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The Road goes ever on and on
Down from the door where it began.

Now far ahead the Road has gone,
And I must follow, if I can,

Pursuing it with eager feet,
Until it joins some larger way

Where many paths and errands meet.
And whither then? I cannot say.

J.R.R. Tolkein, The Fellowship of the Ring
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ABSTRACT

LaFarge, Nicholas B. M.S., Purdue University, May 2020. Autonomous Guidance
for Multi-Body Orbit Transfers using Reinforcement Learning. Major Professor:
Kathleen C. Howell.

While human presence in cislunar space continues to expand, so too does the

demand for ‘lightweight’ automated on-board processes. In nonlinear dynamical en-

vironments, computationally efficient guidance strategies are challenging. Many tra-

ditional approaches rely on either simplifying assumptions in the dynamical model or

on abundant computational resources. This research employs reinforcement learning,

a subset of machine learning, to produce a controller that is suitable for on-board low-

thrust guidance in challenging dynamical regions of space. The proposed controller

functions without knowledge of the simplifications and assumptions of the dynam-

ical model, and direct interaction with the nonlinear equations of motion creates a

flexible learning scheme that is not limited to a single force model. The learning

process leverages high-performance computing to train a closed-loop neural network

controller. This controller may be employed on-board, and autonomously generates

low-thrust control profiles in real-time without imposing a heavy workload on a flight

computer. Control feasibility is demonstrated through sample transfers between Lya-

punov orbits in the Earth-Moon system. The sample low-thrust controller exhibits

remarkable robustness to perturbations and generalizes effectively to nearby motion.

Effective guidance in sample scenarios suggests extendibility of the learning frame-

work to higher-fidelity domains.
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1. INTRODUCTION

Establishing a permanent foothold in cislunar space is considered by NASA as piv-

otal in expanding human exploration. With the proposed Gateway and Artemis

projects, NASA aims to develop the capability for an enduring human presence be-

yond Low Earth Orbit (LEO). This development effort involves accessing complex

dynamical structures, e.g., a Near Rectilinear Halo Orbit (NRHO), that only exist in

force models that incorporate the gravity of both the Earth and the Moon simulta-

neously [1]. Furthermore, increasingly complex spacecraft require more autonomous

on-board computational capability than previous flight systems. Orion, in particular,

is required to include the “capability to automatically execute GN&C functional-

ity during all phases of flight ” [2]. The increased complexity introduces a unique

challenge for trajectory designers. For example, many traditional Keplerian-based

guidance approaches are infeasible due to the nonlinearity in the dynamical model

while, in contrast, many modern strategies rely on abundant computational resources

not available on a flight computer. This investigation addresses these challenges by

demonstrating Reinforcement Learning (RL), a subset of machine learning, to be a

computationally ‘lightweight’ approach for automated closed-loop guidance in sup-

port of multi-body orbit transfers.

1.1 Problem Definition

In recent years, RL has proven beneficial in achieving state-of-the-art performance

in historically challenging domains despite significant environmental uncertainty [3].

While recent progress addresses these dynamical challenges in the Circular Restricted

Three-Body Problem (CR3BP), an additional complicating factor is the planned in-

clusion of solar electric propulsion options on Orion and Gateway that prohibit in-
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stantaneous maneuvers in favor of gradual velocity and energy changes over longer

time intervals. Furthermore, corresponding solutions often rely on the underlying

assumptions in the force model and are not easily extendable to higher-fidelity do-

mains. Yet preliminary analysis is frequently accomplished in the CR3BP and then

transitioned to an ephemeris model for a higher-fidelity solution. Conversely, using

RL as a model-agnostic guidance approach is more adaptable to different domains

and offers direct interaction with complex dynamical models.

While many recent advancements in trajectory design exploit improvements in

computer hardware, relatively few are practical for autonomous on-board implemen-

tations given the limited computational resources. In multi-body problems, trajectory

designers often generate low-cost initial guesses for transfers by leveraging dynami-

cal systems theory and invariant manifolds [4]. Dynamical systems-based approaches

have been useful in many previous applications and, when combined with differential

corrections and/or optimization techniques, yield globally optimal solutions for many

applications. However, this approach is computationally intensive and often requires

human-in-the-loop interactions. An alternative strategy bases outcomes on trajec-

tory design and optimization tools, e.g., Copernicus [5] and/or NASA’s Evolutionary

Mission Trajectory Generator (EMTG) [6]. But, these computational tools, while

powerful, often involve lengthy grid search and optimization processes that prohibit

rapid trajectory and control history construction. As NASA expands both a human

and robotic presence in cislunar space and beyond, the limitations of these methods

suggest that new approaches are necessary to address the time and computational

cost of current procedures.

Typically, in the pre-flight trajectory design process, the goal is the construction of

an optimal trajectory and a control history that meets mission criteria for propellant

usage and time of flight. However, within the context of flight software, optimality is

considered secondary to feasibility [7]; the capability to rapidly re-compute a reference

path and a feasible control history in-flight is critical for autonomous guidance. By

approaching on-board guidance from a machine learning perspective, a closed-loop
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neural network controller offers the ability to quickly and autonomously compute

a control history for a spacecraft with basic linear algebra operations and without

iteration. In addition, RL separates the computationally expensive pre-flight learning

from the resulting on-board controller and, thus, leverages modern computer hardware

while still producing a controller sufficiently lightweight for use in flight.

1.2 Document Overview

This work develops a reinforcement learning approach to spacecraft guidance in

the circular restricted three-body problem. The reinforcement learning methodol-

ogy and dynamical model formulation are developed into a learning framework and

demonstrated through a libration point transfer mission application.

• Chapter 2: The foundational theory for the Reinforcement Learning (RL) ap-

proach in this investigation is presented. This chapter offers an overview of

machine learning techniques and neural networks, and discusses prior contribu-

tions in astrodynamics. The RL method employed throughout this investiga-

tion, Proximal Policy Optimization (PPO), is developed from fundamental rein-

forcement learning concepts. Policy gradient methods, actor-critic approaches,

and trust region policy optimization are discussed as foundational concepts in

the development of PPO.

• Chapter 3: The dynamical model employed in the reinforcement learning

framework is summarized. The equations of motion for the low-thrust circu-

lar restricted three-body problem are derived from Newtonian and Hamiltonian

mechanics with discussion of the underlying assumptions of the model. Insights

into the dynamical model are developed via the Jacobi constant for integration,

equilibrium solutions, and zero-velocity surfaces.

• Chapter 4: The reinforcement learning environment employed in this inves-

tigation is formulated. Reinforcement learning signals, i.e., state, action, and
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reward, are detailed. In particular, the reward function is defined and analyzed.

The ‘episodes’ and processes for training are outlined with a discussion of the

perturbation model and implementation details.

• Chapter 5: The performance of the RL technique is demonstrated through

a libration point transfer mission application. Lyapunov-to-Lyapunov hetero-

clinic transfers serve as reference trajectories; the training process for producing

a closed-loop guidance controller is investigated. The performance of the result-

ing deterministic controller is demonstrated with varying degrees of perturba-

tion. The controller’s ability to generalize is exhibited through other transfer

scenarios. Algorithm limitations in the sample application are discussed.

• Chapter 6: A summary of the research is presented, and suggestions for future

work are offered.
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2. BACKGROUND: REINFORCEMENT LEARNING

Machine Learning (ML) broadly refers to a class of data science techniques that

involve algorithms leveraging predictive and task-performing abilities without direct

of explicit instructions. Such approaches are closely related to statistics, and typically

involve inferences based on large quantities of data. In many cases, ML tools seek

to emulate neurological and biological processes, thus, ML is frequently viewed as

a subset of Artificial Intelligence (AI). This distinction between ML and AI is often

debated. While ML certainly benefits from contributions in cognitive neuroscience,

particularly in the case of artificial Neural Networks (NNs), little progress is evident in

understanding “intelligence” as an abstract concept. Current ML techniques focus on

replicating low-level decision processes in humans and animals, such as a dog learning

to fetch a ball, or a baby learning to take its first steps. Under its original definition,

“AI” refers to computer chips replicating the high-level reasoning and intelligence

capability of humans. To this end, little, if any, progress has been accomplished in

the sixty years since the term first emerged. Due to the distinction between high and

low level cognitive functionality, the definition of ML by Professor Michael I. Jordan

is representative. Professor Jordan is a machine learning researcher at the University

of California Berkeley and defines ML as an umbrella term that includes a variety of

tools within data science; AI is viewed as its own distinct field of study. While this

distinction may appear pedantic, Professor Jordan pointedly observes,

We need to realize that the current public dialog on AI – which focuses

on a narrow subset of industry and a narrow subset of academia – risks

blinding us to the challenges and opportunities that are presented by the

full scope of AI [8]

To this end, the ML tools in this investigation are statistical and incorporate opti-

mization techniques rather than emulations of truly intelligent systems.
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2.1 Types of Machine Learning

Machine learning is broadly classified into three types: supervised learning, unsu-

pervised learning, and Reinforcement Learning (RL). Supervised learning is the most

commonly employed technique in machine learning, where “supervision” refers to the

process of tagging data in a training set. In a classic example, a data set contains im-

ages of hand-written letters, and “tagging” refers to manually inputting which letter is

observed in each image. The learning process then involves accessing this known data

and generating functions to perform classification or regression tasks. In the hand-

writing example, classification corresponds to handwriting recognition and regression

corresponds to handwriting generation. A supervised learning approach enables an

algorithm to extrapolate to new data by leveraging inferred patterns. Common ex-

amples of supervised learning include voice recognition, image classification, product

recommendations, personal assistants, and text prediction. While techniques under

the supervised learning umbrella perform exceedingly well for many tasks, they are

limited by the necessity of large amounts of representative tagged data.

In contrast to supervised learning, unsupervised learning techniques uncover un-

derlying patterns and structure within unlabeled data. Clustering problems are a

common example of unsupervised learning; such algorithms seek to group elements

together based on some underlying patterns in the data. For example, marketing

data companies leverage unsupervised learning to segment consumers into distinct

clusters and then introduce targeted advertising to specific groups. Other applica-

tions, beyond clustering, include anomaly detection and autoencoding. Unsupervised

learning excels in problems with large amounts of a data but with no clear manner

of discerning or classifying the data. With an unsupervised learning algorithm, this

large amount of data is separated based on auto-computed probability densities that

measure the likeliness of subsets of the data belonging to the same grouping. Due to

this ability, unsupervised learning is frequently denoted “self-organization”.
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The final classification of machine learning techniques is reinforcement learning.

Similar to some supervised learning approaches, RL also seeks to train a decision-

making agent. The key difference between supervised and reinforcement learning

approaches in decision-making problems is the existence of tagged data. In the case

of supervised learning, a tagged data set is created before training, and this knowl-

edge of desired outcomes produces the resulting agent. In contrast, RL requires no

such a-priori knowledge, and ‘learns’ by directly interacting with an environment.

The notion of learning via environmental interaction is most easily observed in child

development and, indeed, many foundational concepts in RL stem from examining

the learning process of children and animals. A child is never explicitly told how to

walk, but, through a complex set of trial-and-error experiences, discovers the precise

combination of motor functions to enable their first steps. Learning such decision-

making processes frequently involves both immediate and delayed rewards. These

notions of learning-by-interaction, and delayed reward, are the two most important

features that distinguish reinforcement learning from other techniques [3].

2.2 Machine Learning Contributions in Astrodynamics

Researchers have recently applied various types of machine learning techniques to

common problems in astrodynamics. Studies range from preliminary investigations

to demonstrated on-board capability. For example, a basic machine learning algo-

rithm is implemented on-board Mars rovers to aid in identifying geologic features

of interest. The Autonomous Exploration for Gathering Increased Science (AEGIS)

algorithm enables autonomous targeting on-board Spirit, Opportunity, and Curios-

ity [9, 10]. On Curiosity’s main flight computer, the pointing refinement process

requires between 94 and 96 seconds [10] – substantially less than the time necessary

to send images to Earth and wait for scientists to manually select features. With

on-board computational capability increasing, more complex ML algorithms offer the

potential for significant contributions to future autonomous missions. One challenge

in establishing ML-driven frameworks is identifying the machine learning techniques
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most applicable to specific problems in astrodynamics. Understanding and reviewing

previous contributions offers insight into potential next steps.

In recent years, progress in applying supervised learning techniques toward astro-

dynamics problems is increasing rapidly. In trajectory design, regression tasks are

typically the most productive. Dachwald applied a shallow Neural Network (NN) to

low-thrust trajectory optimization as early as 2004 [11]. More recently, De Smet and

Scheeres employ a NN to identify heteroclinic connections in the CR3BP [12]; Parrish

and Scheeres explore many nearby optimized trajectories to train a NN to generate

low-thrust trajectory corrections [13]. Furfaro et al. explore supervised learning to

model a fuel-optimal lunar landing control history [14], and Das-Stuart, Howell, and

Folta employ supervised learning to detect types of motion and leverage this knowl-

edge to influence trajectory design [15]. Supervised learning techniques can produce

desirable outcomes but carry several notable drawbacks. First, such approaches as-

sume knowledge of the decision-making process. By selecting desired outcomes, the

user assumes a-priori knowledge of the basis for decision making. This assumption

implies that 1) the user-generated data accurately reflects the desired outcomes; and

2) techniques are available to solve the current problem and to generate data. In

regimes where such knowledge is absent, supervised learning techniques are not ap-

plicable.

Researchers also seek to apply advancements in neural network-based supervised

learning image classification to problems in astrodynamics. Two notable applications

are terrain relative navigation and pose (i.e., relative position and attitude) estima-

tion. On-board terrain relative navigation remains a challenging task, and neural

networks are demonstrated as potentially useful tools for alleviating computational

burden. In particular, the abundance of craters on the Moon and on Mars offer poten-

tial opportunities for relative navigation. Downes, Steiner, and How [16] and Benedix

et al. [17] employ supervised learning methodologies to train neural networks for iden-

tifying craters on the Moon and on Mars, respectively. Similarly, numerous authors

employ image recognition approaches for estimating the pose of uncooperative space-
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craft [18,19]. These investigations involve mixtures of real, augmented, and synthetic

imagery. While the results are promising, it is difficult to determine if the training

imagery in these investigations is representative of actual inflight scenarios. Different

cameras, harsh lighting conditions, and reflective components are among the many

challenges faced in supervised learning optical techniques. Furthermore, the inability

to easily generate new satellite-based imagery presents serious difficulties in verifying

and implementing these techniques.

There are relatively few investigations involving unsupervised learning in astrody-

namics. Several authors apply clustering approaches to Poincaré maps. Vaquero and

Senent [20], and Pritchett, Howell, and Folta [21] leverage KD-tree structures to locate

intersections between manifolds on Poincaré maps. This approach employs unsuper-

vised learning to perform computationally efficient nearest neighbor searches between

two discrete sets. In contrast, several authors implement clustering algorithms to or-

ganize and uncover data. Nakhijiri and Villac [22] and Villac, Anderson, and Pini [23]

employ k-means clustering for stability detection within maps and for classifying pe-

riodic orbits around small bodies, respectively. Bosanac [24], as well as Bonasera

and Bosanac [25], leverage unsupervised learning to uncover hidden structures within

Poincaré maps in multi-body dynamical regimes. These clustering approaches closely

align with the goal of unsupervised learning and highlight promising directions for

pattern recognition research in problems where the dimensions outweigh the human

ability to observe connections within the data. Finally, Gao et al. apply unsupervised

learning to spacecraft anomaly detection [26].

Research in applying reinforcement learning techniques to astrodynamics prob-

lems has sharply increased in recent years. Investigations are largely concerned with

path-finding, landing, small body operations, and multi-body guidance. Other ap-

plications include rendezvous guidance in a cluttered environment [27], angle-only

intercept guidance [28], stationkeeping in a multi-body environment [29], and de-

tection avoidance [30, 31]. For path-finding, in 2017, Das-Stuart, Howell, and Folta

leverage Q-learning in conjunction with accessible regions to compute initial guesses
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for low-thrust transfers in the CR3BP [32]. Following this effort, in 2019, Das-Stuart,

Howell, and Folta furthered the investigation by leveraging supervised learning to in-

fluence the resulting solution geometry [15], and applied the framework to contingency

planning [33]. In 2019, Miller and Linares first employed Proximal Policy Optimiza-

tion (PPO) for low-thrust trajectory optimization in a multi-body regime [34]. The

same year, Miller et al. further demonstrated PPO’s decision-making capability for

interplanetary low-thrust transfers [35]. In landing problems, Furfaro et al. employ

a ZEM/ZEV feedback approach to lunar lander guidance [36], Gaudet and Linares

leverage PPO for optimal control landing guidance [37] and for six degree-of-freedom

planetary landing [38], and Scorsoglio et al. apply image-based PPO to lunar land-

ing [39]. Gaudet, Linares, and Furfaro also employ PPO to problems associated with

Guidance Navigation and Control (GN&C) for asteroid proximity operations, first

proposing an RL-based adaptive GN&C framework [40], and then leveraging this

framework to perform six degree-of-freedom hovering around an asteroid [41].

