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ABSTRACT 

High-throughput phenotyping using high spatial, spectral, and temporal resolution remote 

sensing (RS) data has become a critical part of the plant breeding chain focused on reducing the 

time and cost of the selection process for the “best” genotypes with respect to the trait(s) of interest. 

In this study, the potential of accurate and reliable sorghum biomass prediction using hyperspectral 

and LiDAR data acquired by sensors mounted on UAV platforms is investigated. Experiments 

comprised multiple varieties of grain and forage sorghum, including some photoperiod sensitive 

varieties, providing an opportunity to evaluate a wide range of genotypes and phenotypes.  

Feature extraction is investigated, where various novel features, as well as traditional features, 

are extracted directly from the hyperspectral imagery and LiDAR point cloud data and input to 

classical machine learning (ML) regression based models. Predictive models are developed for 

multiple experiments conducted during the 2017, 2018, and 2019 growing seasons at the 

Agronomy Center for Research and Education (ACRE) at Purdue University. The impact of the 

regression method, data source, timing of RS and field-based biomass reference data acquisition, 

and number of samples on the prediction results are investigated. R2 values for end-of-season 

biomass ranged from 0.64 to 0.89 for different experiments when features from all the data sources 

were included. Using geometric based features derived from the LiDAR point cloud and the 

chemistry-based features extracted from hyperspectral data provided the most accurate predictions. 

The analysis of variance (ANOVA) of the accuracies of the predictive models showed that both 

the data source and regression method are important factors for a reliable prediction; however, the 

data source was more important with 69% significance, versus 28% significance for the regression 

method. The characteristics of the experiments, including the number of samples and the type of 

sorghum genotypes in the experiment also impacted prediction accuracy.  

Including the genomic information and weather data in the “multi-year” predictive models 

is also investigated for prediction of the end of season biomass. Models based on one and two 

years of data are used to predict the biomass yield for the future years. The results show the high 

potential of the models for biomass and biomass rank predictions. While models developed using 

one year of data are able to predict biomass rank, using two years of data resulted in more accurate 

models, especially when RS data, which encode the environmental variation, are included. Also, 

the possibility of developing predictive models using the RS data collected until mid-season, rather 
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than the full season, is investigated. The results show that using the RS data until 60 days after 

sowing (DAS) in the models can predict the rank of biomass with R2 values of around 0.65-0.70. 

This not only reduces the time required for phenotyping by avoiding the manual sampling process, 

but also decreases the time and the cost of the RS data collections and the associated challenges of 

time-consuming processing and analysis of large data sets, and particularly for hyperspectral 

imaging data. 

In addition to extracting features from the hyperspectral and LiDAR data and developing 

classical ML based predictive models, supervised and unsupervised feature learning based on fully 

connected, convolutional, and recurrent neural networks is also investigated. For hyperspectral 

data, supervised feature extraction provides more accurate predictions, while the features extracted 

from LiDAR data in an unsupervised training yield more accurate prediction.   

Predictive models based on Recurrent Neural Networks (RNNs) are designed and 

implemented to accommodate high dimensional, multi-modal, multi-temporal data. RS data and 

weather data are incorporated in the RNN models. Results from multiple experiments focused on 

high throughput phenotyping of sorghum for biomass predictions are provided and evaluated. 

Using proposed RNNs for training on one experiment and predicting biomass for other 

experiments with different types of sorghum varieties illustrates the potential of the network for 

biomass prediction, and the challenges relative to small sample sizes, including weather and 

sensitivity to the associated ground reference information. 
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 INTRODUCTION 

1.1 Remote Sensing Predictive Models 

Remote Sensing (RS) data are being used in a wide variety of scientific fields and 

applications, necessitating advances in sensors and capability for analysis. Classification and 

regression modeling are the two most frequent types of analysis currently being utilized for remote 

sensing image data. In classification, the goal is to assign a label to each pixel via supervised or 

unsupervised algorithms. In regression modeling, however, reference or “ground truth” data are 

used in conjunction with RS data to estimate or predict a variable(s) of interest. This study focuses 

both on the estimation of current season phenotypes and their prediction later in the season using 

multi-temporal multi-modal remote sensing data. 

1.2 Remote Sensing Based Phenotyping 

With the advances in science and technology, it has become possible to generate thousands 

of genotypes of a plant and produce the seeds at low cost (Davey et al., 2011). To evaluate the 

performance of the plant varieties, numerous physical and agronomic traits are measured in the 

field during the growing season (phenotyping), and the varieties with the most desirable traits are 

selected. Planting thousands of varieties of a crop and measuring dozens of phenotypic traits for 

each would be impossibly time-consuming, laborious, and expensive. Thus, breeders plant only a 

subset of the varieties and collect the required measurements multiple times during the growing 

season to develop predictive models which can then be used to infer traits for the broader 

population. Field-based phenotyping is still required, which is very expensive and time-consuming 

with traditional methods, even for a small field. Further, some of the traits such as biomass, 

nitrogen content, water content, and LAI can only be measured through destructive sampling. To 

monitor these traits during the growing season, a large area is required, which increases the cost 

of the breeding studies. Recently, researchers have begun to explore the use of RS data to replace 

traditional in-field phenotyping. 

Satellites and manned aircraft can provide data with high spectral resolution, but the spatial 

and temporal resolutions are inadequate for agricultural breeding plots. Remote sensing via 

Unmanned Aerial Vehicles (UAV), which is being investigated because of its capability to acquire 
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both high temporal and high spatial resolution data required for high throughput phenotyping over 

relatively limited areas, can potentially close the gap. UAVs can collect huge quantities of data 

“on demand” over experimental plots, providing opportunities for estimation and prediction of a 

wide range of agronomic traits such as water content, biomass, LAI, canopy cover, plant height 

and counts, nitrogen content, and disease. In this study, remotely sensed phenotyping of varieties 

of sorghum, with a focus on biomass prediction, is investigated using sensors on UAV platforms. 

Sorghum has attracted attention in recent years, both for its broad-based potential usage, and 

its drought and heat tolerance. The grain of some varieties is now used for human consumption 

and animal feed in developed, as well as developing countries. Recently, some varieties of 

sorghum have been developed as an energy crop that can produce reasonable amounts of ethanol. 

Sorghum has an annual growth cycle, high calorific value, and low management cost, making it 

an efficient biofuel crop (Fernandes et al., 2018). Many researchers are working on enhanced 

genotypes that are more resilient in unfavorable environmental conditions, and/or varieties that 

can produce more energy-rich plant material (biomass). Thus, it is important to predict the final 

biomass of the planted varieties as soon as possible, so that genotype selection can be accomplished 

in a shorter period of time, and thus, less expensively. 

The goal of this study is to develop a framework for remote phenotyping of plants using 

three types of UAV-based data; hyperspectral, and LiDAR. Many phenotypic traits that can be 

estimated and/or predicted, but biomass is the focus of this study because it is indicative of both 

the crop condition and the quantity of ethanol that can be produced.  

1.3 Research Challenges for Remote Sensing Based Phenotyping 

1.3.1 Complex Relationship Between Biomass and Remote Sensing Data 

The assumption is that the remote sensing data products, for example, height data or canopy 

cover estimates from LiDAR, are related to the traits such as biomass or LAI. Intuitively, the taller 

the plants - the greater the biomass, or the more extensive the canopy cover - the more the leaves 

and thus, a higher the LAI. However, the relationship between the traits and the remote sensing 

data is often more complex than for height. For example, increasing (or decreasing) the value of a 

red channel of hyperspectral data does not imply that a directly measurable change is occurring 

relative to the biomass. Also, for some features, the relationship between the traits and the remote 
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sensing data can be very weak. Finally, the relationships between the features and traits vary during 

the growing season. This is discussed in greater detail in the following sections. 

1.3.2 Limited Number of Samples 

The key to the success for machine learning algorithms is their ability to learn the solution 

to the problem by analyzing the sample, or ground reference data. In general, the greater the 

number of the samples, the better the training of the algorithm, and as a result, the more accurate 

the classification/prediction. As a rule of thumb, itis recommended to have around 10 × d (d = 

number of the features) sample data. From the hyperspectral, LiDAR, and RGB data, hundreds of 

features can be extracted. However, as the output samples in this study are obtained by destructive 

sampling in the field, which is very time-consuming and expensive, the number of samples for the 

study is much fewer than recommended. The sample data for different fields where experiments 

were conducted in 2017-19 are described in Section 2. Developing systems of algorithms that can 

leverage the limited number of samples, reducing RS data dimensionality, and data augmentation 

are possible solutions to this issue. 

1.3.3 High Variability Within the Samples 

Another challenge in this study is that sorghum varieties in some of the fields are very 

different from others, which creates challenges for the machine learning algorithms to learn 

patterns in the data, and further reduces the available quantity of data from a given pattern. A key 

to the success here is to extract the appropriate features that are predictors of the biomass (or any 

other trait of interest) so they can support the machine learning algorithms. 

1.4 Organization of the Dissertation 

The dissertation is organized such that each chapter represents an individual paper 

associated with a specific investigation.  As such, there is some common material associated with 

the description of the experiments.  In Chapter 2, feature extraction from hyperspectral and LiDAR 

data is investigated, then the extracted features are used in traditional regression models for 

biomass prediction, and results are presented and discussed. The impact of the regression method, 
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data source, timing of RS and field-based biomass reference data acquisition, and the number of 

samples on the prediction results are investigated.  

In Chapter 3, adding the genomic information and weather data to the “multi-year” 

predictive models is investigated for prediction of the end of season biomass. Models based on 

one year and two years of data are used to predict the biomass yield for the future years. Also, the 

possibility of developing predictive models using the RS data collected until mid-season, rather 

than the full season, is investigated.  

In Chapter 4, supervised and unsupervised feature learning based on fully connected, 

convolutional, and recurrent neural networks are also investigated. Predictive models based on 

Recurrent Neural Networks (RNNs) are designed and implemented to accommodate high 

dimensional, multi-modal, multi-temporal data. RS data and weather data are incorporated in RNN 

models. 

Chapter 5 provides a summary discussion of the results from the experiments detailed in 

the individual chapters and a critical review of the results of the conducted experiments as well as 

recommendations for the follow-on research. 
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 MULTI-TEMPORAL PREDICTIVE MODELLING OF SORGHUM 

BIOMASS USING UAV-BASED HYPERSPECTRAL AND LIDAR 

DATA 

2.1 Abstract 

High-throughput phenotyping using high spatial, spectral, and temporal resolution remote 

sensing (RS) data has become a critical part of the plant breeding chain focused on reducing the 

time and cost of the selection process for the “best” genotypes with respect to the trait(s) of interest. 

In this paper, the potential of accurate and reliable sorghum biomass prediction using visible and 

near infrared (VNIR) and short-wave infrared (SWIR) hyperspectral data as well as light detection 

and ranging (LiDAR) data acquired by sensors mounted on UAV platforms is investigated. 

Predictive models are developed using three regression methods for nine experiments conducted 

during the 2017 and 2018 growing seasons at the Agronomy Center for Research and Education 

(ACRE) at Purdue University. Experiments comprised multiple varieties of grain and forage 

sorghum, including some photoperiod sensitive varieties, providing an opportunity to evaluate a 

wide range of genotypes and phenotypes. Feature extraction is investigated, where various novel 

features, as well as traditional features, are extracted from the hyperspectral imagery and LiDAR 

point cloud data. The impact of the regression method, data source, timing of RS and field-based 

biomass reference data acquisition, and the number of samples on the prediction results are 

investigated. R2 values for end-of-season biomass ranged from 0.64 to 0.89 for different 

experiments when features from all the data sources were included. Using geometric based features 

derived from the LiDAR point cloud and the chemistry-based features extracted from 

hyperspectral data provided the most accurate predictions. Evaluation of the impact of the time of 

data acquisition during the growing season on the prediction results indicated that although the 

most accurate and reliable end of season predictions were achieved using remotely sensed data 

from mid-season to end-of-season, predictions in mid-season provided adequate results to 

differentiate between promising varieties for selection. The analysis of variance (ANOVA) of the 

accuracies of the predictive models showed that both the data source and regression method are 

important factors for a reliable prediction; however, the data source was more important with 69% 

significance, versus 28% significance for the regression method. The characteristics of the 
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experiments, including the number of samples and the type of sorghum genotypes in the 

experiment also impacted prediction accuracy. 

2.2 Introduction 

Biomass yield is an important trait of biofuel crops such as sorghum, as it is a key factor in 

determining the amount of biofuel that can be produced. With recent advances in science and 

technology surrounding genotyping, it has become possible to create numerous genotypes of a 

plant (Davey et al., 2011) and then select the genotypes with the maximum biomass production. 

However, traditional methods of biomass measurement involving labor-intensive and time-

consuming destructive sampling do not meet the requirements for timely evaluation of the 

genotypes in large-scale breeding programs. Recently, remote sensing (RS) data have been 

explored for estimation of many phenotypic traits, including Leaf Area Index (LAI) (Liang et al., 

2015; Potgieter et al., 2017), canopy height (Chu et al., 2018; Pugh et al., 2018), nitrogen content 

(Maimaitijiang et al., 2017), and biomass (Eitel et al., 2016; Jiating Li et al., 2018; Tattaris et al., 

2016) to replace traditional in-field phenotyping.  

Sensors on satellites and manned aircraft can provide data with high spectral resolution, but 

the spatial and temporal resolutions are inadequate for agricultural breeding programs that are 

based on small plots. Remote sensing via Unmanned Aerial Vehicles (UAV) is currently being 

investigated as a means to close the gap because of its capability to acquire the high temporal and 

spatial resolution data required for high throughput phenotyping over relatively limited areas. 

UAVs can collect huge quantities of data “on demand”, providing opportunities for estimation and 

prediction of a wide range of agronomic traits (S. B. Duan et al., 2014; T. Duan et al., 2017; 

Gouache et al., 2016; Lewis et al., 2017; Masjedi et al., 2018; Stanton et al., 2017; Z. Zhang et al., 

2017).  

In this study, remotely sensed biomass prediction of varieties of sorghum is investigated 

using the data acquired by RGB, hyperspectral and LiDAR sensors mounted on UAV platforms. 

Sorghum has attracted attention in recent years, both for its broad-based potential usage and its 

drought and heat tolerance. The grain of some varieties is now used for human consumption and 

animal feed in developed, as well as developing countries. Recently, some varieties of sorghum 

have been developed as an energy crop that can produce reasonable quantities of ethanol 

(Fernandes et al., 2018). Sorghum has an annual growth cycle, high calorific value, and low 
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management cost (Fernandes et al., 2018), making it an efficient biofuel crop. Many studies focus 

on developing enhanced genotypes that can produce more energy-rich plant material (biomass) 

(Ogbaga et al., 2019). It is important for these breeding studies to predict the end-of-season yield 

biomass of the planted varieties as soon as possible in the growing season so that genotype 

selection can be accomplished in a shorter period of time, and thus, less expensively.  

Researchers have developed predictive models based on various remote sensing inputs and 

modeling approaches. Foster et al. (Foster et al., 2017) compared the performance of Partial Least 

Squares Regression (PLSR) and linear regression models in estimating biomass of a high-biomass 

sorghum variety. They concluded that PLSR can provide more accurate predictions using the 

normalized difference vegetation index (NDVI) calculated from field spectrometer measurements 

collected in July (three months after sowing). PLSR provided the best results in (Yue et al., 2018) 

as well, where eight regression techniques for wheat biomass estimation were investigated. 

Fassnacht et al. (2014) investigated the importance of the prediction method, as well as sample 

size and sensor type for biomass predictions, with the best results being obtained with a Random 

Forest (RF) model. Using airborne LiDAR and spaceborne hyperspectral data, the authors 

concluded that for their experiments, the sensor type was the most important factor in the 

prediction accuracy (Fassnacht et al., 2014). Multiple studies investigated biomass prediction 

using LiDAR data (Eitel et al., 2016; McGlinchy et al., 2014; Phua et al., 2017; Shao et al., 2018; 

Vaglio Laurin et al., 2016; Vastaranta et al., 2014; K. Zhao et al., 2018). Some studies have shown 

that fusion of airborne-based hyperspectral and LiDAR data provided better results than those 

achieved using data from either individual sensor type (Vaglio Laurin et al., 2014). Most of the 

studies have developed predictive models for a limited number of experiments, each including 

only a few genotypes of a crop, although in breeding programs, hundreds or thousands of 

genotypes with high variability in biomass, as well as spectral and structural characteristics, are 

included in each experiment. In this study, predictive models are developed for nine dist inct 

experimental trials conducted over two years and include thousands of genotypes of sorghum.   

Biomass prediction based on data analytics models and RS data is challenging for multiple 

reasons, including 1) the complex relationship between biomass and RS data, 2) limited number 

of ground reference samples for developing and validating models for an experiment, and 3) high 

variability between the samples in an experiment. The relationships between the RS-based features 

and traits vary across the growing season. A key to good predictive models is to extract the 
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appropriate features that are predictors of the trait of interest so they can support the machine 

learning algorithms. A small number of samples relative to the number of features (and thereby 

potentially the number of parameters to estimate) is a critical issue for remote sensing-based 

phenotyping, and reference sampling data in agricultural fields is time-consuming and expensive 

to collect. For this study, the diversity of the sorghum varieties and their associated physical 

characteristics are particularly challenging for machine learning algorithms, which typically learn 

from patterns. Developing systems of algorithms that can leverage the limited number of samples, 

reduce the dimensionality of RS data, and incorporate data augmentation approaches are possible 

solutions to this issue. 

In this study, the objective is to provide a robust framework for predicting sorghum biomass 

which is suitable for plant breeding research and industrial applications. To accomplish this, we: 

1) evaluate multiple prediction models, 2) investigate the impact of the timing of the RS data 

acquisition on prediction relative to days since sowing, and 3) evaluate the importance of the 

features extracted from the data. 

2.3 Materials and Methods 

2.3.1 Ground Reference Data 

The field experiments were conducted over two years in approximately 2.8 ha sorghum 

breeding trials in different fields at the Purdue University Agronomy Center for Research and 

Education (ACRE) farm. There were four distinct trials in 2017: the hybrid calibration (HyCal-

17), the inbred calibration (InCal-17), the sorghum biodiversity (SbDiv-17), and the sorghum 

bioenergy (SbBAP-17) panels. In 2018, the field experiments consisted of five distinct trials: the 

hybrid calibration (HyCal-18), the inbred calibration (InCal-18), the inbred calibration test cross 

(InCalTc-18), the sorghum biodiversity test cross (SbDivTc-18), and the sorghum nitrogen test 

(SNitTs-18). The experiments were conducted using randomized complete block designs and 

planted at 220,000 plants per ha. Details of the experiment trials are provided in Table 2.1. For the 

HyCal-17 and HyCal-18 panels, biomass data were destructively collected multiple times during 

each growing season. For all other experiments, the biomass data were collected only once at the 

end of each growing season using a two-row combine harvester. Table 2.2 lists the commercial 

hybrid varieties planted in the HyCal-17 and HyCal-18 experiments. 
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Table 2.1. Experiment designs for the 2017 and 2018 growing seasons. 

Trial Year Genotype 
# of  

plots 

# of 

genotypes 

Sowing 

Date 

Harvest 

Date 
Available Biomass Data 

HyCal-17 2017 Hybrid 72 18 May 16 Sep 27 6/27, 7/17, 7/31, 8/08, 9/27 

InCal-17 2017 Inbred 120 60 May 16 Sep 27 9/27 

SbBAP-17 2017 Inbred 760 350 May 16 Sep 28 9/28 

SbDiv-17 2017 Inbred 1800 840 May 17 Nov 9 11/09 

HyCal-18 2018 Hybrid 72 18 May 8 Aug 9 6/27, 7/12, 8/09 

InCal-18 2018 Inbred 108 54 May 8 Aug 9 8/09 

InCalTc-18 2018 Hybrid 108 54 May 8 Aug 6 8/06 

SbDivTc-18 2018 Hybrid 1260 630 May 8 Aug 2 8/2 and 8/14 

SNitTs-18 2018 Inbred 112 4 June 4 Oct 2 10/02 

 

Table 2.2. Commercial varieties planted in the hybrid calibration panel. 

