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Å, 6 Å, respectively. ................................................................................................................... 100 

 

Supplemental Figures 

Supplemental Figure 3.1. Fraction of rare nonsynonymous derived alleles in the coding sequences 

(CDS) of micropeptides and the MiPepid-predicted CDS of lncRNAs under different derived allele 

frequency (DAF) thresholds. Error bars denote 95% confidence intervals of binomial proportions.

....................................................................................................................................................... 71 

Supplemental Figure 3.2. Distribution of nonsynonymous CDS-FDA in micropeptide and lncRNA 

transcripts. ..................................................................................................................................... 72 

Supplemental Figure 3.3. The minor allele frequency (MAF) spectra of SNPs of regular proteins, 

micropeptides, and lncRNAs. Spectra were plotted by binning SNPs into ranges of (0, 0.05), [0.05, 

0.10], …, [0.45, 0.5) based on a SNP’s MAF. .............................................................................. 72 



 

12 

Supplemental Figure 3.4. Fraction of rare minor alleles (FMA) in regular proteins, micropeptides, 

and lncRNAs under different minor allele frequency (MAF) thresholds. Error bars denote 95% 

confidence intervals of binomial proportions. .............................................................................. 72 

Supplemental Figure 3.5. Fraction of rare minor alleles (FMA) in the coding sequences (CDS) of 

regular proteins and micropeptides under different minor allele frequency (MAF) thresholds. Error 

bars denote 95% confidence intervals of binomial proportions. ................................................... 73 

Supplemental Figure 3.6. Fraction of rare nonsynonymous minor alleles (FMA, nonsyn) in the 

coding sequences (CDS) of regular proteins and micropeptides under different minor allele 

frequency (MAF) thresholds. Error bars denote 95% confidence intervals of binomial proportions.

....................................................................................................................................................... 73 

Supplemental Figure 3.7. Fraction of rare minor alleles (FMA) in the coding sequences (CDS) of 

micropeptides and the MiPepid-predicted CDS of lncRNAs under different minor allele frequency 

(MAF) thresholds. Error bars denote 95% confidence intervals of binomial proportions. .......... 74 

Supplemental Figure 3.8. Fraction of nonsynonymous rare minor alleles (FMA) in the coding 

sequences (CDS) of micropeptides and the MiPepid-predicted CDS of lncRNAs under different 

minor allele frequency (MAF) thresholds. Error bars denote 95% confidence intervals of binomial 

proportions. ................................................................................................................................... 74 

Supplemental Figure 3.9. Distribution of CDS-FMA in micropeptide and lncRNA transcripts. . 75 

Supplemental Figure 3.10. Distribution of nonsynonymous CDS-FMA in micropeptide and 

lncRNA transcripts........................................................................................................................ 75 

Supplemental Figure 3.11. Fraction of rare minor alleles (FMA) in the untranslated regions (UTR) 

of regular proteins, micropeptides, and lncRNAs under different minor allele frequency (MAF) 

thresholds. Error bars denote 95% confidence intervals of binomial proportions. ....................... 75 

Supplemental Figure 3.12. The ratio between CDS-FMA and UTR-FMA for regular proteins, 

micropeptides, and lncRNAs under different minor allele frequency (MAF) thresholds. Error bars 

denote 95% bootstrapped confidence intervals of ratios (with 5,000 bootstrap samples). “***” 

denotes the ratio is significantly greater than one with a p-value < 0.001.................................... 76 

  



 

13 

LIST OF ABBREVIATIONS 

DAF derived allele frequency  

DCNN deep convolutional neural network 

FDA fraction of rare derived alleles  

FMA raction of rare minor alleles  

kb 1,000 nucleotide bases 

MAF minor allele frequency  

miRNA microRNA 

MS Mass spectrometry  

nt nucleotides 

PDB Protein Data Bank  

piRNA piwiRNA 

rRNA ribosomal RNA  

scaRNA small Cajal body RNA 

SI sequence identity 

siRNA small interfering RNA 

snoRNA small nucleolar RNA 

snRNA small nuclear RNA  

tRNA transfer RNA 

uORF upstream ORF 

 

  



 

14 

ABSTRACT 

Data science uses the latest techniques in statistics and machine learning to extract insights 

from data. With the increasing amount of protein data, a number of novel research approaches 

have become feasible.  

Micropeptides are an emerging field in the protein universe. They are small proteins with <= 

100 amino acid residues (aa) and are translated from small open reading frames (sORFs) of <= 

303 base pairs (bp). Traditionally, their existence was ignored because of the technical difficulties 

in isolating them. With technological advances, a growing number of micropeptides have been 

characterized and shown to play vital roles in many biological processes. Yet, we lack 

bioinformatics methods for predicting them directly from DNA sequences, which could 

substantially facilitate research in this field with minimal cost. With the increasing amount of data, 

developing new methods to address this need becomes possible. We therefore developed MiPepid, 

a machine-learning-based method specifically designed for predicting micropeptides from DNA 

sequences by curating a high-quality dataset and by training MiPepid using logistic regression with 

4-mer features. MiPepid performed exceptionally well on holdout test sets and performed much 

better than existing methods. MiPepid is available for downloading, easy to use, and runs 

sufficiently fast. 

Long noncoding RNAs (LncRNAs) are transcripts of > 200 bp and does not encode a protein. 

Contrary to their “noncoding” definition, an increasing number of lncRNAs have been found to be 

translated into functional micropeptides. Therefore, whether most lncRNAs are translated is an 

open question of great significance. To address this question, by harnessing the availability of 

large-scale human variation data, we have explored the relationships between lncRNAs, 

micropeptides, and canonical regular proteins (> 100 aa) from the perspective of genetic variation, 

which has long been used to study natural selection to infer functional relevance. Through rigorous 

statistical analyses, we find that lncRNAs share a similar genetic variation profile with proteins 

regarding single nucleotide polymorphism (SNP) density, SNP spectrum, enrichment of rare SNPs, 

etc., suggesting lncRNAs are under similar negative selection strength with proteins. Our study 

revealed similarities between micropeptides, lncRNAs, and canonical proteins and is the first 

attempt to explore the relationships between the three groups from a genetic variation perspective.  
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Deep learning has been tremendously successful in 2D image recognition. Protein binding 

ligand prediction is fundamental topic in protein research as most proteins bind ligands to function. 

Proteins are 3D structures and can be considered as 3D images. Prediction of binding ligands of 

proteins can then be converted to a 3D image classification problem. In addition, a large number 

of protein structure data are available now. We therefore utilized deep learning to predict protein 

binding ligands by designing a 3D convolutional neural network from scratch and by building a 

large 3D image dataset of protein structures. The trained model achieved an average F1 score of 

over 0.8 across 151 classes on the holdout test set. Compared to existing methods, our model 

performed better. In summary, we showed the feasibility of deploying deep learning in protein 

structure research.  

In conclusion, by exploring various edges of the protein universe from the perspective of 

data science, we showed that the increasing amount of data and the advancement of data science 

methods made it possible to address a wide variety of pressing biological questions. We showed 

that for a successful data science study, the three components – goal, data, method – all of them 

are indispensable. We provided three successful data science studies: the careful data cleaning and 

selection of machine learning algorithm lead to the development of MiPepid that fits the urgent 

need of a micropeptide prediction method; identifying the question and exploring it from a 

different angle lead to the key insight that lncRNAs resemble micropeptides; applying deep 

learning to protein structure data lead to a new approach to the long-standing question of protein-

ligand binding. The three studies serve as excellent examples in solving a wide range of data 

science problems with a variety of issues.  
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 INTRODUCTION 

 Data science 

1.1.1 What is data science? 

As a buzz word in today’s society, data science is gaining more and more attention. Although 

it lacks a clear definition, data science can be simply understood as a discipline emerging from big 

data. As the amount of data is growing exponentially in many fields, there is an urgent need to 

generate value from these huge amounts of data. And to generate value, the most direct way is to 

extract knowledge and insights from data (Dhar, 2013). Data science simultaneously employs 

statistics, data analysis, machine learning, etc. to maximize the value obtained from the data (Dhar, 

2013).  

1.1.2 The three components of a successful data science study 

Data science is extracting knowledge and insight from data. Based on my experience, three 

components are indispensable to conduct a successful data science study. 1. An understanding of 

the type of knowledge or insight we would like to extract, i.e., before we employ data science, we 

need to have a clear goal in mind. 2. The data that we can obtain. Many methods require large 

amounts of data and, furthermore, the data must be crefully cleaned and curated. 3. An 

understanding of, and careful selection of  data science methods / techniques that can successfully 

produce insights using the data we can obtain. These three components intertwine with each other. 

The lack of any one of them will make the effort in vain.  

1. The end goal of a data science project 

This depends on the need of the data scientists that work on the study. For data scientists 

that work on biological research, the goal is often to achieve a certain biological significance.  

2. The data 

A high-quality dataset is indispensable for a successful data science study. By high-quality 

it means the dataset (1) is representive of the population we are assessing; (2) is of sufficient size 

for the problem to be addressed, and the computational method to be employed (3) has minimal 

noise, i.e., has few mislabeled data or irrelevant data.  

  



 

17 

3. Data science methods 

Broadly speaking, any method that could be to used to work with data can be called a data 

science method. Most data science methods come from stastistics, machine learning, or computer 

science.  

1.1.3 Machine learning 

Machine learning (ML) is a collection of algorithms for learning hidden patterns from a set 

of data in order to classify, cluster, etc. Machine learning is broadly categorized into supervised 

learning and unsupervised learning. In supervised learning, the labels of the data are known, and 

the goal is generally to learn the hidden mapping patterns between the data and the labels so that 

the learned patterns can be utilized to predict labels of future data. Many ML algorithms belong to 

supervised learning, e.g., regression (linear regression, logistic regression, generalized linear 

regression, etc.), support vector machine (SVM), tree-based methods (decision tree, random forest, 

etc.). In unsupervised learning, the labels of the data are generally unknown, and the goal is to 

better understand the data, usually by clustering the data. (Bishop, 2006) 

1.1.4 Deep learning 

Deep learning is a special type of machine learning. Among deep learning algorithms, 

artificial neural networks are the most common (Schmidhuber, 2015). Deep learning is data-

hungry, i.e., it generally requires a lot of training data to address overfitting issues since it usually 

has considerably more learnable parameters than simpler ML algorithms, such as linear models. 

In addition, deep learning is usually deployed for learning special types of data, e.g., image data. 

For learning image data, a special type of deep learning algorithm – convolutional neural networks, 

are often used (LeCun et al., 2015). Since convolutional neural networks use a special type of 

feature – convolutional units, which capture local features of an image that could help distinguish 

an image from one of a different category (e.g., a dog’s paw helps identify a dog), they are better 

at classifying images than other algorithms.  
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 Micropeptides – an emerging edge of the protein universe 

1.2.1 What are micropeptides? 

Micropeptides are a special type of proteins. Proteins, or strictly speaking, single-chain 

proteins or polypeptides, are composed of a single chain of amino acid residues. A protein is 

translated from a messenger RNA (mRNA) transcript, which is a linear chain of nucleotides that 

generally contains three tandem regions:  a 5’-untranslated region (5’-UTR), the coding sequence 

(CDS), and a 3’-untranslated region (3’-UTR). The CDS is responsible for coding the peptide, and 

as their names suggest, the 5’-UTR and 3’-UTR are generally not translated and are involved in 

the translation process directed by ribosomes.  

A CDS is also an open reading frame (ORF) and contains the genetic information for 

directing the translation of the peptide. It is composed of codons. A codon is a 3-nucleotide code 

encoding an amino acid. As there are 4 different DNA nucleotides in total: A, T, C, G, and a codon 

contains 3 nucleotides, there are 43 = 64 different codons. Among the 64, ATG is the canonical 

start codon and encodes methionine, and TAA/TAG/TGA are the stop codons and do not encode 

any amino acid. An ORF starts with a start codon and ends with a stop codon.  

A typical protein, what I call here a regular protein/peptide, generally has more than 100 

amino acids, so the ORF that encodes it generally has over 101 codons, i.e., it is > 303 base pairs 

(bp). On the other hand, a micropeptide, as the name suggests, is much shorter than a typical 

protein. By definition, it is a small protein that is encoded by a CDS region that is <= 303 bp, i.e., 

a micropeptide is <= 100 amino acids (aa) (Chugunova et al., 2018; Couso & Patraquim, 2017; 

Makarewich & Olson, 2017). Since the CDS region is short compared to that of a regular protein, 

it is also referred to a short/small open reading frame (sORF).  

1.2.2 The history of micropeptides  

Due to the short sequence, micropeptides were traditionally ignored.  

1. Because of their small size, micropeptides are easily lost during sample preparation. In 

addition, micropeptides may be of low abundance. Together this makes them hard to 

identify in proteomics studies. (Olexiouk et al., 2016)  

2. Because of their short length, the sORF that is responsible for encoding a micropeptide 

has a higher probability of occurring by chance compared to the ORF of a regular 
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protein (Olexiouk et al., 2016). Consequently, to reduce noise, sORFs were excluded 

in many in silico methods for predicting the coding potential of ORFs (Kang et al., 

2017; Kong et al., 2007; L. Wang et al., 2013). This annotation procedure, while 

successful in filtering out spurious noncoding ORFs, does leave out the sORFs that 

indeed encode micropeptides, and annotates them as noncoding. (Makarewich & Olson, 

2017)  

Despite the biases of proteomics studies and computational methods in unintentionally or 

intentionally filtering out sORFs, examples of micropeptides were still slowly identified by 

serendipity.  

Among the earliest examples of a micropeptide, (Rohrig et al., 2002) identified two 

overlapping sORFs that encode a 12 amino acid (aa) and a 24 aa micropeptide, respectively, in the 

ENOD40 gene of legumes, a gene that was previously considered to transcribe non-translatable 

noncoding RNAs (ncRNAs), as this gene contains only sORFs (Asad et al., 1994; Crespi et al., 

1994). Both micropeptides were found to function in binding to sucrose synthase in the nitrogen-

fixing nodules of legumes. From that point, growing attention has been paid to sORFs and their 

potential for coding micropeptides (Yeasmin et al., 2018).  

Interest in micropeptides increased exponentially starting with the advent of ribosome 

profiling. Ribosome profiling (Ribo-Seq) is a transcriptomic technique that sequences the RNA 

fragments bound to ribosomes (also known as ribosome footprints/ ribosome-protected fragments), 

thereby revealing the transcripts that are potentially being translated by ribosomes (Ingolia et al., 

2009). The employment of Ribo-Seq enabled large-scale discovery of many potential coding 

sORFs in various species, ranging from yeast (Smith et al., 2014a), to zebrafish (Bazzini et al., 

2014a; Chew et al., 2013), to mouse (Ingolia et al., 2011a) and human (Bazzini et al., 2014a). 

These studies also revealed that transcriptomes are pervasively translated (Ingolia et al., 2014).  

1.2.3 Functions of micropeptides 

Ribo-Seq studies showed that many sORFs have clear signatures of translation, and a 

growing number of micropeptides were experimentally validated. Yet for the majority of translated 

sORFs, the functions of the translation products are still unknown (Yeasmin et al., 2018). 
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Nevertheless, the well characterized cases to date provide a peek into the functional universe of 

micropeptides.  

In plants, micropeptides have been found to be involved in nodule organogenesis (Rohrig et 

al., 2002), leaf morphogenesis (Casson et al., 2002; Chilley et al., 2006; Frank & Smith, 2002; 

Narita et al., 2004), plant organogenesis (P. Guo et al., 2015; Wen et al., 2004), programmed cell 

death (Blanvillain et al., 2011), and pollen development (Dong et al., 2013; Jinxia Ma et al., 2008; 

D. Wang et al., 2009). 

In animals, micropeptides have been found to play roles in embryogenesis (Galindo et al., 

2007; T Kondo et al., 2010; Takefumi Kondo et al., 2007), cell migration (Pauli et al., 2014), stem 

cell differentiation (Kikuchi et al., 2009), calcium homeostasis (D M Anderson et al., 2015; Magny 

et al., 2013a), regulation of muscle performance (Bi et al., 2017; Nelson et al., 2016), DNA repair 

(Sarah A Slavoff et al., 2014), mRNA recycling (D’Lima et al., 2017), and programmed cell death 

(B. Guo et al., 2003; Hashimoto et al., 2001).  

1.2.4 Current methods for large-scale identification of micropeptides 

Ribosome profiling (Ribo-Seq) 

As stated in “The history of micropeptides” section, Ribo-Seq has enabled discoveries of 

numerous sORFs that show translation signatures (Bazzini et al., 2014a; Chew et al., 2013; Ingolia 

et al., 2011a, 2014; Smith et al., 2014a). To date, Ribo-Seq remains one of the major tools for 

detecting translating sORFs in large scale.  

While Ribo-Seq is powerful in identifying many putative translated sORFs, ribosome 

occupancy itself does not necessarily indicate a message is actually translated or establish the 

functional relevance of a translated peptide (Olexiouk et al., 2016). The sORF may just be 

associated with ribosomes (Chugunova et al., 2018). A number of technical improvements have 

been made to address the issues of Ribo-Seq. For instance, in Poly-Ribo-Seq, only polysomes, 

which represent active translation (Aspden et al., 2014; Galindo et al., 2007), are used to isolate 

the RNA. In addition, computational procedures have been developed to differentiate coding 

regions from noncoding fragments in Ribo-Seq data, including Ribo taper (Calviello et al., 2016), 

FLOSS (Ingolia et al., 2014), RSS (Guttman et al., 2013), ORF-RATER (Fields et al., 2015). 
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Despite those efforts, detection by Ribo-Seq still cannot be automatically interpreted as identifying 

true coding RNAs and still requires experimental verification.  

Mass spectrometry 

Mass spectrometry (MS) is a method for directly detecting peptides and determining their 

amino acid sequence. Protein samples are digested into (fragments) of peptides and are detected 

by MS. Identification of those peptides is then achieved by matching the resulting MS spectra 

against theoretic spectra of all possible candidate peptides retrieved from a reference protein 

database (Chugunova et al., 2018).  

A number of novel micropeptides have been discovered using MS. (Banfai et al., 2012) 

identified 85 unique peptides, 65 of which were mapped to known lncRNAs, using tandem mass 

spectrometry (MS/MS). By incorporating MS into a proteomic data pipeline, (S A Slavoff et al., 

2013) discovered 86 uncharacterized micropeptides in K562 cells. Later on, with a modified 

pipeline, (Jiao Ma et al., 2014) discovered an additional 195 micropeptides in K562 cells.  

Despite of advances in MS-based micropeptide identification, there are drawbacks with this 

method. A prominent one is that MS favors abundant proteins, which means that micropeptides, 

which may be of low abundance in cells, are hard to detect using MS. Consequently, the number 

of micropeptides identified by MS to date is limited. (Yeasmin et al., 2018) 

Bioinformatics methods 

Bioinformatics methods can generally be divided into conservation-based methods and 

nucleotide-composition-based methods.  

