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1.1 Concept of a p-bit: (a) A generic behavioral model for p-bit described by
Eq. (1.1) with the icon shown in (b). (c) The blue trace shows the “mag-
netization” (mi) obtained from Eq. (1.1) as the current (Ii) is ramped.
The red trace shows the sigmoid response obtained from an RC circuit
which provides a moving average of the time-dependent “magnetization”
that agrees very well with the black curve showing tanh(Ii). The bias
terminal could involve a voltage (V ) instead of a current (I), just as the
output could involve quantities other than magnetization. (d) The ideal-
ized telegraphic behavior of the model is shown at various bias points [4].
(e) Two hardware implementations of the p-bit unit based on stochastic
low barrier nanomagnets (LBM) are shown: design 1 ( [7]) and design 2
( [4]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 p-circuit with sequencers: A p-circuit is constructed by interconnect-
ing p-bits according to a weight logic or synapse function. As a simple
example a p-circuit with two p-bits (A and B) is shown where A and B
are interconnected anti-ferromagnetically performing a NOT operation.
It is shown that when A and B are updated sequentially one after an-
other by a sequencer in the p-circuit, the network converges to the correct
probability distribution from applying Boltzmann law for symmetrically
connected networks. But if the sequencer is removed and p-bits A and B
are updated simultaneously all at a time, wrong probability distribution is
obtained with no preference for 01 or 10 states. Thus the use of sequencers
is very important in the ANN literature. . . . . . . . . . . . . . . . . . . . 4

1.3 Autonomous p-circuit: As opposed to the sequential p-circuit shown
in fig. 1.2, it is possible to design an autonomous p-circuit that does not
require any kind of clocks or sequencers and still can operate properly if
certain design criterion is met which is synapse delay τS has to be much
smaller than neuron fluctuation time τN . This design rule is varified by
SPICE simulation of the same two p-bit network as in fig. 1.2 composed
of an LBM based p-bit design (design 2 in fig. 1.1). It is shown that when
τS � τN , the system converges to the correct probability distribution
consistent with equilibrium Boltzmann law, but as τS gets comparable to
τN the system starts to fail. . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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1.4 Low barrier nanomagnet with continuous magnetization as p-bit
for invertible logic: (a) Implementation of a p-bit using a 1kT nanomag-
net as the free layer on a GSHE material that converts the applied charge
current to spin current to tune the average magnetization. At zero applied
current, the magnetization fluctates among all values between +1 and -1
and the distribution is quite broad. When a positive current is applied,
magnetization is biased towards +1 and for a negative current the mag-
netization distribution is concentrated around -1. (b) Implementation of
an invertible 32-bit adder connecting 448 nanomagnets in an autonomous
p-circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 In a Bayesian network, p-bits representing each random variable of the
network need to be updated sequentially from the parent to child nodes.
We have proposed the design criteria for an autonomous hardware that
would naturally ensure this specific update order without any clock cir-
cuitry by comparing two p-bit designs. It is seen that design 1 works well
as a BN, but design 2 does not. . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Generic building block for PSL: (a) A generic model for PSL described
by Eq. (2.1) with distinct READ and WRITE units represented by the
R/W icon shown in (b). Useful functionalities are obtained by intercon-
necting R/W units according to Eq. (2.2), Ii = I0 × (hi +

∑
Jijmj), with

appropriately designed {h} and [J ]. (c) The blue trace shows the “magne-
tization” (mi) obtained from Eq. (2.1) as the current (Ii) is ramped. The
red trace shows the sigmoid response obtained from an RC circuit which
provides a moving average of the time-dependent “magnetization” which
agrees very well with the black curve showing tanh(Ii). The bias terminal
could involve a voltage (V) instead of a current (I), just as the output
could involve quantities other than magnetization. (d) The idealized tele-
graphic behavior of the model is shown at various bias points along with
corresponding distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 PSL designs discussed in this paper: (a) Basic Boolean elements
(AND/OR, Full Adder) are implemented as Boltzmann Machines based
on symmetrically coupled networks with Jij = Jji. (b) Complex Boolean
functions like a 32-bit Ripple Carry Adder/Subtractor and 4-bit Multi-
plier/Factorizer are implemented by combining the reciprocal Boltzmann
machines in a directed fashion. . . . . . . . . . . . . . . . . . . . . . . . . 16
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2.3 CMOS-assisted implementation of p-bits: (a) A possible CMOS-
assisted implementation of p-bits that have a separate READ/WRITE
paths. A GSHE layer provides a spin current that pins the magnetization
of circular magnets (∆ ≈ 0 kT ). The change in magnetization is sensed
by an MTJ and amplified by two CMOS inverters that act as a buffer,
providing the necessary isolation and gain. (b) Self-consistent, modular
modeling of transport and magnetization dynamics. See “Assumptions of
the model” in the text. (c) Equivalent READ circuit. (d) SPICE-based
average output voltage normalized to the VDD = 0.8 V of 14 nm FinFET
HP-inverters [41]. (e) sLLG-based average magnetization of the circular
magnet as a function of the spin current (averaged over 500 ns for each
bias point with a time step of ∆t = 0.05 ps, 10 million points per marker),
normalized to the GSHE gain and the thermal noise strength, I ths . (f) The
time-dependent output voltage at various bias points. . . . . . . . . . . . . 20

2.4 An invertible AND gate: (a) Passive resistor network that is used to
obtain the connection terms Jij to correlate p-bits. The output impedance
Rij = 1/Gij is much smaller than the input impedance RGSHE, allowing
separate voltages to add at the input of the ith p-bit. (b) Explicit imple-
mentation of an AND gate based on Eq. (2.10). (c) When C is clamped
to 1, A and B spend most of their time in the (11) state, the only com-
bination consistent with C=1. (d) The invertible operation of the AND
gate when the C gate is clamped to a zero, while A and B are left float-
ing. A and B bits fluctuate between 3 possible combinations consistent
with C=0, (A,B)=(00),(01),(10). The time response of A,B,C voltages are
normalized by VDD. Histogram is obtained by averaging over 200 ns of
thresholded voltages, only the first 20 ns of A,B,C voltages are shown for
clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 14 nm PTM, Inverter/Buffer: DC response of 14 nm high perfor-
mance (HP) FinFETs based on [41] for an inverter and buffer. Sizing the
transistors differently allows the switching point to be shifted. . . . . . . . 29
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2.6 Truth Table to J-Matrix: A given truth table is first transformed from
binary to bipolar variables by using the transformation m = 2t− 1, where
m and t represent the magnetization and binary values of the truth table.
Additional bits are introduced to each line of the truth table to ensure
that the resultant S-matrix is invertible. The indices i, j correspond to
the number of lines in the truth table. ui, uj are column vectors. As an
example, we have shown auxiliary bits that result in an S-matrix equal to
the identity matrix, since the eigenvectors are orthogonal. The J-matrix
is then obtained by Eq. (2.12a) which ensures that the truth table corre-
sponds to the low energy states of the Boltzmann machines according to
Eq. (2.4). A handle bit of +1 is introduced to each line of the truth table
which can be biased to ensure that the complementary truth table does
not appear along with the desired one. This bit also allows a truth table
to be electrically reconfigured into its complement. . . . . . . . . . . . . . 31

2.7 Correlated p-bits, AND Gate: When the interaction strength (I0)
is zero, p-bits produce uncorrelated noise, visiting all possible states with
equal probability. In this example, the interaction strength (pseudo inverse-
temperature) is suddenly increased from 0 to 2 as a step function at t = t0,
to effectively “quench” the network. This correlates the p-bits to produce
the truth table of an AND gate (AND: A ∩ B = C). Note that after this
quenching, the p-bits only visit the low energy states corresponding to the
truth table of the AND gate and once the system is in one of the low
energy states, it tends to stay there for a while, until being kicked out by
the thermal noise. The time averages of the uncorrelated and the corre-
lated system are well-explained by the Boltzmann law stated in Eq. (2.4).
The total simulation used a T = 4e6 steps to compare the results with
the Boltzmann distribution, though only a fraction is shown in the upper
panel for clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8 Implementing a Boolean function and its inverse: The input or
output terminals of an appropriately interconnected network of p-bits can
be “clamped” to perform a specific logic operation or its inverse. In this
example, the input bits (A,B) of an OR Gate are clamped to be +1, forcing
the output bit C to be 1, during the first phase of operation (t < t0). In the
second phase of operation (t > t0), the output of the OR gate C is clamped
to the value +1, which is consistent with three different combinations of
(A,B). As shown in the time response and the long-time histogram plots,
all three possibilities emerge with equal probability, demonstrating the
“inverse” OR operation. In each case, the expected probabilities from the
Boltzmann Law (Eq. (2.4)) closely match those produced by the generic
model, Eq. (2.1-2.2) after running the system for one million steps, only a
fraction is shown in the upper panel for clarity. . . . . . . . . . . . . . . . 34
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2.9 Noise Tolerance of AND: The probability of a wrong output for an
(AND) gate (Eq. 2.15) operated with clamped inputs is investigated in
the presence of a random noise field which enters Eq. (2.2) as indicated
in the figure. The noise is assumed to be uniformly distributed over all
p-bits in a given network, and centered around zero with magnitude ±h̃n,
where (I0 = 2, hi = ±1). Each gate is simulated 50000 times for T=100
time steps to produce an error probability for a given noise value, and the
maximum peak produced by the system is assumed to be an output that
can be read with certainty. The system shows robust behavior even in the
presence of large levels of noise. . . . . . . . . . . . . . . . . . . . . . . . . 35

2.10 Full Adder: Full Adder in the truth table mode, where all inputs and
outputs are floating, calculated using JFA from Eq. (2.16), with I0 = 0.5.
The statistics are collected for T = 106 steps, and each terminal output is
then placed in the histogram. The states are numbered using the decimal
number corresponding to the binary number [Ci A B S Co]. The decimal
numbers corresponding to the truth table are shown in the inset, and
these match the location of the taller peaks in the histogram. Note that
the Boltzmann distribution (Eq. (2.4)) quantitatively matches the model
even for the suppressed peaks. . . . . . . . . . . . . . . . . . . . . . . . . 37

2.11 32-bit Ripple Carry Adder (RCA): (a) A 32-bit Ripple Carry Adder
(RCA) is designed using individual Full Adder (FA) units with the carry
bit designed as a directed connection from the least significant bit to the
most significant bit. The overall J-matrix for a 32-bit adder J-matrix
is shown, and it is quite sparse and quantized. (b) For t < t0, I0 = 0
and the sum fluctuates randomly. At t = t0, I0 is suddenly increased,
and the adder converges on the correct result for two random inputs A
and B. The distribution of 1000 data points (t > t0) show a single peak
with 24% probability of time spent in the correct state (not including
the uncorrelated time points for t < t0). (c) Even though the connections
between the Full Adder units are directed, the system performs the inverse
function as well. When the output (S) is clamped to a fixed number, the
inputs (A) and (B) fluctuate in a correlated manner to make A+B=S when
I0 = 1. Note the broad distributions of A and B (collected for t > t0) as
compared to the extremely sharp distribution of A+B. . . . . . . . . . . . 46
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2.12 Ripple Carry Adder delay: The delay of the RCA as a function of num-
ber of bits in the Ripple Carry Adder (RCA) is shown. The worst case
input combination generates a carry that propagates all the way through
bit-1 to bit-N, and has a linear dependence on the number of bits, exhibit-
ing O(n) complexity. When the inputs are random, the delay increases
logarithmically. The delay is defined to be the time it takes for the net-
work to reach the mode of the array for T=200 after getting quenched
at t=0. Each point is an average of 500 trials with random initial con-
ditions for an I0 = 1.5, and the mode of the array was exactly equal to
the arithmetic sum of the inputs in each case. The worst-case inputs are
A=0 . . . 000 and B=1 . . . 111 with an input carry (Cin) of 1. Results show
a weak I0 dependence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.13 Accuracy of 32-bit adder, directed versus bidirectional: The re-
sults are shown for the adder operating in a subtractor mode, clamping
one (random) 32-bit input (A) and a (random) 33-bit output (Cout+ S),
and observing the other 32-bit input B which should provide the differ-
ence S−A. (a): Colormap of the binary state of each of the 448 p-bits
comprising the directed adder as a function of time with the interaction
parameter I0 suddenly increased from 0.25 to 5 at t0=50. For low val-
ues of I0 at t<50, the collection of p-bits is like a molten liquid which is
quenched at t0 = 50 into a solid. (b) Surprisingly this solid corresponds
to a “perfect crystal” in each of the 1000 trial experiments, with S−A−B
exactly equal to zero (Dark blue). (c) Same as (a) but for a bidirectional
adder. Here too the “liquid” quenches to a solid at t0 = 50, but in this
case the resulting “solid” is full of defects (with hardly any zeros), with
S−A−B 6= 0, yielding a different wrong result for each trial as evident
from (d). For (c) and (d) The colorbar is modified to have a dark blue
color corresponding to exactly zero. S,A,B are taken to be the statistical
mode of the 100×1 array obtained at the end of each trial. . . . . . . . . . 48
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2.14 Invertibility of 32-bit adder, directed vs bidirectional: An adder
that provides the sum S of two 32-bit numbers A and B: S = A + B.
The left panel shows the adder implemented with bidirectional carry bits,
while the right panel shows one with carry bits directed from the least
significant to the most significant bit. Four different modes are shown
with (i) A and B clamped (Addition), (ii) S and A clamped (Subtraction),
(iii) A, B and S for the 16 most significant bits (msb) clamped, and (iv)
A, B and S for the 16 least significant bits (lsb) clamped. Note that
that bidirectional implementation shows very large errors for all modes of
operation. The directed implementation works perfectly for both the adder
and the subtractor modes. It also works if we clamp the least significant
bits, but not if we clamp the most significant bits. Correlation parameter
I0 = 1, T = 100 steps for all trials. S,A,B are taken to be the mode
(most frequent value) of the 100×1 array obtained at the end of each trial.
Clamped inputs are random 32-bit words for each trial, for a total of 1000
trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.15 Error versus bidirectionality: The degree of bidirectionality Jji/Jij of
the carry-out (j) to carry-in (i) link between the Full Adders is systemat-
ically varied while keeping the sum Jij + Jji constant. In each case the
sum is obtained from the statistical mode (or majority vote) of T time
samples over 50 trials. The y-axis shows the fraction of trials that yield
the wrong result. Note that for large I0 and small T , error-free operation is
obtained only if bidirectionality is close to zero similar to standard digital
circuits. But with I0 = 1.5 and T=50,000, error-free operation (at least
for 50 trials) is obtained even with ≈ 75% bidirectionality. . . . . . . . . . 50

2.16 Factorization through inverse multiplication: The reversibility of
PSL allows the operation of integer factorization using a binary multipli-
cation circuit implemented using the principles of digital logic using AND
gates and Full Adders (FA) as shown in (a). The output nodes of a 4-bit
multiplier are clamped to a given integer, and the system produces the only
consistent factors of the product at the input terminals, probabilistically.
The interaction parameter I0 is suddenly increased to a saturation value
of 2, and held constant as shown. (b) The output terminal is clamped to 9
and is factored into 3×3, note that 9×1 is not an achievable solution in this
setup since encoding 9 requires 4-bit inputs in binary, whereas inputs are
limited to 2-bits. (c) The output terminal is clamped to 6 and after being
correlated, the factors cross-oscillate between 2 and 3. In both cases the
histogram is obtained by counting outputs after t > ttotal/2 = 1.25 × 104

time steps to collect statistics after the system is thermalized. . . . . . . . 51
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3.1 Low-barrier stochastic Nanomagnet as a p-bit: (a) Time-averaged
magnetization of low barrier IMA and PMA magnets (∆ = 1 kT,HK =
60 mT, α = 0.01,Hd = 1.5 T for IMA) as a function of the bias spin
current which is normalized to Ic0 (Eq. 3.1). Average magnetization of
PMA magnets obtained from sLLG which agrees well with the analytical
solution from the FPE, Eq. 3.6. Inset shows a physical structure using
a giant spin Hall effect (GSHE) material that could be used to convert a
charge current into a spin current with the correct polarization to bias an
IMA. (b) The magnetization m(t) for IMA as a function of time for three
different bias currents obtained from a numerical solution of sLLG equa-
tion. (c) Same plot for PMA with the same barrier height. Note that the
fluctuations are much faster and more telegraphic for IMA than for PMA.
(d) A connection scheme for two p-bits is shown where the magnetization
of a p-bit is implicitly converted into the bias current/voltage for the next
p-bit (Eq. 3.2). A possible hardware implementation to turn the magne-
tization m into a voltage V, could combine a GSHE layer with MTJs as
in [2], replacing the stable write magnets by low barrier nanomagnets that
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3.4 32-bit Adder/ Subtractor: (a) Schematic of an adder constructed from
31 full adders (from Fig. 3.3) and one half adder (composed of 6 p-bits)
with the carry out bit Cout from each adder communicated in a directed
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∑
i Si2

i obtained from the sum bits {S} as the coupling strength
I0 is ramped up starting from zero. Note that in a time ∼ 60 τ (τ is defined
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corresponding circuit and the well-known result from standard statistical
arguments applied to BN. Single, double and triple encirclements indicate
a zero-parent node, one parent node, and two parent node respectively, as
indicated in Fig. 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Translating nodal information from BN to PSL to circuit: Each
node of a BN is described by a conditional probability table (CPT), that
of a PSL network is described by dimensionless constants J, h, and that
of circuit is described by conductances G and voltage Vbias. The text
describes how the CPT is translated to J, h and then to G, Vbias for (a)
zero-parent node, (b) one-parent node and (c) two-parent node. . . . . . . 68
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4.3 Circuit implementation of building block:The circuit Eqs. 4.5 can
be mapped onto the PSL Eqs. 4.1 using Eqs. 4.6 as described in the text.
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are built: a directed or Bayesian network and a symmetrically connected
Boltzmann network. The p-circuits are sequential (labeled as SeqPSL)
that means p-bits are updated sequentially one at a time using a clock
circuitry/sequencer. It is shown that for Boltzmann networks update or-
der does not matter and any random update order would produce the
correct probability distribuiton. But for Bayesian networks, a specific,
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5.2 Autonomous behavioral model for p-bit: Design 1 and 2: (a)
Behavioral model for the autonomous hardware with design 1 is bench-
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5.5 Comparing time dynamics of design 1 and 2 in a BN: The building
blocks of a BN/DAG are the child nodes (C) given their input (IC) as
function of parent node outputs (mp). In design 1, step response time
(τT ) is much smaller than magnet fluctuation time (τN) because NMOS
response time is usually few picoseconds. That’s why any time there is a
change in the input IC , child node can immediately respond to it and be
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which is not applicable in general. That’s why the child node does not
get enough time to respond to a particular IC value before another new
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B.3 Testing of the two node BN circuit. (a) Five different combinations of the
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ABSTRACT

Faria, Rafatul Ph.D., Purdue University, May 2020. Autonomous Probabilistic Hard-
ware for Unconventional Computing. Major Professor: Supriyo Datta.

In this thesis, we have proposed a new computing platform called probabilistic

spin logic (PSL) based on probabilistic bits (p-bit) using low barrier nanomagnets

(LBM) whose thermal barrier is of the order of a kT unlike conventional memory and

spin logic devices that rely on high thermal barrier magnets (∼40-60 kT) to retain

stability. p-bits are tunable random number generators (TRNG) analogous to the

concept of binary stochastic neurons (BSN) in artificial neural network (ANN) whose

output fluctuates between a +1 and -1 states with 50-50 probability at zero input bias

and the stochastic output can be tuned by an applied input producing a sigmoidal

characteristic response. p-bits can be interconnected by a synapse or weight matrix

[J ] to build p-circuits for solving a wide variety of complex unconventional problems

such as inference, invertible Boolean logic, sampling and optimization. It is impor-

tant to update the p-bits sequentially for proper operation where each p-bit update is

informed of the states of other p-bits that it is connected to and this requires the use

of sequencers in digital clocked hardware. But the unique feature of our probabilistic

hardware is that they are autonomous that runs without any clocks or sequencers.

To ensure the necessary sequential informed update in our autonomous hardware it is

important that the synapse delay is much smaller than the neuron fluctuation time.

We have demonstrated the notion of this autonomous hardware by SPICE simulation

of different designs of low barrier nanomagnet based p-circuits for both symmetrically

connected Boltzmann networks and directed acyclic Bayesian networks. It is inter-

esting to note that for Bayesian networks a specific parent to child update order is

important and requires specific design rule in the autonomous probabilistic hardware
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to naturally ensure the specific update order without any clocks. To address the

issue of scalability of these autonomous hardware we have also proposed and bench-

marked compact models for two different hardware designs against SPICE simulation

and have shown that the compact models faithfully mimic the dynamics of the real

hardware.
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1. INTRODUCTION

Conventional memory and logic devices are made of stable deterministic units: Metal

Oxide Semiconductor (MOS) or stable magnets with thermal barrier of the order

of ∼40-60 kT [1–3]. In this thesis, we present a unique computing plat-

form called “Probabilistic Spin Logic” (PSL) based on stochastic unstable

units [4]. We call these stochastic units “p-bits” that are tunable random number

generators (TRNG) and analogous to Binary Stochastic Neuron (BSN) [5] from artifi-

cial neural networks (ANN) literature. p-bits are three terminal transistor like entities

with input-output isolation and gain and many of them can be electrically intercon-

nected according to a synapse or weight matrix [J ] to build p-circuits for solving a

wide variety of complex problems such as inference, invertible logic, sampling and op-

timization. Conventionally BSNs are implemented on digital clocked hardware with

pseudo random number generators where it is important to update them sequentially

so that each update is informed of the states of other connected units. But the feature

that distinguishes our proposed p-circuits from binary stochastic neural networks is

their completely autonomous clockless operation that allows very fast sampling due

to massive parallelism (potentially peta flips per second sampling speed [6]). In an

autonomous p-circuit, p-bits run autonomously in parallel without any clocks and it

is very unlikely that two p-bits will update at the exact same time and continue doing

that. So the updates are effectively sequential in the autonomous p-circuit. But just

sequential updates are not enough, updates have to be informed. To make the up-

dates informed it is necessary to ensure that the synapse delay (τS) is much smaller

than neuron fluctuation time (τN) which is the design criteria for an autonomous

probabilistic hardware for proper operation.
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(a)

(b)

(c)

(d)

(e)
p-bit: design 1 p-bit: design 2

p-bit

low barrier 
nanomagnets (LBM)

Fig. 1.1.: Concept of a p-bit: (a) A generic behavioral model for p-bit described by

Eq. (1.1) with the icon shown in (b). (c) The blue trace shows the “magnetization”

(mi) obtained from Eq. (1.1) as the current (Ii) is ramped. The red trace shows

the sigmoid response obtained from an RC circuit which provides a moving average

of the time-dependent “magnetization” that agrees very well with the black curve

showing tanh(Ii). The bias terminal could involve a voltage (V ) instead of a current

(I), just as the output could involve quantities other than magnetization. (d) The

idealized telegraphic behavior of the model is shown at various bias points [4]. (e)

Two hardware implementations of the p-bit unit based on stochastic low barrier

nanomagnets (LBM) are shown: design 1 ( [7]) and design 2 ( [4]).
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1.1 What is a p-bit?

A suitable building block for p-bit can be any random signal generator whose

randomness can be tuned with an applied bias at a third terminal for input-output

isolation. A generic building block is shown in fig. 1.1 whose output state mi is

controlled by the input bias Ii according to the behavioral equation [4]

mi(t+ τN) = sgn{rand(−1, 1) + tanh(Ii(t))} (1.1)

Here τN is the average neuron flip time. From eqn. 1.1 we see that in the absence of

any bias ( Ii = 0), mi randomly fluctuates between +1 and -1 with equal probability

giving an average of 〈mi〉 = 0. When a positive bias (Ii > 0) is applied, mi takes

on +1 more likely than -1 resulting in 〈mi〉 > 0. Similarly for negative applied bias

(Ii < 0), 〈mi〉 < 0 is obtained. Strong enough positive or negative bias will pin the

states to either +1 or -1 respectively. This tunability of the output state of the p-bit

by the applied bias is represented by a sigmoidal 〈mi〉 vs Ii response..

There might be various ways to implement a p-bit. For example: (1) CMOS

based [8–10] and (2) nanomagnet based [4, 7, 11, 12]. Any mechanism that provides

a tunable random signal will qualify as a p-bit that can be interconnected to build

interesting probabilistic circuits for various Boolean and non-Boolean operations.

p-bits can be interconnected according to a synapse or weight logic described by:

Ii(t+ τS) = I0

(∑
j

Jijmj(t) + hi

)
(1.2)

where τS is the evalutation time for the input Ii, [J ] is the coupling matrix and {h}

is the local bias.

