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ABSTRACT 

Cystic fibrosis (CF) is a fatal, incurable genetic disease that affects over 30,000 people in 

the United States alone (1). People with this disease have a homozygous mutation in the cystic 

fibrosis transmembrane conductance regulator (CFTR) which causes defects in chloride transport 

and leads to build up of mucus in the lungs and disruption of function in various organs (1).  CF 

patients often suffer from chronic bacterial infections within the lungs, wherein the bacteria persist 

as a biofilm, leading to poor prognosis. Two of these pathogens, Stenotrophomonas maltophilia 

and Pseudomonas aeruginosa, are often found in the lungs of patients with CF and are an 

increasing medical concerns due to their intrinsic antimicrobial resistance (2), (3). Both species 

can readily form biofilms on biotic and abiotic surfaces such as intravascular devices, glass, plastic, 

and host tissue (4), (5). Biofilm formation starts with bacterial attachment to a surface and/or 

adjacent cells, initiating the acute infection stage (6). Chronic, long-term infection involves 

subsequent or concurrent altered genetic regulation, including a downregulation of virulence 

factors, resulting in the bacteria committing to a sessile lifestyle, markedly different from the 

planktonic one (7). Many of these genetic switches from an acute to chronic lifestyle are due to 

pressures from the host immune system and lead to permanently mutated strains, most likely an 

adaptive strategy to evade host immune responses (8). Biofilms are extremely problematic in a 

clinical setting because they lead to nosocomial infections and persist inside the host causing long-

term chronic infections due to their heightened tolerance to almost all antibiotics (6), (9). 

Understanding the genetic networks governing biofilm initiation and maintenance would greatly 

reduce consequences for CF and other biofilm-related infections and could lead to the development 

of treatments and cures for affected patients. This study showed that in S. maltophilia, isogenic 

deletion of phosphoglycerate mutase (gpmA) and two chaperone-usher pilin subunits, S. 

maltophilia fimbrae-1 (smf-1) and cblA, lead to defects in attachment on abiotic surfaces and cystic 

fibrosis derived bronchial epithelial cells (CFBE). Furthermore, Δsmf-1 and ΔcblA showed defects 

in long-term biofilm formation, mimicking that of a chronic infection lifestyle, on abiotic surfaces 

and CFBE as well as stimulating less of an immune response through TNF-α production. This 

study also showed that in P. aeruginosa, the Type III secretion system (T3SS), an important 

virulence factor activated during the acute stage of infection, is downregulated when polB, a stress-

induced alternate DNA polymerase, is overexpressed. This downregulation is due to post-
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transcriptional inhibition of the master regulatory protein, ExsA. Taken together, this project 

highlights important genes involved in the acute and chronic infection lifestyle and biofilm 

formation in S. maltophilia and genetic switches during the acute infection lifestyle in P. 

aeruginosa. 
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 CYSTIC FIBROSIS AND ASSOCIATED RESPIRATORY 
PATHOGENS 

Cystic fibrosis (CF) is an incurable, heritable, chronic disease affecting over 100,000 

people worldwide (1). CF is the most lethal and common genetic disease in the Caucasian 

population and half of patients with this disease do not live past 30 (10). Homozygous mutations 

in the cystic fibrosis transmembrane conductance regulator (CFTR) cause defects in chloride 

transport and lead to build up of mucus in various organs such as the lungs and dysfunction of 

organs like the gastrointestinal tract and pancreatic ducts (10). In the lungs, altered mucus secretion 

compromises airflow, which plays a critical role in the disease pathogenesis and can ultimately 

lead to respiratory failure and death (10). The CF lung harbors complex and dynamic 

polymicrobial communities that greatly affect the condition, progression, and outcome of the 

patient’s disease. Lung disease and inflammation caused by bacterial infections are one of the 

leading causes of morbidity and mortality for CF patients (11). Bacterial species that colonize CF 

patient lungs is very heterogeneous and becomes less diverse into adulthood compared to 

adolescence (12). During adolescence, Staphylococcus aureus are the dominant species, and going 

into adulthood Achromobacter spp., Burkholderia cepacia, Stenotrophomonas maltophilia, and 

Pseudomonas aeruginosa are more prevalent (11). Many of these bacterial infections, including S. 

maltophilia and P. aeruginosa, are nearly impossible to eradicate and chronically infect CF lungs 

due to their intrinsic antimicrobial resistance and ability to form biofilms (11).  

 In the CF lung, bacteria, as well as different species of fungus, viruses, and bacteriophages 

coexist which has great implications on the microbial interactions within this environment. While 

many of the fungal species are culture-independent, DNA sequencing has identified over 30 fungal 

species or genera including Candida, Aspergillus, Penicillium, Malassezia, and Kluyveromyces 

(13). Coexistence of P. aeruginosa and Aspergillus has been shown to both improve and inhibit 

growth of both species and co-colonization by both species correlates with a worsened condition 

(14). Very few studies have examined the CF respiratory virome, however, infections by RNA 

viruses increase inflammation and trigger pulmonary exacerbations (15). Furthermore, increased 

inflammation facilitates and intensifies bacterial adherence, highlighting the dynamic interactions 

between different types of microbes (16). Bacteriophages also play an important role in CF disease 

progression by producing small colony variants (SCVs) that often harbor antibiotic resistance (17). 
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Additionally, in P. aeruginosa biofilms, bacteriophages play an important role in the formation of 

the polymer matrix (18). Taken together, microbial interactions within the CF lung are both 

dynamic and complex, consisting of many different microbes that can worsen the patient’s 

prognosis.  

 The acute and chronic lifestyle of Pseudomonas aeruginosa within the CF lung 

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that is commonly 

found in the environment. P. aeruginosa can cause acute and chronic infections in compromised 

patients and is a great concern to human health, especially in hospital settings. Infections caused 

by P. aeruginosa range from keratitis to bacteremia (19), (20). Additionally, one of the worst 

manifestations of P. aeruginosa infections is within the lungs of CF patients where the pathogen 

persists as a chronic infection, indicating poor prognosis and high patient morbidity and mortality 

(3). Inflammation and damage of the epithelial mucosa caused by chronic infections of P. 

aeruginosa can promote the growth of other bacteria, specifically S. maltophilia  (21). Currently, 

it is recognized that P. aeruginosa has two different lifestyles that allow it to cause acute and 

chronic infections; one lifestyle is that of free-living cells that are predominantly cytotoxic while 

a second lifestyle is characterized by community behaviors, like biofilm formation, that facilitate 

a chronic infection (Fig. 1.1) (22). Selective pressure from the host’s immune system and complex 

genetic networks activate the switch from an initial acute (planktonic) infection to a chronic 

(biofilm) infection lifestyle (22). The type III secretion system (T3SS) and expression of toxins 

like elastase are diminished. Likewise, virulence factors that trigger host immunity, like flagella 

and pili, are down regulated once the pathogen has established adherent contact with the host 

respiratory epithelium. On the other hand, biofilm bacteria produce vast amounts of 

exopolysaccharides such as alginate, leading to a highly mucoid phenotype (22). This transition in 

lifestyle is most likely an evolutionary adaptation that allows P. aeruginosa to persist and form 

chronic infections within the host  (22).  Complex genetic networks tightly regulate the planktonic-

to-sessile transition and the overall process is reversible and dynamic.  
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Figure 1.1 The acute and chronic lifestyle switch in P. aeruginosa during CF infection. 
 

During the acute stage of infection, bacterial cell surface virulence factors such as flagella, 

pili, and lipopolysaccharide (LPS), aid in initial adhesion to the host epithelial layer (22). 

