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ABSTRACT

Rituraj, PhD, Purdue University, May 2020. Numerical Methodologies for Modelling
the Key Aspects Related to Flow and Geometry in External Gear Machines. Major
Professor: Andrea Vacca, School of Mechanical Engineering.

External gear machines (EGMs) are used in a variety of industries ranging from

fluid power machinery to fluid handling systems and fuel injection applications. En-

ergy efficiency requirements and new trends in hydraulic technology necessitate the

development of novel EGMs optimized for efficiency and reliability in all of these

applications. A crucial piece in the novel EGM development process is a numeri-

cal model that can simulate the operation of EGM and predict its volumetric and

hydro-mechanical performance.

The EGM simulation models developed in the past have focused mostly on the

challenges related to the modeling of the theoretical behavior and elementary fluid

dynamics, and determining appropriate modeling schemes. Key aspects related to the

flow and geometry are either considered in a simplified manner or not considered at all.

In particular, the current simulation models assume the fluid to be Newtonian and the

leakage flows to be laminar. However, EGMs working in fluid handling applications

operate with non-Newtonian fluids. Further, in fuel injection applications, due to low

fluid viscosity and high operating speed, the internal leakage flows may not remain

laminar.

With respect to the geometric aspects, the gears in EGMs are prone to manufac-

turing errors that are not accounted by any simulation model. In addition, there is no

method available in the literature for accurately modeling the leakage flows through

curve-constricted geometries in EGMs. Further, the goal of current simulation tools

is related to the prediction of the volumetric performance of EGMs. However, an

equally important characteristic, hydro-mechanical performance, is often ignored. Fi-
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nally, the energy flow during EGM operation can result in the variation of the fluid

temperature. Thus, the isothermal assumption of current simulation tools is another

major limitation.

The work presented in this dissertation is focused on developing numerical method-

ologies for the modeling of EGMs that addresses all the aforementioned limitations

of the current models. In this work, techniques for evaluating non-Newtonian inter-

nal flows in EGMs is developed to permit an accurate modelling of EGMs working

with non-Newtonian fluids. For fuel injection EGMs, flow regime at the tooth tips

of the gears is investigated and it is shown that the flow becomes turbulent for such

EGMs. A methodology for modeling this turbulent flow is proposed and its impact

on the performance of EGMs is described. To include gear manufacturing errors in

the simulation model, numerical techniques are developed for modeling the effects of

two common gear manufacturing errors: conicity and concentricity. These two errors

are shown to have an opposite impact on the volumetric efficiency of the EGM. For

the evaluation of flows through curve-constricted leakage paths in EGMs, a novel

flow model is developed in this work that is applicable for a wide range of geom-

etry and flow conditions. Modeling of the hydro-mechanical efficiency of EGMs is

accomplished by developing methodologies for the evaluation of torque losses at key

interfaces. Finally, to account for the thermal effects in EGMs, a thermal model is

developed to predict the temperature distribution in the EGM and its impact on the

EGM performance.

To validate the numerical methodologies developed in this work, several experi-

ments are conducted on commercial gear pumps as well as on a custom apparatus

designed and manufactured in the course of this research work. The results from the

experiments are found to match those obtained from the simulations which indicates

the validity of the methodologies developed in this work.

These numerical methodologies are based on the lumped parameter approach to

allow the coupling with mechanical models for gear micromotion and permit fast
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computations so that the model can be used in optimization algorithms to develop

energy efficient and reliable EGMs.

The methodologies described in the dissertation are useful for accurate analysis of

a variety of EGMs working with different types of fluids and at wide range of operating

conditions. This capability will be valuable for pump designers in developing novel

better performing EGM designs optimized for various applications.
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1. INTRODUCTION

External gear machines (EGMs) are one of the most popular positive displacement

machines. They are compact, robust, inexpensive and easy to manufacture. Due to

these advantages, they are used in a wide range of applications. In industrial fluid

power applications (e.g. hydraulic press and forming) and mobile fluid power applica-

tions (e.g. agricultural, mining and construction equipment), EGMs are used in the

transmission of power from engines to the actuators. In automotive and aerospace

applications, they are used as fuel injection devices to supply the fuel to IC/jet en-

gines. Moreover, in vehicles, EGMs are often used in lubrication systems and all

wheel drive systems. Finally, in chemical and food processing industries, EGMs are

used for dosing, filling, extrusion and other fluid handling purposes.

1.1 Construction and principle of operation of EGMs

EGMs consist of two meshed external gears which are surrounded on the radial

side by the casing and on axial sides by front and end covers (Figure 1.1). The shafts

of the gears are supported by bearings (journal or needle-roller type) present in the

front and the end cover. For EGMs operating at very high pressures (> 200 bar),

floating elements (called bushings) are added on each side of the gears to minimize

the gap on the axial side of the gears [1]. Such units are called pressure compensated

EGMs (Figure 1.2).

The fluid displacing action of EGMs is simple and can be understood via Figure

1.3. The volume between consecutive teeth of a gear forms the displacement chamber.

In this dissertation, this volume is referred to as the tooth space volume (TSV). As

the gears rotate, the teeth of the gears enter and leave the meshing zone. When the

teeth leave the meshing zone, the volume between the teeth increases leading to the
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Front cover

End cover

Driven gear

Drive gear Casing

High pressure 
groove

Low pressure 
groove

Figure 1.1. Exploded view of a reference external gear machine (E1 in
Table 1.1). Relief grooves on the end cover are shown in the front view
on the right for clarity

Lateral bushing

Front cover

End cover

Drive gear

Driven gear

Figure 1.2. Exploded view of a pressure compensated external gear ma-
chine

suction of the fluid from the inlet. The fluid between the gear teeth is carried from

the inlet side to the outlet side along gears’ periphery. When the teeth enter the

meshing zone, the volume between the teeth decreases leading to the delivery of the

fluid to the outlet.
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DRIVE DRIVEN
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volumes

Relief 
grooves

TSV

Figure 1.3. Principle of operation of EGMs.

In the meshing zone, the fluid in the TSV is trapped between the gear teeth as

shown in Figure 1.3. To ensure that the suction and delivery of the fluid occurs even

in this configuration, relief grooves are provided on the front and the end covers as

shown in Figure 1.1. In pressure compensated EGMs, these grooves are present on

the floating elements. These grooves realize the flow connections between the trapped

TSVs and inlet/outlet of the EGM. A proper profile of such grooves permits a smooth

transition for the displacement chambers from high pressure to low pressure during

the meshing region, and avoids the occurrence of internal pressure spikes and localized

cavitation.

When the EGM works as a pump, a mechanical energy source provides rotary

motion to the drive shaft. The gears rotate in response and the working fluid is

sucked from the low pressure inlet port and is delivered to the high pressure delivery

port. In contrast, when the machine works as a motor, the pressure difference between
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the inlet and the outlet ports drives the gears and the rotational mechanical energy at

the drive shaft is then used to actuate a rotary load. In this dissertation, to avoid any

confusion, all the methodologies and results are presented considering EGMs working

as a pump. However, these methodologies are applicable for EGMs working as a

motor too.

1.2 Energy losses in EGMs

The operation of EGMs involves relative motion between the gears and the casing

(and the bushings in pressure compensated EGMs). To avoid contact between these

parts, the EGMs are manufactured such that there are clearances between them along

both the radial and the axial direction (an exaggerated clearance between the gear

tooth tip and the casing can be seen in Figure 1.4). These clearances, however,

become the source of energy losses in EGMs.

The clearances allow the working fluid to leak from the high pressure environment

to the low pressure one, negatively affecting the volumetric efficiency of EGMs. The

volumetric efficiency of a pump is defined as

ηv =
Qactual

Qth

= 1− Qloss

Qth

(1.1)

where Qloss is the volumetric loss due to leakage flows and Qth is the theoretical

amount of flow delivered at a given operating speed, Nr:

Qth = VDNr (1.2)

VD is the displacement of the pump (defined as the amount of fluid displaced per

shaft revolution).

The leakage flow is categorized into three groups. The leakage flow between the

adjacent TSVs through the clearance at the tooth tip is referred to as the tooth tip

leakage. The leakage flow between the adjacent TSVs through the axial gap is referred

to as the lateral leakage. The axial gap also allows the fluid to leak from the TSVs
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Figure 1.4. Leakages in EGMs (in pumping mode). Inset shows the
clearance at the tooth tip and the typical flow profile of tooth tip leakage.
The directions of lateral and drain leakages are shown via green arrows.

to the shafts of the gears. This portion of the leakage is called drain leakage as this

flow is used to flush the bearings that support the shafts.

The leakage flows through the clearances also give rise to the friction forces on the

surfaces involved. Moreover, as the gears mesh, relative motion between the teeth

surfaces of drive and driven gears too result in friction. In the pumping operation, to

overcome these friction forces, an additional amount of torque is required at the pump

shaft. This torque is not doing any useful work and hence is referred to as torque

loss (Mloss). Existence of torque loss leads to the definition of hydro-mechanical (or

torque) efficiency (for pumps):

ηhm =
Mth

Mactual

=
Mth

Mth +Mloss

(1.3)
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Here, Mth is the torque theoretically required to displace the fluid against a given

pressure difference ∆p:

Mth = VD∆p (1.4)

The total efficiency of the EGM is

η = ηv · ηhm (1.5)

1.3 Gear micromotion

Due to the difference in the pressure at the inlet and outlet ports of the EGM, the

gears are subject to radial forces that push the gears towards the low pressure side

(Figure 1.5). In response to these forces, the clearances between the gear shafts and

the bearings supporting them allow changes in the radial position of the gears on the

order of few microns. This phenomenon is referred to as “gear micromotion”. Gear

micromotion has an important implication on the clearance at the tooth tips of the

gears. As shown in Figure 1.6, due to gear micromotion, the gap height at the tooth

tip is high at certain locations and low at other locations. This phenomenon has a

significant impact on the leakage flow and friction at the gear tooth tips and hence

the efficiency of EGMs.

(a) Pressure forces acting on a gear. (b) Net force acting on both gears.

Figure 1.5. Illustration of pressure forces and net force on gears
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Figure 1.6. Gear micromotion and its impact on the sealing at the tooth
tips

1.4 Research motivation

In 21st century, when the energy demands are at all time high [2], it is crucial

to identify the sources of energy losses in all machines and develop technologies to

minimize these losses. Like every machine, EGMs suffer from energy losses coming

from a variety of sources as described in section 1.2. Despite this drawback, EGMs’

applications remain widespread due to a number of advantages that they bring (reli-

ability, inexpensiveness, compactness, etc.). However, there is a push in the industry

towards the development of novel EGMs designs with minimal losses. Designing such

energy efficient EGMs is a challenging problem since often there is a trade-off between

the energy efficiency and other advantages such as reliability and low cost. Current

EGM designs are based on simplified numerical procedures and a lot of empirical tests

which limits the scope of obtaining the true optimal design as well as increases the

cost of the design exploration process. To develop optimal energy efficient EGMs in a
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cost-effective manner, accurate simulation models are necessary that can be capable

of analyzing the operation of EGMs and predicting their efficiency.

Moreover, new technology trends too require expertise in the designing of novel

EGMs that can operate reliably with different working fluids and at different oper-

ating conditions. For instance, the latest trend towards the electrification of mobile

equipment requires EGMs coupled with electric motors. To design efficient and re-

liable units of such type, numerical models are required that can be used in virtual

prototyping and developing EGM designs optimized for high performance.

In recent years, several numerical tools for modelling the behavior of EGMs have

have been developed. However, all of them are isothermal models focused on the pre-

diction of volumetric efficiency of traditional EGMs operating in the fluid power appli-

cations. They do not consider the effects of different operating fluids (present in fluid

handling and fuel injection applications), manufacturing errors, hydro-mechanical

losses and localized temperature variations.

To highlight and later address these limitations, in this research, five reference

EGMs are selected that cover a wide range of applications. The details of these

EGMs are presented in Table 1.1.

Table 1.1.
Reference EGMs selected for numerical modelling in this work. The iden-
tifiers are used for refer to these EGMs throughout the dissertation.

Identifier Name/Description Working fluid Applications

E1 Zenith pump Non-Newtonian fluids Fluid handling

E2 Aero fuel pump Fuel Fuel injection

E3 Concentric GC pump Mineral oil Mobile equipment

E4
Continuous contact

helical gear pump
Mineral oil Industrial equipment

E5 Casappa PHP20 pump Mineral oil Mobile equipment
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Current EGM simulation models make certain assumptions related to key flow and

geometric aspects that inhibits accurate modelling of these EGMs. These flow and

geometric aspects and the limitations of current models in each aspect are explained

below:

A1. Nature of fluid: In fluid power applications, the operating fluids behave as

Newtonian fluids. However, in chemical and food processing industries, EGMs

like the Zenith pump (E1) have to work with fluids that are non-Newtonian i.e.

their viscosity varies with shear rate.

The current simulation models consider the operating fluid to be Newtonian

in nature and thus are unusable for simulating the operation of EGMs used in

these industries. So, there is a need of a simulation tool that can model the

operation of the EGMs working with non-Newtonian fluids.

A2. Leakage flow regime: The gap heights at the tooth tips of the gears (Figure

1.4) are typically on the order of few microns. At such small length scales, the

flow typically stays laminar. However, EGMs used in fuel injection systems,

operate at very high speeds. Moreover, the operating fluid, fuel, has very low

viscosity. Owing to these factors, the flow at the tooth tip can become turbulent.

The current simulation models assume that this flow is always laminar in nature

and hence fail to accurately predict the volumetric efficiency for these EGMs.

Thus, a proper leakage flow model for EGMs needs to be developed that ac-

counts for the turbulence of flow at the tooth tip.

A3. Manufacturing errors: The gears in EGMs suffer from certain common man-

ufacturing errors. These errors directly impact the geometry of the clearance

between the gears and the casing and hence the volumetric efficiency of the

EGMs.

The current simulation models ignore these manufacturing errors and hence

their applicability is limited to the theoretical gear geometries. Thus, to allow
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an accurate performance prediction of actual EGMs, a simulation model needs

to developed that can include the effects of these manufacturing errors.

A4. Leakage flow geometry: For a typical EGM, the tooth tip is a planar surface

parallel to the casing’s internal surface (Figure 1.4). However, EGMs with cir-

cular arc gear profiles, namely continuous-contact type EGMs [3], are becoming

increasingly popular due to their low noise emission. Instead of flat surface, the

tooth tip of these EGMs are circular.

The current simulation models provide only an approximate method to model

the leakage flow through such curved geometries. Thus, a technique of modelling

the flow through such geometries needs to be developed to permit an accurate

prediction of the efficiency of EGMs with non-traditional gear tooth.

A5. Frictional losses: During the operation of EGMs, the friction between the

internal components result in the loss of hydro-mechanical performance of these

units.

A majority of the current simulation models do not consider these losses at all.

Few models that do consider these losses have key limitations that hinder their

accuracy. Thus, a simulation model needs to be developed that incorporates

proper methodologies for the modelling of all the sources of frictional losses in

EGM to allow an accurate prediction of the EGM hydro-mechanical efficiency.

A6. Fluid Temperature: During the operation of EGMs, due to compression /ex-

pansion of the fluid and power losses, the fluid temperature varies significantly

in the EGM (especially in low efficiency operating conditions). Fluid temper-

ature effects the fluid properties, especially viscosity, that in turn impacts the

volumetric and frictional losses in the EGM.

The current simulation models assume constant fluid temperature in the EGM

which limits their accuracy. Thus, to allow an accurate prediction of the EGM
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performance, numerical techniques needs to be developed to model the temper-

ature distribution in EGMs.

It is to be noted that going forward in this dissertation, these six aspects are always

referred to by their identifiers A1 through A6.

1.5 Research objectives

The objective of the work presented in this dissertation is to develop and validate

the numerical techniques to model the operation of EGMs with focus on key aspects of

fluid flow and geometry (A1 through A6) that significantly influence the performance

of the reference EGMs. In particular, following are the research goals of this work:

1. To develop a model that can accurately simulate the operation of EGMs working

with non-Newtonian fluids.

2. To investigate the flow regime at the tooth tips of EGMs and develop a numerical

technique that can predict the leakage flow for a variety of flow conditions.

3. To investigate the effects of manufacturing errors on the performance of EGMs

by developing a numerical technique that includes these effects in the modelling

of EGMs.

4. To develop a leakage flow model for EGMs with curved tooth tip geometry.

5. To develop the methodology for the evaluation of frictional losses in EGMs

thereby, allowing the prediction of the hydro-mechanical efficiency of these ma-

chines.

6. To develop the thermal model of the EGM allowing the prediction of fluid

temperature in the EGMs.
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1.6 State of the art

In this section, a brief summary of past works done towards analyzing and mod-

elling the operation of EGMs is presented.

The first published work related to the analysis of the performance of EGMs was

the one done by Beacham [4] via graphical methods. Later, researchers studied the

basics of EGM operation via theoretical approaches. Bonacini [5] used energy method

to develop an analytical expression for the theoretical flow of EGMs. Ivantysyn and

Ivantysynova [6] and Manring and Kasaragadda [7] proposed similar models for the

theoretical flow of EGMs.

First efforts towards modelling the real behavior of EGMs were done by Foster et

al. and Manco and Nervegna. Foster et al. [8] developed a mathematical model to

predict the tooth space pressure and outlet flow of EGMs. The model considered the

leakage flow at the tooth tip but it assumed the connection of the trapped volume

to inlet/outlet to be ideal. That is, the TSV was assumed to be fully open to the

relief groove when it is trapped between the lines of contact of the gears. Manco

and Nervegna [9] were the first researchers to propose a lumped parameter based

simulation method of modeling the dynamics of fluid flow in EGMs. This method used

a linear relation to model the flow from the trapped TSV to the ports and neglected

the flow at the axial sides of gears. Despite these simplifications, the results showed

a fair match with the experiments. Realizing the potential of the lumped parameter

approach in accurate modeling of EGMs, researchers developed numerous models

with various improvements over the original approach.

Eaton et al. [10, 11] and Borghi et al. [12, 13] developed models that focused on

predicting TSV pressure in the meshing zone and the impact of cavitation on it.

Preliminary efforts to incorporate the radial forces on gears and associated gear

micromotion in the lumped parameter based models were done by Zardin and Borghi

[14], Falfari and Pelloni [15], and Casoli et al. [16]. Mucchi et al. published a set

of papers on elastodynamic analysis of gear pumps where they developed a model
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that integrated the dynamics of gear motion with the lumped parameter based fluid

dynamic model [17–19]. The model incorporated the effects of tooth profile errors

on the dynamic behavior of EGMs. Later, they also extended the model to helical

gears [20].

In the past decade, Dr. Vacca and his research group have developed their own

lumped parameter based EGM simulation tool called HYGESim (HYdraulic GEar

machines Simulator) [21]. This simulation tool has successfully demonstrated an ac-

tive coupling of the fluid dynamic model (based on lumped parameter approach) and

the mechanical model for micromotion of the gears. Via experiments, the coupled

model has proved to accurately predict the volumetric efficiency, port flow pulsation,

gear radial micromotion and case wear due to the break-in process. In recent years,

further advancements have been made on the tool. The dynamics of cavitation phe-

nomenon has been developed and implemented in this tool by Zhou and Vacca [22]

and Shah et al. [23]. New capabilities have been added in the tool to permit the

simulation of both traditional helical gear pumps [24] and continuous-contact helical

gear pumps [25]. The success of HYGESim simulation tool has allowed it to be used

in various optimization studies [26,27] to develop novel EGM designs.

With significant advancements in computational power, CFD based methods to

model the displacing action of EGMs have become popular. The commercial tool

Fluent has been used to develop 2D CFD models by Strasser [28] to study the mixing

of flow in EGMs and by Castilla et al. to investigate the nature of flow at the

suction region [29] accounting for the effects of cavitation [30]. Castilla et al. later

demonstrated a 3D CFD model of EGM using OpenFOAM libraries [31,32]. Recently,

another commercial software PumpLinx [33] has become a popular tool for modelling

and detailed flow analysis of EGMs [34,35].

The biggest downside of CFD based models is the high simulation setup and

execution time. The computational expensiveness comes from the high number of grid

points required to capture the complexity of the geometry of fluid domain (especially

the small gaps between the gears and the casing). This renders CFD based methods
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unsuitable for design and optimization algorithms. In contrast, lumped parameter

based models are very fast and yet pretty accurate and reliable as demonstrated by

multiple researchers mentioned above. Many articles can been found in the literature

that show using lumped parameter based models in optimization algorithms [26, 27,

36,37], whereas instances of using CFD models in optimization algorithms are rare.

Moreover, CFD based methods do not model the radial micromotion of the gears.

As discussed in section 1.3, this phenomenon significantly impacts the gaps at the

tooth tips hence influencing the efficiency of EGMs. Lumped parameter based models,

on the contrary, can easily be coupled with the mechanical models that evaluate the

gear micromotion. Furthermore, the fluid mesh in CFD based methods cannot have

discontinuities. This make it impossible to simulate the contact between the gears.

For these reasons, this dissertation is focused on investigation and development of

numerical techniques for lumped parameter based modelling of EGMs.

1.7 Structure of the dissertation

The dissertation is divided into 10 chapters (including this introduction section):

In Chapter 2, an overview of the simulation tool, HYGESim is provided. The

dissertation uses this simulation tool to investigate the limitations of the current

modelling approach and the numerical techniques developed in this dissertation are

integrated with this tool.

Chapter 3 focuses on the development and validation of the numerical model for

EGMs working with non-Newtonian fluids (Aspect A1).

In Chapter 4, an investigation of the nature of flow at the tooth tip is conducted

and methods for modelling of the leakage flow in turbulent flow conditions is presented

(Aspect A2).

Chapter 5 describes the numerical techniques developed to model the effects of

common gear manufacturing errors (Aspect A3). The technique is validated via a
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set of experiments and is used to analyze the effect of manufacturing errors on the

performance of EGMs.

Chapter 6 deals with the modelling of tooth tip leakage flow for gear machines

with curved tooth tip geometry (Aspect A4). The model is validated via experiments

on a specialized test apparatus.

In Chapter 7, the methodology for the evaluation of frictional losses in EGMs is

developed and validated (Aspect A5).

Chapter 8 focuses on the development and validation of the thermal model for

EGMs (Aspect A6).

Finally, Chapter 9 provides a brief summary of the work presented in the disser-

tation, whereas, Chapter 10 provides recommendations on future research directions.
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2. OVERVIEW OF HYGESIM SIMULATION TOOL

The numerical techniques developed in this work to accomplish the goals in section 1.5

will be presented in Chapters 3 to 8. However, since those techniques are integrated

in the HYGESim tool, it is imperative to provide a description of this simulation

tool before the aforementioned numerical techniques. It is important to note that the

version of HYGESim tool described here is the one that existed before the numerical

techniques developed in this research work were integrated.

HYGESim (HYdraulic GEar machines Simulator) is the EGM simulation tool

developed by Dr. Vacca’s research team in past decade. HYGESim consists of mul-

tiple modules, each handling a particular aspect of gear machine modelling (Figure

2.1). The research work presented in this dissertation mostly interacts with the Fluid

Dynamic Module. Hence, a detailed description of this module is provided in the

following section. A condensed description of other modules is provided in later sec-

tions to explain the whole simulation framework and the interaction between different

modules.

2.1 Fluid Dynamic Module

The Fluid Dynamic Module is the central module in HYGESim. It uses a lumped

parameter based approach to determine the pressure in all the control volumes and

the flow between the control volumes. Figure 2.2 shows various control volumes (CVs)

in an EGM. The CVs corresponding to the tooth space volumes (TSVs) are identified

as V1,j for the drive gear and V2,j for the driven gear where j = 1, 2, etc. increasing in

the direction of rotation of the gears. These two volumes pair, connected through gear

backlash, work together in realizing the fluid displacing action. Apart from TSVs,
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Fluid-Dynamic Module

-Analysis of Main Flow
-Effect of Porting grooves
-Aeration and Cavitation

Lateral Gap Module

Fluid Structure and Thermal 
Interaction

Loading Module

Evaluation of Instantaneous 
Radial Forces and Torque

Journal Bearing Module

Fluid Structure 
Interaction

Micro-Motion Module

Evaluation of Gears’ 
Micro-Motion

Noise FEM/BEM Module

-Fluid-Borne Noise
-Structure-Borne Noise
-Air-Borne Noise

CAD Drawings

Geometrical Module

-Flexible geometry from CAD
-Asymmetric teeth
-Cycloidal-involute Profile
-Helical Gears

Figure 2.1. Modules in HYGESim simulation tool

the fluid volumes on both the inlet and the outlet side are considered as separate CVs

too.

In each CV, the properties are assumed to be uniform and are dependent on time

only. The pressure build up equation, which is derived from the conservation of mass

law and the equation of state, is used to determine the pressure in each CV:

dpj
dt

=
K

Vj

[∑
Qin,j −

∑
Qout,j −

(
dVj
dt

)]
(2.1)

The first two terms in the square brackets represent the flow coming into the CV

and going out of the CV, respectively. The change in the volume of a CV also results

in the change of the fluid pressure and the third term represents this volume change.

The flow connections between the CVs are modelled as either orifices or Couette-

Poiseuille flow connections. The orifice connections are shown in Figure 2.3. FG

represents the connection between a tooth space volume (TSV) of the drive gear and

the corresponding TSV of the driven gear. LV represents the connection between
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Figure 2.2. Fluid domain of EGM segregated into different control vol-
umes

a TSV and the inlet volume. Similarly, HV represents the connection between a

TSV and the outlet volume. FG, LV and HV connections are along the depth of the

gears. In contrast, LG represents the connection between a TSV and the inlet volume

via the low pressure grooves present on the lateral sides of the gears. Similarly, HG

represents the connection between a TSV and the outlet volume via the high pressure

grooves present on the lateral sides of the gears. The flow through these connections

is modelled using the orifice equation:

Qi,j = sign(pi − pj) · Cf · Ωi,j ·

√
2 · (pi − pj)

ρ
(2.2)

Here the orifice flow coefficient Cf is dependent on flow Reynolds number as reported

in [38].

In Figure 2.3, areas of some of the highlighted connections may seem too big to

be regarded as orifices. Obviously, these areas increase from zero to maximum and
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HG2

LG2

HG1

LG1

FG

HV1

LV2LV1

HV2

Figure 2.3. Connections between CVs modelled as orifices. HG and LG
connections are highlighted through the trace of the high pressure and low
pressure grooves (these grooves are shown in Figure 1.1)

then decrease from maximum to zero as the gears rotate. It is important to note that

the orifice equation Eq. 2.2 comes into effect for a given orifice connecting two CVs

only when the pressures in two CVs are different. This happens only when the area

of the orifice is very small. If the area of the orifice is very big, the pressure in the

two CVs would equalize instantaneously and the orifice equation will cease to apply.

The flow connection between adjacent tooth space volumes via the gap at the

tooth tip (Figure 1.4) permits the flow due to the pressure difference between the

two TSVs (Poiseuille flow) and the flow due to the relative motion of the tooth

tip with respect to the casing (Couette flow). This flow is assumed to be laminar

(this assumption is investigated later in this dissertation) and is modelled using the

combined Couette-Poiseuille equation.
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Qi,j =

[
−
h3
i,j · (pi − pj)

12µL
+

vhi,j
2

]
· b (2.3)

The flows between adjacent TSVs (lateral leakage) and between TSVs and shaft

(drain leakage) via the axial gap are approximated as 1D flows and modeled using

combined Couette-Poiseuille equation and Poiseuille equation, respectively. To ac-

curately model these flows, 2D CFD model is also available which forms a part of

the Lateral Gap Module explained in section 2.5. However, as this dissertation is

focused on developing computationally inexpensive simulation methods for design

optimization purposes, the lateral and drain leakage flows are assumed to be 1D in

this work.

