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ABSTRACT

Snyder, Luke S. M.S., Purdue University, May 2020. Predictive Visual Analytics of
Social Media Data for Supporting Real-time Situational Awareness. Major Professor:
David S. Ebert.

Real-time social media data can provide useful information on evolving events and

situations. In addition, various domain users are increasingly leveraging real-time so-

cial media data to gain rapid situational awareness. Informed by discussions with

first responders and government officials, we focus on two major barriers limiting the

widespread adoption of social media for situational awareness: the lack of geotagged

data and the deluge of irrelevant information during events. Geotags are naturally

useful, as they indicate the location of origin and provide geographic context. Only a

small portion of social media is geotagged, however, limiting its practical use for situ-

ational awareness. The deluge of irrelevant data provides equal difficulties, impeding

the effective identification of semantically relevant information. Existing methods for

short text relevance classification fail to incorporate users’ knowledge into the clas-

sification process. Therefore, classifiers cannot be interactively retrained for specific

events or user-dependent needs in real-time, limiting situational awareness. In this

work, we first adapt, improve, and evaluate a state-of-the-art deep learning model for

city-level geolocation prediction, and integrate it with a visual analytics system tai-

lored for real-time situational awareness. We then present a novel interactive learning

framework in which users rapidly identify relevant data by iteratively correcting the

relevance classification of tweets in real-time. We integrate our framework with the

extended Social Media Analytics and Reporting Toolkit (SMART) 2.0 system, allow-

ing the use of our interactive learning framework within a visual analytics system

adapted for real-time situational awareness.
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1 INTRODUCTION

Social media data has been used extensively in a variety of applications and research

endeavors due to its ability to provide useful information on the public’s opinions

and behavior. This can be especially useful in assessing and understanding various

situations. For instance, first responders are leveraging Twitter data to obtain ac-

tionable information for crisis response and prevention (see [1] for an extensive list of

literature on this subject), such as identifying people in need of help during a natural

or human-caused disaster event.

However, our discussions with emergency responders and government officials re-

vealed several obstacles currently facing the effective use of social media data for

situational awareness [2]. In this work, we focus on two of the most frequently cited

issues: (1) the lack of sufficient geotagged data and (2) the deluge of irrelevant infor-

mation, impeding social media analysts’ ability to find useful and important data.

In this chapter, we characterize both issues and propose predictive visual analytics

solutions in sections 1.1 and 1.2, respectively. We then present our thesis statement

and contributions in section 1.3 and describe this work’s outline in section 1.4.

1.1 Geolocation Inference of Social Media Data

Geotagged tweets — tweets containing geographic coordinates from the issuing

device — are important for situational awareness as they provide the location of

posting. Without location context, first responders are unable to decide where or how

to respond to information they receive. This is especially true during natural disasters

when geographic context is necessary for dispatching appropriate emergency response.

Furthermore, tweets’ originating locations are important in other domains such as

sentiment analysis or digital marketing. However, tweets are not geotagged by default,
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requiring Twitter users to manually activate geotagging [3,4]. As a result, only 0.9% of

all tweets are geotagged [3,4], considerably limiting their use for situational awareness.

To increase the amount of geotagged tweets, researchers have developed various

algorithms for predicting the location of a tweet, such as deep learning classifiers [5–

8] and gazetteer-based methods [9]. However, Twitter’s public feed has undergone

changes that may affect such algorithms. Further, the utilization of state-of-the-art

prediction models in real-time visual analytics systems has not been explored. As

a result, we (i) adapt an existing geolocation prediction method, computationally

improve its accuracy, and integrate it with SMART [10,11], a visual analytics system

designed to facilitate situational awareness, (ii) demonstrate the utility of geolocation

prediction for real-time systems, and (iii) evaluate the effectiveness of the integrated

system using Twitter’s public feed in September 2019.

1.2 Interactive Machine Learning of Social Media Data

Analysts in various domains are increasingly using social media to gain rapid

situational awareness. However, the vast amounts of unstructured text make the

identification of relevant information difficult, thereby limiting situational awareness.

This issue is further compounded by changes in topics of interest (to end users) over

time, since the computational models built to determine relevant information for one

event or one user group may not apply to other events or other user groups due to

variations in diction, word structure, or user expectations.

Several classification approaches have been developed to identify relevant and ir-

relevant social media information, such as clustering [12,13], keyword matching [14],

and term-vector similarity [15]. However, at the time of writing, no existing work

in this area includes interactive learning and retraining with real-time data, focusing

instead on improving the machine learning algorithms themselves [13, 14, 16–23] or

interactively training on archived datasets [24,25]. In addition, while active learning

systems can provide efficient interactive training [26], users are unable to relabel in-
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correct classifications and retrain the model to improve performance. Continuing on

our example of first responders, a pre-trained classifier may not fulfill first responders’

varying needs, since one first responder may be interested in monitoring road closures,

and another one might be interested in identifying disinformation and misinforma-

tion on social media in order to take counter-action. Ultimately, first responders’

definition of relevancy will depend on the situation at hand, which can vary over

time. Interactively training classifiers through iterative user labeling can alleviate

this problem.

In this work, we present a novel interactive framework in which the user itera-

tively (re)labels the relevancy of streaming social media data to adaptively train the

underlying model to match their needs for improved situational awareness. We com-

pare three different types of neural networks in terms of classification performance

and computational efficiency for real-time learning. Furthermore, we optimize and

computationally evaluate the selected models by simulating the real-time user feed-

back on several crisis-related datasets. Our results show that our interactive model

outperforms state-of-the-art machine learning-based classification models.

To incorporate our evaluated models into a working application, we extend an

existing visual analytics system tailored for situational awareness called the Social

Media Analytics and Reporting Toolkit (SMART) [11, 27], which has been success-

fully used by many first responder groups in the United States. SMART allows users

to interactively explore trending topics on social media through integrated topic mod-

eling and spatial, temporal, and textual visualizations. We call the newly extended

system SMART 2.0, which incorporates our interactive learning framework to address

the needs raised by the aforementioned first responder users and reduce noise in the

incoming stream of data.

Finally, we present domain-expert feedback on the usefulness of our approach as

experienced by multiple first responders who used SMART 2.0 for crisis-related use

cases. In addition, we include two usage scenarios of the system to illustrate its

application to real-life situations.
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1.3 Thesis Statement

The thesis statement of this work is as follows:

Geolocation inference and interactive machine learning grounded in visual analytics

enables social media analysts to effectively identify relevant information and utilize

geographic context for improved situational awareness.

The major contributions of this paper can be classified into two categories. The

first is a geolocation inference approach for real-time visual analytics that increases the

amount of geotagged data, thereby providing increased situational awareness for first

responders and social media analysts. The second is a coupled interactive learning

framework and visual analytics system that enables various domain users to effectively

identify relevant tweets and adapt classifiers to their needs during real-time situations.

Overall, the contributions can be summarized as follows:

1. Geolocation inference approach for visual analytics:

(a) We adapt and computationally improve an existing geolocation prediction

method for social media data [7].

(b) We integrate the improved geolocation prediction method with a visual

analytics system and evaluate its effectiveness using Twitter’s public feed

in September 2019.

(c) We demonstrate the utility of geolocation prediction for real-time systems.

2. Interactive learning framework and visual analytics system:

(a) We present a novel interactive learning framework for classification of

streaming text data that allows users to (re)train models for improved

performance.

(b) We compare three different types of neural networks in terms of perfor-

mance and computational efficiency, and tune the models for learning at

interactive rates. We further computationally evaluate the selected model

on several disaster-related datasets.
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(c) We integrate our models in SMART 2.0, a visual analytics application for

situational awareness, and present user feedback obtained from domain

experts using the system for crisis events.

1.4 Outline

In the remainder of this work, we discuss the background and related work in

chapter 2, our geolocation inference approach for visual analytics in section 3, our

interactive learning framework for improving social media relevance classification in

chapter 4, and concluding remarks and future work in chapter 5.
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2 RELATED WORK

In this chapter, we first review the background and related work for geolocation

inference in section 2.1. We then review the background and related work for short

text classification and visual analytics-supported interactive learning in sections 2.2

and 2.3, respectively.

2.1 Geolocation Inference

Researchers have developed various techniques to estimate geographic locations of

both Twitter users and tweets themselves. In general, there are three primary levels

of tweet geolocation prediction: the event level, user level, and tweet level.

Geolocation inference at the event level estimates the location of events mentioned

in text. This level of inference predominantly relies on geoparsing — the process of

identifying geolocations in text and disambiguating between multiple toponym refer-

ences — and has been studied extensively [28–30]. Recent studies integrated Twitter

metadata and named entity recognition algorithms into geoparsing approaches and

obtained high accuracy percentages over 90% [3, 29]. However, event geolocation

inference might not reflect the actual location of individual tweets.

Geolocation inference at the user level estimates the location of Twitter users

based on their tweet history and other useful information. Specifically, user locations

can be predicted by utilizing toponym references within their tweets as well as user

metadata such as friend networks and time zones [5]. The majority of techniques

for user-level prediction utilize either state-of-the-art statistical models or machine

learning [31]. Qian et al. [32] designed a probabilistic machine learning graph model,

obtaining high accuracy for predicting users’ geolocations at the country or state
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level. Do et al. [5] trained a multi-entry neural network to predict users’ locations,

yielding an accuracy of over 60%.

Geolocation inference at the tweet level estimates the location of individual tweets.

This differs from user-level prediction in that a tweet might be posted in a separate

location from where they live, such as during a vacation or work hours. In general,

tweet-level prediction, which is crucial for situational awareness, is a difficult task.

