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ABSTRACT

Hao Kairui MSME, Purdue University, May 2020. Comparing the Economic Per-
formance of Ice Storage and Batteries for Buildings with On-site PV through Model
Predictive Control. Major Professor: James E. Braun.

Integrating renewable energy and energy storage systems provides a way of operat-

ing the electrical grid system more energy efficiently and stably. Thermal storage and

batteries are the most common devices for integration. One approach to integrating

thermal storage on site is to use ice in combination with the cooling system. The use

of ice storage can enable a change in the time variation of electrical usage for cooling

in response to variations in PV availability, utility prices, and cooling requirements.

A number of studies can be found in the literature that address optimal operation of

on-site PV systems with batteries or ice storage. However, although it is a natural

and practical question, it is not clear which integrated storage system performs better

in terms of overall economics. Ice storage has low initial and maintenance costs, but

there is an efficiency penalty for charging of storage and it can only shift electrical

loads associated with building cooling requirements. A battery’s round-trip efficiency,

on the other hand, is quite consistent and batteries can be used to shift both HVAC

and non-HVAC loads. However, batteries have greater initial costs and a significantly

shorter life. This research presents a tool and provides a case study for comparing

life-cycle economics of battery and ice storage systems for a commercial building that

has chillers for cooling and an on-site photovoltaic system. A model predictive control

algorithm was developed and implemented in simulation for the two systems in order

to compare optimal costs. The effect of ice storage and battery sizing were studied in

order to determine the best storage sizes from an economic perspective and to provide

a fair comparison.
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1. INTRODUCTION

This chapter is aimed at providing research problem statements and background de-

scriptions for the thesis. Several previous studies are reviewed and their contributions

and limitations are addressed. Objectives and uniqueness of this study are presented.

1.1 Overview of developments of energy storage systems and photovoltaic

technology

The building sector has been the largest consumer of energy in the world over the

past decades. Consequently, the utilization of on-site renewable energy resources com-

bined with energy storage is seen as a powerful approach for mitigating energy con-

sumption and accommodating demand response (DR). In order to induce end-users

to manage their energy consumption behaviors wisely for the purpose of demand

response, numerous utility companies offer time-dependent utility rate structures,

which discourage on-peak electricity usage by employing time-of-use (TOU) energy

cost rates and demand charges. Additionally, net energy metering (NEM) [1] as a

renewable energy resources policy, which allows self-generated energy fed back into

the grid with the same retailing price, further incentivizes on-site distributed energy

resource devices. Among all kinds of renewable energy technologies, installed pho-

tovoltaics (PV) capacity has shown a remarkable increase throughout the world in

recent years. A PV system directly converts solar energy into DC electricity. This

DC power could be directly used by DC apparatus or converted into AC power to

reduce the energy purchased from the utility grid. In order to maximize the daily

utilization of a PV system that incorporates energy storage with variable utility rates,

it is necessary to predict a photovoltaic plant output power for different ambient con-

ditions. The single diode model with five unknown parameters that can be derived
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from manufacturers’ data can be used to generate I-V characteristic curves of a sin-

gle PV panel [2] [3]. With variable electric rates, a stand-alone PV setup will not

fully take advantage of the usage of solar-generated electricity without the integration

with energy storage. The most common ones are ice thermal storage and batteries.

A natural question is which one will outperform the other in terms of economics for

different situations.

Ice thermal storage has been demonstrated to perform well in terms of load shift-

ing and peak demand shaving when TOU utility rate plans are incorporated. Many

simple control strategies have been developed. Braun [4] and Drees and Braun [5]

compared chiller priority, storage priority and optimal control strategies in terms of

energy cost and demand charge and proposed a rule based control strategy based on

heuristics . The results show that under a favorable on-peak to off-peak cost ratio a

simple storage-priority strategy yields costs within 6% of optimal which significantly

outperforms the chiller-priority. These simple control strategies could be easily im-

plemented without a requirement of predictions of weather, occupancy and renewable

energy information, etc.

In recent years, more sophisticated supervisory control strategies have been de-

veloped that are able to systematically curtail energy and demand expenditure when

combined with predicted information for systems with thermal storage. J. Candaned

et.al [6] described an approach to the formulation of a model-based predictive control

(MPC) algorithm for the cooling plant of a building with ice storage under TOU

utility rates. It introduces a simplified linear thermal model from a detailed building

model in EnergyPlus. However, the MPC only focuses on minimizing energy cost and

doesn’t consider demand costs. Ma et.al [7] presented a complex MPC scheme that

contains a high level MPC regulating the cooling plant with thermal storage and a

low level MPC optimizing the operation of AHUs and VAV boxes. They pointed out

a number of issues relating to this nonconvex MPC problem, e.g. stablity and fea-

sibility, convergence to suboptimal solutions and computational complexity. Cox [8]

proposed an approach that utilizes neural network (NN) based model predictive con-
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trol strategy to be solved by the genetic algorithm (GA) optimizer. Kircher and

Zhang [9] formulated a convex optimization problem including uncertainties without

consideration of demand charges. Braun [10] systematically described a demand tar-

get reset algorithm that could handle a trade off between energy cost and demand

charge in a suboptimal approach that could be implemented in practice.

As mentioned in [7], there are numerous issues when implementing an MPC con-

troller in practice, including the trade off between model complexity and computa-

tional effort, and the possibility of local optimums. A model for a central cooling

plant coupled with ice storage is highly nonlinear and also disjunctive due to different

modes of operation for charging and discharging. A more elaborate system model

can approximate real plant behaviors more precisely. However, a more complicated

model is not only a computational burden, but also can deteriorate convergence to

the global optimal solution. The references listed above either applied simple system

models that don’t consider system component capacity constraints that vary with

operating conditions such that the optimal control input sequences could be solved

with ease, or detailed models were utilized but solved with derivative-free optimiza-

tion algorithms, e.g. particle swarm and genetic algorithm, which in general don’t

guarantee a global optimal solution. Lu et.al [11] developed a sophisticated plant

model and compared the optimization results computed through mixed-inter nonlin-

ear programming (MINLP) and nonlinear programming (NP). However, they didn’t

include demand charges and the optimization problem solver was not described ex-

plicitly. Vetterli and Benz [12] simplified the original detailed chiller model using

a piece-wise linear function such that a mixed-integer linear programming could be

derived for a computational simplification. However, they didn’t construct a suffi-

ciently detailed ice storage model that takes charging and discharging penalties into

consideration [13].

The state of the art for battery technology enables the use of electric storage banks

for both utility-scale and commercial building applications [14] [15] [16]. Recharge-

able lithium-ion batteries are promising in a wide variety of fields due to their stable
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charging and discharging characteristics and high round-trip efficiency behavior [17].

Integrating batteries in systems with on-site PV could provide more design and control

dimensions for managing energy demand response. Nottrott et.al [18] utilized linear

programming (LP) to optimize grid-connected photovoltaic-battery storage system

operation. They showed that the breakeven installed cost for a lithium-ion battery is

about $400-$500 per kWh. Ranaweera and Midtgard [19] investigated the economic

benefits when electricity can be sold back into the grid with consideration of the im-

pact of reverse power flow. An adjustable, time-dependent grid feed-in power limit was

introduced to handle the grid voltage stability issue occurring when a large amount of

power is exported to the grid. Cai et.al [20] presented a model-based predictive control

approach for operation of sustainable buildings with on-site photovoltaic and battery

systems that balances building utility cost and battery life. In [21], a comprehen-

sive multi-objective optimization problem was formulated that combines cases of fast

charging with excess PV power, charging for maximizing battery lifetime, charging

for maximizing self-consumption, charging for maximizing self-sufficiency and charg-

ing for cost minimization. This problem was solved by using dynamic programming

(DP).

Even though a large number of research publications were found that focused

on optimal operation for central cooling plants coupled with ice thermal storage,

and for PV systems integrated with battery storage, there appears to be very little

literature on evaluating the economic performance when a central cooling plant system

is integrated with on-site PV and different kinds of energy storage systems. Wang

and Dennis [22] and Saffari et.al [23] explored the energy saving potential for an ice

thermal storage coupled with PV. They concluded that when ice storage and solar

PV are coupled together, further economic benefits could be achieved in comparison

with using these two technologies independently. Savings attributed to PV only were

primarily from energy cost savings, whereas the thermal storage could shift the on

peak load and also improve the performance of off-grid solar PV system under variable

PV generation conditions.
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1.2 Motivation of combining photovoltaic with energy storage in smart

grids

1.2.1 Utility rate plan structures and the net metering

Across the country, utility companies have been adopting time-of-use(TOU) en-

ergy rates and demand charges which provide incentives for consumers to manage

their electric usage wisely.

Time-of-use energy rates fall into a wide range of utility rate structures which

adjust the electricity cost over the course of the day. Though there are many different

time-of-use rate plans, they commonly have the same intention that at times when

costs of generating electricity and demand are high, the electricity rate is high. Then

when costs of generating electricity and demand are low, the electricity rate is much

lower. Rates may also vary from weekdays to weekends, from summer to winter.

Typical structures of time-of-use energy rates utilize different utility rates during

off-peak hours and on-peak hours, and sometime partial-peak hours. Typical rate

plans can include an on-peak demand charge and an any time demand charge. For

the medium size commercial building considered in this study, the on-peak period is

from noon to 6:00 pm, the off-peak hour is from 11:00 pm to the next day 8:00 am,

and the other time is the partial-peak period. Winter typically only has off-peak and

partial-peak hours with relatively lower rates than summer.

In order to maximize benefits of customers under TOU energy rates and demand

charges, energy storage can be used to vary the timing of electricity usage according

to utility rates.

Another innovative utility incentive policy is net energy metering (NEM) which

can incentivize distributive generation technologies such as photovoltaics and wind

turbines. Net energy metering provides credit to customers with solar PV systems for

the full retail value of the electricity their systems generate and feed back to the grid.

Electricity bills are paid annually and customers have to only pay for the net amount

of electricity used from grid. Switching between a solar system’s power and the utility
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grid power is instantaneous such that customers never notice any interruption in the

flow of power.

1.2.2 Features of energy storage devices and photovoltaics

Integrating renewable energy and energy storage systems provides a way of operat-

ing the electrical grid system more energy efficiently and stably. Thermal storage and

batteries are the most common storage devices in use. One approach to integrating

thermal storage on site is to use ice in combination with the cooling system. The use

of ice storage can enable a change in the time variation of electrical usage for cooling

in response to variations in PV availability, utility prices, and cooling requirements.

Batteries can directly store electricity from excess PV generation or the grid during

periods when the utility rate is low. A natural and practical question that arises is

which integrated energy storage system performs better in terms of overall economics.

Ice storage has low initial and maintenance costs, but there is an efficiency penalty

for charging of storage and it can only shift electrical loads associated with building

cooling requirements. A battery’s roundtrip efficiency, on the other hand, is quite

consistent and a battery is more flexible since it can be used to shift both HVAC and

non-HVAC loads. However, batteries have greater initial costs and a significantly

shorter life.

1.3 Objectives and overview of methodology

This research develops a methodology and results for comparing the economic

performance between central cooling systems with on-site PV coupled with different

energy storage devices, i.e. ice storage and battery storage (figure 2.4, and 2.5), in

terms of the life cycle cost. In order to present a fair comparison between the systems

coupled with thermal storage and electric storage, an optimal system component

sizing strategy and a model predictive control algorithm were developed and employed

to carry out the comparisons. The present value (PV) of system costs was used as
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the metric which considers cash flows over a long time line and aggregates them into

the present value in order to give an investment evaluation. The life cycle economic

performance for different systems depends on multiple elements such as the type of

building, climate zone, utility rates, and renewable energy policies such that a simple

conclusion cannot be derived. Hence a case study of a typical medium size commercial

building in Riverside, California was analyzed as a guideline. Three common utility

rate structures were considered: 1) time-of-use (TOU) energy with TOU demand

charges; 2) TOU energy with any-time demand charges; and 3) only TOU energy

charges. The situation is much more complicated when a demand charge exists since

it incurs a trade off between a summation of energy costs and a single demand charge

over a month. However, in practice it is not feasible to consider a monthly horizon

for MPC due to prediction disturbances and heavy computational effort. Hence an

innovative demand target reset algorithm was developed for MPC which converts the

optimization problem into a short term horizon optimization problem. Net energy

metering (NEM) is assumed that allows customers to sell back their self-generated

distributive electric energy to the grid at the real-time retail price. There always

exists a trade off between the model precision and computational efforts. Exceedingly

elaborate system component models are not necessary for practical implementation

of MPC since it would lead to a great computational effort. Therefore most of the

system components were modeled based on empirical correlations or semi-empirical

approaches.