Several authors expanded previous contributions to apply RL to guidance prob-

lems in a multi-body dynamical regime. In 2020, Sullivan and Bosanac extended

Miller’s work [34] by leveraging PPO to guide a spacecraft approaching a Lyapunov

orbit in the Earth-Moon system [42]. Similarly, LaFarge et al. employ PPO for

guidance along multiple heteroclinic transfers between Lyapunov orbits in the Earth-

Moon system [43]. This investigation is closely aligned with [43], and provides more

context, background, and analysis for the previous results.

2.3 Neural Networks

A Neural Network (NN) is a class of nonlinear statistical models that are fre-

quently employed in ML classification and regression tasks [44]. The term neural

network encompasses many different types of statistical models with various levels

of complexity. When applied correctly, NNs perform exceedingly well, and are a

driving factor in ML advancements in the past decade. However, a certain amount

of mystery surrounds neural networks and leads many to erroneously view them as
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“magical” black boxes. While the details are sometimes complex, neural networks are,

in fact, similar to other statistical learning methods. While investigations employing

NNs are achieving state-of-the-art performance in many domains in recent years, it

is important to view them as statistical models. Simply stated, NNs perform well

on some tasks, fall short on others and, in general, are not catch-all tools that easily

approximate any given function.

While frequently utilized in supervised learning applications, NNs are also em-

ployed extensively in modern RL algorithms due to their demonstrated ability in

approximating nonlinear functions. Many traditional tabular RL approaches, such as

Q-learning, rely on finely discretizing the state and action spaces, quickly becoming

impractical as the number of dimensions in the problem increases. This drawback is

commonly labelled the “curse of dimensionality” [3]. Leveraging NNs allows modern

algorithms to both access continuous state and action spaces and to easily incorporate

additional dimensions.

2.3.1 Neural Network Evaluation

To illustrate functionality, a simple NN is depicted in Figure 2.1. This network

employs two scalar inputs, processes them through a single two-node hidden layer,

and outputs a scalar value. The depicted network is feedforward, that is, there are no

cycles between nodes. In other words, values only pass from left-to-right as data is

processed through the network. Understanding the evaluation process of NNs informs

their suitability for on-board use.

Evaluating a feedforward neural network consists of straightforward linear algebra

operations, with several nonlinear element-wise activation functions. After the input

layer, each node is computed as a linear combination of weighted values and a bias, and

processed through an activation function to incorporate nonlinearity into the model.

Hence, in Figure 2.1, the lines connecting nodes each carry an associated weight and

each node (except input variables) possesses an associated bias. The weights signify

the impact that particular nodes exert on each node in the next layer. The bias allows
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Figure 2.1. Basic feedforward neural network consisting of two inputs, two hidden
nodes, and one output variable.

the activation function to be shifted left or right for each node. Together, the weights

and biases form the set of trainable parameters for the model. In general, these

parameters cannot be known a-priori, and so no suitable initial guess of their value

is possible. Hence, the weights are typically initialized with random values between 0

and 1, and the biases are initialized at zero. Techniques where guesses for weights and

biases are generated from another trained network fall under the umbrella of transfer

learning.

Consider the two nodes of the hidden layer in Figure 2.1, denoted H1
1 and H1

2 ,

where the subscript denotes the index of the node and the superscript denotes the

hidden layer to which the node belongs. The values in the hidden layer are computed

as,

H1
1 = α1(I1W1

11 + I2W1
21 + B1

1) (2.1)

H1
2 = α1(I1W1

12 + I2W1
22 + B1

2) (2.2)

where α1 is the activation function employed for the H1 layer, B1
j is the bias term

for H1
j , and Wij is the weight connecting node Ii in the input layer to node H1

j in

the hidden layer. The values of H1
1 and H1

2 are clearly simple linear combinations of
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weighted inputs, with the activation function applied to the total sum. Evaluating

the two nodes together is expressed more concisely in matrix form,

H1
2×1 = α1

(
W1

2×2I2×1 + B1
2×1

)
(2.3)

The output is easily computed in the same manner, with inputs received from the

hidden layer,

O1 = α2
(
W2

1×2H
1
2×1 + B2

1

)
(2.4)

Equations (2.3) and (2.4) are the only two operations necessary to evaluate the de-

picted neural network. In these expressions, the only two potentially nonlinear op-

erations are the activation functions, α1 and α2. Without activation functions, the

network is only able to model linear functions and, thus, the selection of the activation

function is an important component in neural network performance. Furthermore,

bounded functions are advantageous since they aid in normalizing the output of the

network. For this reason, common activation functions include sigmoid, hyperbolic

tangent (tanh) and the Rectified Linear Unit (ReLU). This investigation employs

tanh to incorporate nonlinearity. Linear activation is also, at times, advantageous.

Within RL, networks that produce a single scalar value output frequently employ

a linear activation in the output layer. Together, tanh and linear are the only two

activation functions employed in this investigation and are plotted in Figure 2.2.

2.3.2 On-board Considerations

Neural networks are potentially well-suited for use on a flight computer. While

training is computationally complex, the evaluation process is relatively simple; sev-

eral matrix multiplications and additions, combined with element-wise activation

functions, encompass the entire process. Furthermore, flight software often requires

algorithms to predictably complete in a given number of CPU cycles. For exam-

ple, Orion orbit guidance is required to complete in a fixed number of steps, which

poses significant difficulty in numerical integration and targeting processes [45]. If
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Figure 2.2. Neural network activation functions employed in this investigation.

a function is predictable, a certain amount of processing time is easily allocated for

it. Complexity is introduced when procedures are unpredictable, such as methodolo-

gies that require iteration. While computationally lightweight, neural networks are

also deterministic which, together with predictability, renders them well-suited to the

flight environment.

Despite the relative simplicity in evaluation, implementing a NN on a flight com-

puter presents additional challenges due to “significant amounts of multiply and ac-

cumulation operations” and a “substantial amount of memory to store data” [46].

Flight hardware to address these difficulties is currently being developed. NASA is

actively soliciting proposals for “neuromorphic” processors to enable in-space auton-

omy [46]. These specialized processors, inspired by the human brain [47], allow for

dedicated low-power NN evaluations in space. Adoption of neuromorphic hardware

into flight systems will render machine learning approaches more accessible and pro-

ductive. Neuromorphic computing could enable efficient autonomous control, decision

making, and on-board adaptive learning [48].
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2.4 Reinforcement Learning

Reinforcement learning is a class of algorithms in which a goal-seeking agent seeks

to complete a task by means of interaction with an environment. An agent is a

controller that maps observed variables to actions. The learning process originates

with the agent directly exploring an environment by means of trial-and-error. The

environment communicates relevant information about its dynamics to the agent by

means of a state signal, which the agent then employs to perform some action. The

environment updates its current state based on the action and computes a numerical

reward that communicates the immediate benefit of the given action. This process

repeats iteratively such that, over time, the agent improves its policy (the means by

which decisions are accomplished) by seeking to maximize the reward signal. In many

cases, terminal conditions exist that cause the learning process to cease. In these

cases, the environment typically resets to an initial configuration, and the process

begins anew. These are identified as episodic tasks, where each episode signifies an

attempt by the agent to solve a problem. A schematic for the high-level process of

an RL agent is depicted in Figure 2.3. This diagram highlights the three signals that

enable communication between the agent and environment at time steps t and t+ 1:

state, action, and reward. While the RL literature prefers the terms agent, action,

and reward, these expressions are analogous to the more common engineering terms

controller, controlled system (or plant), and control signal [3].

Agent

Environment

Action
atatat

rt+1

st+1st+1st+1

Reward
rt

State
ststst

Figure 2.3. The agent-environment process in a Markov decision process (reproduced
from Sutton and Barto, Ref [3], p.48. Figure 3.1).
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To clarify the RL learning process and terminology, consider the example of a

person learning to play chess. Assuming they know the potential movements for each

piece, the person (or agent), plays their first game. At any given point, the board

(the environment) is at some specified configuration. The agent visually observing

the location of each piece communicates the current state of the board, so that the

agent understands the available moves (or actions). In their first game, the agent

possesses no notion of strategy and, therefore, moves randomly. The means by which

the player selects their move is their policy. In chess, both immediate and delayed

rewards inform the agent concerning the suitability of particular moves. For example,

capturing a piece is an example of an immediate reward, while winning in 4 moves is

a delayed reward. Over time, the agent improves at chess by learning to maximize the

expected future reward. For humans, mastering chess involves non-intuitive decision-

making that incorporates complex pattern recognition and the identification of future

rewards. Each time a new game (or episode) starts, the player applies lessons from

the previous game to inform future play. Assuming no exterior interaction (the agent

is not allowed to consult an instructional chess book), the learning process occurs

over many thousands of episodes, after which an expert chess player is produced.

Traditional computer chess methods rely on heuristics to build large tree struc-

tures, which are pruned, searched, and evaluated to produce quality moves. The

strongest such engine, Stockfish, championed 8 sequential Chess.com tournaments

beginning in 2011. However, recent progress in machine learning produced an RL-

driven chess engine that outperforms traditional state-of-the-art techniques. In 2019

and 2020, Leela Chess Zero (LCZero) narrowly defeated Stockfish to become the

top computer chess engine [49,50]. Leela Chess Zero is an RL-based framework that

builds off success with AlphaGo Zero [51]. Training with only rule knowledge, LCZero

improves over 300 million games of self-play. The success of LCZero demonstrates

the ability of RL to outperform traditional methods in challenging problems.

The fundamental notions in the chess example form the basis for training an

artificial agent using RL. Without external supervision, the agent uncovers complex
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dynamical structures that inform decision-making. This procedure is characterized

as a Markov Decision Process (MDP), which involves both feedback and associative

actions, and are a classical formalization of sequential decision-making problems [3].

The MDP is the idealized mathematical form of the problem, and allows for theoretical

analysis of the RL process. In the infinite-horizon discounted case, the MDP is

formulated by a tuple < S,A,P, r, q0, γ >, where S and A are the sets of all possible

states and actions, respectively, P : S×A×S→ [0, 1] is the state-transition probability

distribution, r : S→ R is the reward function, q0 is the distribution of the initial states

s0s0s0, and γ ∈ [0, 1] is the discount factor [52].

For a problem to be accurately cast as an MDP, each state must satisfy the Markov

property, which requires that future states depend only upon the current state, and

not on the series of events that preceded it [3]. In many practical applications, only

partial information is available, and the agent receives a subset of all environmen-

tal data. This signal is denoted the “observation” and serves as an analog to the

state signal; such ‘reduced’ information procedures are labelled Partially Observable

Markov Design Processes (POMDPs). The delineation between state and observation

is important in POMDPs because it reinforces the notion that the agent is acting on

incomplete information. However, this investigation assumes a fully observable MDP

and, thus, for simplification, the observation ototot is be represented as the state ststst, and

no such distinction is necessary.

An agent seeks to develop a policy that maximizes future reward by balancing

immediate and future returns. This balance is formalized by defining the expected

return, Gt, as the sum of future discounted rewards, i.e.,

Gt = rt+1 + γrt+2 + γ2rt+3 + · · ·+ γT−t−1rT =
T∑

k=t+1
γk−t−1rk (2.5)

where γ ∈ [0, 1] is the discount factor that determines the extent to which the agent

prioritizes immediate vs. future rewards. If γ = 1, all future rewards are considered

equally; if γ = 0, only the immediate reward is included. The definition of expected

return leads to the formalization of the value function. The value function is estimated
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in nearly all RL algorithms and informs the agent of the quality of a particular state.

For an MDP, the state-value function, Vπ(ststst), is defined as,

Vπ(ststst) = Eπ [Gt] = Eπ

 T∑
k=t+1

γk−t−1r(sksksk)
 (2.6)

where, assuming the agent follows policy π, Eπ is the expected value of a random

variable at any time step t. It is similarly useful to estimate the value of a state-

action pair. The state-action value function, denoted Qπ(ststst, atatat), computes the value

Vπ(ststst) of taking action atatat at ststst, and subsequently following the policy π. This function,

Qπ(ststst, atatat), is closely related to the state-value function, Eq. (2.6), and is computed

as,

Qπ(ststst, atatat) = Eπ [Gt] = Eπ

 T∑
k=t+1

γk−t−1r(sksksk, akakak)
 (2.7)

where state-value and state-action-value are related by noting the distribution to

which the action atatat belongs,

Vπ(ststst) = Eatatat∼π [Qπ(ststst, atatat)] (2.8)

The functions Qπ(ststst, atatat) and Vπ(ststst) differ in the action given that atatat in Qπ(ststst, atatat) is

not necessarily sampled from policy π. In practice, many modern algorithms do not

compute value functions directly but instead estimate them using neural networks.

Instead of directly estimating Vπ(ststst) or Qπ(ststst, atatat), some RL methods, such as the

one employed in this research effort, are concerned with a state-action pair’s value

compared to average. In these approaches, a relative value, termed the advantage

function, is computed as the difference between the state-action-value function and

the state-value function,

Aπ(ststst, atatat) = Qπ(ststst, atatat)− Vπ(ststst) (2.9)
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The advantage function is positive when atatat produces a more desirable outcome than

an action sampled from the current policy π, and is negative when atatat produces a less

desirable outcome.

Reinforcement learning algorithms are broadly grouped as model-free and model-

based algorithms. Model-based algorithms allow for learning when the environmen-

tal dynamics are unknown. This investigation involves a known dynamical model

and, hence, model-based algorithms are not employed. Rather, within model-free

algorithms, two main categories exist for reinforcement learning: value and policy

optimization methods. Value optimization typically involves learning Qπ(ststst, atatat) di-

rectly, denoted Q-learning, and constructing a policy π that exploits this knowledge.

This learning is frequently accomplished by a process of iteration using the Bellman

equation. If the value of state-action pairs is known, then an optimal policy is easily

formulated by selecting the action that yields the highest expected return. Classical

approaches to Q-learning are formulated by including all possible state/action combi-

nations in a table and learning by visiting all combinations infinitely many times [3].

Modern approaches involve estimating Qπ(ststst, atatat) using a neural network and form the

basis for the well-known Deep Q-Network (DQN) proposed by Mnih et al. [53].

Instead of producing an optimal policy based on the estimation ofQπ(ststst, atatat), policy

optimization methods seek to directly learn a parameterized policy, πθθθ(aaa|sss), where θθθ

represent a policy parameter vector. In contrast to value optimization methods, such

as Q-Learning and DQN, policy optimization methods interact with a continuous

action space. The ability to incorporate continuous state and action spaces offers

significant advantage in complex control tasks that suffer from discretization and

are more extendable to higher-dimensional dynamical models. A particularly fruitful

branch of RL research emerges from a class of hybrid algorithms, identified as actor-

critic methods. These approaches seek to learn both the policy (i.e., actor) and the

value (i.e., critic) functions. Methodologies involving actor and critic networks are of

particular recent interest and are employed in this investigation.
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A final point that distinguishes RL approaches is on-policy vs. off-policy algo-

rithms. In off-policy approaches, such as Q-Learning, an optimal policy may be

learned directly regardless of the data collection approach. In contrast, policy opti-

mization algorithms typically require data sampled from the most recent version of

the policy and are, therefore, termed on-policy methods. This investigation utilizes

policy optimization and, therefore, all algorithms are on-policy methods.

