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ABSTRACT

Carbenes are reactive organic intermediates comprised of a neutral, divalent carbon atom.
The reactivity of carbenes is often orthogonal to polar functional groups (nucleophiles and
electrophiles), making them valuable intermediates for organic synthesis. For example, carbenes
can engage in cheletropic reactions with olefins to form cyclopropane rings or undergo insertions
into weak element-hydrogen bonds. The most established strategy for accessing carbene
intermediates is through a redox-neutral decomposition of diazoalkanes to form a transient
M=CR; species. Over the course of nearly a half-century of development, many instrumental
synthetic methods have emerged that operate on this basis. Despite the combined utility of these
methods, the scope of catalytic carbene transfer reactions remains largely constrained by the
inherent instability of the starting materials. Diazoalkanes often require electron-withdrawing
groups to provide stability through resonance effects.

Contrary to redox-neutral methods, reductive carbene transfer reactions utilize non-
stabilized 1,1-dihaloalkanes as carbene precursors. The Simmons-Smith cyclopropanation
reaction represents the most documented example of this class, and remains today as the most
practical method for parent methylene (:CHy) transfer. Nevertheless, reductive carbene transfer
processes have proven to be remarkably resistant to catalysis. Our group is interested in
developing first-row transition metal catalysts which can initiate an oxidative addition into 1,1-
dihaloalkanes, followed by a two-electron reduction with an outer-sphere reductant to provide
access to a M=CR: intermediate for carbene transfer.

The application of this mechanistic hypothesis toward reductive methylene transfer using
CH:CI; as the carbene source and a Ni catalyst is outlined in chapter one. The discovery of an
unexpected cyclooligomerization of methylene carbenes is discussed. Mechanistic studies are
presented, which are consistent with a pathway in which carbenes are iteratively inserted into an
expanding metallacycle. In chapter two, the corresponding activation of 1,1-dichloroalkenes for
vinylidene transfer in [5+1]-cycloadditions with vinylcyclopropanes is outlined. Finally, in the
third and final chapter, organic reactions catalyzed by complexes which feature metal-metal

bonds are reviewed.
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CHAPTER 1. CATALYTIC CYCLOOLIGOMERIZATION OF
ENONES WITH THREE METHYLENE EQUIVALENTS

Reproduced with permission from Farley, C. F.; Zhou, Y.-Y.; Banka, N.; Uyeda, C. J. Am.
Chem. Soc. 2018, 140, 40, 12710-12714. DOI: 10.1021/jacs.8b08296. Copyright 2018 American
Chemical Society.

1.1 Abstract

Cyclic structures are highly represented in organic molecules, motivating a wealth of
catalytic methods targeting their synthesis. Among the various ring-forming processes,
cyclooligomerization reactions possess several attractive features but require addressing a unique
challenge associated with controlling ring-size selectivity. Here we describe the catalytic
reductive cocyclooligomerization of an enone and three carbene equivalents to generate a
cyclopentane, a process that constitutes a formal [2 + 1 + 1 + 1]-cycloaddition. The reaction is
promoted by a (quinox)Ni catalyst and uses CH2Cl»/Zn as the C1 component. Mechanistic studies
are consistent with a metallacycle-based pathway, featuring sequential migratory insertions of

multiple carbene equivalents to yield cycloalkanes larger than cyclopropanes.

1.2 Introduction

Cyclooligomerization reactions are a mechanistically interesting subclass of
cycloadditions that currently have limited utility in organic synthesis. The potential value of
these reactions derives from their ability to directly assemble cyclic molecules from the repeated
coupling of a simple building block. However, this same feature introduces a significant
challenge associated with controlling ring-size selectivity. The most prominent class of
cyclooligomerization reactions involves the use of alkynes as substrates. Cyclotrimers are
favored under most transition-metal-catalyzed conditions because of the high thermodynamic
stability of benzenes relative to cyclobutadienes, cyclooctatetraenes, and higher-order annulenes.
Cyclooligomerization reactions using other m-components, such as 1,3-dienes and allenes, have
also been studied but generally exhibit poor selectivity and narrow substrate scopes. Catalytic

alkyne cyclotrimerizations are commonly initiated by an oxidative coupling reaction at a low-
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valent metal center to form a metallacyclopentadiene (Figure 1.1a). This intermediate then
undergoes ring expansion through additional alkyne insertion events until the cyclic product is
eliminated from the catalyst. In principle, a related mechanism may be accessible using a C:
component as the monomer unit (Figure 1.1b). For example, a [2 + 2]-cycloaddition between a
M=CR: species and an alkene would likewise generate a metallacycle, in this case a saturated
metallacyclobutane. The reaction would then propagate by iterative insertions of carbene
equivalents and terminate by C—C reductive elimination. Because the cycloalkane would be
constructed one carbon at a time, any ring size is potentially accessible by this pathway. Here,
we describe a catalytic reductive cocyclooligomerization of an enone and three methylene
equivalents to generate a cyclopentane (Figure 1.1c). The reaction constitutes a formal [2 +1 + 1
+ 1]-cycloaddition and uses CH:Cl. as the Ci partner in combination with Zn metal as a

stoichiometric reductant.

12
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Figure 1.1. Cyclooligomerization strategies for the synthesis of cyclic molecules. (a) Transition-
metal-catalyzed cyclotrimerization reactions of alkynes proceeding through metallacyclic
intermediates. (b) A proposed cyclooligomerization reaction using a carbene as the propagating
monomer. (c) A catalytic reductive [2 + 1 + 1 + 1]-cycloaddition of enones with CH.Cl./Zn to
generate cyclopentanes.
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1.3  Catalyst Comparison and Optimization Studies

Table 1.1. Conversions of 1, yields of 2 (C3), and yields of 3 (C5) were determined from crude
reaction mixtures by GC analysis against mesitylene as an internal standard. Reaction conditions:
1 (0.07 mmol, 1.0 equiv), Zn (6.0 equiv), metal source (0.15 equiv), ligand (0.15 equiv), 1.25:1
CH.Cl>/ DMA (0.3 mL). Selectivities for cyclopropane vs cyclopentane formation are expressed
as excess values, defined as [(C5 — C3)/(C5 + C3)] x 100%.

Ni(acac), (15 mol%)
o] Ligand (15 mol%) Ph
CH,CI —> N P L /
P~ + 2Cl2 - Ph Ph —\ 3
ph)WPh Zn (6.0 equiv) pnh  Ph g Ph 3
—\ O

(excess) 22°C,24h e} o) N
DMA

(not detected)

Me_ Me Fh X
o} 0, Z o
m ® Y
N N—/ N N
Ph Ph tBu
L2: -63% L4: -28% L10: +71%
Excess < | ‘ ‘ > Excess

C3 | ‘ | [ C5

(0]
t—Bu"<\/ o | \ X | ?
N Ve P | Me” N °
\ N A pZ t-Bu \
N NMe, | N B N
N = |

“tBu Nz Bu

L1: -89% L3: -63% L5: -21% L7: +23% L9: +49%

Entry Metal source | Ligand Conversion Yield C3 Yield C5
1 Ni(acac) L1 38% 36% 2%

2 Ni(acac)2 L2 40% 26% 6%

3 Ni(acac)2 L3 38% 27% 6%

4 Ni(acac). L4 85% 16% 9%

5 Ni(acac)2 L5 93% 26% 17%

6 Ni(acac)» L6 92% 32% 30%

7 Ni(acac)2 L7 92% 18% 29%

8 Ni(acac)2 L8 85% 25% 60%

9 Ni(acac)2 L9 89% 21% 62%
10 Ni(acac)> L10 95% 12% 70%
11 Ni(dme)Br» L1 85% 21% 42%
12 Co(acac), L1 0% 0% 0%

13 Fe(acac) L1 46% 0% 0%

14 Ni(acac). None 10% 0% 0%

We discovered the reductive cyclooligomerization unexpectedly while studying

transition-metal-catalyzed variants of the Simmons—Smith reaction. The key intermediates of the
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classical Simmons—Smith reaction are Zn carbenoids (XZnCH.Y species), which are
electrophilic in character and known to react preferentially with electron-rich alkenes. Kanai et al.
observed that electron-deficient alkenes, such as enones, are also amenable to cyclopropanation
under CH2X>/Zn conditions by the addition of NiX> salts in catalytic loadings. The active
carbenoid species could not be unambiguously identified but was hypothesized to be a
nucleophilic Ni=CH> complex that undergoes cyclopropanation by a stepwise [2 + 2]-
cycloaddition/C—C reductive elimination pathway. Studies by Grubbs, Miyashita, and Hillhouse
probing the stoichiometric reactivity of Ni=CR> species and their associated nickelacyclobutanes
lend credence to this proposal. Our initial interest was in examining ligand effects in the nickel-
catalyzed Simmons—Smith reaction. Accordingly, catalysts generated from Ni(acac), and
nitrogen-based bidentate ligands (L1-L10) were tested in the cyclopropanation of model enone
1 (Table 1.1). The relatively inert CH2Cl> reagent was selected as the methylene source because
of the absence of any background cyclopropanation using Zn as a stoichiometric reductant.
Across the range of ligand types examined, the yield of cyclopropane 2 was found to vary
significantly but never exceed 36%. GC-MS analyses of the crude reaction mixtures indicated
the formation of a single major byproduct with a mass corresponding to the enone (1) bearing
three additional CH> equivalents. Subsequent isolation and spectroscopic characterization of this
species revealed its structure to be a trans-disubstituted cyclopentane, derived from a formal
reductive [2 + 1 + 1 + 1]-cycloaddition process. To the extent that other cyclooligomers, such as
cyclobutanes or cyclohexanes, are formed, they fall below the limits of GC-MS detection;
masses corresponding to these other cyclooligomers are found in trace quantities using other
enones. The ratio of cyclopropane to cyclopentane is strongly dependent on the identity of the
supporting ligand. For example, t-Bu-Biox L1 forms cyclopropane nearly exclusively (2:3 =
18:1), whereas t-Bu-quinox L10 is selective for cyclopentane formation (2:3 = 1:5.8).

1.4  Substrate Scope for the Catalytic Cyclooligomerization

Summarized in Figure 1.2 is the substrate scope of the nickel-catalyzed reductive
cyclooligomerization reaction under conditions that were optimized for cyclopentane formation.
Yields are of the isolated cyclopentane following separation from the cyclopropane byproduct.

Common functional groups are tolerated, including nitriles, ethers, protected alcohols, protected
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amines, electron-rich heterocycles, and esters. Thioethers are susceptible to ylide formation in
the Simmons—Smith reaction but are left untouched under the catalytic cyclooligomerization

conditions.

A

(excess) DMA, 22 °C, 24 h

o Ni(acac), (15 mol%)
M (£)-t-Bu-Quinox (15 mol%) %(A,
= +  CHI > ’, K
22 Zn (6.0 equiv) fe) I o
[¢]
Cs C;

(+)-(t-Bu-Quinox)Ni(acac), 3

H 71% Yield (5.8:1 C5/C3
F

= ( )
= 68% Yield (5.9:1 C5/C3) O
R=CF; 71% Yield (9.1:1 C5/C3) Q e
62% Yield (>20:1 C5/C3) \ o Y o
(
(
(

R =8Me 51% Yield (5.4:1 C5/C3)
R =0Me 41% Yield (3.8:1 C5/C3) 11 54% Yield 12 72% Yield
)

= © o ~NOoO OGN
P
I
@]
=z

0 R=cCl 72% Yield (6.7:1 C5/C3 (5.6:1 C5/C3) (>20:1 C5/C3)

Boc
N/
i Ph—g
Ph ‘\\
O~ 0 o
MeO
13 77% Yield 14 57% Yield 15 63% Yield 16 50 % Yield
(7.7:1 C5/C3) (5.7:1 C5/C3) (6.3:1 C5/C3) (3.8:1 C5/C3)
Me, O,
OMe

F S‘Q_<Me Ph\ﬁ: N g

17  62% Yield 18 42% Yield 19 78% Yield 20 69% Yield
(7.1:1 C5/C3) (2.9:1 C5/C3) (>20:1 C5/C3) (4.3:1 C5/C3)

Ph \ Me Ph \ Ph
‘\o ‘\o
21 50% Yield 22 37% Yield 23  45% Yield
(6.1:1 C5/C3) (1.4:1 C5/C3) (2.2:1 C5/C3)

Figure 1.2. Substrate scope studies. Yields are of the isolated cyclopentane following purification.
C5/C3 ratios were determined from the crude reaction mixtures by H NMR integration.
Reaction conditions: enone (1.0 equiv, 0.21 mmol); Zn (6.0 equiv); Ni(acac). (0.15 equiv); (z)-
L10 (0.15 equiv); CH2Cl2 (0.5 mL); DMA (0.4 mL); 22 °C, 16 h.
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Likewise, aryl chlorides, which participate in nickel-catalyzed reductive cross-coupling reactions,
are not competitively activated. A substrate possessing two alkenes, one conjugated with a
ketone and the other substituted only with alkyl groups, reacts exclusively at the electron-
deficient alkene (19). The highest selectivities for cyclopentane formation were observed using
substrates containing an aryl ketone and an alkyl substituent at the B-position of the alkene. For
example, methyl ketone 22 and chalcone 23, which do not fulfill these criteria, were viable
substrates for the reaction but afforded only modest selectivities for cyclopentanation (<2.2:1).
The product of this latter reaction (23) proved to be a crystalline solid, whose structure was

assigned by X-ray diffraction analysis.

The aryl ketones present in the cyclopentanation products may be converted to other
useful functional groups by the Baeyer—Villiger oxidation (Figure 1.3). For example, 9 bearing
an electron-rich 4-methoxyphenyl group is oxidized to ester 24 with high regioselectivity (rr =
14:1). The alternative regioisomeric ester is also accessible by employing the electron-deficient
4-trifluoromethyl group (25), which possesses a low migratory aptitude (rr = >20:1). Upon ester

hydrolysis, the former product would provide a cyclopentane carboxylic acid and the latter a

mCPBA (6.0 equiv)
TFA (2.0 equiv) R
R _ > S
MeO 5 O
\Q\\\ 22°C,48h,CHCl, 7/ \\O on
(6]

24 80% Yield
(rr =14:1)

mCPBA (6.0 equiv)
TFA (2.0 equiv) o
F3c \\‘\ —> ex\
\ 45 °C, 48 h, CH,Cl, (0)
o

Ph Ar Ph

cyclopentanol.

25 65% Yield
(rr =>20:1)

Figure 1.3. Baecyer—Villiger oxidations of aryl cyclopentyl ketone products.
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1.5  Mechanistic Studies Toward the Catalytic Cyclooligomerization

Given the unusual nature of this transformation, our first mechanistic experiment sought
to confirm the origin of the —(CH2)3— fragment in product 3 (Figure 1.4). When the catalytic
cyclopentanation of 1 was conducted using CD2Cl: in the place of CH:Cl>, the expected CD--
incorporation was observed to form 3-ds (60% isolated vyield). Second, a tandem
cyclopropanation—ring-opening mechanism was ruled out by subjecting the separately
synthesized cyclopropane 2 to the standard catalytic condition (Figure 1.4b). In this experiment,
the cyclopropane was recovered in >98% yield, and no conversion to cyclopentane 3 was
observed. Third, we examined a potential mechanism involving the oxidative coupling of enone
1 with ethylene, which could be generated from the reductive coupling of two CH.Cl,
equivalents (Figure 1.4c). Miyashita previously observed the formation of ethylene from the
dimerization of a proposed transient Ni=CH: species. Furthermore, ethylene is known to undergo

nickel-mediated oxidative coupling reactions with electron-deficient n-systems.

A
Ni(acac), (15 mol%) 99% deuterium
o (£)-t-Bu-Quinox (15 mol%) incorporation
ph)th Zn (6.0 equiv)
22°C,24h
CD,Cl,, DMA

3-dg 60% Yield

Ni(acac), (15 mol%)

B
(£)-t-Bu-Quinox (15 mol%)
Ph% ""/\Ph > <2 % Conversion
o Zn (6.0 equiv)

22°C,24 h
CH,Cl,, DMA

99% deuterium

Ni(acac)p (15 mol%) incorporation

)]\/\/\ (£)-t-Bu-Quinox (15 mol%)
P N Ph "

Zn (6.0 equiv)
+ 22°C,4d
CD,Cl,, DMA

— (1 atm)

Figure 1.4. Mechanistic experiments. (a) Experiment identifying the origin of the —(CH2)s—
fragment in product 3. (b) Excluding a mechanism involving cyclopropane ring-opening. (c)
Excluding a mechanism involving a coupling of enone 1 and ethylene.
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The catalytic cyclopentanation of enone 1 was carried out using labeled CD2Cl> under an
atmosphere of nondeuterated ethylene gas. The presence of ethylene was found to inhibit the rate
of cyclopentanation, but product 3-ds was nonetheless obtained in fully deuterium-labeled form.
This result suggests that either ethylene is not an intermediate in the reaction or that it is

generated but remains tightly bound to Ni and thus cannot exchange with free ethylene.

Finally, during our substrate scope studies, we noted a pronounced dependence of the
selectivity for cyclopropane versus cyclopentane formation on the electronic properties of the
aryl ketone (Figure 1.5). For a series of 4-substituted aryl enones (3, 5-10), there is a linear
relation between the selectivity values (C5/C3) and the substituent ¢ parameters (p = 0.45).

Electron-withdrawing substituents result in the highest selectivities for cyclopentane formation.

1.04

0.9+

0.6
e R=-OMe

0.5 : T : T : T d T . T
-0.4 -0.2 0.0 0.2 0.4 0.6
(o)

Figure 1.5. Hammett plot of the C5/C3 selectivity vs the substituent o parameters.

One possible interpretation of this trend is in the context of the metallacyclebased
mechanism proposed by Kanai. In this pathway, the selectivity for cyclopropanation versus

cyclooligomerization would be governed by the relative rates of reductive elimination
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(termination) and carbene insertion (propagation) (Figure 1.6). Carbon—carbon reductive
elimination reactions are known to be accelerated by the presence of an electron-donating group
conjugated to one of the carbons undergoing bond formation; electron-donating groups generally
destabilize M—C bonds to a greater extent than the product C—C bond. On the other hand, the
carbene insertion step would likely be insensitive to the electronic properties of the aryl group.
Previous kinetics studies have shown that CO migratory insertion reactions occur preferentially
at more electron-rich M—C bonds. The analogous process in the reductive cyclooligomerization
would therefore favor carbene insertion into the Ni—alkyl over the Ni— enolate bond such that the

aryl group would exert only an indirect effect on the rate of this step.

metallacycle CHCly, Zn : CH,Cly, Zn

L,—Ni=CH, formation
: R B ' Ln—Ni R L —Ni |_ —Ni
- :

Ar{/ : ZnCl, E ZnCl, =
e} E Ar 6} E 0 o)
reductive i reductive reductive
elimination ! 1 elimination elimination
. v
Ar. ,II'R Ar ‘, /
R Ar R
0]
°© 0

Figure 1.6. A proposed cyclooligomerization mechanism involving metallacycle ring expansion.
The branch point for cyclopentane vs cyclopropane formation is highlighted.

1.6 Conclusions

In summary, zinc carbenoid additions to alkenes have been extensively studied since the
seminal work of Emschwiller, Simmons, and Smith. However, in no cases have these reactions
been observed to access pathways that lead to multiple CH. addition, presumably because of the
concerted nature of the carbene-transfer mechanism. In this context, transition metal-bound
carbenes are attractive as alternative CH transfer agents because of their potential to react
through stepwise organometallic pathways. By intercepting transient metallacyclic intermediates
prior to C—C reductive elimination, it is possible to develop new transformations that form ring

systems other than cyclopropanes. This strategy is demonstrated here in the context of a nickel-
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catalyzed [2 + 1 + 1 + 1]-cycloaddition of enones using three methylene equivalents derived
from CHCl and six reducing equivalents supplied by Zn metal. Together, these results point to
opportunities for the development of other multicomponent cycloaddition reactions using
reductively generated CH: as a C1 partner.

1.7  Acknowledgements

This research was supported by the NIH (R35 GM124791). X-ray diffraction data were
collected using an instrument funded by the NSF (CHE-1625543). We thank Matthias Zeller for
assistance with X-ray crystallography. C.U. is an Alfred. P. Sloan Foundation Research Fellow.

1.8 References

(1) (a) Wilke, G. Angew. Chem., Int. Ed. 1963, 2, 105—115. (b) Heimbach, P. Angew. Chem., Int.
Ed. Engl. 1973, 12, 975-989. (¢) Saito, S. In Modern Organonickel Chemistry; Tamaru,
Y., Ed.; WileyVCH: Weinheim, 2005.

(2) (&) Reppe, W.; Schweckendiek, W. Justus Liebigs Ann. Chem. 1948, 560, 104—116. (b)
Vollhardt, K. P. C. Angew. Chem., Int. Ed. Engl. 1984, 23, 539-556. (c) Schore, N. E.
Chem. Rev. 1988, 88, 1081-1119. (d) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100,
2901-2916. (e) Agenet, N.; Buisine, O.; Slowinski, F.; Gandon, V.; Aubert, C.; Malacria,
M. Org. React. 2007, 68, 1-302.

(3) Miiller, H.; Wittenberg, D.; Seibt, H.; Scharf, E. Angew. Chem., Int. Ed. Engl. 1965, 4,
327-332.

(4) (a) Benson, R. E.; Lindsey, R. V. J. Am. Chem. Soc. 1959, 81, 4247—4250. (b) De Pasquale,
R. J. J. Organomet. Chem. 1971, 32, 381—-393. (c) Englert, M.; Jolly, P. W.; Wilke, G.
Angew. Chem. 1971, 83, 84—85. (d) Otsuka, S.; Nakamura, A.; Yamagata, T.; Tani, K. J.
Am. Chem. Soc. 1972, 94, 1037—-1038.

(5) (a) Whitesides, G. M.; Ehmann, W. J. J. Am. Chem. Soc. 1969, 91, 3800—3807. (b) Hardesty,
J. H.; Koerner, J. B.; Albright, T. A.; Lee, G.-Y. J. Am. Chem. Soc. 1999, 121,
6055—6067. (c) Agenet, N.; Gandon, V.; Vollhardt, K. P. C.; Malacria, M.; Aubert, C. J.
Am. Chem. Soc. 2007, 129, 8860—8871.

(6) Boche, G.; Lohrenz, J. C. W. Chem. Rev. 2001, 101, 697-756.
(7) (a) Hiroyoshi, K.; Nobuyuki, H. Chem. Lett. 1979, 8, 761—-762. (b) Kanai, H.; Hiraki, N.; lida,

S. Bull. Chem. Soc. Jpn. 1983, 56, 1025—1029. (¢) Hiroyoshi, K.; Yoshimasa, N.; Hideki,
M. Bull. Chem. Soc. Jpn. 1983, 56, 1592—1597.

21



(8) (a) Grubbs, R. H.; Miyashita, A. J. Am. Chem. Soc. 1978, 100, 7418—7420. (b) Miyashita, A.;
Ohyoshi, M.; Shitara, H.; Nohira, H. J. Organomet. Chem. 1980, 338, 103—111. (c)
Miyashita, A.; Grubbs, R. H. Tetrahedron Lett. 1981, 22, 1255—1256.

(9) (a) Mindiola, D. J.; Hillhouse, G. L. J. Am. Chem. Soc. 2002, 124, 9976-9977. (b) Waterman,
R.; Hillhouse, G. L. J. Am. Chem. Soc. 2003, 125, 13350—13351.

(10) Kosarych, Z.; Cohen, T. Tetrahedron Lett. 1982, 23, 3019-3022.

(11) (a) Everson, D. A.; Jones, B. A.; Weix, D. J. J. Am. Chem. Soc. 2012, 134, 6146—6159. (b)
Weix, D. J. Acc. Chem. Res. 2015, 48, 1767—-1775.

(12) Amador, A. G.; Sherbrook, E. M.; Yoon, T. P. J. Am. Chem. Soc. 2016, 138, 4722-4725.

(13) (a) Hoberg, H.; Peres, Y.; Kriiger, C.; Tsay, Y.-H. Angew. Chem., Int. Ed. Engl. 1987, 26,
771-773. (b) Ogoshi, S.; Haba, T.; Ohashi, M. J. Am. Chem. Soc. 2009, 131,
10350—10351.

(14) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165-195.

(15) Hartwig, J. F. Inorg. Chem. 2007, 46, 1936—1947.

(16) Alexander, J. J. In The Metal—Carbon Bond. Hartley, Fr., Patai, S., Eds.; Wiley: New York,
1985.

(17) Emschwiller, G. Compt. Rend. 1929, 188, 1555—1557.

(18) (a) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1959, 81, 4256—4264. (b) Charette, A.
B.; Beauchemin, A. Org. React. 2001, 58, 1-415.

22



CHAPTER 2. CATALYTIC [5+1]-CYCLOADDITIONS OF
VINYLCYCLOPROPANES AND VINYLIDENES

Reproduced with permission from Farley, C. M.; Sasakura, K.; Zhou, Y.-Y.; Kanale, V.
V.; Uyeda, C.” J. Am. Chem. Soc., 2020, 142, 4598-4603. DOI: 10.1021/jacs.0c00356.
Copyright 2020 American Chemical Society.

2.1 Abstract

Polysubstituted cyclohexenes bearing 1,3 (meta) substitution patterns are challenging to
access using the Diels—Alder reaction (the ortho—para rule). Here we report a cobalt-catalyzed
reductive [5 + 1]-cycloaddition between a vinylcyclopropane and a vinylidene to provide
methylenecyclohexenes bearing all-meta relationships. Vinylidene equivalents are generated
from 1,1-dichloroalkenes in combination with Zn as a stoichiometric reductant. Experimental
observations are consistent with the intermediacy of a cobaltacyclobutane formed from a [2 + 2]-

cycloaddition between a cobalt vinylidene and a vinylcyclopropane.

2.2 Introduction

The Diels—Alder reaction provides one of the most direct routes to polysubstituted
cyclohexenes and has been used extensively in the synthesis of complex biologically active
molecules.! Diels—Alder reactions between unsymmetrical dienes and dienophiles generally
proceed with high regioselectivity to form cycloadducts bearing 1,2 and 1,4 substitution patterns
(Figure 1). This selectivity principle applies to both normal and inverse electron-demand Diels—
Alder reactions and is commonly referred to as the ortho—para rule.? Frontier molecular orbital
interactions provide a rationale for this preference,® and it is challenging to overcome in order to

access 1,3-substituted (meta) cycloadducts.

An alternative cycloaddition that yields six-membered carbocycles is the [5 + 1]-
cycloaddition between a vinylcyclopropane and a carbene equivalent.* Sarel,> Aumann,® and
Taber” have reported carbonylation reactions of vinylcyclopropanes using stoichiometric

Fe(CO)s. Catalytic variants have also been developed using Co or Rh catalysts and CO gas.? In
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these reactions, 1,3-substituted products can be generated provided that the metal complex is
capable of selectively cleaving the less-hindered C—C bond of an unsymmetrically substituted
vinylcyclopropane. It would be attractive to employ this approach more broadly in [5 + 1]-
cycloadditions with C; partners other than CO.

Recently, we reported that dinickel catalysts promote reductive [2 + 1]- and [4 + 1]-
cycloaddition reactions using 1,1-dichloroalkenes as vinylidene precursors.® In the course of
these studies, we found that additions of 1,1-dichloroalkene 2 to vinylcyclopropane (1) yielded a
mixture of the [2 + 1]- and [5 + 1]-cycloaddition products. Despite this promising initial finding,
efforts to improve the selectivity for [5 + 1]-cycloaddition using a dinickel catalyst proved to be
unfruitful. Furthermore, we were unable to adequately control the E/Z geometry of the exocyclic
alkene. Here, we report that (quinox)Co catalysts promote high-yielding [5 + 1]-cycloadditions
of vinylidenes and vinylcyclopropanes. This method provides access to di- and trisubstituted

methylenecyclohexenes bearing all-meta relationships.
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Ortho/Para Cyclohexenes: [4 + 2]-Cycloadditions

or e or
A A [4+2]

Meta Cyclohexenes: [5 + 1]-Cycloadditions

. ring-opening X
\ X metal catalyst
OAK I Q
o [5+1]
o

Preliminary Results: Catalytic Vinylidene [5 + 1]-Cycloaddition

catalyst
Ji (5 mol%)
A/ cl Cl Zn (3.0 equiv)
Ar = 4-MeOPh

1 2
i-Pr,
— Me
— -_— | =
~»—N N =
> N /\Ni\\/ N | °
MG N Sy e Br\c\l N
i-Pr. 5 . \{ ; Br tBu
(NDI)Ni, (quinox)Co
Combined Yield (3+4) 87% 90%
[5+1]vs. [2 + 1] (3:4) 111 >20:1
Stereoselectivity (3-E:3-Z) 1:3 >20:1

Figure 2.1. Catalytic reductive [5 + 1]-cycloadditions of vinylcyclopropanes and 1,1-
dichloroalkenes.

2.3  Catalyst Comparison and Optimization Studies

Optimized conditions for the reductive [5 + 1]-cycloaddition of dichloroalkene 2 and
vinylcyclopropane 5 are shown in Table 2.1. A catalyst derived from Co(dme)Br2 (5 mol%) and
(£)-t-Bu-Quinox (6 mol%) provides cycloadduct 6 in 97% vyield with nearly exclusive E
stereochemistry (>20:1 E:Z) at the exocyclic double bond (entry 1). The reaction benefits from
excess vinylcyclopropane. However, the additional 2.0 equiv remains unreacted and can be
quantitatively reisolated from the crude reaction mixture during chromatographic purification.
With a smaller excess of 5 (1.5 equiv), yields up to 73% could be obtained at a slightly elevated
reaction temperature of 60 °C (entry 4). When dichloroalkene 2 was substituted with its dibromo

counterpart 7, low yields of 6 were obtained (entry 5).
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Table 2.1. Catalytic reductive [5 + 1]-cycloadditions: effect of reaction parameters.?

MeO.
MeO
2
(1.0 equiv) | Co(dme)Br, (5 mol%)
t-Bu-Quinox (6 mol%)

Cl Cl

+

Zn (3.0 equiv) 6
A( 5 rt, 16 h, DMA oh
Ph (3.0 equiv) Standard Conditions

o

R Me

entry changes from standard conditions® yield (3) E:Z(3)
1 none 97% >20:1
2 no Zn <1% —

3 1.5 equiv of 2 42% >20:1
4 1.5 equiv of 2 at 60 °C instead of rt 73% >20:1
5 7 instead of 2 15% >20:1
6 Mn instead of Zn 93% >20:1
7 TDAE instead of Zn <1% —

8 Cp2Co instead of Zn <1% —

9 Cp2Co and ZnBr; instead of Zn 63% >20:1
10 Ni(dme)Br; instead of Co(dme)Br> <1% -

11 Fe(dme)Br; instead of Co(dme)Br> <1% -

12 no (£)-t-Bu-Quinox <1% —

13 8 instead of (&)--Bu-Quinox 83% >20:1
14 9 instead of (+)-#-Bu-Quinox 15% >20:1
15 10 instead of (£)--Bu-Quinox <1% —

Yields and E:Z ratios of 6 were determined by 'H NMR analysis of crude reaction mixtures
containing 1,3,5-trimethoxybenzene as an internal standard. Reaction conditions: 2 (0.1 mmol,
1.0 equiv), 5 (3.0 equiv), Zn (3.0 equiv), Co(dme)Br. (0.05 equiv), (£)-t-Bu-Quinox (0.06
equiv), DMA (0.75 mL), rt, 16 h.

Zn proved to be the optimal reductant, but Mn provided comparable yields (entry 6).
Interestingly, Cp2Co, a soluble outersphere reductant, also promoted formation of 6 but only in

the presence of added ZnBr» (entries 8 and 9). This result suggests that ZnX>, a reaction
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byproduct formed under the standard conditions, may play a critical role in the catalytic

mechanism.

When Co(dme)Br2 was replaced with Fe(dme)Br> or Ni(dme)Br2, no conversion of
dichloroalkene 2 was observed (entries 10 and 11). The reaction is highly sensitive to the
structure of the ancillary ligand. The oxazoline portion can be varied to some extent with only
moderate changes in yield (entry 13). However, ligands containing pyridine in the place of
quinoline led to little or no yield of 6 (entries 14 and 15). Other nitrogen-based chelating ligands,
including those commonly used in catalytic reductive cross-coupling reactions,'® were also
investigated but found to be ineffective at promoting the [5 + 1]-cycloaddition (see Supporting

Information).

2.4  Substrate Scope Studies

1,1-Dichloroalkenes bearing alkyl, aryl, or heteroaryl substituents undergo [5 + 1]-
cycloaddition in high yield with model vinylcyclopropane 5 (Figure 2.2). Ketone-derived 1,1-
dichloroalkenes are viable substrates and afford products containing hindered tetrasubstituted
alkenes (products 16 and 17). A variety of common functional groups are tolerated, including
free alcohols, ethers, thioethers, esters, carbamates, sulfonamides, and boronate esters.
Vinylcyclopropanes containing terminal alkenes (either monosubstituted or 1,1-disubstituted)
generally react efficiently. Vinylcyclopropanes containing internal alkenes are a limitation of the
method. For all products, E stereochemistry is favored at the exo methylene. The diastereomeric
ratio is dependent on the nature of the substituent on the 1,1-dichloroalkene: aryl and heteroaryl
groups provide the E diastereomer almost exclusively, whereas alkyl substituents lead to lower
selectivities in the range of 5:1 to 12:1. The products generated in the [5 + 1]-cycloaddition
possess a skipped diene, and no isomerization was observed during the reaction or during

product isolation.
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Co(DME)Br, (5 mol%) : 6

(£)-t-Bu-Quinox (6 mol%)
N | > : N
cl Cl Zn (3.0 equiv)

DMA, rt
3.0 equiv 1.0 equiv

1,1-Dichloroalkene Scope (|302Et o

1" R=H 87% Yield (>20:1 E:Z
6 R = OMe 94% Yield (>20:1 E:Z

( )

( )
12 R=CF, 65% Yield (>20:1 E:2) ‘
13 R=BPin 60% Yield (>20:1 E:Z) ‘

( )

( )

14 R=CO,Me 70% Yield (>20:1 E:Z
15 R=SMe 83% Yield (>20:1 E:Z

16 90% Yield 17 76% Yield 18 89% Yield
(>20:1 E:2)

19 57% Yield 20 58% Yield 21 80% Yield 22 71% Yield 23 70% Yield 24 99% Yield
(5:1 E:2) (>20:1 E:2) (>20:1 E:2) (>20:1 E:2) (12:1 E:2) (>20:1 E:2)

Vinylcyclopropane Scope

MeO.

25 76% Yield 26 77% Yield 27 86% Yield 28 80% Yield 3 70% Yield
(>20:1 E:2) (>20:1 E:2) (>20:1 E:2) (>20:1 E:2) (>20:1 E:2)

Figure 2.2. Catalytic reductive [5 + 1]-cycloadditions of vinylcyclopropanes and vinylidenes.
Reactions were conducted using the standard conditions shown in Table 2.1.

The [5 + [1]-cycloaddition provides access to all-mefa trisubstituted
methylenecyclohexenes using vinylcyclopropanes of the general structure shown in Figure 2.3.
Vinylcyclopropane 29 was prepared in highly enantioenriched form and was converted into
methylenecyclohexene 30 without any loss in enantiomeric excess.”® For all substrates that were
examined, the catalyst only targeted the less hindered C—C bond of the cyclopropane. The
alternative 1,2,4-regioisomer, which would be formed by cleavage of the more hindered C—C
bond, was not detected. Organometallic mechanisms for cyclopropane ring-opening (either

oxidative addition or o-bond metathesis) are generally sensitive to steric effects.*!! However, a
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recent nitrene cycloaddition produced the alternative 1,2,4-regioismers due to a proposed radical

based ring-opening mechanism.!?

Co(DME)Br, (5 mol%) : (R)-30 :

(#)-t-Bu-Quinox (6 mol%) : :

o" : | E 5

cl Cl Zn (3.0 equiv) ; 5

DMA, rt : :

3.0 equiv 1.0 equiv : :

‘/i :&O

Me Ph Ph Ph

\4

MeO. MeO. MeO.
:&\ \3\ BOC&
Ph

Me

30 70% Yield 31 73% Yield 32 70% Yield 33 61% Yield 34 60% Yield 35 84% Yield
(12:1 E:2) (10:1 E:2) (14:1 E:2) (19:1 E:2) (>20:1 E:2) (911 E:2)
MeO.

O standard
| A’/ conditions
o) ‘ Ph
Me Q i Ph
(1.0 equiv) 29 >99% ee 30 70% yield
0,
36 81% Yield 37 76% Yield (3.0 equiv) (12:1 £:2, >99% ee)
(16:1 E:Z) (12:1 E:2)

Figure 2.3. Synthesis of all-meta trisubstituted methylenecyclohexenes via [5 + 1]-cycloadditions.
Reactions were conducted using the standard conditions shown in Table 2.1.

