
NON-INTRUSIVE LOAD EXTRACTION OF ELECTRIC VEHICLE

CHARGING LOADS FOR EDGE COMPUTING
by

Hyeonae Jang

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science

Department of Computer and Information Technology

West Lafayette, Indiana

May 2020

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Eric T. Matson, Chair

Department of Computer and Information Technology

Dr. John A. Springer

Department of Computer and Information Technology

Dr. Rajesh Sankaran

Mathematics and Computer Science Division, Argonne National Laboratory

Approved by:

Dr. Eric T. Matson

Head of the Graduate Program

2

TABLE OF CONTENTS

LIST OF TABLES . 6

LIST OF FIGURES . 7

LIST OF ABBREVIATIONS . 9

GLOSSARY . 10

ABSTRACT . 11

CHAPTER 1. INTRODUCTION . 12

1.1 Statement of Problem . 12

1.2 Significance . 14

1.3 Research Question . 14

1.4 Assumptions . 15

1.5 Limitations . 15

1.6 Delimitations . 15

1.7 Summary . 16

CHAPTER 2. REVIEW OF LITERATURE . 17

2.1 Edge Computing and Intelligent Edge for Smart City 17

2.1.1 Edge Computing and Smart City . 17

2.1.2 Intelligent Edge in Smart City . 19

2.2 Non-intrusive load monitoring (NILM) . 20

2.2.1 Various Types of NILM Method . 21

2.2.2 Load Identification for Electric Vehicle (EV) charging load 22

2.2.3 EV charging patterns . 23

2.2.4 Recent studies for extracting EV charging loads 23

2.2.4.1 Training-Free approach . 24

2.2.4.2 Unsupervised Learning-based approach 26

2.2.4.3 Deep Learning-based approach 26

2.2.5 Limitations of Existing Edge Computing based NILM method 27

2.3 Datasets for Load Identification . 28

2.4 Non-Intrusive Load Monitoring Toolkit (NILMTK) 29

3

2.4.1 Limitations of current NILMTK and researches 29

2.5 Summary . 29

CHAPTER 3. RESEARCH DESIGN . 30

3.1 Hypothesis . 30

3.2 Approach and System Design . 30

3.3 Dataset and Features . 31

3.4 Edge Computation Platform . 34

3.5 NILM implemenations on an edge device . 35

3.5.1 Data Converter . 35

3.5.2 NILM Algorithms . 36

3.5.2.1 Combinatorial optimization (CO) 36

3.5.2.2 Factorial hidden Markov model (FHMM) 36

3.5.3 EV profile extraction algorithm . 37

3.6 Performance Evaluation Criteria . 38

3.6.1 Root Mean Square Error (RMSE) . 38

3.6.2 Runtime . 38

3.7 Adoption of Cloud Server Platform . 39

3.8 The flowchart of Experiment Scenario . 39

3.9 Summary . 40

CHAPTER 4. EXPERIMENT . 41

4.1 Dataset and Features . 41

4.2 Experimental Environment . 41

4.2.1 Libraries used on Raspberry Pi . 41

4.2.2 Cloud Server Setup for Raspberry Pi 43

4.2.3 Location . 43

4.3 Experimental Result . 44

4.3.1 Data Preprocessing . 44

4.3.2 Data Analysis Result . 47

4.3.3 NILM result for EV charging loads 50

4.3.3.1 NILM using short-term data 50

4

4.3.3.2 NILM using long-term data 54

CHAPTER 5. SUMMARY . 66

REFERENCES . 68

5

LIST OF TABLES

2.1 Summaries of the most frequently used Dataset 28

3.1 Dataport accessible to university members with free of charge 32

3.2 Technical Specs of Raspberry Pi 4 Model B . 34

3.3 System Requirements of OwnCloud . 39

4.1 The time profiles of EV charging load (short-term data) 50

4.2 RMSE for the short-term data experiment . 53

4.3 The time profiles of EV charging load (long-term data) 55

4.4 RMSE for the long-term data experiment based on sum power 57

4.5 The output of EV charging profiles based on sum power 60

4.6 RMSE for the long-term data experiment based on net power 61

4.7 The output of EV charging profiles based on net power. 64

6

LIST OF FIGURES

1.1 An end-to-end architecture for identifying EV load using edge computing 13

2.1 An overview of the IoT-based energy management architecture for smart cities (Liu,

Yang, Jiang, Xie, & Zhang, 2019) . 18

2.2 General Framework of NILM Approach . 20

2.3 An aggregated load data obtained by single point (Hart, 1992b) 20

2.4 Projection of EV and Hybrid Vehicles Sales by 2050 (U.S. Energy Information Administration,

2018) . 22

2.5 Four typical EV charging profiles (Zhao, Yan, & Ren, 2019) 23

3.1 Overview of System Design . 31

3.2 Ground-truths of residential data (2 weeks) (Pecan Street Inc, 2019a) 32

3.3 The effect of solar influx in the electrical grid. (a) The energy amount consumed by

electric vehicle tagged as ‘car1’. (b) The energy amount generated by solar panel

tagged as ‘solar’. (c) The measuring power taken from or fed to the electrical grid

tagged as ‘grid’. 33

3.4 An end-to-end system flow . 40

4.1 Packages used for NILMTK on Raspberry Pi . 42

4.2 Data Exporting to the cloud server of Raspberry Pi 43

4.3 Experimental Environment and Raspberry Pi 4 B 43

4.4 Specifying types of columns to Pandas . 44

4.5 Specifying types of columns to Pandas . 45

4.6 Making chunks of data on Raspberry Pi . 45

4.7 Appliances graph from ID=5679 . 47

4.8 A pie chart of power data from ID=5679 in August 2019 47

4.9 (a) 1-second, (b) 1-minute, (c) 15-minute power data from ID=5679 48

4.10 1-minute Power data from ID=5679. (a) ‘Site meter’= the sum of power consumption

of electric appliances (sum power), (b) ‘Site meter’= power measured on the grid -

solar generated power (net power) . 49

4.11 The short-term data experiments . 51

7

4.12 The ground truth and predictions of EV charging loads using CO 53

4.13 The ground truth and predictions of EV charging loads using FHMM 54

4.14 The long-term data experiments . 56

4.15 The ground truth and predictions of EV charging loads using CO 58

4.16 The ground truth and predictions of EV charging loads using FHMM 59

4.17 The ground truth and predictions of EV charging loads using CO 62

4.18 The ground truth and predictions of EV charging loads using FHMM 63

4.19 Runtime of CO classifier . 65

4.20 Runtime of FHMM classifier . 65

8

LIST OF ABBREVIATIONS

NILM Non-Intrusive Load Monitoring

EV Electric Vehicle

IoT Internet Of Things

AI Artificial Intelligence

DRL Deep Reinforcement Learning

SOC State of Charging

SoC System-on-Chip

HMM Hidden Markov Model

LSTM Long-Short Term Memory algorithm

kNN k-Nearest Neighbors

SVM Support Vector Machine

DOE U.S. Department of Energy

REDD Reference Energy Disaggregation Dataset

BLUED Building-Level fUlly-labeled dataset for Electricity Disaggregation

AMPds Almanac of Minutely Power datasets

ICA Independent Component Analysis

TP True Positive

TN True Negative

FP False Positive

FN False Negative

NILMTK NILM toolkit

CO Combinatorial optimization

FHMM Factorial hidden Markov model (FHMM)

9

GLOSSARY

Edge Computing – one of the computing paradigms that includes data storage and computing

being performed at the “edge” within the device.

Internet of Things – an extension of the internet in which physical devices, vehicles, buildings and

other physical items are enabled to collect and exchange data and provide services via

connections.

Non-Intrusive Load Monitoring – methods that are beneficial when identifying different types of

electric loads based on unique patterns of electrical appliances.

Smart Grid – an electrical grid that includes various operation and energy measures including

smart meters, smart appliances, renewable energy resources, etc.

10

ABSTRACT

The accelerated urbanization of countries has led the adoption of the smart power grid with an

explosion in high power usage. The emergence of Non-intrusive load monitoring (NILM), also

referred to as Energy Disaggregation has followed the recent worldwide adoption of smart meters

in smart grids. NILM is a convenient process to analyze composite electrical energy load and

determine electrical energy consumption.

A number of state-of-the-art NILM (energy disaggregation) algorithms have been

proposed recently to detect various individual appliances from one aggregated signal observation.

Different kinds of classification methods such as Hidden Markov Model (HMM), Support Vector

Method (SVM), neural networks, fuzzy logic, Naive Bayes, k-Nearest Neighbors (kNN), and

many other hybrid approaches have been used to classify the estimated power consumption of

electrical appliances from extracted appliances signatures. This study proposes an end-to-end

edge computing system with an NILM algorithm, which especially focuses on recognizing

Electric Vehicle (EV) charging. This system consists of three main components: (1) Data

acquisition and Preprocessing, (2) Extraction of EV charging load via an NILM algorithm (Load

identification) on the NILMTK Framework, (3) and Result report to the cloud server platform.

The monitoring of energy consumption through the proposed system is remarkably

beneficial for demand response and energy efficiency. It helps to improve the understanding and

prediction of power grid stress as well as enhance grid system reliability and resilience of the

power grid. Furthermore, it is highly advantageous for the integration of more renewable energies

that are under rapid development. As a result, countless potential NILM use-cases are expected

from monitoring and identifying energy consumption in a power grid. It would enable smarter

power consumption plans for residents as well as more flexible power grid management for

electric utility companies, such as Duke Energy and ComEd.