If the fluid pressure falls below the saturation pressure, air bubbles are released in

the fluid (aeration). Similarly when the fluid pressure falls below the vapor saturation

pressure, vapor bubbles are generated (cavitation). The fluid aeration and cavitation

effects are considered in Eq. 2.1, 2.2 and 2.3 by using effective fluid properties (bulk

modulus, K, viscosity, µ and density, ρ) of the mixture of fluid, air and vapor. The

details of the approach for determining the gas and vapor fraction in each CV is

presented in [39].

2.2 Loading Module

After the Fluid Dynamic Module calculates the pressure in all CVs, the instanta-

neous forces acting on the gears in the radial plane are evaluated from the pressure

distribution. The forces acting on each tooth space (fx,i, fy,i) are calculated by eval-

uating the product of the pressure inside the TSV and projection of the tooth space

area in the Cartesian directions (Figure 2.4). These forces are then added to obtain

the net force due to pressure, ~Fp on each gear:

Fp,x =
z∑
i

fx,i (2.4)
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Fp,y =
z∑
i

fy,i (2.5)

From the information about the individual forces (fx,i, fy,i) and the line of action

of these forces ((xi, yi), obtained from the Geometrical Module), the moment acting

on each gear is calculated:

M =
z∑
i

fx,i · yi −
z∑
i

fy,i · xi (2.6)

The moment on the driven gear is balanced by the moment due to the contact

force between the gears acting along the line of action. The expression of contact

force is

fc =
Mdriven

rp cosα
(2.7)

where rp is the radius of the pitch circle of the gear and α is the drive pressure angle.

Thus, the net radial force acting on each gear is:

~Ft = ~Fp + ~fc (2.8)

The total torque at the drive shaft of the EGM, then, is the sum of the torque

from fluid pressure (Eq. 2.6) and the torque from the contact force:

Mshaft = Mdrive + fc · rp cosα = Mdrive +Mdriven (2.9)

A detailed description of the Loading Module (along with the Fluid Dynamic

Module) can be found in [21].

2.3 Journal Bearing and Micromotion Module

For each gear, the journal bearing module calculates the eccentricity of the shaft

with respect to the bearing from the knowledge of the net radial load and bearing

geometry characteristics. This calculation is performed using a simplified approach

of the mobility method [40] where the Ocvirk solution [41] is used for short-bearing

configuration (width/diameter < 1) and Warner-Sommerfield solution [42] is used for
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Figure 2.4. Net radial force acting on each gear. Image on right illustrates
the evaluation of forces from pressure in a particular TSV. Ωyz and Ωxz

are the projection areas of the CV in x and y directions, respectively

finite bearings (width/diameter > 1). From eccentricity of the shaft, new position of

the gears is determined.

Alternate to this simple approach, a CFD model for journal bearing is also avail-

able. In the model, the fluid film in the journal bearing is discretized and Reynolds

equation of lubrication [43] is solved for the pressure field. An iterative procedure is

employed to obtain the journal eccentricity position that yields the pressure distri-

bution in the film to balance the radial force on the gear. More details about this

model can be found in [44].

2.4 Geometrical Module

Owing to the complexity of the geometry of EGMs, HYGESim has a dedicated

module for the evaluation of the geometrical features required by other modules. This

Geometrical Module uses the CAD drawings of the EGM or parametrized geometrical

values as input. The algorithm in the Geometric Module then defines the morphology

of each CV of the EGM and calculates its volume. This information is used in the
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pressure build up equation (Eq. 2.1). The algorithm also calculates the hydraulic

diameter and area of all the flow connections between different CVs. This information

is used in determining the magnitude of the flow through these connections (Eq. 2.2).

Finally, the algorithm evaluates the projection areas of the TSVs and their centroid

locations which is used by the loading module in the calculation of pressure forces

and moments acting on the gears (Eq. 2.6). For all these features, the algorithm also

determines how they vary with the angular position of the gears and the location of

the axes of the gears. The details of this algorithm is described in [45].

2.5 Lateral Gap Module

Lateral Gap Module is useful in the modelling of the axial compensation mecha-

nism realized by the bushings in pressure compensated EGMs (Figure 1.2). In these

EGMs, the lateral bushings are free to move and are balanced by the fluid pressure

from the gear side and the casing side. The equilibrium position of the bushings is

critical: if the bushing is too close to the gears, contact between the gears and bushing

may occur resulting in high friction and wear. On the other hand, if the bushing is

too far away from the gears, the lateral and drain leakages will become significant,

reducing the volumetric efficiency of the EGM.

The Lateral Gap Module consists of multiple solvers coupled with each other.

Fluid structure coupled solvers determine the pressure in the fluid domain and re-

sulting elastic deformation in the solid domain. Fluid structure thermal coupled

solvers determine temperature in the film and resulting thermoelastic deformation in

the solid domain. Effects of mixed lubrication is included using an asperity contact

model. Finally, axial micromotion of the gears and bushings is evaluated using the

force balance solver. Detailed description of these solvers/models can be found in [46].
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3. MODELLING EXTERNAL GEAR PUMPS OPERATING WITH

NON-NEWTONIAN FLUIDS

In this chapter, the work done to achieve the first research goal (considering Aspect

A1 in EGM modelling) is described. In particular, the methodology of modelling the

operation of EGMs is described that accounts for the non-Newtonian nature of the

working fluid.

In chemical and food processing industries, EGMs work in the pumping mode

(hence called external gear pumps) for the purposes of fluid handling and transporta-

tion. The fluids in many of these applications are non-Newtonian with viscosity

depending on the shear rate. The work in this dissertation particularly relates to the

case of shear-thinning fluids, with typical viscosity profile shown in Figure 3.1. At

low shear rates, the viscosity is constant and is referred to as zero shear rate viscosity

µ0. As the shear rate increases beyond a critical value, the viscosity starts to decrease

following the power law µ = k(γ̇)n−1 where k and n are constant for a fluid (n < 1 for

shear thinning). As the shear rate continues to increase, the viscosity slowly flattens

out to a value called infinite shear rate viscosity µ∞.

For external gear pumps operating with non-Newtonian fluids, apart from a patent

on gap geometry recommendation [47], little modelling effort has been reported in

literature. PumpLinx (a commercial CFD software) [33], has recently incorporated

non-Newtonian capabilities in the simulation of gear pumps, but this software suffers

from same limitations explained in section 1.6.

In the research work presented in this chapter, the lumped parameter modelling

approach in HYGESim is extended to model the working of external gear pumps

operating with non-Newtonian fluids. The developed model is validated against the

results from a set of experiments conducted on the reference pump E1 (Table 1.1)

with three different non-Newtonian fluids.
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Figure 3.1. Viscosity shear rate behavior of a typical shear thinning fluid

3.1 Reference pump and fluids

The EGM used as reference in this study is Zenith B9000 external gear pump (E1

in Table 1.1). The construction of this pump is shown in Figure 1.1 and the geometric

details of this pump is presented in Table 3.1. This pump is used in chemical industries

where it operates with various non-Newtonian fluids like plastics, polymers, paints

etc. [48]. The fluids used in this study are three different shear thinning fluids (zero

shear rate viscosity varying from 5 Pa s to 100 Pa s). The identity of the fluids cannot

be disclosed because of the confidentiality agreement with the industry supplying the

fluids. For this reason, the fluids are referred to as fluid A, fluid B, and fluid C, fluid

A being most viscous, fluid C being least viscous.

From the fluid properties provided by the industry and the mean shear rates

at the internal flows (refer to Section 3.7 for more details), it is observed that the
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Weissenberg number (Wi) for the flow is Wi ≈ 1 [49]. This indicates that the non-

Newtonian effects in the flow are significant during the EGM operation and thus, the

flow dynamic equations for the modelling of internal flows needs to be revised.

Table 3.1.
Geometric parameters of the reference gear pump E1

Parameters Values

Displacement 30 cc/rev

Number of teeth 22

Gear diameter 50 mm

Gear width 48 mm

Radial clearance at the tooth tip 35 µm

Journal bearing radial clearance 14 µm

3.2 Modelling of orifice flow

As explained in section 2.1, certain internal flow connections in EGMs are modelled

using the orifice equation (Eq. 2.2). This form of the orifice equation, however, is

only valid for Newtonian flows. So, a different orifice flow relation is needed to be

determined that is suitable for non-Newtonian flows. In the following subsections,

the methodology of developing the non-Newtonian orifice equation suitable for the

modelling of internal flow connections in gear pumps is described.

3.2.1 Past efforts in orifice flow modelling

For non-Newtonian flows through orifices, efforts have been made in past by Salas-

Valerio and Steffe [50], McNeil et al. [51], and Pal [52] to relate the orifice discharge

coefficient to other flow parameters like Reynolds number. Other researchers have

come up with a different method of modeling the orifice flow by relating dimension-
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less pressure drop (Euler number/pressure loss coefficient/head loss) to other dimen-

sionless quantities. Edwards et al. [53] reported head losses for flows through orifices

(among other pipe fittings) and correlated it to Reynolds number for different orifice

diameter ratios (β). Das and his research team [54, 55] studied the flow of aqueous

solutions of sodium salt of carboxy methyl cellulose through orifices and developed a

dimensionless relationship among Euler number, Reynolds number, and orifice diam-

eter ratio β. Bohra [56] conducted experiments involving the flow through orifices of

different diameters, thickness, and at different temperatures. From results of those

experiments, he developed orifice flow models relating Euler number to Reynolds

number for both low and high Reynolds numbers. Ntamba and Fester and Chowd-

hury and Fester [57,58] conducted experiments with Kaolin, carboxymethyl cellulose,

and Bentonite and developed correlations between pressure loss coefficient, β, and

Slatter Reynolds number [59]. The relations proposed by these researchers and their

applicability are summarized in Table 3.2.

From the table, it is evident that the correlations suggested in past are applicable

for orifice diameter ratio β ≥ 0.2. Only Bohra’s correlation is applicable for lower

β, but only for orifices of finite thickness (l/do ≥ 0.32). However, the connections

modelled as orifices in external gear pumps are sharp orifices. Modelling these con-

nections as sharp orifices has shown to better describe the flow dynamics by various

researchers in past [60–62]. Moreover, the orifice flow is significant when the gear

teeth enter the meshing zone (Figure 2.3), where this flow represents the pumping

action. The flow at low orifice diameters are specifically important because that is

when the TSV is decreasing in volume and the rate at which the fluid escapes the

TSV determines the features of the outlet flow and the level of pressure in the TSV.

This will be further illustrated with the help of results later in this chapter. So, it is

important for the model to have an accurate measure of flow through orifices of lower

β.
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3.2.2 Non-dimensional orifice flow model

Owing to the limitations presented in the previous subsection, a new orifice model

is developed in this work that is applicable for small apertures. The model devel-

opment involves identification of key dimensionless parameters influencing the orifice

flow and then usage of experimental techniques to establish functional relationships

among them.

The pressure drop across the orifice depends on the following parameters: the

orifice diameter ratio, flow through the orifice, and fluid properties like density and

viscosity.

∆p = f
(do
D
, v, ρ, µ

)
(3.1)

Using Buckingham’s Π theorem, the dimensionless numbers obtained are Euler num-

ber (Eu), Reynolds number (Re), and orifice diameter ratio (β).

Eu =
∆p

0.5ρv2
(3.2)

Re =
ρvdo
µ

(3.3)

β =
do
D

(3.4)

Generalized Reynolds number used in the past to study non-Newtonian flows [51,

55, 62] has a limitation that it only accounts for the power law behavior of the fluid

viscosity. However, real shear thinning fluids often have Newtonian plateaus at low

and high shear rates (Fig. 3.1). Hence, in this study, Reynolds number expression is

the same as that for Newtonian fluids with the exception that the viscosity is not a

constant but is determined from the shear rate using Carreau-Yasuda law of viscosity.

µ = µ∞ + (µ0 − µ∞)
[
1 + (λnγ̇)a

]n−1
a (3.5)

where the average value of the shear rate at the orifice can be approximated as shown

in [56]:

γ̇ =
3n+ 1

4n

32Q

πd3
o

(3.6)
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This law allows the viscosity to reach Newtonian plateaus at high and low shear

rates and behaves as power law in between. Many real fluids (including all fluids used

in this study) follow this law.

Thus, the desired orifice equation is expressed as

Eu = f(Re, β) (3.7)

To determine this functional relationship, distinct set of experiments were con-

ducted to obtain numerous data points for different Re (by changing flow velocity

and fluid) and β (by changing orifice diameters).

3.2.3 Experimental setup

The experiments were conducted at the facility of the company sponsoring this

research, so, only a brief description of the setup is provided here.

ISO schematic of the hydraulic circuit for the experimental setup is shown in

Figure 3.2. An electric motor drives a positive displacement pump (here Zenith

H-9000 external gear) which delivers the flow through an orifice. In experiments,

the diameter of the transmission lines used was 19.05 mm. Three sharp orifices of

diameters 3.175 mm, 1.5875 mm, and 0.79375 mm were used. Hence, the orifice

diameter ratio was 0.16, 0.08, and 0.04. The orifices were made from 3.175 mm stock

but were cut on low pressure side with 45° bevel making narrowest part sharp as

knife edge. Two pressure transducers were mounted 254 mm upstream and 19.05 mm

downstream of the orifice to measure the pressure drop across the orifice. A Coriolis

type flow meter was placed downstream of the orifice to measure the flow rate. Three

different shear thinning fluids were used with zero shear rate viscosity varying from

5 to 100 Pa s.

Figure 3.3 shows how the viscosity of fluid C varies with the shear rate. The mea-

surement of viscosity was done on Couette type rotational and capillary viscometer to

obtain the data at low and high shear rates, respectively. Such variation of viscosity
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Figure 3.2. ISO schematic of the hydraulic circuit for orifice flow investi-
gation

can be modeled by Carreau-Yasuda law (Eq. 3.5) and as shown in Fig. 3.3, this law

matches very well with the experimentally obtained data.

The experiments were conducted to obtain several data points by varying the

pump speed, changing the orifice plates and changing the fluid. All the experiments

were conducted at 21 ◦C, eliminating the temperature dependence of viscosity.

3.2.4 Results and model development

From the experimental data collected, the value of dimensionless numbers Eu,

Re and β were obtained for each datapoint. Figure 3.4 shows the variation of Euler

number with Reynolds number. The trend of Eu versus Re is similar to what has

been reported by Bohra [56] and Chowdhury and Fester [58], though difference in
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Figure 3.3. Normalized viscosity shear rate plot for fluid C. The dots
indicate the data points obtained from viscometric measurements. The
line is obtained from Carreau-Yashuda law.

orifice geometry and range of correlation applicability makes quantitative comparison

unreasonable.

On the basis of dimensional analysis and data analysis, following correlation is

proposed:

Eu =
k1

Rek2βk3
(3.8)

where k1, k2 and k3 are constants that were determined by the regression analysis

on the data collected. Since the data spans several orders of magnitude, performing

regression in the logarithmic scale ensures uniform precision at both lower and higher

order data. Logarithm of Eq. 3.8 was taken to obtain

logEu = log k1 − k2 logRe− k3 log β (3.9)
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Figure 3.4. Eu versus Re for different orifice diameter ratios for different
fluids

It can be seen in Figure 3.4 that Eu − Re curve slope changes around Re = 20.

So, separate regression analyses were done on the data with Re < 20 and Re > 20.

For Re < 20, the value of constants obtained from the regression analysis is shown in

Table 3.3.

Table 3.3.
Constants in Eq. 3.9 for Re < 20

Constants Value Standard deviation

log k1 1.959 0.078

k2 0.862 0.010

k3 0.412 0.071
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The final correlation after substituting the value of the constants is:

Eu =
91.1

Re0.862β0.412
(3.10)

The R squared value (goodness-of-fit measure) for this correlation is 0.9924, and

standard error is 0.123.

For Re > 20, the value of constants obtained from the regression analysis is shown

in Table 3.4.

Table 3.4.
Constants in Eq. 3.9 for Re > 20

Constants Value Standard deviation

log k1 1.187 0.062

k2 0.330 0.020

k3 0.339 0.051

The final correlation for Re > 20 is given by

Eu =
15.4

Re0.330β0.339
(3.11)

The R squared value for this correlation is 0.8507, and standard error is 0.067.

Figure 3.5 shows that the Euler number predicted by the correlations closely

matches the experimental data. Figure 3.6 shows Eu versus Re comparison for the

measured data and that obtained from the proposed correlations which again shows

a close match. These comparisons validate the correlations.

To conclude, Eq. 3.10 and Eq. 3.11 form the non-Newtonian orifice flow relation

which is used in the modelling of internal connections in EGMs.
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Figure 3.5. Comparison of the Euler number predicted by the correlations
proposed versus the Euler number from the experimental data

3.3 Modelling of leakage flow

As explained in section 2.1, in lumped parameter approach, the tooth tip leakages

(inset in Figure 1.4) and the lateral leakages in EGMs are modelled as combined

Couette-Poiseuille flow. The form of Couette-Poiseuille equation in Eq. 2.3 is only

valid for Newtonian flows. However, the shear thinning fluids too exhibit regions of

Newtonian behavior when the shear rate in the flow is lower than“low critical shear

rate”, γ̇cr,low, or higher than “high critical shear rate”, γ̇cr,high (Figure 3.1). Thus,

Eq. 2.3 is still valid in these regions. In the power law region, the combined Couette-
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Figure 3.6. Eu versus Re comparison between experimental data and
those obtained from proposed correlation

Poiseuille flow expression developed for power law fluids by Tadmor and Gogos [63]

is applicable:

Q =
vbh|6G|ssignG

(1 + s)(2 + s)

[
(1− Λ)|1− Λ|1+s + Λ|Λ|1+s − (2 + s)|Λ|1+s

]
(3.12)

where s = 1/n and G is dimensionless number given by

G =
hn+1

6kvn
∆p

L
(3.13)
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and Λ is obtained from

|Λ|1+s − |1− Λ|1+s +
1 + s

|6G|ssignG
= 0 (3.14)

For drain leakage, where only the pressure difference drives the leakage flow, the

above set of expressions simplify to

Q = −2b
|G′|ssignG′

s+ 2

(h
2

)s+2

(3.15)

where

G′ =
1

k

∆p

L
(3.16)

The decision of whether to use the Newtonian formulation or the non-Newtonian

formulation at any instant in the simulation is made on the basis of mean shear rate,

γ̇, in the flow.

The velocity profile for Newtonian Couette-Poiseuille flow from [63] is given by

v

v
= ξ − 3ξ(1− ξ) h

2

6µv

∆p

L
(3.17)

where ξ is the dimensionless coordinate in the direction of gap height, ξ = y/h.

From this equation, the shear rate can be evaluated as:

γ̇ =
dv

dy
=

v

h

[
1− 3(1− 2ξ)

h2

6µv

∆p

L

]
(3.18)

When the pressure difference is very small, the shear rate is nearly constant. When

the pressure difference is high, the shear rate does vary from 0 to a maximum value

(Figure 3.7(b)). However, the mean shear rate is still a good approximation.

Figure 3.8 shows the flowchart of the algorithm used in selecting the appropriate

formulation.

3.4 Modelling of journal bearing

In EGMs, the gears are typically supported by journal bearings. In the reference

pump E1, the gears and shafts are manufactured from two different parts. The drive
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Figure 3.8. The flowchart of the algorithm used in selecting the Couette-
Poiseuille flow model

gear and its shaft are rotationally locked by a key. This shaft and the holes on the

front and back cover (Figure 3.9) form a journal bearing pair. On the driven side,
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the shaft is fixed and the gear rotates freely on it. Hence, the hole in the driven gear

and the shaft form the journal bearing pair.

For Newtonian fluids, the mobility method of determining the eccentric position

of the journal in the bearing (explained in section 2.3) works very well. However, for

non-Newtonian fluids, an alternate approach is required.

Dien and Elrod [64] provide a generalized Reynolds equation for non-Newtonian

fluids, whose expression for journal bearings is

∂

∂x

h2+n

n

∂p

∂x
+

∂

∂y

h2+n

n

∂p

∂y
= 6kUn∂h

∂x
(3.19)

For a given eccentricity and speed, the term on the right is known and the differential

equation can be solved for pressure. Integrating the pressure in the film gives the

load carrying capacity. Solving this partial differential equation in the film requires

discretization of fluid film and an iterative procedure of solving the algebraic equation

at each grid point. These steps require a significant amount of time which goes against

the core advantage of lumped parameter model: the simulation swiftness.

Hence, prior to the pump simulation, a batch of journal bearing simulations are

conducted using the approach mentioned above to obtain a dataset which relates the

journal eccentricity to the load support and speed for a given non-Newtonian fluid.

Then, during the actual simulation of the external gear pump, this look up table is

used to obtain the instantaneous eccentricity of the journal for the load provided by

the loading module, via interpolation of the data from the table. In the lookup table,

the number of data points for eccentricity and attitude angle (the angle between the

load direction and the line joining the centers of the bearing and journal) are chosen

as 100 and 200, respectively. These numbers are obtained from a sensitivity study.

For the given nominal clearance at the bearing of the reference pump (Table 3.1),

the choice of these numbers provides appropriate resolution in the journal position

determination.
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Figure 3.9. Journal bearing interfaces in the reference EGM E1 high-
lighted in green.

3.5 Results from non-Newtonian model implemented in HYGESim

The results discussed in this section are presented with respect to the angular

position of the drive gear. Figure 2.2 shows that the angle (in HYGESim and hence

results) starts from the meshing zone towards the inlet, to outlet, and back to the

meshing zone. This sense of angle matches the progression of the tooth space as

it rotates from the inlet region towards the outlet region. The reference pump E1

typically operates at low speeds and so, all the simulation and experimental results

in this section are presented for speed < 100 rpm.

From the Geometrical Module results, a lot can be known about how different

geometric quantities vary as the gears rotate. Figure 3.10 shows the volumes of a

couple of mating tooth spaces for both drive and driven gear, as they rotate. The

angle at which the two curves intersect near 360° represents the instant at which the
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teeth pair mesh and the sum of the two working tooth space volumes is minimum.

One might expect that volume of tooth space will remain constant when it is facing

the pump casing. On the contrary, the micromotion of the gears leads to the variation

of the tooth space volume which can be seen in this figure (in this case, the gear axes

position oscillates around (-16, 5) µm and (-6, -2) µm with respect to the coordinate

system in Figure 2.2).

V
o

lu
m

e
 (

V
/V

re
f)

Figure 3.10. Volume variation of ith tooth spaces of the drive and the
driven gear as they rotate. The angle on the x axis represents the angular
position of the drive tooth space.

Moreover, the Geometrical Module can also give an idea of how the areas of

different orifice connections vary with angle (Figure 3.11).

Figure 3.12 shows how the areas of orifices and flow through the orifices HG1 and

HV1 (determined from the Fluid Dynamic Module using Fluid A) vary with drive

TSV angle. As the TSV enters the meshing zone (at 335°), its connection to outlet

(via HG and HV orifices) starts to decrease. However, since the volume of tooth
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space decreases too, the fluid escapes to the outlet via these orifices. That is why

HG and HV orifices experience significantly high flow rates as the flow area keeps on

decreasing. Accurate evaluation of these flows is important to achieve an accurate

description of delivery flow and pressure inside the TSV. This further supports the

claim of requiring an accurate orifice model for the determination of flow through

orifices of small area, which justifies the work in Section 3.2.
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A
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 /
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Figure 3.11. The variation of orifice connection areas (connecting TSVs
to inlet/outlet region) as the gears rotate.

From Figure 3.11, it can be seen that for a brief period near 356°, all the orifices

are closed. The tooth space volume is also reducing in that period. This leads to a

sudden rise in pressure of the fluid in the tooth space. As a consequence, a spike in

the TSV pressure occurs, as it appears in Figure 3.13 which shows the instantaneous

pressure in both the drive and the driven gear tooth spaces, when the simulation is

performed at reference conditions.

An interesting feature visible in Figure 3.13, is the shape of the drive gear TSV

pressurization. As the TSV enters the casing, its pressure first increases and then

decreases, before increasing again up to the outlet pressure level. This trend can

be explained through the radial sealing realized as a consequence of the gear axis’

eccentricity, with respect to the nominal gear center position. In particular, the
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Figure 3.12. Flow rates through HG1 and HV1 grooves (from drive TSV
to outlet volume) and areas of these groove openings as a function of drive
TSV angle.

radial load acting on the gear (given by the fluid pressure and the contact force) is

supported by the bearings through a proper eccentricity of the gear shaft with respect

to the bearings (shown as vector
#          »

OCOS in Figure 3.14). Additionally, under this

loading, the gear also experiences a micromotion with respect to the shaft,
#          »

OSOG

(gear and shaft are rotationally locked by the means of a key, but there are few

microns of clearance between them). This additional motion, which corresponds to the

geometrical clearance of the coupling between the gear and the shaft, is superimposed

to the motion given by the journal-bearing eccentricity, for the determination of the

actual gap between the tooth tip and internal surface of the pump casing. The net

displacement of gear with respect to its nominal position can be represented as the
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Figure 3.13. Pressurization of a tooth space volume of drive and driven
gear for simulation at reference conditions. The angle on x axis corre-
sponds to the angle of drive tooth space.

vector
#           »

OCOG in Figure 3.14. This overall displacement has a significant effect, as

shown in Figure 3.15, in terms of highly varying gap between the drive gear tooth

tip and the pump casing. Therefore, when the TSV enters the casing, the tooth tip

gap starts from a high value and reduces leading to a rise in the TSV pressure. The

opposite happens after 160°, when the tooth tip gap starts to increase leading to a

reduction in the TSV pressure.

In the reference gear pump, the driven gear shaft is fixed. The driven gear has a

hole which forms a journal bearing pair with the shaft (Figure 3.9). Due to large width

of the gear, the width of the fluid film in this journal bearing is larger as compared

to the journal bearing at the drive shaft. Hence the eccentricity of the driven gear

with respect to the shaft is low compared to the drive gear. This implies a relatively
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Figure 3.14. Illustration of gear micromotion. OC , OS and OG are the
centers of casing, shaft and gear, respectively. ~Ft indicates the direction
of net radial force acting on the gear. The shaft achieves an eccentric
position to carry the load (φ is the attitude angle). The gear moves in

direction of ~Ft by the magnitude of the clearance between gear and shaft.

uniform gap at the tooth tip of the driven gear (Figure 3.15). As a consequence, the

TSV pressurization at the driven gear happens at a more uniform rate (Figure 3.13).

3.6 Experimental Validation

3.6.1 Test setup

Within this research activity, experiments were performed at the industry spon-

sor’s facility to validate the non-Newtonian EGM simulation approach developed

and implemented in HYGESim. A proper validation requires comparisons against

steady-state measurements of the outlet flow as a function of the shaft speed and

outlet pressure as well as comparisons with dynamic measurements representative of
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Figure 3.15. Variation of gap height at a tooth tip for drive and driven
gear. The angle on x axis corresponds to the angular position of drive
tooth space.

the transients characterizing the fluid displacing action realized by the gears. Steady

state measurements of the flow through positive displacement machines are very com-

mon in engineering [65,66], and they can be based on the use of an accurate loading

apparatus at pump outlet along with the measurement of both the flow rate and fluid

pressure at the delivery.

Dynamic measurements of the flow in positive displacement machines is still an

active area of research, and measurements are less standardized. For external gear

pumps, some researchers used different techniques to measure the pressure in a tooth

space volume [22, 67] which would provide data to verify the plots such as the one

in Figure 3.13. However, this experimental technique can be invasive and expensive.

