 5 times larger than 

consumption. Of the three major controls, methane emissions are relatively more sensitive to air 

temperature, varying 46% or -31% when temperature is increased by 3 or decreased by -3 °C 

(Table 3.5). Methane emissions are also sensitive to the change in wetland distribution, resulting 

in 25% or -30% changes when the inundation area increased or decreased by 30% (Table 3.5). 

Methane emissions are not sensitive to the precipitation globally, which only change 1.5% and -

2.4% when adjusting precipitation by 30%, but are sensitive in some specific regions such as 45° 

S-0, which change 3.0% and 7.6% (Table 3.5). The reason is that only the water table depth or 

standing water will influence the methane production in soils, and the water table depth is not 

calculated linearly in our model, which is significantly influenced by temperature (Zhuang et al., 

2004, 2013). Besides, the wetland distribution overlaps with the sensitivities of precipitation to 

some extent. The correlations show that methane emissions are highly correlated with NPP, air 

temperature, wetland inundation area fraction and soil temperature (R>0.9, Table 3.6). This is 

mainly due to the fact that most of these variables share the same pattern as air temperature, which 

is high in summer and low in winter. Methane emissions are only correlated well with air 

temperature and soil temperature (R>0.6, Table 3.6).  

Methane consumption is most sensitive to air temperature (change 53% and -26%, Table 

3.5). This is mainly due to the treatment that Q10 function used in the model as temperature 

influences methane consumption (Zhuang et al., 2004, 2013). Methane consumption is sensitive 

to atmospheric methane concentration (changes by 16% and -16%, Table 3.5).  The methane 
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consumption is also sensitive to precipitation globally comparing with the emission sensitivity 

(changes by 4% and -5%, Table 3.5) (Zhuang et al., 2004, 2013). The monthly methane 

consumption is well correlated with NPP, air temperature, soil temperature and wetland inundation 

fraction (|R| >= 0.9).  In contrast, annual methane consumption is only correlated with wetland 

inundation area fraction and soil moisture (|R| > 0.6, Table 3.6). Wetland inundation area fraction 

influences the area of upland in each pixel, affecting methane consumption.  

3.5.2 Model Uncertainty Sources 

Methane emissions have a larger uncertainty during summer and lower uncertainty during 

winter (Figure 3.4a, Figure 3.5a). The reason is that methane emissions are higher during summer 

in the northern hemisphere which has higher wetland inundation area fraction (Figure 3.3), with 

large anomalies (75%-100% quantile) below base line estimates (Figure 3.5b). Globally the 

uncertain parameters result in 62 Tg CH4 yr-1 methane emissions while the uncertain wetland type 

results in 32 Tg CH4 yr-1 in our estimates. The temperate forested bog, tropical forested swamp 

and boreal forested bog are three main sources of the parameter uncertainties due to their relatively 

high rate of methane emissions and a large number of pixels (Table 3.7). There are some types 

containing a small number of pixels, such as boreal forested swamp, boreal alluvial formations, 

temperate alluvia formations and tropical forested bog. Northern temperate regions (0-45° N) 

contribute most to the parameter and wetland type uncertainty, due to the biggest emissions over 

this region and their diverse vegetation types (Table 3.8).  

In order to investigate the forcing data influences on methane emission and production, we 

used different sources of climate and wetland distribution data (Figure 3.2, 3.3). CRU data have 

higher global average air temperature and lower precipitation. We used cloud fraction data instead 

of solar radiation (Figure 3.2). It shall be noticed that the ECMWF solar radiation data are lower 
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than NCEP data. We use 12 hours average solar radiation data from ECMWF and use average of 

daily data from NCEP. The wetland distribution data from different sources vary significantly 

(Figure 3.3). Wetland inundation area fraction data showed a high peak during summer and a low 

peak during winter. The M&F data have the biggest global average value but the SWAMPS-

GLWD data can be higher than M&F data during summer (Figure 3.3). The M&F data don’t have 

seasonal variation and provide the same amount of inundated area during winter as in summer 

without considering soil frozen. TEM-MDM will not stop produce methane when soil temperature 

is lower than 0°C and this process will increase the winter estimate when using M&F data to some 

extent. Using different sets of climate forcing data, the emission estimates using CRU data are 

lower than using ECMWF and NCEP data (Figure 3.6). When using different wetland distribution 

data, the methane emission estimates vary up to 26 Tg CH4 yr-1 (Table 3.9, Figure 3.6). Global 

distribution of methane emissions and consumptions don’t change significantly when using 

different climate forcing data but will change significantly when using different wetland 

distribution data (Figure 3.7, 3.8). Global methane emission and consumption changes indicate 

that SWAMPS-GLWD has smaller wetland inundated area in boreal regions and larger area in 

tropical regions in comparison to M&F data (Figure 3.7, 3.8). 

3.5.3 Comparison with Other Studies 

The previous global estimates of methane emissions from wetlands range from 127 to 284 

Tg CH4 yr-1 for various historical periods (Table 3.11). This study estimates the global methane 

emissions of 185-217 Tg CH4 yr-1 from wetlands, when using CRU climate data and SWAMPS-

GLWD wetland inundation area fraction data (Table 3.11). For boreal regions, our model showed 

relatively lower mean emissions (~6 Tg CH4 yr-1, figure 3.9c) than previous mean estimates (14-

16 Tg CH4 yr-1, Saunois et al., 2016, Kirschke et al., 2013). This might be due to wetland 



 

81 

 

inundation area uncertainty, such as inclusion of inland water in Poulter et al. (2017); and due to 

the lack of long-term methane fluxes observations from higher latitudes (>60°N, Table 3.2), 

resulting in methane emissions from boreal regions varying from 1 to 25 Tg CH4 yr-1. For 

temperate regions, our model showed a large peak and higher emissions when comparing with 

previous studies in latitudinal distributions (figure 3.9c, Saunois et al., 2016, Kirschke et al., 2013). 

This should be due to lacking long-term methane flux observation data from the region close to 

tropics (30°N-40°N) in our modeling. Regions including eastern US, middle east and eastern China 

showed large emissions during summer, at 29 and 27 Tg CH4 yr-1, respectively, because of high 

temperature (Figure 3.9a). Although regional results from previous works (Saunois et al., 2016, 

Kirschke et al., 2013) also indicated that eastern US and eastern China are hotspots, South America 

should be the biggest source. We estimate that methane emissions from South America are 

relatively lower than previous studies (Saunois et al., 2016, Kirschke et al., 2013). This is mainly 

due to extremely lack of the observation data from tropical regions and large uncertainties in 

wetland inundation area identifications (Table 3.2, Poulter et al., 2017).  Besides, Amazon basin 

observations have recently found that tropical trees act as significant conduits for wetland CH4 

emissions (Pangala et al., 2017). Our current estimates however have not accounted for these 

effects. In the simulations during 1950-2012, both emission and consumption increased during El 

Niño events and decreased during La Niña events (Figure 3.10). Zhu et al. (2017) showed an 

opposite result, indicating there were less emissions from tropical regions during El Niño events 

and more emissions during La Niña events. This discrepancy might be due to that methane 

emissions and consumptions are more sensitive to air temperature change in our model. During El 

Niño events, the global mean air temperature would increase so the methane emission and 

consumption would increase. During La Niña events, global mean temperature is generally 
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relatively low and would decrease methane emission and consumption. Compared to previous 

modeling studies (Cao et al., 1995, 1996; Li, 2000; Walter and Heimann, 2000; Zhuang et al., 2004; 

Meng et al., 2012; Zhu et al., 2014), this study considers wetland types in different climatic regions 

and the influence of standing water for methane emissions. We use a finer time step (1 hour for 

methane module and 5 minutes for hydrology module) than before to reduce partial differential 

equation solution errors.  

3.6 Conclusions 

This study quantifies the uncertainty sources and magnitudes of global land methane 

emissions and consumption. We find that parameters, wetland type distribution and wetland area 

distribution are three major uncertainty sources for methane emissions, inducing emission 

uncertainty 62, 32 and up to 26 Tg CH4 yr-1, respectively. Climate forcing uncertainties result in 

the emission uncertainty up to 9 Tg CH4 yr-1. Driven with CRU forcing data and SWAMPS-

GLWD inundation area fraction data, our model estimates that the global wetlands emit 198 Tg 

CH4 yr-1 and uplands consume 32 Tg CH4 yr-1 during 1950-2012.  Global methane emissions and 

consumption increase during El Niño events and decrease during La Niña events.  Our estimates 

can be improved by using more in situ data in parameterization and more accurate dynamical 

wetlands and inundation distribution data to drive our model. This study provided an improved 

process-based methane biogeochemistry model to the research community and helped identify 

important uncertainty sources and controlling factors for quantifying global wetland methane 

emissions.  By organizing and using a large field dataset of methane fluxes for model 

parameterization and evaluation, this study helped significantly constrain the global wetland 

emission uncertainty.  
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Table 3.1. Parameters related to methane production and oxidation process for wetlands in TEM 

Name Meaning Units Upper 

bounds 

Lower 

bounds 

MGO ecosystem-specific maximum potential CH 

production rate 

µM h-1 1 0.1 

KPCH4 methane ecosystem-specific half saturation 

constant used in Michaelis- Menten kinetics of 

methane production process 

µM 0.2 0.05 

PQ10 ecosystem-specific Q10 coefficient indicating 

the dependency of CH4 production to soil 

temperature 

unitless 9 1.5 

NPPMAX the maximum monthly NPP expected for a 

particular vegetation type 

gC m-2 

mon-1 
400 50 

LMAXB prescribed maximum lower boundary mm 2500 900 

TPR the reference temperature for methanogenesis 

that varies across ecosystems 

°C 30 0 

OMAX ecosystem-specific maximum oxidation 

coefficient 
µM h-1 360 0.3 

KOCH4 methane ecosystem-specific half saturation 

constant used in Michaelis- Menten kinetics of 

methane oxidation process 

µM 66.2 1 

OQ10 ecosystem-specific Q10 coefficient indicating 

the soil temperature dependency of 

methanotrophy 

unitless 9 1.5 

KO oxygen ecosystem-specific half saturation 

constant of oxygen used in Michaelis-Menten 

kinetics of methane oxidation process 

µM 200 37 

afp air filled porosity of the soil v/v 0.3 0.1 

MVMAX maximum volumetric soil moisture for 

methanotrophy 
v/v 1 0.6 

MVMIN minimum volumetric soil moisture for 

methanotrophy 
v/v 0.3 0 

MVOPT optimum volumetric soil moisture for 

methanotrophy 
v/v 0.6 0.3 

TOR the reference temperature for methanotrophy 

that varies across ecosystems 
C 30 0 
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Table 3.2. Calibration (No.1-15) and validation sites (No.16-29) list 

No.  Site name Location (Degree) Type Climate Time Reference 

1 SSA-fen 104.62W, 53.8N Peatland, Fen Boreal Daily 1994-1995 Sellers, et al., (1997) 

2 NSA-fen 98.42W, 55.92N Peatland, Fen Boreal Daily 1994/1996 Sellers, et al., (1997) 

3 Plotnikovo Bog 82.85E, 56.85N nonforested Bog Boreal Biweekly, Jun-Aug in 

1997-1998 

Glagolev, et al., (2011) 

4 Plotnikovo Mire 82.85E, 56.85N Mire, near river Boreal Biweekly, Jun-Aug in 

2006 

Glagolev, et al., (2011) 

5 Muhrino 68.70E, 60.89N nonforested Bog Boreal Biweekly, Jun-Aug in 

2009-2010 

Glagolev, et al., (2011) 

6 Sallie's Fen  71.06W, 43.21N Peatland Fen Temperate Weekly, 1994-2001 Zhuang, et al., (2008) 

7 Buck Hollow Bog 84.02W,42.45N Non forested wetland Temperate monthly,1991-1993 shannon,et al., (1994) 

8 Minnesota peatland 93.47W,47.53N Peatland bog Temperate Weekly,1991-1992 Clement et al., (1995); 

Shurpali, et al., 

(1993,1998) 

9 Mer Bleue Bog 75.48W,45.41N Non forested Peatland 

bog 

Temperate Weekly, 2004-2007 Moore, et al., (2011) 

10 Minnesota peatland 93.47W,47.53N Peatland bog Temperate Monthly,1988-1990 Dise (1993) 

11 Cuini 64.10W, 0.48-1.14S Interfluvial wetlands 

 

 

Tropical  Monthly 200502-

200601 

Belger, et al., (2014) 
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Table 3.2 continued 

12 Itu 63.56W, 0.29S Interfluvial wetlands Tropical  Monthly 200502-

200601 

Belger, et al., (2014) 

13 EARTH 83.57W, 10.22N Secondary forest Tropical  6 visit 2006-2009 Nahlik and Mitsch, 

(2011) 

14 La Selva 84.01W, 10.42N Flooded forest Tropical  6 visit 2006-2009 Nahlik and Mitsch, 

(2011) 

15 Palo Verde 85.33W, 10.34N Coastal plains Tropical  6 visit 2006-2009 Nahlik and Mitsch, 

(2011) 

16 Stordalen 19.05E, 68.33N Subarctic micre Boreal monthly, 

1974/1994/1995 

Svensson et al., (1999) 

17 Stordalen 19.05E, 68.33N Subarctic micre Boreal Daily, 2006-2007 Jackowicz-Korczynski 

et al., (2010) 

18 Degero Stormyr 19.55E, 64.18N Boreal mire, fen Boreal Daily, 1995-1997 Grandberg, et al., 

(2001) 

19 Salmisue mire 30.93E, 62.78N Boreal fen Boreal Daily, 1997 Saarnio, et al., (1997) 

20 Ruovesi 24.02E, 61.83N Boreal fen Boreal Daily, 2006 Rinne, et al., (2007) 

21 Quebec 78.77W, 53.9N Peatland Boreal Daily, 2003 Pelletier, et al., (2007) 

22 Quebec 77.72W, 53.63N Peatland Boreal Daily, 2003 Pelletier, et al., (2007) 

23 Quebec 76.13W, 53.57N Peatland Boreal Daily, 2003 Pelletier, et al., (2007) 

24 Sanjiang Plain 133.52E, 47.58N  Marshland/natural 

freshwater wetland 

Temperate Annually, 2002-2005 Huang, et al., (2010); 

Song, et al., (2009) 
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Table 3.2 continued 

25 Sanjiang Plain 133.52E, 47.58N  Marshland/freshwater 

marsh 

Temperate Monthly, 1995-1996, 

2001-2003 

Wang, et al., (2002); 

Cui, et al., (1997); 

Ding, et al., (2004); 

Yang, et al., (2006); 

Hao, et al., (2004) 

26 Loch Vale 105.65W, 40.28N Subalpine wetland Temperate Daily, 1996-1998 WicKland, et al., (2001) 

27 Ryans 1 Billagong 146.97E, 36.12N Freshwater wetland Temperate Monthly, Apr 1993-

May 1994 

Boon and Mitchel, 

(1995) 

28 Florida 81.00W, 25.00N Everglade Tropical  Averaged range using 

few visits during 

1980-1987 

Bartlett, et al., (1989); 

Burke Jr., et al., (1988); 

Harriss , et al., (1988) 

29 Amazon Amazon Basin Flooded plain Tropical  Averaged range using 

few visits during 

1979-1987 

Melack, et al., (2004); 

Devol, et al., (1988); 

Bartlett, et al., (1988); 

Bartlett., et al., (1990); 

  



 

 

 

8
8
 

Table 3.3. Optimized parameters for different ecosystem types.  