11

CHAPTER 1. INTRODUCTION

This thesis focuses on edge computing for smart grids, which aims to recognize electric

vehicle charging loads. This chapter provides an overview of the research study by presenting a

problem statement, a research question, research significance, assumptions, limitations, and

delimitations that define the extent of the study.

1.1 Statement of Problem

The rapid advancement of new technologies as well as accelerated urbanization of

countries has led the emergence of the edge computing in smart power grids. A myriad of

potential application areas of adopting edge computing in smart grids have attracted extensive

research efforts for a more stable and reliable power grid from industries and academia.

Decentralized power management (Chen et al., 2019) and resource allocation (Yang, Chen, Liu,

Zhong, & Xie, 2019) based on data supported by IoT sensors are keys to achieving reliability and

flexibility in smart power systems. Among various applications of data analysis in smart grids, the

identification of energy use can be an initial step for smart grids, followed by load forecasting,

failure prediction, and self-recovery. Non-Intrusive Load Monitoring (NILM) methods are

beneficial when identifying different types of electric loads based on unique patterns of electrical

appliances. In this study, we are interested in extracting electric vehicle (EV) charging loads by

using a low-cost edge device. According to the U.S. Energy Information Administration (EIA)

(U.S. Energy Information Administration, 2018), there will be over 2.3 million new light-duty

EVs and hybrid by 2050. Accordingly, there have been several approaches, such as supervised

learning, unsupervised learning, and training-free algorithm for recognizing EV charging load as

the impact of EV keeps growing. Started with (Zhang et al., 2014), a majority of algorithms

(Munshi & Mohamed, 2019; Wang, Du, Ye, & Zhao, 2018; Zhao, Yan, & Ma, 2019) for

extracting EV charging loads evaluated the efficiency of their algorithms using Pecan Street

database (Pecan Street Inc, 2019a), one of the most cited and easily accessible datasets.

12

Currently, there are a few pieces of research for applying machine learning models on an

edge device to identify electric power loads. (Lai, Chien, Yang, & Qiang, 2019) adopts

Long-Short Term Memory (LSTM) algorithm to recognize industrial electrical equipment. The

downside of this study is that an edge device is used only to preprocess raw data. The

preprocessed data is fed into a cloud layer for running the complicated algorithm. The research

(Sirojan, Phung, & Ambikairajah, 2017) runs a neural network algorithm by using an embedded

device (myRIO-1900) to identify four small electrical appliances: a fan, fluorescent, laptop, and

incandescent. However, the cost of the embedded device used is over $1,000.

Figure 1.1. An end-to-end architecture for identifying EV load using edge computing

To address the above limitations, this study proposes an implementable end-to-end

solution that enables low-cost small edge device to process a massive amount of smart meter data

in order to recognize and identify a substantial electric load, specifically electric vehicle (EV)

charging loads. The concept of cloud computing is adopted in a way that essential results are sent

to the cloud server. The cloud server in this study aims to adapt and extend edge computing to be

easily integrated with other technologies.

13

After all, the final output provided by this study is an end-to-end system by making use of

NILM focusing on EV charging loads, proceeded by processing data on a cost-effective

embedded device and as shown in Figure 1.1.

1.2 Significance

Recent years have witnessed active research in building smart cities using edge computing

(Chen et al., 2019; Khan et al., 2019; Liu et al., 2019). In particular, the experimental works in

real-life scenarios based on the intelligent edge were conducted in (Ferrandez, Mora,

Jimeno-Morenilla, & Volckaert, 2018; Lai et al., 2019; Sirojan et al., 2017; Syafrudin,

Fitriyani, Alfian, & Rhee, 2019). Also, many works (Munshi & Mohamed, 2019; Wang et al.,

2018; Zhao et al., 2019) have focused on identifying EV charging loads to grid operators

develop efficient and effective management strategies and strengthen grid resilience by

minimizing the consequences of sudden massive changes in a grid. Taking inspiration from recent

research, this study is intended to verify whether a low-power edge device is able to recognize EV

charging loads in a smart grid as part of active research areas in developing a smart city. This

research adopts Non-Intrusive Load Monitoring (NILM) algorithms and discovers the advantages

and limitations of edge computing. Eventually, the study is expected to contribute to (1)

extending the knowledge of capabilities and potentialities of edge computing (2) increasing the

resilience of smart power grids.

1.3 Research Question

This study focuses on answering the following questions.

• Can a low-power edge device identify the electric vehicle (EV) charging load from smart

meter datasets using Non-Intrusive Load Monitoring (NILM) algorithms, and further send

results to the cloud?

• Is it possible to recognize EV charging loads with the consideration of solar-generated

power with the emerging supply PV systems?

14

• Which sampling frequency is the most appropriate to recognize EV charging loads in the

low-power edge device?

1.4 Assumptions

The assumptions for this study include:

• An edge device is used to load, analyze, and process data, which is already collected by

real-world smart meters.

• Although there are other factors that can affect the quality of communication between an

edge device and cloud platform, this study doesn’t consider any other disturbances of

communication such as network attack.

1.5 Limitations

This study is performed acknowledging the following constraints:

• The performance of NILM methods powered by edge computing can be affected by various

factors, such as the capacity of edge devices and network.

• This study investigated different kinds of existing NILM methods from recent prior studies,

which have shown good performance.

1.6 Delimitations

The delimitations for this study include:

• This study is not intended to directly collect power data from smart meters due to safety

issues, and therefore, based on real-world datasets that include aggregated power load

signals and the ground truth of EVs (Pecan Street Inc, 2019a).

15

• This research tried to find the most appropriate NILM methods based on machine learning

algorithms for identifying EV charging loads in power grids. However, the research does

not compare all different kinds of NILM methods since recognizing EV charging loads is

one of the newest tasks in NILM, and there are not many algorithms targeting EV charging

loads (Murugan, Garg, & Singh, 2017).

1.7 Summary

This chapter provided an overall description of the research that contains a statement of

problem, significance, research question, limitations, and delimitations that are considered in this

study.

16

CHAPTER 2. REVIEW OF LITERATURE

This chapter provides a review of the literature relevant to this study. This chapter is

organized as follows. Section 2.1 describes evolving edge computing and Intelligent Edge for

Smart City. Section 2.2 Non-intrusive load monitoring (NILM), especially for recognizing

Electric Vehicle (EV) charging and machine learning algorithms. Section 2.3 discusses data sets

for an EV charging recognition system evaluation. At last, a unique toolkit for NILM (NILMTK)

is introduced in Section 2.4.

2.1 Edge Computing and Intelligent Edge for Smart City

Edge computing is one of the computing paradigms that includes data storage and

computing being performed at the “edge” within the device. Data is analyzed and processed

locally, such that only significant events are transmitted to the cloud layer. The advent of this

concept stems from trials to overcome the limitations of cloud computing. Managing a network,

maintaining connectivity, and providing services in a cloud environment is not easy, especially

when it comes to Internet of Things (IoT). The benefits of edge computing are countless. Edge

computing can handle acquisition, pre-processing, and manipulating big data without the high

cost of network bandwidth and high delay or latency, which are some of the drawbacks of cloud

computing. Also, processing private data at the edge helps to prevent privacy or security issues.

2.1.1 Edge Computing and Smart City

Among various application scenarios that will be beneficial from the concept of Edge

Computing (Yi, Li, & Li, 2015), one of the application scenarios is ‘Mobile Big Data Analytics’

(Bonomi, Milito, Zhu, & Addepalli, 2012). The study describes that the data processing in the

edge device will be the crucial technique to tackle analytics on a large scale of data in IoT.

17

Aided by capabilities of edge computing, there has been recent research on using edge

computing to build smart cities (Chen et al., 2019; Khan et al., 2019; Liu et al., 2019). (Liu et

al., 2019) introduces IoT-based energy management architecture for smart cities, as shown in

Figure 2.1. The study highlights the use of the architecture in Smart Buildings, Multi-Energy

Network, and Smart Power Grid. (Khan et al., 2019) introduces scenarios of an edge computing

enabled smart city that includes Smart Transportation System, Smart Buildings, Smart Grid, etc.

(Chen et al., 2019) also introduces an architecture of edge computing for IoT-based smart grids

for micro-grid systems, metering systems, and surveillance systems. They all describe the

possible contributions of edge computing in the smart power grid and emphasize the need for

intelligent edge. The concept of intelligent edge and the smart power grid will be discussed in the

following subsections.

Figure 2.1. An overview of the IoT-based energy management architecture for smart
cities (Liu et al., 2019)

18

2.1.2 Intelligent Edge in Smart City

It is no doubt that there are always trade-offs when it comes to taking advantage of the

features of new concepts. Likewise, there are various challenges and issues that have to be

considered and solved to make the most of the benefits of edge computing. (Khan et al., 2019)

points out that one of the research challenges on realization for edge computing is how to separate

useful data sets from noisy data in a massive amount of data generated while edge processing.

The use of Artificial Intelligence (AI) at the edge can be key to solving this challenge. Filtering

out noisy data, processing/analyzing real-time data, and predicting future trends can be good

examples of using AI at the edge. When the data is acquired, saved, and processed with machine

learning algorithms at the network edge (e.g., embedded edge devices), it is specifically referred

to as “edge intelligence” (Plastiras, Terzi, Kyrkou, & Theocharidcs, 2018).