2.4.1 Policy Gradient Methods

Policy gradient methods are a subclass of policy optimization algorithms that

utilize gradient descent to optimize policy parameters. In these approaches, during

training, an action is sampled from a diagonal Gaussian distribution (i.e., a mul-

tivariate normal distribution) atatat ∼ πθθθ(atatat|ststst), where the mean values are computed

by the agent. Including variance in the selected actions during training allows the

agent to more thoroughly explore the environment and action spaces. The mean

values are typically produced by an ‘actor’ neural network, that employs a state or

observation as input and outputs the mean of each action variable. The actor NN

employed in this investigation appears in Figure 2.4. The standard deviation for the

resulting distribution is typically computed in one of two ways. First, the standard

deviations can be included as outputs from the neural network, so that all values in

the actor distribution are state-dependent. Alternatively, a more common approach

in recent implementations is maintaining a vector of log standard deviations such

that the variance is not a function of the state. The latter technique is employed in

this investigation. After training is complete, the standard deviations are no longer

incorporated, and the actor neural network is employed directly as a deterministic

controller.
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Figure 2.4. Actor neural network employed in the proximal policy optimization algo-
rithm (from LaFarge et al., Ref [43], Fig. 1).

The agent’s policy is learned by optimizing the weights of the actor NN, denoted

θθθ, to maximize performance. As detailed by Sutton and Barto [3], performance is

quantified by using the maximization of the value function as an objective function,

J(θθθ) = Vπθθθ(s0s0s0) (2.10)

where s0s0s0 is a non-random start state. With the objective function in Eq. (2.10), it

follows that the update gradient for the actor is given by,

g = ∇θθθ [Vπθθθ(s0s0s0)] (2.11)

The gradient in Eq. (2.11) is not typically computed directly. In policy gradient

methods, direct computation results in prohibitively noisy gradients that prevent

learning. Alternatively, using the critic network in actor-critic methods results in less

noisy estimates, but introduces a significant bias into the computation [54]. Therefore,
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most algorithms estimate the gradient using a methodology detailed by Schulman et

al. [54]. A common policy gradient estimator is,

ĝ = Êt
[
∇θθθ log πθθθ(atatat|ststst)Ât

]
(2.12)

with the corresponding policy gradient loss function,

LPG(θθθ) = Êt
[
log πθθθ(atatat|ststst)Ât

]
(2.13)

Many of the earlier policy gradient algorithms directly optimized Eq. (2.13) (e.g.,

REINFORCE [55]). However, the variance in gradient estimation frequently leads to

destructively large policy updates in these strategies. For example, with a stochas-

tic policy, an unexpected experience can yield extremely steep gradients, resulting

in updates that render certain actions orders of magnitude more or less probable.

Applying such updates destabilizes the learning process and prohibits learning an

optimal policy [56].

Repeatedly optimizing Eq. (2.13) leads to potentially destructive policy updates,

so Schulman et al. introduce a “surrogate” loss function that avoids large policy

updates and produces training that follows monotonic improvement. The result-

ing algorithm is denoted Trust Region Policy Optimization (TRPO) and forms the

basis for many productive modern RL algorithms [52]. Prior to TRPO, gradient-

based methodologies never outperformed dynamic programming on continuous con-

trol tasks. However, by including limiting bounds on policy updates, TRPO produces

powerful and complex policies that outperform dynamic programming for many prob-

lems [52]. In TRPO, the agent samples actions from a policy distribution πθθθold(atatat|ststst).

With the state-action-reward trajectory generated under πθθθold(atatat|ststst), a new policy

πθθθ(atatat|ststst) is optimized that, in turn, becomes πθθθold(atatat|ststst). By creating two distribu-

tions, the change in policy is quantified by employing the Kullback-Leibler (KL)

divergence, which measures the similarity between two probability distributions. A

constraint is then introduced into the optimization scheme to insert an upper limit on
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the KL divergence between πθθθ and πθθθold , resulting in monotonic policy improvement.

Together, the optimization scheme under TRPO becomes,

maximize
θθθ

Êt
[
Rt(θθθ)Ât

]
subject to Êt [KL [πθθθold(·|ststst), πθθθ(·|ststst)]] ≤ δ

(2.14)

where δ is a limit on the change in policy distributions and the ratio,

Rt(θθθ) = πθθθ(atatat|ststst)
πθθθold(atatat|ststst)

(2.15)

is the probability of an action, given a certain state under a new optimized policy,

divided by the probability of that action under the previous policy distribution. The

constraint inequality prevents prohibitively large updates by ensuring that the change

in policy distribution remains within a specified bound. The ratio in Eq. (2.15) is

most easily understood by considering the relative magnitudes of the numerator and

denominator. If the optimization step causes an action atatat to become more probable,

then πθθθ(atatat|ststst) > πθθθold(atatat|ststst), and so Rt(θθθ) > 1. Conversely, if the action becomes less

probable, then Rt(θθθ) < 1.

While TRPO is successful in many challenging domains, there are several noted

limitations. First, the algorithm itself is very complex and is, therefore, prone to

implementation errors. Furthermore, TRPO involves a hard constraint in the opti-

mization process due to the difficulty in selecting a single coefficient that transforms

the KL-divergence constraint in Eq. (2.14) into a penalty [56]. Finally, TRPO is not

compatible with tasks that include noise or parameter sharing.

2.4.2 Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a simpler and more flexible alternative to

achieve the same high performance as TRPO [56]. In formulating PPO, the TRPO

KL divergence constraint, Eq. (2.14), is replaced with a clipping factor that controls

the maximum allowable update. The change in probability distribution is quantified
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by ratio in Eq. (2.15). By introducing clipping, PPO optimizes a surrogate objective,

that is,

LCLIP (θθθ) = Êt
[
min

(
Rt(θθθ)Ât, clip(Rt(θ), 1− ε, 1 + ε)Ât

)]
(2.16)

where Rt(θθθ) is the probability ratio defined in Eq. (2.15). Multiplying Rt(θθθ) by

the estimate of the advantage function forms the core of PPO: Rt(θθθ)Ât. Recall that

the ratio Rt(θθθ) > 1 implies an action is now more probable under a new, optimized

probability distribution. Next, the ratio Rt(θθθ) is multiplied by the advantage func-

tion Ât, defined in Eq. (2.9), which measures of the quality a particular action as

compared with the expected value. If the advantage is positive, an action is better

than expected, and the optimization scheme seeks to enable this action to be more

probable. Conversely, a worse-than-average action becomes less probable. Finally,

the minimum value between the unclipped Rt(θθθ)Ât and the clipped objective func-

tion between 1± ε forms a pessimistic lower bound for the unclipped objective. With

ε = 0.2 as a suggested value, an action is, at most, 20% more or less probable under

PPO’s optimization scheme. Analogous to the constraint in TRPO, clipping is in-

cluded in PPO to eliminate the destructively large policy updates that are common

in vanilla policy gradient schemes.

An alternative approach to PPO, rather than clipping the surrogate objective

function, is to instead introduce an adaptive KL penalty coefficient [56]. The adaptive

penalty approach is a hybrid between PPO and TRPO. Rather than clipping the

objective function, the KL divergence is introduced as a penalty,

LKLPEN(θθθ) = Êt
[
Rt(θθθ)Ât − βKL [πθθθold(·|ststst), πθθθ(·|ststst)]

]
(2.17)

where a target KL divergence value, dtarg, is maintained by controlling a penalty

coefficient, β. The penalty coefficient is updated by computing the expected value of

the KL divergence,

d = Êt [KL [πθθθold(·|ststst), πθθθ(·|ststst)]] (2.18)
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which is then compared to the target value to produce two possible updates,

β =


β/2 if d < dtarg/1.5

β × 2 if d > dtarg × 1.5
(2.19)

while the parameters 1.5 and 2 are heuristically determined. However, Schulman et

al. note that the algorithm is not sensitive to the specific choices 1.5 and 2 [56]. The

update rule for β is simply understood as follows: when the probability distribution

endures more change, the penalty coefficient is increased to encourage smaller policy

updates. Conversely, when the distribution is less variable, the penalty is decreased

to allow larger updates. While clipped PPO typically performs better than the Kl

penalty baseline [56], this research employs a KL penalty approach due to a dramatic

increase in performance compared with vanilla-clipped PPO. The specific implemen-

tation of PPO in this investigation is based on the open source work of Patrick Coady1,

and includes several other minor customizations to the core algorithm.

1Coady, P., “Proximal Policy Optimization with Generalized Advantage Estimation.” URL
https://github.com/pat-coady/trpo
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3. BACKGROUND: DYNAMICAL MODEL

A suitable dynamical model is necessary for evaluating the proposed guidance frame-

work. This investigation demonstrates a neural network controller’s ability to function

in challenging regions of space. The three-body problem serves a relevant model that

is representative of observed natural motion in cislunar space. While the proposed

guidance framework does not depend on any particular model, the planar Circular

Restricted Three-Body Problem (CR3BP) serves as a useful environment for prelim-

inary evaluation because it both covers challenging regions of space while remaining

simple enough for initial analysis of the guidance scheme. Additionally, low-thrust

propulsion is included to demonstrate algorithmic performance despite limited control

authority.

3.1 The N -Body Problem

The motion of a particle governed by the gravitational influence of any number

of celestial bodies is derived using Newton’s second law. In the most general for-

mulation, particle Pi, with mass Mi, moves relative to an inertially fixed point O

in a gravity field consisting of the remaining N -1 bodies. A vector diagram for this

dynamical system is depicted in Figure 3.1. The dimensional position vectors RiRiRi

are defined with respect to an inertial reference frame (X̂, Ŷ , Ẑ) with origin at base-

point O. Here, vector quantities are denoted by bold typeface, while scalar quantities

are italic. Capital letters signify dimensional values, where lowercase letters reflect

nondimensional values. Assuming that each body is controbaric, the N -problem is

mathematically modeled in terms of the second-order vector differential equation,

MiR̈iR̈iR̈i = −G̃
N∑
j=1
j 6=i

MiMj

R3
ji

RjiRjiRji (3.1)
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X̂

Ŷ

Ẑ

P1(M1)

Pi(Mi)

Pj(Mj)

Pn(Mn)

R1R1R1

RiRiRi

RjRjRj

RnRnRn

RjiRjiRji

RniRniRni

O

Figure 3.1. Vector definition in the N -Body problem.

where G̃ ≈ 6.67408× 10−20 [km3/(kg · s2)] is the universal gravitational constant, Mi

and Mj are the mass of Pi and Pj, respectively, and RjiRjiRji is the position vector from Pj

to Pi, with magnitude Rji, depicted in Figure 3.1. The relative distance between two

particles is easily computed from the difference in their positions, RjiRjiRji = RiRiRi−RjRjRj. An

overdot signifies the time derivative of a quantity as viewed by an inertial observer.

Hence, R̈iR̈iR̈i represents the acceleration of particle Pi in the inertial frame.

Including all the significant celestial bodies in the equations of motion increases

the fidelity of the dynamical model. However, reducing the total number of bodies

in the dynamical system enables further insight in the problem. For example, many

preliminary designs involve the relative two-body problem, for which Kepler’s equa-

tion offers a closed-form analytical solution. Keplarian motion is useful in regions of

space where the motion of a spacecraft is largely governed by a single gravitational

body, such a spacecraft in Low Earth Orbit (LEO). In regimes where two bodies

significantly influence the motion of a spacecraft, such as in cislunar space, a third

body is frequently included to inform analysis of the multi-body dynamics.
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3.2 The Circular Restricted Three-Body Model

In many relevant dynamical environments, the motion of a particle is dominated

by the gravitational influence of two spherically symmetric gravity fields. The N -

body problem, defined in Eq. (3.1), is reduced to incorporate only three bodies, that

is N = 3, and,

R̈3R̈3R̈3 = −G̃M1

R3
13
R13R13R13 − G̃

M2

R3
23
R23R23R23 (3.2)

where P1 and P2 represent gravitational bodies that govern the motion of P3. Equa-

tion (3.2) is the most general form of the problem of three-bodies, however three

additional assumptions are included to enable further analysis.

3.2.1 Simplifying Assumptions

The general three-body problem, represented in Eq. (3.2), is focused on the

analysis of the mutual gravitational influence of all three bodies. However, in many

cases of interest, the mass of one body is much smaller than the other two and,

thus, its relative gravitational impact is much less significant, and it is reasonably

neglected. For example, the mass of a spacecraft moving with respect to two celestial

bodies is neglected due to the orders of magnitude difference between the relative

mass of the spacecraft and the celestial bodies. In such a scenario, with the mass

of P3 neglected, the motion of P1 and P2 forms an isolated two-body system that is

characterized using Keplerian motion. The two massive bodies, P1 and P2, form a

primary system, where both bodies rotate around a common barycenter, B, and P3

moves with respect to the barycenter in any spatial dimension. Primary systems of

interest include sun-planet systems (e.g., Sun-Earth) and planet-moon systems (e.g.,

Earth-Moon). The following simplifying assumptions yield a problem that is more

tractable:

• Assumption 1: M3 << M1,M2
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– The mass of P3 is infinitesimal relative to the masses of P1, P2. Hence, P3

does not influence the motion of P1 and P2

• Assumption 2: P1 and P2 represent an isolated two-body conic system

– The primary system involves closed conic motion (ellipse)

– By convention, M1 > M2

– P1 and P2 move in the same plane, but P3 can move freely through the

system

The restricted three-body problem allows for the inclusion of eccentricity in the pri-

mary two-body conic system. While eccentric primary systems are useful in higher-

fidelity models and for highly elliptic primary systems, many useful applications in-

volve regimes that are nearly circular. A third assumption is summarized as,

• Assumption 3: P1 and P2 move on circular orbits around B.

Together, Assumptions 1-3 form the basis for the Circular Restricted Three-Body

Problem (CR3BP). The CR3BP is employed in this investigation as an example of

a nonlinear dynamical environment that is relevant to upcoming missions.

3.2.2 Circular Restricted Three-Body Problem Formulation

The CR3BP, a model for motion of an infinitesimal mass moving under the influ-

ence of two massive bodies, is employed in this investigation to evaluate a proposed

guidance scheme within the context of a complex dynamical regime. In this model,

P1 and P2 form the primary system as they move in circular orbits about B; P3 moves

freely with respect to the barycenter, as depicted in Figure 3.2. Bodies P1 and P2

are located along the rotating x̂ axis by the vectors r1r1r1 and r2r2r2, respectively. The po-

sition of P3 relative to P1 is written as r13r13r13, and similarly r23r23r23 locates P3 relative to P2.

For convenience, the position and velocity of P3, denoted r3r3r3 and v3v3v3, respectively, are

propagated in a rotating reference frame. The rotating frame is spanned by dextral
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X̂

Ŷ

Ẑ = ẑ

x̂

ŷP1(M1)

P2(M2)

φ

φ

P3

B

r1r1r1

r2r2r2

r13r13r13

r23r23r23
r3r3r3

Inertial Frame

Rotating Frame

Primary System

Figure 3.2. CR3BP vector definitions with respect to an inertial frame where µ = 0.2.

orthonormal vectors x̂-ŷ-ẑ that rotate with the primary system, denoted by dashed

lines in Figure 3.2, such that x̂-ŷ are oriented by an angle φ from the inertial unit vec-

tors X̂-Ŷ . The spatial component, Ẑ = ẑ, is defined as parallel to the orbital angular

momentum vector, x̂ is oriented from P1 to P2, and ŷ completes the right-handed

triad.

3.2.3 Characteristic Quantities and Nondimensionalization in the Circu-
lar Restricted Three-Body Problem

Quantities in the CR3BP are nondimensionalized to reduce error and enable the

analysis to be more generalizable. The equations of motion are numerically inte-

grated, with familiar floating point and truncation errors in the integration process.

Furthermore, formulating the problem in terms of nondimensional quantities yields

additional insight when extrapolating results between multiple CR3BP systems with

similar mass ratios. In the CR3BP, the mass ratio between the first and second

primary body is defined as,

µ = M2

M1 +M2
(3.3)
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Introducing µ ∈ [0, 0.5] allows any primary systems with the same mass ratio to

be represented by the same equations of motion. Thus, insight from a particular

system is more easily applicable to another similar system. For example, analysis

of the Saturn-Titan system (µ = 2.3664 · 10−4, nondim) easily transitions into the

Neptune-Triton system (µ = 2.0882 · 10−4, nondim) due to their similar mass ratio.

To nondimensionalize, characteristic quantities for position, mass, and time are se-

lected arbitrarily but, in general, yield nondimensional values of the same order of

magnitude. For this investigation, the characteristic length is defined as the distance

between the primary bodies, i.e.,

l∗ = R1 +R2 (3.4)

where R1 and R2 are the dimensional distances from B to P1 and P2, respectively.