Variety  Variety name Sorghum Type Company 

1 849F Forage  Pioneer 

2 877F Forage Pioneer 

3 327x36 BMR Forage Richardson 

4 341x10 Forage Richardson 

5 366x58 Food grain Richardson 

6 374x66 Food grain Richardson 
7 392x105 BMR Forage Richardson 

8 400x38 BMR Sudangrass Richardson 

9 400x82 BMR Sudangrass Richardson 

10 HIKANE II Forage Sorghum Partners 

11 NK300 Forage Sorghum Partners 

12 NK5418 Grain Sorghum Partners 

13 NK8416 Grain Sorghum Partners 

14 SS405 Forage Sorghum Partners 

15 Sordan 79 Forage Sorghum Partners 

16 Sordan Headless Forage (photoperiod sensitive) Sorghum Partners 

17 Trudan 8 Forage Sorghum Partners 

18 Trudan Headless Forage (photoperiod sensitive) Sorghum Partners 

 

Figure 2.1 shows the distribution of the biomass values for the experimental trials in the 

2017 and 2018 growing seasons. Figure 2.1a and b show the fresh biomass distribution of the 

HyCal-17 and HyCal-18 panels, respectively, during the growing seasons. In 2017, the biomass 

data on June 27th, July 17th, and August 7th were collected by hand harvesting one meter sections 
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of three rows from each plot. Harvesting for all other dates was performed with a two-row combine 

harvester. These figures indicate that the genotypes have similar biomass early in the season, and 

they become more different at the end of the season. Figure 2.1c shows the distribution of the end 

of the season biomass of the nine trials over both years; 1) the InCal-17 and SbDiv-17 are similar, 

2) the HyCal-17 and HyCal-18 have similar shapes but different ranges of values, 3) SbDivTc-18 

and HyCal-17 are similar in both shape and range of values. 

 

  

(a) HyCal panel in 2017 (b) HyCal panel in 2018 

 

(c) The nine trails in 2017 and 2018 

Figure 2.1. Distribution of the fresh biomass data in the nine trails in the 2017 and 2018 growing seasons. 
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2.3.2 Remote Sensing Data 

This study includes RGB, hyperspectral, and LiDAR remote sensing data collected by custom 

designed UAV platforms. All remote sensing data acquisition platforms were flown with Global 

Navigation Satellite System/Inertial Navigation System (GNSS/INS) units for direct 

georeferencing. RGB data for this study were collected using a Sony Alpha ILCE-7R RGB camera 

with a Sony 35mm lens. The Sony Alpha 7R features a full-frame 36.4MP sensor delivering high-

resolution UAV-based aerial imagery. LiDAR data were collected with a Velodyne VLP-16 3D 

LiDAR sensor operating in the strongest return mode and 600 rotations per minute (RPM). The 

VLP-16 is a 16 beam LiDAR unit with a 360-degree horizontal FOV, and a maximum range of 

100 m. Both the RGB camera and the VLP-16 sensor are mounted on a DJI Matrice 600 Pro 

(M600P) platform. Spatial and temporal system calibration for the datasets used in this study were 

conducted using the approaches described in (Ravi et al., 2018) and  (LaForest et al., 2019), 

respectively. Also, the georeferenced orthomosaics were generated using the structure from motion 

strategies introduced in (Hasheminasab et al., 2020; He et al., 2018). 

Visible Near Infrared (VNIR) and Short Wave Infrared (SWIR) hyperspectral data were 

collected with two Headwall Photonics push-broom scanners. The VNIR data were acquired by a 

Nano-Hyperspec imaging sensor in 272 spectral bands at 2.2 nm/band from 400 nm to 1000 nm 

with 640 spatial channels at 7.4 µm/pixel. In 2017, the sensor was flown at an altitude of 60 m 

with a 12 mm Schneider lens, resulting in a Ground Sampling Distance (GSD) of ~4 cm. An 8 mm 

lens was used in 2018, and the flying height was 40 m to maintain the GSD at ~4 cm. SWIR data 

were collected with a Headwall Photonics Micro-Hyperspec, a hyperspectral pushbroom scanner, 

which acquires166 spectral bands at 10 nm/band from 900 nm to 2500 nm. The Micro-Hyperspec 

has 384 spatial channels at 24 µm/pixel. In both years, the sensor was flown with a 25 mm lens at 

40 m, resulting in approximately a 4 cm GSD. In 2018, the VNIR and SWIR sensors were 

integrated and flown together on a single UAV platform. A rigorous boresight calibration process 

was applied (Habib et al., 2018), yielding simultaneously collected co-aligned VNIR and SWIR 

data. All the hyperspectral data were converted to reflectance using the empirical line method to 

relate the spectra collected from the UAV to data acquired by an SVC 1024i field spectrometer 

over the calibration targets placed in the field for each acquisition. Table 2.3 lists the data acquired 

by the sensors in 2017 and 2018. 
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Table 2.3. Remote Sensing Data Sets  

Year Data Type Field Dates 

2017 

RGB and 

LiDAR 

InCal, HyCal, SbDiv, 

and SbBAP 
6/16, 6/216/27, 7/5,7/11, 7/14, 7/17, 7/25, 8/2, 8/8, 8/23, 8/30 

VNIR 

HyCal and InCal 6/21, 6/28, 7/4, 7/12, 7/18, 7/25, 8/8, 8/23, 8/30, 9/10, 9/15 

SbDiv 6/21, 6/27, 7/4, 7/18, 7/25, 7/30, 8/8, 8/14, 8/23, 9/10, 9/24, 9/30 

SbBAP 6/21, 6/27, 7/4, 7/18, 7/25, 7/30, 8/8, 8/14, 8/23, 9/10, 9/24 

SWIR 

InCal and HyCal 8/23, 8/30, 9/10, 9/15 

SbDiv 8/2, 8/8, 8/14, 8/23, 8/30, 9/10, 9/30 

SbBAP 8/2, 8/8, 8/14, 8/23, 8/30, 9/10 

2018 

RGB and 

LiDAR 

HyCal, InCal, InCalTc, 

and SbDivTc 
5/22, 5/29, 6/4, 6/11, 6/20, 6/27, 7/2, 7/11, 7/18, 7/23, 8/1, 8/6 

SNitTs 6/28, 7/3, 7/11, 7/17, 7/23, 8/1, 8/6, 8/16, 8/25, 9/5, 9/19 

VNIR and 

SWIR 

HyCal, InCal, InCalTc  6/4, 6/8, 6/14, 6/29, 7/3, 7/6, 7/11, 7/18, 7/25, 8/2, 8/9 

SbDivTc 6/4, 6/8, 6/14, 6/29, 7/3, 7/6, 7/10, 7/11, 7/25, 8/2 

SNitTs 6/28, 7/3, 7/11, 7/18, 7/25, 8/2, 8/13, 8/28, 9/4, 9/12, 9/18 

2.3.3 Feature Extraction 

As discussed earlier, it is necessary to extract features that are related to the specific trait of 

interest and are preferably not redundant. In this study, both traditional and new candidate features 

focused on the relevance to biomass prediction were extracted from rows 2 and 3 of the 4- or 12-

row plots to minimize the border effect. 

Hyperspectral-Based Features 

Spectral Reflectance 

From the HSI data, the average reflectance values of the plots were calculated from rows 2 

and 3 of each plot after masking the shadow and soil pixels. 

Vegetation Indices 

Vegetation Indices (VIs) obtained from HSI data have been widely used in different 

applications, as they are computationally simple and representative of the relevant chemically 

interpretable absorption and reflectance features in the spectrum. In this study, 13 vegetation 

indices, listed in Table 2.4 were extracted and used in the predictive models. 
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Table 2.4. Vegetation indices extracted from each HSI spectrum 

Data 

Type 
Index Name Formulation References 

VNIR 

NDVI (R750-R705) / (R750+R705) 
(A. Gitelson & Merzlyak, 

1994) 

NDCI (R762-R527) / (R762+R527) (Marshak et al., 2000) 

Carte1 R695 / R420 (Carter, 1994) 

SR800,680 R800 / R680 (Sims & Gamon, 2002) 

SR675,700 R675 / R700 
(A. A. Gitelson et al., 

1996) 

SR700,670 R700 / R670 (McMurtrey et al., 1994) 

OSAVI (1+0.16) (R800-R670) / (R800+R670+0.16) (Rondeaux et al., 1996) 

MCARI [(R700-R670)-0.2(R700-R550)](R700 / R670) (Daughtry et al., 2000) 

REP 700+40[(R670+R780) / 2-R700)]/(R740−R700)) (Clevers, 1994) 

PRI (R531-R570) / (R531+R570) (Gamon et al., 192 C.E.) 

SWIR 

NDWI (R860-R1240) / (R860+R1240) (Gao, 1996) 

NDLI [log(1 / R1754) − log(1 / R1680)] / [log(1 / R1754) + log(1 / R1680)] (Serrano et al., 2002) 

NDNI [log(1 / R1510) − log(1 / R1680)] / [log(1 / R1510) + log(1 / R1680)] (Serrano et al., 2002) 

Integration Features 

NIR bands are particularly important for representing plant physiology, but are subject to 

the time during the growing season and environmental conditions. The area under the spectral 

curve for a given range from λa to λb is defined as 𝐼𝑛𝑡𝑔(𝜆𝑎 , 𝜆𝑏) = ∫ 𝑆(𝜆)𝑑𝜆
𝜆𝑏

𝜆𝑎
, where 𝑆(𝜆) is the 

reflectance at 𝜆 nm. Using different ranges of spectral values, six features were extracted from 

each HSI spectrum as listed in Table 2.5. 

 

Table 2.5. Integration features extracted from each HSI spectrum 

Data Type Feature Name λa λb 

VNIR 

Intg_rededge 685 745 

Intg_NIR1 770 910 

Intg_NIR2 910 1000 

SWIR 

Intg_SWIR_r1 920 1353 

Intg_SWIR_r2 1430 1800 

Intg_SWIR_r3 1952 2385 
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Derivative Features 

The spectral derivatives, which quantify slope, curvature, and higher-order aspects of 

reflectance spectra, can be useful by revealing spectral features that may not be apparent in 

reflectance data alone (Thorp et al., 2017). For example, the “red-edge” position (between 680 nm 

and 750 nm) in crop reflectance data can be easily identified in the derivative spectra, and has been 

related to crop biomass (Demetriades-Shah et al., 1990). Feng et al. analyzed 20 spectral derivative 

features near the red edge area to estimate wheat leaf nitrogen concentration (Feng et al., 2014). 

In this study, the polished spectra were calculated using a Savitzky–Golay filter (Savitzky & Golay, 

1964), then the first derivative (FDR) and second derivative (SDR) of the spectra were extracted. 

Figure 2.2 shows the spectra, FDR, and SDR of two sorghum varieties in the HyCal-18 panel on 

Aug 2nd, 2018. From FDR and SDR, 11 features were extracted and used in the additional analysis 

as described in Table 2.6. These features were selected at wavelengths where spectra of the 

varieties differed, and were also uncorrelated. 

 

 

Figure 2.2. Example spectra, FDR, and SDR of two sorghum varieties in the HyCal-18 panel on Aug 2nd, 2018. 
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Table 2.6. Derivative features were extracted from each first derivative (FDR) and second derivative (SDR) 

spectrum 

Data Type Feature Name Description 

VNIR 

FDR_slope 
slope of the line that passes through the minimum of FDR and the maximum of 

FDR in 660-690 nm range 

FDR_min minimum of FDR 

FDR_intg_ NIR1 integration of FDR in bands between 670 and 780 nm 

FDR_intg_ NIR2 integration of FDR in bands between 910 and 1000 nm 

SDR_slope_rededge slope of the line passing through the maximum and the minimum of SDR 

SDR_intg integration of SDR in all bands 

SWIR 

FDR_slope_r1 
slope of the line that passes through the maximum of FDR in 1000-1050 nm 

range and the minimum of FDR in 1100-1200 nm range  

FDR_slope_r2 
slope of the line that passes through the maximum of FDR in 1475-1525 nm 

range and the minimum of FDR in 1675-1725 nm range  

FDR_slope_r3 
slope of the line that passes through the maximum of FDR in 2000-2050 nm 

range and the minimum of FDR in 2200-2300 nm range 

FDR_intg-r1 integration of FDR in bands between 920 and 1353 nm 

SDR_ slope_r1 
slope of the line that passes through the maximum of SDR in 1100-1200 nm 

range and the minimum of SDR in 1000-1100 nm range  

LiDAR-based Features 

The 3D structural characteristics of the plants in a plot can be described using various 

features extracted from LiDAR data.  The Digital Terrain Model (DTM) derived from UAV-based 

LiDAR point clouds of the fields, which represents the bare earth height information, was derived 

using LiDAR data acquired before the emergence of the plants in each field, and assumed to be 

constant throughout the growing season. The height of points in the point cloud was estimated by 

subtracting the DTM from the “z” coordinate of each point. Then, the following features were 

extracted from the point cloud of each plot:  

Height Percentile   

To capture the vertical distribution of the LiDAR points in each plot, the 30th, 50th, 75th, 

90th, and 95th percentile height values from the point cloud of each plot were calculated. 
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Canopy Volume  

To estimate volume related characteristics of the canopy in each plot, a grid with cells of size 8 × 

8 cm was assigned to each plot, and then the associated height was calculated from the points 

located in each cell, multiplied by the size of the cell to estimate the volume of the canopy within 

each cell. The aggregate “volume” in each plot is referred to as the volume of the vegetation within 

a plot. The height of each cell in this study was calculated as the average of the height of the lowest 

point and the height of the highest point in each cell. 

Canopy Cover 

Canopy cover can be estimated from LiDAR data as the ratio of above-ground points (or, canopy 

points) to the total number of LiDAR points in a given area. The following approach was used in 

this study for canopy cover estimation for each plot. First, the field is divided into grid cells of a 

user-defined dimensions (8 × 8 cm in this study, consistent with the canopy volume calculation). 

Then, for each grid cell, the LiDAR points are split into two groups, canopy points and bare earth 

based on their height using a user-defined threshold. The points above the threshold are considered 

as canopy points. The canopy cover is estimated as the ratio of the number of canopy points to the 

total number of LiDAR points in each cell. The average of the canopy cover estimated for the cells 

located in each plot is assigned as the canopy cover for that plot. In this study, candidate threshold 

values were 0.1, 0.2, 0.3, 0.4, 0.5, and 0.75 multiplied by the 95th percentile height of each plot, 

resulting in six height-dependent canopy cover related features. 

Height Statistics 

The spatial distribution of the height of the LiDAR points in each plot can also be represented 

using statistical moments of the distribution. These statistics can also be included as the input 

features for predictive models. 

2.3.4 Regression-Based Modeling Approaches 

Common regression-based approaches such as Partial Least Squares Regression (PLSR), 

Support Vector Regression (SVR), and Random Forests (RF) are widely utilized to build 

predictive models with remote sensing based inputs. PLSR reduces a potentially large number of 
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measured collinear input variables to a few uncorrelated latent variables while seeking to explain 

the maximum multi-dimensional variance of the dependent variable via a linear model. PLSR has 

been used by researchers for developing predictive models to estimate leaf biochemical and 

biophysical properties (Asner & Martin, 2008), chlorophyll content (Y. R. Zhao et al., 2016), 

carotenoid content (Féret et al., 2011), relative water content (Ullah et al., 2014), protein, lignin, 

and cellulose (Thulin et al., 2014), leaf nitrogen content (Ecarnot et al., 2013), LAI (X. Li et al., 

2014), and biomass (Vaglio Laurin et al., 2016). 

SVR is a supervised non-parametric regression technique, and therefore, no assumptions 

regarding the underlying data model are required. SVR transforms the original feature space into 

a higher dimensional space (T. Zhang, 2001), with the goal of finding a hyperplane to predict the 

training data set. The optimal values of the kernel function parameters were obtained in this study 

by a general k-fold cross-validation in a grid search. 

Random Forest (RF) modeling is an ensemble learning technique which uses a large set of 

classification and regression trees (CART) to make a prediction (Breiman, 2001). In random forest 

regression, each tree is built by randomly choosing a set of variables and a subset of training 

samples with replacement. The selected samples are used for training, and the remaining 

observations are used in an internal cross-validation process to determine the performance of the 

RF model. The outputs of all trees are aggregated to produce a final prediction. A review of RF 

modeling in remote sensing applications is available in (Belgiu & Drăgu, 2016). Similar to SVR, 

the parameter optimization was accomplished by a general k-fold cross-validation in a grid search 

method. 

2.4 Results and Discussion 

2.4.1 Data Screening 

Time Series of Biomass Data 

In the 2017 and 2018 growing seasons, the destructive biomass data were collected multiple 

times (approximately every month) from the Hybrid calibration panels. Figure 2.3 shows the fresh 

weight and moisture content of the 18 sorghum varieties planted in the HyCal-17 and HyCal-18 

experiments. The moisture content increases at the beginning of the season until it reaches its 
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maximum at 50 to 60 days after sowing. The fresh weight of the plants also increases rapidly at 

the beginning of the season, while at the end of the season, it decreases as the plants senesce. 

Among the varieties shown in Figure 2.3, those that are photoperiod sensitive (“Sordan Headless” 

and “Trudan Headless”) did not flower in the environment in which these experiments were 

conducted, and continued to add plant material until the end of the season.  

Each variety has four replicates in the Hybrid Calibration panels, providing adequate sample 

data to compare the relationship across the varieties and associated changes during the growing 

season. For each date that the biomass data were collected, an ANOVA test was conducted on the 

fresh biomass, and if it indicated variability among the varieties was highly significant, a Tukey’s 

multi-comparison test was performed. Figure 2.4 shows the results of Tukey’s pairwise multi-

comparison test (=.05) for the fresh biomass data collected in the 2017 and 2018 growing seasons. 

In general, at the beginning of each season, only a few varieties were significantly different, while 

the variability among the varieties at the end of each growing season was greater. From Figure 2.4 

it is also clear that the two photoperiod sensitive varieties were significantly different than the 

other varieties at the end of both 2017 and 2018 growing seasons. 

 

 

Figure 2.3. Ground reference data collected during the 2017 and 2018 growing seasons in the HyCal panels. For 

each variety, the data samples are sorted based on the day after sowing (DAS).  
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2017/06/27 2017/07/17 2017/07/31 2017/08/07 2017/09/27 

    

2018/06/07 2018/06/27 2018/07/12 2018/08/09 

Figure 2.4. Tukey’s pairwise multi-comparison test for the fresh biomass data collected in the 2017 and 2018 

growing seasons. Blue indicates that the two varieties are significantly different (α=0.05). 

Time Series of Remote Sensing Data 

RS spectral signatures varied both across phenotypes and during the growing season. Figure 

2.5 shows the average spectra of the 18 varieties of sorghum in the HyCal-18 panel on July 18th, 

2018 (DAS=71). On that day, the signatures of the 18 varieties were very similar in the visible 

range of the spectrum, but there was more variability in the NIR portion of spectrum that may 

reflect variation in biochemical features, including lignin type and composition associated with the 

brown-midrib (bmr) traits. Figure 2.6 shows the reflectance of one of the varieties from June to 

September which shows there is very little change in the visible range of the spectrum, and 

especially in the blue and green bands, while the reflectance in NIR bands changes from about 35% 

to 60% on average. The maximum reflectance values were observed in the range of 750-850 nm 

on July 3rd (DAS=56). One of the reasons for changes in the reflectance for sorghum is the 

appearance of the panicles, usually a few days before the flowering date (the date on which 50% 

of panicles in a plot are flowered). Field notes indicate that the flowering date for “Trudan 8” was 

July 10th, 2018. 
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Figure 2.5. Spectra of the 18 Sorghum Varieties in HyCal-18 panel on July 18th, 2018. The varieties are very similar 

in the visible range of the spectrum, but substantial variability in the NIR portion of the spectrum. 

 

Figure 2.7 shows the DSM generated from the LiDAR point cloud for the SbDivTc-18 panel 

from multiple dates in the 2018 growing season. From Figure 2.7, the plots are more similar at the 

beginning of the season, with greater differences later in the season. Figure 2.8 shows the point 

cloud data for two plots (rows 2 and 3) of the HyCal-18 experiment for multiple dates in the 2018 

growing season. “341x10” is a dwarf grain sorghum variety (Figure 2.3), while “Trudan Headless” 

is a photoperiod sensitive forage sorghum with high biomass accumulation. 

 

 

Figure 2.6. Example of reflectance of one of the varieties in the HyCal-18 experiment (“Trudan 8”) during the 2018 

growing season. 
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2018/06/11 2018/06/20 2018/07/02 2018/08/01  

Figure 2.7. The 8 cm resolution DSM for multiple dates in the 2018 growing season for the SbDivTc 

experiment. 

 

 

 
“341x10” “Trudan Headless” 

Figure 2.8. Point cloud data for rows two and three of two plots of the HyCal-18 experiment for multiple dates in the 
2018 growing season. “341x10” and “Trudan Headless” achieve a maximum height of 1.4m and 3.2m, respectively.  

 

Figure 2.9 shows the average and standard deviation of the height of all the plots for all the 

experiments in the 2017 and 2018 growing seasons extracted from the LiDAR point clouds, 

providing structural characteristics of the varieties planted in each experiment. For both HyCal-17 

and HyCal-18, the height increases as the headless varieties continue to grow until the end of the 

season. The SbBAP-17 experiment also has the maximum average height at the end of the season, 

as it includes many plots of photoperiod sensitive genotypes that do not flower. The InCal-17, 

InCal-18, and SbDiv-17 include similar inbred varieties; thus, they have a very similar average 

height (also the lowest height values among the experiments). As was noted earlier, a histogram 

of the height of the points from the LiDAR point cloud provides information about the distribution 
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of different height values in a plot. This genotype dependent information may be discriminating in 

predictive models. Figure 2.10 shows the histograms for the dwarf grain sorghum 341x10 and the 

photoperiod sensitive Trudan Headless varieties in the HyCal-17 experiment.  