In chapter 2, we have shown that p-bits can be connected reciprocally to form

Boltzmann Machines. The interesting property about Boltzmann Machines is that

inputs and outputs can be treated on equal footing: if inputs are fixed, it gives the

relevant output; if output is fixed, it gives all relevant inputs. Thus invertibility of

logic functions can be obtained by Boltzmann design of logic gates. We have also
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p-circuit 

Sequential Simultaneous 

𝑡 = 1 𝑡 = 2

𝐴

𝐵

𝑡 = 1 𝑡 = 2

𝐴

𝐵

NOT operation 

Fig. 1.2.: p-circuit with sequencers: A p-circuit is constructed by interconnecting

p-bits according to a weight logic or synapse function. As a simple example a p-

circuit with two p-bits (A and B) is shown where A and B are interconnected anti-

ferromagnetically performing a NOT operation. It is shown that when A and B are

updated sequentially one after another by a sequencer in the p-circuit, the network

converges to the correct probability distribution from applying Boltzmann law for

symmetrically connected networks. But if the sequencer is removed and p-bits A and

B are updated simultaneously all at a time, wrong probability distribution is obtained

with no preference for 01 or 10 states. Thus the use of sequencers is very important

in the ANN literature.

shown that small Boltzmann units can be connected in a directed fashion that still

retains the invertibility feature. A 32 bit adder is shown to perform as a subtractor
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also. The p-circuit was simulated using the behavioral model defined by equations

1.1 and 1.2 and it is important to update the p-bits sequentially in this model.

1.2 Sequential versus autonomous p-circuit:

In traditional software implementation on a digital hardware, each p-bit is updated

sequentially that means after each τS + τN time interval only one p-bit is updated

necessiating the use of sequencers. The importance of this sequencer is shown in

fig. 1.2. But the interesting fact is that it is possible to design an autonomous p-

circuit that does not require any kind of clocks of sequencers and yet can perform

properly if the synapse dely τS is much smaller than τN as shown in fig. 1.3. How

much synapse delay can be tolerated by an autonomous p-circuit will depend on

the number of fan-in to the p-bits: in general larger the fan-in, lower will be the

tolerance to synapse delay. The general design rule for an autonomous p-circuit is

τS � (τN/fin) where fin is the number of fan-in.

Our physics inspired “autonomous” p-circuit as a hardware for ANN is very dif-

ferent from the commonly known “asynchronous” operation of biologically inspired

spiking neural networks that require synchronizer and handshaking operation [13,14].

Since all the p-bits are running in parallel in our autonomous hardware, it is poten-

tially a very fast and efficient sampler that can reduce the prefactor t0 in the con-

vergence time of probabilistic networks defined by t = t0Nflip where the number of

required flips Nflip is very much algorithm, network size, interconnection strength

and network topology dependent.

We have demonstrated the operation of an autonomous p-circuit by SPICE sim-

ulaiton of two types of networks: Symmetrically connected Boltzmann and directed

acyclic Bayesian networks.

In this thesis we have presented examples of invertible Boolean logic implemented

on a Boltzmann network and Bayesian inference implemented on a Bayesian net-

work by mapping these problems into two low barrier nanomagnet (LBM) based
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Autonomous p-circuit 

𝝉𝑺 = 𝟏𝟎𝟎 𝐩𝐬, 𝝉𝑵 = 𝟏𝟕𝟎 𝐩𝐬

𝑅

SHE

M
T
J

FM
MgO

LBM

𝑉𝐼𝑁

𝑉𝑂𝑈𝑇

𝐼𝑠
𝑉 −

𝑉 +

SPICE simulation

𝝉𝑺 = 𝟏 𝐩𝐬, 𝝉𝑵 = 𝟏𝟕𝟎 𝐩𝐬

𝝉𝑺

𝝉𝑵

𝝉𝑺 = 𝟓𝟎𝟎 𝐩𝐬, 𝝉𝑵 = 𝟏𝟕𝟎 𝐩𝐬

Design rule

𝝉𝑺 ≪ 𝝉𝑵

p-bit

Fig. 1.3.: Autonomous p-circuit: As opposed to the sequential p-circuit shown in

fig. 1.2, it is possible to design an autonomous p-circuit that does not require any kind

of clocks or sequencers and still can operate properly if certain design criterion is met

which is synapse delay τS has to be much smaller than neuron fluctuation time τN .

This design rule is varified by SPICE simulation of the same two p-bit network as in

fig. 1.2 composed of an LBM based p-bit design (design 2 in fig. 1.1). It is shown that

when τS � τN , the system converges to the correct probability distribution consistent

with equilibrium Boltzmann law, but as τS gets comparable to τN the system starts

to fail.

autonomous p-circuit designs (design 1 and design 2 shown in fig. 1.1). Use of LBMs

provides low power compact implementation of p-bits where the desired stochasticity

comes naturally from the thermal fluctuations of nearly ∼ 0kT magnets. One de-

sign involves using a stochastic magnetic tunnel junction (MTJ) with the free layer

replaced by an LBM and tuning the magnetization fluctuation by a spin current

generated from a spin Hall material underneath. Another design is very similar to

the commercially available 1T/1MTJ MRAM memory cell with the free layer of the
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MTJ replaced by an LBM and tuning the fluctuating output by tuning the resistance

of the NMOS transistor connected in series with the stochastic MTJ. We have also

proposed and benchmarked two compact models for the two autonomous p-circuits

against SPICE simulation of the actual hardware using experimentally benchmarked

modules for LBMs and CMOS components. The compact models are useful for ex-

ploring very large scale autonomous probabilistic hardware.

1.3 Low barrier nanomagnet based p-circuit for invertible Boolean logic:

One possible implementation of p-bits is using low barrier stochastic nanomagnets

with thermal barrier of the order of ∼ 1 kT where the tunability comes naturally from

nanomagnets driven by spin currents. From fig. 1.4, we see that nanomagnet based

p-bits do not have definite +1 and -1 states as described by the behavioral model

(eq. 1.1). Rather the magnetization distribution is continuous.

Now the question is if all the interesting functionalities obtained from interconnect-

ing binary p-bits can still be obtained when p-bits are not binary, rather continuous

teleghaphic in nature. The question is answered in chapter 3. The answer is a re-

sounding “yes”. Even if nanomagnet based p-bits don’t have specific +1 and -1 states,

they can become strongly correlated to perform precise Boolean operations (e.g. 32

bit addition). No thresholding is applied during the operation of the circuit except at

the READ out when all positive values are transformed to +1 and all negative values

to -1.

To demonstrate the example of invertible Boolean logic, we have implemented

a 32-bit adder interconnecting nearly five hundreds p-bits into a p-circuit that can

do precise Boolean operation. We can build Boltzmann Machines (BM) by inter-

connecting p-bits symmetrically according to a properly designed coupling matrix

[J ] and bias {h} for doing specific Boolean operation. The BM design of Boolean

gates provides the unique feature of invertibility. if the input p-bits are clamped, it

gives the correct output with maximum probability. But if the output is clamped,
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Fig. 1.4.: Low barrier nanomagnet with continuous magnetization as p-bit

for invertible logic: (a) Implementation of a p-bit using a 1kT nanomagnet as the

free layer on a GSHE material that converts the applied charge current to spin current

to tune the average magnetization. At zero applied current, the magnetization fluc-

tates among all values between +1 and -1 and the distribution is quite broad. When

a positive current is applied, magnetization is biased towards +1 and for a negative

current the magnetization distribution is concentrated around -1. (b) Implementation

of an invertible 32-bit adder connecting 448 nanomagnets in an autonomous p-circuit.

it gives all the inputs consistent with the given output. We have proposed a unique

hybrid architecture where small BM units are connected in a directed fashion. A

32-bit adder is shown to be composed of 32 full adders which are individual Boltz-
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mann Machines. This unique architecture not only gives CMOS-like determinism,

but also shows invertibility. When inputs A and B are clamped, this huge network

of several hundred p-bits gets precisely correlated to to give the correct sum S out of

233 ≈ 8 billion possibilities. But when the output bits S and one set of input bits A

are clamped, the network gives the correct difference B = S − A. This invertibility

is a unique feature of our proposed PSL. Solving stochastic Landau-Lifshitz-Gilbert

(sLLG) equation, we show that even if these nanomagnets do not have specific 0 and

1 states, rather they have continuous distribution of magnetization, they can become

properly correlated to do precise boolean operation. Here we want to clarify that the

use of stochastic nanomagnets has been discussed both theoretically and experimen-

tally for unconventional applications such as random number generation, autonomous

learning, stochastic oscillator etc. [15–23]. The novelty of our PSL approach is that we

are proposing to use these magnets in a clockless p-circuit to perform precise boolean

logic that not only provides CMOS like determinism, but also is invertible. Such

low barrier nanomagnets are usually of no interest because they cannot represent a

specific 0 or 1. Use of these low kT magnets in PSL not only provides the excit-

ing feature of invertibility in logic, they are also promising for low power operation

since the pinning current for such low barrier magnets is much (at least an order of

magnitude) less than what is needed for switching a 40 kT magnet.

Figure. 1.4 shows the sLLG simulation result of a network of 448 p-bits performing

32 bit addition. At zero bias, the network is like a molten liquid fluctuating randomly.

As the interaction is turned on, the network quickly converges to the correct answer

out of many billion possibilities. This probabilistic network is completely autnomous

without any clocks and the synapse was assumed to be instantaneous thus satisfying

the necessary criterion for an autonomous probabilistic hardware.
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Fig. 1.5.: In a Bayesian network, p-bits representing each random variable of the

network need to be updated sequentially from the parent to child nodes. We have

proposed the design criteria for an autonomous hardware that would naturally ensure

this specific update order without any clock circuitry by comparing two p-bit designs.

It is seen that design 1 works well as a BN, but design 2 does not.

1.4 Autonomous p-circuit design for Bayesian network:

The autonomous p-circuit is particularly an interesting idea in terms of imple-

menting directed acyclic networks also known as Bayesian networks (BN) or belief

networks or causal networks that are popular in many AI related sectors for proba-

bilistic reasoning and inference, because in this case a specific parent to child informed

update order is very important in terms of matching standard statistical results that

necessiates the use of sequencers as in digital circuits. We have shown that if cer-

tain design criteria are met, an autonomous p-circuit can implement a Bayesian net-
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work without any sequencers and match analytical results reasonably well (fig. 1.5).

In chapter 4 we have demonstrated a popular example of a BN named “Genetic relat-

edness” . We have shown how a BN described by conditional probability table (CPT)

relating how each child node is dependent on its parent nodes can be translated to

a p-circuit coupled by coupling matrix [J ] and bias h that are converted to coupling

resistances Rweight and bias voltage Vbias respectively. We have shown that different

correlation values coming directly out of the hardware nodes implemented in SPICE

matches nicely with standard analytical values. In chapter 5, we have compared two

autonomous p-circuit designs (design 1 and 2) as in fig. 1.1 in terms of implementing

BNs and elucidated why design 1 works for a BN and design 2 does not in general.

In short, we have shown how to design autonomous probabilistic hardware that

can implement different probabilistic networks (both directed and bidiectional) and

solve a large class of AI and quantum computing related complex problems with very

fast sampling speed. We have also proposed and benchmarked compact models for

two different autonomous p-circuits to address the important issue of scalability of

these networks.
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2. STOCHASTIC P-BITS FOR INVERTIBLE LOGIC

Materials in this chapter have been extracted verbatim from the paper: “ Stochastic

p-bits for Invertible Logic”, K. Y. Camsari, R. Faria, B. M. Sutton, and S. Datta,

published in Physical Review X, 2017. Reprinted with permision from [4].

Conventional semiconductor-based logic and nanomagnet-based memory devices

are built out of stable, deterministic units such as standard MOS (metal oxide semi-

conductor) transistors, or nanomagnets with energy barriers in excess of ≈ 40-60 kT.

In this paper we show that unstable, stochastic units which we call “p-bits” can be

interconnected to create robust correlations that implement precise Boolean functions

with impressive accuracy, comparable to standard digital circuits. At the same time

they are invertible, a unique property that is absent in standard digital circuits. When

operated in the direct mode, the input is clamped, and the network provides the cor-

rect output. In the inverted mode, the output is clamped, and the network fluctuates

among all possible inputs that are consistent with that output. First, we present a

detailed implementation of an invertible gate to bring out the key role of a single

three-terminal transistor-like building block to enable the construction of correlated

p-bit networks. The results for this specific, CMOS-assisted nanomagnet-based hard-

ware implementation agree well with those from a universal model for p-bits, showing

that p-bits need not be magnet-based: any three-terminal tunable random bit gener-

ator should be suitable. We present a general algorithm for designing a Boltzmann

machine (BM) with a symmetric connection matrix [J] (Jij = Jji), that implements a

given truth table with p-bits. The [J] matrices are relatively sparse with a few unique

weights for convenient hardware implementation. We then show how BM Full Adders

can be interconnected in a partially directed manner (Jij 6= Jji) to implement large

logic operations such as 32-bit binary addition. Hundreds of stochastic p-bits get

precisely correlated such that the correct answer out of 233 (≈ 8 billion) possibilities
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can be extracted by looking at the statistical mode or majority vote of a number of

time samples. With perfect directivity (Jji=0) a small number of samples is enough,

while for less directed connections more samples are needed, but even in the former

case logical invertibility is largely preserved. This combination of digital accuracy

and logical invertibility is enabled by the hybrid design that uses bidirectional BM

units to construct circuits with partially directed inter-unit connections. We establish

this key result with extensive examples including a 4-bit multiplier which in inverted

mode functions as a factorizer.

2.1 Introduction

Conventional semiconductor-based logic and nanomagnet-based memory devices

are built out of stable, deterministic units such as standard MOS (metal oxide semi-

conductor) transistors, or nanomagnets with energy barriers in excess of ≈ 40-60

kT. The objective of this paper is to introduce the concept of what we call “p-bits”

representing unstable, stochastic units which can be interconnected to create robust

correlations that implement precise Boolean functions with impressive accuracy com-

parable to standard digital circuits. At the same time this “probabilistic spin logic”

(PSL) is invertible, a unique property that is absent in standard digital circuits. When

operated in the direct mode, the input is clamped, and the network provides the cor-

rect output. In the inverted mode, the output is clamped, and the network fluctuates

among all possible inputs that are consistent with that output.

Any random signal generator whose randomness can be tuned with a third ter-

minal should be a suitable building block for PSL. The icon in Fig. 3.1b represents

our generic building block whose input Ii controls the output mi according to the

equation (Fig. 3.1a),

mi(t) = sgn{rand(−1, 1) + tanh(Ii(t))} (2.1)

where rand(−1,+1) represents a random number uniformly distributed between −1

and +1. It is assumed to change every τ seconds which represents the retention time
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of individual p-bits. We normalize the time axis to τ so that t is dimensionless and

progresses in steps (0, 1, 2, . . .). At each time step, if the input is zero, the output

takes on a value of −1 or +1 with equal probability, as shown in the middle panel of

Fig. 3.1d. A negative input Ii makes negative values more likely (left panel) while a

positive input makes positive values more likely (right panel). Fig. 1c shows mi(t) as

the input is ramped from negative to positive values. Also shown is the time-averaged

value of mi which equals tanh(Ii).

A possible physical implementation of p-bits could use stochastic nanomagnets

with low energy barriers ∆ whose retention time [24]:

τ = τ0 exp (∆/kT )

is very small, on the order of τ0 which is a material dependent quantity called the

attempt time and is experimentally found to be ≈ 10 ps− 1 ns [24] among different

magnetic materials. Such stochastic nanomagnets can be pinned to a given direction

with spin currents that are at least an order of magnitude less than those needed to

switch 40 kT magnets. The sigmoidal tuning curve in Fig. 3.1c describing the time

average of a fluctuating signal represents the essence of a p-bit. Purely CMOS imple-

mentations of a p-bit are possible [8, 9], but the sigmoid seems like a natural feature

of nanomagnets driven by spin currents. Indeed, the use of stochastic nanomagnets

in the context of random number generators, stochastic oscillators and autonomous

learning [18,25, 26] has been discussed in the literature. But performing “invertible”

Boolean logic utilizing large scale correlations has not been discussed before to our

knowledge.

Note that we are using the term invertibility in the broader sense of relation

inverses and not in the narrower sense of function inverses. For example, AND,

when interpreted as a relation, consists of the set {{1, 1 → 1}, {0, 0 → 0}, {1, 0 →

0}, {0, 1 → 0}} where each term is of the form {A,B → AND(A,B)}. The relation

inverse of 0 is the set {{0, 0}, {0, 1}, {1, 0}} even though the corresponding functional

inverse is not defined. What our scheme provides, probabilistically, is the relation

inverse [27,28].
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Fig. 2.1.: Generic building block for PSL: (a) A generic model for PSL described

by Eq. (2.1) with distinct READ and WRITE units represented by the R/W icon

shown in (b). Useful functionalities are obtained by interconnecting R/W units ac-

cording to Eq. (2.2), Ii = I0 × (hi +
∑
Jijmj), with appropriately designed {h} and

[J ]. (c) The blue trace shows the “magnetization” (mi) obtained from Eq. (2.1) as

the current (Ii) is ramped. The red trace shows the sigmoid response obtained from

an RC circuit which provides a moving average of the time-dependent “magnetiza-

tion” which agrees very well with the black curve showing tanh(Ii). The bias terminal

could involve a voltage (V) instead of a current (I), just as the output could involve

quantities other than magnetization. (d) The idealized telegraphic behavior of the

model is shown at various bias points along with corresponding distributions.

Ensemble-average versus time-average: A sigmoidal response was presented in

[29] for the ensemble-averaged magnetization of large barrier magnets biased along



16

Directed Networks 

of Boltzmann Machines

4-bit Multiplier/

Factorizer

32-Bit Adder

/Subtractor

(b)Boltzmann 

Machines

Full AdderAND/OR

(a)

W

R

W

R

W

R

W

R W

R

Reciprocal Network

WWWW

RRR

WWWW

RRR

WWWW

RRR

A

W

R

B

C
Reciprocal 

Network

Directed

Connections

Reciprocal 

Network

Fig. 2.2.: PSL designs discussed in this paper: (a) Basic Boolean elements

(AND/OR, Full Adder) are implemented as Boltzmann Machines based on symmet-

rically coupled networks with Jij = Jji. (b) Complex Boolean functions like a 32-bit

Ripple Carry Adder/Subtractor and 4-bit Multiplier/Factorizer are implemented by

combining the reciprocal Boltzmann machines in a directed fashion.

a neutral state. This was proposed as a building block for both Ising computers as

well as directed belief networks and a recent paper [30] describes a similar approach

applied to a graph coloring problem. By contrast low barrier nanomagnets provide

a sigmoidal response for the time-averaged magnetization and a suitably engineered

network of such nanomagnets could cycle through the 2N collective states at GHz

rates, with an emphasis on the “low energy states” which can encode the solution to

the combinatorial optimization problems, like the traveling salesman problem (TSP)

as shown in [11]. Once the time-varying magnetization has been converted into a

time-varying voltage through a READ circuit, a simple RC circuit can be used to

extract the answer through a moving time average. For example, in Fig. 3.1c the

red trace was obtained from the rapidly varying blue trace using an RC circuit in a

SPICE simulation.

The central feature underlying both implementations is the p-bit that acts like

a tunable random number generator, providing an intrinsic sigmoidal response for
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the ensemble-averaged or the time-averaged magnetization as a function of the spin

current. It is this response that allows us to correlate the fluctuations of different

p-bits in a useful manner by interconnecting them according to

Ii(t) = I0 × (hi(t) +
∑
j

Jijmj(t)) (2.2)

where hi provides a local bias to magnet i and Jij defines the effect of bit j to bit i,

and I0 sets a global scale for the strength of the interactions like an inverse “pseudo-

temperature” giving a dimensionless current Ii to each p-bit. The computation of Ii(t)

in terms of mj(t) in Eq. (2.2) is assumed instantaneous, in hardware implementations

there can be interconnect delays that relate mj(t) to currents at a later time, Ii(t
′).

Equation (2.1) arises naturally from the physics of low barrier nanomagnets as we

have discussed above. Equation (2.2) represents the “weight logic” for which there are

many candidates such as memristors [31], floating-gate based devices [32], domain-

wall based devices [33], standard CMOS [34]. The suitability of these options will

depend on the range of J values and the sparsity of the J-matrix.

Equations (2.1-2.2) are essentially the same as the defining equations for Boltz-

mann machines introduced by Hinton and his collaborators [35] which have had enor-

mous impact in the field of machine learning, but they are usually implemented in

software that is run on standard CMOS hardware. The primary contributions of this

paper are threefold:

• Hardware implementation: It may seem “obvious” that an unstable magnet

could provide a natural hardware for representing a p-bit, but we would like to

stress a less obvious point. To the best of our knowledge, simple two-terminal

devices are not suitable for constructing large scale correlated networks of the

type envisioned here. Instead, we need three-terminal building blocks with

transistor-like gain and input-output isolation as shown in Fig. 3.1b [29]. To

stress this point, we describe a concrete implementation of a Boolean function

using detailed nanomagnet and transport simulations that are in good agree-

ment with those obtained by the generic model based on Eq. (2.1). All other



18

results in this paper are based on Eq. (2.1) in order to emphasize the generality

of the concept of p-bits which need not necessarily be nanomagnet-based [36,37].

• Boltzmann machines (BM) for invertible Boolean logic (Fig.2a): Much of the

current emphasis on BMs is on “learning” giving rise to the concept of re-

stricted Boltzmann machines [38]. By contrast this paper is about Boolean

logic, extending an established method for Hopfield networks [39] to provide a

mathematical prescription to turn any Boolean truth table into a symmetric J-

matrix (Eq. (2.2), with Jij = Jji), in one shot with no “learning” being involved.

This design principle seems quite robust, functioning satisfactorily even when

the J-matrix elements are rounded off, so that the required interconnections are

relatively sparse and quantized which simplifies the hardware implementation.

The numerical probabilities agree well with those predicted from the energy

functional.

E({m}) = −I0 ×
(∑

i,j

1

2
(Jijmimj) +

∑
i

himi

)
(2.3)

using the Boltzmann law:

P ({m}) =
exp(−E)∑
i,j exp(−E)

(2.4)

Most importantly we show that the resulting Boolean gates are invertible: not

only do they provide the correct output for a given input, for a given output

they provide the correct input(s). If the given output is consistent with multi-

ple inputs, the system fluctuates among all possible answers. This remarkable

property of invertibility is absent in standard digital circuits and could help

provide solutions to the Boolean satisfiability problem (Fig. 2.8) [40].

• Directed networks of BM (Fig.2b): Finally we show that individual BM’s can be

connected to perform precise arithmetic operations which are the norm in stan-

dard digital logic, but quite surprising for BM which are more like a collection
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of interacting particles than like a digital circuit. We show that a 32-bit adder

converges to the one correct sum out of 233 ≈ 8 billion possibilities when the

interaction parameter is suddenly turned up from say I0 = 0.25 to I0 = 5. This

can be likened to quenching a molten liquid and getting a perfect crystal. What

we expect is plenty of defects, distributed differently everytime we do the exper-

iment. That is exactly what we get if the individual BM Full adders comprising

the 32-bit adder are connected bidirectionally (Jij = Jji). But by making the

connection between Adders directed (Jij 6= Jji), we obtain the striking accuracy

of digital circuits while largely retaining the invertibility of BM. This is a key

result that we establish with extensive examples including a 4-multiplier which

in inverted mode functions as a factorizer.

Each of these three contributions is described in detail in the three sections that

follow.

2.2 An example hardware Implementation of PSL

To ensure that individual p-bits can be interconnected to produce robust corre-

lations, it is important to have separate terminals for writing (more correctly bias-

ing) and reading, marked W and R respectively in Fig. 2.3a. With IMA nanomag-

nets (e.g circular nanomagnets) this could be accomplished following existing exper-

iments [15, 42] using the giant spin Hall effect (GSHE). Recent experiments using a

built-in exchange bias [43–46] could make this approach applicable to PMA as well.

Note however, that these experiments have all been performed with stable free layers,

and would have to be carried out with low barrier magnets in order to establish their

suitability for the implementation of p-bits. As the field progresses, one can expect

the bias terminal to involve voltage control [47, 48] instead of current control, just

as the output could involve quantities other than magnetization. We will now show

a concrete implementation of a Boolean function using minimal CMOS circuitry in

conjunction with stochastic nanomagnets through detailed nanomagnet and trans-
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GSHE

W

R

Fig. 2.3.: CMOS-assisted implementation of p-bits: (a) A possible CMOS-

assisted implementation of p-bits that have a separate READ/WRITE paths. A

GSHE layer provides a spin current that pins the magnetization of circular magnets

(∆ ≈ 0 kT ). The change in magnetization is sensed by an MTJ and amplified by

two CMOS inverters that act as a buffer, providing the necessary isolation and gain.

(b) Self-consistent, modular modeling of transport and magnetization dynamics. See

“Assumptions of the model” in the text. (c) Equivalent READ circuit. (d) SPICE-

based average output voltage normalized to the VDD = 0.8 V of 14 nm FinFET

HP-inverters [41]. (e) sLLG-based average magnetization of the circular magnet as a

function of the spin current (averaged over 500 ns for each bias point with a time step

of ∆t = 0.05 ps, 10 million points per marker), normalized to the GSHE gain and the

thermal noise strength, I ths . (f) The time-dependent output voltage at various bias

points.
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Fig. 2.4.: An invertible AND gate: (a) Passive resistor network that is used to

obtain the connection terms Jij to correlate p-bits. The output impedance Rij =

1/Gij is much smaller than the input impedance RGSHE, allowing separate voltages

to add at the input of the ith p-bit. (b) Explicit implementation of an AND gate

based on Eq. (2.10). (c) When C is clamped to 1, A and B spend most of their

time in the (11) state, the only combination consistent with C=1. (d) The invertible

operation of the AND gate when the C gate is clamped to a zero, while A and B are

left floating. A and B bits fluctuate between 3 possible combinations consistent with

C=0, (A,B)=(00),(01),(10). The time response of A,B,C voltages are normalized by

VDD. Histogram is obtained by averaging over 200 ns of thresholded voltages, only

the first 20 ns of A,B,C voltages are shown for clarity.
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port simulations that are in good agreement with those obtained from the generic

model based on Eq. (2.1).