25 Product Derivatization Studies

The [5 + 1]-cycloadducts can be oxidized to form 1,3,5-trisubstituted aromatic products.
Arenes of this type, possessing all-meta substitution patterns, would be challenging to synthesize
through conventional aromatic substitution or cross-coupling approaches. Dehydrogenation
reactions were accomplished using Pd/C as a catalyst without the need for an H> acceptor
(products 38-42).13 Dehydrogenation of the methylenecyclohexenes could also be carried out
with SeO; but led to concomitant oxidation of the benzhydryl group to a benzophenone (products
44 and 45). Finally, the skipped diene in the cycloaddition products can be isomerized into

conjugation using KOt-Bu (products 43).
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38 58% Yield 40 50% Yield 42 35% Yield

T (1)
l (1)

(1
(2)
MeO,C MeO
“e) g 9
|
o, Mo S
“Me

39 77% Yield 41 53% Yield 43 78% Yield 45 55% Yield

(1)
(1

z—

Figure 2.4. Oxidation and isomerization reactions of cycloadducts. Reaction conditions: (1) Pd/C
(10 wt%), ethylene glycol, 200 °C; (2) KOtBu, DMF, 0 °C; (3) SeO-, 1,4-dioxane, 100 °C.

2.6 Reaction Mechanism Studies

Results pertaining to the mechanism of the reaction are summarized in Figure 3.5. Our
first experiment was aimed at determining whether the (quinox)Co catalyst promotes the ring-
opening of vinylcyclopropanes!* in the absence of the 1,1-dichloroalkene. When subjected to the
standard [5 + 1]-cycloaddition conditions, vinylcyclopropane 5 was recovered unreacted (Figure
2.5a). This result is consistent with a mechanism in which vinylidene formation precedes ring-
opening of the vinylcyclopropane. We next considered a mechanism involving an initial [2 + 1]-
cycloaddition followed by rearrangement to form a six-membered ring.*> This mechanism was
ruled out by subjecting dicyclopropane 4, the putative intermediate in this sequential mechanism,
to the standard [5 + 1]-cycloaddition conditions. No conversion of 4 was observed after 48 h at

room temperature (Figure 2.5b).
When allyl benzene (46), a monosubstituted alkene lacking the cyclopropane, was

subjected to the standard [5 + 1]-cycloaddition conditions, a methylenecyclopropane product (47)

was obtained (Figure 2.5¢). Interestingly, the reaction is highly selective for the Z diastereomer.
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This finding is in striking contrast to Ni, catalyzed methylenecyclopropanations,® which
generally produce near 1:1 E/Z mixtures for this class of alkenes. Taken together, these results
suggest that the [2 + 1]- and [5 + 1]-cycloadditions may be mechanistically related and that a
common step is responsible for determining the E/Z selectivity. Finally, unlike the [5 + 1]-
cycloaddition, more hindered 1,1-disubstituted alkenes, such as a-methylstyrene, are unreactive,

presumably due to the increased steric hindrance in the ring-closure step.

A B
MeO.
standard standard
conditions no conditions no
—_— rearrangement _— rearrangement
Ph 4
5
D
OMe
cl = cl =
cl standard Cl standard OMe
2 OMe  conditions 2 OMe  conditions Ph
+ + A
_ / Ph Z
pr” NF Ph $
46
49 50% Yield
47 64% Yield >90-1 E-
20:1 E:Z
(>20:1 Z:E) 48 ( )
E Al Ar:
3 ) 2 + 2] 7 ring Co_J C-C reductive | E
Co cycloaddition c Y expansion elimination
! e 0 = e e
Qo Ph

50 51 Ph

1l A

Ar

Ar C—-C reductive 5 p-hydride T Y C-C reductive D/phqu\i

/WZ) elimination c 7 ellm/nat:on Co elimination
= «— 0 \
Ph

Ph

S

Ph
52

Figure 2.5. Experiments probing potential (a) vinylcyclopropane ring-opening and (b)
dicyclopropane rearrangement mechanisms. (c) Catalytic reductive methylenecyclopropanation
of a terminal alkene. (d) Catalytic reductive addition/isomerization of vinylidenes to a
vinylcyclobutane. Reactions were conducted using the standard conditions shown in Table 1. (e)
Unified vinylidene [2 +2]-cycloaddition mechanism for the formation of [2 + 1]-cycloaddition,
[5 + 1]-cycloaddition, and coupling products.

Cyclobutanes are moderately less strained than cyclopropanes'® and generally less
reactive toward transition metal catalyzed ring-opening processes.!” Accordingly,

vinylcyclobutane 48 did not yield the corresponding [6 + 1]-cycloaddition product, but instead
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generated diene 49, containing the intact cyclobutane ring (Figure 2.5d). The formation of this
product can be rationalized by invoking a B-hydride elimination that outcompetes other ring-

opening or ring-closing steps.

The three different products obtained from simple alkenes, vinylcyclopropanes, and
vinylcyclobutanes can be rationalized according to a single general mechanism as shown in
Figure 2.5e. Oxidative addition of the 1,1-dichloroalkene followed by Zn reduction would
generate a Co(vinylidene) intermediate. [2 + 2]-cycloaddition of the Co(vinylidene) and the
alkene forms a metallacyclobutane (50). The E/Z selectivity for all three product classes is
established in this step of the mechanism and requires the alkene to approach the Co(vinylidene)
from the less hindered face. From here, methylenecyclopropanes are generated by C—C reductive
elimination. In the case of the vinylcyclopropane substrate, ring-expansion of metallacyclobutane
50 forms metallacycloheptene 51, which then undergoes reductive elimination to yield the [5 +
1]-cycloadduct. Finally, because cyclobutanes are less strained than cyclopropanes, intermediate

50 may undergo [B-hydride elimination instead of ring expansion. C—H reductive elimination

from 52 would yield the linear skipped diene product.

2.7 Conclusions

In summary, cobalt-catalyzed vinylidene [5 + 1]-cycloadditions are a useful complement
to the Diels—Alder reaction in that they provide access to six-membered rings containing meta
substitution patterns. The stereoselectivity of the reaction and the products generated from
additions to simple alkenes and vinylcyclobutanes have led us to propose a cobaltacyclobutane
intermediate, which may arise from a [2 + 2]-cycloaddition between a cobalt vinylidene species
and an alkene. We are currently exploring other avenues to generate or intercept this intermediate

as a platform to develop new reductive vinylidene transfer reactions.
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CHAPTER 3. ORGANIC REACTIONS ENABLED BY
CATALYTICALLY ACTIVE METAL-METAL BONDS

3.1 Abstract

Molecular transition metal catalysts are predominantly Werner-type coordination
complexes, wherein a single metal ion surrounded by ligands functions as the sole locus of
reactivity. A major focus of organometallic chemistry has been to understand how supporting
ligands can be rationally modified in order to access more active and selective catalysts. Since
the 1960’s, however, it has been recognized that metals can also form direct metal-to-metal
bonds, giving rise to an extraordinary diversity of multinuclear assemblies. If metal-metal
bonding could be harnessed productively in catalysis, it would provide access to a large
parameter space that is not available through ligand modification. This review highlights recent
examples of organic transformations that were discovered using catalysts containing metal-metal

bonds.

3.2 Introduction

Transition metal catalysis provides access to valuable organic transformations that would
otherwise suffer from prohibitively high activation barriers or poor selectivity. Developing a
catalyst for a reaction of interest is typically a lengthy process that begins with identifying an
initial hit then carrying out systematic modifications in order to achieve the desired level of
efficiency. One of the most powerful tools available to synthetic chemists for optimizing the
performance of a catalyst is the identity of the supporting ligands. Supporting ligands exert an
influence on the d-orbital structure of metal ions and thus control the types of organic substrates
that can bind to a catalyst as well as the organometallic processes that are feasible (Figure 3.1a).
Additionally, the steric environment of supporting ligands can be precisely engineered in order to

achieve high levels of regio- or stereoselectivity.

Beyond coordinating ligands, transition metals are also capable of engaging in direct
metal-to-metal interactions. Since the seminal work of Cotton in the 1960’s, there have been

considerable advances in our understanding of the electronic factors that underlie metal-metal
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bonding.>? There are now over 40,000 structurally characterized metal-metal bonds compiled in
the Cambridge Structural Database between elements spanning much of the d-block.® The scope
of metal-metal bonding interactions between two transition metals is particularly rich due to the
availability of d-orbitals.* Examples range from strong metal-metal quintuple bonds to weak

metallophilic interactions that are similar in strength to non-covalent hydrogen bonds.
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Figure 3.1. (A) Metal-ligand and metal-metal interactions provide complementary tools to
control the electronic structure of transition metal catalysts. (B) Metal-metal bonds can serve as
single site or multi-site catalysts.

Understanding how metal-metal bonding might play a role in catalysis, either beneficial
or deleterious, is a research area that is still very much in its infancy.>® Nevertheless, there is
significant evidence to suggest that metal-metal bonds can give rise to unique catalytic
properties that are challenging to access with just a single transition metal. Examples of catalysts
featuring metal-metal bonds can be broadly divided into two categories (Figure 3.1b). In the first,
only one of the two metals acts as the site of reactivity (single site reactivity), but the second
metal nonetheless plays an important supporting electronic role. For example, Rhz-based
catalysts generate unusually electrophilic carbene complexes due to three-centered bonding
interactions in the Rh—Rh—CR, fragment.® In the second category, both metals directly bind

substrates and mediate organometallic transformations (multi-site reactivity). One of the most
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prominent examples in organic chemistry is the Co2(CO)s-mediated Pauson-Khand reaction®%!,
which is initiated by a dinuclear oxidative coupling of an alkene and an alkyne to yield a
dicobaltacyclic intermediate. In this Review, we highlight select cases in which metal-metal
bonded catalysts carry out organic transformations that are not viable using their closest
mononuclear counterparts. A focus of our discussion is on connecting the fundamental electronic

properties of metal-metal bonds with observed catalytic phenomena.

3.3  Pd(I)-Pd(l) bonds in cross-coupling reactions: from off-cycle resting states to
catalytic intermediates

One potential consequence of metal-metal bonding in a catalytic process is to create off-
cycle dimers that decrease the fraction of active catalyst and result in lower-than-expected
turnover frequencies (Figure 3.2a). For example, the canonical mechanism of the Suzuki—
Miyaura cross-coupling reaction invokes only the even oxidation states of Pd, specifically Pd(0)
and Pd(Il). However, recent studies from Hazari indicate that Pd(l)-Pd(l) species may also
assemble under standard catalytic conditions and that the extent of catalyst dimerization may be
a key determinant of reaction efficiency.!? Prior to this work, Nolan had noted a striking
enhancement in cross-coupling rates using a second-generation (IPr)Pd(cinnamyl)CI precatalyst
(IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) in the place of their previously reported
(IPr)Pd(ally)Cl precatalyst.**** Given that the allyl ligand is not retained during catalytic
turnover, this enhancement was attributed to a faster rate of precatalyst activation. Hazari later
recognized that the reduction of (IPr)Pd(allyl)Cl precatalysts using boronic acid and base leads to
the formation of dimeric (IPr)2Pd2(p-allyl)(u-Cl) species 1, which is in equilibrium with
monomeric Pd(0).*2 By carrying out equilibrium constant measurements, it was shown that the
cinnamyl group serves to sterically disfavor dimerization, leading to a higher fraction of active
mononuclear catalyst.

Related phenomena have since been documented in other Pd-catalyzed reactions. Barnard
reported the Pd-catalyzed aminocarbonylation of aryl chlorides using CO and NH4CI1.2%2! In
subsequent mechanistic studies, Hartwig observed that (dcpp)Pd2(CO)(H) dimer 2 (dcpp =
dicyclohexylphosphinopropane) is generated under catalytic conditions and that it accumulates

as the reaction progresses.’® The dimer was determined to be an inactive catalyst state that forms
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when the mononuclear (dcpp)Pd(CO)2 complex, which is the dominant on-cycle resting state,
undergoes protonation by NH4Cl. This finding suggests that longer-lived catalysts for Pd-
catalyzed carbonylation reactions might be identified by designing sufficiently hindered
supporting ligands to disfavor dimerization. In a similar vein, Ni-catalyzed reactions are also

susceptible to the deleterious formation of Ni(l) dimers.
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Figure 3.2. (A) Pd exhibits a propensity to form metal-metal bonded dimers in the +1 oxidation
state. (B) Pd(l) dimers as off-cycle resting states or catalyst decomposition products in cross-
coupling reactions.'?'>® (C) Pd(l) dimers as catalytic intermediates in transhalogenation
reactions.)’ (D) Development of catalytic aryl halide trifluoromethylthiolation'®, and
trifluoromethylselenolation reactions'®

Martin carried out mechanistic studies of a Ni-catalyzed C-Si cross-coupling reaction

and discovered a series of dinuclear (CysP)Ni2(Ar)(OPiv) complexes (3) that are produced when
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the Ar—OPiv substrate undergoes C—-O oxidative addition at Ni(0).1%2? Presumably, this dimer is
formed because a transient Ni(ll) species is rapidly captured by Ni(0). Unlike the Pd-catalyzed
aminocarbonylation reaction, however, these dimers are in rapid equilibrium with on-cycle
mononuclear Ni(ll) due to a relatively facile disproportionation process. Consequently, the
ability of the Ni catalyst to dimerize has the net effect of slowing down turnover but does not

lead to catalyst deactivation.

A less common role of metal-metal bonded dimers in a cross-coupling process is to
facilitate catalysis by lowering the activation barrier of the rate-determining step. For example,
reductive eliminations become increasingly challenging as the reacting fragments become more
electron deficient. This step represents one of the principal impediments to the development of
Pd-catalyzed cross-coupling reactions that involve weakly nucleophilic partners, such as fluoride
or related polyfluorinated nucleophiles.?®?* Nevertheless, the installation of fluorine has attracted
significant interest in medicinal chemistry due to the ability of fluorine to block drug metabolism.
Additionally, '°F-labelled compounds have applications as PET imaging agents. One solution
that has been employed is to oxidize Pd to the +4 oxidation state, thereby triggering a facile
reductive elimination to Pd(I1).2>?® One drawback, however, is the need for a strong oxidant in

order to access this unusually high-valent state of Pd.

An alternative approach is to couple a challenging C—X reductive elimination to the
formation of a stabilizing Pd-Pd bond (Figure 3.2c). The net consequence of a dinuclear
reductive elimination would be to delocalize the overall two-electron process over two redox-
active Pd atoms, allowing each to contribute only a single electron. In this context, Schoenebeck
described a catalytic halide exchange reaction that converts an aryl iodide into an aryl bromide
using n-BusNBr.Y” The catalyst is the [(t-BusP)PdlI]. dimer 6. Mechanistic studies revealed that
the isolable mononuclear (t-BusP)Pd(Ar)(Br) species 4 is incapable of undergoing C-Br
reductive elimination. However, reductive elimination becomes facile using the dimeric analogue
5, and kinetics studies indicate that the dimer remains intact during this process rather than
undergoing a pre-equilibrium dissociation. Computational models of the reductive elimination
transition state show partial Pd—Pd bonding (Pd—-Pd = 2.79 A), which is indicative of direct

electronic communication between the two Pd centers. By exploiting this dinuclear mechanism,
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Schoenebeck was able to discover the first catalytic C-SeCFs cross-coupling reaction of aryl

iodides?®, along with a related C-SCF3 cross-coupling (Figure 3.2d).18

3.4  Circumventing one-electron pathways to enable catalytic C—H borylations with Fe

As exemplified in the cross-coupling reactions described above, two-electron redox
processes, such as oxidative addition and reductive elimination, underlie the mechanisms of
many catalytic transformations. For this reason, noble transition metals feature prominently in
homogeneous catalysis relative to their more abundant and less expensive first-row congeners.
Base metal-catalyzed reactions often suffer from lower efficiencies due to competing one-
electron processes, which can lead to side-product formation or catalyst degradation.?’
Cooperativity between two base metals has recently emerged as a strategy to combat this
limitation. In these cases, two first-row transition metals that would individually undergo facile

single-electron chemistry instead act in concert to achieve a net two-electron redox process.

One such example was recently described by Mankad in the context of a photochemical
arene C—H borylation using heterobimetallic (IPr)Cu—Fp catalyst 12 (Fp = Fe(Cp)(CO).).28 C-H
borylation reactions are of significant value in organic synthesis because they transform
ubiquitous C—H bonds into valuable C-B linkages, which can then be parlayed into a range of
other functional groups. The most general C—H borylation reactions currently rely on Ir-based
catalysts that generate Ir(l11)-boryl species (7) as key intermediates (Figure 3.3a).2%3! However,
prior to the development of Ir-catalyzed C—H borylations, Hartwig found that the very simple
Fp—Bcat complex 8, derived from the Fp anion and Cl-Bcat, was capable of borylating the C-H
bond of benzene when activated with light (Figure 3.3b).3? The metal-containing byproduct of
this reaction is Fp—H 9, which dimerizes and eliminates Hz to form Fp2 10. The Fp> dimer is
sufficiently stable that it does not activate R.B—H reagents, a requisite step for catalytic turnover.

Mankad hypothesized that Fp> dimer formation could be circumvented by intercepting
the transient Fp—H 9 with a reactive Cu—H species (11) to yield a Fe—Cu heterobimetallic
complex (12).2¢ Then, a bimetallic oxidative addition of H-Bpin would regenerate the Cu-H 11

and form the Fp—Bpin species required to activate the arene substrate. In support of this proposed
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pathway, it was found that Fp—H, generated in situ from KFp and HCI, reacts with [(IPr)CuH]2
11 to provide the heterobimetallic (IPr)Cu—Fp complex 12. This species was shown to undergo
an endothermic oxidative addition®® of H-Bpin to form [(IPr)CuH]. and Fp-Bpin, the species

shown by Hartwig to undergo C—H borylation.
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Figure 3.3. (A) Arene C—H borylations using Ir catalysts. 3 (B) From stoichiometric to catalytic
C—H borylations using base metal catalysts.*? (C) Photoinduced catalytic C—H borylations using
heterobimetallic Fe/Cu catalysts.?®

This sequence of stoichiometric reactions was combined to enable a catalytic protocol for
arene C—H borylation using complex 12 as a catalyst (10 mol% loading) and a Hg lamp as the
light source (Figure 3.3c).?® Lending credence to the critical role of metal-metal cooperativity in

this reaction, it was found that neither of the individual mononuclear components, Fp—Bpin or
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(IPr)Cu-Cl, were effective catalysts on their own. Together, these studies illustrate that the two-
electron processes characteristic of noble metals can be emulated by exploiting bimetallic

pathways that involve two base metals.

3.5 Niz2 catalysts suppress 1,2-rearragements of vinylidenes and promote transfer

reactions to olefins

Group 10 elements such as Pd and Ni form metal-metal bonds in the odd-electron
oxidation states but prefer to remain mononuclear in the M(0) and M(Il) oxidation states.
Consequently, when M(1)-M(l) dimers undergo redox reactions, such as oxidative addition or
reductive elimination, the metal-metal bond is invariably cleaved.3* Our group is interested in
designing metal-metal bonds that are capable of remaining intact during a catalytic process
rather than undergoing reversible dissociation and reassociation. In order to accomplish this goal,
we employed a naphthyridine—diimine (NDI) pincer ligand, which possesses a highly conjugated
n-system that is redox active and capable of being reduced at mildly anodic potentials.®® The
redox-active nature of the NDI ligand proved to be valuable in preparing stable dinuclear
complexes of low-valent Ni. Free NDI reacts with Ni(COD)2 (2.0 equiv) in CgHs to afford the
[NDI]Ni2(CsHe) complex 13. An analysis of the electronic structure of 13 reveals that Ni(0) has
undergone an oxidation to Ni(l), which allows for the assembly of a stable metal-metal covalent
single bond. Correspondingly, the ligand is reduced by two electrons to its 2— charge state.
Common organic electrophiles react at the Ni—Ni bond to generate oxidative addition products in
which the ligand has been returned to its neutral charge state. For example, complex 13 reacts
with B-bromostyrene to yield Nix(vinyl)Br complex 14 (Figure 4.4b). An unusual structural
feature of 14 relative to mononuclear Ni(vinyl) complexes is the presence of a secondary n?-n

interaction, which is enabled by the proximity of the two Ni atoms.
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A Designing Catalytic Vinylidene Transfer Reactions Challenge: Suppressing the Fritsch-Buttenberg-Wiechell

(FBW) Rearrangement
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Figure 3.4. (A) Designing catalytic vinylidene transfer reactions by suppressing the competing
Fritsch—Buttenberg—Wiechell (FBW) rearrangement. (B) Dinuclear stabilization of vinyl ligands
and a proposed Niz-bound vinylidenoid. (C) Stoichiometric methylenecyclopropanation using a
1,1-dichloroalkene. (D) Catalytic reductive methylenecyclopropanations of alkenes.*

The stability afforded to vinyl ligands by the dinuclear active site of 13 may be leveraged
to carry out catalytic transfer reactions of vinylidenes (Figure 3.4a).% Vinylidenes exhibit similar
reactivity patterns to carbenes but suffer from a competing rearrangement known as the Fritsch—
Buttenberg—Wiechell (FBW) rearrangement, which generates the corresponding isomeric
alkyne.3"° This rearrangement is the mechanistic basis for common alkynylation methods such

as the Corey—Fuchs*® and Seyferth-Gilbert homologation reactions.***> According to
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computational models, vinylidene rearrangements are exothermic by approximately 45 kcal/mol
and, when the migrating group is a hydrogen atom, possess activation barriers as low as 1.5
kcal/mol.*® Consequently, cyclopropanation reactions using free vinylidenes are only viable in
specialized cases where the rearrangement can be sufficiently disfavored to allow the vinylidene

to react productively with the olefin substrate.

In our early experiments, we noted that Ni> complex 13 reacts stoichiometrically with
1,1-dichloroalkenes to generate reactive vinylidene equivalents (Figure 3.4c).%® These species
were not sufficiently stable to be isolated but could be trapped in situ with an alkene to afford the
corresponding methylenecyclopropane product in high yield. Notably, the reaction proceeds
without any competing formation of a terminal alkyne byproduct, indicating that the metal
complex is effectively serving to suppress the FBW rearrangement. This stoichiometric process
was rendered catalytic by employing a suitable reductant that is capable of returning the oxidized
Ni2Cl, catalyst to its initial reduced state. Accordingly, catalytic methylenecyclopropanation
reactions of terminal alkenes and unhindered internal alkenes were accomplished using 1,1-

dichloroalkenes in combination with Zn (Figure 3.4d).

3.6 Rh-Rh bonds form highly electrophilic carbene complexes that react with

unactivated C—H bonds

Beyond the vinylidene transfer reaction described above, dinuclear catalysts have also
enabled remarkable transformations of simple carbenes. A long-standing goal in organic
synthesis is to develop selective catalytic processes that are capable of functionalizing a single
C—H bond within a complex substrate.*** In this context, carbene transfer reactions have
garnered significant interest, because free carbenes possess sufficiently high reactivity to
undergo insertions into aliphatic C—H bonds, even in cases where there are no activating
substituents present. The challenges for catalyst design are to avoid overly tempering the
reactivity of the metal-bound carbene while maintaining an appropriate catalyst environment to
control C—H bond selectivity.

Dirhodium tetracarboxylates were introduced as carbene insertion catalysts by Teyssié in the

1970’s and have since emerged as being among the most synthetically useful catalysts for C—H
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functionalization reactions.*®#’ While many other catalysts are also capable of decomposing
diazoacetate reagents to form reactive carbene equivalents, Rh, catalysts are distinguished by
their unusually high reactivity. The basic mechanistic framework for these reactions involves an
initial binding event of the diazoalkane reagent to the metal catalyst, inducing N2 elimination to
form a metal-bound carbene (Figure 3.5a). This M=CR> species is then poised to undergo bond

insertion through a concerted three-centered transition state.*3->°
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Figure 3.5. (A) Formation of Rhz carbene complexes using Rhy tetracarboxylate catalysts. (B)
Rh. carbenes are highly reactive due to three-centered - and m-bonding interactions.®®! (C)
Regio- and stereoselective C—H insertion reactions using chiral Rh; catalysts.>>3

At the time of its initial discovery, there was little understanding of how the dinuclear
nature of the Rh2(O2CR)4 catalysts contributed to their remarkable reactivity. However, this
question has recently been addressed using modern experimental and computational techniques.
In 2013, Davies and Berry obtained direct spectroscopic data on an authentic donor—acceptor
carbene bound to Rh2.>* This work was quickly followed by the first crystallographic structure of
a Rh, donor—acceptor carbene complex reported by Firstner.> These data, combined with DFT

modeling studies, have suggested two electronic factors that contribute to the high reactivity of
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Rh; carbenes (Figure 3.5b).%%! First, c-bonding in the linear Rn—Rh—CR; fragment is a net three-
centered/four-electron interaction, which has the effect of substantially weakening the Rh—CRz
bond. This phenomenon can be viewed as a type of trans influence, where the high-energy dz?
orbital of the second Rh donates into the Rh—CR2 o*. Second, the LUMO of the Rh—Rh—-CR2 is a
three-centered ©* orbital that is highly polarized toward carbon. This polarization causes the
carbon to be electrophilic in character, facilitating its interaction with C-H o-bonds. While it
may be feasible to access similarly electrophilic M=CR: species using mononuclear catalysts, the
weakening of the Rh—C c-bond and the high LUMO coefficient on C are electronic features that

are specifically conferred by the dinuclear nature of Rh catalysts.

The high reactivity of Rh, carbenes provides a powerful platform for the development of
selective C—H bond insertion reactions (Figure 3.5c). For example, Davies described the use of a
hindered chiral catalyst to carry out regioselective insertions of carbenes into the more accessible
secondary carbon of n-pentane.’> The reaction proceeds with high diastereo- and
enantioselectivity due to the highly engineered binding pocket of the catalyst. By decreasing the
steric profile of the catalyst, more electrophilic tertiary carbons could be selectively targeted,

again with high levels of stereocontrol.>

3.7  Facile ligand exchange in Ruz-catalyzed propargylic substitution reactions

Hidai and Nishibayashi have also observed a beneficial effect of a dinuclear catalyst in a
series of propargylic substitution reactions that proceed through allenylidene intermediates.%®>’
Metal-mediated propargylic substitutions have been extensively documented since the seminal
work of Nicholas using Co2(CO)s and a Lewis acid to activate propargylic ethers.>® However,
rendering these processes catalytic has proven to be difficult due to the requirement for an
oxidative demetallation step to release the product from the dicobalt complex. In 2000, Hidai and
Nishibayashi demonstrated a catalytic substitution reaction of propargyl alcohols using simple
alcohols as nucleophiles (Figure 3.6a).° The catalyst was the dinuclear Ruz complex 19, which
was shown to react stoichiometrically with terminal alkynes to generate allenylidene species
20.5%%0 The proposed mechanism involves a sequence of vinylidene formation, via a 1,2-

hydrogen atom shift, followed by dehydration. Notably, when monoruthenium complexes were
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examined as catalysts, none were found to be active, despite their similar ability to convert
alkynes into metal allenylidenes.

Hidai’s studies suggest that whereas a single Ru site may be capable of mediating the
stoichiometric steps of a propargylic substitution, the intermediates of this process do not fall at
appropriate relative energies to promote facile catalytic turnover. To provide insight into the role
of the metal-metal interaction in achieving efficient catalysis, Nakamura reported a
computational study on the mechanism of substitution (Figure 3.6b).6* The calculated pathway
was shown to be akin to the mechanism of Rhz carbene transfer reactions in the sense that one
metal center bears the carbene, while the second metal acts as a supporting metallaligand. In the
case of Rup-catalyzed substitution reactions, the Ru—Ru bond was proposed to stabilize the
coordinatively unsaturated intermediate that forms when the product alkyne dissociates.
Additionally, calculations suggested that the supporting Ru withdraws electron density from the
active Ru, decreasing its back-bonding ability and accelerating the rearrangement of the alkyne

to a metal vinylidene.

Many other catalysts have since been demonstrated to promote propargylic substitution
reactions. However, the Rux-catalyzed process remains unusual in the breadth of its nucleophile
scope.>” A variety of simple heteroatom nucleophiles, such as alcohols, anilines, amides, and
thiols are viable. In addition, carbon nucleophiles, such as simple ketones, undergo substitution
even in the absence of an added base. m-Nucleophiles such as electron-rich arenes and simple
alkenes also provide substitution products in high yield. Intramolecular variants of these
processes provide access to polycyclic structures. Finally, highly enantioselective propargylic
substitutions were carried out using Ru. catalysts bearing chiral thiolate ligands (Figure 3.6c).
Enantioselectivities in the >90% ee range were demonstrated in both inter- and intramolecular

reactions.5%64
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Figure 3.6. (A) Ru; catalysts for the substitution reactions of propargylic alcohols.>® (B) Ru-Ru
interaction facilitates ligand substitution by stabilizing the low-coordinate state.®* (C) Catalytic
asymmetric propargylic substitutions using chiral Ru, catalysts.5?

3.8 Concluding remarks

There are now several documented examples of catalytic processes in which the
formation of a metal-metal bonded dimer either inhibits turnover or leads to irreversible catalyst
deactivation.'>1®22 In these cases, designing new sterically hindered ligands that impede
dimerization may present future avenues to rationally improve catalytic efficiency. More
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tantalizing are the few cases in which metal-metal bonding confers a uniquely beneficial effect

that is challenging, or perhaps impossible, to replicate using a single transition metal.

Early examples of catalytically active metal-metal bonds were discovered
serendipitously, without regard for how the metal-metal interaction might impact catalysis. Such
is the case with Rhy tetracarboxylates, which were identified nearly half a century ago as being
superior to other classes of mononuclear carbene transfer catalysts in certain C—H
functionalization reactions.*® It was not until many decades later that modern experimental data
and theoretical models have shed light on these empirical observations.>®***% In parallel with
these advances, metal-metal bonded species are increasingly being identified from reactions,
whose accepted mechanisms only involve mononuclear complexes. These cases appear to be
particularly common in the Ni triad, where a catalyst can be diverted from a M(I1)/M(0) cycle by
a comproportionation process that forms a M(1)-M(I) dimer.t” A future goal in this field will be
to take the mechanistic insights gleaned from these case studies to rationally design multinuclear

catalysts that can capitalize on the delocalized electronic structure of metal-metal bonds.
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APPENDIX A. SUPPORTING INFORMATION FOR CHAPTER 2

1. General Information

General considerations. Solvents were degassed and stored over activated 3 A
molecular sieves prior to use. Commercially available anhydrous N,N-dimethylacetamide (DMA)
subjected to additional drying over activated 3 A molecular sieves prior to use. Deuterated
solvents were purchased from Cambridge Isotope Laboratories, degassed, and stored over
activated 3 A molecular sieves. All other reagents and starting materials were purchased from
commercial vendors and used without further purification unless otherwise noted. Liquid
reagents were degassed and stored over activated 3 A molecular sieves prior to use. Zn powder
(325 mesh, 99.9%) was purchased from Strem Chemicals, stored under inert atmosphere, and
used without further purification. The [P'NDI]Ni2(CsHs) complex was prepared according to
previously reported procedures.® The Ni(Ph,Me-acac)2? and Ni(Phz-acac),® complexes were
prepared according to previously reported procedures.

Physical methods. 'H, °F and *C{*H} NMR spectra were collected at room
temperature on a Varian INOVA 300 MHz or a Bruker AV-111-800 NMR spectrometer. *H and
BC{'H} NMR spectra are reported in parts per million relative to tetramethylsilane, using the
residual solvent resonances as an internal standard. High-resolution mass data were obtained
using a Thermo Scientific LTQ Orbitrap XL mass spectrometer or a Thermo Electron
Corporation MAT 95XP-Trap mass spectrometer. ATR-IR data were collected on a Thermo
Scientific Nicolet Nexus spectrometer containing a MCT* detector and KBr beam splitter with a
range of 350-7400 cm™2,

X-Ray Crystallography. Single crystals of 4 were coated with Fomblin oil and quickly
transferred to the goniometer head of a Bruker Quest diffractometer with a fixed chi angle, a
sealed tube fine focus X-ray tube, single crystal curved graphite incident beam monochromator,
a Photon100 CMOS area detector and an Oxford Cryosystems low temperature device.
Examination and data collection were performed with Mo Ko radiation (A = 0.71073 A) at 150 K.

Single crystals of 23 were also coated with Fomblin oil and quickly transferred to the goniometer
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head of a Bruker Quest diffractometer with kappa geometry, an I-u-S microsource X-ray tube,
laterally graded multilayer (Goebel) mirror single crystal for monochromatization, a Photon2
CMOS area detector and an Oxford Cryosystems low temperature device. Examination and data
collection were performed with Cu Ko radiation (A = 1.54178 A) at 150 K.

For both, data were collected, reflections were indexed and processed, and the files scaled
and corrected for absorption using APEX3.* The space groups were assigned and the structures
were solved by direct methods using XPREP within the SHELXTL suite of programs and refined
by full matrix least squares against F2 with all reflections using Shelxl2018 using the graphical
interface Shelxle.>® If not specified otherwise H atoms attached to carbon and nitrogen atoms
and hydroxyl hydrogens were positioned geometrically and constrained to ride on their parent
atoms, with carbon hydrogen bond distances of 0.95 A for and aromatic C-H, 1.00, 0.99 and 0.98
A for aliphatic C-H, CH2 and CH3 moieties, respectively. Methyl H atoms were allowed to rotate
but not to tip to best fit the experimental electron density. Uiso(H) values were set to a multiple of
Ueq(C) with 1.5 for CHs, and 1.2 for C-H units, respectively. Complete crystallographic data, in
CIF format, have been deposited with the Cambridge Crystallographic Data Centre. CCDC
1854302-1854303 contains the supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.

In the structure of 4, a toluene molecule was refined as three fold disordered. The
benzene rings were constrained to resemble ideal hexagons with C-C bond distances of 1.39 A.
The three disordered moieties were restrained to have similar geometries. Ujj components of
ADPs for disordered atoms closer to each other than 2.0 A were restrained to be similar. Subject
to these conditions the occupancy rates refined to 0.485(3), 0.342(3) and 0.173(3).

2. Reaction Optimization Studies

General Procedure for metal source comparison study. In an No-filled glovebox, a 5-
mL vial was charged with the metal source, (0.01 mmol, 0.15 equiv), (£)-t-Bu-Quinox L10 (2.62
mg, 0.01 mmol, 0.15 equiv), Zn Powder (27 mg, 0.41 mmol, 6 equiv), and a magnetic stir bar. A
solution of (E)-1,5-diphenylpent-2-en-1-one (1) (0.3 mL of a 0.23 M stock solution in 1.25:1
CHCIl2:DMA containing 0.24 M mesitylene, 0.07 mmol, 1.0 equiv) was added. The reaction was
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stirred at room temperature. After 16 h, the crude reaction mixture was removed from the
glovebox, opened to ambient atmosphere, and diluted with CH2Cl,. An aliquot was analyzed by
GC.

0O Metal Source (15 mol%)
(+)-tBu-Quinox (15 mol%)
Ph)wph > Ph o Ph

Zn (6 equiv.) o) Ph o
0.23 M CH,Cl,, DMA, rt.
16 hr A B
Entry Metal Source Conversion Yield A Yield B
1 Ni(acac): 95% 70% 12%
2 Ni(DME)Br» 85% 42% 21%
3 Ni(DME)CI> 93% 31% 13%
4 Ni(hfacac)z - xH20 24% 0% 18%
5 Ni(Ph,Me-acac): 95% 66% 10%
6 Ni(Phz-acac)z 95% 70% 12%
7 Ni(COD). 77% 23% 36%
8 Ni(PPhs).Cl 85% 24% 41%
9 Co(DME)Br> 51% 0% 12%
10 Fe(acac)2 46% 0% 0%
11 Cu(acac)2 <1% 0% 0%
12 Nil2 83% 9% 19%
132 Nil 92% <1% 17%
142 [P"NDI]Ni2(CsHs) 86% 8% 39%

8No L10 was added to the reaction

MeY\lrMe F3CWCF3 PhWMe PhWPh
O, O O, O O, e} O, O
\ 7 \ 7 \ 7 \ 7
/Ni2\+ /Nif: * xH0 /Ni2\+ /Ni2\+
OI (¢} OI o OI o OI o
Me Me F3C CF3 Me Ph Ph Ph
Ni(acac), Ni(hfacac), « xH,O Ni(Ph,Me-acac), Ni(Ph,-acac),

General Procedure for ligand comparison study. In an No-filled glovebox, a 5-mL vial
was charged with Ni(acac)2 (2.65 mg, 0.01 mmol, 0.15 equiv), ligand (0.01 mmol, 0.15 equiv),
Zn powder (27 mg, 0.41 mmol, 6.0 equiv), and a magnetic stir bar. A solution of (E)-1,5-
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diphenylpent-2-en-1-one (1) (0.3 mL of a 0.23 M stock solution in 1.25:1 CH2Cl2:DMA
containing 0.24 M mesitylene, 0.07 mmol, 1.0 equiv) was added. The reaction was stirred at
room temperature. After 16 h, the crude reaction mixture was removed from the glovebox and

diluted with CH.Cl,. An aliquot was used for GC analysis.