Conservation-based methods find conserved sORFs by multiple alignments of sequences 

from multiple species. Similar to regular proteins, conserved sORFs are more likely to be 

functional since conservation implies selection for retaining the sequence(Sousa & Farkas, 2018; 

Yeasmin et al., 2018). A well-known conservation-based method is PhyloCSF (Lin et al., 2011). 

Despite being useful in identifying conserved sORFs, conservation-based methods are not 

applicable to all cases (Sousa & Farkas, 2018; Yeasmin et al., 2018). Not all sORFs are conserved; 

some sORFs may evolve rapidly and therefore lack conservation. In addition, for shorter conserved 

sequences (such as sORFs) more species are needed for multiple genome alignments to achieve a 
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reliable statistical power (Eddy, 2005). And for many species, there are not a sufficient number of 

genomes of close species for the required multiple alignments.  

For nucleotide-composition-based methods, the underlining principle is that a coding 

sequence is different from a randomly occurred sequence with respect to nucleotide composition 

and arrangement. There are a number of nucleotide composition features that could differentiate 

coding sequences from noncoding ones. A simple feature could be single nucleotide proportions. 

For instance, human coding sequences are more GC-enriched than noncoding (Louie et al., 2003). 

Codon composition and preference can also be utilized.  

A number of state-of-the-art methods employed nucleotide composition features for 

predicting the coding potential of an ORF, including CPC (Kong et al., 2007), CPC2 (Kang et al., 

2017), CPAT (L. Wang et al., 2013), etc. However, they were all designed for predicting regular 

proteins, and sORFs were generally penalized and classified as noncoding during their training 

process. To our knowledge, there are few bioinformatics methods that specifically address the 

prediction of sORFs.  

uPEPperoni (Skarshewski et al., 2014) is a conservation-based method for detecting 

conserved sORFs in the 5’-UTR of mRNAs (i.e., in the upstream region of regular proteins). 

Although a number of studies indicate that 5’ upstream ORFs (uORFs) can be involved in 

regulating translation of the downstream peptide, many coding sORFs are located elsewhere.  

sORF finder (Hanada et al., 2010) is a nucleotide-composition-based method and predicts 

the coding capability of a sORF using a pre-trained model of nucleotide frequency conditional 

probabilities. However, the method was developed a decade ago, when little training data was 

available, and the web server is no longer available.  

1.2.5 The need for new bioinformatics methods of predicting coding sORFs 

Although prediction of micropeptides by bioinformatics methods still entails experimental 

verification, as required for Ribo-Seq and MS as well, a well-established bioinformatics method 

can greatly facilitate research with minimal cost. In contrast to Ribo-Seq and MS, which still have 

substantial costs for sample preparation and sequencing/ mass spectrometry, utilization of 

bioinformatics methods costs almost nothing.  

Prior to the work described in this dissertation, there were no good available bioinformatics 

method for predicting micropeptides from DNA sequences. Conservation-based methods cannot 



 

23 

be applied to micropeptides that are not conserved or are differently conserved from typical 

proteins. State-of-the-art coding potential prediction methods generally consider sORFs as 

noncoding. The few methods designed for sORF prediction all have significant drawbacks. 

Therefore, there is the need for building a new bioinformatics method specifically for predicting 

the coding potentials of sORFs. 

1.2.6 Available data for building bioinformatics methods 

Today, there are sufficient data that may be utilized for developing new methods for 

micropeptide prediction. sORFs.org has collected examples of millions of sORFs that derived from  

translation signatures from various Ribo-Seq studies (Olexiouk et al., 2016, 2018). SmProt curated 

sORFs from Ribo-Seq, MS, literature mining, and other large-scale studies, and grouped the 

collected sORFs into high-confidence or non-high-confidence based on the available evidence for 

each sORF (Hao et al., 2018).  

 Long noncoding RNAs (LncRNAs) – a potential edge of the protein universe? 

1.3.1 What are lncRNAs? 

Long noncoding RNAs (lncRNAs), by definition, are noncoding RNA transcripts that have 

a sequence length of > 200 nucleotides (nt) and that are not translated into proteins (Kapranov et 

al., 2007; Mercer et al., 2009; Wilusz et al., 2009). Since it is usually unknown whether an RNA 

is translated, this definition is quite arbitrary and includes no criteria related to the structure or 

function of the RNA. 

Contrary to the earlier belief that only a small portion of a genome is transcribed and that 

mostly into mRNAs, studies revealed that mammalian genomes are pervasively transcribed, and  

a large number of the transcription products are long RNAs that seem not possess a long ORF of 

coding potential (Carninci et al., 2005; Derrien et al., 2012; Johnson et al., 2005; Okazaki et al., 

2002). These RNAs are termed lncRNAs, and the reason why the threshold of “200 nt” was chosen 

was simply for distinguishing them from traditional “small” noncoding RNAs (ncRNAs), 

including microRNAs (miRNAs), small interfering RNAs (siRNAs), small nucleolar RNAs 

(snoRNAs), piwiRNAs (piRNAs), etc., which are generally less than 200 nt (L. Ma et al., 2013).  
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1.3.2 Functions of lncRNAs 

81,022, curated lncRNA transcripts have been identified in the current release of the human 

reference genome in Ensembl (release 98) (Cunningham et al., 2018), which exceeds the number 

of protein coding transcripts. Despite the enormous number, the functions of the majority of 

lncRNA transcripts remain to be answered. Nevertheless, there are a number of lncRNAs functions 

of which have been experimentally identified. According to LncBook (L. Ma et al., 2019), 1,867 

lncRNAs have been documented with experimental validation backed up by 2,632 publications. 

Based on functional mechanisms, those lncRNAs are grouped into transcriptional regulation, 

ceRNA, splicing regulation, translational control, protein localization and RNAi.   

1.3.3 Connections between lncRNAs and proteins 

Similar to protein-coding transcripts, lncRNAs are also transcribed by RNA polymerase II. 

Many lncRNAs are 5’ capped, 3’ polyadenylated, have multiple exons, etc., just like protein-

coding mRNAs (Cabili et al., 2011; Carninci et al., 2005; Chen, 2016; Derrien et al., 2012; 

Hartford & Lal, 2020; L. Ma et al., 2013). One major difference between lncRNAs and protein-

coding transcripts is that lncRNAs typically have much lower sequence conservation (Makarewich 

& Olson, 2017), which contributes to the belief that they are “noncoding”.  

With the advent of Ribo-Seq, many studies have shown that, contrary to earlier beliefs, many 

noncoding transcripts, including lncRNAs, exhibited clear translation signatures in a number of 

species, including human (Calviello et al., 2016; Ingolia et al., 2014; Ji et al., 2015; Raj et al., 2016; 

Ruiz-Orera et al., 2014), mouse (Ingolia et al., 2011a; Ruiz-Orera et al., 2018), zebrafish (Chew et 

al., 2013), fruit fly (Ruiz-Orera et al., 2014), plants (Bazin et al., 2017), and yeast (Ingolia et al., 

2009). Consistent with results from Ribo-Seq studies, in recent years a large number of lncRNAs 

have been experimentally verified to encode proteins, especially micropeptides. The sORFs 

present in them that once were considered to have low coding capability are in fact translated. 

Some well-studied cases are listed in Table 1.1.  



 

 

2
5
 

Table 1.1. Examples of micropeptides previously annotated as lncRNAs 

name length 

(aa) 

species function reference 

Bacteria 

Sda 46 B. subtilis inhibition of sporulation (Burkholder et al., 2001) 

MciZ 40 B. subtilis regulation of cell division (Handler et al., 2008) 

Plant 

ENOD40 12 or 24 legumes binding to sucrose synthase (Rohrig et al., 2002) 

Zm401 89 maize pollen development (Jinxia Ma et al., 2008) 

Animals 

polished rice (pri) 11 or 32 Drosophila regulation of actin-based cell 

morphogenesis 

(Takefumi Kondo et al., 2007) 

Sarcolamban (scl) 28 or 29  Drosophila regulation of cardiac calcium uptake (Magny et al., 2013a) 

Toddler 54 zebrafish an embryonic signal promoting cell 

movement 

(Pauli et al., 2014) 

Myoregulin (MLN) 46 human and mouse regulation of muscle performance (D M Anderson et al., 2015) 

SPAR 75 human and mouse regulation of muscle regeneration (Matsumoto et al., 2016) 

aa: number of amino acid residues 
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Table 1.1. continued 

DWORF 34 human and mouse enhancing SERCA activity in muscle (Nelson et al., 2016) 

Myomixer 84 human and mouse control of muscle formation (Bi et al., 2017) 

NoBody 68 human interacting with the mRNA decapping 

complex 

(D’Lima et al., 2017) 

CASIMO1 83 human and mouse breast-cancer-associated; control of cell 

proliferation 

(Polycarpou-Schwarz et al., 

2018) 

MOXI / mitoregulin 56 human and mouse Enhancement of mitochondrial β-

oxidation 

(Makarewich et al., 2018; Stein 

et al., 2018) 

aa: number of amino acid residues 
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1.3.4 Are lncRNAs indeed translated? 

As shown in the previous section, more and more lncRNAs have been re-annotated as 

protein-coding. This raises the fundamental question: do lncRNAs actually function via firstly 

being translated into micropeptides? i.e. Maybe they should not be called long noncoding RNAs, 

but instead they may represent a source of micropeptides that are yet to be identified. With a limited 

number of characterized lncRNAs to date, it is hard to answer this question. Yet it calls for further 

studies to explore the relationships between lncRNAs and proteins.  

1.3.5 Genetic variation data and analysis 

If most lncRNAs function by producing translated proteins, then their sequences may exhibit 

features resembling those in proteins. One of the features could come from genetic variation 

profile.  

Genetic variation has long been used to study natural selection strength and thereby to infer 

functional relevance (Bhartiya et al., 2014; De Silva et al., 2014; Mu et al., 2011; Ward & Kellis, 

2012). For example, the CDS regions of protein coding DNA sequences are generally considered 

to be under stronger negative selection than UTR regions, and results from several genetic 

variation studies indeed support this idea, suggesting the functional importance of the CDS regions 

(Jha et al., 2015; Khurana et al., 2013; Mu et al., 2011). By analogy, we can explore the 

relationships between lncRNAs and proteins from the perspective of genetic variation. 

More importantly, today we have a large amount of genetic variation data. The 1000 

Genomes project (Auton et al., 2015) is one of the most influential large-scale population genetics 

projects. It has produced the largest catalogue of human variation data, including over 84 million 

single nucleotide polymorphisms (SNPs) collected from 2,504 individuals across the world. The 

1000 Genomes project provides a large variation dataset that enables studies with good statistical 

power.  

 Protein ligand binding with deep learning – an updated edge of the protein universe 

Protein ligand binding is an age-old (and very important, of course) field of biological 

research. The reasons are simple - most proteins function via binding to other molecules (which 

are termed ligands), including other proteins, small molecules, etc. For instance, many proteins 



 

28 

can bind small molecules, therefore, drugs, most of which are small molecules, are developed to 

bind certain disease-related proteins in human body to either promote or inhibit the functions of 

those proteins. Thus, the search for potential molecules that could bind target proteins is a 

fundamental aspect of drug discovery.  

There are a large number of methods for identifying drug candidates of target proteins from 

a variety of perspectives, yet each of them has its own advantages and drawbacks (Xie & Hwang, 

2015). Advances in deep learning, in particular its huge success in image classification (LeCun et 

al., 2015), shed new light on this long-standing field of protein ligand binding. The idea behind it 

is straightforward: proteins are in essence 3D structural molecules, which can be considered as 3D 

images. The features of their 3D structures are highly associated with the potential molecules they 

can bind. Therefore, determination of whether a protein can bind a certain ligand can be converted 

to a classification problem of the 3D image of this protein, employing ideas borrowed from the 

application of deep learning in 2D image classification.  

More importantly, the increasing number of protein structures makes the “deep learning” 

idea feasible. To date, there are over 100,000 protein structures in the Protein Data Bank (PDB) 

(Burley et al., 2018). This large dataset enables the attempt to apply deep learning to study protein-

ligand interaction.  

 Incorporating data science into the search of the edges of the protein universe 

The protein universe consists of hundreds of thousand proteins carrying out a variety of 

functions. New proteins are discovered each day making this universe, while immense, still rapidly 

growing. What is growing as well is the number of data, which makes the study of this protein 

universe using data-driven approach more feasible. 

As discussed above, the 3 components of a successful study are the goal, the data, and the 

method.  

Micropeptides constitute an emerging edge of the protein universe. Despite the growth of 

newly identified micropeptides, we still need a bioinformatics method specifically designed for 

predicting micropeptides directly from DNA sequences, which could help identify potential 

micropeptides on a large scale with almost no cost. The increasing data in this field makes 

achieving this goal possible. With sufficient amount of labeled data, we can utilize machine 

learning algorithms to build an efficient method.  
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LncRNAs may constitute a potential edge of the protein universe as more are discovered to 

encode proteins. There are hundreds of thousands of lncRNA transcripts, but functions of the 

majority are unknown, nor are their coding capabilities. The coding phenomenon of lncRNAs, 

which contradicts their “noncoding” definition, raises the fundamental question about their 

functional mechanism – are lncRNAs indeed translated? We do not know the answer to this 

question, but we can explore it from a data-driven approach, and one feasible way is to infer the 

functional relevance of lncRNAs via genetic variation analysis. More importantly, we have 

sufficient data from the large-scale human variation project – the 1000 Genomes project. So, with 

the method of genetic variation analysis and the data from the 1000 Genomes project, it is now 

feasible to achieve the goal – explore the key question of whether lncRNAs are translated.   

Protein-ligand interaction is a fundamental activity of proteins. Consequently, the 

computational prediction of protein-ligand binding is a long-standing field with many published 

methods, each with drawbacks and advantages. Advances in data science methods, in particular 

the huge success of deep learning in computer vision, sheds new light on this field of protein-

ligand binding. Specifically, proteins are essentially 3D macromolecules and can be considered as 

3D images. Consequently, the computational study of protein structures can be converted to the 

study of 3D images, which are analogous to that of 2D images in deep learning. Moreover, the 

amount of available protein structure makes the learning possible. So, with the new method in data 

science – deep learning and the large number or protein structure data, it is now possible to achieve 

the goal - the prediction of protein-ligand binding from a different approach.  
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 MIPEPID: MICROPEPTIDE IDENTIFICATION TOOL 

USING MACHINE LEARNING1 

 Abstract 

Background: Micropeptides are small proteins with length <= 100 amino acids. Short open 

reading frames that could produce micropeptides were traditionally ignored due to technical 

difficulties, as few small peptides had been experimentally confirmed. In the past decade, a 

growing number of micropeptides have been shown to play significant roles in vital biological 

activities. Despite the increased amount of data, we still lack bioinformatics tools for specifically 

identifying micropeptides from DNA sequences. Indeed, most existing tools for classifying coding 

and noncoding ORFs were built on datasets in which “normal-sized” proteins were considered to 

be positives and short ORFs were generally considered to be noncoding. Since the functional and 

biophysical constraints on small peptides are likely to be different from those on “normal” proteins, 

methods for predicting short translated ORFs must be trained independently from those for longer 

proteins. 

Results: In this study, we have developed MiPepid, a machine-learning tool specifically for 

the identification of micropeptides. We trained MiPepid using carefully cleaned data from existing 

databases and used logistic regression with 4-mer features. With only the sequence information of 

an ORF, MiPepid is able to predict whether it encodes a micropeptide with 96% accuracy on a 

blind dataset of high-confidence micropeptides, and to correctly classify newly discovered 

micropeptides not included in either the training or the blind test data. Compared with state-of-the-

art coding potential prediction methods, MiPepid performs exceptionally well, as other methods 

incorrectly classify most bona fide micropeptides as noncoding. MiPepid is alignment-free and 

runs sufficiently fast for genome-scale analyses. It is easy to use and is available at 

https://github.com/MindAI/MiPepid. 

Conclusions: MiPepid was developed to specifically predict micropeptides, a category of 

proteins with increasing significance, from DNA sequences. It shows evident advantages over 

 
1This chapter appeared as MiPepid: MicroPeptide identification tool using machine learning. Zhu M and 

Gribskov M. BMC Bioinformatics, 20(1), 559. (2019). https://doi.org/10.1186/s12859-019-3033-9 

https://github.com/MindAI/MiPepid
https://doi.org/10.1186/s12859-019-3033-9
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existing coding potential prediction methods on micropeptide identification. It is ready to use and 

runs fast.  

 

Keywords: micropeptide, small ORF, sORF, smORF, coding, noncoding, lncRNA, machine 

learning 

 Introduction 

Micropeptides are generally defined as small proteins of <= 100 amino acid residues that are 

translated from small open reading frames (sORFs or smORFs, <= 303 base pairs (bp)) 

(Chugunova et al., 2018; Couso & Patraquim, 2017; Makarewich & Olson, 2017). Their existence 

was traditionally ignored because few micropeptides had been shown to be functionally important, 

mostly due to technological limitations in isolating small proteins (Olexiouk et al., 2018). 

Consequently, sORFs that encode micropeptides are generally ignored in gene annotation and have 

been considered to be noise (occurring by chance) and to be unlikely to be translated into proteins 

(Chugunova et al., 2018; Olexiouk et al., 2016, 2018). 

With improved technology, an increasing number of micropeptides have been discovered, 

and have been shown to play important roles in muscle performance (D M Anderson et al., 2015), 

calcium signaling (Douglas M Anderson et al., 2016), heart contraction (Magny et al., 2013a), 

insulin regulation (Lee et al., 2015), immune surveillance (Schwab et al., 2003; R. F. Wang et al., 

1996), etc. In particular, many micropeptides were shown to be translated from transcripts that 

were previously annotated as putative long noncoding RNAs (lncRNAs) (Cai et al., 2017; Yeasmin 

et al., 2018). This fact challenges the “noncoding” definition and raises questions about the 

functional mechanisms of lncRNAs, i.e., whether they function through their 3D RNA structure, 

or via the micropeptides translated from encoded sORFs, or both. 

With the increasing recognition of the importance of the “once well forgotten” field of 

micropeptides, it is increasingly important to develop a large-scale method for identifying them in 

a cost-effective way. Ribosome profiling (Ingolia, 2014; Ingolia et al., 2009) (Ribo-Seq) is a recent 

high-throughput technique for identifying potentially coding sORFs by sequencing mRNA 

fragments captured within translating ribosomes. Despite its advantages, there currently is no 

community consensus on how Ribo-Seq data should be used for gene annotation (Mudge & 

Harrow, 2016), as some investigators have questioned whether capture of RNAs by ribosomes 
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necessarily implies translation; some capture could be transient or non-specific rather than truly 

functional (Ingolia, 2016; Raj et al., 2016). Ribo-Seq requires the use of next generation 

sequencing and thus has significant costs. In addition, depending on the sequencing depth and 

quality, it may suffer from false positives, and may not reveal all coding sORFs due to differences 

in sORF expression in different tissues, developmental stages, and conditions. Therefore, the 

sORFs discovered from Ribo-Seq still require experimental verification of their coding potentials. 

