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GLOSSARY

Big Data – it refers to the term that large or complex data sets are not enough to process in

traditional data processing application software. Big data can also be defined as a large

amount of unstructured or structured data from various sources.

Geovisualization – short for geographic visualization. Refers to a series of methods for analyzing

and visualizing geospatial data.Compared with the visualization of ordinary data, it is

more challenging to convert information with geographic location into a graphical form

that is easy to understand.

Spatial data structure – It refers to the logical structure of spatial data suitable for computer

storage, management and processing, and is the organization and coding form of spatial

data in the computer.
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ABSTRACT

Comparing to traditional cartography, big data geographic information processing is not a simple

task at all, it requires special methods and methods. When existing geovisualization systems face

millions of data, the zoom function and the dynamical data adding function usually cannot be

satisfied at the same time. This research classify the existing methods of geovisualization, then

analyze its functions and bottlenecks, analyze its applicability in the big data environment, and

proposes a method that combines spatial data structure and iterative calculation on demand. It

also proves that this method can effectively balance the performance of scaling and new data, and

it is significantly better than the existing library in the time consumption of new data and scaling.
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CHAPTER 1. INTRODUCTION

1.1 Background

With the advent of the Big Data era, traditional statistical charts are difficult to visualize

complex data. Data visualization has become more and more popular as a new research area in

recent years. Successful visualization, if done beautifully, is simple but rich in meaning, allowing

observers to gain insight and produce new understanding at a glance (Gorodov & Gubarev,

2013). Among them, geovisualization is the last mile of geographic big data applications,

covering different scales, ranging from small houses to large amounts of global landscape data. In

essence, geovisualization develops human spatial thinking capabilities, making it easier for

people to discover complex relation-ships hidden behind spatial locations, providing a clear

under-standing of hidden phenomena and shortening search time.

When it comes to map expressions, it is natural to think of cartography. In fact,

cartography as a form of expression of a map is similar to the visualization of geographic

information. The difference between them is very sensuous and subtle: geovisualization

integrates data visualization, cartography, image analysis, exploratory data analysis, and visual

analysis (Andrienko, Andrienko, & Gatalsky, 2003), the results of which should guide and

ultimately provide insights that help assist decision making. The nuances of the two are not in the

representation of the map language, but in the value orientation of the final result.

1.2 Problem

Comparing to traditional cartography, big data geographic information processing is not a

simple task at all, it requires special methods and methods. Graphic thinking is a very simple and

natural way of data processing. Therefore, it can be said that image data representation is an

effective method to simplify data understanding and provide sufficient support for decision

making. However, for big data geographic information, most classical data representation

methods become inefficient or unsuitable for specific tasks.
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In this case, a large problem is that it is impossible to dynamically render millions of data

points on a single image (Gorodov & Gubarev, 2013). Usually we can reduce the magnitude of

the data set by preprocessing. However, when we are dealing with geographic data, we meet a

new requirement that geographic data is scalable. We may want to observe the same data set on

different scales. It’s hard and uneconomic to preprocess and store the data in every corner and

every scaling ratio, especially when the data is dynamically changing in each second.

1.3 Research Question

Can the proposed method with SDS and On-demand loading able to improve the time

consumption when dealing with highly dynamic big datasets with scaling function against

existing libraries like D3.js or Plotly?

1.4 Scope

This question is important to those national information management departments or

multinational corporations. In many cases, we need to monitor the data change trend both in a

nationwide level and a specific single point. For example, we may want to see whether traffic

violation has some rule in state level, and when we find the overall rule, we may want to find out

how exactly is a hot point composed. It’s quite useful to offer such a kind of scalable geographic

bigdata visualization.

Therefore, the purpose of this study is to research and summarize the existing algorithms

and practices to develop and optimize a new geographic information visualization method. This

method should be able to perform high-frequency dynamic updates in a big data environment, and

there should not be too much stuck when zooming, and at the same time provide a smooth and

inspiring browsing experience at a different zoom ratio with a reasonable memory usage. This

method should be able to run on the current general business environment through simple

deployment and provide a set of APIs for users to configure and use in the form of external

libraries.
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1.5 Assumptions

• This study assumes that the zoom ratio between the maximum scale and the minimum scale

required by the user exceeds 16 times.

• This study assumes that users need to visualize data with only zero or one continuous or

discrete data dimension in addition to geographic information. That is, this study does not

consider the problem of visualization switching between different attributes of the data.

• This study assumes that there is no bottleneck in the computation, processing, and

rendering required for visualization in terms of memory, storage, and network latency. That

is, it is assumed that the computer or array used for visualization always has enough

memory, storage, and network bandwidth is large enough for processing power, and

network latency is negligible for processing time.

• This study does not consider the processing of complex source data. It is assumed that the

user has decided which data items and attributes need to be visualized and extracted them.

1.6 Limitations

• Most of the commonly used data visualization libraries are now open source, but some

commercial software itself is not open source. Although there are usually articles

describing their internal principles, they are generally unclear. Therefore, for this part of the

software that is not open source, only some phenomenological comparisons of external

performance can be made, and it is impossible to study the algorithms that may be used.

• Due to the limitation of the experimental environment, the performance of a single

computer used in this study will not exceed the common performance of small servers, and

the number of computers in the array used will not exceed single digits.

• Actual commercial raw data is usually not disclosed for reasons such as privacy. The

datasets available on the network are generally not too dense in time. New highly dynamic

information may be tested only through simulated data.
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1.7 Delimitations

• The proposed visualization method may not support too many data types for the time being.

• The proposed visualization method will not use too complicated map backgrounds, such as

roads, rivers and other information, because reading and visualizing such background

information may itself take a lot of time. Research will focus on the visualization of the

data points themselves.

• The proposed method supports only one visualization platform.
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CHAPTER 2. REVIEW OF LITERATURE

2.1 Typical representations of geovisualization

To be intuitive and impressive to show the spatial distribution of geographic information

data, you can use dot density map, category map, choropleth map, proportional symbol map,

blending map, heat map, binning map, edge bundled map, and other methods to render the data.

2.1.1 Dot Density Map

Figure 2.1. The distribution of the Hispanic and Non-Hispanic population

Source: What is a dot-density map? (n.d.). Retrieved November, 2019 from:
https://www.caliper.com/glossary/what-is-a-dot-density-map.htm.

(Online)

Map a dot density map is the uniform rendering of data into the same color, shape, or size.

Dot density maps are simple and intuitive and can show information about the spatial distribution

of some locations.
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A dot density map is the simplest way to visualize geographic information, and its data

dots only indicate that there is one data at a certain location. If the data itself is Boolean, a dot

density map can well represent the existence of this data point. For example, in Figure 2.1, the

author set 20,000 people with a point that visually shows distribution of the Hispanic and

Non-Hispanic population in United States.

The problem is that a single data point needs to be properly sized. In areas where data

points are dense, data points fill the entire area, and the data point density exceeds the upper limit

that can be resolved on the graph. No more details can be given when there are too many data

points or too dense at some locations.

2.1.2 Category map

Figure 2.2. Puget Sound Proposed Land Use 2012

Source: Puget Sound Mapping Project (2012). Retrieved November, 2019 from:
https://www.commerce.wa.gov/serving-communities/growth-management/

puget-sound-mapping-project/. (Online)

A category map is a rendering of different colors according to different categories or

rendering using different shapes and sizes.
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For example, in Figure 2.2, The authors used different colors to indicate the different types

of land that Washington State was planning.