Other authors prefer to relate the dynamic features of the flow through the unit to the

instantaneous pressure oscillations which can be measured in a well-defined delivery
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apparatus [21,22,68,69]. In this research, the delivery apparatus was designed to be

similar to the apparatus in [70].

Figure 3.16 shows the ISO schematic of the hydraulic circuit built for conducting

the experiments. The delivery side of the pump consists of a constant diameter outlet

pipe with a sharp orifice at the end acting as the load to the pump. Two pressure

transducers are mounted at the middle of the pipe: a slow response one, suitable

to measure the average outlet pressure, and piezo-electric fast response transducer,

suitable to measure the dynamic features of the pressure pulsations. The former

one provides the steady state value of pressure whereas the latter provides the in-

stantaneous value of pressure (which is then used to perform the pressure ripple

comparisons). Downstream the loading element, a Coriolis mass flow meter was used

to measure the average mass flow rate.

To perform the model validation, several experiments were conducted with the

reference pump E1. The experiments were conducted at different speeds (6 − 73

rpm), with different reference fluids and in some cases, a back pressure regulator was

used to obtain data over wide range of differential pressure (10 − 75 bar) across the

pump.

3.6.2 Results and validation

In this section, the results from HYGESim are presented and comparison with the

experimental data is shown for different fluids. The first comparison (Figure 3.17)

pertains to the pressure oscillations at outlet of the pump. Figure 3.17 shows the

comparison using fluid A at different speeds (and hence different pressures, resulting

from the loading orifice), in both time domain (left) and frequency domain (right). As

noticeable from the figure, there is a close match between experiment and simulation

in terms of peak to peak values in pressure, shape of the ripple and amplitude of

different harmonics.
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Figure 3.16. ISO Schematic of Experimental setup.

It is to be noted that the plots in Figure 3.17 show the pressure fluctuation with

respect to the average pressure, and the values are not scaled. Thus, the good match

in the magnitude is from the model itself. This kind of comparison constitutes an

important validation of the model developed in this research. In fact, these pressure

transients at the outlet of the pump are related to:

• The variations of the internal control volumes (tooth space volumes and variable

internal volumes), evaluated by the Geometrical Module.

• The value and the timing of the internal connection areas, evaluated by the

Geometrical Module (in particular the meshing groove areas).

• The flow equation used to determine the flow between different control volumes

(the orifice equation).

• The compressibility modelling of the fluid.

The good agreement confirms that all these aspects are correctly modelled in

HYGESim.



49

2.5 3 3.5 4 4.5
-0.01

-0.005

0

0.005

0.01
Simulation
Experiment

(a) 24.8 rpm: Ripple

0 10 20 30 40 50 60
0

1

2

3

4

5

6
10-3

Simulation
Experiment

(b) 24.8 rpm: FFT

3.5 4 4.5 5 5.5
-0.01

-0.005

0

0.005

0.01
Simulation
Experiment

(c) 18.5 rpm: Ripple

0 10 20 30 40 50 60
0

1

2

3

4

5

6
10-3

Simulation
Experiment

(d) 18.5 rpm: FFT

Figure 3.17. Pressure ripple comparison between simulation and experi-
ment at different speeds.

The ripple comparison does not confirm the leakage modelling in HYGESim. To

validate this, the predicted steady state flow rates at the pump outlet are compared

with the experimental data. The comparison is shown in Figure 3.18 where a good

match between experiments and HYGESim can be seen.
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Figure 3.18. Comparison of the outlet flow rate predicted by HYGESim
and measured experimentally at different pressures and speeds for fluid
A.

In order to validate HYGESim for different fluids, fluid B was used to conduct

the experiments. Again, as shown in Figure 3.19, HYGESim succeeds in predicting

the outlet flow (and hence efficiency) at different pressures and different speeds.

Due to high viscosity of fluid A and B, the efficiency (predicted and measured)

were relatively close to 100% when operated with Fluid A and B. So, it was decided

to use Fluid C, a very low viscosity fluid, to conduct the experiments. Low viscosity

promotes leakages lowering the volumetric efficiency. The aim was to reduce volu-

metric efficiency significantly and verify how close the HYGESim predictions could

be.

Multiple experiments with Fluid C were done at different pressures and speeds

which led to pump volumetric efficiency variation from 90% (at lower pressures)

to 40% (at high pressures). Figure 3.20 shows the comparison between HYGESim

prediction and experimental data which again shows a good match between the two.
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B.

Good comparison between experimental data and simulation results for 3 different

fluids validates the modelling approach presented in this chapter and implemented in

HYGESim.

3.7 Effect of fluid shear thinning on pump behavior

One of the most relevant potentials of the HYGESim tool developed in this work

is that it can be used to examine the performance of the pump with different fluids

ranging from Newtonian to highly non-Newtonian (i.e. extent of shear thinning). To

highlight this aspect, simulations were performed with theoretical fluids of identical

zero shear rate viscosity (µ0) and consistency index (k) but different flow behavior

index (n) (Figure 3.21). As it can be noticed from Figure 3.22, the outlet flow of the

pump is reduced when the flow behavior index of the fluid is reduced. The reason
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Figure 3.20. Comparison of the outlet flow rate predicted by HYGESim
and measured experimentally at different pressure and speeds for fluid C.

for this behavior is given by the fact that the leakages in gear pumps are viscosity

dependent. Hence, as the flow behavior index reduces, the fluid viscosity decreases

at any particular shear rate, resulting in the increase of leakage flow.

It is often a matter of interest to determine the range of fluids that a pump can

efficiently operate with. To determine such a range of fluids, one needs to determine

the ranges of k and n such that the viscosity stays nearly the same in range of shear

rates most critical to the reference pump. In the reference pump, at a reference

operating condition, the mean shear rate at the leakage interfaces was found to be

γ̇/γ̇ref ∈ [10 , 50].

γ̇/γ̇ref = 25 was chosen as the central point at which the viscosity would be kept

constant when k and n are varied. Figure 3.23 shows the viscosity curves obtained by

varying k and n, but keeping the viscosity constant at the chosen value of shear rate.
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Figure 3.22. Outlet flow of the pump operating with the theoretical fluids
described in Figure 3.21

It can be observed that n is increased from 0.4 (highly shear thinning) to 1 where the

fluid becomes Newtonian with constant viscosity of µ/µref = 0.071.
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Figure 3.23. Viscosity curves of theoretical fluids with different flow
consistency index k and flow behavior index n. All the fluids have same
viscosity of µ/µref = 0.071 at shear rate γ̇/γ̇ref = 25, so that the viscosity
remains nearly the same in the range of critical shear rates of the pump.

Simulations performed for these fluids show that the volumetric efficiency of the

pump stays within 1% of variation for the considered range of fluids. This is expected

since the fluids have been carefully chosen such that the viscosity at the critical regions

of the pump (regions of high leakages) remain similar. Therefore, it is expected to

have small variation in the leakage flows.

The TSV pressurization remain similar in all the considered cases. However, the

TSV experiences higher pressure spikes at the meshing zone when the pump operates

with Newtonian fluid, compared to the case of non-Newtonian fluids. Figure 3.24

shows a specific case where the drive TSV pressure for Newtonian fluid is compared

to the non-Newtonian fluid with n = 0.5 (both fluids obtained from Figure 3.23). The

cause of this higher pressure spike is the higher resistance to flow exchange between

the drive gear TSV and the driven gear TSV via the gear backlash (see FG connection

in Figure 2.3). Shear thinning behavior of the non-Newtonian fluid allows for higher
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flows between these TSVs, when each of them is experiencing a rise in the pressure due

to the reduction of volume. This flow helps reducing the pressure spike associated

with the meshing process. For the case of Newtonian fluid, this flow is lower and

hence, the pressure spike is high.
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Figure 3.24. Drive gear TSV pressure comparison for Newtonian fluid
and the non-Newtonian fluid with n = 0.5 (chosen from Figure 3.23).
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4. INVESTIGATION ON THE FLOW REGIME AT THE TOOTH TIPS

In this chapter, the second crucial aspect of EGM modelling, nature of the flow

regime at the tooth tip, is investigated. Careful modelling of the leakage flow over the

tooth tips in EGMs (Figure 1.4) is critical for the development of accurate simulation

models for EGMs. The prediction of overall performance parameters such as the

volumetric efficiency highly depends on it. Moreover, this leakage flow plays a key

role in determining the instantaneous pressurization of TSVs as they rotate from the

inlet side towards the outlet side. The course of the TSV pressurization determines

the radial pressure distribution around the gears (Figure 1.5), thus the radial force

loading acting on the journal bearings supporting the gears. The location of the

gear axes of rotation, and therefore the gap between each tooth and the casing,

depends on these loads. Additionally, if the unit is pressure compensated, the TSV

pressure distribution highly influences the behavior of the lateral gap compensation

system [71].

To develop an accurate model of leakage flow over the tooth tip, it is important

to have a thorough understanding of the nature of the flow over tooth tip (Aspect

A2) and how it impacts the magnitude of leakage flow rate. The lumped parameter

models for EGMs developed in past [9,15,17,21,72,73] assume the nature of this flow

to be laminar and use Couette-Poiseuille equation to model this flow:

Q =
[
− h3∆p

12µL
+

vh

2

]
· b (4.1)

This equation is referred to as “laminar flow relation” in this chapter.

This assumption is valid for EGMs operating with high viscosity fluid and at

relatively low speeds which is typical of the units used in hydraulic control systems and

fluid handling systems. Past works, such as [21], show the validity of this assumption

via comparison of the volumetric efficiency obtained from the model with experiments.
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However, EGMs are also used widely in fuel injection applications (e.g. reference

EGM E2) where the working fluid, the fuel, has much lower viscosity. Moreover,

the EGM operating speeds in these applications are much higher. Thus the laminar

assumption of the leakage flow over the tooth tip may no longer be valid.

In this chapter, the nature of fluid flow over the tooth tip of EGMs is investigated

by simulating this flow via a CFD tool. Based on the simulation results and published

work, an appropriate flow model is proposed that is applicable for a wide range of

operating conditions. The new model is integrated within the HYGESim tool, using

which it is shown how this model complements and in certain cases corrects the

prediction made by traditional approaches.

4.1 CFD modelling of the flow over the tooth tip

The precise nature of flow (especially turbulent features) in any type of flow field

can only be determined via experiments or direct numerical simulations. However,

experiments that allow observing turbulent features of flow require significant efforts

involving PIV methods [74–76]. Direct numerical simulation, on the other hand,

requires a lot of computational time and is feasible only for low Reynolds number

flows [77,78].

Fluent simulation tool [79], instead, provides a quick way of simulating flows

ranging from laminar to turbulent regimes. The flow solver in Fluent is based on

Reynolds-averaged Navier-Stokes equations (RANS) approach where turbulence mod-

els are used for the Reynolds stress terms [80]. Even though the solutions to RANS

equations do not resolve small scale flow features, it does capture the macroscopic

features of the flow reasonably well, especially for simple flows like channel flows.

Considerable amount of research has been done in the past to evaluate the accuracy

of different turbulence models for various types of flows with respect to the experi-

ments [81–84].
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Thus, in the current work, the investigation of turbulence of flow over the tooth tip

of EGMs is done via modelling of the flow in Fluent CFD tool using an appropriate

turbulence model.

4.1.1 Computational Mesh

The flow over the tooth tip occurs at a length scale which at least two orders of

magnitude smaller than the size of the EGM. That is, this phenomenon is localized

at the tooth tip and hence can be isolated from the overall flow behavior of the EGM.

Figure 4.1 shows the 2D computational domain designed to study the flow at the

tooth tip. The domain is in the TSV frame of reference. The bottom wall represents

the internal face of the casing which moves with respect to the tooth with a velocity:

v =
2πNr

60
rg (4.2)

where Nr is the shaft speed in rpm and rg is the radius of the gear.

The width of the tooth tip and the inclination of flank surfaces of the gear tooth

correspond to the reference EGM E2.

With the help of ANSYS meshing tool, the fluid mesh is generated which is struc-

tured in the gap region with fixed number of cells across the gap. Outside the gap

region, the mesh is unstructured and its size grows with each succeeding layer of

elements at the rate of 2% per layer.

In turbulent wall bounded flows, the velocity profile near the wall consists of the

viscous sublayer, log layer and outer layer [84]. To accurately capture the effects of

all the layers, it is important to have the grid points very close to the walls. When

wall functions are not used, the dimensionless distance of the first grid point from the

wall y+
1 should be ≤ 1. The dimensionless distance is defined as

y+ =
yuτ
ν

(4.3)

where, friction velocity, uτ is

uτ =

√
τw
ρ

(4.4)
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Figure 4.1. Computational domain for flow over the tooth tip. The
domain is in the tooth frame of reference in which the casing surface is
moving.

Hence, the distance of the first grid point from the wall, y1, depends on wall shear

stress, τw, which can only be reliably determined from the simulation results. Hence

to determine y1, an iterative procedure is followed involving following steps:

1. Guess a value of y1.

2. Construct the mesh using inflation layer feature in Ansys meshing tool with

this value of y1.

3. Run the Fluent simulation.

4. Determine τw and correct the value of y1. Go to step 2.

It only takes 2-3 iterations to obtain a converged value of y1.

Multiple fluid domains are created with gap height at the tooth tip varying from

6µm to 100µm. Mesh sensitivity studies are conducted for each of these domains to
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choose the appropriate mesh sizes. Table 4.1 shows the meshes used in the study for

the domain with 20µm gap height and Figure 4.2 shows the convergence of flow rate

through the gap with mesh refinement.

Table 4.1.
Meshes used in mesh sensitivity study for fluid domain with 20 µm gap
height.

Mesh identifier Total number of cells

1 24358

2 43267

3 99720

4 163784

5 227012

6 348657

4.1.2 Fluent setup and solver

k − ε model and k − ω model are the most common turbulence models used in

engineering. From Wilcox [84] and Fluent help [85], k − ω model performs better

compared to k − ε model near the walls especially when flow separation is likely. In

the current analysis, the flow is indeed likely to separate at the corners of the tooth

tip. k − ω model however, is sensitive to freestream conditions. This problem was

addressed in Menter’s SST model [82] which combines the elements of k− ε and k−ω

models. In fact, SST model accurately predicts the flow through an asymmetric plane

diffuser [83,86] which has similar features of flow (e.g. wall bounded, flow separation)

as the current flow of interest. In Fluent, the SST model coefficients are calibrated by

the developers to accurately predict the flow separation from smooth surfaces. Hence,

in this work, SST k − ω turbulence model is used.
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Figure 4.2. Results from mesh sensitivity study for the domain with
20µm gap height. The simulations are conducted for v = 40 m/s, ∆p =
40 bar with Jet A-1 fluid

Pressure boundary conditions are applied at the inlet and outlet of the domain

(Figure 4.1). Moving wall boundary condition is applied at the bottom wall which

represents the relative motion of the casing’s internal surface with respect to the tooth

tip.

SIMPLEC solver is used with 2nd order spatial discretization of pressure and

momentum equations. The criteria of convergence is the reduction of scaled residuals

[85] of continuity, x and y momentum, k and ω equations below 10−6.

4.1.3 Simulation results

Figure 4.3 shows the sample results from Fluent for flow over the tooth tip where

the gap height is 20 µm and the pressure difference is 40 bar. Case 1 simulates the

tooth tip flow for fluid power application. It has an ISO VG 46 oil as the working
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fluid and the relative velocity of the casing with respect to the tooth tip is 8 m/s.

The flow streamlines for this flow case is shown in Figure 4.4. The flow rate through

the gap observed in the Fluent simulation result is 0.1528 L/min which is close to

0.1526 L/min predicted from the laminar flow Eq. 4.1.

v
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Figure 4.3. Pressure variation along the flow direction for (i) case 1:
relative velocity v = 8 m/s and ISO VG 46 as working fluid (ii) case 2:
relative velocity v = 40 m/s and Jet A-1 as working fluid

Case 2, in Figure 4.3, represents the flow over the tooth tip for a fuel injection

application. In this case, the working fluid is Jet A-1 and the relative velocity is 40

m/s. Figure 4.5 shows the streamlines for this flow case which is significantly different

on the inlet side and at the gap compared to the previous case. In particular, the

flow separates from the corner of the tooth tip as it enters the gap leading to the

formation of a recirculation zone. As a consequence, a significant pressure drop is

observed at the entrance of the tooth tip (Figure 4.3). The flow rate through the

gap observed from the Fluent simulation is 1.78 L/min which is less than half of 3.69
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Figure 4.4. Flow streamlines for case 1: ∆p = 40 bar, v = 8 m/s and
ISO VG 46 as working fluid. Inset shows absence of any recirculation at
the tooth tip entrance.

L/min predicted from the laminar flow Eq. 4.1 (∆p used in the laminar flow equation

excludes the entrance pressure drop).

Figure 4.5. Flow streamlines for case 2: ∆p = 40 bar, v = 40 m/s and
Jet A-1 as working fluid. Inset shows the recirculation zone at the tooth
tip entrance.

For further investigation, multiple simulations were carried out for a range of

pressures (0-40 bar), surface velocities (0-40 m/s) and gap heights at the tooth tip (6-

100 µm). Jet A-1 was chosen as the operating fluid. The results (a sample of which
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is presented in Table 4.2) show that at low gap heights, pressures, and velocities,

the flow is laminar and the flow relation of Eq. 4.1 accurately models the flow over

the tooth tip. However, at higher gap heights, pressures, and velocities, the flow

Reynolds number in the gap becomes very high indicating the domination of inertial

effects in the flow. The flow separates at the corner of the tooth tip at the entrance

of the gap and becomes turbulent in the gap region. From modelling perspective,

the fluid experiences a significant pressure drop when it enters the gap at the tooth

tip. Even after accounting for this pressure drop, the laminar flow relation (Eq. 4.1)

significantly overpredicts the flow as compared to the flow obtained from Fluent.

Table 4.2.
Comparison of flow over the tooth tip between Fluent and Laminar flow
equation

h (µm) v (m/s) ∆p (bar)
Fluent Laminar flow relation

Q (L/min) Re Q (L/min)

6 5 5 0.3976 201 0.4015

20 20 5 0.5624 284 0.5772

40 10 40 4.3761 4418 54.9702

65 31 40 8.3468 8428 273.0760

From these observations, it is concluded that for the range of flow conditions that

an EGM working in fuel injection applications has to operate with, the flow at the

tooth tip becomes turbulent rendering the laminar flow relation inapplicable. Hence,

there is a need of a leakage flow model suitable for turbulent flow as well as a model

to predict the entrance pressure drop.
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4.2 Analytical Modelling of turbulent flow over the tooth tip

Analyzing turbulent flow over the tooth tip via CFD simulations is useful in under-

standing the flow features, however, in lumped parameter modelling, the focus is not

on understanding the detailed flow features of turbulence. The focus, instead, is to

determine the flow rate at the tooth tip that can be used in the Fluid Dynamic Mod-

ule. To maintain the advantage of HYGESim in terms of swift simulation of EGMs,

simple analytical relations are needed that can capture the effects of turbulence at

the tooth tip.

4.2.1 Turbulent flow relations for channel flow

Investigation of turbulent wall bounded flows has been an active area of research in

past several decades both from experimental as well as modelling perspective. Exact

analytical solution for even such simple turbulent flows does not exist. Analytical

modelling of these flows are often a combination of theoretical relations and empirical

correlations. Efforts related to the modelling of wall bounded flows started from

Prandlt [87] and Karman [88] whose works related to the velocity profile close to wall

led to now universally recognized ”law of the wall” [80]. This law is applicable to

a wide range of wall bounded flows. The velocity profile away from wall is heavily

dependent on the flow parameters and multiple researchers [89–92] have proposed

relations to model this velocity profile. For channel flow, Churchill and Chan [93]

have combined the theory of flow behavior near wall with well validated empirical

correlations near center of the flow to propose the expression for velocity profile in

turbulent channel flows:

v =

[(
1 + y+ − exp{−1.75(y+/10)4}

)3

(y+)6

+
(

2.5 ln{9.025y+ + 1}+
15

4
Y 2 − 10

3
Y 3
)−3
]− 1

3[τ
ρ

]0.5

(4.5)
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where τ is the wall shear stress, Y = y/h, y+ = y(ρτ)0.5/µ and y is the distance from

the wall.

However, a major limitation of these models is the fact the they do not consider

the relative motion of the two walls in the channel. A simple but poor approximation

for modelling Couette-Poiseuille flow can be the addition of the Couette flow velocity

vY to the velocity profile in Eq. 4.5.

Significant works have also been done towards the modelling of turbulent flow in

the bearings [94–96]. Mentioning this is relevant here since these approaches often

start with developing a model for channel flow and then applying it to the bearings.

Among them, the model developed by Ng and Pan [94] can be useful in the current

work due to its non-dependence on experimental data:

Q = vh
(1

2
−GxBx

)
(4.6)

where

Bx =
h2

µv

∂p

∂x
(4.7)

and Gx is a function of vh/ν provided graphically in their original paper.

The limitation of this model is that the derivation of this model includes certain

linearization steps which may lead to poor accuracy at extreme flow scenarios.

The models proposed by “Churchill and Chan” and “Ng and Pan” are appropriate

for the requirement of the lumped parameter model. Due to the presence of empirical

relations embedded in these models, it is obvious that these models are not applicable

for all range of flow parameters. To decide which one of these is more accurate for

the modelling of flow over the tooth tips in EGMs, comparison of these models with

Fluent results was done for a set of flow parameters commonly encountered by EGMs.

In particular, there are two drivers of flow over the tooth tip:
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• Couette driver: The relative motion of the casing with respect to the tooth tip

(in TSV frame of reference). This driver can be expressed with the following

dimensionless number:

Rec =
ρvh

µ
(4.8)

• Poiseuille driver: The pressure difference across the tooth tip. Following dimen-

sionless number represents this driver

b+ =
(0.5h)1.5

µ

[
ρ

∆p

L

]0.5

(4.9)

Here ∆p excludes the pressure drop at the entrance of tooth tip gap.

The range of Rec ∈ [0, 4000] and b+ ∈ [0, 300] covers a wide range of flow conditions

typically present at the tooth tip of EGMs.

Figure 4.6 shows that the model proposed by Ng and Pan performs poorly at high

b+. In contrast, the model proposed by Churchill and Chan is accurate for a wide

range of b+ and Rec. The accuracy of this model suffers at low values of b+ and Rec.

This happens because at low values of b+ and Rec, the flow is likely to be laminar

and the empirical relations in the model no longer apply. The laminar relation plot

in Figure 4.6 confirms this hypothesis by its good performance at low values of b+

and Rec.

From these results, it is concluded that the relation from Churchill and Chan

should be used for modelling the flow over the tooth tip when Rec > 2000 and

b+ > 30. For lower values of b+ and Rec, the laminar relation still works well.

4.2.2 Entrance Pressure Drop

As described in section 4.1.3, in turbulent flow regime, the flow experiences a

pressure drop as it enters the gap at the tooth tip due to the formation of recirculation

zone. From CFD simulations, it is observed that this entrance pressure drop can be up

to 95 % of the pressure difference across the tooth tip. This phenomenon of entrance
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Figure 4.6. Accuracy of the flow relations (laminar flow relation Eq. 4.1,
Ng and Pan [94], and Churchill and Chan [93]) for the flow through tooth
tip. The color indicates percentage error of flow predicted by the relations
with respect to Fluent simulations. Existence on entrance pressure drop
prevents uniform distribution of points.

pressure drop has been experimentally studied in detail by Idelchik [60]. He expressed

the pressure drop at the entrance by the means of resistance coefficient

ξ =
∆p

0.5ρv2
(4.10)

From the Fluent simulation results, the value of ξ = 1.2 is able to predict the entrance

pressure drop fairly accurately (Figure 4.7) for a wide range of b+ and Rec. Hence

above formulation is included in the turbulence model for flow over the tooth tip.
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Figure 4.7. Comparison of entrance pressure drop prediction from Fluent
and the Idelchik model with ξ = 1.2

4.3 Results from the proposed model

The tooth tip leakage flow model for turbulent flows described in section 4.2

is implemented in HYGESim’s Fluid Dynamic Module such that it uses either the

laminar flow model (Eq. 4.1) or the turbulent flow model based on the values of b+

and Rec. Simulations are conducted for the reference fuel pump (E2), details of which

is provided in Table 4.3.

First, simulations are conducted with an ISO VG 46 mineral oil as the working

fluid and for a range of operating conditions that emulate fluid power operation.

The results show no difference between the traditional model (which assumes laminar

flow over the tooth tip and no entrance loss) and the proposed model. Figure 4.8(a)

shows the results obtained for the operating condition: 1000 rpm, 100 bar, where

the TSV pressure can be seen to be identical between the traditional model and the

one proposed in this chapter. The reason for this similarity lies in the fact that

for operating conditions of lower speeds, pressures, and higher viscosity fluids, the

Couette and Poiseuille flow drivers are small (Figure 4.8(b)) and laminar flow relation
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Table 4.3.
Geometric parameters of the reference pump E2

Parameters Values

Number of teeth 13

Gear radius 40 mm

Gear depth 25 mm

Theoretical displacement 69 cc/rev

Width of the tooth tip 1 mm

Clearance at the tooth tip 50 µm

Clearance (radial) at the bearing 35 µm

(Eq. 4.1) accurately describes the leakage flow. Hence, the results do not change with

the proposed model.

Next, simulations are conducted with Jet A-1 as the working fluid and for a range

of operating conditions that emulate fuel injection operation. Results show significant

differences between the traditional model (which assumes laminar flow over tooth tip

and no entrance loss) and the proposed model. To illustrate this, simulation results

are reported for the operating condition of 8000 rpm and 100 bar pressure. Figure

4.9(a) shows the difference in pressurization of TSV for the two models. The plot can

be understood in the following manner. The angle in the x axis indicates the angle

of the center of the TSV from the meshing zone (shown in Figure 4.10(b)). When

the TSV comes out of the meshing zone, its volume increases leading to reduction

in its pressure below the inlet pressure (10 bar). From there onwards up to roughly

90°, the TSV pressure stays the same as the inlet pressure. At this angle, the TSV

is cut off from the inlet i.e. both its leading and lagging teeth are facing the casing.

From here onwards, The TSV pressure starts to increase, its rate being dependent

on the amount of tooth tip leakage flow to that TSV. At around 145°, the leading
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(a)

(b)

Figure 4.8. Results from HYGESim for gear pump operating with ISO VG
46 as working fluid at 1000 rpm and 100 bar pressure. (a) TSV pressure
comparison between the traditional and proposed model; and variation of
gap height between the tooth tip and casing. (b) Poiseuille and Couette
flow driver values at a tooth tip.

tooth of the TSV reaches the backflow groove. Figure 4.10(a) shows the bushing in

the reference unit with the backflow groove. This groove brings the high pressure

fluid from the outlet. Hence, as soon as the TSV opens to the backflow groove, its

pressure becomes equal to the outlet pressure.

Figure 4.9(b) shows that when the TSV enters the casing, the value of b+ increases

to the values higher than the critical value of 30 indicating turbulence of flow over

the tooth tip. Hence the leakage flow determined from laminar flow assumption is

very high compared to the new model that switches to turbulent formulation once
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(a)

(b)

Figure 4.9. Results from HYGESim for gear pump operating with Jet
A-1 as working fluid at 8000 rpm and 100 bar pressure. (a) TSV pres-
sure comparison between the traditional model and proposed model; and
variation of gap height between the tooth tip and casing for the proposed
model. (b) Poiseuille and Couette flow driver values at a tooth tip.

b+ crosses 30 (Figure 4.11). Thus, the TSV in the traditional model formulation

experiences an early pressurization compared to the proposed model.