Fig. 2.3a shows a possible, CMOS-assisted p-bit that has a separate READ and

WRITE path. The device consists of a heavy metal exhibiting Giant Spin Hall Effect

(GSHE) that drives a circular magnet which replaces the usual elliptical magnets in

order to provide the stochasticity needed for the magnetization. A small read current,

which is assumed to not disturb the magnetization of the free layer in our design, that

flows through the fixed layer is used to sense the instantaneous magnetization, which

is amplified and isolated by two inverters that act as a buffer. This structure is very

similar to the experimentally demonstrated GSHE switching of elliptical magnets that

were similarly read-out by an MTJ [42], with the only exception that the elliptical

magnets are replaced by circular magnets with an aspect ratio of one. This device

could be viewed as replacing the free layers of the GSHE-driven MTJs demonstrated

in [42] with those in the telegraphic regime [15,49–51] .

In the presence of thermal noise the magnetization of such a circular magnet

rotates in the plane of the circle without a preferred easy-axis that that would

have arisen due to the shape anisotropy, effectively making its thermal stability

∆ ≈ 0 kT [52]. This magnetization can be pinned by a spin current that is gen-

erated by flowing a charge current through the GSHE layer. The magnetic field

driven sigmoidal responses of magnetization for such circular magnets have experi-

mentally been demonstrated [53, 54], while the spin current driven pinning has not

been demonstrated to our knowledge. Using validated modules for transport and

magnetization dynamics [55] (Fig. 2.3b), we solve the stochastic Landau-Lifshitz-

Gilbert (sLLG) equation in the presence of thermal noise and a GSHE current. The

following subsection shows detailed simulation parameters.

Sigmoidal response: A long-time average (t = 500 ns) of the magnetization 〈mz〉

as a function of a GSHE-generated spin current is plotted in Fig. 2.3e that displays

the desired sigmoidal characteristic for p-bits dictated by Eq. (2.1). The x-axis of
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Fig. 2.3e is normalized to the geometric gain factor that relates the charge current to

the spin current exerted [56,57]:

β ≡ Is
Ic

= θSH
LFM
t

(
1− sech

(
t

λ

))
(2.5)

where θSH is the Hall angle, t is the thickness and λ is the spin-relaxation length of

the heavy metal. The quantity β can be made to be much greater than 1 providing

an intrinsic gain [2], however for the parameters used in the present examples, β is

≈ 1.5.

Another quantity that is used to normalize the x-axis of Fig. 2.3e is the “thermal

spin current” that corresponds to the strength of the thermal noise that needs to be

overcome for a circular magnet to be pinned in a given direction:

I ths =

(
4q

h̄

)
α
(
kT
)

(2.6)

where q is electron charge, α is the damping coefficient of the magnet. I ths , Is and Ic

all have units of charge current, therefore we can define the dimensionless interaction

parameter, I0 of Eq. 2.2 as I0 ≡ βIc/I
th
s = Is/I

th
s .

It can be seen from Fig. 2.3e that when the applied spin current βIc/I
th
s = Is/I

th
s ≈

10, the magnetization of the circular magnet is pinned in the ±z directions for these

particular parameters. For PMA magnets with low barriers (∆ � kT ), the pin-

ning current is independent of the volume as long as increasing the volume does

not invalidate the ∆ � kT assumption. This can be analytically shown from a 1D

Fokker-Planck equation [58], and we have reproduced this behavior directly from

sLLG simulations. For the in-plane (circular) magnets considered here, the pinning

current in general has a Ms and Vol. dependence and the dimensionless pinning cur-

rent can be larger.

Nevertheless, it is possible to estimate the thermal spin current for typical damp-

ing coefficients of α = 0.01 − 0.1, I ths is ≈ 0.25 µA − 2.5 µA. Pinning currents for

superparamagnets are at least an order of magnitude smaller than the critical switch-

ing currents of stable magnets [59]. I ths , defined by Eq. (2.6) also sets the scale for I0
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defined in Eq. (2.2) suggesting that a stochastic nanomagnet based implementation of

PSL could be more energy efficient than the standard spin-torque switching of stable

magnets that suffer from high current densities.

Need for three-terminal devices with READ-WRITE separation: Note that a cru-

cial function of the READ circuit and the CMOS transistors in this design is the

ability to turn the magnetization into an output voltage that is proportional to mz,

providing gain for fan-out and isolation to avoid any read disturb. Indeed, a critical

requirement for any other alternative implementations of p-bits is the need for three

terminal devices with separate READ and WRITE paths to provide gain and isola-

tion. In this particular design these features come in by directly integrating CMOS

transistors, but CMOS-free, all-magnetic designs with these characteristics have been

proposed [2,60]. Our purpose is to simply show how a p-bit can be realized by using

experimentally demonstrated technology. Alternative designs are beyond the scope

of this paper.

READ Circuit: For the output to provide symmetric voltage swings on the GSHE

layer, the minus supply V − needs to be set to VDD/2 since VOUT ranges between 0 and

VDD. V + is set to VDD/2 + VR where VR is a small READ voltage that is amplified

by the inverters. We assume a simple, bias-independent MTJ model [61]:

GMTJ = G0(1 + P 2mz), (2.7)

where P is the interface polarization and G0 is the average MTJ conductance. Set-

ting the reference resistance (Fig. (2.3c)) R0 equal to G−10 , the input voltage to the

inverters, VM in FIG. (3.2d) becomes:

VM =
VDD

2
+

VR
2 +mzP 2

(2.8)

In the absence of a bias 〈mz〉 becomes 0 and the middle voltage fluctuates around the

mean 〈VM〉 = VDD/2 + VR/2. This requires the inverter characteristic to be shifted

to this value to produce a telegraphic output that fluctuates between 0 and VDD with

equal probability (Fig. 2.3f). This shift is easily engineered by sizing the pFET and
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nFET transistors differently, a wider pFET shifts the inverter characteristic towards

VDD, as we will show in the next subsection.

Interconnection matrix: A passive resistor network can be used as a possible

interconnection scheme to correlate the p-bits as shown in Fig. 2.4. A proper design

of the interconnection matrix J that has only a few discrete values ensures a minimal

number of different conductances (Gij). In this demonstrated example the AND gate

requires only 2 unique, discrete conductance values.

The spin currents that need to be delivered to each p-bit are on the order of a few

µA and can be generated with charge currents that are even smaller, due to the GSHE

gain. This means the interconnection resistances Rij could be on the order of 100

kΩ’s since the voltage drops across these resistances are around VOUT−V − ≈ ±0.5 V.

Since the GSHE ground V − = VDD/2 simply shifts all the voltages to get symmetric

± swings, we define the voltages (V ′OUT)i = (VOUT)i − V −. Then input currents to

each p-bit can be expressed (Fig. 2.4a):

(
IIN
)
i

=
∑
j

Gij(V
′
OUT) +Gi(V

′
BIAS) (2.9)

assuming
∑

j Gij � GGSHE since the heavy metal resistances are typically much less

than hundreds of kΩ. We have verified the validity of Eq. (2.9) by SPICE simulations,

for the parameters chosen for these examples.

As a result, we observe that Eq. (2.9) constitutes a hardware mapping for the

interconnections of Eq. (2.2). In this scheme Gij conductances are initially adjusted

to obtain a global interaction strength I0 for a given problem. Alternatively, the

interaction strength can be adjusted electrically by varying the supply voltages.
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Invertible AND Gate: Fig. 2.4b shows an explicit implementation of an invertible

AND gate (A∩B = C) corresponding to [J] and {h} matrices [62] that have 3 unique,

integer entries:

J =


A B C

A 0 −1 +2

B −1 0 +2

C +2 +2 0

 hT =
[
+1 +1 −2

]
(2.10)

In Fig. 2.4d, we show the inverse operation of the AND gate where we clamp

the output bit C to a 0 or 1 by the bias voltage attached to its input terminal.

The interconnection resistance is chosen to be R0 = 125 kΩ that roughly provides

≈ ±6 µA of charge current to each p-bit, corresponding to an I0 ≈ 3.5 for the chosen

parameters.

Generating the histogram: At the end of the simulation (t=200 ns), we threshold

the voltage output of A,B and C by legislating all voltages above VDD/2 = 0.4 V to be

1, and below VDD/2 to be 0. Then a histogram output for the thresholded word [ABC]

is obtained and normalized to unit probability. Clamping the output to 0 and letting

A and B float, make A and B fluctuate in a correlated manner and they visit the

three possible states (00, 01, 10) with approximately equal probability. Resolving the

output 0 to the three possible input combinations is, in a way “factorizing” the output.

Conversely, clamping the output to 1 produces a strong (11) peak in the histogram

of [ABC], which is the only consistent input combination for C=1 (Fig. 2.4c-d).

Assumptions of the model: We have made several simplifying assumptions while

modeling the hardware implementation of a p-bit. (1) The READ voltage that is

amplified by the inverters produces a small current that passes through the circular

magnet and might potentially disturb its current state. We assumed that this current

(labeled as IS2 in Fig. 2.3b) is negligible and do not affect the magnetization of the

stochastic magnet. (2) We assumed that the spin current generated by the heavy

metal is deposited to the free layer with perfect efficiency (I ′S1 = IS1 in Fig. 2.3b),

however, depending on the interface properties this conversion factor can be less than
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100%. (3) We have also assumed that the fixed layer does not produce a notable stray

field on the circular magnet. Note that the presence of such a constant field would

simply shift the sigmoidal behavior presented in Fig. 2.3d-e to the right (or left) and

could have been offset by a constant bias current. (4) Finally, we have neglected the

resistance of the GSHE portion in the READ circuit (Fig. 2.3c), assuming the MTJ

resistance would be dominant in this path.

2.2.1 Detailed Simulation Parameters

This section shows the details of simulation parameters for the hardware imple-

mentation of p-bits that are used for Fig. 2.3−2.4.

sLLG for stochastic circular magnets: The magnetization of a circular nanomag-

net described as m̂i is obtained from the stochastic Landau-Lifshitz-Gilbert (sLLG)

equation:

(1 + α2)
dm̂i

dt
= −|γ|m̂i × ~Hi − α|γ|(m̂i × m̂i × ~Hi)

+
1

qNi

(m̂i × ~ISi × m̂i) +

(
α

qNi

(m̂i × ~ISi)
)

(2.11a)

where α is the damping coefficient, q is the electron charge, γ is the electron gyro-

magnetic ratio, Is is the spin current that is assumed to be uniformly distributed

over the total number of spins in the macrospin, Ni = MsVol./µB, µB being the

Bohr magneton. It is assumed that the spin current generated from the GSHE layer

is polarized in the z-direction, such that ~ISi = IS ẑ. ~Hi is the effective field of the

circular magnet, where the uniaxial anisotropy is assumed to be negligible, but there

is still a strong demagnetizing field. The thermal fluctuations also enter through

the effective magnetic field: ~Hi = −4πMsmxx̂ + ~Hth, x-axis being the out-of-plane

direction of the magnet, and 〈| ~Hth|2〉 = 2αkT/(|γ|MsVol.) in units [Oe2/Hz] with

zero mean, and equal in all three directions. Table 2.1 shows the parameters used in

Figs. 2.3−2.4. We note that this parameter selection is simply one possibility, many

other parameters could have been used with no change in the basic conclusions.
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Obtaining the sigmoidal response of CMOS+sLLG: Each data point in the sig-

moids shown in Figs. 2.3−2.4 is obtained by averaging the z-component of the mag-

netization after 500 ns, with a time-step of ∆t = 0.05 ps. The CMOS inverter char-

Table 2.1.: Parameters used for simulations in Figs. 2.3−2.4.

Parameters Value

Saturation magnetization (Ms) 300 emu/cc

Magnet diameter (Φ), thickness (t) 15 nm, 0.5 nm

MTJ Polarization (P) (Eq. (2.7)) 0.5

MTJ Conductance (G0) (Eq. (2.7)) 176 µS

Damping coefficient (α) 0.1

Spin Hall Length, Width (Eq. (2.5)) L = W = 15 nm

Hall Angle, Spin relax. length θ=0.5 [63], λsf =2.1 nm [64]

Spin Hall res. (ρ), thickness (t) 200 µΩ-cm [65], 3.15 nm

Temperature (T ) 300 K

CMOS Models 14nm HP-FinFET [41]

Supply and READ Voltage VDD = 0.8 V, VR = 0.5 V

Timestep for transient sim. (SPICE) ∆t = 0.05 ps



29

Fig. 2.5.: 14 nm PTM, Inverter/Buffer: DC response of 14 nm high perfor-

mance (HP) FinFETs based on [41] for an inverter and buffer. Sizing the transistors

differently allows the switching point to be shifted.

acterestics in conjunction with a spherical representation-based sLLG are obtained

using the modular framework developed in [55] using HSPICE.

14 nm FinFET Inverter Characteristics: Fig. 2.5 shows the input/output char-

acteristics of the single and double inverters that are used to amplify the stochastic

signal that is generated by the MTJ (Fig. 2.3). At zero-bias from the GSHE, the

amplified signal VM (Eq. 2.8) is in the middle of V + and V − which is VDD/2 + VR/2.

The buffer response can be shifted to this value by increasing the size of pFETs, as

shown in Fig. 2.5.

2.3 Invertible Boolean logic with Boltzmann Machines

We now present a mathematical prescription that shows how any given truth table

can be implemented in terms of Boltzmann Machines, in “one shot” with no learning

being involved, unlike much of the past work in this area (See for example, [66, 67]).
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In Section 2.2, we chose a simple [J] and {h} matrix to implement an AND gate based

on [62]. In this section, we outline a general approach to show how any truth table

can be implemented in terms of such matrices. Our approach, pictorially described

in Fig. 2.6, begins by transforming a given truth table from binary (0, 1) to bipolar

(−1,+1) variables. The lines of the truth table are then required to be eigenvectors

each with eigenvalue +1, all other eigenvectors are assumed to have eigenvalues equal

to 0. This leads to the following prescription for J as shown in Fig. 2.6:

[J ] =
∑
i,j

[S−1]ijuiu
†
j (2.12a)

Sij = u†i uj (2.12b)

where ui are the eigenvectors corresponding to lines in the truth table of a Boolean

operation and S is a projection matrix that accounts for the non-orthogonality of

the vectors defined by different lines of the truth table. Note that the resultant J-

matrix is always symmetric (Jij = Jji) with diagonal terms that are subtracted in our

models such that Jii = 0. The number of p-bits in the system is made greater than

the number of lines in a truth table through the addition of hidden units (Fig. 2.6)

to ensure that the number of conditions we impose is less than the dimension of the

space defined by the number of p-bits.

Another important aspect in the construction of [J] is that an eigenvector ui implies

that its complement −ui is also a valid eigenvector. However only one of these might

belong to a truth table. We introduce a “handle” bit to each ui that is biased (hi) to

distinguish complementary eigenvectors. These handle bits provide the added benefit

of reconfigurability. For example, AND and OR gates have complementary truth

tables, and a given gate can be electrically reconfigured as an AND or an OR gate

using the handle bit.

J-Matrices for AND/FA: We now provide the details of the J-matrix for the AND

gate, obtained using the prescription shown in Fig. 2.6 based on Eq. (2.12a). The

eigenvectors of the truth table for the AND in Fig. 2.6 are placed into a matrix U,
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Fig. 2.6.: Truth Table to J-Matrix: A given truth table is first transformed from

binary to bipolar variables by using the transformation m = 2t − 1, where m and

t represent the magnetization and binary values of the truth table. Additional bits

are introduced to each line of the truth table to ensure that the resultant S-matrix is

invertible. The indices i, j correspond to the number of lines in the truth table. ui, uj

are column vectors. As an example, we have shown auxiliary bits that result in an

S-matrix equal to the identity matrix, since the eigenvectors are orthogonal. The J-

matrix is then obtained by Eq. (2.12a) which ensures that the truth table corresponds

to the low energy states of the Boltzmann machines according to Eq. (2.4). A handle

bit of +1 is introduced to each line of the truth table which can be biased to ensure

that the complementary truth table does not appear along with the desired one. This

bit also allows a truth table to be electrically reconfigured into its complement.

such that U = [u1 u2 u3 u4], where u1 is the first row of the matrix shown in Fig. 2.6,

u1 = [−1 + 1 + 1 + 1 + 1 − 1 − 1 − 1]T and so on. In matrix notation, the S-matrix

can be written as:

S = UTU = 8 I4×4 (2.13)

Then the J-matrix becomes:

J =
∑
ij

[S−1]ij︸ ︷︷ ︸
1/8 δij

uiu
†
j = 1/8

∑
i

uiu
†
i (2.14)

Removing the diagonal entries by making Jii = 0 and multiplying the matrix entries
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Fig. 2.7.: Correlated p-bits, AND Gate: When the interaction strength (I0) is

zero, p-bits produce uncorrelated noise, visiting all possible states with equal prob-

ability. In this example, the interaction strength (pseudo inverse-temperature) is

suddenly increased from 0 to 2 as a step function at t = t0, to effectively “quench”

the network. This correlates the p-bits to produce the truth table of an AND gate

(AND: A ∩ B = C). Note that after this quenching, the p-bits only visit the low

energy states corresponding to the truth table of the AND gate and once the system

is in one of the low energy states, it tends to stay there for a while, until being kicked

out by the thermal noise. The time averages of the uncorrelated and the correlated

system are well-explained by the Boltzmann law stated in Eq. (2.4). The total simu-

lation used a T = 4e6 steps to compare the results with the Boltzmann distribution,

though only a fraction is shown in the upper panel for clarity.

by 2, to obtain simple integers, JAND evaluates to:

JAND =



0 −1 0 0 1 1 1 0

−1 0 1 1 0 0 0 1

0 1 0 0 1 1 −1 0

0 1 0 0 1 −1 1 0

1 0 1 1 0 0 0 −1

1 0 1 −1 0 0 0 1

1 0 −1 1 0 0 0 1

0 1 0 0 −1 1 1 0



(2.15)
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with the notation, [1-5: auxiliary bit and handle bit, 6:“A”, 7:“B”, 8:“C”]. Following

a similar procedure, we use the following 14× 14 Full Adder matrix, JFA:

JFA =



0 0 0 0 0 0 0 4 −1−1−1−1−2−1

0 0 0 0 0 0 4 0 −1−1 2 −1 1 −1

0 0 0 0 0 4 0 0 −1−1−1 2 1 −1

0 0 0 0 4 0 0 0 −1−2 1 1 −1 1

0 0 0 4 0 0 0 0 −1 2 −1−1 1 −1

0 0 4 0 0 0 0 0 −1 1 1 −2−1 1

0 4 0 0 0 0 0 0 −1 1 −2 1 −1 1

4 0 0 0 0 0 0 0 −1 1 1 1 2 1

−1−1−1−1−1−1−1−1 0 0 0 0 0 0

−1−1−1−2 2 1 1 1 0 0 −1−1 1 2

−1 2 −1 1 −1 1 −2 1 0 −1 0 −1 1 2

−1−1 2 1 −1−2 1 1 0 −1−1 0 1 2

−2 1 1 −1 1 −1−1 2 0 1 1 1 0 −2

−1−1−1 1 −1 1 1 1 0 2 2 2 −2 0



(2.16)

with the notation, [1−9: auxiliary bits and handle bit, 10: “Cin”, 11: “B”, 12: “A”,

13: “S” 14: “Cout”].

These are the J-matrices (AND and FA) that are used for all examples in the

paper, except for the AND gate described in Section 2.2. Fig. 2.10 shows the “truth

table” operation of the Full Adder where all input/output terminals are “floating”

using the J-matrix of Eq. (2.16), showing excellent quantitative agreement with the

Boltzmann distribution of Eq. (2.4) at steady state even for the undesired peaks of

the truth table.

Note that this prescription for [J] is similar to the principles developed originally

for Hopfield networks ( [68], and Eq. (4.20) in [39]). However, other approaches are

possible along the lines described in the context of Ising Hamiltonians for quantum

computers [62]. We have tried some of these other designs for [J] and many of them

lead to results similar to those presented here. For practical implementations, it

will be important to evaluate different approaches in terms of their demands on the

dynamic range and accuracy of the weight logic.
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Fig. 2.8.: Implementing a Boolean function and its inverse: The input or out-

put terminals of an appropriately interconnected network of p-bits can be “clamped”

to perform a specific logic operation or its inverse. In this example, the input bits

(A,B) of an OR Gate are clamped to be +1, forcing the output bit C to be 1, during

the first phase of operation (t < t0). In the second phase of operation (t > t0), the

output of the OR gate C is clamped to the value +1, which is consistent with three

different combinations of (A,B). As shown in the time response and the long-time his-

togram plots, all three possibilities emerge with equal probability, demonstrating the

“inverse” OR operation. In each case, the expected probabilities from the Boltzmann

Law (Eq. (2.4)) closely match those produced by the generic model, Eq. (2.1-2.2)

after running the system for one million steps, only a fraction is shown in the upper

panel for clarity.

Description of universal model: Once a J-matrix and the h-vector are obtained

for a given problem, the system is initialized by randomizing all mi at time, t = t0.

First, the current (voltage) that a given p-bit (mi) feels due to the other coupled

mj is obtained from Eq. (2.2), and the mi value is updated according to Eq. (2.1).

Next the procedure is repeated for the remaining p-bits by finding the current they

receive due to all other mi using the updated values of mi. For this reason, the

order of updating was chosen randomly in our models and we found that the order

of updating has no effect in our results. However, updating the p-bits in parallel
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Fig. 2.9.: Noise Tolerance of AND: The probability of a wrong output for an

(AND) gate (Eq. 2.15) operated with clamped inputs is investigated in the presence

of a random noise field which enters Eq. (2.2) as indicated in the figure. The noise is

assumed to be uniformly distributed over all p-bits in a given network, and centered

around zero with magnitude ±h̃n, where (I0 = 2, hi = ±1). Each gate is simulated

50000 times for T=100 time steps to produce an error probability for a given noise

value, and the maximum peak produced by the system is assumed to be an output

that can be read with certainty. The system shows robust behavior even in the

presence of large levels of noise.

leads to incorrect results. These two observations are well-known in the context of

Hopfield networks and Boltzmann Machines [69–71]. This type of serial updating

corresponds to the “asynchronous dynamics” [39, 72]. We note that the hardware

implementation discussed in this paper naturally leads to an asynchronous updating

of p-bits in the absence of a global clock signal. We have set up an online simulator

based on this model in Ref. [73] so that interested readers can simulate some of the

examples discussed in this paper.

Fig. 2.7 shows the time evolution of an AND based on Eq. (2.15). Initially for

t < t0 the interaction strength is zero (I0 = 0), making the pseudo-temperature of the



36

system infinite and the network produces uncorrelated noise visiting each state with

equal probability. In the second phase (t > t0), the interaction strength is suddenly

increased to I0 = 2, effectively “quenching” the network by reducing the temperature.

This correlates the system such that only the states corresponding to the truth table

of the AND gate are visited, each with equal probability when a long time average is

taken. The average probabilities in each phase quantitatively match the Boltzmann

Law defined by Eq. (2.4).

In Fig. 2.8, we show how a correlated network producing a given truth table can

be used to do directed computation analogous to standard CMOS logic. An OR gate

is constructed by using the same [J] matrix for an AND gate, but with a negated

handle bit. By “clamping” the input bits of an OR gate (t < t0) through their bias

terminals, hi, to (A,B)=(+1,+1), the system is forced to only one of the peaks of the

truth table, effectively making C=1.

The PSL gates however exhibit a remarkable difference with standard logic gates,

in that inputs and outputs are on an equal footing. Not only do clamped inputs give

the corresponding output, a clamped output gives the corresponding input(s). In the

second phase (t > t0) the output of the OR gate is clamped to +1, that produces three

possible peaks for the input terminals, corresponding to various possible input com-

binations that are consistent with the clamped output (A,B)=(0,1),(1,0) and (1,1).

The probabilistic nature of PSL allows it to obtain multiple solutions (Fig. 2.8c). It

also seems to make the results more resilient to unwanted noise due to stray fields that

are inevitable in physical implementations as shown in Fig. 2.9. Here, we simulate

an AND gate in the presence of a normally distributed random noise that enters the

bias fields of each p-bit and define the computation to be faulty, if the mode (most

frequent value) of the output bit is not consistent with the programmed input com-

binations after T = 100 time steps. We observe that even large levels of uncontrolled

noise produces correct results with high probabilities.

Fig. 2.10 shows the design of a Full Adder (FA) with the 8-line truth table shown.

There are three inputs in all, two from the numbers to be added, and one carry
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Fig. 2.10.: Full Adder: Full Adder in the truth table mode, where all inputs and

outputs are floating, calculated using JFA from Eq. (2.16), with I0 = 0.5. The

statistics are collected for T = 106 steps, and each terminal output is then placed in

the histogram. The states are numbered using the decimal number corresponding to

the binary number [Ci A B S Co]. The decimal numbers corresponding to the truth

table are shown in the inset, and these match the location of the taller peaks in the

histogram. Note that the Boltzmann distribution (Eq. (2.4)) quantitatively matches

the model even for the suppressed peaks.

bit from previous FA. It produces two outputs, one the sum bit and the other a

carry bit to be passed on to the next FA. The probabilities of different states are

calculated using JFA from Eq. (2.16), with I0 = 0.5 in the truth table mode, where

all inputs and outputs are floating and the states are numbered using the decimal

number corresponding to the binary word [Ci A B S Co]. The decimal numbers

corresponding to the truth table are shown in the inset, and these match the location

of the taller peaks in the histogram. Note that the Boltzmann distribution (Eq. (2.4))

quantitatively matches the model even for the suppressed peaks. A higher I0 reduces
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these suppressed peaks further. The statistics are collected for T = 106 steps, and

each terminal output is then placed in the histogram.