Following attachment, activation of the type III secretion system (T3SS) occurs, causing extensive 

damage to host cells. Effector molecules, ExoU, ExoS, ExoT, ExoY, are secreted out of the T3SS 

and into the host cells, causing host cell cytoskeleton rearrangement, immune evasion, and 

cytotoxicity, leading to tissue necrosis and allowing the pathogen to rapidly spread within the host 

(23). Secretion of other virulence factors including elastase, phospholipase C, pyoverdine, and 

pyocyanin cause additional host cell cytotoxicity and tissue destruction (23), (24). Quorum sensing 

(QS), two-component systems (TCs), stress response systems, and other factors tightly regulate 

this intricate system and production of these virulence factors (23).  

Following the acute stage, P. aeruginosa often settles onto host tissue and infection persists 

in a chronic state. Growth of the bacterial cells slows and they become less cytotoxic and 

immunogenic by downregulating virulence factors, allowing the infection to persist in the host for 

decades usually as a biofilm (22). Many P. aeruginosa isolates from chronically infected 

individuals contain mutations in the major determinants of the planktonic cells, particularly T3SS 

function, flagellar function, and polysaccharide production (25). As a result, isolated CF strains 



 
 

15 

often exhibit a highly mucoid phenotype, producing a thick polysaccharide matrix, primarily made 

up of alginate, nucleic acids, and amino sugars (26), (5), (24). Altogether, these parallel lifestyles 

suggest a binary model of pathogenesis, in which acute infections consist of aggressively virulent 

cells equipped for host invasion while the biofilm state cells are adapted for chronic infections and 

immune evasion.  

 Stenotrophomonas maltophilia pathogenesis during CF infection 

The Gram-negative opportunistic pathogen S. maltophilia is a ubiquitous organism that can 

be found in water and soil. S. maltophilia causes a wide spectrum of serious infections and is an 

important nosocomial pathogen because of its ability to grow and persist as a biofilm in irrigation 

solutions and invasive medical devices (27), (2). Furthermore, S. maltophilia is a multi-drug 

resistant pathogen that commonly infects the lungs of CF patients (28). Evidence suggests that S. 

maltophilia respiratory infections significantly contributes to inflammation and compromised 

function of the lungs (29). Within the CF lung, S. maltophilia biofilms correlate with increased 

incidence of pulmonary exacerbation and decreased lung function (30). Combined with its ability 

to form biofilms, S. maltophilia also has an array of extracellular virulence factors including 

proteases, lipases, fibrolysin, and DNases used to establish infections (31), (32).  It also has many 

cell-associated virulence factors such as lipopolysaccharide, pili, and flagella that elicit an immune 

response and are important for mediating cell attachment and colonization of eukaryotic cells.  

 Some of these virulence factors are only associated with clinical isolated strains, indicating 

adaptive strains from selective pressures in a clinical environment. For example, the S. maltophilia 

fimbriae-1 (smf-1) gene is an important epithelial cell attachment mediator that is absent in 

environmental isolates and only present in clinical isolates (33). Considering that most 

environmental isolates do not form biofilms or express smf-1, it can be suggested that these 

virulence factors are present only during infection (34). Furthermore, loss of biofilm associated 

genes such as the quorum sensing system mediated by the diffusible signal factor (DSF), reduces 

levels of extracellular protease, motility, and virulence in S. maltophilia (35). This further 

emphasizes the importance of biofilm associated genes during infection and suggests that genetic 

networks involving biofilm and virulence associated genes may be present in S. maltophilia. In 

contrast to this idea, there are many virulence factors that are shared among all S. maltophilia 

strains, environmental and clinical (36). S. maltophilia encodes several serine proteases, many of 
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which degrade several human proteins, interleukins, and connective tissue (37), (38). Additionally, 

hemolysins, a class of enzymes used to lyse erythrocytes, leukocytes, mast cells, and neutrophils, 

are present in the genome of both environmental and clinical isolated S. maltophilia strains (36). 

This information suggests that although some virulence genes may be clinical-specific, there is a 

general potential for all S. maltophilia strains to act as opportunistic pathogens.  

 The need to identify the mechanisms of biofilm formation in chronic infections 

Given the importance of biofilm formation and its role in pathogenesis, there is a need to 

further explore and identify necessary gene regulation and factors that facilitate this process. Many 

of these mechanisms remain unclear and the purpose of this study is to elucidate genes important 

for S. maltophilia and P. aeruginosa biofilm and lifestyle switches. Understanding this process 

will help the development of treatments and cures for patients that suffer from biofilm mediated 

infections.  
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 STENOTROPHOMONAS MALTOPHILIA ATTACHMENT 
AND BIOFILM REGULATION 

 Introduction 

The Gram-negative bacterium Stenotrophomonas maltophilia causes numerous human 

infections that are difficult to treat due to high intrinsic antimicrobial resistance (39). S. maltophilia 

is a ubiquitous opportunistic pathogen, commonly found in water and soil and is capable of 

surviving in low and high nutrient environments making it optimally positioned to infect humans 

(31). It causes a wide range of infections including in the urinary tract, skin, and bloodstream, as 

well as meningitis and endocarditis (40), (41), (42).  Moreover, many clinical S. maltophilia 

isolates readily form biofilms on biotic and abiotic surfaces, such as intravascular devices, glass, 

plastic, and host tissue (43). This is especially concerning for individuals with cystic fibrosis (CF) 

where S. maltophilia causes chronic infections in the patients’ lungs often mediated by biofilm 

formation (11).  Inhibiting biofilm formation would greatly reduce these consequences for CF and 

other S. maltophilia biofilm-related infections. However, genetic networks governing biofilm 

initiation and maintenance in S. maltophilia are poorly understood. 

Many environmental factors such as pH, temperature, presence of metal ions, and 

antibiotics greatly effect S. maltophilia biofilm formation (41). Additionally, the polysaccharide 

synthesis genes rmlA, rmlC, and xanB (44) as well as diffusible signal factor (DSF)-mediated cell 

communication (45) affect biofilm levels. Pili, important structures that aid in bacterial attachment 

to adjacent cells and surfaces, also affect early and late stages of biofilm formation (46). S. 

maltophilia fimbrae-1 (Smf-1) has previously been shown to be involved with biofilm and 

attachment on abiotic and biotic surfaces (27). S. maltophilia also encodes a pilus (CBL) 

homologous to the Giant Cable Pilus in Burkholderia cepacia, another infectious CF pathogen 

(47). In B. cepacia, Giant Cable Pili facilitate the attachment to host cells and perhaps other 

important pathogenic activities (47). Both smf-1 and cblA pilus systems are chaperone-usher pili, 

a family of pili named for the components involved in biogenesis of the appendage.  

To identify novel S. maltophilia biofilm factors on abiotic and biotic surfaces, we generated 

and screened a transposon mutant library for mutations that lead to altered biofilm levels compared 

to the wild-type (WT) strain. Two mutations had strikingly reduced biofilm formation and 

attachment: 1) glycolytic enzyme phosphoglycerate mutase, gpmA (31) and 2) smf-1. Isogenic 
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deletion of gpmA revealed adherence defects on abiotic and biotic surfaces, suggesting a role for 

metabolism in biofilm attachment and/or development. Additionally, isogenic deletion of smf-1 

and the bioinformatically identified pilin gene cblA revealed adherence and biofilm defects on 

abiotic and biotic surfaces suggesting an attachment role for these two systems.  

 Materials and Methods 

 Bacterial strains and culture 

We used S. maltophilia clinical isolate strain K279a (48).  Escherichia coli S17-1 (49) was 

used for cloning and plasmid maintenance. Bacteria were cultured in LB medium, with gentamicin 

as needed for maintaining plasmids (10 µg/mL or 70 µg/mL for E. coli and S. maltophilia, 

respectively. 