Next, the characteristic mass equals the sum of the masses of P1 and P2,

m∗ = M1 +M2 (3.5)

Using the mass ratio µ in Eq. (3.3), the nondimensional masses of P1 and P2 are

expressed as,
M1

m∗
= 1− µ M2

m∗
= µ (3.6)

Furthermore, by defining the origin of the system as the barycenter, the center of

mass definition delivers the vector relationship ((−M1R1 +M2R2)/m∗) x̂ = 000. Using

the definition of l∗ in Eq. (3.4) and the relationships given in Eqs. (3.4) and (3.6), it

follows that the nondimensional distances from the barycenter to each primary body

are,

r1 = µ r2 = 1− µ (3.7)

The nondimensional distances in Eq. (3.7) highlight the relationship between the

mass of the primary bodies and their distances to the common barycenter.

Both characteristic quantities l∗ and m∗ are intuitive and correspond to physical

values, whereas the characteristic time, t∗, is selected such that the nondimensional
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gravitational constant, G, is equal to one. Recall that the units for G̃ are km3/(kg·s2).

Hence, select t∗ such that,

G = G̃m∗(t∗)2

(l∗)3 = 1 (3.8)

Solving for t∗ produces the final expression,

t∗ =
√

(l∗)3

G̃m∗
(3.9)

Recall that P1 and P2 are assumed to be in circular orbits around a common barycen-

ter. The dimensional mean motion is evaluated as N =
√
G̃m∗/(l∗)3. It follows that

N = 1/t∗. Multiplying N by t∗, the nondimensional mean motion is,

n = Nt∗ = 1 (3.10)

Mean motion represents the angular speed necessary to complete one period of an

orbit. Noting that n = 2π/P, where P is the orbital period, it follows that the

nondimensional period of the primary system is 2π. The three-body system employed

in this investigation is the Earth-Moon system. The characteristic quantities are,

µ = 0.012004715741012, nondim

l∗ = 384747.962856037, km

t∗ = 375727.551633535, s

m∗ = 6.045825574495057 · 1024, kg

For comparison, the characteristic quantities of additional systems are summarized

in Table 3.1.

Derivation of the Equations of Motion

The equations of motion that govern P3 are derived from Newton’s Second Law,

as detailed in Principia. Recall that, for convenience, P3 is located with respect to B
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Table 3.1. Characteristic quantities in various three-body systems.

System µ, nondim l∗, km t∗, days m∗, kg
Earth-Moon 1.200472e−2 3.847480e5 4.348699 6.045826e24

Sun-Earth 3.003481e−6 1.495979e8 58.13237 1.988481e30

Sun-Jupiter 9.536839e−4 7.781905e8 6.893696e2 1.990374e30

Jupiter-Europa 2.528018e−5 6.970048e5 0.5983692 1.898235e27

Saturn-Titan 2.366393e−4 1.221838e6 2.537796 5.684706e26

Mars-Phobos 1.654872e−8 9.373719e3 5.075611e−2 6.417120e23

Pluto-Charon 0.1085399 1.959621e4 1.016558 1.461615e22

Neptune-Triton 2.088192e−4 3.547571e5 0.9353305 1.024340e26

in the rotating frame, as depicted in Figure 3.2. The nondimensional position of P3

is defined as,

r3r3r3 = x x̂+ y ŷ + z ẑ (3.11)

where x̂-ŷ-ẑ are unit vectors fixed in the rotating frame, and x-y-z are nondimensional

scalar quantities reflecting the components or measure numbers. To apply Newton’s

Second Law, the general form of the three-body problem from Eq. (3.2) is first

nondimensionalized, resulting in the nondimensional three-body problem,

r̈3̈r3̈r3 = −1− µ
r3

13
r13r13r13 −

µ

r3
23
r23r23r23 (3.12)

where r̈3̈r3̈r3 = R̈3R̈3R̈3 · [(t∗)2/l∗] is the nondimensional acceleration vector, and r13r13r13 = R13R13R13 ·

[1/l∗], r23r23r23 = R23R23R23 · [1/l∗] are the nondimensional vectors locating P3 with respect to P1

and P2, respectively. Both r13r13r13 and r23r23r23 are simply deduced as,

r13r13r13 = (x− r1)x̂+ y ŷ + z ẑ (3.13)

r23r23r23 = (x− r2)x̂+ y ŷ + z ẑ (3.14)
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Using Eqs. (3.13) and (3.14), and the relationships in Eq. (3.7), the scalar components

of r̈3̈r3̈r3 are,

r̈3,x = −(1− µ)(x+ µ)
r3

13
− µ(x− 1 + µ)

r3
23

(3.15)

r̈3,y = −(1− µ)y
r3

13
− µ y

r3
23

(3.16)

r̈3,z = −(1− µ)z
r3

13
− µ z

r3
23

(3.17)

where the magnitudes of r13r13r13 and r23r23r23 are

r13 =
√

(x+ µ)2 + y2 + z2 (3.18)

r23 =
√

(x− 1 + µ)2 + y2 + z2 (3.19)

The acceleration terms r̈3,x, r̈3,y, r̈3,z are computed by differentiating the position vec-

tor r3r3r3 in the rotating frame. Using the Basic Kinematic Equation (BKE), the kine-

matic expression velocity is first evaluated,

ṙ3ṙ3ṙ3 =
Id

dt
r3r3r3 =

Rd

dt
r3r3r3 + IωωωR︸ ︷︷ ︸

nẑ

×r3r3r3 (3.20)

where I represents the inertial frame, R represents the rotating frame, and IωωωR is

the angular velocity of the rotating frame with respect to the inertial frame. For

a circular orbit, this angular rate is simply the mean motion of the orbit, as noted

in Eq. (3.10), whose nondimensional magnitude is one. Substituting values and

differentiating yields the kinematic expansion for the velocity of P3 in the rotating

frame,

ṙ3ṙ3ṙ3 = (ẋ− y)x̂+ (ẏ + x)ŷ + ż ẑ (3.21)

The BKE is again applied for the kinematic expression for the acceleration of P3,

r̈3̈r3̈r3 = (ẍ− 2ẏ − x)x̂+ (ÿ + 2ẋ− y)ŷ + z̈ẑ (3.22)
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Finally, the vector components of r̈3̈r3̈r3 in Eq. (3.22) and Eqs. (3.15)-(3.17) are combined

to form the three nonlinear nondimensional second-order differential equations of

motion for P3,

ẍ− 2ẏ − x = −(1− µ)(x+ µ)
r3

13
− µ(x− 1 + µ)

r3
23

(3.23)

ÿ + 2ẋ− y = −(1− µ)y
r3

13
− µ y

r3
23

(3.24)

z̈ = −(1− µ)z
r3

13
− µ z

r3
23

(3.25)

There is no known analytical solution to these equations of motion. Thus, numerical

integration methods are leveraged to produce the time history for a particle originat-

ing from an initial state.

3.2.4 Equations of Motion Derivation from Hamilton’s Equations

The equations of motion for the CR3BP are also derived from Hamiltonian dynam-

ics. Consider the generalized coordinates x, y, z. The scalar specific kinetic energy is

computed as,

T = 1
2
[
(ẋ− y)2 + (ẏ + x)2 + ż2

]
(3.26)

Next, the specific gravitational potential energy for P3 is defined as,

U = −
(1− µ
r13

+ µ

r23

)
(3.27)

Together, the difference between kinetic and potential energy form the Lagrangian

L = T − U ,

L = 1
2
[
(ẋ− y)2 + (ẏ + x)2 + ż2

]
+ 1− µ

r13
+ µ

r23
(3.28)

The generalized momenta, pi, associated with the Lagrangian are formed from the

derivatives of L with respect to the generalized coordinates x, y, z, i.e.,

px = ẋ− y py = ẏ + x pz = ż (3.29)
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The Hamiltonian is formulated as H = pxẋ+ pyẏ + pz ż − L, that simplifies to,

H = 1
2v

2 − 1
2
(
x2 + y2

)
− 1− µ

r13
− µ

r23
(3.30)

where v2 = ẋ2 + ẏ2 + ż2 is the velocity magnitude squared. The expression for H is

rewritten as a function of the generalized coordinates and generalized momenta using

Equation (3.29),

H = 1
2
(
(px + y)2 + (py − x)2 + p2

z

)2
− 1

2
(
x2 + y2

)
− 1− µ

r13
− µ

r23
(3.31)

Hamilton’s canonical equations are applied to solve for the equations of motion that

govern P3. Hamilton’s equations are defined as,

dpi
dt

= −∂H
∂qi

(3.32)

where pi are the generalized momenta, and qi are the generalized coordinates. Dif-

ferentiating Eq. (3.29) with respect to time, and substituting variables, yields the

relationships,

ẍ = −∂H
∂x

+ ẏ ÿ = −∂H
∂y
− ẋ z̈ = −∂H

∂z
(3.33)

The partial derivatives ofH are computed by differentiating Eq. (3.31), and combined

with Eq. (3.29). After simplification, the partial derivatives of the Hamiltonian with

respect to generalized coordinates are,

∂H
∂x

= −ẏ − x+ (1− µ)(x+ µ)
r3

13
+ µ(x+ 1− µ)

r3
23

(3.34)

∂H
∂y

= ẋ− y + (1− µ)y
r3

13
+ µ y

r3
23

(3.35)

∂H
∂z

= (1− µ)z
r3

13
+ µ z

r3
23

(3.36)
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With the partials of the Hamiltonian computed, Eqs. (3.34)-(3.36) are substituted

into Eq. (3.33),

ẍ− 2ẏ − x = −(1− µ)(x+ µ)
r3

13
− µ(x− 1 + µ)

r3
23

(3.37)

ÿ + 2ẋ− y = −(1− µ)y
r3

13
− µ y

r3
23

(3.38)

z̈ = −(1− µ)z
r3

13
− µ z

r3
23

(3.39)

As expected, this result is identical to the equations of motion derived directly from

Newton’s second law, listed in Eqs. (3.23)-(3.25).

3.2.5 Integral of Motion

To analytically integrate the CR3BP equations of motion, 12 integration constants

are required. With only 10 known constants, no closed-form analytical solution exists.

While a full analytical solution is not available, one useful integral of motion emerges

in the CR3BP formulation. This scalar term, denoted the Jacobi constant, C,

offers useful insight into the orbital energy as formulated in the CR3BP rotating

frame. This quantity is constructed by noting that the system is conservative and,

hence, the force acting on P3 is the gradient of a potential function, that is, in the

inertial frame,

m3r̈3̈r3̈r3 = ∇UUU (3.40)

where U is the gravitational potential function defined in Eq. (3.27). The CR3BP

equations of motion are derived in a rotating reference frame, so additional terms are

included in Eq. (3.40) to accommodate the centrifugal potential. Combining yields

the pseudo-potential function,

U∗ = 1− µ
r13

+ µ

r23︸ ︷︷ ︸
Gravitational

+ 1
2(x2 + y2)︸ ︷︷ ︸

Centrifugal

(3.41)
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For convenience, U∗i denotes the first partial derivative ∂U∗

∂i
. Similarly, the second

partial derivative is denoted U∗ij = ∂U∗
i

∂j
. These partials are easily evaluated for each

position vector measure number x, y, z,

U∗x = −(1− µ)(x+ µ)
r3

13
− µ(x− 1 + µ)

r3
23

+ x (3.42)

U∗y = −(1− µ)y
r3

13
− µy

r3
23

+ y (3.43)

U∗z = −(1− µ)z
r3

13
− µz

r3
23

(3.44)

The pseudo-potential U∗ allows the equations of motion to be conveniently written

in terms of the terms of U∗i ,

ẍ− 2ẏ = U∗x (3.45)

ÿ + 2ẋ = U∗y (3.46)

z̈ = U∗z (3.47)

This succinct form of the CR3BP equations of motion offers insight into the motion

as influenced by the gravitational potential.

Jacobi Constant Derivation

Multiple methodologies exist for deriving the Jacobi constant. Commonly, the

Jacobi constant is constructed from the dot product between the velocity of P3 in the

rotating frame and the vector gradient of U∗,

ṙ3ṙ3ṙ3 · ∇U∗U∗U∗ = U∗x ẋ+ U∗y ẏ + U∗z ż = ẋ(ẍ− 2ẏ) + ẏ(ÿ + 2ẋ) + ż z̈ (3.48)

The pseudo-potential U∗ is a function of position only and, thus, the left side of Eq.

(3.48) simplifies to the scalar time derivative of U∗, resulting in the relationship,

dU∗

dt
= ẋ(ẍ− 2ẏ) + ẏ(ÿ + 2ẋ) + ż z̈ (3.49)
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The relationship in Eq. (3.49) is then integrated directly, yielding,

1
2(ẋ2 + ẏ2 + ż2) = U∗ + C̃ (3.50)

where C̃ is the constant of integration. By convention, the Jacobi constant, C, is

defined as positive such that C = −2C̃,

C = 2U∗ − v2 (3.51)

The existence of an integration constant allows for additional insight into the dynam-

ical response in the CR3BP.

Relationship Between Jacobi Constant and the Hamiltonian

The Jacobi constant is derived by directly integrating the expression in Eq. (3.48),

however, other approaches exist for deriving C. In particular, the equations of motion

are also straightforwardly derived from the Hamiltonian, Eq. (3.30), which results

in the equations of motion in Eqs. (3.37)-(3.39). One advantage of a Hamiltonian

approach is the immediate emergence of the integration constant by observing that

H is a function of the generalized coordinates and generalized momenta, but is not

an explicit function of time. Therefore, H remains constant through integration, and

is evaluated as,

H = 1
2v

2 − 1
2
(
x2 + y2

)
− 1− µ

r13
− µ

r23
(3.52)

The expression for H is expressed more concisely by writing it in terms of U∗,

H = 1
2v

2 − U∗ (3.53)

The relationship between H and C is clear by comparing Eqs. (3.53) and (3.51), that

is, C = −2H.
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3.2.6 Equilibrium Solutions

In the CR3BP, equilibrium solutions are frequently labelled the Lagrange points

or libration points, and are determined when the energy gradient is equal to zero,

∇U∗U∗U∗ = 000. The scalar components of the energy gradient are,

U∗x = −(1− µ)(x+ µ)
r3

13
− µ(x− 1 + µ)

r3
23

+ x = 0 (3.54)

U∗y = y

(
1− 1− µ

r3
13
− µ

r3
23

)
= 0 (3.55)

U∗z = −z
[

1− µ
r3

13
+ µ

r3
23

]
︸ ︷︷ ︸

>0

= 0 (3.56)

The second term in Eq. (3.56) is positive, i.e., 1−µ
r3

13
+ µ

r3
23
> 0. Therefore, the equation

is satisfied only if z = 0. Hence, all equilibrium points are located within the x̂-ŷ

plane. The two conditions that satisfy Eq. (3.55) are,

y = 0 or 1− 1− µ
r3

13
− µ

r3
23

= 0 (3.57)

These cases are solved separately, with y = 0 corresponding to the collinear libration

points, and 1− 1−µ
r3

13
− µ

r3
23

= 0 producing the triangular libration points.

Collinear Libration Points

In the CR3BP, three collinear equilibrium solutions exist along the x̂ axis; these

arise from Eq. (3.55) for the case y = 0. The collinear libration points are determined

by rearranging Eq. (3.54), and solving the transcendental equation,

x = (1− µ)(x+ µ)
r3

13
+ µ(x− 1 + µ)

r3
23

(3.58)

From among various options, Eq. (3.58) is solved here numerically using a Newton-

Raphson method. To distinguish between points, it is useful to iteratively solve for a

distance with respect to a primary body, that is, rather than solving for x explicitly,
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each libration point is located by iteratively solving for the value of γi, as illustrated

in Figure 3.3, where Li denotes the libration point with index i. This substitution

allows the direct evaluation of xL1 = (1−µ−γ1), xL2 = 1−µ+γ2, and xL3 = −µ−γ3.

Using the definition of γi, Equation (3.58) is reformulated in terms of γi. For each

collinear libration point, these are,

1− µ− γ1 = (1− µ)
(1− γ1)2 −

µ

γ2
1

(3.59)

1− µ+ γ2 = 1− µ
(1 + γ2)2 + µ

γ2
2

(3.60)

µ+ γ3 = (1− µ)
γ2

3
+ µ

(1 + γ3)2 (3.61)

These equations are solved using a basic Newton-Raphson method to produce three

collinear libration points. By convention, L1 is located between the primaries, L2 is

on the +x̂ side of P2, and L3 is the remaining point in the −x̂ direction from P1, as

depicted in Figure 3.3.