(0] Ni(acac), (15 mol%)
Ligand (15 mol%)
)W » Ph + Ph
Ph Ph oh

Zn (6 equiv.) o) Ph O
0.23 M CH,Cl,, DMA, rt.
16 hr A B
Entry Ligand Conversion Yield A Yield B
1 L1 38% 36% 2%
2 L2 40% 26% 6%
3 L3 38% 27% 6%
4 L4 85% 16% 9%
5 L5 93% 26% 17%
6 L6 92% 32% 30%
7 L7 92% 18% 29%
8 L8 85% 25% 60%
9 L9 89% 21% 62%
10 L10 95% 12% 70%
11 L11 36% 7% 11%
12 L12 2% 0% 0%
13 L13 85% 29% 6%
14 L14 92% 39% 19%
15 L15 12% 1% 6%
16 L16 82% 20% 12%
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General Procedure for control experiments. In an N-filled glovebox, a 5-mL vial was
charged with Ni(acac)., (2.65 mg, 0.01 mmol, 0.15 equiv), (£)-t-Bu-Quinox L10 (2.62 mg, 0.01
mmol, 0.15 equiv), Zn Powder (27 mg, 0.41 mmol, 6 equiv), and a magnetic stir bar. A solution
of (E)-1,5-diphenylpent-2-en-1-one (1) (0.3 mL of a 0.23 M stock solution in 1.25:1
CHCIl2:DMA containing 0.24 M mesitylene, 0.07 mmol, 1.0 equiv) was added. The reaction was
stirred at room temperature. After 16 h, the crude reaction mixture was removed from the

glovebox, exposed to ambient atmosphere, and diluted with CH2Cl2. An aliquot was used for GC

analysis.
(0] Ni(acac), (15 mol%)
)W (£)-tBu-Quinox (15 mol%) Ph
Ph Ph » Ph + on
Zn (6 equiv.) o Ph o
0.23M CH,Cl,, DMA, rt.
16 hr A B
Entry Deviation frgr_n Standard Conversion Yield A Yield B
Conditions
1 None 95% 70% 12%
2 No Ni(acac). was added 0% 0% 0%
+)-'Bu-Oui
3 No (£)-'Bu-Quinox was 10% 0% 0%
added
4 No Zn was added 0% 0% 0%
5 No DMA was added 11% 0% 0%
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General Procedure for CH2Cl2 equivalence study. In an No-filled glovebox, a 5-mL
vial was charged with Ni(acac)2, (3.98 mg, 0.015 mmol, 0.15 equiv), (£)-t-Bu-Quinox L10 (3.94
mg, 0.015 mmol, 0.15 equiv), Zn Powder (40.5 mg, 0.60 mmol, 6 equiv), and a magnetic stir bar.
A solution of (E)-1,5-diphenylpent-2-en-1-one (1) (24.4 mg, 0.10 mmol, 1.0 equiv.) and
mesitylene (12.5 pL) in DCM (X pL) was added. The reaction mixture was diluted up to 0.45
mL with DMA (Y pL). The reaction was stirred at room temperature. After 16 h, the crude
reaction mixture was removed from the glovebox, exposed to ambient atmosphere, and diluted

with CH2Cl,. An aliquot was used for GC analysis.

) Ni(acac), (15 mol%)
(x)-tBu-Quinox (15 mol%)
Ph)l\/\/\Ph > Ph 2

Zn (6 equiv.) o) Ph O
0.23M CH,Cly, DMA, t.

16 hr A B

Entry X Y Conversion Yield A Yield B
1 19.7 uL (3.0 equiv.) | 430.2 uL 77% 33% 9%
2 62.5 uL (9.5 equiv.) | 387.5 uL 70% 34% 13%
3 125 pL (19 equiv.) 325 uL 2% 38% 14%
4 250 pL (38 equiv.) 200 pL 96% 70% 14%

Under suboptimal reaction conditions, masses corresponding to the enone bearing 1, 2, 3,
and 4 additional CH: equivalents were detected by GC/MS analysis using (E)-chalcone as a
substrate.

Procedure for characterization of the crude product mixture profile. In an No-filled
glovebox, a 5-mL vial was charged with Ni(DME)Br», (3.18 mg, 0.01 mmol, 0.05 equiv), (z)-t-
Bu-Quinox L10 (3.14 mg, 0.012 mmol, 0.06 equiv), Zn Powder (67.5 mg, 1.0 mmol, 5.0 equiv),
and a magnetic stir bar. A solution of (E)-chalcone (43.0 mg, 0.21 mmol, 1.0 equiv.) in DCM
(0.5 mL) and DMA (50 uL) was added. The reaction was stirred at room temperature. After 16 h,
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the crude reaction mixture was removed from the glovebox, exposed to ambient atmosphere, and

diluted with CH2Cl,. An aliquot was used for GC/MS analysis.

Ph‘<A\Ph - ph<:kph
O
B

o)
. A
Ni(DME)Br; (5 mol%) m/z = 222.05 m/z = 236.05
0O (£)-tBu-Quinox (6 mol%)
ph)J\/\ph Zn (5.0 equiv.)
CH,Cl,, DMA, rt.
+
Ph Ph Ph Ph
o) o}
(o] D
m/z = 250.05 m/z = 264.10
10,000,000
A

"? f |

A A | D
A _I\A i WAL AN
T T T T T T T

T
6.0 70 8.0 9.0 10.0

Figure S1. GC/MS spectrum of the crude reaction mixture using (E)-chalcone.

Peak Ret. Time m/z
A 7.033 min 222.05
B 7.233 min 236.05
C 7.792 min 250.05
D 8.167 min 264.10
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3. Synthesis and Characterization of Enone Substrates

0 0 0
1. PPhg, toluene
Br ft, 16 hr ZPPhs P e Y
> _
1 , 2. 2M NaOH, DCM 1 \ DCM, 40°C .
R R rt, 16 hr R R 16 hr R R
R? R?2 R?

General procedure for the synthesis of Wittig reagents. A round-bottom flask was
charged with a magnetic stir bar, the appropriate bromoketone (1 equiv) and toluene (1 M). A
solution of PPhz (1 equiv) in toluene (0.5 M) was added dropwise. After 16 h, the precipitated
triphenylphosphonium bromide salt was isolated by filtration, washed with Et>O, and dried under
vacuum. The crude triphenylphosphonium bromide salt was dissolved in CH2Cl, (1 M), and 2 M
aqueous NaOH (1 equiv) was added. After stirring for 16 h, the phases were separated, and the
aqueous phase was extracted 3x with CH2Cl.. The combined organic phases were dried over
MgSOs and filtered. The filtrate was evaporated to dryness under reduced pressure to provide the
ylide as a solid, which was carried forward without purification.

General procedure for the synthesis of enone substrates. A round-bottom flask was
charged with a stir bar, the Wittig reagent (2 equiv), the aldehyde (1 equiv), and CH2Cl, (0.5 M).
The mixture was heated at reflux. After 16 h, the crude reaction mixture was concentrated under

reduced pressure. The residue was loaded directly onto a SiO2 column for purification.

O O
__PPh; _ DCM, 40 °C Z
+ O/\/\© 16 hr O O
—_—
F F

(E)-1-(4-fluorophenyl)-5-phenylpent-2-en-1-one (S1). The reaction was conducted
according to the general procedure without modification using 3-phenylpropanal (500 mg, 3.72
mmol, 1.0 equiv) and 4-fluorophenacyltriphenylphosphorane (2.96 g, 7.44 mmol, 2.0 equiv).
Purification by column chromatography (SiO2, 10% EtOAc in hexanes) provided (E)-1-(4-
fluorophenyl)-5-phenylpent-2-en-1-one as a colorless oil (662 mg, 70% yield).
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IH NMR (300 MHz, CDCls) & 8.00 — 7.85 (m, 2H), 7.37 — 7.28 (m, 2H), 7.26 — 7.18 (m,
3H), 7.17 — 7.10 (m, 2H), 7.10 — 7.02 (m, 1H), 6.83 (dg, J = 15.4, 1.3 Hz, 1H), 2.86 (t, J = 7.6 Hz,
2H), 2.74 — 2.57 (m, 2H).

13C{'H} NMR (201 MHz, CDCls) § 189.14, 165.53 (d, YJcr = 254.3 Hz), 148.57, 140.73,
134.18 (d, “Jcr = 3.0 Hz), 131.12 (d, 3Jcr = 9.2 Hz), 128.53, 128.42, 126.23, 126.18, 115.61 (d,
2)cr = 21.7 Hz), 34.50, 34.48.

19F NMR (282 MHz, CDCls) & -107.36.

HRMS(ESI) (m/z): [M + H]" Calcd for C17H1sFO: 255.1178; found: 255.1177
0 0

__PPh; _ DCM, 40 °C =
+ O/\/\© 16 hr O O
S
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(E)-4-(5-phenylpent-2-enoyl)benzonitrile (S2). The reaction was conducted according
to the general procedure without modification using 3-phenylpropanal (473 mg, 3.52 mmol, 1.0
equiv) and 4-cyanophenacyltriphenylphosphorane (2.85 g, 7.04 mmol, 2.0 equiv). Purification by
column chromatography (SiO2, 10% EtOAc in hexanes) provided (E)-4-(5-phenylpent-2-
enoyl)benzonitrile as a white solid (561 mg, 61 % yield).

H NMR (300 MHz, CDCls) § 7.92 (d, J = 8.0 Hz, 2H), 7.75 (d, J = 8.3 Hz, 2H), 7.32 (dd,
J =79, 6.4 Hz, 2H), 7.24 — 7.16 (m, 3H), 7.15 — 7.03 (m, 1H), 6.79 (dt, J = 15.5, 1.5 Hz, 1H),
2.86 (t, J=7.5Hz, 2H), 2.67 (td, J = 8.3, 7.9, 6.2 Hz, 2H).

BC{'H} NMR (201 MHz, CDCl3) & 189.51, 150.57, 141.10, 140.48, 132.41, 128.93,
128.60, 128.42, 126.35, 126.04, 118.09, 115.84, 34.62, 34.34.

HRMS(ESI) (m/z): [M + H]" Calcd for C1gH16NO: 262.1226; found: 262.1229

o} O

_~PPh; Z DCM, 40 °C Z
_—
MeS MeS

(E)-1-(4-(methylthio)phenyl)-5-phenylpent-2-en-1-one  (S3). The reaction was

conducted according to the general procedure without modification using 3-phenylpropanal (539
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mg, 4.02 mmol, 1.0 equiv) and 4-(methylthio)phenacyltriphenylphosphorane (3.43 g, 8.04 mmol,
2.0 equiv). Purification by column chromatography (SiO2, 10% EtOAc in hexanes) provided (E)-
1-(4-(methylthio)phenyl)-5-phenylpent-2-en-1-one (3) as a yellow solid (851 mg, 81% yield).

'H NMR (300 MHz, CDCl3) § 7.85 — 7.76 (m, 2H), 7.35 — 7.27 (m, 3H), 7.25 — 7.18 (m,
4H), 7.08 (dt, J = 15.3, 6.7 Hz, 1H), 6.90 — 6.79 (m, 1H), 2.85 (t, J = 7.7 Hz, 2H), 2.64 (9, J = 7.8,
7.3, 7.3 Hz, 2H), 2.53 (s, 3H).

BC{*H} NMR (201 MHz, CDCls) & 189.51, 147.96, 145.43, 140.84, 134.11, 128.98,
128.51, 128.42, 126.19, 125.03, 34.54, 34.53, 14.84.

HRMS(ESI) (m/z): [M + H]" Calcd for C1gH180S: 283.1151; found: 283.1155

(o] 0
PPh; DCM, 40 °C
/@)‘\& + o/\/\@ 16 hr O = O
— 2 5
Cl Cl

(E)-1-(4-chlorophenyl)-5-phenylpent-2-en-1-one (S4). The reaction was conducted
according to the general procedure without modification using 3-phenylpropanal (300 mg, 2.23
mmol, 1.0 equiv) and 4-chlorophenacyltriphenylphosphorane (1.87 g, 4.47 mmol, 2.0 equiv).
Purification by column chromatography (SiO2, 8% EtOAc in hexanes) provided (E)-1-(4-
chlorophenyl)-5-phenylpent-2-en-1-one as a yellow oil (278 mg, 46% yield).

'H NMR (300 MHz, CDCl3) § 7.86 — 7.78 (m, 2H), 7.47 — 7.39 (m, 2H), 7.36 — 7.29 (m,
2H), 7.25 — 7.18 (m, 3H), 7.15 — 7.02 (m, 1H), 6.82 (dtd, J = 15.4, 1.5, 0.7 Hz, 1H), 2.86 (t, J =
7.6 Hz, 2H), 2.72 — 2.55 (m, 2H).

BC{*H} NMR (201 MHz, CDCls) & 189.49, 148.94, 140.69, 139.08, 136.16, 129.96,
128.82, 128.54, 128.41, 126.25, 126.15, 34.52, 34.46.

HRMS(ESI) (m/z): [M + H]" Calcd for C17H15CIO: 271.0084; found: 271.0086

o} 0O

PPh, DCM, 40 °C
/©)‘\¢ + O%\/\@ 16 hr O T O
—_—
MeO MeO
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(E)-1-(4-methoxyphenyl)-5-phenylpent-2-en-1-one (S5). The reaction was conducted
according to the general procedure without modification using 3-phenylpropanal (435 mg, 3.25
mmol, 1.0 equiv) and 4-methoxyphenacyltriphenylphosphorane (2.67 g, 6.50 mmol, 2.0 equiv).
Purification by column chromatography (SiO2, 10% EtOAc in hexanes) provided (E)-1-(4-
methoxyphenyl)-5-phenylpent-2-en-1-one as a yellow oil (761 mg, 88% yield).

'H NMR (300 MHz, CDCls) § 7.98 — 7.81 (m, 2H), 7.36 — 7.28 (m, 2H), 7.25 — 7.17 (m,
3H), 7.07 (dt, J = 15.3, 6.8 Hz, 1H), 6.98 — 6.82 (m, 3H), 3.88 (s, 3H), 2.85 (t, J = 7.6 Hz, 2H),
2.73 —2.54 (m, 2H).

BC{*H} NMR (201 MHz, CDCls) & 189.05, 163.31, 147.32, 140.93, 130.84, 130.76,
128.50, 128.42, 126.21, 126.16, 113.73, 55.47, 34.59, 34.51.

HRMS(ESI) (m/z): [M + H]" Calcd for C1gH180>: 267.1380; found: 267.1382

DCM, 40 °C =

OO A0 S

(E)-1-(naphthalen-2-yl)-5-phenylpent-2-en-1-one (S6). The reaction was conducted
according to the general procedure without modification using 3-phenylpropanal (500 mg, 3.72
mmol, 1.0 equiv) and [(p-napthylbenzyl)methylene]triphenylphosphorane (2.13 g, 7.44 mmol,
2.0 equiv). Purification by column chromatography (SiO, 10% EtOAc in hexanes) provided (E)-
1-(naphthalen-2-yl)-5-phenylpent-2-en-1-one as a yellow solid (887 mg, 83% vyield).

'H NMR (300 MHz, CDCl3) & 8.37 (s, 1H), 8.05 — 7.85 (m, 4H), 7.65 — 7.52 (m, 2H),
7.37-7.29 (m, 2H), 7.24 (dd, J = 5.9, 2.4 Hz, 3H), 7.19 — 7.09 (m, 1H), 7.02 (dt, J = 15.4, 1.2
Hz, 1H), 2.90 (dd, J = 8.6, 6.6 Hz, 2H), 2.77 — 2.61 (m, 2H).

BC{*H} NMR (201 MHz, CDCls) & 190.62, 148.27, 140.86, 135.43, 135.20, 132.51,
130.03, 129.47, 128.54, 128.46, 128.45, 128.31, 127.80, 126.71, 126.62, 126.22, 124.52, 34.57.

HRMS(ESI) (m/z): [M + Na]* Calcd for C21H1s0: 309.1250; found: 309.1252

0 0
__PPh, DCM, 40 °C _
¥ o/\/\@ 16 hr O O
—_—
OMe OMe
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(E)-1-(3-methoxyphenyl)-5-phenylpent-2-en-1-one (S7). The reaction was conducted
according to the general procedure without modification using 3-phenylpropanal (435 mg, 3.25
mmol, 1.0 equiv) and 3-methoxyphenacyltriphenylphosphorane (2.67 g, 6.50 mmol, 2.0 equiv).
Purification by column chromatography (SiO2, 5% EtO in hexanes) provided (E)-1-(3-
methoxyphenyl)-5-phenylpent-2-en-1-one as a yellow oil (383 mg, 44 % yield).

'H NMR (300 MHz, CDCls) § 7.47 — 7.40 (m, 2H), 7.40 — 7.27 (m, 3H), 7.25 — 7.17 (m,
3H), 7.15 — 7.02 (m, 2H), 6.85 (dt, J = 15.3, 1.4 Hz, 1H), 3.86 (s, 3H), 2.86 (t, J = 7.6 Hz, 2H),
2.65 (td, J = 7.8, 6.2 Hz, 2H).

BC{'H} NMR (201 MHz, CDCl3) & 190.54, 159.80, 148.46, 140.81, 139.27, 129.45,
128.52, 126.56, 126.20, 121.14, 119.23, 112.82, 55.46, 34.52, 34.50.

HRMS(ESI) (m/z): [M + H]" Calcd for C1gH1802: 267.1380; found: 267.1385
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(E)-5-phenyl-1-(4-(trifluoromethyl)phenyl)pent-2-en-1-one (S8). The reaction was
conducted according to the general procedure without modification using 3-phenylpropanal (500
mg, 3.72 mmol, 1.0 equiv) and 4-trifluoromethylphenacyltriphenylphosphorane (3.34 g, 7.44
mmol, 2.0 equiv). Purification by column chromatography (SiO2, 5% Et>0 in hexanes) provided
(E)-5-phenyl-1-(4-(trifluoromethyl)phenyl)pent-2-en-1-one as a white solid (691 mg, 61% yield).

'H NMR (300 MHz, CDCl3) § 7.94 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.1 Hz, 2H), 7.35 —
7.29 (m, 2H), 7.24 —7.19 (m, 3H), 7.10 (dt, J = 15.5, 6.8 Hz, 1H), 6.82 (dt, J = 15.5, 1.4 Hz, 1H),
2.87 (dd, J = 8.4, 6.7 Hz, 2H), 2.67 (dtt, J = 8.0, 6.8, 1.2 Hz, 2H).

BC{*H} NMR (201 MHz, CDCl3) & 190.00, 150.00, 140.68, 140.60, 133.91 (q, 2Jcr =
32.6 Hz), 128.84, 128.59, 128.44, 126.33, 125.57 (q, 3Jcr = 3.8 Hz), 123.66 (q, Jcr = 272.7 Hz),
34.61, 34.39.

F NMR (282 MHz, CDCl3) & -64.57.

HRMS(ESI) (m/z): [M + H]" Calcd for C1gH15F30: 305.1148; found: 305.1145
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(E)-5-(benzyloxy)-1-phenylpent-2-en-1-one  (S9). The reaction was conducted
according to the general procedure without modification using 3-(benzyloxy)propanal® (500 mg,
3.0 mmol, 1 equiv) and phenacyltriphenylphosphorane (2.31 g, 6.0 mmol, 2 equiv). Purification
by column chromatography (SiO2, 10% Et.O in hexanes) provided (E)-5-(benzyloxy)-1-
phenylpent-2-en-1-one as a colorless oil (720 mg, 89% yield).

!H NMR (300 MHz, CDCl3) § 7.98 — 7.84 (m, 2H), 7.60 — 7.51 (m, 1H), 7.51 — 7.42 (m,
2H), 7.37 — 7.26 (m, 5H), 7.14 — 7.00 (m, 1H), 7.00 — 6.90 (m, 1H), 4.55 (s, 2H), 3.66 (t, J = 6.4
Hz, 2H), 2.64 (qd, J = 6.4, 1.1 Hz, 2H).

BC{*H} NMR (201 MHz, CDCls) & 190.73, 146.06, 138.10, 137.85, 132.66, 128.59,
128.51, 128.45, 127.73, 127.72, 127.47, 73.14, 68.39, 33.25.

HRMS(ESI) (m/z): [M + H]" Calcd for C1gH1802: 267.1380; found: 267.1376
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(2E,62)-1-(4-fluorophenyl)dodeca-2,6-dien-1-one (S10). The reaction was conducted
according to the general procedure without modification using cis-4-decenal (573 mg, 3.72 mmol,
1.0 equiv) and 4-fluorophenacyltriphenylphosphorane (2.96 g, 7.44 mmol, 2.0 equiv).
Purification by column chromatography (SiO2, 5% Et.O in hexanes) provided (2E,6Z)-1-(4-
fluorophenyl)dodeca-2,6-dien-1-one as a colorless oil (602 mg, 59 % yield).

'H NMR (300 MHz, CDCl3) & 8.37 (s, 1H), 8.05 — 7.85 (m, 4H), 7.65 — 7.52 (m, 2H),
7.37 = 7.29 (m, 2H), 7.24 (dd, J = 5.9, 2.4 Hz, 3H), 7.19 — 7.09 (m, 1H), 7.02 (dt, J = 15.4, 1.2
Hz, 1H), 2.90 (dd, J = 8.6, 6.6 Hz, 2H), 2.77 — 2.61 (m, 2H).
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BC{*H} NMR (201 MHz, CDCl3) & 189.17, 165.50 (d, YJcr = 254.1 Hz), 149.42, 134.29
(d, “Jcr = 3.0 Hz), 131.46, 131.10 (d, 3Jcr = 9.2 Hz), 127.73, 125.78, 115.60 (d, 2Jcr = 21.7 Hz),
32.94, 31.51, 29.30, 27.28, 25.88, 22.56, 14.06.

¢ NMR (282 MHz, CDCls) & -107.50.

HRMS(ESI) (m/z): [M + H]" Calcd for C1gH23FO: 275.1806; found: 275.1812

0 3 o
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(E)-2-(5-0x0-5-phenylpent-3-en-1-yl)isoindoline-1,3-dione (S11). The reaction was
conducted according to the general procedure without modification using 3-(1,3-dioxoisoindolin-
2-yl)propanal (200 mg, 0.98 mmol, 1.0 equiv) and phenacyltriphenylphosphorane (897 mg, 1.96
mmol, 2.0 equiv). Purification by column chromatography (SiO., 20% EtOAc in hexanes)
provided (E)-2-(5-0xo0-5-phenylpent-3-en-1-yl)isoindoline-1,3-dione as a white solid (252 mg,
84 % vyield).

'H NMR (300 MHz, CDCl3) § 7.95 — 7.81 (m, 4H), 7.73 (dt, J = 5.2, 2.1 Hz, 2H), 7.61 —
7.50 (m, 1H), 7.45 (tt, J = 7.8, 1.2 Hz, 2H), 7.07 — 6.85 (m, 2H), 3.92 (t, J = 7.1 Hz, 2H), 2.74 (q,
J=6.9 Hz, 2H).

BC{'H} NMR (201 MHz, CDCl3) & 190.40, 168.13, 144.34, 137.54, 134.08, 132.75,
131.96, 128.60, 128.53, 128.12, 123.35, 36.43, 31.68.

HRMS(ESI) (m/z): [M + H]" Calcd for C19H15NO3: 306.1125; found: 306.1129

__PPhj CHCl,, 70 °C
__16hr

(E)-5-(1-benzyl-1H-indol-3-yI)-1-(2,3-difluorophenyl)pent-2-en-1-one  (S12). The

reaction was conducted according to the general procedure with the following modification:
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CHCl3 was used instead of CH2Cl, and the reaction was heated at 70 °C for 16 h using 3-(1-
benzyl-1H-indol-3-yl)propanal* (254 mg, 097 mmol, 1.0 equiv) and 2,3-
difluorophenacyltriphenylphosphorane (1.21 g, 2.90 mmol, 3.0 equiv). Purification by column
chromatography (SiO2, 15% EtOAc in hexanes) provided (E)-5-(1-benzyl-1H-indol-3-yl)-1-(2,3-
difluorophenyl)pent-2-en-1-one as a viscous dark-yellow oil (356 mg, 92% yield).

'H NMR (300 MHz, CDCls) § 7.76 — 7.49 (m, 3H), 7.32 — 7.21 (m, 3H), 7.21 — 7.03 (m,
6H), 6.94 (s, 1H), 6.85 — 6.71 (m, 1H), 5.28 (s, 2H), 3.02 (t, J = 7.4 Hz, 2H), 2.75 (q, J = 7.1 Hz,
2H).

BC{*H} NMR (201 MHz, CDCls) § 153.31 (dd, J = 256.3, 12.9 Hz), 150.34 (dd, J =
250.6, 13.0 Hz), 150.33, 137.63, 136.74, 134.88, 128.75, 127.87, 127.59, 126.73, 125.75, 125.46,
121.93, 119.12, 118.97, 117.86 (dd, J = 17.6, 1.1 Hz), 117.44, 117.35, 114.19, 109.84, 49.88,
33.53, 23.92.

HRMS(ESI) (m/z): [M + H]* C26H21F2NO: 402.1664; found: 402.1661
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(E)-1-(4-fluorophenyl)-5-methylhex-2-en-1-one (S13). The reaction was conducted
according to the general procedure without modification using isovaleraldehyde (400 mg, 4.68
mmol, 1.0 equiv) and 4-fluorophenacyltriphenylphosphorane (3.7 g, 9.2 mmol, 2.0 equiv).
Purification by column chromatography (SiO2, 10% Et,O in hexanes) provided (E)-1-(4-
fluorophenyl)-5-methylhex-2-en-1-one as a light yellow oil (878 mg, 91 % yield).

'H NMR (300 MHz, CDCl3) § 8.03 — 7.92 (m, 2H), 7.19 — 7.09 (m, 2H), 7.11 — 6.97 (m,
2H), 6.92 — 6.76 (m, 1H), 2.28 — 2.13 (m, 2H), 1.83 (dp, J = 13.3, 6.7 Hz, 1H), 0.96 (dd, J = 6.7,
0.5 Hz, 7H).

B3C{'H} NMR (201 MHz, CDCls) & 189.10, 165.49 (d, YJcr = 254.0 Hz), 149.11, 134.33
(d, “Jcr = 3.0 Hz), 131.08 (d, 3Jcr = 9.2 Hz), 126.50, 115.60 (d, 2Jcr = 21.8 Hz), 42.13, 28.00,
22.47.

9F NMR (282 MHz, CDCl3) § -107.55.

HRMS(ESI) (m/z): [M + H]" Calcd for C13H15FO: 207.1180; found: 207.1179
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methyl (E)-8-(4-chlorophenyl)-8-oxooct-6-enoate (S14). The reaction was conducted
according to the general procedure without modification using methyl-6-oxohexanoate (250 mg,
1.73 mmol, 1.0 equiv) and 4-chlorophenacyltriphenylphosphorane (1.44 g, 3.47 mmol, 2.0
equiv). Purification by column chromatography (SiO2, 20% EtOAc in hexanes) provided methyl
(E)-8-(4-chlorophenyl)-8-oxooct-6-enoate as a yellow oil (152 mg, 31% yield).

'H NMR (300 MHz, CDCl3) & 7.93 — 7.80 (m, 2H), 7.49 — 7.38 (m, 2H), 7.05 (dt, J =
15.3, 6.8 Hz, 1H), 6.85 (dt, J = 15.3, 1.4 Hz, 1H), 3.68 (s, 3H), 2.34 (qd, J = 6.8, 1.7 Hz, 4H),
1.78 — 1.64 (m, 2H), 1.57 (dg, J = 9.6, 6.8 Hz, 2H).

BC{'H} NMR (201 MHz, CDCl3) & 189.41, 173.82, 149.64, 139.08, 136.20, 129.95,
128.85, 125.71, 51.58, 33.75, 32.46, 27.57, 24.48.

HRMS(ESI) (m/z): [M + H]" Calcd for C1sH18CIO3: 281.0939; found: 281.0937
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tert-butyl (E)-4-(5-(3-methoxyphenyl)-5-oxopent-3-en-1-yl)piperidine-1-carboxylate
(S15). The reaction was conducted according to the general procedure without modification
using tert-butyl 4-(3-oxopropyl)piperidine-1-carboxylate (250 mg, 1.03 mmol, 1.0 equiv) and 3-
methoxyphenacyltriphenylphosphorane (850 mg, 2.07 mmol, 2.0 equiv). Purification by column
chromatography (SiO2, 20% EtOAc in hexanes) provided methyl (tert-butyl (E)-4-(5-(3-

OMe

methoxyphenyl)-5-oxopent-3-en-1-yl)piperidine-1-carboxylate as a light yellow oil (339 mg, 88%

yield).

IH NMR (300 MHz, CDCl3) § 7.52 — 7.44 (m, 2H), 7.38 (t, J = 7.9 Hz, 1H), 7.15 — 7.09
(m, 1H), 7.09 — 7.00 (m, 1H), 6.87 (dt, J = 15.3, 1.4 Hz, 1H), 4.11 (bs, 2H), 3.87 (s, 3H), 2.66 (g,
J=10.9, 8.9 Hz, 2H), 2.35 (g, J = 6.9 Hz, 2H), 1.68 (d, J = 12.8 Hz, 2H), 1.49 (s, 12H), 1.22 —
1.03 (M, 2H).
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BC{*H} NMR (201 MHz, CDCls) & 190.46, 159.82, 154.86, 149.56, 139.30, 129.48,
125.99, 121.08, 119.15, 112.91, 79.28, 77.22, 55.47, 35.54, 34.88, 29.91, 28.48.
HRMS(ESI) (m/z): [M + H]" Calcd for C22H13NO4: 374.2310; found: 374.2318
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4. Synthesis of the (x)-t-Bu-Quinox ligand

N HoN l,, Ko-CO N
2 2: I\2 3
N/ .\ W/\OH N/
I ‘Bu 'BUOH, 70 °C |
(6] N

\ 4
]

16 hr

(£)-'Bu-Quinox (L10). To a 500 mL round bottom flask were added quinoline-2-
carboxaldehyde (3.4 g, 21.7 mmol, 1 equiv.), t-BuOH (100 mL), (£)-t-leucinol (2.8 g, 23.9 mmol,
1.1 equiv) and a magnetic stir bar. The mixture was stirred at 30 °C for 2 h under an N>
atmosphere. KoCO3 (9.01 g, 65.2 mmol, 3.0 equiv) and 12 (11.0 g, 43.5 mmol, 2.0 equiv) were
added, and the mixture was heated at 70 °C for 16 h. After cooling to ambient temperature, the
reaction mixture was quenched with a saturated aqueous solution of Na,S203 (~50 mL), which
resulted in the solution turning from dark red to light yellow. Water was added (100 mL), and the
solution was extracted with CH2Cl2 (5 x 100 mL). The combined organic phases were washed
with brine (100 mL), dried over MgSOs, and concentrated under reduced pressure. The crude
material was loaded directly onto a SiO2 column for purification (15% EtOAc in hexanes),
providing (%)-t-Bu-Quinox (3.92 g, 71% vyield) as a white crystalline solid. The spectral data
match those previously reported.'?

'H NMR (300 MHz, CDCls) § 8.32 — 8.19 (m, 3H), 7.86 (d, J = 8.2 Hz, 1H), 7.76 (dd, J
=8.3, 7.1 Hz, 1H), 7.61 (dd, J = 8.0, 6.9 Hz, 1H), 4.55 (ddd, J = 10.1, 8.7, 0.9 Hz, 1H), 4.48 —
4.35 (m, 1H), 4.26 — 4.10 (m, 1H), 1.02 (s, 9H).
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Figure S2.  H NMR of L10 (CDCls, 273K)

72



5. Synthesis of the ()-(‘Bu-Quinox)Ni(acac). Complex

Ni(acac :
N/ O ( )2 > N\[!jii\lo‘ Me
\ CGH6’ 5 min, rt o, ‘
N /Q_(o
Me—\_,

(¥)-(t-Bu-Quinox)Ni(acac)2 (4). In an No-filled glovebox, a 5-mL vial was charged with
(2)-'Bu-Quinox (L10) (10.0 mg, 0.039 mmol, 1.0 equiv.), Ni(acac). (10.1 mg, 0.039 mmol, 1.0
equiv.), CeéHs (1 mL) and a magnetic stir bar. An immediate color change to dark green was
observed. After stirring for 5 min, the mixture was lyophilized to vyield (&)-('Bu-
Quinox)Ni(acac)2 as a green solid (19.5 mg, 98% yield). Single crystals of 4 suitable for x-ray
diffraction analysis were obtained by slow evaporation of a concentrated solution in toluene at
room temperature. Complex 4 is NMR silent.

et = 3.3 us (Evans method, 293 K, CeDs)

Anal. Cald. for (CasH32N2NiOs): C 61.03, H 6.31, N 5.48; found: C 60.86, H 6.42, N 5.24.

UV-Vis-NIR (THF, nm {M“cm™}): 235 {60391}, 294 {41422}, 389 {sh}
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6. Substrate Scope Studies and Cyclopentane Characterization

o] Ni(acac), (15 mol%)

(+)-tBu-Quinox (15 mol%)
R1Jl\/\R2 >

1 2
Zn (6 equiv.) R R
CHzclz, DMA, rt. (6]

General Procedure for the synthesis of cyclopentanes from enones. In an No-filled
glovebox, a 5-mL vial was charged with Ni(acac)2 (7.9 mg, 0.031 mmol, 0.15 equiv), ()-t-Bu-
Quinox (L10) (7.9 mg, 0.031 mmol, 0.15 equiv), Zn powder (81 mg, 1.23 mmol, 6.0 equiv), and
a magnetic stir bar. To this mixture was added a solution of the substrate (0.21 mmol, 1.0 equiv)
dissolved in CH2Cl, (0.5 mL) and DMA (0.4 mL). The reaction was stirred at room temperature.
After 16 h, the crude reaction mixture was removed from the glovebox, opened to ambient
atmosphere, and loaded directly onto a SiO, column for purification.

The ratios of Cs:C3 were determined by *H NMR integration from aliquots of the crude
reaction mixtures. Reported yields are of the purified cyclopentane product. In all cases, the

products were isolated exclusively with the trans relative stereochemistry.

(2-phenethylcyclopentyl)(phenyl)methanone (3). The reaction was conducted
according to the general procedure without modification using (E)-1,5-diphenylpent-2-en-1-one
(1)® (48.8 mg, 0.21 mmol, 1.0 equiv). Isolated yields were determined following column
chromatography (SiO2, 20% CHCl; in hexanes).

Ratioof Cs: C3=5.8:1

Run 1: 40.1 mgq isolated (70% yield), yellow oil

Run 2: 40.7 mg isolated (71% Yield), yellow oil
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'H NMR (300 MHz, CDCl3) & 8.08 — 7.83 (m, 2H), 7.61 — 7.50 (m, 1H), 7.49 — 7.38 (m,
2H), 7.26 — 7.19 (m, 2H), 7.14 (td, J = 7.1, 6.5, 1.5 Hz, 3H), 3.41 (ddd, J = 11.0, 7.9, 6.0 Hz, 1H),
2.77 — 2.39 (m, 3H), 2.07 (dddd, J = 13.8, 12.1, 7.1, 3.2 Hz, 2H), 1.87 — 1.49 (m, 5H), 1.46 —
1.30 (m, 1H).

BC{*H} NMR (201 MHz, CDCls) & 203.12, 142.53, 137.35, 132.82, 128.57, 128.38,
128.28, 128.24, 125.66, 52.95, 42.86, 37.48, 35.03, 32.71, 31.78, 25.14.

HRMS(ESI) (m/z): [M + H]" Calcd for C2oH220: 279.1743; found: 279.1746

(4-fluorophenyl)(2-phenethylcyclopentyl)methanone (5). The reaction was conducted
according to the general procedure without modification using (E)-1-(4-fluorophenyl)-5-
phenylpent-2-en-1-one (S1) (52.5 mg, 0.21 mmol, 1.0 equiv). Isolated yields were determined
following column chromatography (SiO2, 0.5% Et.O in hexanes).

Ratioof Cs:C3=5.9:1

Run 1: 43.3 mg isolated (71% vyield), yellow oil

Run 2: 39.1 mg isolated (64% Yield), yellow oil

'H NMR (300 MHz, CDCls) & 8.02 — 7.91 (m, 2H), 7.25 — 7.19 (m, 2H), 7.18 — 7.05 (m,
5H), 3.34 (q, J = 8.0 Hz, 1H), 2.58 (dddd, J = 39.0, 14.7, 9.8, 5.6 Hz, 3H), 2.15 — 1.95 (m, 2H),
1.71 (d, J=5.5Hz, 4H), 1.67 — 1.56 (m, 1H), 1.38 (dd, J = 12.1, 8.1 Hz, 1H).

B3C{*H} NMR (201 MHz, CDCl3) & 201.45, 165.61 (d, YJcr = 254.3 Hz), 142.43, 133.69
(d, “Jcr = 3.0 Hz), 130.96 (d, Jcr = 9.3 Hz), 128.29, 128.22, 125.70, 115.62 (d, 2Jcr = 21.7 Hz),
52.89, 42.84, 37.44, 35.00, 32.66, 31.73, 25.10.

F NMR (282 MHz, CDCl3) § —107.37.

HRMS(ESI) (m/z): [M + H]" Calcd for C2oH21FO: 297.1649; found: 297.1651
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(2-phenethylcyclopentyl)(4-(trifluoromethyl)phenyl)methanone (6). The reaction was
conducted according to the general procedure without modification using (E)-5-phenyl-1-(4-
(trifluoromethyl)phenyl)pent-2-en-1-one (S8) (62.6 mg, 0.21 mmol, 1.0 equiv). Isolated yields
were determined following column chromatography (SiO2, 0.5% Et20 in hexanes).

Ratioof Cs:C3=9.1:1

Run 1: 51.4 mg isolated (72% vyield), yellow oil

Run 2: 49.9 mg isolated (70% Yield), yellow oil

'H NMR (300 MHz, CDCls) & 8.04 (d, J = 9.4 Hz, 2H), 7.73 (d, J = 9.4 Hz, 2H), 7.26 —
7.19 (m, 2H), 7.18 — 7.05 (m, 3H), 3.37 (dd, J = 23.9, 7.5 Hz, 1H), 2.70 — 2.58 (m, 1H), 2.52
(ddd, J=13.1, 10.3, 5.9 Hz, 2H), 2.20 — 1.90 (m, 2H), 1.86 — 1.56 (m, 5H), 1.46 — 1.33 (m, 1H).