The overall methodology is shown in figure 1.1. Two systems are considered:

1) the system coupled with ice storage and PV, and 2) the system coupled with

batteries and PV. Firstly optimal system component sizes are determined in the

optimal sizing platform. Three components were considered for each system, i.e.,

chiller, photovoltaic and ice storage for the first system. The second system employs

batteries instead as the energy storage device. For the system coupled with ice storage,

optimal component sizes are determined through a sequential optimization method,

i.e., decoupling optimal control decisions and optimal sizing. For the system coupled
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with batteries, a convex optimization problem was formulated that can determine

optimal control decisions and component sizes in a coupled way. Then the optimal

component sizes are set as inputs of model predictive controller in order to obtain

an optimal control sequence. The original mixed integer nonlinear programming

problem was simplified into a nonlinear programming problem that can be solved

through dynamic programming. Finally the optimal life cycle costs of these two

systems are computed and compared based on the optimal control sequences and

simulation testbed.

Fig. 1.1. Methodology flowchart
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2. DEVELOPMENT OF SIMULATION TESTBED FOR

CENTRAL COOLING SYSTEM WITH ICE STORAGE

AND BATTERIES

This chapter describes details of the case study which includes site description, build-

ing model, utility rate plan and net energy metering (NEM). Then the central cooling

plant models for the case study coupled with ice storage or batteries, and the pho-

tovoltaic system are presented. The case study includes a detailed cost model for

determining the present value used in evaluating economic performance.

2.1 Case study description

The economic performance of the micro-grid coupled with either thermal storage

or batteries depends on meteorological conditions, the building type, occupant be-

havior, and most importantly the utility incentives that strongly influence the model

predictive control strategy that should be applied. For the purpose of presenting

a methodology and guidelines for selecting the best combination of PV and energy

storage, a case study in Riverside, California was analyzed. An EnergyPlus reference

medium size commercial building model [24] was utilized with all parameters default

to obtain an annual building load profile. Among many existing utility rate plans,

three representative utility rate plans were chosen: 1) time-of-use (TOU) energy with

TOU demand charges; 2) TOU energy with any time demand charges; 3) only TOU

energy charges. These utility rate structures were implemented under a net energy

metering (NEM) policy adopted in California that allows customers to sell back their

self-generated renewable energy into the conventional grid at retail prices.
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2.1.1 Site description

The case study used Riverside, California as the location with meteorological data

extracted from the Typical Meteorological Year (TMY3) data set. Its latitude is 33.95

N and longitude is 117.38 W. This is a hot semi-arid climate with hot summers and

warm to cool winters, and with minimal precipitation. The location was chosen to

minimize the influence of heating on the overall economic performance evaluation. In

order to have a fair comparison between thermal storage and electric storage, it was

assumed that both systems use natural gas for heating. If a heat pump for heating

were utilized, batteries could play a load shifting role whereas the ice storage could

not.

2.1.2 Building model

A medium size commercial building model (figure 2.1) was extracted from the En-

ergyPlus prototypical building library [25] and all the parameters were set as default.

The building has three floors with 53,600 sq feet of floor area. Windows are evenly

distributed along four facades with a 33% window fraction. The detailed setup for

the architecture, interior loads and schedules were unchanged. An annual building

cooling load profile (HVAC load) and electric loads associated with other devices

(non-HVAC loads) were computed and used as inputs to an optimal component siz-

ing platform, and simulation testbed that incorporated an MPC algorithm. For this

reference model, the design day building load profile is shown in figure 2.2. The

maximum cooling load occurs on September 11th which is 226kW and the design day

total cooling load is 2836.75 kWh. The dash line represents the scaled utility rates

for off-peak, partial-peak and on-peak periods.
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Fig. 2.1. Building model

Fig. 2.2. Design day cooling load profile

2.1.3 Utility rate plan

The utility rate plays the most decisive role in affecting the economic benefit of

integrating energy storage into the system in this case study. When investors adopt

energy storage, the utility rate should have a high enough on-peak to off-peak rate

ratio and/or demand charge to overcome additional upfront costs. A TOU rate is a

plan whose rates vary according to the time of day, season, and day type (weekday

or weekend/holiday). Higher rates are charged during the peak demand hours and

lower rates occur during low demand hours. Rates are typically higher in summer

than winter. The case study used 2017 calendar information to set the weekdays and

weekends schedule.
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The overall cost savings potential of load shifting with the help of energy storage

is naturally determined by the kinds of TOU rate being used. In this study, three

representative California TOU rates were chosen that are summarized in table 2.1.

Demand costs were determined based on 1 hour average power and TOU energy

costs were charged based on 15-minute energy flows. The monthly utility bill can be

computed based on equation 2.1.

Ne−1∑
i=0

E(i)P 15
tb (i)∆T +max(D(k)P 60

tb (k)|k ∈ {0, . . . , Nd − 1}) (2.1)

where Ne is the number of 15-minute time intervals, E is the time of use energy rate,

P 15
tb is the 15-minute average total building electrical load, ∆T is the time step, D is

the demand charge rate, P 60
tb is the 60-minute average total building electrical load

and Nd is the number of hourly time intervals.

The utility rate PG&E A10 has an any-time demand charge which might cause

the cost saving coming from demand charges by load shifting to be small. However

the on-peak to off-peak energy rate ratio in summer is about 1.6 which is the primary

cost saving potential driver. The utility rate SCE GS-2B also has a significant on-

peak to off-peak energy cost ratio in summer of 2.1, and also has a TOU demand cost

rate. SCE GS-R is quite different in that it doesn’t have a demand charge. However

its on-peak to off-peak energy cost ratio is about 5.5 providing a significant incentive

for use of storage.

2.1.4 Net energy metering

The Net Energy Metering 2.0 (NEM) is an established policy in California that is

continually adapted. Customers with eligible renewable generation facilities installed

behind the customers’ meters that meet technical requirements are able to participate

in the NEM tariff.

Under NEM, customer-generators offset their charges for any consumption of elec-

tricity provided directly by their renewable energy facilities and receive a cumulative

financial credit monthly for the power generated by their on-site renewable energy
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systems that is fed back into the power grid for use by other utility customers over

the course of a billing cycle. The unique speciality of NEM is that the credits are

valued at the same price that customers would otherwise be charged for electricity

consumed. At the end of every year that a customer-generator has been on the NEM

tariff, the credits and charges accrued over the previous 12-month billing period are

“trued-up”.

The features of NEM are pivotal in the optimization problem considered in this

study since the sell-back and purchasing price of electricity are the same, only the

net power purchased from the grid needs to be computed for the optimization. Also,

there is an annual “true up” at the end of the billing year which means any excess self

energy generation is not beneficial, even though some net metering programs might

have “net surplus compensation ” under certain conditions but with a negligible rate.

This fact certainly guides the optimal sizing problem, i.e., setting an upper bound for

PV size.

In this study, we assumed that any excess generated energy at the end of the

billing year was wasted. Other fees associated with the NEM program enrollment,

such as interconnection fee and non-bypassable charges were assumed to be small and

the same for all cases, thus were not considered in the formulation of the optimization

problem.

2.1.5 Life cycle financial performance metric

In this study, we selected the Present Value (PV) as the metric to evaluate the

life cycle cost performance of different systems coupled with ice storage or batteries.

The Present Value is a straightforward variable that aggregates cash flows happening

during the course of a time-line in the future that investors are interested in. The

Present Value of system costs is calculated based on equation 2.2.

SCPV =
n∑
t=1

Rt(
1 + i

1 + d
)t + Cii (2.2)



14

Table 2.1.
TOU utility rate plans

TOU Energy Rate ($/kWh)

PG&E A10 SCE GS-2B SCE GS-R

Summer

On-Peak 0.22455 On-Peak 0.12280 On-Peak 0.39056

Partial-Peak 0.16942 Partial-Peak 0.08040 Partial-Peak 0.13509

Off-Peak 0.14135 Off-Peak 0.05772 Off-Peak 0.0707

Winter
Partial-Peak 0.14107 Partial-Peak 0.07664 Partial-Peak 0.08962

Off-Peak 0.12400 Off-Peak 0.06514 Off-Peak 0.07812

Demand Charge Rate ($/kW)

PG&E A10 SCE GS-2B SCE GS-R

Summer Any-time 19.13

On-Peak 19.61

Any-time 0Partial-Peak 3.83

Off-Peak 0

Winter Any-time 11.24 Any-time 0 Any-time 0
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where Rt is the system operation and maintenance costs during a single period t, i is

the inflation rate, d is the discount rate, n is the number of time periods and Cii is

the initial investment. The parameter values to be considered in this study are listed

in table 2.2.

Table 2.2.
Present value parameter assumption

Parameter Value

i 2%

d 7%

n 10

2.1.6 Installed costs of system components

The installed cost of the system either coupled with ice storage or batteries is a

pivotal factor that determines not only the sizing but also the overall life cycle cost.

Therefore it is an essential and fundamental parameter in the study.

For the chiller and ice storage, since these two components are already well de-

veloped, the installed prices are quite stable and low compared with batteries. In

contrast, the costs of renewable energy such as photovolotaics and the associated bat-

tery storage are changing because they are less mature and still under development.

Hence an analysis based on the current installed costs might be not comprehensive

and persuasive. Consequently, the current installed costs are used as a benchmark

followed by a parametric study of installed cost values in the study.

Chiller and ice storage installed costs

The installed cost of cool thermal energy storage used in this study is based on a

report from DOE [26]. Considering the influence of inflation and assuming an inflation
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rate of 7%, table 2.3 shows the adjusted installed cost estimates for different storage

media.

Table 2.3.
Thermal energy storage cost estimates

Storage Medium
Chiller

$/ton

Installed Tank Cost

$/ton-hour

Chilled Water 421∼631 63∼210

Ice on coil, internal melt 421∼1052 105∼147

Ice Harvester 2,315∼3,157 42∼63

Encapsulated Ice 421∼1052 105∼147

PCM 421∼631 210∼315

The storage medium of this study is ice on coil, internal melt. Thus the installed

cost of a chiller and ice storage were chosen as the mean value of each cost range, i.e.

735 $/ton for a chiller and 126 $/ton-hour for an ice tank.

Battery storage installed costs

The installed costs for batteries depend on the battery material, battery power

capacity and battery energy storage capacity. Battery power capacity and battery

energy storage capacity can be represented by a single parameter called duration,

which is the ratio of energy storage capacity to power capacity. The classification

of battery storage duration is short duration (<0.5 hours), medium-duration (0.5∼2

hours) and long-duration (>2 hours).

For cost information we referred to a report from the National Renewable Energy

Laboratory [14]. As discussed in chapter 2, this study assumes lithium-ion batter-

ies because of their stable and reliable operation characteristics. For a commercial

building scale Li-ion storage system (10∼1000kW), batteries should be classified as

long-duration storage.
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Batteries installed cost consists of two parts which are energy capacity cost ($/kWh)

and power capacity cost ($/kW). For a 2-hour duration battery, the energy capacity

cost is 454 $/kWh and the power capacity cost is 910 $/kW [15]. If the battery C-rate

is 0.5, i.e., the ratio of battery discharging rate to its maximum capacity, the installed

cost for a lithium-ion battery, in terms of $/kWh, is 909 $/kWh.

Photovoltaics installed cost

Solar photovoltaic (PV) deployment has grown rapidly in the United States over

the past several years due to the rapid decreasing initial cost. Figure 2.3 shows that

current commercial building PV system installed costs are about one third of the cost

ten years ago. This dramatic cost drop makes the application of PV for distributed

generation more intriguing and promising at present and in the future. Since the

simulation case study assumes the year 2017, the installed cost was taken to be 1.88

$ per peak watt.

Fig. 2.3. Commercial PV system cost benchmark summary [15]

2.1.7 Maintenance costs

Since the economic performance only considers a ten-year time horizon, this study

only includes maintenance costs without replacement. The maintenance costs for the

PV system is taken to be 18 $/kW per year, which means the overall maintenance
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costs for ten years are about 10 % of the PV installed cost [15]. For lithium-ion

batteries, the maintenance costs are taken to be 7.8 $/kW per year [14], which could be

converted to 3.9 $/kWh per year with a 0.5 C-rate. This corresponds to maintenance

costs for lithium-ion batteries of about 4.3 % of their installed cost in terms of a

ten-year operating duration. The maintenance cost of a cooling plant is considered

as 2% of the installed cost.