Triangular Libration Points

In the CR3BP, two equilibrium solutions are computed analytically. These solu-

tions are termed the triangular libration points due to their geometry, and are labelled

x̂

ŷ

L1 L2L3

P1 P2

γ3 γ1 γ2

B

Figure 3.3. Collinear Lagrange points for three-body system with µ = 0.2.
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L4 and L5, as illustrated in Figure 3.4. The triangular libration points are derived

from Eq. (3.55), in the case where,

1− 1− µ
r3

13
− µ

r3
23

= 0 (3.62)

Since r13 and r23 are defined as physical quantities, this equation is only satisfied

when the values for r13 and r23 possess no imaginary component; such a result only

occurs for r13 = r23 = 1. Substituting r13 = r23 = 1 into Eqs. (3.18) and (3.19) (given

z = 0) produces,

1 = (xLt + µ)2 + y2
Lt

(3.63)

1 = (xLt − 1 + µ)2 + y2
Lt

(3.64)

Subtracting Eq. (3.64) from Eq. (3.64), and simplifying, yields the relationship,

xLt + µ = ±(xLt − 1 + µ) (3.65)

x̂

ŷ

L1 L2L3

L4

L5

60°
P1 P2

µ 1− µ

B

Figure 3.4. Libration points for a three-body system where µ = 0.2.
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The positive sign implies a contradiction (0 = −1), clearly an invalid solution. Rather,

consider the negative sign such that xLt + µ = −xLt + 1 − µ. This result is then

simplified, with the final relationship,

xLt = 1
2 − µ (3.66)

The value of xLt is then substituted back into Eq. (3.63) and, once simplified, yields

the ŷ-component for the two triangular libration points,

yLt = ±
√

3
2 ≈ 0.866025, nondim (3.67)

The locations of the triangular libration points, along with the collinear libration

points, are illustrated in Figure 3.4.

3.2.7 Zero Velocity Surfaces

A key insight from the Jacobi constant is a set of limiting boundaries for possible

motion of the particle P3. By examining the scenario where relative velocity is equal

to zero, (v = 0), for a given value of the Jacobi constant, the Zero Velocity Surface

(ZVS) emerges. The ZVS is a 3-D surface that reflects the boundary between the

relative velocity values that are real and those that are imaginary for a specific Jacobi

constant value. Of course, only real velocity values are physically possible and, hence,

the ZVS produces “forbidden” regions of space that are inaccessible to the spacecraft.

The ZVS is computed by setting velocity to zero, thus, Eq. (3.51) reduces to,

C = 2U∗ (3.68)

Points that satisfy Eq. (3.68) are determined by noting that U∗ is simply a function of

position and, thus, all solutions exist in configuration space. With all such locations

specified, the ZVS is computed. Frequently, it is simpler to view the ZVS that

exists in the x̂-ŷ plane, called the Zero Velocity Curve (ZVC). The ZVC and ZVS

at various energy levels in the Earth-Moon system are displayed in Table 3.2. As
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energy increases, portals surrounding the Lagrange points open to enable access to

different regions in the system space. For example, if P3 has a Jacobi constant such

that CL1 < C < CL2 , Table 3.2(c) indicates that P3 may transit between P1 and P2,

but is unable to escape the system entirely.

3.3 Circular Restricted Three-Body Problem with Low-Thrust

Many mission architectures benefit from the inclusion of low-thrust electric propul-

sion. In contrast to traditional chemical engines, electric propulsive engines deliver

energy changes over much longer time intervals. Low-thrust engines using Solar Elec-

tric Propulsion (SEP) include ion thrusters, which are powered through solar panels

on the spacecraft. Currently, ion thrusters are successfully employed, for example, on

Deep Space 1 [57] and Dawn [58], as well as other missions. Building on this progress,

the Power and Propulsion Element (PPE) for the upcoming Gateway mission plans

to employ SEP on-board [59].

As detailed by Cox et al. [60], the motion of a low-thrust spacecraft is modeled by

augmenting the natural CR3BP equations of motion, defined in Eqs. (3.23)-(3.25).

Assuming the low-thrust engine delivers acceleration in kilonewtons, denoted F , the

nondimensional low-thrust magnitude, f , is computed as,

f = Ft∗2

l∗M3,0
(3.69)

where M3,0 is the initial mass of the spacecraft in kilograms. The thrust direction is

oriented by a unit vector, û, fixed in the rotating frame. Over any integration segment,

thrust is assumed fixed in the CR3BP rotating frame. This investigation involves

20.87 hour segments, and the precession of the rotating frame during these time

intervals may be addressed when transferring CR3BP solutions into a higher-fidelity

model. Furthermore, propulsive capability is inversely related to spacecraft mass and,
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Table 3.2. ZVC and ZVS for various energy levels in the Earth-Moon system.
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(d) L2 portal opening: C = CL2
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(g) L1, L2, L3 portals open: CL3 < C < CL4,L5

−1.50 −0.75 0.00 0.75 1.50
x̂, nondim

−1.0

−0.5

0.0

0.5

1.0

ŷ
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hence, as propellant is expended, the spacecraft gains more thrust. Therefore, the

complete low-thrust acceleration vector is defined as,

aaalt = altû = f

m
û = (altux)x̂+ (altuy)ŷ + (altuz)ẑ (3.70)

where m = M3/M3,0 is the nondimensional spacecraft mass, and M3 is the mass

of the spacecraft at the beginning of a thrusting segment. Including variable mass

indicates an additional equation of motion is required. Assuming a Constant Specific

Impulse (CSI) engine, the rate of change of m with respect to nondimensional time

is computed as,

ṁ = −fl∗

Ispg0t∗
(3.71)

where Isp is the engine’s specific impulse (in seconds) and g0 = 9.80665×10−3 km/s is

the standard acceleration due to gravity. The motion of P3 in the low-thrust CR3BP

is governed by three second-order differential equations, with an additional first-order

differential equation for mass,

ẍ− 2ẏ−x = −(1− µ)(x+ µ)
r3

13
− µ(x− 1 + µ)

r3
23

+ altux (3.72)

ÿ + 2ẋ−y = −(1− µ)y
r3

13
− µy

r3
23

+ altuy (3.73)

z̈ = −(1− µ)z
r3

13
− µz

r3
23

+ altuz (3.74)

ṁ = 0 + −fl∗

Ispg0t∗
(3.75)

where red signifies the additional terms included for low-thrust force. This investi-

gation includes a sample spacecraft with propulsive capability of f = 4 · 10−2. A

comparison between this sample spacecraft and other previous and planned engine

capabilities is summarized in Table 3.3. The sample spacecraft incorporates more

propulsive capability than Hayabusa 1, Hayabusa 2, Dawn and Lunar IceCube (as

currently planned), but less than Deep Space 1.
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3.3.1 Numerical Integration

Without a known analytical solution in the CR3BP, numerical integration meth-

ods are leveraged to produce a time history stemming from an initial value problem.

For implementation, it is useful to express the equations of motion, in Eqs. (3.23)-

(3.25), as six coupled first-order equations that satisfy α̇αα = FFF (ααα, τ),

ααα =



α1

α2

α3

α4

α5

α6

α7



=



x

y

z

ẋ

ẏ

ż

m



, FFF =



α4

α5

α6

2α5 + α1 −− (1−µ)(α1+µ)
r3

13
− µ(α1−1+µ)

r3
23

+ f
α7
ux

−2α4 + α2 − (1−µ)α2
r3

13
− µα2

r3
23

+ f
α7
uy

− (1−µ)α3
r3

13
− µα3

r3
23

+ f
α7
uz

−fl∗
Ispg0t∗



(3.76)

Here, r13 and r23 are defined as in Equations (3.13) and (3.14), respectively, with

α1, α2, α3 substituted for x, y, z. These seven equations can be solved using numeric

Abbrv. Spacecraft f , nondim M3,0, kg F , mN
H1 Hayabusa 1 [61] 1.726 · 10−2 510 24.0
H2 Hayabusa 2 [62,63] 1.688 · 10−2 608.6 28.0
LIC Lunar IceCube [64] 3.014 · 10−2 14 1.15
Dawn Dawn [58] 2.741 · 10−2 1217.8 91.0
DS1 Deep Space 1 [57] 6.940 · 10−2 486.3 92.0
s/c Sample Spacecraft 4 · 10−2 n/a n/a

f , nondim

1e-2 5e-2 5e-1

s/c DS1DawnH1

H2 LIC

Table 3.3. Low-thrust capability of various spacecraft, nondimensionalized in the
Earth-Moon system.
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integration techniques. For this investigation, a Runge-Kutta-Fehlberg 78 integration

scheme is employed.



51

4. REINFORCEMENT LEARNING FRAMEWORK

Properly formulating a reinforcement learning environment is critical to algorithmic

performance. Researchers develop RL algorithms to be applicable to many types

of problems, however each environment must be specifically tailored to a particular

application. It is especially important to design an environment such that the under-

lying assumptions are not violated in the RL process. In particular, the environment

quantifies the problem being solved, the system dynamics, the many details of the

episodic process, and the process to pass information back-and-forth between the

agent and environment. In particular, as depicted in Figure 2.3, the state, action,

and reward signals quantify the communications process. Implementing an effective

environment involves properly defining each signal. The environment must define

the initialization and termination of episodes and must ensure that its computational

footprint does not inhibit learning performance.

4.1 Signal Definition

While both the selection and implementation of an appropriate RL algorithm

is critical to learning performance, so too is proper design of the RL environment.

The environment represents the formulations for the state, action, and reward sig-

nals. The state vector, ststst, communicates relevant information to the agent about

the environment at a particular point in time. Hence, the state must be designed

to accurately communicate information about the environment dynamics and subse-

quent flow. The action, atatat, defines an agent’s ability to alter that environment and

must offer the agent sufficient control authority to ‘learn’ an effective policy. Lastly,

the reward signal, r, is a scalar value that denotes the immediate positive or neg-

ative impact of a particular action. The selection of a reward function is arguably
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both the most difficult and most important function for design and is, thus, a critical

element of this learning framework. Proper signal design is vital because even the

most robust learning algorithm consistently falls short in an ill-designed environment.

Hence, a proper quantification of positive and negative behavior, given the goals of

the guidance framework, is crucial in achieving desirable outcomes.

4.1.1 State Signal

Under a Markov Decision Process (MDP), the environmental state at time t (ststst)

must include all necessary past environmental information that impacts the future

[3]. For the CR3BP, position, velocity, and spacecraft mass are together sufficient,

since future states are predicted by numerically integrating the equations of motion

specified in Eqs. (3.72) - (3.75). Hence, at every time step t, the dynamical state qtqtqt
is defined as,

qtqtqt =
[
ρρρ agent m

]
=
[
x y ẋ ẏ m

]
(4.1)

While qtqtqt alone is sufficient to satisfy the Markov property in this planar problem,

the agent performance is greatly enhanced by augmenting the dynamical state, qtqtqt,

with additional variables to form the state signal, ststst. In the PPO formulation, the

actor and critic networks receive the complete state signal as inputs, as depicted

in Figure 2.4. Hence, both the policy and value functions are dependent on the

selection of additional variables. Since this problem involves an agent learning to

track a reference solution, relative position and velocity are essential to the agent

performance and the ability to extrapolate to nearby motion. Including relative state

information is similarly useful for RL in a stationkeeping environment [65]. The

relative information is computed simply as,

δρδρδρ = ρρρ agent − ρρρ ref =
[
δx δy δẋ δẏ

]
(4.2)
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where ρρρ agent is the position and velocity of the agent at some time step, and ρρρ ref is

the position and velocity of the nearest neighbor along the given reference trajectory

path. Here, “nearest” is defined as the state along the reference with the lowest L2

norm for the relative position and velocity. Note that this definition of “nearest” does

not include time and, hence, is a normal rather than an isochronous correspondence.

If the reference path includes a set of n discrete points, Rref, then the nearest state

ρρρ ref is defined as,

ρρρ ref ∈ Rref s.t. k = |δρδρδρ| =
√
δx2 + δy2 + δẋ2 + δẏ2 is minimal (4.3)

The scalar value k is a function of both the position and velocity deviation, as depicted

in Figure 4.1. This relative state information, along with the dynamical state and

other optional additional observations, form the complete state signal,

ststst =
[
qtqtqt δρδρδρ additional observations

]
(4.4)

of dimension 9 + j, where j is the number of optional additional observations that

are incorporated. Recall that, for a fully observable MDP, the state ststst and obser-

vation ototot are interchangeable. The elements of the state signal must communicate

sufficient information about the environment to enable the actor and critic networks

to accurately characterize the system dynamics.

The additional observations are problem-dependent and are, thus, included here as

optional parameters. Since this investigation involves the CR3BP dynamical model,

including some dynamical information in the reward signal is advantageous for learn-

ing performance. In particular, the Jacobi constant, defined in Eq. (3.51), commu-

nicates energy deviations to the actor and critic networks. At each time step, the

Jacobi constant for ststst, denoted Cst , is computed for a particular state, and then

combined with the Jacobi constant value from the reference trajectory, Cref, to form
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Figure 4.1. Relative position and velocity norm values, k. Position and velocity
values are nondimensionalized in the Earth-Moon system, and k is computed as the
L2 norm k =

√
δr2 + δv2.

the additional observations in Eq. (4.4). The complete state vector in the CR3BP

environment is then defined as,

ststst =
[
qtqtqt δρδρδρ Cst Cref

]
(4.5)

Omitting the Jacobi constant from the state signal entirely does not prohibit conver-

gence, but the resulting policy is less optimal than one that incorporates the constant.

The beneficial impact of including the Jacobi constant indicates that, when apply-

ing this approach to other dynamical models where the Jacobi integral may not be

available, additional energy-like observations may prove advantageous.
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4.1.2 Action Signal

In any MDP, an agent influences the environment by means of actions. For a

low-thrust spacecraft, the action takes the form of a thrust magnitude and direction.

While this action does not instantaneously alter the environmental state, its impact

is realized in the numerical propagation that occurs between time steps. In this case,

the action is identified by the actor network, which outputs both a thrust magnitude,

f̃ , and the vector components representing thrust direction, (ũx, ũy), as depicted in

the output layer of the actor network in Figure 2.4. During the training phase, the

network outputs the mean value of each action parameter and uses these in conjunc-

tion with a derived variance to create a normal distribution for each value. The mean

is essentially the agent’s best guess for the action given a particular observation, and

the variance is included to encourage exploration. Miller et al. employ a similar action

definition for interplanetary trajectory generation [35]. As in all policy optimization

RL methods, over the course of training, the output of the network approaches an

optimal policy. Once fully trained, exploration is no longer necessary, so the mean

values are used directly to form a deterministic controller.

For a neural network controller, the raw value of the resulting action is governed

by the selected activation function in the output layer of the network. The activa-

tion function employed in this investigation is tanh and, therefore, action values are

bounded by [−1, 1] (Figure (a)) and must be scaled to reflect actual low-thrust val-

ues. Let ‘tilde’ denote raw value output by the network such that f̃ , ũx, ũy ∈ [−1, 1].

First, the thrust magnitude is re-scaled by the maximum total allowable nondimen-

sional thrust,

f = f̃ + 1
2 fmax ∈ [0, fmax] (4.6)

and the thrust directions are combined and normalized to form a unit vector. With

this, the action is delivered as,

atatat =
[
f ux uy

]
such that û = [ux uy] = [ũx ũy]√

ũ2
x + ũ2

y

(4.7)
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While parameterizing thrust as a unit vector/magnitude is straightforward, a poten-

tial drawback is an equation of constraint that is unknown to the controller, i.e., thrust

direction is normalized after neural network evaluation. While it seems appealing to

reformulate the low-thrust parameterization to eliminate this constraint, note that

including an angle as an output value for any bounded activation function results in

a critical discontinuity in the available action space and, therefore, in the gradient

of the action with respect to the observations. This discontinuity occurs because,

once re-scaled to a range [0, 2π], the agent cannot perform an update step to push

the output angle past either end bound. Hence, while parameterizations that include

angles are potentially beneficial for other applications, such as trajectory design [60]

and targeting [66], the bounded action implies that an alternate approach is required

for this application.