BC{*H} NMR (201 MHz, CDCls) & 202.03, 142.27, 139.97, 134.12 (q, 2Jcr = 32.6 Hz),
128.66, 128.31, 128.20, 125.74, 125.63 (q, *Jcr = 3.7 Hz), 123.64 (q, *Jcr = 271.9 Hz), 53.27,
42.70, 37.36, 34.95, 32.62, 31.51, 25.11.

F NMR (300 MHz, CDCls3) & -64.6

4-(2-phenethylcyclopentane-1-carbonyl)benzonitrile (7). The reaction was conducted
according to the general procedure without modification using (E)-4-(5-phenylpent-2-
enoyl)benzonitrile (S2) (54.0 mg, 0.21 mmol, 1.0 equiv). Isolated yields were determined
following column chromatography (SiO2, 0.5% Et.0O in hexanes).

Ratioof Cs: C3=>20:1

Run 1: 39.4 mg isolated (63% yield), yellow oil

Run 2: 38.2 mg isolated (61% Yield), yellow oil
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'H NMR (300 MHz, CDCl3) & 7.99 (d, J = 9.9 Hz, 2H), 7.75 (d, J = 9.9 Hz, 2H), 7.25 —
7.20 (m, 2H), 7.18 — 7.08 (m, 3H), 3.34 (td, J = 9.3, 8.5, 6.6 Hz, 1H), 2.65 (ddd, J = 15.4, 10.3,
5.6 Hz, 1H), 2.58 — 2.42 (m, 2H), 2.20 — 1.92 (m, 2H), 1.86 — 1.50 (m, 5H), 1.46 — 1.32 (m, 1H).

BC{*H} NMR (201 MHz, CDCls) & 201.62, 142.17, 140.26, 132.46, 128.74, 128.33,
128.20, 125.79, 118.01, 116.08, 53.28, 42.69, 37.32, 34.93, 32.59, 31.45, 25.09.

HRMS(ESI) (m/z): [M + Na]* Calcd for C2:H2:NO: 326.1515; found: 326.1514

MeS

(4-(methylthio)phenyl)(2-phenethylcyclopentyl)methanone (8). The reaction was
conducted according to the general procedure without modification using (E)-1-(4-methylthio)-
5-phenylpent-2-en-1-one (S3) (58.3 mg, 0.21 mmol, 1.0 equiv). Isolated yields were determined
following column chromatography (SiO2, 0.5% Et,0O in hexanes).

Ratioof Cs:C3=54:1

Run 1: 35.3 mg isolated (53% yield), yellow oil

Run 2: 32.7 mg isolated (49% Yield), yellow oil

'H NMR (300 MHz, CDCl3) § 7.94 — 7.81 (m, 2H), 7.28 — 7.19 (m, 4H), 7.14 (td, J = 7.4,
6.8, 1.7 Hz, 3H), 3.35 (g, J = 8.0 Hz, 1H), 2.72 — 2.42 (m, 6H), 2.18 — 1.96 (m, 2H), 1.86 — 1.50
(m, 5H), 1.43 — 1.30 (m, 1H).

BC{'H} NMR (201 MHz, CDCl3) & 202.09, 145.49, 142.53, 133.64, 128.82, 128.27,
128.23, 125.66, 125.05, 52.71, 42.93, 37.49, 35.03, 32.71, 31.81, 25.12, 14.83.

HRMS(ESI) (m/z): [M + H]" Calcd for C21H240S: 325.1621; found: 325.1623
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MeO

(4-methoxyphenyl)(2-phenethylcyclopentyl)methanone (9). The reaction was
conducted according to the general procedure without modification using (E)-1-(4-
methoxyphenyl)-5-phenylpent-2-en-1-one (S5) (54.9 mg, 0.21 mmol, 1.0 equiv). Isolated yields
were determined following column chromatography (SiO2, 40% CH2Cl; in hexanes).

Ratioof Cs:C3=3.8:1

Run 1: 26.3 mg isolated (41% yield), yellow oil

Run 2: 28.2 mg isolated (44% Yield), yellow oil

'H NMR (300 MHz, CDCl3) § 7.99 — 7.90 (m, 2H), 7.27 — 7.20 (m, 2H), 7.20 — 7.09 (m,
3H), 6.97 — 6.90 (m, 2H), 3.87 (s, 3H), 3.36 (td, J = 8.9, 7.1 Hz, 1H), 2.72 — 2.40 (m, 3H), 2.19 —
1.95 (m, 2H), 1.86 — 1.68 (m, 4H), 1.67 — 1.51 (m, 1H), 1.46 — 1.30 (m, 1H).

BC{*H} NMR (201 MHz, CDCls) & 201.70, 163.31, 142.62, 130.63, 130.40, 128.26,
128.24, 125.63, 113.71, 55.47, 52.59, 43.00, 37.52, 35.06, 32.73, 31.91, 25.13.

HRMS(ESI) (m/z): [M + H]" Calcd for C21H2402: 309.1849; found: 309.1851

(4-chlorophenyl)(2-phenethylcyclopentyl)methanone (10). The reaction was conducted
according to the general procedure without modification using (E)-1-(4-chlorophenyl)-5-
phenylpent-2-en-1-one (S4) (55.8 mg, 0.21 mmol, 1.0 equiv). Isolated yields were determined
following column chromatography (SiO2, 30% CH2Cl> in hexanes).

Ratioof Cs: C3=6.7:1

Run 1: 43.1 mg isolated (67% yield), clear oil

Run 2: 47.2 mq isolated (74% Yield), clear oil
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'H NMR (300 MHz, CDCls) § 7.93 — 7.84 (m, 2H), 7.47 — 7.39 (m, 2H), 7.29 — 7.21 (m,
2H), 7.20 — 7.09 (m, 3H), 3.34 (dt, J = 9.2, 7.1 Hz, 1H), 2.65 (ddd, J = 13.6, 10.7, 5.5 Hz, 1H),
2.58 — 2.43 (m, 2H), 2.20 — 1.96 (m, 2H), 1.86 — 1.68 (m, 4H), 1.68 — 1.55 (m, 1H), 1.48 — 1.30
(m, 1H).

BC{*H} NMR (201 MHz, CDCls) & 201.81, 142.39, 139.25, 135.60, 129.79, 128.87,
128.30, 128.22, 125.71, 52.94, 42.81, 37.42, 35.00, 32.66, 31.67, 25.11.

HRMS(ESI) (m/z): [M + H]" Calcd for C20H:CIO: 313.1354; found: 313.1352

&
QQ

naphthalen-2-yl(2-phenethylcyclopentyl)methanone (11). The reaction was conducted
according to the general procedure without modification using (E)-1-(naphthalen-2-yl)-5-
phenylpent-2-en-1-one (S6) (59.1 mg, 0.21 mmol, 1.0 equiv). Isolated yields were determined
following column chromatography (SiO2, 0.5% Et,O in hexanes).

Ratioof Cs:C3=5.6:1

Run 1: 34.3 mg isolated (51% vyield), yellow oil

Run 2: 37.9 mg isolated (56% Yield), yellow oil

'H NMR (300 MHz, CDCls) & 8.47 (d, J = 1.7 Hz, 1H), 8.06 (dd, J = 8.6, 1.8 Hz, 1H),
7.98 (dd, J = 7.6, 1.8 Hz, 1H), 7.96 — 7.84 (m, 2H), 7.67 — 7.50 (m, 2H), 7.34 — 7.18 (m, 2H),
7.18 — 7.09 (m, 3H), 3.59 (dt, J = 9.5, 7.4 Hz, 1H), 2.82 — 2.43 (m, 3H), 2.14 (dddd, J = 19.8,
12.3,9.4,5.0 Hz, 2H), 1.94 — 1.56 (m, 5H), 1.50 — 1.38 (m, 1H).

BBC{'H} NMR (201 MHz, CDCl3) & 203.08, 142.51, 135.52, 134.71, 132.60, 129.88,
129.60, 128.46, 128.41, 128.34, 128.27, 128.24, 127.76, 126.73, 126.70, 125.66, 124.35, 53.00,
42.99, 37.49, 35.05, 32.77, 31.99, 25.19.

HRMS(ESI) (m/z): [M + H]" Calcd for C24H250: 329.1900; found: 329.1899
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(6] OBn

(2-(2-(benzyloxy)ethyl)cyclopentyl)(phenyl)methanone (12). The reaction was
conducted according to the general procedure without modification using (E)-5-(benzyloxy)-1-
phenylpent-2-en-1-one (S9) (55.0 mg, 0.21 mmol, 1.0 equiv). Isolated yields were determined
following column chromatography (SiO2, 6% Et20 in hexanes).

Ratioof C5: C3=>20:1

Run 1: 44.5 mg isolated (70% vyield), yellow oil

Run 2: 46.9 mgq isolated (74% Yield), yellow oil

'H NMR (300 MHz, CDCl3) & 8.01 — 7.90 (m, 2H), 7.54 (ddt, J = 8.2, 6.6, 1.4 Hz, 1H),
7.44 (ddt, J = 8.5, 7.6, 0.8 Hz, 2H), 7.35 — 7.16 (m, 5H), 4.36 (d, J = 2.9 Hz, 2H), 3.56 — 3.30 (m,
3H), 2.55 (h, J = 7.8 Hz, 1H), 2.15 - 1.89 (m, 2H), 1.83 — 1.59 (m, 5H), 1.41 — 1.28 (m, 1H).

BC{'H} NMR (201 MHz, CDCl3) § 202.91, 138.45, 137.31, 132.71, 128.51, 128.40,
128.26, 127.63, 127.39, 72.85, 69.71, 52.73, 40.14, 35.20, 33.09, 31.69, 25.06.

HRMS(APCI) (m/z): [M + H]" Calcd for C21H2402: 309.1849; found: 309.1847

(3-methoxyphenyl)(2-phenethylcyclopentyl)methanone (13). The reaction was
conducted according to the general procedure without modification using (E)-1-(3-
methoxyphenyl)-5-phenylpent-2-en-1-one (S7) (55.0 mg, 0.21 mmol, 1.0 equiv). Isolated yields
were determined following column chromatography (SiO, 1% Et20 in hexanes).

Ratioof Cs: C3=7.7:1

Run 1: 47.7 mg isolated (75% yield), yellow oil
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Run 2: 49.8 mg isolated (78% Yield), yellow oil

'H NMR (300 MHz, CDCl3) § 7.60 — 7.46 (m, 2H), 7.43 — 7.33 (m, 1H), 7.31 — 7.20 (m,
2H), 7.20 — 7.00 (m, 4H), 3.86 (s, 3H), 3.39 (ddd, J = 10.3, 7.9, 6.1 Hz, 1H), 2.72 — 2.42 (m, 3H),
2.24—1.92 (m, 2H), 1.85 — 1.50 (m, 5H), 1.46 — 1.31 (m, 1H).

BC{*H} NMR (201 MHz, CDCls) & 202.94, 159.85, 142.52, 138.76, 129.52, 128.27,
128.24, 125.66, 120.99, 119.27, 112.72, 55.44, 53.07, 42.92, 37.45, 35.02, 32.70, 31.85, 25.13.

HRMS(ESI) (m/z): [M + H]" Calcd for C21H2402: 309.1849; found: 309.1852

HRMS(APCI) (m/z): [M + H]* Calcd for Ca1Ha1Fs0: 347.1617; found: 347.1622

(2-(2-(1-benzyl-1H-indol-3-yl)ethyl)cyclopentyl)(2,3-difluorophenyl)methanonene
(14). The reaction was conducted according to the general procedure without modification using
(E)-5-(1-benzyl-1H-indol-3-yl)-1-(2,3-difluorophenyl)pent-2-en-1-one  (S12) (82.9 mg, 0.21
mmol, 1.0 equiv). Isolated yields were determined following column chromatography (SiO2, 20%
CHCI; in hexanes).

Ratioof Cs:C3=5.7:1

Run 1: 51.6 mgq isolated (57% yield), yellow oil

Run 2: 52.1 mg isolated (57% Yield), yellow oil

'H NMR (300 MHz, CDCls) § 7.75 (ddd, J = 11.1, 7.7, 2.2 Hz, 1H), 7.65 (ddd, J = 7.8,
4.0, 2.2 Hz, 1H), 7.53 (dd, J = 7.9, 1.2 Hz, 1H), 7.27 (d, J = 5.8 Hz, 2H), 7.24 — 7.14 (m, 3H),
7.08 (dddd, J = 8.1, 6.8, 2.9, 1.2 Hz, 4H), 6.84 (s, 1H), 5.21 (s, 2H), 3.31 (g, J = 7.6 Hz, 1H),
2.80 (ddd, J = 15.2, 9.9, 5.6 Hz, 1H), 2.67 (td, J = 9.2, 8.5, 4.9 Hz, 1H), 2.56 (q, J = 7.4 Hz, 1H),
2.16 —1.96 (m, 2H), 1.92 — 1.63 (m, 5H), 1.50 — 1.38 (m, 1H).

13C{*H} NMR (201 MHz, CDCl3) § 200.51, 153.37 (dd, YJcr = 256.2, 2Jcr = 13.0 Hz),
150.38 (dd, YJcr = 250.8, 2Jcr = 13.0 Hz), 137.76, 136.68, 134.36 (ap t, “Jcr = 3.5 Hz), 128.69,
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128.01, 127.49, 126.75, 125.25, 125.21 (dd, 3Jcr = 7.3, *Jcr = 3.4 Hz), 121.65, 117.62 (d, 2JcF =
17.9 Hz), 117.31 (d, 2Jcr = 17.7 Hz), 115.69, 109.59, 52.82, 49.78, 42.95, 35.98, 32.68, 31.56,
25.14, 24.18.

F NMR (282 MHz, CDCls) § -132.07, -137.83.

HRMS(APCI) (m/z): [M + H]" Calcd for CagH27F2NO: 444.2133; found: 444.2136

(2-hexylcyclopentyl)(phenyl)methanone (15). The reaction was conducted according to
the general procedure without modification using (E)-1-phenyldec-2-en-1-one'® (47.6 mg, 0.21
mmol, 1.0 equiv). Isolated yields were determined following column chromatography (SiO2, 10%
CHCI> in hexanes).

Ratioof Cs:C3=6.3:1

Run 1: 34.6 mg isolated (65% yield), yellow oil

Run 2: 32.5 mg isolated (61% Yield), yellow oil

'H NMR (300 MHz, CDCl3) § 8.00 — 7.93 (m, 2H), 7.60 — 7.50 (m, 1H), 7.51 — 7.41 (m,
2H), 3.35(q, J =8.2, 7.4 Hz, 1H), 2.52 — 2.26 (m, 1H), 2.15 - 1.87 (m, 2H), 1.85 — 1.61 (m, 3H),
1.52 - 1.06 (m, 13H), 0.90 — 0.80 (m, 3H).

13C{*H} NMR (201 MHz, CDCls) § 203.42, 137.48, 132.70, 128.51, 128.37, 52.91, 43.09,
35.53, 32.71, 31.82, 31.70, 29.76, 29.24, 28.56, 25.14, 22.64, 14.09.

HRMS(ESI) (m/z): HRMS(ESI) (m/z): [M + H]* Calcd for CigH2s0: 273.2213; found:
273.2215
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MeO

tert-butyl-4-(2-(2-(3-methoxybenzoyl)cyclopentyl)ethyl)piperidine-1-carboxylate (16).
The reaction was conducted according to the general procedure without modification using tert-
butyl-(E)-4-(5-(3-methoxyphenyl)-5-oxopent-3-en-1-yl)piperidine-1-carboxylate (S15) (77.0 mg,
0.21 mmol, 1.0 equiv). Isolated yields were determined following column chromatography (SiO»,
15% Et20 in hexanes).

Ratioof Cs:C3=3.8:1

Run 1: 42.3 mg isolated (50% vyield), yellow oil

Run 2: 44.9 mq isolated (52% Yield), yellow oil

'H NMR (300 MHz, CDClg) & 7.56 — 7.47 (m, 2H), 7.37 (ddd, J = 8.1, 7.6, 0.4 Hz, 1H),
7.10 (ddd, J = 8.2, 2.7, 1.0 Hz, 1H), 4.03 (br s, 2H), 3.86 (s, 3H), 3.29 (m, 1 H), 2.62 (t, J = 12.5
Hz, 2H), 2.39 (dq, J = 15.7, 8.0 Hz, 1H), 2.12 — 1.91 (m, 2H), 1.82 — 1.66 (m, 3H), 1.57 (d, J =
13.1 Hz, 2H), 1.44 (d, J = 2.8 Hz, 12H), 1.34 — 1.10 (m, 4H), 1.01 (tq, J = 10.8, 5.7, 5.0 Hz, 2H).

BC{*H} NMR (201 MHz, CDCls) & 203.03, 159.83, 154.88, 138.78, 129.53, 120.94,
119.17, 112.76, 79.11, 55.43, 53.08, 42.93, 36.01, 35.28, 32.68, 32.32, 31.84, 30.32, 28.48, 28.47,
25.07.
HRMS(ESI) (m/z): [M + H]" Calcd for C2sH37NOa: 416.2795; found: 416.2792

(4-fluorophenyl)(2-isobutylcyclopentyl)methanone (17). The reaction was conducted
according to the general procedure without modification using (E)-1-(4-fluorophenyl)-5-
methylhex-2-en-1-one (S13) (42.6 mg, 0.21 mmol, 1.0 equiv). Isolated yields were determined
following column chromatography (SiO2, 15% CH2Cl> in hexanes).

Ratioof Cs: C3=7.1:1
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Run 1: 32.8 mg isolated (64% yield), colorless oil

Run 2: 31.8 mg isolated (62% Yield), colorless oil

'H NMR (300 MHz, CDCl3) § 8.02 — 7.94 (m, 2H), 7.17 — 7.08 (m, 2H), 3.28 (dt, J = 9.1,
7.0 Hz, 1H), 2.58 — 2.41 (m, 1H), 2.12 — 1.89 (m, 2H), 1.82 — 1.61 (m, 3H), 1.53 — 1.41 (m, 1H),
1.33-1.13 (m, 3H), 0.84 (d, J = 6.6 Hz, 6H).

BC{*H} NMR (201 MHz, CDCl3) § 201.70, 165.57 (d, J = 254.3 Hz), 133.83 (d, J = 3.0
Hz), 130.94 (d, J = 9.3 Hz), 115.57 (d, J = 22.0 Hz), 53.21, 45.15, 40.90, 32.78, 31.66, 26.93,
25.12, 23.39, 22.16.

F NMR (282 MHz, CDCl3) & -107.60.

HRMS(ESI) (m/z): [M + H]" Calcd for C16H21FO: 249.1649; found: 249.1646

2-(2-(2-benzoylcyclopentyl)ethyl)isoindoline-1,3-dione  (18). The reaction was
conducted according to the general procedure without modification using (E)-2-(5-0x0-5-
phenylpent-3-en-1-yl)isoindoline-1,3-dione (S11) (63.0 mg, 0.21 mmol, 1 equiv). Isolated yields
were determined following column chromatography (SiO2, CH.Cl>).

Ratioof Cs:C3=29:1

Run 1: 27.2 mg isolated (38% vyield), yellow oil

Run 2: 32.1 mg isolated (45% Yield), yellow oil

'H NMR (300 MHz, CDCls) § 8.01 — 7.88 (m, 2H), 7.80 (dd, J = 5.5, 3.1 Hz, 2H), 7.68
(dd, J = 5.4, 3.1 Hz, 2H), 7.59 — 7.49 (m, 1H), 7.44 (dd, J = 8.2, 6.6 Hz, 2H), 3.73 — 3.54 (m, 2H),
3.47 — 3.34 (m, 1H), 2.63 — 2.36 (m, 1H), 2.19 — 1.95 (m, 2H), 1.93 — 1.58 (m, 5H), 1.50 — 1.33
(m, 1H).

BC{'H} NMR (201 MHz, CDCl3) § 202.51, 168.27, 137.06, 133.81, 132.86, 132.15,
128.56, 128.40, 123.15, 52.74, 40.02, 37.16, 34.06, 32.50, 31.75, 25.15.

HRMS(ESI) (m/z): [M + H]" Calcd for C22H2103: 348.1594; found: 348.1596
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F CsH1y

(2)-(4-fluorophenyl)(2-(non-3-en-1-yl)cyclopentyl)methanone (19). The reaction was
conducted according to the general procedure without modification using (2E,6Z)-1-(4-
fluorophenyl)dodeca-2,6-dien-1-one (S10) (56.7 mg, 0.21 mmol, 1.0 equiv). Isolated yields were
determined following column chromatography (SiO2, 0.2% Et,0 in hexanes).

Ratioof C5: C3=>20:1

Run 1: 50.7 mgq isolated (78% yield), yellow oil

Run 2: 50.8 mgq isolated (78% Yield), yellow oil

'H NMR (300 MHz, CDCls) & 8.05 — 7.93 (m, 2H), 7.21 — 7.05 (m, 2H), 5.43 — 5.15 (m,
2H), 3.32 (9, J = 7.8, 7.4 Hz, 1H), 2.43 (dq, J = 15.3, 8.2 Hz, 1H), 2.16 — 1.85 (m, 5H), 1.83 —
1.62 (m, 3H), 1.53 — 1.15 (m, 10H), 0.91 — 0.82 (m, 3H).

1B3C{*H} NMR (201 MHz, CDCl3) § 201.60, 165.59 (d, YJcr = 254.1 Hz), 133.77 (d, *JcF
= 3.0 Hz), 130.95 (d, 3Jcr = 9.1 Hz), 130.16, 129.31, 115.59 (d, 2Jcr = 21.4 Hz), 52.79, 42.92,
35.62, 31.69, 31.50, 29.37, 27.15, 26.31, 25.11, 22.70, 14.06.

F NMR (282 MHz, CDCl3) § -107.53.

HRMS(APCI) (m/z): [M + H]* Calcd for C21H29FO: 317.2275; found: 317.2281

Cl OMe

methyl 5-(2-(4-chlorobenzoyl)cyclopentyl)pentanoate (20). The reaction was
conducted according to the general procedure without modification using (E)-8-(4-
chlorophenyl)-8-oxooct-6-enoate (S14) (57.9 mg, 0.21 mmol, 1.0 equiv). Isolated yields were
determined following column chromatography (SiO2, 60% CH2Cl> in hexanes).

Ratioof Cs:C3=4.3:1

Run 1: 46.1 mg isolated (69% yield), yellow oil
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Run 2: 42.6 mg isolated (64% Yield), yellow oil

'H NMR (300 MHz, CDCl3) § 7.93 — 7.86 (m, 2H), 7.47 — 7.41 (m, 2H), 3.63 (s, 3H),
3.34 - 3.21 (m, 1H), 2.41 (q, J = 7.5 Hz, 1H), 2.30 — 2.21 (m, 2H), 2.15 — 1.88 (m, 2H), 1.78 —
1.65 (m, 2H), 1.65 — 1.50 (m, 2H), 1.49 — 1.11 (m, 6H).

BC{*H} NMR (201 MHz, CDCls) & 201.92, 174.12, 139.24, 135.62, 129.80, 128.86,
52.89, 51.44, 42.72, 35.02, 33.97, 32.61, 31.66, 28.06, 25.08, 25.05.

HRMS(ESI) (m/z): [M + H]" Calcd for C1gH24ClO3: 323.1409; found: 323.1412

Me

(2-methylcyclopentyl)(phenyl)methanone (21) [100611-76-5]. The reaction was
conducted according to the general procedure without modification using (Z)-1-phenylbut-2-en-
1-one!* (30.2 mg, 0.21 mmol, 1.0 equiv). Isolated yields were determined following column
chromatography (SiO2, 10% CHCl, in hexanes). The spectral data matched those previously
reported.®®

Ratioof Cs:C3=6.1:1

Run 1: 19.0 mg isolated (49% yield), yellow oil

Run 2: 19.4 mg isolated (50% Yield), yellow oil

'H NMR (300 MHz, CDCl3) § 8.01 — 7.91 (m, 2H), 7.61 — 7.51 (m, 1H), 7.51 — 7.41 (m,
2H), 3.29 (q, J = 8.1 Hz, 1H), 2.41 (tt, J = 14.3, 6.8 Hz, 1H), 2.14 — 2.00 (m, 1H), 2.00 — 1.88 (m,
1H), 1.88 — 1.66 (m, 3H), 1.37 — 1.29 (m, 1H), 1.03 (dd, J = 6.7, 0.6 Hz, 3H).
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1-(2-(6-methoxynaphthalen-2-yl)cyclopentyl)ethan-1-one (22). The reaction was
conducted according to the general procedure without modification using (E)-4-(6-
methoxynaphthalen-2-yl)but-3-en-2-one (46.7 mg, 0.21 mmol, 1.0 equiv). Isolated yields were
determined following column chromatography (SiO2, 7% Et20 in hexanes).

Ratioof Cs:C3=14:1

Run 1: 21.3 mgq isolated (39% yield), yellow oil

Run 2: 18.6 mgq isolated (34% Yield), yellow oil

'H NMR (800 MHz, CDCl3) § 7.71 (dd, J = 13.8, 8.7 Hz, 2H), 7.64 — 7.59 (m, 1H), 7.37
(dd, J = 8.5, 1.8 Hz, 1H), 7.15 (dd, J = 8.8, 2.5 Hz, 1H), 7.13 (d, J = 2.5 Hz, 1H), 3.93 (s, 3H),
3.42 (q,J = 9.1, 8.7 Hz, 1H), 3.14 (q, J = 8.8 Hz, 1H), 2.27 — 2.20 (m, 1H), 2.17 — 2.09 (m, 1H),
2.02 (s, 3H), 1.99 (ddd, J = 15.6, 8.0, 4.0 Hz, 1H), 1.97 — 1.91 (m, 1H), 1.91 — 1.81 (m, 2H).

BC{'H} NMR (201 MHz, CDCl3) & 210.73, 157.37, 139.56, 133.32, 129.06, 128.98,
127.17, 126.14, 125.48, 118.84, 105.62, 60.27, 55.31, 48.99, 35.87, 30.08, 29.87, 25.43.

HRMS(ESI) (m/z): [M + H]" Calcd for C1gH2002: 269.1536; found: 269.1539

phenyl(2-phenylcyclopentyl)methanone (23) . The reaction was conducted according to
the general procedure without modification using (E)-chalcone (43.0 mg, 0.21 mmol, 1 equiv).
Isolated yields were determined following column chromatography (SiO2, 50% CHCI; in
hexanes). Single crystals of 23 suitable for X-ray diffraction analysis were obtained by cooling a
saturated Et,O solution to -5 °C.
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Ratioof Cs:C3=2.2:1

Run 1: 23.7 mg isolated (45% vyield), white solid

Run 2: 22.0 mq isolated (42% Yield), white solid

'H NMR (300 MHz, CDCls) & 7.86 — 7.77 (m, 2H), 7.56 — 7.42 (m, 1H), 7.44 — 7.32 (m,
2H), 7.26 — 7.24 (m, 4H), 7.20 — 7.11 (m, 1H), 3.90 — 3.75 (m, 1H), 3.66 (q, J = 8.4 Hz, 1H),
2.25 (td, J=6.8, 6.3, 3.1 Hz, 2H), 2.03 — 1.76 (m, 4H).

BC{*H} NMR (201 MHz, CDCls3) & 202.19, 144.72, 136.95, 132.79, 128.46, 128.42,
127.36, 126.16, 109.32, 54.72, 48.32, 35.30, 32.01, 25.84.

HRMS(APCI) (m/z): [M + H]" Calcd for C1gH180: 251.1430; found: 251.1433

7. Synthesis and Characterization of Representative Cyclopropanes

o) Me;S(O)l, NaH
> R
RJ\%\R DMSO, rt, 24 hr R

)

General procedure for the synthesis of cyclopropanes from enones. A flame-dried
100 mL flask was charged with solid NaH (60% in mineral oil, 1.2 equiv), trimethylsulfoxonium
iodide (1.2 equiv), and a magnetic stir bar. The flask was placed under N, atmosphere, and
DMSO (0.35 M) was added dropwise with stirring. After hydrogen evolution ceased, the reaction
mixture was stirred for an additional 15 min, during which time the solution became clear. The
enone (1.0 equiv) was added by syringe. The reaction was allowed to stir at room temperature.
After 24 h, the reaction was quenched with water, and the mixture was extracted with Et,O (3 x
10 mL). The combined organic layers were dried over MgSQOyg, filtered, and concentrated under

reduced pressure. The crude product was loaded onto a SiO2 column for purification.
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a Me3S(O)l, NaH
DMSO, tt, 24 hr

(2-phenethylcyclopropyl)(phenyl)methanone (2). The reaction was conducted

according to the general procedure without modification using (E)-1,5-diphenylpent-2-en-1-one
(1) (250 mg, 1.05 mmol, 1.0 equiv). (2-phenethylcyclopropyl)(phenyl)methanone (2) was
isolated by column chromatography (SiO2, 10% Et,0O in hexanes) as a light yellow oil (78.8 mg,
30% yield).

'H NMR (300 MHz, CDCl3) & 8.00 — 7.83 (m, 2H), 7.61 — 7.51 (m, 1H), 7.45 (ddt, J =
8.3, 6.6, 1.2 Hz, 2H), 7.25 — 7.20 (m, 2H), 7.20 — 7.12 (m, 3H), 2.77 (ddd, J = 10.8, 9.2, 5.4 Hz,
2H), 2.40 (dt, J = 8.1, 4.2 Hz, 1H), 1.88 — 1.70 (m, 2H), 1.68 — 1.59 (m, 1H), 1.53 — 1.39 (m, 1H),
0.91 (ddd, J=7.8, 6.1, 3.5 Hz, 1H).

BC{'H} NMR (201 MHz, CDCl3) & 199.95, 141.66, 138.00, 132.61, 128.44, 128.41,
128.38, 127.97, 125.88, 35.60, 35.38, 26.58, 25.26, 18.75.

HRMS(ESI) (m/z): [M + H]" Calcd for C1gH190: 251.1430; found: 251.1431

0] Me3S(0O)I, NaH A

>

Me” NP OO DMSO, t, 24 hr Me \ O

OMe

OMe

(2-phenethylcyclopropyl)(phenyl)methanone (S16). The reaction was conducted
according to the general procedure without modification using (E)-4-(6-methoxynaphthalen-2-
yl)but-3-en-2-one (100 mg, 0.44 mmol, 1.0 equiv). 1-(2-(6-methoxynaphthalen-2-
yl)cyclopropyl)ethan-1-one (S16) was isolated by column chromatography (SiO2, 20% Et,0 in
hexanes) as a white solid (23.8 mg, 23% yield).

'H NMR (300 MHz, CDCl3) § 7.67 (d, J = 8.6 Hz, 2H), 7.49 (d, J = 1.8 Hz, 1H), 7.14
(ddd, J =15.9, 7.6, 2.2 Hz, 3H), 3.91 (s, 3H), 2.66 (ddd, J = 9.1, 6.6, 4.0 Hz, 1H), 2.33 (s, 3H),
2.29 (ddd, J = 8.1, 5.2, 4.0 Hz, 1H), 1.73 (ddd, J = 9.2, 5.2, 4.2 Hz, 1H), 1.49 (ddd, J = 8.1, 6.6,
4.2 Hz, 1H).
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BC{*H} NMR (201 MHz, CDCls) & 206.88, 157.45, 135.34, 133.38, 128.89, 128.84,
127.05, 124.98, 124.50, 119.16, 105.65, 55.31, 32.87, 30.89, 29.29, 18.99.
HRMS(ESI) (m/z): [M + H]" Calcd for C16H1602: 241.1223; found: 241.1225

0 Me Me3S(0)l, NaH Me
/©)‘\/\)\Me DMSO, rt, 24 hr g F\Q\\gA\’(Me
E
(4-fluorophenyl)(2-isobutylcyclopropyl)methanone (S17). The reaction was conducted
according to the general procedure without modification using (E)-1-(4-fluorophenyl)-5-
methylhex-2-en-1-one (S13) (255 mg, 1.24 mmol, 1.0 equiv). (4-fluorophenyl)(2-
isobutylcyclopropyl)methanone (S17) was isolated by column chromatography (SiO2, 10% Et,O
in hexanes) as a light yellow oil (95.0 mg, 35% yield).
'H NMR (300 MHz, CDCl3) § 8.09 — 7.92 (m, 2H), 7.20 — 7.09 (m, 2H), 2.37 (dt, J = 8.1,
4.3 Hz, 1H), 1.74 (dq, J = 13.4, 6.8 Hz, 1H), 1.66 — 1.54 (m, 1H), 1.54 — 1.45 (m, 1H), 1.45 —
1.19 (m, 3H), 0.93 (dd, J = 6.6, 1.4 Hz, 6H).
BC{*H} NMR (201 MHz, CDCl3) & 198.54, 165.53 (d, Jcr = 254.0 Hz), 134.48 (d, *JcF
= 3.0 Hz), 130.50 (d, 3Jcr = 9.2 Hz), 115.53 (d, 2Jcr = 21.7 Hz), 42.74, 28.59, 25.73, 25.15,
22.61, 22.50, 19.26.
F NMR (282 MHz, CDCls) § -107.85.
HRMS(ESI) (m/z): [M + H]" Calcd for C14H17FO: 221.1336; found: 221.1338
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8. Assignment of Ratios Between the Cyclopentane and Cyclopropane
Products

The assignment of the ratios between the cyclopentane and cyclopropane products were
made using a combination of *H NMR analysis and GC analysis of the crude reaction mixtures.
Two product classes are discussed below. The remainder of the substrate classes were assigned
by analogy.

@ A
Q Ni(acac), (15 mol%)
_ (+)-tBu-Quinox (15 mol%) Me Me
Me' > + o O
OO Zn (6 equiv.) 0 O Q
OMe CH,Cl,, DMA, rt.
OMe

22 OMe $16

22:816=14:1

Top spectrum (3): Isolated 22
Middle spectrum (2): Crude reaction mixture with ratio of 22 : S16 indicated
Bottom Spectrum (1): Isolated S16

-
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4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
f1 (ppm)

Figure S5.  H NMR of isolated 22 (Top spectrum), crude reaction mixture (Middle spectrum),
and isolated S16 (Bottom Spectrum). (CDCls, 273 K).
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CH,Cly, DMA, rt. 0

o Me Ni(acac), (15 mol%) Me
(+)tBu-Quinox (15 mol%) Me F
/ > F
Me Zn (6 equiv.) Me o Me
F

17 S§17

17:817=71:1

Top spectrum (3): Isolated 17
Middle spectrum (2): Crude reaction mixture with ratio of 17 : S17 indicated
Bottom Spectrum (1): Isolated S17
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Figure S6.  H NMR of isolated 17 (Top spectrum), crude reaction mixture (Middle spectrum),
and isolated S17 (Bottom Spectrum). (CDCls, 273 K).
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9. Mechanistic Studies

(0] AN
Ni(acac), (15 mol%)

O F O (+)-tBu-Quinox (15 mol%)
Zn (6 equiv.)

CD2C|2, DMA, rt.

\ 4

60% Yield
> 99% dg

(2-phenethylcyclopentyl-3,3,4,4,5,5-ds)(phenyl)methanone (3-ds). In an No-filled
glovebox, a 5-mL vial was charged with Ni(acac)2 (7.9 mg, 0.031 mmol, 0.15 equiv), ()-t-Bu-
Quinox (L10) (7.9 mg, 0.031 mmol, 0.15 equiv), Zn powder (81 mg, 1.23 mmol, 6.0 equiv), and
a magnetic stir bar. To this mixture was added a solution of (E)-1,5-diphenylpent-2-en-1-one (1)
(48.8 mg, 0.21 mmol, 1 equiv) in CD2Cl> (0.5 mL) and DMA (0.4 mL). The reaction was stirred
at room temperature. After 16 h, the crude reaction mixture was removed from the glovebox,
opened to ambient atmosphere, and loaded directly onto a SiO2 column for purification (SiO2, 20%
CHCI; in hexanes) to provide (2-phenethylcyclopentyl-3,3,4,4,5,5-ds)(phenyl)methanone as a
colorless oil (34.9 mg, 60% yield, > 99% deuterium incorporation).

'H NMR (300 MHz, CDCls) & 8.01 — 7.89 (m, 2H), 7.61 — 7.51 (m, 1H), 7.51 — 7.39 (m,
2H), 7.26 — 7.18 (m, 2H), 7.18 — 7.08 (m, 3H), 3.39 (d, J = 7.9 Hz, 1H), 2.72 — 2.44 (m, 3H),
1.77 (ddt, J=13.1, 11.1, 5.8 Hz, 1H), 1.68 — 1.56 (m, 1H).

BBC{'H} NMR (201 MHz, CDCl3) & 203.17, 142.53, 137.35, 132.80, 128.55, 128.37,
128.27, 128.22, 125.65, 52.81, 42.72, 37.42, 35.02.

HRMS(ESI) (m/z): [M + H]" Calcd for C20H16D6O: 285.2120; found: 285.2122
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Ni(acac), (15 mol%)
(£)-tBu-Quinox (15 mol%)

»
>

Zn (6 equiv.)
CH2C|2, DMA, rt.