However, if the size of the different categories of areas differs greatly, or the number of

types of categories are large, the category map will face many problems.

As the amount of information increases, it is desirable to increase the resolution of the

category map accordingly to accommodate important concepts in space. This leads to an increase

in the visual load of the category map. In a limited display window, a large amount of information

is closely clustered, and it is difficult to see the local details clearly in the window (Yang, Chen, &

Hong, 2003).

2.1.3 Choropleth Map

Figure 2.3. Population Density of Switzerland

Source: Schnabel, O. (2008) Presentation of Thematic Data. Retrieved November,
2019 from: http://www.carto.net/schnabel/pop dens/. (Online)

A Choropleth Map, which assigns different colors according to the number of one field.

For example, a color greater than zero is assigned to a color, and a color greater than one hundred

and twenty-eight is assigned to a color, and different intervals are given different colors.
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There are usually four progressive segmentation methods of equal interval, equal quantity,

natural segmentation and equal standard deviation.

Category map and Choropleth Map have similarities. If the data is quantative and the data

span is very large, such as from 1 to 10000, and there are decimals in it, try to use a choropleth

graph; if the data volume is a character-based categories, then you can consider using a

classification graph.

In Choropleth Map, defined regions are important to a discussion. The size and specificity

of the displayed regions should depend on the variable being represented. Problems such as

ecological fallacy and modifiable area unit problems (MAUP) can lead to major

misunderstandings in situations where the real world partition may not conform to the desired

pattern, so other technologies are preferred (Howard, McMaster, Slocum, & Kessler, 2008).

While using smaller and more specific areas can reduce the risk of ecological fallacy and MAUP,

it can make the map look more complicated. Although representing specific data in large areas

can be misleading, it can make the map clearer and easier to interpret and remember.

2.1.4 Proportional Symbol Map

Figure 2.4. 2015 Urban Populations

Source: Akella, M. (2016). Visualize 2015 Urban Populations with Proportional
Symbols. Retrieved November, 2019 from:

https://carto.com/blog/proportional-symbol-maps. (Online)
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A scale symbol diagram is a thematic map that uses graph symbols of different sizes to

represent quantitative variables. The height, length, area or volume of a symbol varies from

location to location, depending on the variables they represent.

There are two ways to create a proportional symbol: absolute scaling and range scaling.

When using absolute scaling, the area of each symbol on the map is scaled by its value in the data.

Through range grading, you can use the classification method to divide the value into multiple

ranges, where the size of the symbol is determined according to the range in which the symbol

falls (Dent, Torguson, & Hodler, 1999).

One problem is that when partitions are dense and there are more data points, using

symbols of different sizes can be very messy. At the same time, there is often overlap between

symbols, which makes some symbols difficult to identify. It is possible to reduce the sign size to

avoid overlap, but this will reduce the degree of discrimination between different size symbols.

2.2 Modern Improvement

With the requirements of modern data visualization, in order to better display the laws of

data clearly and effectively in the case of large amounts of data, some new technologies have been

developed to improve the effect of traditional methods. Most of these methods are basically the

same as the traditional methods, but they achieve better display results through some

optimizations of selection and rendering. Compared with traditional methods, this method is more

beautiful and can carry a larger amount of data, which is impressive. Many of its ideas are worth

learning from. Here are some popular visualizations that work well with large amounts of data.
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2.2.1 Blending Mode

Figure 2.5. Facebook Global User Relationship Map

Source: Nowak, M., & Spiller, G. (2017). Two Billion People Coming Together on
Facebook. Retrieved November, 2019 from: https://newsroom.fb.com/news/
2017/06/two-billion-people-coming-together-on-facebook/. (Online)

Blending Mode is a kind of modern rendering method. One of the most famous examples

is the Facebook global user relationship diagram above. The color of this picture is blue. In many

places, such as the United States and Europe, the color is very bright.

Blending mode does not create a new graphical layout, but rather a rendering mode that is

very efficient when the data is large. The single-valued data is converted into brightness by

blending, which greatly improves the performance of single-valued images in dense situations.

Normal: f (a,b) = b (2.1)

Multiply: f (a,b) = a×b (2.2)

Screen: f (a,b) = 1− (1−a)(1−b) (2.3)

Here are some common ways to blend. Equalation (2.1) is Normal, which is use two lines or two

points as the input, output the color of the point or line at above. To achieve a high-brightness

effect, you can use (2.2) or (2.3) to do the calculations. For example, using (2.2) , a and b are

multiplied to make an output, and then rendered. The overlapping area will be highlighted a lot.
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2.2.2 Heat Map

Figure 2.6. A heat map of tornado locations from 1950 to the present

Source: Understanding the Heat Map (2015). Retrieved November, 2019 from:
https://cartographicperspectives.org/index.php/journal/article/

view/cp80-deboer/1420. (Online)

The heat map is to render the data through the gradient of the color, so that the user can

see the association between the data sets at a glance. The higher the color temperature, the denser

the data points.

One of the biggest functions is to highlight the degree to which a point gathers. The more

points gather, the higher the color temperature.

To some extent, the heat map is similar to the Choropleth Map when areas are relatively

small in Choropleth Map. The heat map represents the density using a relatively red-to-blue hue

representing the heat. This approach is more clear than the traditional Choropleth Map.

Figure 2.6 shows an example of a heat map depicting the prevalence of tornadoes.

Google’s geo developer blog (Yeap & Uy, 2014) describes these maps as “geospatial data on a

map by using different colors to represent areas with different concentrations of points —

showing overall shape and concentration trends”.

The modern heat map acquires discontinuous point data and displays it as continuous.

This method does not apply to all data. While it makes sense to map altitude or temperature to a

continuous surface, data that does not continuously change with space may not. In addition, too

few points on the surface usually result in large errors.
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2.2.3 Binning Map

Figure 2.7. Taxi cab pick-up locations in Manhattan

Source: Taxi cab pick-up locations in Manhattan. (2015). Retrieved November, 2019
from: https://www.tableau.com/about/blog/2017/11/

data-map-discovery-78603. (Online)

Dots distribution maps are a good way to understand the spatial distribution pattern of

data. In order to figure out these types of patterns, you need to leave enough space between the

various dot markers to clearly see the starting position of one data cluster and the location where

another data is terminated. When you have a lot of data and don’t even see the map, people

choose to use the binning map (Battersby, 2017).

These points are spatially aggregated into a polygonal area to view the data set instead of a

single point. The binning map is also very similar to the Choropleth Map. Just its area is

manually divided. When we have more geographic information details of statistics than

traditional regional statistics, we can have more choices in how to express.
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2.2.4 Edge Bundled

Figure 2.8. US migration graphs

Source: Ersoy, Hurter, Paulovich, Cantareiro, and Telea (2011)

The edge that can encode the relational data in the map is an important visual primitive for

encoding the data in the information visualization study. However, when data becomes very large,

visualization often suffers from visual clutter, as thousands of edges can easily overwhelm the

display and mask the underlying pattern (Zhou, Xu, Yuan, & Qu, 2013). A number of edge

bundling techniques have been proposed to reduce visual clutter in visualization.