It is much less expensive to predict coding sORFs from DNA sequences using bioinformatic 

tools. Although experimental verification is still required for predicted sORFs, a bioinformatic 

prediction of the coding potential of any sORFs before experimental verification is valuable since 

bioinformatics analysis costs almost nothing and could potentially provide useful insights.  

There are currently few bioinformatic tools specifically designed for predicting the coding 

potential of small ORFs. uPEPperoni (Skarshewski et al., 2014) is a web server designed to detect 

sORFs in the 5’ untranslated regions (5’-UTR) of mRNAs. It detects conserved sORFs without 

explicitly predicting their coding potential. Although 5’-UTR sORFs are an important component 

of the sORF population, many sORFs are located elsewhere, such as within the coding region of 

an mRNA, in lncRNAs, etc. The  sORF finder (Hanada et al., 2010) program specifically identifies 

sORFs using the nucleotide frequency conditional probabilities of the sequence, however it was 

developed nearly a decade ago, and the server is no longer accessible. In addition, because many 

micropeptides have been discovered in the last decade, a much larger training dataset can now be 

assembled, and this should greatly improve the prediction quality. Data pipelines have been 

described (Bazzini et al., 2014b; Crappé et al., 2013; Mackowiak et al., 2015) that calculate the 

coding abilities of sORFs, especially those identified from Ribo-Seq data; however, these pipelines 

are not standalone packages readily available for other users. Other well-known coding potential 

prediction tools such as CPC (Kong et al., 2007), CPC2 (Kang et al., 2017), CPAT (L. Wang et 

al., 2013), CNCI (Sun et al., 2013), PhyloCSF (Lin et al., 2011), etc. were trained on datasets 

consisting primarily of normal-sized proteins. Because of the differences between sORF peptides 

and globular proteins, and because these methods were not trained on large sORF datasets, it is 

likely they do not perform well in sORF prediction (as shown in the Results section below). In 

general, most coding potential predictors penalize short ORFs and those that lack significant 

similarity to known proteins; both of these factors compromise the ability of existing tools to 

correctly predict sORFs. 
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With the ongoing development of techniques such as Ribo-Seq and mass spectrometry (MS), 

an increasing number of micropeptides have been experimentally identified and verified. We have 

a reasonable amount of data that can be leveraged for the development of bioinformatics tools 

specifically for micropeptide prediction. sORFs.org (Olexiouk et al., 2016, 2018) is a repository 

of small ORFs identified specifically from Ribo-Seq and MS data. And SmProt (Hao et al., 2018) 

is a database of micropeptides collected from literature mining, known databases, ribosome 

profiling, and MS.  

Machine learning (ML) is a set of algorithms for learning hidden patterns within a set of data 

in order to classify, cluster, etc. The development of a successful ML-based method for a particular 

problem depends on a good dataset (clean, with sufficient data, etc.), and a good choice of specific 

ML algorithm. ML has been used in developing numerous bioinformatics tools, and has been used, 

for instance, in ORF coding potential prediction (Kang et al., 2017; Kong et al., 2007; Sun et al., 

2013; L. Wang et al., 2013).  

In this study, we present MiPepid, a ML-based tool specifically for identifying 

micropeptides directly from DNA sequences. It was trained using the well-studied logistic 

regression model on a high-quality dataset, which was carefully collected and cleaned by ourselves. 

MiPepid achieves impressive performance on several blind test datasets. Compared with several 

existing state-of-the-art coding potential prediction tools, MiPepid performs exceptionally well on 

bona fide micropeptide datasets, indicating its superiority in identifying small-sized proteins. It is 

also a lightweight and alignment-free method that runs sufficiently fast for genome-scale analyses 

and scales well.  

 Datasets 

To collect positive as well as negative datasets for micropeptides that are representative yet 

concise, we selected 2 data sources: SmProt (Hao et al., 2018) and traditional noncoding RNAs. 

2.3.1 The positive dataset 

SmProt (Hao et al., 2018) is a database of small proteins / micropeptides which includes data 

from literature mining, known databases (UniProt (“UniProt: a hub for protein information.,” 

2015), NCBI CCDS (Farrell et al., 2014; Harte et al., 2012; Pruitt et al., 2009)), Ribo-Seq, and MS. 
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In particular, SmProt contains a high-confidence dataset consisting of micropeptide data that were 

collected from low-throughput literature mining, known databases, and high-throughput literature 

mining data or Ribo-Seq data with supporting MS evidence. 

The SmProt high-confidence dataset (containing 12,602 human micropeptides in total) is a 

reliable data source for positive data since many of the peptides have been experimentally verified, 

and the rest are supported by multiple evidence. Based on this dataset, we cleaned our own positive 

dataset using the following pipeline: 

1. Obtain the nucleotide sequences of the data. In SmProt, only the amino acid sequences 

rather than the DNA sequences are provided, although for the majority of data points 

their corresponding transcript IDs (primarily in Ensembl (Zerbino et al., 2018), with 

others in RefSeq (Zerbino et al., 2018) or NONCODE (Zerbino et al., 2018)) are 

provided. Since the DNA sequence of a micropeptide contains essential information 

that the translated sequence cannot provide (such as nucleotide frequency, etc.), we 

therefore obtained the corresponding DNA sequences by mapping the protein 

sequences back to their corresponding transcripts using GeneWise (Zerbino et al., 

2018). To ensure the quality of the dataset, only micropeptides that gave a perfect 

match (no substitutions or indels) were retained. 

2. Obtain a nonredundant positive dataset. Proteins with similar sequences may share 

similar functions, and families of related sequences create a bias towards certain 

sequence features. To ensure that our positive dataset is not biased by subgroups of 

micropeptides with similar sequences, we selected a nonredundant set with protein 

sequence identity ≤ 0.6. This serves as our positive dataset and it contains 4,017 data 

points.  

2.3.2 The negative dataset 

It is hard to define a truly negative dataset for micropeptides as more and more sequences 

that were formerly considered noncoding have been shown to encode translated proteins, such as 

5'-UTRs of mRNAs, lncRNAs, etc. Despite the limitations of our current knowledge, we are still 

able to collect ORFs that are highly likely to be noncoding. 

Traditional noncoding RNAs, such as microRNA (miRNA), ribosomal RNA (rRNA), small 

nuclear RNA (snRNA), etc. are highly likely to be truly noncoding. While there is growing 
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evidence that lncRNAs (Ji et al., 2015; Ruiz-Orera et al., 2014) may sometimes encode translated 

sORFs, the possibility of sORFs in traditional noncoding RNAs has seldom been mentioned or 

discussed in literature. In addition, some pipelines for predicting coding regions from Ribo-Seq 

data utilized those ncRNAs to construct their negative datasets (Guttman et al., 2013; Mackowiak 

et al., 2015). While there are examples of lncRNAs and “noncoding” regions of mRNAs that 

encode micropeptides in the SmProt high-confidence dataset, there are no examples of 

micropeptides encoded by traditional ncRNAs. 

We therefore chose human miRNA, rRNA, snRNA, snoRNA (small nucleolar RNA), tRNA 

(transfer RNA), and scaRNA (small Cajal body RNA, a nucleolar RNA) as the data source for our 

negative dataset. We selected all human transcripts in the Ensembl database (Zerbino et al., 2018) 

annotated with these 6 biotypes and extracted all possible ORFs from those transcripts, i.e., ORFs 

with valid start and stop codons from all 3 translation frames. Although there is evidence that non-

ATG codons sometimes serve as sORF start codons (Olexiouk et al., 2016), to ensure the validity 

of our dataset, we consider only ATG start codons in constructing the negative dataset; in the 

positive dataset, nearly 99% of sORFs begin with ATG start codons. 

We finally gathered 5616 negative sORFs. In the same way as for the positive data, we 

selected a nonredundant negative dataset of size 2,936 with pairwise predicted protein sequence 

identity ≤ 0.6.  

2.3.3 The training set and the blind test set 

We randomly selected 80% of the examples in the positive and negative datasets to build 

our training set for the machine learning model training; the remaining 20% were used as a blind 

test set which was only used for model evaluation (Table 2.1). 

Table 2.1. Training and test data sets 

dataset #positive #negative #total 

training 3,194 2,369 5,563 

test 823 567 1390 

#positive: number of positive data points 

#negative: number of negative data points 

#total: total number of data points 
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2.3.4 The synthetic_negative dataset 

To further test the performance of our method, we generated a synthetic dataset that 

preserves the length distribution as well as the dinucleotide frequencies (H. Zhang et al., 2013) of 

the negative dataset. Since this dataset mimics the negative data, our method is expected to predict 

negative on this dataset. This synthetic_negative dataset is of the same size as the negative dataset 

(2,936), and it was generated using the ushuffle software (Jiang et al., 2008) in the MEME suite 

(Bailey et al., 2009). 

 Methods 

2.4.1 Feature generation 

In machine learning, identifying a set of relevant features is the next important step toward 

constructing a classifier. A set of well-chosen features greatly facilitates differentiating between 

different classes. 

In our study, we believe the key to determining whether a small ORF is translated lies in the 

nucleotide patterns in the sequence. A translated sORF should have a DNA sequence that is 

constrained by the physicochemical properties of the translated peptide, the preference of ribosome 

occupancy, the codon bias of the organism, etc. 

𝑘-mer features have been widely used to effectively capture nucleotide patterns. A 𝑘-mer is 

a subsequence of length 𝑘, where 𝑘 is an integer ranging from 1 to as high as hundreds depending 

on the requirements of specific questions. For DNA 𝑘-mers, there are only 4 types of nucleotides 

(A, T, C, and G), so the number of distinct 𝑘-mers for a specific 𝑘 is 4𝑘. The 𝑘-mer features are 

simply encoded as a vector of size 4𝑘 (denoted as 𝒗), with each value in the vector denoting the 

frequency of one unique 𝑘-mer in the sequence. If we slide a window of length k across the 

sequence from beginning to end with a step size of 𝑠, we obtain ⌊
|𝑆|−𝑘+1

𝑠
⌋ 𝑘-mers in total, where |𝑆| 

denotes the length of the sequence. Therefore, |𝒗|1 = ⌊
|𝑆|−𝑘+1

𝑠
⌋, where |𝒗|1 is the 𝐿1norm of 𝒗. To 

exclude the sequence length effects in  𝒗, we can use the normalized 𝑘-mer features, i.e., the 

fractional frequency of each 𝑘-mer rather than the frequency itself. In this case, |𝒗|1 = 1. 

Regarding the choice of 𝑘, a hexamer (i.e., 6-mer) is often used in bioinformatics tools for 

various biological questions (Chan & Kibler, 2005; Hanada et al., 2010). Yet hexamers would give 
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a feature vector of size 46 = 4,096. Compared to 5,563, the size of our training data, a model with 

as many as 4,096 parameters could potentially overfit the dataset although 5,563 is larger than 

4,096. To ensure the generalizability as well as the efficiency of our method, we chose to use 4-

mer features. A 4-mer, while short, still captures information about codons, and any dependencies 

between adjacent amino acid residues since every 4-mer covers parts of 2 adjacent codons / amino 

acids. A 4-mer feature vector has a reasonable size of 256, much less than 4,096, therefore should 

produce less model overfitting and have shorter running time. To eliminate the length information 

of a sORF, we chose to use normalized k-mer features. And to better capture the codon information 

of the translation frame, we chose a step size of 3 for k-mer extraction.  

2.4.2 Logistic regression 

From many possible supervised machine learning algorithms, we chose logistic regression 

for our study. Logistic regression is well-studied and provides easy-to-interpret models that have 

been shown to be successful in numerous cases and scenarios. The model can be tuned to minimize 

overfitting by, for instance, including regularization penalties. When used for prediction, the model 

returns the probability of an instance being in the positive category rather than just a label, which 

gives more insight into the prediction. 

The loss function for logistic regression is: 

min
𝒘,𝑏

∑ log (1 +  𝑒−(𝑦𝑖(𝑋𝑖
𝑇𝒘+𝑏))

𝑛

𝑖=1

+  𝜆𝒘𝑇𝒘 

, where {𝑋1, … , 𝑋𝑛} are the set of the data points and for each 𝑋𝑖, 𝑦𝑖  ∈ {−1, +1} is the label. 

𝒘 is the weight vector and 𝑏 is the bias term. ∑ log (1 + 𝑒−(𝑦𝑖(𝑋𝑖
𝑇𝒘+𝑏))𝑛

𝑖=1  is the negative log 

likelihood. 𝜆𝒘𝑇𝒘 is the regularization term which helps constrain the parameter space of 𝒘 to 

reduce overfitting, and 𝜆 is a hyperparameter controlling the regularization strength. For a set of 𝒘 

and 𝑏, the classifier assigns the label to data point 𝑋𝑖 based on the following: 

𝑓(𝑋𝑖) =
1

1 + 𝑒−(𝐰𝑇𝑋𝑖+𝑏)
{

≥ 𝑡, �̂�𝑖 =  +1
< 𝑡,  �̂�𝑖 =  −1 

 

, where �̂�𝑖 is the predicted label from the classifier and 𝑡 is the threshold between the positive (+1) 

and the negative (−1) classes. Although 𝑡 =  0.5 is generally used, 0 ≤ 𝑡 ≤ 1 is also a tunable 

hyperparameter. 
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2.4.3 Performance evaluation 

To evaluate the performance of MiPepid and existing methods, we used the following 

metrics. 

accuracy 

For a dataset 𝑆, denote the number of correctly classified cases by a method as 𝑐, then the 

accuracy is 
𝑐

|𝑆|
, where |𝑆| is the size of the dataset. This definition applies to any dataset used in 

this paper.  

 𝑭𝟏 score 

For a dataset that contains both positive and negative data, the 𝐹1 score of the performance 

of a method on this dataset is: 

𝐹1 =  2
𝑝𝑟 ×  𝑟𝑐

𝑝𝑟 + 𝑟𝑐
 

, where 𝑝𝑟 is the precision and 𝑟𝑐 is the recall, and  

𝑝𝑟 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑟𝑐 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

, where 𝑇𝑃 is the number of true positives, i.e., the number of correctly classified cases in 

the positive subset; 𝐹𝑃 is the number of false positives, i.e., the number of misclassified cases in 

the negative subset; 𝐹𝑁 is the number of false negatives, i.e., the number of misclassified cases in 

the positive subset. The 𝐹1  score ranges from 0 to 1, with a higher value implying better 

performance. In this study, the 𝐹1 score is used for the training and the test sets, as both of them 

consist of both positive and negative data. 

2.4.4 10-fold cross validation 

N-fold cross validation is commonly used to select good hyperparameters. Here 𝑛 is an 

integer ranging from 2 to as high as dozens. In cross validation, the dataset is randomly and evenly 

divided into 𝑛 folds. For every set of hyperparameter candidates, and for each fold, a model is 

trained using the other 𝑛 − 1 fold(s) and is evaluated on the left-out fold. The (weighted) average 

of the 𝑛 evaluations is taken as the overall evaluation for that set of hyperparameter candidates. 
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This cross validation is done for every set of hyperparameter candidates in order to select a set that 

gives the best performance.  

As stated in 3.3, there are 2 hyperparameters in logistic regression: the regularization 

strength 𝜆  and the threshold 𝑡 . We performed 10-fold cross validation to tune these 2 

hyperparameters. For 𝜆 ∈ {1E-5, 1E-4, 1E-3, . . . , 1E+5, 1E+6}  and  𝑡 ∈

{0, 0.05, 0.1, . . . , 0.95, 1.0}, we selected the combination of 𝜆 and 𝑡 that gave the best performance. 

 Results 

2.5.1 Hyperparameters tuning using 10-fold cross validation 

As stated above, in the logistic regression model, the regularization strength 𝜆  and the 

threshold 𝑡  are tunable hyperparameters. Therefore, before training the model on the training 

dataset, we first determined the best combination of 𝜆 and 𝑡 using 10-fold cross validation. As 

shown in Figure 2.1, when 𝜆 = 10−4 and 𝑡 =  0.60, both the average 𝐹1 (0.9639) and accuracy 

(0.9585) on the 10 validation sets are the highest. 
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Figure 2.1. 10-fold cross validation results with different 𝜆 and 𝑡 combinations on the training 

set. 𝜆: the hyperparameter for regularization strength in logistic regression; 𝑡: the hyperparameter 

for threshold in logistic regression; best 𝑡: when 𝜆 is fixed, the 𝑡 from 𝑡 ∈
{0, 0.05, 0.1, . . . , 0.95, 1.0} that gives the best performance; avg 𝐹1 val: the average 𝐹1 score on 

the 10 validation sets when both 𝜆 and 𝑡 are fixed; avg accu val: the average accuracy on the 10 

validation sets when both 𝜆 and 𝑡 are fixed. 

2.5.2 Training using the tuned hyperparameters 

We therefore chose 𝜆 = 10−4 and 𝑡 =  0.60 and re-trained on the complete training dataset 

to obtain the MiPepid model. This model achieved an 𝐹1 score of 0.9845 and an overall accuracy 

of 0.9822 on the training set (Table 2.2).  

Table 2.2. MiPepid results on the training set 

𝑭𝟏 
accuracy 

positive negative overall 

0.9845 0.9818 0.9827 0.9822 

“positive” and “negative” refer to the accuracies of MiPepid 

on the positive and negative subsets, respectively; “overall” 

refers to the accuracy on the whole training set (positive + 

negative). 

2.5.3 MiPepid generalizes well on the hold-out blind test set 

The blind test set contains 1,390 sequences and was not used during the training stage. As 

shown in Table 2.3, MiPepid achieved an 𝐹1 score of 0.9640 and an overall accuracy of 0.9576 on 

this test set. Compared with Table 2.2, although the results are slightly lower, they are still 
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comparably good. In addition, MiPepid performed almost equally well on the positive and negative 

subsets of the test set as indicated by the corresponding accuracies (0.9587 vs. 09559). Therefore, 

MiPepid generalizes well and has a balanced performance on both positive and negative data. 

Table 2.3. MiPepid results on the blind test set 

𝑭𝟏 
accuracy 

positive negative overall 

0.9640 0.9587 0.9559 0.9576 

“positive” and “negative” refer to the accuracies of MiPepid 

on the positive and negative subsets, respectively; “overall” 

refers to the accuracy on the whole test set (positive + 

negative). 