No Reaction

In an No-filled glovebox, a 5-mL vial was charged with Ni(acac). (2.65 mg, 0.01 mmol,
0.15 equiv), ()-t-Bu-Quinox (L10) (2.7 mg, 0.01 mmol, 0.15 equiv), Zn Powder (27 mg, 0.41
mmol, 6.0 equiv), and a magnetic stir bar. To this mixture was added a solution of (2-
phenethylcyclopropyl)(phenyl)methanone (2) (17.2 mg, 0.07 mmol, 1.0 equiv) in CH2Cl> (0.17
mL) and DMA (0.13 mL). The reaction was stirred at room temperature. After 16 h, the crude
reaction mixture was removed from the glovebox, and an aliquot was used for GC analysis. The
conversion of 2 was determined by integration against mesitylene (< 2% conversion). Compound

3 was not detected in the mixture.

o}
¢
Fs;C
> 99% conversion Ni(acac), (15 mol%)
(+)-tBu-Quinox (15 mol%)
+ >» +
Zn (6 equiv.)

CH2C|2, DMA, rt.

< 2% Yield

< 2% conversion

In an Na-filled glovebox, a 5-mL vial was charged with Ni(acac). (2.65 mg, 0.01 mmol,
0.15 equiv), (+)-'Bu-Quinox (2.65 mg, 0.01 mmol, 0.15 equiv), Zn Powder (27 mg, 0.41 mmol,
6.0 equiv), and a magnetic stir bar. To this mixture was added a solution of (2-
phenethylcyclopropyl)(phenyl)methanone (2) (17.2 mg, 0.07 mmol, 1.0 equiv) and (E)-5-phenyl-
1-(4-(trifluoromethyl)phenyl)pent-2-en-1-one (S8) (20.9 mg, 0.07 mmol, 1.0 equiv) in CH2Cl
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(0.17 mL) and DMA (0.13 mL). The reaction was stirred at room temperature. After 16 h, the
crude reaction mixture was removed from the glovebox, and an aliquot was used for GC analysis.

The conversions and yields were determined by integration against mesitylene.

D,
C
0] VN
Ni(acac), (15 mol%) DG €D,
= (#)-tBu-Quinox (15 mol%) N
Zn (6 equiv.)
. CD,Cl,, DMA o
4d, rt.
=z
1 atm

In an N-filled glovebox, a 10 mL Schenk tube was charged with Ni(acac), (7.9 mg,
0.031 mmol, 0.15 equiv), (z)-t-Bu-Quinox (L10) (7.9 mg, 0.031 mmol, 0.15 equiv), Zn powder
(81 mg, 1.23 mmol, 6.0 equiv), and a magnetic stir bar. To this mixture was added a solution of
(E)-1,5-diphenylpent-2-en-1-one (1) (48.8 mg, 0.21 mmol, 1.0 equiv) in CD2Cl> (0.5 mL) and
DMA (0.4 mL). The reaction mixture was removed the glovebox and immediately placed in
liquid N2. The Schlenk tube was connected to a Schlenk line, the N2 atmosphere was evacuated,
and the reaction vessel was back-filled with ethylene (1 atm). The reaction was stirred at room
temperature. After 4 days, an aliquot of the crude reaction mixture was filtered through silica gel
and used for NMR analysis (CDCIs). Spectra of the pure 3-ds and 3 are shown for comparison to

indicate complete ds -incorporation.

Top spectrum (3): Crude ethylene experiment mixture
Middle spectrum (2): Isolated 3-ds
Bottom Spectrum (1): Isolated 3
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Figure S7.  'H NMR of crude ethylene experiment mixture (Top spectrum), isolated 3-ds,
(Middle spectrum), and isolated 3 (Bottom Spectrum). (CDCls, 273 K)
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10. Cyclopentane Product Derivatization

6 equiv. mCPBA

ﬂ" ; O ""
2 equiv. TFA, CH,Cl,
© _@ 48 hr, 22 °C ¢

MeO

MeO

4-methoxyphenyl  2-phenethylcyclopentane-1-carboxylate (24). A flame-dried
microwave vial was charged with mCPBA (>77%, 95 mg, 0.55 mmol, 6.0 equiv), a solution of
(4-methoxyphenyl)(2-phenethylcyclopentyl)methanone (9) (28.2 mg, 0.09 mmol, 1.0 equiv)
dissolved in CH2Cl; (2 mL), and a magnetic stir bar. The vial was sealed, evacuated and
backfilled three times with N2, and cooled to 0 °C in an ice bath. Trifluoroacetic acid (14 uL,
0.18 mmol, 2.0 equiv) was added by syringe, and the vial was then wrapped in aluminum foil.
The reaction was stirred at room temperature. After 48 h, the crude reaction mixture was loaded
directly onto a SiO. column for purification (40% CH2Cl, in hexanes) to provide 4-
methoxyphenyl 2-phenethylcyclopentane-1-carboxylate as a colorless oil (23.6 mg, 81% yield,
14:1 selectivity).

'H NMR (300 MHz, CDCl3) § 7.33 — 7.26 (m, 2H), 7.23 — 7.15 (m, 3H), 7.00 — 6.92 (m,
2H), 6.91 — 6.84 (m, 2H), 3.80 (s, 3H), 2.80 — 2.52 (m, 3H), 2.29 (pd, J = 8.4, 5.6 Hz, 1H), 2.16 -
1.90 (m, 4H), 1.84 — 1.62 (m, 3H), 1.43 — 1.24 (m, 1H).

BC{*H} NMR (201 MHz, CDCls) & 175.43, 157.13, 144.36, 142.32, 128.36, 128.33,
125.77, 122.28, 114.40, 55.61, 50.38, 44.29, 37.32, 34.63, 32.68, 30.39, 24.91.

HRMS(ESI) (m/z): [M + H]" Calcd for C21H2403: 325.1798; found: 325.1802
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’ 6 equiv. mMCPBA Q >/—‘\,,
F3C %, > o %,
2 equiv. TFA, CH,Cl,
0 48 hr, 45 °C

F3C

2-phenethylcyclopentyl 4-(trifluoromethyl)benzoate (25). A flame-dried microwave
vial was charged with mCPBA (>77%, 124 mg, 0.72 mmol, 6.0 equiv), a solution of (2-
phenethylcyclopentyl)(4-(trifluoromethyl)phenyl)methanone (6) (41.4 mg, 0.12 mmol, 1.0 equiv)
in CH2Cl, (2 mL), and a magnetic stir bar. The vial was sealed, evacuated and backfilled three
times with N2, and cooled to 0 °C with an ice bath. Trifluoroacetic acid (18 pL, 0.24 mmol, 2.0
equiv) was added by syringe, and the vial was then wrapped in aluminum foil. The reaction was
stirred at 45 °C. After 48 h, the crude reaction mixture was loaded directly onto a SiO2 column
for purification (20% CH2Cl> in hexanes) to provide 2-phenethylcyclopentyl 4-
(trifluoromethyl)benzoate as a colorless oil (27.9 mg, 65% Yield, >20:1 selectivity).

'H NMR (300 MHz, CDCls) & 8.13 (dd, J = 8.0, 0.9 Hz, 2H), 7.70 (dd, J = 8.1, 0.7 Hz,
2H), 7.31 - 7.23 (m, 3H), 7.23 - 7.10 (m, 3H), 5.12 (dt, J = 6.5, 3.8 Hz, 1H), 2.68 (ddq, J = 13.9,
9.4,7.0, 6.6 Hz, 2H), 2.21 — 1.96 (m, 3H), 1.96 — 1.70 (m, 4H), 1.69 — 1.57 (m, 1H), 1.47 — 1.29
(m, 1H).

B3C{*H} NMR (201 MHz, CDCls3) & 165.18, 142.14, 134.28 (q, 2Jcr = 32.7 Hz), 133.96,
129.92, 128.33, 125.79, 125.33 (q, 3Jcr = 3.8 Hz), 123.67 (q, YJcr = 275.1 Hz), 82.63, 45.12,
35.44, 34.31, 32.01, 30.31, 22.82.

F NMR (282 MHz, CDCls) § -64.61.

HRMS(ESI) (m/z): [M + Na]* Calcd for C21H21F30,: 385.1386; found: 385.1391
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11. NMR Data for Enone Substrates
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f1 (ppm)
H 1
Figure S8. H NMR of S1 (CDClgz, 295 K).
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Figure S9.  C{*H} NMR of S1 (CDCls, 295 K).
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Figure S10. °F NMR of S1 (CDCls, 295 K).
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Figure S12.  *C{*H} NMR of S2 (CDCls, 295 K).
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Figure S13. “H NMR of S3 (CDCl3, 295 K).
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Figure S14. C{*H} NMR of S3 (CDCls, 295 K).
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Figure S15. *H NMR of S4 (CDClgz, 295 K).
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Figure S16.  2*C{*H} NMR of S4 (CDCls, 295 K).
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Figure S18. 3C{*H} NMR of S5 (CDCls, 295 K).
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Figure S20.

13C{H} NMR of S6 (CDCls, 295 K).
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Figure S22.  *C{*H} NMR of S7 (CDCls, 295 K).
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Figure S25. °F NMR of S8 (CDCls, 295 K).
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Figure S27.  C{*H} NMR of S9 (CDCls, 295 K).
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Figure S29. 33C{*H} NMR of S10 (CDCls, 295 K).
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Figure S30. °F NMR of S10 (CDCls, 295 K).
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Figure S32.

13C{*H} NMR of S11 (CDCls, 295 K).
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Figure S37.  3C{*H} NMR of S13 (CDCls, 295 K).
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Figure S38. °F NMR of S13 (CDCls, 295 K).
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Figure S40.  *C{*H} NMR of S14 (CDCls, 295 K).
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Figure S44. B3C{*H} NMR of 3 (CDCls, 295 K).
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Figure S47. 1°F NMR of 5 (CDCls, 295 K).
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Figure S50. °F NMR of 6 (CDCls, 295 K).
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Figure S56.  *C{*H} NMR of 9 (CDCls, 295 K).
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Figure S58.  C{*H} NMR of 10 (CDCls, 295 K).

128



Vs ////

e

WNM.H

o]
Fo|

6.5

7

WS.M
797 |

Fere

7

Tore
o1

Feot |-

5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0

6.0

Figure S59.

.0

f1 (ppm)

IH NMR of 11 (CDCl3, 295 K).

¥881°ST —

6066'TE ~
TeLLze
8150°'5€ <~
Svev'LE

0266'cy —

SP00'ES —

E9PEPTT
758589°sC1
€€0£°92T
€0€4°9CT
T9ss LTt
€6£T'8CT
YbLT'8TT
8bPE8TT
(2454148
99S+°82T
78657621
L6/8°6TT N
S209°CET
9L0L°PET \
T8TS'SET
6v1STHPT —

ST80°€0C —

210

100 90 80 70 60 50 40 30 20

110
f1 (ppm)

13C{H} NMR of 11 (CDCls, 295 K).

Figure S60.

200

129



4 J

OBn

T T T T T TT R
& JEpRd N & A A4 7 =
T T T T T T T T T T T T T T T T T T
8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
f1 (ppm)
: 1
Figure S61. *H NMR of 12 (CDCls, 295 K).
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Figure S69.

13C{H} NMR of 15 (CDCls, 295 K).
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Figure S88.  *C{*H} NMR of 2 (CDCls, 295 K).
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Figure S90.  2*C{*H} NMR of S16 (CDCls, 295 K).
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Figure S92.

13C{H} NMR of S17 (CDCls, 295 K).
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Figure S93. °F NMR of S17 (CDCls, 295 K).
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Figure S95. 3C{*H} NMR of 3-ds (CDCls, 295 K).
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Figure S97.  2*C{*H} NMR of 24 (CDCls, 295 K).
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13. IR Data for Enones and Cyclopentanes
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Figure S105. FT-IR of S5.
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Figure S106. FT-IR of S6.
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Figure S108. FT-IR of S8.
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Figure S120. FT-IR of 8.

v T
3500

+ T T
3000

T T
2500

v(em™)

162

T \
2000

T v
1500

T
1000



o]0 S——

95 4
90
85
80
75 1
70
65
60
55
50
45

% Transmittance

40

Figure S121. FT-IR of 9.

4000

T T
3500

T T
3000

T ¥ T 4
2500 2000

v (cm™)

T v
1500

T
1000

100
95
90
85
80
75

70 H

% Transmittance

65
60 +

55 1

50

Figure S122. FT-IR of 10.

4000

T .
3500

T -
3000

T T T g T
2500 2000 1500

v (cm™)

163

T T
1000



% Transmittance

1o R
9% W |
93
89 |
86
83
79
76
74
71
68
66

63

. T +
4000 3500

Figure S123. FT-IR of 11.

% Transmittance

T T
3000

—
2500 2
v(em™)

T +
000

T T T
1500 1000

OBn

A B S
9% ‘
23 ||
89
86
83
79
76

74

71

v T .
4000 3500

Figure S124. FT-IR of 12.

T -
3000

T
2500

v(em™)

164

v T v
2000

T T T
1500 1000




100 4
96
93
89
86
83
794
76
74
71
68
66
63

% Transmittance

4000

Figure S125. FT-IR of 13.
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Figure S126. FT-IR of 14.
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Figure S130. FT-IR of 18.
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Figure S134. FT-IR of 23.
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Figure S135. FT-IR of 24.
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Figure S136. FT-IR of 25.
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Figure S138. FT-IR of S16.
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14. X-Ray Diffraction Data

Compound 4
Crystal data
Chemical formula Cs59H72N4Ni2010
Mr 1114.62

Crystal system, space
group

Triclinic, P1

Temperature (K)

150

a,b,c(A) 8.8726 (5),10.2560 (5), 32.4162 (17)

o, B,y () 83.7260 (17), 82.6157 (18), 75.5173 (16)
V (A3) 2823.2 (3)

Z 2

F(000) 1180

Dx (Mg m-3) 1.311

Radiation type Mo Ka

No. of reflections for cell |9434

measurement

0 range (°) for cell 2.9-28.3
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measurement

p (mm™) 0.73
Crystal shape Plate
Colour Green

Crystal size (mm)

0.19 x 0.18 x 0.05

Data collection

Diffractometer

Bruker AXS D8 Quest CMOS
diffractometer

Radiation source

sealed tube X-ray source

Monochromator

Triumph curved graphite crystal

Scan method

 and phi scans

Absorption correction

Multi-scan
SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl.
Cryst. 48 (2015) 3-10

Tmin, Tmax

0.656,0.746

No. of measured,
independent and
observed [l > 2o(1)]

37118,13147,10377

reflections

Rint 0.039

0 values (°) Omax = 28.3, Omin = 2.9
(sin 6/A)max (AY) 0.668

Range of h, k,

h=-11810, k=-130@12, [ = -43@43

Refinement

Refinement on F?

R[F? > 26(F?)], wR(F?),S |0.039,0.089, 1.04
No. of reflections 13147

No. of parameters 787

No. of restraints 568

H-atom treatment

H-atom parameters constrained

Weighting scheme w = 1/[6?(Fo?) + (0.0222P)? + 2.0196P]
where P = (Fo? + 2F2)/3

(A/G)max 0.002

Aprmax, Apmin (€ A3) 0.34,-0.41

Extinction method

SHELXL2018/3 (Sheldrick 2018), Fc'=kFc[1+0.001xFc2@3/sin(2@)]1/*

Extinction coefficient

0.0042 (3)
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Bciig

14138 é®018 C12

C18B

Compound 23

Crystal data
Chemical formula C18H180
M; 250.32

Crystal system, space
group

Triclinic, P1

Temperature (K) 150

a, b, c (&) 5.6796 (6), 13.8004 (18),17.618 (2)
o, B,y () 98.691 (8),91.838 (9), 93.043 (7)
Vv (A3) 1362.0 (3)

Z 4

F(000) 536

Dx (Mg m-3) 1.221

Radiation type Cu Ka

No. of reflections for cell |9724

measurement

0 range (°) for cell 2.5-80.3

measurement

p (mm) 0.57

Crystal shape Fragment

Colour Colourless

Crystal size (mm)

0.40 x 0.23 x 0.21

Data collection

Diffractometer

Bruker AXS D8 Quest CMOS
diffractometer

Radiation source

[-mu-S microsource X-ray tube

Monochromator

Laterally graded multilayer (Goebel) mirror

Scan method

® and phi scans

Absorption correction

Multi-scan
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SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl.
Cryst. 48 (2015) 3-10

Tmin, Tmax

0.474,0.754

No. of measured,
independent and
observed [l > 2o(1)]

27448, 5832,5311

reflections

Rint 0.083

0 values (°) Omax = 80.8, Omin = 2.5
(sin O/0)max (AY) 0.640

Range of h, k, I

h=-7-7k=-16>17,1 =-22—-22

Refinement

Refinement on F?2

R[F?> 26(F?)], wR(F?,S |0.051, 0.144, 1.06
No. of reflections 5832

No. of parameters 343

No. of restraints 0

H-atom treatment

H-atom parameters constrained

Weighting scheme w = 1/[c?%(Fo?) + (0.0665P)? + 0.2621P]
where P = (Fo? + 2F?)/3

(A/G)max &lt; 0.001

Apmax, Apmin (e A®) 0.35,-0.26
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APPENDIX B. SUPPORTING INFORMATION FOR CHAPTER 3

1. General Information

General considerations. Solvents were degassed and stored over activated 3 A
molecular sieves prior to use. Deuterated solvents were purchased from Cambridge Isotope
Laboratories, degassed, and stored over activated 3 A molecular sieves. Liquid reagents were
degassed and stored over activated 3 A molecular sieves prior to use. Zn powder (325 mesh,
99.9%) was purchased from Strem Chemicals, stored under inert atmosphere, and used without
further purification. The [P'NDI]Ni2(CeéHs) complex was prepared according to a previously
reported procedure.! The (#)-t-Bu-Quinox ligand was prepared according to a previously
reported procedure.? Unless otherwise noted, all 1,1-dichloroalkenes were prepared according to
previously reported procedures.>* All other reagents and starting materials were purchased from

commercial vendors and used without further purification unless otherwise noted.

Physical methods. 'H, °F and *C{*H} NMR spectra were collected at room
temperature on a Varian INOVA 300 MHz or a Bruker AV-111-800 NMR spectrometer. *H and
BC{'H} NMR spectra are reported in parts per million relative to tetramethylsilane, using the
residual solvent resonances as an internal standard. High-resolution mass data were obtained
using a Thermo Scientific LTQ Orbitrap XL mass spectrometer or a Thermo Electron
Corporation MAT 95XP-Trap mass spectrometer. ATR-IR data were collected on a Thermo
Scientific Nicolet Nexus spectrometer containing a MCT* detector and KBr beam splitter with a
range of 350-7400 cm™L. Optical rotation data for 29 and 30 were obtained at room temperature

using a Rudolph Autopol 111 S2 Polarimeter.

X-Ray Crystallography. Data were collected, reflections were indexed and processed,
and the files scaled and corrected for absorption using APEX3.® The space groups were assigned
and the structures were solved by direct methods using XPREP within the SHELXTL suite of
programs®’ and refined by full matrix least squares against F? with all reflections using
Shelx120188 using the graphical interface Shelxle.® If not specified otherwise H atoms attached to

carbon, boron and nitrogen atoms as well as hydroxyl hydrogens were positioned geometrically
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and constrained to ride on their parent atoms. C-H bond distances were constrained to 0.95 A for
aromatic and alkene C-H and CH; and alkyne C-H moieties, and to 1.00, 0.99 and 0.98 A for
aliphatic C-H, CH> and CHs moieties, respectively. Methyl H atoms were allowed to rotate but
not to tip to best fit the experimental electron density. Uiso(H) values were set to a multiple of
Ueq(C) with 1.5 for CH3, NHs" and OH, and 1.2 for C-H, CH,, B-H, N-H and NH: units,
respectively. Additional data collection and refinement details, including description of disorder
(where present) can be found in the Supporting Information. Complete crystallographic data, in
CIF format, have been deposited with the Cambridge Crystallographic Data Centre. CCDC
1973505-1973507 contains the supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallographic Data Centre via

www.ccdc.cam.ac.uk/data_request/cif.

Bruker Quest with Mo radiation:

Single crystals of 6 and 49 were coated with Fomblin oil and quickly transferred to the
goniometer head of a Bruker Quest diffractometer with a fixed chi angle, a sealed tube fine focus
X-ray tube, single crystal curved graphite incident beam monochromator, a Photon100 CMOS
area detector and an Oxford Cryosystems low temperature device. Examination and data

collection were performed with Mo Ka radiation (A =0.71073 A) at 150 K.

Bruker Quest with Cu radiation:

Single crystals of 30 were coated with Fomblin oil and quickly transferred to the goniometer
head of a Bruker Quest diffractometer with kappa geometry, an I-u-S microsource X-ray tube,
laterally graded multilayer (Goebel) mirror single crystal for monochromatization, a Photon-II
CMOS area detector and an Oxford Cryosystems low temperature device. Examination and data
collection were performed with Cu Ko radiation (A = 1.54178 A) at 150 K.
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2. Reaction Optimization Studies

MeO
Cl Cl MeO MeO
2 [P'NDIINiy(CgHg) (5 mol%) O
+ > + |
Zn (3.0 equiv)
A/ Et,0/DMA (8:1)
rt, 24 h
(3.0 equiv.) 4 3
EzZz=1:27
87% Yield
4:3=1:0.8

Initial detection of the [5 + 1]-product. In an N2-filled glovebox, a 5-mL vial was
charged with [P'NDI]Ni2(CsHs) (3.6 mg, 0.005 mmol, 0.05 equiv), Zn powder (19.6 mg, 0.3
mmol, 3.0 equiv), and a magnetic stir bar. To this mixture was added a solution of 1-(2,2-
dichlorovinyl)-4-methoxybenzene (20.4 mg, 0.1 mmol, 1.0 equiv), vinylcyclopropane (20.4 mg,
0.3 mmol, 3.0 equiv), and 1,3,5-timethoxybenzene (16.8 mg, 0.1 mmol) dissolved in Et.O (0.8
mL) and DMA (0.1 mL). The reaction was stirred at room temperature. After 16 h, the crude
reaction mixture was removed from the glovebox, opened to ambient atmosphere, and diluted
with Et,0. An aliquot was filtered through a glass fiber pad, concentrated, and analyzed by 'H
NMR.

General Procedure for ligand comparison study. In an N2-filled glovebox, a 5-mL vial
was charged with Co(DME)Br2 (1.5 mg, 0.005 mmol, 0.05 equiv), the ligand (0.006 mmol, 0.06
equiv), Zn powder (19.6 mg, 0.3 mmol, 3.0 equiv), and a magnetic stir bar. To this mixture was
added a solution of 1-(2,2-dichlorovinyl)-4-methoxybenzene (20.4 mg, 0.1 mmol, 1.0 equiv), (1-
cyclopropylvinyl)benzene (43.3 mg, 0.3 mmol, 3.0 equiv), and 1,3,5-timethoxybenzene (16.8 mg,
0.1 mmol) dissolved in DMA (0.75 mL). The reaction was stirred at room temperature. After 16

h, the crude reaction mixture was removed from the glovebox, opened to ambient atmosphere,
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and diluted with Et2O. An aliquot was filtered through a glass fiber pad, concentrated, and
analyzed by 'H NMR.

MeO o
— Co(DME)BTr5 (5 mol%)

Ligand (6 mol%)

\ 4

Zn (3.0 equiv)

Cl Cl DMA, rt

2 5 (3.0 equiv)
Entry | Ligand Conversion of 2 Yield 6 E/Z Ratio of 6
1 L1 > 99% 94% >20:1
2 L2 > 99% 83% >20:1
3 L3 > 99% 15% >20:1
4 L4 11% 0% N/A
5 L5 10% 0% N/A
6 L6 22% 0% N/A
7 L7 55% 0% N/A
8 L8 29% 7% >20:1

N
\ Me N | ~
N \\Z N
N P4
H
tBu tBu O
L1 L2 L3 L4

. N .
3 N N N
n L WX ~
i-Pr i-Pr i-Pr

L5 L6 L7 L8
General Procedure for standard condition comparison study. In an N-filled
glovebox, a 5-mL vial was charged with the metal source (0.005 mmol, 0.05 equiv), (z)-t-Bu-
Quinox (1.52 mg, 0.006 mmol, 0.06 equiv), the reductant (0.3 mmol, 3.0 equiv), and a magnetic
stir bar. To this mixture was added a solution of the 1,1-dihaloalkene (0.1 mmol, 1.0 equiv), the

vinylcyclopropane, and 1,3,5-timethoxybenzene (16.8 mg, 0.1 mmol) dissolved in DMA (0.75
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mL). The reaction was stirred at room temperature. After 16 h, the crude reaction mixture was
removed from the glovebox, opened to ambient atmosphere, and diluted with Et>O. An aliquot

was filtered through a glass fiber pad, concentrated, and analyzed by *H NMR.

Standard Conditions
MeO

_ Co(DME)Br, (5 mol%)
(x)-t-Bu-Quinox (6 mol%)
+ >
Zn (3.0 equiv)

cl cl DMA, rt

2 5 (3.0 equiv)
Entry | Deviation from Standard Conditions Yield 6 E/Z of 6
1 none 97% >20:1
2 3.0 equiv Mn instead of Zn 93% >20:1
3 3.0 equiv TDAE instead of Zn <1% NA
4 7 instead of 2 15% >20:1

Ni(DME)Br, or Fe(DME)Br, instead of 0

> Co(DME)Br; < 1% NA
6 1.5 equiv of 5 42% >20:1
7 1.5 equiv of 6 at 60 °C instead of rt 73% >20:1
8 No (£)-t-Bu-Quinox <1% NA
9 No Zn <1% NA
10 3.0 equiv Cp2Co instead of Zn <1% NA
11 3.0 equiv Cp2Co and 5.0 equiv ZnCl; instead of Zn | 63% >20:1
MeO

Br Br

7
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3. Synthesis and Characterization of Vinylcyclopropane Substrates

Me;S(O)I MePPh;Br
0 0P R? 0 NaH o nBuLi
1JK%PPh3 _) 1 _ , —) R2 4)0 R2
R CHCI;,60°C R R DMSO, rt R THF, 0°Ctort R
16 h 16 h 2h

General procedure A: synthesis of a,p-unsaturated ketones from aldehydes. A
round-bottom flask was charged with a stir bar, the Wittig reagent (1.5 equiv), the aldehyde (1.0
equiv), and CHCIz (0.5 M). The mixture was heated at reflux. After 16 h, the crude reaction
mixture was concentrated under reduced pressure. The residue was loaded directly onto a SiO>

column for purification.

General procedure B: synthesis of trans-cyclopropylketones from a,f-unsaturated
ketones. A flame-dried round bottom flask was charged with solid NaH (60% in mineral oil, 1.2
equiv), trimethylsulfoxonium iodide (1.2 equiv), and a magnetic stir bar. The flask was placed
under N2 atmosphere, and DMSO (0.35 M) was added dropwise with stirring. After hydrogen
evolution ceased, the reaction mixture was stirred for an additional 15 min, during which time
the solution became clear. The a,B-unsaturated ketone (1.0 equiv) was added by syringe. The
reaction was allowed to stir at room temperature. After 16 h, the reaction was quenched with
water, and the mixture was extracted 3x with Et2O. The combined organic layers were dried over
MgSQs, filtered, and concentrated under reduced pressure. The crude product was loaded

directly onto a SiO2 column for purification.

General procedure C: synthesis of trans-vinylcyclopropanes from trans-
cyclopropylketones. A flame-dried round-bottom flask was charged with a stir bar, MePPhsBr
(1.5 equiv), and THF (~ 0.2 M). The mixture was cooled to 0 °C under N, atmosphere, followed
by dropwise addition of nBuLi (2.5 M in hexanes, 1.5 equiv). The mixture was stirred at 0 °C for
30 min. A solution of the trans-cyclopropylketone in THF (1 mL) was added dropwise, and the
reaction was then warmed to room temperature and stirred. After 2 h, the reaction was quenched

with a saturated aqueous solution of NH4Cl and extracted 3x with Et,O. The combined organic
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layers were dried over MgSOsa, filtered, and concentrated under reduced pressure. The crude

product was loaded directly onto a SiO2 column for purification.

MePPh,Br /\

nBuLi O
—
THF, 0 °C to rt
2h

(1-(2-phenethylcyclopropyl)vinyl)benzene (S1). The reaction was conducted according to the

general procedure C without modification using (2-phenethylcyclopropyl)(phenyl)methanone?
(1.06 g, 4.2 mmol, 1.0 equiv), MePPhsBr (2.25 g, 6.3 mmol, 1.5 equiv), and nBuLi (2.5 M in
hexanes, 2.52 mL, 6.3 mmol, 1.5 equiv) in THF (25 mL). The product was purified by column
chromatography (100% hexanes) to provide (1-(2-phenethylcyclopropyl)vinyl)benzene (949 mg,
91% yield) as a clear, colorless oil.

'H NMR (300 MHz, CDCls) & 7.54 (d, J = 6.8 Hz, 2H), 7.43 — 7.28 (m, 4H), 7.24 — 7.12
(m, 3H), 5.23 (s, 1H), 4.88 (s, 1H), 2.77 (t, J = 7.7 Hz, 2H), 2.01 — 1.74 (m, 1H), 1.68 — 1.55 (m,
1H), 1.50 — 1.39 (m, 1H), 1.08 — 0.91 (m, 1H), 0.88 — 0.76 (m, 1H), 0.73 — 0.59 (m, 1H).

BC{'H} NMR (201 MHz, CDCls) & 149.3, 142.3, 141.9, 128.5, 128.3, 128.2, 127.4,
126.2, 125.7, 108.9, 36.3, 35.8, 23.4, 21.1, 14.0.

HRMS(ESI) (m/z): [M + H]" Calcd for C1gH20: 249.1638; found: 249.1643

TLC: Rf=0.72 (100% hexanes)

o (0] NBoc

NB CHCls, 60 °C
_PPhs /\/Q oc _
o7 16 h

tert-butyl (E)-4-(4-oxo-4-phenylbut-2-en-1-yl)piperidine-1-carboxylate (S2). The reaction
was conducted according to the general procedure A without modification using tert-butyl 4-(2-
oxoethyl)piperidine-1-carboxylate (2.0 g, 4.4 mmol, 1.0 equiv) and
phenacyltriphenylphosphorane (2.34 g, 6.2 mmol, 1.5 equiv) in CHClIs (10 mL). The product was
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purified by column chromatography (20% Et.O in hexanes) to provide tert-butyl (E)-4-(4-oxo-4-
phenylbut-2-en-1-yl)piperidine-1-carboxylate (1.35 g, 93% yield) as an orange solid.

'H NMR (300 MHz, CDCls) § 7.93 (d, J = 7.3 Hz, 2H), 7.64 — 7.51 (m, 1H), 7.48 (t, J =
7.3 Hz, 2H), 7.03 (dt, J = 14.7, 7.2 Hz, 1H), 6.90 (d, J = 15.4 Hz, 1H), 4.10 (br s, 2H), 2.69 (t, J
=12.7 Hz, 2H), 2.28 (t, J = 6.8 Hz, 2H), 1.70 (d, J = 12.9 Hz, 3H), 1.45 (s, 9H), 1.33 - 0.98 (m,
2H).

BC{*H} NMR (201 MHz, CDCls) § 190.5, 154.8, 147.3, 137.8, 132.7, 128.6, 128.5,
127.4,79.4, 41.0, 39.8, 35.8, 32.0, 28.5.

HRMS(ESI) (m/z): [M + Na]* Calcd for C20H27NO3: 352.1883; found: 352.1887

TLC: Rs=0.21 (15% Et20 in hexanes)

BocN
Me;S(O) e

NaH O
= —>
DMSO, rt

16 h

0 NBoc

tert-butyl 4-((2-benzoylcyclopropyl)methyl)piperidine-1-carboxylate (S3). The reaction was
conducted according to the general procedure B without modification using S2 (1.35 g, 4.4 mmol,
1.0 equiv), trimethylsulfoxonium iodide (1.08 g, 4.9 mmol, 1.2 equiv), NaH (60% in mineral oil,
196 mg, 1.2 equiv). The product was purified by column chromatography (20% Et,0O in hexanes)
to provide tert-butyl 4-((2-benzoylcyclopropyl)methyl)piperidine-1-carboxylate (741 mg, 53%
yield) as a yellow oil.

'H NMR (300 MHz, CDCl3) § 7.99 (d, J = 7.0 Hz, 2H), 7.63 — 7.53 (m, 1H), 7.48 (t, J =
7.3 Hz, 2H), 4.08 (br s, 2H), 2.66 (t, J = 12.9 Hz, 2H), 2.51 — 2.35 (m, 1H), 1.80 — 1.66 (m, 2H),
1.67 — 1.47 (m, 4H), 1.45 (s, 9H), 1.38 — 1.01 (m, 3H), 1.00 — 0.79 (m, 1H).

BC{'H} NMR (201 MHz, CDCl3) § 199.9, 154.8, 137.9, 132.7, 128.5, 128.0, 79.2, 40.4,
36.5, 32.1, 28.5, 25.6, 25.1, 24.5, 19.2.

HRMS(ESI) (m/z): [M + H]" Calcd for C21H20NO3: 344.2220; found: 344.2222

TLC: Rf=0.27 (15% Et20 in hexanes)
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BocN BocN
°° MePPh,Br °°

O nBuLi

—
THF, 0 °Ctort
2h

tert-butyl 4-((2-benzoylcyclopropyl)methyl)piperidine-1-carboxylate (S4). The reaction was
conducted according to the general procedure C without modification using S3 (741 mg, 2.16
mmol, 1.0 equiv), MePPhzBr (1.14 g, 3.2 mmol, 1.5 equiv), and nBuLi (2.5 M in hexanes, 1.3
mL, 3.2 mmol, 1.5 equiv) in THF (10 mL). The product was purified by column chromatography
(10% Et0 in hexanes) to provide tert-butyl 4-((2-benzoylcyclopropyl)methyl)piperidine-1-
carboxylate (448 mg, 61% yield) as a clear, colorless oil.

'H NMR (400 MHz, CDCl3) & 7.51 (d, J = 7.0 Hz, 2H), 7.33 (t, J = 7.2 Hz, 2H), 7.30 —
7.26 (m, 1H), 5.21 (s, 1H), 4.87 (s, 1H), 4.07 (s, 2H), 2.67 (s, 2H), 1.71 (d, J = 13.1 Hz, 2H),
1.62 — 1.49 (m, 2H), 1.45 (s, 9H), 1.41 — 1.34 (m, 1H), 1.25 — 1.18 (m, 1H), 1.18 — 1.05 (m, 2H),
0.98 - 0.92 (m, 1H), 0.84 — 0.76 (m, 1H), 0.69 — 0.56 (m, 1H).

BC{*H} NMR (201 MHz, CDCls) 5 154.9, 149.4, 141.8, 128.2, 127.4, 126.1, 108.8, 79.2,
41.2,36.7, 32.2, 28.5, 23.3, 18.9, 14.3.

HRMS(ESI) (m/z): [M + H]" Calcd for C22H31NO»: 342.2428; found: 342.2426

TLC: Rs=0.16 (5% Et20 in hexanes)

o CHCly, 60 °C
16 h |

(E)-5-(5-methylfuran-2-yl)-1-phenylpent-2-en-1-one (S5). The reaction was conducted
according to the general procedure A without modification using 3-(5-methylfuran-2-yl)propanal
(1.4 g, 10.1 mmol, 1.0 equiv) and phenacyltriphenylphosphorane (5.7 g, 15.2 mmol, 1.5 equiv) in
CHCI3 (20 mL). The product was purified by column chromatography (20% Et>O in hexanes) to
provide (E)-5-(5-methylfuran-2-yl)-1-phenylpent-2-en-1-one (2.06 g, 84% yield) as an orange oil.
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'H NMR (300 MHz, CDCls3) § 7.91 (d, J = 8.2 Hz, 2H), 7.61 — 7.52 (m, 1H), 7.47 (t, J =
7.3 Hz, 2H), 7.07 (dt, J = 15.4, 6.6 Hz, 1H), 6.90 (d, J = 15.5 Hz, 1H), 5.88 (d, J = 13.6 Hz, 2H),
2.82 (t,J=7.4 Hz, 2H), 2.73 — 2.56 (m, 2H), 2.26 (s, 3H).

BC{*H} NMR (201 MHz, CDCls) § 190.9, 152.6, 150.6, 148.2, 137.9, 132.7, 128.6,
128.5, 126.6, 106.1, 106.0, 31.4, 26.8, 13.5.

HRMS(APCI) (m/z): [M + H]" Calcd for C16H1602: 241.1223; found: 241.1220

TLC: Rf=0.29 (15% Et20 in hexanes)

o Me;S(O)! o o
NaH Me
o - |
= Me \
|/ DMSO, rt
16 h

(2-(2-(5-methylfuran-2-yl)ethyl)cyclopropyl)(phenyl)methanone (S6). The reaction was
conducted according to the general procedure B without modification using S5 (2.06 g, 8.1 mmol,
1.0 equiv), trimethylsulfoxonium iodide (2.14 g, 9.71 mmol, 1.2 equiv), NaH (60% in mineral oil,
389 mg, 1.2 equiv). The product was purified by column chromatography (15% Et,0O in hexanes)
to provide (2-(2-(5-methylfuran-2-yl)ethyl)cyclopropyl)(phenyl)methanone (1.02 g, 50% yield)
as a light yellow oil.