No. Climate Subtype Category MGO KPCH4 PQ10 NPPMAX LMAXB TPR OMAX KOCH4 OQ10 KO afp MVMAX MVMIN MVOPT TOR 

1 Boreal Forested Bog mean 0.57 0.12 4.45 181.84 1641.66 15.48 175.48 34.63 5.19 118.39 0.2 0.79 0.15 0.46 16.16 

      range 0.27-0.89 0.06-0.17 2.62-8.31 50.00-

318.98 

979.15-

2499.86 

8.13-

21.43 

4.07-

355.18 

12.39-

64.05 

2.19-8.51 59.07-

196.18 

0.13-0.28 0.64-0.94 0.02-0.28 0.31-0.57 3.49-

29.76 

2 Boreal Nonforested Bog mean 0.6 0.13 6.29 370.15 1965.68 16.1 176.74 30.58 5.01 118.13 0.2 0.82 0.16 0.45 15.54 

  
  

range 0.31-0.95 0.06-0.19 5.21-7.32 284.13-

400.00 

1721.92-

2498.80 

12.64-

18.94 

10.07-

346.41 

2.05-

62.96 

1.70-8.37 39.42-

193.66 

0.11-0.30 0.63-0.96 0.01-0.30 0.30-0.59 0.23-

29.52 

3 Boreal Forested Swamp mean 0.55 0.13 4.89 140.78 1739.22 17.89 105.16 39.71 5.05 110.47 0.2 0.86 0.19 0.46 19.83 

      range 0.24-0.82 0.05-0.20 3.80-6.99 76.96-

284.53 

1331.57-

2488.15 

13.41-

22.49 

0.30-

358.21 

8.71-

66.19 

1.55-8.91 40.09-

182.96 

0.11-0.30 0.71-1.00 0.00-0.30 0.31-0.59 3.30-

29.91 

4 Boreal Nonforested Swamp mean 0.59 0.12 1.51 165.11 1366.7 18.18 175.68 30.44 4.6 108.56 0.2 0.83 0.14 0.47 15.43 

  
  

range 0.29-0.99 0.05-0.20 1.50-1.58 97.14-

356.47 

995.89-

2479.50 

4.16-

29.48 

13.19-

358.06 

1.22-

64.60 

1.60-7.74 37.87-

197.99 

0.10-0.29 0.60-0.97 0.00-0.30 0.31-0.60 0.19-

29.35 

5 Boreal Alluvial Formations mean 0.59 0.12 4.99 204.53 1878.88 20.73 126.72 30.52 4.6 116.47 0.2 0.85 0.13 0.44 20.04 

      range 0.29-0.87 0.07-0.18 3.66-8.53 82.57-

352.33 

1442.66-

2271.02 

16.70-

25.15 

0.78-

221.12 

1.90-

49.93 

2.29-6.36 60.44-

160.77 

0.11-0.29 0.80-0.98 0.03-0.21 0.35-0.54 8.99-

28.25 

6 Temperate Forested Bog mean 0.61 0.13 6.21 334.19 1796.13 9.98 127.1 37.37 5.37 117.73 0.19 0.78 0.17 0.47 18.55 

  
  

range 0.27-0.98 0.07-0.20 5.32-6.89 223.48-

398.98 

1135.43-

2497.48 

5.64-

13.09 

0.31-

351.21 

11.49-

65.83 

1.82-8.81 42.50-

186.97 

0.10-0.29 0.63-1.00 0.01-0.30 0.30-0.60 2.27-

29.95 

7 Temperate Nonforested Bog mean 0.66 0.13 3.91 355.95 1652.22 10.11 191.25 34.73 5.39 127.16 0.19 0.8 0.12 0.42 13.06 

      range 0.37-1.00 0.07-0.20 3.68-4.23 216.74-

399.92 

901.80-

2435.60 

5.81-

12.78 

45.35-

356.57 

1.44-

63.64 

2.32-8.87 59.68-

199.04 

0.11-0.28 0.63-0.99 0.02-0.25 0.30-0.58 0.14-

23.68 

8 Temperate Forested Swamp mean 0.61 0.13 6.21 334.19 1796.13 9.98 127.1 37.37 5.37 117.73 0.19 0.78 0.17 0.47 18.55 

  
  

range 0.27-0.98 0.07-0.20 5.32-6.89 223.48-

398.98 

1135.43-

2497.48 

5.64-

13.09 

0.31-

351.21 

11.49-

65.83 

1.82-8.81 42.50-

186.97 

0.10-0.29 0.63-1.00 0.01-0.30 0.30-0.60 2.27-

29.95 

9 Temperate Nonforested Swamp mean 0.66 0.13 3.91 355.95 1652.22 10.11 191.25 34.73 5.39 127.16 0.19 0.8 0.12 0.42 13.06 

      range 0.37-1.00 0.07-0.20 3.68-4.23 216.74-

399.92 

901.80-

2435.60 

5.81-

12.78 

45.35-

356.57 

1.44-

63.64 

2.32-8.87 59.68-

199.04 

0.11-0.28 0.63-0.99 0.02-0.25 0.30-0.58 0.14-

23.68 
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Table 3.3 continued 

10 Temperate Alluvial Formations mean 0.75 0.12 1.53 382.92 1852.6 11.94 120 38.18 6.43 126.81 0.2 0.81 0.16 0.48 20 

  
  

range 0.47-1.00 0.05-0.20 1.50-1.63 251.26-

400.00 

1162.27-

2493.35 

0.69-

19.52 

0.30-

342.86 

4.47-

65.14 

2.81-9.00 37.90-

196.69 

0.10-0.30 0.60-1.00 0.01-0.29 0.32-0.60 0.83-

29.96 

11 Tropical Forested Bog mean 0.41 0.12 2.84 62.45 1744.61 25.52 129.3 29.01 4.99 122.46 0.2 0.85 0.14 0.46 14.91 

      range 0.12-0.64 0.05-0.20 1.64-6.83 50.00-

196.05 

913.70-

2315.90 

18.87-

29.98 

0.33-

349.74 

1.80-

63.36 

1.74-8.94 44.17-

197.16 

0.11-0.30 0.62-1.00 0.01-0.28 0.35-0.60 1.03-

28.47 

12 Tropical Nonforested Bog mean 0.43 0.13 1.68 232.85 1649.91 25.78 192.55 31.53 4.76 122.64 0.19 0.79 0.14 0.45 14.89 

  
  

range 0.33-0.58 0.05-0.18 1.50-2.99 153.04-

398.90 

1260.12-

2295.02 

19.66-

28.38 

3.23-

354.08 

4.40-

59.57 

1.85-8.71 65.10-

197.91 

0.10-0.28 0.64-0.95 0.00-0.27 0.30-0.60 0.24-

29.63 

13 Tropical Forested Swamp mean 0.34 0.12 5.34 356.03 1752.12 26.43 157.48 29.32 5.33 115.08 0.21 0.8 0.16 0.44 15.66 

      range 0.15-0.65 0.05-0.20 3.75-6.97 212.62-

400.00 

900.85-

2496.07 

22.00-

30.00 

0.56-

352.83 

1.65-

63.63 

1.54-8.99 40.48-

197.12 

0.11-0.29 0.61-0.98 0.01-0.30 0.32-0.60 1.23-

30.00 

14 Tropical Nonforested Swamp mean 0.2 0.13 7.25 393.95 1659.53 27.48 163.85 34.68 4.74 115.96 0.2 0.78 0.15 0.46 16.09 

  
  

range 0.12-0.30 0.06-0.20 3.90-9.00 335.57-

400.00 

930.73-

2318.31 

25.00-

29.80 

1.00-

359.41 

1.88-

65.52 

1.54-8.71 38.10-

199.91 

0.10-0.30 0.62-0.98 0.00-0.30 0.31-0.60 0.00-

29.95 

15 Tropical Alluvial Formations mean 0.51 0.12 1.53 80.31 1654.54 24.52 131.58 26.75 4.99 122.13 0.19 0.82 0.12 0.45 17.8 

      range 0.30-0.92 0.06-0.20 1.50-1.72 59.61-

222.76 

916.68-

2244.78 

9.18-

29.83 

1.53-

334.90 

1.15-

65.99 

1.66-8.96 39.19-

195.81 

0.11-0.29 0.61-0.99 0.00-0.30 0.30-0.59 1.06-

29.33 
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Table 3.4. Model evaluations with observations.  Observation points are acceptable observed flux data at each site. RMSE is root 

mean square error between simulation and observation (mg CH4 m-2 day-1). R2 is the coefficient of determination. P value is the 

probability value based on a two-sided t-test. T-value is the t statistic value. Regional results from site 28 and 29 are discussed in 

Section 3.4.1. 
 

site16 site17 site18 site19 site20 site21 site22 site23 site24 site25 site26 site27 

Observation points 9 42 24 80 127 7 7 7 6 31 53 14 

Observed mean value 77.81 117.19 72.27 190.30 53.51 79.94 28.01 28.11 117.84 383.15 172.67 186.48 

RMSE 64.90 104.31 46.81 153.40 42.68 91.92 68.99 48.96 83.96 270.59 101.78 83.33 

R2 0.30 0.00 0.24 0.07 0.55 0.49 0.19 0.72 0.18 0.18 0.56 0.66 

P-value 0.12 0.95 0.02 0.01 0.00 0.08 0.33 0.02 0.40 0.02 0.00 0.00 

T-test 1.75 0.07 2.61 2.49 12.29 2.17 1.08 3.62 0.95 2.53 8.20 4.73 
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Table 3.5. Model sensitivity test during 2000-2012 using monthly CRU data and transient wetland fraction data.  

Flux type Region Value category 

Baseline  

(Tg CH4 

yr-1) 

CH4 

+30% 

CH4 

-30% 

NPP 

+30% 

NPP 

-30% 

Precipitation 

+30% 

Precipitation  

-30% 

Air T 

+3oC 

Air T 

-3oC 

Inundation 

Fraction 

+30% 

Inundation 

Fraction  

-30% 

Consumption 

Global 
Value -35.33 -40.83 -29.61 -35.92 -34.75 -36.74 -33.62 -54.11 -25.62 -35.02 -35.73 

Change % 0.00 15.57 -16.19 1.67 -1.64 3.99 -4.84 53.16 -27.48 -0.88 1.13 

90S-45S 
Value -0.14 -0.18 -0.1 -0.14 -0.14 -0.15 -0.14 -0.15 -0.13 -0.14 -0.14 

Change % 0.00 28.57 -28.57 0.00 0.00 7.14 0.00 7.14 -7.14 0.00 0.00 

45S-0 
Value -5.95 -7.22 -4.65 -6 -5.9 -6.42 -5.5 -7.76 -5.09 -5.93 -5.99 

Change % 0.00 21.34 -21.85 0.84 -0.84 7.90 -7.56 30.42 -14.45 -0.34 0.67 

0-45N 
Value -22.62 -25.34 -19.7 -23.04 -22.2 -23.41 -21.61 -37.37 -15.36 -22.39 -22.86 

Change % 0.00 12.02 -12.91 1.86 -1.86 3.49 -4.47 65.21 -32.10 -1.02 1.06 

45N-90N 
Value -6.62 -8.09 -5.15 -6.74 -6.51 -6.76 -6.37 -8.83 -5.05 -6.55 -6.73 

Change % 0.00 22.21 -22.21 1.81 -1.66 2.11 -3.78 33.38 -23.72 -1.06 1.66 

Emission 

Global 
Value 211.93 210.5 213.36 222.27 201.59 215.15 206.89 309.54 146.03 266.51 148.33 

Change % 0.00 -0.67 0.67 4.88 -4.88 1.52 -2.38 46.06 -31.10 25.75 -30.01 

90S-45S 
Value 0.57 0.57 0.58 0.6 0.54 0.58 0.57 0.92 0.38 0.74 0.4 

Change % 0.00 0.00 1.75 5.26 -5.26 1.75 0.00 61.40 -33.33 29.82 -29.82 

45S-0 
Value 44.71 44.33 45.09 47.29 42.13 46.05 41.3 60.38 33.1 54.22 31.29 

Change % 0.00 -0.85 0.85 5.77 -5.77 3.00 -7.63 35.05 -25.97 21.27 -30.02 

0-45N 
Value 124.72 124.11 125.32 129.24 120.19 126.11 123.32 184.34 85.32 157.51 87.29 

Change % 0.00 -0.49 0.48 3.62 -3.63 1.11 -1.12 47.80 -31.59 26.29 -30.01 

45N-90N 
Value 41.93 41.5 42.37 45.14 38.73 42.41 41.69 63.91 27.23 54.03 29.35 

Change % 0.00 -1.03 1.05 7.66 -7.63 1.14 -0.57 52.42 -35.06 28.86 -30.00 
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Table 3.6. Correlations between simulated methane fluxes and environmental factors during 

2000-2012 using monthly CRU data and transient wetland fraction data. Factors include net 

primary production (NPP), precipitation (PREP), air temperature (TAIR), wetland inundation 

area fraction (IN-AREA), soil temperature (SOILT) and volumetric soil moisture (VSOIL). 

 

  

Variable 
name 

CH4 Dynamics  

Month Correlation Year Correlation 

South-
45S 

45S-0 0-45N 
45N-
North 

Global 
South-

45S 
45S-0 0-45N 

45N-
North 

Global 

NPP 
Consumption -0.86 -0.87 -0.86 -0.96 -0.95 0.52 0.04 0.23 0.17 0.38 

Emission 0.70 0.83 0.89 0.99 0.99 -0.04 0.23 0.30 -0.32 0.10 

PREC 
Consumption 0.15 -0.91 -0.94 -0.90 -0.84 -0.56 0.31 -0.20 -0.20 -0.04 

Emission -0.28 0.90 0.94 0.87 0.78 -0.05 -0.35 0.18 -0.05 -0.24 

TAIR 
Consumption -0.83 -0.85 -0.88 -0.96 -0.89 0.08 -0.54 0.27 -0.77 -0.27 

Emission 0.83 0.91 0.93 0.88 0.90 0.71 0.58 0.38 0.53 0.73 

IN_AREA 
Consumption 0.68 -0.41 -0.64 -0.93 -0.89 -0.07 -0.71 -0.42 -0.42 -0.68 

Emission -0.49 0.48 0.76 0.87 0.92 -0.15 0.68 -0.21 0.60 0.41 

TSOIL 
Consumption -0.83 -0.85 -0.89 -0.99 -0.92 0.07 -0.54 0.30 -0.71 -0.10 

Emission 0.83 0.91 0.94 0.92 0.92 0.71 0.59 0.42 0.70 0.74 

VSOIL 
Consumption 0.52 -0.77 -0.52 -0.88 -0.77 -0.45 -0.67 -0.72 -0.20 -0.80 

Emission -0.48 0.76 0.48 0.79 0.77 -0.25 0.51 -0.14 -0.09 -0.10 
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Table 3.7. Parameter uncertainties in different wetland types 

Type 
numbers 

Climate Subtype Pixels Annual Mean Emission 
(Tg CH4 yr-1) 

Annual 
Mean STD   

(Tg CH4 yr-1) 

1 Boreal Forested Bog 11475 13.95 14.96 

2 Boreal Nonforested Bog 10050 3.14 1.68 

3 Boreal Forested Swamp 52 0.01 0.01 

4 Boreal Nonforested Swamp 164 0.25 0.14 

5 Boreal Alluvial Formations 1 0.00 0.00 

6 Temperate Forested Bog 6754 48.12 23.42 

7 Temperate Nonforested Bog 4340 18.72 7.34 

8 Temperate Forested Swamp 1101 23.54 11.87 

9 Temperate Nonforested Swamp 741 4.56 2.19 

10 Temperate Alluvial Formations 72 1.07 0.42 

11 Tropical Forested Bog 55 1.58 1.02 

12 Tropical Nonforested Bog 8538 19.72 6.70 

13 Tropical Forested Swamp 12791 37.13 21.78 

14 Tropical Nonforested Swamp 5431 7.11 2.32 

15 Tropical Alluvial Formations 206 7.73 4.68 

Total -- -- 61771 211.93 62.04 
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Table 3.8. Simulated methane emission (Tg CH4 region-1 yr-1) uncertainties due to uncertain 

parameters and wetland type distribution expressed with standard deviations (STD) in different 

regions. 
 