2.5.4 MiPepid performs well on the synthetic_negative dataset 

The synthetic_negative dataset mimics the negative dataset by preserving the dinucleotide 

frequency as well as the length distribution of the real negative data, but because it has been 

randomized, should have no true sORFs. MiPepid achieved an accuracy of 0.9659 on the 

synthetic_negative dataset, a very close result to the one on the negative subset of either the 

training or test set, indicating the robustness of MiPepid. 

2.5.5 MiPepid correctly classifies newly published micropeptides 

In the positive dataset, part of the data were collected by low-throughput literature mining 

in SmProt (Hao et al., 2018), i.e., they were biologically/ experimentally verified on the level of 

protein, cell, phenotype, etc. SmProt (Hao et al., 2018), which was released in 2016, is based on 

literature published by December 2015. We searched for new examples of verified micropeptides, 

supported by extensive experimental evidence, published after Dec 2015, and found 5 new 

micropeptides in the literature (Table 2.4). Among these 5 cases, 3 are actually already recorded 

in SmProt (Zerbino et al., 2018), however they were in the non-high-confidence subset, i.e., there 

was only indirect evidence on the presence of those micropeptides.  
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Table 2.4. List of micropeptides published after Dec 2015 

micropeptide name protein sequence length in SmProt non-highConf reference 

MOXI 56 yes (Makarewich et al., 2018) 

DWORF 35 yes (Nelson et al., 2016) 

Myomixer / Minion 84 yes (Bi et al., 2017) 

SPAR 90 no (Matsumoto et al., 2016) 

HOXB-AS3 53 no (Huang et al., 2017) 

in SmProt non-highConf: If this micropeptide was already included in the SmProt (Zerbino et al., 2018) non-high-

confidence subset, then the value is "yes", otherwise "no". 

 



 

43 

These 5 cases were taken as the new_positive dataset. They are analogous to “the future 

cases” if the time boundary were Dec 2015. One of the major purposes of MiPepid is for future 

prediction. Therefore, its performance on “future cases” matters.  

We applied MiPepid on this new_positive dataset, and MiPepid correctly classified all of the 

5 micropeptides. And this is another result showing the good generalization of MiPepid.  

2.5.6 Comparison with existing methods 

Comparison with current ORF coding potential prediction methods 

There are several state-of-the-art bioinformatics methods built to predict the 

coding/noncoding capability of a DNA sequence, including CPC (Kong et al., 2007), CPC2 (Kang 

et al., 2017), CPAT (L. Wang et al., 2013), CNIT (Sun et al., 2013), PhyloCSF (Lin et al., 2011), 

etc. However, all of them were designed to work on “average” transcript datasets, i.e., datasets that 

consist primarily of transcripts of regular-sized proteins and noncoding RNAs. In these methods, 

sORFs present in either an mRNA encoding a regular protein, or in a noncoding RNA, are 

generally penalized and are likely to be classified as noncoding; in the former case there is already 

a longer ORF present so shorter ones are treated as noncoding, and in the latter case the ORFs are 

automatically considered to be noncoding because they are found in “noncoding” RNAs. Therefore, 

despite the good performance of these methods in predicting regular-sized proteins, they may not 

be able to identify micropeptides, which also play critical biological roles.  

In contrast, MiPepid is specifically designed to classify small ORFs in order to identify 

micropeptides. Here we chose CPC (Kong et al., 2007), CPC2 (Kang et al., 2017), and CPAT (L. 

Wang et al., 2013) as representatives of current methods and evaluated their performances on the 

hold-out blind test set as well as on the new_positive dataset, both of which the positive data are 

composed of high-confidence micropeptides. 

As shown in Table 2.5, while the 3 methods (CPC (Kong et al., 2007), CPC2 (Kang et al., 

2017), CPAT (L. Wang et al., 2013)) performed exceptionally well on negative cases (100% 

accuracy), they indeed struggled to classify the positive cases.  
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Table 2.5. Comparison with existing methods on the blind test set and the new_positive dataset 

method 

blind test set 

new_positive 
positive negative overall 

#correct accuracy #correct accuracy 𝑭𝟏 accuracy #correct accuracy 

CPC (Kong et al., 2007) 17 0.02 567 1.00 0.04 0.42 0 0.00 

CPC2 (Kang et al., 2017) 61 0.07 567 1.00 0.14 0.45 0 0.00 

CPAT (L. Wang et al., 2013) 261 0.32 567 1.00 0.48 0.60 3 0.60 

MiPepid (our method) 789 0.96 542 0.96 0.96 0.96 5 1.00 

positive: the positive subset of the blind test set;  

negative: the negative subset of the blind test set; 

overall: the overall performance on the blind test set;  

#correct: the number of correctly classified cases by a method;  

accuracy: #correct divided by the total number of cases in that dataset/subset;  

𝐹1: the 𝐹1 score 
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The positive cases in the blind test set are sORFs of high-confidence micropeptides 

supported by at least 2 different types of experimental evidence. CPC (Kong et al., 2007) and 

CPC2 (Kang et al., 2017) considered over 90% of them as noncoding, while CPAT (L. Wang et 

al., 2013) did better with 32% accuracy but is still below half. In contrast, while MiPepid 

performed slightly worse on the negative cases (96%), it correctly classified 96% of the high 

confidence micropeptides. And regarding sORFs of the newly-published micropeptides, all of 

which are supported by protein-level and phenotypic evidence, CPC (Kong et al., 2007) and CPC2 

(Kang et al., 2017) did not consider any of them to be coding, and CPAT (L. Wang et al., 2013) 

correctly classified only 3 out of 5. These results are not surprising as all three existing methods 

were trained on datasets primarily consisting of regular-sized proteins. It is clear from those results 

that sORFs are a special subpopulation of ORFs and predictions on which entail specially designed 

methods.  

Comparison with sORF finder 

As mentioned in the Introduction section, sORF finder predicts sORFs by calculating 

nucleotide frequency conditional probabilities of hexamers; however, the server is no longer 

accessible. We located a downloadable version at http://hanadb01.bio.kyutech.ac.jp/sORFfinder/ 

and ran it locally. sORF finder does not provide a trained model for human sORFs, nor is there 

any human dataset included in this software. To conduct the comparison, we therefore used sORF 

finder to train a model using our own training dataset and then evaluated on our test set. It took 

hours to train the model using sORF finder, as compared to seconds needed for MiPepid. 

  

http://hanadb01.bio.kyutech.ac.jp/sORFfinder/
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Table 2.6. Comparison with sORF finder 

method 

blind test set 

positive negative overall 

#correct accuracy #correct accuracy 𝑭𝟏 accuracy 

sORFfinder 708 0.86 506 0.89 0.89 0.87 

MiPepid (our method) 789 0.96 542 0.96 0.96 0.96 

positive: the positive subset of the blind test set;  

negative: the negative subset of the blind test set; 

overall: the overall performance on the blind test set;  

#correct: the number of correctly classified cases by a method;  

accuracy: #correct divided by the total number of cases in that dataset/subset;  

𝐹1: the 𝐹1 score 

As shown in Table 2.6, sORF finder correctly predicts around 87% of the examples in the 

test set, which is fairly good. However, it is clear that MiPepid performs significantly better. It is 

not surprising that sORFfinder achieved a similar performance to MiPepid. sORF finder utilizes 

hexamer information and a naïve Bayes approach to calculate the posterior coding probability of 

a sORF given its hexamer composition. MiPepid uses 4-mer information, but rather than naïve 

Bayes, uses logistic regression to learn patterns from the data automatically. Notably, MiPepid 

achieves better classification using a much smaller feature vector, and much less computational 

time for training the model.  

 Discussion 

2.6.1 MiPepid’s predictions on non-high-confidence micropeptides 

The SmProt database (Hao et al., 2018) has a high-confidence subset, which contains 

examples of micropeptides that are supported by multiple kinds of evidence; the rest of the data 

belong to the non-high-confidence subset. We collected those data and obtained their 

corresponding DNA sequences using the same pipeline used for the positive dataset (see Methods). 

We then used MiPepid to predict the coding capabilities of those data. Overall, MiPepid predicted 

74% of them as positive. Table 2.7 shows detailed results based on different data sources.  
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Table 2.7. MiPepid’s prediction on the non-high-confidence data in SmProt 

data source #sORFs avg sORF length (aa) #predicted positive proportion 

high-throughput 

literature mining 
25663 44 20516 0.80 

ribosome profiling 13715 36 8596 0.63 

MS data 324 15 233 0.72 

high-throughput literature mining: published sORFs that were identified using high-throughput 

experimental methods; 

ribosome profiling: sORFs predicted from Ribo-Seq data; 

MS data: sORFs predicted from MS data;  

#sORFs: number of sORFs from a particular data source;  

avg sORF length (aa): the average length of sORFs measured in number of amino acids;  

#predicted positive: number of sORFs that are predicted as positive by MiPepid;  

proportion: 
avg sORF length

#predicted positive
 

As can be seen in Table 2.7, among the over 25 thousand sORFs collected by high-

throughput literature mining, MiPepid predicted 80% of them as positive, which is a fairly high 

proportion. There are only 324 sORFs derived from MS data, and MiPepid labeled 72% of them 

as positive. Note that, on average, MS sORFs are significantly shorter than those from other 

sources. In contrast, among the over 13 thousand Ribo-Seq derived sORFs, MiPepid only predicted 

63% of them as positive. This is not very surprising as there has been debate on the reliability of 

predicting peptides from Ribo-Seq data; some investigators have argued that the capture of an 

RNA transcript by the ribosome does not always lead to translation (Mudge & Harrow, 2016), and 

that some of the ribosome associated RNAs found in Ribo-Seq may be regulatory or non-

specifically associated.  

We are interested in looking at the relationship between the length of a sORF and its coding 

probability predicted by MiPepid.  
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Figure 2.2. Scatterplot of the length of sORF vs. predicted coding probability for the non-high-

confidence sORFs in SmProt. aa: number of amino acids. The 𝑦 = 0.6 horizontal line separates 

sORFs that are predicted as positive (predicted coding probability ≥ 0.6) and the rest predicted 

negative. 

Figure 2.2 shows a moderately positive trend between the length of a sORF and its coding 

probability predicted by MiPepid. This is reasonable considering the following: (1) the longer a 

sORF, the less likely it occurs by chance; (2) the longer a sORF, the more 4-mer information it 

contains, which helps MiPepid to better classify it. Yet, we do see that for many very short sORFs 

(< 20 aa), MiPepid was able to identify the positives, and for long sORFs (> 50 aa), MiPepid was 

not misled by the length, and was still able to identify some as negatives. In figure 2, one can also 

see that sORFs derived from the MS data are very short (< 30 aa).  

2.6.2 MiPepid’s prediction on uORFs of protein-coding transcripts 

A uORF (upstream open reading frame) is an ORF (usually short) located in the 5’-UTR 

(untranslated region) of a protein-coding transcript. A number of uORFs have been discovered to 
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encode micropeptides and to play important roles in biological activities (Plaza et al., 2017), and 

Ribo-Seq evidence suggests that many uORFs are translated (Skarshewski et al., 2014). uORFs 

have drawn increasing attention, and there is a great interest in determining the coding potentials 

of uORFs.  

We extracted all possible small uORFs (from all 3 translation frames) of all annotated 

protein-coding transcripts in the Ensembl (Zerbino et al., 2018) human database. We then used 

MiPepid to determine the coding potentials of the extracted uORFs.  

From 12,221 protein-coding transcripts, we extracted 42,589 small uORFs in total. 34.24% 

of the uORFs were predicted by MiPepid as coding. Among the 12,221 transcripts, 55.80% of 

them (6820) contain at least one potential micropeptide-encoding uORF. For the readers’ interest, 

we compiled all the small uORFs together with their coding potential score, location in the 

corresponding transcript, etc. into a supplemental file. This file is available along with the MiPepid 

package.  

2.6.3 MiPepid’s prediction on lncRNAs 

Long noncoding RNAs (lncRNAs) are RNA transcripts that lack a long ORF, and therefore 

were initially considered to be untranslated. Yet a growing number of lncRNAs have been 

discovered to be actually translated into functional micropeptides (Cohen, 2014; Ji et al., 2015; 

Matsumoto et al., 2016; Nelson et al., 2016).  

We extracted all possible sORFs (from all 3 translation frames) of all human lncRNA 

transcripts in Ensembl (Zerbino et al., 2018) (those with the following biotypes: non_coding, 

3prime_overlapping_ncRNA, antisense, lincRNA, retained_intron, sense_intronic, 

sense_overlapping, macro_lncRNA, or bidirectional_promoter_lncRNA). From the 26,711 

lncRNA transcripts, we extracted 371,123 sORFs, averaging ~ 14 sORFs per transcript. 31.28% 

of the sORFs were predicted as coding. 86.63% of lncRNA transcripts were predicted to have at 

least one sORF that could potentially be translated into a micropeptide.  

We present MiPepid’s prediction results on lncRNAs not for evaluating its performance but 

to show that the proportion of sORFs in lncRNAs that are “similar” to sORFs of high-confidence 

micropeptides in our training set is very high. It is impossible to evaluate MiPepid using the 

lncRNA results as we have very little data on which sORFs in lncRNAs are truly positive, and 

which are not. The results serve as a reference for researchers interested in further work on any of 
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those lncRNAs. The supplemental file containing MiPepid results on the 26,711 annotated 

lncRNAs is also available in the MiPepid software package.  

2.6.4 MiPepid’s prediction on small protein-coding genes in other model organisms 

MiPepid was trained on human data, and we expect that it would work well on related 

mammalian species, such as mouse, rat, etc. Yet, we want to know how well it generalizes to other 

species, e.g., plants, bacteria, etc. We therefore collected all annotated small protein-coding 

sequences (<= 303 bp) in E. coli, yeast, Arabidopsis, zebrafish, and mouse from the Ensembl 

database (Zerbino et al., 2018), and examined whether they are predicted to be coding sequences 

by MiPepid. MiPepid successfully predicts at least 93% of the sequences as coding for these 5 

species (Table 2.8). This indicates that MiPepid has been able to successfully learn generalized 

sequence patterns typical of human sORFs, and in addition, suggests that small protein-coding 

gene sequences share hidden patterns across biological kingdoms.  

Table 2.8. MiPepid’s prediction on small protein-coding genes in model organisms 

species #seq %predicted positive 

E. coli 422 96.68% 

yeast (S. cerevisiae) 502 93.63% 

arabidopsis (A. thaliana) 2888 98.61% 

zebrafish (D. rerio) 2481 96.78% 

mouse (M. musculus) 6451 97.54% 

#seq: number of small protein-coding sequences  

%predicted positive: percentage of sequences predicted as coding by MiPepid 

 Conclusions 

MiPepid is designed to take a DNA sequence of a sORF and predict its micropeptide-coding 

capability. We suggest using sequences with transcriptome-level evidence, i.e., DNA sequences 

that are indeed transcribed, as MiPepid was trained to determine whether a transcript can be 

translated, and the training data did not include sORFs from untranslated DNA regions. The 
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potential for an untranslated DNA sequence, such as an intergenic region, to be transcribed and 

translated was not addressed. MiPepid was specifically developed to predict small ORFs and 

“regular-sized” ORFs were not included in the training. Therefore, we recommend using MiPepid 

only on sORFs; MiPepid is not trained to efficiently predict long ORFs such as those found in 

typical mRNAs. MiPepid was trained on human data, but should work for related mammalian 

species, such as mouse, rat, etc. Retraining the model on other species requires only a set of known 

micropeptides and the corresponding genomic sequence. 
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 GENETIC VARIATION EVIDENCE SUGGESTS LONG 

NONCODING RNAS RESEMBLE MICROPEPTIDES 

 Abstract 

Micropeptides are small proteins translated from short coding sequences (CDS) with a length 

<= 303 base pairs (bp). They are drawing increasing attention as more are discovered and are 

shown to play various vital roles. Yet, as an emerging group, they are still poorly characterized 

compared to regular proteins (CDS > 303 bp). 

Long noncoding RNAs (lncRNAs) are noncoding transcripts of > 200 bp. Studies of 

lncRNAs are growing dramatically, with tens of thousands of predicted lncRNA transcripts 

recorded in public databases, yet the functional roles of the majority still remain explored. 

Moreover, an increasing number of lncRNAs are redefined as encoding proteins, especially 

micropeptides. Whether lncRNAs function via translated proteins is an open question of great 

significance. 

Genetic variation analysis has long been used to study the natural selection of genomic 

elements and to infer functional relevance. For instance, previous variation studies have shown 

protein CDS regions are under stronger purifying selection than a number of other genomic 

elements, indicating their functional importance. 

In this study, to better characterize the relationships between the two growing families – 

micropeptides and lncRNAs, as well as their relationships with regular proteins, we explored the 

three categories from the perspective of genetic variation.  

We find the three categories share similar single nucleotide polymorphism (SNP) densities, 

SNP spectra, and enrichments of rare SNPs. The SNP density of lncRNAs is statistically equal to 

that of micropeptides, suggesting lncRNAs and micropeptides are under the same level of 

purifying selection strength. Rare SNPs are less enriched in lncRNAs than in micropeptides, 

suggesting lncRNAs are under weaker purifying selection than micropeptides, yet the difference 

is very small. The CDS regions of micropeptides and those of regular proteins are under the same 

purifying selection strength despite of the stark discrepancies in CDS lengths. In addition, CDS 

show stronger negative selection strength than untranslated regions (UTR) in both regular proteins 

and micropeptides. We used our published method – MiPepid - to predict potential coding regions 
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in lncRNAs and found the predicted CDS regions are also under stronger purifying selection than 

UTR.  

Overall, our findings show lncRNAs share similar variation profiles with both regular 

proteins and micropeptides, and therefore may share sizeable functional overlaps with proteins. 

That is, that many proposed lncRNAs may actually encode translated or translatable peptides. To 

our knowledge, this study is the first attempt to explore the relationships between regular proteins, 

micropeptides, and lncRNAs from the angle of genetic variation.  

 

Keywords: micropeptide, lncRNA, small protein, genetic variation, SNP, natural selection 

 Introduction 

Micropeptides are small proteins that are translated from short open reading frames (sORFs, 

<= 303 bp, i.e. <= 100 amino acids) (Chugunova et al., 2018; Couso & Patraquim, 2017; 

Makarewich & Olson, 2017). Traditionally, they were largely ignored because they were difficult 

to isolate biochemically (Olexiouk et al., 2018). In recent years, a growing number of 

micropeptides have been identified and shown to participate in a variety of biological roles, 

including immune surveillance (Schwab et al., 2003; R. F. Wang et al., 1996), calcium signaling 

(Douglas M Anderson et al., 2016), heart contraction (Magny et al., 2013b), muscle performance 

(D M Anderson et al., 2015), etc. In addition to the well characterized cases, ribosome profiling 

(Ribo-Seq) has identified numerous sORFs with clear translation signatures (Chugunova et al., 

2018; Hao et al., 2018; Olexiouk et al., 2016, 2018). The function of these translated products 

awaits experimental verification, but it suggests the micropeptides discovered to date may be just 

the tip of an iceberg. 