Accurate prediction of TSV pressurization is important in determining the radial

loading on the gears which has to be supported by the journal bearings. The micro-

motion of the gears depend on this radial loading. Hence, the TSV pressurization

profile ultimately effects the leakage gap at the tooth tip and associated leakage flow.

Moreover, the simulation tools for studying the axial balance in pressure com-

pensated EGMs rely on accurate information about TSV pressurization. In fact, the
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(a) Bushing with the backflow groove and high

pressure relief groove highlighted in red

�
82°155°

(b) 2D view of the gears with outline of the bushing overlaid. Angular position of

a TSV is θ, the start angle of the casing is 82° and the start angle of the backflow

groove is 155°.

Figure 4.10. Bushing on the reference unit

TSV pressure information from the model proposed here was utilized in the study

of axial compensation system in the reference pump E2 by Thiagarajan [46] where a
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Figure 4.11. Comparison of the flow over the tooth tip for simulations
with traditional and proposed models for operating condition: 8000 rpm,
100 bar with Jet A-1 as working fluid.

good match for the axial position of the bearings between experiments and simula-

tions was observed. The equilibrium position of the bearing is achieved by a balance

of pressure forces on each side of the bearing. The TSV pressure plays a significant

role in determining the force from the gear side. Hence, a good match in the bearing

position not only validated the Lateral Gap Module but also acted as an indirect

validation for the turbulence modelling of the leakage flow at the tooth tip.

The outlet flow rate for the operating condition described earlier from the tradi-

tional model and the proposed model comes out to be 548 L/min and 553 L/min,

respectively. The difference will be even bigger if the clearances at the tooth tip

and bearing are such that the gap height at the tooth tip is high even after gears’

micromotion towards the inlet. For example, if the clearance at the tooth tip and

the bearing are set to 100 µm and 60 µm, respectively, the outlet flow with tradi-

tional model and proposed model are 460 L/min (82.2 % efficient) and 553 L/min

(99.7 % efficient), respectively. This shows the significance of the proposed model for

an accurate prediction of the volumetric efficiency.

Figure 4.12 shows that the outlet flow non-uniformity prediction of the simulation

tool is lower with the traditional model compared to the proposed model that incor-
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porates turbulent flow relations. In the hydraulic systems, the outlet flow pulsation

manifests into pressure ripple that leads to noise and vibration issues. Hence, the

proposed model, when integrated with the simulation tools that model noise sources

in EGMs [97], has better prospects of accurately predicting the noise.

Figure 4.12. Outlet flow ripple comparison for simulations with tradi-
tional and proposed models for operating condition: 8000 rpm, 100 bar
with Jet A-1 as working fluid.
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5. MODELLING OF MANUFACTURING ERRORS IN EXTERNAL GEAR

MACHINES

Previous couple of chapters focused on key flow aspects and their impact on EGM

performance. This chapter and the next one deals with key geometric aspects of EGMs

that significantly influence their performance. In this chapter particularly, common

manufacturing errors on the gears are incorporated in EGM modelling (Aspect A3)

and the effect of these errors on the performance of EGMs is investigated.

In the real world, a machine cannot be manufactured with exact dimensions.

Various types of errors are introduced in a part during the manufacturing process.

To control the extent of these errors, tolerances are specified on machine drawings

as an indicator of maximum allowable error. However, the tighter a tolerance is, the

higher is the cost of manufacturing.

For gears, the manufacturing processes introduce errors on various aspects of their

geometry. ISO [98], DIN [99] and Agma [100] standards are used to classify the gears

on the basis of these errors. Mainly, these standards deal with profile errors, pitch

errors and lead errors. However, there is no emphasis on the errors related to conicity

and concentricity of the (imaginary) cylinders formed by the top lands of the gears

(i.e. tooth tips). These errors are typically on the order of few microns (up to few

tens of microns) which is at the same order as the clearances between the gears

and the casing in EGMs. Hence, these manufacturing errors impact the geometry

of the clearances at the gear tooth tips, which in turn impacts the performance of

EGMs. Experiments are an expensive and time consuming way to understand and

establish these relationships. Numerical modelling, instead, is an inexpensive and

faster method of simulating the EGM operation and study the impact of various

factors on EGM performance.
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However, among all the numerical models for EGMs developed in past (section1.6),

none consider the impact of manufacturing errors on flow characteristics of EGMs.

Furthermore, despite the existence of these models, rigorous tolerance studies are

rarely found in the literature. For EGMs, only Mucchi et al. [17] consider one of the

errors in gears: the tooth profile error, which might impact the noise and vibration

during operation. Manufacturing errors in gears have been investigated in past in

terms of their impact on the operation of gear transmissions [101–103] but those

works are tangential to the goal of this research.

The goal of the work presented in this chapter is to fill the lack of numerical ap-

proaches suitable to model the effects of critical tolerances in EGMs by developing

a numerical model that can permit investigating the impact of two common manu-

facturing errors on the volumetric performance of EGMs: the conicity error and the

concentricity error. The model builds upon the HYGESim simulation tool explained

in Chapter 2. However, a simplified model is also proposed that can be used within

other lumped parameter based models. To validate the model, experiments are con-

ducted on six units of the reference pump E3, each having a different combination of

manufacturing errors.

5.1 Manufacturing errors considered

In this study, two common errors in the gear geometry are considered that occur

during gear manufacturing: conicity and concentricity of the cylinder formed by the

top land of a gear with respect to the rotational axis.

5.1.1 Conicity

Figure 5.1 shows an example of the conicity error on a gear. If a machine drawing

for a gear indicates a diameter, say d, and a tolerance on the diameter, say ±δ, then

an acceptable gear can have a conic shape such that the diameter on one end is

dmax = d+ δ, while the diameter on the other end is dmin = d− δ.
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(a) (b)

���� �����

CASING CASING

Figure 5.1. Illustration of gear conicity: (a) perfect gear (b) gear with
conicity. The blue quadrilateral shows the cross section view of clearance
path at a tooth tip.

This shape of the gear changes the clearance geometry at the gear tooth tip as

shown via the blue quadrilaterals in Figure 5.1. Since, this clearance is responsible for

the leakage flow over the tooth tip, the conicity error directly impacts the volumetric

efficiency of EGMs.

5.1.2 Concentricity

In gear manufacturing, another common error that is observed is the concentricity

error, where, the gear’s axis is eccentric with respect to the shaft axis (Figure 5.2(b)

and (c)). This error is controlled using the runout tolerance. As per ANSI Y14.5M-

1982 [104], runout is the variation in a circular feature with respect to a datum

axis when the part is rotated 360° around the datum. Runout covers two types of
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manufacturing errors: concentricity and circularity. In this work, only concentricity

of the gears is considered.

(b)

�� ��
�� − �

(a)

��

��
��

�

������ + �

(c)

Figure 5.2. Concentricity error and its impact on the gap height at the
tooth tips. (a) shows a gear with no concentricity error. (b) and (c) show
Gears with the shaft axis, OS, offset from the gear axis, OG

Figure 5.3(a) illustrates how the runout error is measured using a height gauge.

The part is rotated around the datum axis which is the axis of rotation of the part.

The height gauge placed above the surface measures the runout in terms of variation

of surface’s instantaneous vertical position. When only concentricity error is present,

the measurement from the height gauge resembles a sine wave (Figure 5.3(b)). For

gears, the axis of the shaft is the datum axis, and the height gauge placed on the gear

tooth tip measures the concentricity error.

It is important to note that the concentricity tolerance on a gear is independent

of the diameter tolerance on the gear. This implies that, due to the concentricity

error, the distance from the shaft axis to the tip of each tooth can either be higher

or lower than the radius of the gear. This is illustrated in Figure 5.2 via a radius

vector from the shaft center to a gear tooth tip. If the gear radius is rg(= d/2) and

the distance between the shaft center and the gear center (concentricity error) is ε,

then the distance of a gear tooth tip from the shaft center can be as low as rg − ε
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(A)

(b)

�

�

Datum axis

(a)

A

Figure 5.3. (a) Runout measurement (b) Height gauge reading for con-
centricity error: sine wave with period corresponding to one revolution

or as high as rg + ε. It has to be noted that the term “gear center” refers to the

trace of the axis of the cylinder formed by the top land of the gear. The variation of

distance of the gear tooth tip from the shaft center impacts the instantaneous height

of the gap between the gear tooth tip and the internal surface of the casing. This can

be seen qualitatively in Figure 5.2. The height of the gap at the tooth tip directly

impacts the leakage flow over the tooth tip. Thus, similar to the conicity error, the

concentricity affects the leakage flow and hence the volumetric efficiency of EGMs.

5.2 Modelling of manufacturing errors in HYGESim

In the EGM simulation tool HYGESim, the Fluid Dynamic Module is responsible

for evaluating the leakage flow (refer section 2.1). In the current work, the leakage

flow evaluation methodology is revised to incorporate the conicity and concentricity

errors. The methodology is explained in the following subsections.
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5.2.1 Concentricity error implementation with gear micromotion

In Figure 5.4, a section of EGM perpendicular to the rotation axis is shown. OC

is the center of the casing, OS is the center of the shaft which is offset from OC ,

due to the micromotion phenomenon. The vector ~e represents the magnitude and

direction of the micromotion. OG is the center of the gear which is offset from Os,

due to concentricity error. The vector ~ε represents the magnitude and direction of the

concentricity error. During EGM operation, the magnitude and direction of ~e does not

change significantly [21]. In contrast, during operation, ~ε has a constant magnitude,

but it rotates with the gear rotation (θ indicates the instantaneous angular position

of ~ε). Now ~rg is the radius vector indicating the position of a tooth tip, P , from gear’s

center, then, its position from shaft’s center is

~rS = ~rg + ~ε (5.1)
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Figure 5.4. Evaluation of distance of a tooth tip from the casing center
(clearance exaggerated for clarity)
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In algebraic form, if θS is the angular position of this tooth tip from ~ε, then using

cosine rule and solving for rS, following expression for the magnitude of #»rS is obtained.

rS =
√
r2
g − ε2 sin2 θS + ε cos θS (5.2)

Now, the position of this tooth tip with respect to the casing center can be expressed

as

# »rC = #»rS + #»e (5.3)

Now, if
#   »

RC is the radius vector of the casing passing through P , then, the instan-

taneous gap height at the tooth tip P , is

h =
∣∣ #   »

RC − # »rC
∣∣ (5.4)

Here, RC is constant when the casing’s internal surface is perfectly circular. However,

if an EGM is designed such that the gear tooth tip touches the casing causing the

wearing of the casing, then RC varies with angular position.

5.2.2 Conicity error implementation

Conicity error results in a trapezoidal geometry of the gap at the tooth tip as

shown in Figure 5.1(b). If the height of the gap on one end of the tip is h and

and conicity error is δ, then the height on the other end will be h + δ (Figure 5.5).

The flow through the gap is driven by the pressure difference across the gap and the

motion of the tooth tip (both flow drivers are in x direction). Since there is no flow or

pressure gradient in z direction, the flow can still be considered planar. Now, consider

a differential section of the width of the gap, dz, at a distance z from the side of the

gap where height is h. Then, the two differential surfaces at the top and the bottom

of this section can be approximated as parallel surfaces. Therefore, the expression for

differential flow through this section of the gap will be a differential form of Eq. 2.3:

dQ =
h(z)3

12µL
∆pdz +

vh(z)

2
dz (5.5)
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Figure 5.5. Geometry of the gap at the tooth tip due to conicity error
(b� L). Flow direction is shown in black parallel arrows

Here,

h(z) = h+
z

b
δ (5.6)

Then, integrating the flow over the whole width of the gap, b,

Q =
∆p

12µL

∫ b

0

(
h+

z

b
δ
)3

dz +
v

2

∫ b

0

(
h+

z

b
δ
)
dz (5.7)

=⇒ Q = b
[ ∆p

48µL
(4h3 + 6h2δ + 4hδ2 + δ3) +

v

2

(
h+

δ

2

)]
(5.8)

When both conicity and concentricity errors are present, the strategies explained

in subsections 5.2.1 and 5.2.2 can be superimposed. Due to conicity, the two axial

faces of gears will have two different radii, therefore, the steps detailed in the section

5.2.1 for each face will yield different height of the gap at a tooth tip at each face.

Then the steps outlined in section 5.2.2 can be used to evaluate the leakage flow over

the tooth tip.

5.3 Effective gap height approach

The modelling approach described in section 5.2 is developed to be compatible

with the HYGESim tool. However, in this section, an alternate approach of modelling
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the manufacturing errors is proposed that can be used in any simple lumped parameter

based simulation models. This approach originates from the idea that for any EGM

with conicity and concentricity errors, an effective constant gap height at the tooth tip

should exist. That is, an EGM with this effective gap height but no manufacturing

errors will exhibit same volumetric performance as an EGM with the actual non-

uniform gap height due the presence of these manufacturing errors.

This approach has an additional benefit that if the effective gap heights can be

obtained for a set of EGMs, a qualitative volumetric efficiency comparison can be

made without having to experimentally test the EGMs or conduct simulations.

It is to be noted that in this approach, the flow over the tooth tip due to its motion

with respect to the casing’s internal surface, i.e. Couette flow is neglected. During

the operation of most EGMs, the Couette flow over the gear tooth tip is very small

compared to the Poiseuille flow, so, this simplification is acceptable.

5.3.1 Conicity error

When only the conicity error exists, the determination of the effective gap height

is straight forward. Eq. 5.8 represents the leakage flow over a tooth tip where the

height on one side of the gear is h and on the other side is h + δ. If the gear has

no conicity error and the height at the tooth tip is heff , then the leakage flow rate

expression becomes:

Q = b
∆p

12µL
h3
eff (5.9)

Neglecting the Couette term in Eq. 5.8 and comparing it with Eq. 5.9, the expression

of the effective gap height that takes the conicity error into account is

heff =
3

√
1

4
(4h3 + 6h2δ + 4hδ2 + δ3) (5.10)

This equation can be transformed in terms of the mean gap height and conicity error

(as illustrated in Figure 5.6).

heff = 3
√
hmean(h2

mean + (δ/2)2) (5.11)
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This gives an interesting insight related to the effect of conicity error on the perfor-

mance of EGMs. For a given mean diameter of the gear, the effective gap height

increases with an increase in the conicity error. This implies that the volumetric

efficiency of the EGM decreases with an increase in the conicity error.

�/2

� �

ℎ����
�/2

ℎ���

(a) (b)

Figure 5.6. Geometry of the gap at the tooth tip. (a) gear with conicity
error (b) gear with no error

5.3.2 Concentricity error

In contrast to the conicity error (which leads to an identical change in the gap

height at all the tooth tips), the concentricity error leads to changes in the gap height

at each tooth in a dissimilar manner. So, in order to determine an effective gap

height, the interaction among gap heights at all the teeth must be considered.

The leakage flows over the tooth tips essentially form a flow connection from

the inlet of the EGM to the outlet. Figure 5.7(b) shows the hydraulic circuit for the

leakage flows over the tooth tips for the driven gear. In this circuit, the purple colored

orifices represent the resistance to the flow formed by the gaps at the tooth tips. V1 is

the TSV that is connected to the inlet and VN+1 is the TSV connected to the outlet.

Since the area of the flow connections between V1 and inlet, and VN+1 and the outlet

are very large, the pressure in the volume V1 will be close to the inlet pressure and
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pressure in the volume VN+1 will be close to the outlet pressure. So, in the current

analysis, the hydraulic circuit from V1 to VN+1 is considered (Figure 5.7(c)).
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(a)

(b)

(c)

Figure 5.7. (a) Identification of TSVs and gap height at each tooth tip
(b) Equivalent hydraulic circuit for leakage flow over the tooth tips (c)
Part of the hydraulic circuit analyzed

In this circuit, all the chambers are TSVs and all resistances are the constrictions

formed by the casing’s internal surface and the tooth tips. These resistances vary for

each tooth tip and with the angle of rotation (θ) of each tooth tip. Instantaneous

resistance of ith tooth tip at an angular position θ can be expressed as:

Ri(θ) =
12µL

bh3
i (θ)

(5.12)
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Here hi(θ) is the instantaneous gap height at ith tooth tip that can be determined

by performing the same steps presented in section 5.2.1. Note that hi(θ) accounts

not only for the concentricity error, but also for the micromotion of the gears. Since

all the resistances are in series, the total resistance of the hydraulic circuit (Figure

5.7(c)) is:

R(θ) =

N(θ)∑
i=1

Ri(θ) (5.13)

It is notable that number of resistances (N) varies with the angular position. This

is because the number of tooth tips forming a clearance interface with the casing’s

internal surface varies with the angular position. This is illustrated in Figure 5.8

where N is 6 or 7 depending on the angular position of the gear.
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(a) (b)

Figure 5.8. Two angular positions of a gear with concentricity error
showing the number of casing - tooth tip interfaces and qualitative gap
heights (exaggerated for illustration) for each configuration
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Now, if an EGM with constant gap height at the tooth tips (heff ) has the same

volumetric efficiency as the actual EGM (with concentricity error and gear micromo-

tion), then the average leakage flow over the full revolution will be the same for both

cases.

Qleak,avg =
〈 ∆p

N(θ)Reff

〉
=
〈 ∆p∑N(θ)

i=1 Ri(θ)

〉
(5.14)

=⇒
∆pbh3

eff

12µL

〈 1

N(θ)

〉
=

∆pb

12µL

〈 1∑N(θ)
i=1

1
h3i

〉
(5.15)

=⇒ heff =

(〈 1∑N(θ)
i=1

1

h3
i

〉
〈

1
N(θ)

〉 ) 1
3

(5.16)

In above equations (5.14)-(5.16), 〈...〉 indicates the average of the quantity over

one revolution of the gear.

Equations 5.11 and 5.16 present the expressions for the effective gap height in the

presence of conicity and concentricity errors with the effect of micromotion included.

Thus, for any EGM, an effective gap height can be determined using Eq. 5.11

and 5.16. This provides a yardstick to compare the efficiency of the units with same

design but different manufacturing errors. Moreover, this effective gap height can

be incorporated in any simple lumped parameter models to quickly evaluate the

volumetric efficiency of an EGM.

There are few limitations of this alternate approach:

1. This approach neglects the flow over the tooth tip due to relative motion of the

tooth with respect to the casing. In most EGMs, this flow is typically small

compared to the pressure driven flow. However, the readers are advised to verify

the same before using this model. In an analytical form, this constraint can be

expressed as
∆ph3

12µL
� vh

2
(5.17)

=⇒ Fcp =
πµLNrrg

5∆ph2
� 1 (5.18)
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2. To use Eq. 5.16 in a lumped parameter model, the micromotion magnitude and

direction has to be determined beforehand. To do that, the net force on the

gears can be approximated using a simplified approach (e.g. assuming certain

TSV pressurization profile and integrating it over the gear’s radial surface).

Then, if the bearing at the shaft is of the journal type, the mobility method [40]

can be used to determine the micromotion magnitude and direction. If the

bearing is of the roller type, then the magnitude of the micromotion is the radial

clearance between the shaft and its bearing and the direction of micromotion is

the direction of the net force on the gear.

3. Apart from the leakage flow at the tooth tip, another source of flow loss in

EGMs is the flow through the gap between the gear and the elements on its

axial sides. This flow is influenced by the course of pressurization of TSVs

whose accuracy is affected in this effective gap height approach. In particular,

in this approach, the gap height at all the tooth tips is uniform, which leads to

a linear pressurization of a TSV as it moves from the inlet side to the outlet

side. However, in reality, the EGM has a variable gap at the tooth tip which

causes a non-linear pressurization. Hence, using this effective gap height model

will lead to a poor estimation of the leakage at the axial sides of the gears.

5.4 Experimental investigation

In order to validate the modelling approach developed in section 5.2, an experi-

mental strategy was devised. The following subsections describe the details of exper-

imental work done in this research.

5.4.1 Reference pumps

To perform the experimental tests, six units of concentric GC series external gear

pumps (E3) were obtained. All units were disassembled and the gears were taken
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out (Figure 5.9). A machining operation was done on the tooth tips of the gears to

introduce varying amounts of conicity and concentricity errors (Figure 5.10).

(a) Reference pump (E3)

Front cover
Back cover/casing

Drive shaft

Driven shaft Gears

(b) Components upon disassembly

(c) Twelve gears belonging to 6 units of the reference pump

Figure 5.9. Reference pump disassembled and gears obtained from six
such units.

The errors on the gears were measured using a gear metrology machine (Figure

5.11). The measurement of conicity and concentricity errors are summarized in Figure

5.12. Gearset 6 has the least amount of errors. Gearsets 1 and 4 have medium and

high amounts of conicity error, respectively, but a low concentricity error. In contrast,

gearsets 5 and 3 have medium and high amounts of concentricity error, respectively,
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(b) Concentricity error.

Figure 5.10. Error introduction on the gears

but a low conicity error. Finally, gearset 2 has medium amounts of both conicity

and concentricity errors. The uncertainties in the measurements of conicity and

concentricity errors were ±1.25 µm and ±0.75 µm, respectively. It is important to

note that the machining operation reduced the diameters of the gears. The mean

diameters of the gears after machining are presented in Table 5.1.

Table 5.1.
Mean diameters of all the gears used in the tests

Gearset 1: drive 1: driven 2: drive 2: driven 3: drive 3:driven

dmean (mm) 29.551 29.543 29.539 29.550 29.542 29.536

Gearset 4: drive 4: driven 5: drive 5: driven 6: drive 6: driven

dmean (mm) 29.547 29.558 29.563 29.562 29.582 29.583

To eliminate any variability in the pump geometry (apart from the manufacturing

errors on the gears), only one pump casing was used throughout the experiments.
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Figure 5.11. Measurement of conicity and concentricity errors on the
gears with Wenzel WGT 350 gear metrology machine.

The relevant geometrical parameters of the pump that stayed the same across all the

experiments is shown in Table 5.2

5.4.2 Experimental setup

A hydraulic circuit was built to permit the measurement of volumetric efficiency

of the pump for a range of operating speeds and pressures. From the schematic shown

in Figure 5.13(a), the needle valve at the end of the circuit was used to increase the

pressure at the pump outlet. An ISO VG 46 mineral oil was used in the tests which

were conducted at 35 °C. The pump flow was measured using a flow meter. Pressure

transducers and thermocouples were used to monitor pressures and temperatures at

the inlet and the outlet of the pump. The details of the sensors used are provided in



93

6
1 4

3

25
μ
m

μm

Figure 5.12. Manufacturing errors introduced to 6 gearsets

Table 5.2.
Geometric parameters of the pump common to all gearsets

Casing radius (of internal surface) 14.827 mm

Casing depth 9.507 mm

Clearance between the shafts and the bearings 23 µm

Clearance between the gears and the casing on axial side 30 um

Number of teeth on each gear 11

Geometric displacement 3.25 cc/rev

Table 5.3. At the outlet of the pump, two pressure sensors were mounted: a Wika

pressure sensor to measure the average value of pressure and a Kistler piezoelectric

pressure sensor (sampling frequency: 50 kHz) to measure the dynamics of pressure.
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Figure 5.13. Experimental setup

Table 5.3.
Specification of the sensors used in the tests

Sensor Model Specifications Accuracy

Pressure

transducer

Wika S-10 0 to 400 bar ±5 % of span

Kistler 0 to 600 bar

Thermocouple Omega K-type -5 to 200 ° C ±1 °C

Flow meter VSE VS02 0.1 to 120 L/min ±0.3%

5.4.3 Experimental Results

The results obtained from the tests are presented in Figures 5.14, 5.15 and 5.16

in terms of volumetric efficiency. Figure 5.14 shows that the efficiency decreases with

the increase in the conicity error. The efficiency plot for the gearsets 1 and 4 are

similar, which is confusing at first. However, geometric measurements show that the

mean radius of the driven gear in the gearset 1 is smaller than that in the gearset 4



95

(Table 5.4). Therefore, the two effects, (a) increase in leakage due to smaller radius

and (b) decrease in leakage due to lower conicity error (from Eq. 5.11), balance each

other. The effective gap height data presented in Table 5.4 is obtained using Eq.

5.11 and 5.16. From the effective gap height information for each gear, the mean gap

height at the tooth tips for a gear pump is calculated by evaluating their cubic mean:

hmean = 3

√
0.5(h3

eff,drive + h3
eff,driven) (5.19)

Cubic mean is the appropriate method of evaluating the mean here since the

leakage flow has a cubic relationship with the gap height. The difference between the

average gap height for the gearsets 1 and 4 is < 3µm. This explains why the results

obtained from these two gearsets are very similar.

55

60

65

70

75

80

85

90

95

100

40 90 140

V
o

lu
m

et
ri

c 
 E

ff
ic

ie
n

cy
 [

%
]

Pressure [bar]

6: 2000 RPM

6: 1000 RPM

1: 2000 RPM

1: 1000 RPM

4: 2000 RPM

4: 1000 RPM

Figure 5.14. Results from experiments on gearsets 6, 1 and 4 showing
the effect of conicity error

Figure 5.15 shows the effect of concentricity error on the volumetric efficiency of

the pump. Finally, Figure 5.16 shows the combined effect of conicity and concentricity

errors on the volumetric efficiency of the pump. These results show that with the
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Figure 5.15. Results from experiments on gearsets 6, 5 and 3 showing
the effect of concentricity error

Table 5.4.
Comparison of dimensions for gearset 1 and 4

Gearset 1 Gearset 4

Drive Driven Drive Driven

Mean gear radius (mm) 14.775 14.771 14.774 14.779

Conicity error (µm) 16.5 11.5 20 20.5

Concentricity error (µm) 1 0.5 1 0.5

Effective gap height (µm) 44.4 48.2 46.9 39.7

Mean gap height (µm) 46.4 43.6

increase in the conicity and the concentricity errors, the volumetric efficiency of the

pump is decreased. It is important to note, however, that with introduction of the

manufacturing errors, the mean diameters of the gears have reduced as illustrated in
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Figure 5.16. Results from experiments on gearsets 6 and 2 showing the
effect of both conicity and concentricity error

Figure 5.10 and tabulated in Table 5.1. So, the trends shown in Figures 5.14, 5.15

and 5.16 are expected.

Figure 5.17 shows the outlet pressure pulsation comparison between the gearsets

6 and 3 when the pump was operating at 1000 rpm and 100 bar. The effect of high

concentricity error is observed in terms of a shaft frequency (16.67 Hz) appearing in

the frequency spectrum of the pulsation signal. The explanation of this phenomenon

is provided in section 5.5.3.

5.5 Simulation results and validation

5.5.1 Validation of error model implemented in HYGESim

To test the validity of the manufacturing error model implemented in the HY-

GESim tool (described in section 5.2), multiple simulations were conducted using the

actual pump geometries and the operating conditions mimicking the actual experi-
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Frequency [Hz]

Figure 5.17. Pressure pulsation at the pump outlet for the gearset 6
and 3. Operating condition: 1000 rpm, 100 bar: (a) Time domain (b)
Frequency domain

ments. In Figure 5.18, the comparison between the results from the simulations and

the experiments is presented in terms of volumetric efficiency. The simulation re-

sults agree with the experiments across all the operating conditions and across all the

gearsets considered in this study. As explained in section 5.1, the manufacturing er-

rors considered in this study effect the leakage path at the tooth tips hence impacting

the leakage flow and the volumetric efficiency of the unit. Thus, a good comparison

between the simulations and the experiments across all operating conditions for all

the gearsets with varying amounts of manufacturing errors validates the model for

manufacturing errors developed in this work and integrated in the HYGESim tool.
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Figure 5.18. Comparison of simulation results with experiments for all
six gearsets in terms of volumetric efficiency

5.5.2 Validation of effective gap height approach

The effective gap height approach presented in section 5.3 is a simplified method

for implementing both the conicity and the concentricity errors in any lumped param-

eter based model. This approach is validated against HYGESim (with error model

implemented) via 3 sets of simulations: one with no errors, one with high conicity

error (50 µm) and one with high concentricity error (40 µm). The pump macroscopic

geometry used in these simulations corresponds to the pump tested in this work (pre-

sented in section 5.4). The nominal clearance at the tooth tip (difference in the radius

of the casing and the radius of the gear) is set to 65 µm. In this pump, due to the

clearance between the shaft and the bearing, the center of a perfect gear moves by 23
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µm from the center of the casing. Moreover, this pump uses needle roller bearings;

therefore, unlike in journal bearings where the motion of the journal is at a different

angle compared to the load direction, for roller bearings, the motion of the shaft and

the gear can be assumed with a good approximation to be in the direction of the load.