 Transposon mutagenesis  

We generated a transposon mutant library of S. maltophilia strain K279a by conjugation of 

plasmid pBT20 (containing the mariner transposon (50) from E. coli S17-1 into K279a. Briefly, 

overnight cultures of K279a and S17-1 pBT20 were mixed 1:3, 1:1, and 3:1 and spotted on LB 

agar plates. After 24 hr incubation at 30˚C, spots were resuspended in LB and exconjugants were 

selected for on LB plates with 70 µg/mL gentamicin and 5 µg/mL norfloxacin. For candidate 

mutants, we performed arbitrary-primed PCR using the primers listed in Table 2.1, as previously 

described (51), to identify the location of transposon insertion. Primers specific to the ends of the 

transposon and a random sequence in the chromosomal DNA, were used to amplify the location 

where the transposon inserted. Location of the transposon was first amplified using primer sets 

P238, P15 ARB1 and P237, P16 ARB6. A second round of PCR was performed using primer sets 

P240, P14 ARB2. Final PCR products were purified using QIAquick Spin PCR purification 

(Qiagen, Valencia, CA) according to manufacturer’s instructions and then subsequently subjected 

to DNA sequence analysis.   

 Strain construction of ΔgpmA 

The suicide vector pMQ30 (52) was used to construct an isogenic gpmA deletion strain by 

allelic replacement, as previously described (51). Briefly, ~1000bp fragments immediately 
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upstream and downstream of gpmA were generated by PCR using primers sets 

gpmALfor/gpmALrev, respectively (Table 2.1). Fragments were transformed into Saccharomyces 

cerevisiae INVSC1 (Invitrogen; Eugene, OR) along with BamHI-digested pMQ30, as previously 

described (51), (53). Recombination in S. cerevisiae resulted in plasmid pΔgpmA. This plasmid 

was isolated as previously described (51), transformed into E. coli S17-1 by electroporation, and 

conjugated into K279a, as described above. Exoconjugants were selected on LB plates containing 

70 μg/mL gentamicin and 5 μg/mL norfloxacin. Isolated colonies were grown overnight in LB and 

then plated on LB agar containing 10% sucrose to select for excision of the plasmid. Deletion 

mutants were confirmed using primers gpmAFor/gpmARev.   

Complementation was achieved by PCR-amplifying full length gpmA, along with ~500bp 

upstream, using the primer pairs GpmACompNatForNew/GpmACompRev (Table 2.1). 

Fragments were transformed into S. cerevisiae, along with BamHI-digested pMQ132 expression 

vector (52), as described above, generating plasmid pgpmA. This plasmid was then transformed 

into E. coli S17-1 via electroporation, and successful construction was confirmed by PCR using 

primers p729/p730A. The ΔgpmA strain was then transformed with pgpmA by electroporation.  

 

Table 2.1. Primers used in this study 

Primer Sequence (5’ à 3’) 
Arbitrary PCR   
     P14 ARB2 GGCCACGCGTCGACTAGTAC 
     P15 ARB1 GGCCACGCGTCGACTAGTACNNNNNNNNNNGATAT 
     P16 ARB6 GGCCACGCGTCGACTAGTACNNNNNNNNNNACGCC 
     P237 GGCCACGCGTCGACTAGTACNNNNNNNNNNAGAG 
     P238 TATAATGTGTGGAATTGTGAGCGG 
     P240 ACAGGAAACAGGACTCTAGAGG 
     P241  CACCCAGCTTTCTTGTACAC 
Deletion of ΔgpmA   
     GpmALfor TCGACTGAGCCTTTCGTTTTATTTGATGCCTGGCAGTT

CCGGCGCCTGCACGATGACTTC 
     GpmaALrev CACCAACGGTGGGTATCTACTGCAGGGTCTCCAACGCGAG 
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Table 2.1 continued 

Primer Sequence (5’  3’) 
     GpmaARfor CTCGCGTTGGAGACCCTGCAGTAGATACCCACCGTTG

GTG 
     GpmaARrev GGAATTGTGAGCGGATAACAATTTCACACAGGAAACA

GCTTGAGCGGGTTGTAGCGCTTG 
     GpmArev  CCAGGTTGCGGACGTTCATG 
gpmA Complementation 

 

     GpmACompfor TACTGTTTCTCCATACCCGTTTTTTTGGGCTAGCGAATT
CAGGAGGAGCGCGCTGTGACC CGTAAACTCGTACT 

     GpmAComprev CTGTATCAGGCTGAAAATCTTCTCTCATCCGCCAAAAC
AGTTATTTCGCCTTGCCCTGGT 

     GpmACompNatForNew  TTGTGTGGAATTGTGAGCGGATAACAATTTCACACAG
GAATCGACTTGGCACACCGATG 

     P730A TGCTTCCGGCTCGTATGTTG 
     P729 
 

CAGACCGCTTCTGCGTTCTG 

Deletion of Δsmf-1   
     706LFor TCGACTGAGCCTTTCGTTTTATTTGATGCCTGGCAGTT

CCTCAAGATGGTCCGCTGCAAC 
     706LRev CAGTGCGGGTACGGCTACGATCGCTTTTACCTAACCCT

AC 
     706RFor GTAGGGTTAGGTAAAAGCGATCGTAGCCGTACCCGCA

CTG 
     706RRev GGAATTGTGAGCGGATAACAATTTCACACAGGAAACA

GCTGGCAAAGCGCCTGATGGATC 
Deletion of ΔcblA 

 

     3833LFor TCGACTGAGCCTTTCGTTTTATTTGATGCCTGGCAGTT
CCAAGTGCGTGCCGAAGTGAAC 

     3833LRev GATGCGGGCCGGCGCGGGGGAGGGTGTCTCTCTCGG
ACAGG 

     3833RForNew CCTGTCCGAGAGAGACACCCAAGGCGGCTACGCCGT
AATC 

     3833RRev GGAATTGTGAGCGGATAACAATTTCACACAGGAAACA
GCTGCCTGCAGGTAGAAGGTCTG 

To test constructs 
 

     706for TACTTGCGTCACGGATTCAG 
     706rev AGATCACTCGCGTGCCATTG 
     3833for ATGCTTGAATGGCCTGCATG 
     3833rev TGGCCTTCGACCAGATCTTC 
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 Strain construction of Δsmf-1 and ΔcblA 

Isogenic deletion of Δsmf-1 and ΔcblA was similar as to ΔgpmA, generating ~1000bp 

fragments immediately upstream and downstream of smf-1 by PCR using primers sets 

706LFor/Rev and 706RFor/Rev and 3833LFor/Rev and 3833RForNew/Rev respectively (Table 

2.1). After electroporation into K279a and plating on 10% sucrose plates, Δsmf-1 and ΔcblA 

deletion mutants were tested using the primers 706For/Rev 3833For/Rev respectively.  

 Biofilm and attachment assays on an abiotic surface 

Attachment and biofilm formation on abiotic surfaces were assayed as previously described 

(51), (54). Strains were grown overnight in LB, diluted 1:100 into fresh LB, inoculated into 

individual wells in 96-well polystyrene microtiter plates (Greiner Bio-One; Monroe, NC), and 

incubated at 37°C for the indicated duration. Detection of attachment or biofilm formation was 

achieved by staining the plates with 0.1% crystal violet (CV) for 10 min. CV was solubilized using 

30% acetic acid solution and transferred to a new 96-well polystyrene microtiter plate and 

quantified by measuring optical density at 550 (OD550) in a SpectraMaxM2 spectrophotometer 

(Molecular Devices; Sunnyvale, CA). 

 Biofilm and attachment assays on a biotic surface  

Attachment and biofilm formation of the strains were assayed on immortalized CF-derived 

bronchial epithelial (CFBE) cells as previously described (55). 24-well tissue culture plates 

(Falcon; Franklin, NJ) were seeded with CFBE cells at a concentration of 2 x 105 cells/well in 

minimal essential medium (MEM) (Corning Inc.; Corning, NY) supplemented with 10% fetal 

bovine serum (FBS) (Atlanta Biologicals; Lawrenceville, CA), 50 U/mL penicillin, and 50 U/mL 

streptomycin (Lonza; Walkersville, MD) (56). The plates were incubated for 7 to 10 days at 37°C 

and 5% CO2. Once confluence was reached, cells were washed with 1X phosphate buffered saline 

(PBS) solution and inoculated with overnight-grown bacteria at a final concentration of ~1.2 x 107 

CFU/mL in 0.5 mL MEM without phenol red, FBS, or antibiotics; this assay was then incubated 

for the time period specified for each experiment. At each time point, wells were washed 2-3 times 

with 0.5 mL PBS and treated with 1 mL of 0.1% Triton X-100 for 10 min. Lysates were harvested 
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into micro-centrifuge tubes, vortexed for 3 min, then serially diluted and plated on LB. 