The need for intelligent edge was emphasized in numerous studies that consider using

edge computing in building smart cities. (Liu et al., 2019) discusses the deployment of edge

computing with deep reinforcement learning (DRL). (Chen et al., 2019) focuses on solving rapid

response for user’s requirements, intelligent scheduling, intelligent maintenances based on their

architecture. The limitation of such research is in the gap between the design of architecture and

an actual implementation with an “edge”. They focus on introducing conceptual designs of their

architectures rather than a practical experiment, which can describe the feasibility of intelligent

edge. (Liu et al., 2019) adds four layers, which include the application layer, cognition layer,

network layer, and sensing layer. Likewise, (Chen et al., 2019) introduces the cloud - application

layer, data layer, network layer, and the device layer. In the meantime, two studies are presenting

practically implementable end-to-end solutions for utilizing edge computing in each scenario for

a smart city. (Ferrandez et al., 2018) separated concepts of edge and fog computing. Edge

computing is for sensing while fog computing is for running a machine learning algorithm on a

Rasberry Pi. Likewise, (Syafrudin et al., 2019) conducted a practical experiment to manage

renewable power by adopting pattern recognition and decision trees methods on a Rasberry Pi

based on data collected by different kinds of sensors.

19

2.2 Non-intrusive load monitoring (NILM)

NILM is a technique to analyze energy consumption to identify what appliances are used

in a power grid, first introduction by (Hart, 1992b) in the late 1980’s. NILM is also known as

energy disaggregation, which aims to separate individual appliance energy consumption from

aggregated electricity consumption data. The general framework for electric load identification

contains event detection, feature extraction, and load identification using the extracted features, as

shown in Figure 2.2. Figure 2.3 represents an example of an aggregated load data to be

identified.

Figure 2.2. General Framework of NILM Approach

Figure 2.3. An aggregated load data obtained by single point (Hart, 1992b)

20

2.2.1 Various Types of NILM Method

The algorithm presented by Hart (Hart, 1992b) intends to match changes between sharp

edges in the aggregated energy and information of states’ shifts of different kinds of appliances in

signature database. The signature database is manually labeled with different traits of electrical

appliances and no machine learning methods are used. A large number of researchers have paid

attention to NILM, and comprehensive reviews on NILM can be found in (Zoha, Gluhak, Imran,

& Rajasegarar, 2012).

The majority of research on NILM method focuses on supervised machine learning

models. The supervised learning requires labeled data sets for training the classifier (Zoha et al.,

2012). The typical supervised learning tasks are classification (e.g., spam filter) and regression

(e.g., car price prediction) (Gron, 2017). Many different state-of-the-art NILM algorithms have

been proposed recently to detect various individual appliances from one aggregated signal

observation. A wide range of classification methods, such as Hidden Markov Model (HMM),

Support Vector Method (SVM), neural networks, fuzzy logic, Naive Bayes, k-Nearest Neighbors

(kNN) have been presented for NILM. The supervised machine learning mechanism is

appropriate to approach for NILM since the model would be able to recognize and identify

operations of electrical appliances from the aggregated load measurement based on measurements

of power and current.

Unlike most of the supervised approaches that rely on event detection for classification,

the unsupervised methods are non-labeled, which means non-event-based. Some of the

unsupervised learning tasks are clustering, visualization and dimensionality reduction, and

association rule learning. The unsupervised learning techniques attempt to disaggregate the

collected loads directly, without the need of event detection (Zoha et al., 2012). As energy

consumption patterns are getting more complicated, many other hybrid approaches have been

used to classify the estimated power consumption of electrical appliances from extracted

appliances signatures.

21

2.2.2 Load Identification for Electric Vehicle (EV) charging load

NILM has followed the recent worldwide adoption of smart grids. A smart grid is a

cutting-edge technology for the transformation of the traditional power grids to reduce utility

costs and environmental issues by adopting renewable energy resources, smart meters, and smart

appliances. Electric Vehicle (EV) is one of the enormous power loads in a smart grid that

increases the operational burden on power grids. According to the U.S. Department of Energy

(DOE) (U.S. Energy Information Administration, 2018), there will be over 2.3 million new

light-duty EVs and hybrid by 2050, as shown in Figure 2.4, and the impact of EV will be

increased accordingly.

Figure 2.4. Projection of EV and Hybrid Vehicles Sales by 2050 (U.S. Energy
Information Administration, 2018)

Therefore, extracting EV charging loads from aggregated energy loads is an important

aspect that enables smart grid operators to keep updated and make intelligent decisions about

conserving power and strengthening electrical grid resilience by balancing supply and load. In the

following sections, EV charging load profiles are investigated along with discussions of recent

studies on extracting EV charging loads.

22

2.2.3 EV charging patterns

In order to separate the EV charging load from aggregated power loads, it is necessary to

fully understand the characteristics of EV charging load. Therefore, four typical EV charging

patterns were analysed in (Zhao et al., 2019) based on datasets obtained from (Pecan Street Inc,

2019a). The EV receives power the most during Phase 1, of which charging power is almost

constant, as shown in Figure 2.5. When the state of charging (SOC) of the EV battery reaches a

pre-defined value, it turns to Phase 2. During Phase 2, the power level of the vehicle’s battery is

renewed with a different power pattern. Phase 3 is defined as a pulse maintenance stage, aiming

to compensate for the loss coming from battery self-discharge. The EV’s charging profile does

not always have Phases 2 and 3, and the shape of the profile can be varied depending on the

battery type as well as charging algorithm.

Figure 2.5. Four typical EV charging profiles (Zhao et al., 2019)

2.2.4 Recent studies for extracting EV charging loads

Despite the fact that a variety of NILM algorithms were presented for energy

disaggregation, few NILM algorithms specially designed for identifying EV charging loads are

developed. Started with (Zhang et al., 2014) in 2014, various modern and improved NILM

methods have been presented based on training-free approach, unsupervised learning-based

approach, and deep learning-based approach for recognizing EV charging load. (Munshi &

Mohamed, 2019; Wang et al., 2018; Zhang et al., 2014; Zhao et al., 2019) are up-to-date

researches that show good performance among similar studies in extracting EV charging loads

from the aggregated power signals of households.

23

2.2.4.1 Training-Free approach

One of the benefits of a non-training algorithm is that this method demands a light

computational power. (Zhang et al., 2014) proposed a NILM algorithms without training process

for identifying EV charging load. Overall, the proposed algorithm outperforms in disaggregation

accuracy compared to the hidden Markov (HMM) algorithm. The authors especially focus on

effectively mitigating interference caused by air-conditioner power signals during summer. The

study states that an EV waveform with satisfactory accuracy can be reconstructed since an EV

waveform height is generally ranging from 3 kW to 4 kW in most cases while the height of an AC

lump is generally smaller than 3 kW.

The process used by (Zhang et al., 2014) is broken into five steps: Step 1) Thresholding

the aggregated power signals, 2) Filtering particular spike-trains, Step 3) Removing residual noise

using local noise amplitude, Step 4) Classifying the type (type 0, type 1, and type 2) of each

segment, and Step 5) Disaggregating Energy. It is worth noting that each segment is classified

into one of three types in Step 4. Type 0 can be seen as a dryer/oven waveform, an EV waveform

fully overlapping with a dryer/oven waveform. Type 1 can be considered as an EV waveform, an

AC waveform, or an EV waveform overlapping with other appliances. Finally, Type 2 is an EV

waveform overlapping with an AC waveform. The result of the proposed algorithm shows only

7.5% for the averaged estimation error (Err) of monthly energy consumption, while the result of

the HMM algorithm shows 55.6%. More details are analyzed and written in pseudo-codes in

Algorithm 2.1.

Of course, there is a multiple numbers of challenges of disaggregating an EV charging

load from aggregated power signals. For example, the distinguishing the AC signals from EV

charging load signals can be very difficult, especially in the case where other kinds of appliances

are operating and causing fluctuating residual noise. In addition, the aggregated data were

sampled at 1/60 Hz. This low sampling makes some other appliance signatures available from

high sampling rate no longer exist and constraints accurate pattern recognition. Finally, even

though training-free approach does not require training sets, the algorithm may poorly perform

for various houses since the ground-truth of EV charging load patterns should not be identical

across different houses.

