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ABSTRACT

Marcal, Patricia Ph.D., Purdue University, May 2020. Ricci Curvature of Finsler
Metrics by Warped Product. Major Professor: Zhongmin Shen.

In the present work, we consider a class of Finsler metrics using the warped prod-

uct notion introduced by Chen, Shen and Zhao [1], with another “warping”, one that

is consistent with the form of metrics modeling static spacetimes and simplified by

spherical symmetry over spatial coordinates, which emerged from the Schwarzschild

metric in isotropic coordinates. We will give the PDE characterization for the pro-

posed metrics to be Ricci-flat and construct explicit examples. Whenever possible,

we describe both positive-definite solutions and solutions with Lorentz signature. For

the latter, the 4-dimensional metrics may also be studied as Finsler spacetimes.
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1. INTRODUCTION

Consider R, Rn with their Euclidean metrics dt2, α2 (respectively). On the Cartesian

product R× Rn, a Riemannian metric of the form

ds2 = dt2 + f 2(t)α2 , (1.1)

where f is some smooth function on R, is called a warped product. Similarly, a

Riemannian metric given by

ds2 = g2(x)dt2 + α2 , (1.2)

for a smooth function g on Rn, is also a warped product. These metrics differ by their

“warping” type.

From (1.1), we obtain

ds = α

√(
dt

α

)2

+ f 2(t) ,

which inspired Chen, Shen and Zhao to define a class of Finsler metrics by

F = α

√
φ

(
dt

α
, t

)
, (1.3)

where φ must be a suitable function on R2. [1]

We define a Finsler metric by the same idea as (1.3) with the “warping” type of

(1.2), that is,

F = α

√
φ

(
dt

α
, ρ

)
, (1.4)

where ρ = |x| for x ∈ Rn and φ must be again a suitable function on R2. [2]
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We give the PDE characterization for the metric (1.4) to be Ricci-flat in the

Theorem 5.2.1. Afterwards, we explicitly construct two non-Riemannian solutions.

For n ≥ 3, they are:

φ(z, ρ) = (Azm +Bρ−2m)
2
m , A,B > 0 (5.23b)

φ(z, ρ) = (
√
Az2 +Bρ−4 + ε

√
Az)2 , A,B > 0 , 0 < |ε|< 1 , C ∈ R (5.28b)

Preliminary to our work, we will take some time to introduce the theory of Finsler

Geometry with the desire to be as friendly as possible towards fellow graduate stu-

dents; particularly because we keep in mind the following consideration by Bao, Chern

and Shen:

“It is true that Finsler geometry has not been nearly as popular as

its progeny – Riemannian geometry. One reason is that deceptively sim-

ple formulas can quickly give rise to complicated expressions and mind-

boggling computations. With the effort of many dedicated practitioners,

this situation is slowly being turned around.” [3]

For what follows, we will constantly reference the books – “An Introduction to

Riemann-Finsler Geometry” [3], and “Lectures on Finsler Geometry” [4].
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2. FINSLER SPACES

The origin of Finsler Geometry might be considered – on a technicality – the same

as that of Riemannian Geometry, namely Riemann’s habilitation thesis “Ueber die

Hypothesen, welche der Geometrie zu Grunde liegen” in 1854, which was published

posthumously in 1868 by Dedekind [5] and in 1873 as an English version “On the

Hypotheses which lie at the Bases of Geometry” translated by Clifford [6]. This is

because Riemann himself noted the line-element to measure the length of a curve on

a manifold need not be quadratic. In his words:

“[...] the linear element may be any homogeneous function of the first

degree of the quantities dx, which is unchanged when we change the signs

of all the dx, and in which the arbitrary constants are continuous func-

tions of the quantities x. [...] For Space, when the position of points is

expressed by rectilinear co-ordinates, ds =
√∑

(dx)2; Space is therefore

included in this simplest case. The next case in simplicity, includes those

manifoldnesses in which the line-element may be expressed as the fourth

root of a quartic differential expression. The investigation of this more

general kind would require no really different principles, but would take

considerable time and throw little new light on the theory of space, espe-

cially as the results cannot be geometrically expressed; I restrict myself,

therefore, to those manifoldnesses in which the line element is expressed

as the square root of a quadric differential expression.” [6]

His decision to consider only the quadratic case seems to be the right one at the

time, once we recognize how rich and impactful Riemannian Geometry has been.

However, Riemann’s comment laid dormant the general case for over half-century,

until Finsler’s dissertation “Ueber Kurven und Flächen in allgemeinen Räumen” [7] in
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1918, which translates to “About curves and surfaces in general spaces” but has never

been published in English. This advance in the study of general metrics arose from

a geometrical approach to Calculus of Variations by Carathéodory, the dissertation

supervisor. In a loose translation, Finsler wrote in the introduction:

“The present work deals with different parts of Differential Geometry

in multidimensional spaces based on a generalized measurement. Namely,

the length of a curve is to be measured by the integral of a substantially

arbitrary function of the coordinates and their first derivatives. The Eu-

clidean geometry and the one in spaces of arbitrary curvature are the most

important special cases to which these investigations can be applied.” [7]

Regardless of the importance of this work to Differential Geometry, Finsler soon

after turned his attention to Set Theory. Fortunately, other mathematicians became

interested in this theory. Around 1925, Berwald [8], Synge [9] and Taylor [10] inde-

pendently applied methods of Tensor Calculus to the study of general metrics. In

1934, Cartan published the book “Les espaces de Finsler” [11], which established

the the terminology “Finsler spaces”. For the historically curious, a comprehensive

introduction was given by Rund [12].

In fewer words, let M be an n-manifold and U ⊂M an open with local coordinates

(x1, . . . , xn). If x(t) is a curve on U , then the arc-length of the curve is

s =

∫ t1

t0

F

(
xi,

dxi

dt

)
dt (2.1)

where the function F (xi, yi) must be positively homogeneous of degree one in y = (yi)

and F (xi, yi) > 0 unless y = 0. These conditions ensure the arc-length is well-

defined and independent of the speed of the curve, although velocity is not necessarily

reversible. So x̃(t) = x(at) with a > 0 satisfy

s =

∫ at1

at0

F

(
xi,

dxi

dt

)
dt =

∫ t1

t0

F

(
x̃i,

dx̃i

dt

)
dt ,

but this is not always true for a < 0. Moreover, the convexity of F is fundamental

for the existence of extrema in Calculus of Variations.
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Integrals in the form of (2.1) appear naturally in several contexts. If we think of

x(t) as the position of a particle varying with time, then dx
dt

represents the velocity

of the particle and F
(
x, dx

dt

)
the speed, so s measures distance traveled. For most

the examples that easily come to mind, such as the distance covered by a car on

the road or a thrown ball, F is the square root of a quadratic expression, that is,

Riemannian. However, the general case also applies to how long it takes to navigate

a path on a hillside, the amount of energy it takes to swim in flowing waters, the time

it takes light to travel across an anisotropic medium, the energy cost for a species or

an ecosystem to evolve from one state to another.

2.1 Definitions and Conventions

Let M be an n-dimensional smooth manifold. For each point x ∈M , the tangent

space ofM at x is the n-dimensional vector space composed of velocity at x of curves in

M , denoted by TxM . The tangent bundle, denoted TM , is comprised of all elements

(x, y) with x ∈ M and y ∈ TxM . The natural projection π : TM → M is given

by π(x, y) = x, and a map σ : M → TM is a section if π ◦ σ = IdM . Particularly,

the correspondence x 7→ 0 ∈ TxM defines the zero section. The slit tangent bundle,

denoted TM \ 0, is obtained from TM by excluding the zero section. The dual space

of TxM is denoted T ∗xM , and the union of all these spaces composes the cotangent

bundle, denoted T ∗M . The natural projection and sections are defined similarly.

A function F : TM → [0,∞) is a Finsler metric on M if it satisfies the following

properties:

(i) Regularity: F is C∞ on TM \ 0;

(ii) Positive Homogeneity: F (x, λy) = λF (x, y), ∀λ > 0;

(iii) Strong convexity: ∀(x, y) ∈ TM \ 0, the symmetric bilinear form

gy(u, v) :=
∂2

∂s∂t

[
1

2
F 2(x, y + su+ tv)

]∣∣∣∣
s=t=0

is positive-definite.
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The pair (M,F ) is called a Finsler space. Moreover, for each x ∈ M , the

restriction F |TxM defines what is called a Minkowski norm on TxM . Thus, a

Finsler metric consists of a smoothly varying family of Minkowski norms, one on each

tangent space. Generally, this family is no more than C1 along the zero section of the

tangent bundle. In fact, F 2 is C2 or smoother along the zero section of TM if and

only if it defines a smoothly varying family of inner products, i.e. it is a Riemannian

metric. For a proof of this result, refer to section 6.4 of [3].

Let (x1, . . . , xn) = (xi) : U → Rn be a local coordinate system for an open U ⊂M .

The standard coordinate frame
{

∂
∂xi

}
are local sections of TM defined on U such that

evaluated at x they form a basis for TxM , ∀x ∈ U . Similarly, the coordinates (xi)

determine a natural local frame {dxi} for T ∗M . Throughout the work, lower case

Latin indices range from 1 to n and Einstein summation convention is adopted, so

repeated indices are implicitly summed over. Now, for any x ∈ U and y ∈ TxM , we

can write y = yi ∂
∂xi

∣∣
x
, whence we obtain local coordinates (xi, yi) on π−1U ⊂ TM .

With this setting, for each (x, y) ∈ TM \ 0, we have:

gy(u, v) =
∂2

∂s∂t

[
1

2
F 2(x, y + su+ tv)

]∣∣∣∣
s=t=0

=

[
1

2
F 2(xk, yk)

]
yiyj

uivj

Define:

gij(x
k, yk) :=

[
1

2
F 2(xk, yk)

]
yiyj

(2.2)

Hence, condition (iii) – strong convexity – is equivalent to the n× n Hessian matrix

(gij) being positive-definite at every point of TM \ 0. Particularly, it has an inverse,

denoted (gij).