From simulations, this motion is determined to be typically at an angle of ∼ 75° from

the line connecting the centers of the gears towards the pump inlet. This information

is utilized by the effective gap height model.

Simulations were conducted at 1000 rpm and 50, 100 and 150 bar pressures. The

mean radius of the gears was kept constant across all the simulations. Acknowledging

the fact that the axial flow will not be accurately predicted by the effective gap height

model, the axial gap heights were set to zero in these simulations.

The results in Figure 5.19 show nearly a perfect match between the HYGESim

model and the effective gap height model. This validates the effective gap height

approach. As explained in section 5.3, the Couette drag at the tooth tip is not

considered in the effective gap model. However, for these set of simulations, Fcp < 0.18

(refer Eq. 5.18), so, the Couette drag was a minor component of the flow over the

tooth tip.

Conicity 
(μm)

Concentricity
(μm)

0 40

0 0

50 0v [
%

]

HYGESim

Effective gap height model

Figure 5.19. Comparison of the results from the effective gap height
model with HYGESim tool
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If the real axial gap height (which is 30 µm for the pump considered) is used in

the simulations, the effective gap height model overpredicts the volumetric efficiency

by 2− 5% (compared to HYGESim) owing to the limitation (iii) discussed in section

5.3.

5.5.3 Effect of concentricity error on EGM performance

It can be seen in Figure 5.19 that the volumetric efficiency of the EGM increases

with the increase in the concentricity error. This may seem counterintuitive, but this

effect is indeed real. The concentricity error causes the offset of the gear’s axis from

the shaft’s axis. So, as it can be seen in Figure 5.8, at some angular positions, the gap

heights at the tooth tips are high when the offset is away from the casing. For other

angular positions, however, when the offset is towards the casing, the heights at the

tooth tips are low. For each angular position, the “equivalent gap height”, heq, can be

defined as the uniform gap height value (uniform across all tooth tips) that will lead

to the same instantaneous leakage flow as the actual gap height configuration. This

equivalent gap height can be calculated by referring to Figure 5.7(c) and equating

the total resistance arising from this uniform gap height, heq, and the total actual

resistance in the actual leakage flow circuit:

N(θ)Req =

N(θ)∑
i=1

Ri(θ) (5.20)

=⇒ N(θ)

h3
eq

=

N(θ)∑
i=1

1

h3
i

(5.21)

=⇒ heq(θ) = 3

√√√√ N(θ)∑N(θ)
i=1

1
h3i

(5.22)

Figure 5.20 shows how this equivalent gap height, heq, varies with the angular position

when the nominal gap height at the tooth tip (difference in the radius of the casing

and the radius of the gear), hnom, is 50 µm and the concentricity error, ε, is 20 µm.

The shaft is assumed to be concentric with respect to the casing for simplicity. This
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plot shows that at 0° angular position (gear’s axis offset away from the casing), the

equivalent gap height is higher than the nominal gap height which is qualitatively

visible in Figure 5.8(a). However, as the shaft rotates, the gear axis rotates around

the shaft axis and heq decreases. At 180° angular position, the axis offset is towards

the casing (Figure 5.8(b)) and hence, the equivalent gap height is around its lowest.

The plot in Figure 5.20 is discontinuous because the number of the tooth tips forming

the leakage interface with the casing, N(θ), keeps jumping between 6 and 7. When

this equivalent gap height is integrated over a full revolution, the effective gap height,

heff , is obtained.

μ
m

Figure 5.20. Variation of the equivalent gap height at the tooth tip when
the nominal gap height is 50 µm and the concentricity error is 20 µm

The factors that influence how the effective gap height at the tooth tip varies

with the concentricity error are (i) the angular span of the casing ( 6 C) and (ii) the
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number of teeth in a gear (z). The angular span of the casing is the central angle of

the arc forming the leakage interface with the tooth tip (shown by thick black curves

in Figure 5.8). For the pump used in this study ( 6 C = 206°, z=11), when hnom = 50

µm and ε = 20 µm, heff =46 µm. Indeed, the effective gap height at the tooth

tip decreases when the concentricity error in present. This causes a reduction of the

leakage at the tooth tip and hence an improvement in the volumetric efficiency.

It is important to note, however, that this advantage of an improved volumetric

efficiency with the concentricity error only works until the tooth tip starts to touch

the casing. So, if hnom is the difference in the radius of the casing and the gear

and e is the magnitude of gear micromotion, then the maximum concentricity error

that will help with the volumetric efficiency is hnom − e. Figure 5.21 shows how the

effective gap height varies with the concentricity error, ε, when hnom = 50 µm and

e = 0. For ε = 0, heff = hnom = 50 µm. The effective gap height decreases with the

increase in the concentricity error until ε = hnom = 50 µm, where heff = 35.9 µm. As

the concentricity error is further increased, the gear tooth tip breaks into the casing,

increasing its radius, hence the effective gap height starts to increase.

This trend of increasing volumetric efficiency with the concentricity error is not

reflected in the experiments due to the nature of the error introduced on the gears

before testing. As explained in section 5.4, the concentricity error was achieved by

machining of the gear tooth tips. This machining caused a reduction of the gear

diameter (Figure 5.10). Hence, when comparing the results from gearsets 6 to 5 and

3, two effects come into play: the increase in the volumetric efficiency due to higher

concentricity error and the decrease in the volumetric efficiency due to lower gear

radius. The latter effect dominates and hence, a decrease in the volumetric efficiency

from the gearset 6 to the gearsets 5 and 3 is observed.

Although the concentricity error leads to an increase in the volumetric efficiency,

there is a crucial downside. Due to the concentricity error, the equivalent gap height

at the tooth tip varies with the gear angular position (Figure 5.20) which results in

the oscillation of the instantaneous leakage flow over the tooth tip. This is reflected in
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Figure 5.21. Variation of the effective gap height with concentricity error
(hnom = 50 µm, e = 0). The dotted line is at ε = hnom = 50 µm.

the oscillation of the outlet flow. Figure 5.22 shows the comparison of the simulated

pulsation of the outlet flow for two cases: ε = 0 and ε = 20 µm. The simulations were

run for 1000 rpm. The concentricity error introduces the shaft frequency of 16.67 Hz

in the flow pulsation frequency spectrum (Figure 5.22(b)) which adds to the original

flow pulsation. This phenomenon is seen in the experimental results as well in terms

of the pressure pulsation at the pump outlet (Figure 5.17).

The flow pulsation at the outlet of the EGM is an undesirable phenomenon. It is

a source of unwanted noise and vibration in the hydraulic system. The increment of

the flow non-uniformity due to the concentricity error adds to these concerns.
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Figure 5.22. Simulated outlet flow pulsation of the gear pump with zero
and non-zero concentricity. (a) Time domain (b) Frequency domain
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6. MODELLING OF LEAKAGE FLOW THROUGH CURVED GEOMETRIES

In previous chapters, the modelling of EGMs considered the tooth tip leakage flow to

be the flow between flat surfaces (Figure 1.4). However, in some EGMs like continuous

contact gear machines, the tooth tip geometry is different. As shown in Figure 6.1,

Continuous-Contact Helical Gear Pumps (CCHGPs) consist of gears with circular

arcs at the tip. Thus, the leakage flow geometry consists of two arcs of different

curvatures. This chapter focuses on developing a numerical technique to the model

the flow through such curved geometries (Aspect A4).

��

��

ℎ

Casing

Suction

Delivery

Figure 6.1. Components in a CCHGP. The clearance between gear and
casing is highlighted in the illustration on the right.

Flow through curved geometries exists in the traditional EGMs too, at the inter-

teeth flow connection (flow path connecting drive and driven gear TSVs at the mesh-

ing region) as shown in Figure 6.2. The only difference is the fact that in EGMs,

the curvatures of the two walls are in opposite direction, whereas in CCHGPs, the

curvature of the two walls are in the same direction. This inter-teeth flow connec-
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tion allows cross port flow which, similar to the tooth tip leakage flow, affects the

volumetric performance of the EGM. Moreover, as this flow path establishes the con-

nection between the pumping TSVs, this flow also impacts the dynamic features of

the outlet flow. This becomes critical for EGMs with very low gear backlash where

the magnitude of the inter-teeth flow is decisive in predicting the presence or absence

of dual-flank behavior in the outlet flow [45].

��

��

ℎ

Casing

Drive gear Driven gear

Figure 6.2. Inter-teeth flow connection in EGM.

Apart from EGMs, the leakage flow through curved geometries is also present in

another class of gear machines: gerotors (Figure 6.3). A gerotor consists of two gears

(also called rotors) one of which is internal toothed and other is external toothed.

In pumping operation, the shaft drives the inner gear which in turn drives the outer

gear. As seen in Figure 6.3, the gears are located at an eccentric position to each

other. This eccentricity allows a variation of the TSV with gear rotation. As the

gears rotate, the volume near the inlet side increases in size leading to the suction of

flow. This fluid is then carried to the outlet side where the TSV decreases leading to

the delivery of the flow to the outlet.

As the gears rotate, there is relative motion between the gears’ surfaces. To avoid

high friction due to this relative motion, the gears are designed such that there always
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Figure 6.3. Components in a gerotor. The clearance between the gears
is highlighted in the illustration on the right.

exists a clearance between the inner gear and the outer gear. An example of such

a clearance is shown in Figure 6.3. This clearance allows establishing lubrication at

the gear-gear interface. However, this also permits the fluid to leak from the high

pressure side to the low pressure side. Similar to CCHGPs and EGMs, this leakage

geometry consists of two arcs.

In past, the tooth tip flow in CCHGPs and the inter-teeth flow in traditional

EGMs have been modelled using the orifice equation [21, 25]. However, the orifice

equation is accurate only when there are sudden constrictions in the flow geometry.

Instead, the geometry of aforementioned flows consists of smoothly varying cross

section. Thus, using orifice equation to model this flow is an oversimplification and

negatively impacts the modelling accuracy.

For gerotors, approaches with different levels of complexity have been used by

researchers towards the modelling of leakage flow over the tooth tips. Manco et

al. [105,106] proposed an approach from the lubrication theory that involves numer-

ically solving the Reynolds equation of lubrication in the leakage gap. However, this
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approach has a high computational time which is undesirable for lumped parameter

models. In contrast to Manco et al., Schweiger et al. [107] simply used the orifice equa-

tion to model this leakage flow which as discussed above, is not an accurate method.

Recently, Pellegri et al. [108–110] proposed a multidomain simulation model for gero-

tors. In this model, the tooth tip leakage was approximated as the flow between two

parallel plates where the length of the plate is tuned via experiments.

In short, there is a scarcity of the model for the flow through curved geometries

which can be accurate as well as computationally cheap. For computational swift-

ness, researchers have often resorted to certain approximations which is a significant

limitation and hinders accurate performance prediction.

The work presented in this chapter aims at overcoming this limitation by propos-

ing a model for flow through curved geometries. The proposed model is developed

by identifying the key geometric and flow parameters that influence the leakage flow

characteristics. Using Buckingham’s Π theorem, analytical methods and CFD sim-

ulations, functional relationships between the relevant dimensionless parameters are

established. The non-dimensional model is then validated against experiments using

a unique test apparatus designed specifically for this task.

6.1 Non-dimensional model development

The flow over the tooth tip of CCHGPs and gerotors and the inter-teeth flow in

EGMs are essentially the flow through a constriction characterized by curved walls

with a certain gap height at the constriction. The geometric parameters that influence

this flow are the radii of curvature of the walls and the value of minimum gap height

h. From Figure 6.4, for gerotors and traditional EGMs, R1 and R2 are the radii of

curvature of the two gears at the location of the constriction, respectively. Instead

for CCHGPs, R1 is the radius of curvature of the gear tooth tip and R2 is the radius

of curvature of the internal surface of the casing. It is to be noted that the internal
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surface of the casing has a negative curvature. Hence, R2 will be a negative quantity

in Figure 6.4(b).
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(a) (b)
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ℎ ℎ

Figure 6.4. (a) The geometry of leakage gap at the tooth tip of gerotors
and the geometry of inter-teeth flow in EGMs. (b) The geometry of tooth
tip leakage gap in CCHGPs.

It is argued that, in fact, the flow is influenced only by the equivalent curvature

of the flow geometry which is the sum of curvatures of the two bounding walls:

κeq = κ1 + κ2 (6.1)

=⇒ 1

Req

=
1

R1

+
1

R2

(6.2)

In other words, if the radii of individual walls vary such that equivalent radius

of curvature Req stays the same, then the flow too stays the same. This idea is well

accepted in the field of lubrication [43,111]. Nevertheless, this idea has been validated

using CFD simulations which will be described in detail in section 6.3.

Moving away from the geometry, the pressure difference across the constriction

obviously plays a major part in deciding the amount of flow through the constriction.

The height of the gap at the constriction is in the order of few microns, so, if the

operating fluid has high viscosity, the flow through the constriction will be laminar
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and only the viscosity of the fluid will be important in deciding the flow rate through

the gap. However, as discussed in Chapter 4, for low viscosity fluids, the flow through

the constriction can become turbulent and the density of the fluid should also influence

the flow.

First, for laminar flow through the constriction,

v = f(h,Req,∆p, µ) (6.3)

where v is the mean flow velocity at the location of the constriction.

Using Buckingham’s Π theorem, the dimensionless numbers obtained are:

Πv =
µv

h∆p
(6.4)

Πh =
h

Req

(6.5)

Here Πh is a geometrical dimensionless parameter, whereas as Πv is the dimension-

less number related to the flow. In fact, Πv is the inverse of the product of Reynolds

number and Euler number:

Πv =
µv

h∆p
=

µ

ρvh
· ρv

2

∆p
=

1

Re · Eu
(6.6)

Now, as Reynolds number is the ratio of inertia forces to viscous forces and Euler

number is the ratio of pressure forces to inertia forces, Πv becomes the ratio of viscous

forces to pressure forces. Although, Re and Eu are commonly known dimensionless

parameters, their product cancels out the inertia force term, thus, these dimensionless

numbers lose their individual significance. Hence, Πv is used as the flow dimensionless

parameter in this work.

Since Πv contains the mean flow velocity term, it is the independent dimensionless

number. Hence, the desired relationship is of the form:

µv

h∆p
= F

( h

Req

)
(6.7)

Here, F is an unknown functional relationship that must be determined.
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Next, for turbulent flow through the constriction,

v = f(h,Req,∆p, µ, ρ) (6.8)

Using Buckingham’s Π theorem, the dimensionless numbers obtained are:

Πv =
µv

h∆p
(6.9)

Πh =
h

Req

(6.10)

Πp =
h2

µ2
∆pρ (6.11)

Thus, the desired relationship is of the form:

µv

h∆p
= F

( h

Req

,
h2

µ2
∆pρ

)
(6.12)

As compared to Eq. 6.7, this equation involves extra dimensionless number Πp,

thus this parameter accounts for the dominance of inertial effects in the flow.

It can be observed that Πp can be expressed in terms of commonly known dimen-

sionless numbers: Euler number and Reynolds number.

Πp =
h2

µ2
∆pρ =

∆p

ρv2
· ρ

2v2h2

µ2
= Eu ·Re2 (6.13)

In fact, instead of flow velocity, if the pressure drop across the constriction is taken

as the dependent parameter, then, the Buckingham’s Π theorem results in following

three dimensionless numbers:

Πv =
µv

h∆p
(6.14)

Πh =
h

Req

(6.15)

Re =
ρvh

µ
(6.16)

and the non-dimensional relationship will be

µv

h∆p
= F

( h

Req

, Re
)

(6.17)
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Presence of Reynolds number in Eq. 6.17 makes it more intuitive than Eq. 6.12,

however in current analysis, Eq. 6.12 is preferred. In HYGESim and all other lumped

parameter based models, the leakage flow model is supposed to provide the flow

information which is then used in the pressure build up equation to determine the

pressure in the CVs. Equation 6.17 is an implicit function with respect to the flow

velocity whereas Eq. 6.12 is an explicit function with respect to it. Hence, Eq. 6.12

is the required flow model of interest.

It can be noticed that the effect of relative motion between the walls is not consid-

ered in the current analysis. EGMs (including CCHGPs) typically operate at speeds

≤ 2000 rpm and at pressures of ∼ 200 bar. At such operating conditions, the flow

due to the relative motion between the bounding walls is small compared to the flow

due to the pressure difference. Moreover, in gerotors, since both rotors are in motion,

the relative motion of the two walls at the constriction region is small.

6.2 Laminar relation derivation from Reynolds Equation

If the flow through the curved constriction falls under the laminar flow regime, the

functional relationship can be determined analytically from the Reynolds equation of

lubrication [43] by making proper simplifications.

Using the theory of equivalence of curvature (Eq. 6.2), this flow can be modelled

as flow between two surfaces: a flat surface and a curved surface with radius of

curvature R (Figure 6.5). Here x = 0 is the location of the constriction. Then, the

variation of gap height in the direction of flow, h′(x) can be expressed as

h′(x) = h+R− (R2 − x2)(1/2) = h+R−R
[
1−

( x
R

)2](1/2)

(6.18)

=⇒ h′(x) = h+
1

2

(x2

R

)[
1 +

1

4

( x
R

)2

+
1

8

( x
R

)4

+ ...
]

(6.19)
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In the curve-constricted flow geometry, since, the equivalent radius of curvature R�

x, the higher order terms in Eq. 6.19 can be neglected. Thus,

=⇒ h′(x) = h+
x2

2R
(6.20)

ℎ
ℎ′(�)

�

� = 0

�

Figure 6.5. Flow geometry consisting of one curved and one flat wall

Now, the Reynolds equation [43] under the assumptions of negligible spanwise

flow and relative motion of the walls, can be simplified to

∂

∂x

(
h′(x)3 ∂p

∂x

)
= 0 (6.21)

If the fluid pressure far from the constriction is known, say, p(x = −0.5R) = p1,

p(x = 0.5R) = p2, then using this information as boundary conditions, the differential

Eq. 6.21 can be solved to obtain

p =
p1 + p2

2
− (8h+R)2∆p

K+

[
3
√

2R

2
tan−1

( √
2x

2
√
Rh

)
+
R
√
hx(3x2 + 10hR)

(x2 + 2hr)2

]
(6.22)

where

K+ = 160h1.5R + 12h0.5R2 + 3
√

2R0.5(8h+R)2 tan−1

(√
2

4

√
R

h

)
(6.23)
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Now, flow velocity at the constriction (x = 0)

v = − h2

12µ

∂p

∂x

∣∣∣
x=0

(6.24)

=⇒ v =
∆ph1.5

(
8h
R

+ 1
)2

3µR0.5

[
160
(
h
R

)1.5

+ 12
(
h
R

)0.5

+ 3
√

2
(

8h
R

+ 1
)2

tan−1
(√

2
4

√
R
h

)] (6.25)

As h� R, h/R terms can be neglected and tan−1
(√

2
4

√
R
h

)
−→ π

2
. This yields,

v =
∆ph1.5

(9
√

2π/2)µR0.5
(6.26)

=⇒ v =
0.05h1.5

µR0.5
∆p (6.27)

Rearranging,

µv

h∆p
= 0.05

√
h

R
(6.28)

or, Πv = 0.05
√

Πh (6.29)

From this relation, the flow rate over through the constriction can be determined

as:

Q =
0.05 bh2.5

µR0.5
eq

∆p (6.30)

It is important to note that this flow relation is only applicable in the laminar flow

regime. The subsequent sections describe the methodology for the determination of

the flow relation(s) applicable for the complete flow regime.

6.3 CFD modelling of the flow through curved constriction

To investigate the characteristics of flow through the curved constriction over the

complete range of flow regimes, CFD simulations of the flow was conducted using

ANSYS CFD tool, Fluent [79].

Multiple computational domains were constructed with different radii of curvature

of the walls and minimum gap height. Figure 6.6 shows one of the 2D computational



116

domains with R1 = 5 mm, R2 =∞ and h = 30µm. The computational domains were

discretized into meshes with structured and unstructured regions with finer grids near

the walls. To capture the near wall flow behavior in turbulent flow cases, the mesh

was refined at the walls to ensure that y+ ≤ 1 (similar to section 4.1).

Inlet

Walls

Outlet

Figure 6.6. Computational domain for the analysis of gap flow through
curved constriction (R1 = 5 mm, R2 =∞ and h = 30µm)

Appropriate mesh convergence study was done for each of the computational do-

mains to determine the level of refinement that would yield accurate solution in low

computational time. Figure 6.7 shows the results from the mesh convergence study

(in terms of convergence of the flow rate through the gap) on the domain with R1 = 5

mm, R2 =∞ and h = 30µm.

Pressure boundary condition was imposed at the inlet and the outlet of the flow

domain (Figure 6.6). Apart from this, no slip boundary condition was employed on

the walls. Reynolds-averaged Navier-Stokes equations (with SST k − ω turbulence

model) were solved using SIMPLEC algorithm. The criteria for convergence was the

reduction of residual of these equations below 10−6.

6.3.1 Equivalence of curvature

First, the concept of equivalence of curvature (Eq. 6.2) was tested. Three sets of

simulations were conducted (Table 6.1), where, in each set, the radius of each wall was
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Figure 6.7. Convergence of gap flow with mesh refinement. Gap ge-
ometry: R1 = 5 mm, R2 = ∞ and h = 30µm. The simulations were
conducted at 10 bar pressure difference with fluid properties of ISO VG
46 mineral oil. The flow rate is calculated assuming the depth of the gap
as 70 mm.

varied such that equivalent radius of curvature remained unchanged. One simulation

case in each set was such that the radius of curvature of one wall was infinite, meaning

a flat wall (Figure 6.6). The height of the gap for all the simulations was kept at 25

microns. Figure 6.8 shows that flow rate through curved constrictions is independent

of the radius of curvature as long as the equivalent radius of curvature remains the

same. This validates the concept of equivalence of curvature. So, from the geometry

standpoint, the equivalent radius of curvature (Req) and the minimum gap height (h)

is enough to describe the flow.
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Table 6.1.
Simulation cases to test the equivalency of curvatures

Set R1 (mm) R2 (mm) Req (mm) R1/R2

1.1 4 -20 5 -0.2

1.2 5 ∞ 5 0

1.3 7.5 15 5 0.5

1.4 10 10 5 1

2.1 2.4 -12 3 -0.2

2.2 3 ∞ 3 0

2.3 4.5 9 3 0.5

2.4 6 6 3 1

3.1 0.8 -4 1 -0.2

3.2 1 ∞ 1 0

3.3 1.5 3 1 0.5

3.4 2 2 1 1

6.3.2 Functional relationship

At this point, to determine the functional relationships described in section 6.1,

multiple CFD simulations were conducted in Fluent. For simplicity, one wall of the

flow geometry was kept flat, while the radius of curvature of other wall was varied.

From considerations based on literature [112–114] and past experience, it has been

noticed that radius of curvature of most gear profiles fall in the range of 0.4 mm to

10 mm. Thus, as per Eq. 6.2, the range of equivalent radius of curvature is 0.2 mm

to 5 mm. Moreover, typical CCHGPs and gerotors have tooth tip clearances ranging

from 5 to 50 microns. This gives us the range of dimensionless parameter Πh as 0.001

to 0.25. So, multiple domains were constructed with different wall curvatures and

gap heights in aforementioned range. A wide range of pressure (0 to 200 bar) and
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Figure 6.8. Flow rate through the constrictions for a range of curvatures
of walls

fluid properties was used in the simulations to obtain a wide range of dimensionless

number Πp.

The results show that for lower values of Πp and Πh, the flow remains attached to

the walls (Figure 6.9(a)). However, at high values of Πp and Πh, the flow separates

from the curved wall (Figure 6.9(b)).

The flow data from the results are used to evaluate Πv (Eq. 6.4) and the same

is plotted against Πp for a range of Πh (= h/Req) values in Figure 6.10. At lower

values of Πp and Πh, (when the flow remains attached to the walls), Πv is seen to be

independent of Πp and is only influenced by Πh. On the other hand, at higher values

of Πp and Πh (when flow separation occurs), Πv becomes independent of Πh and is

only dependent on Πp.
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(a) Πh = 0.002, Πp = 12.2

(b) Πh = 0.01, Πp = 5.21× 106

Figure 6.9. Streamlines of the flow through the curved constriction for
two different flow conditions

From Figure 6.10, below the line Πv =
√

1/(2Πp), Πv only depends on Πh. This

dependence is shown in Figure 6.11. From the plot, the functional relationship ob-

tained via curve fitting is:

µv

h∆p
= 0.05

√
h

Req

(6.31)

The R squared value (goodness-of-fit measure) for this relation is 0.9974. No-

tably, this is the same relation obtained analytically from the Reynolds equation of

lubrication in section 6.2.
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Figure 6.10. Variation of Πv with Πp for a range of Πh (= h/Req).

This relation is valid below Πv =
√

1/(2Πp) line (Figure 6.10), i.e. when

Πv <

√
1

2Πp

(6.32)

=⇒ Πhp = 0.05
√

2Πh Πp < 1 (6.33)

In Figure 6.10, it can be observed that at high values of Πp, all the curves collapse

around a single line whose equation is:

Πv =

√
2

Πp

(6.34)
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Figure 6.11. Variation of Πv with Πh for laminar flow conditions

Expanding and simplifying above equation, following relation is obtained:

v =

√
2∆p

ρ
(6.35)

=⇒ Q = Ω

√
2∆p

ρ
(6.36)

This is indeed the orifice equation (Eq. 2.2) with Cf = 1. The orifice flow coefficient,

Cf is 1 because the shape of the curved constriction is similar to a venturi which has

Cf = 0.99 [115]. Moreover, the flow coefficient is a measure of contraction of the flow

after the constriction throat (called vena contracta). Figure 6.12 shows the absence

of contraction of flow after the throat justifying the value of Cf being 1.
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Figure 6.12. Streamlines of a flow with Πh = 0.25 and Πp = 8× 105

showing the absence of vena contracta due to which Cf = 1

To summarize, the relation describing the flow through the curved constriction is

Πv =


0.05
√

Πh , when Πhp < 1√
2

Πp
, when Πhp � 1

(6.37)

These two relationships can be combined using a tanh function:

Πv = (0.05
√

Πh)
ζ1

(√
2

Πp

)ζ2

(6.38)

where,

ζ1 = 0.5− 0.5 tanh (c1 log(Πhp) + c2) (6.39)

ζ2 = 0.5 + 0.5 tanh (c3 log(Πhp) + c4) (6.40)

Here, c1 = 0.67, c2 = 0.61, c3 = −0.096, c4 = 0.062



124

6.4 Effect of cavitation

The flow model presented in the previous subsection was developed for non-

cavitating conditions. However, in turbulent flow regime, the flow separates from

the walls (Figure 6.12) creating low pressure regions where there is a possibility of

pressure falling below the gas saturation pressure of the fluid. In such a scenario,

the gases normally dissolved in the fluid, come out of the solution in the form of

bubbles (referred to as aeration). Next, if the pressure falls below the vapor pressure

of the fluid, the fluid experiences a phase change from the liquid state to gaseous

state (vaporous cavitation). Generally, the term cavitation encompasses aeration and

vaporous cavitation. The energy consumed during the cavitation process (i.e. air

bubble formation and phase change) occurring in the flow channel should result in a

lower power level at the outlet of the channel. That is, lower flow should be expected

for a given pressure difference.