Some methods include edge bundling and visual clustering (Zhou, Yuan, Qu, Cui, &

Chen, 2008) algorithms using force-directed methods (Zhou, Yuan, Cui, Qu, & Chen, 2008),

Geometry-based (Cui, Zhou, Qu, Wong, & Li, 2008) edge bundling algorithm and winding road

method (Lambert, Bourqui, & Auber, 2010). The selection of specific methods is not fixed and

needs to be considered in combination with specific problems and actual effects.

2.3 Geovisualization Problems in Big Data Set

The so-called BigData can be understood as a huge data set, and its capacity grows

exponentially. For traditional visualization methods, the data set may be too large, too ”raw” or

too unstructured (Gorodov & Gubarev, 2013). This makes traditional mapping methods likely to

face many problems.
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2.3.1 Visual Noise

Even the simplest data point representation can get a mess on the screen.

Figure 2.9. Earthquake Density

Source: Lehner, G. (2019). Introduction to Dynamic Feature Binning in ArcGIS Pro,
Retrieved November, 2019 from:

https://www.esri.com/arcgis-blog/products/arcgis-pro/mapping/
introduction-to-dynamic-feature-binning-in-arcgis-pro/

Most of the objects in the dataset are too close to each other and cannot be divided into

separate objects on the screen monitor. In Figure 2.9, The high number of point features make it

difficult to determine earthquake density in certain locations (Lehner, 2019). Without any

pre-processing tasks, analysts can’t get a bit of useful information from the entire data

visualization.

2.3.2 Large Image Perception

One of the ways to solve the last problem is to use the largest possible screen for

distribution. But even if the screen is large enough, it still faces the limitation of human

perception. After reaching this level of perception, humans simply lose the ability to obtain any

useful information from the perspective of data overload. With the rapid growth of data, it will be

difficult for humans to understand the data and its analysis (Gorodov & Gubarev, 2013).
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2.3.3 Information Loss

The visible data set can be reduced by some of the aggregation methods described earlier.

Although the above problems are solved, these methods lead to another problem, that is,

information loss. These methods aggregate data in some geographic or other relevance.

But it also caused some loss of information that was not noticed during the aggregation.

When analysts are unable to notice some interesting hidden objects, using these methods can

mislead analysts, and sometimes complex aggregation processes can consume a lot of time and

performance resources.

2.3.4 High Performance Requirements

Geovisualization is not limited to static geographical data set, so the above issues become

more important in dynamic visualization. For example, the review site Yelp receives dozens of

reviews every second during peak hours. Analysts may want to observe trends in real-time data to

understand user preferences. But adding data to a huge data set that may have been subjected to

complex preprocessing can be a huge challenge.

2.3.5 High Rate of Image Change

The display of high-frequency changing data can also pose challenges. Many geographic

visualization methods require a certain amount of calculation with correlation between data, and

even a certain correlation in the graph as a whole. High-frequency changing data will cause the

image to be frequently re-rendered. At the same time, people’s response speed to high-frequency

changes is also limited.

As mentioned above, many real-time dataset changes can be very rapid. When the person

observing the data is unable to respond to the amount of data changes or the intensity of the

display, the benefits of real-time data are greatly offset.
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2.3.6 Large Scale Zoom

For geographic big data, a natural requirement is to observe local data when needed.

However, since the overall visualization is pre-aggregated, extracting local information is not a

simple amplification, and may require partial image generation. Moreover, due to the amount of

data of local data, the distribution pattern, etc. may be different from the whole, and it may be

encountered if the same visualization method is adopted.

Overall, the increase in data volume and rapid updates have made it difficult to visualize

analysis.

2.4 Some Inspiring Visualization Approaches

2.4.1 Customizing Computational Methods

Choo and Park (2013) discussed the interaction between precision and convergence in ”

Customizing computational methods for visual analytics with big data ”.

The computational time required hinders real-time interactive visualization of big data.

In order to solve this problem, the author proposed Customizing Computational Methods.

Reducing the precision of calculation was the easiest way to increase the speed of computation.

Thus, the accuracy of the calculation could be determined more carefully based on human

perception and screen resolution.

Another option was iterative level interactive visualization. Its purpose was to visualize

intermediate results in various iterations and let users interact with these results in real time. If the

user zoomed in on a particular area, the 2D coordinate information of the data item in that area

must be represented in a finer granularity. It was possible to iteratively improve the accuracy of

the calculation results.
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2.4.2 Scalable Computing

Beyer et al. (2013) described a system for interactively exploring PB-level volume data of

neural tissue generated by high-throughput electron microscopy in ” Exploring the connectome:

Petascale volume visualization of microscopy data streams.” The visually driven system allowed

users to process multiple volumes and incomplete data, limit most calculations to a small portion

of the data, and use multi-resolution virtual memory for scalable computing.

By applying similar techniques, it was possible to distribute the rendering of geographic

images on different hosts. Pre-processing was performed in advance during the data collection

process to reduce the performance pressure of the host used by the terminal for display.

2.4.3 Distributed Parallel Processing

Kim, Ji, and Park (2014) proposed a cloud based on visualization methods to visualize the

inherent relationships of users on social networks. The method used a correlation matrix to

represent the hierarchical relationship of social network user nodes. This approach used

cloud-based Hadoop for distributed parallel processing of visualization algorithms that could

accelerate big data on social networks.

2.5 Spatial Database

Spatial database is such a database. It provides a spatial data type in its data model and

query language, supports spatial data type in its execution, and at least provides spatial data

indexing and storage functions.(Güting, 1994) Scalable geographic data visualization necessarily

requires the use of spatial databases as the basis, because only spatial databases can efficiently

access data points within a specified geographic area.

In the spatial database, the spatial data structure has many different options according to

different needs.
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2.5.1 Hierachical Structure

Hierarchical structure is a tree structure. It mainly expresses the hierarchical relationship

between data elements, which is usually a one-to-many relationship. The data in each layer is

related to multiple data elements in the next layer. There is only one root node in the tree structure

called the master, and the remaining nodes are called members, and each node is also the master

of the next node, such as the classic quadtree and R-tree.

A quadtree is a tree data structure with four sub-blocks on each node. The quadtree is

often used for the analysis and classification of two-dimensional spatial data. It divides the data

into four quadrants. The data range can be square or rectangular or any other shape. This data

structure was developed by Raphael Finkel and J. L. Bentley in 1974.

Figure 2.10. R-tree example

Source: Skinkie, Radim B. (2010). An example of a simple R tree on a
two-dimensional rectangle, Retrieved March, 2020 from:

https://commons.wikimedia.org/wiki/File:R-tree.svg
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R-tree is a tree data structure used for spatial data storage. For example, index

multi-dimensional data such as geographic location, rectangle and polygon. The R tree was

proposed by Antonin Guttman in 1984.

The core idea of R-tree is to aggregate nodes with short distances and express it as the

minimum circumscribed rectangle of these nodes in the upper layer of the tree structure. This

minimum circumscribed rectangle becomes a node in the upper layer. The ”R” in the R tree

stands for ”Rectangle”.

R-tree does not guarantee worst-case performance, but it generally performs well on real

data.

2.6 Aims and Objectives

In the face of highly dynamic big data, traditional visualization methods are overwhelmed,

both in terms of expressiveness and performance. Although many people have developed

visualization solutions for common large data sets, these visualization solutions also face new

challenges when facing geographic big data.We may want to observe the same data set at different

scales. This scope of observation may include a span from global to one block.