Those familiar with metric spaces are most likely expecting three basic properties:

positivity, triangle inequality and reversibility. In general, reversibility does not hold.

When F (x,−y) = F (x, y), the Finsler metric is called reversible. In this case, F is

absolutely homogeneous of degree one in y:

F (x, λy) = |λ|F (x, y), ∀λ ∈ R
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Interestingly, positivity and the triangle inequality are consequences of the defining

properties of Minkowski norms. Before we can prove this, we will need a technical

result known as Euler’s homogeneous function theorem, which will be used

repeatedly sometimes without mention.

Theorem 2.1.1 (Theorem 1.2.1 of [3]) Suppose H : Rn → R is differentiable

away from the origin. The following are equivalent:

• H is positively homogeneous of degree r, i.e. H(λy) = λrH(y), ∀λ > 0.

• The radial directional derivative of H is r times H, i.e. Hyi(y)yi = rH(y).

Proof Suppose H is positively homogeneous of degree r. Let y be fixed and differ-

entiate the equation H(λy) = λrH(y) with respect to λ:

Hyi(λy)yi = rλr−1H(y)

Take λ = 1 to obtain the desired equality.

Conversely, assume Hyi(y)yi = rH(y). Fixed y, consider the function H(λy) with

λ > 0. By the chain rule,

d

dλ
H(λy) = Hyi(λy)yi =

1

λ
Hyi(λy)(λy)i =

r

λ
H(λy) ,

where the last equality follows from the hypothesis. So H(λy) satisfies the following

linear ODE:
d

dλ
H(λy)− r

λ
H(λy) = 0 ,

whose solution is H(λy) = Cλr for some constant C depending on the fixed y. Take

λ = 1 to conclude C = H(y).

Euler’s theorem applied to a Finsler metric F implies:

Fyi(y)yi = F (y) (2.3a)

Fyiyj(y)yj = 0 (2.3b)
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Moreover, applying these identities to (2.2) gives:

gij(y)yiyj = F 2(y) (2.4)

Here and often after, the dependence of F on x is left implicit to simplify notation.

Theorem 2.1.2 (Adapted from Theorem 1.2.2 of [3]) If F : TM → [0,∞) is

a Finsler metric, then for each x ∈M F (x, y) = F (y) satisfies:

• Positivity: F (y) > 0 whenever y 6= 0;

• Triangle inequality: F (y1 +y2) ≤ F (y1)+F(y2) and equality holds if and only

if y2 = λy1 or y1 = λy2 for some λ ≥ 0.

Proof By condition (iii) – strong convexity, the left-hand side of equation (2.4) is

positive whenever y 6= 0. Since F is non-negative, positivity holds.

To prove the triangle inequality we will first prove the following inequality:

Fyi(y)wi ≤ F (w) at all y 6= 0 (2.5)

and equality holds if and only if w = λy for some λ ≥ 0.

When w = 0, the statement is trivial. The inequality also holds when w = λy for

λ < 0, because the left-hand side is going to be negative, while the right-hand side is

positive. If w 6= 0 is not a negative multiple of y, then we can apply the mean value

theorem to obtain:

F (w) = F (y) + Fyi(y)(wi − yi) +
1

2
Fyiyj(v)(wi − yi)(wj − yj)

where v = (1− t)y + tw for some t ∈ (0, 1). By (2.3a), the above equation simplifies

to:

F (w) = Fyi(y)wi +
1

2
Fyiyj(v)(wi − yi)(wj − yj) (2.6)

First notice that v 6= 0. Next, consider that, for each v ∈ TxM \ {0}, (gij(v)) defines

an inner product on TxM . So the following Cauchy-Schwarz type inequality is valid:

[gij(v)ui1u
j
2]2 ≤ [gkl(v)uk1u

l
1][gpq(v)up2u

q
2], ∀u1, u2 ∈ TxM (2.7)
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where equality holds if and only if u1 and u2 are collinear. By (2.7) and (2.4), we

obtain:

[gij(v)uivj]2 ≤ F 2(v)[gkl(v)ukul], ∀u ∈ TxM (2.8)

where equality holds if and only if u and v are collinear. Meanwhile, by its definition,

gij = FFyiyj + FyiFyj , and using Euler’s theorem we may write:

Fyiyj(v)uiuj =
1

F 3(v)

(
F 2(v)[gij(v)uiuj]− [gij(v)viuj]2

)
(2.9)

Putting together (2.8) and (2.9), we conclude:

Fyiyj(v)uiuj ≥ 0, ∀u ∈ TxM (2.10)

where equality holds if and only if u and v are collinear. Finally, (2.6) and (2.10)

provide (2.5) with equality exactly when w− y and (1− t)y+ tw are collinear, which

under our hypotheses is equivalent to w = λy for some λ > 0.

Now, the triangle inequality follows from (2.3a) and (2.5):

F (y1 + y2) = Fyi(y1 + y2)(y1 + y2)i

= Fyi(y1 + y2)yi1 + Fyi(y1 + y2)yi2

≤ F (y1) + F (y2)

and equality holds if and only if y2 = λy1 or y1 = λy2 for some λ ≥ 0.

The inequality (2.5) proved in the previous theorem is referred to as the fun-

damental inequality. It may be viewed as an extension of Euler’s Theorem from

an equation to an inequality, since (2.5) applied to w = λy for λ > 0 results in

(2.3a). Moreover, this inequality generates a geometric interpretation for the graph

of Minkowski norms, for (2.5) together with (2.3a) gives

F (y) + Fyi(y)(w − y)i ≤ F (w) ,

where equality holds if and only if w = λy with λ ≥ 0. When y ∈ TxM \0 is fixed, the

above inequality shows that the tangent space to the graph of F |TxM at (y, F (y)) lies
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below the graph and it intersects the graph exclusively along (λy, λF (y)) for λ ≥ 0.

So the graph of F |TxM is a convex cone with its vertex at the origin of TxM , as the

figure bellow.

Fig. 2.1. The graph of F |TxM . Here the indicatrix is an ellipse and the
cone leans slightly to the right.

The fundamental inequality is also equivalent to the inequality

gij(y)wiyj ≤ F (w)F (y) (2.11)

which is considered a generalization of the Cauchy-Schwarz inequality from

inner products to Minkowski norms. We point out that (2.11) may be expressed as

[gij(y)wiyj]2 ≤ [gkl(w)wkwl][gpq(y)ypyq]

by use of (2.4). This is similar but not the same as (2.7), since here the first term of

the right contains gkl(w) instead of gkl(y).

Nuances such as the above express a crucial aspect of Finsler metrics – in general,

the formal object gijdx
i⊗dxj does not define an inner product on each tangent space
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TxM , because of the dependence on y 6= 0. In fact, this holds only when the metric

is Riemannian. Nonetheless, this object defines a Riemannian metric on π∗TM , the

pullback tangent bundle over TM \ 0, that is, the subspace of TM \ 0×TM with the

commutative diagram:

π∗TM TM

TM \ 0 M

π2

π1 π

π

where π1 (resp. π2) denotes projection onto first (resp. second) factor. Simply put,

over each point (x, y) ∈ TM \0, the fiber of π∗TM is the vector space TxM . A natural

local frame
{

∂
∂xi

}
of TM determines a local frame for π∗TM , still denoted

{
∂
∂xi

}
,

which is defined locally in x and globally in y. In the same way, {dxi} generates a

local frame of π∗T ∗M with same notation. Thus, g = gijdx
i⊗dxj defines a symmetric

section of π∗T ∗M ⊗ π∗T ∗M , called the fundamental tensor on π∗TM . Similarly,

if we let

Cijk(y) :=

[
1

4
F 2

]
yiyjyk

(y) , (2.12)

then C = Cijkdx
i ⊗ dxj ⊗ dxk defines a symmetric section of ⊗3π∗T ∗M , called the

Cartan tensor on π∗TM . The following is a direct consequence of this definition,

which is frequently used without mention in published writings.

Proposition 2.1.1 A Finsler metric F is Riemannian if and only if the Cartan

tensor vanishes.

Proof A Finsler metric F (y) =
√
gijyiyj is Riemannian if and only if the gij are

independent of y 6= 0, or equivalently,

∂gij
∂yk

= 0, ∀i, j, k .

Since

Cijk =

[
1

4
F 2

]
yiyjyk

=
1

2

∂gij
∂yk

, ∀i, j, k ,

the result follows.
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Specifically, the Cartan tensor is a non-Riemannian quantity, also called the Car-

tan torsion. It appeared in Finsler’s dissertation [7], but Cartan was the first to give

this quantity a geometric interpretation [11]. Before we dive any further into tensors,

let us complete this chapter with the notion for pseudo-Finsler metrics and some basic

examples (in the positive–definite case).

2.2 Pseudo-metrics

A function L : TM → R is a pseudo-Finsler metric on M if:

(i) L is C∞ on TM \ 0;

(ii) L(x, λy) = λ2L(x, y), ∀λ > 0;

(iii) ∀(x, y) ∈ TM \ 0, the Hessian matrix

gij(x, y) :=

[
1

2
L(x, y)

]
yiyj

is non-degenerate.

The signature of L is the list of signs of eigenvalues of the matrix (gij) with respect

to some basis. For example, the Lorentz signature is (+,−, . . . ,−) or (−,+, . . . ,+).

A distance function on M comes from the Finsler function F = |L| 12 associated

to L. In general, F is not differentiable when L = 0.

This notion was first introduced by Beem [13]. A generalization was given by

Pfeifer and Wohlfarth [14], taking L to be positively homogeneous of degree r ≥ 2 in

y with associated Finsler function F = |L| 1r .