2.4 Directed Networks of Boltzmann Machines

When constructing larger circuits composed of individual Boltzmann machines,

the reciprocal nature of the Boltzmann machine often interferes with the directed na-

ture of computation that is desired. It seems advisable to use a hybrid approach. For

example in constructing a 32-bit adder we use Full-Adders (FA) that are individually

BMs with symmetric connections, Jij = Jji. But when connecting the carry bit from

one FA to the next, the coupling element Jij is non-zero in only one direction from the

least significant to the most significant bit. This directed coupling between the com-

ponents distinguishes PSL from purely reciprocal Boltzmann machines. Indeed, even

the Full Adder could be implemented not as a Boltzmann machine but as a directed

network of more basic gates. But then it would lose its invertibility. On the other

hand, the directed connection of BM Full Adders largely preserves the invertibility of

the overall system as we will show.

2.4.1 32-bit Adder/Subtractor

Fig. 2.11 shows the operation of a 32-bit adder that sums two 32-bit numbers A

and B to calculate the 33-bit sum S. In the initial phase (t < t0) we have I0 = 0

corresponding to infinite temperature so that the sum bits (S) fluctuate among 233 ≈

8 billion possibilities. With I0 = 1, Fig. 2.11 shows that the correct answer has a

probability of ≈ 12% which is much lower than the ≈ 100% that can be achieved with

larger I0 values (as in Fig.2.13 a-c with I0=5). Nevertheless the peak is unmistakable

as evident from the expanded scale histogram and the correct answer is extracted from

the majority vote of T=100 samples as shown in Fig. 2.13. This ability to extract

the correct answer despite large fluctuations is a general property of probabilistic

algorithms.
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Interestingly, although the overall system includes several unidirectional connec-

tions, it seems to be able to perform the inverse function as well. With A and B

clamped it calculates S=A+B as noted above. Conversely with S clamped, the in-

put bits A and B fluctuate in a correlated manner so as to make their sum sharply

peaked around S. Fig. 2.11 shows the time evolution of the input bits that have broad

distributions spanning a wide range. Initially, when I0 is small, the sum of A and B

also shows a broad distribution, but once I0 is turned up to 1, the distributions of A

and B get strongly correlated making the distribution of A+B sharply peaked around

the fixed value of S. It must be noted that the 32-bit adder shown in Fig. 2.11 is not

like standard digital circuits which are not invertible. The demonstration of such an

invertible 32-bit adder could be practically significant, since binary addition is noted

to be the most fundamental and frequently used operation in digital computing [74].

Delay of Ripple Carry Adder : Just as in CMOS-based Ripple Carry Adders, the

delay of the p-bit based RCA is a function of the inputs A and B. In Fig. 2.12 we have

systematically studied the worst-case delay of the p-bit based Ripple Carry Adder

(RCA) as a function of increasing bit size. We selected a “worst-case” combination

that results in a carry that needs to be propagated from bit 1 to bit N which results

in a linear increase in the delay, exhibiting O(n) complexity with input size similar

to CMOS implementations [75]. When the inputs are random, the delay seems to

increase sub-linearly. The system is quenched at t=0 for different interaction param-

eters I0 and the delay is defined to be the time it takes for the system to settle to

the mode of the array for T=200. An error check has been carried out separately

to ensure the calculated sum (mode) is always exactly equal to the expected sum.

For random inputs the 32-bit adder is close to 20 time steps, in accordance with the

example shown in Fig. 2.11.

Digital accuracy AND logical invertibility: The striking combination of accuracy

and invertibility is made possible by our hybrid design, whereby the individual Full

Adders are Boltzmann Machines, even though their connection is directed. Our 32-

bit adder is more like a collection of interacting particles than like a digital circuit as
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evident from Fig. 2.13a which shows a colormap of the binary state of each of the 448

p-bits as a function of time with the interaction parameter I0 suddenly increased from

0.25 to 5 at t0 = 50, thereby quenching a “molten liquid” into a “solid”. Nevertheless

it shows the striking accuracy of a digital circuit, with S−A−B exactly equal to

zero in each of the 1000 trials as shown in Fig. 2.13b. We do not expect a “molten

liquid” to be quenched into a “perfect crystal” every time. Instead, we would expect a

“solid full of defects” with different non-zero values for S−A−B in each trial. That is

exactly what we get if the carry bits are bidirectional as in a fully BM implementation

(Fig. 2.13d).

Note however, that this digital accuracy is achieved while maintaining the property

of invertibility that is absent in digital circuits. Fig. 2.13 is not for direct mode

operation, but for the adder operating in reverse mode as a subtractor. It might be

expected that the directed connection of carry bits from the less significant to the more

significant bit could lead to a loss of invertibility. To investigate this point, we show

the error S−A−B as a function of trial number (Fig. 2.14) for four different modes of

operation with (i) A and B clamped (Addition), (ii) S and A clamped (Subtraction),

(iii) A, B and S for the 16 most significant bits (msb) clamped, and (iv) A, B and S

for the 16 least significant bits (lsb) clamped. The fully bidirectional implementation

shows very large errors for all modes of operation. The directed implementation, on

the other hand, works perfectly for both the adder and the subtractor modes. It also

works if we clamp the least significant bits, but not if we clamp the most significant

bits. This seems reasonable since we expect to be able to control a flow by making

changes upstream (lsb), but not downstream (msb).

Partial directivity: So far in our examples we have only considered fully directed

(Jij = 2 J0, Jji = 0) or fully bidirectional (Jij = J0, Jji = J0) carry bits when

connecting the individual Full Adders. In Fig. 2.15 we systematically analyze the

effects of partial directivity in the operation of a 32-bit adder. We observe that

the 32-bit adder operates correctly even when there is large degree of bidirectionality

(Jji = Jij×0.75) provided that the system is allowed to run for a long time, T = 50000,
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in stark contrast with the fully directed case that could resolve the right answer within

T = 100, shown in Fig. 2.14b. Decreasing the time steps systematically increases the

error. Increasing the correlation parameter while keeping T constant also seems to

adversely affect the bidirectional designs, that might be getting the system stuck in

local minima.

Directionality and computation time, 2 p-bit model : The qualitative relation be-

tween I0, T and bidirectionality J12/J21 described above is derived from extensive

numerical simulations based on Eq. 2.1-2.2. However, the broad features can be

understood from a model involving just two p-bits, 1 and 2, with

h =

0

0

 and J =

 0 J12

J21 0


It is straightforward to write a master equation describing the time evolution of the

probabilities of different configurations:

d

dt


P11

P10

P01

P00

 = [W ]


P11

P10

P01

P00


W being the transition matrix [39], P00 representing the probability of both p-bits

being −1, P11 both being +1, and so on. We can write two matrices W1 and W2

describing the updating of p-bits 1 and 2 respectively:

W1 =



(1, 2) (11) (10) (01) (00)

(11) p 0 p 0

(10) 0 p 0 p

(01) p 0 p 0

(00) 0 p 0 p


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W2 =



(1, 2) (11) (10) (01) (00)

(11) q q 0 0

(10) q q 0 0

(01) 0 0 q q

(00) 0 0 q q


where W (i, j) represents the probability that state (j) makes a transition to state (i),

and p̄ = 1− p, q̄ = 1− q. p and q are obtained from Eq. 2.1-2.2:

p =
1

2
(1 + tanh(I0(J12 + h1))) =

1

2
(1 + tanh(I0J12))

q =
1

2
(1 + tanh(I0(J21 + h2))) =

1

2
(1 + tanh(I0J21))

The overall transition matrix W is given by W2 ×W1 or W1 ×W2 depending on

which bit is updated first. Either way the matrix W has four eigenvalues λ1 = 1, λ2 =

0, λ3 = 0 and λ4 = (2p−1)(2q−1) = tanh(I0J12)×tanh(I0J21) and the corresponding

eigenvectors evolve with time ∼ λT .

The components corresponding to λ=0 decay instantaneously while the eigen-

vector corresponding to λ=1 is the stationary result representing the correct solu-

tion. But for the system to reach this state, we have to wait for the fourth eigen-

vector corresponding to λ4 to decay sufficiently. A fully directed network has J21

=0, so that λ4 = 0 and the system quickly reaches the correct solution. But in

a bidirectional network with J12 = J21, the fourth eigenvalue can be quite close

to one, especially for large I0 and take an exponentially long time to decay, as

λT = exp(T ln λ) ≈ exp(−T (1− λ)) when λ is close to 1.

This 2 p-bit model provides some insight into our general observation that direc-

tivity can be used to obtain accurate answers quickly. However, depending on the

problem at hand it may be desirable to retain some degree of bidirectionality, since

full directivity does lead to some loss of invertibility as seen for one set of inputs in

Fig. 2.14. An example of a partially directed p-bit network is discussed in the next

section.
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2.4.2 4-Bit Multiplier / Factorizer

Fig. 2.16 shows how the invertibility of PSL logic blocks can be used to perform

integer factorization using a multiplier in reverse. Normally, the factorization problem

requires specific algorithms [76] to be performed in CMOS-like hardware, here we

simply use a digital 4-bit multiplier working in reverse to achieve this operation.

Specifically with the output of the multiplier clamped to a given integer from 0

to 15, the input bits float to the correct factors. The interconnection strength I0 is

increased suddenly from 0 to 2 at t = t0 (Fig. 2.16) and the input bits get locked to

one of the possible solutions. For example, when the output is set to 9, both inputs

float to 3. With the output set to 6, both inputs fluctuate between two values, 2 and

3. Note that factors like 9 = 9×1 do not show up, since encoding 9 in binary requires

4-bits (1001) and the input terminals only have 2-bits. We have checked other cases

where factorizing 3 shows both 3×1 and 1×3, and factorizing zero shows all possible

peaks since there are many solutions such that 0 = 0× 1, 2, 3 and so on.

We also kept the same directed connections between the Full Adders for the carry

bits, making them a directed network of Boltzmann Machines, similar to the 32-bit

Adder. Moreover, we kept a directed connection from the Full Adders to the AND

gates as shown in Fig. 2.16a since the information needs to flow from the output to

the input in the case of factorization. The input bits that go to multiple AND gates

are “tied” to each other with a positive exchange (J > 0) value much like 2-spins

interacting ferromagnetically, however in PSL we envision these interactions to be

controlled purely electrically. In this example, we have observed that the system is

sensitive to the relative strengths of couplings within the AND gates and between the

AND gates and the Full Adders which can also depend on a chosen annealing profile.

The design of factorizers of practical relevance is beyond the scope of this pa-

per. Our main purpose has been to establish how the key feature of invertibility of

p-bits can be creatively used for different circuits with unique functionalities. The

demonstration of 4-bit factorization through reverse multiplication is similar to mem-
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computing [77] based on deterministic memristors. Note, however, that the building

blocks and operating principles of stochastic p-bits and memcomputing [78] are very

different and the only similarity noted here is the fact that both approaches treat the

input and output terminals on an equal footing.

2.5 Summary

It is generally believed that (1) probabilistic algorithms can tackle specific prob-

lems much more efficiently than classical algorithms [79], and that (2) probabilistic

algorithms can run far more efficiently on a probabilistic computer than on a deter-

ministic computer [79, 80]. As such, it seems reasonable to expect that probabilistic

computers based on robust room temperature p-bits could provide a practically use-

ful solution to many challenging problems by rapidly sampling the phase space in

hardware.

In this paper we have presented a framework for using probabilistic units or “p-

bits” as a building block for a probabilistic spin logic (PSL) which is used to imple-

ment precise Boolean logic with an accuracy comparable to standard digital circuits,

while exhibiting the unique property of invertibility that is unknown in deterministic

circuits. Specifically we have:

• presented an implementation based on stochastic nanomagnets to illustrate the

importance of three-terminal building blocks in the construction of large scale

correlated networks of p-bits. We emphasize that this is just one possible im-

plementation that is by no means the only one (Section 2.2).

• presented an algorithm for implementing Boolean gates as BM with relatively

sparse and quantized J-matrix elements, benchmarked their operation against

the Boltzmann law, and established their capability to perform not just direct

functions but also their inverse (Section 2.3), and
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• presented a 32-bit adder implemented as a hybrid BM that achieves digital ac-

curacy over a broad combination of the interaction parameter I0, directionality

and the number of samples T . This striking accuracy is reminiscent of digi-

tal circuits, but it is achieved while preserving a certain degree of invertibility

which is absent in digital circuits. The accuracy is particularly surprising with

high degrees of bidirectionality (J12 = 0.75 × J21) where the system is picking

out the one correct answer out of nearly 233 ≈ 8 billion possibilities. This may

require a larger number of time samples, but these could be collected rapidly

at GHz rates. (Section 2.4).

We hope these findings will help emphasize a new direction for the field of spintronic

and nanomagnetic logic by shifting the focus from stable high barrier magnets to

stochastic, low barrier magnets, while inspiring a search for other possible physical

implementations of p-bits.

Acknowledgment

It is a pleasure to acknowledge many helpful discussions with Behtash Behin-Aein

(Globalfoundries) and Ernesto E. Marinero (Purdue University). We thank Jaijeet

Roychowdhury (UC Berkeley) for suggesting the phrase “invertible”. This work was

supported in part by C-SPIN, one of six centers of STARnet, a Semiconductor Re-

search Corporation program, sponsored by MARCO and DARPA, in part by the

Nanoelectronics Research Initiative through the Institute for Nanoelectronics Discov-

ery and Exploration (INDEX) Center, and in part by the National Science Foundation

through the NCN-NEEDS program, contract 1227020-EEC.



46

FAFAFA

Fig. 2.11.: 32-bit Ripple Carry Adder (RCA): (a) A 32-bit Ripple Carry Adder

(RCA) is designed using individual Full Adder (FA) units with the carry bit designed

as a directed connection from the least significant bit to the most significant bit.

The overall J-matrix for a 32-bit adder J-matrix is shown, and it is quite sparse and

quantized. (b) For t < t0, I0 = 0 and the sum fluctuates randomly. At t = t0, I0

is suddenly increased, and the adder converges on the correct result for two random

inputs A and B. The distribution of 1000 data points (t > t0) show a single peak with

24% probability of time spent in the correct state (not including the uncorrelated time

points for t < t0). (c) Even though the connections between the Full Adder units are

directed, the system performs the inverse function as well. When the output (S) is

clamped to a fixed number, the inputs (A) and (B) fluctuate in a correlated manner

to make A+B=S when I0 = 1. Note the broad distributions of A and B (collected

for t > t0) as compared to the extremely sharp distribution of A+B.
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Fig. 2.12.: Ripple Carry Adder delay: The delay of the RCA as a function of

number of bits in the Ripple Carry Adder (RCA) is shown. The worst case input

combination generates a carry that propagates all the way through bit-1 to bit-N, and

has a linear dependence on the number of bits, exhibiting O(n) complexity. When the

inputs are random, the delay increases logarithmically. The delay is defined to be the

time it takes for the network to reach the mode of the array for T=200 after getting

quenched at t=0. Each point is an average of 500 trials with random initial conditions

for an I0 = 1.5, and the mode of the array was exactly equal to the arithmetic sum of

the inputs in each case. The worst-case inputs are A=0 . . . 000 and B=1 . . . 111 with

an input carry (Cin) of 1. Results show a weak I0 dependence.
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Fig. 2.13.: Accuracy of 32-bit adder, directed versus bidirectional: The results

are shown for the adder operating in a subtractor mode, clamping one (random) 32-

bit input (A) and a (random) 33-bit output (Cout+ S), and observing the other 32-bit

input B which should provide the difference S−A. (a): Colormap of the binary state

of each of the 448 p-bits comprising the directed adder as a function of time with the

interaction parameter I0 suddenly increased from 0.25 to 5 at t0=50. For low values of

I0 at t<50, the collection of p-bits is like a molten liquid which is quenched at t0 = 50

into a solid. (b) Surprisingly this solid corresponds to a “perfect crystal” in each

of the 1000 trial experiments, with S−A−B exactly equal to zero (Dark blue). (c)

Same as (a) but for a bidirectional adder. Here too the “liquid” quenches to a solid at

t0 = 50, but in this case the resulting “solid” is full of defects (with hardly any zeros),

with S−A−B 6= 0, yielding a different wrong result for each trial as evident from (d).

For (c) and (d) The colorbar is modified to have a dark blue color corresponding to

exactly zero. S,A,B are taken to be the statistical mode of the 100×1 array obtained

at the end of each trial.
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Fig. 2.14.: Invertibility of 32-bit adder, directed vs bidirectional: An adder

that provides the sum S of two 32-bit numbers A and B: S = A+ B. The left panel

shows the adder implemented with bidirectional carry bits, while the right panel

shows one with carry bits directed from the least significant to the most significant

bit. Four different modes are shown with (i) A and B clamped (Addition), (ii) S

and A clamped (Subtraction), (iii) A, B and S for the 16 most significant bits (msb)

clamped, and (iv) A, B and S for the 16 least significant bits (lsb) clamped. Note that

that bidirectional implementation shows very large errors for all modes of operation.

The directed implementation works perfectly for both the adder and the subtractor

modes. It also works if we clamp the least significant bits, but not if we clamp the

most significant bits. Correlation parameter I0 = 1, T = 100 steps for all trials.

S,A,B are taken to be the mode (most frequent value) of the 100×1 array obtained

at the end of each trial. Clamped inputs are random 32-bit words for each trial, for

a total of 1000 trials.
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Fig. 2.15.: Error versus bidirectionality: The degree of bidirectionality Jji/Jij of

the carry-out (j) to carry-in (i) link between the Full Adders is systematically varied

while keeping the sum Jij + Jji constant. In each case the sum is obtained from the

statistical mode (or majority vote) of T time samples over 50 trials. The y-axis shows

the fraction of trials that yield the wrong result. Note that for large I0 and small

T , error-free operation is obtained only if bidirectionality is close to zero similar to

standard digital circuits. But with I0 = 1.5 and T=50,000, error-free operation (at

least for 50 trials) is obtained even with ≈ 75% bidirectionality.
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FA FAFA

Fig. 2.16.: Factorization through inverse multiplication: The reversibility of

PSL allows the operation of integer factorization using a binary multiplication circuit

implemented using the principles of digital logic using AND gates and Full Adders

(FA) as shown in (a). The output nodes of a 4-bit multiplier are clamped to a given

integer, and the system produces the only consistent factors of the product at the

input terminals, probabilistically. The interaction parameter I0 is suddenly increased

to a saturation value of 2, and held constant as shown. (b) The output terminal is

clamped to 9 and is factored into 3×3, note that 9×1 is not an achievable solution in

this setup since encoding 9 requires 4-bit inputs in binary, whereas inputs are limited

to 2-bits. (c) The output terminal is clamped to 6 and after being correlated, the

factors cross-oscillate between 2 and 3. In both cases the histogram is obtained by

counting outputs after t > ttotal/2 = 1.25 × 104 time steps to collect statistics after

the system is thermalized.
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3. LOW BARRIER NANOMAGNETS AS P-BITS FOR

SPIN LOGIC

Materials in this chapter have been extracted verbatim from the paper: “ Low Barrier

Nanomagnets as p-bits for Spin Logic”, R. Faria, K. Y. Camsari, and S. Datta,

published in IEEE Magnetics Letters, 2017. Reprinted with permision from [12].

It has recently been shown that a suitably interconnected network of tunable

telegraphic noise generators or “p-bits” can be used to perform even precise arith-

metic functions like a 32-bit adder. In this paper we use simulations based on the

stochastic Landau-Lifshitz-Gilbert (sLLG) equation to demonstrate that similar im-

pressive functions can be performed using unstable nanomagnets with energy barriers

as low as a fraction of a kT. This is surprising since the magnetization of low bar-

rier nanomagnets is not telegraphic with discrete values of ±1. Rather it fluctuates

randomly among all values between −1 and +1, and the output magnets are read

with a thresholding device that translates all positive values to 1 and all negative

values to zero. We present sLLG-based simulations demonstrating the operation of a

32-bit adder with a network of several hundred nanomagnets, exhibiting a remarkably

precise correlation: The input magnets {A} and {B} as well as the output magnets

{S} all fluctuate randomly and yet the quantity A+B−S is sharply peaked around

zero! If we fix {A} and {B}, the sum magnets {S} rapidly converge to a unique state

with S=A+B so that the system acts as an adder. But unlike standard adders, the

operation is invertible. If we fix {S} and {B}, the remaining magnets {A} converge

to the difference A=S−B. These examples emphasize a new direction for the field of

nanomagnetics away from stable high barrier magnets towards stochastic low barrier

magnets which not only operate with lower currents, but are also more promising for

continued downscaling. Index Terms: Spintronic memory and logic, nanomagnetics,

Landau-Lifshitz-Gilbert equation, arithmetic functions.
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3.1 Introduction

The developments in spintronics and nanomagnetics are having enormous influ-

ence on the field of storage and memory devices and it has been shown that the

WRITE (W) and READ (R) elements can also be integrated into units that imple-

ment Boolean as well as non-Boolean logic [1–3,32,33,48,81,82]. These applications,

however, usually make use of stable magnets with energy barriers ∼ 40 kT which

require relatively large currents for their operation. The critical spin current needed

to switch a magnet with a thermal energy barrier of ∆ = HKMsV/2 is given by [83]

Ic = Ic0
∆

kT
Ic0 =

4qα

h̄
kT

(
1 + fI

Hd

2HK

)
(3.1)

where q is the electronic charge, Ms is the saturation magnetization, HK is the

anisotropy field, Hd is the demagnetization field, V is the volume, α is the Gilbert

damping coefficient and the factor fI is equal to zero for perpendicular anisotropy

magnets (PMA) and one for inplane anisotropy magnets (IMA). With ∆ ∼ 40 kT and

α ∼ 0.01, the critical switching spin current for a PMA magnet is 4qα∆/h̄ ≈ 10 µA.

Magnets with lower barriers could operate with lower currents but their application in

conventional memory or logic is severely limited due to their stochastic nature. How-

ever, their possible use in unconventional applications has been discussed both the-

oretically and experimentally [15–23]. The implementation of logic operations based

on an ensemble average over stable nanomagnets has been explored in [29, 30, 84]

while [11] describes an approach to the traveling salesman problem based on a time

average over unstable nanomagnets that cycle through millions of collective correlated

states potentially at GHz rates. Note that for such nanomagnets (∆ � 25 kT [24]),

the Arrhenius model that predicts a telegraphic change between two magnetizations

is no longer applicable, and the magnetization becomes a continuous variable. The

present paper describes the application of the latter approach (time average) to im-

plement precise Boolean logic operations like a 32-bit adder that provides the sum S

for given inputs A and B. Remarkably the adder also evaluates the inverse function,

cycling through all combinations of A and B that add up to a given sum S. We have
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Fig. 3.1.: Low-barrier stochastic Nanomagnet as a p-bit: (a) Time-averaged

magnetization of low barrier IMA and PMA magnets (∆ = 1 kT,HK = 60 mT, α =

0.01,Hd = 1.5 T for IMA) as a function of the bias spin current which is normalized

to Ic0 (Eq. 3.1). Average magnetization of PMA magnets obtained from sLLG which

agrees well with the analytical solution from the FPE, Eq. 3.6. Inset shows a physical

structure using a giant spin Hall effect (GSHE) material that could be used to convert

a charge current into a spin current with the correct polarization to bias an IMA. (b)

The magnetization m(t) for IMA as a function of time for three different bias currents

obtained from a numerical solution of sLLG equation. (c) Same plot for PMA with the

same barrier height. Note that the fluctuations are much faster and more telegraphic

for IMA than for PMA. (d) A connection scheme for two p-bits is shown where the

magnetization of a p-bit is implicitly converted into the bias current/voltage for the

next p-bit (Eq. 3.2). A possible hardware implementation to turn the magnetization

m into a voltage V, could combine a GSHE layer with MTJs as in [2], replacing the

stable write magnets by low barrier nanomagnets that are discussed here.

recently shown [85] that a suitably interconnected network of tunable telegraphic

noise generators or telegraphic “p-bits” can be used to perform even precise arith-
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metic functions like a 32-bit adder. However, it is not clear whether such p-bits can

be implemented with real physical systems, especially if the noise in these systems are

not telegraphic but continuous. The objective of this paper is to demonstrate that

p-bits can be implemented using unstable nanomagnets with energy barriers as low

as a fraction of a kT, even though their magnetization is not telegraphic and fluctuate

among all values from −1 to +1. We assume that the magnets can be read with a

thresholding device that translates all positive values to +1 and all negative values to

zero. But this thresholding is applied only to the output nodes when we need to read

a magnet at the end of an operation and not to the internal nodes or during device

operation.

We start in Section 2 by showing that low barrier magnets, both PMA and IMA,

exhibit the key property of p-bits, namely that they act as electrically tunable random

number generators (RNG). Their magnetization m(t) fluctuates randomly in time,

and the time-averaged 〈m〉 can be tuned from −1 to +1 with a spin current. IMA

magnets require a larger current to tune, but this is offset by a more rapid fluctuation

rate, allowing a faster evaluation of the time average, and hence faster operation

(Fig. 3.1). Note also that the PMA magnetization is relatively continuous compared

to IMA magnetization which is more telegraphic in nature.