90S-

45S 

45S-0 0-45N 45N-90N global 

Emission baseline 0.58 44.84 124.28 41.7 211.93 

Emission parameter uncertainty STD 0.34 15.11 40.44 19.3 61.82 

Emission wetland type uncertainty 

STD  

0.11 7.24 25.77 3.61 31.93 
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Table 3.9. Modeled methane fluxes (Tg CH4 yr-1) uncertainties due to different forcing data  

Flux Type  Region 
CRU CRU ECMWF ECMWF NCEP NCEP 

static transient static transient static transient 

Consumption 90S-45S -0.19 -0.14 -0.26 -0.16 -0.29 -0.19 

Consumption 45S-0 -7.49 -5.99 -9.86 -6.93 -10.38 -7.1 

Consumption 0-45N -16.76 -22.72 -20.9 -27.27 -23.22 -27.51 

Consumption 45N-90N -9.44 -6.64 -11.69 -7.54 -12.14 -7.64 

Emission 90S-45S 0.22 0.57 0.2 0.55 0.14 0.55 

Emission 45S-0 53.76 44.67 51.39 40.05 53.73 42.59 

Emission 0-45N 52.24 124.75 55.31 122 51.75 121.22 

Emission 45N-90N 79.57 41.96 87.89 47.4 89.18 47.91 

Consumption Global -33.89 -35.48 -42.71 -41.89 -46.04 -42.43 

Emission Global 185.78 211.93 194.78 210.01 194.81 212.27 
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Table 3.10. Modeled methane fluxes (Tg CH4 yr-1) during 1950-2012 using CRU data 
 

90S-45S 45S-0 0-45N 45N-90N Global 

Emission value 0.55 41.60 116.65 38.90 197.70 

Emission % 0.28 21.04 59.00 19.67 100.00 

consumption value -0.14 -5.16 -20.49 -5.86 -31.65 

consumption % 0.44 16.29 64.76 18.51 100.00 
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Table 3.11. Historical simulations compared with previous global wetland emission estimates   

Studies Period Comments Emission Value 

(Tg CH4 yr-1) 

Our study 1950-

2012 

Bottom-up approach, process-

based model considering 

multiple natural wetland types 

185-217 

Zhang et al., 2017 2000-

2007 

Bottom-up approach, using same 

model as Tian et al., 2015 but 

using five different wetland 

distribution data sets 

127-227 

Saunois et al., 

2016 

2000-

2012 

Top-down and bottom-up 

approach, multiple model 

approaches, natural wetland 

emissions, tropical regions are 

hot spots 

125-227 

Tian et al., 2015 1981-

2010 

Bottom-up approach, land 

surface emissions considered 

agriculture, tropical and Asia are 

hot spots 

131-157 

Zhu et al., 2015 1901-

2012 

Bottom-up approach, wetland 

emissions considered agriculture, 

primarily controlled by tropical 

wetlands, peak occurring in 

1991-2012 

209-245 

Kirschke et al., 

2013 

2000-

2009 

Top-down and bottom-up 

approach, multiple model 

approaches, natural wetland 

emissions 

142-284 
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Figure 3.1. Comparison between observed and simulated methane fluxes at calibration sites 

(upper panel) and evaluation sites (lower panel). Diamond symbol represents the boreal data. 

Triangle symbol represents the temperate data. Square symbols represent the tropical data. Dot 

line represents that the observed data equals the simulated data.  Red solid line represents the 

linear regression line between all observed and simulated data. 

R2=0.44 

P-value<0.01 

T-value=24.8 

R2=0.41 

P-value<0.01 

T-value=16.7 
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Figure 3.2. Climate forcing data used in this study. Figure a)-d) represent the climate data from 

CRU (solid line), ECMWF (dash line) and NCEP (dash-dot line), respectively, during 2000-2012 
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Figure 3.2.contd. Climate forcing data used in this study. Figure e-h represent the climate data 

from CRU during 1950-2012 (solid line) 
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Figure 3.3. Wetland distribution data used in this stud 
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Figure 3.4. Parameter uncertainty analysis during 2000-2012: a) global monthly methane flux  

uncertainties, the black line represents the baseline results and the gray lines represent the 100 

simulation results using parameters which were randomly chosen in optimized ranges; b) global 

annual methane flux uncertainties, the black line represents the baseline.  For each box, line top, 

box top, horizontal line inside box, box bottom and line bottom represent maximum, third 

quartile, median, first quartile and minimum of 100 simulations; and c) the latitude distribution 

of global annual mean methane emissions, the black line represents the baseline results and the 

gray lines represents the 100 parameter uncertainty simulations.  

  

a) 

b) 

c) 
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Figure 3.5. Wetland type uncertainty analysis during 2000-2012: a) global monthly methane flux 

uncertainties, the black line represents the baseline results and the gray lines represent the 770 

simulation results using different wetland distributions; b) global annual methane flux 

uncertainties, the black line represents the baseline.  For each box, line top, box top, horizontal 

line inside box, box bottom and line bottom represent maximum, third quartile, median, first 

quartile and minimum of 770 simulation results, respectively; and c) the latitude distribution of 

global annual mean methane emission, the black line represents the baseline results and the gray 

lines represents the results of the 770 wetland type uncertainty simulations. 

  

a) 

b) 

c) 
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Figure 3.6. Forcing data uncertainty test results during 2000-2012: Upper panel represents global 

monthly methane flux uncertainties. Different colors and line styles represent different 

combinations of forcing data; lower panel represents global annual methane flux uncertainties. 

Different colors and line styles represent different combinations of forcing data.  
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Figure 3.7. Global distribution of annual wetland methane emissions during 2000-2012 when 

using different forcing data: a) the baseline using static wetland map and CRU climate data; b)-f) 

shows the differences (new flux value – baseline flux value) when using different wetland 

distribution data or using different climate data. Red regions represent emission increasing while 

blue regions represent emission decreasing. 
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Figure 3.8. Global distribution of annual upland methane consumption during 2000-2012 when 

using different forcing data: a) shows the baseline using static wetland map and CRU climate 

data; b)-f) show the difference (new flux value – baseline flux value) when using different 

wetland distribution data or using different climate data. Red regions represent consumption 

decreasing while blue regions represent consumption increasing. 
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Figure 3.9. Global simulation during 1950-2012 using CRU data and transient wetland fraction 

data: a) global distribution of annual wetland methane emissions; b) global distribution of annual 

upland methane consumption; and c) latitude distribution of methane emission, consumption and 

net fluxes. 

  

a) 

b) 

c) 
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Figure 3.10. Historical estimates and comparisons: Upper panel represents annual wetland 

methane emissions (black) and net fluxes (blue) during El Niño (yellow strip) and La Nina (blue) 

event periods; lower panel represents annual upland methane consumption (black) during El 

Niño (yellow strip) and La Nina (blue) event periods
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 INVENTORYING GLOBAL WETLAND METHANE 

EMISSIONS USING IN SITU DATA AND AN ARTIFICIAL NEURAL 

NETWORK APPROACH 

4.1 Abstract 

Methane (CH4) emissions from wetland ecosystems exert large positive feedbacks to the 

global climate system. However, the estimation of wetland CH4 emissions at the global scale still 

has large uncertainties. Here we develop a predictive model of CH4 emissions using an artificial 

neural network (ANN) approach and available field observations of CH4 fluxes. Eleven 

explanatory variables including three transient climate variables (precipitation, air temperature and 

solar radiation) and eight static soil property variables are considered in developing ANN models. 

The models are then extrapolated to the global scale to estimate monthly CH4 emissions from 1979 

to 2099.  We estimate that the annual wetland CH4 emissions are 186 Tg CH4 yr-1 (1 Tg = 1012 g) 

with an uncertainty range of 169-190 Tg CH4 yr-1 in the historical period. The future predicted 

emissions are 199-209 Tg CH4 yr-1 in the last two decades of the 21st century. The estimated 

wetland CH4 emissions show a large spatial variability, due to variations in hydrology, climate, 

and soil conditions. Significant interannual and seasonal variations of wetland CH4 emissions exist 

in the past four decades, and the emissions in this period are most sensitive to variations in solar 

radiation and air temperature. To improve future quantifications, research priorities should be 

directed to better detecting water table position by using improved radar technology, characterizing 

temporal and spatial dynamics of wetland areas, and strengthening tropical wetland CH4 flux 

observations. 



 

110 

 

4.2 Introduction 

Methane (CH4) is the second most potent greenhouse gas after carbon dioxide (CO2). It has 

contributed to about 20% of the observed warming since pre-industrial times (Ciais et al., 2013). 

According to the latest Intergovernmental Panel on Climate Change report (IPCC), the global 

warming potential (GWP) of CH4 is 28, about 25 times that of CO2 on a 100-year time period 

(IPCC AR5, Myhre et al., 2013). The atmospheric concentration of CH4 has increased from a 

preindustrial value of about 700 ppb to a current value of about 1850 ppb (Saunois, et al., 2019). 

The increase of atmospheric CH4 concentrations has contributed ~23% (~0.62 Wm-2) to the 

additional radiative forcing accumulated in the lower atmosphere since 1750 (Etminan, et al., 

2016). The growth rate of atmospheric CH4 has decreased, however, from approximately 13 ppb 

yr-1 during the early 1980s to near zero between 1999 and 2006. Since 2007, the growth rate of 

atmospheric CH4 has risen again (Dlugokencky et al., 2009; Nisbet, Dlugokencky, & Bousquet, 

2014; Saunois et al., 2016; Schaefer et al., 2016; Zhang et al., 2018). The climatic sensitivity of 

biogenic CH4 sources has significantly influenced the inter-annual variability of atmospheric CH4 

and the global wetland contributes 60–80% of natural CH4 emissions (Quiquet et al., 2015; 

Hopcroft et al., 2017) and this large role is likely to persist into the future (Zhang et al., 2017).  

The balance between CH4 production and consumption determines the amount of CH4 

emitted from wetland soils. In wetland soils, CH4 is normally produced by methanogens in anoxic 

environments, and is oxidized by methanotrophic bacteria in the presence of oxygen (Hanson and 

Hanson, 1996). Both CH4 production and oxidation are mainly controlled by soil temperature, pH, 

and substrate availability (Christensen et al., 1995; MacDonald et al., 1998; Wagner et al., 2005). 

Besides, three pathways have been widely considered when quantifying CH4 emissions from soils, 

including the diffusion process, plant-mediated transport and ebullition process (Zhuang, et al., 

2004, 2013). 



 

111 

 

To date, three approaches have been used in estimating CH4 emissions from wetlands across 

different scales over the last few decades: 1) a bottom-up extrapolation approach by using simple 

empirical or statistical models and actual CH4 emission measurements; 2) a bottom-up approach 

with process-based models parameterized using flux measurements to quantify CH4 fluxes, and 3) 

a top-down approach, which uses atmospheric inverse models to estimate the distribution of CH4 

sources and sinks by incorporating atmospheric observations, an atmospheric transport model and 

prior estimates of source distributions and magnitudes (Arneth et al., 2010; Anderson et al., 2010; 

Kirschke et al., 2013; Zhu et al., 2014; Saunois, et al., 2019). Although top-down approach is 

widely thought to be more accurate than bottom-up approach, the current top-down approach may 

inadvertently include some incomplete observations and error amplifications during inverse 

modelling processes (Chen and Prinn, 2005; Ciais et al., 2013). Process-based models can be used 

to improve CH4 emission estimation considering the effects of complex interactions between soil, 

vegetation, and hydrology on CH4 production and consumption processes. A number of process-

based models have been developed previously to better quantify the wetland CH4 emission and its 

influence on the climate (Cao et al., 1996; Li, 2000; Zhang et al., 2002; Zhuang et al., 2004; Meng 

et al., 2012; Zhu et al., 2014; Zhang, et al., 2017; Saunois et al., 2019).  

Although great efforts have been made on estimating global natural wetland CH4 emissions, 

current quantifications still have large uncertainties. The Global Carbon Project (GCP) and the 

Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP) estimated the 

global CH4 emission from natural wetlands, ranging from 102 to 284 Tg CH4 yr-1
 during 2000-

2017 (Kirschke et al., 2013; Melton et al., 2013; Saunois et al., 2016; Saunois et al., 2019). The 

uncertainty in these estimates could result from many sources including model structures, 

assumptions, parameterization, and choice of forcing data. Among these uncertainty sources, the 
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paucity of CH4 flux measurements could be an important factor. The lack of sufficient 

measurements of CH4 fluxes and related environmental factors may limit the understanding of 

ecological processes in specific wetland ecosystems, the model assumptions, and the 

parameterization of models. In addition to the large uncertainty present in wetland CH4 emissions, 

the sensitivity of CH4 fluxes to environmental controls is not well understood, which also limits 

explicit representations of many mechanistic processes in models. 

 Artificial neural networks (ANN) are bottom-up approaches, among the most intelligent 

statistical methods and are widely used for a range of applications spanning across various 

scientific fields including Earth ecosystem modeling. ANNs have proved as robust surrogate 

models with flexible mathematical structure and is capable of identifying complex nonlinear 

behavior between model input and output (Delon et al., 2007; Dupont et al., 2008; Zhu et al., 2013; 

Liu et al., 2016; Bomers et al., 2019). The ANN model is created by a learning process, usually 

75% percent of the total input/output data is reserved for training stage and 25% for evaluation. 

The learning process consists of the determination of suitable weight values according to real 

input/output data pairs and is an iterative process (Karkalos et al., 2019). During the past decades, 

although most of the field measurements of CH4 fluxes were made in high latitude regions, some 

measurements in temperate or tropical region started to accumulate. Currently, with the 

accumulation of available in situ CH4 flux data and formation of coordination network for 

ecosystem-scale CH4 measurements at the global scale (e.g. FLUXNET, Knox et al., 2019), it is 

time to use a data-driven ANN approach to quantify wetland CH4 emissions.  This study first used 

an ANN approach to find the optimal nonlinear regression between CH4 fluxes and key 

environmental controls. Driven with the spatially explicit data of climate, hydrology and soil 
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properties, the developed ANN was then extrapolated to the global scale to estimate wetland CH4 

emissions during a historical period 1979-2018 and a future period of 2006-2099. 

4.3 Method 

4.3.1 Overview 

We first collected wetland CH4 flux observation data from different climate regions and soil 

property data (Table 4.1; Section 4.3.2). These data were used to develop the relations between 

input variables and output CH4 fluxes using an ANN model (Table 4.2; Section 4.3.3). We then 

evaluated the ANN model and extrapolated to the global scale by using the data of climate, soil 

property and wetland inundation area to estimate natural wetland CH4 emissions during a historical 

period 1979-2018. Moreover, we used a well-trained ANN model to predict future wetland CH4 

emissions during 2006-2099 (Section 4.3.4). The sensitivity and uncertainty analysis were 

conducted for this period (Section 4.3.5).   

4.3.2 Data Organization 

We compiled CH4 flux chamber measurements and eddy covariance measurements of 

wetland ecosystems at the global scale. Some of them are from peer-reviewed literature (e.g., 

Zhuang et al., 2008; Nahlik and Mitsch, 2011) and others are from AmeriFlux network 

(https://ameriflux.lbl.gov; e.g., Sonnentag and Quinton, 2016; Baldocchi, 2018; site 25-45). Only 

the long-term observations covering at least one-year period (except tropical regions) were 

collected. CH4 measurements can be challenging in tropical regions due to unstable environments, 

resulting in only short-term observations (e.g. Nahlik and Mitsch, 2011). Our data contain CH4 

flux measurements from 56 sites, covering a range of wetland types under various field conditions 

(Table 4.1). Each site contains a collection of CH4 flux measurement records together with some 
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environment variables like temperature, precipitation and soil properties. The original data were 

recorded as half hourly, hourly, daily, weekly or monthly. We converted them into monthly values 

by simply averaging non-monthly data within a month and aggregating to monthly values without 

considering within-month flux variations. 