2.2 Micro-grid system layout

Figure 2.4 gives a micro-grid component layout of the building, central cooling

plant coupled with ice storage and PV system to be considered in this study. Un-

der the California net energy metering 2.0 policy, customers can export their self-

generated energy back to the grid at retail prices. It allows power bi-directional

flows between the traditional power grid and micro-grid which effectively integrates

distributed generation, especially renewable energy sources, into the conventional

electric grid. In this system, electricity used to charge ice storage can be from the

power grid or on-site PV depending on the economic benefits from utility rates, cool-

ing plant performance and cooling loads. Electricity generated by PV panels can be

directly consumed or exported to the power grid. Figure 2.5 shows a different smart

grid component layout comprising the building, conventional central cooling plant,

battery bank, power grid, and PV array, which will be compared with the system of

figure 2.4. This system contains a battery bank as energy storage instead of ice stor-

age tanks. Batteries can be charged from the power grid or customer owned on-site

PV. They can also discharge electric power to support on-site consumption or sales

back to the power grid to take advantage of favorable utility rates.

2.3 Central cooling system modeling

This section describes the central cooling plant system configuration and compo-

nent models used in this work. We refer to a project report [27]. For the case in figure
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Fig. 2.4. On-Site PV coupled with Ice Storage and Cooling System

Fig. 2.5. On-Site PV coupled with Battery Storage

2.4, there are several well-developed ice storage system configurations, including the

ice tanks and chillers in a parallel configuration, ice tanks and chillers in series with

chillers downstream, and a series configuration but with chillers being upstream of

storage. The last one is considered throughout this research since it allows the chiller

to operate at a relatively higher evaporating temperature for a higher COP. Hence

this popular system configuration shown in figure 2.6 was chosen for the simulation

case studies. The baseline system for the case study has a 52-ton air-cooled chiller



20

with 30% propylene glycol and 70% water in the circulating loop, 4 single-stage scroll

compressors, two refrigeration circuits and two 250 ton-hour identical ice tanks. The

baseline component capacities are scaled when addressing optimal sizing in this study.

Fig. 2.6. Schematic of ice storage chiller plant and nomenclature

Table 2.4.
Nomenclature

M: plant modes (off,chiller only, ice only, chiller and ice, freezing)

DP: pressure differentials

TOA: outdoor dry bulb temperature [◦C]

TCHe,SP : chiller exit temperature setpoint [◦C]

TCHWS,SP : primary chilled water supply temperature setpoint [◦C]

TCH,i: chiller inlet temperature [◦C]

TCHWR: return water temperature from building [◦C]

ṁs: mass flow rate passing two ice storage tanks [kg/s]

ṁCH : mass flow rate passing chiller [kg/s]

ṁCHWR: mass flow rate from buildings [kg/s]

xs: ice storage state of charge
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2.3.1 Ice storage model

In this study, ice tanks utilized an internal-melt, ice-on-coil configuration. For this

type of ice storage device, we refer to the semi-empirical model developed by West

and Braun (1998). With the help of heat exchanger effectiveness, at any stage, the

maximum charging and discharging rates can be expressed as:

QIS = εD(xs)ṁsCp,w(Ts,i − Tfr) (Ts,i > Tfr) (2.3)

QIS = εC(xs)ṁsCp,w(Tfr − Ts,i) (Ts,i ≤ Tfr) (2.4)

where Ts,i is the water/glycol mixture fluid ice storage inlet temperature, εD and εC

are the heat transfer effectiveness for discharging and charging which are a function

of the state of charge (xs) for a given mass flow rate. Tfr is the freezing point

temperature (0◦C for water). The storage model neglects any heat gains through the

storage shell and treats the storage as a lumped system whose state can be denoted

by a single variable, i.e., state of charge (SOC), which is defined as:

xs =
uf − u
usf

(2.5)

where u is the specific internal energy of the water and ice mixture in the tank, uf is

internal energy of saturated liquid water, and usf is the latent heat of fusion for ice.

Hence the energy balance of ice storage is as follows:

ẋs =
QIS

Cs
(2.6)

Combining equation 2.3, 2.4 and 2.6 leads to a lumped dynamic model of ice storage

in equation 2.7 and equation 2.8.

ẋs =
εD(x)ṁsCp,w(Ts,i − Tfr)

Cs
(Ts,i > Tfr) (2.7)

ẋs =
εC(x)ṁsCp,w(Tfr − Ts,i)

Cs
(Ts,i ≤ Tfr) (2.8)

The two dynamic equations require a model for heat transfer effectiveness during

charging and discharging. West and Braun (1999) used a polynomial to correlate
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charging and discharging effectiveness in terms of state of charge or discharge of the

form in equation 2.9

ε(xs) = a0 + a1xs + a2x
2
s + . . . (2.9)

The heat transfer effectiveness behavior as a function of state of charge during charg-

ing and discharging is depicted in figure 2.7. For the charging process, at the be-

ginning, heat transfer effectiveness is relatively constant over a large range. This is

because the ice thickness on the tubes is relatively small and ice formations on adja-

cent tubes do not intersect. However, during the last stage of charging, ice formations

begin overlapping with others, which causes a significant loss of heat transfer area.

This phenomenon causes a rapid decrease of heat transfer effectiveness. The behavior

also happens for the discharging process. The heat transfer effectiveness is relatively

constant with decreasing at the beginning which is followed by a rapid drop at the

last stage. The overlapping water layers cause the later dramatic decreasing in the

heat transfer effectiveness with decreasing state of charge.

Fig. 2.7. Schematic of ice storage heat transfer effectiveness behavior
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However, the heat transfer effectiveness of equation 2.9 is a function of state of

charge assuming a fixed flow rate. When flow rate varies, the heat transfer effective-

ness varies with not only state of charge but also mass flow rate. The temperature

profile through ice tanks’ pipes has the shape in figure 2.8. For this kind of heat

transfer problem, the lumped ε-NTU model structure in equation 2.10 can capture

the overall behavior for a single ice tank.

Fig. 2.8. Schematic of ice storage heat transfer temperature profile

ε(
ṁs

Ns

, xs) = 1− e−NTU( ṁs
Ns

,xs) (2.10)

The NTU is the ratio of the overall thermal resistance between the chilled water and

ice storage (UA) to the heat capacity rate ( ṁs

Ns
Cp,w). The thermal resistance UA is

a function of state of charge describing how the overall thermal resistance between

the chilled water and ice storage varies depending on the formation or melting of

ice. Then the heat transfer effectiveness can be expressed as in equation 2.11. Based

on this representation, we can retrieve functional forms for UA and ε( ṁs

Ns
, xs) from a

dataset measured at a fixed flow rate [27].

ε(
ṁs

Ns

, xs) = 1− e
− UA(xs)

ṁs
Ns

Cp,w (2.11)

The empirical polynomial representation of heat transfer effectiveness for a fixed

flow rate is expressed in equation 2.12 where the subscript 0 denotes a fixed flow rate

for the experiments.

ε0(xs) = a0 + a1xs + a2x
2
s + . . . (2.12)
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From equation 2.11, the function UA(x) has the following form obtained for the test

flow rate

UA(xs) = −ṁs,0

Ns

Cp,wln(1− ε0(xs)) (2.13)

Finally, by combining equations 2.11 and 2.13, a heat transfer effectiveness model as

a function of mass flow rate and state of charge was obtained as:

ε(
ṁs

Ns

, xs) = 1− (1− ε0(xs))
ṁs,0
ṁs (2.14)

The charging and discharging heat transfer effectiveness regression representations

for a fixed flow rate with the 250 ton-hour ice storage tank at 4.4877 kg/s (57.4 gpm)

are given in equations 2.15. With these two polynomial regression models tuned for a

fixed experimental mass flow rate data set, heat transfer effectivenesses for charging

and discharging at different mass flow rates could be extracted.

εC,0(xs) = −8.5333x5
s + 14.8774x4

s − 8.4289x3
s + 1.3921x2

s − 0.2911xs + 0.9839

εD,0(xs) = 19.9760x5
s − 56.1250x4

s + 58.9749x3
s − 28.2980x2

s + 6.3670xs + 0.1217

(2.15)

2.3.2 Air-cooled chiller model

A chiller model was obtained by regression using experimental data. Open-loop

model and closed-loop models were developed [27]. The open-loop model means

there is no control of the chiller outlet temperature setpoint and compressor stage is

an input. For this model, the maximum chiller capacity and corresponding power are

a function of chiller inlet temperature (TCH,i), brine mass flow rate (ṁCH), ambient

dry bulb temperature (TOA) and compressor stage.PCH,OL
QCH,OL

 = fOL(TCH,i, ṁCH , TOA, Stage) (2.16)

The closed-loop model is applied to the case where the chiller outlet temperature

is controlled to its setpoint (TCHe,SP ) through control of the compressor stage.

PCH,CL = fCL(QCHL, TCHe,SP , TOA) (2.17)
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The open loop chiller model gives maximum chiller cooling capacity which is

used as a constraint in the optimization problem formulation, whereas the closed

loop chiller model describes the required power to meet a chiller outlet temperature

setpoint. Equations 2.18-2.20 are second order polynomials that were determined

through least-squares.

QCH,OL = 87.4537 + 4.1228TCH,i + 11.1804ṁCH + 0.2256TOA + 0.0194T 2
CH,i

− 0.4630ṁ2
CH − 0.0153T 2

OA + 0.1293TCH,iṁCH − 0.0390TCH,iTOA − 0.0663TOAṁCH

(2.18)

PCH,OL = 30.6853 + 0.1525TCH,i + 0.7983ṁCH + 0.2208TOA + 0.0024T 2
CH,i

− 0.0396ṁ2
CH + 0.0108T 2

OA + 0.0105TCH,iṁCH + 0.0049TCH,iTOA + 0.0009TOAṁCH

(2.19)

PCH,CL = 2.2586 + 0.1737QCHL + 0.0138TCHe,SP − 0.3455TOA + 0.0001Q2
CHL + 0.0123T 2

CHe,SP

+ 0.0096T 2
OA − 0.0063QCHLTCHeS,P + 0.0056QCHLTOA − 0.0103TCHe,SPTOA

(2.20)

2.3.3 Pump model

A detailed model of the distribution system is not necessary and will not be em-

ployed for the purpose of this work because it would require detailed knowledge of

valve and pump characteristics and pipe geometries, and pump power is relatively

small compared to other power consumption in the system. Instead, a simple empir-

ical model is employed that relates pump power consumption to flow rate:

Ppump =
Vf (DP )

ηpumpηmotorηinverter
(2.21)

where Vf is volume flow rate (m3/s) and DP is the pressure difference between supply

and return pipes. Pressure differences primarily depend on the chiller mode and were

obtained from manufacturers’ data. The DP of “Off”, “Chiller only”, “Ice storage

only”, “Chiller and ice storage”, “Freezing” are 0, 6.4830, 12.3913, 6.3493. 4.9482 psi



26

respectively. ηpump, ηmotor and ηinverter are 0.4, 0.9 and 0.95 respectively, which also

were obtained from manufacturers’ data [27].

2.3.4 Central cooling plant modeling

The central cooling plant model for the system coupled with ice storage is more

complicated than the system coupled with batteries since there are five plant modes

in total: “Chiller plant off (OFF)”, “Chiller only (CH)”, “Ice cooling (discharging)

only (I)”, “Chiller and Ice cooling (CHI)” and “Freezing (charging) ice (F)”. A

mode where the chiller meets the cooling load and charging storage at the same time

(“Chiller and Freezing”) is not considered due to low COP and high operating cost.

For the system coupled with battery storage, only modes “Chiller plant off (OFF)”

and “Chiller only (CH)” are considered.

The plant model predicts outputs and states according to cooling load (CWL),

outdoor dry bulb temperature (TOA) and other parameters and conditions with con-

trol decisions of chiller outlet temperature setpoint (TCHe,SP ) and plant modes (M).