To harness either for logic applications, they have to be interconnected such that

the spin current Isk driving magnet ‘k’ has to be derived from the magnetization of

other magnets.
2Isk
Ic0

= −I0
(
hk +

∑
j

Jkjmj

)
(3.2)

where Ic0 is normalization constant defined as the critical current (Eq. 3.1) for a

magnet with a barrier ∆ = 1 kT and I0 determines the overall strength of the in-

terconnections. The bias {h} and interconnection [J ] matrices have to be designed

appropriately in implementing specific operations. We will not go into the imple-

mentation of these matrices since there are many options requiring careful discus-

sion [32], [33], [31], [34]. We will assume that a network of stochastic nanomagnets

(PMA and IMA) has been interconnected according to Eq. 3.2 and simulate their be-
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AND(a)
A B

C

A B C
(b)

0 3I 0 0.5I 

(c)

0 3I 3 p-bits

Fig. 3.2.: Implementation of a basic boolean element (AND) using p-bits:

(a) The truth table for AND is shown along with a schematic for the network of three

p-bits used to perform the operation. The p-bits are connected symmetrically with

Jij = Jji. (b) The decimal value of each configuration of the input-output nodes

at each time step (normalized by the factor τ = (αγ(Hk + Hd/2))−1) is calculated

according to A× 22 + B × 21 + C × 20 where A, B and C are thresholded to obtain

binary values (0,1) at the read out. (c) Histograms of the different configurations of

the p-bits are shown for a weaker (I0 = 0.5) and stronger (I0 = 3) correlation strength.

Note the close match between the numerical values obtained from the sLLG equation

with the probabilities obtained analytically from the FPE result in Eq. 3.7 which

is related to the Boltzmann law, especially for I0=0.5. For higher values of I0 the

numerical results tend to be stuck in metastable states requiring longer simulation

times to converge to the steady-state FPE result.

havior using the stochastic Landau-Lifshitz-Gilbert (sLLG) equation to demonstrate

useful functionalities. We assume that the currents specified by Eq. 3.2 are applied to

each magnet on a time scale that is much shorter than the magnet dynamics, and new

features could arise if delays associated with these interconnections are comparable
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to magnet dynamics. These issues are beyond the scope of this paper. All numerical

examples are presented for IMA with parameters shown in Fig. 3.1 but similar results

are obtained with PMA as well.

In Section 3 we describe how simple logic gates can be implemented by suitably

designing the {h} and [J ] matrices so that the magnet configurations corresponding

to the desired truth table represent ‘low energy’ states where the network spends most

of its time according to the Boltzmann law of equilibrium probabilities: P ({m}) ∼

exp(−E({m})/kT ). Although the use of spin currents does not in general permit us

to write an energy functional [86], for symmetrically interconnected PMA magnets

we can use a functional of the form [11,87]:

− E({m})
kT

=
∑
i

∆i

kT
m2

i + I0

(∑
i

himi +
1

2

∑
i,j

Jijmimj

)
(3.3)

to describe the network of interconnected magnets. This can be seen by noting that

from the Boltzmann law and Eq. 3.3

∂ lnP

∂ mk

= 2
∆k

kT
mk + I0

(
hk +

1

2

∑
j

(Jkj + Jjk)mj

)
so that for a symmetric [J ] matrix, from Eq. 3.2

P (mk) ∼ exp

(
∆k

kT
m2
k −

2Isk
Ic0

mk

)
(3.4)

which is exactly the steady-state condition for magnet ‘k’ that we would obtain from

the Fokker-Planck equation (FPE) ( [58] Eq. (3.9)) for PMA. Moreover, our “empiri-

cal” results show that the energy functional shows good agreement even when magnets

have an additional shape anisotropy. Note that even though Ic0 is size-independent,

the distribution of the nanomagnet depends on size through ∆: for higher ∆ magnets,

more spin current is required to pin the magnetization. We will refer to Eq. 3.4 as

the FPE probability.

The probability distributions obtained from the numerical solution of the sLLG

equation for both PMA and IMA magnets follow the FPE result quite well (Fig. 2).

The highest probabilities correspond to the lowest energy states, which correspond to

the desired truth table relating the input magnets A and B to the output magnet C. If



58

14 p-bits

(a) A B S

Full Adder

(b) (c)

A B

Cin

S

Cout

(S,Cout)→(1,0)(Cin,B,A)

→ (1,0,1)

Fig. 3.3.: Full Adder: (a) A full adder (truth table shown) implemented by con-

necting 14 p-bits symmetrically. (b) In forward mode, when the inputs (A,B,Cin)

are clamped, the adder gives the correct output (S and Cout). (c) Unlike standard

logic, these gates are invertible: If the output nodes of the adder are clamped to

fixed values, the adder gives all possible input combinations satisfying the output

constraint.

we force the inputs A and B to specific values by using appropriate values for hA and

hB, C would take on the specific value required by the truth table, just like standard

digital gates. But unlike standard gates, these gates are invertible, similar to those

discussed in the context of memcomputing [78]. They can be operated in reverse: if

we clamp the output C to a specific value, the inputs A and B will spend most of its

time in those configurations {AB} that produce that output. We also illustrate this

reversible operation with a more complex logic gate, namely a full adder treating it

as a Boltzmann machine (BM) and using the same principle of energy minimization

to design the {h} and [J ] matrices.

Finally in Section 4 we demonstrate the operation of a 32-bit adder obtained from

31 full adders and one half adder with the output carry from each bit connected to
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A  = 3602773611

+B  = 2744461721

S  = 6347235332

HAFAFA
(a)

(b) (c)

Correct Sum (S)

Correct 

Difference (A)

Fig. 3.4.: 32-bit Adder/ Subtractor: (a) Schematic of an adder constructed from

31 full adders (from Fig. 3.3) and one half adder (composed of 6 p-bits) with the carry

out bit Cout from each adder communicated in a directed fashion to the carry in bit

Cin of the next adder. (b) Time evolution of the sum S =
∑

i Si2
i obtained from the

sum bits {S} as the coupling strength I0 is ramped up starting from zero. Note that

in a time ∼ 60 τ (τ is defined in Fig. 2), the sum converges (with occasional jumps)

to the correct value which represents one out of 233 ∼ 8 billion possibilities. (c)

Although the individual adders are connected in a directed fashion through the carry

bits, the overall 32-bit adder performs the inverse function as well. If the sum bits

{S} are clamped along with one set of input (B), the other input converges rapidly

to the correct difference (A).

the carry in of the next higher bit through the appropriate element of the overall

[J ] matrix. Note that these are unidirectional connections so that the overall [J ]

matrix is not symmetric, though the [J ] matrix for each full adder is symmetric. We

show that this network of nearly five hundred nanomagnets exhibits a remarkably

precise correlation that provides the exact sum S of any two given inputs, A and B

(Fig.4). What is even more remarkable is that if we do not fix either the inputs or
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the outputs, the quantities A, B and S all fluctuate randomly and yet the quantity

A+B−S is sharply peaked around zero, so that the network can be used to extract

either A, B or S, if the other two are fixed, which is similar to the NP-complete

“subset sum” problem (Fig.5) [88,89].

3.2 Stochastic nanomagnet model

Fig.1(b,c) shows the time response of the magnetization mz along the easy axis cal-

culated using the sLLG equation (integrated by Heun’s method within the Stratonovich

calculus [90]) with ∆t = 0.95 ps for IMA and ∆t = 11.8 ps for PMA.

(1 + α2)
dm̂i

dt
= −|γ|m̂i × ~Hi − α|γ|(m̂i × m̂i × ~Hi)

+
1

qNi

(m̂i × ~ISi × m̂i) +

(
α

qNi

(m̂i × ~ISi)
)

(3.5a)

where Hi is the effective field including the uniaxial and shape anisotropy terms, as

well as the thermally fluctuating magnetic field due to three dimensional uncorrelated

thermal noise Hn having Gaussian distribution with mean 〈Hn〉 = 0 and standard

deviation 〈H2
n〉 = 2αkT/|γ|MsV along each direction [90–94], γ is the gyromagnetic

ratio and Ni = MsV/µB is the total number of Bohr magnetons comprising the

magnet. Our simulations are based on the macrospin approximation, as is common

in the literature [24, 95, 96]. This approximation may not be adequate for larger

magnets with multiple domains, but is expected to work better as the magnets are

scaled down. The time-averaged magnetization (Fig. 1a) obtained from the sLLG

equation for PMA magnets is in good agreement with that obtained analytically by

averaging over the FPE result (Eq. 3.4):

〈m〉 =

∫ +1

−1
dm m P (m)

/∫ +1

−1
dm P (m) (3.6)

3.3 Basic Boolean Gates

In implementing any given truth table we need the {h} and [J ] matrices that make

the truth table correspond to the lowest energy states of the energy functional given

in Eq. 3.3. The choice of these matrices is not unique and [62] provides a suitable
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Fig. 3.5.: Correlated Adder: A remarkable property of the adder (in Fig. 3.4)

is that it works even when the inputs (A,B) and the output (S) are not unique

and fluctuate in time amongst many allowed values as shown in (a). Nevertheless,

the quantity A+B-S is sharply peaked at zero (b), demonstrating the correlation of

hundreds of nanomagnets consistent with the addition function A+B−S=0.

set for AND, OR gates along with many other functions. Fig. 2a shows one possible

implementation of an AND gate using a network of three nanomagnets, representing

A,B and C.

The magnetization of the magnets A, B and C fluctuates continuously between

−1 and +1 and are mapped into the binary values of 0 and 1 by a thresholding

operation: all negative values map to zero, while positive values map to +1. The

y-axis in Fig. 2b shows the resulting binary number {ABC} converted into a single

number A × 22 + B × 21 + C × 20. Note how the values on the y-axis are clustered

around 0, 2, 4 and 7 which correspond to the lines of the truth table shown in Fig. 3.2a.

Occasionally the system jumps to other values but it quickly returns to one of these

preferred values.
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This clustering is reflected in the histogram constructed from 678 normalized time

steps (Fig. 3.2c) which shows peaks around the preferred states defined by the truth

table. This agrees well with the probability plot constructed from the FPE result in

Eq. 3.4 noting that we can label the thresholded states as mi = sim where si = ±1

and 0 < m < 1 so that from Eq. 3.3:

E({s},m)=

(∑
i

∆i

kT
+

1

2
I0
∑
i,j

Jijsisj

)
m2 +

(
I0
∑
i

hisi

)
m

P ({s}) ∼
∫ 1

0

dm exp
(
− E({s},m)

)
(3.7)

The peaks corresponding to the preferred states in Fig. 2c do not have equal probabil-

ity, even at steady state as predicted by Eq. (3.7). This skew is due to the continuous

nature of magnetization with small ∆ magnets that affect the thresholded results.

Note that the probabilities are strongly affected by the choice of I0 as we might

expect from the exponential dependence of the Boltzmann function. If we use a

much smaller value of I0 we obtain a uniform probability across all eight states as we

would expect for three uncorrelated magnets. If we use a much larger value of I0 the

Boltzmann law predicts all states with equal energy to be equally occupied, but in

a numerical simulation, the system tends to get stuck for long periods in one of the

preferred states, instead of moving freely among them.

Consider now a full adder having three inputs A,B,Cin and two outputs S,Cout,

S being the sum bit, and Cin, Cout being the incoming carry and the outgoing carry

bits. Fig. 3 shows a full adder constructed out of 14 p-bits treating it as a BM with

a symmetric J-matrix 1 which is obtained by a suitable extension of the principles

developed in the context of Hopfield networks ( [39], Eq. 4.20) and extended in [85].

This design not only gives the correct output for a given input, but also the correct

set of inputs for a given output.

1The design of [J] matrices has been discussed in [39] and [4] and are assumed not to change during
operation.
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3.4 32-Bit Adder/Subtractor

Finally we demonstrate the operation of a 32-bit adder obtained from 31 full

adders and one half adder with a single directed connection from the Cout of one bit

to the Cin of the next bit, in accordance with the standard design of ripple carry

adders (RCA). Here, we treat the RCA as a standalone block without any peripheral

read-out circuitry to simply demonstrate how the nanomagnet network can operate

as a directed combinational logic unit. If we provide two input numbers A and B, and

look at the sum S, which includes all the sum bits along with the carry-out from the

last bit, Cout(32) we find numerically that the system relaxes to the correct sum with

occasional jumps from the correct state. It is really quite surprising that a network of

14×31+6 = 440 nanomagnets fluctuating continuously over the range −1 < m < +1

get correlated precisely enough to point to the correct answer out of 233 ≈ 8 billion

possibilities without getting stuck in metastable states [85]. Interestingly it also works

as a subtractor: if we fix the sum and one of the inputs B, theremaining input gives

the correct difference A = S−B (Fig. 4). Even more surprisingly, the overall system

seems to act like a BM when all magnets are allowed to fluctuate. Each set of magnets

A, B and S fluctuates randomly over a wide range of values. But the quantity A+B−S

shows a sharp peak around zero (Fig. 5), showing that the interconnected network

reflects the desired truth table.
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4. IMPLEMENTING BAYESIAN NETWORKS WITH

EMBEDDED STOCHASTIC MRAM

Materials in this chapter have been extracted verbatim from the paper: “Implement-

ing Bayesian networks with embedded stochastic MRAM”, R. Faria, K. Y. Camsari,

and S. Datta, publised in AIP Advances, 2018. Reprinted with permision from [97].

Magnetic tunnel junctions (MTJ’s) with low barrier magnets have been used to

implement random number generators (RNG’s) and it has recently been shown that

such an MTJ connected to the drain of a conventional transistor provides a three-

terminal tunable RNG or a p-bit. In this letter we show how this p-bit can be used to

build a p-circuit that emulates a Bayesian network (BN), such that the correlations

in real world variables can be obtained from electrical measurements on the corre-

sponding circuit nodes. The p-circuit design proceeds in two steps: the BN is first

translated into a behavioral model, called Probabilistic Spin Logic (PSL), defined by

dimensionless biasing (h) and interconnection (J) coefficients, which are then trans-

lated into electronic circuit elements. As a benchmark example, we mimic a family

tree of three generations and show that the genetic relatedness calculated from a

SPICE-compatible circuit simulator matches well-known results.

Magnetic tunnel junctions (MTJ’s) with low barrier magnets have been used to

implement random number generators (RNG’s) [18,25,98,99] and it has recently been

shown that such an MTJ connected to the drain of a conventional transistor provides

a three-terminal tunable RNG or a p-bit [7] with applications to optimization [100]

and an enhanced type of Boolean logic, that is invertible [4,101–103]. In this paper we

show how this p-bit can be used to build a p-circuit that emulates a Bayesian network

(BN) [104] defined in terms of conditional probability tables (CPT) that describe how

each child node is influenced by its parent nodes. BN’s are widely used to understand

causal relationships in real world problems such as forecasting, diagnosis, automated
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vision, manufacturing control and so on [105]. For deep and complicated networks

where each child node has many parent nodes, the computation of the joint probability

becomes impractical [106] and different hardware implementations of BN’s have been

proposed [10,107–114].

In this letter we present a systematic approach for translating a BN into an elec-

tronic circuit such that the stochastic node voltages mimic the real world variables

whose correlations can be obtained from electrical measurements on the correspond-

ing circuit nodes. The proposed electronic circuit and the hardware building blocks

are based on present day Magnetoresistive Random Access Memory (MRAM) tech-

nology whose MTJs are built out of thermally unstable nanomagnets [7] (Stochastic

MRAM), obviating the need for the development of a new device.

As a benchmark example, consider a BN (Fig. 4.1) consisting of three generations

of a family, where each child (C) inherits half the genes from the father (F ) and the

other half from the mother (M), so that C = 0.5F+0.5M , where C, F and M can each

be viewed as a bipolar random variable: (−1,+1). A well-known concept in genetics

is that of relatedness. For example, the relatedness 〈C1×C2〉 of two siblings, with the

same parents is 50% : 〈C1×C2〉 = .25
(
〈F ×F 〉+ 〈F ×M〉+ 〈M ×F 〉+ 〈M ×M〉

)
=

.25
(
1 + 0 + 0 + 1

)
= 0.5. On the other hand two cousins whose fathers are siblings

have a relatedness of only 12.5%: 〈C1×C2〉 = .25
(
〈F1×F2〉+ 〈F1×M2〉+ 〈M1×

F2〉 + 〈M1 ×M2〉
)

= .25
(
0.5 + 0 + 0 + 0

)
= 0.125. Fig. 4.1b compares the well-

known relatedness of different family members (see for example, Ref. [115]) with that

calculated from a behavioral model which we call probabilistic spin logic, PSL, and

from a simulation of the actual circuit using a SPICE-based circuit simulator.

The behavioral PSL model represents an intermediate step in the translation of

BN’s to electronic circuits. It is a network whose nodes are abstract p-bits denoted by

m (see Fig. 4.2) connected to other nodes and biased through dimensionless constants

J, h respectively. The p-bits described by Eq. 4.1a is analogous to a binary stochastic

neuron and their interconnection described by Eq. 4.1b is analogous to a synapse.

The PSL model is then translated into a circuit model whose nodes are actual circuit
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Fig. 4.1.: (a) An example Bayesian Network (BN) showing three generations

with children, parents and grandparents. The grandparent generation has no explicit

parents, but we can introduce their correlations implicitly by making the second

set of grandparents (MM2,FM2,MF2,FF2) conditionally dependent on the first set

(FF1,MF1,FM1,MM1) as shown. The rest of the nodes (C1, F1, M1, C2, F2, M2)

are each conditionally dependent on two parents. (b) Representative SPICE-

results from the full hardware circuit of Fig. 4.4 when the circuit is set up so that

FF1 ≈ FF2, MF1 ≈ MF2, FM1 ≈ FM2, MM1 ≈ MM2. In this scenario, C1 and C2

are double cousins. (c) Relatedness of family members calculated from three

different models: a behavioral model, PSL, a SPICE model for the corresponding

circuit and the well-known result from standard statistical arguments applied to BN.

Single, double and triple encirclements indicate a zero-parent node, one parent node,

and two parent node respectively, as indicated in Fig. 4.2.
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elements denoted by M connected to other nodes and biased through conductances G

and voltages Vbias. Fig. 4.1b shows that the relatedness from the PSL model (second

column) as well as that obtained from the SPICE model (third column) agree well

with the standard BN result (first column), thus providing confidence that the circuits

obtained following our procedure can be used to study BN’s in general.

Genetic relatedness is a textbook concept that provides a good benchmark for

a hardware circuit emulator, but the principles presented here can be used to emu-

late more complicated BN’s as well, involving more complex CPT’s, as well as more

complex nodes with N > 2 parents, reflecting the presence of more than two factors

influencing the occurrence of an event.

4.1 Probabilistic Spin Logic: Behavioral Model

PSL is defined by two equations [4] loosely analogous to a neuron and a synapse.

The former is a binary stochastic neuron, or what we call a p-bit, whose output mi

is related to its dimensionless input Ii by the relation

mi(t+ ∆t) = sgn
(
rand(−1, 1) + tanh Ii(t)

)
(4.1a)

where rand (−1,+1) is a random number uniformly distributed between −1 and +1,

and t is the normalized time unit. The synapse generates the input Ii from a weighted

sum of the states of other p-bits according to the relation

Ii(t) = I0

(
hi(t) +

∑
j

Jijmj

)
(4.1b)

where, hi is the on-site bias and Jij is the weight of the coupling from jth p-bit to ith

p-bit.
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Fig. 4.2.: Translating nodal information from BN to PSL to circuit: Each

node of a BN is described by a conditional probability table (CPT), that of a PSL

network is described by dimensionless constants J, h, and that of circuit is described

by conductances G and voltage Vbias. The text describes how the CPT is translated

to J, h and then to G, Vbias for (a) zero-parent node, (b) one-parent node and (c)

two-parent node.

4.2 From BN nodes to PSL nodes

To relate Ii to the conditional probability Pi for mi to be 1, we note from Eq. 4.1a

that the average value of mi is tanh(Ii) and this must equal Pi × (+1) + (1 − Pi) ×

(−1)=2Pi − 1. Making use of Eq. 4.1b we can write

I0(hi +
∑
j

Jijmj) = tanh−1(2Pi − 1) (4.2)
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We use this relation to translate the Pi from the CPT into J, h in the PSL model,

but the details differ depending on the number of “parents” of node i (Fig. 4.2).

Nodes with no parents have no connecting weights Jij, only a bias hi which is

related to the specified conditional probability pi by hi = (1/I0) tanh−1(2pi − 1).

Nodes with one parent have one connecting weight Jij, and a bias hi which can be

obtained from the two specified conditional probabilities qi, ri from the equations

hi + Ji1(+1) =
1

I0
tanh−1(2qi − 1) (4.3a)

hi + Ji1(−1) =
1

I0
tanh−1(2ri − 1) (4.3b)

Nodes with two parents have two connecting weights Ji1, Ji2, and a bias hi but there

are four equations for these three unknowns. All equations can be satisfied simulta-

neously only if the equations are not linearly independent. If they are independent

then an auxiliary node X is introduced so that:

hi + Ji1(+1) + Ji2(+1) + JiXmX =
1

I0
tanh−1(2si − 1) (4.4a)

hi + Ji1(−1) + Ji2(+1) + JiXmX =
1

I0
tanh−1(2ti − 1) (4.4b)

hi + Ji1(+1) + Ji2(−1) + JiXmX =
1

I0
tanh−1(2ui − 1) (4.4c)

hi + Ji1(−1) + Ji2(−1) + JiXmX = t =
1

I0
tanh−1(2vi − 1) (4.4d)

where mX = tanh(hX + JX1m1 + JX2m2) with the parents m1,m2 equal to (±1,±1)

as appropriate for the four equations. One possibility is to choose hX , JX1, JX2 such

that mX = m1 ∩m2 and then select the four remaining unknowns hi, Ji1, Ji2, JiX to

satisfy Eqs. 4.4.

Nodes with N parents have a total of (N+1) unknowns, but there are 2N equations

to satisfy. Depending on the number of linearly independent equations, it is necessary

to introduce the appropriate number of auxiliary variables. In this letter we will only

present results for the BN in Fig. 4.1 which includes nodes with a maximum of N = 2

parents. Moreover, the CPT for the 2-parent nodes is assumed to be of the form

t = u = 0.5, s = 1 − ε and v = ε, ε being a small number introduced to avoid the
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L
L
G

Fig. 4.3.: Circuit implementation of building block:The circuit Eqs. 4.5 can be

mapped onto the PSL Eqs. 4.1 using Eqs. 4.6 as described in the text. The circuit

node Mi is defined to include the transimpedance amplifier along with the p-bit. The

details of the embedded MRAM based p-bit are discussed in the text.

singularities associated with the tanh function. With this CPT, no auxiliary node

(X) is needed.

4.3 From PSL nodes to circuit nodes

To translate the PSL into a circuit we use the embedded MTJ [4] whose output

is related to its input by the relation

Vout,i =
VDD

2
sgn

(
rand(−1,+1) + tanh

Vin,i
V0

)
(4.5a)

where ±VDD/2 are the supply voltages, and V0 is a parameter (∼ 50 mV) describing

the width of the sigmoidal response. Although V0 is a fitting parameter for the
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tanh function, it captures the actual sigmoidal response of the MTJ unit quite well.