An alternative low-thrust parameterization that has been applied to PPO by

Miller and Linares is empowering the agent to command the thrust in each direction

independently, such that each direction is allowed to employ the maximum allowable

thrust [34]. While this approach avoids the discontinuity issue associated with angles,

the drawback is that a physical engine has an associated total maximum thrust, but

does not possess a practical limitation on the thrust direction of individual vector

components. For the action to be more reflective of a physical engine, the magni-

tude/unit vector formulation, detailed here, separates thrust magnitude and direction

in the action output. While the external equation of constraint that accompanies this

strategy causes repetition in possible actions, it does not prohibit convergence to an

effective policy.

4.1.3 Reward Signal

The environmental reward is designed to measure ‘nearness’ to a reference trajec-

tory as a scalar value. This nearness function is modeled as an exponential so that

the reward grows rapidly as the agent’s state nears the reference in both position and

velocity. In this formulation, after the nearest neighbor along the reference is deter-
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mined, the agent is rewarded for a thrusting plan such that the distance to the nearest

state at the next time step is minimized. The reward function is then multiplied by

a scaling term, η, to increase the reward over time for the reference solution. Reward

is computed at each time step when the relative position and velocity are both less

than an upper bound, denoted δrmax and δvmax, respectively. If the deviation exceeds

a maximum threshold, a penalty is applied, and the episode is terminated. Together,

the reward function is defined as a piecewise function,

r =


ηe −λk

√
δx2 + δy2 < δrmax and

√
δẋ2 + δẏ2 < δvmax

p deviate from reference or impact
(4.8)

where λ is a scaling factor that increases the gradient of the reward, k is defined in

Eq. (4.3) as the relative distance (in position and velocity) to the nearest point along

the reference, and p is a penalty for deviating from the reference or impacting the

primary or secondary body. Finally, η is a scaling term evaluated as,

η = i

n
ξ + 1 (4.9)

where i is the index of the reference trajectory state, n is the size of the set of states

along the reference trajectory, Rref, and ξ is a tuning variable to adjust the rate at

which the reward increases along the reference. If the nearest neighbor is along the

arrival orbit and not the reference trajectory, then η is assumed to be a maximum

value ηarrival = ηmax = ξ + 1. Formulating the reward signal to be at maximum when

the agent reaches its target encourages the agent to fully complete the given transfer.

The reward as a function of k is plotted in Figure 4.2. As depicted in Figure 4.1,

for error thresholds of δrmax = 8000 km and δvmax = 35 m/s, η yields a maximum

value η ≈ 0.04, which implies that η ∈ [0, 0.04]. A value of η > 0.04 indicates a

penalty is always applied, however, the penalty may still be applied in the case that

position or velocity has individually violated a threshold. Figure 4.2 illustrates the

change in the reward magnitude based on both the relative distance to the reference,
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Figure 4.2. Reward function for λ = 100 plotted over k with varying η, where η = 1
indicates the beginning of the reference trajectory and η = 2 indicates the arrival
orbit. A penalty of p = −4 is imposed when an error threshold is met for position
or velocity (8000 km and 35 m/s, respectively). The vertical red line indicates the
maximum value of k before the error is imposed, though it may be imposed earlier if
either position or velocity violates the threshold.

and the progress along the transfer. For example, if the nearest neighbor along the

reference trajectory possesses the values 100 km, 1 m/s, then the reward varies from

approximately 0.9 to 1.9 based on the location of the nearest neighbor. The range of

possible values narrows as the relative distance decreases, until a penalty is imposed.

The reward function employed in this investigation differs from that in Miller and

Linares [34] by removing time from the equation. In their formulation, a spacecraft is

rewarded for arriving in a periodic orbit at a specific time. While requiring a matching

time is important for many applications, such as rendezvous, other scenarios do not

warrant this constraint. With a time-autonomous reward function, the agent returns

to a reference trajectory, without penalty for a slightly longer or shorter transfer time.

The reward function also differs slightly from LaFarge et al. [43] by removing the
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‘bonus’ for reaching an arrival criteria and by combining the penalties for deviation

and planetary impact into one single scalar value.

The measurement of nearness in the reward function, as detailed in Eq. (4.8),

is visualized in Figure 4.3. To illustrate the region of high reward surrounding the

reference, perturbations are introduced in y0 at the point where the trajectory crosses

the x = 1 − µ plane. As each of these perturbed states is propagated forward in

time, their deviation off the reference is visualized by the reward colormap. Once

deviation beyond the threshold occurs, the trajectory is colored light gray to denote

areas where a penalty is imposed. Due the exponential term in Eq. (4.8), high reward

exists solely in the region immediately surrounding the reference. Hence, to continue

accruing reward, the agent is encouraged to maintain close proximity to the reference

path.

Moon

Penalty

Penalty

Reference
Trajectory

Figure 4.3. Motion nearby a reference trajectory originating at the plane defined
by x = 1 − µ. Perturbations are introduced in y0, and then propagated without
thrust. Each state is colored based on the reward function defined by Eq. (4.8),
where λ = 100, η = 1, and the maximum deviations in position and velocity are 8000
km and 35 m/s, respectively (from LaFarge et al., Ref [43], Fig. 3).
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A notable limitation of this time-autonomous approach is a reference trajectory

that includes a departure periodic orbit. In this case, the reward function, as defined

here, causes an agent to learn to maximize future reward by stationkeeping about

the departure orbit rather than proceeding along the reference. To combat this be-

havior, the variable η is leveraged in Eq. (4.8) to encourage the agent to continue

along the reference, and discourage the initial periodic behavior. While η discour-

ages initial stationkeeping behavior, it does not entirely eliminate the tendency. Like

other optimization methods, abundant local minima encourage an agent to converge

to sub-optimal behavior. Including η discourages this behavior, but does not entirely

eliminate the possibility of sub-optimal convergence and return to the stationkeeping

local minimum.

4.2 Description of an Episode

An episode originates by selecting a random initial state along the departure

periodic orbit from a uniform distribution and introducing a perturbation in position

and velocity. The nondimensional mass for the initial state is assumed to be one.

The perturbation is sampled from two normal distributions (position and velocity),

where each component of ρρρ0 is perturbed individually with standard deviations in

position and velocity of σr and σv, respectively. The averages across the perturbation

distributions are all zero, and σ is varied depending on desired disturbance for a

particular simulation.

Once an initial state is generated, the departure orbit is no longer employed in

the simulation, and the agent is required to follow its reference trajectory to accrue

reward. Given the perturbed initial state, the agent computes an action, i.e., a thrust

direction and magnitude. The equations of motion are then propagated within the

environment for a particular time horizon (∆t). The specified ∆t between the ac-

tions is an important input selection for the agent performance. If ∆t is too large,

then the nonlinearities become more pronounced, and the agent is offered fewer op-

portunities for sufficient actions over an episode. Furthermore, thrust direction is
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fixed in the rotating frame between segments and, thus, longer time horizons present

additional difficulty in transferring the control solution to an inertial-fixed scheme.

However, if ∆t is too small, there is not time for the thrust direction to demonstrate

a discernible impact on the system. For the examples included in this investigation,

t = 0.2 nondim ≈ 20.87 hrs strikes a balance between the extrema of being too large

or too small. After propagating over ∆t again, the agent again selects a new action.

Actions are introduced sequentially, after each time interval, until the agent deviates

from the reference, impacts a planetary body, arrives at the target orbit, or reaches

a maximum number of time steps.

4.3 Nearest Neighbor Searching

The computation of the relative state for the reward and state signals presents

some practical challenges in implementation. First, the nearest reference state must

be selected from a discrete set of states along the reference path, Rref. For an accurate

assessment of nearness, the trajectory must include a large number of states. However,

since the reward is computed at every time step, a brute force search through Rref is

computationally infeasible. To ease this computational burden, the nearest neighbor

search is instead conducted by traversing through a K-dimensional tree (KD-Tree). A

KD-Tree is a data structure frequently used for data clustering in unsupervised learn-

ing applications. This specialized type of binary search tree reduces the algorithmic

complexity of the nearest neighbor problem from O(n) to O(log n), a significant im-

provement when n is large. In this investigation, Scikit-learn’s neighbors.KDTree

implementation is employed to facilitate the nearest neighbor search process [67]. A

similar approach is successful for autonomously locating neighbors in higher dimen-

sional Poincaré maps [20, 21]. This application differs in that the neighbor search is

conducted for only a single state, rather than intersections from two discrete sets.

In addition to time complexity improvements, approaching the nearness function

from an unsupervised learning perspective allows for the inclusion of additional di-

mensions at no cost to algorithmic complexity. This functional extendability allows
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for a simpler transition of this guidance framework to higher-dimensional dynamical

models. However, when including multiple variables in the nearness metric, the KD-

Tree approach dictates that all variables are condensed into a single norm function.

Thus, the process is more complex if the variables are scaled differently, since the

norm is then biased toward the results with larger absolute values. This drawback

is addressed by scaling all variables to, approximately, the same order of magni-

tude. This investigation demonstrates that nondimensional position and velocity in

the CR3BP are close in magnitude and do not demand re-scaling, however, if units

are dimensional, or if additional variables such as time or an angle are included, the

individual variable scaling issue requires re-assessment.
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5. MISSION APPLICATION: LIBRATION POINT
TRANSFERS

To illustrate the performance for the PPO-generated controller, several sample sce-

narios are considered. Due to the recent increased interest in cislunar space, the

Earth-Moon CR3BP system serves as the basis for the sample cases. The specific

characteristic quantities for this system are listed in Table 5.1. The low-thrust propul-

sion model assumes a Constant Specific Impulse (CSI) engine with parameters listed

in Table 5.2. A comparison between this sample engine and various existing spacecraft

is detailed in Table 3.3. The sample spacecraft possesses more propulsive capability

than Hayabusa, Dawn, and Lunar IceCube, but less than Deep Space 1 [60]. Hence,

the sample spacecraft is consistent with current low-thrust capabilities.

For the sample scenarios, planar transfers between orbits in the vicinity of the L1

and L2 libration points, with various geometries, serve as illustrative test problems for

the proposed guidance framework. In particular, Lyapunov orbits at the same value of

Jacobi constant are examined. With energy constrained, motion in the lunar vicinity

is bounded in configuration space by a forbidden region, denoted the Zero Velocity

Curves (ZVCs) [68]. Jacobi constant levels included in this investigation correspond

to forbidden regions similar to those depicted in Table 3.2 (e), where the L1 and L2

portals are open, but the L3 portal is closed. Furthermore, the shared Jacobi con-

stant value between the orbits indicates that heteroclinic transfers may be available.

Heteroclinic transfers occur when manifold intersections create continuous ∆v-free

paths between two periodic orbits. These continuous trajectories are constructed by

Table 5.1. Characteristic quantities in the Earth-Moon System

µ, nondim l∗, km t∗, s
0.012004715741012 384747.962856037 375727.551633535
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Table 5.2. Low-thrust engine characteristics

fmax, nondim Isp, s
4 · 10−2 3000

selecting an initial guess from manifold intersections on a Poincaré map and corrected

using the methodology detailed by Haapala and Howell [4]. Heteroclinic transfers are

one of the few cases in the CR3BP where globally optimal geometries exist and, thus,

provide a useful test framework for the controller since no maneuvers are required.

While the agent is trained using only one reference trajectory, the controller’s

ability to generalize control histories to other geometries in the lunar region is inves-

tigated. In reality, a variety of factors cause a planned path to shift in-flight. For

example, on-board targeting yields trajectory corrections and a nearby solution is

generated. However, in generating nearby transfers, it is often difficult to produce

any initial guess for the control history. In particular, for Orion, Trajectory Correc-

tion Maneuvers (TCMs) are nominally zero [7]. However, as perturbations cause a

spacecraft to deviate and these maneuvers become necessary, zero thrust is a poor ini-

tial guess, and likely negatively impacts the performance of the targeter. To address

this limitation, despite no training with other reference geometries, the ability for the

proposed controller to generalize past experience is demonstrated. If a controller is

only applicable to the particular reference it has seen, and the training process re-

quires significant time and computational resources, then the practical uses of such a

controller are limited in an on-board application. To test the controller performance

for this generalization, other references and other transfers are examined.

5.1 Training Process for a Sample Scenario

Heteroclinic transfers between L1 and L2 Lyapunov orbits at C = 3.124102 are

employed to demonstrate the training process, as well as to evaluate the performance

of the guidance framework. The transfer scenario is illustrated in Figure 5.1, where
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Figure 5.1(a) depicts the periodic orbits, and Figure 5.1(b) illustrates a continuous

heteroclinic transfer from the L1 Lyapunov orbit to the L2 Lyapunov orbit. The

agent is trained using this heteroclinic transfer, labeled the “training reference”, and

is subsequently evaluated using other transfer geometries.

The RL agent is trained over 120,000 finite-horizon episodes. During each episode,

the agent attempts to maintain the training reference trajectory for as long as possible.

When either the maximum number of time steps is reached, or the agent deviates too

far from the reference, the episode is terminated, and then reset. Over the course of

training, the agent’s performance gradually improves until it consistently reaches the

specified final time. Training performance over time is analyzed to understand the

behavior of the RL algorithm at a high level, while specific examples lend insight into

the practical applications of the controller.

During training, σr = 300 km and σv = 4 m/s model initial deviations from

the reference. Without control, 1000 perturbed initial conditions are depicted in

Figure 5.2(a), where each initial state is propagated for 17.4 days. The propagated

initial perturbed states are plotted alongside the unstable manifold tube for the L1
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(a) L1 and L2 Lyapunov orbits.
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(b) Heteroclinic transfer employed in training.

Figure 5.1. Periodic orbits and heteroclinic transfer applied to the sample scenario.
All motion at C = 3.124102, with the corresponding forbidden regions in gray.
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Lyapunov orbit. While the perturbed initial states are not on the manifold itself,

they follow the geometry of the manifold tube, as plotted in Figure 5.2(b).

5.1.1 Training Process

After 120,000 episodes of training, a deterministic controller is produced. The

user-specified hyperparameters in the environment and the RL algorithm are listed

in Appendix A, Table A.1. During training, the total accumulated reward per episode

is recorded to evaluate the training performance over time. The agent seeks to maxi-

mize the expected future discounted return, Eq. (2.5), at each time step. Therefore,

the total accumulated reward per episode is expected to increase over the duration of

training. For the sample scenario, a moving average of the reward sum per episode is

plotted in Figure 5.3. The agent begins by randomly selecting actions and, at first,

the agent is unable to accumulate reward. Then, once the agent begins learning an

effective policy, reward sharply increases. For the sample agent, this sharp increase

occurs approximately between episodes 8,000 and 15,000. After the initial surge in

reward, performance improves gradually over the subsequent 75,000 episodes. Fi-
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ŷ
,n

on
di

m

(a) 1000 perturbed initial states

0 1
x̂, nondim

−1.0

−0.5

0.0

0.5

ŷ
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Figure 5.2. Perturbed initial states and the unstable manifold tube for L1 Lyapunov
orbit depicted in Figure 5.1(a), all propagated for 17.4 days.
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Figure 5.3. Moving average of total accumulated reward per episode for the sample
scenario.

nally, as the agent approaches a deterministic policy, the reward curve reaches an

approximate steady state, and the training is complete. In Figure 5.3, the moving av-

erage along the reward curve reaches a steady state value of approximately 49 around

episode 90,000.

Once each batch is accumulated, the actor and critic networks are optimized over

a finite number of training epochs. A rolling average for the mean loss function

values over the training epochs for each batch are plotted in Figure 5.4. The critic

steadily converges over the training process, which indicates that, upon completing

training, the critic function accurately predicts the expected value of particular states.

In contrast, the actor loss does not exhibit steady convergence toward zero. This

is expected due to actor constantly discovering improved control characteristics as

training progresses. However, the absence of convergence may indicate that further

episodes could improve actor performance.

At any given point during training, a deterministic controller is available by simply

removing variance from the agent’s computed actions. Running an episode with the

deterministic controller at various points in training, given a fixed initial condition,
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Figure 5.4. Moving average of loss function values over each training batch for the
actor and critic networks.

yields insight into the evolving improvement in the agent’s policy. For this simulation,

the initial conditions are generated by selecting an initial state along the L1 Lyapunov

departure orbit and introducing perturbations of 1106 km and 6.9 m/s. In reality,

error is computed relative to the reference trajectory rather than the starting orbit,

which can add a small amount of additional perturbation. For this sample case,

the error relative to the reference is computed as 1108 km and 6.7 m/s. Without

control, the resulting trajectory, as plotted in Figure 5.5, immediately deviates from

the reference and impacts the Moon in less than a week. This introduced perturbation

is not included at any point during the training phase. In many types of machine

learning, it is important to separate training and validation data. In RL, this data

separation is not as explicit as in supervised learning approaches, but it is nevertheless

an important consideration when selecting a test case.