Long noncoding RNAs (lncRNAs) have been defined as transcripts that are >= 200 

nucleotides (nt) and are not translated into a protein (L. Ma et al., 2013). With the increasing 

availability of next generation sequencing technology, more and more lncRNAs are being 

discovered, and it is widely accepted that lncRNAs constitute a significant part of the RNA family. 

The number of lncRNA transcripts curated in Ensembl (Cunningham et al., 2018) already exceeds 

the number of protein coding transcripts. LncRNAs have been shown to participate in many 

processes, including transcriptional regulation, splicing regulation, translational control, protein 
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localization, etc. (L. Ma et al., 2019) Despite the rapidly advancing research in this field, the 

functions of the majority of lncRNAs still remain to be elucidated.  

Contrary to the assumption that lncRNAs exert functions via folded three dimensional 

structures, several large-scale studies have suggested that a considerable portion of lncRNAs may 

be translated into proteins (Ingolia et al., 2011b; Ji et al., 2015; Smith et al., 2014b). In fact, a 

growing number of lncRNAs have been confirmed to actually encode proteins, in particular 

micropeptides (Yeasmin et al., 2018). Based on our simple analysis, at least 78 human intergenic 

lncRNA transcripts in Ensembl have been reannotated as protein coding transcripts between 2014 

(release 75) (Flicek et al., 2013) and 2019 (release 98) (Cunningham et al., 2018). This growing 

list contradicts the “noncoding” definition of lncRNAs and also confounds our understanding of 

their elusive roles. Is it an exception or the rule for a lncRNA to function via its protein product? 

Genetic variation, by definition, is the difference in DNA among individuals (Wikipedia 

contributors, 2020). There are many types of genetic variation, and the most heavily studied are 

single nucleotide polymorphisms (SNPs) (Collins et al., 1998), which are the substitution of one 

nucleotide by another at a position in the genome. On the microscopic level, the change of a single 

nucleotide, an individual SNP, causes a change in the DNA sequence, which may lead to a change 

in the amino acid sequence if the DNA is translated to a protein. In turn, the amino acid change 

may alter the function of the protein, and thereby may even cause a disease (Rees et al., 2010) or 

phenotypic difference. This is one of the mechanisms implicating SNPs in various human diseases 

and is also a force driving the ongoing studies in SNPs. On the macroscopic level, propagation of 

a SNP mutation in a population is subject to the force of natural selection depending on the 

consequence of this mutation. A deleterious SNP mutation is less likely to be inherited and is 

therefore usually observed at a low frequency, while an advantageous one is more likely to be 

propagated and can therefore be maintained at a higher frequency in a population. Thus, study of 

the SNP profile, which includes the SNP density (Bhartiya et al., 2014; Ward & Kellis, 2012), the 

SNP frequency distribution (De Silva et al., 2014; Mu et al., 2011), etc., of a category of DNA 

sequences can be used to analyze the strength of natural selection exerted on it, and thus to infer 

its functional relevance. Negative selection and positive selection are two of the major types of 

natural selection. Negative selection, or purifying selection, selectively removes adverse alleles; 

while positive selection, or directional selection, favors beneficial alleles and causes their 

frequencies to increase in the population over time. (Hamilton, 2011) 
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SNPs originate in random mutations, which are more likely to be deleterious than beneficial 

(Vitti et al., 2013). Consequently, SNPs are more likely to be under negative selection than positive 

selection, most of SNPs are thus observed at low frequencies in the population (Auton et al., 2015). 

Therefore, enrichment of rare SNPs (low frequency SNPs) is often used to estimate the strength 

of negative selection (Jha et al., 2015; Khurana et al., 2013). For instance, coding sequence (CDS) 

are generally considered to be under stronger purifying selection than untranslated regions (UTR) 

in a transcript, and a number of previous variation studies showed that rare SNPs are indeed 

enriched in CDS regions compared to UTR (Jha et al., 2015; Khurana et al., 2013; Mu et al., 2011), 

thus supporting this belief. In addition to enrichment of rare SNPs, SNP density, the number of 

SNPs within a certain length of DNA, also can be used to assess negative selection strength 

(Bhartiya et al., 2014; Ward & Kellis, 2012). As negative selection drives the elimination of 

deleterious mutations, a lower SNP density indicates stronger purifying selection. 

SNP variation studies are only possible with data from large-scale human variation projects, 

and the 1000 Genomes project (Auton et al., 2015) is among the most influential ones. The 1000 

Genomes project started in 2008 and has generated the largest public catalogue of human variation 

data. It includes 3 phases: the pilot phase, concluded in 2010, with genomes of 179 unrelated 

individuals sequenced (Durbin et al., 2010); phase 1, ending in 2012, in which the genomes of a 

total of 1,092 individuals were sequenced (McVean et al., 2012); and phase 3, completed in 2015, 

with the final released data containing variations in 2,504 human genomes (Auton et al., 2015). 

The final dataset includes whole-genome sequencing plus deep exome sequencing of a large 

sample size collected from 6 mega-populations across the world - the 1000 Genomes project 

therefore provides a relatively unbiased dataset with a much higher statistical power and is 

invaluable for variation studies. 

The progress of the 1000 Genomes project propelled a surge of genetic variation studies. 

Using the pilot phase data, Mu et al. (Mu et al., 2011) found that ncRNAs are generally less 

selectively constrained than coding sequences by analyzing the SNP spectra of those regions. Also 

with the pilot phase data, Ward et al. (Ward & Kellis, 2012) analyzed SNP densities and average 

SNP frequencies and found that in human genome, a variety of biochemically active nonconserved 

elements (transcribed, regulatory, etc.) are under strong purifying selection, suggesting lineage-

specific selection; while conserved regions lacking activity are under less selective constraint, 

suggesting they recently became nonfunctional. In addition, De Silva et al. (De Silva et al., 2014) 
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found that deeply conserved human enhancers show stronger selective constraints compared to 

coding sequences as they exhibit a higher enrichment of rare SNPs. With the release of the 1000 

Genomes phase 1 data, Khurana et al. (Khurana et al., 2013) identified “ultrasensitive” regions - 

noncoding regions with strong selective constraint that is comparable to coding regions in the 

human genome by accessing the enrichment of rare SNPs. 

With the increasing focus on lncRNA research, some analyses have characterized the genetic 

variation profiles of lncRNAs. The first study was conducted by Bhartiya et al. (Bhartiya et al., 

2014), who analyzed the pattern of genetic variations in lncRNAs and found that lncRNAs showed 

a SNP density that is at least 10 times that of protein-coding genes, suggesting lncRNAs are under 

much weaker purifying selection than proteins. However, the variation data they used was from 

an earlier project HapMap (Durbin et al., 2010; Gibbs et al., 2003) instead of the 1000 Genomes 

project. According to (Mu et al., 2011), the HapMap data can be biased since HapMap used known 

probes to identify SNPs, and SNPs that are adjacent to probes, or novel SNPs, may not be identified; 

this bias was confirmed by another study (De Silva et al., 2014). Jha et al. (Jha et al., 2015) 

analyzed the natural selection strength of various coding and noncoding elements in human 

genome using enrichment of rare SNPs, and found intergenic lncRNAs are under weaker purifying 

selection than proteins; yet the study was published before the release of 1000 Genomes phase 3 

data, and the data they used was from phase 1, which includes only 1,092 individuals, less than 

half of the sample size of phase 3.  

As the open question of whether lncRNAs function via being translated to proteins becomes 

increasingly controversial, we consider it a great interest to explore this question from the 

perspective of genetic variation. Our hypothesis is straightforward: if it is typical for lncRNAs to 

be translated into proteins, then lncRNA transcripts may share similarities with protein coding 

transcripts regarding genetic variation. In particular, since most lncRNAs do not have a long ORF, 

it is expected they may share more similarities with micropeptide transcripts. In addition, as a 

growing number of micropeptides are characterized, it is also of interest to compare them with 

regular proteins (ORF > 303 bp) regarding the genetic variation profiles since micropeptides have 

a much shorter CDS.  

In this study, with the complete phase 3 data from the 1000 Genomes project (Auton et al., 

2015), we analyzed the SNP variation in regular proteins, micropeptides, and lncRNAs regarding 

SNP density, enrichment of rare SNPs, etc. We find that lncRNAs show a SNP density that is not 
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statistically different from that of micropeptides. Although rare SNPs are less enriched in lncRNAs, 

suggesting lncRNAs are under less purifying selection strength than proteins, the difference is 

small. We also found that the CDS regions of regular proteins and micropeptides are under the 

same purifying selection despite the difference in length. We used MiPepid (M. Zhu & Gribskov, 

2019) - our published method specifically designed for predicting sORFs in RNA transcripts to 

predict potential CDS in lncRNAs. We found the predicted lncRNA CDS are under stronger 

purifying selection than the rest regions (i.e. the predicted UTR regions), which is consistent with 

the pattern observed in protein coding transcripts. Our results reveal the similarities between 

regular proteins and micropeptides, and also similarities between lncRNAs and micropeptides. Our 

findings are consistent with the increasing number of lncRNAs being reannotated as protein-

coding. 

 Datasets and Methods 

3.3.1 Datasets 

Protein-coding and lncRNA transcripts 

Protein-coding transcripts were downloaded from Ensembl (Cunningham et al., 2018). Only 

transcripts with a complete CDS, i.e., without annotation as either “CDS 5’ incomplete” or “CDS 

3’ incomplete”, were retrieved. The transcripts were further divided into regular proteins (with a 

CDS > 303 bp) and micropeptides (with a CDS <= 303 bp). LncRNA transcripts were also 

downloaded from Ensembl (Cunningham et al., 2018). 

Single nucleotide polymorphisms (SNPs) 

The locations of SNPs in protein-coding and lncRNA transcripts were retrieved from the 

Ensembl MySQL database (Cunningham et al., 2018). SNP information includes the minor allele 

sequence, the global frequency of the minor allele from the 1000 Genomes project (Auton et al., 

2015), as well as the ancestral allele sequence.  

A SNP is substitution of a nucleotide, the corresponding position therefore has as least two 

alleles, with the one having the second highest frequency in the population defined as the minor 

allele. The ancestral allele can be identified from multi-species alignments ( see  the 1000 Genomes 

project,  Auton et al., 2015). Mutations from the ancestral sequence are referred to as derived 
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alleles. A derived allele can either be the minor allele or the major allele of a SNP, the derived 

allele frequency is therefore either the minor allele frequency or (1 - the minor allele frequency). 

A gene can have multiple overlapping transcripts, and multiple genes can be overlapped at 

a genome location; therefore, a SNP can be located in several transcripts or genes. To avoid 

counting a SNP multiple times, for a set of sequences, we only record the number of distinct SNPs.  

Table 3.1 lists the number of transcripts and the number of distinct SNPs for each dataset 

used in this paper.  

Table 3.1. Basic statistics of the datasets used in this study 

dataset number of 

transcripts 

number of 

distinct SNPs 

number of distinct 

derived alleles 

regular protein 60,520 4,738,251 460,172 

micropeptide 4,390 117,890 14,186 

lncRNA 76,326 2,404,884 154,846 

3.3.2 Methods 

Definitions 

SNP density: the SNP density of a DNA sequence dataset is the number of SNPs per 1,000 

nucleotide bases (kb) in this dataset.  

SNP spectrum: for a set of SNPs, the SNP spectrum is the distribution of the allele 

frequencies of the distinct SNPs in this set. In this study, the SNP spectrum is derived by binning 

SNPs into ranges of (0, 0.05), [0.05, 0.10), …, [0.95, 1) based on a SNP’s frequency. 

Rare allele: a rare allele has a frequency below a preset threshold. In this study, 3 thresholds 

are used: 0.05, 0.01, and 0.005. Depending on whether a rare allele is a derived allele or a minor 

allele, it is also called a rare derived allele or a rare minor allele.  

Fraction of rare derived alleles (FDA): for a set of derived alleles, the FDA is the fraction of 

rare derived alleles in this set. Let 𝑁𝑑 denote the total number of derived alleles and 𝑟𝑑 be the 

number of rare derived alleles in this set, then 𝐹𝐷𝐴 =  
𝑟𝑑

𝑁𝑑
 . 
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Fraction of rare minor alleles (FMA): for a set of minor alleles, the FMA is the fraction of 

rare minor alleles in this set. Let 𝑁𝑚  denote the total number of derived alleles and 𝑟𝑚 be the 

number of rare derived alleles in this set, then 𝐹𝑀𝐴 =  
𝑟𝑚

𝑁𝑚
 . 

Procedures 

Prediction of potential CDS in lncRNA 

MiPepid (M. Zhu & Gribskov, 2019) was used to predict potential coding regions in lncRNA 

transcripts: for each lncRNA transcript, we used MiPepid to predict the coding capability of each 

canonical small ORF (<= 303 bp, with ATG as the start codon and TAA/TAG/TGA as the stop 

codon) in all 3 translating frames, and then among all predicted small ORFs, we assigned the 

longest one as the final potential coding region for that lncRNA transcript.  

Statistical tests 

Hypothesis testing for two SNP densities was done using 2-proportion Z test. The SNP 

densities were treated as proportions, i.e. the proportion of nucleotides that have SNPs in a 

sequence set of nucleotides.  

Hypothesis testing for two fractions of rare SNPs, either rare derived alleles or rare minor 

alleles, were also done using 2-proportion Z test.  

Hypothesis testing for two ratios was done by obtaining the confidence interval of each ratio 

using bootstrapping. If the two confidence intervals do not overlap, then the difference is 

statistically significant. 

 Results 

3.4.1 Regular proteins, micropeptides, and lncRNAs have similar SNP densities 

We compared the SNP density (number of SNPs per kilobase) across proteins, micropeptides, 

and lncRNAs. As shown in Figure 3.1, regular proteins have 27.11 SNPs/kb, micropeptides have 

28.29 SNPs/kb, while lncRNAs have 28.10 SNPs/kb. The SNP density of lncRNAs is not 

significantly different from that of micropeptides. While the density in regular proteins is 

significantly lower than that in either micropeptides or lncRNAs, the difference is small, around 
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one fewer SNP per kilobase. This result suggests regular proteins are under a stronger negative 

selection strength, while micropeptides and lncRNAs are under the same purifying selection 

strength. Overall, regular proteins, micropeptides, and lncRNAs have similar variabilities 

regarding SNP density.  

 

Figure 3.1. SNP density of regular proteins, micropeptides, and lncRNAs. Error bars denote 95% 

confidence intervals of binomial proportions. “***” denotes a p-value < 0.001. “n. s.” denotes 

“not significant” and a corresponding p-value >= 0.05. Bonferroni correction was used for 

multiple hypothesis testing. 

3.4.2 Regular proteins, micropeptides, and lncRNAs have similar SNP spectra 

We generated SNP spectra for regular proteins, micropeptides, and lncRNAs by binning 

SNPs based on their derived allele frequency (DAF). As shown in Figure 3.2, the 3 categories 

share nearly identical SNP spectra, with over 90% of SNPs having a DAF < 0.05. 
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Figure 3.2. The derived allele frequency (DAF) spectra of SNPs of regular proteins, 

micropeptides, and lncRNAs. Spectra were plotted by binning SNPs into ranges of (0, 0.05), 

[0.05, 0.10), …, [0.95, 1) based on a SNP’s DAF. 

3.4.3 Regular proteins and micropeptides are under slightly stronger purifying selections 

than lncRNAs 

As regular proteins, micropeptides, and lncRNAs share a similar SNP spectrum, with the 

majority of SNPs having a DAF < 0.05, it is more efficient and straightforward to focus only on 

the low frequency SNPs when comparing the 3 categories. SNPs with DAF < 0.05 occur 

infrequently in the population, i.e., they are rare SNPs. A number of previous studies have used 

the fraction of rare SNPs for genetic variation analysis (Jha et al., 2015; Khurana et al., 2013), and 

besides 0.05, other DAF cut-off / threshold values were also used (Khurana et al., 2013).  

In this study, we considered 3 different thresholds - DAF < 0.05, < 0.01, and < 0.005, for 

defining rare SNPs for a more comprehensive analysis. As shown in Figure 3.3, which is also 

reflected in Figure 3.2, regular proteins, micropeptides, and lncRNAs have similar fractions of rare 

derived alleles (FDA) with minor differences. For SNPs of DAF < 0.05, regular proteins and 

micropeptides have FDAs of 0.940 and 0.932, respectively. Although the difference is statistically 

significant, it is < 1%. Furthermore, lncRNAs have a FDA of 0.924, which is < 1% lower than that 

of micropeptides. The same trend is also observed with DAF < 0.01 and DAF < 0.005. These 

results suggest regular proteins and micropeptides are under slightly stronger purifying selection 

than lncRNAs. 
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Figure 3.3. Fraction of rare derived alleles (FDA) in regular proteins, micropeptides, and 

lncRNAs under different derived allele frequency (DAF) thresholds. Error bars denote 95% 

confidence intervals of binomial proportions. “*”, “**”, and “***” denote a p-value < 0.05, < 

0.01, and < 0.001, respectively. Bonferroni correction was used for multiple hypothesis testing. 

3.4.4 The coding regions of regular proteins and micropeptides are under the same 

purifying selection strength 

To further examine protein coding transcripts, we analyzed the SNPs in coding regions in 

particular. As shown in Figure 3.4, considering SNPs with DAF < 0.05, the CDS of regular proteins 

have a FDA of 0.953, compared to 0.949 in the CDS of micropeptides. Although the former is 

slightly higher than the latter, the difference is not statistically significant, despite the large data 

size. The same pattern is observed for alleles with DAF < 0.01 and DAF < 0.005. The CDS of 

micropeptides are generally much shorter than that of regular proteins. Based on our analysis, 

regular proteins have a median CDS length of 1698 bp while that of micropeptides is 231 bp. Our 

results suggest that despite of the wide discrepancy in CDS length, micropeptides and regular 

proteins are under the same purifying selection strength. 
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Figure 3.4. Fraction of rare derived alleles (FDA) in the coding sequences (CDS) of regular 

proteins and micropeptides under different derived allele frequency (DAF) thresholds. Error bars 

denote 95% confidence intervals of binomial proportions. “n. s.” denotes “not significant” and a 

corresponding p-value >= 0.05. 

In coding regions, nonsynonymous SNPs usually have greater biological (phenotypic) 

effects than their synonymous counterparts due to the direct change they contribute to the amino 

acid sequence. Yet, studies have shown that synonymous SNPs also can be associated with protein 

functional alterations and diseases (Chu & Wei, 2019; Rogozin et al., 2018; Simhadri et al., 2017). 

Nevertheless, nonsynonymous mutations are more likely to be under strong selective pressure. 