Even if there is a slight deviation with the tanh function due to the skewness of

the MTJ response, it will not cause a noticeable difference in the output since PSL

is quite robust against noise [4]. The output voltages are connected back through

conductances G with a transimpedance amplifier having a feedback resistor Rf , so

that (see Fig. 4.3)

Vin,i = Vbias,iGbRf +
∑
j

Vout,jGijRf (4.5b)

Eqs. 4.5 can be mapped onto the PSL Eqs. 4.1 by defining

mi =
Vout,i
VDD/2

, Ii =
Vin,i
V0

(4.6a)

hi =
Vbias,i
VDD/2

, Jij =
Gij

Gb

, I0 = GbRf
VDD
2V0

(4.6b)

4.4 SPICE-based p-bit Model

In order to design the basic building block for the BN based on Eq. 4.5a, we are

following the p-bit design in Ref. [7] that describes an embedded MTJ structure with

a stochastic nanomagnet. We consider the weight logic in Eq. 4.1b to be implemented

using ideal transimpedance amplifier with resistors [4] though a capacitive network

with a more compact implementation could also be used to implement the weighted

sum operation [116]. We use the same parameters for the p-bit as in [7]: A circular

(stochastic) in-plane nanomagnet with negligible uniaxial anisotropy (HK ∼ 0) [54,

117], damping coefficient for the nanomagnet α = 0.01, saturation magnetization

Ms = 1100 emu/cc, with a free layer diameter 22 nm and a thickness of 2 nm. A

Tunneling Magnetoresistance (TMR) value of 110% is used based on [118]. The

MTJ conductance is assumed to be bias-independent and is given by G(t) = G0

[
1 +

mz(t) TMR/(2 + TMR)
]
, where mz(t) is provided to the model by a self-consistent

solution of the sLLG (stochastic Landau-Lifshitz-Gilbert equation) solver. The device

operation is based on the control of the transistor conductance through the input
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voltage. The non-linear transistor characteristics with respect to drain, gate and

source voltages are captured in simulation by the 14 nm HP-FinFET node from the

Predictive Technology Models (PTM) [41]. When the transistor conductance is much

greater or less than the MTJ conductance, the output shows little noise but when the

MTJ conductance is matched to the transistor ON resistance around Vin,i=0, there

are large fluctuations at the output. In Fig. 4.3, each circular dot in the sigmoid is

obtained by averaging 1 µs response of the stochastic output and the dashed lines

show a (tanh) fit with a V0 = 50 mV. The solid lines are obtained by sweeping

the input voltage rail-to-rail in 100 ns and plotting the input with respect to the

output voltage. Within the modular SPICE framework, the magnetization dynamics

of the circular stochastic nanomagnet is captured by solving the sLLG equation in

the macrospin assumption,

(1 + α2)
dm̂

dt
= −|γ|m̂× ~H − α|γ|(m̂× m̂× ~H)

+
1

qN
(m̂× ~IS × m̂) +

(
α

qN
(m̂× ~IS)

)
(4.7a)

where α is the damping coefficient, γ is the electron gyromagnetic ratio, N = MsVol./µB

is the total number of Bohr magnetons in the magnet volume, Ms is the saturation

magnetization, ~H = ~Hd + ~Hn is the effective field including the out-of-plane (x̂ di-

rected) demagnetization field ~Hd = −4πMsmxx̂, as well as the thermally fluctuating

magnetic field due to the three dimensional uncorrelated thermal noise Hn with zero

mean 〈Hn〉 = 0 and standard deviation 〈H2
n〉 = 2αkT/|γ|MsV along each direction,

IS = PIC ẑ is the spin current along the MTJ fixed layer direction (ẑ) where P is the

polarization of the fixed magnet. The model takes this spin-current (IS) incident to

the free layer into account and for the parameters we have used, this current does

not cause appreciable pinning of the free layer. A time step ∆t = 1 ps is used for the

circuit simulation which implies a noise bandwidth of ∆f = 1 THz.
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4.5 SPICE-based Circuit Model

Fig. 4.4a shows the full circuit assembled using the nodes defined in Fig. 4.3 to

mimic the Bayesian network in Fig. 4.1a. Fig. 4.4b shows typical nodal voltages

obtained from a SPICE simulation, whose correlations can either be calculated in

software or measured using an XNOR gate to multiply them as shown and finding

the long term average with an RC circuit having a time constant � T:

〈C1× C2〉 =

∫ T

0

dt

T
C1(t)C2(t)

These nodal correlations in the circuit can be used to compute the correlation between

causally connected real world variables. For example the relatedness of different

family members cited in Fig. 4.1b were all obtained in this manner from circuit

simulations. Different relationships between C1 and C2 are enforced by using different

CPT’s for their grandparents. For example, if all grandparents are unrelated, the

grandchildren C1 and C2 would show zero correlation. But if we enforce perfect

correlation between FF1, FF2 and between MF1,MF2 through the corresponding

CPT, we effectively make F1 and F2 into siblings with a correlation of 50%. C1

and C2 then are first cousins with a correlation of 12.5%.If we further enforce perfect

correlation between FM1, FM2 and between MM1, MM2, we also make M1 and

M2 into siblings with a correlation of 50%, just like F1 and F2. C1 and C2 now are

double cousins with a correlation of 25%.

Note that this is an asynchronous circuit with no clocks of any kind. This is

particularly interesting since the corresponding PSL simulations require p-bits to be

updated sequentially from parent to child node. Such a sequential Bayesian network

is also implemented experimenatally by Debashis et al. using stochastic spintronic

devices [119] and the experimental results are benchmarked with SPICE simulation

of the implemented hardware(see Appendix B). In the SPICE circuit simulation there

is no central clock to enforce an updating sequence, but our results show that the

correlations are in good agreement with the PSL results and with Bayes theorem.

However, such an asynchronous operation works only if the interconnect delays, for
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example from node FF1 to FF2, are much shorter than the nanomagnet fluctuations

as discussed in Reference [120]. Since magnetic fluctuations occur at ∼ns time scales,

this condition is naturally satisfied. The slight mismatch of the Bayes theorem and

the PSL model appears to decrease systematically with increasing sample size (N=1e7

for the examples shown in Fig. 4.1b) with the full circuit model closely following them,

but the updating issue in asynchronous operation deserves further study. We have

not considered variations in the thermal barriers or interconnect delays in this paper,

which requires further study.

4.6 Conclusions

In summary, we have used SPICE simulations to show that using existing MRAM

technology it should be possible to build p-circuits that mimic Bayesian networks

such that each stochastic node is represented by a stochastic p-bit. We show that the

ensemble-averaged correlations between the actual physical variables can be estimated

from the time-averaged correlations between the voltages at the corresponding nodes

which are measured electronically with XNOR logic gates and long time constant RC

circuits, thus requiring no software-based processing of any kind. Our results could

open up a new application space for Embedded MRAM technology with minimal

modifications.
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Fig. 4.4.: SPICE simulation of the full circuit designed to mimic the Bayesian

network in Fig. 4.1a. (a) Circuit diagram, (b) Typical stochastic nodal voltages from

which nodal correlations can be obtained using an XNOR gate and a long time con-

stant RC circuit. In the present example, the following parameters are used: The

RC circuit uses R = 200 kΩ, C=200 fF, Rf = 150 kΩ and I0 = 1 with dimen-

sionless weights Jij = J0 = 2.3026 which are then used to obtain conductances Gij

from Eq. 4.6. A simulation time of 1 ps is used in HSPICE that combines the self-

consistent stochastic LLG with Predictive Technology models (PTM) [41] as in [7].

All transistors use the 14nm HP-FinFET node with minimum fin numbers (nfin=1).

The XNOR gate is designed as a standard 14 transistor CMOS circuit, inverting an

XOR output.
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5. HARDWARE DESIGN REQUIREMENTS FOR

AUTONOMOUS BAYESIAN NETWORKS

Most of the materials in this chapter have been extracted verbatim from the paper:

“Hardware Design Requirements for Autonomous Bayesian Networks”, R. Faria, J.

Kaiser, K. Y. Camsari, and S. Datta, arXiv:2003.01767, (in review).

Directed acyclic graphs or Bayesian networks that are popular in many AI related

sectors for probabilistic inference and causal reasoning can be mapped to probabilistic

circuits built out of probabilistic bits (p-bits) that are analogous to binary stochastic

neurons. In order to satisfy standard statistical results, individual p-bits not only

need to be updated sequentially, but also in order from the parent to the child nodes,

necessitating the use of sequencers in software implementations. In this article, we

first use SPICE simulations to show that an autonomous hardware Bayesian network

can operate correctly without any clocks or sequencers, but only if the individual

p-bits are appropriately designed. We then present a simple behavioral model of

the autonomous hardware illustrating the essential characteristics needed for correct

sequencer-free operation. This model is also benchmarked against SPICE simulations

and can be used to simulate large scale networks. Our results could be useful in the

design of hardware accelerators that use energy efficient building blocks suited for

low-level implementations of Bayesian networks.

5.1 Introduction

Bayesian networks (BN) or belief nets are probabilistic directed acyclic graphs

(DAG) popular for reasoning under uncertainty and probabilistic inference in real

world applications such as medical diagnosis [121], genomic data analysis [122–124],

forecasting [125,126], robotics [127], image classification [128,129], neuroscience [130]
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and so on. BNs are composed of probabilistic nodes and edges from parent to

child nodes and are defined in terms of conditional probability tables (CPT) that

describe how each child node is influenced by its parent nodes [104, 106, 131, 132].

The CPTs can be obtained from expert knowledge and/or machine learned from

data [133]. Computation of different probabilities from a BN becomes intractable

when the network gets deeper and more complicated with child nodes having many

parent nodes. This has inspired various hardware implemenations of BNs for efficient

inference [10, 107–114, 134, 135]. In this article we have elucidated the design crite-

ria for a biologically inspired, autonomous (clockless) hardware for BN unlike other

implementations that typically use clocks.

Recently a new type of hardware computing framework called Probabilistic Spin Logic

(PSL) is proposed [4] based on a building block called probabilistic bits (p-bits) which

are analogous to Binary Stochastic Neurons (BSN) [35, 136] in the artificial neural

network (ANN) literature. p-bits can be interconnected to solve a wide variety of

problems such as optimization [100,137], inference [97], an enhanced type of Boolean

logic that is invertible [4,101,120,138], quantum emulation [139] and machine learning

[140].

Unlike conventional deterministic networks built out of stable bits, stochastic or

probabilistic networks are composed of p-bits (Fig. 5.1a). p-bits can be correlated

by interconnecting them to construct p-circuits defined by two equations [4, 35, 136]:

(1) a p-bit/BSN equation and (2) a weight logic/synapse equation. The output of a

p-bit, mi is related to its dimensionless input Ii by the equation:

mi(t+ τN) = sgn
(
rand(−1, 1) + tanh Ii(t)

)
(5.1a)

where rand(−1,+1) is a random number uniformly distributed between −1 and +1,

and τN is the neuron evaulation time.
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The synapse generates the input Ii from a weighted sum of the states of other

pBits. In general the synapse can be a linear or non-linear function although a

common form is the linear synapse described according to the equation:

Ii(t+ τS) = I0

(
hi +

∑
j

Jijmj(t)

)
(5.1b)

where, hi is the on-site bias and Jij is the weight of the coupling from jth pBit to

ith pBit and τS is the synpase evaluation time. Several hardware designs of p-bits

based on low barrier nanomagnet (LBM) physics have been proposed. For example,

fig. 5.1a shows two p-bit designs: Design 1 ( [7]) and Design 2 ( [4]). Design 1 is very

similar to the commercially available 1T/1MTJ (T: Transistor, MTJ: Magnetic Tun-

nel Junction) embedded Magnetoresistive Random Access Memory (MRAM) device

where the free layer of the MTJ is replaced by an LBM. Design 2 is similar to the basic

building block of SOT-MRAM (SOT: Spin Orbit Torque) device [42, 141] where the

thermal fluctuation of the free layer magnetization of the stochastic MTJ (sMTJ) is

tuned by a spin current generated in a heavy metal layer underneath the LBM due to

SOT effect. Whereas design 2 requires spin current manipulation, design 1 does not

rely on that as long as circular in-plane LBMs with continuous valued magnetization

states that are hard to pin are used.

In traditional software implementations, p-bits are updated sequentially for accu-

rate operation such that after each τS + τN time interval, only one p-bit is updated.

This naturally implies the use of sequencers to ensure the sequential update of p-bits.

For symmetrically connected networks (Jij = Jji) such as Boltzmann machines, the

update order of p-bits does not matter and any random update order produces the

standard probability distribution described by equilibrium Boltzmann law as long as

p-bits are updated sequentially. But for directed acyclic networks (Jij 6= 0, Jji = 0)

or Bayesian networks to be consistent with the expected conditional probability dis-

tribution, p-bits need to be updated not only sequentially, but also in a specific update

order which is from the parent to child nodes [136] similar to the concept of forward

sampling in belief networks [131,142,143]. As long as this parent to child update or-
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der is maintained, the network would converge to the correct probability distribution

described by probability chain rule or Bayes rule. This effect of update order in a

sequential p-circuit is shown on a three p-bit network in fig. 5.1b.

Unlike sequential p-circuits in ANN literature, the distinguishing feature of our

probabilistic hardware is that it is autonomous where each p-bit runs autonomously

in parallel without any clocks or sequencers. This autonomous p-circuit (ApC) allows

massive parallelism potentially providing peta flips per second sampling speed [6].

The complete sequencer-free operation of our “autonomous” p-circuit is very different

from the “asynchronous” operation of spiking neural networks [13, 14]. Although p-

bits are fluctuating in parallel in an ApC, it is very unlikely that two p-bits will

update at the exact same time since random noise control their dynamics. Therefore

persistent parallel updates are extremely unlikely and are not a concern. So the p-bits

update effectively sequentially. But each update has to be informed such that when

one p-bit updates it has received the up-to-date input Ii based on the latest states

of other p-bits mj that it is connected to. This informed update can be ensured as

long as the synapse response time is much faster than the neuron time (τS � τN)

and this is the design rule for an ApC. An ApC works properly for a Boltzmann

network without any clock since no specific update order is required in this case.

But it is not intuitive at all if an ApC would work for a Bayesian network since a

particular parent to child informed update order is required in this case as shown in

fig. 5.1b. As such, it is not straight-forward that a clockless autonomous circuit can

naturally ensure this specific informed update order. In fig. 5.1c, we have shown that

it is possible to design hardware p-circuit that can naturally ensure a parent to child

informed update order in a Bayesian network without any clocks. In fig. 5.1c, two

p-bit designs are evaluated for implementing both Boltzmann and Bayesian network.

We have shown that design 1 is suitable for both Boltzmann and Bayesian networks.

But design 2 is suitable for Boltzmann networks only and does not work for Bayesian

networks in general. The synapse in both types of p-circuits is implemented using a
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resistive crossbar architecture [7]. In all the simulations τS is assumed to be negligible

compared to other time scales in the circuit dynamics.

Further we have provided a behavioral model in section 5.2 for both design 1 and

2 illustrating the essential characteristics needed for correct sequencerfree operation

of BNs. Both models are benchmarked against state-of-the-art device/circuit models

(SPICE) of the actual devices and can be used for the efficient simulation of large

scale autonomous networks.

5.2 Behavioral model for autonomous hardware

5.2.1 Autonomous behavioral model: Design 1

The autonomous circuit behaviour of design 1 can be explained by slightly mod-

ifying the two equations (eqns.5.1 a and b) stated in section 5.1. The fluctuating

resistance of the low barrier nanomagnet based MTJ is represented by a correlated

random number rMTJ with values between -1 and +1 and average dwell time of the

fluctuation denoted by τN . The NMOS transistor tunable resistance is denoted by

rT and the inverter is represented by a sgn function. Thus the normalized output

mi = VOUT,i/(VDD/2) of the ith p-bit can be expressed as:

mi (t+ ∆t) = sgn (rT,i (t+ ∆t)− rMTJ,i (t+ ∆t)) (5.2)

where, ∆t is the simulation time step which is ideally as small as possible, rT,i is the

NMOS transistor resistance tunable by the normalized input Ii = VIN,i/V0 where V0

is a tanh fitting parameter which is ≈ 50mV for the chosen parameters and transis-

tor technology and rMTJ,i is a correlated random number generator with an average

retention time of τN . rT,i as a function of input Ii is approximated by a tanh function

with a response time denoted by τT modelled by the following equations:

rT,i (t+ ∆t) = rT,i (t) exp (−∆t/τT ) + (1− exp (−∆t/τT )) (tanh (Ii(t+ ∆t))) (5.3)
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The synapse delay τS in computing the input Ii can be modelled by:

Ii (t+ ∆t) = Ii (t) exp (−∆t/τS) + (1− exp (−∆t/τS))

(
I0

(∑
j

Jijmj(t) + hj

))
(5.4)

For calculating rMTJ,i , at time t + ∆t a new random number will be picked

according to the following equations:

rflip,i (t+ ∆t) = sgn

(
exp

(
−∆t

τN

)
− rand[0,1]

)
(5.5a)

where, rand[0,1] is a uniformly distributed random number between 0 and 1 and τN

represents the average retention time of the fluctuating MTJ resistance. If rflip is -1,

a new random rMTJ will be chosen. Otherwise the previous rMTJ will be kept which

can be expressed as:

rMTJ,i (t+ ∆t) =
rflip,i (t+ ∆t) + 1

2
rMTJ,i (t)−

rflip,i (t+ ∆t)− 1

2
rand[−1,1] (5.5b)

The charge current flowing throught the MTJ branch of p-bit design 1 can get

polarized by the fixed layer of the MTJ and generate a spin current IMTJ that can

tune/pin rMTJ by modifying τN according to:

τN = τ 0Nexp(rMTJIMTJ) (5.6)

where, τ 0N is the retention time of rMTJ when IMTJ = 0. This pinning effect by IMTJ

is much smaller or negligible in in-plane magnets (IMA) than perpendicular magnets

(PMA) [144].

Figure. 5.2a shows the benchmarking this behavioral model for p-bit design 1 with

SPICE simulation of the actual hardware in terms of fluctuation dynamics, sigmoidal

charateristic response, autocorrelation time (τcorr) and step response time (τstep) and

in all cases the behavioral model closely matches SPICE simulationsl. SPICE simula-

tion involves experimentally benchmarked modules for different parts of the device, for

example solving stochastic Landau-Lifshitz-Gilbert equation (sLLG) for LBM physics,
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14 nm Predictive Technology Model (PTM) for transistors etc. The autonmous be-

havioral model for design 1 is labeled as “PPSL: design 1”. The benchmarking is

done for two different LBMs: (1) Faster fluctuating magnet 1 with saturation mag-

netization Ms = 1100 emu/cc, Diameter = 22 nm, Thickness = 2 nm, in-plane

easy axis anisotropy Hk = 1 Oe, damping coefficient α = 0.01, demagnetization field

Hd = 4πMs and (2) Slower fluctuating magnet 2 with the same parameters as in

magnet 1 except Diameter = 150 nm. The fast and slow fluctuations of the normal-

ized output mi = VOUT,i/(VDD/2) is captured by changing the τN parameter in the

PPSL model. In the steady state sigmoidal response, V0 is a tanh fitting parameter

that defines the width of the sigmoid and lies within the range of 40 mV to 60 mV

reasonably well depending on which part of the sigmoid needs to be better matched.

In fig. 5.2, V0 value of 50 mV is used to fit the sigmoid from SPICE simulation.

There are two types of time responses: (1) Autocorrelation time under zero input

condition labeled as τcorr and (2) step response time τstep. The full width half max-

imum (FWHM) of the autocorrelation function of the fluctuating output under zero

input is defined by τcorr which is proportional to the retention time τN of the LBM.

The step response time τstep is obtained by taking an average of the p-bit output over

many ensembles when the input Ii is stepped from a large negative value to zero at

time t = 0. τstep defines how fast the first statistically correct sample can be obtained

after the input is changed. For p-bit design 1, τstep is independent of LBM reten-

tion time τN and is defined by the NMOS transistor response time τT which is much

faster (few picoseconds) than LBM fluctuation time τN . The effect of this two very

different time scales in design 1 (τstep � τcorr) on an autonomous Bayesian network

is described in section 5.3.
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5.2.2 Autonomous behavioral model: Design 2

The autonomous behavioral model for design 2 is proposed in [6]. In this article,

we have benchmarked this model with the SPICE simulation of the single p-bit steady

state and time responses shown in fig. 5.2b. According to this model, the normalized

output mi = VOUT,i/(VDD/2) can be expressed as:

mi(t+ ∆t) = mi(t)sgn
(
pNOTflip,i(t+ ∆t)− rand[0,1]

)
(5.7a)

pNOTflip,i(t+ ∆t) = exp
(
− ∆t

τN exp(Iimi(t))

)
(5.7b)

where, pNOTflip,i)(t+ ∆t) is the probability of not flipping or probability of retention

of the ith p-bit in the next time step that is a function of average neuron flip time

τN , input Ii and the current p-bit output mi(t). Figure. 5.2b shows how this simple

autonomous behavioural model for design 2 matches reasonably well with SPICE

simulation of the device in terms of fluctuation dynamics, sigmoidal charateristic

response, autocorrelation time (τcorr) and step response time (τstep). In design 2, τstep

and τcorr are both proportional to LBM fluctuation time τN unlike design 1.

Autonomous behavioral model for design 2 is also emulated on an FPGA platfrom

by Sutton et. al. [6] and the model is benchmarked for a sampling problem on the

Sherrington Kirkpatrick model [145] (see Appendix A).

Different time scales in p-bit design 1 and 2 are also reported in [144] in a different

context. In this article, we explain the effect of these time scales in designing an

autonomous Bayesian network (section 5.3).

5.3 Difference between Design 1 and Design 2 in implementing BN

The behavioral models introduced in section 5.2 are applied to implement a multi

layer belief/Bayesian network with 19 p-bits and random interconnection strength

between +1 and −1 (fig. 5.3a). For simpler understanding purpose, the interconnec-

tions are designed in such a way so that although there are no meaningful correlations
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between the blue and red colored nodes with random couplings, pairs of intermedi-

ate nodes (A,M1) and (M1, B) get negatively correlated because of a net −r2 type

coupling through each branch connecting the pairs. So it is expected that the start

and end nodes (A,B) get positively correlated. Fig. 5.3b shows histograms of four

configurations (00, 01, 10, 11) of the pair of nodes A and B obtained from different

approaches: Bayes rule (labeled as Analytic), SPICE simulation of design 1 (SPICE:

Design 1) and design 2 (SPICE: Design 2), autonomous behavioral model for de-

sign 1 (PPSL: Design 1) and design 2 (PPSL: design 2). It is shown that results

from SPICE simulation and behavioral model for design 1 matches reasonably well

with the standard analytical values showing 00 and 11 states with highest probability

whereas design 2 autonomous hardware does not work well in terms of matching with

the analytical results and shows approximately all equal peaks. The analytical values

are obtained from applying the standard joint probability rule for BNs which is:

P (x1, x2, ..., xN) =
N∏
i=1

xi|Parents(xi) (5.8)

Joint probability between two specific nodes xi and xj can be calcuted from the above

equation by summing over all configurations of the others nodes in the network which

becomes computationally expensive for larger networks. But one major advantage of

our probabilistic hardware is that probabilities of specific nodes can be obtained just

by looking at the nodes of interest ignoring all other nodes in the system similar to

what Feynman stated about a probabilistic computer imitating the probabilistic laws

of nature [146]. Indeed, in the Bayesian network example in fig. 5.3, the probabil-

ities of different configurations of nodes A and B were obtained just by looking at

the fluctuating outputs of the two nodes ignoring all other nodes. For the SPICE

simulation of design 1 hardware, tanh fitting parameter V0 = 57 mV is used and the

mapping principle from dimensionless coupling terms Jij to the coupling resistances

in the hardware is described in [97].

The reason why design 1 works for a BN and design 2 does not, is because of the

two very different time responses of the two designs shown in fig. 5.2. It is this two
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different time scales in design 1 (τstep � τcorr) that naturally ensures a parent to child

informed update order in a Bayesian network. The reason is that when τstep is small,

each child node can immediately respond to any change of it’s parent nodes which

has a much larger time scale ∝ τcorr, and be conditionally satisfied with the parent

nodes very fast. Otherwise, if τcorr gets comparable to τstep, the child node will not

be able to keep up with the fast changing parent nodes and will produce substantial

number of statistically incorrect samples over the entire time range (Fig. 5.5) thus

deviating from the correct probability distribution.

The effect of τstep/τcorr ratio is shown in fig. 5.4 for the same BN presented in

fig. 5.3 by plotting the histogram of AB configurations for different τT/τN ratios. It

is shown that when τT/τN ratio is much small, the histogram converges to the correct

distribution. As τT gets comparable to τN , the histogram begins to diverge from the

correct distribution. Thus the very fast NMOS transistor response in design 1 makes

it suitable for an autonomous Bayesian network hardware. One thing to note that

under certain conditions, results from design 2 can also match with the analytical if

the input Ii to each p-bit in the network always fluctuates between large values that

ensures a fast step response time.

So apart from ensuring a fast synapse compared to neuron fluctuation time (τS �

τN) which is the design rule for an autonomous probabilistic hardware, the au-

tonomous Bayesian network demands an additional p-bit design rule which is a much

faster step response time of the p-bit compared to its fluctuation time (τstep � τN) as

ensured in design 1. In all the simulations the LBM was a circular IMA with in-plane

magnetization along a specific direction spanning all values between +1 and -1 and

negligible pinning effect. If the LBM is a PMA magnet with bipolar fluctutations

having just two values +1 and -1, design 1 will not provide any sigmoidal response

except with substantial pinning effect [137]. Under this condition, τstep of design 1 will

be comparable to τN again and the system will not work as an autonomous Bayesian

network in general. So LBM with continuous range fluctuation is expected for design

1 p-bit to work properly as a Bayesian network.
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5.4 Binary p-bit composite as multi-state random variable

Real world applications of BN often involve multi-state random variable having

more than two states [147]. Multiple p-bit units can be interconnected to build a com-

posite unit that can represent one multi-state random variable. To demonstrate this,

we have solved the famous Monty Hall Puzzle [148] using our proposed autonomous

hardware (fig. 5.4).

The problem is stated as:

“Suppose you’re on a game show, and you’re given the choice of three doors: Behind

one door is a car; behind the others, goats. You pick a door, say No. 1, and the host,

who knows what’s behind the doors, opens another door, say No. 3, which has a goat.

He then says to you, ”Do you want to pick door No. 2?” Is it to your advantage to

switch your choice? [149]”

The problem can be mapped to a BN using three tri-state random variables [150]:

Prize P : {1, 2, 3} , player’s choice X : {1, 2, 3} and Monty opens M : {1, 2, 3}. The

three node network can be translated to another BN where each of the nodes is a bi-

nary random variable. For example, the variable P can be represented by a composite

of three binary variables: P1, P2 and P3 each having two states: {TRUE : 1,FALSE :

0}. To make sure that only three configurations of (P1, P2, P3) are allowed which are

(1, 0, 0), (0, 1, 0) and (0, 0, 1), the interconnection among them can be designed to be

either directed acyclic with appropriate CPT or they can be bidirectionally connected

to form a Boltzmann machine according to the following energy function:

E = P1 + P2 + P3 + 2P̄1P̄2P̄2 (5.9)

The BN can be mapped to our proposed autonomous hardware where each random

variable can be represented by a p-bit with design 1. The input to each p-bit in the

symmetrically connected BM composites can be calculted from the energy equation

eq. 5.9 as: IPi = −δE/δPi. The CPTs related to different child nodes in the network

can be translated to a coupling matrix [J ] according to the mapping principles stated

https://en.wikipedia.org/wiki/Monty_Hall_problem
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in [97] or they can be leant applying machine learning algorithms [133]. The use

of additional auxiliary p-bits to satisfy a given CPT can be reduced by allowing

non-linear synapse circuit [137].