'H NMR (300 MHz, CDCls) & 7.96 (d, J = 7.0 Hz, 2H), 7.62 — 7.49 (m, 1H), 7.46 (t, J =
7.3 Hz, 2H), 5.81 (d, J = 9.3 Hz, 2H), 2.71 (t, J = 7.3 Hz, 2H), 2.48 — 2.40 (m, 1H), 2.20 (s, 3H),
1.90 -1.70 (m, 2H), 1.68 — 1.58 (m, 1H), 1.53 — 1.40 (m, 1H), 1.02 — 0.85 (m, 1H).

BC{*H} NMR (201 MHz, CDCls) & 199.9, 153.4, 150.3, 138.0, 132.6, 128.4, 128.0,
105.9, 105.8, 32.2, 27.8, 26.4, 25.0, 18.7, 13.5.

HRMS(ESI) (m/z): [M + H]" Calcd for C17H1802: 255.1380; found: 255.1382

TLC: Rr=0.33 (15% Et20 in hexanes)
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o MePPh3;Br

O 0]
nBuLi
Me \ l Me \ l
THF, 0 °C to rt
2h

2-methyl-5-(2-(2-(1-phenylvinyl)cyclopropyl)ethyl)furan (S7). The reaction was conducted
according to the general procedure C without modification using S6 (1.02 g, 4.01 mmol, 1.0
equiv), MePPhzBr (2.15 g, 6.01 mmol, 1.5 equiv), and nBuLi (2.5 M in hexanes, 2.4 mL, 6.01
mmol, 1.5 equiv) in THF (20 mL). The product was purified by column chromatography (100%
hexanes) to provide 2-methyl-5-(2-(2-(1-phenylvinyl)cyclopropyl)ethyl)furan (403 mg, 42%
yield) as a clear, colorless oil.

'H NMR (400 MHz, CDCl3) § 7.54 (d, J = 6.8 Hz, 2H), 7.38 — 7.27 (m, 3H), 5.92 — 5.80
(m, 2H), 5.23 (s, 1H), 4.89 (s, 1H), 2.72 (t, J = 7.6 Hz, 2H), 2.25 (s, 3H), 1.98 — 1.77 (m, 1H),
1.72 — 1.50 (m, 1H), 1.50 — 1.34 (m, 1H), 1.08 — 0.90 (m, 1H), 0.88 — 0.73 (m, 1H), 0.71 — 0.58
(m, 1H).

BC{*H} NMR (201 MHz, CDCls) § 154.2, 150.2, 149.3, 141.8, 128.2, 127.4, 126.2,
109.0, 105.8, 105.4, 33.1, 28.0, 23.4, 21.0, 13.8, 13.5.

HRMS(ESI) (m/z): [M + H]" Calcd for C1gH200: 253.1587; found: 253.1585

TLC: Rf= 0.47 (100% hexanes)

Me,S(O)
NaH
DMSO rt
16 h
2-(2-(2-benzoylcyclopropyl)ethyl)isoindoline-1,3-dione (S8). The reaction was conducted
according to the general procedure B without modification using (E)-2-(5-oxo-5-phenylpent-3-

en-1-yl)isoindoline-1,3-dione? (1.16 g, 3.8 mmol, 1.0 equiv), trimethylsulfoxonium iodide (1.0 g,
4.5 mmol, 1.2 equiv), NaH (60% in mineral oil, 182 mg, 1.2 equiv). The product was purified by
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column  chromatography  (30%  EtOAc in  hexanes) to provide 2-(2-(2-
benzoylcyclopropyl)ethyl)isoindoline-1,3-dione (424 mg, 35% yield) as a white solid.

'H NMR (300 MHz, CDCl3) 6 7.91 (d, J = 6.9 Hz, 2H), 7.79 — 7.71 (m, 2H), 7.69 — 7.61
(m, 2H), 7.51 (t, J = 7.4 Hz, 1H), 7.39 (t, J = 7.7 Hz, 2H), 3.81 (t, J = 7.3 Hz, 2H), 2.56 — 2.37
(m, 1H), 1.95-1.72 (m, 2H), 1.69 — 1.57 (m, 1H), 1.53 — 1.34 (m, 1H), 1.02 — 0.84 (m, 1H).

BC{*H} NMR (201 MHz, CDCls) & 199.3, 168.2, 137.8, 133.9, 132.6, 132.0, 128.4,
127.9,123.2, 37.5, 32.0, 24.5, 23.7, 18.2.

HRMS(ESI) (m/z): [M + H]" Calcd for C20H17NO3: 320.1281; found: 320.1284

TLC: Rf=0.21 (30% EtOAC in hexanes)

MePPh3Br
nBuL|
THF, 0 °C to rt

2-(2-(2-(1-phenylvinyl)cyclopropyl)ethyl)isoindoline-1,3-dione  (S9). The reaction was
conducted according to the general procedure C without modification using S8 (587 mg, 1.84
mmol, 1.0 equiv), MePPh3zBr (986 mg, 2.76 mmol, 1.5 equiv), and nBuLi (2.5 M in hexanes, 1.1
mL, 2.76 mmol, 1.5 equiv) in THF (20 mL). The product was purified by column
chromatography (15% EtOAC in hexanes) to provide 2-(2-(2-(1-
phenylvinyl)cyclopropyl)ethyl)isoindoline-1,3-dione (84 mg, 14% vyield) as a yellow oil.

'H NMR (300 MHz, CDCls) § 7.89 — 7.76 (m, 2H), 7.76 — 7.62 (m, 2H), 7.46 (d, J = 7.9
Hz, 2H), 7.33 — 7.26 (m, 3H), 5.19 (s, 1H), 4.85 (s, 1H), 3.83 (t, J = 7.2 Hz, 2H), 2.08 — 1.87 (m,
1H), 1.65 — 1.56 (m, 1H), 1.51 — 1.35 (m, 1H), 1.09 — 0.87 (m, 1H), 0.83 — 0.72 (m, 1H), 0.72 —
0.59 (m, 1H).

13C{*H} NMR (201 MHz, CDCls) & 168.4, 148.7, 141.5, 133.9, 132.2, 128.1, 127.4,
126.1, 123.2, 109.3, 37.8, 32.8, 23.0, 18.3, 13.5.

HRMS(ESI) (m/z): [M + H]" Calcd for C21H19NO2: 318.1489; found: 318.1487

TLC: Rf=0.25 (15% Et20 in hexanes)
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(2E,6Z)-1-phenyldodeca-2,6-dien-1-one (S10). The reaction was conducted according to the
general procedure A without modification using cis-4-decenal (1.0 g, 6.48 mmol, 1.0 equiv) and
phenacyltriphenylphosphorane (3.7 g, 9.72 mmol, 1.5 equiv) in CHCI3 (20 mL). The product was
purified by column chromatography (5% Et>O in hexanes) to provide (2E,6Z)-1-phenyldodeca-
2,6-dien-1-one (1.50 g, 90% vyield) as yellow oil.

'H NMR (300 MHz, CDCl3) § 7.92 (d, J = 7.0 Hz, 2H), 7.55 (t, J = 7.3 Hz, 1H), 7.46 (t, J
= 7.3 Hz, 2H), 7.06 (dt, J = 15.5, 6.5 Hz, 1H), 6.88 (d, J = 15.4 Hz, 1H), 5.54 — 5.26 (m, 2H),
2.47 — 2.32 (m, 2H), 2.32 — 2.19 (m, 2H), 2.03 (q, J = 6.8 Hz, 2H), 1.42 — 1.19 (m, 6H), 0.95 —
0.80 (m, 3H).

BC{'H} NMR (201 MHz, CDCls) & 190.9, 149.2, 138.0, 132.6, 131.4, 128.5, 128.5,
127.8,126.2, 32.9, 31.5, 29.3, 27.3, 25.9, 22.6, 14.1.

HRMS(ESI) (m/z): [M + H]" Calcd for C1gH240: 256.1807; found: 256.1814

TLC: Rs=0.39 (5% Et20 in hexanes)

(2)-(2-(non-3-en-1-yl)cyclopropyl)(phenyl)methanone (S11). The reaction was conducted
according to the general procedure B without modification using S10 (1.5 g, 5.85 mmol, 1.0
equiv), trimethylsulfoxonium iodide (1.55 g, 7.0 mmol, 1.2 equiv), NaH (60% in mineral oil, 182
mg, 1.2 equiv). The product was purified by column chromatography (5% Et20 in hexanes) to
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provide (Z)-(2-(non-3-en-1-yl)cyclopropyl)(phenyl)methanone (778 mg, 49% yield) as a yellow
oil.

'H NMR (300 MHz, CDCl3) § 8.01 (d, J = 7.0 Hz, 2H), 7.56 (t, J = 7.3 Hz, 1H), 7.47 (t, J
= 7.3 Hz, 2H), 5.45 - 5.31 (m, 2H), 2.53 — 2.38 (m, 1H), 2.24 — 2.08 (m, 2H), 2.05 — 1.89 (m,
2H), 1.70 — 1.55 (m, 1H), 1.55 — 1.38 (m, 3H), 1.35 — 1.17 (m, 6H), 0.99 — 0.90 (m, 1H), 0.90 —
0.81 (m, 3H).

BC{*H} NMR (201 MHz, CDCls) § 200.0, 138.1, 132.6, 130.8, 128.6, 128.5, 128.0, 33.8,
31.5,29.4,27.2,26.9, 26.9, 25.2, 22.6, 18.9, 14.1.

HRMS(ESI) (m/z): [M + H]" Calcd for C1gH260: 271.2056; found: 271.2063

TLC: R¢=0.43 (5% Et20 in hexanes)

CsHas CsHyq
MePPh3yBr
O 3
X nBulLi X
THF, 0°Ctort
2h

(2)-(1-(2-(non-3-en-1-yl)cyclopropyl)vinyl)benzene (S12). The reaction was conducted
according to the general procedure C without modification using S11 (778 mg, 2.87 mmol, 1.0
equiv), MePPhsBr (1.54 g, 4.30 mmol, 1.5 equiv), and nBuLi (2.5 M in hexanes, 1.7 mL, 4.30
mmol, 1.5 equiv) in THF (30 mL). The product was purified by column chromatography (100%
hexanes) to provide (Z)-(1-(2-(non-3-en-1-yl)cyclopropyl)vinyl)benzene (473 mg, 61% yield) as
a clear, colorless oil.

'H NMR (300 MHz, CDCls) § 7.57 (d, J = 6.8 Hz, 2H), 7.39 — 7.27 (m, 3H), 5.49 — 5.33
(m, 2H), 5.24 (s, 1H), 4.89 (s, 1H), 2.32 — 2.12 (m, 2H), 2.12 — 1.95 (m, 2H), 1.74 — 1.53 (m, 1H),
1.50 - 1.24 (m, 9H), 1.03 — 0.88 (m, 3H), 0.86 — 0.76 (m, 1H), 0.74 — 0.57 (m, 1H).

13C{*H} NMR (201 MHz, CDCls) & 149.5, 141.9, 130.3, 129.3, 128.1, 127.4, 126.1,
108.7, 34.5, 31.6, 29.5, 27.2, 27.1, 23.4, 22.6, 21.3, 14.1, 13.9.

HRMS(APCI) (m/z): [M + H]* Calcd for CaoHas: 269.2264; found: 269.2262

TLC: Rf= 0.84 (100% hexanes)
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(2-(2-(benzyloxy)ethyl)cyclopropyl)(phenyl)methanone (S13). The reaction was conducted
according to the general procedure B without modification using (E)-5-(benzyloxy)-1-
phenylpent-2-en-1-one? (613 mg, 2.30 mmol, 1.0 equiv), trimethylsulfoxonium iodide (608 g,
2.76 mmol, 1.2 equiv), NaH (60% in mineral oil, 110 mg, 1.2 equiv). The product was purified
by column chromatography (20% Et:O in hexanes) to provide (2-(2-
(benzyloxy)ethyl)cyclopropyl)(phenyl)methanone (323 mg, 50% vyield) as a yellow oil.

'H NMR (300 MHz, CDCl3) & 7.99 (d, J = 6.9 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.50 —
7.37 (m, 2H), 7.38 — 7.28 (m, 5H), 4.50 (s, 2H), 3.58 (t, J = 6.2 Hz, 2H), 2.64 — 2.43 (m, 1H),
1.96 - 1.77 (m, 1H), 1.77 — 1.60 (m, 2H), 1.56 — 1.43 (m, 1H), 1.04 — 0.85 (m, 1H).

BC{*H} NMR (201 MHz, CDCls) § 200.0, 138.4, 138.0, 132.6, 128.5, 128.4, 128.0,
127.6, 127.5,73.1, 69.8, 33.7, 25.0, 24.2, 18.2.

HRMS(APCI) (m/z): [M + H]" Calcd for C19H2002: 281.1536; found: 281.1538

TLC: Rs=0.22 (20% Et20 in hexanes)

o MePPh3Br
BnO nBuLi BnO

THF, 0 °C tort
2h

(1-(2-(2-(benzyloxy)ethyl)cyclopropyl)vinyl)benzene (S14). The reaction was conducted
according to the general procedure C without modification using S13 (322 mg, 1.15 mmol, 1.0
equiv), MePPhsBr (616 mg, 1.73 mmol, 1.5 equiv), and nBuLi (2.5 M in hexanes, 0.7 mL, 1.73
mmol, 1.5 equiv) in THF (10 mL). The product was purified by column chromatography (5%
Et20 in hexanes) to provide (1-(2-(2-(benzyloxy)ethyl)cyclopropyl)vinyl)benzene (209 mg, 65%

yield) as a clear, colorless oil.
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'H NMR (300 MHz, CDCls) § 7.56 (d, J = 6.5 Hz, 2H), 7.40 — 7.27 (m, 8H), 5.26 (s, 1H),
4.92 (s, 1H), 4.55 (s, 2H), 3.62 (t, J = 6.6 Hz, 2H), 1.95 - 1.78 (m, 1H), 1.74 — 1.60 (m, 1H), 1.52
—1.44 (m, 1H), 1.15 — 1.00 (m, 1H), 0.91 — 0.77 (m, 1H), 0.74 — 0.64 (m, 1H).

BC{'H} NMR (201 MHz, CDCls) & 149.2, 141.8, 138.6, 128.4, 128.1, 127.6, 127.5,
127.4,126.2, 109.1, 73.0, 70.2, 34.4, 23.1, 18.4, 13.6.

HRMS(ESI) (m/z): [M + H]" Calcd for C20H220: 279.1743; found: 279.1742

TLC: Rs=0.67 (5% Et20 in hexanes)

o MePPh3Br -
Me" nBulLi Me"

THF, 0 °C tort
2h

> 99% ee >99% ee

(1-((1R,2R)-2-methylcyclopropyl)vinyl)benzene (29). The reaction was conducted according to
the general procedure C without modification using ((1R,2R)-2-
methylcyclopropyl)(phenyl)methanone'® (1.9 g, 11.9 mmol, 1.0 equiv), MePPhsBr (6.40 g, 17.9
mmol, 1.5 equiv), and nBuLi (2.5 M in hexanes, 7.16 mL, 17.9 mmol, 1.5 equiv) in THF (50
mL). The product was purified by column chromatography (100% hexanes) to provide (1-
((1R,2R)-2-methylcyclopropyl)vinyl)benzene (786 mg, 42% yield) as a clear, colorless oil. [a]p?3
= +71.8° (c 0.204, CHCIs). Spectroscopic and mass spectrometry data were identical to those of
the racemic product.

HPLC: Chiralpak® OD-H column (100% hexane, 1.0 mL/min, A = 254 nm) tr = 6.54 min
(minor), 7.22 min (major): 1: >99 er.
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Figure S1.  HPLC data for 29. (racemate, top; 29, bottom).
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4. Synthesis and Characterization of Vinylidene Substrates

General procedure for the synthesis of 1,1-dichlorolakenes from aldehydes. Under an
N2 atmosphere, a round bottom flask equipped with a magnetic stir bar was charged with PhsP
(4.0 equiv) and MeCN (5 mL/mmol). With stirring, a solution of the aldehyde (1.0 equiv) and
CCl4 (2.0 equiv) in MeCN (2 mL/mmol) was added dropwise over 1 h. Following addition, the
reaction mixture was stirred at room temperature for 2 h. The reaction was then quenched by
addition of H20 (100 mL). The crude reaction mixture was extracted with Et2O (3 x 50 mL). The
combined organic phases were dried over MgSOs, filtered, and concentrated under reduced

pressure. The crude residue was loaded directly onto a SiO2 column for purification.

Cl

MeO 0 PPh,, CCI
e \n/\/v 3 4 ) Meo\ﬂ/\/\)\m
o) MeCN, rt, 3 h

(0]

methyl 6,6-dichlorohex-5-enoate (S15). The reaction was conducted according to the general
procedure without modification using methyl 5-oxopentanoate (1.8 g, 13.8 mmol, 1.0 equiv),
triphenylphosphine (14.5 g, 55.3 mmol, 4.0 equiv), and CCls (4.26 g, 2.69 mL, 27.6 mmol, 2.0
equiv). The product was purified by column chromatography (10% Et>O in hexanes) to provide
methyl 6,6-dichlorohex-5-enoate (1.19 g, 44% vyield) as a clear, colorless oil.

'H NMR (300 MHz, CDCls3) § 5.84 (t, J = 7.5 Hz, 1H), 3.68 (s, 3H), 2.34 (t, J = 7.4 Hz,
2H), 2.22 (g, J = 7.5 Hz, 2H), 1.85 — 1.65 (m, 2H).

BC{*H} NMR (201 MHz, CDCl3) § 173.4, 128.6, 120.9, 51.6, 33.1, 28.8, 23.3.

HRMS(APCI) (m/z): [M + H]" Calcd for C7H10Cl20: 197.0131; found: 197.0129

TLC: Rr=0.29 (10% Et20 in hexanes)

Ts PPh3, CC|4 Ts Cl

N 0 > N
Me” NN MeCN., rt, 3 h Me” A

N-(4,4-dichlorobut-3-en-1-yl)-N,4-dimethylbenzenesulfonamide (S16). The reaction was
conducted according to the general procedure without modification using N,4-dimethyl-N-(3-
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oxopropyl)benzenesulfonamide® (1.89 g, 7.83 mmol, 1.0 equiv), triphenylphosphine (8.22 g,
31.3 mmol, 4.0 equiv), and CCls (2.41 g, 0.89 mL, 15.7 mmol, 2.0 equiv). The product was
purified by column chromatography (30% EtOAc in hexanes) to provide N-(4,4-dichlorobut-3-
en-1-yl)-N,4-dimethylbenzenesulfonamide (869 mg, 36% yield) as a yellow oil.

'H NMR (300 MHz, CDCls) § 7.67 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 7.9 Hz, 2H), 5.89 (t,
J=7.2Hz 1H),3.08 (t, J = 7.1 Hz, 2H), 2.74 (s, 3H), 2.49 — 2.34 (m, 5H).

BC{'H} NMR (201 MHz, CDCl3) § 143.4, 134.4, 129.7, 127.3, 125.8, 122.2, 48.2, 34.7,
28.2,21.4.

HRMS(APCI) (m/z): [M + H]" Calcd for C12H15CI2NO2S: 308.0273; found: 308.0271

TLC: R¢=0.15 (10% Et20 in hexanes)

5. Substrate Scope Studies and Product Characterization

. Co(DME)Br, (5 mol%) RS
= ()—-t-Bu-Quinox (6 mol%)
| + R2 ;
cl cl R3 Zn (3.0 equiv)
3.0 Equiv. DMA, rt R? R?

General Procedure for the [5 + 1]-Cycloaddition Reaction. In an N»-filled glovebox, a
5-mL vial was charged with Co(DME)Br2 (1.54 mg, 0.005 mmol, 0.05 equiv), (£)-t-Bu-Quinox
(1.52 mg, 0.006 mmol, 0.06 equiv), Zn powder (19.6 mg, 0.3 mmol, 3.0 equiv), and a magnetic
stir bar. To this mixture was added a solution of the 1,1-dichloroalkene (0.1 mmol, 1.0 equiv)
and the vinylcyclopropane (0.3 mmol, 3.0 equiv) dissolved in DMA (0.75 mL). The reaction was
stirred at room temperature. After 16 h, the crude reaction mixture was removed from the
glovebox, opened to ambient atmosphere, and loaded directly onto a SiO2 column for

purification.

MeO ]
|
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(E)-1-(cyclohex-3-en-1-ylidenemethyl)-4-methoxybenzene (3). The reaction was conducted
according to the general procedure without modification using 1-(2,2-dichlorovinyl)-4-
methoxybenzene (20.4 mg, 0.1 mmol, 1.0 equiv) and vinylcyclopropane (20.4 mg, 0.3 mmol, 3.0
equiv). Isolated yields were determined following column chromatography (SiO2, 15% CH.Cl;
in hexanes).

14.1 mg isolated (70% vyield), colorless oil, E/Z =>20: 1

'H NMR (300 MHz, CDCl3) § 7.16 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 6.33 (s,
1H), 5.81 —5.65 (m, 2H), 3.81 (s, 3H), 2.89 (s, 2H), 2.55 (t, J = 6.4 Hz, 2H), 2.25 — 2.10 (m, 2H).

BC{*H} NMR (201 MHz, CDCls) & 157.7, 137.9, 130.5, 129.8, 126.8, 126.6, 122.1,
113.4,55.1, 35.6, 27.1, 25.8.

HRMS(APCI) (m/z): [M + H]* Calcd for C14H160: 201.1274; found: 201.1272

TLC: Rf= 0.51 (5% Et20 in hexanes)

(E)-3-(4-methoxybenzylidene)-2,3,4,5-tetrahydro-1,1'-biphenyl  (6). The reaction was
conducted according to the general procedure without modification using 1-(2,2-dichlorovinyl)-
4-methoxybenzene (20.4 mg, 0.1 mmol, 1.0 equiv) and (1-cyclopropylvinyl)benzene (43.3 mg,
0.3 mmol, 3.0 equiv). Isolated yields were determined following column chromatography (SiO2,
15% CHCl> in hexanes). Single crystals of 6 suitable for X-ray diffraction analysis were
obtained by evaporation of a saturated Et>O solution at room temperature.

25.9 mg isolated (94% yield), white solid, E/Z =>20:1

'H NMR (300 MHz, CDCl3) & 7.43 (d, J = 7.2 Hz, 2H), 7.34 (t, J = 7.2 Hz, 2H), 7.25 —
7.22 (m, 1H), 7.19 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.5 Hz, 2H), 6.43 (s, 1H), 6.26 — 6.11 (m, 1H),
3.82 (s, 3H), 3.29 (s, 2H), 2.61 (t, J = 6.4 Hz, 2H), 2.43 — 2.30 (m, 2H).
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BC{*H} NMR (201 MHz, CDCls) & 157.9, 141.5, 137.8, 136.4, 130.6, 129.9, 128.3,
126.9, 125.1, 124.2, 122.8, 113.6, 55.3, 37.9, 27.5, 25.5.

HRMS(ESI) (m/z): [M + H]" Calcd for C2oH200: 277.1587; found: 277.1589

TLC: Rf=0.46 (5% Et20 in hexanes)

(E)-3-benzylidene-2,3,4,5-tetrahydro-1,1'-biphenyl (11). The reaction was conducted
according to the general procedure without modification using 1-(2,2-dichlorovinyl)benzene
(17.3 mg, 0.1 mmol, 1.0 equiv) and (1-cyclopropylvinyl)benzene (43.3 mg, 0.3 mmol, 3.0 equiv).
Isolated yields were determined following column chromatography (SiO2, 15% CHCI> in
hexanes).

21.5 mg isolated (87% yield), white solid, E/Z=>20: 1

'H NMR (300 MHz, CDCl3) § 7.44 (d, J = 8.0 Hz, 2H), 7.35 (t, J = 7.3 Hz, 4H), 7.29 —
7.27 (m, 1H), 7.26 — 7.17 (m, 3H), 6.50 (s, 1H), 6.27 — 6.10 (m, 1H), 3.39 — 3.25 (m, 2H), 2.62 (t,
J=6.4 Hz, 2H), 2.47 — 2.27 (m, 2H).

BC{'H} NMR (201 MHz, CDCl3) & 141.5, 139.0, 138.0, 136.3, 128.9, 128.3, 128.1,
126.9, 126.1, 125.1, 124.2, 123.4, 38.0, 27.5, 25.5.

HRMS(APCI) (m/z): [M + H]* Calcd for C19H1s: 245.1325; found: 245.1327

TLC: Rs=0.61 (5% Et20 in hexanes)

F3C
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(E)-3-(4-(trifluoromethyl)benzylidene)-2,3,4,5-tetrahydro-1,1'-biphenyl (12). The reaction
was conducted according to the general procedure without modification using 1-(2,2-
dichlorovinyl)-4-(trifluoromethyl)benzene (24.1 mg, 0.1 mmol, 1.0 equiv) and (1-
cyclopropylvinyl)benzene (43.3 mg, 0.3 mmol, 3.0 equiv). Isolated yields were determined
following column chromatography (SiO2, 5% Et>0 in hexanes).

20.5 mg isolated (65% yield), white solid, E/Z=>20: 1

'H NMR (300 MHz, CDCls) & 7.59 (d, J = 8.1 Hz, 2H), 7.44 (d, J = 7.0 Hz, 2H), 7.40 —
7.32 (m, 4H), 7.32 - 7.27 (m, 1H), 6.51 (s, 1H), 6.27 — 6.14 (m, 1H), 3.34 (s, 2H), 2.61 (t, J= 6.4
Hz, 2H), 2.47 — 2.32 (m, 2H).

BC{'H} NMR (201 MHz, CDCl3) & 141.7, 141.3, 141.3, 136.1, 129.1, 128.4, 128.1(q,
2Jce = 32.5 Hz), 127.0, 125.1(q, 3Jcr = 3.6 Hz), 125.1, 124.1(q, Ycr = 272.8 Hz), 124.0, 122.3,
38.0, 27.4, 25.6.

F NMR (282 MHz, CDCls3) & -63.86.

HRMS(APCI) (m/z): [M + H]" Calcd for CaoH17F3: 315.1355; found: 315.1348

TLC: Rf= 0.51 (5% Et20 in hexanes)

(E)-2-(4-((4,5-dihydro-[1,1'-biphenyl]-3(2H)-ylidene)methyl)phenyl)-4,4,5,5-tetramethyl-
1,3,2-dioxaborolane (13). The reaction was conducted according to the general procedure
without ~ modification using 2-(4-(2,2-dichlorovinyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-
dioxaborolane (29.9 mg, 0.1 mmol, 1.0 equiv) and (1-cyclopropylvinyl)benzene (43.3 mg, 0.3
mmol, 3.0 equiv). Isolated yields were determined following column chromatography (SiO2, 5%
Et.O in hexanes).

22.3 mg isolated (60% yield), white solid, E/Z =>20:1
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'H NMR (300 MHz, CDCl3) § 7.78 (d, J = 7.8 Hz, 2H), 7.43 (d, J = 7.6 Hz, 2H), 7.34 (t,
J=7.5Hz, 2H), 7.29 — 7.26 (m, 3H), 6.50 (s, 1H), 6.19 (s, 1H), 3.31 (s, 2H), 2.62 (t, J = 6.4 Hz,
2H), 2.43 —2.29 (m, 2H), 1.35 (s, 12H).

BC{'H} NMR (201 MHz, CDCls) & 141.4, 141.0, 139.9, 136.2, 134.6, 128.3, 128.2,
126.9, 125.1, 124.2, 123.5, 83.7, 38.1, 27.5, 25.6, 24.9.

HRMS(APCI) (m/z): [M + H]" Calcd for C25H29BO: 372.2370; found: 372.2370

TLC: Rf=0.46 (5% Et20 in hexanes)

M902C

methyl (E)-4-((4,5-dihydro-[1,1'-biphenyl]-3(2H)-ylidene)methyl)benzoate (14). The reaction
was conducted according to the general procedure without modification using methyl 4-(2,2-
dichlorovinyl)benzoate (23.1 mg, 0.1 mmol, 1.0 equiv) and (1-cyclopropylvinyl)benzene (43.3
mg, 0.3 mmol, 3.0 equiv). Isolated yields were determined following column chromatography
(SiO2, 15% Et20 in hexanes).

21.2 mg isolated (70% yield), white solid, E/Z =>20: 1

'H NMR (300 MHz, CDCls) & 8.01 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 7.0 Hz, 2H), 7.39 —
7.27 (m, 5H), 6.51 (s, 1H), 6.27 — 6.12 (m, 1H), 3.92 (s, 3H), 3.33 (s, 2H), 2.63 (t, J = 6.4 Hz,
2H), 2.49 — 2.30 (m, 2H).

BBC{'H} NMR (201 MHz, CDCls) & 167.0, 142.9, 141.3, 136.1, 129.5, 128.8, 128.4,
127.8,127.0, 125.1, 124.0, 122.8, 52.0, 38.1, 27.4, 25.7.

HRMS(APCI) (m/z): [M + H]" Calcd for C21H2002: 305.1536; found: 305.1538

TLC: Rf=0.31 (5% Et.0 in hexanes)
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(E)-(4-((4,5-dihydro-[1,1'-biphenyl]-3(2H)-ylidene)methyl)phenyl)(methyl)sulfane (15). The
reaction was conducted according to the general procedure without modification using (4-(2,2-
dichlorovinyl)phenyl)(methyl)sulfane  (21.9 mg, 0.1 mmol, 1.0 equiv) and (1-
cyclopropylvinyl)benzene (43.3 mg, 0.3 mmol, 3.0 equiv). Isolated yields were determined
following column chromatography (SiO2, 15% CH2Cl> in hexanes).

24.2 mg isolated (83% yield), white solid, E/Z=>20: 1

'H NMR (300 MHz, CDCls) & 7.43 (d, J = 8.1 Hz, 2H), 7.34 (t, J = 7.5 Hz, 2H), 7.25 (s,
1H), 7.24 — 7.13 (m, 4H), 6.44 (s, 1H), 6.26 — 6.11 (m, 1H), 3.30 (s, 2H), 2.61 (t, J = 6.5 Hz, 2H),
2.50 (s, 3H), 2.42 — 2.28 (m, 2H).

BC{'H} NMR (201 MHz, CDCl3) & 141.4, 139.1, 136.3, 135.9, 135.0, 129.3, 128.3,
126.9, 126.6, 125.1, 124.1, 122.8, 38.0, 27.4, 25.6, 16.1.

HRMS(ESI) (m/z): [M + H]" Calcd for C20H20S: 293.1359; found: 293.1355

TLC: Rs= 0.45 (5% Et20 in hexanes)

CO,Et

ethyl 4-(4,5-dihydro-[1,1'-biphenyl]-3(2H)-ylidene)piperidine-1-carboxylate  (16). The
reaction was conducted according to the general procedure without modification using ethyl 4-
(dichloromethylene)piperidine-1-carboxylate (23.8 mg, 0.1 mmol, 1.0 equiv) and (1-
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cyclopropylvinyl)benzene (43.3 mg, 0.3 mmol, 3.0 equiv). Isolated yields were determined
following column chromatography (SiO2, 20% Et>0O in hexanes).

28.0 mg isolated (90% yield), white solid

'H NMR (300 MHz, CDCl3) 6 7.41 (d, J = 7.1 Hz, 2H), 7.39 — 7.27 (m, 2H), 7.28 — 7.18
(m, 1H), 6.25 - 6.08 (m, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.47 (s, 4H), 3.20 (s, 2H), 2.47 — 2.22 (m,
8H), 1.27 (t, J = 7.1 Hz, 3H).

BC{*H} NMR (201 MHz, CDCls) § 155.7, 142.0, 136.3, 128.3, 128.0, 126.8, 126.0,
125.1,124.7,61.2, 44.8, 44.4, 31.6, 29.3, 28.9, 27.3, 26.0, 14.8.

HRMS(ESI) (m/z): [M + H]" Calcd for C20H2sNO2: 312.1985; found: 312.1956

TLC: Rs=0.33 (15% Et20 in hexanes)

4-(4,5-dihydro-[1,1'-biphenyl]-3(2H)-ylidene)tetrahydro-2H-pyran (17). The reaction was
conducted according to the general procedure without modification using 4-
(dichloromethylene)tetrahydro-2H-pyran  (16.7 mg, 0.1 mmol, 1.0 equiv) and (1-
cyclopropylvinyl)benzene (43.3 mg, 0.3 mmol, 3.0 equiv). Isolated yields were determined
following column chromatography (SiO2, 10% Et>0O in hexanes).

18.2 mg isolated (76% yield), white solid

'H NMR (300 MHz, CDCl3) & 7.41 (d, J = 7.7 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H), 7.23 (d,
J=7.3 Hz, 1H), 6.30 — 6.06 (m, 1H), 3.69 (g, J = 5.4 Hz, 4H), 3.20 (s, 2H), 2.46 — 2.34 (m, 6H),
2.34 —2.21 (m, 2H).

13C{*H} NMR (201 MHz, CDCls) & 141.9, 136.3, 128.2, 126.9, 126.7, 125.7, 125.0,
124.6, 69.1, 68.8, 31.3, 30.8, 30.5, 27.3, 25.6.

HRMS(APCI) (m/z): [M + H]* Calcd for C17H200: 241.1587; found: 241.1590

TLC: Rf=0.74 (15% Et20 in hexanes)
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(E)-3-(3-chlorobenzylidene)-2,3,4,5-tetrahydro-1,1'-biphenyl  (18). The reaction was
conducted according to the general procedure without modification using 1-chloro-3-(2,2-
dichlorovinyl)benzene (20.7 mg, 0.1 mmol, 1.0 equiv) and (1-cyclopropylvinyl)benzene (43.3
mg, 0.3 mmol, 3.0 equiv). Isolated yields were determined following column chromatography
(Si0O2, 5% Et20 in hexanes).

25.1 mg isolated (89% yield), yellow oil, E/Z =>20: 1

'H NMR (300 MHz, CDCl3) § 7.44 (d, J = 7.1 Hz, 2H), 7.35 (t, J = 7.5 Hz, 2H), 7.31 —
7.26 (m, 2H), 7.25 — 7.17 (m, 2H), 7.13 (d, J = 7.5 Hz, 1H), 6.43 (s, 1H), 6.27 — 6.11 (m, 1H),
3.31 (s, 2H), 2.60 (t, J = 6.4 Hz, 2H), 2.47 — 2.31 (m, 2H).

BC{'H} NMR (201 MHz, CDCls) & 141.3, 140.5, 139.8, 136.1, 134.0, 129.4, 128.8,
128.4,127.0, 127.0, 126.2, 125.1, 124.1, 122.2, 37.9, 27.4, 25.6.

HRMS(APCI) (m/z): [M - H]* Calcd for C19H17Cl: 279.0935; found: 279.0931

TLC: Rf= 0.69 (5% Et20 in hexanes)

MeO

methyl (E)-5-(4,5-dihydro-[1,1'-biphenyl]-3(2H)-ylidene)pentanoate (19). The reaction was
conducted according to the general procedure without modification using methyl 6,6-
dichlorohex-5-enoate (19.7 mg, 0.1 mmol, 1.0 equiv) and (1-cyclopropylvinyl)benzene (43.3 mg,
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0.3 mmol, 3.0 equiv). Isolated yields were determined following column chromatography (SiO2,
5% Et20 in hexanes).

15.5 mg isolated (57% vyield), colorless oil, E/Z=5:1

'H NMR (300 MHz, CDCl3) & 7.39 (d, J = 8.3 Hz, 2H), 7.32 (t, J = 7.4 Hz, 3H), 7.24 (d,
J=7.1Hz, 2H), 6.25 - 6.04 (m, 1H), 5.32 (t, J = 7.3 Hz, 1H), 3.66 (s, 3H), 3.13 (s, 2H), 2.44 —
2.23 (m, 6H), 2.13 (q, J = 7.3 Hz, 2H), 1.73 (q, J = 7.3 Hz, 2H).

BC{'H} NMR (201 MHz, CDCls) & 174.1, 141.5, 136.5, 136.4, 128.2, 126.7, 124.9,
124.0, 121.5,51.4, 37.4, 33.4, 27.3, 26.4, 25.2, 24.7.

HRMS(ESI) (m/z): [M + H]" Calcd for C1gH2202: 271.1693; found: 271.1691

TLC: Rf=0.41 (10% Et20 in hexanes)

(E)-2-((4,5-dihydro-[1,1'-biphenyl]-3(2H)-ylidene)methyl)thiophene (20). The reaction was
conducted according to the general procedure without modification using 2-(2,2-
dichlorovinyl)benzofuran (21.3 mg, 0.1 mmol, 1.0 equiv) and (1-cyclopropylvinyl)benzene (43.3
mg, 0.3 mmol, 3.0 equiv). Isolated yields were determined following column chromatography
(SiO2, 5% Et20 in hexanes).

16.7 mg isolated (58% yield), white solid, E/Z =>20: 1

'H NMR (300 MHz, CDCl3) 6 7.53 (d, J = 7.2 Hz, 1H), 7.45 (t, J = 7.5 Hz, 3H), 7.36 (t, J
= 7.4 Hz, 2H), 7.31 — 7.27 (m, 1H), 7.26 — 7.16 (m, 2H), 6.57 (s, 1H), 6.34 (s, 1H), 6.27 — 6.20
(m, 1H), 3.36 (s, 2H), 3.01 (t, J = 6.5 Hz, 2H), 2.53 — 2.42 (m, 2H).

BC{'H} NMR (201 MHz, CDCls) & 155.2, 154.3, 142.8, 141.2, 136.0, 128.9, 128.4,
127.0,125.1, 124.4, 123.8, 122.7, 120.4, 112.4, 110.9, 104.6, 38.3, 27.3, 26.8.