The multi-temporal and cross-correlations during the growing season can also be used to 

screen for redundant features. Figure 2.11 shows the correlation matrices for the OSAVI and 

LiDAR-based canopy cover calculated using the combined data acquired over the HyCal-17 

experiment in the 2017 growing season. It illustrates the rapid changes at the beginning of the 

season, especially prior to the flowering time (second week of July for this experiment) which is 

associated with the rapid growth of the plants. From Figure 2.11, OSAVI changed more than the 

canopy cover during the early season, and end of season OSAVI values have lower inter-temporal 

correlation compared to the correlation between the canopy cover values on corresponding dates. 

 

 

  

Average height  Standard deviation of height 

Figure 2.9. Average and standard deviation of the height of all the plots in each experimental trail in the 2017 and 

2018 growing seasons. 
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Figure 2.10. Height histogram for “341x10” and “Trudan Headless” in the HyCal panel across the 2017 growing 

season. 

 

  

OSAVI Canopy Cover  

Figure 2.11.Correlation matrix calculated using all the remotely sensed hyperspectral data over the HyCal-17 

experiment on different dates in the 2017 growing season. Note that as the LiDAR and hyperspectral sensors were 

flown on separate platforms, the number of available data sets differs, and the data were not always collected on the 

same day.  

 

Similar to the last section, Figure 2.12 and Figure 2.13 show the results of the multiple-

comparison Tukey’s test for the OSAVI and volume features for the HyCal-17 and HyCal-18 

experiments on multiple dates during the 2017 and 2018 growing seasons. These results are 
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consistent with the results of Tukey’s test conducted on biomass data in the previous section, which  

greater variability among the varieties at the end of each growing season. 

 

 

     

DAS: 49 DAS: 63 DAS: 84 DAS: 106 DAS: 122 

Figure 2.12. Multiple-comparison Tukey’s test for the OSAVI index collected over the HyCal-17 experiment. Green 

shows the two varieties are significantly different from each other (α=0.05). 

 

 

     

DAS: 34 DAS: 43 DAS: 50 DAS: 71 DAS: 90 

Figure 2.13. Multiple-comparison Tukey’s test for the LiDAR-based volume collected over the HyCal-18 

experiment. Green shows the two varieties are significantly different from each other (α=0.05). 

 

Relationship between Features and Biomass 

In the last two sections, the changes in the biomass and RS data during a growing season 

were discussed. In this section, the relationship between the biomass data and RS features, as well 

as the change in their relationship during the growing season, are discussed. Figure 2.14 shows 

one feature from LiDAR (90th percentile height of the plants), one feature from hyperspectral data 

(Intg_NIR1), and the biomass data for the dwarf grain sorghum 341x10 and the photoperiod 

sensitive Trudan Headless varieties, both from the HyCal-17 and HyCal-18 experiments (one with 

low and one with high biomass values). To compare the data from the two years at the same stage 
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of growth, the data are plotted versus Growing Degree Day (GDD), a heat index calculated from 

temperature data for each day that is used to determine the growth stages of sorghum (Gerik et al., 

2003). At GDD of 2100, the biomass in 2018 for both varieties was slightly higher than in 2017 

(as noted in Table 2.1, the HyCal-18 was planted two weeks earlier than HyCal-17). The height 

data, Intg_NIR1, and biomass data follow the same pattern of change over time for each variety in 

both growing seasons. The height for the photoperiod sensitive variety (“Sordan Headless”) 

always increases while other varieties stop increasing in height around flowering time (GDD of 

1500); the Intg_NIR1 increases rapidly earlier in the season, and then gradually decreases at 

around GDD of 1500 until the end of the season; the biomass continues to increase, and especially 

for the photoperiod sensitive variety.  Inter-annual differences also inherently include the impact 

of the timing and quantity of rainfall. 

 

 

Figure 2.14. Comparison of the 90 percentile height, Intg_NIR1, and the biomass data for the dwarf grain sorghum 

341x10 and the photoperiod sensitive Trudan Headless varieties in the 2017 and 2018 growing seasons. 

 

For each feature extracted from the RS data, the simple prediction potential (R2) and 

associated changes during a season were investigated using linear regression-based models for the 

end of season biomass prediction. Robust features should be applicable across the varieties, at least 

for common experiments.  Figure 2.15 and Figure 2.16 show the R2 values of the models for each 

feature extracted from LiDAR and hyperspectral VNIR data, at four stages of growth and for all 

nine experiments conducted in the 2017 and 2018 growing seasons. From Figure 2.15, the 30th 

percentile height and volume features provided the highest R2 values for the end of season biomass 

among the LiDAR-based features for both HyCal-17 and HyCal-18 experiments, as the varieties 

in those experiments were more diverse in their structural characteristics, providing strong 

potential for biomass prediction using geometric-related features. The R2 values for different 
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LiDAR-based features in the InCal-17, InCal-18, and SbDiv-17 experiments are very similar, 

which is consistent with Figure 2.9; they all have the lowest average height and lowest variability 

in height compared to the other experiments, resulting in lower R2 values for these experiments 

compared to the experiments with hybrid cultivars. For both InCal-17 and InCal-18 experiments, 

the highest R2 values were obtained from feature #5 (coefficient of variation of height) which is 

representative of the distribution of the points in the canopy point cloud. The R2 values of the 

models developed for the SbDivTc-18 and InCalTc-18 are lower compared to the HyCal-17 and 

HyCal-18 experiments, but the same features (features #1, #2, and #5) provided the maximum R2 

for all of these experiments, which include hybrid cultivars. The SbBAP-17 also includes hybrid 

cultivars; however, the R2 values for all the features are lower compared to all other experiments, 

mainly because the last LiDAR data were collected on Aug. 30th, and included many photoperiod 

sensitive cultivars which grew until the final biomass data were collected at the harvest (Sep. 28th). 

Other varieties did not grow during this time, which impacted the biomass-height relationships. 

Generally, for the experiments with the hybrid cultivars (refer to Table 2.1), the late season data 

sets provided the highest R2, while for the experiments that included inbred cultivars, the data sets 

of GDDs yielded the lowest R2 values. 

For the hyperspectral features shown in Figure 2.16, for both InCal-17 and InCal-18, the 

highest R2 values are associated with the dataset collected on ~80 DAS, while for other 

experiments, the dataset of ~95 DAS yielded the highest R2 values. Also, the same pattern for R2 

values for the features of the InCal-17, InCal-18, and SbDiv-17 was observed. For these panels, 

the R2 is generally higher than the panels that include hybrid cultivars. 
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Figure 2.15. R2 values of the linear regression-based models developed for the end of season fresh biomass using 

LiDAR-based features at four stages of growth. Feature 1 to 8 represent: #1: 30th percentile height, #2: 50th percentile 

height, #3: 95th percentile height, #4: coefficient of variation of height, #5: volume, #6: canopy cover (threshold=0.1), 

#7: canopy cover (threshold=0.3), #8: canopy cover (threshold=0.5). 

 

 

 

Figure 2.16. R2 values of the linear regression-based models developed for the end of season fresh biomass using 

VNIR features at four stages of growth. Feature 1 to 8 represent: #1: FDR_min, #2: Intg_NIR1, #3: SDR_slope, #4: 

Intg_NIR1, #5: NDVI, #6: SR800,680, #7: OSAVI, and #8: MCARI. 
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Given similar trends of the regression models shown in Figure 2.15 and Figure 2.16, the 

models were developed across all the experiments for each of the features, and all the available 

dates to investigate the potential for using a common set of features for all experiments and times 

for the multiple input predictive models. The average R2 for each feature, from all the dates and 

all the experiments is provided in Figure 2.17, which shows volume, 30th percentile height, OSAVI, 

FDR-min, and NDWI features had the highest average R2 from LiDAR, VNIR, and SWIR data 

sets, respectively. Linear regression models were also developed for the individual band values 

from both hyperspectral VNIR and SWIR data. The average and maximum R2 for each band from 

all the dates and all the experiments are shown in Figure 2.18, which shows that the area of 

spectrum between 750 and 1100 nm provided the highest R2 for the linear regression models. 

While the R2 values for some experiments and some dates for the bands in 2000-2300 nm are 

relatively high (30-60%), the average R2 values are much lower in comparison to the 750-1100 

nm range. 

 

 

Figure 2.17. The average R2 values of the linear models developed for all the dates and all the experiments for 

each feature type from hyperspectral and LiDAR data. 

 

 

Figure 2.18. Average and maximum R2 values of the linear models developed for all the dates and all the 

experiments for each band from hyperspectral VNIR and SWIR data. 
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2.4.2 Biomass Predictive Models 

In this section, the results related to the impact of different regression methods, the time of 

biomass sampling and remote sensing data acquisition, and the number of samples on the 

prediction results are provided. 

Impact of the data source and regression method on the prediction results 

To evaluate the performance of different regression-based modeling approaches, PLSR, SVR, and 

RF were implemented for end of season biomass prediction using the LiDAR and hyperspectral 

data collected in each growing season. Figure 2.19 shows the R2 values of the predictions relative 

to the reference data for all the experiments, using six data sources (LiDAR, VNIR, SWIR, and 

combinations), and the three methods. For each prediction with a data source, all available data 

sets over the whole season were used for training and validation of the models, where two thirds 

of the sample data (or a maximum of 200 samples) were randomly selected 100 times for the 

training of the algorithm, and the remaining samples were used for cross validation via the hold-

out method. For all the experiments except the SNitTs-18, all the replicates of a variety were 

assigned to either the training or test sets to avoid any impact from the number of replicates on the 

prediction results. SNitTs-18, however, included only four varieties, and a different number of 

replicates for each variety; thus, the training and test sets were assigned randomly from the plots 

regardless of their varieties for this experiment.  Potential reasons for differences in predictions 

include: 

i. Diversity in the samples: the regression models are better able to learn the pattern in the 

data when the samples are more diverse. 

ii. Number of data samples: the larger the number of data points in an experiment, the higher 

accuracies are typically achieved for the prediction. 

iii. Similarity between the training and test data sets; if the training and test data sets are very 

different, then overfitting can occur for the training data set, resulting in decreased accuracy 

of the predictions. Note that this can happen when the number of data samples is limited, 

which causes unlike training and test sets even when the samples are selected randomly. 

Also, if there is a significant range of biomass values in one experiment, there is more 

chance to have dissimilar training and test sets. 
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Figure 2.19. R2 values of the end of season fresh biomass predictions, using six data sources, and the three PLSR, 

SVR, and RF methods for all the experiments conducted in the 2017 and 2018 growing seasons. 

 

Figure 2.19 shows that the highest accuracy of end of season biomass prediction using all 

combinations of data sources was achieved for the SNitTs-18 experiment. There were two nitrogen 

treatments in this experiment; half of the plots in this experiment were fertilized with 250 kg/ha 

nitrogen while the other half were not fertilized, causing high and low biomass values for the plots, 

high diversity in the reflectance data from the hyperspectral images, as well as high diversity in 

geometric-based features extracted from LiDAR point cloud (reason i). As was noted, samples 

were assigned to the training and test sets for this experiment differently from the other 

experiments, causing multiple samples of each variety to be assigned to both the training and test 

sets, resulting in increased similarity in the two sets (reason iii). 

The highest accuracy of prediction using LiDAR features as the sole input was obtained 

for the HyCal-17 and HyCal-18 experiments, which include hybrid cultivars that are more diverse 

in structural characteristics compared to the inbred cultivars; thus, the regression model can 

distinguish and relate the LiDAR-based features to the biomass data (reason i), which is consistent 
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with the results in Figure 2.15. In general, the predictions are more accurate for the experiments 

that include hybrid cultivars. As was shown in Figure 2.9, the InCal-17, InCal-18, and SbDiv-17 

have the smallest standard deviation in the LiDAR-based height, indicating that the associated 

varieties have similar structural characteristics.  

The predictions for the SbDiv-17 are more accurate than the predictions for the InCal-17 as 

more samples were available for the training set, 200 for SbDiv-17, and 80 for InCal-17 (reason 

ii). For the SbBAP-17, the prediction accuracies are lower than most of the other experiments. 

This experiment included varieties that were highly diverse in terms of structural characteristics 

(Figure 2.9), the distribution of the biomass values for this experiment (see Figure 2.1), also had a 

much larger range compared to the other experiments. This resulted in dissimilar samples in the 

training and test sets (reason iii). Figure 2.20 shows a box plot for the fresh biomass data for all 

the experiments, and the SbBAP-17 experiment had the greatest range of biomass values among 

the experiments, the lowest accuracies for the predictions, while SNitTs-18 experiment has the 

smallest range and the highest R2 values for the predictions. The predictions results with respect 

to the diversity, number of samples, and similarity between test and training sets for all the 

experiments are summarized in Table 2.7. 

 

 

Figure 2.20. The box plot for the fresh biomass data for all the experiments conducted in the 2017 and 2018 growing 

seasons. 
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Table 2.7. Summary of the prediction results of the experimental trials  

 HyCal-17 

and 18 

InCal-17 

and 18 

SbBAP-17 SbDiv-17 InCalTc-18 SbDivTc-

18 

SNitTs 

Diversity Very High Low Very High Low High High High  

Number of samples Low  Low High High Low High Low 

Test-training set  

Dissimilarity 
High Low Very High Low High High Low 

Prediction accuracy 

(maximum R2)  

High 

(0.80) 

Medium 

(0.71) 

Medium 

(0.67) 

Medium 

(0.74) 

Medium 

(0.69) 

High 

(0.77) 

Very high 

(0.88) 

 

In general, for the experiments with hybrid cultivars, RF models had lowest prediction 

accuracies among the three methods, which is related to the fact that there was more dissimilarity 

between the training and test sets in both RS and biomass data among the hybrid cultivars 

compared to those that were inbred, and RF models can be overfitted to the training data set; thus, 

they may not provide as accurate predictions as SVR and PLSR. For the InCal-18, however, RF 

yielded the highest accuracies for most of the data sources. For the experiments with a sample size 

of 200 (SbDiv-17, SbBAP-17, and SbDivTc-18), the SVR models provided the most accurate 

results, while for the experiments with a lower number of data samples, PLSR provided the highest 

prediction accuracies. 

A summary of the prediction results for various data sources and regression methods is 

provided in Figure 2.21, where the R2 values of the nine experiments are shown in a box plot. For 

the LiDAR data, the RF method provided slightly higher median accuracies than PLSR and SVR, 

with lower variability in R2 values (more reliability). When VNIR data was the only input, PLSR 

yielded more accurate results, while for all other data sources, SVR yielded a higher median R2. 

For SWIR and VNIR combined with SWIR sources, SVR provided more reliable results, while 

for VNIR, VNIR combined with LiDAR, as well as a combination of all data sources, PLSR 

provided more reliable results. Also, the SVR models provided the maximum R2 for all the data 

sources. 
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Figure 2.21. Box plot of the prediction results for various data sources and regression methods. 

 

Similar to (de Almeida et al., 2019), an ANOVA test was performed on the prediction results 

to determine the impact of the method and data source (e.g. sensor-based features) on the 

prediction results. The ANOVA results provided in Table 2.8 show that the data source is the cause 

of 69% of the variation in the prediction results, 28% for the regression method, and 3% for the 

interaction their interaction. This indicates that the data source should also be considered to 

determine the regression method in the design of similar experiments. A similar ANOVA test was 

performed on the R2 values for six experiments, including HyCal-17, HyCal-18, InCal-17, InCal-

18, SbDiv-17, and SbDiv-18, of which three include hybrid cultivars, and three include inbred 

cultivars. On this test, the cultivar type (hybrid or inbred) was considered as the third factor. Recall 

that the sorghum hybrid cultivars are more variable in their characteristics than inbreds in terms of 

biomass and structural characteristics. The results of this test in Table 2.9 indicate that the data 

source also has the highest contribution to the variation in the predictions (44%). The regression 

method is the cause of 26% of the variation in the prediction results, and less than 1% is attributed 

to the cultivar type. However, the interaction between the regression method and cultivar is 

responsible for 24% of the variation, suggesting that the cultivar type is another important factor 

to consider when determining the regression method for developing predictive models. 
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Table 2.8. Analysis of variance of the R2 respective to the data source, regression method, and their 

interaction 

Factor Sum of squares Degree of freedom F value p-value ɳ2 (%) 

Data source 103.70 5 564.09 < 2e-014 68.59 

Method 17.15 2 233.23 < 2e-014 28.36 

Data source:method 9.24 10 25.14 < 2e-014 3.06 

Residuals 594.95 16182    

 

Table 2.9. Analysis of variance of the R2 respective to the data source, regression method, cultivar type, and 

their interactions 

Factor Sum of  

squares 

Degree of 

freedom 

F value p-value ɳ2 (%) 

Data source 80.95 5 412.58 < 2.e-06 44.18 

Method 19.29 2 245.79 < 2.e-06 26.32 

Cultivar type 0.35 1 8.86 0.003 0.95 

Data source:method 6.84 10 17.44 < 2.e-06 1.87 

Data source:cultivar type 4.03 5 20.53 < 2.e-06 2.20 

Method:cultivar type 17.59 2 224.12 < 2.e-06 24.00 

Data source:method:cultivar type 1.82 10 4.63 0.093 0.50 

Residuals 422.37 10764    

 

For HyCal-17 and HyCal-18 experiments, PLSR, SVR, and RF models were developed 

using all three data sources and leave-one-out cross validation strategy, where in each fold, one 

variety was assigned as test and the other 17 varieties were included in the training set. The results 

are shown in Figure 2.22. For both experiments, the SVR method provided the highest R2 values 

for the predictions. For HyCal-17, all three regression methods underestimated the value of the 

biomass for one of the photoperiod varieties (which also had the maximum biomass, as noted 

previously); however, the RF model had the lowest accuracy. RF for both years resulted the lowest 

R2 as a result of overfitting as was discussed earlier. All three methods resulted in less accurate 

predictions for the experiment in 2018 compared to 2017, which could be because the end of 

season biomass data were measured at an earlier date in 2018, when all the plants had not reached 

full maturity. 
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HyCal-17 PLSR HyCal-17 SVR HyCal-17 RF 

   

HyCal-18 PLSR HyCal-18 SVR HyCal-18 RF 

Figure 2.22. Prediction results of PLSR, SVR, and RF models developed for the HyCal-17 and HyCal-18 

experiments, using all the data sources and leave-one-out cross validation strategy. 

Predictions in time 

To evaluate the capability of remotely sensed data for predicting biomass through the 

growing season, SVR models were developed for six dates in the 2017 and 2018 growing season 

for the HyCal-17 and HyCal-18 experiments. The R2 values of the predictions relative to the 

reference data are shown in Figure 2.23. For each prediction, all the VNIR hyperspectral and 

LiDAR data collected prior to the date of biomass measurement were used in the SVR models. 

The R2 values of the predictions at the beginning of the season were lower compared to the end of 

the season, especially when using only VNIR features. Early season growth is focused on the 

production of biomass from stalks and leaves, while mid-season development is related to 

flowering and early development of panicles. Plant structural characteristics do not change 
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significantly after flowering in the mid-season, while spectral characteristics change significantly 

especially during flowering with the emergence of the panicles. 

 

 

Figure 2.23.  R2 values for biomass predictions during the 2017 and 2018 growing seasons using the SVR models 

developed based on VNIR hyperspectral and LiDAR data for the hybrid calibration panels. 

Multi-temporal predictions of end-of-season biomass 

It is highly desirable to predict the end-of-season biomass as early as possible during the 

growing season to avoid unnecessary investment of phenotyping resources in non-productive 

varieties. The SbBAP-17, SbDiv-17, and SbDiv-18 were chosen to conduct the evaluations in this 

section as they had an adequate number of samples as well as RS data points, and included both 

hybrid and inbred cultivars. Figure 2.24 shows the accuracy of end-of-season biomass predictions 

for these experiments using hyperspectral VNIR, SWIR, and LiDAR data from each date 

individually, and in combination with the earlier dates. For both SbBAP-17 and SbDiv-17 

experiments, the earliest data set yielded very low prediction accuracies. For SbBAP-17, the best 

results when using features from individual sensors for VNIR and SWIR data sets were achieved 

from Sep. 10th with R2=0.60 and R2=0.54, respectively. Based on LiDAR data, Aug. 23th resulted 

in the highest values, with R2=0.46. For the SbDiv-17 experiment, the combined VNIR and LiDAR 

data sets of July 25th and Aug. 2nd provided the highest accuracy of using individual data sets. For 

SbDivTc-18, using the data inputs from July 11th resulted an R2 of 0.75, which shows the July data 

sets have good potential for biomass predictions. For all three experiments, the best results were 

obtained when features from all the hyperspectral and LiDAR data sets from the whole season 

were used, resulting in R2 of 0.63, 0.75, and 0.78 for the SbBAP-17, SbDiv-17, and SbDiv-18 

experiments, respectively. Although the best results were obtained using the whole season RS data, 
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the models developed using middle season data (DAS of ~60 to 80) were also able to provide 

comparable accuracies. 