24

Algorithm 2.1 Training-Free EV charging Load Extraction.
Raw Algorithm Source: (Zhang et al., 2014)

1: function EXTRACT EV(aggregated signal x(t), a threshold Tlow)
2: // Thresholding the Aggregated Signal
3: if x(t) < Tlow then x(t) = 0 else x(t) = x(t)
4: //Filtering the Spike-Train
5: Find segmentss with duration shorter than Tseed = 20, called seeds
6: for seed in seeds do
7: Searches the nearest segment f orwardly
8: Dcur = DurationO f T heCurrentSeed; Γ = 1.2
9: if D ∆

= (1+Γ)Dcur and |seed−NearestSegment|< 3Dcur then
10: Label NearestSegment as ‘spikes to remove’;
11: seed = nearestSegment
12: end if
13: end for
14: Same procedure done for segments backwardly
15: remove all segments labeled as ‘spikes to remove’ from x(t)
16: //Removing Residual Noise
17: for segment in segments do
18: Nb = min(segments[segmentindex−5 : segmentindex]
19: Na = min(segments[segmentindex : segmentindex+5]
20: LocalNoiseAmplitude = avg(Nb,Na)
21: Obtain residual noise removal by segment−LocalNoiseAmplitude
22: end for
23: //Classifying the Type of Each Segment
24: for segment in segments do
25: peaknums = f ind peaks(segment)
26: segment.type = peaknums
27: end for
28: //Energy Disaggregation
29: //e f f Width =the width of a segment at bottom
30: //e f f Height =the height at which 0.8 * segment’s width
31: for segment in segments do
32: //segment.type == 0
33: if e f f Height < 5.5kW then segment = dryer/oven else segment = EV
34: //segment.type == 1
35: if e f f Width > 250min then segment = AC else segment = EV
36: //segment.type == 2
37: Distinguish if EV is upper or bottom parts of the segment
38: end for
39: return Obtained the final extracted EV charging Loads
40: end function

25

2.2.4.2 Unsupervised Learning-based approach

According to (Munshi & Mohamed, 2019), EV charging load patterns are composed of

three stages: Stage 1) gradual increase in charging load, Stage 2) steady-state charging load, and

Stage 3) gradual decrease in charging load. These stages is understood with the same context of

what Figure 2.5 describes. The authors point out that the previous training-free approach (Zhang

et al., 2014) only works for extracting the stage 2 of EV charging loads and neglects charging

sessions less than 30 minutes. The unsupervised learning-based approach identifies Stage 2 of EV

charging by applying Independent Component Analysis (ICA) method, extracting EV charging

vector, removing false positive (FP) extractions, and estimating the amplitude of the extracted EV

charging loads. Eventually, the algorithm extracts Stage 1 as well as Stage 3 after extracting Stage

2. The proposed algorithm improved overall performance in F-score, as well as accuracy

compared to the training-free algorithm (Zhang et al., 2014). The error rate of actual data and

extracted results has gone down to 2.66%. More details are analyzed and written in pseudo-codes

in Algorithm 2.2.

2.2.4.3 Deep Learning-based approach

One of the advantages of a deep learning-based approach is that it does not require

hand-crafted features compared to supervised learning-based approaches. (Wang et al., 2018)

attempts to identify starting time, charging periods, and initial SOC of EV charging profiles using

deep learning. The deep learning framework proposed in this study consists of multilayer

perceptrons (MLPs), the undercomplete autoencoder, the denoising autoencoder, and 1D

Convolutional Neural Network(CNN). The denoising autoencoder is sensitive to its input

demands the data pre-processing phase. The pre-processing includes finding the effective interval

for target appliance signal, selecting slide window size, filtering based on the threshold of

amplitude, and normalizing labels. This algorithm adopted a mini-batch training approach and an

entire batch approach to compare CPU running time. Finally, an average accuracy of the

mini-batch approach and the entire-batch approach for the starting and end time were 0.009124

and 0.08663 respectively, and mean square reconstruction loss was 0.03495.

26

Algorithm 2.2 Unsupervised Learning-based EV charging Load Extraction.
Raw Algorithm Source: (Munshi & Mohamed, 2019)

1: function EXTRACT EV(data x, N, M, pmax)
2: m = 0; templates S // Initialization
3: while M not m do // Iterative Processs
4: m = m+1; p = 0
5: Apply ICA for actual load x, and template sm
6: Obtain the extracted EV charging loads matrix Z
7: while pmax not p do
8: p = p+1
9: Obtain the extracted EV charging load solutions cp

10: Detect and remove false extractions FPs
11: Update the extracted EV charging loads cp
12: Construct EST x of cp by one of the estimation methods1 4
13: Compute Error0pm
14: end while
15: Compute Error1m; Obtain best extracted EV charging load c̃m
16: end while
17: //Local Estimation & Final EV charging Load Result
18: Obtain c̃b and EV charging loads that exist in the same category
19: Construct EST 2x to improve the amplitude estimation by estimation Method1 4
20: Compute Error2b
21: Obtain the final extracted EV charging Load F̃
22: return F̃
23: end function

2.2.5 Limitations of Existing Edge Computing based NILM method

With the help of edge computing paradigm, smart grids based on IoT devices will provide

the real-time analysis and processing of massive data, foster efficient power management for

stability, and eventually realize the digitalization of smart grids (Okay & Ozdemir, 2016). As

previously mentioned, a couple of architectures and frameworks that possibly develop a smart

city supported by edge computing have been introduced and proposed in recent studies.

Furthermore, (Lai et al., 2019; Sirojan et al., 2017) designed and implemented machine learning

models for load identification based on edge devices. (Lai et al., 2019) used edge device to

pre-process data sets and send the pre-processed data up to the cloud framework for running

Long-Short Term Memory (LSTM) algorithm.

27

On the contrary, (Sirojan et al., 2017) used an embedded device named myRIO-1900 to

preprocess raw data as well as running a neural network algorithm to identify four different

electrical appliances. Note that the two studies contributed to increasing the practical usefulness

of edge computing based on real-world data, not limited to proposing abstract architecture or

framework. One downside of (Sirojan et al., 2017) is that the cost of the embedded device used is

over $1,000 and still very expensive compared to Rasberry Pi or Odroid. Additionally, none of the

former studies is presenting a practically implementable end-to-end solution for EV charging load

monitoring and power estimation using edge devices.

2.3 Datasets for Load Identification

In order to implement and deploy an energy disaggregation algorithm, most studies utilize

data from previously collected and provided on the purpose of research. Table 2.1 presents four

datasets which are readily accessible and most cited from countless NILM researches: the

Reference Energy Disaggregation Dataset (REDD) (Kolter & Johnson, 2011), the Building-Level

fUlly-labeled dataset for Electricity Disaggregation (BLUED) (Anderson et al., 2012), the Pecan

Street Database (Pecan Street Inc, 2019a), and the Almanac of Minutely Power dataset (AMPds)

(Makonin, Ellert, Bajic, & Popowich, 2016). These open public data are invaluable as we can

compare NILM algorithms with other existing results of recent studies. Despite the increasing

demand of electric vehicles, not many publicly available NILM datasets have EV charging load

data other than Dataport.

Table 2.1. Summaries of the most frequently used Dataset

Pecan Street REDD BLUED AMPds

Institution Pecan Street Inc. MIT CMU Simon Fraser Univ.
Location TX/CA/NY, USA MA, USA PA, USA BC, Canada
Data frequency (Hz) 1 1 60 1/60
Duration (days) 365 33.5 7.1 365
Households 1391 6 1 1

28

2.4 Non-Intrusive Load Monitoring Toolkit (NILMTK)

NILMTK is an open source toolkit that makes it more convenient for researchers to

conduct a comparative analysis of NILM algorithms across a set of existing datasets (N. Batra,

2015; N. Batra et al., 2014; Kelly et al., 2014). The platform is important because previous

researches had difficulties in comparing algorithms utilizing more than one kind of datasets with

accuracy metrics. A number of researchers have paid attention to this framework to address such

challenges in NILM researches (Buneeva & Reinhardt, 2017; Dinesh et al., 2017; Kelly &

Knottenbelt, 2015a; Osathanunkul & Osathanunkul, 2019).

2.4.1 Limitations of current NILMTK and researches

NILMTK is a unique tool that allows comparative NILM research across different

datasets. However, there are some limitations when utilizing NILMTK for recent studies. First,

There have not been NILM researches based on Dataport in NILMTK format. The Dataport in

NILMTK format was first introduced in (Parson et al., 2015), but this is not applicable for recent

studies due to new data access policies of Pecan Street Inc. The most recent study using Dataport

in NILMTK format is (Gaur, Makonin, Bajić, & Majumdar, 2019), but this study is only focused

on the ground-truth of event anomalies. Second, the vast majority of existing researches have

utilized REDD datasets. It is assumed that the current data converter of NILMTK is not

compatible with Dataport. Third, the solar power influx cannot be considered with the current

NILMTK due to its limitations of software architecture(Dinesh et al., 2017).

2.5 Summary

This chapter provided a review of the literature relevant to edge computing for smart grid

and NILM methods for EV charging load. The next chapter presents the research methodology of

this study.

29

CHAPTER 3. RESEARCH DESIGN

The goal of this research is to build an electric vehicle (EV) charging load identification

system from smart meter datasets with the combination of edge computing and Non-Intrusive

Load Monitoring (NILM) algorithms. This chapter describes the system overview, followed by

edge computation platform, NILM algorithms, and cloud platform.

3.1 Hypothesis

The hypothesis of this research is as follows:

• H0: Using NILM algorithms, an edge device can extract EV charging load patterns with a

success rate greater than 90%.

• H1: Using NILM algorithms, an edge device cannot extract EV charging load patterns with

a success rate greater than 90%.

3.2 Approach and System Design

The overall design for the proposed system is divided into three parts, as shown from the

bottom to the top in Figure 3.1. The first part is data acquisition phase. The datasets from Pecan

Street Inc. (Pecan Street Inc, 2019a), based on real-world datasets, including aggregated power

load signals and the ground truth of electric vehicle charging loads, are input to an edge device.

The next part is the edge computing phase, which consists of an edge device and NILM algorithm,

which enable gathering and processing data from the data acquisition phase. The promising edge

device used for this study is Raspberry Pi 4 Model B. The NILM model embedded in the edge

device pre-processes the data and recognize electric vehicle charging loads out of aggregated

power loads. The performance of algorithms is measured by several metrics in order to evaluate

the effectiveness of the algorithms. After the edge computing phase, the results from the

algorithms are stored and then eventually forwarded to the cloud via wireless communication.

30

Figure 3.1. Overview of System Design

3.3 Dataset and Features

As described in Table 2.1, there are four datasets typically used for NILM studies. The

datasets used for this study are Dataport database (Pecan Street Inc, 2019a) obtained from Pecan

Street Inc (Pecan Street Inc, 2019b). Of course, some limitations have shown up during the

research using datasets from Pecan Street Inc.