To study these effects of cavitation on the flow behavior, flow simulations were

conducted using the commercial CFD software PumpLinx [33]. This tool is preferred

over ANSYS Fluent for cavitation studies since this tool has a robust cavitation

model that accounts for both aeration and vaporous cavitation. The cavitation model

is based on the homogenous fluid approximation where the fluid is considered as a

mixture of liquid, vapor and gases. The evolution of vapor and gas fractions in the flow

is determined from a reduced form of Rayleigh-Plesset equation for bubble dynamics,

based on the work by Singhal et al. [116].

The computational domain was similar to what was described in section 6.3 and

multiple simulations were conducted for similar range of geometries and flow condi-

tions.

The results from the simulations confirm the fact that the flow separation is ac-

companied with a significant drop of pressure. Figure 6.13 shows two such instances

where the pressure drops well below the outlet pressure. From the simulation results,

it was observed that for same values of Πh and Πp, when the pressure in the flow
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domain stays above the saturation pressure, 0 bar or 1.013 barA (Figure 6.13(a)),

the flow relations from the previous section predict Πv very well. However, when

the pressure in the domain falls below the saturation pressure (Figure 6.13(b)), Πv

obtained from the simulations is lower than that predicted from the non-cavitating

model. This is expected because of the energy consumption in the cavitation process.

(a) (b)

Figure 6.13. Variation of pressure along the flow direction. x = 0 is the
location of constriction. Πh = 0.05, Πp = 1.9× 105 (a) pin = 200 bar,
pout = 100 bar (b) pin = 120 bar,pout = 20 bar, dotted line indicates 1.013
barA

It is further observed that the ratio of the inlet to outlet pressure dictates the

extent of the drop of pressure at flow separation. For instance, in Figure 6.13, this

ratio is 2 for non-cavitating case and 6 for cavitating case. From this observation, a

cavitation non-dimensional parameter Πc is proposed:

Πc =
pin
pout

(6.41)

such that the tendency of the flow to cavitate increases with Πc. A simulation cam-

paign was carried out where for each ∆p across the flow geometry, multiple simulations

with varying Πc were conducted. Table 6.2 shows a sample of operating conditions

illustrating how Πc variation was achieved.
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Table 6.2.
Pressure boundary conditions applied to vary Πc

pin (barA) pout (barA) Πc

∆p = 10 bar

40 30 1.33

20 10 2

15 5 3

12 2 6

11 1 11

10.5 0.5 21

10.1 0.1 101

∆p = 100 bar

200 100 2

150 50 3

120 20 6

110 10 11

105 5 21

100.5 0.5 201

Figure 16.14 shows the results in terms of Πv/Πv,nc vs Πc where Πv,nc is the Πv

value obtained for the non-cavitating case. Clearly, as Πc increases, the flow and hence

Πv decreases. The trend flattens out at higher values of Πc since at such high values,

doubling Πc causes a minimal change in the actual pressure boundary conditions.

For instance, for ∆p = 200 bar, Πc = 101 means pin = 202 barA and pout = 2 barA,

whereas Πc = 201 means pin = 201 barA and pout = 1 barA.
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Figure 6.14. Simulation results quantifying the effect of cavitation

Based on these results, the following formulation for Πv is proposed that acts as

the correction to the relation in Eq. 6.37:

Πv = Πv,nc · ζc (6.42)

where

ζc = c5e
−c6Πc + c7 (6.43)

Here, c5 = 0.22, c6 = 0.11 and c7 = 0.83.

6.5 Experimental tests

6.5.1 Test apparatus design

To validate the leakage flow model developed in previous sections, a novel exper-

imental apparatus was designed, fabricated and tested. The actual flow geometry

involves gap heights as small as 5 microns. Designing a setup at such scale would
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require very tight tolerances which would have significantly increased the cost of the

apparatus. To avoid that, the flow geometry has been scaled by a factor of 50. So,

the gap height would vary from 0.25 mm to 2.5 mm and the radius of curvature would

vary from 10 mm to 250 mm.

Figure 6.15 shows the front and the side view of the experimental apparatus.

The block in the figure have been made transparent so that the slider and the flow

geometry is visible. The block has a rectangular cavity on the top in which the slider

can slide in. The apparatus utilizes the equivalency of curvature discussed in previous

sections. The bottom curved surface of the slider and the flat surface of the block

(shown in red lines in Figure 6.15) form the flow geometry of interest. Since only

equivalent curvature of the walls matters in the flow analysis, the flat surface of the

block is used throughout all experiments. To achieve variable curvature of the flow

geometry, three different sliders are manufactured with radius of curvature as 10 mm,

50 mm, and 250 mm. This covers the whole range of the scaled radius of curvature

described in previous paragraph.

The gap height is varied by realizing a vertical motion of the slider. To realize

that, a tapered hole has been machined in the slider such that the bottom face of

the hole is horizontal, but the upper face is inclined at an angle of 3.8° (Figure 6.16).

This allows achieving a wedge-shaped element (red element in Figure 6.17) to lift the

slider as the wedge is moved horizontally. For each millimeter raising of the slider, the

wedge needs to move horizontally by 15 mm. This magnification of motion permits

a precise control of the slider position.

To accurately determine the instantaneous position of slider (and hence the height

of the gap), a high-resolution micrometer (resolution of 2.5 µm) is mounted on the

support element. Figure 6.18 shows how the micrometer allows the indirect measure-

ment of the height of the gap. First, when the slider touches the block (height = 0),

the micrometer reading, z0 is recorded. After that, the slider is raised and the new

reading, z, is recorded. The difference z0 − z provides the gap height value.
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micrometer 
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Figure 6.15. Front and side view of the test apparatus with slider of
radius 50 mm. The flow geometry is marked in red lines.

3.8°

Front view Side view

Figure 6.16. CAD of the slider (R = 250 mm)
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wedge
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Figure 6.17. Test apparatus with multiple parts hidden to show the slider,
wedge and interaction between them.
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Figure 6.18. Illustration of using micrometer to determine the height of
the gap
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The slider is clamped from the top via two bolts on the clamp support (Figure

6.15). This prevents the slider from moving up in response to the high fluid pressure

below it (between the slider and the block). To allow the motion of the slider within

the block cavity, there is a clearance fit between them. The block and slider were de-

signed and manufactured such that this clearance is ≤ 76.2µm. Such a low clearance

ensures that the flow through this lateral gap is negligible compared to the main flow

over the bottom face of the slider.

6.5.2 Hydraulic circuit

A proper hydraulic circuit was designed to perform the experiments necessary to

validate the model discussed in previous sections. The ISO schematic of the circuit is

shown in Figure 6.19. Pressure and temperature sensors are mounted just before and

right after the test apparatus to obtain the pressure difference across the apparatus

and monitor the fluid temperature, respectively. The flow rate through the test

apparatus is measured via the flow meter mounted downstream of it. As the flow

rate in the experiments is varied significantly, two flow meters of different ranges

were used in the experiments. The details of these flow meters and other sensors used

in the experiments are presented in Table 6.3. For flow rates < 120 L/min, VS02

model was used, whereas for flow rates ≥ 120 L/min, VS10 model was used. Figure

6.20 shows the picture of the apparatus on the test rig.

Table 6.3.
Sensors used in the tests.

Sensor Model Specifications Accuracy

Pressure transducer Wika S-10 0 to 400 bar ± 0.5% of span

Thermocouple Omega K-type -5 to 200 °C 1 °C

Flow meter VSE VS02 0.1 to 120 L/min ± 0.3%

Flow meter VSE VS10 1.5 to 525 L/min ± 0.3%
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Figure 6.19. ISO schematic of the hydraulic circuit used in the experi-
ments.

An ISO VG 46 mineral oil was used as the operating fluid in the tests. Multiple

tests were conducted using each of the three sliders by varying the slider position and

then varying the flow rate at the source for each slider position.

The experiments were conducted in three sets. In set A, the experiments were

performed to validate the model for laminar flow conditions, i.e. Eq. 6.31. As

discussed in section 6.3, this equation is valid for low values of Πp. To ensure this,

experiments were conducted at

• low temperature (20 °C) : this raised the viscosity of the fluid, and

• low flow rates : this allowed a lower pressure drop across the constriction

In set B, the experiments were performed to validate the turbulent flow model

and the behavior of the transition from laminar to turbulent flow regime. As the

transition and turbulent flows occur at higher values of Πp, the experiments were

conducted at higher temperatures (30-75 °C) and high flow rates.
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Figure 6.20. Picture of the test apparatus in the hydraulic circuit.

Finally, in set C, the experiments were conducted to validate the cavitation cor-

rection of the model. To allow the occurrence of localized cavitation (predicted via

the variation of Πc), the hydraulic circuit was modified as shown in Figure 6.21. In

this circuit, when the ball valve is open, there is nearly zero resistance to the flow

downstream of the apparatus. Thus, when the flow rate is increased at the source,

pressure at the inlet increases, promoting Πc and hence, localized cavitation. On the

other hand, when the ball valve is closed, the apparatus outlet pressure increases

owing to the resistance at the needle valve resulting in lowering Πc and eliminating

cavitation.
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To obtain the results for a range of Πc, the flow source was set to a constant flow

rate value and data were recorded for different positions (closed/open) of the ball and

needle valves. The procedure was then repeated for different flow rate values.

U
Q

T UT U

U p
U p

Figure 6.21. ISO schematic of the hydraulic circuit used in the experi-
ments for set C.

6.6 Results and discussion

6.6.1 Laminar flow

In this section, results from the experiments in set A are presented. Figure 6.22

shows the results obtained by using the slider with radius of curvature of 50 mm. As

expected, as the gap height increases, for the same flow rate, the amount of pressure

drop across the slider decreases. So, in order to obtain same pressure drop, higher

flow rate is needed. At gap height of 1 mm, 84 L/min of flow was required to obtain a

pressure drop of 3.7 bar. Similar results were also obtained for other two sliders with

radius of curvature of 250 mm (Figure 6.23) and 10 mm (Figure 6.24). The nature of
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Figure 6.22. Flow pressure characteristics for the flow geometry with
Req = 50 mm

the curve changes a little towards the upper end of each curve. This happens because

of micron level deformation of the gap geometry at high pressures leading to slight

increase in the gap height.

Figure 6.23. Flow pressure characteristics for the flow geometry with
Req = 250 mm
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Figure 6.24. Flow pressure characteristics for the flow geometry with
Req = 10 mm

The data recorded from the experiments is transformed into the dimensionless

numbers Πh and Πv. Figure 6.25 shows the plot of Πv vs Πh obtained from exper-

imental tests. The functional relationship for laminar flow (Eq. 6.31) is plotted in

dotted lines. The figure shows a good match between experiments and the model.

Thus, the non-dimensional leakage flow relation for laminar flow is validated. For

h/Req > 0.08, the experiments deviate from the model. This is because at such high

values of Πh, very low values of Πp is required to keep Πhp < 1. Such low values

of Πp would either need very low pressure difference across the gap (which would be

lower than the accuracy of the sensors) or very high viscosity (which would require

temperature < 20 °C; this is not attainable in the test rig).

Comparison with Pellegri et al.’s leakage flow model

In their lumped parameter based fluid dynamic model, Pellegri et al. [108–110]

assume laminar nature of the flow over the tooth tip of gerotor and use the equation

for flow between parallel plates to model the tooth tip gap flow. The actual gap
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Figure 6.25. Results from the experiments and comparison with the
laminar flow model

geometry is anything but parallel plates, however, the comparison of the laminar

model developed in this work with Pellegri et al.’s model does provide an interesting

insight. Pellegri et al. propose that flow over the tooth tip is given by the following

equation:

Q =
bh3

12µLt
∆p (6.44)

where, Lt is the distance between two regions where the gap height increases from

the minimum gap height, h to h(1 + εh). Here, εh is a tunable parameter.

From Eq. 6.44, the dimensionless parameter

Πv =
µv

h∆p
=

h

12Lt
(6.45)

Πv from above equation and Πh are evaluated for a range of geometrical pa-

rameters, and the results are compared against the laminar non-dimensional model

developed in this work (Eq. 6.31). Figure 6.26 shows the comparison for multiple

values of εh. In [110], Pellegri et al. choose εh = 0.1 and in [117], Pellegri suggests

the range of εh between 0.08 and 0.15. However, according to Figure 6.26, εh=0.36

matches the model accurately (the mean error for h/Req ∈ [10−3, 10−1] is 2%). Thus,
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although, the simplifications in Pellegri et al.’s leakage flow model can be questioned,

it is interesting to note that for certain value of the parameter εh, it matches the

laminar model developed and validated in this work.

Figure 6.26. Comparison of the laminar flow model developed in this
work with Pellegri et al. [108,109]

6.6.2 Transition and turbulent flows

The flow experiments in set B encompass the transition and turbulent flow regimes.

For fully turbulent flows (Πp > 106 as per Figure 6.10), the pressure-flow character-

istic is observed to be quadratic (∆p ∝ Q2). This behavior is typical of turbulent

flows. In Figure 6.27, the experimental results match the dimensional turbulence flow

relation (Eq. 6.36) in their quadratic behavior.

The experimental data for both the transition and turbulent flow regimes is trans-

formed into the dimensionless form and is compared against the combined flow model

(Eq. 6.38). Figure 6.28 shows a good match between the two which validates the

curve-constricted flow model developed in this work.
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Figure 6.27. Pressure-flow characteristics from a subset of experiments
in set B. The dotted lines indicate the characteristics predicted from the
dimensional turbulent flow relation in Eq. 6.36.

6.6.3 Effect of cavitation

Finally, the results from the experiments in set C are presented. Figure 6.29(a)

shows the results in terms of pressure difference across the apparatus vs the pressure

at the outlet of the apparatus for three different flow rates. The variation in the

outlet pressure is achieved by changing the positions of the ball and needle valves.

When pout is close to 0 bar (1.013 barA), Πc is high, predicting localized cavitation.

Thus, for a given flow rate, the pressure drop across the apparatus is high. As pout is

increased, Πc decreases reducing the extent of cavitation and thus, lowering ∆p for

a given flow rate. The last two datapoints for each curve have nearly the same ∆p

indicating the absence of cavitation.

The experimental data is transformed into dimensionless quantities and are com-

pared against the model (Eq. 6.42 and 6.43). Figure 6.29(b) shows a good match

between the two that validates the model for cavitation correction.
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Figure 6.28. Comparison between the experimental data (circles) and the
combined flow model (dotted line). The solid line indicates the model for
fully turbulent flow.
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Figure 6.29. Results showing the effects of cavitation on flow: (a) pressure
data from the experiments and (b) comparison between the experimental
data and the cavitation correction model.
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7. PREDICTION OF HYDRO-MECHANICAL EFFICIENCY IN EXTERNAL

GEAR MACHINES

In previous chapters, the focus has been on the accurate modelling of internal flows

in gear machines. This is important in the prediction of volumetric efficiency of these

machines. However, an equally important performance characteristic of EGMs is

the hydro-mechanical efficiency (also referred to as the torque efficiency). The total

efficiency of an EGM is the product of volumetric and hydro-mechanical efficiencies.

Hence, the capability of the prediction of hydro-mechanical efficiency is a critical

attribute of an EGM simulation tool. However, this attribute is absent in almost all

the state-of-the-art EGM simulation tools. Thus, the work presented in this chapter

forms a key contribution to the field of EGM modelling.

To determine the hydro-mechanical efficiency of a unit, all the sources of torque

losses must be identified and loss models must be developed for each of these sources.

In EGMs, the key sources of torque losses are friction at the gear tooth tips, friction

at the lateral leakage interfaces, friction at the bearings and friction between the gears

during their meshing.

The torque loss models proposed by the researchers in 20th century, for positive

displacement machines in general, were semi-empirical in nature [118–122]. Even for

EGMs in particular, early models were based on experimental data [123]. The first

numerical model for the prediction of torque losses in EGMs (that was not depen-

dent on experimental data) was developed by Thiagarajan and Vacca [124]. However,

this model involves 2D CFD based modelling of the lateral lubricating interfaces that

makes it computationally expensive. Moreover, the model makes certain assumptions

on the evaluation of the meshing friction which can be a major contributor to the

torque losses. The most recent work in this topic is the one published by Zardin et

al. [125]. However, their approach has few limitations related to the friction at the
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journal bearings and the meshing interface. In particular, for journal bearing, the

shaft is assumed to be concentric to the bearing, thereby neglecting the micromotion

phenomenon (which as discussed in section 1.6, significantly impacts the EGM per-

formance). Moreover, for the evaluation of the meshing friction, ISO standard for

gearboxes is used whose applicability is debatable for EGMs where significantly high

levels of pressures are observed.

The work presented in this chapter aims to overcome these limitations without

sacrificing the simulation swiftness. In this work, a new methodology for the evalua-

tion of torque losses at key interfaces in EGMs is developed. The loss models are then

integrated in the HYGESim simulation tool and validated against the experimental

data. The reference machine used in this work is Casappa PHP20 pump (E5).

7.1 Friction at the tooth tip

As described in previous chapters, the micron level gaps between the gear tooth

tips and casing allow the fluid flow across the tooth driven by relative motion of the

surfaces and pressure difference across the adjacent TSVs. As the reference EGM E5

works with mineral oils and operates at moderate speeds (1000-2500 rpm), the flow

over the tooth tip stays laminar (Figure 7.1). For laminar Couette-Poiseuille flow

over the tooth, the flow velocity can be expressed as:

v =
vy

h
− 1

2µ
y(h− y)

dp

dx
(7.1)

Then, the shear stress on the gear tooth tip:

τw =
µv

h
+
h

2

dp

dx
(7.2)

=⇒ τw,i =
µωrg
h

+
h(pi+1 − pi)

2L
(7.3)

From shear stress, the shear force on each tooth tip can be calculated as

Fi = τw,iLb (7.4)
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Figure 7.1. reference pump E5: Gap at the tooth tip with local coordinate
system for theoretical analysis.

Finally, the torque from the friction at the tooth tip,

Mf,tip =
∑
i

Firg = Lbrg
∑
i

τw,i (7.5)

This approach works when the gap height is higher than the surface roughness.

However, in EGMs, due to the asymmetric loading of the gears, the gears move

towards the low pressure side (gear micromotion). Often, the gears wear into the

casing and then maintain a low gap height at the tooth tip. This is desirable from

the leakage reduction perspective. However, such low height means that the surface

roughness can no longer be neglected.

Patir and Cheng [126,127] have investigated lubrication under mixed friction con-

ditions where due to surface roughness, friction between the two surfaces arise from a

combination of viscous shear and asperity contacts (Figure 7.2). They proposed the

following model of shear stress for the conditions of mixed friction:

τ =
µv

h
(φf + φfs) + φfp

h

2

dp

dx
(7.6)

where

φf = hE(1/hT ) (7.7)



144

ℎℎ�

��

��

Figure 7.2. Illustration of typical gap geometry where gap height is in
the order of the surface roughness (adapted from [126])

Here E is the expectation function which is obtained by integration of the rough-

ness distribution over the film region. Next, h is the mean gap height, whereas, hT is

the actual film thickness accounting for surface roughness (Figure 7.2):

hT = h+ δ1 + δ2 (7.8)

The analytical approximate expression of φf for Gaussian distribution is present

in [127]. Figure 7.3(a) shows its variation with non-dimensional film thickness h/σ.

Here,

σ =
√
σ2

1 + σ2
2 (7.9)

where σ1,2 is the standard deviation of roughness of the surface 1,2.

In Eq. 7.6 φfs = 0 for surfaces with longitudinal roughness patterns. This is

indeed the case with tooth tip-casing interface. The tooth tip wears into the casing

creating roughness pattern along the direction of the motion.

Finally, φfp is the pressure correction term whose variation with non-dimensional

film thickness was determined by Patir and Cheng [127] and is shown in Figure 7.3(b).

Thus, in the presence of mixed friction, Eq. 7.2 is replaced by Eq. 7.6 and then

Eq. 7.5 is used to evaluate the friction torque at the tooth tips of EGMs.

Figure 7.4 shows the effect of σ on the friction torque. Black line indicates the

torque for ideal surfaces with zero roughness. In that case, the full film is preserved
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(a) (b)

Figure 7.3. variation of factors φf and φfp with film thickness

even for very low gap heights, h→ 0. Thus, as per Eq. 7.2, the shear stress and hence

friction torque → ∞ as h → 0. In contrast, for higher surface roughness (increasing

σ), the friction at h→ 0 is bounded due increase in the size of regions under asperity

contacts compared to regions under full film.

To
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u
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m
]

Figure 7.4. Effect of surface roughness on torque
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7.2 Friction at the lateral gaps

Figure 7.5 shows the lateral gap between the gears and the bushings for the refer-

ence EGM E5. To study the friction at this interface, the lateral gap is divided into

two interfaces as per the primary direction of flow: lateral leakage interface and drain

leakage interface (Figure 7.6)

Lateral gap

bushings

Figure 7.5. Illustration of lateral gap in the reference pump E5

Lateral leakage interface

Drain leakage interface

Figure 7.6. Lateral and drain leakage interface (direction of flow is indi-
cated in brown arrows)

In the following subsections, the formulations for the evaluation of friction in each

of these interfaces is described.
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7.2.1 Friction at the lateral leakage interface

The lateral leakage occurs between adjacent TSVs via the gap on the lateral side

of the gears. As the gap height is in the order of microns, similar to the flow at the

tooth tip, this leakage flow stays laminar and Eq. 7.2 is an appropriate relation for

shear stress. In Figure 7.7, considering a differential slice of tooth at distance from

gear center of r and thickness dr, Eq. 7.2 can be written as

τw =
µωr

h
+

h∆p

2L(r)
(7.10)

�

��

�(�)

���� ��

��

Figure 7.7. Lateral leakage interface: a differential slice of the tooth for
the evaluation of shear stress

It is to be noted that the length of the gap L(r) clearly varies with distance of the

slice from the gear center. Now, the differential shear force acting on this slice is

dF = τwL(r)dr (7.11)

Thus, the shear force acting over one tooth is

=⇒ F =

∫ rg

rr

τwL(r)dr =
µω

h

∫ rg

rr

rL(r)dr +
h(pi+1 − pi)

2
(rg − rr) (7.12)
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and, the friction torque from the shear stress over the tooth is

Mf,l =

∫ rg

rr

rdF =

∫ rg

rr

τwrL(r)dr (7.13)

Mf,l =
µω

h

∫ rg

rr

r2L(r)dr +
h(pi+1 − pi)

4
(r2
g − r2

r) (7.14)

The integral terms in Eq. 7.12 and Eq. 7.14 cannot be evaluated analytically. How-

ever, as the integrands contain only geometric quantities, they can be evaluated nu-

merically offline and can be considered as input parameters for HYGESim.

It is to be noted that Eq. 7.14 assumes that the gap height h is constant over

the full revolution of the gear. However, in reality, the bushing is often tilted with

respect to the gears owing to high pressure in the TSVs on the outlet side (Figure

7.8). In such cases, for a given mean gap height h0 and tilt angle φ, the gap height

becomes

h(r, θ) = h0 − r tanφ sin θ (7.15)

�

ℎ�

�

ℎ(�, �)

�

bushing gear

Figure 7.8. Tilting of the busing and evaluation of local gap height

Thus, Eq. 7.10 becomes

τw =
µωr

h(r, θ)
+
h(r, θ)∆p

2L(r)
(7.16)
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Then, the equation for shear force over one tooth becomes

F = µω

∫ rg

rr

rL(r)

h0 − r tanφ sin θ
dr+

(pi+1 − pi)
2

[
h0(rg−rr)−

tanφ sin θ

2
(r2
g−r2

r)
]

(7.17)

and the equation for friction torque over one tooth becomes

Mf,l = µω

∫ rg

rr

r2L(r)

h0 − r tanφ sin θ
dr +

(pi+1 − pi)
2

[h0

2
(r2
g − r2

r)−
tanφ sin θ

3
(r3
g − r3

r)
]

(7.18)

The integrals in Eq. 7.17 and Eq. 7.18 are now dependent on operating conditions

too (h0, φ). For implementation of these equations in HYGESim, integral tables are

generated as a preprocessing step. This tables are in the form of text files that

store the numerical evaluation of these integrals for a set of values of h0, φ and θ.

HYGESim interpolates the data from this table to determine the instantaneous value

of the integrals.

7.2.2 Friction at the drain leakage interface

In the drain leakage interface, the pressure driven leakage flow is along the radial

direction (Figure 7.9). Thus, the shear stress due to this flow does not generate any

friction torque. The friction torque only occurs due to the Couette flow arising from

the relative motion of the gear with respect to the bushing. Considering a differential

slice of this interface with radius r and thickness dr, the expression of shear stress is

simply

τw =
µωr

h
(7.19)

Now, the differential shear force acting on this slice is

dF = τw · 2πrdr (7.20)

Due to radial symmetry, the net shear force on the drain leakage interface is zero.

The friction torque acting on this interface is

Mf,d =

∫ rr

rd

rdF =

∫ rr

rd

τw · 2πr2dr (7.21)



150

�

��
��

� �

Figure 7.9. Drain leakage interface: a differential slice for the evaluation
of shear stress

=⇒ Mf,d =
πµω

2h
(r4
r − r4

d) (7.22)

Eq. 7.22 is applicable for constant gap height over the whole interface. However,

when the bushing tilts, the gap height varies in the interface as per Eq. 7.15. For

such a case, the differential slice is now a rectangular area shown in Figure 7.10. The

differential force acting on this slice is

dF = τw · rdθdr (7.23)

Then, the shear force acting on the whole drain leakage interface in x direction is

Fx = −
∫ rr

rd

∫ 2π

0

τw sin θ · rdθdr (7.24)

= −µω
∫ rr

rd

∫ 2π

0

r2 sin θ

h0 − r tanφ sin θ
drdθ (7.25)

= −µω · 2π

tanφ

∫ rr

rd

r√
1− r2

(
tanφ
h0

)2
− r dr (7.26)
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=⇒ Fx = −µω · 2π

tanφ

[ 1

m

(√
1−mr2

d −
√

1−mr2
r

)
− r2

r − r2
d

2

]
(7.27)

where, m = (tanφ/h0)2.

As the bushing tilt is symmetric along y axis, Fy = 0.

Next, the friction torque is evaluated as

Mf,d =

∫ rr

rd

∫ 2π

0

rdF =

∫ rr

rd

∫ 2π

0

τwr
2dθdr (7.28)

=⇒ Mf,d = µω

∫ rr

rd

∫ 2π

0

r3

h0 − r tanφ sin θ
drdθ (7.29)

= µω · 2π

h0

∫ rr

rd

r3√
1− r2

(
tanφ
h0

)2
dr (7.30)

=⇒ Mf,d =
2πµω

h0

1

3m2

[√
1−mr2

d(2 +mr2
d)−

√
1−mr2

r(2 +mr2
r)
]

(7.31)
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Figure 7.10. Drain leakage interface: a differential slice for the evaluation
of shear stress for tilted bushing
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7.3 Friction at the bearings

In the reference unit E5, there are four journal bearings formed by the gears’ shafts

and holes in the bushings. A simple equation for the evaluation of friction torque on

the shaft of journal bearing was provided by Petrov [43]:

Mf,s,Petrov =
2πµr3

sbbω

c
(7.32)

A critical limitation of this equation is that it assumes the journal (gear shaft) to

be concentric to the bearing. In reality however, to support the external load acting

on the journal, the journal achieves an eccentric position with respect to the bearing

(Figure 7.11).