HRMS(APCI) (m/z): [M + H]" Calcd for C21H180: 287.1430; found: 287.1433
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TLC: Rs=0.49 (5% Et20 in hexanes)

(E)-3-((4,5-dihydro-[1,1'-biphenyl]-3(2H)-ylidene)methyl)-1-tosyl-1H-indole ~ (21).  The
reaction was conducted according to the general procedure without modification using 3-(2,2-
dichlorovinyl)-1-tosyl-1H-indole  (36.6 mg, 0.1 mmol, 10 equiv) and (1-
cyclopropylvinyl)benzene (43.3 mg, 0.3 mmol, 3.0 equiv). Isolated yields were determined
following column chromatography (SiOz, 30% CH2Cl> in hexanes).

35.2 mg isolated (80% yield), white solid, E/Z=>20: 1

'H NMR (300 MHz, CDCl3) 6 7.99 (d, J = 8.2 Hz, 1H), 7.77 (d, J = 8.4 Hz, 2H), 7.55 —
7.46 (m, 2H), 7.47 — 7.40 (m, 2H), 7.35 (t, J = 7.5 Hz, 3H), 7.31 — 7.27 (m, 1H), 7.25 — 7.18 (m,
3H), 6.36 (s, 1H), 6.25 — 6.18 (m, 1H), 3.38 (s, 2H), 2.62 (t, J = 6.5 Hz, 2H), 2.45 — 2.36 (m, 2H),
2.34 (s, 3H).

BC{'H} NMR (201 MHz, CDCl3) & 144.8, 141.6, 141.3, 136.2, 135.3, 134.8, 131.2,
129.8, 128.4, 127.0, 126.8, 125.1, 124.8, 124.2, 123.2, 123.1, 119.8, 119.5, 113.6, 112.1, 37.8,
27.2, 26.6, 21.6.

HRMS(APCI) (m/z): [M + H]" Calcd for C2gH2sNO2S: 440.1674; found: 440.1675

TLC: Rr=0.30 (15% Et20 in hexanes)
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(E)-2-((4,5-dihydro-[1,1'-biphenyl]-3(2H)-ylidene)methyl)thiophene (22). The reaction was
conducted according to the general procedure without modification using methyl 2-(2,2-
dichlorovinyl)thiophene (17.9 mg, 0.1 mmol, 1.0 equiv) and (1-cyclopropylvinyl)benzene (43.3
mg, 0.3 mmol, 3.0 equiv). Isolated yields were determined following column chromatography
(SiOz, 5% CH2Cl; in hexanes).

18.0 mg isolated (71% yield), yellow oil, E/Z =>20: 1

'H NMR (300 MHz, CDCl3) 6 7.42 (d, J = 8.1 Hz, 2H), 7.34 (t, J = 7.4 Hz, 2H), 7.28 (t, J
= 1.5 Hz, 1H), 7.21 (d, J = 5.1 Hz, 1H), 7.00 (dd, J = 5.1, 3.5 Hz, 1H), 6.94 (d, J = 3.4 Hz, 1H),
6.55 (s, 1H), 6.25 - 6.14 (m, 1H), 3.30 (s, 2H), 2.78 (t, J = 6.5 Hz, 2H), 2.50 — 2.36 (m, 2H).

BC{*H} NMR (201 MHz, CDCls) § 141.3, 140.5, 138.7, 136.4, 128.3, 126.9, 126.7,
126.5, 125.1, 124.2, 123.9, 116.3, 38.1, 27.0, 26.5.

HRMS(APCI) (m/z): [M + H]" Calcd for C17H16S: 253.1046; found: 253.1048

TLC: Rf= 0.41 (5% Et20 in hexanes)

4-((4,5-dihydro-[1,1'-biphenyl]-3(2H)-ylidene)methyl)tetrahydro-2H-pyran (23). The
reaction was conducted according to the general procedure without modification using 4-(2,2-
dichlorovinyl)tetrahydro-2H-pyran (181 mg, 0.1 mmol, 1.0 equiv) and (1-
cyclopropylvinyl)benzene (43.3 mg, 0.3 mmol, 3.0 equiv). Isolated yields were determined
following column chromatography (SiO2, 10% Et>O in hexanes).

19.6 mg isolated (77% yield), white solid, E/Z=12.5:1
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'H NMR (300 MHz, CDCls) § 7.39 (d, J = 6.8 Hz, 2H), 7.32 (t, J = 7.5 Hz, 2H), 7.22 (d,
J=7.1Hz, 1H), 6.14 (s, 1H), 5.19 (d, J = 8.8 Hz, 1H), 3.96 (d, J = 11.5 Hz, 2H), 3.46 (t, J = 9.7
Hz, 2H), 3.11 (s, 2H), 2.65 — 2.43 (m, 1H), 2.41 — 2.26 (m, 4H), 1.57 — 1.38 (m, 4H).

BC{'H} NMR (201 MHz, CDCls) & 141.5, 136.7, 133.2, 128.3, 127.5, 126.8, 125.0,
124.0, 67.8, 67.3, 37.5, 33.4, 31.2, 27.7, 25.3.

HRMS(APCI) (m/z): [M + H]" Calcd for C1gH220: 255.1743; found: 255.1740

TLC: Rf=0.68 (15% Et20 in hexanes)

(E)-3-(3,4-dimethoxybenzylidene)-2,3,4,5-tetrahydro-1,1'-biphenyl (24). The reaction was
conducted according to the general procedure without modification using 4-(2,2-dichlorovinyl)-
1,2-dimethoxybenzene (23.3 mg, 0.1 mmol, 1.0 equiv) and (1-cyclopropylvinyl)benzene (43.3
mg, 0.3 mmol, 3.0 equiv). Isolated yields were determined following column chromatography
(SiO2, 5% Et20 in hexanes).

30.5 mg isolated (99% yield), white solid, E/Z=>20: 1

'H NMR (300 MHz, CDCl3) 5 7.43 (d, J = 7.0 Hz, 2H), 7.34 (t, J = 7.4 Hz, 2H), 7.28 (t, J
= 1.4 Hz, 1H), 6.88 — 6.80 (m, 2H), 6.79 (s, 1H), 6.44 (s, 1H), 6.25 — 6.12 (m, 1H), 3.89 (s, 6H),
3.30 (s, 2H), 2.63 (t, J = 6.4 Hz, 2H), 2.44 — 2.31 (m, 2H).

BC{*H} NMR (201 MHz, CDCls) & 148.6, 147.5, 141.5, 138.1, 136.4, 130.9, 128.3,
126.9, 125.1, 124.1, 123.1, 121.1, 112.2, 111.0, 55.9, 55.8, 37.9, 27.5, 25.6.

HRMS(APCI) (m/z): [M + H]" Calcd for C21H220,: 307.1693; found: 307.1691

TLC: Rr=0.28 (5% Et.0 in hexanes)
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(E)-4'-methoxy-3-(4-methoxybenzylidene)-2,3,4,5-tetrahydro-1,1'-biphenyl (25). The
reaction was conducted according to the general procedure without modification using 1-(2,2-
dichlorovinyl)-4-methoxybenzene (20.4 mg, 0.1 mmol, 1.0 equiv) and 1-(1-cyclopropylvinyl)-4-
methoxybenzene (52.3 mg, 0.3 mmol, 3.0 equiv). Isolated yields were determined following
column chromatography (SiO, 5% Et20 in hexanes).

23.2 mg isolated (76% yield), white solid, E/Z=>20: 1

'H NMR (300 MHz, CDCls) § 7.37 (d, J = 8.8 Hz, 2H), 7.19 (d, J = 8.5 Hz, 2H), 6.88 (d,
J=8.7 Hz, 4H), 6.43 (s, 1H), 6.19 — 5.96 (m, 1H), 3.82 (s, 6H), 3.26 (s, 2H), 2.59 (t, J = 6.3 Hz,
2H), 2.41 —2.30 (m, 2H).

BC{'H} NMR (201 MHz, CDCl3) & 158.7, 157.9, 137.9, 135.7, 134.2, 130.6, 129.9,
126.1, 122.7,122.5, 113.7, 113.6, 55.3, 55.3, 38.0, 27.4, 25.5.

HRMS(ESI) (m/z): [M + H]" Calcd for C21H2202: 307.1693; found: 307.1701

TLC: Rf= 0.32 (5% Et20 in hexanes)

(E)-2-(5-(4-methoxybenzylidene)cyclohex-1-en-1-yl)thiophene (26). The reaction was
conducted according to the general procedure without modification using 1-(2,2-dichlorovinyl)-

4-methoxybenzene (20.4 mg, 0.1 mmol, 1.0 equiv) and 2-(1-cyclopropylvinyl)thiophene (45.1
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mg, 0.3 mmol, 3.0 equiv). Isolated yields were determined following column chromatography
(SiO2, 15% CH:Cl; in hexanes).

24.3 mg isolated (86% yield), white solid, E/Z=>20:1

'H NMR (300 MHz, CDCls) & 7.21 — 7.15 (m, 2H), 7.13 (dd, J = 4.3, 1.9 Hz, 1H), 7.02 —
6.95 (m, 2H), 6.88 (d, J = 8.3 Hz, 2H), 6.44 (s, 1H), 6.31 — 6.16 (m, 1H), 3.82 (s, 3H), 3.29 (s,
2H), 2.59 (t, J = 6.4 Hz, 2H), 2.41 — 2.28 (m, 2H).

BC{*H} NMR (201 MHz, CDCls) § 158.0, 145.9, 137.0, 131.0, 130.4, 129.9, 127.2,
123.4,123.2, 123.0, 121.4, 113.6, 55.3, 37.9, 27.2, 25.5.

HRMS(APCI) (m/z): [M + H]" Calcd for C1gH180S: 283.1151; found: 283.1154

TLC: Rt=0.46 (5% Et20 in hexanes)

MeO l

(E)-N-((5-(4-methoxybenzylidene)cyclohex-1-en-1-yl)methyl)-N,4-
dimethylbenzenesulfonamide (27). The reaction was conducted according to the general
procedure without modification using 1-(2,2-dichlorovinyl)-4-methoxybenzene (20.4 mg, 0.1
mmol, 1.0 equiv) and N-(2-cyclopropylallyl)-N,4-dimethylbenzenesulfonamide (79.6 mg, 0.3
mmol, 3.0 equiv). Isolated yields were determined following column chromatography (SiO2, 15%
CHCI; in hexanes).

30.0 mg isolated (75% yield), yellow oil, E/Z =>20: 1

'H NMR (300 MHz, CDCl3) & 7.69 (d, J = 8.1 Hz, 2H), 7.34 (d, J = 8.6 Hz, 2H), 7.15 (d,
J = 8.9 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 6.35 (s, 1H), 5.63 (s, 1H), 3.81 (s, 3H), 3.50 (s, 2H),
2.87 (s, 2H), 2.61 (s, 3H), 2.50 (t, J = 6.4 Hz, 2H), 2.44 (s, 3H), 2.25 — 2.08 (m, 2H).

13C{*H} NMR (201 MHz, CDCls) & 157.9, 143.3, 136.9, 134.3, 132.5, 130.5, 129.9,
129.7,127.5, 126.3, 122.9, 113.6, 56.3, 55.3, 36.3, 33.9, 26.8, 25.5, 21.5.

HRMS(ESI) (m/z): [M + H]" Calcd for C23H27NOsS: 398.1784; found: 398.1787

TLC: Rr=0.12 (5% Et.0 in hexanes)
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(E)-1-((3-cyclopropylcyclohex-3-en-1-ylidene)methyl)-4-methoxybenzene (28). The reaction
was conducted according to the general procedure without modification using 1-(2,2-
dichlorovinyl)-4-methoxybenzene (204 mg, 0.1 mmol, 1.0 equiv) and ethene-1,1-
diyldicyclopropane (32.5 mg, 0.3 mmol, 3.0 equiv). Isolated yields were determined following
column chromatography (SiO, 5% Et20 in hexanes).

16.8 mg isolated (70% vyield), colorless oil, E/Z =>20: 1

!H NMR (300 MHz, CDCl3) § 7.15 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 6.32 (s,
1H), 5.55 — 5.44 (m, 1H), 3.81 (s, 3H), 2.74 (s, 2H), 2.49 (t, J = 6.5 Hz, 2H), 2.18 — 2.08 (m, 2H),
1.43 -1.27 (m, 1H), 0.70 — 0.53 (m, 2H), 0.53 — 0.42 (m, 2H).

BC{'H} NMR (201 MHz, CDCls) & 157.8, 138.2, 130.7, 129.9, 127.1, 122.1, 119.2,
113.5,55.3, 37.4, 26.9, 26.0, 16.9, 4.3.

HRMS(ESI) (m/z): [M + H]* Calcd for C17H200: 241.1587; found: 241.1585

TLC: Rf= 0.44 (5% Et20 in hexanes)

MeO

(E)-3-(4-methoxybenzylidene)-5-methyl-2,3,4,5-tetrahydro-1,1'-biphenyl (30). The reaction
was conducted according to the general procedure without modification using 1-(2,2-
dichlorovinyl)-4-methoxybenzene (204 mg, 0.1 mmol, 1.0 equiv) and (1-(2-
methylcyclopropyl)vinyl)benzene (47.5 mg, 0.3 mmol, 3.0 equiv). Isolated yields were

determined following column chromatography (SiO2, 5% Et>O in hexanes).
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20.3 mg isolated (70% yield), white solid, E/Z=12.4: 1

'H NMR (300 MHz, CDCl3) & 7.44 (d, J = 8.2 Hz, 2H), 7.35 (t, J = 7.1 Hz, 2H), 7.20 (d,
J = 8.2 Hz, 3H), 6.89 (d, J = 8.7 Hz, 2H), 6.45 (s, 1H), 6.03 (s, 1H), 3.82 (s, 3H), 3.37 (d, J =
19.2 Hz, 1H), 3.17 (d, J = 18.7 Hz, 1H), 2.88 (dd, J = 12.8, 5.5 Hz, 1H), 2.50 (s, 1H), 2.05 (dd, J
=13.0, 8.7 Hz, 1H), 1.09 (d, J = 7.0 Hz, 3H).

BC{*H} NMR (201 MHz, CDCls) & 157.8, 141.3, 137.0, 135.3, 133.6, 130.4, 129.9,
128.2,126.9, 125.1, 123.2, 113.5, 55.2, 37.7, 33.8, 32.8, 21.7.

HRMS(APCI) (m/z): [M - H]" Calcd for Co1H220: 291.1743; found: 291.1740

TLC: R¢=0.43 (5% Et20 in hexanes)

(E)-3-(4-methoxybenzylidene)-5-phenethyl-2,3,4,5-tetrahydro-1,1'-biphenyl ~ (31).  The
reaction was conducted according to the general procedure without modification using 1-(2,2-
dichlorovinyl)-4-methoxybenzene (204 mg, 0.1 mmol, 1.0 equiv) and (1-(2-
phenethylcyclopropyl)vinyl)benzene (74.5 mg, 0.3 mmol, 3.0 equiv). Isolated yields were
determined following column chromatography (SiOz, 5% Et,0 in hexanes).

27.8 mg isolated (70% yield), colorless oil, E/Z=10.0: 1

'H NMR (300 MHz, CDCl3) § 7.45 (d, J = 7.0 Hz, 2H), 7.36 (t, J = 7.4 Hz, 2H), 7.32 —
7.25 (m, 1H), 7.25 (d, J = 4.0 Hz, 2H), 7.19 (d, J = 8.6 Hz, 3H), 7.12 (d, J = 6.7 Hz, 2H), 6.91 (d,
J = 8.7 Hz, 2H), 6.48 (s, 1H), 6.17 — 6.05 (m, 1H), 3.84 (s, 3H), 3.37 (d, J = 18.4 Hz, 1H), 3.23
(d, J = 18.5 Hz, 1H), 2.88 (dd, J = 12.7, 5.4 Hz, 1H), 2.64 (t, J = 8.0 Hz, 2H), 2.53 — 2.36 (m,
1H), 2.27 (dd, J = 13.4, 8.6 Hz, 1H), 1.87 — 1.57 (m, 2H).

13C{*H} NMR (201 MHz, CDCls) & 157.9, 142.3, 141.3, 136.7, 136.0, 133.7, 133.6,
130.5, 129.9, 128.3, 128.2, 126.9, 125.6, 125.1, 123.6, 113.6, 55.2, 38.0, 37.7, 37.2, 33.2, 31.2.

HRMS(APCI) (m/z): [M - H]" Calcd for CosH2s0: 381.2213; found: 381.2210
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TLC: R¢=0.39 (5% Et20 in hexanes)

3-((E)-4-methoxybenzylidene)-5-((Z)-non-3-en-1-yl)-2,3,4,5-tetrahydro-1,1'-biphenyl  (32).
The reaction was conducted according to the general procedure without modification using 1-
(2,2-dichlorovinyl)-4-methoxybenzene (20.4 mg, 0.1 mmol, 1.0 equiv) and (Z)-(1-(2-(non-3-en-
1-yl)cyclopropyl)vinyl)benzene (80.5 mg, 0.3 mmol, 3.0 equiv). Isolated yields were determined
following column chromatography (SiO2, 15% CH2Cl> in hexanes).

27.9 mg isolated (70% yield), colorless oil, E/Z=14.6: 1

'H NMR (300 MHz, CDCl3) 5 7.44 (d, J = 8.2 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.28 (t, J
= 1.4 Hz, 1H), 7.19 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 6.45 (s, 1H), 6.15 — 6.04 (m,
1H), 5.44 — 5.22 (m, 2H), 3.82 (s, 3H), 3.36 (d, J = 18.4 Hz, 1H), 3.20 (d, J = 18.4 Hz, 1H), 2.84
(dd, J=12.8, 5.5 Hz, 1H), 2.42 (s, 1H), 2.17 (dd, J = 12.6, 7.7 Hz, 1H), 2.07 (q, J = 7.3 Hz, 2H),
1.96 (q, J =6.7 Hz, 2H), 1.53 - 1.16 (m, 8H), 0.92 — 0.84 (m, 3H).

BC{*H} NMR (201 MHz, CDCls) § 157.9, 141.5, 136.9, 135.8, 130.6, 130.4, 129.9,
129.3, 129.0, 128.3, 126.9, 125.2, 123.5, 113.6, 55.2, 38.1, 37.3, 36.1, 31.5, 31.5, 29.4, 27.2, 24.6,
22.6,14.1.

HRMS(APCI) (m/z): [M - H]" Calcd for C29H3s0: 399.2682; found: 399.2686

TLC: Rf= 0.44 (5% Et20 in hexanes)

BnO
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(E)-5-(2-(benzyloxy)ethyl)-3-(4-methoxybenzylidene)-2,3,4,5-tetrahydro-1,1'-biphenyl (33).
The reaction was conducted according to the general procedure without modification using 1-
(2,2-dichlorovinyl)-4-methoxybenzene (20.4 mg, 0.1 mmol, 1.0 equiv) and (1-(2-(2-
(benzyloxy)ethyl)cyclopropyl)vinyl)benzene (83.5 mg, 0.3 mmol, 3.0 equiv). Isolated yields
were determined following column chromatography (SiO2, 20% Et,0 in hexanes).

25.1 mg isolated (61% yield), colorless oil, E/Z=19.2: 1

'H NMR (300 MHz, CDCl3) & 7.42 (d, J = 8.1 Hz, 3H), 7.39 — 7.27 (m, 7H), 7.18 (d, J =
8.6 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 6.46 (s, 1H), 6.13 — 6.03 (m, 1H), 4.48 (s, 2H), 3.80 (s,
3H), 3.62 — 3.45 (m, 2H), 3.35 (d, J = 18.3 Hz, 1H), 3.21 (d, J = 17.5 Hz, 1H), 2.86 (dd, J = 12.8,
5.5 Hz, 1H), 2.65 (s, 1H), 2.20 (dd, J = 12.8, 7.8 Hz, 1H), 1.89 — 1.72 (m, 1H), 1.72 — 1.58 (m,
1H).

BC{*H} NMR (201 MHz, CDCls) § 161.5, 157.9, 141.3, 138.6, 136.7, 136.0, 130.5,
129.9, 128.7, 128.3, 127.6, 127.0, 125.2, 123.6, 113.6, 92.9, 73.0, 68.1, 55.3, 38.0, 35.9, 34.8,
31.5.

HRMS(ESI) (m/z): [M + Na]* Calcd for C29H300.: 433.2138; found: 433.2142

TLC: Rf= 0.37 (5% Et20 in hexanes)

(E)-(5-(4-methoxybenzylidene)-3,4,5,6-tetrahydro-[1,1'-biphenyl]-3-yl)methanol (34). The
reaction was conducted according to the general procedure without modification using 1-(2,2-
dichlorovinyl)-4-methoxybenzene (204 mg, 0.1 mmol, 1.0 equiv) and (2-(1-
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phenylvinyl)cyclopropyl)methanol*® (52.3 mg, 0.3 mmol, 3.0 equiv). Isolated yields were
determined following column chromatography (SiO2, 40% Et,0 in hexanes).

21.7 mg isolated (68% yield), light yellow solid, E/Z =>20:1

'H NMR (300 MHz, CDCl3) 6 7.45 (d, J = 7.7 Hz, 2H), 7.35 (t, J = 7.5 Hz, 2H), 7.29 (s,
1H), 7.21 (d, J = 8.5 Hz, 2H), 6.89 (d, J = 8.4 Hz, 2H), 6.49 (s, 1H), 6.09 (s, 1H), 3.82 (s, 3H),
3.61 (t, J = 5.5 Hz, 2H), 3.37 (d, J = 19.0 Hz, 1H), 3.25 (d, J = 18.7 Hz, 1H), 2.79 (dd, J = 12.8,
5.6 Hz, 1H), 2.63 (s, 1H), 2.43 (dd, J = 12.9, 7.4 Hz, 1H), 1.29 — 1.22 (m, 1H).

BC{*H} NMR (201 MHz, CDCls) § 158.0, 141.0, 138.5, 135.9, 130.2, 129.9, 128.4,
127.3,125.2,124.5, 124.2, 113.7, 66.5, 55.3, 40.7, 38.1, 28.1.

HRMS(ESI) (m/z): [M + H]" Calcd for C21H2202: 307.1693; found: 307.1690

TLC: Rf=0.21 (30% Et20 in hexanes)

tert-butyl-4-((5-(4-methoxybenzylidene)-3,4,5,6-tetrahydro-[1,1'-biphenyl]-3-
yl)methyl)piperidine-1-carboxylate (35). The reaction was conducted according to the general
procedure without modification using 1-(2,2-dichlorovinyl)-4-methoxybenzene (20.4 mg, 0.1
mmol, 1.0 equiv) and tert-butyl 4-((2-(1-phenylvinyl)cyclopropyl)methyl)piperidine-1-
carboxylate (102.5 mg, 0.3 mmol, 3.0 equiv). Isolated yields were determined following column
chromatography (SiO2, 20% Et20 in hexanes).

39.6 mg isolated (84% yield), yellow solid, E/Z=8.6: 1

'H NMR (300 MHz, CDCl3) & 7.43 (d, J = 7.3 Hz, 2H), 7.34 (t, J = 7.5 Hz, 3H), 7.17 (d,
J = 8.5 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 6.48 (s, 1H), 6.05 (s, 1H), 4.05 (s, 2H), 3.82 (s, 3H),
3.33(d, J =17.7 Hz, 1H), 3.23 (d, J = 18.7 Hz, 1H), 2.73 (dd, J = 12.9, 5.4 Hz, 1H), 2.56 (s, 3H),
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2.22 (dd, J =12.7, 7.3 Hz, 1H), 1.73 — 1.47 (m, 2H), 1.45 (s, 10H), 1.40 — 1.16 (m, 4H), 1.03 (q,
J=116, 9.7 Hz, 1H).

BC{*H} NMR (201 MHz, CDCls) § 158.0, 154.9, 141.3, 136.7, 136.0, 130.5, 129.9,
128.8,128.3, 127.0, 125.2, 123.8, 113.6, 79.2, 55.3, 42.7, 38.1, 36.5, 34.4, 33.2, 31.5, 29.7, 28.5.
HRMS(APCI) (m/z): [M + H]" Calcd for CaiHaoNO3: 474.3003; found: 474.2988

TLC: R¢=0.13 (15% Et20 in hexanes)

(E)-2-(2-(5-(4-methoxybenzylidene)-3,4,5,6-tetrahydro-[1,1'-biphenyl]-3-yl)ethyl)-5-
methylfuran (36). The reaction was conducted according to the general procedure without
modification using 1-(2,2-dichlorovinyl)-4-methoxybenzene (20.4 mg, 0.1 mmol, 1.0 equiv) and
2-methyl-5-(2-(2-(1-phenylvinyl)cyclopropyl)ethyl)furan (75.7 mg, 0.3 mmol, 3.0 equiv).
Isolated yields were determined following column chromatography (SiO2, 15% CHCI; in
hexanes).

31.0 mg isolated (81% yield), colorless oil, E/Z=16.2: 1

'H NMR (300 MHz, CDCl3) 5 7.44 (d, J = 8.1 Hz, 2H), 7.34 (t, J = 7.3 Hz, 2H), 7.28 (t, J
= 1.4 Hz, 1H), 7.18 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 6.46 (s, 1H), 6.14 — 6.02 (m,
1H), 5.82 (d, J = 3.9 Hz, 2H), 3.83 (s, 3H), 3.37 (d, J = 18.5 Hz, 1H), 3.20 (d, J = 18.7 Hz, 1H),
2.88 (dd, J = 12.8, 5.5 Hz, 1H), 2.61 (t, J = 7.8 Hz, 2H), 2.44 (s, 1H), 2.25 (s, 3H), 2.16 (dd, J =
12.8, 8.2 Hz, 1H), 1.88 — 1.74 (m, 1H), 1.74 — 1.59 (m, 1H).

13C{*H} NMR (201 MHz, CDCls) & 158.0, 154.1, 150.2, 141.4, 136.8, 136.2, 130.5,
129.9, 128.6, 128.3, 127.0, 125.2, 123.6, 113.6, 105.8, 105.5, 55.3, 38.0, 37.1, 34.4, 31.4, 25.5,
13.5.

HRMS(APCI) (m/z): [M + H]* Calcd for C27H250: 385.2162; found: 385.2166

TLC: Rf=0.33 (5% Et.0 in hexanes)
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(E)-2-(2-(5-(4-methoxybenzylidene)-3,4,5,6-tetrahydro-[1,1'-biphenyl]-3-
yl)ethyl)isoindoline-1,3-dione (37). The reaction was conducted according to the general
procedure without modification using 1-(2,2-dichlorovinyl)-4-methoxybenzene (20.4 mg, 0.1
mmol, 1.0 equiv ) and 2-(2-(2-(1-phenylvinyl)cyclopropyl)ethyl)isoindoline-1,3-dione (95.2 mg,
0.3 mmol, 3.0 equiv). Isolated yields were determined following column chromatography (SiOz,
10% Et20 in hexanes).

34.2 mg isolated (76% yield), yellow oil, E/Z=12.1:1

'H NMR (300 MHz, CDCls) § 7.82 (dd, J = 5.5, 3.1 Hz, 2H), 7.69 (dd, J = 5.4, 3.1 Hz,
2H), 7.43 (d, J = 6.8 Hz, 2H), 7.33 (t, J = 7.4 Hz, 2H), 7.26 — 7.24 (m, 1H), 7.19 (d, J = 8.5 Hz,
2H), 6.89 (d, J = 8.6 Hz, 2H), 6.47 (s, 1H), 6.16 (s, 1H), 3.82 (s, 3H), 3.78 — 3.64 (m, 2H), 3.37
(d, J =19.9 Hz, 1H), 3.20 (d, J = 18.6 Hz, 1H), 2.87 (dd, J = 12.8, 5.4 Hz, 1H), 2.45 (s, 1H), 2.31
(dd, J=12.9, 8.0 Hz, 1H), 1.79 (q, J = 7.1 Hz, 2H).

BC{'H} NMR (201 MHz, CDCl3) & 168.4, 158.0, 141.1, 136.7, 136.1, 133.9, 132.1,
130.3, 130.0, 128.3, 127.4, 127.1, 125.2, 124.1, 123.2, 113.7, 55.3, 37.9, 35.8, 35.3, 34.5, 31.2.

HRMS(ESI) (m/z): [M + H]" Calcd for C3oH27NOs: 450.2063; found: 450.2067

TLC: Rs=0.13 (15% Et20 in hexanes)
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methyl (E)-4-((5-propyl-4,5-dihydro-[1,1'-biphenyl]-3(2H)-ylidene)methyl)benzoate (S17).
The reaction was conducted according to the general procedure without modification using
methyl 4-(2,2-dichlorovinyl)benzoate (23.1 mg, 0.1 mmol, 1.0 equiv) and (1-(2-
propylcyclopropyl)vinyl)benzene®® (55.9 mg, 0.3 mmol, 3.0 equiv). lIsolated yields were
determined following column chromatography (SiO2, 10% Et,0 in hexanes).

25.2 mg isolated (73% yield), colorless oil, E/Z=8.2: 1

'H NMR (300 MHz, CDCls3) 6 8.02 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.2 Hz, 2H), 7.38 —
7.29 (m, 4H), 7.25 - 7.19 (m, 1H), 6.53 (s, 1H), 6.10 (s, 1H), 3.93 (s, 3H), 3.40 (d, J = 18.8 Hz,
1H), 3.23 (d, J = 18.5 Hz, 1H), 2.84 (dd, J = 12.9, 5.4 Hz, 1H), 2.42 (s, 1H), 2.16 (dd, J = 13.2,
8.2 Hz, 1H), 1.50 — 1.22 (m, 4H), 1.01 — 0.77 (m, 3H).

BBC{'H} NMR (201 MHz, CDCl3) & 167.0, 142.9, 141.2, 140.7, 135.2, 129.4, 129.2,
128.7,128.3, 127.0, 125.1, 123.2, 52.0, 38.3, 38.2, 37.6, 31.8, 20.0, 14.1.

HRMS(ESI) (m/z): [M + H]" Calcd for C24H2602: 347.2006; found: 347.2005

TLC: Rf=0.40 (10% Et20 in hexanes)
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methyl (E)-4-((4'-fluoro-5-isobutyl-4,5-dihydro-[1,1'-biphenyl]-3(2H)-
ylidene)methyl)benzoate (S18). The reaction was conducted according to the general procedure
without modification using methyl 4-(2,2-dichlorovinyl)benzoate (23.1 mg, 0.1 mmol, 1.0 equiv)
and 1-fluoro-4-(1-(2-isobutylcyclopropyl)vinyl)benzene? (65.5 mg, 0.3 mmol, 3.0 equiv).
Isolated yields were determined following column chromatography (SiO2, 10% Et20 in hexanes).

24.2 mg isolated (64% yield), colorless oil, E/Z=8.1:1

'H NMR (300 MHz, CDCls) 6 8.01 (d, J = 8.3 Hz, 2H), 7.46 — 7.34 (m, 2H), 7.31 (d, J =
8.0 Hz, 2H), 7.03 (t, J = 8.8 Hz, 2H), 6.53 (s, 1H), 6.08 — 5.95 (m, 1H), 3.93 (s, 3H), 3.34 (d, J =
20.3 Hz, 1H), 3.20 (d, J = 17.3 Hz, 1H), 2.79 (dd, J = 12.9, 5.5 Hz, 1H), 2.48 (s, 1H), 2.22 — 2.10
(m, 1H), 1.67 — 1.52 (m, 1H), 1.33 — 1.13 (m, 2H), 0.86 (dd, J = 6.6, 4.2 Hz, 6H).

13C{*H} NMR (201 MHz, CDCls) § 167.0, 162.0 (d, YJcr = 245.7 Hz), 142.8, 140.2,
137.3 (d, {Jcr = 3.1 Hz), 134.3, 129.4, 129.1, 128.7, 127.7, 126.6 (d, 3Jcr = 8.0 Hz), 123.4, 115.0
(d, 2Jce = 21.3 Hz), 52.0, 45.4, 38.3, 35.3, 31.8, 25.1, 22.8, 22.4.

19F NMR (282 MHz, CDCl3) § -117.34.

HRMS(ESI) (m/z): [M + H]" Calcd for CasH27FO,: 379.2068; found: 379.2070

TLC: Rf=0.30 (10% Et20 in hexanes)
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(E)-3-((5-phenethyl-4,5-dihydro-[1,1'-biphenyl]-3(2H)-ylidene)methyl)-1-tosyl-1H-indole
(S19). The reaction was conducted according to the general procedure without modification
using 3-(2,2-dichlorovinyl)-1-tosyl-1H-indole (36.6 mg, 0.1 mmol, 1.0 equiv) and (1-(2-
phenethylcyclopropyl)vinyl)benzene (74.5 mg, 0.3 mmol, 3.0 equiv). Isolated yields were
determined following column chromatography (SiO2, 30% Et,0 in hexanes).

39.4 mg isolated (72% yield), light yellow solid, E/Z=3.9:1

'H NMR (300 MHz, CDCls) & 8.05 (d, J = 8.3 Hz, 1H), 7.76 (d, J = 8.4 Hz, 2H), 7.51 (d,
J=7.8Hz 2H), 7.45 (d, J = 7.0 Hz, 2H), 7.36 (t, J = 7.3 Hz, 3H), 7.32 — 7.27 (m, 2H), 7.18 —
7.07 (m, 5H), 6.92 (d, J = 5.8 Hz, 2H), 6.41 (s, 1H), 6.18 — 6.08 (m, 1H), 3.48 — 3.27 (m, 2H),
2.85—-2.73 (m, 1H), 2.56 — 2.36 (m, 4H), 2.24 (s, 3H), 1.80 — 1.57 (m, 2H).

BBC{'H} NMR (201 MHz, CDCl3) & 144.8, 142.0, 141.1, 140.5, 135.7, 135.1, 134.8,
131.2, 129.8, 128.6, 128.3, 128.2, 128.2, 127.0, 126.6, 125.6, 125.1, 124.8, 123.2, 123.0, 119.8,
1195, 113.6, 113.1, 37.9, 37.7, 37.2, 33.6, 32.1, 21.4.

HRMS(APCI) (m/z): [M + H]* Calcd for C3sH33NO,S: 544.2305; found: 544.2302

TLC: Rf=0.28 (15% Et20 in hexanes)
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(R,E)-3-(4-methoxybenzylidene)-5-methyl-2,3,4,5-tetrahydro-1,1'-biphenyl (30). The
reaction was conducted according to the general procedure without modification using 1-(2,2-
dichlorovinyl)-4-methoxybenzene (20.4 mg, 0.1 mmol, 1.0 equiv) and (1-((1R,2R)-2-
methylcyclopropyl)vinyl)benzene (47.5 mg, 0.3 mmol, 3.0 equiv). Isolated vyields were
determined following column chromatography (SiO2, 5% Et>O in hexanes). Spectroscopic and
mass spectrometry data were identical to those of the racemic product. Single crystals of 30
suitable for X-ray diffraction analysis were obtained by cooling a saturated Et,O solution to -
20 °C.

20.2 mg isolated (70% yield), white solid, E/Z=12.3: 1

[a]o?® = -181° (c 0.184, CHClI3).

HPLC: Chiralpak® OJ-H column (hexane/IPA = 98:2, 1.0 mL/min, A = 254 nm) tr =
15.64 min (major), 16.61 min (minor): >99:1 er.

VWD1 A, Wavelength=254 nm (C\USERS\PUBLIC\DOCUMENTS\CHEMSTATION\I\DATAWBEHLEN\CF_5+1pdt_rac.D)

mAU | @ A&
] ® 9
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8
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Peak RetTime Type Width Area Height Area
# [min] [min] [MAU*s] [mAU]
B R | === |=====mmmm |-===----
1 15.636 MM T 0.4793 557.57458  23.52308 49.6368
2 16.609 MM T 0.4504 565.73358  20.93578 50.3632
VWD A, Wavelength=254 nm (C \USERS\PUBLIC\DOCUMENTS\CHEMSTATIONI\DATAIMBEHLENGF_5+1pdi_chiral2. D)
mAU
30
25
20
8
15— =
©
10
5
0 - _ 1 o S
10 e s T 15 T 18 " Tde i
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %
S R | ====mmmm- | =====mmmm- |=====-=- \
1 15.125 BB 0.3840 331.16827 13.27600 100.,0000
Figure S2.  HPLC data for 30. (racemate, top; (R)-30, bottom).
1,1-Dichloroalkenes:
AN Ph
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Cl Cl Cl Cl
Vinylcyclopropanes:
Ph
F A Ph n-pent
OTMS

221



Figure S3.  Substrates that were found to be ineffective in the [5 + 1]-cycloaddition (no
detectable product using the general procedure).
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6. [5 + 1]-Product Derivatization

General procedure for the dehydrogenation reaction. A flame-dried round bottom
flask was charged with the [5 + 1]-product (1.0 equiv), Pd/C (10 wt% on activated carbon, 10 wt%
relative to the [5+1]-product), 1.0 mL ethylene glycol, and a magnetic stir bar. The reaction was
refluxed at 200 °C and stirred. After 8 hr, the reaction was cooled to ambient temperature and
extracted with CH>Cl> (3 x 5 mL). The combined organic phases were dried over MgSOa,
concentrated under reduced pressure, and loaded directly onto a SiO» column for purification.'*

MeO
Pd/C (10 wt%) O

»

L4
(CH,OH),, reflux
8h
e

3-(4-methoxybenzyl)-5-methyl-1,1'-biphenyl (38). The reaction was conducted according to

the general procedure without modification using 30 (19.7 mg, 0.068 mmol, 1.0 equiv) and Pd/C
(10 wt%, 1.9 mg). Isolated yields were determined following column chromatography (5% Et.O
in hexanes).