Dataport database used to provide electric power data collected from 1391 households in

Texas, Colorado, California, etc. recorded every 1 minute. Now, they have changed data sharing

policies as of January 2020. University members are able to access to 1-second, 1-minute, and

15-minute energy datasets from three regions, which are New York, California, and Austin, as

shown in Table 3.1.

31

Table 3.1. Dataport accessible to university members with free of charge

New York California Austin

1-second 35GB N/A 36GB
12GB 30GB
11GB 35GB
11GB 35GB

1-minute 1.2GB 1.8GB 2.6GB
15-minute 74MB 139MB 173MB

Nonetheless, there are many advantages of using datasets from Pecan Street Inc.

compared to other datasets are as follows:

• Dataport contains unique datasets in that it ensures the amount of EV charging loads, which

other existing datasets do not have.

• The ground-truth power signals of up to seventy appliances, such as EV, AC, refrigerator,

microwave, furnace, dryer, oven, dishwasher, cloth-washer, bedroom-lighting, and

bathroom-lighting are available in the database. Figure 3.2 displays ground-truths of

residential data collected from house ID: 114.

Figure 3.2. Ground-truths of residential data (2 weeks) (Pecan Street Inc, 2019a)

32

• Each house data contain aggregated power signals as well as each power profile for six

months (e.g., May to October 2019 from the New York region). This allows us to watch the

trends of EV charging patterns across the seasons.

• Most NILM algorithms for extracting EV charging data from aggregated load data used

Dataport database. Therefore, the database is appropriate to test and compare algorithms’

performance in practice.

The focus of this research is to recognize and identify EV charging data from a power

grid. As more and more houses install photovoltaic (PV) systems, the amount of generated energy

from PV significantly affects the power measured on the power grid, as presented in Figure 3.3.

Figure 3.3. The effect of solar influx in the electrical grid. (a) The energy amount
consumed by electric vehicle tagged as ‘car1’. (b) The energy amount generated by

solar panel tagged as ‘solar’. (c) The measuring power taken from or fed to the
electrical grid tagged as ‘grid’.

Given the background data and knowledge, none of the previous researches considered

generated energy by the solar PV system, especially when it comes to disaggregating EV

charging load in Dataport. As the effect of PV energy is significant for the power on the electrical

grid, this also should be considered when extracting EV charging loads from the grid.

33

3.4 Edge Computation Platform

Though there exist a variety of single-board computers, Raspberry Pi and Odroid are

among the most popular due to their low cost, reasonable performance, and support availability.

Although Odroid has an outstanding computing power in terms of small computers, Raspberry Pi

4 Model B is selected in this research because:

• Raspberry Pi 4 Model B has a vast community behind it, especially in academia,

developing and maintaining software compared to any other edge devices.

• Raspberry Pi 4 Model B is easier to use with regards to networking. 2.4GHz and 5GHz

wireless LAN, Bluetooth 4.2 can be used in Raspberry Pi while Odroid XU4 lacks built-in

wireless communication functions, which requires an extra Wi-Fi module to get connected

with a cloud server platform.

• Raspberry Pi 4 Model B has an advantage with pricing, as the 4GB model is $55, which is

cheaper than the Odroid XU4 with extra modules.

More details of Raspberry Pi 4 Model B are as follows:

Table 3.2. Technical Specs of Raspberry Pi 4 Model B

Raspberry Pi 4 Model B Technical Specs

• CPU: Broadcom Quad core Cortex-A72

• RAM: 4G DDR4

• GPU: 500 MHz VideoCore VI

• USB ports: 2x USB 3.0/2x USB 2.0

• HDMi ports: Dual Micro HDMI ports

• Wireless: 802.11 ac (2.4/5 GHz), Bluetooth 5.0

• OS: Debian Linux 10 based

34

3.5 NILM implemenations on an edge device

As introduced in Section 2.4, Non-Intrusive Load Monitoring Toolkit (NILMTK) allows

easier importing of datasets and comparing between algorithms (N. Batra et al., 2014). The aims

of NILMTK include the followings: First, NILMTK provides a standard data structure

(NILMTK-DF) for energy datasets. Second, NILMTK presents analytical and diagnostic

functions for better understandings of datasets. Lastly, NILMTK offers a couple of NILM

algorithms that make it possible for researchers to compare the performance of existing or new

NILM algorithms.

3.5.1 Data Converter

With the help of general toolkits for machine learning tasks, NILMTK extends the

capacities of such toolkits as an energy disaggregation toolkit. NILMTK is implemented in

Python, which is one of the most flexible and often used languages supporting machine learning

research along with libraries such as Scikit-learn (Pedregosa et al., 2011), Numpy (Oliphant,

2006), and Pandas (McKinney et al., 2010).

As of March 2020, NILMTK provides data converters (P. Batra Kelly, 2019b), including

the following data sets: Dataport (Pecan Street Inc, 2019a), REDD (Kolter & Johnson, 2011),

UK-DALE (Kelly & Knottenbelt, 2015b), iAWE (N. Batra, Gulati, Singh, & Srivastava, 2013),

AMPds (Makonin, Popowich, Bartram, Gill, & Bajić, 2013), and Smart* Barker et al. (n.d.) . The

NILMTK converters allow relevant metadata and datasets to be stored in a Hierarchical Data

Format (HDF5), which enables users to organize data structured in a binary format. Not only the

electricity data, but NILMTK data format also can store related metadata such as location and

maximum sample period, to help enhance the prediction of NILM. The new version of the

converter for Dataport is required as the currently provided converter is not applicable for recent

datasets (P. Batra Kelly, 2019a). The implementation of the new converter will be introduced in

the next Chapter.

35

3.5.2 NILM Algorithms

Currently, there are four NILM algorithms available in NILMTK platform: Combinatorial

Optimization (CO) (Korte & Vygen, 2012), Factorial Hidden Markov Model (FMHH)

(Ghahramani & Jordan, 1995), Hart’s 1985 Algorithm (Hart85) (Hart, 1992b), and Maximum

Likelihood Estimation (MLE) (Hart, 1992a). In this study, Combinatorial optimization (CO) and

Factorial hidden Markov model (FHMM) algorithms are adopted to run on the edge device,

Raspberry Pi 4 model B. The two algorithms are selected because they are the most commonly

used algorithms when it comes to NILM performance comparison when utilizing NILMTK

framework. It is known that CO and FMHH show the best performance for the simplest

algorithms in speed and error rate (Nguyen, 2020).

3.5.2.1 Combinatorial optimization (CO)

CO looks for the optimal combination of various appliance states that minimize the gap

between the sum of the estimated power of appliance and the observed gross power. CO can be

represented by the following state assignment:

x̂(n)t = argmin
x̂(n)t

∣∣∣∣∣y− n

∑
i=1

x̂(n)t

∣∣∣∣∣
(N. Batra et al., 2014) In CO, each time slice is considered to be independent because each time

slice is assumed as a single optimization problem. Also, CO is NP-complete as it is similar to the

subset sum problem. The time complexity of energy disaggregation is O(T SN), where T is given

time slices, S is the number of states of appliances, and N is the number of electric devices.

3.5.2.2 Factorial hidden Markov model (FHMM) An FHMM model is an extended version of

Hidden Markov Model (Ghahramani & Jordan, 1995). A couple of HMMs are evolved

independently in parallel, which turns out to joint all the hidden states. The complexity of energy

disaggregation for FHMM is O(T S2N), as a result of taking three parameters: prior probability,

transition matrix, and emission matrix.

36

3.5.3 EV profile extraction algorithm

In order to secure the concise EV charging profiles, the noises will be filtered out by

adapting the sliding-window technique (see 3.1. pred CO and pred FHMM refer to predictions

from CO classier and FHMM classifier respectively. The size of the window (‘100s’), a maximum

mean value of the window (‘5000’), and minimum duration of EV charging profile (‘20minutes’)

can be adjusted depending on the traits of the monitored electric vehicle. Finally, the start, end,

and elapsed times of EV charging load will be recorded and exported to the cloud along with the

generated plots from the NILM classifiers.

Algorithm 3.1 EV charging Load Extraction
1: function EXTRACT EV(pred CO, pred FHMM)
2: // sotre EV predictions to the new data frames
3: d f CO; pred CO [‘Electric vehicle’]
4: d f FHMM; pred FHMM [‘Electric vehicle’]
5: // sliding window=100s
6: d f CO=d f CO[d f CO.rolling(‘100s’).mean() > 5000]
7: d f FHMM=d f FHMM[d f FHMM.rolling(‘100s’).mean() > 5000]
8:
9: times CO = {}; times FHMM = {}

10: i=0; j=0;
11: start = first timestamp of d f CO
12: //pair up of start and end time of a single EV charging load
13: while i < not len(d f CO)-1 do
14: if d f CO[i+1] - d f CO[i] > 20minutes then

times CO[start] = i th timestamp; start = d f CO[i+1]; i+=1 else i+=1
15: end while
16: times CO[start]=d f CO[-1]
17:
18: //Do the same process for times FHMM
19:
20: return times CO, times FHMM
21: end function
22: for start, end in times CO.items() do print(start, end, end-start)
23: end for
24: for start, end in times FHMM.items() do print(start, end, end-start)
25: end for

37

3.6 Performance Evaluation Criteria

This research evaluates the effectiveness of the CO and FHMM classifiers for NILM by

measuring Root Mean Square Error (RMSE). Additionally, the extraction algorithm for EV

profiles can be assessed by four values of Confusion Matrix: True Positive (TP), True Negative

(TN), False Positive (FP), and False Negative (FN).