In addition to the observed CH4 flux data, the site-level data of precipitation (PREC), surface 

air temperature (TAIR), surface downward solar radiation (SOLAR), elevation (ELEV), bulk 

density of the soil (BULK), clay content in soil (CLPC), carbon/nitrogen ration in soil (CNRT), 

organic carbon content in soil (ORGC), soil reaction pH (PHAQ), sand content in soil (SDTO) and 

silt content in soil (STPC) were also organized (Table 4.2). We did not include water table depth 

(WTD), which has been considered as a key factor controlling CH4 emissions from wetland in 

most of previous bottom-up models (Zhuang el al., 2004; Zhu et al., 2013; Zhu et al., 2014). The 

WTD were not observed transiently at some sites. Regional water table depth data were often 

estimated using hydrology models, and their accuracy was temporally or spatially limited, which 

will introduce new uncertainties to an ANN model.  In order to have enough amount of data points 

for global ANN model training and prepare for further global simulation, we replaced WTD with 

a set of variables which were normally considered in process-based WTD hydrology model, 

including TAIR, PREC, SOLAR and soil properties.  Additionally, we used climate type (1. Boreal, 

2. Temperate, 3. Tropical) and wetland type (1. Forested, 2. Non-forested) as input variables. The 

site-level data were first retrieved from original studies or AmeriFlux network websites and then 

complemented with other spatially explicit data sets based on the geographic coordinates and 

observation dates. When there were no observed meteorological data, climate data were derived 

from a reanalysis historical climatic dataset, Climatic Research Unit (CRU TS4.01; Harris et al., 

2014; CRU for short). Especially, SOLAR data of ERA-Interim reanalysis climatic data from the 
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European Centre for Medium-Range Weather Forecasts (ECMWF; Dee et al., 2011) were used to 

fit the missing SOLAR data for each site. Site-level ElEV data were all retrieved from original site 

information. Soil property data including BULK, CLPC, CNRT, ORGC, PHAQ, SDTO and STPC 

were first retrieved from site information and then complemented using a harmonized soil property 

values from International Soil Reference and Information Centre World Inventory of Soil 

Emission Potentials (ISRIC-WISE) spatial soil database (WISE30sec; Batjes, 2016). We used the 

depth average method for soil property values from WISE30sec to derive the mean value for each 

variable for depth 0-200cm. Climate types were determined by site description and its latitude. 

Wetland types were determined by the site description and the classification from Matthews and 

Fung (1987). We simplified 5 categories (1. Forested Bog, 2. Non-forested Bog, 3. Forested 

Swamp, 4. Non-forested Swamp, 5. Alluvial Formations) to 2 categories (1. Forested, including 

Forested Bog, Forested Swamp and Alluvial Formations; 2. Non-forested, including Non-forested 

Bog and Non-forested Swamp). After processing, 3062 data points were retrieved for ANN model 

development. 

4.3.3 Neural Network Development 

We applied a generalized regression neural network (GRNN) algorithm (Specht, 1991) to 

represent the non-linear mapping between the independent variables (environmental variables) and 

the dependent variable (CH4 fluxes). GRNN is similar to other kinds of neural networks, which is 

a data-driven model to estimate the underlying nonlinear relationship between model inputs and 

outputs, requiring no prior knowledge of the inputs. GRNN has some advantages including fast 

learning (without an interactive training procedure) and good convergence with a large amount of 

training data when comparing with other neural networks (Specht, 1991). GRNN model is a 

suitable mathematical model to develop a relation between CH4 fluxes and the related 
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environmental factors. The model has a four-layer network architecture consisting of input, pattern, 

summation, and output layers (Zhuang et al., 2012). The multilayer neural network is trained using 

training dataset, including input and output values of measurements, to obtain a set of optimized 

interconnected network weights which can be used to produce the most probable value for the 

outputs.  

A popular neural network validation method was adopted to validate the performance of the 

developed ANN model. Specifically, a set of training data (75%; N=2296) was randomly chosen 

from the whole measurement dataset to construct the ANN model and the rest of the dataset (25%; 

N= 766) was used to validate the constructed model. MATLAB codes were used for developing 

the ANN model (The MathWorks Inc., Natick, MA, USA). 

Since we randomly chosen the training dataset from the measurement dataset, the 

constructed ANN model could be different and determined by the training dataset. In order to 

choose one representative model for stable global extrapolation, we first ran the normal ANN 

model 1000 times with randomly chosen training dataset. Then the best-run ANN was determined 

by the best evaluation results with largest coefficients of determination (R2). 

4.3.4 Regional Extrapolation 

The developed best-run ANN model was used to simulate monthly CH4 emissions from 

natural wetland ecosystems at the global scale at a spatial resolution of 0.5° x 0.5°. The climate 

type in each pixel was determined by the potential vegetation distribution (Melillo et al., 1993) 

and its latitude location. For instance, if no extra climate information, 30°S-30°N would be 

determined as tropical climate; 60°S-30°S and 30°N-60°N would be treated as temperate climate; 

and 90°S-60°S and 60°N-90°N would be regarded as boreal climate. The wetland type was defined 

in each pixel by vegetation distribution and wetland distribution from Matthews and Fung (1987) 
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(MF for short). The spatially explicit soil properties of the 0-200cm soil were retrieved from 

WISE30sec, including BULK, CLPC, CNRT, ORGC, PHAQ, SDTO and STPC. The elevation 

data were extracted from the Global, 1 arc second Digital Elevation Model (GDEM; Toutin, 2002).  

To get the spatially and temporally explicit estimates of CH4 consumption and emission at 

the global scale for historical and future scenarios, we designed three experiments: 1) for the period 

of 2000-2012, we used the transient wetland inundation area fraction data derived from previous 

study of merging Surface WAter Microwave Product Series (SWAMPS; Schroeder et al 2015) 

with the static inventory of wetland area from the Global Lakes and Wetlands Database (GLWD; 

Lehner and Doll 2004) by Poulter et al. (2017) (SWAMPS-GLWD). Precipitation, air temperature 

and solar radiation from ERA interim were processed into 0.5° x 0.5° spatial resolution and 

monthly time step to drive the model; 2) during 1979-2018, we used the static wetland distribution 

map from MF and climate forcing from ERA interim to drive the best-run ANN model to 

investigate the historical wetland CH4 emission at the 0.5° x 0.5° spatial resolution and monthly 

time step; 3) for 2006-2099, we conducted the ANN model simulations using the static wetland 

distribution map from MF. The IPCC future climate scenarios from Representative Concentration 

Pathways (RCPs) climate forcing data sets RCP2.6, RCP4.5, RCP6.0 and RCP8.5 were retrieved 

from four global circulation models (GCMs) of the Inter-Sectoral Impact Model Inter-comparison 

Project (ISIMIP2b; Frieler et al, 2017), including GFDL-ESM2M, HadGRM2-ES, IPSL-CM5A-

LR and MIROC5. ISIMIP2b bias-adjusted not only the multi-year monthly mean values and daily 

anomalies for most climate variables, but also adjusted them to a newly compiled reference dataset 

EWEMBI (E2OBS, WFDEI and ERAI data merged and bias-corrected for ISIMIP; Lange, 2016), 

which covers the entire globe at 0.5° horizontal and daily temporal resolution from 1979 to 2013. 

The climate forcing and wetland distribution data were processed into 0.5° x 0.5° spatial resolution 
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and monthly time step to conduct the best-run ANN model simulations with consideration of 

climate forcing data uncertainties from different models. 

4.3.5 Sensitivity and Uncertainty Analysis 

To identify key environmental variables in determining CH4 fluxes, the sensitivity analysis 

of the ANN model to input data was conducted. The best-run ANN model involved 3 transient 

variables (temporal and spatial explicit) including PREC, TAIR and SOLAR, and 8 static variables 

(only spatial explicit) including ELEV, BULK, CLPC, CNRT, ORGC, PHAQ, SDTO and STPC. 

We therefore conducted 66 other regional simulations by altering the climate and soil input data 

uniformly for each grid cell at regional scales while keeping others as they were during 2000-2012, 

with same data input as experiment I described in section 4.3.4. Each of the 11 variables was 

individually increased or decreased at three levels including ±10%, ±25%, and ±50%. The 

sensitivity was then calculated as the percentage change between the estimated mean CH4 fluxes 

of each sensitivity and the baseline simulation (experiment I). 

The uncertainty of ANN model simulation is mainly from three sources including input 

variables, ANN model structure, and model parameters. Due to the lack of accurate prior 

knowledge of regional model inputs, we excluded regional forcing uncertainty analysis by only 

focusing on the uncertainties associated with ANN model structures and parameters. The ANN 

model was a data-driven and nonlinear system with optimized weight values. Thus, it was 

challenging to directly quantify the uncertainty range of the model through parametric inference 

since the model parameters were determined on the basis of the training dataset. In our study the 

structures and parameters model uncertainty were assessed through developing a number of 

alternative models using a “delete-one” cross-validation method (Zhuang et al., 2012; Zhu et al., 

2013). Specifically, we randomly sampled 75% of the measurement dataset as the training dataset 
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to develop a new ANN model. Each possible training set was used to construct a different set of 

network parameters or weights, which was then used for regional simulation of CH4 fluxes during 

2000-2012. During this step, the uncertainties in ANN model structures and parameters were 

quantified in an implicit manner. These steps were repeated 100 times to obtain 100 sets of regional 

estimation. The 95% confidence intervals of all estimates of CH4 emissions were considered to be 

the range of model uncertainty and were thus used to define the lower and upper uncertainty 

bounds of the regional wetland CH4 inventory. 

4.4 Results 

4.4.1 Trained Artificial Neural Networks 

We conducted 1000 randomly chosen training sets to find the best-run ANN model with the 

largest validated R2 value. The 1000 ANN models produced training R2 values ranging from 0.98 

to 0.99 and validated R2 ranging from 0.2 to 0.42 (at a significance level of p<0.01). The root-

mean square errors (RMSEs) for 1000 ANN models were ranging from 9.3 to 15.7 mg CH 4 m-2 

day-1 for training and ranging from 91.0 to 129.5 mg CH4 m-2 day-1 for validation. Thus, the best-

run ANN model was determined as the one with training R2=0.99 and validated R2=0.42 (figure 

4.1). The best-run ANN model simulated CH4 fluxes are close to the observed data. The RMSE is 

12.7 mg CH4 m-2 day-1 for the training set and 91.0 mg CH4 m-2 day-1 for the validation set (figure 

4.1). The linear regression between the simulated and measured CH4 fluxes is close to the 1:1 line, 

but with some underestimation at higher fluxes for the testing set (figure 4.1). 

4.4.2 Temporal and Spatial Variations of Regional CH4 Dynamics 

For the historical period simulation with transient wetland inundation data SWAMPS-

GLWD during 2000-2012, the Canadian lowlands, Alaska, northern eastern US, middle and east 



 

120 

 

Siberia, Amazon Basin, east of the Middle East, northern Asia, east Australia and areas near the 

equators acted as hotspots for CH4 wetland emissions (Figure 4.2 upper panel). Simulated global 

annual wetland CH4 fluxes are with a significant interannual variability from 2000 to 2012 (Figure 

4.2, lower panel).  Global mean annual emissions during this period are estimated to be 186 Tg 

CH4 yr-1, with the peak of 193 Tg CH4 yr-1 in 2005 and the valley of 178 Tg CH4 yr-1 in 2011 

(Figure 4.2, lower panel).  The region of 30°S-60°N contribute the most wetland CH4 emission of 

155 Tg CH4 yr-1, holding 84% of the global total wetland emissions (Table 4.3).  

During 1979-2018, static wetland map MF was used for ANN best-run model simulation. 

Canadian lowlands, Alaska, Florida of the US, west Siberia, south side of the South America, and 

areas near the equators showed as hotspots for CH4 wetland emissions (Figure 4.3 upper panel). 

Simulated global annual wetland CH4 fluxes have a significant interannual variability from 1979 

to 2018 (Figure 4.3, lower panel) with mean annual emissions of 188 Tg CH4 yr-1 and a peak of 

195 Tg CH4 yr-1 in 2007 and a valley of 179 Tg CH4 yr-1 in 1981 (Figure 4.3, lower panel).  The 

region of 30°S-0 contributes the most wetland CH4 emission of 68 Tg CH4 yr-1 comparing with 

other regions, holding 36% of the global total wetland emission (Table 4.3). 

Our model simulations during 2080-2099 from RCP2.6, 4.5, 6.0 and 8.5 were compared with 

a baseline simulation (2000-2018). (Figure 4.4). West Siberia and areas near the equator increased 

most comparing with the baseline, while the emissions in most areas of Canadian lowlands and 

south side of the South America decreased (Figure 4.4). From RCP2.6 to RCP8.5, the increased 

emissions become stronger (showed as red) and emission areas were larger, especially in western 

Siberia (Figure 4.4). Under the RCP2.6, the emissions did not change significantly with the 

emissions of 199 Tg CH4 yr-1 during 2080-2099. In contrast, under the RCP8.5, the increase is 

significant, reaching 209 Tg CH4 yr-1 during 2080-2099 (Figure 4.5a-d, Table 4.3). The uncertainty 
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from different models are smaller under the RCP2.6, 4.5 and 6.0 than under the RCP8.5 (Figure 

4.5a-d). The region of 60°S-30°N did not increase under all RCPs in the 2090s, but contributed 

most uncertainties (Figure 4.5e-p). The region of 30°N-90°N increased significantly under the 

RCP6.0 and 8.5 scenarios by the 2090s.  

4.4.3 Sensitivity and Uncertainty of Regional CH4 Estimates 

At the global scale, SOLAR stands out as the most sensitive one among 11 input variables 

(Figure 4.6). Increasing SOLAR favors CH4 emissions while decreasing SOLAR inhibits 

emissions. Emissions vary uniformly with SOLAR at ±10% and ±25% changing levels but stop 

increasing with large decreases at ±50% changing levels (Figure 4.6a-c). Other sensitive variables 

include TAIR and ELEV. Higher TAIR stimulates emissions while lower TAIR inhibits emissions. 

CH4 emissions rise or lower with increasing or decreasing ELEV. PREC, CLPC and ORGC are 

slightly sensitive, while the rest variables including BULK, CNRT, PHAQ, SDTO and STPC are 

not sensitive (Figure 4.4.6a-c). Sensitivities to variable changes in most regions are similar, except: 

1) PREC can be significant sensitive in regions of 30°N-90°N, higher PREC favors more emissions 

(Figure 4.6m-r), while lower PREC favors higher emissions in the regions of 60°S-30°S and 0-

30°N (Figure 4.6d-f; Figure 4.6j-l); 2) SOLAR changes can have opposite effects on emissions in 

the region of 0-30°N (Figure 4.6j-l); 3) Higher ELEV can have opposite effects on emissions in 

the region of 30°S-0 (figure 4.6g-i); 4) SDTO and STPC can be slightly sensitive in the regions of 

60°S-0, 30°N-60°N (figure 4.6d-I; figure 4.6m-o); 5) ORGC becomes very sensitive in the regions 

of 60°N-90°N (figure 4.6p-r); 6) some variable changes can have very different effects at the ±50% 

changing level comparing with ±10% and ±25% levels, such as SOLAR in the regions of 60°S-

30°S and 0-30°N (figure 4.6d-f; figure 4.6j-l). 
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The 100 ANN models provide a probability distribution of regional CH4 emissions (Figure 

4.7). The uncertainties of regional CH4 emissions from ANN model structures and parameters are 

defined as the range between the lower bound and the upper bound of the 95% confidence intervals. 

At the global scale the mean of the Gaussian probability distribution is 179 Tg CH4 yr-1 with a 

range of 168-190 Tg CH4 yr-1. The standard deviation (STD) is 5.52 Tg CH4 yr-1 (Figure 4.7a). 

The region with biggest uncertainty is 0-30°N, contributing a 2. Tg CH4 yr-1  to STD (Figure 4.7d). 