Tweet content might contain toponyms that do not reflect the tweet’s actual origin,

and tweets may not contain sufficient metadata (e.g., time zone) or useful content

for prediction. However, researchers have continued to explore potential solutions

and machine learning model advancements. Thom et al. [33] provided probabilistic

methods that analyze term density spatial patterns and user movement histories from

large datasets to predict locations. Duong-Trung et al. [34] developed near real-time

geolocation prediction at the tweet level with a matrix factorization-based statistical

regression model. Li et al. [8] adapted a Bayesian model and a convolutional long

short-term memory (LSTM) neural network to construct a user location history and

predict individual locations of future tweets. Lau et al. [7] designed deepgeo, an

end-to-end neural network that combines various recurrent and convolutional neu-

ral networks for inferring tweet locations at the city level, achieving a state-of-the-art

accuracy of approximately 40%. To facilitate the assessment and comparison of differ-

ent location inference methods, Mahtal et. al [35] provided a comprehensive analytic

workbench with prediction and error visualizations.

While considerable attention has been devoted to advancing state-of-the-art mod-

els for geolocation prediction, their use, adaptation with updated Twitter feed, and

evaluation within a real-time visual analytics system have not been explored, which

is the focus of our work.
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2.2 Short Text Classification

Researchers have presented many techniques to classify text documents into cate-

gories such as sentiment or topics [36–39]. However, classifying short text, e.g. social

media posts, is more challenging due to the lack of contextual information and loose

adherence to standard grammar. To tackle the brevity of short text, auxiliary re-

sources such as external corpora [40] or knowledge bases [41], or methods such as

term frequency-inverse document frequency (TF-IDF) [16], have been proposed for

improving classification.

Representing words as n-dimensional vectors (i.e. word embedding) has become

increasingly prevalent, since vectors can be used as inputs to machine learning mod-

els for finding semantic similarities [42,43]. In particular, Google’s Word2Vec [44] has

been employed extensively in classification tasks [19, 20, 45–47] due to its impressive

ability in capturing linguistic regularities and semantics. For instance, words fre-

quently used together are likely to be closer in the Word2vec vector space than words

that are not, and vector operations reveal meaningful semantics (e.g., the vector

“King” − “Man” + “Woman” is close to the vector “Queen” [44]). Since pre-trained

Word2vec models encode embeddings learned from larger web corpora, they have

been increasingly used in short text classification tasks [19,20,47,48].

Neural networks have generated state-of-the-art results in recent years for text

classification problems [19,20,44,49] and have also been used with Word2Vec [19,20,

48]. Neural networks are well-suited for online learning processes in which training

data is supplied iteratively since they can learn adaptively from new data [19, 20].

Nguyen et al. [20] presented a convolutional neural network with Word2Vec that out-

performed non-neural classifiers, and Nguyen et al. [19] proposed a new online learning

classification algorithm for deep neural networks utilizing the log-loss and gradient

of sequential training batches. Their methods were evaluated with disaster-related

datasets. However, these methods were not adapted to user-guided learning in which

time constraints are essential and the provided batches may be small. In particular,
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the online learning method designed by Nguyen et al. [19] was evaluated with batch

sizes of 200. In our work, we assume the user needs to train with flexibly interac-

tive amounts of data (10–20 samples) to view immediate predictive improvements for

situational awareness.

Classification for situational awareness. Utilizing real-time social media data

for situational awareness (and crisis prevention in particular) is a heavily researched

topic [14, 16–21, 23]. However, identifying situationally-relevant information is non-

trivial due to the high noise-to-signal ratio. Karimi et al. [17] found that classification

methods, such as Support Vector Machine and multinomial Näıve Bayes, can identify

disaster-related tweets, although generic features such as hashtag count and tweet

length are preferable so that the model does not learn relevancy only for a specific

disaster. Researchers have used clustering [12, 13, 22] or enhanced keyword match-

ing [14] to detect relevant crisis and event information, and provided human-annotated

Twitter corpora that can be used to train word embedding models [50].

Nazer et al. [18] developed a system to detect requests for help by utilizing both

tweet context (e.g., geotag) and content (e.g., URLs). Rudra et al. [21] designed a

novel classification-summarization framework to classify disaster-related tweets, and

then summarize the tweets by exploiting linguistic properties typical of disaster tweets

(e.g., combinations of situational and non-situational information). Zoppi et al. [23]

provided a relevance labeling strategy for crisis management that computed data

relevance as a function of the data’s integrity (e.g., are the geo-coordinates incorrect?),

statistical properties (e.g., can we select a subset of the data that are geographically

close?), and clustering (e.g., what groups are present in the data?). Toriumi et al. [22]

clustered tweets based on their retweet count in real-time to extract important topics

and classify tweets accordingly.

The methods discussed so far, however, lack user interactivity. In particular, these

classification methods are inflexible to user-dependent needs that change over time as
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new situations and events occur. As such, their practical use for real-time situational

awareness is limited.

2.3 Visual Analytics and Interactive Learning for

Situational Awareness

Researchers have presented a number of visual analytics (VA) solutions for situa-

tional awareness. Diakopoulos et al. [15] developed Vox Civitas, a VA application for

journalistic analysis and user-guided filtering using social media content. Vox Civitas

filters out unrelated data by automatically computing time-dependent term-vector

similarities. TwitInfo [51] aggregates streamed Twitter data and automatically dis-

covers events from activity peaks in real-time. The authors assign relevance to a tweet

by counting its number of event-related keywords. Pezanowski et al. [52] designed the

geovisual analytics system SensePlace3 to provide situational awareness by leverag-

ing geographical information and place-time-theme indexing with string-based queries

for exploring datasets. SensePlace3 primarily relies on TF-IDF for tweet retrieval in

response to user queries. However, these tools do not employ machine learning for

relevance classification and do not integrate user feedback to improve their underlying

models or algorithms.

Visual analytics has also been increasingly used to improve various machine learn-

ing processes, such as feature selection [53], attribute weighting [54], and label-

ing [24, 25, 55], and even understanding the models themselves [56–58]. Sacha et

al. [59] proposed a framework to discuss the various forms of human interaction with

machine learning models in visual analytics systems and theorized that VA tools could

increase knowledge and usability of machine learning components. Endert et al. [60]

designed a system that classifies archived documents through user-guided semantic

interactions (e.g., moving a document to another group) that improve the underlying

model. Our work is based on the same idea in that we intend to improve model

performance through user feedback, but with real-time social media data.
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Heimerl et al. [25] analyzed three separate methods for user-guided classification of

a set of archived text documents: the basic method, which does not employ sophisti-

cated visuals; the visual method, which visually represents the labeled and unlabeled

documents for user exploration; and the user-driven method, which provides the user

with full control over the labeling process. The first two methods employ active learn-

ing, in which the model selects a data sample to be labeled by the user that most

effectively helps it distinguish relevant from irrelevant data. This contrasts with the

user deciding which instances they wish to label. The authors did not find any sta-

tistically significant differences in terms of F1 score between the methods in their

user study. Bosch et al. [24] developed ScatterBlogs2, a VA application that provides

user-guided learning of filter classifiers on historical social media messages to support

situational awareness. These two works are perhaps the most similar to ours, yet

differ in two fundamental ways. First, they do not provide interactive learning in

real-time, which strains the user, as they are required to visit historical data for addi-

tional training. Second, they do not employ neural networks, which are better suited

for online learning environments, such as social media streaming, in which training

data is supplied sequentially over time [19, 20]. It is important to note that Bosch

et al. [24] allow the user to adjust a filter’s focus (i.e., how precise the classification

is) in real-time if it misses relevant data or does not sufficiently filter out irrelevant

data. However, this could indicate that the model has not properly learned the dis-

tinction between relevant and irrelevant data. Since training can only be completed

with historical posts, the user is unable to update the model immediately with the

streamed data, limiting situational awareness. Our approach not only solves this is-

sue by allowing the user to immediately train the model for improvement, but also

provides the user with the ability to create classifiers on-the-fly to accommodate their

real-time needs.

Active Learning Active learning, as briefly discussed in the previous paragraph, is

a machine learning method that queries an oracle (e.g., human annotator) to provide
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labels for selected instances [61]. The active learner can select instances that are, for

instance, closest to the model’s decision boundary [62], or have the lowest probability

for their class [63]. While traditional supervised learning requires sufficient amounts

of labeled data, active learning does not. Rather, the active learner may begin with a

small set of labeled data and query instances that are maximally informative, therefore

achieving high performance with minimal labeling [26].

Active learning techniques have been widely employed in various learning tasks,

such as social media stance classification [64] and post-crisis relevance filtering [65].

Bosetti et al. [66] provided an active learning platform for efficient labeling of thou-

sands of microblogs. The authors also developed a novel query procedure that se-

lects messages with top bigrams and retweet counts for labeling. Hu et al. [67] also

contributed a novel active learning selection mechanism for social media data by

exploiting social network relationships.

Our interactive learning framework differs from active learning in two primary re-

spects. First, active learning lacks transparency, as users may be unaware of the label

querying procedure. We provide the user full control over labeling to maintain trans-

parency. Second, users are unable to retrain models in active learning environments

since they are only queried for selected instances without labels. Our framework no-

tably differs in this respect, as we allow users to relabel all incorrectly classified data

to retrain the model for immediate improvement.
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3 CITY-LEVEL GEOLOCATION OF TWEETS FOR REAL-TIME VISUAL

ANALYTICS

This chapter is based on the paper published in SIGSPATIAL GeoAI 2019:

Luke S. Snyder, Morteza Karimzadeh, Ray Chen, and David S. Ebert. City-level

geolocation of tweets for real-time visual analytics. In Proceedings of the 3rd ACM

SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery

(GeoAI), 2019

In this chapter, we present and discuss our geolocation inference approach for

visual analytics to increase the amount of geotagged data and improve situational

awareness. We adapt and improve an existing deep learning geolocation prediction

model called deepgeo [7], and then integrate the improved model with a visual analyt-

ics system. We evaluate both the improved model’s accuracy and the visual analytics

system’s effectiveness.