3.6.1 Root Mean Square Error (RMSE)

Root Mean Square Error (RMSE) is the standard deviation of the prediction errors (see the

equation below). This can be calculated by measuring the distance between the regression line

data points and the prediction results. RMSE are generally employed in model evaluation

researches (Chai & Draxler, 2014).

rmse =

√
(
1
n
)

n

∑
i=1

(yi− xi)2

3.6.2 Runtime

Along with accuracy, this study considers the performance of the algorithms by time spent

until getting the results. The elapsed time to train classifiers and disaggregate energy loads with

different amount of datasets will be measured in every test. This information will help optimize

the test conditions for the best performance to extract EV charging loads.

38

Table 3.3. System Requirements of OwnCloud

OwnCloud Technical Specs

• OS: Debian 7, 8, and 9

• Database: MySQL or MariaDB 5.5+

• Web server: Apache 2.4 with prefork and
mod php

• PHP Runtime: 5.6, 7.0, 7.1, and 7.2

3.7 Adoption of Cloud Server Platform

After the edge computing phase, the results are sent out to the cloud server platform.

OwnCloud is a widely used cloud platform as a free file-hosting application. This platform is

adopted to store and manage the output data generated by the NILM algorithms of Raspberry Pi.

The system requirements to use OwnCloud on Raspberry Pi are displayed in Table 3.3.

3.8 The flowchart of Experiment Scenario

Figure 3.4 displays a flowchart for this research. The data fed to the edge device are

1-second, 1-minute, and 15-minute based Dataport. The data with high sampling frequency

(1-second based data) are split into several pieces to allow Raspberry Pi to load and categorize the

data with assigned house IDs.

Next, the data will be preprocessed to be imported to the NILM toolkit (NILMTK)

platform. Depending on whether solar-generated power is considered or not, the total load has to

be stored in HDF5 file differently. If it is not considered, the sum of power consumption of

electric appliances becomes the total load. If it is considered, the power measured on the grid

subtracted by solar-generated power becomes the total load.

39

After converting datasets into NILMTK-format, two classifiers-Combinatorial

Optimization (CO) and Factorial Hidden Markov Model (FHMM) trained and tested data as

NILM algorithms. The experiments were conducted under different conditions: the sampling

frequency of data, the number of data points, consideration of solar influx.

Finally, the outputs of the experiment were displayed, stored, and exported to a local cloud

server. The outputs include Root Mean Squared Error (RMSE) as one of accuracy metrics, plots

for ground-truths and predictions of EV charging loads, and a list of information that contains

start/end/elapsed time of EV charging loads based on the predictions.

Figure 3.4. An end-to-end system flow

3.9 Summary

This chapter described the system design as well as open public datasets for this study. In

addition, NILM algorithms and evaluation methods for algorithm performance were investigated.

40

CHAPTER 4. EXPERIMENT

This chapter describes tools and specific mechanisms while conducting the experiment

based on what was introduced in the previous chapters. The details of the experiment

environment and result for this research will be analyzed and discussed in this chapter.

4.1 Dataset and Features

As described in Section 3.3, this research uses Dataport dataset from Pecan Street Inc.

The changed access policy of Pecan Street Inc. allows six months of data, captured every

1-second, 1-minute, and 15-minute energy datasets from three regions, which are New York,

California, and Austin, to a university member.

The individual home is identified with its unique id number, and each house has 75

columns for electric devices, which are recorded to a smart meter. Datasets collected from 25

homes in each region were accessible for this experiment.

4.2 Experimental Environment

The experiment was conducted upon Raspberry Pi 4 Model B, which is one of the most

recent models from Raspberry Pi Foundation. This section covers the required libraries and cloud

server setup for Raspberry Pi.

4.2.1 Libraries used on Raspberry Pi

The versions of Non-Intrusive Load Monitoring Toolkit (NILMTK) and its metadata are

0.4.0 and 0.2.5 respectively. NILMTK requires at least Python 3.6, and Python 3.7 is used on

Raspberry Pi. When a prototype experiment was conducted on MacOS, a virtual environment of

Anaconda was used, which bundles most of the NILMTK’s required packages together.

41

On the other hand, Miniconda, which is a minimized installer for conda, had to be used on

Raspberry Pi due to its system environment. The problem was that conda installed on Raspberry

Pi does not support full packages of what conda-forge provides in order to install NILMTK. After

a couple of trials and errors, a virtual environment using ‘venv’ made it possible to install

NILMTK on Raspberry Pi successfully. While NILMTK was installed, 15 packages (cython,

future, hmmlearn, ipython, matplotlib, networkx, numpy, pandas, prompt-toolkit, psycopgz,

scikit-learn, scipy, setuptools, six, tables) were manually installed using pip3 and each package

version was matched to that of MacOS environment. All packages installed in the virtual

environment are shown in Figure 4.3.

Figure 4.1. Packages used for NILMTK on Raspberry Pi

42

4.2.2 Cloud Server Setup for Raspberry Pi

OwnCloud was adopted to sync and manage data of Raspberry Pi. Since OwnCloud runs

on LAMP (Linux, Apache, MySQL/MariaDB, PHP) stack (Cannon, 2014), the environment was

configured on Raspberry Pi. Figure 4.2 shows the successful setup and data sharing on

OwnCloud.

Figure 4.2. Data Exporting to the cloud server of Raspberry Pi

4.2.3 Location

The location of the experiment does not matter as long as wireless internet access is

secured because this experiment uses static time-series datasets already captured by smart meters.

Therefore, the experiment was conducted in an indoor environment, as shown in Figure 4.3.

Figure 4.3. Experimental Environment and Raspberry Pi 4 B

43

4.3 Experimental Result

This section covers the results of data preprocessing, outputs of NILM algorithms for

recognizing and identifying EV charing profiles upon different conditions.

4.3.1 Data Preprocessing

Data Preprocessing consists of three steps: Data Splitting for 1-second datasets, Data

Categorizing to separate each household data, and finally Data Converting to NILMTK format.

Step 1 Data Splitting

Dataport contains time-series datasets, obtained every 1 second, 1 minute, and 15 minutes.

As for 1-second datasets, the size of an extracted file exceeds 10GB. Not surprisingly, one

of the 1-second dataset collected in New York area (‘1-second NY2 file’) is 11.4GB, which

contains 66,938,399 data points.

On Raspberry Pi, however, memory error commonly occurs when processing a file

exceeding 1GB. To address this problem, one large file was split into twelve separate files,

which contain 6 million rows (1.1GB) per each, as shown in Figure 4.4.

Figure 4.4. Specifying types of columns to Pandas

The splitting task was done on a macOS laptop since this task needs only for 1-second

datasets, not for 1-minute and 15-minute datasets. This was to reduce the time consumed

when loading 1-second datasets. From the following part, these twelve files are also

assumed as “raw files”.

44

Step 2 Data Categorizing

After feeding data into Raspberry Pi, the maximum size of a file is approximately 1GB.

Each file was then categorized into files which contain datasets for individual houses. In

order to optimize the data, houses that have empty data on electric vehicle charging load

column were filtered out. The unique home IDs in the remaining datasets were retrieved,

and the ‘1-second NY2 file’ has only five homes (ID: 27, ID: 1222, ID: 3000, ID: 5679, and

ID: 9053) containing electric vehicle charging loads.

The challenge here is that 1GB is still too big when loaded on Raspberry Pi at once. To

handle this issue, all the column types are specified to reduce loads of Pandas, as shown in

Figure 4.6. Nevertheless, the memory error still occurred the device.

Figure 4.5. Specifying types of columns to Pandas

The second trial was to make chunks containing 100,000 data points when loading a file

and this worked, as shown in Figure 4.6.

Figure 4.6. Making chunks of data on Raspberry Pi

45

Step 3 Data Converting to NILMTK format

As described in Section 3.5, NILMTK uses its own data format to store power data as well

as the metadata based on the Hierarchical Data Format version 5 (HDF5) binary file format.

The initial step for using NILMTK is to convert the datasets to the NILMTK HDF5 format.

Despite the fact that NILMTK contains dataset converters for commonly used public

datasets for NILM, the converter for Dataport is outdated. Pecan Street inc. requires an

additional security verification to allow users to access to Dataport by sending six-digit

code to the account. This made it hard to have direct access from the edge device using the

currently provided converter for Dataport provided by NILMTK. This problem was

addressed by retrofitting the existing converter codes and modifying metadata for Dataport.

The mechanism of the new converter is divided into three parts: to map data loads to their

similar type to categorize a number of appliances, to separate total load metadata and

appliance metadata, and to store modified data frames into a h5 file.