The overall plant model has the following discrete time form [27]:

[xs(k + 1), y(k)] = plantmodel(xs, TCHe,SP ,M, ṁCHWR, CWL, TOA, TCHWS,SP , DP,Maxstage,∆t)k

y(k) = [TCH,i, TCH,e, Ts,e, ṁs, QCH , QCHL, QCH,max, PCH , QIS, QISL, QIS,max, Ppump]k

(2.22)

where maximum chiller capacity (QCH,max) is defined as the heat transfer rate from

water/glycol to the chiller with full stage compressors and ice storage cooling load

(QISL) is defined by the required heat transfer rate to meet a given setpoint for the

primary supply water temperature. The ice storage cooling capacity (QIS) is the heat

transfer rate from water/glycol to the tank. Maximum ice storage capacity (QIS,max)

occurs when the mixing valve of the tank is fully open to the tank when all of mass

flow goes through ice storage. Cooling loads, capacities and maximum capacities

are distinguished in the model for cases where the chiller and ice storage do not have
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enough capacities to meet their loads. When they are able to meet their loads, cooling

capacities are equal to cooling loads.

OFF mode

When the mode is OFF, temperatures are not available since pumps are off. The

governing equations for this mode are as follows:

ṁCH,i = 0 ṁs = 0 PCH = 0 QCH = 0

QCHL = 0 QIS = 0 QISL = 0
(2.23)

Chiller only mode

Firstly, the open-loop model is applied to calculate maximum chiller cooling ca-

pacity. Next the chiller load defined by the chiller outlet temperature setpoint TCHe,SP

is calculated compared with the maximum chiller cooling capacity. If the maximum

chiller cooling capacity is larger than the chiller cooling load, then chiller cooling

capacity equals chiller cooling load and the setpoint TCHe,SP can be achieved. If the

chiller lacks enough cooling capacity, then chiller cooling load is its maximum cool-

ing capacity and the setpoint TCHe,SP can not be met. This time the chiller outlet
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temperature TCHe is calculated based on chiller capacity, inlet temperature and mass

flow rate.

TCHWR = TCHWS,SP +
CWL

ṁCHWRCp,w

TCH,i = TCHWR

TCHe,SP = TCHWS,SP

TCH,e = TCHe,SP (if QCHL ≤ QCH,max)

= TCH,i −
QCH,max

ṁCH,iCp,w
(if QCHL > QCH,max)

TCHWS = TCH,e

ṁCH,i = ṁCHWR

ṁs = 0

PCH = fCH,CL(QCHL, TCHe,SP , TOA) (if QCHL ≤ QCH,max)

= fCH,OL(TCH,i, ṁCH,i, TOA,maxstage) (if QCHL > QCH,max)

QCH = QCHL (if QCHL ≤ QCH,max)

= QCH,max (if QCHL > QCH,max)

QCHL = ṁCH,iCp,w(TCH,i − TCHe,SP )

QCH,max = gCH,OL(TCH,iṁCH,i, TOA,maxstage)

QIS = 0

QISL = 0

(2.24)

Ice cooling (discharging) only mode

Firstly, maximum ice storage cooling capacity (QIS,max), i.e. all of the brine flow

passing through the tank, is calculated. Then this value is compared with the ice

storage load (QISL). If the load is greater than the capacity, the mass flow rate that

goes through the ice tanks (ṁs) is set to the maximum flow rate (ṁCH,i). Otherwise,
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when the load is smaller than the capacity, ṁs is adjusted until the ice storage cooling

capacity matches the load. The governing equations for the ice mode are shown below:

TCHWR = TCHWS,SP +
CWL

ṁCHWRCp,w

TCHe,SP = TCHWR

TCH,i = TCHWR

TCH,e = TCH,i

TCHWS = (1− ṁs

ṁCH,i

)TCH,e +
ṁs

ṁCH,i

Ts,e

Ts,e = TCH,e −
QIS

ṁsCp,w

ṁCH,i = ṁCHWR

ṁs = ṁCH,i (if QIS,max ≤ QISL)

= iteration until QIS = QISL (if QIS,max > QISL)

PCH = 0

QCH = 0

QCHL = 0

QIS = Ns(εD(
ṁs

Ns

, xs)
ṁs

Ns

CP (TCH,e − 0)) (if QISL ≤ QIS,max)

= QIS,max (if QISL > QIS,max)

QISL = ṁCH,iCp,w(TCH,e − TCHWS,SP )

QIS,max = Ns(εD(
ṁCH,i

Ns

, xs)
ṁCH,i

Ns

Cp,w(TCH,e − 0))

(2.25)

Chiller and ice cooling mode

For chiller and ice mode, the plant governing equations are the combination of

equations 2.24 and 2.25. The difference here compared with chiller only and ice only

modes is that the chiller outlet setpoint (TCHe,SP ) in this case is determined by a

controller. In chiller only mode TCHe,SP is set at 44 ◦F and in ice only mode it is
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same as chilled water return temperature (TCHWR). The chiller load and ice storage

load are calculated based on TCHe,SP .

Freeze mode (charging)

For the freeze mode, the chiller operates at maximum capacity with all stages. In

this case, both TCH,i and TCH,e are unknown. Hence, TCH,e is adjusted until QCH,max

and QIS,CR match each other, where QIS,CR is the charging rate, i.e. QIS,CR = −QIS.

TCH,i = Ts,e

TCH,e = iteration until QCH,max = QIS,CR

Ts,e = TCH,e +
QIS,CR

ṁsCp,w

ṁs = ṁCH,i

PCH = fCH,OL(TCH,i, ṁCH,i, TOA,maxstage)

QCH = QCH,max

QCHL = QCH,max

QCH,max = gCH,OL(TCH , ṁCH,i, TOA,maxstage)

QIS,CR = Ns(εc(
ṁs

Ns

, xs)
ṁs

Ns

Cp,w(0− TCH,e)

fsQIS = −QIS,CR

QISL = 0

(2.26)

2.4 Battery storage and photovoltaics modeling

2.4.1 Battery model

The battery dynamics can also be approximated by the concept of state of charge:

ẋb =
I

Qbat,I

(2.27)



31

The discrete time model is shown below:

xb(k + 1) = xb(k) +
I(k)∆t

Qbat,I

(2.28)

where I (Amp) is the current and positive for charging and negative for discharging,

Qbat,I (Amp-hr) is the battery current capacity and ∆t is the time step. It is impor-

tant to note for a battery that state of charge is defined by the ratio of how many

electrons are stored in the battery to the total storage capacity. Hence in order to

obtain an electric power relation, it is necessary to multiply both the numerator and

denominator of I(k)∆t
Qbat,I

by voltage with the result shown in equation 2.29,

xb(k + 1) = xb(k) +
Pb(k)∆t

Qbat

(2.29)

This simple state of charge model assumes constant voltage during charging and

discharging. For a lead-acid battery, voltage varies significantly during these two

processes. For a lithium-ion battery, even though battery performance is much better

than for a lead-acid, which means voltage variation in a certain state of charge range is

small (3.2%) (see figure 2.9(a)), a constant voltage assumption causes difficulties when

applied in a model predictive control platform. This is because a constant voltage

assumption leads to no penalty for battery charging and discharging performance at

different states of charge and current magnitudes, which leads to a lack of unique

solutions for MPC.

To overcome this issue, a detailed lithium-ion battery model from MATLAB

Simulink Electric Drives/Extra Sources library was used to obtain a linearly interpo-

lated battery model based on a typical battery’s charging and discharging character-

istics (figure 2.9). Figure 2.9(a) shows the charging behavior of a lithium-ion battery

with 130 amp-hour capacity and 0.5 C-rate.(C-rate is a measure of the rate at which

a battery is discharged relative to its maximum capacity. A 1C rate means that the

discharge current will discharge the entire battery in 1 hour).

The inputs of the MATLAB Simulink lithium-ion battery model are charging (dis-

charging) current (I(k)), initial state of charge (xb(k)) and simulation time duration



32

(∆t). The outputs are voltage (V ) and state of charge (xb) variations from time k∆t

to (k + 1)∆t. By integration of voltage and current, battery averaged charging and

discharging power over time duration (∆t) can be computed. The overall linearly

interpolated battery model has the form in equation 2.30.

xb(k + 1)

Pb(k)

 = F (I(k), xb(k),∆t) (2.30)

where Pb(k) represents the averaged battery power over time ∆t. For the model

predictive control algorithm ∆t is one hour and for the system simulation testbed

∆t is 15 minutes. To prevent low and high states of charge, the state of charge is

subjected to the constraint in equation 2.31.

25% ≤ xb(k) ≤ 95% (2.31)

For a given time step with a constant current, i.e. 1 hour for MPC and 15 minutes

for the simulation testbed, there is a region of current and initial state of charge that

allows the final state of charge to be within the 25% to 95% constraint, and other

combinations are not feasible. Figure 2.10 shows the two feasible input regions used

in this study for 1 hour and 15-minute time steps. Positive current means charging

and negative means discharging. With a low initial state of charge, the battery can

be charged with a high current, and with a high initial state of charge, it can be

discharged with high current. Notice that the feasible region is much larger for the

15-minute than the 1-hour time step since a shorter time duration allows higher

charging and discharging rates.

2.4.2 Photovoltaics model

A photovoltaic system converts sunlight into DC electricity that can be used on

site or support other grid users when extra generated electricity is available. The

fundamental element is a PV cell which can be grouped into PV arrays and panels.

A PV cell is a semiconductor diode and the p − n junction is the critical structure
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(a) Charging characteristics

(b) Discharging characteristics

Fig. 2.9. Lithium ion battery charging and discharging characteristics

that can be triggered to generate current when exposed to sunlight. A p−n junction

is a boundary or interface between two types of semiconductor materials. The p

side contains an excess of holes and the n side contains an excess of electrons. A

single diode model of a PV cell (figure 2.11 [2]) was utilized in this study to obtain a
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(a) 1 hour feasible region (b) 15 minutes feasible region

Fig. 2.10. Lithium ion battery initial SOC and current feasible combination region

photovoltaic output power profile. Ipv is the current generated by the incident light,

Id is the Shockley diode equation 2.32, Rs is the equivalent series resistance of the

array and Rp is the equivalent parallel resistance. The solution of the equation for

this model leads to an I − V relation for the PV cell that has the form in equation

2.33

Fig. 2.11. schematic of single-diode model of PV cell

Id = I0,cell(e
VD
Vt − 1) (2.32)

where Id is the diode current, I0,cell is the reverse saturation current, VD is the voltage

across the diode, Vt is the thermal voltage, i.e., Akt
q

(Boltzmann constant (1.38906503×

10−23) times temperature (in Kelvin) and A (ideality factor, typically varies from 1

to 2) divided by electron charge (1.60217646× 10−19)).
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I = IPV − I0[e
V +RsI
NsVt − 1]− V +RsI

Rp

(2.33)

where IPV (IPV = IPV,cellNP ) is photovoltaic current of the photovoltaic array, I0

(I0 = I0,cellNP ) is the saturation current of the photovoltaic array, Vt (Vt = AkT
q

) is

the thermal voltage, Np is the number of cells connected in parallel to increase output

current andNs is number of cells connected in series to give the desired output voltage.

Equation 2.33 results in an I − V curve (figure 2.12) which represents characteristics

of a PV panel. Three remarkable points in I − V curve are the short circuit (0, Isc),

maximum power(Vmp, Imp) and open circuit points (Voc, 0) [2].

Fig. 2.12. Characteristic I-V curve of a PV cell

There are five unknowns in equation 2.33 which are IPV , I0, Rs, Rp and A to be

determined in order to obtain an I − V relation. For parameters Rs,Rp and A, an

approach that refers to the manufactures’ datasheet was utilized to compute them.

Typically, the parameters provided from the data sheet are listed in table 2.5. The

standard test condition means an irradiation of 1000W/m2 with an AM1.5 spectrum

at 25◦C, where AM1.5 means that air mass coefficient is 1.5 (The air mass coefficient

defines the direct optical path length through the Earth’s atmosphere, expressed as

a ratio relative to the path length vertically upwards, i.e. at the zenith).
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Table 2.5.
Parameters in datasheet

Parameters

Isc short-circuit current in standard test conditions (STC)

Voc open-circuit voltage in STC

Vmpp voltage at the Maximum Power Point (MPP) in STC

Impp current at the MPP in STC

Pmpp power at the MPP in STC

ki temperature coefficient of the short-circuit current

kv temperature coefficient of the open-circuit voltage

By substituting data for current and voltage at the three known points (the short-

circuit, maximum power and the open-circuit points) into the I − V equation, then

the following three equations result [2].