The control history produced by a deterministic controller at various stages in the

training is plotted in Figure 5.6. Arrows indicate the thrust magnitude and direction

for a particular segment, where the length and color of the arrow corresponds to

thrust magnitude. For clarity, thrust values below a user-defined threshold cause the

thrust direction magnitude indicator arrows to be omitted from visualization in Figure

5.6. In this case, 25% is arbitrarily defined. For practical applications, depending on
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ŷ
,n

on
di

m

Reference Perturbed

Moon
L1 L2

δrδrδr

Nearest neighbor (ρρρ ref )

Figure 5.5. Sample perturbed initial state that impacts the Moon in 6.4 days. Position
perturbation is plotted in configuration space (δrδrδr), with magnitude 1106 km. States
along the reference trajectory Rref appear in the zoomed portion with the shade of
red denoting the magnitude of the nearest neighbor distance to the perturbed state,
k, defined in Eq. (4.3) (from LaFarge et al., Ref [43], Fig. 5).

the specific engine characteristics, this threshold possesses physical significance since

low-thrust engines only deliver a thrust level within particular bounds. To eliminate

the segments where f is small, a differential corrections algorithm could be applied

with thrust and coast arcs delineated by the user-defined threshold, as detailed by

Das-Stuart et al. [15].

When training begins, the agent’s policy is determined by randomly initialized

weights in the actor neural network, depicted in Figure 2.4. In the sample case at

episode 0, plotted in Figure 5.6(a), the agent’s action choice worsens the perturbation

and causes the episode to terminate quickly. As the number of episodes increases,

the agent’s ability to perform the given task gradually improves. By episode 15,000,

Figure 5.6(d), the agent departs the Lyapunov orbit at approximately the correct

location. After only 5,000 additional episodes, the agent completes the given transfer,

though with substantially more thrusting than is necessary. Over the next 25,000

episodes, the agent gradually improves by reducing the amount of thrust applied. To
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Figure 5.6. Deterministic agent over 120,000 episodes (x̂-ŷ, nondim)



71

illustrate the thrust reduction over learning, at episode 20,000, the agent performs

the given task, but expends 0.69% of the available propellant. By episode 80,000,

Figure 5.6(g), expended propellant is reduced to 0.34%. Furthermore, this thrust

reduction is visually apparent in the departure segment from the L1 Lyapunov orbit.

5.2 Closed-loop Controller Performance

With training complete, the performance of the resulting deterministic controller

is analyzed separately from the training process. For the perturbation in Figure 5.5,

the sample controller produces the control history in Figure 5.7. The trajectory in

Figure 5.7(a) is identical to Figure 5.6(h) since the resulting controller is simply the

deterministic controller at the final episode. Given the introduction of the perturba-

tion, with the goal of returning to the original reference trajectory, a delay in response

time renders the original geometry inaccessible. However, the trained neural network

controller immediately outputs a control history that returns the spacecraft to its

original path and successfully accesses the target L2 Lyapunov orbit. As expected,

the majority of the spacecraft’s thrusting occurs during the initial time intervals as the

agent recovers from the initial perturbation. Subsequent time intervals require much

less propellant. Upon arrival in the destination L2 Lyapunov orbit, the controller

maintains the arrival geometry. The orbit maintenance is apparent in configuration

space, i.e., in Figure 5.7(a), as well as in the periodic sinusoidal thrust magnitude be-

havior, depicted in Figure 5.7(b). Again, thrust magnitudes below 25% are omitted

from visualization, but are still applied in the dynamical model.

To analyze the performance of a particular controller, many initial conditions

with various perturbations are generated and the agent is evaluated based on its

resulting output control history. A simulation is considered successful if the agent

avoids deviating from the reference and reaches a specified arrival criteria. ‘Arrival’

occurs when the relative position and velocity magnitudes relative to a state along the

arrival orbit are less than 100 km and 2 m/s, respectively. This definition of arrival is

not intended to indicate that the spacecraft has reached a particular state. Instead,
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Figure 5.7. Sample case where controller successfully overcomes an initial perturba-
tion and follows a given reference trajectory. Thrust direction and magnitude are
plotted in configuration space and colored based on thrust magnitude. For thrust
values below an arbitrary threshold (25%), thrust direction indicators are omitted
from the control history in (a).

the given tolerances simply detect that the spacecraft has reached the vicinity of

the arrival orbit. If a tighter tolerance for arrival is employed, such as the values

demonstrated in LaFarge et al. [43], many false negatives exist that eventually reach

the specified tolerance, but not within the specified maximum number of time steps.

The numerically computed arrival percentages for various levels of 3σ error in po-

sition and velocity are depicted in Figure 5.8. For 10,000 combinations of position and

velocity 3σ values, 1000 deterministic episodes are simulated using the sample agent

and the training reference trajectory. The results of the Monte Carlo analysis are

colored based on the arrival percentage across the 1000 episodes. Based on expected

levels of position and velocity error, Figure 5.8 demonstrates the expectations for

controller performance. For example, if all position and velocity errors are expected

to be less than 1000 km and 10 m/s, respectively, then the bright yellow color at

[3σv = 10 m/s, 3σr = 1000 km] indicates that the controller is expected to reach the

destination orbit in nearly 100% of cases (actual value is 99.4%). As expected, as the

error increases, the controller becomes less successful. With large amounts of error, it

is frequently unreasonable to return to a previous reference trajectory. Cases where
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Figure 5.8. Arrival percentage for training reference given various 3σ levels of initial
error. Each error combination is simulated for 1000 deterministic episodes, and the
resulting data is displayed as a colormap, with a Guassian blur applied to reduce
image noise.

the controller frequently fails to recover indicate error levels where a new reference

trajectory is required.

The sample controller is more sensitive to perturbations in velocity than position,

as depicted in Figure 5.8. With perturbations sampled from 3σv = 0 m/s and 3σr =

6000 km, the controller arrives successfully in 59.1% of the cases. Conversely, if

3σv = 60 m/s and 3σr = 0 km, the agent succeeds in only 44.1% of the cases. This

sensitivity to velocity errors is consistent with other applications in cislunar space.

For example, Davis et al. demonstrate the significant impact of velocity navigation

errors in NRHO orbit maintenance [69].

5.2.1 Generalization to Other References

If a spacecraft deviates significantly from its reference path, it is not always rea-

sonable to return to the original trajectory. The process of generating a new transfer

arc is accomplished from a variety of options, including leveraging dynamical systems
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theory, applying a numerical strategy, and/or employing differential corrections. The

methodology for generating new reference transfers is not considered in this investiga-

tion. However, assuming a new trajectory has been constructed, an important test of

the proposed controller is its ability to perform despite training with only one original

path. While neural networks, in general, offer a demonstrated ability to generalize,

their performance is always tied to the training data set. Hence, if the new geometry

is vastly different, a NN-based approach is limited by its training experience.

To test the extendability of the PPO-generated controller, several new transfers

are examined. First, a new path between the original L1 and L2 Lyapunov orbits is

demonstrated via a second heteroclinic reference trajectory in Figure 5.9(a). Next,

the reverse of the previous example is also included, in which the agent starts in the L2

Lyapunov orbit and attempts to track heteroclinic transfers to the L1 Lyapunov orbit.

These two new heteroclinic paths are plotted in Figure. 5.9(b) and Figure. 5.9(c).

To evaluate the scenario where a new reference is generated in-flight, Reference 2

in Figure 5.9(a) is employed. Reference 2 is not included in the training process and,

therefore, the controller must extrapolate its experience on the training reference to

a different area of cislunar space. The new path is notably different from the original

one; the nearest distance to the Moon along the training reference and Reference

2 are 34,546 km and 6,725 km, respectively. Not only is this a large deviation in
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Figure 5.9. Additional heteroclinic transfers between Lyapunov orbits at C =
3.124102 (x̂-ŷ, nondim). Reference 2 (a) connects L1 to L2, and passes closer to
the Moon than the training reference. References 3 (b) and 4 (c) connect L2 to L1,
and are the mirror images of the training reference and Reference 2.
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geometry, significant nonlinearity is added due to the close proximity with the Moon.

Hence, this example adds difficulty for the controller, not only in extrapolating to new

locations in space, but also demanding that the controller overcome more nonlinearity

than was present in the training. Returning to the previous example, the perturbation

in Figure 5.5 is applied to the new reference geometry. The error from the perturbed

state to its nearest neighbor along the new reference path is 860 km and 5.1 m/s.

The resulting control history and successful transfer are plotted in Figure 5.10. The

agent is clearly able to extrapolate to the new reference by generalizing its experience

given the relative state information.

Reverse Transfer Scenario

For realistic scenarios, since the agent’s performance is dependent on training

data, it is generally inadvisable to reuse an old agent for a drastically different sce-

nario without training on the new geometry. However, examples where no additional

training is conducted are included to illustrate the agent’s ability to perform well in

regions of space that were not originally explored. In particular, the environment is

reversed from the previous example, that is, the agent is required to transfer from
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Figure 5.10. Resulting control history for previous sample deviation, plotted in Figure
5.5, but using Reference 2 from Figure 5.9(a). Without additional training, the agent
successfully tracks a new reference trajectory.
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the L2 Lyapunov orbit to the L1 Lyapunov orbit along one of the heteroclinic paths

plotted in Figure. 5.9(b) and Figure. 5.9(c).

A single sample case is again examined. For a perturbation illustrated in Figure

5.11, the uncontrolled path departs the vicinity of the Moon. Again, the agent is

tasked to return to one of the new references, without the benefit of previous training.

The controller completes these new transfers, with the resulting control histories

plotted in Figure 5.12. These examples demonstrate the RL controller’s ability to

perform well in challenging scenarios.

Generalization Limitations

While the controller demonstrates a remarkable ability in generalizing to new

reference trajectories, there are several notable scenarios in which the controller is

unable to generate an effective control strategy. The sample controller is effective in

the vicinity of the Moon. However, for heteroclinic transfers that pass through the L1

or L2 portal, the agent produces poor control choices, and eventually deviates from

the new reference. Two examples of the controller deviating are plotted in Figure 5.13.

Given two heteroclinic transfers at the same energy level as the training reference,

the agent fails on both an interior transfer, Figure 5.13(a), and an exterior transfer,

Figure 5.13(b). These failures indicate that, if a drastic change in the reference

geometry is possible, the training process for the controller must reflect all possible

regimes in space that the controller may encounter.

Another notable sensitivity in the controller is changes in energy. Slightly decreas-

ing the energy of the training reference and the Lyapunov orbits, increasing Jacobi

constant from C = 3.124102 to C = 3.13, produces a new transfer scenario depicted

in Figure 5.14(a). While the transfer exhibits similar geometry in configuration space

to the training reference, the controller is unable to consistently execute this lower

energy transfer. An example of a failure case is plotted in Figure 5.14(b). This limita-

tion indicates that the agent learns the dynamics associated with a particular energy
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Figure 5.11. Sample perturbation from L2 Lyapunov orbit for evaluating agent’s
ability to control a reference trajectory in a different direction (from LaFarge et al.,
Ref [43], Fig. 8(b)).
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ŷ
,n

on
di

m

0.00

0.01

0.02

0.03

0.04

f,nondimMoonL1 L2

(b) Control history for Reference 4

Figure 5.12. Computed control histories for the L2 to L1 reference trajectories plotted
in Figure 5.9(b) and Figure 5.9(c), given the perturbation depicted in Figure 5.11.



78

0 1
x̂, nondim

−0.5

0.0

0.5

ŷ
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Figure 5.13. Failures to generalize to new references located in different regions of
cislunar space, but at the same Jacobi constant value as the training reference.
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Figure 5.14. Failure to generalize to a new reference trajectory at a slightly different
energy level.

level. If energy changes are likely for a specific scenario, then the training episodes

would need to incorporate variations in energy.

5.2.2 Monte Carlo Results

A Monte Carlo analysis approach is applied to evaluate the sample controller’s

performance across different references. For this analysis, multiple levels of error

are simulated for 50,000 trials each across the four sample reference trajectories.
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Assuming that orbit determination navigation errors are on the order of 3σ = 1 km

and 1 cm/s [65], the proposed controller is tested with errors up to 2000 times the

expected navigation error. The 1000× case roughly corresponds to the error used

in training, which represents the situation where a 1 km and 1 cm/s perturbation is

introduced, and the error is propagated for an orbital period, or about 12.9 days.

The results from the Monte Carlo analysis is summarized in Table 5.3, with fail-

ure rates plotted in Figure 5.15. For the training reference, the controller is 100%

successful for all errors less than the 500× scenario. However, as error is increased,

trials emerge where the controller is unable to recover. In the 1000× case, 0.6% of

perturbations are not successfully recovered. For some of these examples, where the

error bounds are 3σ = 1000 km and 10 m/s, it is unreasonable to expect a return

to the original motion, and these error levels may correspond to conditions where

alternate options should be considered. Four common causes of failure are listed in

Table 5.4.

To illustrate the failure characteristics that occur for the 1000× case, deviations

over time for 100 sample episodes are represented in Figure 5.16. The red trajectories

correspond to failures where the episode is terminated when either of the maximum

deviation thresholds is violated, or if arrival conditions are not met within the maxi-

mum number of time steps. Episodes that reach the arrival criteria, in green, clearly

maintain a small amount of error upon arrival to the target orbit. However, during

the transfer phase, more variance is observed in the deviations. This variation is

likely caused by selection of a sub-optimal action which forces the agent to recover

from additional error.

The arrival percentages for References 2–4 further demonstrate the agent’s ability

to generalize experience from the training reference to the other three geometries.

For Reference 2, failure rates are consistently ≈ 1% less than the training reference.

However, given the large amount of error, the agent still arrives 98.4% of the time

in the 1000× case. This high-performance level demonstrates the neural network

controller’s ability to perform well despite significant uncertainty. For Reference 3,
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Table 5.3. Arrival percentages for Monte Carlo simulations given various reference
trajectories with 50,000 deterministic episodes each. The agent is only trained using
the training reference, and extrapolates to References 2, 3, and 4 (Figure 5.9). The
1000× case corresponds to the amount of error the agent experiences during training.

L1 to L2 L2 to L1
Error Amount Training Reference Reference 2 Reference 3 Reference 4

1× 100% 99.3% 99.6% 97.4%
10× 100% 99.4% 99.7% 97.4%
100× 100% 99.3% 99.6% 97.6%
1000× 99.4% 98.4% 97.7% 97.6%
2000× 88.0% 86.8% 85.1% 90.0%

1× 250× 500× 750× 1000× 1250× 1500× 1750× 2000×
Error Amount (Times Navigation Error)
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Figure 5.15. Failure rates for Monte Carlo simulations given the four reference tra-
jectories with 50,000 deterministic episodes each. Performance remains mostly level
until the error amount exceeds the 1000× threshold.
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Figure 5.16. Deviation over time for 1000 sample episodes using the training refer-
ence. The initial perturbation variance 3σ is 1000 times greater than the expected
navigation error. Green denotes episodes that reach the success criteria, whereas red
signifies trajectories that cross the maximum deviation threshold in position or ve-
locity, or do not reach arrival conditions within the maximum number of time steps
(130.46 days). In the trials, 992/1000 episodes are deemed successful for this sample
batch of initial conditions.

where the spacecraft does not approach the Moon, the agent performs exceedingly

well, reaching the arrival criteria more that 97% of the time for error levels up to

1000×. Furthermore, when the agent is required to fly nearby the Moon along Ref-

erence 4, it is still successful in more than 97% of the scenarios for error levels up

to 1000×. In consistently satisfying the arrival criteria for this new scenario, the

agent demonstrates a remarkable ability to extrapolate to new geometries. These

results could potentially be improved by training the existing agent with the new

transfers, i.e., employing transfer learning with the controller, but this possibility was

not investigated.

Table 5.3 also demonstrates the controller’s robustness to perturbation levels.

Despite the three orders of magnitude difference between error distributions for 1×



82

and 1000×, results remain within 2% for each reference. During training, the agent

experiences 1000× error levels and, hence, learns to overcome them. When error is

further increased, performance degrades. However, for values up to those used in

training, performance only slightly decrease for 3/4 references, and does not degrade

for Reference 4.