In the above, we introduced a lot of existing visualization methods for large data sets.

Some of them have been optimized for terabytes and even petabytes of data sets. However, they

are either poorly dynamic or require significant recalculation once scaled. So far, no one has

provided a universal and effective geographic information visualization solution that is scalable in

a highly dynamic big data environment.

So, my research question is that, Can the proposed method with SDS and On-demand

loading able to improve the time consumption when dealing with highly dynamic big datasets

with scaling function against existing libraries like D3.js or Plotly?
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CHAPTER 3. RESEARCH METHODOLOGY

3.1 Overall Approach

The main goal of this research is to propose a new method of geographic data

visualization based on existing methods, which should support the addition of highly dynamic

data in real time on the basis of good zooming effects. Then prove that this method has less time

and space consumption than other existing methods. In other words, faster calculation speed and

less memory consumption.

3.1.1 Summarize existing methods

First, I need to generalize and summarize the existing visualization methods. The research

object includes not only the geovisualization methods, but also other common visualization

methods, so it is expected to find out the possibilities that can be used to improve and implement

the dynamic scalable geovisualization.This part mainly includes a qualitative analysis of existing

methods and their applicability to the expected high dynamic big data.Of course, none of the

existing tools and solutions can deal well with highly dynamic geographic big data. Therefore, an

important task is to find the bottleneck of the methods. Some quantitative methods may be used

here, such as the measurement of effective cpu time and the measurement of peak memory usage.
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3.1.2 Analysis of actual needs

On the other hand, we need to study the different needs of geographic visualization at

different scales. One of the most common visualization schemes that is most easily applicable to

large data sets is heat maps. But the nature of the heat map itself determines that it does not

naturally support scaling. Unlike general data visualization, geographic visualization has more

practical significance in spatial distribution. Maybe we need to visualize the data in different

proportions in different modes. For example, we may want to use a large-scale heat map and a

small-scale scatter plot. For some methods, this switch may not be supported, or due to the

underlying design, this switch may consume a lot of resources. Through the operation of the

underlying logic and the combination of different methods, these problems can be solved.

3.1.3 Find a solution

After research, it entered the development stage. The development phase mainly includes

the selection of development tools and the final actual development. Due to the low-level

rewriting of the visualization logic, the development tools do not use the existing common

visualization tools directly, but still need to learn from the algorithms and development logic of

some of the open source tools. During the development process, many different solutions may be

generated, and their performance and effects should be quantified and compared. In this step, the

performance of the newly developed solution should be compared with existing methods and

existing commercial tools in the same environment configuration to find a research direction that

can be further optimized. This step will require a lot of actual testing and quantitative analysis.

Finally, I hope to find feasible and effective solutions through these studies.
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3.2 Practical Visualization Tools

Many big data visualization tools run on the Hadoop platform. Software with visual and

interactive capabilities to visualize data has been developed. Although distributed computing has

its technical advantages in terms of processing speed for big data, it is inevitable that a finalized

output is necessary because of data visualization. Since general data visualization methods such

as heat maps are localized and do not have long-distance associations, distributed computing will

not bring about a fundamental change in principle in visualization itself, but only for computing

speed. Therefore, although many big data visualization tools support distributed technology, in

this research, its distributed technology will not be the main research object. All principle

research and actual testing will be performed on a single computer. It is expected that a

visualization solution that has advantages on a single computer will also gain advantages in

distributed computing.

It is worth noting that the previous survey found that a large number of visualization tools

are more focused on less large data sets and richer visualization effects. These tools are actually

more aimed at small and medium users and designers, rather than enterprise data analysis

departments that really deal with big data. Rich and diverse visualization effects and efficient

algorithms to deal with big data may be doomed to no simple implementation, after all, different

visualization effects will correspond to very different preprocessing and rendering logic, and for

tools that pursue universality, implementing these functions is not a priority.

In addition, many visualization tools now choose the web front end as the platform. This

is due to the rich content advantages and ease of use of the web. But the web front end is a

client-based rendering system, and the client cannot always be expected to have the performance

required to process big data. The web itself is not a platform that focuses on performance.

Although many modern technologies such as WebAssembly and Shadow Dom have accelerated

the javascript operation and dom rendering speed to a level close to native software, its dom

tree-based rendering system still brings image rendering itself. Here comes some unnecessary

overhead.
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However, not many tools can meet the dynamic and scalable geographic information

visualization needs. Some visualization tools (Sucharitha, Subash, & Prakash, 2014) may be

useful.

Dygraphs is a fast, flexible collection of open source JavaScript diagrams that help

discover and understand opaque data sets.

Tableau has three main products for processing large data sets and also embeds the

Hadoop infrastructure.

Rave is a fast adaptive visualization engine that IBM is developing. IBM has embedded

visualization capabilities into its business analytics solutions. RAVE and scalable visualization

capabilities help with effective visualization.

Other tools include the Google Chart API, Flot, D3, and Visual.ly etc. These tools are

often more flexible and provide a more customized visualization method to apply specific

optimizations for specific problems. But these tools will require more programming work which

need to be done by professionals.

Considering that in actual production, the data source sometimes comes from different

servers, or even has geographical distribution characteristics itself, distributed processing may be

very effective and necessary. Hadoop platform may be a good choice. However, distributed

design will not be adopted in this project.
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3.3 Program Structure

3.3.1 Front-end

The structure of the visualization program mainly includes three major parts, which are

front-end rendering, data processing, and database. Among them, the choice of visualization tools

will greatly affect the efficiency of front-end rendering. For example, if I add a Dom element to

the front end for each additional data point, the front end needs a lot of time to restructure the

Dom tree.If you use canvas based on OpenGL, you can get the advantages of graphics card

acceleration. In addition, whether the front end needs to follow the data update completely in real

time, how to perform partial updates, whether it needs to accumulate updates, and how to control

the refresh rate need to be considered. The front end also needs to assume many control

functions. Such as accepting external input to zoom and move the image. On some web-like

platforms, these operations are well-defined in advance. But if on other platforms, these

operations may not be well defined. I think this should not be the main direction of this research.

These interactions are not the reason for limiting the performance of big data visualization.

In summary, if local software is used, the most direct and simplest output method is image

sequence output. This is the most direct output method at the bottom, and the program outputs the

image sequence directly to the display. However, this output method does not naturally have the

function of accepting operation input, which requires pre-programming control. If you use a web

platform, the most direct and efficient is to use canvas.
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3.3.2 Database

For databases, geographic information naturally has a two-dimensional spatial data

structure, so this also limits its query and calculation methods. Under this two-dimensional spatial

data structure, the traditional entry-based SQL database cannot provide a sufficiently effective

data retrieval speed. For the rendering of a single image, this may not be an important issue. Even

if all data points are irregularly distributed within the range, the rendering order will not affect the

rendering time of a single image. However, once scaling is involved, the situation is completely

different. When zooming, the program needs to retrieve the data points in the area, and then use

the data in the area to re-render the calculation. In theory, data in the same area can be retrieved

from adjacent locations through preprocessing to speed up retrieval. However, another problem

faced in this study is that the situation assumed in this study is that a large amount of dynamic

data is stored. Of course, the stored dynamic data will not have spatial regularity. This makes it

impossible to pre-process in advance, because newly entered data cannot be pre-processed.