For interannual variability or seasonality, we calculate the probability distribution for each year or 

each month and then use Gaussian fitted distribution to find the lower bound and the upper bound 

of the 95% confidence intervals, respectively. The interannual variability indicates a peak close to 

200 Tg CH4 yr-1  in 2005 and a value of 160 Tg CH4 yr-1 in 2011 by considering the structures and 

parameters uncertainty during 2000-2012 at the global scale (figure 4.8a). The peak and valley 

years vary significantly in the regions of 60°S-30°S and 30°N-90°N (Figure 4.8b, e, f). Global CH4 

emissions are higher during summer and lower during winter and have a higher uncertainty during 

summer (Figure 4.9a). The Southern Hemisphere has the opposite seasonality comparing to global 

results (Figure 4.9b). The tropical regions including 30°S-0 and 0-30°N have a two-peak shape 

and a two-valley shape, respectively (Figure 4.9c, d). The regions over 30°N are very similar to 

global results, with a small peak shift from June to May in the 30°N-60°N region (Figure 4.9e, f).  

4.5 Discussion 

4.5.1 Effects of In Situ Data Availability and Wetland Distribution Data on the Inventory 

Our ANN model presents R2 ranging from 0.2 to 0.42 when randomly choosing the training 

dataset from the measurements, which is relatively low comparing with a previous study using an 

ANN model to map CH4 emissions from high latitudes (R2=0.68; Zhu et al., 2013). There are a 

few reasons for this discrepancy.  Firstly, we use more data points (3000 vs 1000 in the previous 
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study) covering the globe including temperate and tropical regions. Temperate regions (triangle) 

show the largest biases in model simulations (Figure 4.1 lower panel).  This might also be due to 

observation data uncertainty. In particular, when we converted observation data from smaller time 

steps (e.g., hourly, daily and weekly) to monthly, we simply used the mean flux values of all data 

located in that month to represent the monthly CH4 flux, introducing errors to the data.  In addition, 

some data points used in model training were fitted using reanalysis data (e.g. ERA-interim and 

WISE30sec) since some environmental variables are missing at observation sites. This might also 

lead to unrealistic relationships built in the ANN model, leading to poor performance in model 

evaluation (Figure 4.1 lower panel). 

From our analysis of uncertainty due to model structures and parameters (Figure 4.7, 4.8, 

4.9), the probability distribution of the mean emissions during 2000-2012 indicates that 0-30°N 

and 30°S-0 contribute the first and second largest uncertainties (Figure 4.4c, d). Both are located 

in tropical regions, where we collected the least data. Thus, the ANN model was not well trained 

in these regions. In addition, the wetland distribution map can substantially influence the regional 

extrapolation of ANN model (Zhu et al., 2011; Table 4.3). The regional total of CH4 emissions 

may be greatly affected by the choice of wetland dataset being used. For instance, when using 

static map to replace the transient map, the CH4 emission estimates increase from 19 to 30 Tg CH4 

yr-1.  

At the global scale, the ANN models estimate the global emissions of 169-190 Tg CH4 yr-1 

with a mean value of 186 Tg CH4 yr-1 during 2000-2012 with transient wetland inundation data. 

When using the static wetland distribution, the global emissions are 188 Tg CH4 yr-1 during 1978-

2018. The Previous estimates with multiple approaches during 2000-2017 range from 102 to 200 

Tg CH4 yr-1 (Table 4.3; Saunois et al., 2019). Our estimates are within the range of previous 
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estimates. However, in the regions of 30°N-60°N, the ANN model presents 52 Tg CH4 yr-1 and 44 

Tg CH4 yr-1  for the period 2000-2012 and 1979-2018, respectively, exceeding the upper bound of 

previous estimates by Saunois et al. (2019) at 11-44 Tg CH4 yr-1. In addition, we estimated 19 Tg 

CH4 yr-1  and 30 Tg CH4 yr-1 in the region of 60°N-90°N for 2000-2012 and 1979-2018, 

respectively, exceeding the upper bound estimate by Saunois et al. (2019) with 2-18 Tg CH4 yr-1. 

The higher emissions from the ANN models might be due to different wetland maps used in 

different studies. The SWAMPS-GLWD and MF wetland distribution maps may overestimate the 

wetland area by including some lakes and rivers (Poulter et al., 2017).  Indeed, there are large 

differences between SWAMPS-GLWD and MF wetland distribution maps, resulting in different 

regional distributions of CH4 fluxes (figure 4.2a and 4.3a). Different wetland maps have 

significantly different wetland areas. For instance, the MF indicates global wetland area is 5.3 

Mkm2, while the SWAMPS-GLWD estimates a maximum of 10.5 Mkm2 (Poulter et al., 2017; 

Matthews and Fung, 1987). Another wetland area map from Wetland Area Dynamics for Methane 

Modeling (WAD2M) shows the global wetland area is 14.9 Mkm2 during the peak season, and 8.4 

Mkm2 on annual average, with a range of 8.0 - 8.9 Mkm2 during 2000-2017, which accounts for 

5.5% of the global land surface (Saunois et al., 2019). 

4.5.2 Effects of Predictor Variables on the Inventory 

The trends of increasing of emissions at the global and regional scales over 30°N, and the 

trends of  steady emission in the region of 60°S-30°N in RCP8.5 can be explained with the 

predictor variable sensitivity test (Figure 4.5, 4.6). Globally, the CH4 emission increases 

significantly under the RCP6.0 and 8.5 because of increasing TAIR and SOLAR (Figure 4.5a-c, 

4.6a-c). In the regions of 60°S-30°N, TAIR and SOLAR are not very sensitive when exceeding a 

certain level like +25% or even having an opposite effect (Figure 4.6d-l). This is because that CH4 
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production has its optimal TAIR and SOLAR. When optimal TAIR and SOLAR reached, further 

increase in those variables will not increase CH4 emissions significantly or even decrease the 

emissions (e.g., 0-30°N, figure 4.6j-k). Thus, the future prediction of CH4 emissions will not 

increase significantly during the 21st century with increasing TAIR and SOLAR under the RCP8.5 

and RCP6.0 in these regions. The regions over 30°N in Northern Hemisphere have a similar global 

emission trend under all RCPs since they have very similar sensitivities (figure 4.5q-x, 4.6q-x). 

The big uncertainty in future prediction in some regions like 30°S-0 is due to RCPs from different 

models have big variances over these regions. The ELEV variable is sensitive in all regions (figure 

4.6). Normally lower ELEV favors higher CH4 emissions because lower altitude and ELEV 

regions have larger possibilities to be dominated by wetlands.  

To avoid using WTD variable in global estimation, we replaced WTD with several key 

variables which used in soil hydrology calculation in process-based models Terrestrial Ecosystem 

Model (TEM; Zhuang et al., 2003, 2004, 2007). The sensitivity analysis results indicate that the 

PREC, TAIR, SOLAR, ELEV, ORGC are significant sensitive and should be considered in future 

ANN modelling work (figure 4.6). CLPC, SDTO and STPC can be relatively sensitive in some 

regions and should be useful in future spatially explicit ANN modelling. BULK, CNRT and PHAQ 

are not sensitive in global modelling but can be widely found in previous process-based models. 

We used the static values for these three variables. In fact, BULK, CNRT and PHAQ are largely 

determined by soil hydrology conditions and will vary significantly as time goes by. Transient 

BULK, CNRT and PHAQ measurement data should be included in future ANN model training 

work and global simulations.  
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4.6 Conclusions 

This study uses an artificial neural network approach and CH4 flux measurements in wetland 

ecosystems and associated environmental data to inventory global wetland CH4 emissions. We 

find that global mean annual wetland CH4 emissions are 186 Tg CH4 yr-1 with an uncertainty range 

of 169-190 Tg CH4 yr-1, and there are both significant interannual and seasonal variations of 

emissions during 2000-2012 when using a transient wetland inundation map. By using the static 

wetland distribution data, the emissions are estimated to be 188 Tg CH4 yr-1 during 1979-2018 but 

have large differences in regional distributions. The estimated emissions will reach 199, 201, 204, 

and 209 Tg CH4 yr-1 at the last two decades of the 21st century when using RCP2.6, 4.5, 6.0 and 

8.5, respectively. The global wetland CH4 emissions are most sensitive to variations in solar 

radiation and temperature. The large spatial variability in CH4 emissions is due to variations in 

hydrology, climate, and soil conditions. This study calls for better characterizing variations of 

wetland areas and water table position and more long-term observations of CH4 fluxes in tropical 

regions so as to improve future inventorying wetland CH4 emissions at the global scale.  

 

Acknowledgment: This study is supported by NASA (NNX17AK20G), the Department of 

Energy (DESC0008092 and DE-SC0007007), and the NSF Division of Information and Intelligent 

Systems (NSF-1028291). The supercomputing is provided by the Rosen Center for Advanced 

Computing at Purdue University. We are also grateful to the University of Tuscia (dep. DIBAF), 

Italy, and their affiliated members, for their help and the use of their field data. All data used in 

this manuscript can be accessed in Purdue University Research Repository (PURR) through the 

link: https://doi.org/10.4231/3YX4-EY30. 

https://doi.org/10.4231/3YX4-EY30


 

 

 

1
2

7
 

Table 4.1. Description of the site used in this study 

No. Site Name Longitude Latitude Climate Wetland Type Time period Reference 

1 Cuini -64.10 -0.81 Tropical  Nonforested  Monthly 2005 Belger, et al. (2014) 

2 Itu -63.56 -0.29 Tropical  Nonforested  Monthly 2005 Belger, et al. (2014) 

3 EARTH -83.57 10.22 Tropical  Forested Few visits 2006-2009 Nahlik and Mitsch (2011) 

4 La Selva -84.01 10.42 Tropical  Forested Few visits 2006-2009 Nahlik and Mitsch (2011) 

5 Palo Verde -85.33 10.34 Tropical  Forested Few visits 2006-2009 Nahlik and Mitsch (2011) 

6 SSA-fen -104.62 53.80 Boreal Forested Daily 1994-1995 Sellers, et al. (1997) 

7 NSA-fen -98.42 55.92 Boreal Forested Daily 1994/1996 Sellers, et al. (1997) 

8 Sallie's Fen  -71.06 43.21 Temperate Forested Weekly, 1994-2001 Zhuang, et al. (2008) 

9 Buck Hollow Bog -84.02 42.45 Temperate Nonforested  monthly,1991-1993 shannon,et al. (1994) 

10 Minnesota peatland1 -93.47 47.53 Temperate Forested Weekly,1991-1992 Clement et al. (1995); Shurpali 

(1993,1998) 

11 Mer Bleue Bog -75.48 45.41 Temperate Nonforested  Weekly, 2004-2007 Moore, et al. (2011) 

12 Minnesota peatland2 -93.47 47.53 Temperate Forested Monthly,1988-1990 Dise (1993) 

13 Stordalen1 19.05 68.33 Boreal Nonforested  monthly, 1994-1995 Svensson et al. (1999) 

14 Stordalen2 19.05 68.33 Boreal Nonforested  Daily, 2006-2007 Jackowicz-Korczynski et al. (2010) 

15 Degero Stormyr 19.55 64.18 Boreal Nonforested  Daily, 1995-1997 Grandberg, et al. (2001) 

16 Salmisue mire 30.93 62.78 Boreal Forested Daily, 1993 Saamio, et al. (1997) 

17 Ruovesi 24.02 81.83 Boreal Forested Daily, 2005 Rinne, et al. (2007) 
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Table 4.1 continued 

18 Quebec1 -78.77 53.90 Boreal Nonforested  Daily, 2003 Pelletier, et al. (2007) 

19 Quebec2 -77.72 53.63 Boreal Nonforested  Daily, 2003 Pelletier, et al. (2007) 

20 Quebec3 -76.13 53.57 Boreal Nonforested  Daily, 2003 Pelletier, et al. (2007) 

21 Sanjiang Plain1 133.52 47.58 Temperate Nonforested  Annually, 2002-2005 Huang, et al. (2010); Song, et al. 

(2009) 

22 Sanjiang Plain2 133.52 47.58 Temperate Nonforested  Monthly, 1995-1996, 

2001-2003 

Want, et al. (2002); Cui, et al. 

(1997); Ding, et al. (2004); Yang, et 

al. (2006); Hao, et al. (2004) 

23 Loch Vale -105.65 40.28 Temperate Nonforested  Daily, 1996-1998 Wichland, et al. (2001) 

24 Ryans 1 Billagong 146.97 -36.12 Temperate Nonforested  Monthly, 1993-1994 Boon and Mitchel (1995) 

25  CA-SCB -121.30 61.31 boreal Nonforested  Hourly 2014-2017 Sonnentag and Quinton (2016) 

26  US-A03 -149.88 70.50 boreal Nonforested  Hourly 2014-2018 Cook (2016a) 

27  US-A10 -156.61 71.32 boreal Nonforested  Hourly 2011-2018 Cook (2016b) 

28  US-DPW -81.44 28.05 tropical Nonforested  Hourly 2013-2017 Hinkle (2016) 

29  US-EDN -122.11 37.62 Temperate Nonforested  Hourly 2018-2018 Oikawa (2016) 

30  US-EML -149.25 63.88 boreal Nonforested  Hourly 2008-2018 Schuur (2018) 

31  US-Ivo -155.75 68.49 boreal Nonforested  Hourly 2003-2016 Oechel and Zona (2016) 

32  US-LA1 -90.44 29.50 tropical Nonforested  Hourly 2011-2012 Krauss (2016a) 

33  US-LA2 -90.29 29.86 tropical Nonforested  Hourly 2011-2013 Krauss (2016b) 

34  US-Los -89.98 46.08 Temperate Forested Hourly2001-2018 Desai (2016a) 
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Table 4.1 continued 

35  US-Myb -121.76 38.05 Temperate Nonforested  Hourly 2010-2018 Baldocchi (2016) 

36  US-NGB -156.61 71.28 boreal Nonforested  Hourly 2012-2018 Torn (2018) 

37  US-ORv -83.02 40.02 Temperate Nonforested  Hourly 2011-2016 Bohrer (2016) 

38  US-OWC -82.51 41.38 Temperate Nonforested  Hourly 2015-2016 Bohrer (2018) 

39  US-PFa -90.27 45.95 Temperate Forested Hourly 1995-2018 Desai (2016b) 

40  US-Sne -121.75 38.04 Temperate Nonforested  Hourly 2016-2018 Baldocchi (2018) 

41  US-Srr -122.03 38.20 Temperate Nonforested  

Hourly 2014-2017 
Bergamaschi and Windham-Myers 

(2018) 

42  US-StJ -75.44 39.09 Temperate Nonforested  Hourly 2016-2016 Vargas (2016) 

43  US-Tw1 -121.65 38.11 Temperate Nonforested  Hourly 2011-2018 Baldocchi (2016) 

44  US-Uaf -147.86 64.87 boreal Forested Hourly 2003-2018 Iwata, et al. (2016) 

45  US-WPT -83.00 41.46 Temperate Nonforested  Hourly 2011-2013 Chen (2016) 

46 Tobolsk 68.12 58.47 boreal Forested/Nonforested  Few visits 2007 Glagolev, et al. (2011) 

47 Surgut 73.33 61.43 boreal Nonforested  Few visits 2007 Glagolev, et al. (2011) 

48 Pangody 74.96 65.87 boreal Nonforested  Few visits 2007 Glagolev, et al. (2011) 

49 Plotnikovo 82.85 56.85 boreal Forested/Nonforested  Monthly 1997, 2006-

2010 

Glagolev, et al. (2011) 

50 Noyabrsk-Hills 74.49 63.12 boreal Forested/Nonforested  Few visits 2008 Glagolev, et al. (2011) 

51 Noyabrsk-Palsa 75.55 63.80 boreal Nonforested  Few visits 2008 Glagolev, et al. (2011) 

52 Vah 70.42 59.74 boreal Forested Few visits 2008 Glagolev, et al. (2011) 
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Table 4.1 continued 

53 Muhrino 68.70 60.89 boreal Forested/Nonforested  Monthly 2008-2010 Glagolev, et al. (2011) 

54 Tazovsky 78.92 67.18 boreal Nonforested  Monthly 2009-2010 Glagolev, et al. (2011) 

55 Gyda 78.55 70.89 boreal Forested/Nonforested  Few visits 2010 Glagolev, et al. (2011) 

56 Skala 81.78 55.40 boreal Forested Few visits 2010 Glagolev, et al. (2011) 
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Table 4.2. Description of the parameters in the ANN model 

Parameters Description Unit Sources 

PREC Precipitation mm 

month-1 

Site observation/CRU/ERA 

interim 

TAIR Surface air temperature °C Site observation/CRU/ERA 

interim 

SOLAR Surface downward solar 

radiation 

W m-2 Site observation/ERA interim 

ELEV Surface elevation M Site observation/GDEM 

BULK Bulk density of the soil g cm-3 Site observation/WISE30sec 

CLPC Clay content in soil mass % Site observation/WISE30sec 

CNRT Carbon/Nitrogen ratio in soil mass/mas

s 

Site observation/WISE30sec 

ORGC Organic carbon content in soil g kg-1 Site observation/WISE30sec 

PHAQ Soil reaction pH pH unit Site observation/WISE30sec 

SDTO Sand content in soil mass % Site observation/WISE30sec 

STPC Silt Content in soil mass % Site observation/WISE30sec 
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Table 4.3. Historical and future CH4 emissions (Tg CH4 yr-1) estimated with the ANN model.  