 

 
 

 
 

 
 

 

Figure 2.24. R2 for end of season predictions using hyperspectral and LiDAR data collected on different dates for 

the SbBAP-17, SbDiv-17, and SbDivTc-18 experiment. 

Impact of the number of samples on biomass prediction 

As noted earlier, measuring biomass in the field is time-consuming and expensive; however, 

it is still required for training the regression models. Generally, the greater the number of samples 

for training, the more accurate the predictions. To evaluate the impact of the number of samples 
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in training set, the SVR and PLSR models are developed for end-of-season biomass prediction 

using all the data sources and various number of samples in training set. Each model was trained 

with a specific number of samples, and the process was repeated 100 times, each time with a 

different, but same sized set of randomly selected samples. The rest of the available samples were 

assigned to the testing set. Figure 2.25 shows the median and standard deviation of the R2 values 

of developed models for some of the experimental trials. The R2 of predictions for both SVR and 

PLSR models increase as the number of training samples increases. However, the accuracy of 

PLSR models is higher than SVR models when a smaller number of training samples is used. The 

rate of increase of R2 with the respective increases in the number of training samples is higher for 

SVR compared to PLSR; thus, when the maximum of available samples is used in training for 

experiments (e.g. for SbDivTc-18), the SVR models had higher R2 values. For all the experiments, 

the standard deviation of the R2 values decreases as the number of training samples increases, 

showing more reliable (repeatable) prediction models are developed when more samples are 

available for training, as expected. However, for some experiments such as HyCal-17, the standard 

deviation of R2 decreases –initially, reaches a minimum, then increases.  This is attributed to the 

small total number of samples: using more samples in the training set implies a smaller number of 

samples is available in the test set. 

 

 

Figure 2.25. Impact of the number of training samples on R2 of the predictive models using SVR and PLSR models.  
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2.5 Conclusions 

In this paper, we explored the potential for reliable prediction of sorghum biomass using 

multi-temporal hyperspectral and LiDAR data acquired by sensors mounted on UAV platforms. 

We developed prediction models using three nonlinear regression models for nine experiments 

conducted in the 2017 and 2018 growing seasons at the Agronomy Center for Research and 

Education (ACRE) at Purdue University. Experiments included multiple sorghum varieties with 

different sample sizes, providing an opportunity for multiple statistical tests and models. Based on 

the experiments conducted in this study, nitrogen and photosynthesis related features extracted 

from hyperspectral data and geometric based features derived from the LiDAR data provided 

reliable and accurate prediction of biomass. The 750-1100 nm range of the spectrum provided the 

most relevant information for biomass prediction.  

Both data source and regression method are important factors for a reliable prediction; 

however, the ANOVA results show that the data source was more important with 69% significance, 

versus 28% significance for the regression method. The number of samples in training set for the 

prediction is an important factor for determining the accuracy of the predictions. Generally, the 

PLSR method provided more accurate prediction models when the number of samples in training 

was limited. With increasing samples, the rate of increase in the accuracy of the SVR models was 

higher than PLSR. 

We also evaluated the prediction models with respect to the time of the RS data acquisition 

and the time of harvest. The end-of-season biomass predictions were more reliable and accurate 

than the mid-season predictions, as more varieties in the field were at the same stage of growth. 

With respect to the remote sensing data, the best results were obtained using the RS data from the 

whole season; however, the models developed using mid-season data (DAS of ~60 to 80) were 

also able to provide comparably accurate results, which were useful for early screening of varieties. 
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 ACCURATE PHENOTYPING USING UAV-BASED REMOTE 

SENSING DATA, GENOMIC MARKERS, AND WEATHER DATA 

3.1 Abstract 

High-throughput phenotyping using remote sensing (RS) platforms as well as genomic 

selection have been widely investigated in recent years as potential approaches for reducing the 

need for the expensive, time-consuming traditional field phenotyping for breeding programs. In 

this paper, the potential for accurate and reliable sorghum biomass prediction using visible/near 

infrared (VNIR) hyperspectral data and light detection and ranging (LiDAR) data acquired by 

sensors mounted on UAV platforms combined with the genomic information and weather data are 

investigated for prediction of the end of season sorghum biomass yield. Predictive models are 

developed using four regression methods based on experiments conducted in the 2017, 2018, and 

2019 growing seasons at the Agronomy Center for Research and Education (ACRE) at Purdue 

University. Models based on one year and two years of data are used to predict the biomass yield 

for the future years. The results show the high potential of the models for biomass and biomass 

rank predictions. While models developed using one year of data are able to predict biomass rank 

using two years of data resulted in more accurate models, especially when RS data were included. 

Also, the possibility of developing predictive models using the RS data collected until mid-season, 

rather than the full season, is investigated. The results show that using the RS data until 60 DAS 

in the models can predict the rank of biomass with R2 values of around 0.65-0.70. This not only 

reduces the time required for phenotyping by avoiding the manual sampling process, but also 

decreases the time and the cost of the RS data collections and the associated challenges of time-

consuming processing and analysis of large data sets, and particularly for hyperspectral imaging 

data. 

3.2 Introduction 

Plant breeding pipelines typically start with generating inbred and hybrid lines, planting 

them in multiple locations, phenotyping various traits of each line, and finally, selecting the “best” 

genotypes with respect to the trait of interest such as yield, resistance to pest pressures and climate-

related abiotic stresses (Bhat, 2019). Researchers have widely investigated using new 
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methods/technologies to increase breeding efficiency by reducing the time and cost of 

commercializing new products (Cobb et al., 2019). This mainly includes enhancements in 

phenotyping, as it provides the critical information required for the accurate genotype selection 

(Desta & Ortiz, 2014) while it is also currently the most expensive component of a plant breeding 

operations (Cobb et al., 2019). Thus, reducing the need for traditional field phenotyping, which 

can limit the ability to analyze the genetics of quantitative traits, particularly those related to yield 

and stress tolerance (Araus & Cairns, 2014), has become an objective of many studies. This can 

be achieved by estimating the phenotypes using predictive models developed from various sources 

of data, mainly remote sensing (RS) and genomic information (i.e. marker data).  

Recent advances in high throughput genotyping platforms (3rd generation platforms) have 

made it possible to obtain genomic information for thousands of lines with limited cost in both 

time and expense, that are useful for a variety of purposes, including genome-wide association 

studies, quantitative trait loci (QTL) mapping, and genomic selection (GS) (Nakaya & Isobe, 2012). 

In GS, a training population is used to estimate the effects of markers based on prior phenotypic 

and marker data, and marker effects are then used to predict the genomics based breeding value of 

individuals in the prediction population which has not been phenotyped (Meuwissen et al., 2001). 

GS can greatly reduce the length of the breeding cycle, and avoid the loss of genetic variability in 

comparison to traditional selection based on only phenotypic data, without sacrificing selection 

gains (Shamshad, Mohd and Sharma, 2018). However, there are challenges to the use of GS that 

must be addressed,  such as its low accuracy for low heritability traits, including yield (Nakaya & 

Isobe, 2012). Traditionally, prediction accuracy is defined as the correlation between the predicted 

and the measured phenotype for the testing data set (Rabier et al., 2016). Several methods, 

including multi-trait and trait assisted GS (Fernandes et al., 2018) have been developed in recent 

years to improve the accuracy of predictions. Despite the improvements observed in the prediction 

accuracy, significant advances are still required for plant breeding programs to fully exploit the 

potential of GS for being included in breeding pipelines (Heffner et al., 2009; Shamshad, Mohd 

and Sharma, 2018). 

Some researchers have adopted remote sensing based measurements to reduce the need for 

traditional phenotyping by developing high-throughput phenotyping platforms that phenotype 

large numbers of lines rapidly and relatively accurately (Maes & Steppe, 2019; Tattaris et al., 

2016). Unmanned Aerial Vehicle (UAV) based RS has been widely utilized in recent years due to 
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its capability to acquire both high temporal and high spatial resolution data required for high 

throughput phenotyping over agricultural fields. Researchers have demonstrated that predictive 

models based on RS-derived features and field data can be used to estimate phenotypes such as 

yield (Foster et al., 2017; Thorp et al., 2017), LAI (X. Li et al., 2014; Liang et al., 2015; Nguy-

Robertson et al., 2014), and biomass (Jiating Li et al., 2018; Masjedi et al., 2019; Z. Zhang et al., 

2017).  

If the predictive models are acceptable, the estimates can be injected into the breeding 

pipeline instead of manual phenotypic data, which decreases the time and cost of the breeding 

programs. The accuracy of the predictive models depends on the quantity of samples  (population 

size) (Combs & Bernardo, 2013), a key limitation of the current phenotyping processes. Also, 

developing predictive models for end-of-season traits such as biomass and yield is not possible 

during the growing season, except retrospectively, as the sample data are typically only available 

after the harvest is completed, although, for some breeding programs, it is important to predict the 

final biomass or yield of the planted varieties as soon as possible, so that genotype selection can 

be accomplished in a shorter period of time, and thus, less expensively. 

To overcome this drawback, we explore the development of multi-year predictive models 

for which the data from earlier years of the breeding cycle are used for training models, and then 

predict traits for experiments in subsequent year(s). Further, more observations are available as the 

sample data from multiple years are included in a model. In this study, the potential of biomass 

prediction of varieties of sorghum using hyperspectral and LiDAR data acquired by sensors 

mounted on UAV platforms, as well as genomic markers, is investigated, with the goal of 

achieving a faster and cheaper breeding pipeline. Sorghum is a multipurpose crop that has attracted 

attention in recent years, both for its broad-based potential usage for human consumption and 

animal feed, as well as biofuel production (Stanton et al., 2017) and its drought and heat tolerance 

(Spindel et al., 2018). Having a short growth cycle, low input requirements, mechanized 

management, and the ability to produce reasonable quantities of ethanol make sorghum an efficient 

biofuel crop (Fernandes et al., 2018). Many researchers are developing enhanced genotypes that 

can produce more energy-rich plant material (biomass) (Ogbaga et al., 2019). 

In this study, we focus on two main objectives; 1) developing predictive models using the 

RS data collected multiple times during a season in previous years, and 2) investigating the 

possibility of developing the same models using the RS data collected until mid-season rather than 
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the full season. This will not only reduce the time of the phenotyping by avoiding the manual 

sampling process, but also decrease the time and the cost of the RS data collection, as well as the 

associated challenges of processing, managing, and analysis of large data sets, especially for 

hyperspectral imaging. Multiple challenges must be considered for developing multi-year 

predictive models: 1) different management practices (e.g. weather dependent planting dates), 2) 

changes in protocols for the acquisition of biomass data throughout the multi-year experiments for 

which data are available, 3) changes in protocols for acquiring remote sensing data over the three 

years of experimental period, 4) diverse sources and characteristics of input data. 

As the phenotype is the result of genotype by environment (GxE) interactions, 

environmental data are incorporated in our multi-year prediction models. The experiments in this 

study were conducted at the same geographic location; thus, we can assume some environmental 

conditions such as soil information are essentially the same for the experiments conducted in 

different years.  However, weather information can be highly variable from one year to another. 

Local solar radiation, temperature, and precipitation are included in the models as they can impact 

the plant growth strongly. 

3.3 Materials and Methods 

3.3.1 Field Design 

The field experiments were conducted in the 2017, 2018, and 2019 growing seasons, each 

year in 2.8 ha sorghum breeding trials located at the Purdue University Agronomy Center for 

Research and Education (ACRE), West Lafayette, Indiana. All trials were arranged in a 

randomized complete block design and planted at 220,000 plants per ha. In 2017, the field 

experiments consisted of two distinct trials in two panels; the inbred calibration (InCal) panel and 

the sorghum biodiversity (SbDiv) panel. The SbDiv panel consisted of 840 inbred lines replicated 

twice in four row plots. The inbred calibration panel included 60 inbred lines, a subset of the SbDiv 

panel, which encompasses the genetic diversity of the SbDiv panel, and were planted in four row 

plots. The InCal experiment was also repeated in the 2018 growing season in a different field at 

ACRE, with 54 inbred lines. In 2018, two other experiments were also conducted in the same field 

as 2017 experiments, sorghum biodiversity test cross (SbDivTc) and inbred calibration test cross 

(InCalTc), both planted in four row plots. The SbDivTc and InCalTc are hybrids derived from the 
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Sbdiv and InCal experiments with a common maternal parent. The InCalTc included 54 hybrid 

lines, also a subset of the SbDivTc panel. The SbDivTc included 630 hybrids replicated twice in 

four row plots in the 2018 growing season. In 2019, the SbDivTc was repeated with the same 

number of genotypes. An additional panel was added in 2019:  sorghum biodiversity test cross 

calibration (SbDivTcCal), which included 72 hybrid lines, a subset of the SbDivTc panel that is 

representative its genetic diversity was planted in 10 row plots. Details of experiment trials are 

provided in Table 3.1. Figure 3.1 shows the RGB bands of the hyperspectral data and LiDAR point 

cloud data of two panels of the experimental field in the 2019 growing season 

 

 

Figure 3.1. RGB bands of the hyperspectral data and the LiDAR point cloud of the SbDivTcCal and SbDivTc panels 

on August 2nd, 2019. 

3.3.2 Data Description 

Ground Sampling of Biomass 

For all the experiments, the biomass data were collected by harvesting rows two and three 

of the four-row or 10-row plots at the end of each growing season. The biomass per square meter 

was obtained by dividing the measured fresh weight of the plants by the area of the row segment 

within the plot of two harvested rows. Figure 3.2 shows an area of the InCal-17 experiment that 

included two plots and rows two and three of each plot extracted based on RGB imagery using the 
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methods explained in (Ribera, J., Chen, Y., Boomsma, C., & Delp, 2017). Note that the end of 

each row segment is trimmed by 40 cm to eliminate the border effect as it was shown that it can 

improve the heritability of the remote sensing measurements {Neal’s paper}. Figure 3.3 is a 

boxplot of the fresh biomass data measured for all the experiments in the three growing seasons. 

 

 

Figure 3.2. An example area of the InCal-17 experiment. Two plots (black rectangles) and rows two and three (yellow 

rectangles) are highlighted.  

 

 

Figure 3.3. Box plot for the fresh biomass data for all the experiments conducted in the 2017, 2018, and 2019 growing 

seasons. 

Remote Sensing Data 

This study includes RGB, hyperspectral, and LiDAR remote sensing data collected by 

custom designed UAV platforms. All remote sensing data acquisition platforms were flown with 

Global Navigation Satellite System/Inertial Navigation System (GNSS/INS) units for direct 

georeferencing. RGB data for this study were collected using a Sony Alpha ILCE-7R RGB camera 
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with a Sony 35mm lens. The Sony Alpha 7R features a full-frame 36.4MP sensor delivering high-

resolution UAV-based aerial imagery. LiDAR data were collected with a Velodyne VLP-16 3D 

LiDAR sensor operating in the strongest return mode and 600 rotation per minute (RPM). The 

VLP-16 is a 16 beam LiDAR unit with a 360 degree horizontal FOV, and a maximum range of 

100 m. Both the RGB camera and the VLP-16 sensor are mounted on a DJI Matrice 600 Pro 

(M600P) platform. Spatial and temporal system calibration for the datasets used in this study were 

conducted using the approaches described in (Ravi et al., 2018) and  (LaForest et al., 2019), 

respectively. Also, the georeferenced orthomosaics were generated using the structure from motion 

strategies introduced in (Hasheminasab et al., 2020; He et al., 2018). 

Visible Near Infrared (VNIR) hyperspectral data were collected with two Headwall 

Photonics push-broom scanners. The VNIR data were acquired by a Nano-Hyperspec imaging 

sensor in 272 spectral bands at 2.2 nm/band from 400 nm to 1000 nm with 640 spatial channels at 

7.4 µm/pixel. In 2017, the sensor was flown at an altitude of 60 m with a 12 mm Schneider lens, 

resulting in a Ground Sampling Distance (GSD) of ~4 cm. An 8 mm lens was used in 2018 and 

2019, and the flying height was ~40 m to maintain the GSD at ~4 cm. In 2019, the RGB, LiDAR, 

and VNIR sensors were integrated and flown together on a single UAV platform (see Figure 3.4). 

A rigorous boresight calibration process was performed (Habib et al., 2018), yielding aligned RGB, 

LiDAR, and VNIR data. All the hyperspectral data were converted to reflectance using the 

empirical line method to relate the spectra collected from the UAV to data acquired by an SVC 

1024i field spectrometer over the calibration targets placed in the field for each acquisition. Table 

3.1 lists the data acquired by the sensors in 2017, 2018, and 2019 growing seasons. 

 

Table 3.1. Experimental design for the 2017, 2018, and 2019 growing seasons. 

Year Trial Genotype 
# of 
plots 

# of 
varieties 

Sowing 
Date 

Harvest 
Date 

LiDAR Dates VNIR Dates 

2017 

InCal inbred 120 60 May 15 Sep 27 
June 16, 21, and 27; July 
5, 7, 11, 14, 17, and 25; 

Aug. 2, 8, 23, and 30 

June 21, 27*1, and 28*2; 
July 4, 12*2, 18, 25, and 

30*1; Aug. 8, 14*1, 23, and 
30*2; Sep. 10, 15*2, 24*1, 

and 30*1 

SbDiv inbred 1800 840 May 25 Oct 15 

2018 

InCal inbred 108 54 May 1 Aug 9 May 22 and 29; June 4, 
11, 20, and 27; July 2, 11, 
18, and 23; Aug. 1 and 6 

June 4, 8, 14 and 29; July 
3, 6, 10*3, 11, 18, and 25; 

Aug. 2 and 9*4 
InCalTc hybrid 108 54 May 8 Aug 6 

SbDTc hybrid 1200 630 May 8 Aug 2 

2019 
SbDTcCal hybrid 144 72 June 4 Sep 5 June 14, 18, and 26; July 

1, 12, and 23; Aug. 2, 10, 
and 24; Sep. 5 

July 12, 19, and 23; Aug. 
2, 10, and 24; Sep. 5 SbDTc hybrid 1200 630 June 4 Sep 5 

*1 only SbDiv-17, *2only InCal-17, *3only SbDTc-18, *4only InCal-18 
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Figure 3.4. M600 platform with the RGB, LiDAR, and VNIR sensors flown in the 2019 growing season. A 

GNSS/INS unit (APX-15) was also mounted on the platform providing accurate position and orientation information 

required for geo-referencing of the captured data. 

RS Feature Extraction 

From each LiDAR point cloud and for each plot, 16 features including 30th, 50th, 75th, 90th, 

and 95th percentiles of height, canopy cover, and other statistical features were extracted. From 

hyperspectral data, first and second derivative features, vegetation indices, and the area under the 

average of the spectral curves for each variety on a given date were extracted and used as input 

features for further analysis. Additional information about feature extraction of the data is available 

in our previous studies (Masjedi et al., 2019, 2018; Z. Zhang et al., 2017). 

Genotype Data 

More than 80,000 markers are available for the inbred and hybrid varieties planted in the 

three growing seasons. 

Genomic Feature Extraction 

The goal is to use the genetic information individually and in conjunction with other 

features extracted from remote sensing data sources in the prediction models. High dimensional 

data can be problematic for regression algorithms; thus, the number of features need to be reduced 

either with feature selection or extraction methods. In this study, both PCA and wavelet 

transformations are investigated for feature extraction from the genomic markers. PCA 
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decomposes variance into orthogonal components, while the wavelet transform decomposes data 

via time-scale analysis (Barclay et al., 1997). Transforming the signal using wavelets results in 

two decomposed signals, one focused on low frequency information and the other the high 

frequency information. The resulting low frequency signal can be considered as a compressed 

version of the original signal. The wavelet transformation can be applied in multiple levels, each 

of which reduces the length by a factor of two. Figure 3.5 shows the wavelet transformation of the 

genetic markers for the inbred and hybrid genotypes planted in the SbDiv and SbDivTc panels, 

respectively. Each row of the images in Figure 3.5 is associated with the genetic markers after the 

wavelet transformation in 6, 10, and 10 levels which provided 1252, 313, and 72 features, 

respectively. 

 

 

Figure 3.5. Feature extraction using wavelet transform in 6, 8, and 10 levels. The X and Y axes are associated with the 

number of features and number of genotypes, respectively.  

 

Principal component analysis (PCA) has been widely utilized for analysis, visualization, 

and interpretation of the high dimensional genomic data as it can provide a concise picture of the 

whole data set in a few components (Lee et al., 2010; Scholz & Selbig, 2007). Principal 

components for the hybrid and inbred genotypes are shown in Figure 3.6, which illustrates how 

the first three principal components can be used for visualization of high dimensional genomic 
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markers. Figure 3.6 also shows where the genotypes planted in the calibration experiments (InCal, 

InCalTc, and SbDivTcCal) were located in the PC1-PC2 plot with respect to the hybrid and inbred 

genotypes. The plot demonstrates that the calibration panels were included the genotypes that 

encompass the genetic diversity of all the hybrid or inbred genotypes. 