Attachment/biofilm level was assessed by CFU determination from colony counts. 

 Growth kinetics 

Strains were grown overnight in LB and diluted 1:100 into 100 µL fresh LB or MEM in a 

polystyrene microtiter plate. Plates were incubated for 12 hr or 24 hr at 37°C in a SpectraMaxM2 

spectrophotometer, with 5 seconds of shaking before each OD600 reading every 30 min. 

 Microscopy of biotic biofilms for ΔgpmA 

For microscopic examination of CFBE cells attachment, wild type and ΔgpmA strains were 

transformed with pMQ400, which constitutively expresses a TdTomato gene, conferring red 

fluorescence (57). Attachment of strains was assayed as described above, and after 1 hr, cells were 

washed twice with PBS and fixed with 4% paraformaldehyde for 15 min at 37°C. Fixed cells were 

washed twice with PBS and stained with 5 μg/mL wheat germ agglutinin (WGA) conjugated with 

Alexa Fluor 350 (Invitrogen; Eugene, OR) and incubated for 10 min at 37°C. Labeling solution 

was removed and cells were washed twice with PBS. Fluorescence microscopy was performed 

using a Keyence BZ-X800/810 series all-in-one fluorescence microscope (Osaka; Osaka 

Prefecture, Japan) to obtain images at 20x magnification. 4 images were taken at different fields 

and stitched together using the microscope software to create a composite image. 

 Hemagglutination assay  

Red blood cell (RBC) agglutination was tested for Δsmf-1 strain. Overnight cultures of WT 

and Δsmf-1were grown on LB plates at 37 °C. Bacteria was transferred into 1mL of 1X PBS using 

a sterile cotton swab and matched to an OD600 of 1.0. Samples were spun down in microcentrifuge 

tubes at 15,000 rpm and pellets were resuspended in 100 μL of 1X PBS. Chicken RBC’s (Lampire 

Biological Laboratories; Pipersville, PA) were washed to remove any cellular debris by rinsing 3-

4 times in 1X PBS and resuspended to an OD640 of 1.3-1.5.  Using a U-bottom 96-well plate 

(Costar; Kennebunk, ME), 25μL of 1X PBS was aliquoted into every well except the first column. 

1:2 dilutions were performed by transferring 25 μL of bacteria from the first well into the 

subsequent wells. Following, 25 μL of RBCs were added to each well and mixed by tapping on 
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the side of the plate. The plate was left in the refrigerator for 1 hr and minimum dilution for 

agglutination was recorded.  

 Yeast agglutination assay  

For the yeast agglutination, S. cerevisiae was grown overnight at 30 °C in YPD media. WT 

S. maltophilia and Δsmf-1 were grown in LB at 37 °C overnight. Equal volumes of S. cerevisiae 

and the indicated bacterial strain were mixed on a microscope slide and agglutination was 

visualized after 15 min. 

 PCR on S. maltophilia CF clinical isolates  

To test for cblA in clinical S. maltophilia isolates, 54 clinical CF isolates obtained from Dr. 

Valerie Waters at the Sick Kids Hospital in Toronto, Ontario, Canada were analyzed using PCR. 

Strains were grown on LB overnight at 37 °C and then chromosomal DNA was isolated by using 

the Puregene Yeast/Bact. Kit B (Qiagen) according to the manufacturer’s instructions. DNA was 

stored at -20 °C until further tested. PCR was performed using the primer set 3833For/Rev (Table 

2.1). Isolated K279a genome was used as positive control. Presence of a single 800 bp band on a 

1% agarose gel was considered a positive result.  

 Enzyme-linked immunosorbent assay (ELISA) 

Samples for detecting TNF-α secretion by CFBE cells were collected after 4 hr and 14 hr 

infection with either WT, Δsmf-1, or ΔcblA. Infection of cells was assayed the same as the biofilm 

experiments and 500 μL of supernatant was aliquoted into micro centrifuge tubes and stored at -

80 °C until tested. Samples were thawed on ice and TNF-α secretion was tested with Invitrogen 

Human TNF-α Cytoset (Invitrogen; Frederick, MD) according to manufacturer’s instructions. 

ELISA samples and standards were tested on a 96-well polystyrene microtiter plates (Greiner Bio-

One; Monroe, NC) and TNF-α secretion was quantified by measuring optical density at 450nm 

(OD450) in a SpectraMaxM2 spectrophotometer (Molecular Devices; Sunnyvale, CA). 
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 Statistical analysis  

At least three independent experiments were performed for each assay, with triplicate or 

quadruplicate samples each. Statistical significance was determined using Student’s t test. A P 

value of <0.05 was considered statistically significant. Error bars represent standard deviations.  

 Results 

 ΔgpmA strain is defective for attachment 

We created a transposon mutant library (~5,760 mutants) of S. maltophilia strain K279a and 

screened it for strains defective in biofilm formation. Using arbitrary-primed PCR, we mapped the 

transposon insertion in one of these mutants to gpmA (Smlt1430), which encodes the glycolytic 

enzyme phosphoglycerate mutase (31). In order to confirm that gpmA affects biofilm, we created 

an isogenic deletion mutant and tested it for biofilm formation. Initial attachment (2 hr time point) 

and early biofilm formation (4 hr time point) of ΔgpmA on polystyrene plates was significantly 

reduced compared to wild type (Fig. 2.1A and 2.1B). Complementation of ΔgpmA with a plasmid 

carrying a full-length copy of gpmA restored biofilm production (Fig. 2.1A and 2.1B).  However, 

after 6 hr, there was no difference in biofilm formation suggesting that gpmA is required for early 

biofilm formation on abiotic surfaces (Fig 2.1C).       
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Figure 2.1. Isogenic deletion of gpmA leads to reduced biofilm levels at early stages on 

abiotic surfaces. (A) Attachment efficiency was quantified by measuring the intensity of CV 
staining of ΔgpmA compared to that of wild type (WT) and ΔgpmA complemented with pgpmA. 
pMQ132 is the empty vector, used as a control. Absorbance was measured at 550 nm (OD550) as 
described in Materials and Methods. (B and C) Biofilm formation was measured after 4 hr and 6 
hr respectively. Data are representative of three independent experiments performed in triplicate 

(n = 3). Error bars represent standard deviations. *p < 0.05 compared to WT. ‡p < 0.001 
compared to WT ΔgpmA. 

 ΔgpmA exhibits the same growth kinetics as wild type  

To rule out the possibility that attachment repression in the ΔgpmA strain was due to 

reduction in growth rate, we examined the growth kinetics of planktonic cells in LB and MEM 

medium. The gpmA mutant displayed growth equivalent with the wild type and complemented 

mutant strains (Fig. 2.2A and 2.2B). 
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Figure 2.2. Mutant strains grow equally as well as the wild type in LB and MEM. No 

differences were observed in the growth kinetics of wild type (WT) pMQ132, ΔgpmA pMQ132, 
and ΔgpmA pgpmA in both LB (A) and MEM (B). Absorbance was measured at 600 nm (OD600) 
over the course of 12 hr. The results are representative of three independent experiments carried 

out in triplicate (n=3) and error bars represent standard deviations. No statistically significant 
difference was found between strains in either medium. 

 ΔgpmA is defective for attachment to airway epithelial cells 

S. maltophilia forms biofilms in the airways of cystic fibrosis patients (58), therefore, the 

effect gpmA has on attachment and biofilm on airway epithelial cells was investigated. Thus, 

bacteria attached to cystic fibrosis bronchial epithelial (CFBE) (59) cells after incubation with wild 

type, ΔgpmA, and complemented mutant strains was quantified. After 1 hr of incubation, ΔgpmA 

exhibited an approximately 100-fold reduction in binding compared to wild type (Fig. 2.3A). 