Isc = IPV − I0e
IscRs
nsVt − IscRs

Rp

Impp = IPV − I0e
vmpp+ImppRs

nsVt − Vmpp + ImppRs

Rp

Ioc = 0 = IPV − I0e
Voc
nsVt − Voc

Rp

(2.34)

Additional equations can be derived from maximum power point, where the derivative

of power against voltage is zero, and also the derivative of the current against voltage

at the short-circuit point [2].

dP

dV

∣∣∣V=Vmpp

I=Impp

= 0

dI

dV

∣∣∣
I=Isc

= − 1

Rs

(2.35)

From equations 2.34 and equations 2.35, theoretically IPV,n, I0,n, Rs, Rp and A can be

solved numerically based on the manufactures’ datasheet at standard test conditions

(STC), where the subscript n denotes STC. In this study this method was adapted
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such that only Rs, Rp and A were solved numerically, whereas IPV,n, I0,n were obtained

approximately by approaches shown below.

For IPV , the photovoltaic current depends linearly on the solar irradiation and is

also influenced by the temperature according to the following equation 2.36:

IPV = (IPV,n + kiδT )
G

Gn

(2.36)

where IPV,n is the photovoltaic current at the standard test condition, ki is tempera-

ture coefficient of the short-circuit current, δT = T − Tn (in Kelvin) where T is the

PV cell temperature and n denotes STC, G (watts per square meters) is the irradi-

ation on the device surface, and Gn is the nominal irradiation. An assumption that

Isc,n ≈ IPV,n is made because the series resistance of the single diode model is low

and the parallel resistance is high. In summary, IPV can be represented by equation

2.37, where all of the parameters can be obtained from data sheet values and from

measurements.

IPV = (Isc,n + kiδT )
G

Gn

(2.37)

For I0, the diode saturation current and its dependence on the temperature can

be expressed as equation 2.38:

I0 = I0,n(
T

Tn
)3exp[

qEg
Ak

(
1

Tn
− 1

T
)] (2.38)

where Eg is the bandgap energy of the semiconductor (Eg = 1.12eV for the poly-

crystalline Si at 25◦C) and I0,n is the nominal saturation current at the standard test

conditions (STC), which could be expressed as follows:

I0,n =
Isc,n

exp( Voc,n
AVt,n

)− 1
(2.39)

where Vt,n is the thermal voltage at the standard test condition.

The PV panel model selected for this study is model KC200GT [3]. The geomet-

ric specifications of a single PV panel are 1425mm(56.2in)× 990mm(39.0in) which

is comprised of 54 PV cells. The other detailed specifications available in the man-

ufactures’ datasheet to retrieve a single diode PV cell model are listed in table 2.6.
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Table 2.6.
KG200GT PV panel specifications

Electrical performance under standard test conditions

Maximum Power (Pmpp) 200W(+10% -5%)

Maximum Power Voltage (Vmpp) 26.3V

Maximum Power Current (Impp) 7.61A

Open Circuit Voltage (Voc) 32.9V

Short Circuit Current (Isc) 8.21A

Max System Voltage 600V

Temperature Coefficient of Voc -1.23×10−1V/◦C

Temperature Coefficient of Isc 3.18×10−3A/◦C

Cells

Number per Module 54

Physical specifications

Length× Width× Depth 1425mm(56.2in)× 990mm(39.0in)× 36mm(1.4in)

Three important parameters (Rs,Rp and A) can be computed according to equa-

tions 2.34 and 2.35 based on required parameters in datasheet 2.6. The results are

Rs = 0.3625Ω, Rp = 6928Ω and A = 1.0565.

The predicted electrical characteristics using the single diode PV cell model are

shown in figure 2.13 and the experimental data is shown by circles. From comparisons

of the results, the single diode model of PV cell model constructed according to

datasheet agrees well with the experimental data.
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(a) Irradiance: AM1.5,1000W/m2

(b) Cell temperature: 25◦C

Fig. 2.13. I-V characteristics of PV module KC200GT prediction
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3. MODEL PREDICTIVE CONTROL

This chapter presents a global optimization approach, i.e., Dynamic Programming

(DP), that searches for an optimal solution that minimizes monthly utility bills for

the ice storage and battery systems. Both time-of-use energy (TOU) and demand

charges are considered in the optimization problem. A typical optimization problem

formulation using the concept of a demand target to handle a trade off between TOU

energy costs and demand charges is developed first. Then a reformulated demand

target reset algorithm that treats the demand target as an optimization constraint to

only minimize energy cost is presented, which can tremendously reduce computational

effort. This fast numerical approach not only improves practical MPC application

speed but also allows annual economic performance analysis within a short simulation

time.

3.1 Model predictive control formulation

The goal of this study is to compare economic performance of different systems

under optimal control, therefore the controller doesn’t consider model uncertainties

and unmeasured disturbances. An idealized MPC was developed for evaluation pur-

poses which assumes a perfect observer and no uncertainties in the model and load

prediction.

3.1.1 Ice storage and photovoltaic system model predictive control

In the MPC formulation, it is assumed that chilled water supply temperature to

the load is fixed at 44◦F. The objective of MPC is to determine the sequences of

control inputs which are chiller modes M and chiller outlet setpoints TCHe,SP for the
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purpose of minimizing monthly utility bills. For the ice storage system, there are

totally five modes which naturally result in a mixed integer nonlinear programming

(MINLP) problem. Though MINLP can be used for analysis purposes, it is not

preferred for MPC implementation. This is because there is a lack of freely available

MINLP solvers and a MINLP-based MPC might be difficult to implement in an on-

line solution since it may incur great computational effort such that it cannot be

solved within the sampling time. In addition it is hard to consider demand charges

because of a limited prediction horizon which is imposed by prediction errors and

computational issues.

In order to deal with the first issue, an approach that maps ice storage capacity

into plant modes was developed that converts the original mixed integer nonlinear

programming (MINLP) problem into a nonlinear programming (NP) problem. For

the second issue, an innovative reformulation of the original optimization problem

minimizes time-of-use energy cost treating the demand charge as an adjustable con-

straint. If feasible solutions can not be found, a hard demand target is increased to

the point where a feasible solution is found.
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With the ice storage cooling capacity (discharge rate) as an optimization variable,

the reformulated MPC problem is shown below [27]:

min
z,u(0),...,u(N−1)

N−1∑
k=0

E(k)(PHV AC(k)∆t− Psolar(k)∆t) + ω × z

xs(k + 1) = xs(k)− u(k)∆t

Cs

0 ≤ QCH(k) ≤ QCH,max(TCH,i(k), ṁCH,i(k), TOA(k),maxstage)u(k) ≤ QIS,max,D(TCH,e,SP (k), ṁCH,i(k), x(k)) if (u(k) ≥ 0)

−u(k) ≤ QIS,max,C(TCH,e,SP (k), ṁCH,i(k), x(k)) if (u(k) < 0)

QCH(k) = QBL(k)− u(k)

TCHe,SP (k) =

TCH,i(k)− QCH(k)
ṁCH,i(k)Cp,w

if (u(k) ≥ 0)

0 + u(k)
εC(ṁCH,i(k),x(k))ṁCH,iCp,w

if (u(k) < 0)

TCH,i(k) = TCHWS,SP (k) +
QBL(k)

ṁCH,i(k)Cp,w

PHV AC(k) =

0 if (u(k) = 0, QBL = 0)

PCH(QCH(k), TCH,e,SP (k), TOA(k)) + Ppump(ṁCH,i) (otherwise)

D(k)(PHV AC(k) + Pnon−HV AC(k)− Psolar(k)) ≤ z (k ∈ {0, . . . , N − 1})

xs,l ≤ xs(k) ≤ xs,u

(3.1)

where, E($/kWh) is time-of-use energy cost and D($/kW ) is demand charge. PHV AC

is the electric power associated with the HVAC system and Pnon−HV AC is the electric

power excluding HVAC power. Psolar is the total PV panel generation rate. N is a

look-ahead horizon which ideally should cover a billing period (one month). z is a

demand limit which is also to be optimized and ω is a weighting number introduced to

compensate for the reduced time period if N is less than the billing period. u is control

input to be optimized which is the ice storage cooling capacity (discharge rate) in the

formulation. Variables required to be predicted are TOA and QBL, which are assumed
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perfect predictions in this study. The variables of TCH,i, ṁCH,i, QCH and TCHe,SP are

internal variables to be calculated for the chiller and ice-storage components.

The first constraint represents the ice storage dynamics using the concept of state

of charge (SOC). The first inequality denotes the chiller capacity range at time step k.

The second and third inequalities state capacity limits for the ice storage tank during

discharging and charging processes at time step k. The equation for QCH specifies

the cooling load left for the chiller after subtracting the ice storage capacity from the

total building cooling load. The equation for TCHe,SP is switched depending on the

ice-storage modes, where the first equation for the discharging process is simply an

energy balance for the chiller and the second equation for the charging process is from

the ε -NTU relation for the ice storage. The HVAC power includes chiller and pump

power. If there is no building cooling load, and ice tanks are not charged, the HVAC

power is set to 0. The second last inequality denotes the demand limit constraint,

and the last inequality specifies ice storage state of charge constraints (xs,l = 0 and

xs,u = 1).

Even though the reformulation converts the original MINLP problem into a more

tractable NP problem, many NP algorithms would still fail to solve it because the

functions that describe capacity constraints and power are discontinuous due to the

discrete nature of the operating mode. Therefore, a gradient-based optimization

approach cannot be used. Besides, gradient-free algorithms such as the genetic algo-

rithm(GA), are typically not applicable for on-line MPC implementation because of

computational requirements and there is no guarantee of a global optimal point.

3.1.2 Battery and photovoltaic system model predictive control

For the battery system integrated with photovoltaics, the cooling plant only has

“chiller-only” and “off” modes. For this system the chiller cooling capacity should

be sufficient to meet the peak building load. Similar to an ice storage system, the



44

battery charging (or discharging) current rate is an optimization variable and the

MPC problem was formulated as below:

min
z,I(0),...,I(N−1)

N−1∑
k=0

E(k)(PHV AC(k)∆t− Psolar(k)∆t+ Pb(k)∆t) + ω × z

xb(k + 1) = xb(k) +
I(k)∆t

Qbat,I

0 ≤ QCH(k) ≤ QCH,max(TCH,i(k), ṁCH,i(k), TOA(k),maxstage)

QCH(k) = QBL(k)

TCHe,SP (k) = TCHWS,SP (k)

TCH,i(k) = TCHWS,SP (k) +
QBL(k)

ṁCH,i(k)Cp,w

PHV AC(k) =

0 if (QBL = 0)

PCH(QCH(k), TCH,e,SP (k), TOA(k)) + Ppump(ṁCH,i) (otherwise)

D(k)(PHV AC(k) + Pnon−HV AC(k)− Psolar(k) + Pb(k)) ≤ z (k ∈ {0, . . . , N − 1})

Pb(k) = F (I(k), xb(k),∆t)

xb,l ≤ xb(k) ≤ xb,u

(3.2)

where I is the battery current (charging is positive and discharging is negative ),

Pb is the battery charging (or discharging) rate (kW) as a function of current (I),

initial state of charge (x) and time step (∆t), and Qbat,I is the battery capacity (Amp-

hours). The battery’s state of charge is constrained between 25% and 95% to avoid

deep depletion and over-charging.

3.2 Global optimization through dynamic programming algorithm

3.2.1 Basic Problem

For a deterministic discrete-time dynamic system:

xk+1 = fk(xk, uk), k = 0, 1, . . . , N − 1 (3.3)
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where the state xk is an element of a space Sk and the control uk is an element of a

space Ck. The control uk is constrained to take values in a given nonempty subset

U(xk) ⊆ Ck, which depends on the current state xk, i.e., uk ∈ Uk(xk) for all xk ∈ Sk
and k [28].

The class of policies that consist of a sequence of functions:

π = {µ0, . . . , µN−1} (3.4)

where µk maps states xk into controls uk = µk(xk) and is such that µk(xk) ∈ Uk(xk)

for all xk ∈ Sk. Such policies will be called admissible. Given an initial state x0

and an admissible policy π = {µ0, . . . , µN−1}, the system equation can be defined as

follows:

xk+1 = fk(xk, µk(xk)), k = 0, 1, . . . , N − 1 (3.5)

For given functions gk, k = 0, 1, . . . , N , the cost of policy π starting at x0 is:

Jπ(x0) =
N−1∑
k=0

gk(xk, µk(xk), wk) + gN(xN) (3.6)

where gN(xN) is the terminal cost. An optimal policy π∗ that minimizes cost function

3.6 for a given initial state x0 satisfies the following equation:

Jπ∗(x0) = min
π∈Π

Jπ(x0) (3.7)

where π is the set of all admissible policies. Hence Jπ∗ is a function of initial state x0

which is called the optimal cost function.