Therefore, the linear retrieval time means that every time you zoom, regardless of the size of the

area, you need to traverse all the data. This makes the choice of data storage method a very

important difficulty. I may need to find a new space-based data storage structure, such as a

quadtree or R tree, and this data structure also needs to be able to store intermediate results to a

certain extent, so that different scales of access are fast enough.

In summary, as an important key point, a spatial database needs to be found.

Theoretically, through the reasonable use of spatial database, the range access to spatial data

points can reach O(log (n)) complexity. The specific design principles are discussed below.
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Figure 3.1. Database design, taking quadtree as an example

Take the quadtree as an example. A spatial database structure that can quickly support

scaling should be a multi-level hierarchical quadtree. If you want to read all the data in a certain

area, it is actually equivalent to selecting one or several subtrees from the quadtree. The data

under this subtree is the data we need. On the other hand, because the resolution of the output

image is limited, in fact, we do not need to read the entire subtree to the bottom. We store a sum

of all the data under it at each level of the subtree. When the size of the area represented by a

subtree is already less than the resolution, we don’t need to read the lower part, we just need to

read the value stored by itself. In this way, for a quadtree, only 10 layers can be read to support a

1024x1024 image output. The number of layers to be read is determined according to different

resolution requirements. But for the same resolution, this means that a larger scale will not slow

down the reading of data, because we only need to read ten layers of data, instead of reading all

specific data points in the area. For determining the resolution, regardless of the scale of the

zoom, no matter what area is selected, the time to read the data is basically fixed. This can solve

the problem that more data points are read more slowly under normal circumstances.
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Some other tree structures are mentioned in the previous literature review. The R tree and

its deformations are the most widely used data structures for spatial databases. It is a balanced

tree. Compared with the quadtree, its biggest advantage is that the area of its subtrees is not fixed,

but the area The density of the interior points varies. The denser the data, the more bifurcation of

the R tree. This means that the space utilization efficiency of R is higher, and the worst query time

of the R tree is better when targeting uneven data. But this also means that the area divided by the

R tree is also uneven. This will slightly increase the linear coefficient of the query time when the

number is small. In the worst case, space utilization efficiency and access time will be fairly well

guaranteed.

The k-d tree is also a commonly used spatial data structure. The k-d tree is a binary tree

that divides the data in half in one dimension at a time. The k-d tree has better applicability to

high-dimensional data, but is more suitable for static data, because the k-d tree has no balance

maintenance mechanism, and it is easy to lose balance when inserting dynamic data.

3.3.3 Data Processing

Data processing is mainly divided into two parts. On the one hand, data preprocessing,

this part includes extracting useful information from the collected raw data. This mainly depends

on the specific business logic and the need for visualization, and there will be no general solution,

so it will not be discussed here. According to the previous discussion, our final rendering target

will be a heat map or a scatter plot, so we assume that after all the data items we have input have

been processed, they only contain a two-dimensional geographic location parameter and an

independently Dimensional continuous parameters. Such data is sufficient to generate a heat map.

39



The other hand is how to facilitate the subsequent display by preprocessing the data.

Among them, a part of preprocessing has been explained in the data structure part, and the

conversion of data access into a specific data structure is itself a kind of preprocessing. If it is a

static visualization, this preprocessing is sufficient. However, because we want to support highly

dynamic features, we are facing some new challenges. Beyer et al. (2013) is very worthy of

reference. On the other hand, it is very important to iterative calculation, which is to show the

intermediate results of the calculation to the player. Among them, the second has brought great

inspiration to my design.

Still taking the quadtree as an example, when there is a large amount of dynamic data

input, we do not need to let every data fall directly to the bottom of the quadtree. If n units of data

are stored in a unit of time, the total amount of data is m. If we want all of this data to fall into the

bottom of the quadtree, the time complexity is O(n logm). In the case of big data, when m is very

large, logm cannot be ignored.

(a) Data fall to the bottom (b) Data fall to the level required for rendering

Figure 3.2. The data need not fall to the bottom of the quadtree.
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In fact, we only need to let the data fall to the level we need to render, and we can

complete the rendering. For example, if our scale is enlarged by 4 times, that is, the root node of

the subtree of the entire rendering area is on the third layer, and we need to render at 1024 * 1024

resolution, then we only need to let the data drop 10 + 3 layers. These data can be piled up on the

13th layer, and we don’t need to let the data fall further until we need to zoom in again. It is worth

noting that when we zoom in, the data that is not in the rendering area only needs to fall to the

branch point between them and the data in the area. This means that not all data needs to fall to

the specified number of layers. Suppose the root node of the area we need to render is on the kth

layer. Assuming that the data points are evenly distributed, only 1
4k of the data needs to fall to the

specified number of layers. Other data will only fall in fewer layers.

If the resolution is 1024 * 1024, the root node of the rendering area is in the kth layer, and

the data of total n is evenly distributed, of all the n data, three-quarters will only fall to the second

layer, three-quarters of the other quarter will fall to the third layer, and so on. The total number of

falls can be calculated. The calculation complexity is:

O
((

2
3
− k

4k +
28
3
× 1

4k

)
×n

)
(3.1)

The greater the magnification, the lower the complexity of data processing, and it will tend to 2
3n

soon That is to say, even in the case of a large amount of data influx, the rendering of new data

can achieve a nearly linear time complexity, regardless of the original amount of data.

We know that, under natural circumstances, the data generation rate is not uniform, but

will have some peaks at certain times, and sometimes less. For example, data peaks in the

catering industry will be reached during meals. The linear rendering time complexity of this

method determines that the image can be rendered efficiently even during the peak time of data

influx. Those data points that did not fall to the bottom will be processed when the operation is

idle or when the zoom ratio is adjusted.
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3.3.4 Overall programming structure

Figure 3.3. Data rendering process

Overall, when the data input is obtained, the data is pre-processed, which is also stored in

the quadtree. But the depth of the deposit depends on the rendering requirements and remaining

computing power. In idle time, the data that has not been saved to the bottom of the quadtree is

processed. When changing the zoom scale and area, you need to calculate some data that has not

been saved to the bottom layer. The final rendering will directly take the data of the specified

layer of the quad tree in the specified area for rendering.

3.4 Data Sources

The analysis part itself is based on existing academic research and open source libraries. Most of

these software are open source software. Now, most software developers choose to use open

source to publish visualization tools and seek help from the open source community. Therefore, I

can directly study the calculation principle of these open source software, and analyze the

applicability and bottleneck of these software in the scenario described in this article. Some

commercial software is closed source, so these software are only suitable for performance

comparison. The specific rendering details are unknown.
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On the other hand, research requires some geographic information datasets with different

characteristics and scales for experimental data. Some commonly used data sets include traffic

violation data published by the government, some Internet companies such as Yelp’s business

review data (YelpInc., n.d.), and flight delay data. Take the business review data set released by

Yelp as an example, which includes 5,200,000 user reviews for more than 174,000 businesses.

Reviews include detailed geographic information about the business. This is a good data set that

can be used for actual testing.