Complementation of the mutant restored the wild type phenotype (Fig. 3A). However, there was 

no significant differences between wild type and ΔgpmA at 4 hr and 6 hr time points (Fig. 2.3B 

and 2.3C). Importantly, there was a significant difference between ΔgpmA and the complemented 

strain at 4 hr and 6 hr (Fig. 2.3B and 2.3C). By fluorescence microscopy, numerous wild type 

biofilm microcolonies were evident on CFBE cells after 1 hr incubation (Fig. 3D), but fewer 

ΔgpmA clusters were seen at the same time point. 
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Figure 2.3. ΔgpmA is defective for attachment on CFBE airway cells. (A) Attachment 
efficiency was quantified by measuring CFU/mL after 1 hr incubation at 37 °C. (B and C) 

Biofilm levels were measured at 4 hr and 6 hr respectively. The results are representative of three 
independent experiments carried out in triplicate (n = 3) and error bars represent standard 

deviation. *p < 0.05 compared to WT. ‡p < 0.05 compared to ΔgpmA. (D and E) Composite 
images from fluorescence microscopy of CFBE cells incubated with WT (D) or ΔgpmA (E) for 1 
hr. pMQ400 contains a constitutive TdTomato gene, conferring red fluorescence to the bacteria. 

CFBE cell membranes were stained with WGA-Alexa Fluor 350 (blue). 



 
 

28 

 Δsmf-1 and ΔcblA have defects in abiotic attachment and biofilm formation 

In a biofilm screen of the S. maltophilia transposon mutant library, we identified additional 

mutants with defects in biofilm formation were identified. In one of these clones, the mutation 

mapped (through arbitrary-primed PCR) to smf-1, which encodes for the pilin subunit of Smf-1 

pili (27). To confirm defects in attachment and biofilm formation, we isogenically deleted the smf-

1 gene. An isogenic deletion of cblA was generated, which encodes the pilin subunit of CBL pili; 

this pilus gene cluster was identified bioinformatically. Both Δsmf-1 and ΔcblA strains exhibited 

defects in initial attachment (2 hr time point) and long-term biofilm formation (24 hr time point) 

(Fig. 2.4A and 2.4B).  

  
Figure 2.4. Isogenic deletion of smf-1 and cblA leads to reduced attachment abiotic 

surfaces. (A) Attachment efficiency was quantified by measuring the intensity of CV staining of 
Δsmf-1 and ΔcblA compared to that of wild type (WT). Absorbance was measured at 550 nm 

(OD550) as described in Materials and Methods. (B) Biofilm formation was measured after 24 hr. 
Data are representative of three independent experiments performed in triplicate (n = 3). Error 

bars represent standard deviations. *p < 0.05 compared to WT. 

 Δsmf-1 and ΔcblA show fewer pili when visualized on TEM  

 Negatively stained TEM images of wild-type Stenotrophomonas maltophilia K279a 

revealed many hair-like appendages ubiquitously covering the cell. However, images of Δsmf-1 

and ΔcblA show many fewer appendages with Δsmf-1 completely lacking pili and ΔcblA having a 

few appendages, though many fewer than WT (Fig. 2.5).  
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Figure 2.5. TEM images of (A) WT, (B) Δsmf-1, and (C) ΔcblA. Negatively stained TEM 
images show lack of pili in Δsmf-1 and ΔcblA compared to WT. Arrows indicate pili 

appendages. 
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 Δsmf-1 showed defects in yeast and red blood cell agglutination 

 It has been previously reported that, smf-1 has been associated with agglutination of 

chicken red blood cells (RBC) (27). To further confirm that the Δsmf-1 strain lacked functional 

activity, yeast and blood cell agglutination assays were performed. Yeast agglutination has not 

been shown previously to be associated with this pilus system. These data suggests that the Δsmf-

1 shows much less agglutination of both yeast cells and RBC compared to WT (Fig. 2.6A and 

2.6B). In the RBC assay, WT agglutination was observed until the 1:16 dilution whereas Δsmf-1 

failed to agglutinate even in the most concentrated sample. 

 

Figure 2.6. Agglutination of yeast and red blood cells is defected in Δsmf-1 strain. (A) Yeast 
agglutination of WT and Δsmf-1 (B) Hemagglutination of WT and Δsmf-1 using chicken red 

blood cells; top numbers show dilution factors. 
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 cblA is present in many of the CF clinical isolates 

 A collection of 52 CF S. maltophilia clinical isolates were screened for the cblA gene. If 

cblA affects clinical phenotypes, then it should be present in most clinical isolates. Using PCR to 

screen for the cblA gene, we found that 63% (33/52) of clinical isolates had the cblA gene encoded 

in their genome suggesting that cblA is a clinically relevant gene (Fig. 2.7). 
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Figure 2.7. CF clinical isolates indicate 
presence of cblA gene. The cblA gene is 
around 800bp and highlighted in the red 

dotted line box, amplified using 3833F/3833R 
primers. The last well shows positive control 

(K279a genome DNA: “+”) and left side is the 
ladder with the indicated fragment size. This 
image is a composite of two separate gels.
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 Growth kinetics of Δsmf-1 and ΔcblA were the same compared to wild-type 

To rule out the possibility that attachment repression in the Δsmf-1 and ΔcblA strains was 

due to reduction in growth rate, we examined the growth kinetics of planktonic cells in LB. Both 

mutants displayed growth equivalent with the wild type and complemented mutant strains (Fig. 

2.8). 

 

Figure 2.8. Mutant strains grow equally as well as the wild type in LB. No statistical 
differences were observed between the growth kinetics of wild type (WT), Δsmf-1, and ΔcblA in 

LB. 

 Δsmf-1 and ΔcblA show defects in attachment and biofilm formation on airway cells. 

 Bacteria attached to CFBE cells after initial attachment (1 hr time point) and long-term 

biofilm (14 hr time point) were quantified. Later time points could not be quantified due to 

increased cell death. Both Δsmf-1 and ΔcblA strains showed about a an approximate 100- fold 

decrease in attachment after 1 hr incubation and 14 hr incubations. Δsmf-1 displayed a was slightly 

more defected in attachment to CFBE cells compared to ΔcblA (Fig. 2.9A and 2.9B).  
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Figure 2.9. Δsmf-1 and ΔcblA is defective for attachment and biofilm on CFBE airway cells. 
(A) Attachment efficiency was quantified by measuring CFU/mL after 1 hr incubation at 37 °C. 
(B) Biofilm levels were measured at 14 hr. The results are representative of three independent 

experiments carried out in triplicate (n = 3) and error bars represent standard deviation. *p < 0.05 
compared to WT. 

 Δsmf-1 and ΔcblA elicit less of an immune response compared to WT after 14hr 
infection. 

After infecting the CFBE cells with WT and the mutant strains, ELISAs were performed on 

the supernatant at either 4 hr or 14 hr infection time points. After 4 hr, TNF-α secretion was not 

significantly different between WT and mutant strain (Fig. 2.10A). However, there was 

significantly less TNF-α secretion at 14 hr time point when infected with either Δsmf-1 or ΔcblA 

strains compared to WT (Fig. 2.10B). 