5.3 Algorithm Limitations

Reinforcement learning methods are often inconsistent and difficult to reproduce

[70]. Small changes in implementation and hyperparameters can yield varying results.

Furthermore, even with identically configured learning schemes, a wide variety of

resulting controllers is produced. The stochasticity of the training process produces a

nonzero probability of the agent getting ‘stuck’ in a local basin of attraction and failing

to converge to a better policy. Hence, multiple identically configured agents often

converge to drastically different policies depending on their exploration of the action

space. This inconsistency in training renders a difficulty with reproducibility because

many agents must be simulated to discover one that achieves the desired result. The

training process is computationally demanding, thus, a large number of simulations

are challenging. This investigation addresses this limitation by leveraging super-

computing resources, via MIT Supercloud [71], to train many agents simultaneously.

Once trained, each agent is tested in a set of deterministic episodes, and the accrued

reward and arrival percentages from these trials allow the extraction of desirable

agents.

Training many identically configured agents in parallel offers insight into the vari-

ation in controller performance produced by the RL scheme. Figure 5.17 illustrates

the distribution in arrival percentage on the training reference for the deterministic

controller produced by 347 agents with the identical hyperparemeters listed in Table

A.1. In this simulation, the majority (55.3%) of the agents perform well and reach

the arrival criteria in at least 95% of cases. However, more than 25% of deterministic
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controllers fail at least 40% of the time. With computationally expensive training,

this inconsistency makes producing a desirable agent difficult.

To analyze generalizability, controllers are also tested on the additional reference

trajectories and transfer scenarios summarized in Figure 5.9. Histograms of the arrival

percentages along three additional transfer scenarios for the 347 agents are depicted

in Figure 5.18. While the RL scheme produces many controllers that perform well

on the training reference, there is more variability in generalization performance. In

particular, for Reference 3, only 21% of controllers arrive for at least 90% of cases,

and only 10% reach the 95% threshold. Furthermore, some controllers only effectively

generalize to one or two additional references. Of the 347 trained agents, only three

reach 95% arrival on all four transfer scenarios. One of these three is employed as the

sample controller in this investigation.

Examining the reward curves for the 347 agents also yields insight into variations

in training. Recall that the sample agent’s reward curve, Figure 5.3, exhibits a

sharp initial increase, followed by a gradual leveling of the accumulated reward. In

contrast, the reward curves for thirteen identically configured agents are plotted in
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Figure 5.17. Arrival distribution for the training reference
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Figure 5.18. Arrival distributions for additional reference trajectories not included
in training. Each trajectory is plotted in Figure 5.9, and percentages are computed
based on 1000 simulations of the deterministic controller.

Figure 5.19. While several exhibit similar behavior as the sample controller, there are

many that do not follow the same trend. This variation stems from differences in the

stochastic exploration and illustrate the impact of different local basins producing

different training progress.

For the trained agent in the sample scenarios, several sources of failure are present

with increased noise. First, for cases where the agent failed to arrive along the

training reference, there are regions of ambiguity that cause a sub-optimal action
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Figure 5.19. Reward curves for thirteen identically configured agents.
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to produce an unrecoverable trajectory. An example of this behavior is plotted in

the first row of Table 5.4. Here, the agent attempts to prematurely depart the L1

Lyapunov orbit, which results in an unrecoverable scenario. This ambiguity in thrust

direction occurs in regions where two different segments of the reference path are

nearby. In these regions, the agent is more likely to implement a poor action since,

frequently, only one of the nearby segments is actually accessible. This incorrect

thrust direction also demonstrates the importance of the initial action. Due to the

introduced perturbation, the first action is critical to performance. An example of

a poor initial action yielding an unrecoverable error is depicted in the second row

of Table 5.4. In this case, thrust is needed to recover from the perturbation, but

the agent incorrectly implements a nearly-coasting arc that ensures the spacecraft

departs the lunar vicinity. The explicit error cause in such examples is challenging to

diagnose due to the ‘black box’ nature of neural networks.
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Table 5.4. Noted sources of failure. In the sample control histories, green denotes the
propagated uncontrolled perturbation (from LaFarge et al., Ref [43], Table 3).

Failure type Sample control history
(x̂-ŷ, nondim) Notes

Ambiguous
thrust
direction

0.8 0.9 1.0 1.1 1.2

−0.1

0.0

0.1 Agent attempts to
prematurely depart
the L1 vicinity instead
of completing one
more revolution
around the orbit.

Poor initial
action

0.8 1.0 1.2

−0.1

0.0

0.1
After a poor initial
action, the deviation
becomes unrecoverable
with the given
maximum thrust level.

Unrecoverable
perturbation

0.8 1.0 1.2

−0.1

0.0

0.1 Perturbation is such
that the agent departs
the vicinity of the
Moon regardless of
action choice.

Arrival
condition not
triggered

0.8 0.9 1.0 1.1 1.2

−0.1

0.0

0.1 Agent completes the
transfer, but does not
reach the defined
arrival criteria within
the maximum number
of time steps.
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6. CONCLUDING REMARKS AND FUTURE WORK

6.1 Concluding Remarks

Computationally efficient on-board guidance is challenging in nonlinear dynamical

regimes. The proposed guidance framework addresses the challenges associated with

automation given limited computational resources by recasting the problem from a

machine learning perspective. The demonstrated controller offers computationally

efficient on-board guidance in a multi-body regime. By decoupling training from

the controller output, this approach utilizes high-performance computers while still

producing an algorithm suited to the closed-loop flight environment. The resulting

neural network controller is robust to changes in reference geometry, and generalizes

past experience to new problems. Furthermore, the proposed approach separates the

learning agent from the dynamical environment, enabling model-agnostic guidance

that is extendable to higher-fidelity domains. In summary, the primary conclusions

of this research investigation are as follows:

1. A controller trained via reinforcement learning overcomes perturbations and

nonlinearity to autonomously compute a control history for a low-thrust space-

craft. In sample simulations, assuming perturbations three orders of magnitude

greater than navigation errors, the controller successfully completes the given

transfer in more than 99% of cases.

2. Neural networks serve as computationally efficient controllers that are poten-

tially well-suited for the flight environment. Many current guidance methodolo-

gies necessitate access to a high-performance computer and would not be suit-

able for a flight computer. Conversely, many on-board approaches are computa-

tionally efficient, but unable to take advantage of ground-based supercomputing

resources. With RL, the computationally intensive training process leverages
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ground-based high performance computing, while producing a computationally

efficient closed-loop controller.

3. Sample applications demonstrate remarkable controller reconfigurability and

generalization. An RL-trained controller adapts to nearby geometries not en-

countered during training. This generalization ability indicates that the neural

network controller continues performing in real-time despite shifts in mission

objectives.

4. Reinforcement learning approaches all separate the agent from the environ-

ment, which makes learning schemes applicable to many dynamical realms.

The demonstrated success of the controller in the planar CR3BP suggests that

a PPO-trained controller may excel in higher-fidelity models, however this po-

tential has not yet been investigated.

Transfers between libration point orbits support the stated conclusions and suggest

the concept that RL-trained controllers can be effective in challenging dynamical

regions of space.

6.2 Recommendations for Future Work

This research effort is a preliminary investigation into leveraging reinforcement

learning to train a closed-loop controller. The sample application shows promise, and

several avenues for future research are available.

• An attractive feature of RL is the separation between agent and environment.

The learning scheme is agnostic to the dynamical model and, thus, is appli-

cable to multiple domains. The current work leverages the planar CR3BP to

demonstrate controller effectiveness within the context of a challenging dynam-

ical model. There are many research avenues for applying the methods of this

investigation to other dynamical environments, e.g., spatial CR3BP, bicircular

restricted four-body problem, ephemeris, and small body operations.
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• The current investigation leverages Proximal Policy Optimization (PPO) to

train a controller. There are many other RL methods available that warrant

exploration and may prove more productive than PPO. In particular, algorithms

related to Deep Policy Gradient (DPG) methods, such as Deep Deterministic

Policy Gradient (DDPG) and Twin Delayed DDPG (TD3), may prove pro-

ductive. Furthermore, variations within PPO may improve performance, e.g.,

applying meta-learning by including a recurrent layer in the neural network

architecture.

• The controller in this investigation directly computes a control history for the

spacecraft. However, there are opportunities for hybrid approaches that use an

RL-generated controller in conjunction with traditional techniques. In particu-

lar, the neural network controller may offer initial guesses for control variables

in on-board targeting algorithms.

• This investigation leverages heteroclinic transfers as sample applications to

demonstrate the controller. Further research is available in extending analysis

to other types of transfers, impulsive engines, and stationkeeping applications.

• Other authors demonstrate RL’s ability to include practical limitations and

failure modes directly into the learning process [40]. The current analysis may be

extended to include practical considerations, e.g., varying initial mass, modeling

partial engine failures, or including maneuver execution errors.

Building on the demonstrated results in this work, future research avenues present

exciting opportunities for advancing RL-enabled spacecraft guidance.



90

REFERENCES

[1] Ryan Whitley and Roland Martinez. Options for staging orbits in cislunar space.
In 2016 IEEE Aerospace Conference, pages 1–9, Big Sky, Montana, March 2016.
IEEE.

[2] Jeremy Hart, Ellis King, Piero Miotto, and Sungyung Lim. Orion gn&c ar-
chitecture for increased spacecraft automation and autonomy capabilities. In
AIAA Guidance, Navigation and Control Conference and Exhibit, pages 1–26,
Honolulu, Hawaii, August 2008. AIAA.

[3] Richard S. Sutton and Andrew G. Barto. Reinfrocement Learning: An Introduc-
tion. The MIT Press, second edition, 2018.

[4] Amanda F. Haapala and Kathleen C. Howell. A framework for constructing
transfers linking periodic libration point orbits in the spatial circular restricted
three-body problem. International Journal of Bifurcations and Chaos, 26(5),
2016.

[5] Melissa McGuire, Laura Burke, Steven McCarty, Kurt J Hack, Ryan Whitley,
Diane C Davis, and Cesar Ocampo. Low thrust cis-lunar transfers using a 40
kw-class solar electric propulsion spacecraft. In AAS/AIAA Astrodynamics Spe-
cialist Conference, pages 1–21, Stevenson, Washington, August 2017. American
Astronautical Society.

[6] Matthew A. Vavrina, Jacob A. Englander, Sean M. Phillips, and Kyle M. Hughes.
Global, multi-objective trajectory optimization with parametric spreading. In
AAS/AIAA Astrodynamics Specialist Conference, pages 1–20, Stevenson, Wash-
ington, August 2017. American Astronautical Society.

[7] Belinda G. Marchand, Michael W. Weeks, Chad W. Smith, and Sara Scarritt.
Onboard autonomous targeting for the trans-earth phase of orion. Journal of
Guidance, Control, and Dynamics, 33(3):943–956, 2010.

[8] Michael I Jordan. Artificial intelligence – the revolution hasn’t happened yet.
Medium, Apr 2018. [Online; accessed 19-March-2020].

[9] Tara A Estlin, Benjamin J Bornstein, Daniel M Gaines, Robert C Anderson,
David R Thompson, Michael Burl, Rebecca Castaño, and Michele Judd. Aegis
automated science targeting for the mer opportunity rover. ACM Transactions
on Intelligent Systems and Technology (TIST), 3(3):1–19, 2012.

[10] R Francis, T Estlin, G Doran, S Johnstone, D Gaines, V Verma, M Burl, J Fry-
denvang, S Montano, RC Wiens, S Schaffer, O Gasnault, L Deflores, D Blaney,
and B Bornstein. Aegis autonomous targeting for chemcam on mars science lab-
oratory: Deployment and results of initial science team use. Science Robotics,
2(7), 2017.



91

[11] Bernd Dachwald. Evolutionary neurocontrol: A smart method for global op-
timization of low-thrust trajectories. In AIAA/AAS Astrodynamics Specialist
Conference and Exhibit, pages 1–16, Providence, Rhode Island, August 2004.

[12] Stijn De Smet and Daniel J. Scheeres. Identifying heteroclinic connections using
artificial neural networks. Acta Astronautica, 161:192–199, August 2019.

[13] Nathan L. Parrish and Daniel J. Scheeres. Optimal low-thrust trajectory correc-
tion with neural networks. In AAS/AIAA Astrodynamics Specialist Conference,
pages 1–20, Snowbird, Utah, 2018. American Astronautical Society.

[14] Roberto Furfaro, Ilaria Boise, Marcello Orlandelli, Pierluigi Di Lizia, Francesco
Tupputo, and Richard Linares. Deep learning for autonomous lunar landing. In
AAS/AIAA Astrodynamics Specialist Conference, pages 1–22, Snowbird, Utah,
2018. American Astronautical Society.

[15] Ashwati Das-Stuart, Kathleen C Howell, and David C. Folta. Rapid trajectory
design in complex environments enabled by reinforcement learning and graph
search strategies. Acta Astronautica, 171:172–195, 2020.

[16] Lena M. Downes, Ted J. Steiner, and Jonathan P. How. Deep learning crater
detection for lunar terrain relative navigation. In 20th AIAA Scitech Forum,
Orlando, Florida, January 2020. AIAA.

[17] G. K. Benedix, C. J. Norman, P. A. Bland, M.C. Towner, J. Paxman, and T. Tan.
Automated detection of martian craters using a convolutional neural network.
In 49th Lunar and Planetary Science Conference, The Woodlands, Texas, March
2018.

[18] Ryan Alimo, Daniel Jeong, and Kingson Man. Explainable non-cooperative
spacecraft pose estimation using convolutional neural networks. In 20th AIAA
Scitech Forum, Orlando, Florida, January 2020. AIAA.

[19] Lorenzo Pasqualetto Cassinis, Robert Fonod, Eberhard Gill, Ingo Ahrns, and
Jesus Gil Fernandez. Cnn-based pose estimation system for close-proximity op-
erations around uncooperative spacecraft. In 20th AIAA Scitech Forum, Orlando,
Florida, January 2020. AIAA.

[20] Mar Vaquero and Juan Senent. Poincare : A multibody, multi-system trajec-
tory design tool. In 7th International Conference on Astrodynamics Tools and
Techniques, pages 1–12, Oberpfaffenhofen, Germany, November 2018.

[21] Robert Pritchett, Kathleen C Howell, and David C. Folta. Low-thrust trajectory
design for a cislunar cubesat leveraging structures from the bicircular restricted
four-body problem. In 70th International Astronautical Congress, pages 1–18,
Washington D.C., USA, October 2019.

[22] Navid Nakhjiri and Benjamin Villac. Automated stable region generation, detec-
tion, and representation for applications to mission design. Celestial Mechanics
and Dynamical Astronomy, 123(1):63–83, 2015.

[23] Benjamin Villac, Rodney Anderson, and Alex Pini. Computer aided ballistic or-
bit classification around small bodies. The Journal of the Astronautical Sciences,
63(3):175–205, 2016.



92

[24] Natasha Bosanac. Applications of clustering to higher-dimensional poincaré
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A. REINFORCEMENT LEARNING PARAMETER
SELECTION

Parameter selection and tuning is an important aspect in both PPO learning and RL

environment design. Well-performing agents may be produced with different combi-

nations of parameters. Values employed in this research are summarized in Table A.1,

with additional suggested values included to indicate cases where desirable behavior

is observed given different parameter values. Furthermore, the specific configura-

tions of the employed neural networks are listed in Table A.2. These networks are

implemented using TensorFlow [72].

Table A.1. Suggested parameter values for PPO training and CR3BP RL environment
configuration.

Variable name Symbol Value
Discount factor γ 0.88
Number of optimization epochs (actor) 20/batch
Number of optimization epochs (critic) 10/batch
Batch frequency 20 episodes
Reward steepness λ 340
Reward scaling gradient ξ 1
Reward divergence penalty p -4
Actor learning rate 0.00011
Critic learning rate 0.00204
KL Divergence Target dtarg 0.003
Number of Training Episodes 120,000
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Table A.2. Configuration of actor and critic neural networks employed in this inves-
tigation.

Actor Critic
Layer name Symbol Size Activation function Size Activation function
Input layer I 11 tanh 11 tanh
Hidden 1 H1 120 tanh 120 tanh
Hidden 2 H2 60 tanh 24 tanh
Hidden 3 H3 30 tanh 5 tanh
Output O 3 tanh 1 linear
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