Algorithm 4.1 A new NILMTK converter for Dataport.
1: //Data loads mapping
2: feed mapping = ‘air1: ‘type’: ‘air conditioner’, ‘air2: ‘type’: ‘air conditioner’, ‘car1’: ‘type’:

‘electric vehicle’, ‘kitchen1’: ‘type’: ‘sockets’, ‘livingroom1’: ‘type’: ‘sockets’, ‘room’:
‘living room’, ‘livingroom2’: ‘type’: ‘sockets’, ‘room’: ‘living room’, ‘heater1’: ’type’:
‘electric space heater’, ‘refrigerator1’: ’type’: ‘fridge’, ‘refrigerator2’: ‘type’: ‘fridge’, ‘solar’:
‘type’: ‘solar’, ‘grid’: ‘type’: ‘grid’, etc

3: function CONVERT CSV TO H5(csv filename, h5 filename)
4: //CSV data load
5: //Data sorted by ‘localminute’
6: //Open h5 file
7: function DATAFRAME TO HDF(dataframes, building id, h5 store, timestamp name)
8: //Set timestamp as index of dataframe
9: //Create building metadata for yaml flie (building id, total loads, appliances load)

10: //Convert timeseries data into dataframe
11: //Modify column names
12: //Store dataframe in hdf5
13: //Separate total load metadata and appliance metadata
14: //Write building metadata to a yaml file
15: end function
16: //Close h5 file
17: //Write yaml file to h5 file
18: end function

46

4.3.2 Data Analysis Result

ID=5679 has seven electric appliances (Air Conditioner, four sockets (bedroom1, garage1,

kitchenapp1, kitchenapp2), electric furnace, and electric vehicle) after dropping the N/A columns.

The maximum power load of ID=5679 is an electric vehicle, which hits almost 7kW (see Figure

4.7). The maximum loads of the air conditioner and the remainings are almost 2kW and 1kW.

Figure 4.7. Appliances graph from ID=5679

The vast majority of the pie chart (see Figure 4.8 consists of EV (Green), AC (Blue), and

one of the sockets. Even though the maximum power value of EV in ID=5679 is 6.992kW, the

sum of power usage amount of AC exceeds that of EV due to usage frequencies.

Figure 4.8. A pie chart of power data from ID=5679 in August 2019

47

The plots of 1-second, 1-minute, and 15-minute datasets obtained between August 1 and 2

are displayed in Figure 4.9. 1-second data have high sampling frequency and much noises at the

same time, 1-minute data shows smoothen graph, and 15-minute data seems to have a loss of

features.

Figure 4.9. (a) 1-second, (b) 1-minute, (c) 15-minute power data from ID=5679

48

Figure 4.10 shows 1-minute power data plots for ID:5679 datasets collected between

August 1 and 5, 2019. The ‘Site meter’ (Grey) in Figure 4.10(a) indicates the sum of the power

consumption of the individual appliances ((sum power), including EV loads while ‘Site meter’

(Grey) in Figure 4.10(b) represents the total power consumption subtracted by solar-generated

power ((net power).

Figure 4.10. 1-minute Power data from ID=5679. (a) ‘Site meter’= the sum of power
consumption of electric appliances (sum power), (b) ‘Site meter’= power measured

on the grid - solar generated power (net power)

49

4.3.3 NILM result for EV charging loads

The 1-second, 1-minute, and 15-minute datasets of Dataport were trained and tested using

Combinatorial Optimization (CO) and Factorial Hidden Markov Model (FHMM) algorithms on

the Raspberry Pi 4 Model B. The experiments were conducted based on short-term data (10 days)

and long-term data (30 days) with approximately 80% and 20% of training and test data. The

outputs of the experiments are Root Mean Squared Error (RMSE) as one of accuracy metrics, two

images that display the ground truth and predictions of CO, FHMM for EV charging loads, and

list of information that contains start/end/elapsed time of EV charging loads based on predictions.

4.3.3.1 NILM using short-term data

The short-term data were obtained from ID=5679 between August 1 and 10, 2019: Data

between August 1 and 8 are used for the training set, data between August 8 and 10 are used for

test data.

The first experiment using the short-term data is based on the sum of power consumption

of electric appliances, including EV loads (sum power). The ‘Site meter’ (Grey) as shown in

Figure 4.11(a) indicates that the accumulated appliances power loads (sum power), as well as

each appliance power profile, are trained to identify EV charging loads in the sum power test data

set (see Figure 4.11(c)). The second experiment using short-term data is based on the total

subtracted by solar-generated power (net power). The ‘Site meter’ (Grey) as shown in Figure

4.11(b) indicates that the net power and each appliance power profile are trained to identify EV

charging loads in the net power test data set (see Figure 4.11(d)). The ground truths of EV

charging loads for both experiments are plotted in Figure 4.11(e). The actual start, end, and

elapsed time of the EV charging loads are described in Figure 4.1:

Table 4.1. The time profiles of EV charging load (short-term data)

Start End Elapsed Time

1 2019-08-09 21:36:00 2019-08-09 23:11:00 01:34:30

50

(a) Training data including sum power (b) Training data including net power

(c) Test data sum power (d) Test data net power

(e) The ground truth

Figure 4.11. The short-term data experiments

51

The results of the short-term data experiments conducted on Raspberry Pi 4 Model B are

plotted in Figure 4.12 and 4.13 (The orange plot represents the ground truth while the blue plot

represents the predictions). Despite the small amount of training data, most of the test recognized

the EV charging load regardless of the number of data points and types of classifiers. As for the

experiments using sum power, all the test showed the correct profile of the single EV charging

load (see Figure 4.12(a), 4.12(c), and 4.12(e) for CO, Figure 4.13(a), 4.13(c), and 4.13(e) for

FHMM). It is assumed that this is due to the training and test data are clear compared to those of

net power. The tests with 1-second and 1-minute data points showed incorrect recognition (see

Figure 4.12(b) and 4.12(d) for CO, Figure 4.13(b) and 4.13(d) for FHMM). In general, the data

with higher sampling frequency showed more noises compared to the data with lower sampling

frequency.

52

(a) 1-second, sum power (b) 1-second, net power

(c) 1-minute, sum power (d) 1-minute, net power

(e) 15-minute, sum power (f) 15-minute, net power

Figure 4.12. The ground truth and predictions of EV charging loads using CO

The Root Mean Square Error (RMSE) for each experiment is described in Table 4.2. The

test using 15-minute interval data with the CO classifier showed the best performance for

sum power experiment, while the test using 1-minute interval data with the CO classifier showed

the best performance for net power experiment according to the RMSE.

Table 4.2. RMSE for the short-term data experiment

RMSE Classifier
1-second 1-minute 15-minute

sum power net power sum power net power sum power net power

EV
CO 347 400 342 331 181 354

FHMM 258 381 193 353 205 428

53

(a) 1-second, sum power (b) 1-second, net power

(c) 1-minute, sum power (d) 1-minute, net power

(e) 15-minute, sum power (f) 15-minute, net power

Figure 4.13. The ground truth and predictions of EV charging loads using FHMM

4.3.3.2 NILM using long-term data

The long-term data were obtained from ID=5679 between August 1 and 30, 2019: Data

between August 1 and 25 are used for the training set, data between August 25 and 30 are used

for test data.

54

With the same method of the short-term data experiments, the first experiment using the

long-term data is based on the sum of power consumption of electric appliances, including EV

loads (sum power). The ‘Site meter’ (Grey), as shown in Figure 4.14(a) indicates that the

accumulated appliances power loads (sum power), as well as each appliance power profile, are

trained to identify EV charging loads in the sum power test data set (see Figure 4.14(c)). The

second experiment using the long-term data is based on the power measured on the grid

subtracted by solar-generated power (net power). The ‘Site meter’ (Grey), as shown in Figure

4.14(b) indicates that the net power and each appliance power profile are trained to identify EV

charging loads in the net power test data set (see Figure 4.14(d)).

The ground truths of EV charging loads for both experiments are plotted in Figure

4.14(e). The actual start, end, and elapsed time of the four EV charging load during the long-term

are described in Table 4.3. This information that contains the time frame of EV charging profiles

will be used to discuss the final outputs of each test.

Table 4.3. The time profiles of EV charging load (long-term data)

Start End Elapsed Time

1 2019-08-26 18:57:00 2019-08-26 20:25:00 01:28:00
2 2019-08-27 17:45:00 2019-08-27 19:02:00 01:17:00
3 2019-08-28 14:52:00 2019-08-28 16:07:00 01:15:00
4 2019-08-29 14:10:00 2019-08-29 15:04:00 00:54:00

55

(a) Training data including sum power (b) Training data including net power

(c) Test data sum power (d) Test data net power

(e) The ground truth

Figure 4.14. The long-term data experiments

56

The results of the long-term data experiments conducted on Raspberry Pi 4 Model B using

sum power data are plotted in Figure 4.15 and Figure 4.16 (The orange plot represents the

ground truth while the blue plot represents the predictions). All the tests recognized the four EV

charging loads regardless of the number of data points and types of classifiers with little noise. In

order to secure the concise EV charging profiles, the noises which include consecutive low-power

values and high-power weak values are filtered out by adapting sliding-window techniques.

Finally, the time stamps for start, end, and elapsed time of EV charging loads of each test

are recorded on Raspberry Pi, as shown in Table 4.5. As introduced in 3.1, whether the data

frame is categorized as EV charging profiles or not depends on three parameters: the size of the

sliding window, the maximum mean value of the window, and the minimum duration of EV

charging load. Currently, the parameters are set as 100 seconds, 5000 watt, and 20 minutes. All

the tests show almost identical time frame data despite the different sampling frequency of data.

Though all the test recognized four EV charging profiles well, both CO and FHMM

classifiers show that the high sampling frequency data performed better than low sampling

frequency data (see Table 4.4). Among all, the test using 1-second interval data with the FHMM

classifier showed the best performance for sum power experiment. This result is somewhat

different compared to the previous experiment using short-term data as it is shown that the test

with low sampling frequency data outperformed that of high sampling frequency data.