Commonly, a spacetime is a 4-dimensional manifold with Lorentz signature, where

the first coordinate x0 represents time and the remaining three (x1, x2, x3) the spacial

coordinates. The equivalent for the Euclidean metric in this case is the pseudo-metric

L(y) = (y0)2 − (y1)2 − (y2)2 − (y3)2 .
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The resulting space (R4, L) is reffered to as Minkowski spacetime; not to be confused

with a Minkowski space (V, F ) composed of a vector space V and a general Minkowski

norm F .

2.3 Examples

For simplicity, we study the Minkowski space (TxM,F |TxM) for some fixed x ∈M .

In light of figure 2.1, we want to describe the indicatrix of the Minkowki norm,

i.e. {y ∈ TxM |F (y) = 1}. To allow visualization, we are particularly interested

in Minkowski norms on the plane. In this case, as a result of strong convexity, the

indicatrix must be a close, strictly convex, smooth curve that encloses the origin.

2.3.1 Shimada

We start with Riemann’s idea of a “line-element that is the fourth root of a quartic

differential expression”. Specifically, consider the quartic metric:

F (y) = 4
√

(y1)4 + (y2)4 .

Its indicatrix (fig. 2.2) is strictly convex. However, its Hessian matrix (gij) is singular

on the y1 and y2 axes. So strict convexity does not imply strong convexity, and

despite its name F is not a well-defined Minkowski norm.

Fig. 2.2. The indicatrix of the quartic metric on the plane.
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This can be fixed with a perturbation of the quartic metric; namely, take

Fλ =

√√
(y1)4 + (y2)4 + λ[(y1)2 + (y2)2]

for any nonnegative constant λ. Then F0 = F and Fλ is a well defined Minkowski

norm for all λ > 0. In other words, the perturbation has regularized the quartic

metric.

(a) λ = 1 (b) λ = 1
10

Fig. 2.3. The indicatrix of a perturbation of the quartic metric on the
plane.

Notice the indicatrix of Fλ (fig. 2.3) is symmetric with respect to the origin of the

plane, which shows the metric is reversible.

On a general manifold, Finsler functions expressed in local coordinates as

F (y) = m
√
ai1i2...imy

i1yi2 · · · yim ,

with m ≥ 3 and ai1i2...im symmetric in all indices, are know as mth-root metrics.

They were first studied by Shimada [15].

2.3.2 Randers

“Perhaps the most characteristic property of the physical world is the

unidirection of time-like intervals. Since there is no obvious reason why

this asymmetry should disappear in the mathematical description it is of
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interest to consider the possibility of a metric with asymmetrical proper-

ties.” [16]

This is the principle Randers pointed out in the article “On an Asymmetrical Met-

ric in the Four-Space of General Relativity” [16] to introduce a simple asymmetrical

generalization of Riemannian metrics. Here is Randers approach:

“The only way of introducing an asymmetry while retaining the quad-

ratic indicatrix, is to displace the center of the indicatrix. In other words,

we adopt as indicatrix an eccentric quadratic (hyper-) surface. This in-

volves the definition of a vector at each point of the space, determining the

displacement of the center of the indicatrix. The formula for the length ds

of a line-element dxµ must necessarily be homogeneous of first degree in

dxµ. The simplest “eccentric” line-element possessing this property, and

of course being invariant, is

ds = kµdx
µ + (gµνdx

µdxν)
1
2 ,

where gµν is the fundamental tensor of the Riemannian affine connection,

and kµ is a covariant vector determining the displacement of the center of

the indicatrix.” [16]

In our notation, for the Euclidean plane and a horizontal displacement, we have

F (y) =
√

(y1)2 + (y2)2 + by1 .

The positivity of F is equivalent to |b|< 1, in which case F is strongly convex. For

this case, strong convexity of the norm coincides with strict convexity of the indicatrix

(see fig. 2.4).
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(a) |b|= 1
4 (b) |b|= 1

2 (c) |b|= 3
4

(d) |b|= 1 (e) |b|= 2

Fig. 2.4. The indicatrix of Randers norm over the plane.

In general, if (M,α2) is a Riemannian manifold, and β is some 1-form over M ,

then α + β defines a Randers norm on M , which is positive if and only if ‖β‖< 1,

and this criterion also ensures strong convexity.

2.3.3 Matsumoto

In 1969, Matsumoto sent letters to several mathematicians asking for their opinion

on “models of Finsler spaces”. Amongst others, Finsler replied. He wrote:

“In astronomy we measure the distance in a time, in particular, in

the light-year. When we take a second as the unit, the unit surface is

a sphere with the radius of 300, 000km. To each point of our space is

associated such a sphere; this defines the distance (measured in a time)

and the geometry of our space is the simplest one, namely, the euclidean
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geometry. Next, when a ray of light is considered as the shortest line in

the gravitational field, the geometry of our space is Riemannian geometry.

Furthermore, in an anisotropic medium the speed of the light depends on

its direction, and the unit surface is not any longer a sphere.

Now, on a slope of the earth surface we sometimes measure the distance

in a time, namely, the time required such as seen on a guidepost. Then

the unit curve, taken a minute as the unit, will be a general closed curve

without a centre, because we can walk only a shorter distance in an uphill

than in a downhill road. This defines a general geometry, although it

is not exact. The shortest line along which we can reach the goal, for

instance, the top of a mountain as soon as possible will be a complicated

curve.” [17]

Matsumoto gave a precise formulation for the model described in the second para-

graph in the article “A slope of a mountain is a Finsler surface with respect to a time

measure” [17], from where we obtained the letter excerpt. He determined that the

indicatrix with respect to the time measure of a plane with an angle α of inclination

is a limaçon given by

r = v + a cos θ,

in polar coordinates (r, θ) with pole at the origin and the downhill ray as polar axis,

where a = w sin θ and v, w are non-zero constants. The construction of the limaçon

results from the Euclidean indicatrix r = v, when the plane is horizontal, with the

slide caused by gravity, represented by the circle r = a cos θ (fig. 2.5).
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Fig. 2.5. With respect to the time measure, the indicatrix of a plane with
an angle α of inclination (in red), the Euclidean indicatrix (in blue), and
the slide caused by gravity (in yellow).

For 0 < v < a, the limaçon has a self-closed part and does not describe the

indicatrix of a Minkowki norm. When v > 2a, the limaçon is strictly convex and it

is indeed the indicatrix of a well-defined Minkowski norm. The remaining cases need

to be carefully considered around the uphill direction. These results are pictorially

summarized in the figure 2.6.
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(a) v > 2a (b) v = 2a (c) a < v < 2a

(d) v = a (e) 0 < v < a

Fig. 2.6. The indicatrix of a plane with an angle α of inclination with
respect to the time measure.

They show it is impossible to walk a path straight uphill when v ≤ a and it may

be faster to get uphill by zigzagging for a < v < 2a, which explains why Lombard

Street in San Francisco was built with hairpin turns.
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3. SPRAY AND CONNECTIONS

3.1 Nonlinear Connection

Consider TM \0 as a manifold with local coordinates (xi, yi). The tangent bundle

of TM \ 0 has a local frame
{

∂
∂xi
, ∂
∂yi

}
. However, such frame is not natural with

respect to the transformation on TM \ 0 induced by a change of coordinates on M .

Namely, if local coordinates on M change by xi = xi(x̃p) and its inverse x̃p = x̃p(xi),

then:

∂

∂x̃p
=
∂xi

∂x̃p
∂

∂xi
+

∂2xi

∂x̃p∂x̃q
ỹq

∂

∂yi

∂

∂ỹp
=
∂xi

∂x̃p
∂

∂yi

The same is true for the cotangent bundle of TM \ 0, where {dxi, dyi} behave as

follows:

dx̃p =
∂x̃p

∂xi
dxi

dỹp =
∂x̃p

∂xi
dyi +

∂2x̃p

∂xi∂xj
yjdxi

To introduce natural local frames for the tangent and the cotangent bundles of

TM \ 0, define the formal Christoffel symbols of the second kind associated to

the components gij of the fundamental tensor:

γijk :=
1

2
gil
(
∂glj
∂xk
− ∂gjk

∂xl
+
∂gkl
∂xj

)
(3.1)

Next, define the quantities:

N i
j := γijky

k − Ci
jkγ

k
lmy

lym (3.2)

where Ci
jk := gilCljk and Cijk are the components of the Cartan tensor.
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The transformation law for N i
j under a local change of coordinates on M is:

Ñp
q =

∂x̃p

∂xi
∂xj

∂x̃q
N i
j +

∂x̃p

∂xi
∂2xi

∂x̃q∂x̃r
ỹr

By replacing ∂
∂xi

with
δ

δxi
:=

∂

∂xi
−N j

i

∂

∂yj

and dyi by

δyi := dyi +N i
jdx

j

we obtain the natural local bases
{

δ
δxi
, ∂
∂yi

}
for the tangent bundle of TM \ 0 and

{dxi, δyi} for the cotangent bundle of TM \0, which are dual to each other. Moreover,

HTM := span

{
δ

δxi

}
, VTM := span

{
∂

∂yi

}
are well-defined subbundles of T (TM \ 0) and, similarly,

H∗TM := span
{
dxi
}
, V∗TM := span

{
δyi
}

are well-defined subbundles of T ∗(TM \ 0). They give the decompositions:

T (TM \ 0) = HTM ⊕ VTM

T ∗(TM \ 0) = H∗TM ⊕ V∗TM

The Sasaki (type) metric [18]

gijdx
i ⊗ dxj + gijδy

i ⊗ δyj

is a natural Riemannian metric on the manifold TM \ 0 with respect to which HTM

is orthogonal to VTM . So TM \ 0 admits an Ehresmann connection [19]. Its

existence is a direct consequence of the quantities N i
j , that are, hence, called the

nonlinear connection.
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3.2 Spray Coefficients

The local functions

Gi :=
1

2
γijky

jyk (3.4)

give rise to a globally defined vector field on TM \ 0:

G := yi
∂

∂xi
− 2Gi ∂

∂yi
,

called the spray induced by F . It turns out that a curve x = x(t) on (M,F ) is a

geodesic if and only if it is the projection of an integral curve of G. For details, check

section (5.1) of [4].