The reference for other studies is Saunois et al. (2019). 

Experiment Period Category 90S-60S 60S-30S 30S-0 0-30N 30N-60N  60N-90N global 

Historical 2000-2012 

Emission_value 0 10.2 50.8 53.7 51.9  19.4 186.0 

Range -- 
[8.4-

10.7] 

[44.7-

51.6] 

[48.2-

57.3] 

[47.4-

52.9] 

 
[17.4-19.8] [168.5-190.1] 

Historical 1979-2018 Emission_value 0 7.9 67.6 37.6 44.4  30.3 187.8 

Other 

Studies 
2008-2017 Range [71-155] [11-44] [2-18] 

[102-

200] 

 

RCP2.6 2080-2099 

Emission_value 0 8.0 72.7 41.0 45.9  31.3 198.9 

Range -- [7.8-8.1] 
[70.8-

73.9] 

[40.4-

41.4] 

[45.5-

46.4] 

 
[31.0-31.6] [197.7-200.5] 

RCP4.5 2080-2099 

Emission_value 0 8.2 73.1 41.7 46.3  32.1 201.4 

Range -- [8.1-8.3] 
[70.9-

75.7] 

[41.4-

41.9] 

[45.4-

46.8] 

 
[31.3-32.9] [199.4-205.2] 

RCP6.0 2080-2099 

Emission_value 0 8.3 74.1 42.0 46.8  32.6 203.8 

Range -- [8.1-8.4] 
[72.1-

77.1] 

[40.6-

42.5] 

[45.5-

47.6] 

 
[32.1-33.2] [201.2-207.7] 

RCP8.5 

2080-2099 Emission_value 0 8.4 75.4 42.8 47.9  34.1 208.5 

 Range -- [8.2-8.5] 
[72.8-

79.0] 

[41.1-

43.5] 

 [46.8-

49.0] 

[32.8-

35.8] 

[203.5-

215.2] 
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Figure 4.1. Comparisons between the measured and modeled monthly CH4 emissions at all sites. 

Upper panel: The ANN models were constructed based on the training dataset; and lower panel: 

the validation dataset was used to test the performance of the model. Diamond symbol represents 

the boreal data. Triangle symbol represents the temperate data. Square symbols represent the 

tropical data. The dashed line is the 1:1 line, and the solid red line is the fitted line.  
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Figure 4.2. ANN model estimated global CH4 wetland emissions with the transient wetland 

inundation map during 2000-2012. Upper panel is the global wetland mean fluxes distribution; 

Lower panel is the global annual wetland emission.  

  



 

135 

 

 

Figure 4.3. ANN model estimated global CH4 wetland emissions with the static wetland 

inundation map during 1979-2018. Upper panel is the global wetland mean fluxes distribution; 

Lower panel is the global annual wetland emission 
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Figure 4.4. ANN model future predictions of global mean wetland CH4 emission distribution 

during 2080-2099 comparing with historical estimates during 2000-2018 (positive value means 

increase). (a)-(d) presented results using future climate forcing of RCP2.6, 4.5, 6.0 and 8.5, 

respectively 
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Figure 4.5. ANN model future predictions of annual wetland emissions from different regions. 

Green dots are interannual variation, red lines are fitted lines between years and blue shadows 

are uncertainties from four different GCMs in each RCP scenario   
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Figure 4.6. Sensitivity of the ANN model to changes in precipitation (PREC), surface air 

temperature (TAIR), surface solar radiation (SOLAR), elevation (ElEV), soil bulk density 

(BULK), soil clay content (CLPC), soil carbon/nitrogen ratio (CNRT), soil organic carbon 

(ORGC), soil pH (PHAQ), soil sand content (SDTO) and soil silt content (STPC). The values are 

for the period 2000-2012 and different regions. The changes are calculated based on the baseline 

simulation using the unchanged regional input data   
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Figure 4.6.contd. Sensitivity of the ANN model to changes in precipitation (PREC), surface air 

temperature (TAIR), surface solar radiation (SOLAR), elevation (ElEV), soil bulk density 

(BULK), soil clay content (CLPC), soil carbon/nitrogen ratio (CNRT), soil organic carbon 

(ORGC), soil pH (PHAQ), soil sand content (SDTO) and soil silt content (STPC). The values are 

for the period 2000-2012 and different regions. The changes are calculated based on the baseline 

simulation using the unchanged regional input data 
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Figure 4.7. Uncertainties of the estimated wetland CH4 emissions from the different region with 

100 ANN models. Probability distribution (red histograms), fitted Gaussian distribution line 

(blue lines), the center of the distribution (Center), the 95% confidence intervals (L_95%: lower 

boundary of the distribution; U_95%: upper boundary of the distribution) and the standard 

deviation (STD) of mean annual CH4 emissions during year 2000-2012 are presented 
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Figure 4.8. Uncertainties of the estimated annual wetland CH4 emissions from the different 

region with 100 ANN models. Interannual variations of annual CH4 emissions (black dots, fitted 

with red lines) and the 95% confidence intervals (blue error bars) from 2000 to 2012 are 

presented 
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Figure 4.9. Uncertainties of the estimated wetland CH4 emission seasonality from the different 

region with 100 ANN models. Seasonality of wetland CH4 emissions (black dots, fitted with red 

lines) and the 95% confidence intervals (blue error bars) from 2000 to 2012 are presented 
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 LARGE METHANE EMISSIONS FROM PALM TREE 

STEMS IN AMAZONIAN BASIN 

5.1 Abstract 

Methane (CH4) is the second powerful greenhouse gas behind atmospheric CO2. Palm trees 

over peatlands in tropical regions have been found as a significant pathway to transport methane 

from soils to the atmosphere. This study used a two-dimensional diffusion model to quantify CH4 

emissions through this pathway. The model was optimized using field data of methane emissions 

from palm tree stems from 14 individual trees. Both model simulation and observation show 1000 

times larger methane emissions (>150 mg C m-2 hr-1) than that from other tree species. The model 

was then extrapolated to Pastaza-Marañón foreland basin (PMFB) in Peru by using a process-

based biogeochemical model. We found that PMFB emits 1.1-3.0 Tg CH4 yr-1 from Mauritia 

flexuos palm tree during 2000-2010, and methane fluxes have spatial patterns increasing from 

northwest to south east following surface atmosphere temperature patterns. To our knowledge, this 

is the first effort to quantify regional CH4 emissions through this pathway. The estimates can be 

improved by considering the effects of changes in temperature, precipitation and radiation and 

using long-period continuous flux observations. Regional and global estimates of methane 

emissions through this pathway can be further constrained using more accurate palm swamp 

classification and spatial distribution data of palm trees at the global scale. 

5.2 Introduction 

Tropical wetlands play an important role in methane (CH4) emissions, the second powerful 

greenhouse gas in the atmosphere (Kirschke, et al., 2013). Undisturbed tropical wetlands emit 85-

184 Tg of methane each year, accounting for two thirds of the global emissions from wetlands 

(Sjögersten, et al., 2014). However, the estimates of fluxes from natural wetlands have at least 50% 
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uncertainty (Kirschke, et al., 2013). Plant stems are a particularly efficient means for releasing 

CH4 from wetland soils because the pathway bypasses highly active populations of methanotrophic 

bacteria situated at the oxic-anoxic interface in the subsurface (Pangala, et al., 2013). Trees also 

have the capacity to cope with soil anoxia through development of morphological adaptations such 

as hypertrophied lenticels, adventitious roots and enlarged aerenchyma. These structures promote 

gas exchanges between the atmosphere and the rhizosphere (Kozlowski, et al., 1997; Megonigal, 

et al., 1992), in particular, entry of O2 to the root zone. (Pangala, et al., 2013) reported methane 

fluxes coming out from tree stems range from 17 to 185 µg CH4 m-2 h-1. A recent study also 

indicated 1000 times larger CH4 emissions (150 mg C m-2 h-1 when height < 0.5 m) from stems of 

Mauritia flexuos, which is one of the dominated palm tree in palm swamp of Peru, than other tree 

species. Although tree stems are possible to play a significant role in CH4 emissions from anoxic 

soils, most previous process-based models and ground-based flux chamber methods for estimating 

CH4 emissions from forest wetlands have neglected this emission pathway (Pangala, et al., 2013). 

There are three dominant wetland ecosystems in the tropics including forested peatlands, 

swamps and floodplains (Aselmann, et al., 1989). Palm swamp forests cover large regions of the 

Amazon Basin, estimated to be over 50,000 km2 (Eva, et al., 2002). The combination of 

permanently saturated soils, year-around warm temperature, and low oxygen in palm swamp soils 

can lead to a large amount of carbon release to the atmosphere, particularly as CH4 (Erika, et al., 

2011). Current models have not been able to predict the high concentrations of measured 

atmospheric CH4 over some areas of tropical rainforests in the equatorial regions of South America 

and Africa (Bergamaschi, et al., 2007; Frankenberg, et al., 2005). Precise information on the extent 

and characteristics of palm swamps is difficult to gather because of their remoteness and difficult 

accessibility. Remote sensing is a unique tool to studying and monitoring these ecosystems 
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especially through the use of radar to acquire mages regardless of day/night conditions or the 

presence of clouds, which are especially prevalent in tropical regions. Remote sensing efforts on 

peatlands in the Peruvian Amazon include the work by (Lähteenoja, et al., 2011), who mapped the 

distribution of peatland forests, wetlands and other land covers in the Pastaza-Marañon basin 

through an unspecified supervised classification of Landsat images based on field observations. 

However, no classification accuracy assessment was performed. More recently, (Draper, et al., 

2014) used data from the satellite sensors Landsat, ALOS-PALSAR and SRTM along with ground 

referencing points of known classes to map the spatial distribution of peatlands also in the Pastaza-

Marañon foreland. Classification was performed using a supervised, support vector machine 

method. Land cover classes considered were pole forests, palm swamp and open peatlands as well 

as four non-peat-forming categories including terra firme forests or occasionally flooded forests, 

seasonally flooded forests, open water and urban areas. The overall classification accuracy was 

95%. (Hergoualc, et al., 2016) combined field and remote sensing data from the satellites Landsat 

TM and ALOS/PALSAR to discriminate areas typifying dense palm swamp with low, medium 

and high degradation and terra firme, restinga and mixed palm swamp (not Mauritia flexuos 

dominated) forests, using a Random Forest machine learning classification algorithm. In addition, 

the Mauritia flexuos density was measured widely in Amazon Basin palm swamps (Hergoualc, et 

al., 2016). All efforts above give us possibility to estimate CH4 emission from palm tree stem at 

the large scale, for example, for.the Pastaza-Marañón foreland basin (PMFB) in Peru.  

Here we developed a two-dimensional (2D) diffusion model by considering horizontal and 

vertical transport of gases inside tree stem to quantify CH4 fluxes from palm tree stem in Amazon 

Basin. The model was optimized using field observed methane fluxes from Mauritia flexuos tree 

stems, in the peatlands of Peru (unpublished data). We then extrapolated single tree fluxes estimate 
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to regions of PMFB by using a process-based biogeochemical model, the Terrestrial Ecosystem 

Model (TEM, Zhuang, et al., 2004; Tang, et al., 2010). 

5.3 Method 

5.3.1 Overview 

We first develop a Palm Tree Methane fluxes Model using a 2D diffusion method (PTMM-

2D) by quantifying the methane transport from soils to stem, and from stem to the atmosphere. We 

then conduct sensitivity test for all variables to identify the most significant variables. Third the 

model is then optimized using the Sequential Monte Carlo (SMC) method over Python (PySMC) 

(Bilionis, et al., 2015). Finally, a process-based biogeochemical model TEM is extrapolated to 

PMFB region to estimate regional palm tree stem emissions.  

5.3.2 2D Diffusion Model 

PTMM-2D considers vertical and horizontal diffusions between soils and stem and between 

stem and the atmosphere (Figure S1). We set 5 meters height as the top boundary for the tree since 

observations show very little emissions from tree stem above 5 meter (Figure S2). The tree stem 

is divided into small pixels with 2 cm width and 10 cm height, considering field observed diameter 

at breast height (DBH) ranging from 27 to 42 cm (field data unpublished). Methane can transport 

inside the tree stem horizontally (x direction) and vertically (y direction). The governing equation 

of these processes is: 

𝜕𝑐(𝑥, 𝑦, 𝑡)

𝜕𝑡
= 𝐷_𝑥

𝜕2𝑐(𝑥, 𝑦, 𝑡)

𝜕𝑥2
+   𝐷_𝑦

𝜕2𝑐(𝑥, 𝑦, 𝑡)

𝜕𝑦2
            (5.1) 

Where, 𝑐(𝑥, 𝑦, 𝑡) is the methane concentration in each pixel, units are mg m-3; 𝐷_𝑥 is the 

diffusivity at horizontal direction, 𝐷_𝑦 is the diffusivity at vertical direction, units are m2 s-1. Top 

and side boundaries are air methane concentrations, and we use average observed value of 2 ppm. 
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Bottom boundary is soil methane concentrations of 200-400 ppm (field data unpublished). With 

forward in time, central in space method (FTCS), we have: 

𝑐(𝑥, 𝑦, 𝑡) = 𝛼(𝑐(𝑥 + 1, 𝑦, 𝑡 − 1) + 𝑐(𝑥 − 1, 𝑦, 𝑡 − 1))

+  𝛽(𝑐(𝑥, 𝑦 + 1, 𝑡 − 1) + 𝑐(𝑥, 𝑦 − 1, 𝑡 − 1))

+ (1 − 2𝛼 − 2𝛽)𝑐(𝑥, 𝑦, 𝑡 − 1)                                                       (5.2) 

Where 𝛼 = 𝐷_𝑥∆𝑡/∆𝑥2 and 𝛽 = 𝐷_𝑦∆𝑡/∆𝑦2; 𝑡 is the time step. To get stable solution, we 

need to make sure that∆𝑡 ≤ ∆𝑥2∆𝑦2/2(𝐷_𝑥∆𝑥2 + 𝐷_𝑦∆𝑦2), which leads to∆𝑡 ≤  5 𝑚𝑖n. All 

adjustable parameters are showed in table B.1. 

5.3.3 Model Parameterization and Extrapolation 

We first conduct 14 sensitivity tests to identify the most dominant parameters (Table B.1). 

Other parameters would be fixed during calibration and evaluation. Second, with a trial-and-error 

method, we run several forward simulations compared with observations to find priors of those 

dominant parameters, which are 𝐷_𝑥  and 𝐷_𝑦  (Table B.2; Figure B.2). Here we keep the soil 

methane concentration 𝐶_𝑠𝑜𝑖𝑙 as constant of 200 ppmv. Finally, with initial ranges for these three 

parameters: 𝐶_𝑠𝑜𝑖𝑙  (200-400ppmv), 𝐷_𝑥  (0.000001-0.00005 m2 s-1), 𝐷_𝑦  (0.0001-0.004 m2 s-1), 

we uniformly chose them for optimization using a PySMC method. We use PySMC to find 100 

sets of optimized parameters, and for each set we run 5 times MCMC to get the posteriors (Figure 

5.1) (Bilinois, et al., 2015).  