3.2.2 Dynamic programming algorithm

Principle of Optimality

The dynamic programming algorithm relies on the principle of optimality. Let

π∗ = {µ∗0, µ∗1, . . . , µ∗N−1} be an optimal policy for the basic problem (deterministic
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problem). Consider the subproblem whereby we are at xi at time i and wish to

minimize the cost function from time i to time N :

N−1∑
k=i

gk(xk, µk(xk), wk) + gN(xN) (3.8)

Then the truncated policy {µ∗i , µ∗i+1, . . . , µ
∗
N−1} is optimal for this subproblem.

Backward dynamic programming algorithm

The optimization problem and principle of optimality are combined to give a

dynamic programming algorithm as follows:

For every initial state x0, the optimal cost J∗(x0) of the basic problem is equal to

J0(x0), given by the last step of the following algorithm, which proceeds backward in

time from period N − 1 to period 0:

JN(xN) = gN(xN) (3.9)

Jk(xk) = min
uk∈Uk(xk)

gk(xk, uk) + Jk+1(fk(xk, uk)) k = 0, 1, . . . , N − 1 (3.10)

Then the optimal cost is J0(x0) (also called the shortest path). Furthermore, if

u∗k = µ∗k(xk) minimizes the right side of equation 3.10 for each xk and k, the policy

π∗ = {µ∗0, . . . , µ∗N−1} is optimal. This leads to an important property of deterministic

problems that minimizing the cost over admissible policies {µ0, . . . , µN−1} results in

the same optimal cost as minimizing over sequences of control vectors {u0, . . . , uN−1}.

This is true because for given a policy {µ0, . . . , µN−1} and initial state x0, the future

states are perfectly predictable through the equation:

xk+1 = fk(xk, µk(xk)) k = 0, 1, . . . , N − 1 (3.11)

and the corresponding controls are perfectly predictable through the equation:

uk = µk(xk) k = 0, 1, . . . , N − 1 (3.12)

Thus, the cost achieved by an admissible policy {µ0, . . . , µN−1} for a deterministic

problem is also achieved by the control sequence {u0, . . . , uN−1} defined above. For
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the deterministic problem, we restrict our attention to sequences of controls. Though

analytical expressions for a control sequence {u0, . . . , uN−1} are not possible, a nu-

merical table can store sequences of controls to be used further.

Parametric cost approximation

In an ice storage system, though there is only one state variable and one control

variable, but both are continuous. The problem is simplified by discretizing both the

state and control variables. Consider discretization and piecewise linear approxima-

tion for the ice storage case where the state of charge is an interval [0, 1]. Consider

a set of grid points {d0, . . . , dn} within [0, 1], which includes the endpoints a and b,

and is viewed as the set of aggregate states. In this study, n was chosen as 20 which

means we have total 21 discrete points to approximate the entire continuous state

of charge range. The same approach is applied to the control space, in which case

the total discrete grid point number is 51. For any nongrid point x ∈ [a, b], the cost

approximation J̃k(x) is obtainted by linear interpolation of the costs of the two grid

points d(x) and d̄(x) that are adjacent to x from above and below:

J̃k(x) =
d̄(x)− x
d̄(x)− d(x)

rd(x) +
x− d(x)

d̄(x)− d(x)
rd̄(x) (3.13)

where rd(x) and rd̄(x) are the optimal cost of d(x) and d̄(x) in the aggregate problem,

whose states are the grid points {d0, d1, . . . , dn}. There exists a trade-off between

accuracy of this approximation and computational speed with respect to the number

of grid points.
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3.3 Demand limit reset strategy

A natural objective function of an MPC is to minimize the time-of-use energy

cost and demand charge simultaneously while meeting building loads and equipment

capacity constraints. Hence, it can be represented in a condensed way:

min
u(0),...,u(N−1)∈U

N−1∑
k=0

E(k)Pt(k)∆t+max(D(k)(Pt(k)+Pnon−HV AC(k)|k ∈ {0, . . . , N−1})

(3.14)

where Pt for an ice storage system is PHV AC(k)−Psolar(k) and for a battery system is

PHV AC(k)−Psolar(k)+Pb(k). U represents a feasible set imposed by dynamics, equal-

ity and inequality constraints. In the MPC, time-of-use energy costs are also assumed

to be charged based on 1 hour average power same as the demand costs. Ideally, N

should cover a billing period which is one month. However, it is not practical to

consider an entire monthly time horizon because of computational requirements and

prediction uncertainties of disturbances such as outdoor temperature and occupancy.

In order to reduce computation, it is popular to convert problem 3.14 into a more

numerically friendly form which is shown below [10]:

min
z,u(0),...,u(N−1)∈U

N−1∑
k=0

E(k)Pt(k)∆t+ ω × z

s.t. D(k)× (Pt(k) + Pnon−HV AC(k)) ≤ z ∀k ∈ {0, . . . , N − 1}

(3.15)

where z ∈ R is an additional variable to be optimized. The additional inequality

constraint denotes that z is an upper bound of a demand charge in the prediction

horizon. Therefore this reformulated problem can minimize the time-of-use energy

cost and demand charge simultaneously. If the weight factor ω is 1, then problem 3.14

and problem 3.15 are equivalent which means the optimal point of the latter solves

the former and optimal costs are the same. A typical MPC strategy to consider a

demand charge in the literature is to set N to a reduced prediction horizon, e.g., one

day. In this case, the weight factor can be adjusted to compensate for the reduced time

period. Kim [27] proposed an approach that reformulates the optimization problem
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3.15 into 3.16 which only solves the time-of-use energy cost minimization problem

with a demand limit constraint.

min
u(0),...,u(N−1)∈U

N−1∑
k=0

E(k)Pt(k)∆t

s.t. D(k)× (Pt(k) + Pnon−HV AC(k)) ≤ ẑ∗m ∀k ∈ {0, . . . , N − 1}

(3.16)

The final MPC algorithm proposed is shown below and a demand limit reset algorithm

flow chart is shown in figure 3.1.

1) For the first sampling time of a billing period, initialize ẑ∗M as

ẑ∗M = max{D(k)Pnon−HV AC(k)|k ∈ {0, . . . , N − 1}}, (3.17)

where Pnon−HV AC is the predicted power within a prediction horizon.

2) Solve the energy cost optimization problem 3.16.

3) If there exists a feasible solution, then maintain ẑ∗M .

4) If there is no feasible solution, then increase ẑ∗M a little bit until a feasible solution

could be found.

5) Feed the first part of optimal control inputs into the plant and repeat from step 2

to 4.

The MPC algorithm was implemented through dynamic programming that is com-

putationally efficient. The following figures illustrate system responses determined by

the MPC controller for both the ice storage and battery systems. It should be men-

tioned that all the components were not optimally sized. The goal here is to compare

optimal control system response differences for systems with ice storage or batteries.

Figure 3.2 illustrates the responses for a 75-ton central cooling plant coupled with a

330 ton-hour ice storage and a 40 kW PV array under the proposed MPC controller.

The black dash line denotes the scaled on-peak, partial-peak and off peak electricity

cost rates. For August 2nd, all of the HVAC load was shifted into the off-peak period.

However there was a power peak for power purchased from the grid. In this case, this

is the difference between non-HVAC load and PV generation rate. Even though in
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Fig. 3.1. MPC demand limit reset algorithm

commercial buildings non-HVAC load is pretty flat and stable, after integration with

renewable energy resources, e.g., PV, there could still be power peaks for purchasing

electricity. Figure 3.3 shows the responses of a 75-ton central cooling plant coupled

with a 0.5 C-rate 385 kWh lithium-ion battery bank and a 40 kW PV array under

MPC. The battery size was determined to be similar to the ice storage size consider-

ing the COP. It could be observed that batteries respond to the total building load

peak by releasing more energy such that the net power purchased from the utility grid

doesn’t have a power spike. This is due to the flexibility of batteries that can shift

both HVAC and non-HVAC loads as compared to a case of the ice storage system.

Hence, batteries are more effective for shaving peak power when a system is coupled

with PV.
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Fig. 3.2. Responses of system coupled with ice storage and PV under
MPC controller

Fig. 3.3. Responses of system coupled with batteries and PV under MPC controller
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4. OPTIMAL SYSTEM COMPONENT SIZING AND

SYSTEM COMPARISONS

This chapter presents approaches for chiller, ice storage, battery and photovaltics

array optimal size determination in terms of life cycle costs. In order to compare

different systems fairly, one that uses thermal storage and another that uses batter-

ies, the sizes of components in each system to be considered play a crucial role. In

this chapter, optimal size strategies for each system in terms of life cycle costs were

developed for the purpose of comparing the best designs for each system. By combin-

ing optimal sizing with a model predictive control algorithm, comparisons between

systems coupled with thermal storage or batteries were carried out in the fairest way

thought possible.

4.1 Chiller and ice storage optimal size determinations

The approach of determining the optimal size of a thermal storage system depends

on utility rate structure such as the “on-peak” and “off-peak” energy cost ratio,

demand charge, the initial cost of each component, and the building load profiles.

Two general and popular sizing strategies for ice storage systems are full storage and

partial storage.

In a full storage system, the storage capacity should provide all cooling loads

during on-peak hours and the chiller is employed only in off-peak hours. This type

of sizing leads to relatively large storage and chillers. A typical operation scheme

is shown in figure 4.1(a). The building load during on-peak hours is met by the ice

storage releasing its stored cooling energy. During off-peak hours, the chiller uses

its full capacity to charge the ice storage and can also provide some building cooling
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when needed. All the building cooling is provided eventually by the chiller, so that

the integrated load on the chiller equals the integrated building load.

In a partial storage system, the chiller runs continuously on the design day and

the ice storage provides the remaining cooling not met by the chiller. A typical

operation scheme is shown in figure 4.1(b), where the chiller capacity in charging

and cooling modes is relatively constant depending on the chiller supply temperature

and ambient conditions. The chiller is sized in order to meet the integrated building

(a) Full storage (b) Partial storage

Fig. 4.1. Schematic of design-day operations of the ice storage

load while operating continuously at maximum capacity over the entire day. The

chiller capacity during the ice making mode is less than the on-peak period due to

the low evaporating temperature when producing ice. The ice storage is sized to

meet the difference between the load and chiller capacity during the on-peak period

on the design day. This sizing approach tends to minimize the sizes of both the

chiller and storage leading to minimum installed cost if storage is utilized. With a

partial storage system, two common control strategies are used during the daytime:

chiller priority and storage priority control. Chiller priority control has the chiller

run with its maximum capacity and the storage meets the remaining load. Storage

priority control has the storage meet the load first and the chiller meets the rest of

the cooling load.
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Full storage and partial storage sizing, though commonly employed, result in two

extreme sets of sizing for the chiller and ice storage. There are many other size

combinations of the chiller and ice storage between full storage and partial storage

which might have better economic performance over these two conventional chiller

and ice storage sizes in terms of life cycle costs.

4.1.1 Search region for chiller and storage size combinations

In order to evaluate life cycle costs for different size combinations of chiller and

ice storage, the first step is to determine the feasible search region. Figure 4.2 shows

the search region that was considered in this research. The horizontal and vertical

Fig. 4.2. schematic of the search region
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axes denote the chiller capacity and ice storage capacity respectively. The point

“A” is partial storage sizing that minimizes the chiller and ice storage sizes, and

the associated installed costs when storage is utilized. Point “B” is a conventional

system without storage that only uses the chiller to provide cooling throughout the

day. Point “C” is a full storage system with maximum ice storage and chiller capacity.

The bottom boundary of the search region is the minimum ice storage capacity as

a function of chiller capacity such that they could meet the design day cooling load

together. The minimum storage capacity decreases with increasing chiller capacity

since with a greater chiller capacity the remaining cooling load to be met by ice

storage is less. The upper boundary contains an inclined line and a horizontal line.

The inclined line represents the maximum ice storage capacity that a given sized

chiller could fully charge during unoccupied hours on the design day. The slope

is upward since a greater chiller capacity can produce more ice. The horizontal line

specifies the minimum ice storage capacity required to meet the on-peak building load

by itself, beyond which the extra capacity is useless incurring some unnecessary initial

costs. The intersection of these two lines at point C is the full storage design point

where the ice storage capacity is sufficient to meet the on-peak building load and the

chiller capacity is the minimum necessary to fully charge it during the unoccupied

period. The left and right boundaries are both determined by the chiller capacity

which specify the minimum and maximum chiller capacity, respectively.