11.4 mg isolated (77% vyield), colorless oil

'H NMR (300 MHz, CDCl3) & 7.56 (d, J = 7.0 Hz, 2H), 7.41 (t, J = 7.5 Hz, 2H), 7.33 (d,
J=7.2Hz, 1H), 7.23 (d, J = 7.8 Hz, 2H), 7.15 (d, J = 8.6 Hz, 2H), 6.99 (s, 1H), 6.84 (d, J = 8.6
Hz, 2H), 3.95 (s, 2H), 3.79 (s, 3H), 2.38 (s, 3H).

BC{'H} NMR (201 MHz, CDCls) & 157.9, 141.9, 141.3, 141.3, 138.4, 133.2, 129.8,
128.6, 128.5, 127.1, 127.0, 125.7, 124.8, 113.8, 55.2, 41.0, 21.4.

HRMS(ESI) (m/z): [M + H]" Calcd for C21H200: 289.1587; found: 289.1583

TLC: Rr=0.42 (5% Et.0 in hexanes)

223



MeO. MeO
O Pd/C (10 wt%) ‘

| 1

|4
(CH,0OH),, reflux
Ts 8h Ts
N\ N\
Me

Me

N-(3-(4-methoxybenzyl)benzyl)-N,4-dimethylbenzenesulfonamide (39). The reaction was
conducted according to the general procedure without modification using 27 (29.6 mg, 0.074
mmol, 1.0 equiv.) and Pd/C (10 wt%, 2.9 mg). Isolated yields were determined following column
chromatography (20% Et>0 in hexanes).

22.7 mg isolated (77% yield), yellow solid

'H NMR (300 MHz, CDCls) § 7.72 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.6 Hz, 2H), 7.23 (d,
J=8.1Hz, 1H), 7.19 - 7.00 (m, 5H), 6.82 (d, J = 8.7 Hz, 2H), 4.08 (s, 2H), 3.89 (s, 2H), 3.78 (s,
3H), 2.56 (s, 3H), 2.45 (s, 3H).

BC{'H} NMR (201 MHz, CDCls) & 158.0, 143.4, 142.1, 135.8, 134.3, 133.0, 129.8,
129.7,128.8, 128.8, 128.4, 127.6, 126.1, 113.9, 55.3, 54.1, 40.9, 34.4, 21.6.

HRMS(ESI) (m/z): [M + H]" Calcd for C23H2sNOsS: 396.1628; found: 396.1630

TLC: Rf= 0.15 (5% Et20 in hexanes)

Pd/C (10 wt%)

|
| 4
(CH,OH),, reflux Me
8 h

methyl 4-((4'-fluoro-5-isobutyl-[1,1'-biphenyl]-3-yl)methyl)benzoate (40). The reaction was
conducted according to the general procedure without modification using S18 (24.6 mg, 0.065
mmol, 1.0 equiv) and Pd/C (10 wt%, 2.5 mg). Isolated yields were determined following column
chromatography (10% Et>0 in hexanes).

12.2 mg isolated (50% yield), colorless oil
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'H NMR (300 MHz, CDCl3) 8 7.97 (d, J = 8.2 Hz, 2H), 7.57 — 7.44 (m, 2H), 7.29 (d, J =
8.7 Hz, 2H), 7.17 (d, J = 5.7 Hz, 2H), 7.09 (t, J = 8.7 Hz, 2H), 6.94 (s, 1H), 4.06 (s, 2H), 3.90 (s,
3H), 2.49 (d, J = 7.1 Hz, 2H), 1.96 — 1.79 (m, 1H), 0.91 (d, J = 6.6 Hz, 6H).

BC{*H} NMR (201 MHz, CDCls) & 167.0, 162.3 (d, Ncr = 246.6 Hz), 146.4, 142.6,
140.3, 137.3 (d, *Jcr = 3.0 Hz), 129.8, 128.8, 128.7, 128.6 (d, ®Jcr = 8.3 Hz), 128.0, 125.9, 125.0,
115.4 (d, 2Jce = 21.4 Hz), 52.0, 45.3, 41.9, 30.2, 22.3.

9F NMR (282 MHz, CDCl3) & -117.47.

HRMS(ESI) (m/z): [M + H]" Calcd for CasH2sFO2: 377.1911; found: 377.1909

TLC: R¢=0.47 (10% Et20 in hexanes)

MeO ‘
|

L4
(CH,OH),, reflux
8h
* &

methyl 4-((5-propyl-[1,1'-biphenyl]-3-yl)methyl)benzoate (41). The reaction was conducted

(0]
Pd/C (10 wt%)

according to the general procedure without modification using S17 (25.3 mg, 0.073 mmol, 1.0
equiv) and Pd/C (10 wt%, 2.5 mg). Isolated yields were determined following column
chromatography (10% Et>0 in hexanes).

13.3 mg isolated (53% vyield), colorless oil

'H NMR (300 MHz, CDCl3) § 7.97 (d, J = 8.3 Hz, 2H), 7.55 (d, J = 7.0 Hz, 2H), 7.41 (t,
J=17.3Hz, 2H), 7.36 — 7.27 (m, 4H), 7.21 (s, 1H), 6.98 (s, 1H), 4.07 (s, 2H), 3.90 (d, J = 8.1 Hz,
3H), 2.61 (t, J = 8.1 Hz, 2H), 1.73 — 1.57 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H).

13C{*H} NMR (201 MHz, CDCls) & 167.0, 146.5, 143.5, 141.4, 141.2, 140.0, 129.8,
128.9, 128.6, 128.0, 127.1, 125.5, 125.2, 51.9, 41.9, 38.0, 24.5, 13.8.

HRMS(ESI) (m/z): [M + H]" Calcd for C22H2402: 345.1849; found: 245.1847
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TLC: Rs=0.53 (10% Et20 in hexanes)

Co(DME)Br, (5 mol%) N
Ts Cl Me Bu-Quinox (6 mol%) |

,!l\/\)\ + }
Me” 2

Zn (3.0 Equiv.)

DMA, 25 °C Me O
48 h

3.0 Equiv.

(E)-N,4-dimethyl-N-(3-(5-methyl-4,5-dihydro-[1,1'-biphenyl]-3(2H)-
ylidene)propyl)benzenesulfonamide (S20). In an N»-filled glovebox, a 5-mL vial was charged
with Co(DME)Br; (1.54 mg, 0.005 mmol, 0.05 equiv), (x)-t-Bu-Quinox (1.52 mg, 0.006 mmol,
0.06 equiv), Zn powder (19.6 mg, 0.3 mmol, 3.0 equiv), and a magnetic stir bar. To this mixture
was added a solution of S16 (30.8 mg, 0.1 mmol, 1.0 equiv) and (1-(2-
methylcyclopropyl)vinyl)benzene (43.3 mg, 0.3 mmol, 3.0 equiv) in DMA (0.75 mL). The
reaction was stirred at room temperature. After 48 h, the crude reaction mixture was removed
from the glovebox, opened to ambient atmosphere, and loaded directly onto a SiO2 column for
purification (30% Et>0 in hexanes). Compound S20 is highly unstable and was used immediately
in the dehydrogenation reaction.
20.9 mg isolated (53% yield), yellow oil

Ts 'i's

Me”” Me
| Pd/C (10 wt%)

>
‘ (CHon)Z, reflux O
A ® N e

N,4-dimethyl-N-(3-(5-methyl-[1,1'-biphenyl]-3-yl)propyl)benzenesulfonamide  (42). The
reaction was conducted according to the general procedure without modification using S20 (20.9
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mg, 0.053 mmol, 1.0 equiv.) and Pd/C (10 wt%, 2.1 mg). Isolated yields were determined
following column chromatography (30% Et2O in hexanes).

7.3 mg isolated (35% yield), colorless oil

'H NMR (300 MHz, CDCls) & 7.66 (d, J = 8.2 Hz, 2H), 7.58 (d, J = 7.0 Hz, 2H), 7.49 —
7.37 (m, 2H), 7.35 (d, J = 7.0 Hz, 1H), 7.29 (d, J = 7.0 Hz, 2H), 7.22 (d, J = 13.5 Hz, 2H), 7.00
(s, 1H), 3.06 (t, J = 7.1 Hz, 2H), 2.73 (s, 3H), 2.69 (t, J = 7.4 Hz, 2H), 2.41 (s, 3H), 2.40 (s, 3H),
1.98 —1.78 (m, 2H).

BC{'H} NMR (201 MHz, CDCls) & 143.2, 141.7, 141.3, 141.3, 138.4, 134.5, 129.6,
128.6,128.1, 127.4,127.1, 127.1, 125.7, 124.4, 49.7, 34.7, 32.7, 29.3, 21.4, 21.4.

HRMS(APCI) (m/z): [M + H]" Calcd for C24H27NO2S: 394.1835; found: 394.1833

TLC: Rf=0.21 (15% Et20 in hexanes)

KOtBu (1.2 equiv)

DMF, 0 °C
5 min

(E)-5-(4-methoxybenzylidene)-3-methyl-2,3,4,5-tetrahydro-1,1'-biphenyl (43). A solution of
30 (24.3 mg, 0.083 mmol, 1.0 equiv.) in DMF (1 mL) was cooled to 0 °C using an ice bath and
stirred. To this solution was added KOtBu (10.8 mg, 0.097 mmol, 1.2 equiv) in one portion. The
reaction was stirred at 0 °C. After 5 min, the reaction was quenched with H,O (1 mL) and
extracted with Et:O (3x5 mL). The combined organic phases were dried over MgSOsa,
concentrated under reduced pressure, and loaded directly onto a SiO> column for purification (5%
Et>0 in hexanes).

18.8 mg isolated (78% yield), white solid

'H NMR (300 MHz, CDCl3) § 7.50 (d, J = 7.2 Hz, 2H), 7.35 (t, J = 7.6 Hz, 3H), 7.30 (d,
J = 8.5 Hz, 2H), 6.90 (d, J = 8.3 Hz, 2H), 6.66 (d, J = 2.0 Hz, 1H), 6.41 (s, 1H), 3.83 (s, 3H),
2.89 (dd, J = 14.8, 3.5 Hz, 1H), 2.63 (dd, J = 16.8, 4.4 Hz, 1H), 2.36 — 2.10 (m, 2H), 1.93 (s, 1H),
1.11 (d, J = 6.5 Hz, 3H).
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BC{*H} NMR (201 MHz, CDCls) & 158.1, 141.5, 137.4, 136.7, 130.7, 130.3, 128.7,
128.4,127.3,127.0, 125.0, 113.7, 55.3, 36.0, 34.9, 29.4, 21.8.

HRMS(ESI) (m/z): [M + H]" Calcd for C21H220: 291.1743; found: 291.1741

TLC: Rs=0.45 (5% Et20 in hexanes)

General procedure for the Riley oxidation reaction. A flame-dried microwave vial was
charged with the [5 + 1]-product (1.0 equiv), SeO2 (3.0 equiv), 1.0 mL 1,4-dioxane, and a
magnetic stir bar. The reaction was heated to 100 °C and stirred. After 30 min, the reaction was

cooled to ambient temperature and loaded directly onto a SiO2 column for purification.

Se0, (3.0 equiv)

»

|4
1,4-dioxane, 100 °C
30 min

(5-phenethyl-[1,1'-biphenyl]-3-yl)(1-tosyl-1H-indol-3-yl)methanone (44). The reaction was
conducted according to the general procedure without modification using S19 (39.4 mg, 0.072
mmol, 1.0 equiv) and SeO: (24.1 mg, 0.22 mmol, 3.0 equiv). Isolated yields were determined
following column chromatography (30% Et20 in hexanes).

20.7 mg isolated (52% yield), yellow solid

'H NMR (300 MHz, CDCls) 6 8.30 (d, J = 8.1 Hz, 1H), 8.13 — 7.95 (m, 2H), 7.87 (s, 1H),
7.80 (d, J = 8.3 Hz, 2H), 7.68 (s, 1H), 7.65 — 7.54 (m, 3H), 7.52 — 7.38 (m, 5H), 7.38 — 7.28 (m,
4H), 7.23 — 7.14 (m, 3H), 3.19 — 2.94 (m, 4H), 2.36 (s, 3H).

BC{*H} NMR (201 MHz, CDCls) § 190.9, 145.8, 142.8, 141.6, 141.1, 140.2, 139.9,
135.0, 134.5, 133.5, 131.3, 130.2, 128.8, 128.4, 128.4, 127.8, 127.7, 127.2, 127.0, 126.1, 125.9,
125.6, 124.8, 122.8, 120.6, 113.17, 37.7, 30.3, 21.6.

HRMS(ESI) (m/z): [M + H]" Calcd for CasH29NO3S: 556.1941; found: 556.1937

TLC: Rf=0.24 (30% Et20 in hexanes)
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SeO, (3.0 equiv)

»

|4
1,4-dioxane, 100 °C
30 min

(4-methoxyphenyl)(5-methyl-[1,1'-biphenyl]-3-yl)methanone  (45). The reaction was
conducted according to the general procedure without modification using 30 (24.3 mg, 0.083
mmol, 1.0 equiv.) and SeO- (28.0 mg, 0.25 mmol, 3.0 equiv.). Isolated yields were determined
following column chromatography (10% EtOAc in hexanes).

11.2 mg isolated (55% vyield), colorless oil

'H NMR (300 MHz, CDCl3)  7.87 (d, J = 8.8 Hz, 2H), 7.75 (s, 1H), 7.60 (d, J = 8.1 Hz,
3H), 7.56 (s, 1H), 7.45 (t, J = 7.2 Hz, 2H), 7.37 (d, J = 5.8 Hz, 1H), 6.98 (d, J = 8.9 Hz, 2H),
3.90 (s, 3H), 2.49 (s, 3H).

BC{'H} NMR (201 MHz, CDCls) & 195.7, 163.3, 141.1, 140.4, 138.9, 138.6, 132.6,
131.4,130.3, 129.1, 128.8, 127.6, 127.2, 125.7, 113.6, 55.5, 21.5.

HRMS(ESI) (m/z): [M + H]" Calcd for C21H180.: 303.1380; found: 303.1382

TLC: Rf=0.22 (15% Et20 in hexanes)

—N N
\,Ir{D Cy
I:’\ N MeO.
(5 mol%) \©\
H, (50 atm)
DCM, rt, 16 hr .
Me™

Attempted diastereoselective hydrogenation reaction. In an N»-filled glovebox, a 2-dram vial

®

30 >99% ee

was equipped with a magnetic stir bar, 30 (20.3 mg, 0.07 mmol, 1.0 equiv), (R,R)-
[COD]Ir[Cy2PThrePHOX] (6.0 mg, 0.0035 mmol, 0.05 equiv), and CH2Cl> (1.0 mL). The vial
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was capped and removed from the glovebox. A Parr bomb reactor vessel was placed under argon.

The vial was uncapped and quickly placed into the Parr apparatus while under argon. The Parr

apparatus was purged and backfilled with hydrogen

(3x), then pressurized to 730 psi. After

stirring for 16 h, the crude reaction mixture was filtered through a glass fiber pad. The filtrate

was concentrated under reduced pressure, and the crude residue was analyzed using by *H NMR

spectroscopy. The hydrogenated product was obtained as a mixture of all four possible

diastereomers.

i

—————
6.90 6.85 6.80
1 (ppm)

6.75 6.70

—
3.82 3.80 3.78 3.76
f1 (ppm)

///f///]/

T
4.0
f1 (ppm)

4.5

Figure S4.
provide a diastereomeric mixture of products (300 MHz, CDCl3, 295 K).
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7. Mechanistic Studies

Co(DME)Br; (5 mol%)
(+)—t-Bu-Quinox (6 mol%)
Zn (3.0 equiv)
DMA, rt
No Reaction

Vinylcyclopropane rearrangement experiment. In an No-filled glovebox, a 5-mL vial was
charged with Co(DME)Br2 (1.5 mg, 0.005 mmol, 0.05 equiv), (x)-t-Bu-Quinox (1.5 mg, 0.006
mmol, 0.06 equiv), Zn powder (19.6 mg, 0.3 mmol, 3.0 equiv), and a magnetic stir bar. To this
mixture was added a solution of (1-cyclopropylvinyl)benzene (43.3 mg, 0.3 mmol, 3.0 equiv)
and 1,3,5-timethoxybenzene (16.8 mg, 0.1 mmol) in DMA (0.75 mL). The reaction was stirred at
room temperature. After 16 h, the crude reaction mixture was removed from the glovebox,
opened to ambient atmosphere, and diluted with Et.O. An aliquot was filtered through a glass
fiber pad and analyzed by 'H NMR. The conversion of (1-cyclopropylvinyl)benzene was
determined by integration against 1,3,5-timethoxybenzene (< 1% conversion). 1-

phenylcyclopentene was not detected in the mixture.

MeO Co(DME)Br, (5 mol%)

\/\@ (+)-t-Bu-Quinox (6 mol%)
+ A -
Zn (3.0 equiv)
cl cl . DMA, rt
3.0 equiv.

(2)-1-((2-benzylcyclopropylidene)methyl)-4-methoxybenzene (47). In an No-filled glovebox, a
5-mL vial was charged with Co(DME)Br2 (1.5 mg, 0.005 mmol, 0.05 equiv), (£)-t-Bu-Quinox
(1.5 mg, 0.006 mmol, 0.06 equiv), Zn powder (19.6 mg, 0.3 mmol, 3.0 equiv), and a magnetic

>—

stir bar. To this mixture was added a solution of 1-(2,2-dichlorovinyl)-4-methoxybenzene (20.4
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mg, 0.1 mmol, 1.0 equiv) and allylbenzene (35.4 mg, 0.3 mmol, 3.0 equiv) in DMA (0.75 mL).
The reaction was stirred at room temperature. After 16 h, the crude reaction mixture was
removed from the glovebox, opened to ambient atmosphere, and loaded directly onto a SiO>
column for purification (5% Et,0 in hexanes).

16.0 mg isolated (64% vyield), colorless oil, E/Z =>20: 1

'H NMR (300 MHz, CDCls) § 7.39 (d, J = 8.6 Hz, 2H), 7.35 — 7.28 (m, 3H), 7.27 — 7.19
(m, 2H), 6.87 (d, J = 8.7 Hz, 2H), 6.68 (s, 1H), 3.83 (s, 3H), 3.25 (dd, J = 14.6, 4.5 Hz, 1H), 2.45
(dd, J = 14.6, 8.9 Hz, 1H), 2.19 — 1.93 (m, 1H), 1.37 (t, J = 8.7 Hz, 1H), 1.05 — 0.86 (m, 1H).

BC{*H} NMR (201 MHz, CDCls) & 158.5, 140.5, 130.7, 128.6, 128.2, 127.8, 126.4,
126.1, 118.8, 113.9,55.2, 37.7, 17.6, 7.8.

HRMS(APCI) (m/z): [M - H]" Calcd for C1gH180: 249.1247; found: 249.1127

TLC: Rf= 0.47 (5% Et20 in hexanes)

MeO

MeO Co(DME)Br, (5 mol%)
Me ‘Bu-Quinox (6 mol%) |
+ > Me

Zn (3.0 Equiv.) %

Cl Cl DMA, 25 °C
20 h

3.0 Equiv. Not Detected

In an No-filled glovebox, a 5-mL vial was charged with Co(DME)Br2 (1.5 mg, 0.005
mmol, 0.05 equiv), (£)-t-Bu-Quinox (1.5 mg, 0.006 mmol, 0.06 equiv), Zn powder (19.6 mg, 0.3
mmol, 3.0 equiv), and a magnetic stir bar. To this mixture was added a solution of 1-(2,2-
dichlorovinyl)-4-methoxybenzene (20.4 mg, 0.1 mmol, 1.0 equiv), a-methylstyrene (35.5 mg,
0.3 mmol, 3.0 equiv), and 1,3,5-timethoxybenzene (16.8 mg, 0.1 mmol) in DMA (0.75 mL). The
reaction was stirred at room temperature. After 16 h, the crude reaction mixture was removed
from the glovebox, opened to ambient atmosphere, and diluted with Et;O. An aliquot was
filtered through a glass fiber pad and analyzed by *H NMR. The conversion of 1-(2,2-
dichlorovinyl)-4-methoxybenzene  was  determined by integration against 1,3,5-

timethoxybenzene (>99% conversion). The product shown was not detected in the mixture.
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MeO

MeO Me Co(DME)Br, (5 mol%)
Me 'Bu-Quinox (6 mol%) |
+ > Pr

Zn (3.0 Equiv.)

cI” ~al DMA., 25 °C /
20 h

3.0 Equiv. Not Detected

In an No-filled glovebox, a 5-mL vial was charged with Co(DME)Br, (1.5 mg, 0.005
mmol, 0.05 equiv), (£)-t-Bu-Quinox (1.5 mg, 0.006 mmol, 0.06 equiv), Zn powder (19.6 mg, 0.3
mmol, 3.0 equiv), and a magnetic stir bar. To this mixture was added a solution of 1-(2,2-
dichlorovinyl)-4-methoxybenzene (20.4 mg, 0.1 mmol, 1.0 equiv), (3-methylbut-1-en-2-
yl)benzene (43.9 mg, 0.3 mmol, 3.0 equiv), and 1,3,5-timethoxybenzene (16.8 mg, 0.1 mmol) in
DMA (0.75 mL). The reaction was stirred at room temperature. After 16 h, the crude reaction
mixture was removed from the glovebox, opened to ambient atmosphere, and diluted with Et20.
An aliquot was filtered through a glass fiber pad and analyzed by *H NMR. The conversion of 1-
(2,2-dichlorovinyl)-4-methoxybenzene was determined by integration against 1,3,5-

timethoxybenzene (>99% conversion). The product shown was not detected in the mixture.

MeO MeO

nBuLi, MePPh;Br

THF, 0 °C
0 =

(E)-1-methoxy-4-((2-vinylcyclopropylidene)methyl)benzene (S21). A flame-dried round-
bottom flask was charged with a stir bar, MePPhsBr (3.82 g, 10.6 mmol, 1.5 equiv), and THF (30
mL). The mixture was cooled to 0 °C under N2 atmosphere, followed by dropwise addition of
nBuLi (2.5 M in hexanes, 4.27 mL, 10.6 mmol, 1.5 equiv). The mixture was stirred at 0 °C for
30 min. A solution of (E)-2-(4-methoxybenzylidene)cyclopropane-1-carbaldehyde®® (1.33 g, 7.1
mmol, 1.0 equiv) in THF (5 mL) was added dropwise, and the reaction was then warmed to room
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temperature and stirred. After 2 hr, the reaction was quenched with a saturated aqueous solution
of NH4Cl and extracted with Et2O (3 x 20 mL). The combined organic layers were dried over
MgSQs, filtered, and concentrated under reduced pressure. The crude product was loaded
directly onto a SiO. column for purification (5% Et>O in hexanes), providing (E)-1-methoxy-4-
((2-vinylcyclopropylidene)methyl)benzene as a white solid (846 mg, 64% vyield).

'H NMR (400 MHz, CDCl3) & 7.47 (d, J = 8.9 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 6.76 (s,
1H), 5.59 — 5.39 (m, 1H), 5.18 (d, J = 17.0 Hz, 1H), 4.96 (d, J = 11.8 Hz, 1H), 3.82 (s, 3H), 2.27
—2.08 (m, 1H), 1.84 (t, J = 8.8 Hz, 1H), 1.40 — 1.28 (m, 1H).

BC{*H} NMR (101 MHz, CDCls) & 158.7, 139.4, 130.5, 127.8, 125.4, 118.5, 113.8,
113.1,55.2,17.4, 12.8.

HRMS(APCI) (m/z): [M + H]* Calcd for C13H140: 187.1117; found: 187.1122

TLC: Rf= 0.49 (5% Et20 in hexanes)

) MeO
MeO [P'PDI]CoBr, (6 mol%)
CH5Br; (1.5 equiv)

»
Y o

Zn (2.0 equiv)
> THF, rt, 24 h

(E)-2-(4-methoxybenzylidene)-1,1'-bi(cyclopropane) (4). In an No-filled glovebox, a 20 mL
scintillation vial was charged with ["PDI]CoBr, (44.8 mg, 0.06 mmol, 0.06 equiv), Zn powder
(140 mg, 2.14 mmol, 6.0 equiv), and a magnetic stir bar. To this mixture was added a solution of
S21 (200 mg, 1.07 mmol, 1.0 equiv) and CH2Br2 (280 mg, 1.61 mmol, 1.5 equiv) in THF (8 mL).
The reaction was stirred at room temperature. After 16 h, the crude reaction mixture was
removed from the glovebox, opened to ambient atmosphere, concentrated under reduced
pressure, and loaded directly onto a SiO, column for purification (5% Et.O in hexanes),
providing (E)-2-(4-methoxybenzylidene)-1,1'-bi(cyclopropane) as a yellow oil (190.5 mg, 89%
yield).1®
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'H NMR (300 MHz, CDCl3) & 7.46 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 6.62 (q,
J=2.2Hz, 1H), 3.82 (s, 3H), 1.75 - 1.66 (m, 1H), 1.48 (td, J = 8.7, 2.3 Hz, 1H), 1.15 - 0.99 (m,
2H), 0.52 —0.38 (m, 1H), 0.31 — 0.04 (m, 3H).

BC{*H} NMR (201 MHz, CDCls) 6 158.5, 131.0, 127.6, 124.8, 117.5, 113.8, 55.2, 14.7,
11.6, 9.6, 3.9, 0.9.

HRMS(APCI) (m/z): [M + H]" Calcd for C14H160: 201.1274; found: 201.1277

TLC: Rs= 0.57 (5% Et20 in hexanes)

MeO

MeO
Co(DME)Br, (5 mol%) O
(x)-t-Bu-Quinox (6 mol%)

> |

Zn (3.0 equiv)
DMA, rt, 24 h

No Reaction

In an No-filled glovebox, a 5-mL vial was charged with Co(DME)Br, (1.5 mg, 0.005
mmol, 0.05 equiv), (£)-t-Bu-Quinox (1.5 mg, 0.006 mmol, 0.06 equiv), Zn powder (19.6 mg, 0.3
mmol, 3.0 equiv), and a magnetic stir bar. To this mixture was added a solution of 4 (20.0 mg,
0.1 mmol, 1.0 equiv) and 1,3,5-timethoxybenzene (16.8 mg, 0.1 mmol) in DMA (0.75 mL). The
reaction was stirred at room temperature. After 16 h, the crude reaction mixture was removed
from the glovebox, opened to ambient atmosphere, and diluted with Et;O. An aliquot was
filtered through a glass fiber pad and analyzed by *H NMR. The conversion of 4 was determined
by integration against 1,3,5-timethoxybenzene (< 1% conversion). Compound 3 was not detected

in the mixture.
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MeO Co(DME)Br;, (5 mol%)
'Bu-Quinox (6 mol%)

»
+ |4

Zn (3.0 Equiv.)
cl Cl DMA, 25 °C
24 h

3.0 Equiv.

(E)-1-(4-cyclobutylidene-4-phenylbut-1-en-1-yl)-4-methoxybenzene (49). In an No-filled
glovebox, a 5-mL vial was charged with Co(DME)Br. (1.5 mg, 0.005 mmol, 0.05 equiv), (£)-t-
Bu-Quinox (1.5 mg, 0.006 mmol, 0.06 equiv), Zn powder (19.6 mg, 0.3 mmol, 3.0 equiv), and a
magnetic stir bar. To this mixture was added a solution of 1-(2,2-dichlorovinyl)-4-
methoxybenzene (20.4 mg, 0.1 mmol, 1.0 equiv) and (1-cyclobutylvinyl)benzene!’ (47.5 mg, 0.3
mmol, 3.0 equiv) in DMA (0.75 mL). The reaction was stirred at room temperature. After 16 h,
the crude reaction mixture was removed from the glovebox, opened to ambient atmosphere, and
loaded directly onto a SiO2 column for purification (5% Et,O in hexanes). Single crystals of 49
suitable for X-ray diffraction analysis were obtained by cooling the purified, neat material to -
20 °C.

14.5 mg isolated (50% vyield), colorless oil, E/Z =>20: 1

'H NMR (300 MHz, CDCl3) & 7.37 — 7.34 (m, 1H), 7.33 — 7.28 (m, 2H), 7.25 (d, J = 8.7
Hz, 2H), 7.22 — 7.12 (m, 2H), 6.82 (d, J = 8.6 Hz, 2H), 6.38 (d, J = 17.6 Hz, 1H), 6.17 — 6.02 (m,
1H), 3.80 (s, 3H), 3.24 (d, J = 5.6 Hz, 2H), 3.00 — 2.85 (m, 4H), 2.12 — 1.96 (m, 2H).

BC{'H} NMR (201 MHz, CDCl3) & 158.6, 140.0, 139.9, 130.6, 129.4, 128.1, 127.9,
127.0, 126.3, 125.8, 113.7, 55.2, 34.5, 32.2, 30.8, 17.0.

HRMS(APCI) (m/z): [M + H]* Calcd for C21H220: 291.1743; found: 291.1749

TLC: Rs= 0.54 (5% Et20 in hexanes)
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MeO

Co(DME)Br, (5 mol%)

cl cl 'Bu-Quinox (6 mol%)
+ ;
Zn (3.0 Equiv.)
= DMA, 25 °C
24 h
AN
Ph
52% Yield 6% Yield
3.0 Equiv.

[4+1] cycloaddition competition experiment. In an No-filled glovebox, a 5-mL vial was
charged with Co(DME)Br2 (1.5 mg, 0.005 mmol, 0.05 equiv), (x)-t-Bu-Quinox (1.5 mg, 0.006
mmol, 0.06 equiv), Zn powder (19.6 mg, 0.3 mmol, 3.0 equiv), and a magnetic stir bar. To this
mixture was added a solution of 1-(2,2-dichlorovinyl)-4-methoxybenzene (20.4 mg, 0.1 mmol,
1.0 equiv) and (E)-(3-cyclopropylbuta-1,3-dien-1-yl)benzene (51.1 mg, 0.3 mmol, 3.0 equiv) in
DMA (0.75 mL). The reaction was stirred at room temperature. After 16 h, the crude reaction
mixture was removed from the glovebox, opened to ambient atmosphere, and loaded directly
onto a SiO2 column for purification (5% EtO in hexanes). The [4+1] and [5+1] products were
inseparable.

17.5 mg isolated (58% yield), white solid

'H NMR (300 MHz, CDCl3) § 7.23 (d, J = 7.2 Hz, 2H), 7.16 (t, ] = 7.1, 3H), 7.04 (d, ] =
8.7 Hz, 2H), 6.69 (d, J = 8.8 Hz, 2H), 5.53 (s, 1H), 4.64 (s, 1H), 3.73 (s, 3H), 3.39 (d, J = 20.3
Hz, 1H), 3.08 (d, J = 20.3 Hz, 1H), 1.54 — 1.46 (m, 1H), 0.70 — 0.62 (m, 2H), 0.57 — 0.48 (m, 2H).

BC{*H} NMR (201 MHz, CDCls) & 157.83, 144.29, 142.85, 142.22, 130.03, 129.48,
128.52, 127.29, 127.11, 125.83, 124.11, 113.33, 77.09, 76.93, 76.78, 55.08, 53.81, 41.98, 11.87,
5.52,5.29.

LRMS(ESI) (m/z): [M - H]* Calcd for C22H220: 302.4; found: 301.2

TLC: Rf= 0.53 (5% Et20 in hexanes)
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8. NMR Data for Vinylcyclopropanes and Vinylidenes
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9. NMR Data for [5+1]-Products
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10. IR Data for Vinylcyclopropanes and [5+1]-Products
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11. X-Ray Diffraction Data

Compound 6

Crystal data

Chemical formula C20H200

My 276.36

Crystal system, space |Triclinic, P1

group

Temperature (K) 150

a, b, c(A) 9.6419 (16), 9.7478 (14), 9.9639 (15)
a,b,v(°) 65.235 (5), 62.617 (4), 67.916 (4)
V (A% 735.3 (2)

Z 2

F(000) 296

Dx (Mg m) 1.248

Radiation type Mo Ka

No. of reflections for 9917

cell measurement

0 range (°) for cell 2.4-33.2

measurement

i (mm™?) 0.08

Crystal shape Block

Colour Colorless

Crystal size (mm)

0.60 x 0.40 x 0.20
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Data collection

Diffractometer

Bruker AXS D8 Quest CMOS
diffractometer

Radiation source

sealed tube X-ray source

Monochromator

Triumph curved graphite crystal

Scan method

® and phi scans

Absorption correction

Multi-scan
SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke
D., J. Appl. Cryst. 48 (2015) 3-10

Tmin, Tmax

0.721, 0.747

No. of measured,
independent and
observed [l > 2o(1)]

20324, 5621, 4479

reflections

Rint 0.027

0 values (°) Omax = 33.2, Omin = 2.4
(sin 0/A)max (A1) 0.771

Range of h, k, | h=-14—14,k=-15—14,1 =-15—15
Refinement

Refinement on F2

R[F? > 26(F?)], 0.046, 0.138, 1.03
wR(F?), S

No. of reflections 5621

No. of parameters 191

No. of restraints 0

H-atom treatment

H-atom parameters constrained

Weighting scheme

W = 1/[02(Fo?) + (0.0786P)Z + 0.1416P]
where P = (Fo? + 2F:?)/3

(A/G)max

0.001

Apmax, Apmin (€ Ag)

0.39,-0.23
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Compound 30

Crystal data

Chemical formula Ca1H220

Mr 290.38

Crystal system, space |Triclinic, P1

group

Temperature (K) 150

a, b, c(A) 10.0693 (2), 10.1210 (2), 18.5597 (4)
a, b,y (°) 85.6232 (13), 85.2461 (14), 60.4624 (14)
V (A% 1638.59 (6)

Z 4

F(000) 624

Dx (Mg m) 1.177

Radiation type Cu K[

No. of reflections for 9828

cell measurement

0 range (°) for cell 4.8-79.6

measurement

1 (mm) 0.54

Crystal shape Block

Colour Colourless

Crystal size (mm)

0.17 x0.15x 0.13

Data collection
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Diffractometer

Bruker AXS D8 Quest CMOS
diffractometer

Radiation source

I-mu-S microsource X-ray tube

Monochromator

Laterally graded multilayer (Goebel) mirror

Scan method

1 and phi scans

Absorption correction

Multi-scan
SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke
D., J. Appl. Cryst. 48 (2015) 3-10

Tmin, Tmax 0.644, 0.754

No. of measured, 25527, 12612, 11829
independent and

observed [l > 2o(1)]

reflections

Rint 0.039

0 values (°) Omax = 80.6, Umin = 2.4
(sin 0/V)max (A1) 0.640

Range of h, k, | h=-12012,k=-12012, 1 =-23[123
Refinement

Refinement on F2

R[F? > 26(F?)], 0.040, 0.104, 1.04
wR(F?), S

No. of reflections 12612

No. of parameters 802

No. of restraints 3

H-atom treatment

H-atom parameters constrained

Weighting scheme w = 1/[[J4(Fo?) + (0.0449P)? + 0.2845P]
where P = (Fo? + 2F?)/3

(A/G)max 0001

Apmax, Apmin (e A®)  {0.28, -0.20

Refinement on

SHELXL2018/3 (Sheldrick 2018), Fc =kFc[1+0.001xFc2[1%/sin(2 )] 7

R[FZ> 26(F2)],
WR(F2), S

0.0008 (3)

No. of reflections

Flack x determined using 4857 quotients [(I+)-(1-)]/[(1+)+(I-)] (Parsons,
Flack and Wagner, Acta Cryst. B69 (2013) 249-259).

No. of parameters

-0.04 (11)
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Compound 49

Crystal data

Chemical formula Ca1H220

My 290.38

Crystal system, space |Triclinic, P1

group

Temperature (K) 150

a, b, c(A) 9.5996 (7), 9.8322 (7), 18.0348 (13)
a, b,y (°) 87.595 (3), 77.541 (3), 75.984 (3)
V (A% 1612.6 (2)

Z 4

F(000) 624

Dx (Mg m) 1.196

Radiation type Mo K[

No. of reflections for 4620

cell measurement

0 range (°) for cell 2.3-30.5

measurement

1 (mm) 0.07

Crystal shape Plate

Colour Colorless

Crystal size (mm) 05x05x%0.5

Data collection

Diffractometer

|Bruker AXS D8 Quest CMOS
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diffractometer

Radiation source

sealed tube X-ray source

Monochromator

] and phi scans

Scan method

Multi-scan
SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke
D., J. Appl. Cryst. 48 (2015) 3-10

Absorption correction |0.642, 0.747
Tmin, Tmax 76183, 9831, 6241
No. of measured, 0.076

independent and
observed [l > 2o(1)]

reflections

Rint Omax = 30.5, Omin=2.3
0 values (°) 0.714

(sin 0/M)max (A1) h=-13013,k=-14014, 1 =-250125
Refinement

Refinement on F2

R[F? > 26(F?)], 0.055, 0.141, 1.01
WR(F?), S

No. of reflections 9831

No. of parameters 399

No. of restraints 0

H-atom treatment

H-atom parameters constrained

Weighting scheme w = 1/[[J3(Fo?) + (0.0615P)? + 0.412P]
where P = (Fo? + 2Fc?)/3

(A/G)max 0.001

Apmax, Apmin (6 A®)  {0.35, -0.27
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