  
Figure 2.10. Δsmf-1 and ΔcblA induce less TNF-α expression when infected on CFBE cells 
after 14 hr. (A) TNF-α expression after 4 hr infection showed no significant difference when 
infected with Δsmf-1 and ΔcblA compared to WT. (B) After 14 hr infection, TNF-α secretion 

was significantly reduced when CFBE cells were infected with Δsmf-1 and ΔcblA compared to 
WT. The results are representative of three independent experiments carried out in triplicate (n = 

3) and error bars represent standard deviation. *p < 0.05 compared to WT. 
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 Discussion 

 Role of gpmA in attachment on abiotic and biotic surfaces 

The molecular mechanisms by which S. maltophilia initiates and maintains biofilm are 

poorly understood. This study, found that gpmA mediates S. maltophilia adherence to an abiotic 

surface and to human airway cells (Fig. 2.1 and Fig. 2.3). The gpmA gene encodes the glycolysis 

enzyme phosphoglycerate mutase, catalyzing the interconversion of 3-phosphoglycerate and 2-

phosphoglycerate (60). Importantly, S. maltophilia contains genes for a complete Entner-

Doudoroff alternative glycolysis pathway, and so it is likely to survive disruption of genes in the 

later stage of “standard” glycolysis. Indeed, the observed adherence phenotype is not due to a 

growth deficiency (Fig. 2.2) thus indicating a specific defect in either detecting the surface or 

synthesis of an adhesion molecule.  

Previous studies have shown the importance of GpmA involvement in adherence of other 

organisms. Interestingly, phosphoglycerate mutase is upregulated in Staphylococcus aureus 

biofilm formation versus planktonic growth, highlighting its importance across different 

pathogenic species (61). In Streptococcus suis, phosphoglycerate mutase binds to host fibronectin 

and collagen type I (62).  Similarly, in the yeast Candida albicans, phosphoglycerate mutase 

(Gpm1p) can localize to the cell wall, where it can facilitate binding to host proteins, possibly as 

a mechanism of immune evasion during infection (63). It is unknown whether S. 

maltophilia GpmA is similarly localized to the cell surface, though this action could directly 

explain the attachment defect in the ΔgpmA strain. Furthermore, a separate S. maltophilia 

transposon mutagenesis screen identified additional glycolysis/gluconeogenesis enzymes 

(glyceraldehyde 3-phosphate dehydrogenase and pyruvate dehydrogenase) as involved in biofilm 

formation, suggesting a unique role for carbohydrate metabolism in S. maltophilia biofilm 

formation, possibly through effects on extracellular matrix production (64). Alternatively, 

gpmA might contribute to production of a metabolite important for synthesis of an adhesive 

molecule. As in other biofilm forming bacteria, pili and flagella have been implicated in S. 

maltophilia adherence (39). Thus, it is possible that gpmA affects fimbrial or flagellar synthesis. 
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 Pili mediated attachment and biofilm  

 The factors that mediate S. maltophilia attachment and biofilm formation on abiotic and 

biotic surfaces are poorly understood. In many bacteria, initial adherence to host epithelial cells is 

of key significance for initial colonization and infection, often mediated by pilus systems (32). Pili 

are also highly immunogenic, playing a significant role in the virulence and pathogenesis during 

infections. This study highlights two important pilus mediators, smf-1 and cblA, that are required 

for S. maltophilia biofilm initiation and long-term formation on abiotic surfaces and CFBE cells 

(Fig. 2.4 and Fig. 2.9). Deletion of cblA and smf-1 lead to almost complete absence of pili 

appendages visualized on negatively stained TEM images compared to WT, indicating that these 

two pilus systems are the primary appendages on S. maltophilia (Fig. 2.5). Hemagglutination of 

chicken red blood cells (RBC) has previously been described (27) to be mediated by Smf-1 and, 

indeed, the Δsmf-1 strain had defects in RBC agglutination confirming the phenotype of the strain 

(Fig. 2.6B). Furthermore, yeast agglutination has been shown to be mediated by pili appendages 

in bacteria (65), this study showed that deletion of smf-1 resulted in defects in yeast agglutination, 

suggesting smf-1 has a role in yeast agglutination (Fig. 2.6A).   

 Biofilm formation involves many factors including attachment to host cells and surfaces, 

attachment to adjacent bacterial cells, and the formation of the polysaccharide matrix. This study 

demonstrates that cblA is a clinically relevant gene and is found in 33/52 (63%) of our CF S. 

maltophilia clinical isolates (Fig. 8). Considering cblA deletion of cblA leads to defects in 

attachment and biofilm formation, it can be suggested that this pilus system is important during 

CF infection and mediates initial and long-term colonization on host cells. Previous studies have 

also shown this to be true for smf-1 because it is only present in S. maltophilia clinical isolates 

(33). Taken together, these data suggest that smf-1 and cblA genes are likely genes involved in S. 

maltophilia CF pathogenesis and play a major role in cell attachment and biofilm formation during 

infection. In the attachment and biofilm assays, Δsmf-1 and ΔcblA effect attachment and biofilm, 

though to different extents. The Δsmf-1 strain displayed a greater attachment and biofilm formation 

defect on abiotic surfaces and CFBE cells than ΔcblA. While both showed a significant difference 

compared to WT, there was a clear difference in the extent of the defect, suggesting that these pilus 

systems are involved in different steps of the biofilm process. A previous study suggested that smf-

1 was involved with attachment to adjacent cells and host cells (27). In Burkholderia cepacia, 

CblA has been shown to promote attachment and transmigration on squamous epithelial cells, and 
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given their homology, this may suggest that CblA plays similar roles in S. maltophilia biofilm 

formation (66). It is possible that both genes are working in parallel to mediate either adjacent 

bacterial cell attachment, host cell attachment, or both.  

Pili appendages are very immunogenic to the host and can initiate secretion of a plethora 

of interleukins by host cells. Studies have shown that Smf-1 can stimulate the innate immune 

response by secretion of IL-1β, TNF-α, and IL-8 in mice bladders (67). IL-1β data was 

inconclusive in this study and no difference was seen during infection by mutant versus WT (data 

not shown). This study also did not evaluate IL-8 secretion considering S. maltophilia encodes 

proteases that can degrade IL-8 (37).  TNF-α secretion was measured using ELISAs after 4 hr and 

14 hr infections on CFBE cells. Compared to WT, ΔcblA and Δsmf-1 strains were significantly 

less immunogenic and elicited less secretion of TNF-α by CFBE cells after 14 hr infections (Fig. 

2.10B).  This difference could account for decreased CFBE cell attachment, or it could be because 

of lack of pilus appendages.  

 Conclusion: Stenotrophomonas maltophilia attachment and biofilm factors 

Overall, this study highlights a glycolysis enzyme, gpmA, and two important pilus systems 

that mediate critical steps during the biofilm process on abiotic surfaces and host epithelial cells. 

Moreover, these data link biofilm formation with carbohydrate metabolism in S. maltophilia, 

suggesting a unique avenue for attacking this deadly pathogen. It can also be concluded that both 

smf-1 and cblA are mediating different stages of the biofilm process since deletion of each one 

resulted in different attachment or biofilm capacity. Understanding the roles of these pilus systems 

can result in future treatments for patients suffering from S. maltophilia infections. Attachment 

and biofilm formation to both such surfaces have important implications in nosocomial settings 

involving patient tissues, surgical equipment, and prosthetic devices. Thus, these findings have 

significant clinical importance, given the frequency and seriousness of S. maltophilia biofilm 

infections.  
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 POLB REGULATION OF THE TYPE III SECRETION 
SYSTEM IN PSEUDOMONAS AERUGINOSA 

 Introduction 

Pseudomonas aeruginosa is a critical pathogen that can be acquired from the environment 

or hospitals and can cause a vast array of infections including keratitis, acute pneumonia, 

bacteremia, and burn infections (20). One of the worst manifestations of P. aeruginosa infections 

is in CF lungs where it causes acute and chronic infections and is nearly impossible to eradicate 

due to its intrinsic antimicrobial resistance and ability to form biofilms (3), (5). The versatility and 

severity of P. aeruginosa infections is attributed to the many virulence factors that are used to 

destroy host cells, including pyoverdine, pyocyanin, and the type III secretion system (T3SS) (24). 

During the acute phase of infection, P. aeruginosa uses T3SS, a macromolecular syringe-like 

structure, to inject toxins that ultimately destroy the host cell. ExoU, ExoS, ExoT, and ExoY, the 

effector toxins released by T3SS, induce cell death by disrupting the cell host cytoskeleton, cell 

membrane, and cAMP levels thereby enhancing disease severity (20).  