 

 

 

 

  

 

 

Figure 3.6. Feature extraction using PCA. The top row contains plots of combinations of the first 3 PCs for the 

combined hybrid and combined inbred genotypes. The plots on the bottom row show the first two principal 

components of the InCal-17, InCalTc-18, and SbDtcCal-19 genotypes are located with respect to those of the 

combined hybrid and inbred genotypes. 

Features-Biomass Correlation 

To evaluate the prediction potential of the genomic markers as well as wavelet-based 

features for biomass estimation, linear regression-based models were developed using each 

marker/feature for three experiments conducted in the 2017-2019 growing seasons. Figure 3.7 

shows the R2 values of the resulting models for each marker as well as features extracted by wavelet 

transforms. The markers in the range of 60,000 for both SbdivTc-18 and SbdivTc-19 provided the 

highest R2, with the values 0.14 and 0.12, respectively. The corresponding wavelet-based features 

(features in the range of 930-960) provided the highest R2 using wavelet features with the values 
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0.10 and 0.08 for SbdivTc-18 and SbdivTc-19, respectively. Similar R2 values obtained with 

wavelets suggest that the wavelet features can be as informative as the original markers; however, 

as the number of features was much lower, they might provide more accurate predictions than 

using all the markers. We further evaluate these features for genomic-based biomass prediction in 

the subsequent sections.  

 

 
Marker Data 

 

 
Wavelet-6 

Figure 3.7. R2 values of the linear regression-based models developed for fresh biomass using genomic markers and 

wavelet-6 features for three experiments, SbDiv17, SbDtc18, and SbDtc19 conducted in 2017-2019.  

Weather Data 

As noted, weather strongly impacts crop growth and development, and should be 

considered in developing multi-year prediction models. For the experiments conducted at the same 
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location but different years, precipitation, temperature, and radiation, as well as planting date can 

be significantly different for different years. Figure 3.8 shows precipitation, GDDs, and solar 

radiation for the three years that experiments were conducted at ACRE from May 1st until October 

1st. In 2017, the annual cumulative precipitation was higher, although early season precipitation 

was higher in 2019.  Cumulative radiation received compared to the other years was also higher, 

while the average temperature was higher in 2018.  

 

 

Figure 3.8. Weather conditions in the 2017-2019 growing seasons at ACRE. 

 

From the weather data shown in Figure 3.8, nine features were extracted for each 

experiment as follows. The weather data for each season were split into two groups, prior and post 

flowering, by considering 60 days after sowing (DAS) as the average flowering time for sorghum 

at the location experiments were conducted. The average values of daily precipitation, growing 

degree days (GDD), and solar radiation for each group were calculated and considered as the input 

weather features for the predictive models. Also, as the planting and harvest dates varied in the 

three years, the cumulative precipitation, GDDs, and solar radiation for the whole season were 

considered as the input features. Figure 3.9 shows the relationship between the cumulative weather 
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data and the biomass data for the InCal experiments in the 2017 and 2018, SbDivTc experiments 

in the 2018 and 2019 growing seasons. Generally, the fresh biomass observed in 2018 was higher 

than in 2017, while the ranges of biomass in 2018 and 2019 were similar. Note that Figure 3.9 only 

shows the end of season biomass values with respect to cumulative weather data; however, there 

are many other weather related parameters that can impact the biomass yield such as when the 

precipitation occurs, amount of radiation received at different growth stages, as well as the 

interaction between the radiation and temperature. 

 

 
 

 

Figure 3.9. Weather-biomass relationship in the four experiments, and two pairs of similar experiments conducted in 

two years: InCal-17 vs. InCal-18 and SbDTc-18 vs. SbDTc-19. 

3.4 Results and Discussion 

3.4.1 Genomic-based Predictive Models 

Genomic-based features, including wavelet based features in 2, 4, 6, 8, 10, 12, and 14 levels, 

as well as 50, 100, and 200 principal components, and original markers, were used as the input 

features for biomass prediction using four regression-based models. Results are presented for 

Ridge Regression (Ridge), Partial Least Squares Regression (PLSR), Support Vector Regression 
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(SVR) with a Radial Basis Function (RBF) kernel, and Random Forests (RF), which are commonly 

utilized to build predictive models in genomic selection (Azodi et al., 2019) or phenotype 

prediction via remote sensing (Masjedi et al., 2019). A grid search method was used to select the 

best hyperparameters for each model. Table 3.2 lists the candidate parameters that were tested for 

each method in the grid search process. The coefficient of determination (R2) in this study is 

calculated using the following equation as suggested in (Kvålseth, 1985): 

𝑅2 = 1 −
∑(𝑦𝑖 − �̂�𝑖 )2

∑(𝑦𝑖 − �̅�)2
 

where 𝑦𝑖 is the observed value, �̂�𝑖 is predicted value, �̅� is mean value, and i an integer from 1 to n 

(number of samples in test data set). 

 

Table 3.2. Grid search parameters for regression methods 

Algorithm Hyperparameter Values Tested 

Ridge Regression alfa 0.5, 1, 10, 100 

PLSR Number of components 2, 3, 5, 10, 15, 20 

SVR (rbf) 
𝐶 10, 100, 1000, n* 

gamma 1/n, 0.0001, 0.001, 0.01, 0.1 

Random Forest (RF) 

Max tree depth 5, 10, 100 

Min sample split 2, 10 

Number of trees 50, 100, 500 

*n: number of features   

 

Figure 3.10 shows the average accuracy of the predictive models for three experiments; 

SbDiv-17, SbDivTc-18, and SvDivTc-19 where 250 genotypes were used for training and the rest 

(380 to 510) for evaluation. This was repeated five times, and each time the training samples were 

selected randomly. From Figure 3.10, the various regression methods provided similar results in 

terms of accuracy, with correlations of 0.35 to 0.4 between the predicted biomass and the reference 

data. The predictions for SbDivTc-18 and 19 were slightly more accurate than the predictions for 

the SbDiv-17 for all the methods. The models based on wavelet features up to 10 levels generally 

provided predictions with similar accuracies as using all the markers, while the number of features 

was much smaller. RF resulted in less accurate predictions using all the markers compared to using 

the wavelet based features, especially for the SbDivTc-18 and 19 experiments, where a smaller 
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quantity of sample data was available. This is mainly because RF requires optimization of many 

parameters in training, and as the number of features increases, the number of parameters also 

increases; thus, more sample data would be required to achieve the same accuracy as the other 

methods. In the next sections, we evaluate the impact of using these features in multi-year 

predictive models. 

 

 

Figure 3.10. R2 of predictions using derived genomic features in Ridge, PLSR, SVR, and RF regression models. 

3.4.2 Comprehensive Predictive Models 

Models trained on one year of data 

Different management practices, such as different dates for planting and harvesting the 

crops, in various years is a significant challenge for multi-year biomass prediction, including 
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different ranges for the biomass data in each year (see Figure 3.3). Also, the RS data were collected 

each year on different dates during the growing season. The regression models we use in this study 

require the same number of features for all the samples from various years, so the same number of 

RS datasets from each year should be included for the predictive models. Also, the dates the data 

were collected should be as similar as possible. Thus, for each experiment, four data sets collected 

on approximately 40, 60, 80, and 95 DAS were selected from the available RS data sets, and 

features were extracted from LiDAR and hyperspectral data. Also, nine features from the weather 

data were extracted as noted in Section 2.2.4 for each experiment. Based on the results obtained in 

the last section, the features extracted by the wavelet transform in 6 levels were chosen as the 

genomic-based input features in the multi-year predictive models in both this and the following 

sections.  

Figure 3.11 shows the biomass prediction results for three experiments in the 2018 and 

2019 growing seasons using the SVR models trained on the 2017 experimental data (both InCal-

17 and SbDiv-17 experiments). The biomass in 2017 was harvested on ~120-150 DAS, which was 

~60 days later than the harvest in 2018 (93 DAS) and 2019 (95 DAS). As plant water content is 

lower by the end of the season, it is lower if the harvest is later, and as a result, fresh biomass is 

lower. This is one of the reasons why the end-of-season biomass values were lower in 2017 

compared to 2018 and 2019. Also, the genotypes planted in 2017 were all the inbred genotypes, 

while in the 2018 and 2019 hybrid genotypes, which usually provide higher biomass values, were 

planted. As expected, models trained on the 2017 experiments underestimated the biomass for the 

experiments in 2018 and 2019. The estimated biomass in this figure shows a bias with the reference 

biomass, but the relative relationship between the genotypes in terms of their biomass seems to be 

accurate. As the goal of breeding programs is to select the genotypes with the highest return with 

respect to the trait of interest (biomass in our study), we calculated the rank of the genotypes in 

terms of biomass production. The higher the rank, the higher the biomass in our models. Figure 

3.11 also shows the rank of the genotypes estimated from the biomass predictive models with 

respect to the rank calculated from the reference biomass data. It shows that even though the R2 

values for biomass predictions are negative relative to a 1:1 prediction, the R2 values for rank 

predictions are 0.43 to 0.84 for the 2018 and 2019 experiments without using any reference data 

from those years for training the predictive models. Also, the RMSEs of the biomass rank 

predictions are 5% - 11%.  
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Figure 3.12 shows the predictions of the SVR models trained on the 2018 experiments (all 

three experiments conducted in 2018) and used to predict biomass for the 2019 experiments. The 

range of biomass values in both experiments in 2019 is smaller than the range of predicted biomass 

by the predictive models trained on the 2018 experimental data, indicating that more variability 

existed in the 2018 data. The predictions for SbDivTc-19 are however more accurate than the 

prediction from models trained on the 2017 experiments shown in Figure 3.11 which is expected 

as the harvest in both 2018 and 2019 occurred at ~95 DAS. Also, the experiments in both years 

included the same genotypes, which is important, especially when the genomic-based features are 

used in the predictions. Figure 3.12 also shows the rank of the genotypes calculated from the 

predicted biomass and the reference biomass. The R2 values of the predicted rank, similar to the 

results presented in Figure 3.11, were higher than the R2 values of the predicted biomass. This 

indicates that the same genotypes performed similarly in both years; most of the genotypes that 

provided high biomass were still able to provide higher biomass in 2019. The RMSEs of biomass 

rank for both experiments were ~7%. 
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Figure 3.11. Results of biomass and rank prediction for example experiments in 2018 and 2019 from SVR models 

trained on the 2017 experiments using RS, genotype, and weather data. 
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Figure 3.12. Results of biomass and rank prediction for example experiments in 2019 from SVR models trained on 

the 2018 experiments using RS, genotype, and weather data. 

 

The results of using 2017 experimental data to train the models and predict the rank of 

genotypes in the following years are provided in Figure 3.13. As the same genotypes were planted 

in InCal-17 and InCal-18, using the models trained on the 2017 experiment provided the most 

accurate results for InCal-18. Although the models were trained on data from 2017, when all the 

inbred genotypes were planted, they were still able to provide useful information for the TcCal-18 

and SbDivTcCal-19, which included the hybrid genotypes. However, using the genomic-based 

information did not improve the prediction accuracies for the SbDivTc-18 and 19 models. Based 

on Figure 3.6, the TcCal-18 and SbDivTcCal-19 included many genotypes that were located close 

to the inbred genotypes, meaning there were similarities with the inbred genotypes, while the 

SbDivTc-18 and 19 experiments included many varieties that were very different from the inbred 

genotypes.  
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Figure 3.13. Results of biomass and rank prediction for example experiments in 2018 and 2019 from predictive 

models trained on the 2017 experiments using genomic (G), genomic and weather data (G+W), RS (RS), RS and 

weather data (RS+W), RS and genomic data (RS+G), and RS, genomic, and weather data (RS+G+W). 

 

Figure 3.14 shows the R2 for biomass rank of the two experiments in 2019 predicted using 

the models trained on the 2018 experimental data. In most of the experiments, the models 

developed using genomic-based features (wavelet-6 feature) as well as RS based features provided 

the most accurate prediction results. As the same genotypes are planted in 2018 and 2019, the 

predictive models developed using only genomic-based features were able to provide R2 of ~0.6 

and higher. Adding the weather-driven features did not significantly change the R2 values. The 

Ridge Regression and SVR models provided more accurate models when using the RS data, while 

the RF models had higher accuracies based only on the genomic-based features. The prediction 
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accuracies of SVR, PLSR, and Ridge Regression were very similar and slightly higher than the R2 

of the RF model when using all the input data sources.  

 

 
Figure 3.14. Biomass and rank prediction for example experiments in 2019 from predictive models 

trained on the 2018 experiments using various data sources. 

Models trained on two previous years of data 

Figure 3.15 shows that the models trained on the combined 2017 and 2018 experiments are 

more accurate than the models trained on only the 2017 or 2018 data that were presented in the 

last section. This was expected as the models were able to train better when multiple years of data 

were used in for developing the model, especially when weather-driven features were used. There 

is still a bias between the predicted and reference biomass data as the planting and harvest dates 

were different in the three years of experiments. Figure 3.15 also shows the results of the biomass 

rank from the SVR models trained on data from the 2017 and 2018 experiments. The R2 values of 

the biomass rank prediction for the two experiments conducted in the 2019 growing season were 
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slightly higher than the results of the models trained only on the 2018 data, which was again 

expected as more samples are used in training (from both 2017 and 2018 experiments), and also, 

the models were trained on two years of weather related features. The RMSE of rank-based models 

for both SbDivTcCal-19 and SbDivTc-197 experiments was ~7%. 
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Figure 3.15. Biomass and rank prediction for example experiments in 2019 from SVR 

models train on the 2017 and 2018 experiments using RS, genotype, and weather data 

 

Figure 3.16 shows the results of predicting the biomass rank for the 2019 experiments using 

the models trained on the 2017 and 2018 experiments data using Ridge Regression, PLSR, RF, 

and SVR methods. RF provided more accurate results when only genomic-based features or 

genomic and weather based features were used in the prediction. The most accurate predictions 

were obtained when all the data sources were used in the predictive models, except RF models. 

The models developed with both weather and genomic based features were more accurate than the 

models developed only with the genomic based features. However, as for other experiments adding 

the weather based features to the RS models did not typically improve the R2 values much. One 
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explanation could be that while the genomic based features represent the functions encoded in the 

plant’s DNA that controls the growth and other behavior of the plants, this can change with 

environments. The weather-based features represent an environmental factor in the plant’s 

behavior and contribute to variation in biomass estimates. However, models that include RS data 

also include the impact of the interaction of the plants (and their genomics) with the environment.  

Adding the weather related information represented by temperature, radiation, and precipitation to 

the models that included RS features did not provide significant additional information for the 

models, although the most accurate results were obtained when all the data sources are used in the 

models for both experiments in 2019. 

 

 

Figure 3.16. Results of biomass and rank prediction for experiments in 2019 from predictive models train on the 

2017 and 2018 experiments using various data sources. 
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Genomic-driven feature evaluation 

In Section 3.4.1, the impact of using genomic-based features in predictive models was 

investigated. In this section, we repeat the evaluation, but using those features combined with the 

RS and weather-related data. Models are trained using the data of the 2017 and 2018 experiments, 

and evaluation is performed on the two experiments in the 2019 growing season. The results are 

presented in Figure 3.17, which shows PLSR, Ridge Regression, and RF yielded the highest R2 

values when using wavelet-4, although the R2 values for models based on wavelets-2 were only 

slightly lower. With the PCA based inputs, the SVR models provided higher accuracies than the 

other methods, but the accuracies were generally lower than using wavelet-based features. The 

maximum R2 values achieved by SVR models were based on the wavelet-6 genomic features.  

 

 

Figure 3.17. R2 of predictions based principal components and wavelet-based genomic features in combination with 

RS and weather inputs in Ridge Regression, PLSR, SVR, and RF models 
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Multi-temporal Predictions 

In the previous sections, we showed that the predictive models developed using the weather, 

genomic, and RS data as inputs are able to predict the rank of genotypes with respect to their 

biomass values for the genotypes in the subsequent years without any reference data from these 

years. This implies that it may not be necessary to perform expensive, time-consuming plot level 

sampling of biomass at the end of the season.  Additionally, the models that were developed used 

the RS data collected from the beginning of the season to the end of the season, which implies that 

RS data acquisitions were also required until the end of the season. In this section, we investigate 

whether the biomass rank can be predicted earlier in the season to reduce both field sampling and 

acquisition of RS data.  

Figure 3.18 shows the impact of using RS data in G+W+RS models based on RS data sets 

collected on DAS of 40, 60, 80, and 95. Models based on the 2017 and 2018 experiments, using 

all four data sets provided the highest accuracy for the Ridge Regression, PLSR, and SVR models. 

RF models, whose R2 values were lower, had the highest R2 using RS samples from only the 

earliest date. Generally, the models developed with data from three or four dates provided similar 

R2 values. These models had R2 values of 0.6 or better using only data sets at 40 and 60 DAS, 

which implies that genotype selection for biomass production can be initiated earlier, and models 

with DAS=60 can be considered in the selection of genotypes for biomass production. 

 

Figure 3.18. Impact of number of RS datasets on R2 of predictions using Ridge, PLSR, SVR, and RF regression 

models 
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3.5 Conclusions 

In this study, we focused on developing regression based models using the RS data collected 

multiple times during a growing season combined with the genomic information as well as weather 

data to predict the end of season sorghum biomass yield. The models based on one and two years 

of data were used to predict the biomass yield for the future years based on using sample data from 

previous years. The results showed the high potential of the models for biomass and biomass rank 

predictions, with models based on two years of data having the higher R2 values. We also 

investigated the use of wavelet decomposition and PCA to extract a smaller number of features 

from the markers. The results indicated that level 4 and 6 wavelets generally provided models with 

higher accuracies than using all markers. We also investigated the possibility of developing 

predictive models using the RS data collected until mid-season, rather than the full season. The 

results showed that the rank of biomass can be predicted with R2 values of around 0.65-0.70 using 

the RS data until 60 DAS. This not only reduces the time required for phenotyping by reducing 

the manual sampling process, but also decreases the time and the cost of the RS data collection, 

processing, and analysis, and particularly for hyperspectral sensing. 
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 PREDICTION OF CROP YIELD USING UAV TIME SERIES DATA 

AND RECURRENT NEURAL NETWORKS 

4.1 Abstract 

Phenotyping via Unmanned Aerial Vehicles (UAVs) is of increasing interest for many 

applications because of their capability to carry advanced sensors and achieve accurate positioning 

required to collect both high temporal and high spatial resolution data required over relatively 

limited areas. This study focuses on the development of a data analytics based predictive modeling 

strategy that incorporates multi-sensor data acquisition systems and accommodates environmental 

inputs. Supervised and unsupervised feature learning based on fully connected, convolutional, 

recurrent neural networks are investigated. For hyperspectral data, supervised feature extraction 

provides more accurate predictions, while the features extracted from LiDAR data in an 

unsupervised training yield more accurate prediction. Predictive models based on Recurrent 

Neural Networks (RNNs) are designed and implemented to accommodate high dimensional, multi-

modal, multi-temporal data. Remote sensing data, including Light Detection and Ranging (LiDAR) 

and hyperspectral inputs, as well as weather data, are incorporated in RNN models. Results from 

multiple experiments focused on high throughput phenotyping of sorghum for biomass predictions 

are provided and evaluated for agricultural test fields at the Agronomy Center for Research and 

Education (ACRE) at Purdue University. The results of using proposed RNNs for training on one 

experiment and predicting biomass for other experiments with different types of sorghum varieties 

illustrate the potential of the network for biomass prediction, and the challenges relative to small 

sample sizes, including weather and sensitivity to the associated ground reference information. 

4.2 Introduction 

With the advances in science and technology, it is now possible to sequence the genome of 

plants rapidly and at low cost (Davey et al., 2011). In order to evaluate the performance of the 

plant varieties with given genetic characteristics, numerous physical and agronomic traits are 

measured in controlled facilities or in the field during the growing season (phenotyping). Planting 

the varieties of a crop and measuring dozens of phenotypic traits for each is time consuming, 
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laborious, and expensive. Recently, researchers have begun to explore the use of remotely sensed 

data to augment and even replace some traditional in-field phenotyping measurements. 

Biomass is an important plant characteristic for sorghum-based biofuels, as it is indicative 

of both the crop condition and the quantity of ethanol that can be produced. Many researchers have 

studied predictive models for complex phenotypes such as biomass, based on data derived from 

Remote Sensing (RS) technologies, via empirical approaches. For example, the importance of 

sample size, prediction method, and sensor type for biomass prediction was investigated in 

(Fassnacht et al., 2014) using support vector machines, random forests, and Gaussian process 

models. Although traditional empirical methods are powerful tools to model the complex 

relationships between the RS data and biomass, they are unable to effectively exploit the temporal 

aspects of the data, fully exploit multiple sensing modalities, or include environmental inputs. 