3.1 Deepgeo

Our visual analytics system (discussed in Section 3.2.2) leverages real-time stream-

ing tweets to facilitate situational awareness for first responders. As such, the location

of individual tweets is paramount for assessing the situation and responding appro-

priately. Of the various tweet-level geolocation prediction models, deepgeo [7] is the

most recent state-of-the-art, open-source model. Being open source was important

since we wished to build on previous research and adapt, improve, and integrate a

well-tested model into our visual analytics application. In this section, we discuss our

adaptations and improvements to deepgeo.
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3.1.1 Overview and Adaptations

Deepgeo is a deep learning model that predicts the geographic locations of in-

dividual tweets at the city level. Deepgeo’s original model takes six feature inputs:

(1) tweet text; (2) tweet creation time; (3) user UTC offset; (4) user time zone; (5)

user-listed profile location (text); and (6) user account creation time. Each of the

six features are individually processed by distinct neural networks and concatenated

before the final prediction layer. The output of the model is one of the 3,362 possible

city labels from the training data, each represented as an integer (from 0 to 3,361).

Since deepgeo’s release in 2017, Twitter has made important changes to the user

metadata. In particular, the user time zone and user UTC offset are no longer pro-

vided, negatively impacting the accuracy. To adapt to these restrictions, we removed

the time zone and UTC offset features from deepgeo, leaving the remaining four:

tweet text, tweet creation time, user location, and user account creation time.

3.1.2 Improvement using Word2Vec Embeddings

Deepgeo processes the tweet textual content with a character-level recurrent con-

volutional network with max-over-time pooling and self-attention. However, the char-

acter embeddings are initialized with a random uniform distribution and learned with

subsequent training. This may negatively impact performance since the embedding

weights are initially not learned and therefore not meaningful.

As an alternative choice for embedding weights, we used Google’s skip-gram

Word2Vec [44, 69] in our improved model, which we call deepgeo2. Word2Vec is a

pre-trained (i.e., initially learned) model that provides embedding weights at the

word level. Word2Vec contains 3 million 300-dimensional word vectors pre-trained on

the Google News corpus with 100 billion words. Various machine and deep learning

algorithms have utilized Word2Vec and achieved state-of-the-art results in text clas-

sification, primarily because Word2Vec embeddings strongly capture semantic and
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syntactic relationships between words (e.g., the vector “King” - “Man” + “Woman”

is close to the vector “Queen” [44]).

As with the original character embeddings, each token (word) is sequentially rep-

resented with its vector embedding (Word2Vec) and concatenated with the forward

and backward hidden states from a bi-directional LSTM network before applying

max-over-time pooling, self-attention, and weighted mean (the existing architecture

of deepgeo’s text network). Also, as with deepgeo, we did not preprocess or clean the

tweet text, which we will investigate in the future. If a word’s 300-dimensional vector

is not present in the Word2Vec pre-trained model, we randomly initialize it [70].

3.2 Evaluation

In this section, we evaluate the accuracy improvement of deepgeo2 (utilizing

Word2Vec) compared to the original character embeddings, and present and discuss

our visual analytics system that utilizes deepgeo2 to predict the location of real-time

tweets to facilitate situational awareness. We further evaluate and demonstrate the

usefulness of the added predictive functionality.

3.2.1 Geolocation Prediction

To evaluate the effectiveness of our improvement using Word2Vec embeddings, we

trained our adaptation of deepgeo twice: once with the original character-level em-

beddings and once with Word2Vec embeddings (deepgeo2). The training and testing

processes were executed in the same manner and with the same optimized hyperpa-

rameters that Lau et al. [7] originally used. The only difference was with the amount

of training data. Lau et al. trained with 9.8 million tweets from a geolocation predic-

tion shared task dataset1. However, due to Twitter terms of service, the dataset only

provides the tweet IDs, requiring the developers to manually download the tweets and

metadata associated with each tweet ID, which could take up to 30–40 days due to

1https://noisy-text.github.io/2016/geo-shared-task.html
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download rate limits. As such, due to time constraints for reporting on our ongoing

research, we trained with the first-downloaded 350,000 tweets.

As shown in Table 3.1, the original deepgeo model achieved a precision of 0.38,

recall of 0.32, F1 score of 0.35, and accuracy of 31.6%, while our improved deepgeo2

yielded an increased 0.39 precision, 0.34 recall, 0.36 F1 score, and 34.2% accuracy,

which is considerable in tweet geolocation prediction research. Although it is likely

that the increase in these metrics may fluctuate with more training data, we expect

deepgeo2 with Word2Vec embeddings to continue outperforming the original model.

Table 3.1.
Precision, recall, and accuracy metrics for the deepgeo and deepgeo2 models.

Model Precision Recall F1 score Accuracy

Deepgeo 0.38 0.32 0.35 31.6%

Deepgeo2 0.39 0.34 0.36 34.2%

3.2.2 Integration with SMART

The Social Media Analytics and Reporting Toolkit (SMART) [10, 11] is a sys-

tem for visual analysis of geotagged, publicly-available real-time tweets to enhance

situational awareness and expedite emergency response. SMART has been used by

over 300 first responders in 70 organizations for major events, such as presidential

inaugurations and sports games. Such users require as much data as possible for

effective analysis and better coverage. SMART provides several integrated visual-

izations for interactive exploration and anomaly detection, such as topic-modeling,

spatial clustering, and temporal views (Figure 3.1).

SMART already streamed and visualized geotagged tweets. To incorporate geolo-

cation inference into SMART, SMART first collects real-time tweets with user-listed

profile locations (as strings, such as “Lafayette, Colorado”), but no geotag, (since
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Figure 3.1. SMART allows users to interactively explore and iden-
tify tweets through tools such as topic modeling, spatial filtering, and
temporal visualization. Geotagged tweets are colored purple, Insta-
gram posts are colored orange, and predicted tweets are colored light
blue.

the user profile is one of the four required model inputs) at a rate of about 400–

700 tweets per minute within the entire United States. This is relatively low since

SMART uses the free, rate-limited Twitter streaming API2. After 512 tweets are

collected (the model’s batch size), which occurs approximately every minute, they

are transmitted to deepgeo2 for location prediction and then visualized. Currently,

tweets with inferred locations are placed in random locations within the bounds of the

geolocated city to keep SMART’s other aggregate-based visualizations (including the

spatial topic modeling and word clouds) consistent. However, tweets with predicted

locations are symbolized using a different color (Figure 3.1) from explicitly geotagged

data to indicate to the user that their locations are estimated and not exact. As part

of our future research, we will improve our cartographic representation of city-level

estimated location of predicted locations.

2https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
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To ascertain the geolocation prediction model’s effect on SMART’s utility (i.e.,

how much more data SMART could collect for user analysis), we assumed the role of

a SMART user observing streamed tweets in real-time. We analyzed three cities —

Philadelphia, PA; Chicago, IL; and New York, NY, east of I-95 (Table 3.2) — on a

desktop computer with 32 GB RAM and 2 6-core Intel(R) Xeon(R) E5-2630 CPUs

at 2.30GHz. After 100 minutes of SMART use with each city (i.e., we used SMART

to view tweets only located within the specified city), we measured the number of

tweets with an estimated geolocation. Table 3.2 provides the results for each city:

there were 475 predicted tweets in Philadelphia, PA; 1,215 in Chicago, IL; and 2,384

in New York, NY. Further, in each respective city, the geolocated tweet percentage

increase was 34.30%, 48.16%, and 39.89%. As with deepgeo, deepgeo2 takes less than

2 seconds to predict the city labels of 512 tweets using the aforementioned hardware.

Our results indicate that the geolocation prediction functionality significantly im-

proved the amount of data collected and visualized by SMART, allowing users to view

and analyze more data for situational awareness. It is important to note that although

more data is collected, a large portion of it might still not be accurate or relevant,

which is typical of social media due to limited context. However, SMART markedly

distinguishes tweets with predicted locations to inform users. In addition, SMART

users have frequently indicated that they would prefer more data to less, even if it is

Table 3.2.
Number of streamed geotagged and predicted tweets for Philadelphia,
Chicago, and New York City. We calculate the percent increase as
the percent difference between (1) the total number of geotagged and
predicted tweets and (2) the total number of geotagged tweets.

Region Min Lat Max Lat Min Lon Max Lon Number of Number of Percent

Geotagged Tweets Predicted Tweets Increase

Philadelphia, PA 39.86 40.13 -75.32 -74.93 1,385 475 34.30%

Chicago, IL 41.57 42.12 -88.15 -87.49 2,523 1,215 48.16%

New York, NY, East of I-95 40.49 40.91 -74.26 -73.70 5,976 2,384 39.89%
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inaccurate, since they might be able to identify relevant tweets that would otherwise

not be present without geolocation inference.

3.3 Summary

In this chapter, we adapted, improved, and evaluated deepgeo and presented deep-

geo2, a deep learning model that infers individual tweets’ locations at the city level.

We integrated deepgeo2 with SMART, a visual analytics application that allows first

responders to investigate real-time, geotagged tweets. Finally, we measured the in-

crease in the number of geolocated tweets within SMART by analyzing its data col-

lection after incorporating deepgeo2.
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4 INTERACTIVE LEARNING FOR IDENTIFYING RELEVANT TWEETS TO

SUPPORT REAL-TIME SITUATIONAL AWARENESS

This chapter is based on the paper published in IEEE VIS 2019:

Luke S. Snyder, Yi-Shan Lin, Morteza Karimzadeh, Dan Goldwasser, and David S.

Ebert. Interactive learning for identifying relevant tweets to support real-time sit-

uational awareness. IEEE Transactions on Visualization and Computer Graphics,

26(1):558–568, 2020

In this chapter, we present and discuss our novel interactive learning approach

for identifying relevant streaming data in real-time. Our approach consists of an in-

teractive learning framework in which users iteratively (re)label incoming streaming

data to improve classifiers on-the-fly (Figure 4.1), and a visual analytics system called

SMART 2.0 that realizes our framework to improve situational awareness. We evalu-

ate the performance and computational efficiency of our classification model adapted

for real-time learning. We also provide usage cases and domain expert feedback that

demonstrate the effectiveness of our approach.