Regulation of T3SS activity consists of complicated genetic networks that tightly regulate 

this critical virulence factor. The T3SS regulon in P. aeruginosa contains ~40 genes that are all 

controlled by a master regulatory protein, ExsA (68). During non-inducing conditions, ExsA is 

bound and inhibited by ExsD, the anti-activator while ExsC is inhibited by ExsE (68). Low calcium 

concentration, the presence of serum, and host cell contact are factors known to activate ExsA and 

initiate T3SS expression (68). Activation of this system leads to a partner-switching mechanism 

where ExsD binds to the anti-anti-activator, ExsC, therefore liberating ExsA to bind to the T3SS 

promoter sites and initiate transcription (Fig. 3.1) (68). It is important to note that ExsA also 

regulates its own transcription, via the PexsCEBA promoter site resulting in a positive feedback loop 

(68). Regulation of exsA transcriptional activation is also stimulated by Vfr, a global regulator of 

virulence factor expression, that is controlled by cAMP concentrations (69). Additionally, EexsA 

transcript is stabilized by the protein RsmA which leads to more ExsA protein, an example of a 

positive feedback loop (70). ExsA inhibition is has also been shown to be influenced by 

environmental factors. For example, the magnesium transporter mgtE, can inhibit exsA post-

transcriptional activity via inhibition of RsmA through the small RNAs, rsmYZ (71). Additionally, 

stress response genes such as the alternative sigma factor AlgU (AlgtT) has been shown to 
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downregulate T3SS expression (72). Further understanding the genetic networks regulating T3SS 

activity can help develop therapeutics or cures to P. aeruginosa infections.  

It was previously determined, that overexpression of the stress-induced polymerase, PolB, 

downregulates cytotoxicity via reducing pyocyanin levels and increases biofilm formation (51). 

Little is known about polB, however, one study showed that it is homologous to the DNA repair 

system, Pol II, in Escherichia coli and is activated during DNA damage (73). Considering T3SS 

is an important virulence system in Pseudomonas aeruginosa, it can be hypothesized that polB 

could also inhibit T3SS activity. Overexpression of polB lead to a decrease in T3SS promoter 

(PT3SS) activity in PA14, a traditional lab strain, and in PA103, a strain with hyperactive T3SS 

activity. It was found that overexpression of polB inhibits T3SS transcription via post-

transcriptional inhibition of the T3SS activator, exsA. However, this inhibition is exsD and rsmYZ 

independent suggesting an alternate post-transcriptional ExsA inhibitory pathway.  

 

 

Figure 3.1. Schematic of ExsA activation and inhibition of T3SS.  

 Materials and Methods 

 Bacterial strains and culture conditions 

Bacterial strains used in this study are listed in Table 3.1 (71). Expression of polB was 

performed by transforming the strains with plasmid ppolB, containing the polB gene downstream 
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from the ParaBAD promoter on vector pMQ72 (51). Plasmids were maintained in Escherichia coli 

S17-1 (74) cultured on LB agar plates or LB containing 10 µg/mL gentamicin. Isolation of the 

plasmid from E. coli was accomplished by using the QIAprep spin miniprep kit (Qiagen) according 

to the manufacturer’s instructions and transformed into the P. aeruginosa strains using 

electroporation. Transformed P. aeruginosa strains were cultured in Vogel Bonner minimal 

(VBM) medium (75) plates with 60 µg/mL gentamicin. Plasmids were confirmed by PCR primers 

p729 and p730 (53).  

Table 3.1. Strains used in this study. 

Strain Description References 
PA14 PT3SS -lacZ WT strain with ExsA-dependent PT3SS-lacZ reporter 

chromosomally integrated at CTX site. Shows 
transcriptional T3SS activity. 

(71) 

PA103 PT3SS -lacZ WT strain with hyperactive T3SS activity with ExsA-
dependent PT3SS-lacZ reporter chromosomally integrated 
at CTX site. Shows transcriptional T3SS activity. 

(75) 

PA103 exsA-lacZ WT strain with PlacUV5-driven exsA translational reporter 
integrated in the CTX site.  

(75) 

 β-Galactosidase assays 

Strains were grown to an OD600 of 1.0 and β-galactosidase activity was measured as 

previously described (75). The substrate, ortho-nitrophenyl-β-D-galactopyranoside (ONPG), was 

used in all β-galactosidase assays involving transcriptional reporters. For translational reporters, 

chlorophenol red β-D-galactopyranoside (CPRG) was used as the substrate.  

 RNA isolation and qRT-PCR 

 Strains were cultured as described above and 1mL of culture was collected at an OD600 of 

1. Cells were pelleted and washed with 1X PBS and RNA was isolated using the RNeasy Plus Kit 

(Qiagen) according to the manufacturer’s instructions. Modifications were made to the protocol as 

described earlier (53). cDNA was synthesized using the Superscript III first-strand synthesis for 

RT-PCR (Invitrogen; Eugene, OR), according to the manufacturer’s instructions. Controls for 
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DNA contamination was tested by performing cDNA synthesis in the absence of reverse 

transcriptase. Quantitative Real-time quantitative reverse transcription-PCR (qRT-PCR) was 

performed as previously reported (53) using the LightCycler 480 Instrument (Roche). Primers 

exsARTfor and exsARTrev were used which amplify exsA from nucleotides 436 to 676. Samples 

were normalized to the fbp transcript using primers PA5110for and PA5110rev.  

 Strain construction of PA103 ΔexsD 

The plasmid for isogenic deletion of exsD, pSMC296, was used as previously described 

(74). This plasmid was maintained in E. coli S17-1 and conjugated into PA103 PA103 PT3SS-lacZ. 

Exoconjugants were selected on LB plates containing 80 μg/mL gentamicin and 20 μg/mL 

nalidixic acid. Isolated colonies were grown overnight in LB and then plated on LB agar containing 

10% sucrose to select for excision of the plasmid. Deletion mutants were confirmed using primers 

ExsDfor (GCGACATGAGCATCGTCGAC)/ExsDrev (CAGCAACAGGACGCTCTGTC).   

 Results 

 polB inhibits T3SS activity in PA14 and PA103 

β-galactosidase assays were used to measure transcriptional activity of T3SS in PA14 and 

PA103 using the transcriptional reporter PT3SS-lacZ. In PA14, overexpression of polB resulted in a 

20% reduction in β-galactosidase activity at the T3SS promoter site compared to WT (Figure 3.2A). 

Similarly, in PA103, β-galactosidase activity at the T3SS promoter site resulted in 45% less 

activity than WT when polB was overexpressed (Figure 3.2B). 
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Figure 3.2. Overexpression of polB inhibits T3SS gene expression. (A) PA14 under T3SS 
inducing conditions and in (B) PA103 compared to empty vector (pMQ72). The results are 

representative of three independent experiments carried out in triplicate (n = 3) and error bars 
represent standard deviation. *p < 0.05 compared to PA103 pMQ72. 

 polB inhibits T3SS activity via post-transcriptional regulation of exsA 

To determine the mechanism in which polB inhibits exsA activity, qRT-PCR was used to 

measure relative exsA transcript. Compared to PA103 with the empty vector, overexpression of 

polB did not repress exsA transcript abundance (Fig. 3.3A). Using an exsA translational reporter 

(75), β-galactosidase assays were used to measure exsA translation. ExsA translational activity was 

significantly reduced when polB was overexpressed in PA103 (Fig. 3.3B).  