When we examine nonsynonymous derived alleles in coding regions (Figure 3.5), we see a similar 

pattern to Figure 3.4 - the CDS-FDAs in regular proteins and micropeptides show no significant 

differences with DAF < 0.05 and < 0.01. For alleles with DAF < 0.005, the CDS-FDA of regular 

proteins is 1% higher than that of micropeptides. Overall, these results further suggest that the 

coding regions in regular proteins and micropeptides can be considered to be under the same 

selection pressure.  
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Figure 3.5. Fraction of rare nonsynonymous derived alleles (FDA, nonsyn) in the coding 

sequences (CDS) of regular proteins and micropeptides under different derived allele frequency 

(DAF) thresholds. Error bars denote 95% confidence intervals of binomial proportions. “n. s.” 

denotes “not significant” and a corresponding p-value >= 0.05. “**” denotes a p-value < 0.01. 

3.4.5 Predicted CDS regions in lncRNAs are under slightly weaker purifying selection than 

micropeptides 

As a growing number of lncRNAs have been reannotated as protein coding, we attempt to 

assess the genetic variation profile of lncRNAs from the perspective of their potential coding 

capabilities. We used MiPepid (M. Zhu & Gribskov, 2019) and selected potential coding regions 

in lncRNA transcripts (see Methods for details). We then examined the SNPs in those MiPepid-

predicted coding regions.  

As shown in Figure 3.6, when alleles with DAF < 0.05 are used, the CDS-FDA of lncRNAs 

is lower than that of micropeptides, with a 2% difference. The same trend is seen with alleles with 

DAF < 0.01 and < 0.005. Similar results were obtained using only nonsynonymous SNPs 

(Supplemental Figure 3.1). 
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Figure 3.6. Fraction of rare derived alleles (FDA) in the coding sequences (CDS) of 

micropeptides and the MiPepid-predicted CDS of lncRNAs under different derived allele 

frequency (DAF) thresholds. Error bars denote 95% confidence intervals of binomial 

proportions. “***” denotes a p-value < 0.001. 

3.4.6 The majority of micropeptides and lncRNAs only have rare derived alleles in their 

(predicted) coding regions  

To further examine the results in Figure 3.6, we looked at the FDA in each individual 

transcript. We found that in micropeptide transcripts 73% of them have a CDS-FDA of 1, i.e. all 

the SNPs in the coding region are rare derived alleles. And in MiPepid-predicted coding regions 

of lncRNA transcripts, this fraction is 66%. (Figure 3.7) 

 

Figure 3.7. Distribution of CDS-FDA in micropeptide and lncRNA transcripts. 

A similar pattern is observed when using nonsynonymous SNPs only (Supplemental Figure 

3.2). 
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3.4.7 (Predicted) untranslated regions (UTR) in regular proteins, micropeptides, and 

lncRNAs are under the same purifying selection strength 

We examined SNP profiles in UTR of regular proteins, UTR of micropeptides, and predicted 

UTR of lncRNAs. As shown in Figure 3.8, the UTR show the same level of FDA across the 3 

categories under any of the 3 DAF thresholds. These indicate the (predicted) untranslated regions 

are under the same level of selective constraint regardless of their origin.  

 

Figure 3.8. Fraction of rare derived alleles (FDA) in the untranslated regions (UTR) of regular 

proteins, micropeptides, and lncRNAs under different derived allele frequency (DAF) thresholds. 

Error bars denote 95% confidence intervals of binomial proportions. “n. s.” denotes “not 

significant” and a corresponding p-value >= 0.05. Bonferroni correction was used for multiple 

hypothesis testing. 

3.4.8 CDS regions are under stronger purifying selection than UTR regions 

Many studies support the idea that the coding region is under stronger purifying selection 

than the untranslated regions of protein coding transcripts (Jha et al., 2015; Khurana et al., 2013; 

Mu et al., 2011). To analyze the relationship between CDS and UTR with respect to the SNP 

profile, we calculated the CDS-FDA to UTR-FDA ratios for regular proteins and micropeptides. 

As shown in Figure 3.9, with any of the three DAF thresholds, the CDS/UTR FDA ratios are 

significantly above 1 in both regular proteins and micropeptides. These results are consistent with 

the belief that CDS regions are under stronger purifying selection than UTR regions. 
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Figure 3.9. The ratio between CDS-FDA and UTR-FDA for regular proteins, micropeptides, and 

lncRNAs under different derived allele frequency (DAF) thresholds. Error bars denote 95% 

bootstrapped confidence intervals of ratios (with 5,000 bootstrap samples). “***” denotes the 

ratio is significantly greater than one with a p-value < 0.001. “n. s.” denotes the difference 

between the ratio and one is not significant, and the corresponding p-value >= 0.05. 

We also compared the enrichment of rare derived alleles in MiPepid-predicted CDS of 

lncRNAs to that of the corresponding predicted UTR in lncRNAs. The pattern is similar to that of 

proteins - the CDS/UTR FDA ratio of lncRNAs are also > 1 under any of the three DAF thresholds, 

and the differences for alleles with DAF < 0.01 and < 0.005 are both significant.  

3.4.9 Analyses with minor alleles show similar results to those with derived alleles 

Derived alleles are generally used in genetic variation analysis compared to minor alleles 

(Bhartiya et al., 2014; Khurana et al., 2013; Mu et al., 2011; Ward & Kellis, 2012). Yet, as shown 

in Table 3.1, the number of derived alleles is roughly only 1/10 of that of minor alleles. Derived 

alleles are relative to ancestral alleles, which are obtained through multiple-species alignments 

(Auton et al., 2015). That the ancestral alleles of 90% of SNPs cannot be identified reveals the 

small portion of conserved regions in human genome relative to close species.  

To make the most of available variation data, we also used minor alleles for our analysis. As 

shown in Supplemental Figure 3.3 – 3.12, results from minor alleles analysis in general share the 

same patterns as observed in results from derived alleles. Regular proteins, micropeptides, and 

lncRNAs share almost identical SNP spectra of minor allele frequency (MAF) (Supplemental 

Figure 3.3). LncRNAs show a slightly lower fraction of minor alleles (FMA) than proteins 
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(Supplemental Figure 3.4). The CDS regions of regular proteins and micropeptides share the same 

level of FMA using alleles with MAF < 0.05 and < 0.01; although for alleles with MAF < 0.005, 

the FMA of regular proteins is higher than that of micropeptides, the difference is small (~ 1%) 

(Supplemental Figure 3.5). We do see a statistically significantly higher FMA in CDS of regular 

proteins than in micropeptides, but only when considering nonsynonymous SNPs. This difference 

from what is seen with derived alleles can be explained by the much larger number of minor alleles 

compared to derived alleles. The MiPepid-predicted CDS regions of lncRNAs show a lower FMA 

than micropeptide CDS (Supplemental Figure 3.7 – 3.8), which is further explained by the fact 

that 80% of micropeptide transcripts have only rare minor alleles in the CDS, compared to 75% of 

lncRNA transcripts (Supplemental Figure 3.9), or 88% vs. 80% when only considering 

nonsynonymous SNPs (Supplemental Figure 3.10). Although UTRs show slightly different FMAs 

across the three categories (Supplemental Figure 3.11), again this may be explained by a much 

larger number of observed minor alleles compared to derived alleles. And finally, the CDS regions 

are more enriched with rare minor alleles than UTRs across all the three categories (Supplemental 

Figure 3.12).  

The similarities between the results from derived alleles and those from minor alleles 

strongly suggest that minor alleles can also be used for genetic variation analysis.  

 Discussion 

3.5.1 SNP densities are similar across proteins and lncRNAs 

A number of previous studies used SNP density to evaluate selection strength, including 

(Bhartiya et al., 2014; Ward & Kellis, 2012), etc. One former study (Bhartiya et al., 2014) found 

that the SNP density of lncRNAs was at least an order higher than protein-coding transcripts, with 

lncRNAs having 14.72 SNPs/kb, CDS of protein-coding genes having 0.37 SNPs/kb, and UTR 

regions having 0.46 SNPs/kb. However, the SNP data they used came from HapMap (Durbin et 

al., 2010; Gibbs et al., 2003), which used known probes to discover SNPs, therefore can have a 

confirmation bias (De Silva et al., 2014; Mu et al., 2011). The 1000 Genomes project (Auton et 

al., 2015) was launched after HapMap. In this study, we used the complete final phase data from 

1000 Genomes project, which has over 84 million SNPs, and we showed that the both lncRNAs 

and protein-coding transcripts have a SNP density close to 30 SNPs/kb, which are both much 
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higher than the findings in the previous study. In addition, we showed that regular proteins, 

micropeptides, and lncRNAs share very similar SNP densities. 

3.5.2 Difference in overall enrichment of rare SNPs between regular proteins and 

micropeptides can be explained by CDS length discrepancy 

Based on the results section, the fraction of rare derived alleles (FDA) in the CDS regions 

of micropeptides is indistinguishable from the CDS-FDA in regular proteins (Figure 3.4); the FDA 

in the UTR regions of micropeptides is also similar to that of UTR-FDA in regular proteins (Figure 

3.8). Based on this, one might expect that the overall FDA in micropeptides should be similar to 

that of regular proteins. However, as shown in Figure 3.3, the overall FDA of micropeptides is 

lower than that of regular proteins. This may seem confusing, yet it can easily be explained. As 

shown in Table 3.2, although a typical regular protein has a longer UTR region (1,336 bp) than a 

typical micropeptide (984 bp), it has a much longer CDS region (1698 bp) compared to a 

micropeptide (231 bp). Consequently, compared to the full sequences, the CDS regions take 56% 

in regular proteins, but only take 12% in micropeptides. Therefore, although both CDS-FDAs and 

the UTR-FDAs are the same in regular proteins and micropeptides, the overall FDA in 

micropeptides in lower compared to regular proteins, since they have much shorter CDS regions.  

Table 3.2. Sequence length comparisons between regular proteins and micropeptides 

 regular protein micropeptide 

CDS median length (bp) 1,698 231 

UTR median length (bp) 1,336 984 

CDS fraction by length 0.56 0.12 

3.5.3 lncRNAs have similar SNP profiles to those of proteins 

The ad hoc definition of lncRNA as a transcript that is > 200 bp and is not translated into 

proteins (L. Ma et al., 2013) is often considered too generic and does not contain much valuable 

information regarding the functions of the transcript. The ongoing re-discovery of the coding 

capacities in this lncRNA family further obscures this definition. In this study, we showed that 
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lncRNAs share a similar SNP density, a similar SNP spectrum, and a similar fraction of rare SNPs 

with protein coding transcripts, and in particular with micropeptides, indicating lncRNAs are under 

similar purifying selection strength to protein-coding transcripts. This similarity may also suggest 

functional overlaps between lncRNAs and proteins.  

3.5.4 Predicted CDS regions in lncRNAs are also under stronger purifying selection than 

UTR regions  

CDS regions of regular proteins are under stronger purifying selection than UTR regions; 

and this has been confirmed by many previous studies (Jha et al., 2015; Khurana et al., 2013; Mu 

et al., 2011). Our findings once again confirmed this trend. In addition, we attempted to use 

MiPepid to predict potential CDS regions in lncRNAs, and the predicted CDS are also under 

stronger purifying selection than the rest UTR regions. Together with the predicted fraction of 

individual lncRNA CDS that has a FDA of 1, which is close to the fraction in micropeptides, all 

the numbers suggest MiPepid predictions captured the coding potentials in lncRNAs, which is 

consistent with the fact that more and more lncRNAs are being reannotated to be protein-coding. 

3.5.5 More rare SNPs were identified compared to common SNPs with increased sample 

size   

Using data from the pilot phase of the 1000 Genomes project (Durbin et al., 2010), which 

contains variations from 179 individuals, Mu et al. (Mu et al., 2011) generated derived allele SNP 

spectra for CDS and UTR regions of proteins and some other noncoding elements (not including 

lncRNAs). The spectra show exponential decay, and similarly to the spectra we showed in Figure 

3.2, the largest fraction of SNPs have frequency < 0.05; however, they only account for around 

30% of all SNPs. Later, Jha et al. (Jha et al., 2015) used the phase 1 data (1,092 individuals) 

(McVean et al., 2012) and showed the fraction of derived alleles with a frequency < 0.05 in CDS 

regions was around 60%. In our findings, with the phase 3 data (2,504 individuals) of the 1000 

Genomes project (Auton et al., 2015), the fractions of rare derived alleles with a frequency < 0.05 

are above 90% in both proteins and lncRNAs. From this trend, it is clear that with expanded sample 

sizes from the pilot phase to phase 1, then to phase 3, many more rare SNPs have been identified.  
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3.5.6 Minor alleles are suitable for genetic variation analysis 

Derived alleles have long been used for SNP variation analysis, but minor alleles have been 

used only rarely. Yet the ten-fold difference in the number of derived and minor alleles makes us 

reconsider the usability of minor alleles and their relationships with derived alleles. In this study, 

we showed that even though minor alleles are much more abundant than derived alleles, SNP 

profiles obtained using minor alleles are similar to those of derived alleles. Therefore, minor alleles 

can also be used for genetic variation analysis. 

 Supplemental Figures 

For statistical test results in the following supplemental figures, “n. s.” denotes “not 

significant” and a corresponding p-value >= 0.05; “*”, “**”, and “***” denote a p-value < 0.05, < 

0.01, and < 0.001, respectively; Bonferroni correction was used for multiple hypothesis testing. 

 

Supplemental Figure 3.1. Fraction of rare nonsynonymous derived alleles in the coding 

sequences (CDS) of micropeptides and the MiPepid-predicted CDS of lncRNAs under different 

derived allele frequency (DAF) thresholds. Error bars denote 95% confidence intervals of 

binomial proportions. 
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Supplemental Figure 3.2. Distribution of nonsynonymous CDS-FDA in micropeptide and 

lncRNA transcripts. 

 

Supplemental Figure 3.3. The minor allele frequency (MAF) spectra of SNPs of regular proteins, 

micropeptides, and lncRNAs. Spectra were plotted by binning SNPs into ranges of (0, 0.05), 

[0.05, 0.10], …, [0.45, 0.5) based on a SNP’s MAF. 

 

Supplemental Figure 3.4. Fraction of rare minor alleles (FMA) in regular proteins, 

micropeptides, and lncRNAs under different minor allele frequency (MAF) thresholds. Error 

bars denote 95% confidence intervals of binomial proportions. 
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Supplemental Figure 3.5. Fraction of rare minor alleles (FMA) in the coding sequences (CDS) of 

regular proteins and micropeptides under different minor allele frequency (MAF) thresholds. 

Error bars denote 95% confidence intervals of binomial proportions. 

 

Supplemental Figure 3.6. Fraction of rare nonsynonymous minor alleles (FMA, nonsyn) in the 

coding sequences (CDS) of regular proteins and micropeptides under different minor allele 

frequency (MAF) thresholds. Error bars denote 95% confidence intervals of binomial 

proportions. 
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Supplemental Figure 3.7. Fraction of rare minor alleles (FMA) in the coding sequences (CDS) of 

micropeptides and the MiPepid-predicted CDS of lncRNAs under different minor allele 

frequency (MAF) thresholds. Error bars denote 95% confidence intervals of binomial 

proportions. 

 

Supplemental Figure 3.8. Fraction of nonsynonymous rare minor alleles (FMA) in the coding 

sequences (CDS) of micropeptides and the MiPepid-predicted CDS of lncRNAs under different 

minor allele frequency (MAF) thresholds. Error bars denote 95% confidence intervals of 

binomial proportions. 
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Supplemental Figure 3.9. Distribution of CDS-FMA in micropeptide and lncRNA transcripts. 

 

Supplemental Figure 3.10. Distribution of nonsynonymous CDS-FMA in micropeptide and 

lncRNA transcripts. 

 

Supplemental Figure 3.11. Fraction of rare minor alleles (FMA) in the untranslated regions 

(UTR) of regular proteins, micropeptides, and lncRNAs under different minor allele frequency 

(MAF) thresholds. Error bars denote 95% confidence intervals of binomial proportions. 
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Supplemental Figure 3.12. The ratio between CDS-FMA and UTR-FMA for regular proteins, 

micropeptides, and lncRNAs under different minor allele frequency (MAF) thresholds. Error 

bars denote 95% bootstrapped confidence intervals of ratios (with 5,000 bootstrap samples). 

“***” denotes the ratio is significantly greater than one with a p-value < 0.001. 
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 PROLIG: PROTEIN BINDING LIGAND PREDICTION 

USING 3D DEEP CONVOLUTIONAL NEURAL NETWORKS2 

 Abstract 

Most proteins bind ligands to function. Therefore, predicting protein binding ligands is 

important in that it can be used for large-scale protein function annotation, drug design, predicting 

drug side effects, etc. By representing protein pockets as 3D images with physicochemical 

information included, using 3D deep convolutional neural networks, we developed a 

computational framework named ProLig that can predict the binding ligand for a protein pocket 

among over 150 different ligand species. ProLig was trained on a large-scale dataset of over 77, 

000 pockets and works considerably better than existing non-deep-learning methods. The overall 

top-1 accuracy is over 71%, and the top-3 and top-10 accuracies are > 83% and > 91%, respectively. 

The F-score for as many as 37 ligand species are over 0.8, and 99 ligand species have a top-10 

accuracy of over 80%. Our framework can still perform very well when only the shape of a pocket 

is known and does not entail any other information regarding the pocket.    

 Introduction  

In biological cells, most proteins perform their functions upon binding small molecules 

called ligands. Most ligands are bound to areas on protein surfaces, and these areas are protein 

pockets. The correct prediction of the binding ligand to a protein pocket is of great significance 

since it can be used for protein function annotation, drug design, as well as identifying potential 

drug side effects.  

Existing methods for predicting pocket binding ligands are roughly in two categories: global-

structure-based and local-structure-based.  

Methods that use the global structure information of the target protein generally retrieve 

structurally similar protein complexes as templates and use the bound ligands of those templates 

as candidates for the binding ligand prediction. These methods include FINDSITELHM (Brylinski 

 
2  The work of this chapter was done during my stay in Dr. Daisuke Kihara’s lab. Later on, I joined 

Dr. Michael Gribskov’s lab in May 2018. This work was funded by the National Science Foundation 

(DMS1614777). 
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& Skolnick, 2009), FunFOLD (Roche et al., 2011), Fun-FOLD2 (Roche et al., 2013), GalaxySite 

(Heo et al., 2014). However, proteins that bind the same ligand could possibly have very different 

global structures, while those that bind different ligands may share similar global structures.   