However, due to privacy, merchants with actual business data rarely publish very large

volumes of raw data. But if necessary, PB-level dynamic geographic data can be manually

manufactured. The artificially produced data may differ from the actual data in some distribution

rules, but only considering that it is used for visual performance testing, these virtual data should

be able to achieve the required functions.
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CHAPTER 4. DATA ANALYSIS

4.1 Testing platform and conditions

Table 4.1. Testing platform

Operating system Windows10 x64

CPU Intel Core i7-9750H 2.60GHz

RAM 16GB

GPU NVDIA GTX 1660 Ti

The platform used for all the tests below is my personal laptop. Among them, I shielded

all other cores of the CPU except Core 0. This is to avoid performance inequities that some

software supports multi-threading and some software does not support.

All the data listed below are the average of ten actual tests. Ten tests for each data used

different test data sets, including 8 sets of random data, a set of Yelp review data, and a set of

traffic violation data. It is worth noting that the test results show that the standard deviation of all

test data is within 10%, which means that for different data, the performance of these software is

relatively stable. At the same time, it also ensures the reliability of the comparison between the

data.
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4.2 Analysis of existing software

4.2.1 JS library

Many existing data visualization software have chosen JS as the platform. One of the

biggest advantages of the JS platform is to directly interface with rich web pages. Data

visualization results can be displayed directly on the browser to any user who opens the webpage.

If convenience is an advantage of the JS platform, performance will become a bottleneck

on the JS platform. First of all, JS is based on the browser platform. Now commonly used

browsers, such as chrome or firefox, do not support JS multi-threading, making the CPU

performance can not be fully utilized. In addition, as we all know, browsers such as Chrome are

very memory intensive. In terms of rendering, these JS libraries are often based on DOM trees.

One advantage of using the DOM tree is that the DOM tree itself is rich in information, and

comes with support for many operations, which is itself a feature of HTML, making it very

convenient to describe and manipulate some graphical elements. The disadvantage of the DOM

tree is performance. If many modern JS engines can support rates close to native programs, the

operation of the DOM tree is very slow. Although JS libraries such as JS have used many new

technologies, such as cumulative updates, Shadow DOM, etc. to speed up DOM tree operations,

the speed of DOM tree operations is still a bottleneck.

Some commonly used JS-based data visualization tools that support big data include

D3.js, Echarts, amCharts, etc. Many high-level visualization libraries are not considered here.

The main reason is that many high-level visualization libraries are essentially packaged by

low-level visualization libraries. Many advanced visualization libraries will focus on the beauty

of visualization or the natural and smooth human-computer interaction, rather than the

performance that this study focuses on.
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4.2.1.1 JS library static heat map performance test

Figure 4.1. JS library static heat map performance

Detailed data can be found in Appendix A. The data in Appendix A includes the

subdivision time-consuming data of the js library image rendering in different stages.

A brief explanation about why in the time spent in image visualization, the sum of the

various items does not equal the total time. This is because the time of itemization is measured

using browser breakpoints. The sum of the actual average measurement results does differ from

the total time. Guess this difference is due to the mechanism of the JS engine inside the browser.

But the trend it reflects is still accurate and does not affect performance bottleneck analysis.
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As you can see, the performance of each JS library is different. The overall performance

of D3.js and amCharts is relatively close, while the overall performance of Echarts is better than

the first two. D3.js crashed at 10 million data points and could not display the image. No way to

fix the crash was found. The crash occurred during the processing of the data, and I was not sure

which step had the problem.

In the actual test, I also tested some other JS libraries. Either the performance is worse or

it is not representative. Here, the data of the three most representative libraries are selected for

explanation.

First look at the time of data reading. In terms of data reading, all three libraries are read

in cvs format, and it has been loaded into memory in advance.. The time counted here is the time

it takes after the data is read until it is converted to the built-in type of the library. The read time is

roughly in a similar range, and it increases as the amount of data increases. It can be considered

that when the amount of data is large enough, the data reading time mainly depends on the

amount of data, and it should increase linearly until the memory is occupied. This is not

surprising, but also shows that data reading is not the bottleneck of rendering.

Then, we look at the data processing time. The data processing time basically increases

linearly with the amount of data. This itself is consistent with the characteristics of heat maps.

Echarts performed slightly better than D3.js and amCharts.

Finally, it is the image rendering time that shows the significant difference. Echarts uses

canvas rendering, while D3 and amCharts use SVG. This is not obvious when the amount of data

is small, but it is quickly reflected after the amount of data increases. At the same time, in terms

of memory usage, Echarts is significantly better than D3 and amCharts. It should also be because

SVG depends on the DOM tree, causing a lot of additional memory overhead. This shows that for

static heat map rendering, the front-end time consumption of rendering is a key bottleneck. Real

pure image output like canvas can save a lot of time and space. The DOM tree brings freedom of

operation, but sacrificed performance is unacceptable in the case of big data.
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4.2.1.2 JS library static heat map zooming test

Figure 4.2. JS library static heat map zooming test with one million data

Subsequently, the rendering time difference of the static heat map under different zoom

factors was tested.

It can be clearly seen that in fact the zoom ratio is not much different from the rendering

time. To make matters worse, both the data processing time and image rendering time at different

zoom ratios are close to the time consumption of the first screen. This actually means that these

JS libraries are not pre-optimized for zooming. Each time you zoom, the program rescans all the

data to find out which ones need to be displayed, and then recalculates each grid point of the heat

map. No intermediate data is saved.

The animation effect of these JS libraries in zooming is quite good, but the performance is

not optimized at all, probably because they were not originally developed for commercial-grade

big data scenarios. But maybe with the popularization of big data in the future, the JS library will

also increase the corresponding functions.

48



4.2.1.3 JS library heat map adding data test

Figure 4.3. JS library heat map adding data test with one million data

It can be seen that when adding new data points, when there is less new data, the time

consumed by these JS libraries is slightly reduced, but it is still on the same order of magnitude.

When more new data is added, the time consumed by these JS libraries is actually very close to

the initial rendering time of the entire screen.

That is to say, although when adding data, these JS libraries can partially reuse the

previous calculation results, but there is no fundamental difference in order of magnitude, and the

operation is still performed on data that far exceeds the amount of new data points.
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4.2.2 Native software

In contrast, the native visualization library is not as rich as the visualization library

selection of the JS platform, and a lot of it is large-scale commercial software and is not open

source. But usually they show more clearly support for big data. So there is reason to expect them

to perform better. Moreover, from the front-end perspective, these local software directly output

images, and can even be accelerated by the graphics card. Local software usually executes faster.

Some representative software include Plotly, Tableau, Lyra, etc.

4.2.2.1 Native software static heat map performance test

Figure 4.4. Native software static heat map performance test

One problem with using existing native software is that it is difficult to monitor where to

go. Native software, even if it is open source, is actually compiled when it is run and cannot be

interrupted at will to calculate process time consumption. Not to mention that these softwares are

quite large, and some are still proprietary software. Therefore, only the time required to complete

rendering a picture is counted here. Because Tableau is a closed-source software, it can only

measure the time used manually, so the measurement accuracy is only 0.1 seconds.
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It can be seen that the time used by Plotly and Lyra is about the same. Tableau has

obvious advantages in time, but the memory it uses is very large compared to the other two.Four

to five times the other two. Specific memory usage can be viewed in Table A.4

4.2.2.2 Native software static heat map zooming test

Figure 4.5. Native software static heat map zooming test

Tableau’s rendering time after zooming out stood out. In fact, Plotly and Lyra’s rendering

time after scaling is almost the same as the initial rendering. This shows that they may still read

all the data to recalculate and render. Tableau needs little time to re-render after zooming, which

inevitably means that Tableau has calculated more data in advance than it needs to render the

current heat map.
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Tableau did not publish more details on the calculation principles within its software, but

it claimed to use PostGIS(Tableau, 2020). PostGIS is an open source program that uses R-tree

and GiST to achieve spatial indexing, which greatly accelerates the speed of orthogonal queries.