  
Figure 3.3. polB overexpression decreases exsA translation, but not transcript abundance. 
Overexpression of polB (A) does not affect exsA transcript abundance in PA103 but (B) inhibits 
exsA translational activity compared to empty vector (pMQ72). The results are representative of 
three independent experiments carried out in triplicate (n = 3) and error bars represent standard 

deviation. *p < 0.05 compared to PA103 pMQ72. 
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 polB bypasses the RsmYZ mediated inhibition of ExsA 

 Another post-transcriptional inhibition of ExsA is mediated through the rsmYZ and RsmA 

pathway (Fig. 3.4). RsmA can be sequestered by the small RNAs, rsmYZ, which leads to decreased 

ExsA translation. Overexpression of polB in PA103 ΔrsmYZ with the T3SS PT3SS-lacZ 

transcriptional reporter still leads to inhibition of T3SS activity (Fig. 3.5).  

 
Figure 3.4. Possible pathway polB activates to inhibit ExsA transcript stability. Modified 

from Chakravarty, et al., 2017.  
 

 
Figure 3.5.  polB bypasses the rsmYZ mediated inhibition of T3SS. Inhibition of T3SS 

activity is present in PA103 ΔrsmYZ when polB is overexpressed compared to empty vector 
(pMQ72). The results are representative of three independent experiments carried out in 
triplicate (n = 3) and error bars represent standard deviation. *p < 0.05 compared to WT. 
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 polB bypasses the exsD mediated inhibition of ExsA 

 To rule out mechanisms in which polB could inhibit ExsA post-transcriptional activity, 

exsD was isogenically deleted in PA103 containing the T3SS PT3SS-lacZ transcriptional reporter. 

When polB was overexpressed in PA103 ΔexsD strain, T3SS transcriptional activity was still 

inhibited (Fig. 3.6).  

 
Figure 3.6. polB bypasses the exsD mediated inhibition of exsA. In PA103 ΔexsD with the 

transcriptional T3SS reporter PexsD-lacZ, overexpression of polB still inhibits T3SS 
transcriptional activity compared to empty vector (pMQ72). The results are representative of 

three independent experiments carried out in triplicate (n = 3) and error bars represent standard 
deviation. *p < 0.05 compared to PA103 ΔexsD pMQ72. 

 Discussion 

 The type III secretion system (T3SS) in Pseudomonas aeruginosa is a tightly regulated and 

important virulence factor that can cause extensive damage to host cells. It is not surprising that 

8% of the P. aeruginosa genome encodes multiple regulatory genes and pathways, including those 

that respond to various environmental signals (76). Some of these regulatory mechanisms include 

downregulation of virulence factors in response to stress, most likely as a survival mechanism for 

this microorganism. For example, the alternative sigma factor AlgU (AlgT) is expressed during 

chronic infection state and oxidative stress, downregulates T3SS expression (72), (77). 

Furthermore, metabolic dysregulation and nutritional stress also inhibits T3SS (78). This current 

study exhibits a different stress-related gene, polB, and its novel role in downregulating T3SS 

expression. The gene, polB, encodes for an alternate DNA polymerase that is activated during 
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DNA damage. Prior research showed that polB decreased cytotoxicity through inhibition of 

pyocyanin levels and increased biofilm formation (51). Overexpression of polB in trans showed a 

downregulation of T3SS activity in PA14 and PA103, a strain with hyper-active T3SS activity 

(Fig. 3.2) (75). This study also showed that downregulation of T3SS activity is due to inhibition 

of post-transcriptional regulation of the master activator protein, exsA (Fig. 3.3). qRT-qPCR 

analysis showed no difference in exsA transcript abundance when polB was overexpressed (Fig. 

3.3A). However, the translational reporter shows downregulation of ExsA translation (Fig. 3.3B). 

Inhibition of exsA by polB is, however, independent of rsmYZ and exsD activation, two post-

transcriptional translational inhibitors of ExsA (Fig. 3.5 and Fig. 3.6).  

 This study highlights an important inhibitory pathway for exsA activity. From this, it is 

known that polB, a stress-induced polymerase, downregulates exsA in some sort of post-

transcriptional mechanism, probably in response to DNA damage. rsmYZ was explored due to its 

activation from biofilm production and downstream effect of T3SS repression, considering polB 

increased biofilm activity (51), (75). There is another T3SS inhibitory pathway, through ptrB, that 

is activated by DNA damage (79). It would be interesting to test if polB inhibits exsA post-

transcriptional activity through this pathway. Alternatively, polB may be affecting expression of 

some upstream regulators in the exsA activation pathway. Many CF P. aeruginosa isolates exhibit 

non-functioning DNA repair mechanisms thereby enhancing the genetic mutations in a stressful 

environment (80), (81). Possibly, polB could mutate an upstream regulatory pathway that impairs 

T3SS activity via ExsA post-transcription.  

 From this study, it is now known that overexpression of polB, a stress-induced alternate 

DNA polymerase, inhibits T3SS by downregulating exsA post-transcriptional activity. Transcript 

abundance of exsA was not affected; however, the translational reporter shows repression of exsA. 

This study showed that polB bypasses the exsD and rsmYZ mediated pathways of exsA translation, 

so there is likely another, unknown mechanism in which polB is affecting post-transcriptional 

activity.  
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 STUDY CONCLUSION AND FUTURE DIRECTIONS 

Cystic fibrosis (CF) is an incurable genetic disease and is caused by dysfunction of chloride 

transport which leads to mucus build-up within the lungs (1). This mucus is a favorable 

environment for bacteria to grow and colonize and CF patients suffer from chronic bacterial 

infections, primarily mediated by biofilms. These bacterial infections cause long-term 

inflammation within the lungs, and ultimately, death of the patient (11). Many of these bacterial 

species that colonize the lungs are acquired from the environment and once they colonize the CF 

lungs, they go through genetic changes mediating a switch from a planktonic to a sessile lifestyle 

(22), (82). Understanding these genetic networks and factors that mediate biofilm formation will 

help develop treatments and cures for patients suffering from these infections. The research 

presented focused upon two species of bacteria, Stenotrophomonas maltophilia and Pseudomonas 

aeruginosa. Both of these opportunistic Gram-negative pathogens cause severe chronic infections 

and they are associated with morbidity and mortality in CF patients (4), (3).  

Early biofilm formation starts with attachment to a surface or host. Three attachment 

mediators this study focused on regarding S. maltophilia attachment were the glycolysis enzyme 

phosphoglycerate mutase (gpmA), and two chaperone usher pilus systems, smf-1 and cblA.  This 

study showed a role for all three of these genes in attachment to abiotic surfaces and cystic fibrosis 

derived bronchial epithelial cells (CFBE). Additionally, smf-1 and cblA played a role in mediating 

long-term biofilm formation on abiotic surfaces and CFBE cells and were less immunogenic, 

eliciting less TNF-α secretion, compared to WT after 14 hr infection. However, both pilus systems 

affected attachment and biofilm formation at different extents, suggesting that they have different 

roles in the biofilm process. Whether that be attachment to bacterial cells, host cells, or a role in 

transmigration, further studies can investigate the role of each pilus system and elucidate the 

specific role of smf-1 and cblA.  

During chronic infections, P. aeruginosa goes through a lifestyle switch from one that is 

predominantly cytotoxic and a second lifestyle where biofilm forming communities facilitate a 

persistent infection (22). In the cytotoxic lifestyle, or acute lifestyle, P. aeruginosa is hypervirulent 

and expresses many virulence factors such as the Type III secretion system (T3SS), which is 

downregulated during the chronic phase (22). This lifestyle switch is thought to be triggered by 

the immune system and stress-induced environments (22). This study focused on the stress-
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induced alternate DNA polymerase, polB, and its role in inhibiting T3SS activity by inhibiting 

post-transcriptional activity of the master activator protein, ExsA (73). Further studies can 

elucidate how exactly this post-transcriptional regulation works and what genetic networks polB 

is acting through to downregulate T3SS activity.  

Both studies highlight the dynamic networks of S. maltophilia and P. aeruginosa within 

the host and important factors that mediate biofilm formation and lifestyle switches. Understanding 

genetic networks regulating biofilm formation and virulence factors can lead to treatments and 

cures for patients that suffer from these types of infections.  
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