The quantities Gi, called spray coefficients, are positively homogeneous of de-

gree two in y, but they are not quadratic in general, for γijk are dependent on y. When

in standard local coordinates (xi, yi) the spray coefficients Gi are quadratic in y, the

Finsler metric is called a Berwald metric. In particular, if F is Riemannian, then

γijk(x) are the usual Christoffel coefficients and the metric is Berwald.

By (2.2) and (3.1), we may also express:

Gi =
1

4
gil
(

2
∂gjl
∂xk
− ∂gjk

∂xl

)
yjyk (3.5a)

Gi =
1

4
gil
(
[F 2]xkyly

k − [F 2]xk
)

(3.5b)

Finally, it is straightforward to prove that:

N i
j =

∂Gi

∂yj

So the nonlinear connection may be calculated without having to compute the Cartan

tensor Ci
jk and the formal Christoffel symbols γijk.

3.3 Linear Connections

Let E be a vector bundle over a manifold M and C∞(E) the vector space of

smooth sections of E.
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A linear connection on E is a linear mapping

∇ : C∞(E)→ C∞(T ∗M ⊗ E) ,

satisfying the Leibniz rule:

∇(fσ) = df ⊗ σ + f∇σ , ∀f ∈ C∞(M,R) , ∀σ ∈ C∞(E) .

This operator determines how to measure the rate of change ∇vσ of σ along a

direction v at some point of the manifold, know as the covariant derivative. By

requiring the Leibniz rule, ∇ also defines the covariant derivative for any smooth

section on tensor products of E and its dual bundle E∗.

In local coordinates, a linear connection ∇ may be specified by its connection

1-forms ωij, with respect to which:

∇v
∂

∂xi
:= ωji (v)

∂

∂xj

∇vdx
i := −ωij(v)dxj

For a Finsler manifold (M,F ), we choose E to be the pullback tangent bundle

π∗TM over the manifold TM \ 0, where the fundamental tensor g = gijdx
i ⊗ dxj is

defined. Bellow, we introduce a very simple connection on π∗TM that was discovered

by Chern in [20].

Theorem 3.3.1 (Theorem 2.4.1 of [3]) Let (M,F ) be a Finsler manifold. The

pullback bundle π∗TM admits a unique linear connection, called the Chern connec-

tion. Its connection forms are characterized by the structural equations:

• Torsion freeness:

dxj ∧ ωij = 0 (3.6)

• Almost g-compatibility:

dgij − gkjωki − gikωkj = 2Cijkδy
k (3.7)
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Proof We solve the structural equations to obtain the connection 1-forms ωij.

In the local basis {dxi, dyi}, the connection forms are written as

ωij = Γijkdx
k + Zi

jkdy
k .

Torsion freeness is equivalent to the vanishing of Zi
jk:

ωij = Γijkdx
k ,

together with the symmetry:

Γijk = Γikj .

Almost g-compatibility then implies:

Γijk = γijk − gil (CljmNm
k − CjkmNm

l + CklmN
m
l ) ,

which may be re-written in the following elegant form:

Γijk =
1

2
gil
(
δglj
δxk
− δgjk

δxl
+
δgkl
δxj

)
(3.8)

When the Finsler metric F is Riemannian, the components of the fundamental

tensor gij are functions on the manifold M and the Cartan tensor vanishes. So the

components of the Chern connection Γijk are equal to the Christoffel symbols of the

second kind γijk(x). In this case, the Chern connection is nothing but the pullback of

the Levi-Civita connection of the Riemannian manifold (M, g).

Notice that the uniqueness of the Chern connection is limited to its structural

equations. In general, there are other linear connections on π∗TM , none considered

natural for a Finsler manifold. We highlight the Cartan connection, given by the

connection forms ωij +Ci
jkδy

k, and the Berwald connection, given by ωij + Ċi
jkdx

k,

where ωij are the Chern connection forms and Ċ := ∇vC is the covariant derivative

of the Cartan tensor along the direction v := yi δ
δxi

. The Cartan connection is metric-

compatible but has torsion, while the Berwald connection is torsion-free but not
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necessarily metric compatible. In truth, there exists a torsion-free g-compatible linear

connection on π∗TM if and only if the Finsler metric F is Riemannian. However,

when the Finsler metric is of Berwald type, the Chern and the Berwald connections

reduce to a linear connection on TM (both to the same).
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4. CURVATURE

4.1 Curvature Tensors

The curvature 2-forms associated to a linear connection are

Ωi
j := dωij − ωkj ∧ ωik . (4.1)

The curvature forms for a connection on π∗TM are 2-forms on TM \ 0. So they

can be generically expanded as:

Ωi
j =

1

2
R i
j kldx

k ∧ dxl + P i
j kldx

k ∧ δyl +
1

2
Q i
j klδy

k ∧ δyl , (4.2)

where, without loss of generality, we can assume that:

R i
j lk = −R i

j kl ; (4.3a)

Q i
j lk = −Q i

j kl . (4.3b)

Their components define tensors R,P,Q on π∗TM , which are called hh-, hv-, vv-

curvature tensors of the connection, respectively.

Consider the Chern connection. By torsion freeness (3.6), we obtain

dxj ∧ dωij = 0 ,

and consequently,

dxj ∧ Ωi
j = 0 , (4.4)

with the use of (4.1). Substituting (4.2) into (4.4), we have

1

2
R i
j kldx

j ∧ dxk ∧ dxl + P i
j kldx

j ∧ dxk ∧ δyl +
1

2
Q i
j kldx

j ∧ δyk ∧ δyl = 0 .

Since the three terms on the left have different types, each must vanish.
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From 1
2
Q i
j kldx

j ∧ δyk ∧ δyl = 0 we get

Q i
j lk = Q i

j kl . (4.5)

Comparing (4.3b) and (4.5), we conclude Q i
j kl = 0. So the vv-curvature Q vanishes

and the curvature forms of the Chern connection simplify to

Ωi
j =

1

2
R i
j kldx

k ∧ dxl + P i
j kldx

k ∧ δyl . (4.6)

From P i
j kldx

j ∧ dxk ∧ δyl = 0, we get

P i
k jl = P i

j kl . (4.7)

Lastly, from 1
2
R i
j kldx

j ∧ dxk ∧ dxl = 0, we obtain

R i
j kl +R i

k lj +R i
l jk = 0 , (4.8)

which is know as the first Bianchi identity for R.

Putting together (4.1) and (4.6), a somewhat easy computation yields formulas

for R and P in natural coordinates:

R i
j kl =

δΓijl
δxk
−
δΓijk
δxl

+ ΓimkΓ
m
jl − ΓimlΓ

m
jk (4.9a)

P i
j kl = −

∂Γijk
∂yl

(4.9b)

In particular, if the Finsler metric is Riemannian, the coefficients Γijk become the

Christoffel symbols of second kind γijk(x). Then P = 0 and

R i
j kl =

∂γijl
∂xk
−
∂γijk
∂xl

+ γimkγ
m
jl − γimlγmjk ,

the components of the Riemannian curvature tensor of (M, g).

Our choice to define curvature through a connection and, in particular, the Chern

connection, is due to the theoretical resemblance with Riemannian Geometry. We

lose, however, the historical perspective of the development of Fisler Geometry. The

Riemann curvature tensor for Finsler metrics given by (4.9a), for instance, was first

defined by Berwald in 1926 [21].
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4.2 Riemann Curvature

For each (x, y) ∈ TM \ 0, let

Ri
k := yjR i

j kly
l (4.10)

and define a linear transformation

Ry := Ri
k(y)

∂

∂xi
⊗ dxk .

The family of transformations {Ry : TxM → TxM |(x, y) ∈ TM \ 0} is called the

Riemann curvature.

Here, there is another downside of our approach to curvature – the formula it

produces for the Riemannn components (4.10) is unnecessarily hard to compute. The

quantities Ri
k may be expressed entirely in terms of the spray coefficients Gi; namely,

Ri
k = 2

∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂xk
∂Gi

∂xk
. (4.11)

This formula is again due to the work of Berwald [22].

From (4.11) and Euler’s theorem, is now easy to see

Ry(y) = 0 .

Moreover, Ry is self-adjoint with respect to the inner product gy = gij(y)dxi ⊗ dxj,

i.e.

gy(Ry(u), v) = gy(u,Ry(v)) , ∀u, v ∈ TxM ;

although the proof of this statement is not immediate. By linear algebra, for each

(x, y) ∈ TM \ 0, Ry is diagonalizable and at least one of its eigenvalues is zero.

4.3 Ricci Curvature

For each (x, y) ∈ TM \ 0, let

Ric(y) :=
∑
i

Ri
i(y) . (4.12)
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Then Ric is a scalar function on TM \ 0, called the Ricci curvature. It is positively

homogeneous of degree two in y, by formula (4.11) and the homogeneity of Gi. Hence,

it satisfies

Ric =
1

2
[Ric]yiyj y

iyj .

Furthermore, it represents the trace of Ry at each point. So it corresponds to the

sum of the (n− 1) possibly non-zero eigenvalues of Ry. For this reason, some authors

choose to define 1
n−1

Ric as the Ricci curvature.
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5. FINSLER METRICS BY WARPED PRODUCT

If (M,ds2
1), (N, ds2

2) are Riemannian manifolds, then a warped product is the manifold

M ×N endowed with a Riemannian metric of the form

ds2 = ds2
1 + f 2ds2

2 , (5.1)

where f is a smooth function depending on the coordinates of M only; said a warping

function. This notion, called by warped product, must be credited to Bishop

and O’Neill [23]. However, years earlier, metrics in the form of (5.1) were being

studied with different names; in [24], for instance, they were called semi-reducible

Riemannian spaces. Moreover, metrics of such form with arbitrary signature can

be easily considered in the realm of pseudo-Riemannian geometry. Particularly, if

(M,ds2
1), (R, dt2) are Riemannian manifolds, then

ds2 = f 2dt2 − ds2
1 , (5.2)

is a warped product metric with Lorentz signature. When M is 3-dimensional, (5.2)

defines the line element of a standard static spacetime (see [25], p.360).