4.1 Interactive Learning Framework

Our framework for interactively learning relevant social media posts in real-time

consists of two primary components. The first is a formalized set of design goals

necessary to effectively facilitate situational awareness in real-time through user in-

teractivity. The second is a detailed underlying model that is adapted to user-guided

training with real-time streaming data. In Section 4.2, we discuss our implementation

of the framework that realizes the design goals.
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Figure 4.1. Our interactive learning framework allows users to train
text relevance classifiers in real-time to improve situational aware-
ness. In this example, a real-time tweet regarding a car accident is
incorrectly classified as “Irrelevant”. Through the SMART 2.0 inter-
face, the user can view its label and correct it to “Relevant”, thereby
retraining and improving the classifier for incoming streaming data.

4.1.1 Design Goals

The framework’s design goals were iteratively defined through discussions with

domain experts such as first responders who frequently use visual analytic social

media applications for real-time situational awareness. In general, these experts found

it necessary for the interactive framework to incorporate user feedback in a timely

manner, as well as account for time and situation-dependent user needs. With their

feedback, the following specific design goals were established:

DG1 Filter and view relevant data: Filtering data by relevancy removes noisy

data, allowing the user to more quickly find data that may require immediate

attention or contain important information. The ability to view the relevant

data itself is equally important for determining the urgency and content of

relevant data.

DG2 Correct incorrect classifications: Since classifiers may provide incorrect

results, especially during the early stages of training, it is necessary for the user

to be able to correct the label in real-time. This both improves the model’s

performance and lowers the likelihood that incoming streamed data will be

incorrectly classified and missed.
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DG3 Create new classifiers in real-time: The needs of the user can change dra-

matically over time and vary across users themselves. As an example, one user

may wish to train a classifier to find data related to a specific hurricane event

to expedite identification of people in desperate need of assistance. However,

another user may wish to find data related to safety in general, not just a hurri-

cane. As such, they should each be able to create and train their own classifiers

in real-time specific to their needs at the time.

DG4 Minimize model training time: Although it is important to design a high-

performing model, time constraints are equally important. Specifically, when

the model is trained by user feedback, the user should not have to wait for several

minutes for the model to be retrained and relabel data. Previously streamed

data labels may update with retraining, allowing the user to potentially find

important information that they had not seen before. As such, it is necessary

to provide these updated results as quickly as possible for real-time situational

awareness.

4.1.2 Workflow

Fig. 4.2 shows the three primary components of our framework’s workflow applied

to streaming tweets (however, the framework can be generalized to other kinds of

text). First, as tweets are streamed in real-time, they are vectorized using a word

embedding model. Second, the vectorized tweets are provided as inputs to the neural

network classifier (discussed in next section), which outputs a set of probabilities from

the activation function of the tweet’s predicted relevancy and assigns an unverified

relevance label. Third, the labeled tweet is relayed to the user through the user

interface. If the user identifies tweets with incorrect labels, they can correct the label

for the system to retrain and improve the model for relevance predictions.
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Figure 4.2. High-level workflow of our framework with three main
components: tweet vectorization, tweet classification, and user feed-
back.

4.1.3 Interactive Model Details

In the following subsections, we elaborate on the underlying representations and

models used to support our interactive learning framework. We design, optimize,

and evaluate our approach with the key assumption that classifiers are trained (from

scratch) in real-time using user-provided labels for streaming text. We simulate this

process by adding training examples in small batches of 10 and evaluating against

testing data, as explained below. All simulations were completed on a server with

128 GB RAM, 32 TB of disk storage, and 2 Intel(R) Xeon(R) E5-2640 v4 CPUs at

2.40GHz.

Model Candidates

Selecting the underlying model for our framework was a key task, as it must be

efficiently trainable with a continual stream of user-labeled data (DG4). As discussed

in chapter 2, neural networks are a natural choice for online learning scenarios in

which training data is supplied sequentially over time [19, 20]. In addition, neural
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networks have generated impressive results with Word2Vec [44] embeddings [19,20,48].

Therefore, we employ a neural network as our classifier to determine text relevance

based on real-time training examples provided by the user. To convert the text into

vector inputs (of our neural network), we use word embeddings generated by Google’s

Word2Vec skip-gram model [44, 69], which contains 3 million 300-dimensional word

vectors pre-trained (and therefore, capturing word embeddings) on a subset of the

Google News dataset with approximately 100 billion words.

In selecting the specific neural network model type, we experimented with the

well-known Convolutional Neural Network (CNN) [71], Long Short-Term Memory

(LSTM) Neural Network [72], and Recurrent Neural Network (RNN) [73] since they

have performed well in various text classification tasks [74]. Hybrid architectures,

such as recurrent convolutional neural networks [75], have also been proposed in

recent years, but have not been made available in well-supported libraries. Therefore,

we did not consider them in this work, since our goal was to also support a well-tested

SMART 2.0 system for end users.

Our CNN model contains the traditional convolutional and max-pooling layers

before activation [74]. Specifically, we apply a 1-dimensional convolutional layer, 1-

dimensional max-pooling layer, flatten the output, and then activate it with softmax

and a dense layer. The filter and kernel sizes of the convolutional layer are optimized

during the hyperparameter stage (explained in Section 3.3.4). We use Hochreiter’s

LSTM [72] and the traditional RNN [73] architectures as provided by Keras [76].

The LSTM and RNN hidden layer each contain 300 hidden neurons and use softmax

activation.

Design

As mentioned before, to enable the use of neural networks for classifying text,

we convert the unstructured text (of the tweets) into vectors ready for consumption

by the neural network. When using Word2Vec vectors as features for classification,
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a common approach is to convert each word in the sentence to its vector, average

the word vectors in the sentence, and then use the resulting feature vector for model

training [47,49]. However, averaging the vectors results in the loss of syntactic infor-

mation, which can negatively impact classification results [45]. As an example, the

two sentences “Only Mary will attend the ceremony.” and “Mary will only attend the

ceremony.” would generate identical averaged sentence vectors since they contain the

same set of words, but they differ in meaning. Therefore, to capture both semantic

and syntactic information, we represent a sentence as a matrix where each row i is a

300-dimensional Word2Vec vector corresponding to word i in the original sentence.

The input to the neural network consists of the matrix representing the sentence

(as described above) and the output consists of the classification labels for the input

sentence (Fig. 4.2). Specifically, we allow a tweet to be (1) Relevant, (2) Not Relevant,

or (3) Can’t Decide. The label with the highest probability from the activation

function corresponds to the final label given to it. The “Can’t Decide” label indicates

that the tweet may or may not be relevant depending on the context. This is useful

if the user finds a social media post such as “Remembering when Hurricane Irma

destroyed my home...” that may not directly relate to the current event, but may

be semantically relevant, and the user does not want to mark such cases as “Not

Relevant”. This gives the user more flexibility to accommodate their needs since the

definition of relevancy will depend on both the user and the situation.

Corpus for Model Selection and Optimization

To experiment with different neural network model types and optimize the selected

model, we used a disaster-related corpus annotated on the crowd-sourcing platform,

Figure Eight [77]. The dataset contains 10,876 tweets related to different types of

disaster events, such as hurricanes and automobile accidents. The data was collected

using keywords such as “ablaze” or “quarantine”, and therefore, covers a wide variety

of disaster-related topics. Our main motivation for using this open dataset is its size
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(as well as topical relevance), enabling the optimization of hyperparameters and com-

parison of various models. In the corpus, each tweet is manually labeled by Figure

Eight’s workers as “Relevant”, “Not Relevant”, or “Can’t Decide”, and the distribu-

tion of labels is unbalanced. Specifically, there are 4,673 “Relevant” instances, 6,187

“Not Relevant” instances, and 16 “Can’t Decide” instances. This dataset has been

used in other tweet classification research projects [14]. However, the researchers of

that study remove the tweets with the “Can’t Decide” label to improve training data

quality. As explained in the previous section, we find the “Can’t Decide” option useful

for users to apply to cases with insufficient context for relevance determination. We

randomly shuffle the data and divide the dataset into 80% training, 10% validation,

and 10% testing sets.

It is important to note that we only use the Figure Eight dataset to optimize

the hyperparameters and provide an initial evaluation of the model by simulating

the provision of labels in real-time by the user. Since each tweet in the dataset

contains true labels that were manually assigned by humans, it allows us to evaluate

the model performance by comparing the model’s predictions to the true labels after

each training iteration. Our proposed approach as well as its integration within the

SMART 2.0 system, however, allows for the creation of the models from scratch (with

no prior training) (DG3), leveraging real-time labels provided by users on streaming

data for training.

Optimization

In order to experiment with the different neural network model types, we ran

several training simulations with random combinations of hyperparameters (i.e., ran-

dom grid search) to see which model converged to the best F1 score. The F1 score

is a metric widely used to evaluate the quality and performance of machine learning

models and neural networks [78]. It is computed as the harmonic mean of precision

(the proportion of true positive predictions compared to the total number of positive
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predictions) and recall (the proportion of true positive predictions compared to the

overall number of positive instances) : F1 = 2×precision×recall
precision+recall

. The F1 score provides

a balanced measure, combining these two performance aspects. It is therefore more

informative compared to other metrics such as accuracy, especially when the training

and testing sets are imbalanced [79], as in our case.

A central part of our approach to the training, validation, and verification of

learning models is simulating the interactivity of visual analytics for real-time data,

i.e. for use cases in which training data does not exist prior to user interaction. We

assume the user (re)labels the incoming stream of data and therefore iteratively trains

a model, which consequently meets their real-time needs. To replicate this process,

we computationally evaluate the model’s performance (as if it is successively trained

by user-labeled data) by iteratively training the model with 10 new samples from

the training dataset. We average the F1 score obtained from each of these iterations

and use the resulting number to measure the model’s performance. In addition, we

introduce a new variable, window size, for our training iterations. Specifically, due

to the considerably small amount of training data provided by the user, we found that

an appropriately small number of epochs (one forward and one backward pass over the

training data in the model) was necessary to reduce performance degradation from

initial overfitting. However, we also found that increasing the number of epochs could

lead to higher F1 scores as more data was provided. Thus, we use a sliding window of

110 samples that includes the (successively provided) new training data (10 samples)

as well as the most recently used training data (100 samples) to both account for

small amounts of training samples and increase the number of total training epochs

for a given sample.