Tableau may also have a built-in spatial database, which makes it unnecessary to traverse all data

points when accessing scaled data, thereby greatly increasing the speed.

4.2.2.3 Native software heat map adding data test

Figure 4.6. Native software heat map adding data test

Although Tableau has many excellent performances in previous tests, Tableau does not

support adding data dynamically. Tableau can import incremental data through an external

database, but in principle this is equivalent to regenerating the entire project. This may be because

Tableau is mainly concerned with report business and data analysis, and these businesses do not

need to add data dynamically.

The quick secret of Tableau is that after it gets the data, it performs a lot of preprocessing,

and these complex preprocessing are not compatible with dynamically adding data, or it is too

complicated to do so. The end result is that although Tableau can efficiently support scaling, it

does not support dynamic data at all.
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On the contrary, Plotly and Lyra did a good job of adding data. Their performance is

close, and the time used when adding data is significantly less than the initial rendering. Because

they directly read the position of the data when adding the data, and add it to the corresponding

pixel. For heat maps, this is efficient when adding data. But the cost of doing this is that they

cannot be scaled. If scaling is performed, all pixels need to be completely recalculated.

In summary, most web-based JS-based data visualization libraries have similar

performance and are not very good. Only rendering to canvas has slightly better performance.

However, it supports more diverse and beautiful graphics, and is not optimized for spatial data

type scaling and new data insertion. The local visualization library has slightly better

performance. It has certain optimization for the scaling and real-time insertion of the spatial data

type of the heat map, but there is no visualization tool that optimizes both.

4.3 Performance of the new method

In the research method section, I have proposed a method based on spatial data structure.

Through on-demand loading and iterative calculation, this method can take into account both

scaling performance and the ability to dynamically add new data. According to this method, a

visual tool prototype was developed using c ++ for testing. According to this method, a visual

tool prototype was developed using c ++ for testing. The rendering front end uses image sequence

output directly to avoid performance differences caused by the output platform and rendering

method. The file reading also uses a unified interface, so I can focus on testing the performance

differences brought by the data structure and data processing. The impact of using this method on

actual performance is discussed below.Later, I also transplanted this method to the js platform to

compare with the js library to illustrate the platform independence of its advantages.

4.3.1 Comparison between the new method and the traditional method

First, we will compare the impact of using and not using spatial data structures, and using

and not using on-demand loading on visualization.
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Table 4.2. Whether to use spatial data structure performance comparison

Without SDS With SDS With SDS & On-demand

One hundred thousands data points

First screen time consume 32ms 214ms 54ms

4x Zooming 31ms 23ms 24ms

16x Zooming 29ms 23ms 23ms

Add one thousand data 14ms 16ms 14ms

Add ten thousands data 23ms 34ms 22ms

Add one hundred thousands data 36ms 215ms 42ms

Zooming when adding data 68ms 243ms 53ms

Memory usage 13MB 75MB 77MB

One million data points

First screen time consume 354ms 1032ms 427ms

4x Zooming 332ms 54ms 53ms

16x Zooming 311ms 52ms 54ms

Add one thousand data 12ms 46ms 16ms

Add ten thousands data 24ms 83ms 14ms

Add one hundred thousands data 37ms 268ms 58ms

Zooming when adding data 394ms 278ms 78ms

Memory usage 49MB 454MB 472MB

Ten million data points

First screen time consume 3212ms 14212ms 4921ms

4x Zooming 2912ms 66ms 63ms

16x Zooming 2764ms 62ms 65ms

Add one thousand data 17ms 62ms 25ms

Add ten thousands data 26ms 83ms 31ms

Add one hundred thousands data 44ms 352ms 63ms

Zooming when adding data 3401ms 314ms 103ms

Memory usage 311MB 2215MB 2314MB
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The test items still include the initial screen rendering time, zoom time and new data point

time.But an additional test is the rendering time of zooming while adding new data points.The test

also used data sets from 100,000 to 10 million data points as test data.

First look at the initial screen rendering time-consuming. After using the spatial data

structure, the initial screen rendering time is greatly increased compared to the linear table data

structure. This is because the spatial data structure performs a lot of preprocessing when loading

data, which makes the time consumption increase greatly. However, after using the iterative

operation of on-demand loading, the initial screen rendering time returned to the time close to the

linear table. When the initial screen is loaded, only the data structure is constructed to the

required level, the screen is rendered, and the construction of the spatial data structure is

continued when the operation is idle.

Look at the memory usage. In terms of memory usage, after using spatial data structures,

memory footprint has also increased significantly. And regardless of iterative loading, the

memory footprint is close.

Figure 4.7. Zoom image output example of my method
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Then came the impressive zoom performance. When the amount of data is small, whether

to use the spatial data structure is not significant. However, as the amount of data increases, the

rendering time of the method without the spatial data structure is almost the same as the initial

screen rendering, but the method using the spatial data structure takes a relatively short time to

zoom and is almost not affected by the increase in the amount of data.

In terms of increasing data, as with the initial screen rendering, the time consumption will

increase slightly after using the spatial database. However, as long as iterative loading is used,

this part of the increase can be eliminated.

Finally, add data while zooming. It can be seen that without using the spatial data

structure, we face the same problem as simple scaling, that is, the rendering time is almost the

same as the initial screen rendering. This is unacceptable when the amount of data is large.

However, after using the spatial data structure, especially after using on-demand loading,

the program has quite good performance in scaling and adding data. In fact, in the case of 10

million basic data points, every 100,000 additional data points can be rendered in about 0.1

seconds. This means that even if there is an influx of 100,000 data per second, the program can

update the screen and zoom at a refresh rate of ten frames per second.

4.3.2 Comparison between the new method and existing libraries

Compared with existing software, the significance of comparing absolute values is not

very great. Because the running platform, environment, and some internal algorithms are not the

same. The visual test program written by myself is very streamlined and targeted, but the existing

software may do some additional processing and operations for compatibility. However, the

analysis of its relative time-consuming growth as the data increases is still obvious.

First compare the scaling performance.
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Figure 4.8. Relative zoom time improvement

First, the Y axis is scaled proportionally, so that the initial screen rendering time of all

curves is aligned, which can eliminate the deviation caused by the different running speeds of

different languages. It can be seen that the new method of using SDS and on-demand loading is

the same as Tableau. The time consumption of zooming is much smaller than that of the initial

screen rendering, and the curves of Lyra and Echart are close to horizontal.This is because

Tableau also uses the SDS method, so it is similar in performance to the method I implemented

using c ++.
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Figure 4.9. Relative adding time improvement

You can then view the performance when adding data. The initial screen rendering time of

the three is similar, but when adding data, the method using SDS and on-demand is also better

than the existing method. This is because on-demand loading requires recalculation when adding

data, rather than recalculating all data. This also brings excellent performance in adding data

while scaling.