��

��

ℎ

�

Journal

Bearing

��

�

�

Figure 7.11. Journal Bearing geometry showing eccentricity of the journal
(shaft) with respect to the bearing.

It is important to note that the flow in the journal bearing fluid film can again

be considered to be laminar (due to micron level film thickness) and Eq. 7.2 can be

used for the evaluation of shear stress. However, a key challenge is the determination

of the pressure in the fluid film.

In his study of short bearing approximation for journal bearings, Ocvirk [41]

proposed that under the short bearing assumption (bb < 2rs), the pressure term in
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Eq. 7.2 can be neglected. Thus, the shear stress at an angular position φ on the

journal is

τ =
µωrs
h(φ)

(7.33)

where h is the thickness of the fluid film in the journal bearing. h can be expressed in

terms of the journal bearing nominal radial clearance, c and the journal eccentricity,

e as

h = c+ e cosφ = c(1 + ε cosφ) (7.34)

where ε is the eccentricity ratio that varies from 0 (no eccentricity) to 1 (maximum

eccentricity).

The shear force on the shaft can then be determined by integrating the shear

stress in Eq. 7.33 over the whole angular span:

Fs = bb

∫ 2π

0

τrsdφ (7.35)

Consequently, the friction torque on shaft is

Mf,s = rsbb

∫ 2π

0

τrsdφ (7.36)

=⇒ Mf,s,Ocvirk =
2πµr3

sbbω

c
· 1

(1− ε2)0.5
(7.37)

It is notable that as ε→ 0, the Ocvirk expression for friction converges to Petrov’s

equation.

Another alternate approach for the determination of the friction torque at journal

bearings is to consider the pressure term in Eq. 7.2 and use for pressure expression

from half Sommerfeld solution [43]. This solution is obtained under that assumption

that the bearing is infinitely long and the pressure in the film is non-zero only in half

of the film (π film). The aforementioned pressure expression is

p =
µωr2

s

c2
· 6ε sinφ(2 + ε cosφ)

(2 + ε2)(1 + ε cosφ)2
, 0 ≤ φ ≤ π (7.38)

Starting from Eq. 7.2, the shear stress at an angular position φ on the journal is

τ =
h

2rs

dp

dφ
+
µωrs
h

(7.39)
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From this expression of shear stress, the expression of friction torque on the shaft is

determined to be

Mf,s,Som =
rsbb
2

∫ π

0

h
dp

dφ
dφ+

2πµr3
sbbω

c
· 1

(1− ε2)0.5
(7.40)

The integral in this equation could not be evaluated analytically.

It is to be noted that each of the two approaches described above (Ockvirk and

Sommerfeld) have certain assumptions. In fact, the two approaches represent the two

extremes of the solution. The former approach is suitable for short bearings, whereas,

the latter approach is suitable for long bearings. The bearings present in the reference

unit E5 have bb ≈ 2rs. Thus, the actual solution of friction torque must lie between

the values predicted by the two approaches.

To determine the friction torque without any assumptions on the bearing length,

the Reynolds equation of lubrication needs to be solved numerically over the fluid

domain. For journal bearing, the Reynolds equation simplifies to

∂

∂φ

(
h3 ∂p

∂φ

)
+ r2

sh
3∂

2p

∂y2
= −6µωbr

2
scε sinφ (7.41)

Figure 7.12 shows the pressure distribution obtained from the numerical solution

of Eq. 7.41. From this pressure solution, the shear stress is evaluated using Eq. 7.39

and subsequently, the friction torque is determined.

Figure 7.13 shows the comparison between the results obtained from the three

approaches. (The integral in Eq. 7.40 was solved numerically to determine the

friction torque from Sommerfeld approach.) As expected, the torque obtained from

the numerical solution of Reynolds equation lies between the torques obtained from

Ocvirk and Sommerfeld approaches.

This figure also highlights the fact that the journal eccentricity has a significant

effect on the friction torque. The loads on the journals in EGMs are typically on the

order of few kiloNewtons and thus the eccentricity ratios of the journals are around

0.9-0.95. Consequently, Petrov’s equation (used by Zardin et al. [125]) significantly

underestimates the bearing torque.
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Figure 7.12. Pressure distribution in the journal bearing fluid film ob-
tained from the solution of Reynolds equation. Reference case: bearing
of pump E5, ω=1000 rpm, ε=0.9

Figure 7.13. Comparison of the bearing friction torque obtained from the
three approaches. Reference case: bearing of pump E5, ω=1000 rpm
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The Ocvirk solution is preferred for implementation in HYGESim due to its ana-

lytical nature. However, to obtain a match with the numerical solution, a correction

factor to the Ocvirk solution needs to be determined. For the reference unit E5, the

correction factor was found to be 0.43ε4 + 1. That is,

Mf,s,Oc,mod = (0.43ε4 + 1) ·Mf,s,Ocvirk (7.42)

Figure 7.14 shows a good match between the numerical solution and the modified

Ocvirk solution of Eq. 7.42.

Figure 7.14. Comparison between the numerical solution and the modified
Ocvirk solution

7.4 Friction in the meshing of gears

The friction in the meshing of the gears originate from the rolling and sliding

motion of the gear teeth surfaces with respect to each other. The gears in EGMs

experience high contact force that is required to provide the torque to the driven gear
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to displace the fluid against high pressure. Such forces result in elastic deformation of

the contact surfaces. Thus, the condition of elastohydrodynamic lubrication (EHL)

exists at these surfaces.

Jacobson and Hamrock [128] developed an EHL model for rectangular contacts

considering the non-Newtonian behavior of the fluid and the wall slip at high shear

stresses. In particular, they employed a fluid model that includes the limiting shear

stress of the fluid (τL in Figure 7.15). When the shearing imposed is higher than this

value, fluid slippage occurs.

Shear strain rate

S
h

ea
r 

st
re

ss

Non-Newtonian��

Figure 7.15. Model of fluid shearing behavior adopted by Jacobson and
Hamrock [128]

The limiting shear stress increases with pressure as per the following relation:

τL = τ0 + γp (7.43)

where, τ0 is the initial shear strength.

Jacobson and Hamrock conducted several EHL simulations and based on the

results, they proposed a relation for the friction coefficient for surfaces under EHL

contact:

µf1 = 0.67× 10−6(U∗)0.81U0.26(WG2)3.32 (7.44)
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If µf1 > 0.8γ

µf = 0.8γ + 0.021 tanh
[µf1

γ
− 0.8

]
(7.45)

Here,

U∗ =
ud
us

(7.46)

U =
µ0us
E ′R

(7.47)

W =
wz
E ′R

(7.48)

G = α1E
′ (7.49)

In Eq. 7.46, ud is half of the relative sliding speed. In Eq. 7.46 and Eq. 7.47, us

is the average speed of the two surfaces. In Eq. 7.47, R is the equivalent radius of

curvature of the two surfaces and E ′ is the effective elastic modulus of the material:

E ′ =
E

1− ν2
p

(7.50)

In Eq. 7.48, wz is the load per unit length of the contact. In Eq. 7.49, α1 is

the pressure-viscosity coefficient in the relation describing the dependence of fluid

viscosity on pressure:

µ = µ0e
α1p (7.51)

Figure 7.16 shows the orientation of contact forces acting on the drive and driven

gears. The contact force is evaluated by balancing the moments from (a) the fluid

pressure acting on the driven gear (Eq. 2.6) and (b) the shear forces acting on the

driven gear’s surfaces:

• tooth tips of the gear (Eq. 7.4)

• lateral surfaces of the gear (Eq. 7.17 and Eq. 7.27)

• shaft of the gear (Eq. 7.36)

The friction force is then calculated from the contact force as

Ff = µfFc (7.52)
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Figure 7.16. Contact force, friction force and friction torque on the gears

Finally, the meshing friction torque from this friction force on drive and driven gears

are calculated as

Mf,m,D = FfLD (7.53)

Mf,m,S = FfLS (7.54)

For the driven gear, this friction torque is balanced by additional contact force

Fc,f =
Mf,m,S

rp cosα
(7.55)

Thus, the net meshing friction torque is the sum of the meshing friction torque

on the drive gear and the moment from Fc,f :

Mf,m = Mf.m,D + Fc,frp cosα (7.56)

=⇒ Mf,m = Mf,m,D +Mf,m,S (7.57)
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7.5 Results and experimental validation

The shear force and friction torque formulations developed in the previous sections

were implemented in HYGESim and simulations were conducted for the reference

unit E5 for a range of operating speeds and pressures. In this section, first, the

torque loss results obtained from the simulations are presented. Next, the hydro-

mechanical efficiency results are compared against the experimental data (provided

by the sponsor of the project). Due to confidentiality agreement with the sponsors, the

results presented are normalized with respect to the reference speed: Nref ∼ O(1000

rpm, reference pressure: pref ∼ O(100 bar) and reference torque: Mref = VDpref .

7.5.1 Meshing friction results

The results from the simulations help explain certain observations in regards to

the meshing friction. In particular, when the gears are in a configuration shown in

Figure 7.16, the meshing friction torque on drive gear is clockwise which is in the same

direction as the gear rotation. That is, the meshing friction assists in the motion of

the gear which seems counter-intuitive. However, the meshing friction torque on the

driven gear is clockwise too which is in the opposite direction of the gear rotation.

The simulation results (Figure 7.17(a)) show that at this angular position of gearsets

(360°), the resistive meshing friction torque on driven gear is higher than the assistive

meshing friction torque on the drive gear such that the net meshing friction torque

(Eq. 7.57, shown in Figure 7.17(b)) is always resistive.

Figure 7.17 also shows that the net meshing friction torque becomes instanta-

neously zero at certain angular positions. At those angular positions, the contact

surfaces have same velocity tangential to the contact (θ = 367.5° in Figure 7.18),

thus the relative sliding speed becomes zero.
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Figure 7.17. Meshing friction torque obtained from the simulation of the
reference unit E5 at the reference speed and pressure: (a) Meshing friction
torque on drive and driven gears, (b) net meshing friction torque. Positive
and negative values of torque correspond to resistive and assistive torque
to the motion, respectively.

7.5.2 Friction torque results from all the sources considered

Figure 7.19 shows the trends of friction torque at different interfaces obtained from

the simulation of the reference EGM. The friction torque at the tooth tip experiences

sudden increase from p = 0.2pref to p = 0.4pref . This happens due to the fact that

at p = 0.2pref , the tooth tip gap height stays high enough to avoid mixed friction.

However, as the pressure is increased, the magnitude of gear micromotion increases

lowering the tooth tip gap height resulting in the rise of the friction. At this pressure

level, the tooth tip and casing surfaces interact in mixed friction regime. On further

increase of pressure, the tooth tip gap height lowers further, however, as shown in

Figure 7.4, the friction torque stays bounded in mixed friction regime. Thus, the

further increase in friction torque is gradual and is primarily caused by increasing

dp/dx term in Eq. 7.6.

The friction torque at the lateral leakage interface increases linearly with pressure

and speed. This is in accordance with the Eq. 7.18 which governs the friction torque
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Figure 7.18. Velocity (tangential to the contact) of the two surfaces
during gear meshing

at this interface. The friction torque at the drain leakage increases linearly with speed

as per Eq. 7.31. The slight increase with pressure is observed which occurs due to

increase in fluid viscosity with pressure.

The friction torque at the bearing too exhibits the linear behavior, however, the

trends are more steep with pressure. This is because, with the increase in pressure,

the load on the bearing increases and hence the eccentricity of the journal increases.

Thus, the bearing friction torque increases as per Eq. 7.37.

The meshing friction torque increases significantly with pressure but marginally

with speed. This is because the meshing friction torque depends directly on the

contact force which increases with the pressure to balance the increasing moment on

the driven gear. At higher speeds, the pressure in the TSVs trapped in meshing zone

increases, resulting in a slight increase in the moment on the driven gear that has to

be balanced by higher contact force.
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Figure 7.19. Friction torque at each interface obtained from the simula-
tion of E5 unit for a set of operating conditions

Figure 7.20 shows the comparison of the torque losses at all the interfaces consid-

ered. The trends with pressure is shown in Figure 7.20(a) and the trends with speed

is shown in 7.20(b). Clearly, meshing friction torque is the major contributor to the

overall torque loss.

In Figure 7.20, the torque losses are observed to be increasing with pressure.

However, it is important to note that the theoretical torque increases with pressure

too (Eq. 1.4). Thus, it is more informative to represent these torque losses in terms

of the fraction of the theoretical torque. To achieve that, the torque loss quantities at

each operating condition are normalized by the theoretical torque at that operating

condition. Thus, the fractional torque loss is defined as:

Mf,fractional =
Mf

Mth

(7.58)
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Figure 7.20. Comparison of different sources of torque losses obtained
from the simulation of the reference unit E5. (a) trends with pressure
obtained at N = Nref . (b) trends with speed obtained at p = pref

As per the confidentiality agreement with the project sponsors, the pump effi-

ciency data needs to remain confidential. To ensure this, the fractional torque loss is

normalized by the fraction of total torque loss at the reference operating condition:

M∗
f =

Mf,fractional

[Mf,total,fractional]ref
(7.59)

where Mf,total = Mf,t +Mf,l +Mf,d +Mf,b +Mf,m.

This normalized fractional torque loss for each source is presented in Figure 7.21.

The fractional meshing torque loss is observed to be almost constant with pressure,

whereas other torque losses, as a fraction of the theoretical torque, decrease with

pressure and increase with speed. In particular, the trend with pressure is ∼ 1/p.

This is because the friction torque equations for these sources of losses are of the type

Mf ≈ f1(ω) + f2(∆p) (7.60)
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=⇒ Mf

Mth

≈ 1

∆p
f1(ω) + f2(1) (7.61)
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Figure 7.21. Normalized fractional torque losses obtained from the sim-
ulation of the reference unit E5. (a) trends with pressure obtained at
N = Nref . (b) trends with speed obtained at p = pref

7.5.3 Comparison between simulation results and experiments

From the torque losses results, the hydro-mechanical efficiency is determined as

per Eq. 1.3. For the results shown in this subsection, the hydro-mechanical efficiency

at all operating conditions are normalized by the hydro-mechanical efficiency at the

reference condition (Nref , pref ).

Figure 7.22 shows the comparison between the hydro-mechanical efficiency ob-

tained from HYGESim and that obtained from the experimental data (provided by

the project sponsor). A good match between the simulations and experiments is ob-

served. The overall trend is an increase in hydro-mechanical efficiency with pressure.
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This follows directly from the trend of the fractional torque losses in Figure 7.21(a),

where the losses decrease with pressure.
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Figure 7.22. Hydro-mechanical efficiency comparison between the simu-
lations and experiments for the reference pump E5: Trends with pressure.

Figure 7.23 shows the comparison between the simulations and experiments where

the trends are presented with respect to the operating speed. Again, a good match

in the values as well as the trends is observed. The results show that the hydro-

mechanical efficiency of the reference unit decreases with speed. This again follows

directly from the trend of the fractional torque losses in Figure 7.21(b), where the

losses increase with speed.

Figure 7.24(a) presents the hydro-mechanical efficiency map of the reference unit

obtained from the simulation results and experimental data.



167

0 1 2 3

0.6

0.8

1

Experiment

Simulation

0 1 2 3

0.6

0.8

1

Experiment

Simulation

0 1 2 3

0.6

0.8

1

Experiment

Simulation

0 1 2 3

0.6

0.8

1

Experiment

Simulation

0 1 2 3

0.6

0.8

1

Experiment

Simulation

Figure 7.23. Hydro-mechanical efficiency comparison between the simu-
lations and experiments for the reference pump E5: Trends with speed.

The error in the prediction of the hydro-mechanical efficiency by HYGESim is

defined as:

εhm =
|ηhm,sim − ηhm,exp|

ηhm,exp
× 100% (7.62)

The error over the whole range of operating conditions is shown in 7.24(b). Except

for one data point, the error at all the data points is < 2%.

Thus, a good match between the simulation results and data measured in the ex-

periments over the whole range of operating conditions validates the hydro-mechanical

efficiency model developed in this work.
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(a) (b)

Figure 7.24. (a) Efficiency map over the considered range of speed and
pressure (b) Error in the prediction of the hydro-mechanical efficiency.
The colorbar indicates the error percentage.
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8. THERMAL MODELLING OF EXTERNAL GEAR MACHINES

This chapter deals with the final relevant aspect related to EGMs (as described in

the research objective of this dissertation): fluid temperature. In the operation of

an EGM, temperature of the working fluid is a critical parameter. The viscosity of

the working fluids is a strong function of temperature. For instance, for ISO VG 46

mineral oils, when temperature is increased from 30 °C to 50 °C, the fluid viscosity

reduces by a factor of 2.2. It can be seen from the leakage flow models described and

developed in previous chapters that the fluid viscosity directly impacts the leakage

flow. As explained in Chapter 4, leakage flow has a significant impact on the EGM

performance in terms of the volumetric efficiency as well as the axial compensation

of floating elements. Moreover, as described in Chapter 7, the torque losses in EGMs

(and hence the hydro-mechanical efficiency of EGMs) are dependent on fluid viscosity

too.

The fluid temperature in EGMs is affected by two factors:

• Compression of the fluid during the pumping action and expansion of the fluid

during the motoring action,

• Power losses in EGMs comprising volumetric losses (from leakage flows) and

torque losses (from friction at the interfaces in relative motion).

Due to these factors, the temperature of the fluid in the EGM can vary signifi-

cantly. In fact, the experiments always show an increase in the temperature of the

fluid leaving the EGM. This elevated fluid temperature at the outlet of the EGM im-

pacts the performance of other hydraulic components connected downstream of the

EGM.

In view of these facts, a key limitation of the lumped parameter based models for

EGMs developed in past is that they assume isothermal flow conditions in EGMs.



170

This assumption negatively impacts the accuracy of the simulation model. In practice,

to improve the accuracy of the results obtained from the model, the simulations of

EGMs are conducted using these models at a temperature which is the mean of

the temperatures at the inlet and the outlet ports of the EGM. However, this port

temperature information has to be obtained from the experiments. This dependence

on the experimental data hampers the predictive capability of the simulation models.

Moreover, these models cannot be used to predict the temperature of the outlet flow

which, as mentioned in the previous paragraph, is critical to the performance of the

components downstream of the EGM.

First research work that involved the port temperatures of EGMs was related

to the development of the thermodynamic model for the prediction of the pump

efficiency based on port pressure and temperature measurements [129]. Similar model

was developed by Casoli et al. [130] for axial piston pumps. These models, however,

are not predictive as they rely on the outlet temperature measurements. The efforts

towards the development of thermal models that can allow the prediction of the outlet

temperatures have been made by Zecchi et al. [131] and Shang and Ivantysynova [132]

for axial piston machines. For EGMs, thermal effects have been considered in the

modelling of the axial balance of floating elements in pressure compensated units

[133, 134]. However, this approach too requires accurate temperature information

from the lumped volumes of EGM which cannot be provided by the state-of-the-art

EGM lumped parameter models.

The goal of the work presented in this chapter is to overcome this scarcity by

developing a thermal model of EGMs based on the lumped parameter approach. In

this work, the thermal modelling of the elementary hydraulic components (chamber

and hydraulic resistance) of the lumped parameter model is based on the thermal-

hydraulic library of the commercial tool Simcenter Amesim [135].

The thermal model developed in this work is able to predict the temperature in all

the control volumes (CVs) of the EGM including the temperature at the outlet. The

instantaneous temperature information can then be used to update the local fluid
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properties in the CVs hence permitting an accurate evaluation of internal flows and

the performance of EGMs.

In this chapter, a detailed description of the thermal model developed in this work

is provided. This includes the governing equations for pressure and temperature in

CVs, internal enthalpy flows between the CVs and power losses. The thermal model

is then validated against the data obtained from the experiments conducted on the

reference EGM E3.

8.1 Conservation laws for control volumes in EGMs

In this section, the laws of conservation of mass and energy are used to derive the

governing equations for pressure and temperature in the control volumes of EGMs.

The CVs in a typical EGM was shown in Figure 2.2. However, for the sake of

convenience, the CVs for the EGM used as reference in this chapter are shown in

Figure 8.1.

���

����

��,�

DRIVE GEAR DRIVEN GEAR

CASING

��,�

Lateral leakage Drain leakage

�

Figure 8.1. Reference EGM with CVs shown in different colors: Blue and
red CVs are the inlet and outlet chambers, respectively. Yellow and green
CVs correspond to the drive and driven gear TSVs, respectively.
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For the analysis presented in this section, a generic CV is considered (Figure 8.2).

The CV has N number of ports via which the exchange of mass (mass flow rate

ṁ) and energy (enthalpy flow rate Ḣ) occurs. Moreover, the volume of the CV is

changing at the rate of dV/dt.

�̇�, �̇�

�̇�, �̇�

�̇�, �̇�
�, �, �

��

��

�̇ �̇

Figure 8.2. Schematic of a typical CV in EGM with N number of ports
and varying volume

8.1.1 Conservation of mass

The conservation of mass equation for the CV in Figure 8.2 can be written as

dm

dt
=
∑
i

ṁi (8.1)

Applying chain rule:
dm

dt
=
d(V ρ)

dt
= V

dρ

dt
+ ρ

dV

dt
(8.2)

=⇒ dρ

dt
=

∑
i ṁi − ρdVdt

V
(8.3)

Now, the total derivative of density can be written as

dρ

dt
=
(∂ρ
∂p

)
T

dp

dt
+
( ∂ρ
∂T

)
p

dT

dt
(8.4)

=⇒ dp

dt
=

1(
∂ρ
∂p

)
T

[
dρ

dt
−
( ∂ρ
∂T

)
p

dT

dt

]
(8.5)
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For the working fluid, isothermal bulk modulus is defined as:

KT = ρ
(∂ρ
∂p

)−1

T
(8.6)

and isobaric thermal expansion coefficient is defined as:

αp = −1

ρ

( ∂ρ
∂T

)
p

(8.7)

Thus, Eq. 8.5 becomes

dp

dt
= KT

[
1

ρ

dρ

dt
+ αp

dT

dt

]
(8.8)

Substituting dρ/dt from Eq. 8.3 in Eq. 8.8,

dp

dt
= KT

[∑
i ṁi − ρdVdt
ρV

+ αp
dT

dt

]
(8.9)

It is notable that Eq. 8.9 is the same as the pressure build up equation described

in Chapter 2 (Eq. 2.1) except the dT/dt term. This term accounts for the effect of

fluid temperature on the pressure in the CV. Thus, Eq. 8.9 can be referred to as the

non-isothermal pressure build up equation.

8.1.2 Conservation of energy

The conservation of energy equation for the CV in Figure 8.2 can be written as

d

dt
(mu) = Q̇− Ẇ +

∑
i

Ḣi (8.10)

where u is the internal energy of the CV which can be expressed in terms of the

specific enthalpy h as

u = h− pV/m (8.11)

The boundary work done by the CV is pdV . Thus,

d

dt
(mh− pV ) = Q̇− pdV

dt
+
∑
i

Ḣi (8.12)
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Upon simplification,

dh

dt
=

1

ρV

[
Q̇+

∑
i

Ḣi − h
∑
i

ṁi

]
+

1

ρ

dp

dt
(8.13)

Now, the specific enthalpy can be expressed as a function of temperature and

pressure as
dh

dt
= cp

dT

dt
+
(1− αpT

ρ

)dp
dt

(8.14)

Detailed derivation of this relationship can be found in [132].

Eliminating dh/dt from Eq. 8.13 and 8.14, the governing equation for the tem-

perature in a CV is obtained:

dT

dt
=
Q̇+

∑
i Ḣi − h

∑
i ṁi

ρcpV
+
αpT

ρcp

dp

dt
(8.15)

This equation is referred to as the temperature rise equation for a CV. In this equation,

the first term represents the rise of temperature in the CV from external heat and

the inflow/outflow at the ports. In particular,∑
i

Ḣi − h
∑
i

ṁi =
∑
i

mi(hi − h) (8.16)

Thus, this term accounts for the rise/fall in the temperature of the fluid in the CV due

to the difference in the specific enthalpy of the fluid in the CV and the fluid entering

the CV. The last term in Eq. 8.15 accounts for the effect of the fluid pressure in the

CV on the fluid temperature in the CV.

8.2 Enthalpy Flow through hydraulic resistances

As described in section 2.1, in the lumped parameter based Fluid Dynamic Mod-

ule, the CVs are connected by hydraulic resistances (which are modelled as ei-

ther orifices or combined Couette-Poiseuille flow connections). Figure 8.3 shows the

schematic of a hydraulic resistance connecting two lumped volumes. The fluid flowing

through the resistance has the enthalpy of the upstream CV. Thus, the enthalpy flow

rate associated with the mass flow through these resistances is calculated as:

Ḣ1−2 = ṁ1−2 · h1−2 (8.17)
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where h1−2 is evaluated at the pressure and temperature of the upstream CV. The

assumption associated with this relation is that there is no heat gain/loss to the

environment in this flow. This assumption is revisited in section 8.4.

As these resistances encompass the leakage flows in EGMs, Eq. 8.17 accounts for

the power losses in EGMs due to volumetric losses.

��, ��

�̇��� , �̇���

��, ��

Figure 8.3. Schematic of a hydraulic resistance connecting two lumped
volumes at pressures p1 and p2 and temperatures T1 and T2

8.3 Power losses due to friction

In Chapter 7, a detailed methodology was described for the evaluation of friction

torque at the interfaces that are the key sources of torque losses in EGMs. From the

expressions of friction torques, the power losses can be evaluated as the product of

the friction torque and shaft speed.

Ploss,f = Mfω (8.18)

8.4 Heat loss to the environment

Researchers in past have commented that during the operation of EGMs, the

heat transfer to the environment is negligible compared to the energy flow in the

EGM [129, 130]. However, to confirm this theory for the reference machine E3, a

simple steady state thermal analysis of the EGM casing was conducted in ANSYS

Mechanical [136].
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Figure 8.4(a) shows the CAD of the solid bodies used in the thermal analysis.

The bodies include the mounting plate used to mount the reference EGM on the test

rig during the experiments (details in Section 5.4.2). Including the mounting plate is

important as it provides higher surface area for free convection of heat. For simplicity,

the fluid in the interior of the pump was assumed to be at the temperature of 45 °C

which is couple of degrees higher than the maximum outlet temperature measured

in the experiments. The air temperature around the casing and the mounting plate

was assumed to be 20 °C (lower end of the room temperature range). Thus, these

boundary conditions act as the upper bound (or the worst case scenario) for the heat

loss to the environment.

Pump
(without end cover) Mounting plate

(a) (b)

Figure 8.4. (a) CAD of the reference EGM (end cover removed to show
the interior domain) and the mounting plate used in the steady state
thermal analysis. (b) Heat flux at the interior surfaces obtained from the
results of thermal simulation in ANSYS.

The results from this thermal analysis confirm that the heat flux to the environ-

ment from the interior surfaces of the EGM (Figure 8.4(b)) is indeed much lower

than the rate of energy flow in the EGM. For instance, the radial heat flux from the
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internal periphery of the casing is q′′ ≈ 4.8× 10−3 W/mm2 =⇒ Q̇loss = 1.24 watts.