Conventionally, points “A”, “B” or “C” are used depending on cost considera-

tions, utility rates, and control strategies. A rule of thumb is that the partial storage

sizing has much better economics than the full storage and traditional HVAC system

in terms of the life cycle cost when appropriate utility incentives are in place. The

partial storage system can spread out building loads evenly throughout the day, and

minimizes chiller and ice storage sizes. The full storage system has the highest in-

vestment cost which typically leads to greater life cycle cost than partial storage even

though the operating costs are lower.
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An intriguing question that naturally comes from the figure 4.2 is whether the

partial storage system is the point having the minimum life cycle cost among the

search region or not.

4.1.2 Life cycle cost graph

An optimal sizing strategy for the chiller and ice storage in terms of life cycle costs

should employ optimal control for all possible size combinations within the search re-

gion (figure 4.2). In order to generate a life cycle cost graph over the search region, it

is necessary to sample many points among the search region where each point is an

annual simulation. This requires a significant computational effort because of imple-

mentation of an optimal control algorithm. The optimal control algorithm proposed

in this study (equation 3.16) is computationally efficient so that life cycle costs for the

sampled points within the search region could be computed in an acceptable period

of time. The life cycle cost depends on both initial costs of components and operating

costs, which depend on building type, climate zone and utility rates to be considered.

This study addresses optimal chiller and storage sizes for the case study and utility

rates described in chapter 2. The chiller and ice storage installed costs are taken to

be 735 $/ton for the chiller and 126 $/ton-hour for the ice tank. Life cycle cost graphs

for the three utility rate plans considered are shown in figure 4.3, 4.4 and 4.5.

4.1.3 Life cycle cost analysis

From the life cycle cost graphs and contours for the three utility rate plans, the

minimum life cycle cost is near the minimum chiller and ice storage size. In addition,

the variation in life-cycle costs near this point is pretty small. The life cycle cost

magnitude and variation near the full storage and conventional HVAC systems are

much higher than the region around the partial storage point.



57

(a) Life cycle cost graph (b) Life cycle cost contour

Fig. 4.3. Utility rate A10 life cycle cost

(a) Life cycle cost graph (b) Life cycle cost contour

Fig. 4.4. Utility rate GS-2B life cycle cost

Partial storage point definition

Conventionally, a chiller for a partial storage system charges ice storage with its

full capacity during unoccupied periods as shown in figure 4.1(b), and the chiller

and ice storage size are minimized. However, this minimum size ice storage tends to

be charged near 100% state of charge (SOC) which results in a significant drop of
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(a) Life cycle cost graph (b) Life cycle cost contour

Fig. 4.5. Utility rate GS-R life cycle cost

heat transfer effectiveness. Figure 4.6 shows a significant drop in capacity when SOC

exceeds about 95%(figure 4.6(a)) due to a drop in heat transfer effectiveness. This

leads to less total cold energy stored in the ice storage. Therefore, during the occupied

period ice storage could deliver less cold energy to the building such that the operating

cost increases a little bit. The minimum life cycle cost point in figure 4.7 occurs when

the chiller could charge ice storage at a relatively constant rate which is illustrated

in figure 4.6(b). Slightly increasing ice storage capacity from the minimum size helps

the chiller produce ice with a high heat transfer effectiveness resulting in a lower

maximum SOC. This chiller charging performance coincides with the conventional

partial storage definition. Similar results were found with the other utility rate plans.

Therefore we define ice storage capacity of a partial storage system as the minimum

capacity that the smallest possible chiller could charge with a relatively constant rate

on the design day.
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(a) 45 ton chiller with 234 ton-hour ice storage

(b) 45 ton chiller with 312 ton-hour chiller

Fig. 4.6. Responses of chiller capacity and ice storage SOC

Life cycle cost sensitivity analysis

Even though the overall system life cycle cost graphs under utility rate A-10, GS-

2B and GS-R have the same shape, they have different sensitivities to sizing. Figure
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4.8 shows three normalized life cycle cost contours for the three utility plans (A10,

GS-2B, GS-R). The size combination of 45 ton chiller and 312 ton-hour ice storage

serves as the baseline for normalization.

We analyzed the size sensitivity along two directions that are shown in figure

4.8(a), one of which is from the minimum cost point to the full storage point and

the other is to the conventional chiller point. All three utility rate plans have a TOU

energy cost with a favorable on-peak to off-peak ratio. The difference is the demand

charge schedule.

For the first direction, the overall sizing sensitivities for three utility rate plans are

all small, which means increasing installed costs of chiller and ice storage compensate

for the increasing operating cost savings with a larger ice storage capacity. For the

second direction, the life cycle cost sensitivity of utility rate A10 is much higher than

the others. This is because utility rate A10 has an any-time demand charge both in

summer and winter. When ice storage capacity decreases, the operating costs coming

from demand charges dramatically increase in all twelve months (cooling load exists

even during winter utility rate period). On the contrary, utility rate GS-2B and

utility rate GS-R don’t have a demand charge in winter and therefore have a lower

sensitivity to sizing near the optimum.

In summary, minimum life cycle cost points for all three utility rate plans are

near the partial storage point and their life cycle cost sensitivities highly depend on

demand charge rates and schedules.

4.2 Photovoltaic optimal sizing in combination with a central cooling

system coupled with ice storage

In this section, two sizing strategies for PV combined with a central cooling system

coupled with ice storage (figure 2.4) are proposed. The first one involves directly

searching for the optimal PV size in terms of life cycle cost with the proposed MPC

algorithm implemented for a prescribed partial storage system. The second method
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Fig. 4.7. Utility A10 life cycle cost contour

attempts to reduce the computational effort by decoupling the control and sizing

processes. This sequential optimal sizing scheme is validated using the direct search

method.

4.2.1 Optimization methodology

Optimal sizing in combination with MPC algorithm

The optimal sizes of chiller and ice storage are assumed to be the partial storage

solution since the cost sensitivity around this region is small. With this prescribed

central cooling plant size, the simplest method to size a PV system is to perform

annual simulations with the proposed MPC algorithm for different PV sizes and find

the size that minimizes the life cycle cost. This method is termed as direct search.
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(a) Utility A10 (b) Utility GS-2B

(c) Utility GS-R

Fig. 4.8. Normalized life cycle cost contour

Sequential Optimization

The direct search method, though precise, is time-consuming. In order to reduce

computational effort, the control and sizing can be decoupled into two phases. In

the first phase, annual simulations of the partial storage system along with MPC are

performed. An electrical load profile from this first phase is then used as an input to

a second phase for sizing the PV system. The second phase determines the optimal

PV size according to the following optimization problem.
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min
n∈Z

Ci
PV n+ Pw(

Ny∑
i=1

E(i)Pg(i) +
Nm∑
j=1

max(D(i)jPg(i)
j, 0) + Cm

PV n)

s.t. Pg(i) = Pl(i)− Ps(i)
Ny∑
i=1

E(i)Pg(i) ≥ 0

Ps(i) = nPsi(i)

n ≥ 0

(4.1)

where n is the number of PV panels (Model KC200GT for this study), Ci
PV is the

installed cost per PV panel (1.88 $/W installed cost for this study), Cm
PV is the

maintenance fee per PV panel (assuming 18 $/kW per year for maintenance), Ny is

the total number of hourly time intervals in one year, Nm is the number of months,

e.g., 12 for a year, Pg is the net hourly average power purchased from grid (kW), Pl

is the hourly average building electricity load (kW), Ps is the total hourly average

PV power generation rate (kW), Psi is the single PV panel power (kW) and Pw is the

present worth factor for ten years associated with currency inflation and discount.

In optimization problem 4.1, Pl, Psi, E, D and Pw are all inputs. The first

constraint is an energy balance on power for the building. The second constraint is

based on the net energy metering policy that has an annual true-up such that the

annual cumulative energy cost should be greater than 0 which gives an upper bound

for PV capacity. The third equation calculates the total hourly average PV power

generation rate of n PV panels. The last constraint simply denotes a lower bound for

the PV panel number.

In the optimization problem, Pl is unknown for a system coupled with ice storage

for the reason that ice storage can reshape the building electrical load. Different con-

trol decisions provide different building load profiles because of load shifting. Ideally,

the control and sizing should be processed simultaneously. The sequential optimiza-

tion method eliminates this coupling and runs a single annual simulation for a partial

storage system with MPC but without PV. The building load profile from this sim-
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ulation is then used as an input to the optimization problem 4.1 as Pl. Due to the

efficiency and robustness of convex optimization, the optimal PV panel number n

could be computed rapidly in the CVX within Matlab.

Optimal PV sizing validation

A summary of the optimal PV panel numbers for utility rate plan A10, GS-2B

and GS-R are listed in table 4.1. The optimal PV sizes determined by the direct

search method serve as the baseline for evaluating the sequential optimization.

Table 4.1.
Optimal PV panel number validation

Utility rate plan
Optimal PV panel number

(Coupling control and sizing)

Optimal PV panel number

(Decoupling control and sizing)

A10 900 901

GS-2B 0 0

GS-R 795 795

For utility rate A10, the optimal PV panel number computed by sequential opti-

mization is 901, which is almost the same as the direct search optimal number of 900.

For both approaches, the optimal PV panel numbers result in an annual energy cost

of 0. Thus, the TOU energy rate for utility rate A10 is high enough so that the best

decision is to use as much PV panel as possible. The maximum PV panel number is

determined by the second constraint in optimization problem 4.1. The optimal PV

panel numbers for GS-2B computed by the two methods are both exactly 0 for the

reason that GS-2B has a relatively low TOU energy cost rate such that the pay back

period for installation of PV is longer than ten years. The utility rate GS-R has a

much higher TOU energy cost rate than utility rate GS-2B such that the optimal size

of PV is again to install as much as possible leading to an annual energy cost of 0.
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For all three cases, the sequential optimization approach gives essentially the same

result as the direct search method.

The accuracy of the optimal PV panel size determined by the sequential opti-

mization approach depends on how close the operating cost computed through the

sequential optimization (SO) approach is to the direct search (DS) approach for a

given PV size.

For a utility rate, such as GS-R, only having a TOU energy cost without demand

charge, excess PV with net metering can be fed into the grid with the same retail price

such that the optimal energy cost control input trajectory is not influenced by whether

PV is coupled to the system or not. Therefore, the operating cost calculated by DS

and SO for a given PV size are the same. For the utility rates considered, adding the

demand charge has a small effect on this result because the optimal energy cost is

insensitive to the demand charge.

4.2.2 Analysis of utility rate influence on optimal PV size

As shown in subsection 4.2.1, the optimal PV size for the three utility rates con-

sidered is either the maximum PV size determined by the net metering annual true

up policy or no PV. The decision is based on whether the TOU energy cost rate

of a utility plan is high enough or not to make the investment of PV beneficial to

customers. In optimization problem 4.1, if we take off the demand cost part in the

objective function, then it is a linear programming problem whose optimal solution,

i.e., optimal PV panel number, either resides in the upper bound determined by the

second constraint or the lower bound determined by the last constraint. Hence the de-

mand charge can be considered as a perturbation to the original linear programming

problem.

In order to visualize the influence of demand charge, for simplicity, the utility rate

A10 TOU-energy cost and demand charge were scaled to obtain new utility rate plans.

Figure 4.9 shows optimal PV panel number computed by the sequential optimization
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approach as a function of the scaling factors for TOU energy and demand cost. The

left blue region represents the utility rate plans that are not economically beneficial

for integration of PV and the right yellow region is where investors should use as

much PV panels as possible. It is observed that between the maximum and minimum

PV panel regions there is a transition region where the optimal PV panel number is

between the upper bound and lower bound. When demand charge is scaled by 0 (the

x-axis), the transition region disappears due to the nature of this linear programming

problem. When the demand charge scaling factor increases, the demand charge, as

a perturbation for the original LP problem, starts to influence the optimal PV size.

With a larger demand charge rate, there is a greater cost saving potential such that

even with a lower TOU energy cost rate, customers could still benefit from integrating

PV into the system. Hence the transition region shifts leftward and becomes larger

as the demand charge increases.

Overall, this transition region is quite narrow and steep which denotes the influ-

ence of demand charge rate on optimal PV size determination is small. The primary

cost saving consideration for integration of PV comes from the TOU energy cost rate

value. If the sequential optimization method computes an optimal PV size that re-

sides in this transition region, then the optimal point also depends on demand charge

and the accuracy of SO compared to DS might start to deteriorate.