We use the validation data to optimize the hyperparameters for each of the CNN,

LSTM, and RNN models. Specifically, after each training iteration with 10 new

samples, we evaluate the neural network’s F1 score on the validation set to view its

simulated performance as if it was trained by gradual user labeling. After identifying
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the optimal hyperparameters for each of the CNN, LSTM, and RNN models, we

evaluate their performance on the testing set.

Table 4.1 demonstrates the results from our validation stage. Specifically, it lists

the average F1 score obtained during each training simulation along with the total

CPU time required to complete the simulation (accumulated with each training and

evaluation iteration). Although in many applications, F1 score alone is sufficient to

evaluate machine learning models, it is not for ours. To see why, note that the LSTM

model yields an F1 score of 0.75, the highest of any hyperparameter combination.

However, the LSTM model (with the highest F1 score) takes approximately 4,242

seconds to complete training, whereas the CNN model (with the highest F1 score)

only takes 504 seconds. Thus, the LSTM model takes roughly eight times longer to

simulate than the CNN model, but does not improve its F1 score by a significant

amount (LSTM: 0.75 vs. CNN: 0.74). In the context of interactive learning, we

wish to balance the training/CPU time and performance such that the model both

Table 4.1.
Average precision, recall, F1 score, and CPU time for the top three
performing hyperparameter combinations on each of the CNN, LSTM,
and RNN models. Bold numbers correspond to the highest F1 scores
and lowest CPU times for each of the three model types. We report the
recall, precision, and F1 score to four decimal places (when necessary)
to distinguish the average F1 scores.

Model Learning Batch Epochs Dropout Recurrent Filter Kernel Optimizer Average Average Average CPU

Rate Size Dropout Size Size Precision Recall F1 score Time (sec)

CNN 0.0079 10 1 – – 16 2 Adam 0.75 0.73 0.74 503.82

CNN 0.01 50 2 – – 16 2 Adagrad 0.73 0.71 0.72 522.47

CNN 0.0063 10 3 – – 16 2 Adam 0.73 0.71 0.72 553.43

LSTM 0.0002 10 10 0.4 0.2 – – Adam 0.7597 0.7475 0.7534 4241.97

LSTM 0.0002 20 8 0.2 0.6 – – Adam 0.7597 0.7468 0.7530 4100.37

LSTM 0.0006 100 12 0.6 0.6 – – Adam 0.7559 0.7431 0.7493 4209.37

RNN 0.0001 10 7 0.0 0.2 – – Adam 0.7037 0.6957 0.6996 3069.81

RNN 0.0001 20 5 0.0 0.0 – – Adam 0.7028 0.6921 0.6973 2805.52

RNN 0.0001 100 12 0.0 0.2 – – Adam 0.70 0.69 0.69 3160.35
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performs well and retrains in a short amount of time for rapid improvement (DG4).

Therefore, it is necessary to consider both the CPU time and average F1 score. With

these optimization standards in mind, we chose the hyperparameters that yielded the

highest F1 scores for each model since the other hyperparameter combinations gener-

ated lower F1 scores and higher or comparable CPU times. The selected combinations

correspond to rows 1, 4, and 7 in Table 4.1 with the average F1 scores in bold.

The testing process is identical to the validation process: after the model is trained

with 10 new samples, its performance is measured by computing the average F1 score

on the testing set (using the optimized hyperparameters from the validation stage).

Our results are summarized in Table 4.2. We found that the LSTM model yielded

the highest F1 score of 0.75. The CNN and RNN models achieved a 0.73 and 0.70 F1

score, respectively. Based on these results and the previously discussed optimization

standards, we selected the optimized CNN model for our classifier. In particular, the

CNN simulation not only yielded a competitive average F1 score of 0.73, but also

achieved this score 6 to 8 times more quickly than the LSTM or RNN (Fig. 4.3),

which is significant in terms of responding to user feedback in a timely manner.

The optimized CNN model yielded 0.74 and 0.73 average precision and recall scores

respectively (Table 4.2, row 1). This model performance may be due to the initial lack

Table 4.2.
Testing results with the optimal hyperparameter combinations for the
CNN, LSTM, and RNN models. The bold numbers correspond to the
highest F1 score and lowest CPU time among the three models.

Model Average Average Average CPU

Precision Recall F1 score Time (sec)

CNN 0.74 0.73 0.73 501.10

LSTM 0.76 0.74 0.75 4211.01

RNN 0.70 0.69 0.70 3085.59
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of sufficient training data and difficulty in classifying certain tweets. For instance,

after examining the testing dataset, we found that many misclassified tweets were

extremely short (e.g., the tweet “screams internally” was misclassified as “Relevant”)

or contained complex disaster-related diction (e.g., the tweet “emergency dispatchers

in boone county in the hot seat” was misclassified as “Relevant”). However, as we

demonstrate in the next section, our model still outperforms state-of-the-art learning

models on tweet datasets.

It is worth noting that we do not save the trained model from the validation or

testing stages for evaluation in the next stage (or for use with SMART 2.0). We

only save the optimized hyperparameters. This is because we assume that users start

Figure 4.3. The total CPU time required for each model to complete
the testing simulation. The CNN model is noticeably faster than both
the LSTM and RNN models.
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training a new model (for any event or topic they choose) by labeling the incoming

stream of tweets.

In this section, we optimized the model on a sufficiently large dataset that con-

tained tweets related to several types of disasters. In the next section, we evaluate

the model on datasets containing tweets on specific events, which is representative of

cases for situational awareness.

Evaluation

To further demonstrate the optimized CNN model’s performance, we compu-

tationally evaluated it on wildfire, bombing, and train crash datasets from Cri-

sisLexT26 [80], each of which contain approximately 1,000 tweets collected during

2012 and 2013 from 26 major crisis situations labeled by relevance. We apply a simi-

lar process to evaluate our optimized CNN model on these datasets as we did with the

Figure Eight [77] dataset. Specifically, we split the data into 50% training and 50%

testing sets (to replicate the experimental setting of To et al. [14], against which we

will compare our results), train the model by supplying 10 tweets from the training

set at a time (to simulate user labeling of streaming data), evaluate the resulting

model on the entire testing set, and then average the F1 scores for each evaluation.

We summarize our results in Table 4.3 and graph the model’s performance for

retraining with 10 new incoming tweets in Fig. 4.4, 4.5, and 4.6. In addition, we

report the average CPU times to train the model during a single iteration (10 tweets)

with each dataset in Table 4.3. Since the datasets vary slightly in size, we only

compute the averages from the first 45 iterations since the smallest dataset (Boston

Bombings) required 45 iterations to complete the simulation. We found that per-

iteration training was fast and approximately 0.5 seconds with each dataset, which

meets our timing demands (DG4).

We obtained 0.71, 0.64, and 0.88 F1 scores for the Colorado wildfires, Boston

bombings, and NY train crash datasets, respectively. Interestingly, the variance of
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Table 4.3.
Average precision, recall, and F1 score for three CrisisLexT26 [80] datasets.

Category Average Average Average Average CPU

Precision Recall F1 score Time (sec)

Colorado wildfires 0.72 0.71 0.71 0.49

Boston bombings 0.64 0.65 0.64 0.50

NY train crash 0.86 0.90 0.88 0.49

the F1 scores over the datasets is significant. The textual data in the Boston bombings

dataset, which yielded the lowest average F1 score, was not as easy to separate into

the different relevance categories by the model compared with the other two datasets.

However, the F1 score does eventually converge towards a higher value similar to

the other datasets, indicating the potential presence of outliers during the first few

training iterations. In addition, we found that the simulations converged to the

average F1 scores after training with approximately 190–230 tweets, depending on the

dataset, meaning that users need to label 190–230 tweets to achieve the reported F1

scores. However, the CrisisLexT26 datasets also correspond to specific events, such as

wildfires. As such, we surmise that interactively training the model on specific, well-

defined events will reduce the amount of training data needed to achieve satisfactory

results than with generic constraints on relevance (e.g., a classifier about safety in

general).

Finally, we compare our results with the learning-based algorithm employed by To

et al. [14], who also evaluated their model’s performance with CrisisLexT26 datasets.

In particular, their learning-based approach used Word2Vec, TF-IDF, latent semantic

indexing, and logistic regression for classifying data as relevant or irrelevant. The

authors of that study split the dataset into two equal parts: one for training and one

for testing. They trained the model once (as opposed to our iterative approach) and
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Figure 4.4. Optimized CNN F1 score per training iteration of 10
tweets with the Colorado wildfires dataset (Table 4.3). The F1 scores
are logarithmically fitted and intersect with the average F1 score
(0.7134) at 228 tweets.

Figure 4.5. Optimized CNN F1 score per training iteration of 10
tweets with the Boston bombings dataset (Table 4.3). The F1 scores
are logarithmically fitted and intersect with the average F1 score
(0.6410) at 184 tweets.

evaluated on the testing set. Their algorithm was able to yield high precision scores

between 0.85–0.95, compared to our scores of 0.64–0.86. However, their recall scores

were approximately 0.22–0.45, considerably lower than our recall scores of 0.65–0.90.

Therefore, our approach outperforms the learning-based model presented by [14], in
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Figure 4.6. Optimized CNN F1 score per training iteration of 10
tweets with the NY train crash dataset (Table 4.3). The F1 scores are
logarithmically fitted and intersect with the average F1 score (0.8792)
at 191 tweets.

terms of the overall F1 score: our interactive approach achieves F1 scores of 0.64–0.88

(depending on the dataset) compared to 0.45–0.64 by [14]. The authors also presented

a matching-based approach that achieved a much higher F1 score of 0.54–0.92, which

is comparable to ours. However, they generate the set of hashtags to be used for

matching by scanning all of the tweets in the dataset. Since we assume the data

is streamed in real-time, and therefore, not available altogether, we use an iterative

learning approach.