The probability of winning if the player switches door option can be obtained

by Pswitch,WIN =
∑

i 6=j 6=k P (Pi = 1, Xj = 1,Mk = 1). Joint probabilitities among

differnt nodes in the network can be obtained by looking only at the relevant p-bit

outputs ignoring other p-bits in the system [80]. The result obtained from the au-

tonomous p-circuit matches with the standard statistical value which is 2/3. Another

way of getting the probability of winning by switching option would be to compute

Pswitch,WIN = P (P1 = 1|X2 = 1,M3 = 1) = P (P1 = 1, X2 = 1,M3 = 1)/P (X2 =

1,M3 = 1).

5.5 Discussion

In this article we have elucidated the design criteria for an autonomous clockless

hardware for Bayesian networks that requires a specific parent to child update order

when implemented on a probabilistic circuit. By performing SPICE simulation of

two autonomous probabilistic hardwares built out of p-bits (design 1 and design 2 in

fig. 5.1), we have shown that the autonomous hardware will naturally ensure a parent

to child informed update order without any sequencers if the step response time

(τstep) of the p-bit is much smaller than its autocorrelation time (τcorr). This criteria

of having two different time scales is met in design 1 as τstep comes from the NMOS

transistor response time τT in this design which is few picoseconds. We have also

proposed an autonomous behavioral model for design 1 and benchmarked it against

SPICE simulation of the actual hardware. All the simulations using behavioral model

for design 1 is performed ignoring some non-ideal effects listed below:

• Pinning of the sMTJ fluctuation due to spin transfer torque (STT) effect is

ignored by assuming IMTJ = 0 in eqn. 5.6 which is a reasonable assumption

considering circular in-plane magnets with continuous valued fluctuations. This
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effect is more prominent in perpendicular anisotropy magnets (PMA) magnets

than in-plane anisotropy magnets (IMA). It is important to include the pinning

effect in p-bits with bipolar LBM fluctuations since in this case the p-bit does

not provide a sigmoidal response without the pinning current. This effect is

also experimentally observed in [137] for PMA magnets. Such p-bit design 1

with bipolar PMA and STT pinning might not work for Bayesian networks in

general, since in this case τstep will be dependent on magnet fluctuation time

τN .

• In the proposed behavioral model, the step response time of the NMOS tran-

sistor τT in design 1 is assumed to be independent of the input I. But there is

a functional dependence of τT on I in real hardware.

• The NMOS transistor resistance rT is approximated as a tanh function for

simplicity. In order to capture the hardware behavior in a better way, the tanh

can be replaced by more complicated function and the weight matrix [J ] will

have to be learnt around that function.

All the non-ideal effects listed above are supposed to have minimal effect on different

probability distributions shown in this article, specially the effect of pinning current

in devices with circular in-plane LBMs is negligible. The autonomous BN is also quite

tolerant to variation in average magnet fluctuation time τN as long as τT � min(τN).

In general the depth of the network would also introduce effective propagation delays

at different subsequent layers from the very first parent layer. The general criteria

for designing an autonomous Bayesian network would be to choose the transistor and

LBM in the pbit design in such a way so that (τTL)� τN where L is the number of

layers in the network.
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Fig. 5.1.: Clocked versus Autonomous p-circuit: (a) a probabilistic (p-)circuit

is composed of p-bits interconnected by a weight logic/synapse that computes the

input Ii to the ith p-bit as a function of the outputs from other p-bits. Two p-

bit designs (design 1 and 2) based on sMTJ using LBM have been used to build

a p-circuit. (b) Two types of p-circuits are built: a directed or Bayesian network

and a symmetrically connected Boltzmann network. The p-circuits are sequential

(labeled as SeqPSL) that means p-bits are updated sequentially one at a time using

a clock circuitry/sequencer. It is shown that for Boltzmann networks update order

does not matter and any random update order would produce the correct probability

distribuiton. But for Bayesian networks, a specific, parent-to-child update order is

necessary to converge to the correct probability distribution from applying standard

probabilty chain rule or Bayes rule. (c) The same Bayesian and Boltzmann p-circuits

are implemented on an autonomous hardware built with p-bit design 1 and 2 without

any clocks/sequencers. It is interesting to note that for Bayesian networks, design

2 fails to match the probabilities from applying Bayes rule, whereas design 1 works

quite well as an autonomous Bayesian network.
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Fig. 5.2.: Autonomous behavioral model for p-bit: Design 1 and 2: (a) Behav-

ioral model for the autonomous hardware with design 1 is benchmarked with SPICE

simulation of the actual device involving experimentally benchmarked modules. The

behavioral model (labeled as ‘PPSL’) shows good agreement with SPICE in terms

of capturing fluctuation dynamics, steady state sigmoidal response, and two differ-

ent time responses: autocorrelation time of the fluctuating output under zero input

condition labeled as τcorr which is proportional to the LBM retention time τN in the

nanosecond range and the step response time τstep defined by the transistor response

time τT which is few picoseconds and much smaller than τN . The magnet parameters

used in the simulations are mentioned in section 5.2 (b) Similar benchmarking for

p-bit design 2. In this case τstep is proportional to τN .
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Fig. 5.3.: Difference between design 1 and design 2: (a) The behavioral models

described in fig. 5.2 are applied to simulate a 19 p-bit BN with random Jij between

+1 and -1. The interconnections are designed in such a way so that pairs of in-

termediate nodes (A,M1) and (M1, B) get anti-correlated and (A,B) gets positively

correlated. (b) The probability distribution of four configurations of AB are shown

in a histogram from different approaches (SPICE, behavioral model and analytic).

The behavioral models for two designs (labeled as PPSL) match reasonably well with

the corresponding results from SPICE simulation of the actual hardware. Note that

While design 1 matches with the standard analytical values quite well, design 2 does

not works as an autonomous Bayesian network in general.
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Fig. 5.4.: Effect of step response time in design 1:The reason for design 1 to

work accurately as an anutonomous Bayesian network as shown in fig. 5.3 is the two

different time scales (τT and τN) in this design with the condition that τT � τN . The

same histogram shown in fig. 5.3 is plotted using the proposed behavioral model for

different τT/τN ratios and compared with the analytical values. It can be seen that

as τT gets comparable to τN , the probility distribution diverges from the standard

statistical values.
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Fig. 5.5.: Comparing time dynamics of design 1 and 2 in a BN: The building

blocks of a BN/DAG are the child nodes (C) given their input (IC) as function of

parent node outputs (mp). In design 1, step response time (τT ) is much smaller than

magnet fluctuation time (τN) because NMOS response time is usually few picoseconds.

That’s why any time there is a change in the input IC , child node can immediately

respond to it and be conditionally satisfied always resulting in correct probability

distribution consistent with standard Bayes rule. On the other hand, for design 2, τT

is comparable to τN unless IC is fluctuating between very large values always which

is not applicable in general. That’s why the child node does not get enough time

to respond to a particular IC value before another new IC values comes, thus being

conditionally unsatisfied majority of the time and fails to match Bayes rule in general.
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Fig. 5.6.: Solving Monty Hall Puzzle using proposed autonomous hardware:

Monty Hall figure is taken from this link.

https://dev.to/williamhuybui/monty-hall-problem-4oae
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6. CONFIGURATION MATRIX ANALYSIS OF

P-CIRCUIT TIME DYNAMICS

Recently it has been shown that probabilistic circuits or p-circuits based on unstable

stochastic units can be used to solve a wide variety of problems: not only non-

Boolean logic such as optimization, inference, but also precise Boolean logic with

invertibility. In this work we have applied a general formalism based on the transition

matrix of the configuration space of a p-circuit to analyze different types of p-circuits

with varying degree of bidirectionality. The method can be used for calculating

steady state probability distribution of the circuit and estimating convergence delay

of the network. Using this method we have quantitatively established the fact that

directed network provides faster convergence than bidirectional network. The effect

of sequential and random updating order of the nodes in the p-circuit can also be

captured by this method. Although this method is suitable for small sized networks

because the transition matrix grows as 2N , where N is the number of nodes in the

circuit, it can be used to get a lot of insights about the dynamics of various kinds of

p-circuits. Also the results obtained from smaller circuits can be projected to larger

circuits.

Probabilistic Spin Logic (PSL) [4] is defined by the two equations:

mi(n+ 1) = sgn
(

tanh(Ii(n+ 1))− r
)

(6.1)

Ii(n+ 1) = I0

(∑
j

Jijmj(n) + hi

)
(6.2)

where, mi is the stochastic output of the p-bit with the stochasticity tuned by the

input Ii and r is a uniformly distributed random number between −1 and +1. Input

Ii is a weighted summation of other p-bit outputs mj with coupling strengths denoted
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Fig. 6.1.: Fockspace analysis for p-circuit with varying degree of bidirection-

ality: p-circuits or binary stochastic networks can be classified into three catagories:

Boltzmann machines (BM) with symmetrical interconnections, Bayesian networks

(BN) with directed acycllic connections and hybrid network with both bidirectional

and directied connections. While standard Boltzmann law and Bayes rule is applica-

ble for analyzing steady state response of only BMs and BNs respectively, Fockspace

analysis is in general applicable to any stochastic network with varying degree of

bidirectionality in terms of understanding both steady state and transient behavior.

by Jij. hi is the local bias to the p-bit and I0 is a global coupling strength similar to

a pseudo inverse temperature.

p-bits can be interconnected according to eqn. 6.2 to construct different types of

p-circuits with various degree of bidirectionalilty in the connection scheme, for exam-

ple symmetrically connected Boltzmann machines, fully directed and acyclic Bayesian

networks and hybrid networks with both directed and bidirectional connections. This

work describes a general method based on the Transition matrix [151] of the configu-

ration space or Fockspace of the p-circuit adopted from [39] to study the steady state

and transient response of different types of p-circuit with varying degree of bidirec-

tionality. Results from this method matches with Boltzmann law for symmetrically

connected network and with Bayes rule for directed acyclic networks.
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6.1 Method of constructing the configuration space matrix

6.1.1 For sequential updating of p-bits

For sequential updating each p-bit has a configuration space matrix [W ]i associ-

ated with it where i stands for the ith p-bit. [W ]i is a 2N × 2N matrix where N is

the total number of p-bits in the system. The full configuration space matrix [W ]

is a product of all the individual [W ]is based on the specific update order. For ex-

ample, for a update order of i→ j → k in a three p-bit network, [W ] = [W ]k[W ]j[W ]i.

Constructing [W ]i for the ith p-bit: For one specific row in Wi correspond-

ing to one specific p-bit configuration at discrete time point n + 1, the 2N columns

corresponds to 2N configurations of N p-bits at discrete time point n with column 1

starting from σ1 ∈ (m1,m2, ...,mN)σ1 = (−1,−1, ...,−1) to column 2N ending with

σ2N ∈ (m1,m2, ...,mN)σ
2N

= (1, 1, ..., 1). Each column in [W ]i will have two proba-

bilities associated with it: pi and p̄i with pi + p̄i = 1.

For the kth column,

pi,σk =
1 + tanh(Ii,σk)

2

Ii,σk = I0

( ∑
mj∈σk
j 6=i

Jijmj + hi

)

The row number related to pi,σk in the kth column will be given by:

rowpi,σk
=
( N∑

j=1
(mj=i)=1
(mj 6=i)∈σk

2N−jmj

)
+ 1

Similarly,

pi,σk = 1− pi,σk
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And the corresponding row number will be defined by:

rowpi,σk
=
( N∑

j=1
(mj=i)=−1
(mj 6=i)∈σk

2N−jmj

)
+ 1

6.1.2 For simultaneous updating of p-bits

In this case each element Wσl,σk corresponding to row configuration σl and column

configuration σk in the configuration matrix [W ] will be defined by:

Wσl,σk =
N∏
j=1
mj∈σl

(1 +mj

2
pj +

1−mj

2
(1− pj)

)

pj =
1 + tanh(Ij)

2

Ij = I0

( ∑
mi∈σk
i 6=j

Jjimi + hj

)

6.1.3 Steady state response

After constructing the [W ] matrix, the steady state probabilities of the 2N con-

figurations of the network {P}steady will be the eigenvector of [W ] corresponsing to

the eigenvalue λ = 1. The fact that each column sums up to 1 in the [W ] matrix

makes sure that [W ] always has the maximum eigenvalue of 1 along with other smaller

eigenvalues. In the long run, only the eigenvector corresponding to λ = 1 will sustain

and other eigenvectors will die out. {P}steady will have to be normalized by the sum

of all it’s elements to make sure that all probabilities add up to 1.

For random (randperm) update order in sequential updating, [W ] matrix will have

to be generated for all of the N ! permulations of update orders and all the {P}steadys

will have to be averaged.
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6.1.4 Transient response

If {p0} is the initial probability distribution at discrete time point n = 0, the

subsequent probability distributions at nth time point can be found by:

{Pn} = [W ]{Pn−1}

= [W ]n{p0}

6.2 Results

To benchmark our proposed Configuration/Fockspace matrix analysis method

described in section 6.1, we have chosen the Sherrington Kirkpatrick (SK) ising

model [152] as an example. In the SK model, the coupling matrix [J ] between spins

consists of Gaussian distributed random numbers. Our example consists of a Nm = 7

p-bit system with coupling strength Jij ∈ rand[−1,+1] and local bias hi ∈ rand[−1,+1].

6.2.1 Steady state response

Fig. 6.2 shows the steady state probability distribution of four configurations

(00, 01, 10, 11) of (m1,m7) for three types of networks: (1) symmetrically connected

Boltzmann machine (BM), (2) fully directed acyclic Bayesian network (BN) by con-

sidering the lower triangular part of the [J ] matrix of BM and (3) a hybrid network

(HN) with both bidiectional and directed connections. The probability distributions

obtained from the Fockspace method for different update orders of p-bits (specific se-

quence, random and simultaneous) are compared against the PSL simultion defined

by eqn. 6.1 and eqn. 6.2 (labeled as SeqPSL for sequential updating and SimPSL

for simultaneous updating) and standard statistical values. For BMs and BNs the

standard results are obtained from equllibrium Boltzmann Law and probability chain

rule (labeled as Bayes rule) respectively. For HNs, neither Boltzmann law nor Bayes

rule will be applicable. Figure 6.2 shows that Fockspace analysis is applicable for

any topology of binary stochastic networks with varying degree of bidirectionality.
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Fig. 6.2.: Steady state response: The steady state response of three types of net-

works (symmetrical, directed acyclic and hybrid) composed of 7 p-bits are shown for

different update orders (m1 to m7, random and simultaneous) where each histogram

shows the probabilities of four configurations of (m1,m7). It can be seen that for

Boltzmann machines the update order does not matter as long as p-bits are updated

sequentially and the Fockspace results match with corrresponding PSL simulaitons

and standard Boltzmann law. However the system fails to match Boltzmann law if p-

bits are updated simultaneously. In this case also Fockspace analysis nicely captures

p-circuit dynamics with simultaneous update . For Bayesian networks a parent to

child node update order is important in terms of matching standard Bayes rule [136].

Fockspace analysis matches PSL results for all three types of networks for different

update orders.

It can be seen from fig. 6.2 that for Boltzmann networks, update order of p-bits

does not matter as long as p-bits are updated sequentially one at a time. The prob-
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ability distribution of (m1,m7) configurations obtained from the PSL approach over

long time averaging matches nicely with those from Boltzmann law and Fockspace

analysis with the same update order. For simulataneous updating of the p-bits, re-

sults from PSL does not match with Boltzmann law, but Fockspace method nicely

captures the simultaneous updating behavior. For Bayesian networks, the update

order is important in terms of matching Bayes rule. The steady state probability dis-

tribution will match Bayes rule as long as the p-bits are updated from the parent to

child node [136]. Fockspace analysis nicely captures different update order issues and

matches with PSL results. For hybrid networks with both bidirectional and directed

connections, neither Boltzmann law nor Bayes rule is applicable. But in this case

also, Fockspace analysis matches with the PSL results quite well.

6.2.2 Transient response

For the three types of networks described in fig. 6.2 (BM, BN and HN), the

correlation of m1 and m7 is plotted as a function of discrete time steps for update

order from m1 to m7. At each time point 〈m1m7〉 is obtained from PSL by averaging

over 8000 ensembles. For all three networks, PSL time dynamics matches nicely with

Fockspace analysis. For BMs and BNs, the steady state correlation value matches well

with value from boltzmann law and Bayes rule respectively. Note that the convergence

time of BMs is longer than that of BNs. The convergence time of HNs fall in between

BMs and BNs as shown in fig. 6.3

6.3 Discussion:

We have shown that Fockspace analysis nicely captures the steady state and time

dynamics of binary stochastic networks or p-circuits with any type of coupilng in

general and any update order scheme. The Fockspace approach is useful for under-

standing the behavior of small scale p-circuits, but the approach does not scale up to

large p-circuits as the configuration space matrix dimension grows as 2N . Recently
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Boltzmann machine Bayesian network Hybrid network

Fig. 6.3.: Transient response: The transient response and convergence time of the

three types of networks presented in fig. 6.2 are shown from PSL simulation with m1 to

m7 update order and compared againsed Fockspace analysis. In all cases, Fockspace

method nicely captures the PSL time dynamics.

a new type of autonomous probabilistic circuit without any clocks unlike sequen-

tial p-circuit is proposed [6]. Whether Fockspace analysis will be applicable to such

autonomous p-circuits will be an interesting topic of future research.
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7. SUMMARY

In this thesis we have established a new computing framework called Probabilistic

Spin Logic [4, 101] built out of p-bits for solving a wide variety of problems such as

optimization, inference, invertible Boolean logic and sampling. p-bits are analogous to

binary stochastic neurons (BSN) in artificial neural network (ANN) literature. p-bits

can be interconnected accroding to a synapse or weight matrix [J ] to construct p-

circuits. For proper operation of the p-circuits, p-bits need to be updated sequentially

one at a time in an informed way so that when one p-bit updates it has the information

of the states of other p-bits that it is connected to. To ensure this sequential operation,

conventional digital hardware uses clocks/sequencers.

As opposed to the clocked implementation on digital hardware, our proposed prob-

abilistic hardware is completely autonomous that runs without any clocks. To ensure

the necessary sequential informed update of p-bits in our autonomous probabilistic

hardware, it is important that the synapse delay is much smaller than the BSN fluctu-

ation time. We have demonstrated the operation of autonomous p-circuit on various

applications by performing SPICE simulation of the hardware composed of different

p-bit desings using experimentally benchmarked modules.

We have shown how a p-circuit defined by the BSN and synapse equation can be

mapped to a low barrier nanomagnet (LBM) based probabilistic circuit by solving

coupled stochastic Landau-Lifshitz-Gilbert (sLLG) equations and benchmarking the

joint probability distribution of the system with a coupled Fokker-Planck equation

(FPE). By implementing an invertible 32-bit Adder network out of 32 full adders each

being a Boltzmann machine composed of 14 bidirectionally connected p-bits using a

total of 448 coupled LBMs, we have shown that large scale correlations are possible

even when p-bit outputs are continuous and not perfectly bipolar.
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SPICE simulation of our proposed autonomous p-circuits involving sLLG equa-

tions for capturing LBM physics is computationally expensive and time consuming

limitting the scope of exploring very large scale p-circuits. This limitation necessiates

the use of compact models for these hardware to demonstrate their scalability. The

standard behavioral models commonly used in digital hardware to simulate stochastic

networks use sequencers and thus inadequete for capturing our autonomous clockless

hardware behavior. In this regard, we have proposed and carefully benchmarked

compact models for two different autonomous p-circuits composed of two different

previously proposed p-bit designs that faithfully mimic the SPICE simulation of the

real hardware using experimentally benchmarked modules. These two compact mod-

els are important for exploring very large-scale p-circuits.

We also talk about the dynamics of different p-circuits: directed (Bayesian)

and bidirectional (Boltzmann) and shown that a specific parent to child update or-

der is very important for Bayesian networks unlike Boltzmann machines. We have

shown how Bayesian networks defined by conditional probability tables (CPT) can

be mapped to PSL coupling parameters J and h and then mapped to an embed-

ded MRAM based autonomous hardware and benchmarked SPICE simulation results

against those from standard statistical calculations. We have found that unlike bidi-

rectional networks where update order of p-bits does not matter as long as they are

sequential, for Bayesian networks a specific parent to child update order is necessary

and proposed autonomous hardware design criteria for naturally ensuring this specific

update order without any sequencers.

Lastly, we have applied a configuration space or Fockspace method to understand

the dynamics of different types of p-circuits with varying degree of bidirectionality

and various update orders of p-bits and benchmarked results from this approach with

standard PSL model. We have shown that bidirectional networks converge slower

than directed networks. Update order of p-bits does not matter for bidirectional
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networks in terms of matching standard statistical results. But for fully directed

acyclic networks, a specific parent to child update order is necessary for matching

results from applying standard Bayes rule. The Fockspace method captures the PSL

steady state and time response for different types of networks with different update

orders quite well.
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A. BENCHMARKING AUTONOMOUS BEHAVIORAL

MODEL (PPSL: DESIGN 2) FOR FPGA

IMPLEMENTATION

Materials in this chapter have been extracted verbatim from the paper: “Autonomous

Probabilistic Coprocessingg with Petaflips per Second”, B. Sutton, R. Faria, L. A.

Ghantasala, K. Y. Camsari, and S. Datta, arXiv preprint arXiv:1907.09664, in review

(Applied Physics Reviews). B.S. emulated the autonomous probabilistic hardware

behavioral model on an FPGA platform and showed two large scale applications of

p-circuits (∼ 10K spin): optimization and quantum annealing. R.F. benchmarked

the behavioral model with SPICE simulation of the actual low barrier nanomagnet

based hardware to establish the validity of the behavioral model.

Stochastic neural networks (SNN) are widely used for machine learning, inference

and many other emerging applications [153]. A common version of such algorithms is

based on the concept of a binary stochastic neuron (BSN) [154,155] which fluctuates

between -1 and +1 with probabilities that can be controlled through an input, Ii,

constructed from the outputs of other BSNs, mj. The synaptic function, Ii({m}),

can have many different forms depending on the desired functionality, but we will

restrict this discussion to linear functions defined by a set of weights Wij such that

Ii(t+ τS) = β
∑
j

Wijmj(t) (A.1)

where β is a constant and τS is the ‘synapse time’, that is the time it takes to recom-

pute the inputs {I} everytime the outputs {m} change. In software implementations,

each BSN is updated repeatedly according to

mi(t+ τN) = sgn
[
tanh (Ii(t))− r[−1,+1]

]
(A.2)
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where r[a,b] represents a random number in the range [a, b], and τN is the ‘neuron’

time, that is the time it takes for a neuron to provide stochastic output mi with the

correct statistics dictated by a new input Ii.

It is well-known [156] that to ensure fidelity of operation it is important to avoid si-

multaneous updates of two BSNs that are causally connected through a non-zero Wij.

The standard approach is to update each BSN sequentially according to Eq. (A.2),

recomputing the input from Eq. (A.1) after each update, a procedure known as Gibbs

sampling [157]. By contrast, the objective of this paper is to explore the feasibility

of ultrafast operation through an autonomous architecture whereby each BSN con-

tinually fluctuates between -1 and +1 with probabilities that are controlled by the

input Ii. We refer to this autonomous BSN as a p-bit to highlight its role as the

key element of an autonomous p-computer (ApC), similar to the role of a q-bit in a

quantum computer.

Since digital platforms are inherently synchronous, we mimic autonomous opera-

tion by replacing Eq. (A.2) with a new hardware-inspired model, Eq. (A.3) (PPSL),

that we benchmarked against established state-of-the-art physical models as described

in the Methods section. These equations are based on SPICE simulations of Boltz-

mann networks where the update order of p-bits is irrelevant given symmetric coupling

between connected p-bits. However, for certain networks such as those with directed

connections, the update ordering of p-bits may be important and other hardware

models more appropriate for these systems are likely required. These models are not

discussed in this paper, but the overall FPGA architecture was designed to support

the exploration of different hardware models and network topologies, hence they can

be included here with minor effort.

At each time step, all p-bits are free to flip and they do so with a probability ∼ s

that is controlled by the input Ii having a zero-input value s(Ii = 0) = s0 � 1.

mi(n+ 1) = mi(n)× sgn[e−s − r[0,1]] (A.3a)

s = s0e
−mi(n)Ii(n) (A.3b)
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In each time step the p-bit flips with a probability ∼ s, so that the average time

taken for it to respond is 1/s. Since time steps are measured in units of τS, we have

τN = (1/s)× τS as stated earlier. Unlike Eq. (A.2), Eq. (A.3) can be used to update

all p-bits in parallel without explicitly worrying about simultaneous updates. With

small values of s0, the fraction of simultaneous updates is sufficiently small such that

Eq. (A.3) in an unsequenced mode gives results equivalent to those obtained from

Eq. (A.2) with careful sequencing.