In recent years, deep neural networks have been investigated by many researchers in the area 

of pattern recognition and machine learning (ML). Deep Learning (DL) adds more “depth” 

(complexity) into the model compared to classical ML and represents the data in a hierarchical 

way in multiple layers using various functions to transform the data (Schmidhuber, 2015). If 

properly trained with adequate labeled data, DL can provide very accurate classification and 

prediction outputs because of its ability to use more complex models, which also increases 

flexibility and potential adaptability needed for many scenarios. 

The extraction of appropriate features, along with using a powerful predictive model, is 

required for accurate prediction of complex phenotypes such as biomass. Hyperspectral data 

consist of hundreds of channels that provide detailed spectral information from the image data 

from which useful predictive features can be extracted. From LiDAR point clouds, multiple 

features describing the geometric characteristics of the canopy including height, canopy coverage, 

and vertical distribution of the plant material can be extracted. Although having all these features 

provides more information for predictive models, it can degrade the accuracy of prediction as many 

features are highly correlated. Generally, this is not a concern for DL-based models, as they have 

the advantage of being able to learn the features and automatically extract appropriate 

representations from input data (Lecun et al., 2015) if adequate labeled data are available. For 

biomass prediction, however, the number of reference data samples is limited, as destructive 

sampling and processing of biomass is time-consuming and expensive. In this situation, it is 
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important to separate feature learning from the prediction by first extracting appropriate features, 

and then using them in the predictive models. 

DL networks, including stacked autoencoder (SAE), convolutional NNs (CNNs), and 

recurrent NNs (RNNs) have been investigated in different RS applications. In general, DL is 

beneficial for RS problems where physical models are complex, e.g., nonlinear, or even not yet 

well understood and/or cannot be generalized (Zhu et al., 2017). Using DL to solve RS problems 

also has multiple challenges, including: 

1. Multi-modality; in contrast with most fields, the data in RS problems are often acquired in 

multi-modality scenarios. 

2. Geotagged; the spatial relationship between different data units (usually pixels) is 

important in RS. 

3. Time-related; in many applications, multi-temporal RS data are acquired to represent 

temporally varying processes. 

4. High dimensional, big data; RS data collected with HSI sensors have hundreds of channels, 

and for some problems, the experiments cover an extended area. 

5. Limited reference samples; in many applications of RS, collecting ground reference data 

is very expensive and time-consuming which results in a small number of samples. 

To date, most deep learning-related research in the area of remote sensing has focused on 

classification using benchmark data sets. Chen at al. (Chen et al., 2014) used three fully connected 

networks for the classification of HSI data. Zhao et al. (W. Zhao & Du, 2016) proposed a novel, 

spectral-spatial classification framework for HSI which first uses a feature extraction method to 

extract low-dimensionality spectral features, and then employs a CNN to extract high-level spatial 

features. Spectral and spatial features are stacked as the inputs for a classifier. The method was 

compared to other well-known classifiers; it was reported that better classification performance 

was achieved because of combining the spectral and spatial discriminant features (it should be 

noted that this is also a common conclusion of traditional classification methods when applied to 

image data). In (Jiaojiao Li et al., 2018), a fully CNN proposed for HSI classification consisted of 

convolution, deconvolution, and pooling layers. In these studies, the DL network was used to 

extract features from the HSI data, and the extracted features were used in a traditional ML 

classification method.  
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In our study, we use deep learning networks in two steps, first feature learning, and then 

prediction (using the learned features). The features extracted by this method can also be the input 

of traditional methods such as SVR. The advantage of this feature extraction method is that the 

feature learning network can be trained in an unsupervised manner, which means that the data from 

all available experiments can be used for training. This also means that for the prediction we can 

use a shallower network with a few parameters as the “appropriate features” are already extracted 

from the data; thus, the network has much fewer parameters to optimize, and a smaller number of 

samples are required.  

For feature learning, we investigated two strategies; feature learning from the many already 

extracted features (feature reduction), and feature extraction from the original data based on auto-

encoder decoder networks. Two networks are designed for feature reduction that can be used for 

features extracted from either hyperspectral or LiDAR data.  One consists of several fully 

connected layers, and the second consists of convolutional, pooling, and de-convolutional layers. 

For feature extraction from the original data, a 2D CNN is used for hyperspectral data, and two 

RNN based networks are designed for the LiDAR point cloud data.  

For biomass prediction, two RNNs are designed to include both hyperspectral and LiDAR data 

and weather-related data (e.g. solar radiation, temperature, precipitation). For biomass prediction, 

having a method that can incorporate the data from multi-year experiments and different sources 

is important, both for increasing the quantity of data samples and representing the growth scenarios 

under different weather-related growing conditions. The results and analysis provide useful 

insights on feature importance for prediction and demonstrate the ability to estimate the biomass 

from remotely sensed data, thereby greatly reducing the required human labor. 

4.3 Feature Learning 

Feature learning has been investigated by many researchers in different fields (Farabet et 

al., 2013; Shin et al., 2013; Tang & Eliasmith, 2010). In hyperspectral image classification, Tao et 

al. (Tao et al., 2015) showed that feature learning based on a stacked sparse auto-encoder model 

provides robust results. In (F. Li et al., 2018), a network of fully convolutional auto-encoders for 

image feature learning was developed for image clustering. In (Wu & Prasad, 2017), a 

convolutional recurrent neural network (CRNN) consisted of several convolutional layers and a 
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few recurrent layers to extract locally-invariant and spectrally-contextual information from the 

hyperspectral data.  

Inspired by these studies, in this paper, we develop deep neural networks for unsupervised 

learning of features from both hyperspectral and LiDAR data. We investigate the networks that 

can reduce the number of extracted features by learning a smaller number of features from 

extracted features. Toward this end, we designed a fully connected auto-encoder network (FAEN) 

and a convolutional auto-encoder network (CAEN). The FAEN and CAEN learn fewer features 

from the original features extracted from the RS data for each plot. These networks are described 

in Section 4.3.1.  

The auto-encoder decoder networks can be used to extract latent features from 

hyperspectral data and LiDAR point cloud data. For hyperspectral data, we used a 3D 

convolutional auto-encoder network (CAEN-2d), including six hidden convolutional layers, three 

layers for encoding the data, and three layers for decoding the encoded features to reconstruct the 

hyperspectral data. For LiDAR data, as different numbers of points exist in each plot, we designed 

multiple recurrent auto-encoder networks (RAEN) that use LSTM units for encoding and decoding 

the point cloud data. These networks are described in Section 4.3.2. 

The design of each network architecture is based on the evaluation of many different 

hyperparameter settings, including learning rate, number of layers, size of each layer, number of 

encoded features, size of the kernels in CNN-based networks, dropout rate. The architecture that 

provides the best results in terms of the reconstruction error, computational complexity, and best 

encoded features (with regard to prediction accuracy) is selected.  

4.3.1 Feature Reduction by Auto-encoders 

The FAEN network consists of three fully connected hidden layers as well as input and 

output layers as shown in Figure 4.1. The first hidden layer consists of more neurons than the input 

layer, allowing the network to expand the information of the input features to a higher dimensional 

space. The second layer then has a few neurons (four in this paper, based on evaluations of different 

hyperparameters) that are considered as the learned features. This part of the network is referred 

to as the encoder, which abstracts (encodes) the information of the input features into a few features. 

Then, the second part of the network (decoder), which is symmetric with the first part, reconstructs 

the input features from the learned features. 
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Figure 4.1. Unsupervised feature learning using a fully connected auto-encoder network (FAEN). 

 

The second network, CAEN, is similar to FAEN, but uses convolutional layers instead of 

fully connected layers, as shown in Figure 4.2. Using convolutional layers for feature learning 

allows the network to take advantage of potential relationships between the input features. Also, 

there are fewer parameters to optimize during the training of the network. The size of the output 

layer in both networks is the same as the input layer as they reconstruct the input features. The cost 

function is the average sum-of-squared error between the input and reconstructed features over the 

entire sample data. 

 

 

Figure 4.2. Unsupervised feature learning using a convolutional auto-encoder network (CAEN). 
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4.3.2 Feature Extraction by Auto-encoders 

DL has the advantage of being able to learn and automatically extract features from the 

original data, in multiple levels of the hierarchy (Lecun et al., 2015). Similar to CAEN-1d, the goal 

is to use the auto-encoders to encode a few features from each plot, but using the image of the plot 

including all the bands, rather than the extracted features. This exploits the spatial information 

from the image as well as the variation in the pixel’s values within a plot. Compared with CAEN-

1d, there are more parameters to optimize, and thus a more time-consuming training process. The 

proposed 2D convolutional auto-encoder network (CAEN-2d) is shown in Figure 4.3. The network 

consists of three convolutional layers that reduce the size of the image at each layer until a desired 

number of features is obtained. Then, in the decoding part of the network, three symmetric layers 

increase the size of the image at each layer until the original image data are reconstructed. As this 

network is used for training and extracting features from all the experiments, the average size of 

the plots in all experiments, 64×32 pixels is considered for the network design. If a plot covers a 

smaller or larger area, padding or trimming is used to resize all the plots. Also, the number of 

hyperspectral bands differs slightly in the three years (271 to 273), but we have binned the data by 

four so that a spectral resolution of 10 nm is obtained, and by ignoring the first and last bands, so 

all the plots had 64 spectral bands. Details on each layer of the designed network are presented in 

Table 4.1. 

 

 

Figure 4.3. Unsupervised feature learning using 2d convolutional auto-encoder network (CAEN-2d). 
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Table 4.1. CAEN-2d details 

Input Image Size: (64,32,64) 

First layer 

Kernel: size (11,7,16), stride (2,1) 

Activation: Sigmoid, Max polling: Yes 

Output size: (16,16,16) 

First layer 

Kernel: size (5,5,8), stride (1,1) 

Activation: Sigmoid, Max polling: Yes 

Output size: (8,8,8) 

First layer 

Kernel: size (3,3,2), stride (1,1) 

Activation: Sigmoid, Max polling: Yes 

Output size: (4,4,2) 

Encoded Features Size (32) 

 

Typically, convolutional or fully connected networks are fed through a regular input data 

format; however, the point cloud data usually represent a spatially irregular data format, requiring 

a conversion to extract regular 3D voxel grids or collections of images. This unnecessarily 

increases the size of the data set, which is not efficient, and also can reduce natural invariance of 

the data by introducing quantization artifacts (Su et al., 2018). In recent years, several network 

architectures have been developed based on using point clouds directly. Qi et al. (Qi et al., 2017) 

proposed using the point cloud directly in a network that relies on max pooling as a single 

symmetric function to learn the global descriptor for the entire shape (shape classification) or 

predicting per point labels (shape segmentation) from informative points of the point cloud. In this 

study, we investigate the possibility of using recurrent auto-encoder networks for learning features 

from the point cloud data. Two architectures are investigated in this section based on LSTM units. 

RNNs are powerful models for representing sequential data and are particularly effective 

in learning long-term dependencies. However, it is demonstrated that conventional RNNs suffer 

from the vanishing gradient and long-distance dependency problem. Long Short Term Memory 

(LSTM) (Hochreiter & Schmidhuber, 1997) architectures were designed to address the issue. 

LSTMs and gated recurrent units (GRU) (Cho et al., 2014) have proven to be successful in 

accommodating the difficulty of training simple recurrent networks (Karpathy et al., 2015). An 

LSTM unit is capable of learning long-term dependencies due to its structure, which incorporates 

gates that regulate the learning process. The operations are accomplished by the input, forget, and 

output gates. Based on the information provided by the input and forget gates, the cell state, which 

represents the memory of the unit, is updated. The GRU architecture is similar to LSTM, but 
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simpler to compute and implement as it consists of only two gates: reset and update gates (Fu et 

al., 2017). 

The RNN based encoder-decoders consist of a many-to-one network that encodes the input 

data to a few encoded features, and a one-to-many network that decodes the encoded features to 

reconstruct the original input data (Figure 4.4). 

 

  

Many-to-one One-to-many 

Figure 4.4. One-to-many vs. many-to-one RNN network. 

 

Inspired by the LSTM encoder-decoder model used for text simplification in (Wang et al., 

2016), we designed two networks shown in Figure 4.5 and Figure 4.6. In RAEN-1, we first select 

a group of points and assign them to a bag, then we have a number of bags which is considered an 

input to the RNN first layer. The number of points in each bag and the total number of points in 

each plot determine the number of bags. The larger the number of bags, the longer the training 

time. From Figure 4.5, the bags are fed into two layers of RNN cells (LSTM in our study) and the 

output of the two layers is considered as the encoded features. The encoded features are then copied 

as the same number of bags, and fed to the decoder part of the network. The output of the RNN 

cells in this part of the network is the reconstructed bags of the points which were originally fed 

to the decoder. 
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Figure 4.5. RNN auto-encoder network (RAEN-1) proposed for feature extraction from LiDAR data. 

 

One possible issue with the RAEN-1 is that all the layers have the same number of inputs (equal 

to the number of bags) which can create a long sequence of data, which not only increases the 

training time, but can also negatively impact the training itself. To avoid this issue, we propose a 

modified architecture where the hidden RNN layers have a smaller number of inputs by 

concatenating the outputs of several outputs of the previous layers (see Figure 4.6). Also, we 

investigate a non-symmetric decoder to reduce the number of hidden layers and ultimately the 

gradient vanishing problem that RNNs often encounter.  

 

 

Figure 4.6. RNN auto-encoder network (RAEN-2) proposed for feature extraction from LiDAR data. 
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4.3.3 Supervised Feature Learning by Auto-encoders 

Feature extraction can be challenging for large data sets, as the AE networks might encode 

features that are not especially useful for a given application. To avoid this issue, it is possible to 

force the network to learn features for a specific goal. For example, here we force the network to 

minimize the error of biomass prediction using encoded features in a linear regression model. We 

modify the cost function so that it reduces the reconstruction error, as well as the error of the 

biomass prediction using the encoded features in each iteration: 

𝐶𝑜𝑠𝑡𝑟𝑒𝑐𝑜𝑛𝑠𝑡 = ∑(𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙)2/𝑛 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑝𝑟𝑒𝑑 = 𝑊 ∗ 𝐿𝑒𝑎𝑟𝑛𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 + 𝐵 

𝐶𝑜𝑠𝑡𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = ∑(𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑝𝑟𝑒𝑑 − 𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑟𝑒𝑓𝑟𝑒𝑛𝑐𝑒𝑠)2/𝑛 

𝐶𝑜𝑠𝑡 = 𝐶𝑜𝑠𝑡𝑟𝑒𝑐𝑜𝑛𝑠𝑡 + 𝛼 𝐶𝑜𝑠𝑡𝑏𝑖𝑜𝑚𝑎𝑠𝑠  

where 𝑛, 𝑊, 𝐵 and 𝛼 are the number of batches, a random coefficients tensor, a random bias tensor, 

and regularization factor, respectively. 

4.4 Predictive Models 

Two models are developed for biomass prediction, one based on Support Vector Regression 

(SVR) and the other based on RNN.  

4.4.1 Support Vector Regression 

SVR is a supervised non-parametric regression technique, and therefore, no assumptions 

regarding the underlying data model are required. SVR transforms the original feature space into 

a higher dimensional space (T. Zhang, 2001), with the goal of finding a hyperplane to predict the 

training data set. More details for SVR are provided in (Smola & Schölkopf, 2004). The optimal 

values of the kernel function parameters are found by a general k-fold cross-validation in a grid 

search. 

4.4.2 Recurrent Neural Network for Prediction 

In this study, GRU and LSTM models are developed and compared for multi-temporal 

prediction of sorghum biomass. Mou et al. (Mou et al., 2017) proposed an RNN model to classify 
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hyperspectral pixels by considering the sequence-based data structure. In (Kong et al., 2018), a 

novel RNN network was proposed for online disturbance detection from a satellite image time 

series. RS-based prediction was also investigated in (You et al., 2017) for soybean yield prediction 

using an RNN. The proposed RNN architecture with two hidden layers (either GRU or LSTM 

based cells) is shown in Figure 4.7. The input vector for the network includes hyperspectral 

features, LiDAR features, and weather-related features as shown in Figure 4.7. In this study, both 

LSTM and GRU models are explored.  

 

 

 

Figure 4.7. Recurrent neural network (RNN-1) developed in this study for biomass prediction, and its input vector at 

time ti. 

 

One issue with RNN-1 is that if the number of hyperspectral and LiDAR data sets differ, 

or they are collected on different dates, it not possible to simply use the input vector directly (also 

an issue for traditional regression models such as SVR). To overcome this issue, we propose a 

second architecture shown in Figure 4.8. The proposed network includes two sets of RNN layers: 

one set for features derived from hyperspectral data and one for the LiDAR-based features. This 

network can accommodate the differing number of datasets from each source as input. The final 

outputs of the two RNN cells are concatenated and considered as the input for the fully connected 

layer which outputs the prediction results of the network. 
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Figure 4.8. Recurrent neural network (RNN-2) developed in this study for multi-temporal biomass prediction, and 

its input vectors at time ti and tj. 

4.5 Data and Experimental Setup 

4.5.1 Field Ground Reference Data 

The field experiments were conducted in the 2017, 2018, and 2019 growing seasons, each 

year in 2.8 ha sorghum breeding trials located at the Purdue University Agronomy Center for 

Research and Education (ACRE), West Lafayette, Indiana. All trials were arranged in a 

randomized complete block design and planted at 220,000 plants per ha. In 2017, the field 

experiments consisted of two distinct trials in two panels; the inbred calibration (InCal) panel and 

the sorghum biodiversity (SbDiv) panel. The SbDiv panel consisted of 840 inbred lines replicated 

twice in four row plots. The inbred calibration panel included 60 inbred lines, a subset of the SbDiv 

panel, which encompasses the genetic diversity of the SbDiv panel, and were planted in four row 

plots. The InCal experiment was also repeated in the 2018 growing season in a different field at 

ACRE, with 54 inbred lines. In 2018, two other experiments were also conducted: sorghum 

biodiversity test cross (SbDivTc) and inbred calibration test cross (InCalTc), both planted in four 

row plots. The SbDivTc and InCalTc are hybrids derived from the Sbdiv and InCal experiments 

with a common maternal parent. The InCalTc included 54 hybrid lines, also a subset of the 

SbDivTc panel. The SbDivTc included 630 hybrids replicated twice in four row plots in the 2018 

growing season. In 2019, the SbDivTc was repeated with the same number of genotypes. An 

additional panel was added in 2019:  sorghum biodiversity test cross calibration (SbDivTcCal), 
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which included 72 hybrid lines, a subset of the SbDivTc panel that is representative its genetic 

diversity planted in 10 row plots. Details of experiment trials are provided in Table 4.2.  

 

Table 4.2. Experiment designs for the 2017-2019 growing seasons. 

Y
ea

r 

Trial Genotype 
# of  

plots 

# of 

genoty

pes 

Sowing 

Date 

Harvest 

Date 
Comment 

Available 

Biomass Data 

2
0
1
7
 

HyCal-17 Hybrid 72 18 May 16 Sep 27 -- 
6/27, 7/17, 7/31, 

8/08, 9/27 

InCal-17 Inbred 120 60 May 16 Sep 27 
60 replicated genotypes from 

SbDiv-17  
9/27 

SbBAP-17 Inbred 760 350 May 16 Sep 28 -- 9/28 

SbDiv-17 Inbred 1800 840 May 17 Nov 9 -- 11/09 

2
0

1
8
 

HyCal-18 Hybrid 72 18 May 8 Aug 9 Same genotypes as HyCal-17 6/27, 7/12, 8/09 

InCal-18 Inbred 108 54 May 8 Aug 9 
54 replicated genotypes from 

InCal-17 
8/09 

InCalTc-18 Hybrid 108 54 May 8 Aug 6 
54 replicated genotypes from 

SbDivTc-18 
8/06 

SbDivTc-18 Hybrid 1260 630 May 8 Aug 2 -- 8/2 and 8/14 

SNitTs-18 Inbred 112 4 June 4 Oct 2 -- 10/02 

2
0

1
9
 SbDivTcCal-

19 
Hybrid 144 72 June 4 Aug 2 

72 replicated genotypes from 

SbDivTc-19 
9/5 

SbDivTc-19 Hybrid 1260 630 June 4 Aug 2 
Same experiment as SbDivTc-

18 
9/5 

 

4.5.2 Remote Sensing Data 

This study includes RGB, hyperspectral, and LiDAR remote sensing data collected by 

custom designed UAV platforms. All remote sensing data acquisition platforms were flown with 

Global Navigation Satellite System/Inertial Navigation System (GNSS/INS) units for direct 

georeferencing. RGB data for this study were collected using a Sony Alpha ILCE-7R RGB camera 

with a Sony 35mm lens. The Sony Alpha 7R features a full-frame 36.4MP sensor delivering high-

resolution UAV-based aerial imagery. LiDAR data were collected with a Velodyne VLP-16 Puck 

Hi-Res in 2017 and 2018 at an altitude of 25 m, and a Velodyne VLP-16 Puck LITE in 2019 in an 

altitude of 45 m. The LiDAR sensors in all three years were operated in the strongest return mode 

and 600 rotations per minute (RPM). The VLP-16 is a 16 beam LiDAR unit with a 360-degree 

horizontal FOV, and a maximum range of 100 m. Both the RGB camera and the VLP-16 sensor 

are mounted on a DJI Matrice 600 Pro (M600P) platform. Spatial and temporal system calibration 
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for the datasets used in this study were conducted using the approaches described in (Ravi et al., 

2018) and  (LaForest et al., 2019), respectively. Also, the georeferenced orthomosaics were 

generated using the structure from motion strategies introduced in (Hasheminasab et al., 2020; He 

et al., 2018). 