4.2 SMART 2.0

4.2.1 SMART

The Social Media Analytics and Reporting Toolkit (SMART) [11, 27] is a visual

analytics application designed to support real-time situational awareness for first

responders, journalists, government officials, and special interest groups. SMART

obtains real-time publicly available geo-tagged data from the Twitter streaming API.

The user is able to explore the trending and abnormal topics on various integrated
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visualizations, including spatial topic model visualization and temporal views. The

tweet time chart and theme river visuals convey the temporal distributions of topics

if the user wishes to determine how the content of streamed social data has changed

over time.

SMART uses string matching-based classifiers to visualize relevant data. Specif-

ically, the user can either (a) select pre-defined filters, such as Safety or Weather

(Fig. 4.7(c)), each using a series of related keywords for inclusion and exclusion of

tweets in the subsequent topic-modeling (Fig. 4.7(f)) and (geo)visualizations (Fig. 4.7(b)),

or (b) create their own filters by supplying keywords, and intersect or union multiple

filters according to their needs. However, keyword-based matching is insufficient for

finding relevant information as it fails to accurately capture semantic relevance and

therefore effectively filter out noisy data. As an example, if the user were to apply

the Safety classifier, it would be possible for the tweets “My house is on fire!” and

“I was just fired from my job.” to pass through the filter since they both include the

keyword fire. However, the latter is unrelated to the intended semantic context of

Safety and thus dilutes the filter’s quality.

To address this problem, we integrate our interactive learning framework (the

focus of this chapter) in the existing SMART application [11, 27] and seek domain

expert feedback on the use of these models. We call the resulting extended application

SMART 2.0. SMART 2.0 allows users to define string matching-based keyword filters

(similar to SMART), but adds the ability for users to then iteratively refine and train

the newly integrated models by labeling the filtered data as semantically relevant or

not. In addition, the SMART 2.0 interface includes interactive visuals to facilitate

user exploration, filtering, and refinement of relevant data (Fig. 4.7).

As with the model simulations in Section 4.1.3, SMART 2.0’s underlying models

are trained with successive batches of 10 user-labeled tweets. In cases where model

predictions conflict with user labels, user labels override the model’s since they rep-

resent the ground truth. In addition, users should not need to manually relabel the

same data multiple times. Although conflicts might indicate that the model is not
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sufficiently trained, the model trains with the same data during several successive

iterations (as discussed in Section 4.1.3, par. 10), so conflicts might be resolved after

future iterations.
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Figure 4.7. SMART 2.0 overview: (a) The control panel provides
several filters, visualizations, and views. (b) The content lens visu-
alization provides the most frequently used words within a selected
area. (c) The tweet classifier visualization provides keyword-based fil-
ters to help reduce noisy data. (d)(e) Clicking a tweet on the map with
the tweet tooltip visualization displays the tweet’s time, message, and
relevance label. (f) The topic-modeling view, based on Latent Dirich-
let Allocation, extracts trending topics and the most frequently used
words associated with each topic among tweets with specified rele-
vancy. (g)–(j) The message table aggregates the tweets for efficient
exploration with (g) the model’s estimated classification performance
(F1 score), (h) a drop down box to filter data by their relevance la-
bels, (i) color-coded relevance labels that can be changed by clicking
on the label itself, and (j) associated relevance probabilities. Tweet
map symbols are colored orange and purple to distinguish Twitter
data from Instagram-linked tweets, respectively, since the latter con-
tains potentially useful images for situational awareness.
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4.2.2 SMART 2.0 Interface

The extensions to SMART 2.0’s user interface, compared with SMART, concern

the new interactive visuals that allow users to iteratively train machine learning mod-

els, utilize model predictions for rapid relevancy identification, and understand a

model’s reliability. The SMART 2.0 interface (Fig. 4.7) extends the interactive fea-

tures of SMART for relevance identification in three primary ways:

1. Extending the tweet table (containing a tweet’s creation date and text) by

including the predicted relevance label, relevance label probabilities, label mod-

ification, model training performance, and relevance filtering.

2. Extending the interactive map containing the geo-tagged tweets whose relevancy

can be individually inspected or modified.

3. Altering the content of existing SMART views (e.g., topic models and spatial

topic lenses) using either all data or only relevant data (as identified by the

model and corrected by the user).

In the following subsections, we discuss these three extensions in detail.

SMART 2.0: Table

The SMART 2.0 table (Fig. 4.7(g)–(j)) is extended from SMART in that it not only

provides a tweet’s creation date and text, but also provides the predicted relevance

label (Fig. 4.7(i)) and the probabilities of a tweet belonging to any of the relevance

classes (Fig. 4.7(j)) (DG1).

In particular, the relevance of a tweet can be “Relevant”, “Not Relevant”, or

“Can’t Decide”. The “Relevant” label is colored blue, the “Not Relevant” label red,

and the “Can’t Decide” label gray to visually separate tweets with different relevance.

SMART’s preexisting blue color scheme motivated us to use the blue, red, and gray

diverging coloring for relevancy in order to maintain visual appeal and harmony.
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Users can directly click on relevance labels to correct the classifier’s prediction

(DG2). For instance, if a tweet is incorrectly marked “Relevant”, clicking the label

will change it to “Not Relevant” or “Can’t Decide”, depending on the label the user

wishes to assign. Further, a drop down box is included at the top of the relevance

label column (Fig. 4.7(h)), which provides the option to filter out data that does not

have a specified relevancy (DG1). For example, by selecting “Relevant” from the

drop down box, the table will remove tweets with labels “Not Relevant” and “Can’t

Decide” from all views and visualizations in SMART, including geovisualizations and

temporal views.

The table also displays the degree (or confidence) of a tweet’s relevancy. In specific,

the probabilities of a tweet being “Relevant”, “Not Relevant”, or “Can’t Decide”

are represented as a horizontal segmented bar graph and sized proportional to their

respective percentages (Fig. 4.7(j)). In addition, the user can sort tweets based on

relevancy probability in ascending or descending order.

We provide the relevance probabilities and associated sorting actions as a supple-

mentary relevance filtering mechanism (DG1). In particular, it is possible for tweets

to be classified as “Relevant” by the model, for example, but with low confidence.

The probability filtering allows the user to specifically view high-confidence relevant

data and therefore further reduce potentially noisy data.

The table provides a performance bar that encodes the estimated performance

(F1 score) of the underlying learning model (Fig. 4.7(g)), as well as the number of

user-labeled tweets, to inform the user of the model reliability. Since labeled testing

data is not available to evaluate the model for real-time training (because we assume

the user may train on any type of event data and has their own specifications for

relevancy), the model’s performance can only be estimated. Based on our evaluations

in Section 4.1.3, par. 17, with datasets typical of situational awareness scenarios

(Table 4.3), the Colorado wildfires dataset generated the F1 score (0.71) closest to

the average of the three datasets (0.74). Therefore, we use the Colorado wildfires
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dataset’s logarithmic trendline y = 0.09 loge(x) + 0.22 (Fig. 4.4) to approximate the

model’s F1 score as a function of the number of user-labeled tweets.

SMART 2.0: Map

The SMART 2.0 map is extended from SMART in that it includes a tweet’s

relevance label (which can be modified) in addition to its text and creation date

(Fig. 4.7(d)(e)). Through the Tweet Tooltip, the user can directly click on tweet

symbols on the map to view their text and associated relevancy (DG1). In addition,

the user can correct the classified relevance label (DG2) by clicking on the label itself.

Map inspection can allow the user to view and investigate potential geographical

relevancy trends. For example, during crisis events, relevant tweets might be closely

grouped on the map, so it may be more beneficial for the user to view predicted

relevance from the map itself.

The interactions between the table and map are synchronized. If the user relabels

data on the map, the associated new label will also be updated in the table, and vice

versa. In addition, selecting a relevancy filter from the drop down box in the table

filters the tweets on the map.

SMART 2.0: Integration with Existing Visualizations

Many of SMART’s original visualizations, such as the topic-model views, spa-

tial topic lenses, and temporal views help users make sense of spatiotemporal text

data. Therefore, we integrated all of these views in SMART 2.0 with the relevance

extensions.

Users have the option to view only relevant or all the data (including irrelevant

tweets) in various visualizations in case the interactive classifiers are not yet trained

to desirable accuracies since, as we show in Section 4.1.3, par. 19, classifiers typically

require around 200 user-labeled tweets to achieve F1 scores of 0.70–0.80. If they choose

to view only relevant tweets, any relevance filtering action also updates the data used
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by other visuals. For example, the topic-modeling view (Fig. 4.7(f)) extracts the

top 10 topics from the tweets and displays the most frequently used words for each

topic. If the user filters out irrelevant tweets, the topic-modeling view will only be

applied to the remaining relevant tweets. It is important to note that the majority of

visualizations in SMART 2.0 require a minimum number of tweets in order to render.

When filtered relevant data is scarce, visualizations do not populate, in which case

users can individually inspect tweets. For instance, the topic-modeling view requires

at least 10 tweets to extract topics.

Overall, SMART 2.0’s suite of visualization tools can be used in combination with

relevance interactions to further understand trends and important spatiotemporal

characteristics of relevant data.

4.3 User Experience

In this section, we provide usage scenarios and feedback from domain experts that

demonstrate our framework’s effectiveness and usability.

4.3.1 Usage Scenario 1

Alice is an emergency dispatcher interested in identifying people in need for help

or hazardous locations during a hurricane. She uses SMART 2.0 to find any related

social media posts near the affected area. She adds a new filter Hurricane and provides

an appropriate set of filter keywords such as “hurricane”, “help”, ”blocked”, and

“trapped”.