Local-structure-based methods employ only the local structure information of the pocket 

itself without considering the global structure of the target protein. Among those methods, pockets 

are either represented by pseudo-atoms (Hoffmann et al., 2010), all atoms (Najmanovich et al., 

2008), Cα atoms (Gao & Skolnick, 2013), or by reduced descriptors such as spherical harmonics 

(Morris et al., 2005), 3D Zernike descriptors (Chikhi et al., 2010; Sael & Kihara, 2012; X. Zhu et 

al., 2015). Most of these methods are designed for pocket comparison, either by using alignment 

algorithms or by computing the distances between the reduced descriptors. While the pocket 

comparison methods can be used for pocket binding ligand prediction, mostly by comparing the 

target pocket against a database of pockets with known binding ligands, they are subject to the 

following two drawbacks: 1. Pockets that bind to the same ligand could be different and those that 

bind to different ligands could be similar; 2. The database of pockets for comparing against needs 

to be carefully selected and cross validated, and the computation time grows linearly with the 

number of pockets in the database.  

Deep learning is a set of machine learning algorithms primarily for learning hidden 

representations from raw data (Bengio et al., 2013; LeCun et al., 2015; Schmidhuber, 2015). In 

recent years, deep learning has achieved state-of-the-art performances in fields such as computer 

vision (Krizhevsky et al., 2012). The deep convolutional neural networks have brought huge 

advances in image classification with performances even surpassing humans (Ciregan et al., 2012).  

Protein pockets are 3D structures and can be represented as 3D images. The pocket binding 

ligand prediction problem can therefore be transformed into the 3D image classification problem, 

which is analogous to 2D image classification. By employing the advantages of deep learning in 

this field, we developed the computational framework ProLig with deep learning at its core, that 

can predict the binding ligand given a pocket. ProLig was trained with a large-scale dataset of over 

70, 000 pockets binding over 150 ligand types. The hidden representations used for classification 

were learned from the dataset therefore the prediction of an unknown pocket is fast and does not 

entail the comparison against any pocket database. ProLig performs significantly better than 

existing methods and could be implemented to many other computational research that also use 
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3D biomolecular structure data, such as protein-protein binding, protein-DNA/RNA binding, and 

EM map analysis. 

 Methods 

4.3.1 Datasets 

Pocket representation by 3D images 

We define a pocket as the protein surface area that is within 4 Å of the binding ligand. Each 

pocket is represented as a set of 3D images, with each image containing information of one of the 

4 features of this pocket: shape, electrostatic potential, hydrophobicity, visibility. Each image is a 

25 × 25 × 25 voxel grid, with the resolution 1.5 Å for each voxel. The image of shape is binary, 

with the voxels occupied by the pocket having a value of 1, and the rest having a value of 0. The 

image of electrostatic potential is computed using the APBS program (Baker et al., 2001). We used 

the Kyte-Doolittle scale (Baker et al., 2001) to represent hydrophobicity, which ranges from -4.5 

(hydrophilic) to 4.5 (hydrophobic). The visibility of a given voxel is defined as the number of 

visible directions from the voxel within a 10×10×10 Å3 cube. It ranges from 0 to 1, with 0 

indicating the voxel is completely buried in a protein while 1 indicating the voxel is not near the 

protein. A large visibility value suggests that the voxel is located at a concave region, while a small 

one suggests convexness (Li et al., 2008). Figure 4.1 shows several examples of pocket shape 

images. 
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Figure 4.1. Examples of pockets represented by 3D images. Here the shapes of the pockets are 

rendered in 25 × 25 × 25 3D grids, and names of the corresponding ligands the pockets can bind 

are shown in the leftmost column. ATP: adeno-sine-5'-triphosphate; CIT: citric acid; COA: 

coenzyme A; FAD: flavin-adenine dinucleotide. 

The whole dataset 

We extracted pockets from ligand-bound protein complex structures in the Protein Data 

Bank (PDB) database (Berman et al., 2000). We selected ligand types that have a certain number 

of bound protein structures (over 50) in PDB, that are not ions, and that have a molecular weight 

of over 100 g/mol. This procedure finally generated a dataset consisting of 77,087 pockets that 

bind to 151 ligand species. Figure 2 shows the number of pockets for each ligand species. 
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Figure 4.2. Heat map showing the number of pockets for each ligand species in the whole 

dataset. 

The nonredundant datasets 

To address the redundancy issue of the PDB data, besides our whole dataset, we also built 

several nonredundant datasets by culling the whole dataset. For a subset of pockets that bind a 

same ligand species, if their touching protein chains share pairwise sequence or structure similarity 

above a set of thresholds, we would then randomly keep only one pocket of the subset. We used 

TM-align (Y. Zhang & Skolnick, 2005) to determine the sequence similarity (Sequence Identity 

(SI) score) and structure similarity (TM score) for all the pairs of proteins in our whole dataset. 

We then collected 4 nonredundant datasets based on the cutoff values of SI-0.5, SI-0.8, TM-0.6, 

and TM-0.8, respectively. SI-0.5 means for all the pairs of pockets in the dataset, their touching 

protein chains do not share pairwise sequence identity score of over 0.5. The same rule applies to 

SI-0.8, TM-0.6, and TM-0.8, where TM represents TM score. 

4.3.2 3D deep convolutional neural network (3D DCNN) 

Architecture 

To build our binding ligand prediction framework, we designed a 3D deep convolutional 

neural network (3D DCNN) to train our datasets. This 3D DCNN contains 11 layers, with 6 

convolutional layers, 2 max pooling layers, and 2 fully-connected layers (Figure 4.3, Table 4.1). 
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The input layer takes multi-channel 3D images, as in our case each channel corresponds to one of 

the 4 features (shape, electrostatic potential, hydrophobicity, visibility). 

 

Figure 4.3. Diagram of the 3D deep convolutional neural network (3D DCNN). The input layer 

takes (multi-channel) 3D images. The convolution kernel size is 2×2×2 for all convolutional 

layers. For illustration purpose, only one channel of the input and only one filter of each 

convolutional layer are shown. 

Table 4.1. The architecture of our 3D deep convolutional neural network (3D DCNN) 

Layer No. Layer Name Filter Size Stride Layer size 

1 Input 
  

25×25×25×#Ch 

2 Conv 2×2×2×#Ch×64 1 24×24×24×64 

3 Conv 2×2×2×64×96 1 24×24×24×96 

4 Conv 2×2×2×96×192 1 24×24×24×192 

5 Pool 2×2×2×1 2 12×12×12×192 

6 Conv 2×2×2×192×384 2 6×6×6×384 

7 Pool 2×2×2×1 2 3×3×3×384 

8 Conv 2×2×2×384×768 1 2×2×2×768 

9 Conv 2×2×2×768×2048 1 1×1×1×2048 

10 FC   1024 

11 FC   512 

12 Output 

  

151 

Conv: Convolutional; Pool: Max pooling; FC: Fully-connected; #Ch: number of channels 
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The hyperparameter setups in our 3D DCNN are as follows. We used a batch size of 128. 

We used L2 regularization for every hidden layer, and the regularization strength is 4.08 × 10−6. 

The initial learning rate is 4.14 × 10−4. Both the regularization strength and initial learning rate 

were tuned on the validation set. The learning rate was decayed by 0.99 every 10000 steps. We 

used Adam algorithm (Kingma & Ba, 2014) to do the optimization, which computes the adaptive 

learning rates from estimates of the first and second moments of the gradients, and the 2 

hyperparameters in Adam were set to β1 = 0.9, β2 = 0.999, which correspond to the exponential 

decay rate for the first- and second-moment estimates, respectively. We also used moving average 

to enhance the performance, i.e. computing the moving averages of parameters such as weights 

and biases along each training step, and the moving average rate was set to 0.9999. The model was 

trained 100, 000 steps in total. We used ReLU (Glorot et al., 2011) as the activation function for 

each hidden layer, and we used the softmax classifier for the output layer. Our code was written 

using the TensorFlow framework (Abadi et al., 2016). 

Training 

Data splitting 

The original data splitting procedure: for a dataset, we randomly split the dataset into training 

and test sets, with the ratio of the number of data in the 2 sets as 9-to-1. Since the numbers of data 

for different ligand types are unbalanced, when splitting the data, we kept the ratios between 

different classes (ligand types) as the same for both the training and the test sets. 

We applied the original data splitting procedure to both the whole dataset and the 4 

nonredundant datasets.  

Data augmentation 

A pocket in the 3D grid can take arbitrary orientation. To augment the dataset as well as to 

lessen the difficulty of prediction due to the orientation freedom issue, for each pocket in the 

training set we generate 100 poses by rotating the pocket randomly in the 3D space.  
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Model training 

When training the model, for any of the whole dataset and the 4 nonredundant datasets, we 

selected a fraction of data from the training set as the validation set and tuned the hyperparameters 

of the model using the validation set; after hyperparameter tuning was done, we then used the 

whole training set to do the final model training. 

Performance evaluation 

There are generally 3 measures used in this paper to evaluate the performances of our method 

as well as other existing methods: top-k accuracy, mean top-k recall, and mean F-score (k = 1, 2, 

…). For a given pocket, the 3D DCNN in our method will predict its binding ligand by giving a 

ranking of 151 potential binding ligands, corresponding to the 151 different ligand species in our 

dataset. The top-k accuracy is computed by evaluating the overall accuracy on the test set. 

For example, the top-3 accuracy is the percentage of pockets in the test set whose true 

binding ligand (true label) is among the top-3 predicted binding ligands (top-3 predictions). 

Among the predicted results for a dataset consisting of at least 2 classes, for an example in a 

particular class, if the predicted label is correct, then this predicted result is called a true positive 

(TP) for this class; if it is incorrect, then this is a false negative (FN); if an example in another class 

is predicted to be in this class, then this example if a false positive (FP) for this class. The precision 

for this class is precision = #TP / (#TP + #FP), where #TP refers to the number of true positives, 

and the same as #FP. The recall for this class is recall = #TP / (#TP + #FN), so the recall can also 

be interpreted as the accuracy for this particular class. The top-k recall for a class is then the number 

of examples predicted correctly within top-3 predictions divided by the total number of examples 

in this class. The mean top-k recall is the average top-k recall across all the classes in a dataset, 

which can also be interpreted as the top-k average accuracy. The F-score is computed by F-score 

= 2 * (precision * recall) / (precision + recall). So, the F-score for a class is computed from the 

precision and top-1 recall for this class, and the mean F-score is the average F-score across all the 

classes in a dataset. 
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 Results 

4.4.1 Overall results 

Using the whole dataset with 2 feature channels (hydrophobicity and visibility), trained with 

the neural network shown in Figure 4.3 and Table 4.1 and with the hyperparameter settings 

specified in the Methods section, with 151 classes, our method ProLig achieved on the test set top-

1 accuracy of 0.711, top-5 accuracy of 0.877, and top-10 accuracy of 0.919, and the mean F-score 

of the 151 classes is 0.615 (Table 4.2). 

Table 4.2. Overall results on the whole dataset trained with the neural network in Table 4.1 

Accuracy 
top-1 top-3 top-5 top-10 

.711 .836 .877 .919 

Mean Recall 
top-1 top-3 top-5 top-10 

.594 .719 .766 .815 

Mean F-score .615 

Mean top-k (k = 1, 3, 5, 10) recall is equivalent to the top-k 

average accuracy across the 151 classes; mean F-score is the 

average F-score across the 151 classes 

To show that we indeed randomly split the dataset into training and test, we constructed 2 

follow-up datasets in which part of the training set was used for testing, and the rest of the training 

set + the original test set for training. The 2 follow-up datasets both gave similar results to those 

in Table 2 (See Supplemental Table 4.1 for details). 

ProLig showed considerably good results on some selected classes, with 37 classes the F-

score being over 0.8 (Table 4.3).  And figure 4 shows the distributions of the F-scores and selected 

top-k recalls. 
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Table 4.3. Classes with the F-score over 0.8 

ligand precision 
Recall 

F-score 
top-1 top-3 top-5 top-10 

THP 1.000 1.000 1.000 1.000 1.000 1.000 

BTN 1.000 .944 1.000 1.000 1.000 .971 

MAL .963 .963 .963 .963 .963 .963 

HEM .951 .971 .989 .991 .993 .961 

TRP .950 .950 .950 .950 .950 .950 

PPV .875 1.000 1.000 1.000 1.000 .933 

HIS .857 1.000 1.000 1.000 1.000 .923 

MBO 1.000 .857 .857 .857 .857 .923 

SIA .895 .944 .944 .944 1.000 .919 

NAG .874 .961 .986 .990 .996 .915 

BMP 1.000 .833 .833 .833 .833 .909 

FAD .892 .916 .979 .984 .989 .904 

GLU .933 .875 .875 .896 .917 .903 

TPP .917 .880 1.000 1.000 1.000 .898 

HC4 1.000 .778 .889 .889 .889 .875 

CYC .868 .868 .974 .974 .974 .868 

A3P .900 .818 .818 .818 .818 .857 

CMP .778 .955 1.000 1.000 1.000 .857 

DMU .900 .818 1.000 1.000 1.000 .857 

PEP .800 .923 .923 1.000 1.000 .857 
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Table 4.3. continued 

ligand precision 
Recall 

F-score 
top-1 top-3 top-5 top-10 

UMP .923 .800 .867 .933 .933 .857 

GSH .886 .780 .780 .860 .880 .830 

MPO .875 .778 .778 .778 .778 .824 

APR .818 .818 1.000 1.000 1.000 .818 

LAT .750 .900 1.000 1.000 1.000 .818 

LYS .818 .818 .909 .909 .909 .818 

MYR .857 .783 .783 .783 .783 .818 

NAD .772 .865 .940 .945 .975 .816 

PLP .867 .765 .863 .922 .961 .813 

BEN .900 .730 .784 .811 .811 .806 

CHD .800 .800 .800 .800 .800 .800 

FUL 1.000 .667 .833 .833 .833 .800 

HEC .820 .781 .953 .953 .969 .800 

TYR 1.000 .667 .667 1.000 1.000 .800 

IMP .857 .750 .750 .750 .875 .800 

OGA .889 .727 .909 1.000 1.000 .800 

PGA .889 .727 .909 1.000 1.000 .800 
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Figure 4.4. Distributions of the F-scores and top-1, 3, 10 recalls of the 151 classes. 

4.4.2 Results on different features  

We collected four different features for each pocket: shape, electrostatic potential, 

hydrophobicity, visibility. In the beginning, we thought it would give the best result using all the 

4 features. We then tried to remove each one feature at a time to determine which feature 

contributes the most. However, after excluding the feature of electrostatic potential, trained on the 

same whole dataset with the same model shown in Figure 4.3, the model achieved a better result 

than using all 4 features. As shown in the left panel of Figure 4.5, the model trained without 

electrostatic potential (-E) has higher mean F-score than the one trained using all 4 features 

(SEHV). And we observed the same pattern for the measures mean top-1 recall (the middle panel) 

and top-1 accuracy (the right panel). We further tried using combinations of 2 features and using 

only one feature, and the combination of hydrophobicity and visibility gave the best results 

regarding both the measure mean F-score and the mean top-1 recall, although its top-1 accuracy is 

slightly lower than that of using all 4 features. We finally decided to use hydrophobicity and 

visibility for training other models and datasets. 
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Figure 4.5. Bar plots of results on using different feature combinations. S, E, H, V represent the 4 

different feature channels (S: shape; E: electrostatic potential; H: hydrophobicity; V: visibility). 

The minus sign ‘-‘ denotes using all the other 3 features except the feature subtracted, e.g. -H 

means using S, E, V but not H. 

Based on the comparisons among different 3 feature combinations as well as among 1 feature 

trials, the importance ranking of the 4 features is hydrophobicity > visibility > shape > electrostatic 

potential.  

The force of hydrophobicity / hydrophilicity is a major determinant for protein ligand 

recognition (Gao & Skolnick, 2013; Nicolau Jr et al., 2014; Scarsi et al., 1999; Snyder et al., 2011), 

therefore the hydrophobic-hydrophilic pattern on the surface of the protein pocket is important for 

ligand recognition. Here our results also suggest the critical role hydrophobicity plays in protein 

ligand binding.  

The feature visibility is shown to be more important than the feature shape. This is 

reasonable. The shape channel is binary, with the grid occupied by the pocket having the value 1, 

and the others having the value 0. The visibility channel is constructed by mapping all the visibility 

values (ranging from 0 to 1) onto the grids occupied by the pocket. Therefore, the visibility channel 

contains most of the information represented by the shape channel, while also containing important 

information regarding concaveness, convexness, spatial relationship to the protein surface, etc. 

that the shape channel does not have. Therefore, we expect visibility brings better result than shape.  

Electrostatic potential is also an important driving force in protein ligand recognition (Du et 

al., 2016; Koch et al., 2010). However, our results show that it contributes the least to a good result 

and combining it with any other feature(s) hinders the performance, as we observe in figure 5 that 

SE < E, EV < V, EH < H, etc. The reason could probably be that comparing to the 3 other features, 

electrostatic potential is much noisier. While shape is binary ({0, 1}), hydrophobicity is within -

4.5 to 4.5, and visibility is within 0 to 1, the range of electrostatic potential is much broader. While 
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most of the electrostatic potential values are within -10 to 10, some could be as negative as below 

-300 or as high as above 400. We tried to normalize the electrostatic potential channel, but it did 

not help much (data not shown), and the reason could be that the standard deviation of the raw 

data is very high, therefore the normalization makes most of the values very small.  