Visible Near Infrared (VNIR) hyperspectral data were collected with two Headwall 

Photonics push-broom scanners. The VNIR data were acquired by a Nano-Hyperspec imaging 

sensor in 272 spectral bands at 2.2 nm/band from 400 nm to 1000 nm with 640 spatial channels at 

7.4 µm/pixel. In 2017, the sensor was flown at an altitude of 60 m with a 12 mm Schneider lens, 

resulting in a Ground Sampling Distance (GSD) of ~4 cm. An 8 mm lens was used in 2018 and 

2019, and the flying height was ~40 m to maintain the GSD at ~4 cm. In 2019, the RGB, LiDAR, 

and VNIR sensors were integrated and flown together on a single UAV platform (see Figure 3.4). 

A rigorous boresight calibration process was performed (Habib et al., 2018), yielding aligned RGB, 

LiDAR, and VNIR data. All the hyperspectral data were converted to reflectance using the 

empirical line method to relate the spectra collected from the UAV to data acquired by an SVC 

1024i field spectrometer over the calibration targets placed in the field for each acquisition. Table 

4.3 lists the data acquired by the sensors in 2017, 2018, and 2019 growing seasons. 

 

Table 4.3. Remote Sensing Data Sets Details 

Year Data Type Dates 

2017 
LiDAR 6/28, 7/18, 8/08, 8/23 

Hyperspectral 6/27, 7/14, 8/08, 8/23 

2018 
LiDAR 6/14, 7/06, 7/25, 8/09 

Hyperspectral 6/11, 7/02, 7/23, 8/06 

2019 
LiDAR 7/12, 8/02, 8/24, 9/05 

Hyperspectral 7/13, 8/02, 8/24, 9/05 

4.5.3 Experimental Setup 

Results of three sets of experiments are presented: the proposed method for feature learning 

is investigated initially. For each experiment, the data from all other experiments are used to train 

the proposed the FAEN, CAEN, CAEN-2d, and RAEN models, then the learned features are 

evaluated as the input features in SVR models to predict the end of season biomass for that 

experiment. In the second set, the robustness of the performance of the SVR models and the 

proposed RNN-1 is evaluated by training these models on one experiment and using the models to 

predict biomass of all other experiments using the features learned via FAEN. In the third set of 
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experiments, predictive models based on RNN-2 are developed for biomass estimating at multiple 

times during the growing season. 

4.6 Results 

4.6.1 Feature Learning Results 

The results of feature learning include both the proposed FAEN and CAEN architectures. 

For training, all the features from all the multi-variety plots and all five available dates are stacked 

in an input vector. For example, for the HyCal 2017, there are 72 plots (from Table 1) and five 

dates, so 4×72=360 sample data points are available for training. Once training is completed, the 

trained network can be used to extract features for other data sets (any experiment at any date). 

Figure 4.9(a) shows the original, reconstructed, and learned features from hyperspectral 

data for one of the varieties in the HyCal-17 experiment using FAEN trained on the same 

experiment. Figure 4.9 (b) shows the features using the same network architecture, but training 

was performed on the SbDiv-17 experiment and the data for the HyCal experiment were 

reconstructed. The Root Mean Square Error (RMSE) of the reconstructions is also provided in 

Figure 4.9. The reconstructed signatures are very similar to the original signatures in both training 

scenarios based on the small RMSE values observed for each reconstruction. This implies that it 

may be possible to train the network on some experiments, and then use/transfer the trained 

network for other similar experiments. This is important for two reasons: 1) if there are 

experiments where the number of samples for training is not adequate, pre-trained networks can 

be used; 2) this provides the opportunity to use a trained network to extract features for all the 

experiments in both 2017 and 2018, which represent a broader range of environmental conditions. 

This can potentially facilitate transfer learning required for multi-year predictions. 
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(a) (b) 

Figure 4.9. Original, reconstructed, and learned features for one variety of the HyCal-17 experiment using FAEN 

trained on the (a) HyCal-17 and (b) SbDiv-17 hyperspectral data sets. 

 

To further investigate these issues, the FAEN and CAEN are trained on data from each 

experiment first, and the trained networks are then used to learn the features for all the other 

experiments. The learned features for each experiment are then used in an SVR model to predict 

the end-of-season biomass for that experiment using 3-fold cross validation. The R2s of the 

predictions compared to ground reference data are provided in Table 4.4 and Table 4.5. In most 

cases, the highest accuracies were obtained when the training and testing were both associated 

with the same experiment (panel). However, for all experiments using the networks trained on data 

sets from other experiments provided comparable results. In some cases, training using the data 

from the combined experiments (last column of Table 4.4 and Table 4.5) provided the most 

accurate prediction. These results indicate that it may not be necessary to train the proposed 

networks on the data sets of the same experiment for biomass prediction.  It should be noted 

however, that it is critical to use high quality data for training and evaluating networks over 

multiple panels and time periods. 
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For most experiments in Table 4.4 and Table 4.5, the combined set of learned features from 

LiDAR and hyperspectral data provided more accurate results than using features from only 

hyperspectral or LiDAR. This indicates the importance of using both geometric and spectral 

related features for biomass predictions. For HyCal experiments in both 2017 and 2018, LiDAR-

based features provided more accurate results than hyperspectral-based features, while for all other 

experiments, hyperspectral-based features provided more accurate results. This is likely due to the 

diversity of genotypes in the HyCal experiments. The HyCal experiments consisted of 18 

commercial genotypes with a wide range of structural characteristics that can be reflected in 

LiDAR-based geometric features, while the InCal-17, InCal-18, and SvDiv-17 experiments had 

more similar genotypes, and thereby more similar plant structure. 

 

 

 

 

 

Table 4.4. R2 values of SVR-based biomass prediction (of field-based results) using latent features extracted by the 

proposed FAEN trained on different experimental data sets and tested on all experiments. The maximum R2 of the 

predictions for each experiment is in bold.  

                          Train 
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SbBAP-17 

H 0.54 0.53 0.49 0.49 0.47 0.47 0.37 0.53 0.37 0.50 0.55 

L 0.52 0.50 0.54 0.52 0.52 0.53 0.51 0.53 0.51 0.52 0.51 

HL 0.60 0.61 0.58 0.49 0.59 0.58 0.53 0.58 0.53 0.57 0.62 

SbDiv-17 

H 0.64 0.66 0.67 0.68 0.67 0.68 0.59 0.68 0.59 0.66 0.68 

L 0.63 0.62 0.62 0.64 0.58 0.61 0.60 0.61 0.60 0.63 0.65 

HL 0.74 0.75 0.75 0.76 0.74 0.75 0.73 0.74 0.73 0.74 0.76 

SbDivTc-18 

H 0.58 0.60 0.56 0.58 0.59 0.57 0.43 0.63 0.43 0.60 0.64 

L 0.51 0.50 0.51 0.51 0.50 0.51 0.50 0.48 0.50 0.50 0.49 

HL 0.65 0.65 0.62 0.64 0.65 0.64 0.61 0.66 0.61 0.66 0.68 

SbDivTc-19 

H 0.61 0.63 0.63 0.63 0.63 0.62 0.36 0.60 0.36 0.61 0.63 

L 0.53 0.52 0.51 0.52 0.48 0.52 0.50 0.49 0.50 0.52 0.53 

HL 0.67 0.67 0.69 0.69 0.68 0.69 0.62 0.66 0.62 0.67 0.69 

** H refers to hyperspectral, L refers to LiDAR, and HL is combined hyperspectral and LiDAR data sets 
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4.6.2 Feature Extraction Results 

Feature Extraction from Hyperspectral Data Using CAEN-2d 

Figure 4.10 shows the reconstruction results of CAEN-2d trained on the SbDivTc-18 

experiment and used for feature extraction for all other experiments in both supervised and 

unsupervised mode. From Figure 4.10, the unsupervised reconstructed results appear to be more 

similar to the original data which is expected as the optimization goal was only to reduce the 

reconstruction error, while in supervised training, the optimization not only minimizes the 

reconstruction error, but also maximizes the relation between the extracted features and biomass 

as was noted earlier.  

 

 

 

 

Table 4.5. R2 values of SVR-based biomass prediction (of field-based results) using latent features extracted by the 

proposed CAEN trained on different experimental data sets and tested on all experiments. The maximum R2 of the 

predictions for each experiment is bold. 

Train 

 

 

 

Test 
D

at
a 

T
y
p
e 

2017 2018 2019 

 A
ll

 

H
y
C

al
 

In
C

al
 

S
b
B

A
P

  

S
b
D

iv
 

H
y
C

al
 

In
C

al
 

T
cC

al
 

S
b
D

iv
T

c 

S
b
D

iv
T

cC
a

l 

S
b
D

iv
T

c 

SbBAP-17 

H 0.50 0.52 0.52 0.50 0.49 0.52 0.51 0.50 0.53 0.53 0.52 

L 0.50 0.45 0.47 0.51 0.42 0.51 0.38 0.46 0.45 0.51 0.49 

HL 0.59 0.55 0.59 0.61 0.54 0.60 0.53 0.57 0.57 0.58 0.59 

SbDiv-17 

H 0.63 0.68 0.68 0.69 0.67 0.68 0.67 0.70 0.67 0.69 0.70 

L 0.55 0.55 0.59 0.61 0.56 0.59 0.47 0.48 0.47 0.60 0.59 

HL 0.73 0.74 0.74 0.76 0.73 0.75 0.71 0.74 0.72 0.76 0.76 

SbDivTc-18 

H 0.62 0.59 0.62 0.64 0.61 0.62 0.59 0.63 0.61 0.61 0.62 

L 0.44 0.45 0.50 0.51 0.43 0.51 0.43 0.42 0.38 0.52 0.50 

HL 0.65 0.64 0.66 0.68 0.65 0.66 0.64 0.67 0.66 0.65 0.66 

SbDivTc-19 

H 0.61 0.62 0.63 0.62 0.63 0.63 0.62 0.63 0.63 0.64 0.61 

L 0.41 0.41 0.48 0.49 0.43 0.46 0.32 0.40 0.34 0.49 0.47 

HL 0.66 0.68 0.69 0.67 0.68 0.67 0.64 0.66 0.66 0.69 0.68 

** H refers to hyperspectral, L refers to LiDAR, and HL is combined hyperspectral and LiDAR data sets 
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Figure 4.10. CAEN-2d reconstruction results trained on SbDivTc-18. 

 

Figure 4.10 also indicates that even when the training is performed with data from another 

experiment, the reconstruction results are similar for both for supervised and unsupervised 

approaches To further investigate this, the average spectra of the original and reconstructed images, 

as well as extracted features for an example plot from HyCal-17 experiment using the CAEN-2d 

trained on HyCal-17 and SbDivTc-18 are shown in Figure 4.11. The low RMSE of the 

reconstructed average spectra indicated that it is possible to train the network on some experiments, 

and then use the trained network for other experiments, as was observed for FAEN and CAEN in 

previous sections.  
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(a) (b) 

Figure 4.11. Original, reconstructed, and learned features for one variety of the HyCal-17 experiment using 

CAEN-2d trained on the (a) HyCal-17 and (b) SbDiv-17 experiments. 

 

The CAEN-2d was trained on each of the experiments individually and then used for 

feature extraction for all the experiments. Table 4.6 shows the results of using those extracted 

features for biomass prediction using SVR models in both supervised and unsupervised training. 

The maximum R2 value for each experiment indicates that the supervised training provided more 

informative features for biomass prediction, even when the feature extraction network was trained 

on other experiments. Comparing the results in Table 4.6 with those in Table 4.4 and Table 4.5 

shows that the features from FAEN and CAEN provided slightly more accurate predictions. A 

potential reason for this is that here we used all the pixels in each plot where there are many non-

vegetative pixels, which can negatively impact the extracted features, especially for the early 

season data. Also, comparing Figure 4.9 and Figure 4.11 indicates that the reconstructed signal 

using FAEN preserved the details and resulted in a lower RMSE compared to CAEN-2d. The 

number of extracted features is also different from these networks, which can impact the prediction 

results using SVR models.  
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Table 4.6. R2 values of SVR-based biomass prediction (of field-based results) using latent LiDAR-based features 

extracted by the proposed CAEN-2d trained on different experimental data sets and tested on all experiments. Blue 

and green colors show unsupervised and supervised, respectively. The maximum R2 of each row is highlighted. 

                  Train    

 

 

Test 

2017 2018 2019 

HyCal-

17 

InCal- 

17 

SbBAP-

17 

SbDiv- 

17 

HyCal-

18 

InCal- 

18 

TcCal- 

18 

SbDivTc

-18 

SbDivTc

Cal-19 

SbDivTc

-19 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 

2
0
1
7
 

 HyCal-17 0.08  0.18 0.46 0.29 0.02 0.30 0.21 0.11 0.44 0.0 0.32 -0.3 0.41 0.10 0.2 0.11 0.5 0.11 0.0 

 InCal-17 0.42 0.46 0.41  0.53 0.51 0.52 0.52 0.45 0.11 0.50 0.63 0.46 0.31 0.34 0.46 0.39 0.40 0.44 0.49 

 SbBAP-17 0.28 0.44 0.26 0.44 0.35  0.34 0.36 0.31 0.36 0.32 0.45 0.30 0.41 0.26 0.34 0.25 0.33 0.27 34 

 SbDiv-17 0.46 0.49 0.47 0.62 0.57 0.49 0.56  0.47 0.52 0.53 0.61 0.46 0.39 0.44 0.52 0.47 0.50 0.49 0.49 

2
0
1
8
 

 HyCal-18 0.40 0.57 0.22 0.52 0.43 0.42 0.46 0.36 0.34  0.45 0.50 0.33 0.48 0.42 0.35 0.24 0.23 0.27 0.43 

 InCal-18 0.49 0.43 0.39 0.69 0.49 0.43 0.51 0.57 0.46 0.5 0.46  0.45 0.49 0.34 0.52 0.37 0.55 0.48 0.52 

 TcCal-18 0.25 0.62 0.27 0.51 0.27 0.37 0.29 0.43 0.28 0.52 0.27 0.54 0.33  0.26 0.52 0.38 0.60 0.33 0.47 

 SbDivTc-18 0.42 0.48 0.44 0.55 0.54 0.50 0.51 0.52 0.45 0.53 0.45 0.62 0.43 0.65 0.46  42 0.46 0.43 0.49 

2
0

1
9
 

 SbDivTcCal-19 0.29 0.60 0.41 0.50 0.34 0.48 0.39 0.40 0.37 0.40 0.32 0.45 0.28 0.62 0.35 0.46 0.37  0.37 0.36 

 SbDivTc-19 0.31 0.46 0.30 0.53 0.37 0.37 0.41 0.39 0.28 0.38 0.34 0.55 0.30 0.53 0.26 0.38 0.39 0.42 0.28  

Feature Extraction from LiDAR Data Using RAEN 

Using AE for feature extraction from LiDAR data is more challenging, as was noted earlier. 

Using RAEN-1 and 2, we conducted seven experiments to explore the impact of the number of 

points in a bag, number and the size of the hidden layers, and supervised vs. unsupervised training 

in terms of the reconstruction error, as well as the accuracy of prediction using the encoded features. 

Table 4.7 lists the details of all the experiments, including training time. RAEN-2 is much faster 

than RAEN-1, and increasing the number of points in a bag reduces the time needed for training. 

All experiments were carried out on a cluster node equipped with an Intel 16-core CPU with 192 

GB memory and two NVIDIA GeForce P100 GPUs. 

 

Table 4.7. List of experiments for feature extraction using RAEN-1 and RAEN-2 

Experiment Network alfa Encode layer Encode layer 
# of points 

in a bag 

# of points 

in a plot 

Training time 

(hh:mm:ss) 

Ex.1 RAEN-1 0 (unsupervised) Bi-LSTM (64, 8) Bi-LSTM (8, 48) (32, 1) 1024 5:26:19 

Ex.2 RAEN-1 0 (unsupervised) Bi-LSTM (32, 8) Bi-LSTM (32, 8) (16, 1) 1024 7:24:02 

Ex.3 RAEN-1 10 (supervised) Bi-LSTM (32, 8) Bi-LSTM (32, 24) (16, 1) 1024 7:54:19 

Ex.4 RAEN-2 0 (unsupervised) Bi-LSTM (16, 8) Bi-LSTM (96) (16, 4) 1024 5:33:04 

Ex.5 RAEN-2 10 (supervised) Bi-LSTM (16, 8) Bi-LSTM (96) (16, 4) 1024 5:42:12 

Ex.6 RAEN-2 0 (unsupervised) Bi-LSTM (16, 8) Bi-LSTM (24) (8, 1) 1024 11:03:10 

Ex.7 RAEN-2 10 (supervised) Bi-LSTM (16, 8) Bi-LSTM (24) (8, 1) 1024 10:05:46 
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The differences in X, Y, and Z values of the reconstructed points from the original point 

cloud for an example plot from SbDivTc-18 experiment using RAEN-1 and 2 are shown in Figure 

4.12 and Figure 4.13, respectively. Based on these figures, the reconstruction error using RAEN-

2 is slightly lower than those of RAEN-1, especially in Z. The figures also show that the 

reconstruction error in X and Y is much higher for the points in the middle of the sequence. Note 

that the RNN networks tend to eventually forget the first inputs during the training, especially 

when the length of the sequence is large. To avoid this issue, we used bidirectional LSTM cells 

for the proposed RAEN-1 and 2. This is the reason that the error for the points at the beginning 

and the end of the sequence are smaller than those in the middle. This issue is also more severe in 

the RAEN-1 as its hidden layers have more inputs compared with RAEN-2. The extracted features 

are also shown in the figures, which indicates some of them have the same value for all the dates, 

but comparing the features from different plots showed that they can be very different for different 

plots. 

 

 

Figure 4.12. Error of reconstruction in X, Y, and Z for the points in an example plot with 1024 point as well as 

extracted features for one variety of the SbDivTv-18 experiment using RAEN-1 trained on the same experiment data 
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Figure 4.13. Error of reconstruction in X, Y, and Z for the points in an example plot with 1024 points as well as 
extracted features for one variety of the SbDivTv-18 experiment using RAEN-1 and RAEN-2 trained on the same 

experiment data. 

 

Figure 4.14 and Figure 4.15 show the RMSE in X, Y, and Z for the reconstructed point 

clouds for all the plots in the SbDivTc-18 experiment using RAEN-1 (Ex. 2) and RAEN-2 (Ex.4). 

Based on these figures, the RMSE in X, Y, and Z were about 2-3 cm smaller using RAEN-2.  

 

 

Figure 4.14. Reconstruction X, Y, and Z RMSE for all the plots of SbDivTv-18 experiment using RAEN-1 trained 

on the same experiment data. 
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Figure 4.15. Reconstruction X, Y, and Z RMSE for all the plots of SbDivTv-18 experiment using RAEN-2 trained 

on the same experiment data. 

 

Table 4.8 shows the R2 of the biomass predictions using the SVR models with the features 

extracted from the seven experiments in Table 4.7 using RAEN-1 and 2. Here, the most accurate 

predictions were obtained using the unsupervised training. Also, in most cases, the predictions 

were slightly more accurate than using RAEN-1 compared with RAEN-2. Also, comparing these 

results with those of CAEN and FAEN (Table 4.4 and Table 4.5) indicates that the new results are 

slightly more accurate. A potential reason could be the fact that here we used all the points’ 

information including X, Y, and Z coordinates, while the input features for the FAEN and CAEN 

were calculated from Z only.  
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Table 4.8. R2 values of SVR-based biomass prediction (of field-based results) using latent LiDAR-based features 

extracted by the proposed RAEN-1 and RAEN-2 trained on different experimental data sets and tested on all 

experiments. Blue and green colors show unsupervised and supervised, respectively. The maximum R2 value for 

each row is highlighted. 

               Train    

 

 

  
 Test 

SbDiv-17 SbDivTc-18 SbDivTc-19 

RAEN-1 RAEN-2 RAEN-1 RAEN-2 RAEN-1 RAEN-2 

Ex.

1 

Ex.

2 

Ex.

3 

Ex.

4 

Ex.

5 

Ex.

6 

Ex.

7 

Ex.

1 

Ex.

2 

Ex.

3 

Ex.