After parameterization, we extrapolate the model to PMFB region using TEM model 

(Zhuang, et al., 2004; Tang, et al., 2010). To do this, we first calibrated the model soil methane 

concentration simulation using two temperate peat land sites Buck Hollow Bog and Big Cassandra 

Bog (Shannon and White, et al., 1994), and three boreal sites Bog Lake Fen, S1 Bog, Zim Bog 

(Figure B.3, B.4, unpublished ms) with the trial-and-error method. Then we incorporated PTMM-
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2D with TEM model in PMFB for period 2000-2010 driven with reanalysis monthly climatic data 

from Climatic Research Unit (CRU, Harris et al., 2014). Vegetation type data was taken from 

Draper et al. (Draper, et al., 2014; Figure 5.2). We mainly used two types in this region, which are 

palm swamp and pole forest. All data was re-gridded to 1.69km x 1.69km. We used a uniform 

Mauritia flexuos palm tree density range which is 12-128 ha-1 for pole forest and 160-360 ha-1 for 

palm swamp (Draper, et al., 2014). Besides, we also estimate whole South America methane 

emissions from palm swamp by assuming soil methane concentrations are 200-400ppm, observed 

Mauritia flexuos palm tree density is 46-402 ha-1 (Hergoualc, et al., 2016) and the estimated total 

palm swamp area of South America is 5.39 million ha (Eva, et al., 2002). 

5.3.4 Data Organization 

Observed palm tree stem fluxes in Peru during August 2014 and August 2015 (field data 

unpublished) was used to parameterize PTMM-2D fluxes estimate. For regional study in PMFB, 

the climate data for the period 2000-2010 including surface atmosphere temperature, precipitation, 

cloud fraction and surface vapor pressure at monthly time step are from CRU database (Harris, et 

al., 2014) with resolution 0.5 degree x 0.5 degree. The CRU data together with the modern digital 

elevation (DEM) data at 1.69 km × 1.69 km were interpolated to a 1.69 km×1.69 km resolution 

using the interpolation software ANUPLIN4.4 

(http://fennerschool.anu.edu.au/research/products/anusplin-vrsn-44) (Price, et al., 2000; 

Huutchinson, et al., 2009; McKenney, et al., 2011).  

http://fennerschool.anu.edu.au/research/products/anusplin-vrsn-44
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5.4 Results 

5.4.1 Methane emissions from single palm tree stem 

Two-Dimensional Palm Tree Methane fluxes Model (PTMM-2D) estimated vertical 

diffusivity of methane (D_y) ranges from 0.0005 to 0.003 m2 s-1 and horizontal diffusivity (D_x) 

ranges from 0.000001 to 0.000042 m2 s-1 (Table B.2). Forward model simulations capture the 

magnitude of methane fluxes along the tree stem at different heights (Figure B.2, 5.1), with 

uncertainty ranging from 1.0 to 20.94 mg CH4 m-2 hr-1. Calibration showed that, if no extra data 

(e.g., methane concentration in soils) was used to constrain the model, two sets of parameters did 

equally well in comparison to observations (Figure 5.1), with large fluxes (>150 mg C m-2 hr-1) at 

tree height lower than 0.5 m (Figure 5.1).  Model estimated methane emissions are 131-264 mg C 

hr-1 per tree, using D_y = 0.0028 m2 s-1, D_x = 0.0000079 m2 s-1, constant soil methane 

concentration (C_soil) of 200-400ppm and constant atmospheric methane concentrations (C_air) 

of 2 ppm. Optimized D_y (~10-3 m2 s-1) is always much larger than D_x (~10-5 m2 s-1) (Table B.2), 

suggesting that vertical gas transport is much faster than horizontal transport. This may be because 

of high plant water transpiration in tropical region under high temperature conditions and palm 

tree phytology structure. 

5.4.2 Palm tree stem methane emissions from large regions 

We estimated the methane emission from palm tree using a process-based biogeochemical 

model TEM (Zhuang, et al., 2004; Tang, et al., 2010). The TEM model has been parameterized 

using observation data from two temperate peatland sites and three boreal peatland sites (Shannon 

and White, 1994; SPRUCE unpublished manuscript, 

http://dx.doi.org/10.3334/CDIAC/spruce.043). For temperate sites, TEM model can capture the 

vertical trends and magnitude of observations (Figure B.3). For boreal sites, TEM model can 
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mostly capture the vertical trends and magnitudes, but underestimate in April 2014, which 

observation showed an extremely high soil methane concentration up to 3.3 mM. We then coupled 

PTMM-2D and TEM to estimate the methane emission from palm tree during 2000-2010 in PMFB 

(Figure 5.2, 5.3). The spatial distributions of methane fluxes from palm tree have a pattern 

increasing from northwest to south east of PMFB (Figure 5.3), similar to atmosphere temperature 

(Figure B.5). Estimated methane emissions are 0.007-0.2 Tg CH4 yr-1 and 1.1-2.8 Tg CH4 yr-1 for 

pole forest areas and palm swamp areas, respectively (Table 5.1; Figure 5.4). Time series of 

methane emission from PMFB have patterns high in summer and low in winter (Figure 5.4). Total 

emission from PMFB is 1.1-3.0 Tg CH4 yr-1. We also estimated the palm tree methane emission 

from all South America, which was previously estimated to have about 5.39 Million ha palm 

swamp area (Eva, 2002). If palm swamp has similar species and soil methane concentration to our 

calibration sites, the total methane emissions from palm swamp of South America will be 0.3-5.8 

Tg CH4 yr-1 (Table 5.1). 

5.5 Discussion 

5.5.1 Comparison with previous methane emission estimates 

Both model estimates and observations showed there are much larger methane emissions 

from palm tree stem (>150 mg C m-2 hr-1 at height < 0.5m) compared to previous observations (up 

to 200 µg CH4 m-2 hr-1) (Pangala, et al., 2013). This indicates that Mauritia flexuos palm tree shall 

have special structure to facilitate the methane emissions from stem. The Amazon Basin emits 22-

52 Tg CH4 yr-1 (Ringeval, et al., 2014), while our model estimated 0.3-5.8 Tg CH4 yr-1 from the 

South America palm swamp, and 1.1- 3.0 Tg CH4 yr-1 from PMFB palm trees, accounting for up 

to 26% of the Amazon Basin emissions. Methane emissions from palm trees can be an important 

source to the atmospheric methane budget, even compared to the emissions from undisturbed 
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tropical wetlands of 85-184 Tg CH4 yr-1 (Sjögersten, et al., 2014) and global total of 503-610 Tg 

CH4 yr-1 (Aronson, et al., 2013).  

5.5.2 Uncertainties and limitations 

PTMM-2D simulations capture the trend and magnitude of methane fluxes along the tree 

stem (Figure 5.1), with an uncertainty ranging from 1.0 to 20.94 mg CH4 m-2 hr-1. In this study, 

the temperature effects were only considered on soil methane concentration since the observation 

period is short (only in August), and temperature variation is small (26.6-31.3 °C).  Hydrological 

dynamics and radiation effects on PTMM-2D were not considered either.  When cooperated with 

TEM model in regional study, estimate uncertainty of methane emission is primarily due to 

following reasons: 1) soil methane concentration is only calibrated over temperate and boreal sites, 

and to our knowledge no tropical soil methane concentration data is available. However we 

conducted our simulation in tropical areas; 2) we used same root depth, soil texture, and other soil 

properties for whole PMFB palm swamp and pole forest areas since distributions of them are not 

available; 3) we used climate data of high resolution (1.6km x 1.6km) which are interpolated from 

coarse resolution (0.5 degree x 0.5 degree); 4) for palm tree density, we used the same density 

ranges for all regions because lacking of detailed distribution and density data.  Thus, this study 

calls for experiments or observations of temperature, hydrology, radiation, tree species and tree 

sizes impacts on methane fluxes from palm tree stem over peatland; and also calls for observing 

more detailed palm tree distribution, palm tree density distribution, soil properties distribution and 

high resolution climate data to further constrain the regional simulation over the whole Amazon 

basin area.  
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5.6 Conclusions 

Our model estimates show that methane emissions from palm tree stem are ~1000 times 

larger than other tree species in Amazon basin, up to 150 mg C m-2 hr-1.  A single tree can emit 

131-264 mg CH4 hr-1 and PMFB palm trees can emit 1.1-3.0 Tg CH4 yr-1 during 2000-2010. To 

constrain these estimates, the effects of temperature, hydrology, radiation and tree size on tree 

fluxes shall be considered. In addition, more continuous field observations of stem fluxes and soil 

methane concentrations will be needed for tropical region. More accurate data of palm tree 

distribution and palm tree density distribution for the Amazon Basin and other tropical regions is 

also needed to further constrain our estimates 
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Table 5.1. Estimated palm swamp area, methane emissions per tree, trees per unit area and total 

emissions from the study regions. For South America palm swamp, we assume soil methane 

concentrations are from 200ppm to 400ppm. For Pastaza-Marañon foreland basin in Peru 

(PMFB), we used soil methane concentration product from TEM model. PMFB methane 

emissions are estimated using palm swamp classification from remote sensing data of Draper 

(2014). 

Study Region Area  

(Million ha) 

Emission per tree 
(mg C hr-1) 

Trees per 
area (ha-1) 

Total 
emission (Tg 
CH4 yr-1) 

Reference 

South America palm 
swamp 

5.39 131-264 46-402  0.3-5.8  This study, Eva, 
2002 

PMFB: Pole Forest 0.37 250-276 12-128 0.007-0.2 
This study, 
Draper, 2014 

PMFB: Palm Swamp 2.77 250-276 160-360 1.1-2.8  
This study, 
Draper, 2014 

PMFB: Total Area 3.14 250-276 —— 1.1-3.0  
This study, 
Draper, 2014 

Amazon Basin  —— —— —— 22-52  Ringeval, 2014 

Undisturbed tropical 
wetlands 

—— —— —— 85-184  Sjögersten, 2014 

Total global methane 
emission 

—— —— —— 503-610  Aronson, 2013 
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Figure 5.1.  Parameter posteriors of (a)soil methane concentration C_soil, (b) diffusivity 

coefficients in x direction (D_x), and (c) diffusivity coefficients in y direction (D_y), using the 

PySMC method (Bilionis, 2015). Y-axis represents number of optimized C_soil, D_x or D_y 

located in a specific range of parameter values, which showed in X-axis; (d) is comparison 

between simulations (solid lines) and observations (blue “x”), and blue area is the standard 

deviation of the simulations. There are two modes of parameter posteriors: a and b mode showed 

in figure d. Each mode represents the average value of a group of parameter posteriors, and 

detailed values showed in Table S3. 

  

a) b) 

c) d) 
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Figure 5.2. Ecosystem classification in PMFB in Peru. It is similar to the figure 5.4 in Draper 

(2015). Red areas represent distributions of palm swamp at a resolution of 90mx90m. 
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Figure 5.3. Mean methane flux distribution from palm tree stems in PMFB during 2000-2010: (a) 

the methane emission from palm swamp area and (b) the methane emission distribution from 

pole forest area.  
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Figure 5.4. Monthly methane emissions from palm tree stems in PMFB from 2000 to 2010. Solid 

lines and blue shadow represent the temporal variations and ranges of methane emission from 

palm swamp in PMFB, respectively. Dash lines and green shadow represent the temporal 

variations and ranges of methane emissions from pole forest in PMFB, respectively. 
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 SUMMARY AND FUTURE WORK 

6.1 Conclusions 

In Chapter 2, I analyzed the magnitude, spatial pattern, and the controlling factors of the 

atmosphere-soil CO exchanges at the global scale for the 20th and 21st centuries using a process-

based biogeochemistry model. Air temperature and soil temperature play a dominant role in 

determining the annual soil CO consumption and production while precipitation, air temperature, 

and soil temperature are the major controls for the monthly consumption and production. The 

atmospheric CO concentrations are important for annual CO consumption. This study calls for 

long-period observations of CO flux for various ecosystem types and better projection of 

atmospheric CO surface concentrations from 1901 to 2100 to improve estimates of global soil CO 

consumption. The effects of land-use change, agriculture activities, nitrogen deposition, photo-

degradation and biological formation shall also be considered to improve quantification of soil CO 

fluxes.   

Chapter 3 described the study quantifying the uncertainty sources and magnitudes of global 

land methane emissions and consumption using a process-based biogeochemical model. Results 

indicate that parameters, wetland type distribution and wetland area distribution are three major 

uncertainty sources for methane emissions. Climate forcing uncertainties also provide non-

negligible uncertainties. Global methane emissions and consumption increase during El Niño 

events and decrease during La Niña events.  Our estimates can be improved by using more in situ 

data in parameterization and more accurate dynamical wetlands and inundation distribution data 

to drive our model. This study provided an improved process-based methane biogeochemistry 

model to the research community and helped identify important uncertainty sources and 

controlling factors for quantifying global wetland methane emissions.   
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Chapter 4 used an artificial neural network approach and CH4 flux measurements in wetland 

ecosystems and associated environmental data to inventory global wetland CH4 emissions. The 

global wetland CH4 emissions are most sensitive to variations in solar radiation and temperature. 

The large spatial variability in CH4 emissions is due to variations in hydrology, climate, and soil 

conditions. This study calls for better characterizing variations of wetland areas and water table 

position and more long-term observations of CH4 fluxes in tropical regions so as to improve future 

inventorying wetland CH4 emissions at the global scale. 

In Chapter 5, I developed and used a two-dimensional diffusion model to estimate the CH4 

emissions from palm tree stem in the Amazon basin. Both the model and observation indicate a 

huge amount of CH4 can emit from the palm tree comparing to soil emissions. To constrain these 

estimates, the effects of temperature, hydrology, radiation and tree size on tree fluxes shall be 

considered in the future. In addition, more continuous field observations of stem fluxes and soil 

methane concentrations will be needed for tropical regions. More accurate data of palm tree 

distribution and palm tree density distribution for the Amazon Basin and other tropical regions is 

also needed to further constrain our estimates. 

6.2 Limitations and Future Work 

Firstly, as I mentioned in Chapters 2.5 and 3.5, the hydrology conditions significantly 

influence the simulation results of CH4 and CO exchanges between land and the atmosphere. The 

hydrology conditions in our simulations come from two sources: the hydrology model of TEM 

simulated soil moisture and water table depth (influence CH4 and CO production and consumption), 

and wetland distribution data from other models (e.g. SWAMPS-GLWD, influencing CH4 

emissions). In order to reduce the uncertainty from hydrology modelling, future studies can start 

from replacing the original hydrology component by the variable infiltration capacity (VIC) model, 
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for instance (Cherkauer & Lettenmaier, 1999; Cherkauer et al., 2003; Liang et al., 1994), a large-

scale hydrological model and then use TOPMODEL-based formulation to represent subgrid 

variability in the soil moisture distribution (Beven & Kirkby, 1979). The VIC-TOPMODEL 

approach can help to determine not only the soil moisture but the inundation extent by soil moisture 

estimated from VIC simulation and local topographic information using a topographic wetness 

index in the TOPMODEL-based formulation (Lu and Zhuang, 2012; Lu et al., 2018). With this 

approach, we can further constrain the uncertainty of CH4 and CO soil dynamics using process-

based models. Besides, as mentioned in Chapters 2.2 and 3.2, there have been large disagreements 

among model simulations from recent model inter-comparison projects, which can be partially 

attributed to uncertain model algorithms (Kirschke et al., 2013; Melton et al., 2013; Saunois et al., 

2016; Saunois et al., 2019). For each process in CH4 dynamics, there usually exist several different 

methods to construct the algorithms. Therefore, a comprehensive evaluation of the mechanisms of 

different model algorithms is needed, in order to quantitatively examine the effects of different 

complexities of methane algorithms on estimating CH4 emissions, consumptions and transport at 

the global scale. 