The class of warped product manifolds has shown itself to be rich, both wide

and diverse, playing important roles in differential geometry as well as in physics.

To illustrate, Bishop and O’Neill introduced warped products in [23] as means to

construct a large class of complete Riemannian manifolds with negative curvature. For

this reason, it seems valuable to study warped product metrics without the quadratic

restriction, in the setting of Finsler geometry. Notably, progress in this direction has

been stimulated by efforts to expand general relativity, such as the work of Asanov

(e.g. [26], [27], [28]), which later motivated Kozma, Peter and Varga to study product

manifolds M ×N endowed with a Finsler metric

F =
√
F 2

1 + f 2F 2
2 , (5.3)
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called warped product, where (M,F1), (N,F2) are Finsler manifolds and f is a smooth

function on M (see [29]). Following the definition of Beem [13], one may take L = F 2

to consider pseudo-Finsler metrics. For example, if (M,F1) is a 3-dimensional Finsler

manifold and (R, F2) is a Minkowski space, then

L = f 2F 2
2 − F 2

1 (5.4)

is a Finsler metric with Lorentz signature, and (R×M,L) may be regarded as a Finsler

static spacetime. This is the case for [30], where Li and Chang studied metrics in the

form of (5.4), given on coordinates ((t, r, θ, ϕ), (yt, yr, yθ, yϕ)) of the tangent bundle

by

L = f 2(yt)2 −
[
g2(yr)2 + r2F

2
]
,

with F a Finsler metric on coordinates (θ, ϕ, yθ, yϕ) and f, g functions of r. They

suggested the vacuum field equation for Finsler spacetime is equivalent to the van-

ishing of the Ricci scalar, and obtained a non-Riemannian exact solution similar to

the Schwarzschild metric.

Recently, Chen, Shen and Zhao have considered product manifolds R ×M with

Finsler metrics arising from warped products in the following way: if (M,α2), (R, dt2)

are Riemannian manifolds, then F 2 = dt2 + f 2(t)α2 is a warped product, which may

be rewritten as F = α
√(

dt
α

)2
+ f 2(t). Letting z = dt

α
, they defined a class of Finsler

metrics by

F = α
√
φ(z, t) , (5.5)

which are also called warped product, where φ is a suitable function on R2 (see [1]).

For L = α2φ(z, t), one may study pseudo-Finsler metrics with Lorentz signature, that

can be thought of as Finsler Robertson-Walker spacetimes.

In this work, we wish to consider Finsler metrics of similar type as (5.5), with an-

other “warping”, one that is consistent with the form of metrics modeling static space-

times and simplified by spherical symmetry over spatial coordinates, which emerged

from the Schwarzschild metric in isotropic coordinates (as shown bellow).
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5.1 Motivation

The Schwarzschild metric is very likely the most famous exact solution to the

Einstein field equation; it was also the first to be derived, by Karl Schwarzschild, in

a work [31] published only two months after Einstein’s paper [32]. It describes the

gravitational field around a static, spherically symmetric single body with no charge.

In Schwarzschild coordinates (t, r, θ, ϕ), the solution is

ds2 = γc2dt2 − γ−1dr2 − r2dΩ2 ,

with γ = 1− m
r

, m = 2GM
c2

and dΩ2 = dθ2 + sin2 θdϕ2, where G denotes the gravita-

tional constant, M the mass of the central body and c the speed of light in vacuum.

In isotropic polar coordinates (t, ρ, θ, ϕ), given by

r =

(
1 +

m

4ρ

)2

ρ

(see for example [33], p. 93), the Schwarzschild metric becomes

ds2 =

(
1− m

4ρ

)2

(
1 + m

4ρ

)2 c
2dt2 −

(
1 +

m

4ρ

)4 [
dρ2 + ρ2dΩ2

]
,

where dΩ2 and m are as before. Notice that the exterior region r > m corresponds

to 0 < ρ < m
4

or ρ > m
4

, because ρ doubly covers r:

ρ =
1

2

(
r − m

2
±
√
r2 −mr

)
Taking the spherical change of coordinates

x1 = ρ sin θ cosϕ

x2 = ρ sin θ sinϕ

x3 = ρ cos θ

the Schwarzschild metric is written in isotropic rectangular coordinates (t, x1, x2, x3)

as

ds2 =

(
1− m

4ρ

)2

(
1 + m

4ρ

)2 c
2dt2 −

(
1 +

m

4ρ

)4 [
(dx1)2 + (dx2)2 + (dx3)2

]
, (5.6)
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where ρ =
√

(x1)2 + (x2)2 + (x3)2.

In this system of coordinates, lightlike orbits (i.e. ds2 = 0) are easily described by(
dx1

dt

)2

+

(
dx2

dt

)2

+

(
dx3

dt

)2

=

(
1− m

4ρ

)2

(
1 + m

4ρ

)6 c
2 ,

which yields the same velocity in all spatial directions; hence the name, isotropic.

Letting α =
√

(dx1)2 + (dx2)2 + (dx3)2 and z = dt
α

, the Schwarzschild metric (5.6)

is written as

ds2 = α2


(

1− m
4ρ

)2

(
1 + m

4ρ

)2 c
2z2 −

(
1 +

m

4ρ

)4

 ,

which has the form of a Finsler warped product metric F 2 = α2φ(z, ρ).

5.2 Geometric Quantities

Set M = R× Rn with coordinates on TM

x = (x0, x), x = (x1, . . . , xn) ,

y = (y0, y), y = (y1, . . . , yn) ;

and consider a Finsler metric

F = α
√
φ(z, ρ) , (5.7)

where α = |y|, z = y0

|y| and ρ = |x|. Throughout our work, the following convention

for indices is adopted: A, B, ... range from 0 to n; i, j, ... range from 1 to n.

This construction is the same as [1] but for the “warping”. Consequently, any

calculations involving F and its derivatives of any degree with respect to yA only will

be similar in form to the calculations in [1], e.g. the fundamental form. The effects of

the warping only appear when derivatives of F with respect to xA are involved, e.g.

spray coefficients. So the Hessian matrix, gAB = 1
2
[F 2]yAyB , is

(gAB) =


1
2
φzz

1
2
Ωz

yj

α

1
2
Ωz

yi

α
1
2
Ωδij − 1

2
zΩz

yiyj

α2

 , (5.8)
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where

Ω := 2φ− zφz , (5.9)

and the same argument as [1] to verify non-degeneracy of F applies. It actually

simplifies, because α is the Euclidean metric here.

If SAB = gBCδ
CA, then S = SABdx

B ⊗ ∂
∂xA

can be considered an endomorphism on

π∗T ∗M . Fixed (x, y) ∈ TM , pick a linear basis of π∗T ∗M

p0 = dx0 , p1 =
yi

α
dxi , pγ = pγi dx

i , γ = 2, . . . , n ,

such that pγi
yi

α
= 0.

The matrix of S under the basis {pA}nA=0 is

[S]{pA} =



1
2
φzz

1
2
Ωz 0 · · · 0

1
2
Ωz

1
2
(Ω− zΩz) 0 · · · 0

0 0 1
2
Ω 0

...
...

. . .

0 0 0 1
2
Ω


So the eigenvalues of (SAB) are given by:

λ2 = . . . = λn = 1
2
Ω

λ0 + λ1 = 1
2
(φzz + (Ω− zΩz))

λ0λ1 = 1
4
(φzz(Ω− zΩz)− Ω2

z)

Hence,

det(gAB) =
1

2n+1
Ωn−1Λ ,

where

Λ := φzz(Ω− zΩz)− Ω2
z = 2φφzz − φ2

z , (5.10)

and:
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Proposition 5.2.1 (Proposition 4.1, [1]) F = α
√
φ(z, ρ) is strongly convex if

and only if Ω,Λ > 0.

Proof The eigenvalues of (gAB) coincide with those of (SAB), so F is strongly convex

if and only if λA > 0. Clearly, if the metric is strongly convex, then Ω,Λ > 0.

Conversely, assume Ω,Λ > 0. So λ2 = . . . = λn = 1
2
Ω > 0 and λ0, λ1 are solutions of

the quadratic equation λ2 − (λ0 + λ1)λ+ λ0λ1 = 0, whose discriminant is

∆ = (λ0 + λ1)2 − 4λ0λ1 =
1

4
(φzz − (Ω− zΩz))

2 + Ω2
z ≥ 0 .

Hence, λ0 and λ1 are real numbers. Moreover, since λ0λ1 = 1
4
Λ > 0, they have the

same sign. From Λ = 2φφzz − φ2
z > 0, we obtain φzz > 0. At this moment, from

Λ = φzz(Ω−zΩz)−Ω2
z > 0, we have Ω−zΩz > 0. Thus, λ0 +λ1 > 0 and we conclude

λ0, λ1 are positive real numbers.

One may consider pseudo-Finsler metrics by letting L = α2φ(z, ρ). These metrics

have Lorentz signature (+,−, . . . ,−) if Ω,Λ < 0, or (−,+, . . . ,+) if Ω > 0 and Λ < 0.

Henceforth, assume (gAB) is non-degenerate. In this case, the inverse of [S]{pA} is

easily obtained:

[S]−1
{pA} =



2
Λ

(Ω− zΩz) − 2
Λ

Ωz 0 · · · 0

− 2
Λ

Ωz
2
Λ
φzz 0 · · · 0

0 0 2Ω−1 0

...
...