4 

Ex.

5 

Ex.

6 

Ex.

7 

Ex.

1 

Ex.

2 

Ex.

3 

Ex.

4 

Ex.

5 

Ex.

6 

Ex.

7 

2
0
1
7
 

 HyCal-17 0.65 0.55 0.35 0.64 0.58 0.59 
-

0.07 
0.55 0.64 0.37 0.72 0.54 0.73 0.58 0.46 0.62 0.53 0.65 0.55 0.65 0.71 

 InCal-17 0.27 0.29 0.19 0.26 0.34 0.21 0.32 0.31 0.32 0.10 0.19 0.0 0.22 0.11 0.36 0.32 0.10 0.28 0.12 0.19 0.16 

 SbBAP-17 0.45 0.53 0.34 0.41 0.39 0.44 0.31 0.43 0.49 0.35 0.35 0.36 0.44 0.46 0.41 0.49 0.44 0.42 0.39 0.45 0.46 

 SbDiv-17 0.52 0.51  0.52  0.50  0.49 0.53 53 49 45 45 0.45 0.52 0.52 0.52 0.51 0.48 0.48 0.50 

2
0

1
8
 

 HyCal-18 0.50 0.65 0.25 0.62 0.42 0.66 0.47 0.71 0.70 0.61 0.67 0.34 0.67 0.66 0.49 0.48 0.30 0.61 0.56 0.64 0.71 

 InCal-18 0.20 0.23 
-

0.02 
0.15 0.29 0.02 0.14 0.20 0.02 

-

0.36 
0.10 

-

0.08 

-

0.08 

-

0.13 
0.19 0.29 0.08 0.20 

-

0.06 
0.13 

-

0.04 

 TcCal-18 0.52 0.48 0.09 0.50 0.44 0.44 0.33 0.53 0.55 0.48 0.45 0.86 0.39 0.53 0.40 0.42 0.36 0.40 0.27 0.47 0.43 

 SbDivTc-18 0.41 0.42 0.41 0.40 0.39 0.40 0.38 0.41 0.43  0.38  0.47  0.37 0.41 0.42 0.39 0.40 0.39 0.39 

2
0

1
9
 

 SbDCal-19 0.50 0.57 0.23 0.47 0.42 0.53 0.34 0.49 0.60 0.49 0.49 0.51 0.53 0.60 0.24 0.48 0.45 0.50 0.48 0.56 0.58 

 SbDivTc-19 0.36 0.36 0.34 0.35 0.37 0.37 0.34 0.36 0.36 0.35 0.33 0.34 0.35 0.33 0.35 0.36  0.34  0.37  

 

The highest R2 values for each experiment using the proposed auto-encoder networks are 

provided in Table 4.9, which shows for hyperspectral data, the FAEN provided slightly more 

accurate results for the SbBAP-17 experiment while CAEN resulted higher R2 for the SbDiv-17 

and SbDivTc-19 experiments. For SbDivTc-18, the CAEN-2d provided slightly most accurate 

results. For LiDAR data, the FAEN provided the maximum R2 values for the prediction for most 

of the experiments which indicates the original features, including height-based, canopy cover, 

and volume features were more informative for biomass predictions. 

 

Table 4.9. Maximum R2 values of SVR-based biomass prediction using latent features extracted from hyperspectral 

and LiDAR data by the proposed networks in this study. The maximum R2 value for each row and from each data 

type is highlighted. 

Experiment Hyperspectral LiDAR 

 FAEN CAEN-1d CAEN-2d FAEN CAEN-1d RAEN-1 RAEN-2 

 SbBAP-17 0.55 0.53 0.45 0.54 0.51 0.53 0.45 

 SbDiv-17 0.68 0.70 0.62 0.65 0.61 0.53 0.52 

 SbDivTc-18 0.64 0.64 0.65 0.51 0.52 0.43 0.47 

 SbDivTc-19 0.63 0.64 0.55 0.53 0.49 0.36 0.37 
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4.6.3 Multi-year Biomass Prediction 

In the previous section, the training and validation of the SVR models were performed on 

sample data of the same experiment. In this section, the SVR and RNN models were trained for 

each experiment, and the models are then used for biomass prediction of all the experiments. For 

all predictions in this section, the features learned from the proposed FAEN (trained on all the data 

sets of all experiments) were used as the input features for the predictive models as we believe 

they were more robust based on the results provided in previous sections. 

Table 4.10 shows the results of biomass prediction using SVR, RNN with GRUs (RNN-

GRU) and LSTMs (RNN-LSTM) models trained on each experiment and validated on all other 

experiments. The highest R2 for each experiment was achieved when the training and validation 

were performed on the same experiment (splitting the sample data into training and validation 

categories and using 3-fold cross validation). The number of iterations for RNN-1 was set to 

100,000. Figure 4.16 shows the predictions of an LSTM model that was trained and tested on three 

experiments from 2017 to 2019. It shows that although the R2 is negative in some cases, a 

relationship between the predicted and ground reference biomass data is obvious. 

 

Table 4.10. The R2 value (relative to field based measurements) of biomass predictions using SVR and RNN-1 with 

GRU and LSTM units trained on three experimental data sets and tested on all experiments. 

                Train    

 

 

  

Test 

SbDiv-17 SbDivTc-18 SbDivTc-19 

SVR GRU LSTM SVR GRU LSTM SVR GRU LSTM 

2
0

1
7
 HyCal 0.72 0.46 0.52 0.38 0.37 0.70 -0.08 -0.41 -0.14 

InCal 0.20 -0.73 -0.63 -6.30 -0.49 0.23 -4.10 -4.52 -3.45 

SbBAP -0.58 -0.91 -0.96 -3.43 -0.72 -0.98 0.01 -0.35 -0.35 

SbDiv 0.77 0.73 0.75 -20.79 0.49 0.43 -1.81 -1.03 -0.86 

2
0
1
8
 HyCal 0.37 -0.09 -0.40 0.12 0.52 0.38 -0.13 0.56 0.53 

InCal 0.42 0.68 0.57 -0.92 0.47 0.19 -9.05 0.08 0.18 

TcCal 0.12 0.41 0.42 0.69 0.69 0.70 -6.60 -0.90 -0.80 

SbDivTc 0.29 0.41 0.38 0.68 0.66 0.67 -6.62 -1.86 -1.62 

2
0
1
9
 

SbDivTcCal -2.94 -0.05 -0.76 -53.03 -1.87 -2.99 0.65 0.56 0.58 

SbDivTc -6.33 0.03 -1.21 -26.02 -2.74 -5.02 0.69 0.65 0.66 

 

Table 4.10 indicates that when the training and validation are performed with different 

experiments of the same year, predictions are more accurate than training and validation with 

different experiments of different years. Training on the SbDiv-17 and validating on 2018 
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experiments yielded more accurate predictions than validating on 2019 experiments. In general, 

the R2s of predictions with RNN-1 were higher than those with SVR. The possible explanations 

for this are that RNNs are more powerful than SVRs in modeling time series data, and that with 

RNN, the training can be controlled to avoid the overfitting by early termination of the training. 

RNN-GRU provided marginally better results than RNN-LSTM which could be because LSTM is 

more complex than GRU and requires learning of more parameters. Also, predictions for the 

HyCal-17 and HyCal-18, the models trained on SbDiv-17 and SbDivTc-18 experiment provided 

more accurate results, respectively.  

 

     Train    

Test 
SbDiv-17 SbDivTc-18 SbDivTc-19 

S
b

D
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-1
7
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b

D
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c
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S
b
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T

c-
1
9
 

   

Figure 4.16. Biomass prediction results of RNN-1 with LSTM units trained and tested on different experimental 

data sets. 
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4.6.4 Multi-time Predictive Models 

The hyperspectral and LiDAR data in this study were not always acquired simultaneously. 

Generally, fewer hyperspectral data sets are available as hyperspectral data should be acquired 

during cloud-free days near solar noon. Our goal in this paper is to develop a predictive model for 

each field that can estimate biomass at any time during the season using the available RS data 

including hyperspectral and LiDAR. Such a model is useful for early selection of varieties and in 

applications such as radiation use efficiency estimation in agriculture where multiple 

measurements of yield/biomass in a season are required.  

In this section, both LSTM and GRU models are developed for multi-temporal prediction 

of biomass using the RNN-2 network shown in Figure 4.8. The proposed network includes two 

sets of RNN cells (either GRU or LSTM based cells in this study): one set for features derived 

from hyperspectral data and one for the LiDAR-based features. This network can accommodate 

the differing number of data sets from each source as input. The final outputs of the two RNN cells 

are concatenated and considered as the input for the fully connected layer which outputs the 

prediction results of the network. 

Figure 4.17 shows the results of biomass prediction for the three trials using the proposed 

RNN with LSTM and GRU cells. The training and evaluation for each network are accomplished 

using 3-fold cross validation. For each fold, one third of the plots are considered as the test set, 

and the remaining samples are used for training (90%) and validation (10%). For each trial, the 

network is only trained once using the destructively sampled biomass data collected on each date 

as a predictive variable, and the RS data collected prior to that date as the predictor variable. As 

noted in Table 4.2, there are 5, 4, and 2 biomass data sets available for HyCal-2017, HyCal-2018, 

and TcCal-2019 trials, which means that each plot for these experiments provides 5, 4, and 2 

sample data sets for the network. Once the network is trained, it can be used to estimate biomass 

at any given time during the season using the remotely sensed hyperspectral and LiDAR data, as 

well as concurrent weather information.   

From Figure 4.17, the LSTM-based network provided more accurate results than the GRU-

based network, especially for the TcCal-2019 experiment where fewer biomass data sets were 

available compared to the other experiments. To evaluate the performance of the networks on each 

biomass data set individually, the normalized Root Mean Square Error (nRMSE) of the biomass 

predictions for each date in the HyCal-2017 and HyCal-2018 are shown in Figure 4.18. From 
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Figure 4.18, the network for each experiment is trained well as the nRMSE values for most of the 

dates are in the same range. 

 

   

HyCal-2017 (LSTM) HyCal-2018 (LSTM) TcCal-2019 (LSTM) 

   

HyCal-2017 (GRU) HyCal-2018 (GRU) TcCal-2019 (GRU) 

Figure 4.17. Biomass prediction results for the three trials using the proposed RNN with LSTM and GRU cells.  

 

  

Figure 4.18. nRMSE of biomass estimation for individual dates for HyCal-2017 and HyCal-2018 experiments using 

the proposed network with LSTM cells. 

 



 

 

112 

4.7 Conclusions 

Five deep learning-based networks were investigated in this study for unsupervised and 

supervised feature learning from hyperspectral and LiDAR data. The reduction of extracted 

features from hyperspectral and LiDAR features using FAEN and CAEN showed that it is possible 

to train the network on an experiment and use it for feature learning on other experiments. Both 

FAEN and CAEN provided features with similar prediction accuracy when they were used in SVR 

models. We also investigate the potential of using auto-encoders for feature extraction from the 

original data. We investigated using a 2d-CNN based network for hyperspectral data in both 

supervised and unsupervised training procedures. The results of using the extracted features from 

this network in SVR models were slightly lower than those of FAEN and CAEN.  For LiDAR data, 

we proposed using RNN based auto-encoders and evaluated them in terms of the accuracy of the 

prediction results using the extracted features, reconstruction error, and training time. For 

hyperspectral data, supervised feature extraction provided more accurate predictions, while the 

features extracted from LiDAR data in an unsupervised training yielded more accurate predictions. 

Two recurrent neural networks (RNN-1 and RNN-2) were then developed with 

hyperspectral, LiDAR, and weather data inputs to predict sorghum biomass. The results of using 

RNN-1 for training on one experiment and predicting biomass for other experiments with different 

types of sorghum varieties illustrate the potential of the network for biomass prediction, and the 

challenges relative to small sample sizes, including weather and sensitivity to the associated 

ground reference information. RNN-2 was designed in a way that can accommodate different 

numbers of hyperspectral and LiDAR data sets, and thus, it was capable of estimating biomass at 

multiple times during the growing season. 
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 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Summary 

Currently, phenotyping provides the critical information for selecting the “best” genotypes 

with respect to the trait(s) of interest, but is considered as the bottleneck for the plant breeding 

chain as traditional methods are time-consuming and expensive. Fast and accurate phenotyping 

can be achieved by using predictive models developed using multiple data sources, such as RS 

data and genomic information. This dissertation focused on developing models for high-

throughput phenotyping based on high spatial, spectral, and temporal resolution RS data, genomic 

information, and weather data. A key to good predictive models is extracting the appropriate 

features that are predictors of the trait of interest so that they can support the machine learning 

algorithms. Feature extraction was investigated in this thesis in that context, where various novel 

features, as well as traditional features, were extracted from the hyperspectral imagery and LiDAR 

point cloud data for regression-based models. Then, the impact of the regression method, data 

source, timing of RS and field-based biomass reference data acquisition, and the number of 

samples on the prediction results were investigated. To accelerate the breeding cycle and minimize 

the need for sample data, the possibility of developing multi-year predictive models for which the 

data from earlier years were used for training models, and then predicting traits for experiments in 

future year(s) was explored. Having robust features for experiments conducted in multiple years, 

particularly as the data were captured by different sensors/platforms, was critical in multi-year 

prediction methods. Thus, more advanced supervised and unsupervised feature learning tools 

through deep neural networks were developed. Finally, advanced predictive models to 

accommodate high dimensional, multi-modal, multi-temporal data. 

5.2 Key Objectives and Findings 

The objectives and contributions of the dissertation are summarized for each chapter as 

follows: 

• Chapter 2: In this chapter, the objective was to provide a robust framework for predicting 

sorghum biomass which is suitable for plant breeding research and industrial applications. 

To accomplish this, we: 1) evaluated multiple prediction models, 2) investigated the impact 
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of the timing of the RS data acquisition on prediction relative to days since sowing, and 3) 

evaluated the importance of the features extracted from the data. We developed prediction 

models using three nonlinear regression models for nine experiments conducted in the 2017 

and 2018 growing seasons. Based on the experiments conducted in this chapter on trials, 

which included multiple sorghum varieties with different sample sizes, nitrogen and 

photosynthesis related features extracted from hyperspectral data and geometric based 

features derived from the LiDAR data provided reliable and accurate prediction of biomass. 

Our ANOVA results showed that the data source was the most important factor impacting 

the prediction accuracy with 69% significance, versus 28% significance for the regression 

method. The number of training samples for the prediction was another important factor 

for determining the accuracy of the predictions. Generally, the PLSR method provided 

more accurate prediction models when the number of training samples was limited. With 

increasing numbers of samples in training, the rate of increase in the accuracy of the SVR 

models was higher than PLSR. We also evaluated the prediction models with respect to the 

time of the RS data acquisition and the time of harvest. The end-of-season biomass 

predictions for the experiments with diverse varieties were more reliable and accurate than 

the mid-season predictions, as more varieties in the field were at the same stage of growth. 

With respect to the remote sensing data, the best results were obtained using the RS data 

from the whole season; however, the models developed using mid-season data (DAS of 

~60 to 80) were also able to provide useful results, particularly for screening varieties.  To 

our knowledge, this work is the most thorough, rigorous evaluation of remotely sensed 

features for traditional regression models, based on current literature. 

• Chapter 3: In this chapter, we focused on two main objectives; 1) developing predictive 

models using the RS data collected multiple times during a season in previous years, and 

2) investigating the possibility of developing the same models using the RS data collected 

until mid-season rather than the full season. We focused on developing regression based 

models using the RS data combined with the genomic information as well as weather data 

to predict the end of season sorghum biomass yield. The models based on one and two 

years of data were used to predict the biomass yield for the future years based on using 

sample data from previous years. The results showed the high potential of the models for 

biomass and biomass rank predictions, with models based on two years of data having 
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higher R2 values. We investigated the use of wavelet decomposition and PCA to extract a 

smaller number of features from the markers. The results indicated that level 4 and 6 

wavelets generally provided models with higher accuracies than using all markers. 

Predictive models were developed using the RS data collected until mid-season, rather than 

the full season. The results showed that the rank of biomass can be predicted with R2 values 

of around 0.65-0.70 using the RS data until 60 DAS.  The role of genetics in data driven 

predictive modeling is a topic of significant research from multiple points of view.  

Extraction of meaningful features is a critical problem.  The investigation of wavelets is 

not new for modeling markers, but the integration of wavelet-based features with 

comprehensive remote sensing based measurements for predictive models using this 

unique data set is a contribution. 

• Chapter 4: Extraction of appropriate features, along with using a powerful predictive model, 

is required for accurate prediction of complex phenotypes such as biomass. Thus, in this 

chapter, the first objective was to develop deep neural networks for robust feature 

extraction. The second goal was to develop predictive models for representing sequential 

data, which could effectively exploit long-term dependencies. For the first objective, five 

deep learning-based networks were investigated for unsupervised and supervised feature 

learning from hyperspectral and LiDAR data. The reduction of extracted features from 

hyperspectral and LiDAR features using a fully connected auto-encoder network (FAEN) 

and a convolutional auto-encoder network (CAEN) showed that it is possible to train the 

network on an experiment and use it for feature learning on other experiments. Both the 

FAEN and CAEN architectures provided features with similar prediction accuracy when 

they were used in SVR models. We also investigated the potential of using autoencoders 

for feature extraction from the original data, as they require no prior definition of features 

(e.g. indices, derivatives, integral features) and may provide new insights. We investigated 

using a 2d-CNN based network for hyperspectral data in both supervised and unsupervised 

training procedures. The R2 values of models developed using the extracted features from 

this network in SVR models were slightly lower than those of FAEN and CAEN. For 

LiDAR data, we proposed using RNN based autoencoders and evaluated them in terms of 

the accuracy of the prediction results using the extracted features, reconstruction error, and 

training time.  
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• Two recurrent neural networks (RNN-1 and RNN-2) were then developed with 

hyperspectral, LiDAR, and weather data inputs to predict sorghum biomass. RNN-2 was 

designed to accommodate different numbers of hyperspectral and LiDAR data sets, and 

thus, it was capable of full utilization of the remote sensing data and estimating biomass at 

multiple times during the growing season. The results of using these models for training 

on one experiment and predicting biomass for other experiments with different types of 

sorghum varieties illustrated the potential of the network for biomass prediction, and the 

challenges relative to small sample sizes, including weather and sensitivity to the 

associated ground reference information. To our knowledge, this is the first time these deep 

learning architectures which incorporate multi-modality data and weather have been 

utilized for predicting biomass yield. 

5.3 Future Work 

The current work may be extended in the following directions: 

• Transfer learning:  

Transfer learning approaches can be utilized to achieve an effective strategy for improving 

multi-year predictions; a possible way would be using domain adaptation techniques so 

that the models trained on an experiment can be adjusted and used for another experiment 

on the same or future years. Few shot learning, which updates the proposed networks using 

a few samples from the target experiments, is a simple strategy that should be investigated.  

• Incorporate crop models: 

Developing crop models, APSIM for example, is another way of predicting (simulating) 

crop traits such as biomass. If they are well parameterized, they can be used to estimate 

traits for the plots/dates that sampling is not conducted. This can generate “augmented” 

data that is useful for training the models if more sample data is needed. Crop models also 

can be used for extracting latent features from some of data sources such as weather data. 

Extracted features from weather data can be inputs to the predictive models; however, it 

would be difficult for the models to learn from the weather features as their impact on the 

traits is complex, and we typically only have consistent local sample data from a few years. 

Alternatively, the crop models are developed based on many years of weather data and are 

able to convert those data into latent features that are more related to the biomass.  
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• Multi-temporal feature extraction via RNNs 

In our proposed feature learning networks, we extracted encoded features for each plot and 

each date regardless of other dates. Instead, it would be possible to use RNN networks, for 

example RCNN, to extract only a few latent features from all dates at the same time. This 

would reduce the number of extracted features, which is important for some predictive 

models, especially when the quantity of sample data is limited. Also, many of the features 

extracted from successive weeks are highly correlated, which can negatively impact the 

predictive models. 

• Application to diverse datasets: 

It would be appropriate to evaluate our models on the data from multiple locations, or use 

the same strategies for other traits of sorghum such as LAI, or APSIM parameters. Also, 

we believe that our models (with minor modifications) can be applied for yield-related 

traits similar to biomass in other crops. 

• Improve parameter selection strategies: 

In this research, we determined the hyperparameters for our neural networks in a simple 

trial-and-error procedure. It would be beneficial to use more formal optimization 

approaches to search a greater range of the possible options for each parameter and/or 

models the behavior of each parameter. 

• Investigate other data sources: 

Lastly, as was noted, having appropriate input features is the key to an accurate prediction. 

Considering all the factors that affect the crops and RS data in the multi-year predictive 

models can increase the prediction accuracy. Thermal data, available from UAV-based 

thermal imagery, and soil related information (i.e. soil moisture and composition) are 

example data sources that could potentially be included in the multi-year predictive models 

to increase robustness across different sites. Thermal data would be especially beneficial 

for drought/heat stress environments. 
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