Benchmarking Eq. (A.3) with stochastic LLG

A coupled stochastic Landau-Lifshitz-Gilbert (sLLG) equation is solved and bench-

marked against the autonomous p-bit model of (A.3a) and (A.3b) (PPSL). Magneti-

zation dynamics of a circular stochastic nanomagnet are captured by solving the sLLG

equation in the macrospin assumption within a modular [158] SPICE framework ,

(1 + α2)
dm̂

dt
= −|γ|m̂× ~H − α|γ|(m̂× m̂× ~H)

+
1

qNs

(m̂× ~IS × m̂) +

(
α

qNs

(m̂× ~IS)

)
(A.4a)

where α is the damping coefficient, γ is the electron gyromagnetic ratio, Ns =

MsVol./µB is the total number of Bohr magnetons in the magnet, Ms is the satu-

ration magnetization, ~H = ~Hd + ~Hn is the effective field including the out-of-plane

(x̂ directed) demagnetization field ~Hd = −4πMsmxx̂, as well as the thermally fluc-

tuating magnetic field due to the three dimensional uncorrelated thermal noise Hn

with zero mean 〈Hn〉 = 0 and standard deviation 〈H2
n〉 = 2αkT/|γ|MsVol. along each

direction, ~IS is the applied spin current to the nanomagnet.

Individual p-bits are coupled according to:

Izs,i(t+ ∆t) = βIs0
∑
j

Wij sgn(mz
j(t)) (A.5)

where, Is0 is the tanh fitting parameter of the sigmoidal response (sgn(mz) versus

spin current Izs along z-direction). In the benchmark, a circular disk magnet with
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Fig. A.1.: Benchmarking the PPSL Model with sLLG using Euclidean dis-

tance: Using a random Sherrington-Kirkpatrick spin glass instance for different net-

work sizes, N , the PPSL model is benchmarked against sLLG as a function of time.

Each point on the graph represents the Euclidean distance from the ideal Boltzmann

distribution and the ensemble solution obtained from PPSL and sLLG. The steady

state error will depend on the number of ensembles as shown by the black dotted line.

a vanishing anisotropy (HK) is used with the parameters: diameter D = 150 nm

and thickness t = 2 nm, α = 0.01, Ms = 1100 emu/cc, HK = 1 Oe resulting in an

autocorrelation time of τcorr = 1.372 ns and Is0 = 1 mA. A fitting parameter of 1.4 is

used in the PPSL model for τN , i.e. τN = 1.4τcorr.

The simulated network is a Sherrington-Kirkpatrick [145] spin glass with a random

coupling matrix and random bias between -1 and +1. The benchmarking of the

proposed PPSL model with the coupled sLLG network, analogous to the probabilistic

circuit proposed in [4], is accomplished by comparing two different quantities: (1)

Euclidean distance and (2) Free energy.
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Fig. A.2.: Benchmarking the PPSL Model with sLLG using Free Energy:

The free energy calculated for the random Sherrington-Kirkpatrick spin glass instance

of Fig. A.1 from the PPSL model is benchmarked against sLLG as a function of time

for network sizes N = 16 and N = 24, showing convergence to the free energy

obtained from Boltzmann law.

Euclidean distance is defined by:

ED =

√√√√ 2N∑
i=1

(Pi − Pi,Boltzmann)2 (A.6)

where Pi is the probability of occurrence of the i-th configuration computed out of

4000 ensembles at each time step of the simulation. Pi,Boltzmann is computed from the

joint probability distribution obtained from a Boltzmann law.
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The second benchmark approach is based on a comparison of the free energy of

the system with what is expected from the principles of statistical mechanics. Free

energy is defined by [159] the partition function Z:

FE =
ln(Z)

−β
(A.7)

where, β is the pseudo-inverse temperature. Partition function Z is given by:

Z =
∑
k

exp(−βEk) (A.8)

where k represents different configurations of the network. Energy of a specific con-

figuration is defined by:

Ek = −0.5
∑
i,j
i 6=j

Wijmimj −
∑
i

himi (A.9)

When numerically calculating free energy from the sLLG data, the following steps

have been applied (similar to the importance sampling method described in [160]):

1. The probability of different configurations, Pi, are calculated out of 4000 ensem-

bles for each time step

2. For each Pi larger than a certain threshold value Pth, the partition function

Zi = exp(−I0Ei)/Pi is calculated, so that outliers are excluded

3. For each Zi, the free energy FEi = − ln(Zi)/I0 is calculated.

4. Finally the mean of all FEi is computed.

The above method is suitable for small examples, but may not scale to large

examples due to the difficulty in empirically calculating different probabilities Pi as

the network size grows. The striking agreement between the sLLG model and the

behavioral model given by Eq. (A.3) shown in Figs. A.1 and refA.7 establishes the

validity of Eq. A.3 as a suitable model for the projected autonomous, stochastic

MTJ-based computer.
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B. SPICE BENCHMARKING OF HARDWARE

IMPLEMENTATION OF BAYESIAN NETWORK

BUILDING BLOCKS WITH STOCHASTIC SPINTRONIC

DEVICES

Most of the materials in this chapter have been extracted verbatim from the paper: “

Hardware implementation of Bayesian network building blocks with stochastic spin-

tronic devices”, P. Debashis, V. Ostwal, R. Faria, S. Datta, J. Appenzeller and Z.

Chen, In review (Physical Review Applied), 2019. P.D. and V.O. performed the ex-

periment and R.F. performed the simulation to benchmark the experimental results.

In chapter 4 and chapter 5, it was shown how a Bayesian network (BN) can

be mapped to a p-circuit composted of p-bits/Binary Stochastic Neurons (BSN). P.

Debashis and V. Ostwal et al. have recently performed the first experimental demon-

stration of a Bayesian network building block implemented with naturally stochas-

tic spintronic devices. These devices are based on nanomagnets with perpendicular

magnetic anisotropy, initialized to their hard axes by the spin orbit torque from a

heavy metal under-layer utilizing the giant spin Hall effect, enabling stochastic be-

havior. P.D. and V,O. have constructed an electrically interconnected network of two

stochastic devices and manipulate the correlations between their states by changing

connection weights and biases. By mapping given conditional probability tables to

the circuit hardware proposed in [97], it is experimentally demonstrated that any two

node Bayesian networks can be implemented by the stochastic network. A theoretical

benchmarking is also presented by performing the stochastic Landau Lifshitz Gilbert

(sLLG) simulation of an example case of a four node Bayesian network using the

proposed device model in SPICE, with parameters taken from the experiment. Theo-

retical results are also compared with those expected from calculating joint probability

distributions applyting standard statistical rules.
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EXPERIMENTAL RESULTS AND ANALYSIS

Hard axis initialized PMA magnet as p-bit

In the experiment, the stochastic device is based on a hard axis initialized magnet

with perpendicular magnetic anisotropy (PMA), whose output probability is con-

trolled by the magnetic field produced by a charge current passing through an iso-

lated metal ring17,18,20. The top left of Fig. 1 (a) shows the schematic of our device.

It consists of a nanomagnet island with perpendicular magnetic anisotropy (PMA)

shown in orange, on top of a heavy metal (Ta) Hall bar, shown in blue. It is well un-

derstood that the magnetization of a PMA magnet can be deterministically switched

by the Spin Obit Torque (SOT) of a heavy metal under-layer in the presence of a

symmetry breaking in-plane magnetic field [161,162]. However, when the spin current

density is large enough, and when this field is absent, the magnetization gets pinned

in the direction of the spin polarization, i.e. the magnets hard axis. Once the spin

current is removed, ambient thermal noise makes the magnetization relax to either

“up” or “down” with equal probability due to the symmetric energy landscape for

these two states [163–165] as depicted by the cartoon in the top right of Fig. B.1 (a).

The magnetization state is read out by the anomalous Hall effect (AHE), where the

transverse VOUT is +ve for a magnetization in the “up” direction and -ve for “down”.

The probability of relaxing back to the “up” or “down” direction can be controlled

by applying a small out-of-plane magnetic field that lifts the degeneracy of the energy

landscape. A positive field in the z-direction lowers the energy of the “up” state and

raises that of the “down” state, thus making the “up” state more favorable. A nega-

tive z-directed field does the exact opposite. This is depicted in the energy landscape

diagrams shown in the bottom panel of Fig. B.1 (a). This z-directed field is provided

by a ring-shaped electrode called the “Oersted ring” henceforth, shown in yellow in

the device schematic. A current IIN passing through the Oersted ring of radius r

produces a magnetic field given by B = µ0 ∗ IIN/2r.
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Fig. 1 (b) shows the sLLG simulation of such a device. The top panels show

the magnetization dynamics during the pulsing of the device. The current pulse

through the GSHE layer is shown in black color in both the panels. The z-component

of magnetization (mz) is shown in blue and red. It can be seen that mz goes to

zero while the current pulse is ON. After the pulse is removed, mz relaxes to -1

in the first case and it relaxes to +1 in the second, nominally identical case, high-

lighting the stochastic nature of the process. The time scale of this relaxation is

governed by the material parameters of the nanomagnet such as saturation magne-

tization Ms, anisotropy field HK and damping. The bottom panel of Fig. 1 (b)

shows the average of the magnetization (after the dynamics have settled) in the z-

direction (perpendicular easy axis) as a function of the input current, resembling a

sigmoidal activation function. For experimental implementation, starting with a stack

of Ta(5nm)/CoFeB(1nm)/MgO(2nm)/Ta(1nm) thin film, a Hall bar device with a

PMA magnetic island located at the center is fabricated by means of successive e-

beam lithography and Ar ion milling steps. To generate the out-of-plane field for

tunability, the “Oersted ring” is fabricated on top and electrically isolated from the

Hall bar by a dielectric layer. A false colored SEM image of the fabricated device

is shown in the inset of Fig. 1(c). For the operation of the device, a Keithley 6221

current source is used to provide a current pulse of duration 100µs through the Ta

Hall bar. This current pulse experimentally implements the required hard axis biasing

scheme as shown in the sLLG simulation of Fig. 1 (b). Although the magnet can re-

spond to much faster pulses, as shown in Fig. 1(b), we chose to use 100µs to be safely

within the delay times of the measurement circuit. After the pulsing event, the state

of the magnetization is read by a lock-in scheme, with a sinusoidal current provided

by the same Keithley current source and an SRS830 lock-in amplifier. The device

is pulsed repeatedly, and the state of the magnetization is read after each individual

pulse. Fig. 1 (c) shows the average magnetization as a function of the input current

IIN . Each data point is obtained by averaging 25 pulsing events, as shown for three

representative cases in the bottom panels. These measurements clearly demonstrate
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the successful implementation of a device with an electrical input and output, which

behaves stochastically for individual events, but produces a sigmoidal curve for the

average output. This is the desired characteristic for many probabilistic spin logic

applications including hardware BNs.

Theoretical benchmarking on a two node Bayesian network in hardware

We show how the stochastic devices described in the previous section can be used

to implement a two node Bayesian network in hardware. The essential characteristic

of a BN is captured in the CPT. Fig. B.2 (a) shows the example of a two-node network,

with the first or the parent node (m1) representing the packaging material for blocks

of cheese in a dairy farm, and the second node (m2) representing the probability of

finding a stale cheese block. The values a and b in the CPT represent the probability

of a cheese block being stale if the packaging material is of low quality (m1 = 0)

vs. high quality (m1 = 1). Since the packaging material positively affects the shelf

life, in this case, a > b. If instead of packaging material, m1 represents the print

design on the package, then the shelf life is not affected by it, and hence, a = b

in this case. Similarly, if some other variable, that negatively affects the shelf life

is represented by m1, then the CPT would have a < b. Now, for the first case,

if the cheese was stored in a cold and dry storage, then the shelf life is increased,

irrespective of the packaging material quality. This corresponds to adding a positive

value to both a and b in the CPT. Hence, the variables in the CPT can span the entire

space between 0 and 1 independently, depending on the problem being modeled. We

first demonstrate that the CPT between the two probabilistic random variables in

our example can be implemented by design of proper electrical connections between

two of our stochastic devices (of the type shown in Fig. B.1). Then, by testing

the circuit with designed parameters, we show that the probability of the output

device (m2) follows the probability of finding a stale cheese block, obtained from

calculating the joint probability distribution. We also show that the inference about
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the potential cause of stale cheese that is evaluated by Bayes theorem is well matched

to the directly observed values from the joint distribution of the device outputs. The

results are also verified by stochastic LLG simulations with magnet parameters (Ms,

Hk and volume) taken to match the sigmoidal activation function obtained from the

experiment. Fig. 2 (a) shows the given CPT that represents the relation between the

stochastic variables m1 and m2. This CPT is translated into the parameters J21 and

h2 of the PSL model as shown in Fig. B.2 (b) where J21 corresponds to the connection

from the first to the second device, m1 corresponds to the state of the first device

and h2 corresponds to the constant bias given to the second device.

The parameters J21 and h2 are then used to design the hardware connection

strengths and biases to two stochastic devices. Fig. 2 (c) shows the schematic of

our circuit. The output voltage from the first device is amplified by an Op Amp.

The output level of the Op Amp is determined by its +/ − VDD supply voltages.

This output is then connected to the Oersted ring of the second device through a

weight resistor “Rweight” that determines how much current passes through it, and

hence controls the output probability of the second device, corresponding to the J21

term in a BN. Additionally, a voltage source “Vbias” is connected to the input of the

second device through a resistor “Rbias” to mimic the fixed bias (h2) in a BN. The

values of the circuit parameters VDD, Vbias, Rweight and Rbias are obtained from the

required J21 and h2 by the following design equations shown in fig. B.2. In our circuit

as shown in Fig. B.2(c), J21 is the magnetic field produced by the Oersted ring of

device 2, normalized with the field required to saturate its magnetization in the “up”

or “down” state, denoted by B0. We can span all possible conditional probabilities

between two nodes of a BN (given by ‘a’ and ‘b’ in the CPT) by changing the circuit

parameters Rweight, polarity and Rbias.

We take five different CPTs with “a” and “b” spanning the range between 0 and

1, shown in Fig. B.3(a). We then calculate J21 and h2 for these five cases and design

our circuit according to the equations stated in fig. B.2(c). The designed circuits

are then tested by repeating a sequential pulsing scheme. The inset of Fig. B.2(c)
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shows the timing diagram of the measurement procedure. The two devices are pulsed

sequentially and during the pulsing of the second device a constant DC read current

is passed through the first device in order to generate the input voltage to the second

device. Then, this sequential pulsing is repeated to generate the required statistics.

The two devices produce random outputs, but with correlated statistics, as is required

by the CPT between the two random variables. The output after each pulse is

measured by a lock-in amplifier and then digitized. Representative sections of the

device outputs are shown in Fig. B.3 (b) for three different connection configuration.

The probability of finding a stale cheese block can be found from the join probability

distribution by using the probability chain rule:

p(m2 = 1) =
∑
m1

p(m1,m2 = 1) =
∑
m1

p(m2 = 1|m1)p(m1)

= p(m2 = 1|m1 = 0)p(m1 = 0) + p(m2 = 1|m1 = 1)p(m1 = 1)

= ap(m1 = 0) + bp(m1 = 1)

(B.1)

where p(m1 = 0 or 1) is an input parameter. The number of terms in the above

expression grows as 2N where N is the number of parent nodes for the particular child

node of interest [106]. Instead of performing this algebra, the required probability

can be obtained from the circuit by directly observing the stochastic output of device

2 and obtaining its mean value over several pulsing cycles. Similarly, given that a

randomly drawn cheese block from a large lot is stale, the probability that it was

caused by a low quality packaging material can be found by using Bayes theorem:

p(m1 = 0|m2 = 1) = p(m1 = 0,m2 = 1)/p(m2 = 1)

= p(m2 = 1|m1 = 0)p(m1 = 0)/p(m2 = 1)

= (ap(m1 = 0))/(ap(m1 = 0) + bp(m1 = 1))

(B.2)

The number of terms required in the evaluation of the above expression also grows

as ∼ 2N where N is the number of potential binary causes of a particular effect

[106]. However, from the hardware BN, this probability can be directly obtained

by observing the joint distribution of states of the two devices. It is to be noted



131

here that this way of performing the inference always involves observing the joint

distributions of only two nodes of the BN: nodes corresponding to the effect and the

potential cause of interest, irrespective of N. After 100 pulsing cycles, the obtained

output probabilities for all the five circuits (representing the five different CPTs of

Fig. B.3(a)) is comparable with the expectation from calculating the joint probability

distribution and is also verified by stochastic LLG simulations, as shown in Fig. B.3

(c). Similarly, the obtained probabilities from inference is comparable with that from

Bayes theorem and stochastic LLG simulations, seen in Fig. B.3(d).

SIMULATION OF A FOUR NODE BAYESIAN NETWORK

In this section, we present a self-consistently coupled sLLG simulation of the more

complicated, four node Bayesian network shown in the top left inset of Fig. 4 (a).

Here, the BN consists of four nodes: cloud (C), rain (R), sprinkler (S), and wetness of

grass (W). In this case, the evaluation of a node probability from the joint probability

distribution requires the following evaluation, for example for the W node:

p(W ) =
∑
C

∑
R

∑
S

p(C,R, S,W )

=
∑
C

∑
R

∑
S

p(C)p(R|C)p(S|C)p(W |RS)
(B.3)

Here the number of terms to be evaluated in the summation is eight, as each of the

C, R and S nodes could take two possible values “0” or “1”. Similarly performing

inference, for example, what is the probability that it had rained, given that the grass

is wet requires the following evaluation:

p(R|W ) = p(RW )/p(W ) (B.4)

where both the numerator and the denominator of the right-hand side of the

above equation must be evaluated by summing over the joint probability distribution

P(C,R,S,W), resulting in the evaluation of four and eight terms respectively. How-

ever, by using the hardware, the required node probabilities and the inference can be
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obtained in exactly the same way as our previous two-node example: we simply ob-

serve the stochastic output of the corresponding node for probability assessment; and

observe the joint distribution of only the R and the W node to perform the required

inference. This is demonstrated in the simulation study below. The parameters used

in the sLLG simulation platform such as the magnet dimensions and the output sig-

moidal response are benchmarked with the experimental results from the device in

Fig. 1 (c). The coupling and biases are benchmarked with the two node BN network

experiments shown in Fig. 2 and 3. Fig. 4 (a) shows the circuit implementation,

where each node is represented by a hardware p-bit as described in Fig. 1. It is to be

noted here that an auxiliary p-bit (represented by node ‘X’) is needed to implement

this four node Bayesian network. This is because, the CPT capturing the dependency

of node ‘W ’ on node ‘R’ and ‘S’ has four conditional probabilities, which can take any

value between 0 and 1 independent of each other. Therefore, from basic principles of

linear algebra, we need four independent physical parameters to implement this CPT.

Two of the four required parameters are provided by the two interconnection weights

(JWR and JWS) and another parameter is provided by the bias to the node ‘W ’ (hW ).

The remaining one parameter is provided by the interconnection to the auxiliary node

‘X’. The requirement of auxiliary nodes in designing Bayesian networks from p-bits

is described in more detail by Faria et al. 21. The dynamics of the PMA magnet

used in the hardware p-bit design is captured by solving the sLLG equation with a

monodomain macrospin assumption:

(1 + α2)
dm̂

dt
= −|γ|m̂× ~H − α|γ|m̂× m̂× ~H − 1

qNs

m̂× m̂× ~Is +
α

qNs

m̂× Is (B.5)

where, ~H is the total internal and external field along with thermal noise field,

~Is is the spin current, Ns = MsV is the total magnetic moment with Ms being the

saturation magnetization, α is the damping coefficient, γ is the gyromagnetic ratio.

Magnet parameters used in the simulation are: Hk = 200 Oe, Ms = 1000 emu/cc,

D1 = 1 µm, D1 = 3 µm, t = 1 nm, α = 0.1. The average magnetization of each p-bit
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can be approximated by mz = tanh(H/H0), where H is the Oersted field generated

from the current coil and H0 is a fitting parameter. For the system simulation, we

start with chosen CPTs for each of the nodes. These are shown as the inputs next to

the respective nodes in Fig. 4 (c). These values are then

Hi = H0(
∑
j

Jijmj + hi) (B.6)

The coupling and bias component of Hi can be realized through the coupling resis-

tance Rweight and Rbias respectively with a mapping principle as described in fig. B.2

for the two node case. While solving the coupled sLLG, each p-bit is put along the

hard axis by the GSHE current in a sequential order from parent to child node and

the magnetizations of all p-bits are recorded after their corresponding pulse is turned

off. It is worth noting that the pulse sequence is important for the proper operation

of the Bayesian network. The pulsing should start from the first node and move down

the hierarchy from parent to corresponding child nodes. The order of pulsing among

different nodes on the same hierarchy level (e.g. node R and S in our example) is not

critical. Taking these principles into account, the pulsing order for one cycle is shown

in Fig. 4 (b). This cycle is repeated several times to generate the probabilities of

each of the four nodes. Fig. 4 (c) shows representative data of magnetization of each

node for 50 pulses. From this distribution of the magnetization state of each node

in ‘UP’ vs. ‘DN’ state, probabilities of each node are calculated. For example, the

magnetization of the p-bit corresponding to ‘sprinkler’ node shows more occurrences

in the ‘DN’ state compared to ‘UP’ state, resulting in a low probability of sprinkler

being ON (P (S) ∼ 0.25 in this case). Similarly, the probability of ‘rain’: P(R) and

the probability of ‘grass being wet’: P(W) are obtained from the magnetization state

distribution. The obtained probabilities are compared with those obtained by calcu-

lating the joint probability distribution as shown in the output tables alongside each

of the four nodes in Fig. 4 (c). It can be seen that the probabilities obtained from

the coupled sLLG result match well with the simple PSL behavioral model and with

the values obtained from the evaluation of equation (12). Similarly, the probability of
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rain, given that the grass is wet (P (R|W )) is obtained from the coupled sLLG result

is 0.73, which is well matched with the value of 0.75 obtained from equation (13).

It is to be noted that the accuracy in this depends on the number of samples taken

to calculate the probabilities. Using experimentally benchmarked sLLG simulations,

we have shown that a BN implemented in hardware using the experimentally demon-

strated stochastic spintronic devices can generate probabilities that are well matched

to the theoretical values from calculating the joint probability distribution.
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Fig. B.1.: Hardware building block of Bayesian Networks. (a) Schematic of the

probabilistic device and illustration of the hard axis initialization by spin orbit torque.

(b) Stochastic LLG simulation of 500 ensembles, showing tunable random behavior

of the device. The two top panels show representative cases where the magnetization

relaxes to the “up” and “down” direction after being released from the hard axis. (c)

Experimental measurements on the device showing stochastic behavior with tunability

using a charge current through an isolated Oersted ring. The bottom panels show

the stochastic outputs, whose averages show the sigmoidal behavior as a function of

the input current.
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Fig. B.2.: Hardware design of a two-node network. (a) The given conditional proba-

bility table (CPT) representing the causal dependency of two probabilistic variables,

i.e., the quality of packaging and state of cheese (b) PSL model of the two node BN

with the CPT parameters translated to PSL parameters (c) Circuit schematic of two

connected devices to implement two coupled Bayesian nodes. Inset on the top left

shows the timing diagram of various operations performed on device 1 and 2.
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Fig. B.3.: Testing of the two node BN circuit. (a) Five different combinations of the

CPT parameters that are experimentally implemented in hardware. (b) Representa-

tive sections of the measured data for positive, negative and no connection between

device 1 and device 2 as shown in Fig 2(c). (c) Obtained output probabilities of

cheese being stale for the five different given CPTs. The experimentally obtained

probability values are in good agreement with theory and stochastic LLG simula-

tions. (d) Inference about probability of the packaging being bad quality given that a

stale cheese is found is plotted for the different CPTs, showing good match between

direct experimental observation, Bayes theorem and stochastic LLG simulations.
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Fig. B.4.: Simulation results of a four node BN. (a) Hardware implementation lay-

out (b) Representative one clock cycle of operation (c) Results obtained from the

four node BN with the given CPTs shown as the input tables. Probabilities for each

node, generated after 500 clock cycles are shown inside the blue boxes. Representa-

tive sections of the state of each node after 50 pulses is shown next to them. The

obtained probabilities show good agreement with expectation from calculating the

joint probability distribution.
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C. ABBREVIATIONS

Table C.1.: Abbreviations used in this thesis

Full form Abbreviation

Probabilistic Spin Logic PSL

Probabilistic Bit p-bit

Probabilistic Circuit p-circuit

Magnetic Tunnel Junction MTJ

Bayesian Network BN

Magnetoresistive Random Access Memory MRAM

Low Barrier Magnet LBM

Binary Stochastic Neuron BSN

Tunable Random Number Generator TRNG

Artificial Neural Network ANN

Magnetoresistive Random Access Memory MRAM

Complementary Metal Oxide Semiconductor CMOS

Boltzmann Machine BM

Giant Spin Hall Effect GSHE

Stochastic Landau Lifshitz Gilbert sLLG

Artificial Intelligence AI

Inplane Magnetic Anisotropy IMA

Perpendicular Magnetic Anisotropy PMA

Field Effect Transistor FET

Fokker Planck Equation FPE

Directed Acyclic Graph DAG

continued on next page
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Table C.1.: continued

Full form Abbreviation

Conditional Probability Table CPT

Spin Orbit Torque SOT

Spin Transfer Torque STT

Autonomous Probabilistic Circuit ApC

Sherrington Kirkpatrick SK
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E. CODES

The codes used for generating the figures in this thesis are available on request to the

author (email: rfaria@purdue.edu).
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