. . .

0 0 0 2Ω−1


Therefore, the inverse of (gAB) is

(gAB) =


2
Λ

(Ω− zΩz) − 2
Λ

Ωz
yj

α

− 2
Λ

Ωz
yi

α
2
Ω
δij + 2φzΩz

ΩΛ
yiyj

α2

 . (5.11)
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The spray coefficients GC = 1
4
gCA

(
[F 2]yAxBy

B − [F 2]xA
)

are:

G0 = (U + zV )(xmym)α , (5.12a)

Gi = (V +W )yi(xmym)−Wxiα2 , (5.12b)

where

U :=
1

2ρΛ
(2φφzρ − φzφρ) , (5.13a)

V :=
1

2ρΛ
(φρφzz − φzφzρ) , (5.13b)

W :=
1

2ρΩ
φρ . (5.13c)

The Riemann curvature by Berwald’s formula

RC
B = 2[GC ]xB − [GC ]xAyBy

A + 2GA[GC ]yAyB − [GC ]yA [GA]yB

gives

R0
0 =

[
ρ2(U + zV )Wz − (2ρ2W + 1)(Uz + V + zVz)

]
α2

+

[
2(V +W )(Uz + V + zVz)− (Vz +Wz)(U + zV ) + 2U(Uzz + 2Vz + zVzz)

− 1

ρ
(Uzρ + Vρ + zVzρ)− (Uz + V + zVz)

2 − (U − zUz − z2Vz)Vz

]
(xmym)2

(5.14a)

(5.14b)

Ri
j = −

[
2W + (2ρ2W + 1)(V +W )

]
α2δij

+

[
(V +W )2 + 2U(Vz +Wz)−

1

ρ
(Vρ +Wρ)

]
(xmym)2δij

+

[
2W (2W − zWz) +Wz(U − zW )− 2

ρ
Wρ

]
α2xixj +

[
(V +W )

+ z(Vz +Wz)(2ρ
2W + 1) + (ρ2(V +W ) + 1)(2W − zWz)

]
yiyj

−
[
2zU(Vzz +Wzz) + (3U − zUz − zV + 5zW )(Vz +Wz)

− z

ρ
(Vzρ +Wzρ)

]
(xmym)2y

iyj

α2
+

[
−(2W − zWz)

2 − 2U(Wz − zWzz)

+
1

ρ
(2Wρ − zWzρ) +Wz(U − zUz + z2Wz)

]
(xmym)xiyj

+

[
−(V +W )2 + (Vz +Wz)(U + 3zW ) +

1

ρ
(Vρ +Wρ)

]
(xmym)xjyi
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(5.14c)

R0
j = z

[
(2ρ2W + 1)(V + Uz + zVz)− ρ2Wz(U + zV )

]
αyj

+

[
z(U + zV )(Vz +Wz)− 2zU(Uzz + 2Vz + zVzz)

+ (U − zUz − z2Vz)(5W − Uz)−
1

ρ
(Uρ − zUzρ − z2Vzρ)

]
(xmym)2y

j

α

+

[
(U + zV )(Uz − V + zVz − 2W ) + (V − 3W )(U − zUz − z2Vz)

+
1

ρ
(Uρ + zVρ)

]
(xmym)αxj

(5.14d)

Ri
0 =

[
ρ2Wz(V −W )− (2ρ2W + 1)Vz

]
αyi +

[
(2W − V − Uz)(Vz +Wz)

+ 2U(Vzz +Wzz)−
1

ρ
(Vzρ +Wzρ)

]
(xmym)2y

i

α

+

[
(Uz −W )Wz − 2UWzz +

1

ρ
Wzρ

]
(xmym)αxi

After simplification, the Ricci curvature is:

Ric =
∑

RA
A

=
[
−(2ρ2W + 1)(Uz + nV + (n− 3)W )− 2(nW + ρ2Wz(U − zW ))

]
α2

+

[
2U(Uzz + nVz + (n− 2)Wz)−

1

ρ
(Uzρ + nVρ + (n− 3)Wρ) + nV (V + 2W )

+W ((n− 5)W + 2zWz) + Uz(2W − Uz)
]

(xmym)2

Let the Ricci curvature components be

(5.15a)P (z, ρ) ..= −(2ρ2W + 1)(Uz + nV + (n− 3)W )− 2(nW + ρ2Wz(U − zW ))

(5.15b)Q(z, ρ) ..= 2U(Uzz + nVz + (n− 2)Wz)−
1

ρ
(Uzρ + nVρ + (n− 3)Wρ)

+ nV (V + 2W ) +W ((n− 5)W + 2zWz) + Uz(2W − Uz)

So

(5.16)
Ric = P

(
y0

|y|
, |x|
)
〈y, y〉+Q

(
y0

|y|
, |x|
)
〈x, y〉2

=

〈
P

(
y0

|y|
, |x|
)
y +Q

(
y0

|y|
, |x|
)
〈x, y〉x, y

〉
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Theorem 5.2.1 (Theorem 1 of [2]) For n ≥ 2, F = α
√
φ(z, ρ) is Ricci-flat if and

only if P (z, ρ) = Q(z, ρ) = 0. Furthermore, the Ricci-flat condition is weaker when

n = 1; namely, P (z, ρ) + ρ2Q(z, ρ) = 0.

Proof Suppose Ric = 0. Let ei denote the n-dimensional vector with 1 in the ith

entry and zeros elsewhere. Take y = ei and x = ρej for ρ ≥ 0. By equation (5.16),

P
(
y0, ρ

)
+Q

(
y0, ρ

)
ρ2δij = 0 , ∀i, j .

For n ≥ 2, pick i 6= j to get P (y0, ρ) = 0. Now set i = j to conclude Q(y0, ρ) = 0 for

ρ 6= 0. Finally, Q(y0, 0) = 0 by continuity. The remaining assertions are clear.

The above proof suggests metrics F that are singular on (x0, 0) or metrics F

defined on R × Rn \ {0} should also be considered. This becomes evident on the

examples bellow.

5.3 Examples

5.3.1 Riemannian

Suppose φ(z, ρ) = ef(ρ) z2 + eg(ρ). So Ω = 2 eg, Λ = 4 ef+g and F = α
√
φ gives a

positive-definite Riemannian metric.

The Ricci curvature components are:

P = − 1

4ρ

[
p2 ef−g z2 + p0

]
Q = − 1

4ρ3
q0

where

p2 = 2ρf ′′ + ρ(f ′)2 + (n− 2)ρf ′g′ + 2(n− 1)f ′

p0 = 2ρg′′ + (n− 2)ρ(g′)2 + ρf ′g′ + 2f ′ + 2(2n− 3)g′

q0 = 2ρf ′′ + 2(n− 2)ρg′′ + ρ(f ′)2 − 2ρf ′g′ − (n− 2)ρ(g′)2 − 2f ′ − 2(n− 2)g′

By independence of z and ρ, the Ricci-flat equations for n ≥ 2 become p2 = p0 =

q0 = 0. Taking q0 − p2 + np0 = 0 yields:

4(n− 1)ρg′′ + (n− 2)(n− 1)ρ(g′)2 + 4(n− 1)2g′ = 0
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For n ≥ 3 :

4ρg′′ + (n− 2)ρ(g′)2 + 4(n− 1)g′ = 0 (5.17)

If g′ = 0, then (5.17) is trivially satisfied. So g(ρ) = B constant is a solution.

Otherwise, (5.17) is a Bernoulli differential equation in g′, which can be transformed

to a linear ODE by letting u := (g′)−1. The equation reduces to:

4ρu′ − (n− 2)ρ− 4(n− 1)u = 0

Its solution gives g(ρ) = ln(B|ρ2−n + C|
4

n−2 ), for B,C ∈ R constants with B > 0.

To find f , substitute g in p0 = 0. When g(ρ) = B, f ′ = 0 and f is constant also,

say f(ρ) = A. For g(ρ) = ln(B|ρ2−n + C|
4

n−2 ), equation p0 = 0 gives:

f ′ =
4(n− 2)Cρ1−n

(C − ρ2−n)(C + ρ2−n)

So f(ρ) = ln

[
A
(
C−ρ2−n
C+ρ2−n

)2
]
, for some constant A > 0.

Therefore, when n ≥ 3, solutions are:

φ(z, ρ) = Az2 +B , A,B > 0 (5.18a)

φ(z, ρ) = A

(
C − ρ2−n

C + ρ2−n

)2

z2 +B|ρ2−n + C|
4

n−2 , A,B > 0, C ∈ R (5.18b)

For n = 2, equation (5.17) still holds, but it is already linear:

ρg′′ + g′ = 0

So g(ρ) = ln(B|ρ|C), for B,C ∈ R constants with B > 0. Substitute g in p0 = 0 to

get:

(C + 2)f ′ = 0

If C 6= −2, then f ′ = 0. So f(ρ) = A. When C = −2, equation p2 = 0 yields:

2ρf ′′ + ρ(f ′)2 + 2f ′ = 0

If f ′ = 0, the above equation is trivially satisfied and then f(ρ) = A. Else, it is a

Bernoulli equation in f ′. As before, let u := (f ′)−1 to get a linear ODE:

2ρu′ − ρ− 2u = 0
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It gives f(ρ) = ln(A1 + A2 ln|ρ|)2, for real constants A1, A2.

Thus, for n = 2, solutions are:

φ(z, ρ) = Az2 +B|ρ|C , A,B > 0, C ∈ R \ {−2} (5.19a)

φ(z, ρ) = (A1 + A2 ln|ρ|)2z2 +Bρ−2 , A1, A2 ∈ R, B > 0 (5.19b)

For n = 1, the Ricci-flat condition gives p2 = p0 + q0 = 0, by independence of z

and ρ. This gives:

2f ′′ + (f ′)2 − f ′g′ = 0

So either f(ρ) = A and g is an arbitrary smooth function of ρ, or g = ln(f ′)2 + f +B

for any smooth function f of ρ.