Secondly, the ANN approach has been used to estimate global CH4 wetland emissions in 

Chapter 4. However, we can find that the evaluation results are not ideal. More data, especially 

from tropical and temperate regions, can be collected from recent founded methane flux 

observation networks FLUXNET to train and evaluate the ANN model. A stratified sampling 

approach can be used instead of simple random sampling to ensure that the full range of CH4 

emissions in the measurement dataset is included in the training data. The ANN model structure 

can also be used to estimate CH4 consumption into upland and CO soil consumption and 

production.  
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Thirdly, as mentioned in Chapter 5, the 2D diffusion model is still waiting for more tree stem 

flux data to further constrain the simulation results. As mentioned in Pangala et al. (2017), efforts 

have been made to observe CH4 emitting from the tree stem and over 10 thousand data points can 

be obtained. Besides, detailed tree species distribution map and tree density map are needed for 

large scale simulations. Efforts will be made primarily on collecting and compiling data. Now only 

diffusion process has been considered. Future work can consider more processes including 

production inside the trees, consumption by the tree canopy, environmental influences on these 

process and feedbacks to soil CH4 consumption and production. 

Finally, I will feed the revised CO and CH4 fluxes to a global three-dimensional chemistry 

transport model of atmospheric composition, GEOS-Chem (http://acmg.seas.harvard.edu/geos/), 

in order to examine the effects of the surface CO and CH4 fluxes on atmospheric CH4 trends in 

recent decades. This project will also extensively use trace-gas data from MOPITT 

(https://eosweb.larc.nasa.gov/project/mopitt/mopitt_table), GOME 

(https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/ers/instruments/gome), and 

TES (https://eosweb.larc.nasa.gov/project/tes/tes_table) satellite missions, the NASA-AGAGE 

(http://agage.mit.edu/data/agage-data), NOAA-CMDL (ftp://aftp.cmdl.noaa.gov/-

data/trace_gases/) in-situ trace-gas networks, Ameriflux (http://ameriflux.lbl.gov/) in-situ trace-

gas networks, LBA (https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=11) in-situ gas networks, and 

aircraft and ship instruments. In addition, the adjoint biogeochemistry model TEM and inversion 

and transport model GEOS-Chem will also be used (Henze, D.K., 2007; Zhu and Zhuang, 2014; 

Tan et al., 2016). 
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APPENDIX A. SUPPORTING INFORMATION FOR CHAPTER 3 

Text A.1. Model revision 

 

Previous TEM-MDM details can be found in Zhuang et al. (2004). In the model, the methane 

production rate per day was used to represent the soil methane substrate concentration for most of 

the calculations and has not considered the effects of accumulated methane in soil columns on 

methane fluxes (Zhuang et al., 2004). In this revision, a new variable was added to the model to 

save the soil methane concentration at every time step for each 1cm soil layer. The effect on soil 

methane oxidation and transport are incorporated in the model: 

1) The changes in CH4 concentrations are governed by the following equation within each 

layer: 

𝜕𝐶𝑀(𝑧,𝑡)

𝜕𝑡
= 𝑀𝑃(𝑧, 𝑡) − 𝑀𝑂(𝑧, 𝑡) −

𝜕𝐹𝐷(𝑧,𝑡)

𝜕𝑧
− 𝑅𝑃(𝑧, 𝑡) − 𝑅𝐸(𝑧, 𝑡) … Equation A.1. 

The 𝐶𝑀(𝑧, 𝑡) now is the accumulated methane concentration at z depth of soil at time t. 
𝜕𝐶𝑀(𝑧,𝑡)

𝜕𝑡
 is 

governed by Equation A.1, where 𝑀𝑃(𝑧, 𝑡) , 𝑀𝑂(𝑧, 𝑡) , 𝑅𝑃(𝑧, 𝑡)  and 𝑅𝐸(𝑧, 𝑡)  are methane 

production, oxidation, plant-mediated transport, and ebullition rates, respectively, and 
𝜕𝐹𝐷 (𝑧,𝑡)

𝜕𝑧
 

represents flux divergence due to diffusion. 

2) For oxidation calculation: 

𝑀𝑂(𝑧, 𝑡) =

𝑂𝑀𝐴𝑋𝒇(𝑪𝑴(𝒛, 𝒕))𝑓(𝑇𝑆𝑂𝐼𝐿(𝑧, 𝑡))𝑓(𝐸𝑆𝑀(𝑧, 𝑡))𝐹(𝑅𝑂𝑋(𝑧, 𝑡))𝑓 (𝑁𝑑𝑝(𝑧, 𝑡)) 𝑓(𝐷𝑚𝑠(𝑧, 𝑡))  … 

Equation A.2. 

We used the Michaelis-Menten kinetics (Bender and Conrad, 1992) to simulate the effect: 

𝑓(𝐶𝑀(𝑧, 𝑡)) =
𝐶𝑀(𝑧,𝑡)

𝐾𝑂𝐶𝐻4
+𝐶𝑀(𝑧,𝑡)

   …Equation A.3. 
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This equation is similar to B1 presented in Zhuang et al. (2004). The 𝐾𝑂𝐶𝐻4
 is the methane 

ecosystem-specific half saturation constant, and units are µM (Table 3.1). 𝑓(𝐶𝑀(𝑧, 𝑡)) is used as 

a multiplier for methane oxidation rate.   

3) The plant-aided transport basic function is C4 in Zhuang et al. (2004): 

𝑅𝑃(𝑧, 𝑡) = 𝐾𝑃 ∙ 𝑇𝑅𝑉𝐸𝐺 ∙ 𝑓𝑅𝑂𝑂𝑇(𝑧) ∙ 𝑓𝐺𝑅𝑂𝑊(𝑇𝑠𝑜𝑖𝑙(𝑧, 𝑡)) ∙ 𝐶𝑀(𝑧, 𝑡) 

The 𝐶𝑀(𝑧, 𝑡)  is directly used as a multiplier for plant-aided transport rate calculation. The 

ebullition transport is simulated in the model using equation C8a in Zhuang et al. (2004): 

𝑅𝐸(𝑧, 𝑡) = 𝐾𝑒  𝑓(𝐶𝑀(𝑧, 𝑡)) 

The ebullition happens when the 𝐶𝑀(𝑧, 𝑡) is over a threshold of 500 µM (Walter and Heimann, 

2000). The 𝑓(𝐶𝑀(𝑧, 𝑡))  is equal to the difference between 𝐶𝑀(𝑧, 𝑡) and the threshold. 

In addition, instead of the previous daily time step, we used hourly timestep for methane 

dynamics simulation and 5 min time step for hydrology module simulation to reduce the error 

while solving partial differential equations (PDEs), following the suggestions from Land Surface 

Model (LSM version 1.0, Bonan, 1996).  

Previous model is only developed for boreal regions (Zhuang et al., 2004).  In order to 

extrapolate it to the global scale, we used the climate type and the classification method from 

Matthews and Fung (1987) to identify the wetland types for each site and pixel.  Climate types 

were determined by site description (site level simulation) or its latitude (regional simulation, 

tropical <30°, 30°< temperate <60°, and boreal >60°). Wetland types were determined by the site 

description (site level simulation) or the classification method from Matthews and Fung (1987), 

using vegetation cover information and wetland inundation fraction information (regional 

simulation). With the 3 types of climate and 5 types of wetland, we totally have 15 types of 
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wetlands for model simulations. Each of them was calibrated using a representative site (Table 3.2, 

3.3).   

Text A.2. Model performance 

Calibrations and evaluations were conducted for the revised model. The calibrated earlier 

version of TEM-MDM model (only for boreal regions, Zhuang, et al., 2004) was used for daily 

evaluation at boreal sites.  Figure A.1 presents two sample sites of daily calibration comparisons. 

Figure A.2 presents 8 sites of evaluation results from the revised TEM-MDM and TEM-MDM. 

Firstly, the scatter plots of the calibration sites and evaluation sites in figure 1 show R2 of 0.44 and 

0.41, respectively. Most of the anomaly points in plots can be found as temperate site points 

(triangles). The reason is that during summer, some temperate sites can have large methane 

emissions (Figure A.1) due to the suitable soil hydrology and high temperature at few points, which 

are hardly captured by the model since it tries  to fit the majority of the data points. Secondly, the 

scatter plots also show some points that observations show positive values, but simulations are 

near zero. The reason is that our model shuts down the methane production if the soil temperature 

is lower than 0 °C, but even during winter, some sites can still produce methane in field 

observations (Figure A.1 and A.2). The thermal model may also lead to a lower temperature than 

field data (Liu et al., 2018). The forcing data used in site level simulations can also induce errors, 

because some sites do not have sufficient observed forcing data, which are often based on Climatic 

Research Unit (CRU TS4.01, Harris et al., 2014) or ERA Interim data from European Centre for 

Medium-Range Weather Forecasts (ECMWF;  Dee et al., 2011). Thirdly, the revised model 

performs poorly at monthly site 16 and annually site 24, due to coarse simulation time steps and 

using reanalysis forcing data or average forcing data instead of site meteorological data.  The daily 

site 17 and site 22 evaluation results indicate that they have missed emission peaks (Figure A.2 a 
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and f). The reason is that the climate data from the nearest Global Summary of the Day (GSOD) 

station were used for these two sites but they may not represent the real environment conditions. 

Fourthly, the simulations using the earlier TEM-MDM on the daily sites were presented as blue 

lines in Figure A.2. This version often overestimates the methane emission from wetland during 

summer for boreal sites (Figure A.2a-g). The reasons are several folds.  First, the earlier version 

does not consider the accumulated substrate methane concentration effects. The oxidation in the 

unsaturated zone will be underestimated using equation A.3. Second, the coarse time step for 

hydrology model causes too much water coming into soils, overestimating water table depth. In 

addition, the coarse time step for methane dynamics also may cause a large methane gradient 

between topsoil layer and the atmosphere, leading to overestimation of the diffusion rate moving 

from soils to the atmosphere. For temperate site 26, the earlier version underestimated the fluxes 

due to not including proper climate and wetland type. 
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Figure A.1. Daily calibration results at two sites: a) site 6 and b) site 7. Symbols represent 

observed data while green lines represent the calibration results. 

b) Site 7 
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Figure A.2. Daily evaluation results of 8 sites at: a) site 17, b) site 18, c) site 19 and b) site 

20.  Symbols represent observed data while green lines represent the revised model simulations. 

Blue lines represent the earlier version model simulations. 

  

a) Site 17 b) Site 18 

c) Site 19 d) Site 20 
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Figure A.2. continued 

  

  

 

e) Site 21   f) Site 22 

g) Site 23 h) Site 26 
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APPENDIX B. SUPPORTING INFORMATION FOR CHAPTER 5 

Table B.1. Sensitivity test for all variables in the stem tree flux model. 16 tests are conducted for 

8 variables. Changes after adjustment (normally ±20%, but different for dx and dy) are compared 

with baseline simulations. Fluxes of tree heights of 0.1m, 0.5m and 1.0m are showed. C_soil, 

D_x and D_y are three main variables. 

Base line 
       

Flux at: (Units: mg CH4 m-2 
hr-1) 

Species c_soil c_air dx dy D_x D_y DBH Height  0.1m  0.5m  1.0m 

Mauritia 200ppmv 2ppmv 0.02m 0.1m 0.00002
m2/s 

0.002 
m2/s 

36.22cm 5m 259.13 90.55 43.04 

Test Begin 
          

1 +20% 
              311.48 108.85 51.74 
       20.2% 20.2% 20.2% 

2 -20% 
              206.78 72.26 34.35 

              -20.2% -20.2% -20.2% 

3 
 

+20% 
      258.61 90.37 42.95 

       -0.2% -0.2% -0.2% 

4 
  

-20% 
            259.65 90.74 43.13 

              0.2% 0.2% 0.2% 

5 
  increase 

to 0.04 

     155.24 77.80 40.66 
       -40.1% -14.1% -5.5% 

6 
    decrease 

to 0.01 
          381.27 94.21 43.19 

              47.1% 4.0% 0.3% 

7 
   increase 

to 0.25 

    NAN 93.08 43.61 
       NAN 2.8% 1.3% 

8 
      decrease 

to 0.05 
        258.16 89.96 42.56 

              -0.4% -0.7% -1.1% 

9 
    

+20% 
   300.91 99.55 46.24 

       16.1% 9.9% 7.4% 

10 
        

-20% 
      215.15 80.34 39.21 

              -17.0% -11.3% -8.9% 

11 
     

+20% 
  267.18 98.57 47.88 

       3.1% 8.9% 11.3% 

12 
          

-20% 
    248.84 81.32 37.56 

              -4.0% -10.2% -12.7% 

13 
      

+20% 
 259.23 91.03 43.89 

       0.04% 0.53% 1.98% 

14 
            

-20% 
  258.79 88.95 40.30 

              -0.13% -1.77% -6.37% 

15 
       

+20% 
259.13 90.57 43.07 

       0.001% 0.01% 0.06% 

16 
              

-20% 
259.12 90.49 42.90 

              -0.005% -0.070% -0.318% 
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Table B.2. Priors for forward model simulations of stem tree methane emissions. The simulations 

are conducted for 14 individual trees, assuming soil concentrations of methane are 200 ppmv. 

D_x and D_y are diffusivity in x and y directions, units are m2 s-1. Biases are mean squared error 

between modeled and observed fluxes.   

C_soil 
(ppmv) 

Tree # D_x  
(m2 s-1) 

D_y  
(m2 s-1) 

Bias  
(mg CH4 m-2 h-1) 

DBH 
(cm) 

Species 

200 

1 0.00002 0.0006 20.94 30.1 Mauritia 

2 0.000016 0.0024 13.47 31.6 Mauritia 

3 0.00001 0.00054 5.47 33.2 Mauritia 

4 0.00003 0.0006 21.55 32.7 Mauritia 

5 0.000001 0.0006 3.73 30.6 Mauritia 

6 0.000012 0.0006 0.76 30.0 Mauritia 

7 0.000024 0.002 17.84 30.0 Mauritia 

8 0.000001 0.0006 2.21 26.6 Mauritia 

9 0.000005 0.0005 2.10 31.4 Mauritia 

10 0.000021 0.0017 8.54 37.9 Mauritia 

11 0.000035 0.003 10.64 38.9 Mauritia 

12 0.000042 0.0017 9.90 39.8 Mauritia 

13 0.000011 0.001 12.43 41.4 Mauritia 

14 0.00001 0.0022 11.95 41.7 Mauritia 
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Table B.3. Parameter posteriors using the PySMC method.   

  C_soil 
(ppmv) 

D_x (10-5 m2 s-1) D_y (10-3 m2 s-1) 

Mode a 362.75 0.44 2.84 

Mode b 211.64 1.04 2.76 

Mean 275.11 0.79 2.80 
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Figure B.1. Schematic diagram of 2D diffusion model for tree stem methane fluxes. The big 

rectangle represents the tree stem, small one represents the pixel size, and arrows represent 

fluxes. 
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Figure B.2. Stem flux comparison between forward model simulations (solid line) and observed 

fluxes (blue x) for palm tree number 11, which showed in table B.2.  
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Figure B.3. Soil methane concentration comparison between TEM model and observations from 

a) Buck Hollow Site and b) Big Cassandra site (Shannon and White, 1994). Solid black lines are 

model estimate soil methane concentration; red dots are observed soil methane concentrations; 

blue solid lines are soil surface and dash lines are observed water table depth or standing water 

height.  

a1) a2) a3) 

b1) b2) b3) 
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Figure B.4. Soil methane concentration comparison between TEM model simulations (solid 

black lines) and observations from SPRUCE sites: Bog Lake Fen (BLF, red dots), S1 Bog (S1B, 

green dots), Zim Bog (ZB, yellow dots) (Pending publication, 

http://dx.doi.org/10.3334/CDIAC/spruce.043). Blue solid lines are soil surface and dash lines are 

observed water table depth or standing water height. 

  

a
) 

b
) 

c
) 

d
) 

http://dx.doi.org/10.3334/CDIAC/spruce.043
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Figure B.5. Interpolated input data in PMFB area for TEM: (a) mean atmosphere temperature 

and (b) mean monthly precipitation from 2000 to 2010. 

 

a) b) 
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