4.3 Optimal battery and photovoltaic size determination

Optimal sizing in terms of life cycle costs should be carried out in combination with

optimal control. In the design stage, both demand and energy costs can be minimized

to obtain a theoretical optimal solution using perfect knowledge of ambient conditions
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and building loads. The optimization problem for sizing battery and photovoltaics is

formulated as follows:

min
n∈Z,Cb∈R,Pb(i)∈R

Ci
PV n+ Ci

baCb + Pw(

Ny∑
i=1

E(i)Pg(i)∆T+

Nm∑
j=1

max(D(i)jPg(i)
j, 0) + Cm

PV n+ Cm
baCb)

s.t. Pg(i) = Pl(i) + Pb(i)− Ps(i)

xb(0) = xb,ini

xb(i+ 1) = xb(i) + ∆T
Pb(i)

Cb

− CrCb ≤ Pb(i) ≤ CrCb

xb,l ≤ xb(i) ≤ xb,u

Ny∑
i=1

E(i)Pg(i)∆T ≥ 0

Ps(i) = nPsi(i)

n ≥ 0

(4.2)

The optimization variables are n, Cb and Pb(i) which are the number of PV panels,

battery energy storage capacity (kWh) and hourly battery charging and discharging

rates (kW). In the objective function, Ci
ba is the battery installed cost per unit of

energy storage capacity ($/kWh) and Cm
ba is the battery maintenance cost($/kWh per

year). Cr is the battery C-rate which in this study is 0.5. Pw is the net present factor

for a ten-year analysis. The first constraint is the building electrical energy balance

with a definition that battery charging is positive and discharging is negative. The

initial state of charge, i.e., xb,ini, is taken to be 0.25. The third constraint represents

the battery dynamics. For the purpose of simplicity in the optimal sizing phase,

the battery power rate lower and upper bounds are only determined by its C-rate,

i.e., 0.5 in this study. In addition, battery state of charge is restricted between 0.25

and 0.95 to prevent over depletion and charge. The objective function is the sum

of a linear term and a max function, so it is convex [29]. Within the constraints,
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(a) Optimal PV panel number graph

(b) Optimal PV panel number contour

Fig. 4.9. Variation of optimal PV size

note that the xb dynamic equation is bi-linear which is not convex but all other
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constraints are convex. Hence numerically, this optimization problem is solved as a

convex optimization problem by varying Pb each time using CVX in Matlab.

Figure 4.10 shows optimal system life cycle cost and optimal PV panel num-

ber for utility rate A10 determined by varying battery capacities. Subfigure 4.10(a)

shows that with the current installed costs (909 $/kWh), lithium-ion batteries are

not economic for integration into the system. This is a natural result for a net energy

metering policy where the extra self-generated energy can be directly sold back to the

grid at the same retail price. In other policies, where the sell-back price is much lower

than the purchase price, then the economic benefit of integrating batteries would be

better. Subfigure 4.10(b) shows variation of optimal PV panel number with battery

capacity. The scale is quite small and the optimal PV size has a small dependence

on battery capacity.

Sensitivity of optimal battery size to installed costs

Even though the current installed cost for lithium-ion batteries is not favorable

for integration, it is expected that the price will drop in the future. Figure 4.11

shows ten-year life cycle cost variation versus battery capacities for three installed

costs of batteries of 909 $/kWh, 500 $/kWh and 200 $/kWh. Solid lines and dash

lines represent ten-year life cycle costs and relative life cycle cost savings compared

with the baseline that doesn’t incorporate batteries and PV arrays, respectively. For

the two lower battery costs, there is an optimal battery capacity of 85 kWh for 500

$/kWh with a 2.2 % life-cycle cost savings, and 150 kWh for 200 $/kWh with a 7.3

% life-cycle cost savings. Both cases illustrate a promising cost saving potential when

the initial cost of battery drops with technology development in the future.
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(a) Ten years life cycle cost

(b) Optimal PV panel number

Fig. 4.10. Variation of system optimal life cycle cost and PV size
versus battery capacity for utility rate plan A10
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Fig. 4.11. Variation of system optimal life cycle cost versus battery
capacity under different battery installed costs
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5. ECONOMIC ANALYSIS OF PV SYSTEM COUPLED

WITH ICE STORAGE OR BATTERIES

This chapter presents the results of the case study for Riverside, California that

applies the proceeding models, model predictive control algorithm, and optimal com-

ponent sizing approaches for the three representative utility rate plans (A10, GS-2B

and GS-R), a net energy metering renewable energy policy, and the assumed system

installed and maintenance costs. The ten-year life cycle economic performance of the

PV system coupled either with ice storage or batteries were evaluated.

5.1 Comparison of optimal life cycle cost

System component optimal size selection

Table 5.1 summarizes the system component optimal sizing result for the case

study described in previous chapters in terms of the life cycle cost.

For the central cooling system coupled with ice storage, the optimal ice storage

and PV sizes were determined in two stages. The ice storage optimal size was taken

to be a partial storage point since the life cycle cost sensitivities in this region are

quite low for all three utility rate plans. The PV size was then computed from the

optimization problem 4.1. Since utility rate A10 and GS-R have a high TOU-energy

rate, the optimal PV size is the maximum PV size. On the contrary, utility rate

GS-2B has a much lower TOU-energy rate such that not integrating PV is optimal

in view of optimal life cycle cost.

For the central cooling system coupled with lithium-ion batteries, the current

installed cost is too high for integration in a commercial building scale under a net

energy metering policy and no battery is the best decision in terms of life cycle cost
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Table 5.1.
System component optimal size selection

Central cooling system coupled with PV and ice storage

A10 GS-2B GS-R

Chiller 45 ton 45 ton 45 ton

Ice storage 312 ton-hour 312 ton-hour 312 ton-hour

Photovoltaics 180 kW 0 kW 159 kW

Central cooling system coupled with PV and batteries

A10 GS-2B GS-R

Chiller 75 ton 75 ton 75 ton

Battery 0 kWh 0 kWh 0 kWh

Photovoltaics 218 kW 0 kW 223 kW

for all three utility rate plans. Without thermal storage, the chiller size is determined

by the design day building cooling load and a 75-ton chiller was selected for all three

cases. It can be observed that the PV size without storage follows the same behavior

when coupled with ice storage but with a larger size needed to achieve annual net-zero

electrical costs.

Optimal life cycle cost

Life-cycle cost results for the different systems are summarized in figure 5.1. The

baseline is a conventional HVAC system with a 75-ton chiller to meet the building

cooling load and no PV or ice storage. The second bar in the figure is the life cycle

cost for a central cooling system coupled with ice storage. The last two represent

the optimal life cycle cost results for a central cooling system integrated with solar

energy and either coupled with ice storage or not. The cases that consider integration

of batteries with or without PV are not shown here since the optimal battery size is

0.
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For two utility rate plans (A10 and GS-R), the system coupled with solar energy

and thermal storage significantly reduces life cycle costs giving up to 35.6 % savings

(see figure 5.3) for utility rate plan A10. For plan GS-2B, the TOU energy cost rate

is too low and the optimal PV size is 0 leading to identical life-cycle costs for the ice

storage only and combined PV and ice storage systems. It should be noted that the

system coupled with batteries and PV has zero battery size as the optimum. However,

lower battery costs in the future could change these economics.

Fig. 5.1. Summary of life cycle costs

Figure 5.3 summarizes the installed costs, annual energy costs and demand charges

for each utility rate plan. The installed cost difference between the baseline and the

system coupled with ice storage is small, because the extra cost for storage is offset

by reduced chiller costs. The installed costs for the system with PV are much higher.

However, the energy costs with TOU rates are significantly reduced with integration

of PV compared with the baseline and the system coupled with ice storage. Figure
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5.2 shows the annual relative TOU-energy and demand cost savings in a comparison

with the baseline for utility rate plan A10. The first and second sub-figures illustrate

individual characteristics of ice storage and PV where ice storage performs better in

reducing demand charges and PV is able to dramatically reduce energy costs. The

last sub-figure illustrates the benefits of combining ice storage and PV in reducing

both energy costs and demand charges. The last column bar in each subplot denotes

the relative life cycle cost savings. These results demonstrate that the combination

of ice storage and PV is the optimal choice for the case study considered with utility

rate A10.

Fig. 5.2. Relative cost savings for utility rate plan A10
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(a) Utility rate A10

(b) Utility rate GS-2B

(c) Utility rate GS-R

Fig. 5.3. Summary of installed and operation costs
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6. SUMMARY

6.1 Conclusions

This research focused on evaluation of the economic performance of a central

cooling system with a photovoltaic array coupled with either thermal ice or battery

storage. A case study for a medium size commercial building located in Riverside,

California was performed. Three different representative utility rate plans were con-

sidered: TOU energy costs with an any time demand charge (A10), TOU energy costs

with TOU demand charges (GS-2B), and only TOU energy costs (GS-R). A net en-

ergy metering policy was assumed throughout the case study which allows customers

to sell back their self-generated power into the grid at the same retail price.

A simulation testbed was developed through empirical and semi-empirical ap-

proaches which contains an air-cooled chiller, ice storage tanks, pumps, building loads,

batteries and PV array models. The chiller model determines maximum cooling ca-

pacity which serves as one of the constraints in an MPC problem and electrical power

associated with a certain building load and operating conditions. A lumped ice stor-

age model was implemented based on the concept of state of charge (SOC) and heat

transfer effectiveness that accounts for energy efficiency penalties during charging and

discharging processes. A detailed lithium-ion battery model from Matlab Simulink

was used to obtain a simplified linear interpolation input-output model. A PV model

was implemented based on a single diode with five unknown parameters that were

obtained from a manufacturer’s data sheet.

A fast numerical model predictive control algorithm was developed that could

accomplish an annual simulation within a relatively short time. The near-optimal

solution was facilitated by converting the original mixed-integer nonlinear program-

ming (MINLP) problem into a nonlinear programming (NP) problem and by changing
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the original combined energy cost and demand charge minimization problem into only

minimizing short-term energy costs with a demand limit constraint. This NP problem

was solved by backward dynamic programming in order to obtain a global optimal

solution.

For a fair economic comparison, optimal system component sizing platforms were

developed for each system. The system coupled with ice storage was sized by separat-

ing the central cooling plant and PV sizing into two sequential steps. Firstly, optimal

life cycle cost graphs were generated by varying chiller and ice storage sizes for the

three utility rate plans. For all three plans, it could be visualized that the minimum

life cycle cost point is near the minimum chiller and ice storage sizes, which is the

partial storage point. In addition, the sensitivity of life cycle cost to the sizing near

the partial storage system point is pretty low such that the optimal chiller and ice

storage size could be simply selected as partial storage. Next, a simplified method was

developed to optimally size the PV capacity for the prescribed partial storage system

through decoupling control and sizing into two phases. This sequential optimization

approach was validated through comparison with a baseline approach that coupled

control and sizing. The results showed the simplified approach works very well. For

the case of the system coupled with batteries, a convex optimization approach was

developed that couples control and sizing. The results showed that the lithium-ion

battery installed costs were higher than a break even point in terms of ten-year life

cycle costs such that the optimal battery capacity is zero.

In summary, the best system combination was found to be a partial storage system

integrated with PV. Both ice and battery storage are able to reduce demand costs

better than energy costs. On the contrary, PV is better at minimizing energy costs.

The current installed costs for ice storage and PV are low enough to provide significant

life-cycle savings over a ten-year analysis. However, the first cost of batteries is above

a break even point. A sensitivity analysis of lithium-ion battery installed costs showed

that cost savings could be achieved if installed costs fall below 500$/kWh. Batteries

are much more flexible than ice storage in that they can shift both HVAC and non-
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HVAC electrical loads. Therefore, with declining costs of batteries it is expected that

it will be economically beneficial and feasible to include battery storage in commercial

buildings in the future.

6.2 Future work

From the results, it could be observed that even though ice storage is better than

battery storage at present in terms of overall life cycle economics, this system can only

shift HVAC loads. Even after shifting all the HVAC load, the net power purchased

from the grid is the difference between the non-HVAC electrical load and the solar

power generation rate which could still have power spikes. In the future, it could

be beneficial to utilize ice storage to shift HVAC loads, and batteries to shave the

remaining power peak. Therefore, the current platform for optimal control and sizing

could be extended to consider a combined system that contains ice storage, batteries

and PV together. In addition, more case studies should be performed with different

utility rate plans, multiple building types and climate zones.
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