The performance on using only the pocket shape information  

Still from Figure 4.5, and from Table 4.4 for detailed comparison, we see that by using only 

the feature shape we achieved top-1 accuracy of 63.7%, mean F-score of 0.502, and mean top-1 

recall of 0.480. Alt-hough these results are lower than those from using hydrophobicity + visibility, 

they are still good for real application. In particular, since the model only requires the shape 

information of the pocket, and was trained using lots of poses randomly rotated in the 3D space 

therefore does not entail any information like the orientation of the pocket open-ing whatsoever, 

it can be readily used in real-world prediction as long as we know the shape of the pocket and 

represent it in 3D volumetric data, and it does not require the knowledge of the sequence or the 

secondary/tertiary structure information of the pocket or its touching protein chain.  
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Table 4.4. Comparisons of the results from using only the shape feature and using the hydrophobicity + visibility features 

Feature 
Accuracy Mean Recall 

Mean F-

score 
top-1 top-3 top-5 top-10 top-1 top-3 top-5 top-10 

Shape .637 .786 .837 .894 .480 .621 .678 .755 .502 

Hydrophobicity + 

Visibility 
.711 .836 .877 .919 .594 .719 .766 .815 .615 
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4.4.3 Results on different neural network architectures 

The architecture of the neural network (Figure 4.3; Table 4.1) used in this work was carefully 

crafted to achieve the optimal results after trying other architectures. As shown in Table 4.5, 

besides the original neural network shown in Table 4.1, we also tried other networks with reduced 

number of convolutional layers. Among them, network 1 (N1) is not a neural network but instead 

a multi-class logistic regression model with the linearized input layer directly connected to the 

softmax output layer; N2 is a fully connected neural net without any convolutional layers; N3, N4, 

N5 have 1, 3, 4 convolutional layers, respectively. In addition, we tried a network with the same 

number of convolutional layers as N0 but with a reduced number of filters for each layer (N6). We 

trained those 6 models with the 2-feature whole dataset (hydrophobicity + visibility) and then 

evaluated on the test set. 
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Table 4.5. Comparisons of different network architectures 

Layer name Layer size N0 N1 N2 N3 N4 N5 N6 

Input 25×25×25×#Ch ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Conv 24×24×24×64 ✔   ✔ ✔ ✔ 24×24×24×32 

Conv 24×24×24×96 ✔   Pool 12×12×12×64 ✔ ✔ 24×24×24×64 

Conv 24×24×24×192 ✔    ✔ ✔ 24×24×24×128 

Pool 12×12×12×192 ✔    ✔ ✔ 12×12×12×128 

Conv 6×6×6×384 ✔     ✔ 6×6×6×256 

Pool 3×3×3×384 ✔     ✔ 3×3×3×256 

Conv 2×2×2×768 ✔      2×2×2×512 

Conv 1×1×1×2048 ✔      1×1×1×1024 

FC 1024 ✔  ✔ ✔ ✔ ✔  

FC 512 ✔  ✔ ✔ ✔ ✔ ✔ 

Output 151 ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Conv: convolutional; Pool: max pooling; FC: fully-connected; #Ch: number of channels; N0: the original neural network shown in 

table 1; N1 – N6: network 1-6; ✔ denotes a network contains one specific layer 

 



 

94 

 

Figure 4.6. Bar plot of the results on network 0 - 6 

As shown in Figure 4.6, among the 6 networks N1 – N6, N1 performs the worst. The mean 

F-score on N1 is < 0.2, as compared to > 0.6 on N0. The same pattern is observed in mean top-1 

recall and top-1 accuracy as well. This is reasonable as the input is of very high dimension 

(25×25×25×2 = 31250, 2 refers to the number of channels, which in this case are hydrophobicity 

and visibility). With this high dimensional input, a simple classifier like logistic regression is 

unlikely to perform well. After neural network is applied, even a shallow 2-hidden-layer network 

without any convolution (N2), we see a giant leap on performance. This clearly shows the 

advantage of neural network over logistic regression. The performance was boosted even more by 

adding only one convolutional layer, as is shown in the comparison between N3 and N2, 

suggesting the advantage of using convolutions for image data. Yet using 3 consecutive 

convolutional layers, instead of only one layer, gave a much better result. Such a design was 

carefully chosen for the following reasons. Firstly, we have the assumption that the local small 

regions on the surface of a pocket is critical for it to recognize the binding ligand, and to extract 

hidden features of those regions requires small convolutional kernels. Using the 3 consecutive 

convolutional layers, we can learn features from small local regions of sizes 2×2×2, 3×3×3, and 

4×4×4, respectively, therefore sufficiently covering a reasonable range. Secondly, even if regions 

of sizes 2×2×2 or 3×3×3 are too small to cover meaningful local regions, which we hardly expect, 

it is still much better to use 3 consecutive convolutional layers with the kernel size of each layer 

2×2×2 rather than using only one layer of kernel size 4×4×4. One reason is the former design uses 

much fewer learnable parameters, therefore making the network more generalizable. With max 
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pooling after the 3 consecutive convolutional layers, adding one more convolutional layer + max 

pooling still helps (N4 vs. N5), and this is designed to learn large local regions. However, adding 

2 more convolutional layers on top helps more as we see the performance difference is noticeable 

between N5 and N0. These last 2 convolutional layers are designed to learn features on top of the 

hidden features learned from large local regions, thereby extracting overall global features. We 

also asked whether we need those amounts of parameters for each layer in N0, therefore we 

reduced those amounts by around half in each layer and built N6. As we can see the performance 

gap between N6 and N0 is still noticeable, justifying the parameter amount in N0. By the last 

convolutional layer in N0, the input size regarding the first 3 dimensions has already been reduced 

to 1×1×1, therefore we cannot go any deeper in this convolutional neural net design, and finally 

the selected network is N0, which gave the best performance regarding any of the 3 measures 

shown in Figure 4.6.  

4.4.4 Results on non-redundant datasets 

The PDB database contains a large portion of homologous proteins. Our dataset is collected 

directly from the PDB database, therefore, some subsets of the pockets in our dataset could come 

from protein complexes that share high sequence and / or structure similarity. For a pair of proteins 

with considerable sequence and / or structure similarity, even if they bind the same ligand species, 

the binding pockets could still be quite different. Yet it is undeniable that correlation between 

protein global similarity and pocket similarity is significantly high. From a ma-chine learning point 

of view, it is not problematic that the input data share similarities. On the contrary, it is based on 

the similarities of the input data that the machine learning tools could then extract useful hidden 

features from the data for future prediction. Our dataset is built on the whole PDB database, 

therefore shares similar statistical distribution with the PDB database. For a future prediction, the 

prediction result our method could give will also follow the data distribution of the PDB database. 

Since newly solved structures usually bias toward existing homologous models, it is therefore 

reasonable for our method to give predictions following the same pattern. 

However, we would still hope to build a model that could largely re-duce this bias. We 

therefore culled our data to remove potential sequence / structure similarities and collected 4 non-

redundant datasets: SI-0.5, SI-0.8, TM-0.6, TM-0.8. We used TM-align (Y. Zhang & Skolnick, 
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2005) to determine the sequence similarity (Sequence Identity (SI) score) and structure similarity 

(TM score). SI-0.5 means for all the pairs of pockets in the dataset, their touching protein chains 

do not share sequence identity score of over 0.5. The same rule applies to SI-0.8, TM-0.6, and TM-

0.8, where TM represents TM score. 

This data filtering procedure substantially reduced the total amount of data and left the 4 

non-redundant datasets with only a fraction of data compared to our original full dataset. Deep 

learning generally requires large amounts of data to achieve better performance. Indeed, the test 

results on the 4 non-redundant datasets plummeted compared to the results on the full dataset 

regarding the top-1 accuracy and the mean top-1 recall (Table 4.6). However, when the criterion 

is loosened to top-25 accuracy or mean top-25 recall, the performance gap be-tween the whole 

dataset and all the non-redundant datasets is much smaller. Overall, the performance on the 

nonredundant sets is still rea-sonably good and could still be used for future prediction. 

In addition, to show that the training and test subsets were indeed collected by randomly 

splitting the nonredundant datasets, we constructed 2 follow-up datasets for each of the 4 

nonredundant datasets, and the follow-up datasets indeed gave similar results. (See Supplemental 

Table 4.2 for details).  
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Table 4.6. Comparisons of the results between the 4 non-redundant datasets and the full dataset 

Dataset #examples 
Accuracy Mean Recall 

Mean F-score 
top-1 top-5 top-15 top-25 top-1 top-5 top-15 top-25 

TM-0.6 10054 .137 .344 .532 .591 .090 .215 .402 .476 .088 

TM-0.8 14335 .184 .448 .666 .767 .120 .260 .465 .576 .121 

SI-0.5 16026 .219 .504 .728 .821 .110 .290 .502 .622 .109 

SI-0.8 18895 .257 .553 .741 .824 .166 .357 .535 .622 .168 

whole 77087 .711 .877 .939 .960 .594 .766 .847 .885 .615 

TM-0.6, TM-0.8: datasets created based on TM score cut-off 0.6, 0.8, respectively; SI-0.5, SI-0.8: datasets created based on 

Sequence Identity score cut-off 0.5, 0.8, respectively; whole: the whole dataset without any redundancy removal 
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4.4.5 Comparisons with existing methods 

Comparison with Patch-Surfer2.0 

Patch-Surfer2.0 (PS2.0) (X. Zhu et al., 2015) is a method that predicts the binding ligand for 

a pocket among 117 candidate ligand species. It represents a protein pocket as a set of small pocket 

surface local patches characterized by 3D Zernike descriptors, and then predicts the binding ligand 

given a pocket by comparing its patch representations against a pre-selected pocket database that 

contains around 3200 pockets.  

Since our method ProLig covers 151 ligand species, and the overlap between ProLig and 

PS2.0 includes 96 different ligand species, to make a fair comparison, we selected a subset of our 

test set where each pocket binds one of the 96 overlapping ligands. This procedure resulted in a 

comparison set of 7107 pockets and we predicted their binding ligands using PS2.0. For each 

pocket in the comparison set, PS2.0 gave a ranking of predicted ligands among 117 ligand species. 

Since there are only 96 overlapping ligands, for a prediction that is not within the 96 ligands, we 

simply removed the prediction and moved the following predictions forward in the ranking. We 

also recalculated our results on the test set to only include the 7107 pockets of the comparison set 

and their predictions among only the 96 overlapping ligands. In these ways we make the 

comparison as fair as possible. The results are shown in Table 4.7. Our method ProLig performs 

considerably better than PS2.0 regarding all the 3 measures. The top-1 accuracy nearly doubled in 

ProLig, while the mean top-1 and the mean F-score are 5 times more.  
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Table 4.7. Comparisons with Patch-Surfer2.0 (PS2.0) on our test set 

Method 
Accuracy Mean Recall 

Mean F-

score 
top-1 top-3 top-5 top-10 top-1 top-3 top-5 top-10 

PS2.0 .383 .518 .614 .755 .100 . 235 .331 .520 .087 

ProLig .726 .849 .889 .932 .598 .717 .761 .825 .625 



 

100 

 

Comparison with Apoc 

Apoc (Gao & Skolnick, 2013) is an alignment-based pocket comparison method that uses 

the pocket similarity score PS-score, which ranges from 0 to 1. A large PS-score indicates high 

similarity between the 2 compared pockets. To compare with Apoc, we did pairwise comparison 

in our test set (containing 7782 pockets) using Apoc, and then evaluated the performance of Apoc 

using different pocket selection cutoffs as well as different voting methods. In our dataset, we 

selected pockets based on the cutoff of 4 Å, i.e. the pocket is within 4 Å of the binding ligand. 

Here in this comparison, we used 3 different cutoffs (4, 5, 6 Å) to eliminate the potential bias 

caused by pocket extraction cutoff. We used 2 voting strategies: average and k nearest neighbor 

(kNN). In average voting, the predicted ligand ranking for a given pocket is based on the ranking 

of the average PS-scores, with each score calculated by averaging the PS-scores of template 

pockets that bind one same ligand type. In 1NN voting, the ranking is given by the ranking of the 

template pockets that have the top-k PS-scores. Comparing with Apoc, our meth-od ProLig 

performs significantly better regarding any of the 3 measures and regarding any of the 3 pocket 

extraction cutoffs as well as any of the 2 voting strategies (Figure 4.7).  

 

Figure 4.7. Comparisons with Apoc. kNN: k nearest neighbor voting strategy; avg: average 

voting strategy; kNN-4, kNN-5, kNN6: kNN applied on datasets of pockets extracted within 4 Å, 

5 Å, 6 Å, respectively; avg-4, avg-5, avg-6: Avg applied on datasets of pockets extracted within 

4 Å, 5 Å, 6 Å, respectively. 

 Discussion and conclusion 

Proteins are 3D structures. Representing proteins as 3D images can capture important spatial 

information that 2D or 1D data are unable to represent. Here by representing protein pockets in 

their original 3D space, and by employing the convolutional neural networks that have shown great 
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performance on image classification, we developed this computational framework ProLig that can 

predict the binding ligand among over 150 ligand species. Even with only the shape information 

of the pocket, this framework can still work very well. ProLig demonstrates the edge of employing 

3D shape information of biomolecular data, providing a good reference to the research in many 

other fields of structural biology.   

 Supplemental Data 

The follow-up data splitting procedure: to further show that our data splitting procedure is 

indeed random while still taking into consideration that training a model takes a long time, for a 

split dataset (containing the training set and the test set) we constructed 2 other follow-up datasets 

using the following procedure: randomly split the training set into 9 folds, each time pick one fold 

as the test set and combine the rest 8 folds + the original test set as the new training set. We repeated 

the procedure twice, each time picking a different fold, thus resulting in 2 follow-up datasets. 

We applied the follow-up data splitting procedure to both the whole dataset and the 4 

nonredundant datasets, resulting in 10 follow-up datasets in total. We then trained those follow-up 

datasets with the neural network shown in Table 4.1. 
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Supplemental Table 4.1. Overall results on the whole dataset and the 2 corresponding follow-up 

datasets trained with the neural network in Table 4.1 

 
Accuracy Mean Recall 

Mean F-

score 
top-1 top-3 top-5 top-10 top-1 top-3 top-5 top-10 

the original 

whole dataset 
.711 .836 .877 .919 .594 .719 .766 .815 .615 

follow-up 

dataset 1 
.712 .835 .878 .924 .589 .729 .776 .841 .605 

follow-up 

dataset 2 
.712 .837 .879 .926 .589 .717 .762 .834 .607 

average .712 .836 .878 .923 .591 .722 .768 .830 .609 

standard 

deviation 
.001 .001 .001 .003 .002 .005 .006 .011 .004 

average: the average result across the original whole dataset, follow-up dataset 1, and follow-up dataset 2 

results; standard deviation: the standard deviation across the original whole dataset, follow-up dataset 1, 

and follow-up dataset 2 results 
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Supplemental Table 4.2. Overall results on the 4 nonredundant datasets and their corresponding 

follow-up datasets trained with the neural network in Table 4.1 

Dataset Split 

Accuracy Mean Recall 

Mean F-

score top-

1 

top-5 top-

15 

top-

25 

top-1 top-5 top-

15 

top-

25 

TM-0.6 

original .137 .344 .532 .591 .090 .215 .402 .476 .088 

follow-up 1 .134 .403 .637 .733 .075 .192 .429 .530 .073 

follow-up 2 .141 .397 .630 .736 .090 .209 .382 .476 .086 

average .138 .381 .600 .686 .085 .205 .404 .494 .082 

SD .003 .027 .048 .068 .007 .010 .019 .025 .007 

TM-0.8 

original .184 .448 .666 .767 .120 .260 .465 .576 .121 

follow-up 1 .189 .481 .713 .810 .102 .249 .437 .562 .096 

follow-up 2 .190 .464 .690 .801 .111 .259 .446 .569 .105 

average .188 .464 .689 .793 .111 .256 .449 .569 .107 

SD .003 .014 .019 .018 .007 .005 .012 .006 .010 

SI-0.5 

original .219 .504 .728 .821 .110 .290 .502 .622 .109 

follow-up 1 .224 .508 .731 .824 .118 .271 .493 .611 .119 

follow-up 2 .215 .473 .693 .787 .115 .261 .453 .559 .113 

average .219 .495 .718 .811 .114 .274 .483 .597 .114 

SD .004 .016 .017 .017 .004 .012 .021 .028 .004 

SI-0.8 

original .257 .553 .741 .824 .166 .357 .535 .622 .168 

follow-up 1 .282 .559 .759 .835 .167 .347 .561 .662 .166 

follow-up 2 .250 .564 .756 .837 .165 .363 .521 .635 .173 

average .263 .558 .752 .832 .166 .355 .539 .640 .169 

SD .014 .004 .008 .006 .001 .007 .016 .016 .003 

TM-0.6, TM-0.8: datasets created based on TM score cut-off 0.6, 0.8, respectively;  

SI-0.5, SI-0.8: datasets created based on Sequence Identity score cut-off 0.5, 0.8, respectively; 

Split: how the dataset was split; original: the dataset was split as described in 2.2.2.1; follow-up 1 & 2: the dataset was 

split using the follow-up data splitting procedure as described above; average: the average result across the original, 

follow-up 1, and follow-up 2 results; SD: the standard deviation of the original, follow-up 1, and follow-up 2 results  
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 CONCLUSIONS 

Data Science is an exciting and rapidly growing field. With the rapid growth in the amount 

of data across a variety of disciplines, people are striving to make those data meaningful by 

deploying data science. The same is happening in biological research.  

In this work, by harnessing the growing data in several fields, we explored various edges of 

the immense protein universe using a range of latest data science techniques. 

Firstly, we noticed the emerging field of micropeptides and realized the need for 

bioinformatics methods to predict them from DNA sequences. We searched the field and found 

the available data is sufficient for building new methods. We therefore carefully collected and 

cleaned data from several existing databases to build a high-quality dataset. Based on the fact that 

the dataset is not large, and that the problem is binary classification, which is not hard to address, 

we carefully selected a well-studied machine learning algorithm – logistic regression – tailored for 

this dataset and the problem for optimal results. We trained our model using standard machine 

learning procedures and validated our model using several blind test sets. Our developed method 

– MiPepid, performed well on all test sets and also when compared to other methods. Through 

developing MiPepid, we demonstrated the whole pipeline of developing a new method: define the 

question, collect and clean data, choose a suitable algorithm, train the model, validate the model, 

compare with other methods, and finally wrap the model into a standalone package so others can 

use it with no hassle. Also, by using logistic regression, probably the most common ML algorithm, 

and obtaining a good performance we showed that when selecting an algorithm, there is no need 

to blindly pursue “fancy algorithms”, and the key is to find one that suits the data and the problem.  

Secondly, when studying micropeptides, we learned that a number of lncRNAs are translated 

to functional micropeptides. We realized the significance of the open question - are most lncRNAs 

translated – and we were thinking how to approach this question from a data-driven perspective. 

We therefore thought of genetic variation analysis, as it has been used to study natural selection 

for inferring functional relevance. And more importantly, we knew that a large amount of genetic 

variation data is available, which is essential in making the study possible. Thus, we collected the 

data in a systematic way and analyzed them using rigorous statistical procedures. Our results 

showed the similarities between lncRNAs and proteins from various different angles, which were 

not considered before by this research field. From this study, we demonstrated the possibilities of 
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digging into existing large data reservoirs and extracting insights from a different angle. This work 

does not look as exciting as building machine learning models. All it relied on were just traditional 

statistical analyses and a large dataset. Yet data analysis is always the starting point for many data 

science questions.  

Thirdly, we borrowed the ideas from the latest deep learning techniques and applied to the 

age-old field of protein-ligand binding. We noticed the similarities between 2D images and protein 

3D structures, and by rendering the structures into 3D images we also converted the question to a 

3D image classification problem. Also, as is always the case, we knew there were enough available 

data to make our method possible. We designed our 3D deep convolutional neural network from 

scratch to suit our special dataset. We trained the model using standard deep learning procedures 

and validated the model on the holdout test set. The model performed well and also achieved better 

results than other methods. Through this study we showed the possibility of incorporating the latest 

data science techniques into biological research by treating the questions at hand from a different 

angle.  

The field of data science will continue to grow and so are the biological data. More and more 

biological questions will be addressed from a data-driven perspective. The biology + data science 

is an exciting field. Here, with five years’ efforts, we addressed several biological questions from 

different angles of data science. We hope our work could help advance the progress in 

corresponding specific research fields and also provide examples on deploying data science into 

biological research.   
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