In fact, existing tools do not fully support dynamic big data and scaling at the same time.

The software for big data display is actually recalculating the rendering completely when

zooming. With the exception of Tableau, tableau does not accept dynamically added data.

The new method uses a spatial database and adds iterative operations, which takes into

account both scaling performance and the performance of dynamically adding data. However, the

price is the use of more memory than existing software. But this kind of memory usage is

acceptable because the space complexity of memory usage is O(nlogn), and the impact of a log

entry is acceptable. However, when there is little data, the use of spatial databases introduces

unnecessary time overhead and may even be slower than existing software.
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Therefore, when the total amount of data exceeds one million, the use of spatial databases

will significantly improve the scaling performance compared to most existing software. When the

number of new data points reaches more than tens of thousands per second, the spatial database is

an excellent method that takes into account the scaling performance and the performance of the

new data. After using iterative on-demand computing, even if it reaches hundreds of thousands of

new data per second The picture refresh rate can also be well guaranteed. Specifically, on the test

platform, 100,000 new data are added per second while zooming, and the rendering can still

achieve a frame rate of 10 frames per second.
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CHAPTER 5. CONCLUSION

5.1 Implications and contributions

This paper presents a new visualization method of geographic big data combining spatial

data structure and iterative computing on demand.

In this area, existing researches have a gap. So far, no one has provided a universal and

effective geographic information visualization solution that can be scaled in a highly dynamic big

data environment.

In this area, existing researches have a gap. So far, no one has provided a universal and

effective geographic information visualization solution that can be scaled in a highly dynamic big

data environment. Existing libraries and software can’t take good care of scaling performance and

new data performance, let alone scaling and data addition at the same time.

The method proposed in this paper not only takes into account the scaling performance

and the performance of the newly added data, but also proves through experiments that when the

amount of data reaches more than 100,000, the visualization rendering speed is greatly improved.

When the amount of data is large, it significantly surpasses the performance of existing software

and methods. And it is foreseeable that when the amount of data is larger, the spatial data

structure will become an inevitable choice in geographic visualization.

This research is important to those national information management departments or

multinational corporations. In many cases, we need to monitor the data change trend both in a

nationwide level and a specific single point. For example, we may want to see whether traffic

violation has some rule in state level, and when we find the overall rule, we may want to find out

how exactly is a hot point composed.At this time, the ability to scale on highly dynamic data sets

is very important.
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This research may also inspire more efficient practices for big data visualization,

reminding researchers to pay attention to new expression and performance challenges brought by

changes in the visualization requirements of the same data set in different scenarios. Today’s

visualization libraries tend to focus attention and expressiveness and visualization effects, but

these visualization effects may not be a simple matter to balance performance with big data.

5.2 Future works

This article only discussed and experimented with heat maps. But there are many more

common types of visualizations. The methods used in this article are usable for visualization

methods with localized data. For example, Category map or Choropleth Map can be stored in a

structure such as quadtree or R tree, and can be calculated on demand. For other different types of

visualization, different optimization methods may be required in a highly dynamic big data

environment.

An important research direction in the future may include related big data. As mentioned

in Blending mode, how to visualize geographic big data with links between data points which is

highly dynamic and scalable is still a large challenge. This may not only apply to existing simple

spatial data structures. One possible data structure is the Hypergraph Based Data Structure. The

concept of hypergraphs is an extension of the concept of graphs, which can better solve problems

such as relational data structures that cannot express implicit relationships and lack integrity;

tree-like data structures are not suitable for reflecting non-hierarchical relationships; mesh-like

data structures are not suitable for reflecting non-history Hierarchy and other issues.

Another research direction includes how to make the scaling and data addition in the big

data environment more beautiful. In the case of insufficient computing power, if the frame rate is

very low, the output of some intermediate frames may help the zoom effect to be smoother.
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APPENDIX A. EXISTING LIABRARY PERFORMANCE

Table A.1. JS library static heat map performance test

D3.js Echarts amCharts

Authorization type Open Source Open Source Private

Rendering front-end SVG Canvas SVG

One hundred thousands data points heat map total time 126ms 82ms 102ms

• Data reading time 40ms 32ms 42ms

• Data processing time 62ms 34ms 32ms

• Image rendering time 41ms 20ms 40ms

• Memory usage 43MB 60MB 60MB

One million data points heat map total time 1182ms 692ms 1023ms

• Data reading time 140ms 120ms 124ms

• Data processing time 450ms 219ms 240ms

• Image rendering time 620ms 153ms 380ms

• Memory usage 205MB 79MB 184MB

Ten million data points heat map total time Crashed 4390ms 8050ms

• Data reading time 1253ms 1004ms 1540ms

• Data processing time 2310ms 4230ms

• Image rendering time 230ms 1080ms

• Memory usage 352MB 1029MB
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Table A.2. JS library static heat map zooming test

D3.js Echarts amCharts

One million data points 2x zooming single screen refresh time 1017ms 576ms 873ms

• Data processing time 420ms 193ms 250ms

• Image rendering time 452ms 120ms 346ms

• Memory usage 200MB 80MB 192MB

One million data points 4x zooming single screen refresh time 1192ms 692ms 841ms

• Data processing time 490ms 201ms 252ms

• Image rendering time 372ms 102ms 304ms

• Memory usage 200MB 88MB 201MB

One million data points 16x zooming single screen refresh time 1048ms 635ms 712ms

• Data processing time 439ms 204ms 275ms

• Image rendering time 420ms 133ms 334ms

• Memory usage 205MB 87MB 203MB
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Table A.3. JS library heat map adding data test

D3.js Echarts amCharts

Totally one million data points before adding

Add one thousand data 654ms 437ms 468ms

• Data processing time 210ms 183ms 245ms

• Image rendering time 220ms 124ms 145ms

Add ten thousands data 735ms 524ms 624ms

• Data processing time 193ms 177ms 252ms

• Image rendering time 317ms 113ms 228ms

Add one hundred thousands data 832ms 539ms 841ms

• Data processing time 325ms 223ms 223ms

• Image rendering time 482ms 120ms 346ms

Table A.4. Native software static heat map performance test

Plotly Tableau Lyra

Authorization type Open Source Private Open Source

How to use R GUI GUI

One hundred thousands data points heat map total time 83ms <200ms 113ms

• Memory usage 102MB 305MB 124MB

One million data points heat map total time 589ms 400ms 634ms

• Memory usage 211MB 529MB 146MB

Ten million data points heat map total time 3582ms 2200ms 3928ms

• Memory usage 329MB 1329MB 245MB
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Table A.5. Native software static heat map zooming test

Plotly Tableau Lyra

One million data points 2x zooming single screen refresh time 563ms <200ms 587ms

• Memory usage 231MB 692MB 142MB

One million data points 4x zooming single screen refresh time 531ms <200ms 573ms

• Memory usage 213MB 758MB 150MB

One million data points 16x zooming single screen refresh time 596ms <200ms 466ms

• Memory usage 257MB 783MB 152MB

Table A.6. Native software heat map adding data test

Plotly Tableau Lyra

Totally one million data points before adding

Add one thousand data 96ms Doesn’t Support 105ms

Add ten thousands data 146ms Doesn’t Support 159ms

Add one hundred thousands data 246ms Doesn’t Supports 325ms
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