After applying the Hurricane filter, she explores the filtered tweets in the table

and finds a tweet labeled “Relevant” that says “Does anyone know how to get help

setting up my TV?”. Since the tweet is unrelated to a hurricane, she relabels it

as “Not Relevant”. After further browsing the table, she finds a tweet that says

“The road near Taylor Loop is blocked from a broken tree.”, but it is labeled as

“Not Relevant”. Since the tweet contains actionable information, she relabels it as
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“Relevant”. After labeling several more tweets for model training and noticing that

the model predicts correctly, she decides to only view “Relevant” tweets and sort

them by most relevant. She promptly identifies a tweet posted only a few minutes

ago marked as highly relevant. It reads “Car just crashed into tree blocking road near

Taylor Loop!”. Alice immediately notifies first responders of the location to provide

assistance.

By using SMART 2.0, Alice is able to identify important, relevant data more

quickly through interactively training the model to remove noise and then filtering

by relevance.

4.3.2 Usage Scenario 2

To demonstrate the generalizability of our framework to other domains, we ap-

plied our interactive framework in real-time during the Purdue vs. Virginia 2019

March Madness game in the Kentucky area. We assumed the role of a journalist who

wanted to follow public discourse on the game by identifying the relevant tweets. We

first constructed a Sports filter, which included keywords such as “Purdue”, “game”,

“score”, and “#MarchMadness”. We then interacted with the streaming data by

iteratively labeling the relevancy of tweets (from scratch) and found that the system

correctly classified incoming data after roughly 80 training samples (Fig. 4.8). We

noticed that the time intervals between successive trainings increased, indicating that

it was more difficult to find incorrectly labeled data towards the end and that the

model gradually learned from user feedback. In particular, the interval between the

first and second training iterations was 2 minutes, whereas the interval between the

final two was 4 minutes.

4.3.3 Domain Expert Feedback

We piloted SMART 2.0 with two groups of first responders, each containing two in-

dividuals, who frequently use SMART during events for situational awareness in their
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Figure 4.8. Tweets with correctly predicted relevancy from the Pur-
due vs. Virginia 2019 March Madness game after the user (re)labels
80 tweets.

operations. Both groups participated in separate 1-hour long sessions via conference

call in which they iteratively trained a classifier from scratch and applied relevance

filtering and visualizations to assess the implemented framework. They received a

tutorial of SMART 2.0 30 minutes beforehand and were provided with web access

to the system to complete the session. For both groups, we simulated the real-time

use of SMART 2.0 by feeding in a stream of historical data on events (previously

collected). For the first group, the system presented unlabeled tweets from the Las

Vegas shooting on October 1, 2017, in the Las Vegas area. For the second group, we

used unlabeled tweets from the October 2017 Northern California wildfires. We used

historical event datasets to ensure the existence of sufficient training relevant samples

for a situational awareness scenario.

The domain experts in the first group applied the Safety, Damage, and Security

filters during the iterative training process, resulting in 317 tweets. They trained on

the same underlying model for all three filters, as they considered them semantically

related. In total, after relabeling approximately 200 tweets, they indicated that they

could trust the model to predict accurately and were pleased that the tweets they had
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not seen before from the Security filter were labeled correctly. Their definition for

relevancy was tweets containing actionable information. For instance, they marked

tweets containing information about road closures, blood drive locations, or death

counts as relevant. They labeled data with general comments regarding the shooting,

such as “I hope everyone is safe now...terrible shooting...”, as irrelevant since they

did not provide actionable information. Interestingly, they also marked tweets that

would influence public opinion (and therefore may cause action) such as those from

bots or trolls as relevant since they still contained actionable information.

The domain experts from the second group followed a similar process in which

they applied the Safety, Damage, and Security filters, resulting in 445 tweets, and

trained a learning model for relevance. They found that after training on roughly 67

tweets, the model satisfactorily predicted relevancy. As with the first group, these

domain experts labeled tweets as relevant if they contained actionable information.

The domain experts from both groups found SMART 2.0 to be easy to use and

effective in identifying important data. For instance, they discovered relevant, ac-

tionable information after training the model: specific blood drive locations to aid

shooting victims. Notably, the users mentioned that they found themselves relabeling

less data as training progressed since the system provided more correct labels. They

were pleased that they had the option to view only relevant data, but could see all

of the data regardless of relevancy to avoid potentially missing important misclas-

sified data, and that the model was responsive to user training. In addition, they

found the relevance percentage bars to be helpful in determining the tweets that were

potentially the most relevant.

One concern the domain experts had was that SMART 2.0 does not indicate the

number of tweets that are predicted as relevant. They felt this extension could help

them infer the occurrence of events or potential crises. For example, the number

of relevant tweets for the Safety classifier would likely increase significantly during

a widespread disaster. We plan to introduce this feature in the next development

cycle. However, we have added a visualization of estimated model performance in
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SMART 2.0 (Fig. 4.7(g)) to help users ascertain the reliability of a model’s relevancy

predictions.

Overall, the feedback from the domain experts was positive and helpful, indicating

the system’s practicality and usefulness in facilitating real-time situational awareness.

In addition, they have asked to use SMART 2.0 in their emergency operations center.

4.4 Discussion

Our interactive learning framework and SMART 2.0 integration were developed

with the user in mind, influencing all of our design, computational evaluation, and

implementation choices. Our user-centered model and SMART 2.0 application con-

tribute to both the machine learning and visual analytics communities. We bridge

the two fields by demonstrating how models can be interactively trained and evalu-

ated while keeping the user in mind, and used to facilitate situational awareness for

real-life, practical use.

The scalability of our framework is a natural concern, especially since SMART

and many deployed real-time visual analytics applications contain multiple users who

require responsive interfaces while monitoring crisis events. We deliberately designed

the framework architecture with scalability in mind. As mentioned in Section 4.1.3,

pars. 12–13, we selected the model and optimal hyperparameters based on train-

ing/CPU time in an effort to maximize the model’s computational speed. Further,

SMART 2.0 filters and views at most 800–900 tweets at a time, although user-specified

filtering (typical in situational awareness scenarios) reduces the data to only a few

hundred tweets, as demonstrated in Section 4.3.3. It takes only 2–3 seconds to cal-

culate and retrieve their relevance labels over the network from the server where the

model resides, and per-iteration training is fast, as established in Section 4.1.3, par

18.

Finally, although we rigorously optimize and evaluate our machine learning model,

the hyperparameter combinations were only tuned with the Figure Eight dataset [77].
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Since optimal hyperparameters can depend on the dataset itself, it is possible our

model may not be optimally tuned for different datasets, even though that optimiza-

tion may be negligible from a user standpoint. We did use other datasets in our

model evaluation to show the satisfactory resulting performance (Section 4.1.3, par.

17). Given that the Figure Eight dataset classifies generic events as relevant or irrele-

vant, as opposed to specific events, we expect that our model performs well on many

different event types.

4.5 Summary

In this chapter, we presented a novel interactive framework in which users it-

eratively (re)train neural network models with streaming text data in real-time to

improve the process of finding relevant information. We optimized and evaluated a

machine learning model with various datasets related to situational awareness and

adapted the model to learn at interactive rates. According to evaluation results, our

model outperforms state-of-the-art learning models used in similar classification tasks.

Finally, we integrated our framework with the SMART application and extended it

to SMART 2.0, allowing users to interactively explore, identify, and refine tweet rel-

evancy to support real-time situational awareness. Our discussions with multiple

first responders who use SMART 2.0 indicated positive feedback and user experience.

In particular, their assessments demonstrated that our interactive framework signif-

icantly improved the time-consuming process of finding crucial information during

real-time events.
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5 CONCLUSION AND FUTURE WORK

In summary, this work focused on two barriers for social media analysts and first

responders: lack of explicitly geotagged data and difficulty in identifying relevant

information from large, noisy data streams. We provided techniques grounded in

visual analytics as solutions for both problems. To reiterate, the contributions of this

work can be summarized as follows:

1. A geolocation inference approach for real-time visual analytics [68].

We adapted, improved, and evaluated an existing deep learning geolocation pre-

diction model. We further integrated the improved model with an interactive

visual analytics system tailored for real-time situational awareness. We exper-

imented with social media data streams, demonstrating noticeable increases in

the amount of geotagged data, therefore providing improved situational aware-

ness.

2. An interactive learning approach for identifying relevant streaming

data [10]. We provided a novel interactive learning framework that allows

users to train relevance classifiers with real-time streaming data for improved

situational awareness. We evaluated the performance and computational effi-

ciency of our framework with different neural networks. We further evaluated

the selected model on several crisis-related datasets and showed that it outper-

forms state-of-the-art machine learning classifiers. We provided SMART 2.0, a

visual analytics application that realizes our interactive learning framework, and

demonstrated its effectiveness with usage scenarios and domain expert feedback.

Our future work can be summarized from the following perspectives:

• Geolocation inference: We plan to explore additional enhancements to deep-

geo2 from recent work, such as Bayesian models [8], and investigate alternative
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embedding methods, such as combining character and word embeddings. Fur-

ther, we will investigate human-in-the-loop methods to improve the geolocation

prediction. For instance, it might be possible for users to explicitly provide city

labels of non-geotagged tweets, or correct predicted city labels. We will also

enhance the cartographic representation of SMART for visualizing precise and

estimated tweet locations.

• Supporting multilingual data with our interactive learning frame-

work: SMART 2.0 currently only collects English tweets, although supporting

non-English languages (one at a time) with our current design (e.g., Span-

ish only) is straightforward since Word2Vec embeddings can be independently

trained on a corpus in the target language [81]. Extending our system to support

multilingual tweets would be a powerful asset, especially for multilingual users,

in amplifying situational awareness by leveraging relevancy of tweets issued in

different languages. However, the multilingual model performance evaluation

and testing is an open area for research. In addition, determining the specifics

of how a single relevance classifier might be trained with multilingual tweets

requires careful attention. For instance, training iterations with Spanish tweets

should also affect the relevancy of semantically-related English tweets. Since

similar words in different languages likely have different vector representations

(embeddings), multilingual mappings must be learned or training must be per-

formed differently, such as with parallel corpora [81]. Multilingual support

also requires changes in SMART 2.0’s language-dependent visualizations, such

as the topic-modeling view (Fig. 4.7(f)). Translation to a unified language or

extracting topics separately for each language are two potential solutions.