This is negligible compared to the circumferential energy flow = ṁh = 2674 watts (at

1000 rpm). Similarly, the heat flux in the axial direction (at lateral lubrication inter-

face) is q′′ ≈ 4.6× 10−3W/mm2. Thus, the heat losses over the area of lateral and

drain leakage interface (for single tooth) are 6.4× 10−2 watts and 4.7× 10−2 watts,

respectively. These values are insignificant compared to the levels of enthalpy flow

rates at these interfaces (Figure 8.5).

From this analysis, it is concluded that for the reference EGM, the heat loss to the

environment is inconsequential in the thermal analysis of EGM and thus is neglected

in the lumped parameter based thermal model developed in this chapter.
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drain leakage enthalpy flow

Figure 8.5. Enthalpy flow rates at the lateral and drain leakage interfaces
for one tooth over its full revolution. The results are obtained from the
simulation of the reference EGM at N = 1000 rpm, pout = 150 bar,
Tinlet = 35 °C. The angle convention is shown in Figure 8.1.

8.5 Results and comparison with experiments

The thermal model developed in this work is integrated in the Fluid Dynamic

Module of HYGESim and thereafter the simulations are conducted for the reference

EGM E3. In this section, the results obtained from the simulations are described
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and are compared against the experimental data. Comparison is also done with the

traditional isothermal model to highlight the significance of the proposed thermal

model.

8.5.1 Key results from the thermal model

Figure 8.6 shows the hydraulic circuit simulated in HYGESim. The pressure

boundary conditions for the pump being simulated is 0 bar at the inlet tank and 150

bar at the outlet port. The temperature at the inlet tank is set to 35 °C.

��� = 0 ���
��� = 35 ℃

���� = 150 ���

� = 1000 ���

Figure 8.6. Hydraulic circuit simulated in HYGESim

Figure 8.7 shows the evolution of the temperature at the inlet (TCV,in), outlet

(TCV,out) and drain chambers (TCV,dr) of the pump. The inlet and outlet chambers

were shown as blue and red regions, respectively, in Figure 8.1. The drain chambers

in the reference EGM (not shown in the figure) are located on the end of the gear

shafts that collect the drain leakage flow (shown in Figure 8.1) and provide the flow

back to the inlet chamber.

From Figure 8.7, the temperature at all the chambers increase with the progression

of the simulation (expressed in the terms of the shaft revolution). TCV,dr increases as

the drain chamber collects high enthalpy drain leakage flows from the TSVs. TCV,in

increases as it receives high enthalpy flows from the tooth tip and lateral leakage

interfaces as well as drain flow from the drain chamber. However, rate of increase

and the steady state value of TCV,in is low as the majority of the flow entering the
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Figure 8.7. Evolution of temperatures at the inlet, outlet and drain
chambers of the EGM obtained from the simulation setup in Figure 8.6

inlet chamber is the low enthalpy flow from the inlet port of the pump. The outlet

chamber’s temperature, TCV,out, (which is also the temperature of the outlet flow of

the pump) reaches the steady state value of 40 °C. The rise of TCV,out is attributed to

the high enthalpy flow delivered by the TSVs.

Figure 8.8 shows the variation of pressure and temperature in a TSV for two shaft

revolutions. As the TSV, Vi, enters the casing at the angular position ≈ 90°, the

leakage flow from the leading TSV, Vi+1, via the gaps at the tooth tip and the lateral

sides of the gear pressurizes the fluid in the TSV, Vi. Since the leading TSV, Vi+1,

is at a higher pressure, the leakage flows have higher enthalpy. The high enthalpy

inflow combined with the pressurization of the TSV, Vi, results in the increase of the

temperature in the TSV, Vi. The trend of the temperature in the TSV stays similar to

the pressure trend until the TSV reaches the meshing zone (angular position = 360°).

After 360°, a second spike in the TSV temperature is observed. This spike is caused

by two factors:

• Lateral leakage flow from the lagging TSV, i.e. from Vi−1 to Vi in Figure 8.9(c).

The fluid in Vi−1 has higher pressure and temperature, and thus, has higher

specific enthalpy as compared to the fluid in Vi. Thus, the lateral leakage flow
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carries the high specific enthalpy fluid to a low specific enthalpy environment

raising the temperature of the latter. This effect is mathematically captured by

the terms (
∑
Ḣ − h

∑
ṁ) in the temperature rise equation (Eq. 8.15). From

Figure 8.9(b), the leakage enthalpy flow Ḣi−1,i is higher than the product of the

specific enthalpy of the fluid in Vi and the leakage mass flow rate (hi · ṁi−1,i).

Thus, the aforementioned terms in the temperature rise equation yield a positive

value promoting dT/dt.

• Friction heating due to the meshing of the gear teeth (black curve in Figure

8.9(b)). In the temperature rise equation (Eq. 8.15), this factor appears as a

positive Q̇ promoting dT/dt.
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Figure 8.8. Pressure and temperature variation in a TSV over two shaft
revolutions
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Figure 8.9. (a) TSV temperature in the meshing region. (b) Plot of
different terms in the temperature rise equation (Eq. 8.15). Ḣi−1,i and
ṁi−1,i are the leakage enthalpy and mass flow rates, respectively, from
Vi−1 to Vi, hi is the specific enthalpy of the fluid in Vi. (c) Illustration of
the lateral leakage flow (green arrow) from TSV, Vi−1, to the TSV under
investigation, Vi. The color of CVs are the qualitative indicators of the
fluid pressure.

8.5.2 Validation of the thermal model

One of the main capabilities of the thermal model developed in this work is the

prediction of the outlet temperature. Thus, to validate the thermal model, the outlet
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temperature obtained from the simulation of the reference pump is compared against

the outlet temperature measured in the experiments.

The details of the experiments conducted with the reference pump E3 was de-

scribed in section 5.4. In brief, steady state flow experiments were conducted using

the reference pump for a range of operating speeds and pressures. In the experiments,

six different gearsets were used where each gearset had different magnitudes of man-

ufacturing errors. In the experimental setup, two thermocouples were mounted at

the inlet and outlet of the pump (Figure 5.13(b)). Via the inlet thermocouple, it was

ensured that the inlet temperature stayed at 35 °C. The outlet thermocouple allowed

the measurement of the outlet temperature.

Figure 8.10 shows that the outlet temperature obtained from the simulations agree

with the experimental data across all the operating conditions and all the gearsets.

It is notable that the outlet temperature level is affected by the compression of the

fluid and power losses in the EGM from leakage flows and friction. Thus, a good

agreement of the outlet temperature confirms the accuracy of these modelling aspects

and thereby, validates the overall thermal model developed in this work.

8.6 Significance of the thermal model

A key merit of the thermal model developed in this work is that it provides the

information about the temperature distribution in the EGM. This allows an accurate

evaluation of the fluid properties in different regions of the EGM. This is particularly

important for the viscosity of the fluid which exhibits a significant variation with

temperature. The viscosity of the fluid impacts the leakage flow in the EGM which

in turn affects the volumetric efficiency of the EGM. Thus, using the thermal model

improves the accuracy of the prediction of volumetric efficiency.

To highlight the difference between the traditional isothermal HYGESim tool and

the thermal model integrated HYGESim tool (referred to as non-isothermal HY-

GESim from this point onwards in the dissertation), three sets of simulations were
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Figure 8.10. Comparison of the outlet temperature predicted by the
simulations and the outlet temperature measured in the experiments for
all six gearsets.

conducted using EGM E3 as the reference. To magnify the difference, the clearance

at the tooth tip was increased from the nominal value of 30µm to 55µm. Typically,

EGMs experience similar increase in clearances due to wearing out of the internal

components over time.

First set of simulations were conducted using the isothermal HYGESim tool with

the temperature set to Tpump = 35 °C. Second set of simulations were conducted

using the non-isothermal HYGESim tool with the inlet temperature set to Tinlet = 35

°C. From the results of these simulations, the outlet temperatures were recorded

and the mean temperatures for each of these simulations were calculated, Tmean =

0.5(Tinlet + Toutlet). These mean temperatures were used as Tpump in the third set of

simulations which were conducted using the isothermal HYGESim tool. This third
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set is identical to the simulations conducted in past to compare the model results with

the experimental data, where mean temperatures obtained from the experiments are

used as Tpump in the isothermal model.

Figure 8.11 shows that at high efficiency operating conditions, the three sets yield

similar efficiency results. Especially, the results from set 3 (isothermal model with

mean temperatures) are within 3 % of the results obtained from non-isothermal HY-

GESim for efficiency levels > 70 %. Thus, the traditional isothermal HYGESim is

still an acceptable tool for modelling moderately efficient EGMs.

Set 2

2000 rpm

1000 rpm

Set 3

Set 1

50 100 150 200
40

50

60

70

80

90

100

Figure 8.11. Comparison of the results in terms of volumetric efficiency
from three sets of simulations: Set 1: isothermal (Tpump = 35 °C), Set 2:
non-isothermal (Tinlet = 35 °C), Set 3: isothermal (Tpump = 0.5(Tinlet +
Toutlet)) where Tinlet and Toutlet are obtained from Set 2 simulation results.

However, at low efficiency conditions (ηv < 70 %), the isothermal models (even

the one with mean temperatures), significantly overpredict the volumetric efficiency.

This is expected since, at low efficiency conditions, there is a significant amount of
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power loss in the EGM. This power loss is converted into heat raising the temperature

of the fluid. As a consequence, the viscosity of the fluid is reduced, increasing the

leakage flows and hence further lowering the volumetric efficiency. This phenomenon

is not considered in the isothermal model due to which it overpredicts the volumetric

efficiency.

At 1000 rpm, 200 bar, the non-isothermal model predicts zero volumetric efficiency

(the leakage flow exceeds the delivery flow) indicating that the EGM is inoperable at

that operating condition. However, the isothermal models predict ηv > 50 %.

Thus, the non-isothermal HYGESim tool is critical in the accurate efficiency pre-

diction of the EGMs that exhibit low efficiency. This tool is especially crucial in the

prediction of the operability of the EGMs at extreme operating conditions (e.g. high

temperatures and high pressures) and EGMs with worn out internal components.
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9. SUMMARY

This dissertation presents the numerical methodologies for the modelling of key as-

pects of EGM operation that play significant roles in describing the performance of the

reference EGMs selected in this work. The aspects considered in this work comprises

the nature of the working fluid (A1), regime of the leakage flow (A2), gear manufac-

turing errors, (A3) tooth tip geometry (A4), frictional losses (A5) and thermal effects

(A6). The methodologies developed in this work are integrated with HYGESim, a

lumped parameter based simulation tool developed by Dr. Vacca’s research team.

In this dissertation, the methodology of modelling external gear pumps operating

with non-Newtonian fluids was described (Aspect A1). In particular, a new set of

fluid dynamic equations were developed which are suitable to describe the flow of

shear thinning fluids through internal connections of the reference pump E1. In order

to validate the modelling approach, experiments were conducted on the reference

pump using three different fluids. A good match of volumetric efficiency between

the model and experiment was observed which indicates the validity of the leakage

flow modelling approach. Moreover, a good match of pressure pulsation between the

model and experiment was observed too which indicates the validity of the modelling

of internal orifice connections that determine the main pumping action realized by

the external gear pump.

Next, the nature of fluid flow over the tooth tips of EGMs operating with low

viscosity fluids and at high speeds was investigated (Aspect A2). Using CFD simula-

tions, turbulent nature of the fluid flow over the tooth tip was observed and methods

to model the leakage flow with turbulent behavior was described. Using this turbu-

lent leakage flow model, it was shown that the nature of flow regime at the tooth

tip has a significant impact on the volumetric efficiency of EGMs and the course of

TSV pressurization. Accurate prediction of TSV pressurization is important in deter-
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mining the radial loading on the gears which impacts the radial micromotion of the

gears ultimately affecting the leakage flow itself. Moreover, accurate TSV pressuriza-

tion information is useful in the analysis of the axial balance of floating elements in

pressure compensated EGMs.

Further, a novel technique for studying the impact of manufacturing errors on the

performance of EGMs was presented (Aspect A3). In particular, two common errors

involved in gear manufacturing: conicity and concentricity errors were considered.

The technique developed in this work was validated via experiments on gearsets with

varying amounts of manufacturing errors. The results show that for a constant mean

gear diameter, an increase in the conicity error leads to a reduction in the volumet-

ric efficiency. On the other hand, an increase in the concentricity error leads to an

increase in the volumetric efficiency. This increase, however, occurs as long as the

concentricity error does not cause contact between the gear teeth and the internal

surface of the casing, as it can happen for the EGMs subjected to case-wear. Fur-

thermore, an increase in the concentricity error leads to an increase of the outlet flow

non-uniformity.

Next, the methodology to model the inter-teeth flow in gear machines with curved

tooth geometry was described (Aspect A4). Via analytical methods and CFD sim-

ulations, the leakage flow model was developed for such curved geometries that is

applicable for a wide range of flow regimes including localized cavitation. To validate

the model, an experimental apparatus was designed and manufactured with a 50:1

scale that mimics the actual flow geometry at the tooth tip. Multiple tests were

conducted for a wide range of both geometry and flow parameters. The results from

the tests were found to match the non-dimensional relationships, which validates the

leakage flow model.

Afterwards, methodology for the evaluation of torque losses due to friction at key

interfaces in EGMs was presented (Aspect A5). In particular, the friction at the

gear tooth tips, lateral interfaces, bearings and meshing regions were considered. The

results obtained from the simulation of the reference EGM E5 show that the meshing
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friction is the dominant source of torque losses. The results from the simulations

were shown to agree with the experimental data in terms of the hydro-mechanical

efficiency for a wide of range of operating speeds and pressures which validates the

methodology developed in this work.

Finally, the thermal model of EGM was developed to predict the temperature

distribution in the EGM (Aspect A6). The governing equations for pressure and

temperature were derived and the approach for the modelling of internal enthalpy

flows and power losses were described. The model validation was achieved via a

good agreement of the outlet temperature between the simulation results and the

experimental data. From the model results, it was shown that while the traditional

isothermal model is sufficient for modelling moderately efficient EGMs, the thermal

model is indispensable for accurately modelling the performance of EGMs with poor

efficiency and predicting the operability of EGMs at extreme operating conditions.

The numerical techniques for modeling the operation of EGMs developed in this

work has multiple potentials:

• The industries using external gear pumps in the handling of non-Newtonian flu-

ids often struggle with the performance concerns of these units. The techniques

developed are going to be helpful in understanding and analyzing various issues

faced by the industries in existing pumping operations. The modelling capa-

bility can also help researchers in future to perform various sensitivity studies

and understand the range of non-Newtonian fluids that can be pumped with

specific external gear pumps without any performance concerns.

• For EGMs operating with low viscosity fluids, the turbulence model for leakage

flow developed in this work is going to be useful in precise prediction of volu-

metric efficiency, radial loading and axial balance of floating elements for a wide

range of operating conditions.

• To ensure a cost effective manufacturing of EGMs, the decision on the level of

tolerance is of paramount importance. The work presented in this dissertation
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will be valuable to the pump designers in making informed decisions about the

level of the tolerances on the gear geometry. This work will also be useful in

accurate analysis of the performance of EGMs whose gears exhibit conicity and

concentricity errors.

• The leakage flow model developed for curved tooth tip geometry has significance

in furthering the research on CCHGPs and gerotor units. The model is going to

be helpful for pump designers in understanding the impact of gear profile and

clearances on the volumetric efficiency of these units. This will assist them in

developing more efficient gear machines. The model can also be readily used in

lumped parameter based numerical tools that will permit an accurate prediction

of leakages and volumetric efficiency of these units.

• The torque loss model developed in this work will provide the industries an ac-

curate and reliable method for the prediction of the hydro-mechanical efficiency

of their EGMs. It will also help the pump designers in analyzing the effect of

key pump parameters on the hydro-mechanical performance of the unit, thereby

helping them in designing energy efficient EGMs from torque loss perspective.

• The thermal model developed in this work will be helpful for industries and

researchers in accurately modelling the performance of EGMs exhibiting poor

efficiency, thus allowing them to properly analyze the causes of low efficiency of

such EGMs and make appropriate modifications in the EGM design. Moreover,

the outlet temperature prediction capability of the model will help hydraulic sys-

tem designers in accurate modelling of the hydraulic systems containing EGMs

and thus optimizing their performance.

• Finally, all the techniques developed in this work can readily be integrated in

common EGM simulation tools and can be used in optimization algorithms.

This will allow the development of novel EGM designs for various applications

with the goal to improve their performance over wide range of operating condi-

tions.
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10. FUTURE RESEARCH DIRECTIONS

The research work presented in dissertation has opened new doors for further re-

search towards developing better performing EGMs as well as novel designs suited

for new trends in hydraulic technology. Developing such EGMs would require opti-

mization studies which is beyond the scope of this research which primarily focuses

on modelling. However, the models developed in this work for EGMs working in fluid

handling applications and fuel injection applications can be used in optimization algo-

rithms for developing novel EGM designs optimized for such applications. Moreover,

these algorithms can use the manufacturing error model developed in this work to

determine the tolerance levels for these novel gear designs optimized for efficiency and

cost. Similar optimization studies could be done on CCHGPs that use the leakage

flow model developed in this work. Finally, these optimization tools can incorporate

the torque loss and thermal models developed in this work for developing novel EGM

designs that are optimal from both volumetric and hydro-mechanical perspective.

There are other aspects influencing the EGM performance that were not important

for the reference EGMs studied in this work (Table 1.1), but can be significant for

other units. Some of those aspects are listed below:

• For EGMs with long gears, pressure induced deformation of the gears can change

the leakage flow geometry and hence the efficiency of EGMs.

• If EGMs working with non-Newtonian fluids operate at higher speeds and/or

with high viscosity fluids, the tooth space volumes may not fill completely during

the suction operation causing aeration or possibly cavitation.

• The flow through the lateral leakage interfaces and bearings may become turbu-

lent for certain flow and operating conditions which can significantly influence

the performance of EGMs.
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• For EGM designs with zero-backlash between the gears (dual flank designs),

the contact force in the meshing of the gears may become very high and fall

outside the range of applicability of the EHL friction relation used in this work.

• For certain EGM designs, the heat loss to the environment may not be negligible.

These aspects can be investigated in future by other researchers and numerical

methodologies can be developed to incorporate their effects in the modelling of EGMs.
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dynamic analysis of a gear pump–part iv: Improvement in the pressure dis-
tribution modelling. Mechanical Systems and Signal Processing, 50:193–213,
2015.

[20] Emiliano Mucchi and Giorgio Dalpiaz. Elasto-dynamic analysis of a gear pump–
part iii: Experimental validation procedure and model extension to helical gears.
Mechanical Systems and Signal Processing, 50:174–192, 2015.

[21] Andrea Vacca and Marco Guidetti. Modelling and experimental validation of
external spur gear machines for fluid power applications. Simulation Modelling
Practice and Theory, 19(9):2007–2031, 2011.

[22] Junjie Zhou, Andrea Vacca, and Paolo Casoli. A novel approach for predicting
the operation of external gear pumps under cavitating conditions. Simulation
Modelling Practice and Theory, 45:35–49, 2014.

[23] Yash Shah, Andrea Vacca, and Sadegh Dabiri. Air release and cavitation model-
ing with a lumped parameter approach based on the rayleigh–plesset equation:
The case of an external gear pump. Energies, 11(12):3472, 2018.

[24] Thomas M Ransegnola, Andrea Vacca, Mario Antonio Morselli, Andrzej Kowal-
ski, and Richard Muizelaar. A simulation model for a tandem external gear
pump for automotive transmission. Technical report, SAE Technical Paper,
2018.



194

[25] Xinran Zhao and Andrea Vacca. Analysis of continuous-contact helical gear
pumps through numerical modeling and experimental validation. Mechanical
Systems and Signal Processing, 109:352–378, 2018.

[26] Ram Sudarsan Devendran and Andrea Vacca. Optimal design of gear pumps
for exhaust gas aftertreatment applications. Simulation Modelling Practice and
Theory, 38:1–19, 2013.

[27] Xinran Zhao and Andrea Vacca. Formulation and optimization of involute spur
gear in external gear pump. Mechanism and Machine Theory, 117:114–132,
2017.

[28] Wayne Strasser. Cfd investigation of gear pump mixing using deform-
ing/agglomerating mesh. Journal of Fluids Engineering, 129(4):476–484, 2007.

[29] R Castilla, PJ Gamez-Montero, N Ertürk, A Vernet, M Coussirat, and E Co-
dina. Numerical simulation of turbulent flow in the suction chamber of a
gearpump using deforming mesh and mesh replacement. International Jour-
nal of Mechanical Sciences, 52(10):1334–1342, 2010.

[30] D Del Campo, R Castilla, GA Raush, PJ Gamez Montero, and E Codina.
Numerical analysis of external gear pumps including cavitation. Journal of
fluids engineering, 134(8):081105, 2012.

[31] R Castilla, Pedro Javier Gamez-Montero, D Del Campo, G Raush, Mercedes
Garcia-Vilchez, and E Codina. Three-dimensional numerical simulation of an
external gear pump with decompression slot and meshing contact point. Journal
of Fluids Engineering, 137(4):041105, 2015.

[32] OpenCFD. Openfoam, https://openfoam.org/, 2018.

[33] Simerics. Pumplinx, https://www.simerics.com/pumplinx/, 2018.

[34] Aaron S Heisler, John J Moskwa, and Frank J Fronczak. Simulated helical
gear pump analysis using a new cfd approach. In ASME 2009 Fluids Engineer-
ing Division Summer Meeting, pages 445–455. American Society of Mechanical
Engineers, 2009.

[35] Feng Qi, Sujan Dhar, Varun Haresh Nichani, Chiranth Srinivasan, De Ming
Wang, Liang Yang, Zhonghui Bing, and Jinming Jim Yang. A cfd study of an
electronic hydraulic power steering helical external gear pump: Model devel-
opment, validation and application. SAE International Journal of Passenger
Cars-Mechanical Systems, 9(2016-01-1376):346–352, 2016.

[36] P Casoli, A Vacca, and Berta GL. Optimization of relevant design parameters
of external gear pumps. In Proceedings of the JFPS International Symposium
on Fluid Power, volume 2008, pages 277–282. The Japan Fluid Power System
Society, 2008.

[37] Sidhant Gulati, Andrea Vacca, and Manuel Rigosi. A general method to deter-
mine the optimal profile of porting grooves in positive displacement machines:
the case of external gear machines. In 10th International Fluid Power Confer-
ence. Dresden, 2016.



195

[38] Donaldson McCloy and Hugh Robert Martin. Control of fluid power: analy-
sis and design. Chichester, Sussex, England, Ellis Horwood, Ltd.; New York,
Halsted Press, 1980. 505 p., 1980.

[39] YG Shah, A Vacca, S Dabiri, and E Frosina. A fast lumped parameter approach
for the prediction of both aeration and cavitation in gerotor pumps. Meccanica,
53(1-2):175–191, 2018.

[40] JF Booker. Dynamically loaded journal bearings: mobility method of solution.
Journal of Basic Engineering, 87(3):537–546, 1965.

[41] Fred W Ocvirk. Short-bearing approximation for full journal bearings. NASA
Technical Report, 1952.

[42] Paul C Warner. Static and dynamic properties of partial journal bearings.
Journal of Basic Engineering, 85(2):247, 1963.

[43] Bernard J Hamrock, Steven R Schmid, and Bo O Jacobson. Fundamentals of
fluid film lubrication. CRC press, 2004.

[44] Matteo Pellegri and Andrea Vacca. A cfd-radial motion coupled model
for the evaluation of the features of journal bearings in external gear ma-
chines. In ASME/BATH 2015 Symposium on Fluid Power and Motion Con-
trol, pages V001T01A025–V001T01A025. American Society of Mechanical En-
gineers, 2015.

[45] Xinran Zhao and Andrea Vacca. Numerical analysis of theoretical flow in ex-
ternal gear machines. Mechanism and Machine Theory, 108:41–56, 2017.

[46] Divya Thiagarajan. Analysis and design of lubricating interfaces in external
gear machines for high and low viscous working fluids. PhD thesis, Purdue
University, West Lafayette, 2018.

[47] Katsuji Kishimoto. Gear pump for non-newtonian fluid, May 17 1994. US
Patent 5,312,236.

[48] Zenith pumps. Zenith 9000 series gear pump, www.zenithpumps.com, 2015.

[49] Robert Byron Bird, Robert C Armstrong, and Ole Hassager. Dynamics of
polymeric liquids. Vol. 1: Fluid mechanics. John Wiley and Sons, Inc, Hoboken,
New Jersey, second edition, 1987.

[50] Walter F Salas-Valerio and James F Steffe. Orifice discharge coefficients for
power-law fluids. Journal of Food Process Engineering, 12(2):89–98, 1990.

[51] David A McNeil, Jack Addlesee, and Alastair Stuart. An experimental study
of viscous flows in contractions. Journal of loss prevention in the process indus-
tries, 12(4):249–258, 1999.

[52] Rajinder Pal. Flow of oil-in-water emulsions through orifice and venturi meters.
Industrial & engineering chemistry research, 32(6):1212–1217, 1993.

[53] MF Edwards, MSM Jadallah, and R Smith. Head losses in pipe fittings at low
reynolds numbers. Chemical Engineering Research and Design, 63(1):43–50,
1985.



196

[54] Arun Kumar Samanta, Tapan Kumar Banerjee, and Sudiv Kumar Das. Pressure
losses in orifices for the flow of gas-non-newtonian liquids. Canadian journal of
chemical engineering, 77:579–579, 1999.

[55] Tarun Kanti Bandyopadhyay and Sudip Kumar Das. Non-newtonian pseu-
doplastic liquid flow through small diameter piping components. Journal of
Petroleum Science and Engineering, 55(1-2):156–166, 2007.

[56] Lalit Kumar Bohra. Flow and pressure drop of highly viscous fluids in small
aperture orifices. PhD thesis, Georgia Institute of Technology, 2004.

[57] Butteur Ntamba Ntamba and Veruscha Fester. Pressure losses and limiting
reynolds numbers for non-newtonian fluids in short square-edged orifice plates.
Journal of Fluids Engineering, 134(9):091204, 2012.

[58] MR Chowdhury and Veruscha G Fester. Modeling pressure losses for newtonian
and non-newtonian laminar and turbulent flow in long square edged orifices.
Chemical Engineering Research and Design, 90(7):863–869, 2012.

[59] Paul Slatter. The role of rheology in the pipelining of mineral slurries. Mineral
Procesing and Extractive Metallurgy Review, 20(1):281–300, 2000.

[60] Isaak E Idelchik. Handbook of hydraulic resistance. Israel Program for Scientific
Translations, 1966.

[61] Duqiang Wu, Richard Burton, and Greg Schoenau. An empirical discharge
coefficient model for orifice flow. International journal of fluid power, 3(3):13–
19, 2002.

[62] Ammar Zeghloul, Abdelwahid Azzi, Faiza Saidj, Abdelkader Messilem, and
Barry James Azzopardi. Pressure drop through orifices for single-and two-phase
vertically upward flow—implication for metering. Journal of Fluids Engineer-
ing, 139(3):031302, 2017.

[63] Zehev Tadmor and Costas G. Gogos. Principles of polymer processing. John
Wiley and Sons, Inc, Hoboken, New Jersey, first edition, 1979.

[64] IK Dien and HG Elrod. A generalized steady-state reynolds equation for non-
newtonian fluids, with application to journal bearings. Journal of Lubrication
Technology, 105(3):385–390, 1983.

[65] ISO 10767-1. Hydraulic fluid power – determination of pressure levels generated
in systems and components – part 1: Precision method for pumps, 1996.

[66] ISO 10767-2. Hydraulic fluid power – determination of pressure levels generated
in systems and components – part 2: Simplified method for pumps, 1996.
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