Hence, solutions for n = 1 are:

φ(z, ρ) = Az2 + eg(ρ) , A > 0 , g ∈ C∞ (5.20a)

φ(z, ρ) = ef(ρ)
(
z2 +B[f ′(ρ)]2

)
, f ∈ C∞, B > 0 (5.20b)

Finally, if φ(z, ρ) = ef(ρ) z2 − eg(ρ), then Ω = −2 eg and Λ = −4 ef+g. So the

associated metric L = α2φ has Lorentz signature (+,−, . . . ,−). In this case, the

Ricci curvature components are:

P =
1

4ρ

[
p2 ef−g z2 − p0

]
Q = − 1

4ρ3
q0

where p2, p0 and q0 are as before. Thus, by independence of z and ρ, the Ricci-flat

equations reduce to the same system as the positive-definite case.

5.3.2 mth-root

If φ(z, ρ) =
(
ef(ρ) zm + eg(ρ)

) 2
m for an even integer m > 2, then Ω = 2 eg

(ef zm+eg)1−
2
m

and Λ = 4(m−1) ef+g zm−2

(ef zm+eg)2(1−
2
m )

. So F = α
√
φ is a positive-definite mth-root metric.
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The Ricci curvature components are:

P = − 1

2m2(m− 1)ρ

[
p2m e2(f−g) z2m + pm ef−g zm + p0

]
Q =

1

4m2(m− 1)2ρ3

[
q2m e2(f−g) z2m − qm ef−g zm − q0

]
where

p2m = (m− 2)(m+ n− 2)ρ(f ′)2

pm = 2m(m− 1)ρf ′′ +m(m− 1)ρ(f ′)2 + (n− 2)(3m− 4)ρf ′g′

+m[(n− 2)(3m− 4) + 2(m− 1)]f ′

p0 = 2m(m− 1)ρg′′+ 2(m− 1)(n− 2)ρ(g′)2 +mρf ′g′+m2f ′+ 2m(m− 1)(2n− 3)g′

q2m = (m− 2)[2m2 + (n− 2)(3m− 2)]ρ(f ′)2

qm = 2(m− 2)[m(m− 1)(n− 2)ρf ′′ −m(m+ n− 1)ρ(f ′)2 + 2(n− 2)(m− 1)ρf ′g′

+m(m− 1)(n− 2)f ′]

q0 = 2m2(m− 1)ρf ′′ + 4m(m− 1)2(n− 2)ρg′′ +m2ρ(f ′)2 − 4m(m− 1)ρf ′g′

− 4(m− 1)2(n− 2)ρ(g′)2 − 2m2(m− 1)f ′ − 4m(m− 1)2(n− 2)g′

By independence of z and ρ, the Ricci-flat equations for n ≥ 2 are p2m = pm =

p0 = q2m = qm = q0 = 0. Since m > 2, p2m = q2m = 0 imply f ′ = 0, and equations

pm = qm = 0 are automatically satisfied. The remaining equations reduce to:

mρg′′ + (n− 2)ρ(g′)2 + (2n− 3)mg′ = 0 (5.21)

(n− 2)[mρg′′ − ρ(g′)2 −mg′] = 0 (5.22)

So f(ρ) = A and g(ρ) must be determined from the above equations.

For n ≥ 3, combine equations (5.21) and (5.22) to eliminate g′′. This gives:

g′(ρg′ + 2m) = 0

If g′ = 0, then g(ρ) = B. Otherwise, ρg′+ 2m = 0 and so g(ρ) = ln(Bρ−2m) for some

constant B > 0.

Therefore, when n ≥ 3, solutions are:

φ(z, ρ) = (Azm +B)
2
m , A,B > 0 (5.23a)

φ(z, ρ) = (Azm +Bρ−2m)
2
m , A,B > 0 (5.23b)
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For n = 2, (5.22) is vacuous and (5.21) gives a linear ODE:

ρg′′ + g′ = 0

So g(ρ) = ln(B|ρ|C), for constants B > 0 and C ∈ R.

Hence, solutions for n = 2 are:

φ(z, ρ) = (Azm +B|ρ|C)
2
m , A,B > 0 , C ∈ R (5.24)

For n = 1, the Ricci-flat equations are 2(m − 1)p2m − q2m = 2(m − 1)pm + qm =

p0+q0 = 0, by independence of z and ρ. As before, since m > 2, 2(m−1)p2m−q2m = 0

implies f ′ = 0, and equation 2(m − 1)pm + qm = 0 is automatically satisfied. The

remaining equation gives:

mρg′′ − ρ(g′)2 −mg′ = 0

If g′ = 0, the above equation is trivially satisfied; then g(ρ) = B. Otherwise, this is

yet again a Bernoulli equation in g′. Let u := (g′)−1 to obtain a linear ODE:

mρu′ + ρ+mu = 0

Its solution gives g(ρ) = ln(B|ρ2 + C|−m) for constants B > 0 and C ∈ R.

So, for n = 1, solutions are:

φ(z, ρ) = (Azm +B)
2
m , A,B > 0 (5.25a)

φ(z, ρ) = (Azm +B|ρ2 + C|−m)
2
m , A,B > 0 , C ∈ R (5.25b)

For an odd integer m > 2, all formulas still hold, but the metric generated changes

signature according to the sign of z, because it determines the sign of Λ. For m = 2, φ

simplifies to give a Riemannian metric; in this case, the non-trivial Ricci-flat equations

are multiples of the previously found equations for Riemannian metrics.

Finally, taking φ(z, ρ) =
(
ef(ρ) zm − eg(ρ)

) 2
m for some integer m > 2 with m ≡

2(mod 4) gives a well-defined metric L = α2φ with Lorentz signature (+,−, . . . ,−),

since Ω = − 2 eg

(ef zm−eg)1−
2
m

and Λ = −4(m−1) ef+g zm−2

(ef zm−eg)2(1−
2
m )

.
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In this setting, the Ricci components are:

P = − 1

2m2(m− 1)ρ

[
p2m e2(f−g) z2m − p2 ef−g z2 + p0

]
Q =

1

4m2(m− 1)2ρ3

[
q2m e2(f−g) z2m + qm ef−g zm − q0

]
where pi, qj are as before. Thus, the Ricci-flat equations coincide with the positive-

definite case.

With some thought, one might consider these equations for other values of m.

When m > 2 is divisible by 4, one may take L = αm
(
ef(ρ) zm − eg(ρ)

)
to consider

Finsler spacetimes in the sense of Pfeifer and Wohlfarth [14]. When m > 2 is odd,

F = α
(
ef(ρ) zm − eg(ρ)

) 1
m already makes sense. However, in both cases, one needs to

become concerned with the domain of z and ρ to ensure Ω, Λ are defined and their

sign give the appropriate signature.

5.3.3 Randers

Assume φ(z, ρ) = (
√

ef(ρ) z2 + eg(ρ) +ε e
f(ρ)
2 z)2 with 0 < |ε|< 1, so F = α

√
φ gives

a positive-definite Randers metric.

Indeed, Ω = 2

(√
ef z2+eg+ε e

f
2 z√

ef z2+eg

)
eg and Λ = 4

(√
ef z2+eg+ε e

f
2 z√

ef z2+eg

)3

ef+g.

The Ricci curvature components are:

P = − 1

4ρ
√

ef z2 + eg(
√

ef z2 + eg + ε e
f
2 z)

[
p4 e2f−g z4 + 2εp3 e

3f
2
−g
√

ef z2 + egz3

+ p2 ef z2 + εp1 e
f
2

√
ef z2 + egz + p0 eg

]
Q =

1

4ρ3(ef z2 + eg)2(
√

ef z2 + eg + ε e
f
2 z)2

[
q6 e3f z6 + 2εq5 e

5f
2

√
ef z2 + egz5

+ 2q4 e2f+g z4 + 4εq3e
3f
2

+g
√

ef z2 + egz3 + q2 ef+2g z2 + 2εq1 e
f
2

+2g
√

ef z2 + egz

+ q0 e3g
]

where pi, qj are functions of ρ, f , g and its derivatives of order up to two. Particularly,

p4 = 2(ε2 + 1)ρf ′′ − ((n+ 1)ε2 − 1)ρ(f ′)2 + (n− 2)(ε2 + 1)ρf ′g′ + 2(n− 1)(ε2 + 1)f ′

p3 = 2ρf ′′ − 1

4
((n+ 2)ε2 + (n− 2))ρ(f ′)2 + (n− 2)ρf ′g′ + 2(n− 1)f ′
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For n ≥ 2, the Ricci-flat equations reduce to pi = qj = 0, by independence of z

and ρ. Taking p4 − (ε2 + 1)p3 = 0 reads

(n+ 2)

4
(ε2 − 1)2ρ(f ′)2 = 0 .

So f ′ = 0, and the remaining equations simplify to:

2ρg′′ + (n− 2)ρ(g′)2 + 2(2n− 3)g′ = 0 (5.26)

(n− 2)[2ρg′′ − ρ(g′)2 − 2g′] = 0 (5.27)

Hence, f(ρ) = A and g(ρ) must be determined from the above equations.

When n ≥ 3, one may combine equations (5.26) and (5.27) to eliminate g′′, ob-

taining:

(n− 1)(ρg′ + 4)g′ = 0

If g′ = 0, then g(ρ) = B. Otherwise, ρg′ + 4 = 0 and so g(ρ) = ln(Bρ−4) for some

constant B > 0.