• Accommodating situations with scarce relevant data: Training a model

during a particular event, such as a disaster, can be straightforward due to

potentially larger amounts of relevant data. However, social media data during

periods without major events are likely to contain very few, if any, relevant

tweets. As such, if the user only trains the model on irrelevant data, it will
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poorly predict relevant data since it has only be taught what is irrelevant.

Although the user can improve the model through training during a real-life

disaster, they are required to know when and where the disaster occurs to

begin training. This can be problematic if the user wishes to rely on relevancy

predictions to detect hazardous situations.

To accommodate time periods in which relevant data is scarce, we plan to

introduce an interactive feature in which users can provide example tweets or

external resources for specific relevance labels. For instance, if the user would

like to train a Hurricane classifier before a hurricane event, they could provide

a relevant text such as “I’m stranded by this hurricane. Please help!”. The

model could then detect relevant tweets once the hurricane begins as opposed

to requiring user training during the event. In addition, we plan to provide the

user with the option to visit specific historical data to train existing classifiers,

as done by Bosch et al. [24]. Furthermore, although SMART 2.0 provides inte-

grated visuals and filtering and labeling interactions to quickly identify relevant

tweets, supplementary high-level visualizations of relevant data can increase un-

derstanding of overall trends. We plan to introduce additional map layers, such

as a heat map, to better understand geographical trends of relevant data. For

instance, visually clustered groups of relevant data during a disaster event can

alert the user to specific affected areas that might need attention or contain

actionable information.

• Investigating the interactive learning performance on generic classi-

fiers: Our interactive learning performed well on target datasets (i.e., wildfire,

bombing, and crash) as explained in Section 4.1.3, par 17. Specifically, it re-

quired the users to label approximately 200 tweets to achieve acceptable F1

scores. However, tweets are short, and therefore, more research is required

to investigate the suitability of our approach for “general” classifiers, such as

ones that learn to classify relevant data to “safety”. As safety can be affected
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by many events or situations, the model may need additional training that is

typical of a targeted dataset.

• New interactive learning techniques: We will research alternative inter-

active methods for training relevance classifiers. Our current framework relies

on users to individually inspect and (re)label data, which can be burdensome.

One potential alternative is allowing users to label data subsets through learned

high-level concept representations.
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[1] Maŕıa Mart́ınez-Rojas, Maŕıa Del Carmen Pardo-Ferreira, and Juan Carlos
Rubio-Romero. Twitter as a tool for the management and analysis of emergency
situations: A systematic literature review. International Journal of Information
Management, 43:196–208, 2018.

[2] Luke S. Snyder, Morteza Karimzadeh, Christina Stober, and David S. Ebert.
Situational awareness enhanced through social media analytics: A survey of
first responders. In 2019 IEEE International Symposium on Technologies for
Homeland Security (HST), 2019.

[3] Jens A de Bruijn, Hans de Moel, Brenden Jongman, Jurjen Wagemaker, and
Jeroen CJH Aerts. Taggs: Grouping tweets to improve global geoparsing for
disaster response. Journal of Geovisualization and Spatial Analysis, 2(1):2, 2018.

[4] Kisung Lee, Raghu Ganti, Mudhakar Srivatsa, and Prasant Mohapatra. Spatio-
temporal provenance: Identifying location information from unstructured text.
In 2013 IEEE International Conference on Pervasive Computing and Commu-
nications Workshops, 2013.

[5] Tien Huu Do, Duc Minh Nguyen, Evaggelia Tsiligianni, Bruno Cornelis, and
Nikos Deligiannis. Multiview deep learning for predicting twitter users’ location.
arXiv preprint arXiv:1712.08091, 2017.

[6] Abhinav Kumar and Jyoti Prakash Singh. Location reference identification from
tweets during emergencies: A deep learning approach. International Journal of
Disaster Risk Reduction, 33:365–375, 2019.

[7] Jey Han Lau, Lianhua Chi, Khoi-Nguyen Tran, and Trevor Cohn. End-to-end
network for twitter geolocation prediction and hashing. In International Joint
Conference on Natural Language Processing, 2017.

[8] Pengfei Li, Hua Lu, Nattiya Kanhabua, Sha Zhao, and Gang Pan. Location
inference for non-geotagged tweets in user timelines. IEEE Transactions on
Knowledge and Data Engineering, 31(6):1150–1165, 2019.

[9] Stuart E. Middleton, Lee Middleton, and Stefano Modafferi. Real-time crisis
mapping of natural disasters using social media. IEEE Intelligent Systems,
29(2):9–17, 2014.

[10] Luke S. Snyder, Yi-Shan Lin, Morteza Karimzadeh, Dan Goldwasser, and
David S. Ebert. Interactive learning for identifying relevant tweets to support
real-time situational awareness. IEEE Transactions on Visualization and Com-
puter Graphics, 26(1):558–568, 2020.



51

[11] Jiawei Zhang, Junghoon Chae, Chittayong Surakitbanharn, and David S Ebert.
SMART: Social media analytics and reporting toolkit. In The IEEE Workshop
on Visualization in Practice 2017, pages 1–5, 2007.

[12] Hila Becker, Mor Naaman, and Luis Gravano. Beyond trending topics: Real-
world event identification on twitter. In Proceedings of the 5th International
Conference on Weblogs and Social Media, pages 438–441, 2011.

[13] Z. Ashktorab, C. Brown, M. Nandi, and A. Culotta. Tweedr: Mining twitter
to inform disaster response. In Proceedings of the 11th International ISCRAM
Conference, pages 354–358, 2014.

[14] Hien To, Sumeet Agrawal, and Cyrus Shahabi. On identifying disaster-related
tweets: Matching-based or learning-based? In IEEE 3rd International Confer-
ence on Multimedia Big Data (BigMM), 2017.

[15] N Diakopoulos, M Naaman, and F Kivran-Swaine. Diamonds in the rough:
Social media visual analytics for journalistic inquiry. In IEEE Symposium on
Visual Analytics Science and Technology, pages 115–122, 2010.

[16] Samujjwal Ghosh and Maunendra Sankar Desarkar. Class specific TF-IDF boost-
ing for short-text classification: Application to short-texts generated during dis-
asters. In Companion of the The Web Conference 2018 (WWW ’18), pages
1629–1637, 2018.

[17] Sarvnaz Karimi, Jie Yin, and Cecile Paris. Classifying microblogs for disasters.
In Proceedings of the 18th Australasian Document Computing Symposium, ADCS
’13, pages 26–33, 2013.

[18] Tahora H Nazer, Fred Morstatter, Harsh Dani, and Huan Liu. Finding requests
in social media for disaster relief. In 2016 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (ASONAM), pages 1410–
1413, 2016.

[19] Dat Tien Nguyen, Shafiq Joty, Muhammad Imran, Hassan Sajjad, and Prasenjit
Mitra. Applications of online deep learning for crisis response using social media
information. arXiv preprint arXiv:1610.01030, 2016.

[20] Dat Tien Nguyen, Kamela Ali Al Mannai, Shafiq Joty, Hassan Sajjad,
Muhammad Imran, and Prasenjit Mitra. Rapid classification of crisis-related
data on social networks using convolutional neural networks. arXiv preprint
arXiv:1608.03902, 2016.

[21] Koustav Rudra, Subham Ghosh, Niloy Ganguly, Pawan Goyal, and Saptarshi
Ghosh. Extracting situational information from microblogs during disaster
events: a classification-summarization approach. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management, 2015.

[22] Fujio Toriumi and Seigo Baba. Real-time tweet classification in disaster situation.
In Proceedings of the 25th International Conference Companion on World Wide
Web, pages 117–118, 2016.

[23] Tommaso Zoppi, Andrea Ceccarelli, Francesco Lo Piccolo, Paolo Lollini, Gabriele
Giunta, Vito Morreale, and Andrea Bondavalli. Labelling relevant events to
support the crisis management operator. Journal of Software: Evolution and
Process, 30(3), 2018.



52

[24] Harald Bosch, Dennis Thom, Florian Heimerl, Edwin Puttmann, Steffen Koch,
Robert Kruger, Michael Worner, and Thomas Ertl. Scatterblogs2: Real-time
monitoring of microblog messages through user-guided filtering. IEEE Transac-
tions on Visualization and Computer Graphics, 19(12):2022–2031, 2013.

[25] F Heimerl, S Koch, H Bosch, and T Ertl. Visual classifier training for text doc-
ument retrieval. IEEE Transactions on Visualization and Computer Graphics,
18(12):2839–2848, 2012.

[26] Burr Settles. Closing the loop: Fast, interactive semi-supervised annotation with
queries on features and instances. In Proceedings of the conference on empirical
methods in natural language processing (EMNLP), pages 1467–1478, 2011.

[27] Jiawei Zhang, Shehzad Afzal, Dallas Breunig, Jing Xia, Jieqiong Zhao, Isaac
Sheeley, Joseph Christopher, David S Ebert, Chen Guo, Shang Xu, Jim Yu,
Qiaoying Wang, Chen Wang, Zhenyu Qian, and Yingjie Chen. Real-time identi-
fication and monitoring of abnormal events based on microblog and emergency
call data using SMART. In 2014 IEEE Conference on Visual Analytics Science
and Technology (VAST), pages 393–394, 2014.

[28] Catherine D’Ignazio, Rahul Bhargava, Ethan Zuckerman, and Luisa Beck. Cliff-
clavin: Determining geographic focus for news. NewsKDD: Data Science for
News Publishing, 2014.

[29] Morteza Karimzadeh, Scott Pezanowski, Alan M. MacEachren, and Jan O.
Wallgrün. GeoTxt: A scalable geoparsing system for unstructured text geoloca-
tion. Transactions in GIS, 23(1):118–136, 2019.
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