Thus, solutions for n ≥ 3 are:

φ(z, ρ) = (
√
Az2 +B + ε

√
Az)2 , A,B > 0 , 0 < |ε|< 1 (5.28a)

φ(z, ρ) = (
√
Az2 +Bρ−4 + ε

√
Az)2 , A,B > 0 , 0 < |ε|< 1 , C ∈ R (5.28b)

For n = 2, (5.27) is vacuous and (5.26) becomes a linear ODE:

ρg′′ + g′ = 0

So g(ρ) = ln(B|ρ|C), for constants B > 0 and C ∈ R.

Hence, when n = 2, solutions are:

φ(z, ρ) =
(√

Az2 +B|ρ|C + ε
√
Az
)2

, A,B > 0 , C ∈ R, 0 < |ε|< 1 (5.29)

Finally, for n = 1, the Ricci-flat condition once again implies f ′ = 0, although the

computation is lengthier and will be omitted. All remaining equations are automati-

cally satisfied.
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Therefore, for n = 1, solutions are:

φ(z, ρ) =
(√

Az2 + eg(ρ) + ε
√
Az
)2

, A > 0 , g ∈ C∞ , 0 < |ε|< 1 (5.30)

Clearly, one may rewrite solutions as φ(z, ρ) =
(√

Az2 + eg(ρ) +Dz
)2

for any

constant D satisfying D2A−1 < 1. More generally, it is possible to look for solutions

in the form φ(z, ρ) =
(√

ef(ρ) z2 + eg(ρ) ± h(ρ)z
)2

with h2(ρ) < ef(ρ), but the calcu-

lations quickly become cumbersome. In either case, it is uncertain how to consider

Lorentz signature (if possible).
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6. CONCLUSIONS AND FUTURE WORK

The Hessian of the Ricci curvature

RicAB =
1

2
[Ric]yAyB

was the first notion for Ricci curvature tensor of Finsler metrics introduced by Akbar-

Zadeh [34]. Evidently, RicAB = 0 if and only if Ric = 0, and they imply the vanishing

of the scalar curvature R = gAB RicAB. By defining the modified Einstein tensor

GAB = RicAB −
1

2
gABR

in [30], Li an Chang established the equivalence between the vacuum field equation

for Finsler spacetime and the vanishing of the Ricci curvature. However, the notion

of Ricci curvature tensor for Finsler metrics is not unique. If R A
B CD is the Riemann

curvature tensor for Finsler metrics, then

R̃icAB =
1

2

(
R C
A CB +R C

B CA

)
is another notion of Ricci curvature tensor introduced by Li and Shen in [35]. More-

over, these Ricci tensors differ by a non-Riemannian quantity; namely,

R̃icAB − RicAB = HAB =
1

2

(
[χB]yA + [χA]yB

)
,

where the χ-curvature tensor is given by

χA =
1

2

[
ΠxByAy

B − ΠxA − 2ΠyAyBG
B
]

with Π = ∂GC

∂yC
. So R̃icAB = 0 if and only if RicAB = 0 and HAB = 0; in words, the

vanishing of R̃icAB is a stronger condition than the vanishing of RicAB. In particular,

if Ric = 0 and χA = 0, then R̃icAB = 0.
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For the proposed metrics F = α
√
φ(z, ρ), we have Π = Ψ(xmym), where

Ψ := Uz + (n+ 2)V + (n− 1)W , (6.1)

and the χ-curvature is

(6.2a)χ0 =

[
1

2ρ
Ψzρ − UΨzz −WΨz

]
(xmym)2

α
+

1

2
(2ρ2W + 1)Ψzα

(6.2b)
χi =

[
zUΨzz −

z

2ρ
Ψzρ + (U + 2zW )Ψz

]
(xmym)2

α2
yi

− z

2
(2ρ2W + 1)Ψzy

i − (U + zW )Ψz(x
mym)xi

Clearly, Ψz = 0 is a sufficient condition for the vanishing of the χ-curvature. By

direct verification, all solutions in previous section satisfy Ψz = 0. Thus, they are

strongly Ricci-flat metrics: R̃icAB = RicAB = 0.

In addition to the examples presented here, it seems to be feasible (although

lengthy) to construct other types of (strongly) Ricci-flat metrics in the proposed

form; particularly, one may look for series expansions. The same type of construction

also seems to work well for Ricci-isotropic metrics, Ric = [(n + 1) − 1]k(x)F 2. At

the very least the PDE characterization is similar to describe; namely, for n ≥ 2,

F = α
√
φ(z, ρ) is Ricci isotropic if and only if P = nkφ and Q = 0. It might be wise,

however, to spend such efforts with a wider class of warped product Finsler metrics,

which may allow for global solutions on R×M ; for instance, a class of Finsler metrics

defined by

F = α
√
φ(z, x) , (6.3)

for α any Riemannian metric on M , z as before and φ some appropriate function on

R×M .
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stantes,” Acad. Roy. Belg. Bull. Cl. Sci.(5), vol. 74, no. 10, pp. 281–322, 1988.

[35] B. Li and Z. Shen, “Ricci curvature tensor and non-Riemannian quantities,”
Canadian Mathematical Bulletin, vol. 58, no. 3, pp. 530–537, 2015.



APPENDIX



51

Derivatives

In this appendix, a collection of all derivatives needed to carryout the computations

of Chapters 5 and 6.

Derivatives of F 2

[
F 2
]
y0

= αφz[
F 2
]
yi

= Ωyi[
F 2
]
x0

= 0[
F 2
]
xi

=
1

ρ
φρα

2xi[
F 2
]
yAx0

= 0[
F 2
]
y0xi

=
1

ρ
φzραx

i

[
F 2
]
yixj

=
1

ρ
Ωρx

jyi

Derivatives of GA

[
GA
]
x0

= 0[
G0
]
xi

=
1

ρ
(Uρ + zVρ)x

i(xmym)α + (U + zV )yiα[
Gj
]
xi

=
1

ρ
(Vρ +Wρ)x

iyj(xmym) + (V +W )yiyj − 1

ρ
Wρx

ixjα2 −Wδjiα
2[

G0
]
y0

= (Uz + V + zVz)(x
mym)[

Gj
]
y0

= (Vz +Wz)(x
mym)

yj

α
−Wzx

jα[
G0
]
yi

= (U − zUz − z2Vz)(x
mym)

yi

α
+ (U + zV )xiα[

Gj
]
yi

= (V +W )(xmym)δji−z(Vz+Wz)(x
mym)

yiyj

α2
+(V +W )xiyj+(zWz−2W )xjyi[

GB
]
x0yA

= 0
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[
G0
]
xiy0

=
1

ρ
(Uzρ + Vρ + zVzρ)(x

mym)xi + (Uz + V + zVz)y
i

[
Gj
]
xiy0

=
1

ρ
(Vzρ +Wzρ)(x

mym)
xiyj

α
+ (Vz +Wz)

yiyj

α
− 1

ρ
Wzρx

ixjα−Wzδ
j
iα[

G0
]
xiyj

= (U + zV )δijα + (U − zUz − z2Vz)
yiyj

α

+
1

ρ
(Uρ − zUzρ − z2Vzρ)(x

mym)
xiyj

α
+

1

ρ
(Uρ + zVρ)x

ixjα[
Gk
]
xiyj

= (V +W )(δijy
k + δkj y

i) + (zWz − 2W )δki y
j +

1

ρ
(Vρ +Wρ)(x

mym)xiδkj

+
1

ρ
(Vρ +Wρ)x

ixjyk +
1

ρ
(zWzρ − 2Wρ)x

ixkyj

− z

ρ
(Vzρ +Wzρ)(x

mym)
xiyjyk

α2
− z(Vz +Wz)

yiyjyk

α2[
G0
]
y0y0

= (Uzz + 2Vz + zVzz)
(xmym)

α[
Gk
]
y0y0

= (Vzz +Wzz)(x
mym)

yk

α2
−Wzzx

k

[
G0
]
y0yi

= (Uz + V + zVz)x
i − z(Uzz + 2ψz + zVzz)(x

mym)
yi

α2[
Gk
]
y0yi

= (Vz +Wz)
(xmym)

α
δki + (Vz +Wz)

xiyk

α
+ (zWzz −Wz)

xkyi

α

− (Vz + zVzz +Wz + zWzz)
(xmym)

α

yiyk

α2[
G0
]
yiyj

= (U − zUz − z2Vz)
(xmym)

α
δij + (U − zUz − z2Vz)

[
xiyj

α
+
xjyi

α

]
+ (−U + zUz + z2Uzz + 3z2Vz + z3Vzz)

(xmym)

α

yiyj

α2[
Gk
]
yiyj

= z(3(Vz+Wz)+z(Vzz+Wzz))(x
mym)

yiyjyk

α4
−z(Vz+Wz)

[
xiyjyk

α2
+
xjyiyk

α2

]
− z(zWzz −Wz)

xkyiyj

α2
+ (V +W )(xiδjk + xjδki )

+ (zWz − 2W )xkδij − z(Vz +Wz)(x
mym)

[
δji y

k

α2
+
yiδjk
α2

+
δki y

j

α2

]

Derivatives of Π

Πx0 = 0

Πxi = Ψyi +
1

ρ
Ψρ(x

mym)xi
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Πy0 = Ψz
(xmym)

α

Πyj = −zΨz
(xmym)

α

yj

α
+ Ψxj

Πx0yA = 0

Πxiy0 = Ψz
yi

α
+

1

ρ
Ψzρ

(xmym)

α
xi

Πxiyj = Ψδji − zΨz
yiyj

α2
− z

ρ
Ψzρ

(xmym)

α
xi
yj

α
+

1

ρ
Ψρx

ixj

Πy0y0 = Ψzz
(xmym)

α2

Πy0yj = Ψz
xj

α
− (Ψz + zΨzz)

(xmym)

α2

yj

α

Πyiyj = −zΨz

[
(xmym)

α2
δji +

xiyj

α2
+
xjyi

α2

]
+ z (3Ψz + zΨzz)

(xmym)

α2

yiyj

α2
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