Table 4.4. RMSE for the long-term data experiment based on sum power

RMSE Classifier 1-second 1-minute 15-minute

EV
CO 148 160 236

FHMM 139 160 187

57

(a) 1-second, sum power

(b) 1-minute, sum power

(c) 15-minute, sum power

Figure 4.15. The ground truth and predictions of EV charging loads using CO

58

(a) 1-second, sum power

(b) 1-minute, sum power

(c) 15-minute, sum power

Figure 4.16. The ground truth and predictions of EV charging loads using FHMM

59

Table 4.5. The output of EV charging profiles based on sum power

Start End Elapsed Time T/F
GT 1 2019-08-26 18:57:00 2019-08-26 20:25:00 01:28:00

2 2019-08-27 17:45:00 2019-08-27 19:02:00 01:17:00
3 2019-08-28 14:52:00 2019-08-28 16:07:00 01:15:00
4 2019-08-29 14:10:00 2019-08-29 15:04:00 00:54:00

1-sec * CO 1 2019-08-26 18:57:15 2019-08-26 20:25:30 01:28:15 T
2 2019-08-27 17:45:45 2019-08-27 19:02:00 01:16:15 T
3 2019-08-28 14:52:00 2019-08-28 16:08:15 01:16:15 T
4 2019-08-29 14:10:30 2019-08-29 15:04:15 00:53:45 T

FHMM 1 2019-08-26 18:57:15 2019-08-26 20:25:30 01:28:15 T
2 2019-08-27 17:45:45 2019-08-27 19:02:00 01:16:15 T
3 2019-08-28 14:51:45 2019-08-28 16:08:15 01:16:30 T
4 2019-08-29 14:10:30 2019-08-29 15:04:15 00:53:45 T

1-min CO 1 2019-08-26 18:57:00 2019-08-26 20:24:00 01:27:00 T
2 2019-08-27 17:46:00 2019-08-27 19:01:00 01:15:00 T
3 2019-08-28 14:52:00 2019-08-28 16:07:00 01:15:00 T
4 2019-08-29 14:10:00 2019-08-29 15:03:00 00:53:00 T

FHMM 1 2019-08-26 18:57:00 2019-08-26 20:24:00 01:27:00 T
2 2019-08-27 17:46:00 2019-08-27 19:01:00 01:15:00 T
3 2019-08-28 14:52:00 2019-08-28 16:07:00 01:15:00 T
4 2019-08-29 14:10:00 2019-08-29 15:03:00 00:53:00 T

15-min CO 1 2019-08-26 19:00:00 2019-08-26 20:00:00 01:15:00 T
2 2019-08-27 17:45:00 2019-08-27 18:45:00 01:00:00 T
3 019-08-28 15:00:00 2019-08-28 15:45:00 01:00:00 T
4 2019-08-29 14:15:00 2019-08-29 14:45:00 00:30:00 T

FHMM 1 2019-08-26 19:00:00 2019-08-26 20:00:00 01:00:00 T
2 2019-08-27 17:45:00 2019-08-27 18:45:00 01:00:00 T
3 2019-08-28 15:00:00 2019-08-28 15:45:00 00:45:00 T
4 2019-08-29 14:15:00 2019-08-29 14:45:00 00:30:00 T

*The sampling period of 1-second data is 15 due to the lack of computing power on Raspberry Pi.

60

The results of the experiments conducted using net power, however, showed different

aspects than those of sum power, depending on data points and classifiers as shown in Figure

4.17 and Figure 4.18. Figure 4.17(a) and 4.17(b) from the CO classifier, Figure 4.18(a) and

4.18(c) from the FHMM classifier show a strong signal of non-EV charging power predictions.

Figure 4.17(c) shows the non-EV charging power prediction.

The timestamps for start, end, and elapsed time of EV charging loads of each test recorded

on Raspberry Pi are shown in Table 4.7. The strong signal of non-EV charging power predictions

generated timestamps at around 2019-08-28 07:32:00 and 2019-08-28 08:38:00 with 35 and 37

minutes of elapsed time in 1-second data. The similar aspects are shown on the 1-minute test with

36 and 14 minutes of elapsed time. The non-EV charging power prediction is also identified as

EV charging load. The elapsed time is 00:00:00, due to the low sampling frequency of the data

points. The 15-minute test using FHMM classifier did not recognize the fourth charging load, and

the load was ignored in the extraction algorithm.

According to Table 4.6, both CO and FHMM classifiers show that the low sampling

frequency data performed better than high sampling frequency data. Among all, the test using

15-minute interval data with the FHMM classifier showed the best performance for net power

experiment. This result is similar to experiments using short-term data, showing that the test with

low sampling frequency data outperformed that of high sampling frequency data. On the contrary,

this result is different compared to the previous sum power experiment, as it is shown that the test

with high sampling frequency data outperformed that of low sampling frequency data.

Table 4.6. RMSE for the long-term data experiment based on net power

RMSE Classifier 1-second 1-minute 15-minute

EV
CO 664 600 538

FHMM 662 598 466

61

(a) 1-second, net power

(b) 1-minute, net power

(c) 15-minute, net power

Figure 4.17. The ground truth and predictions of EV charging loads using CO

62

(a) 1-second, net power

(b) 1-minute, net power

(c) 15-minute, net power

Figure 4.18. The ground truth and predictions of EV charging loads using FHMM

63

Table 4.7. The output of EV charging profiles based on net power.

Start End Elapsed Time T/F
GT 1 2019-08-26 18:57:00 2019-08-26 20:25:00 01:28:00

2 2019-08-27 17:45:00 2019-08-27 19:02:00 01:17:00
3 2019-08-28 14:52:00 2019-08-28 16:07:00 01:15:00
4 2019-08-29 14:10:00 2019-08-29 15:04:00 00:54:00

1-sec * CO 1 2019-08-26 18:57:15 2019-08-26 20:25:30 01:28:15 T
2 2019-08-27 17:45:45 2019-08-27 19:02:15 01:16:30 T
3 2019-08-28 07:32:15 2019-08-28 08:09:15 00:37:00 F
4 2019-08-28 08:38:30 2019-08-28 09:13:45 00:35:15 F
5 2019-08-28 14:52:00 2019-08-28 16:07:30 01:15:30 T
6 2019-08-29 14:19:15 2019-08-29 14:54:15 00:35:00 T

FHMM 1 2019-08-26 18:57:15 2019-08-26 20:25:45 01:28:30 T
2 2019-08-27 17:45:45 2019-08-27 19:02:15 01:16:30 T
3 2019-08-28 07:32:15 2019-08-28 08:09:15 00:37:00 F
4 2019-08-28 08:37:30 2019-08-28 09:13:45 00:36:15 F
5 2019-08-28 14:52:00 2019-08-28 16:07:30 01:15:30 T
6 2019-08-29 14:19:15 2019-08-29 14:54:15 00:35:00 T

1-min CO 1 2019-08-26 18:57:00 2019-08-26 20:25:00 01:28:00 T
2 2019-08-27 17:46:00 2019-08-27 19:01:00 01:15:00 T
2 2019-08-28 07:32:00 2019-08-28 08:08:00 00:36:00 F
3 2019-08-28 08:39:00 2019-08-28 08:52:00 00:13:00 F
5 2019-08-28 14:52:00 2019-08-28 16:06:00 01:14:00 T
6 2019-08-29 14:19:00 2019-08-29 14:53:00 00:34:00 T

FHMM 1 2019-08-26 18:57:00 2019-08-26 20:25:00 01:28:00 T
2 2019-08-27 17:46:00 2019-08-27 19:01:00 01:15:00 T
3 2019-08-28 07:32:00 2019-08-28 08:08:00 00:36:00 F
4 2019-08-28 08:38:00 2019-08-28 08:52:00 00:14:00 F
5 2019-08-28 14:52:00 2019-08-28 16:07:00 01:15:00 T
6 2019-08-29 14:19:00 2019-08-29 14:53:00 00:34:00 T

15-min CO 1 2019-08-26 19:00:00 2019-08-26 20:15:00 01:15:00 T
2 2019-08-27 17:45:00 2019-08-27 18:45:00 01:00:00 T
3 2019-08-28 07:30:00 2019-08-28 07:30:00 00:00:00 F
4 2019-08-28 15:00:00 2019-08-28 15:45:00 01:00:00 T
5 2019-08-28 14:30:00 019-08-28 14:30:00 00:00:00 T

FHMM 1 2019-08-26 19:00:00 2019-08-26 20:15:00 01:00:00 T
2 2019-08-27 17:45:00 2019-08-27 18:45:00 01:00:00 T
3 2019-08-28 15:00:00 2019-08-28 15:45:00 00:45:00 T
N/A N/A N/A N/A F

*The sampling period of 1-second data is 15 due to the lack of computing power on Raspberry Pi.

Figure 4.19 and Figure 4.20 show runtime to train classifiers and disaggregate energy

loads. It is seen that FHMM classifier spent significant amount of time as the number of data

points increase compared to CO classifier.
64

Figure 4.19. Runtime of CO classifier

Figure 4.20. Runtime of FHMM classifier

65

CHAPTER 5. SUMMARY

This study proposed an implementable end-to-end solution that enables a low-cost edge

device to process a massive amount of smart meter data to recognize and identify the electric

vehicle (EV) charging loads by utilizing NILM techniques. The process of NILM started with

splitting datasets of Dataport, provided by Pecan Street Inc., into several pieces and categorizing

files for each house based on assigned house IDs. When the datasets are organized, a converter for

recent datasets of Dataport has been implemented in order to employ NILM toolkit (NILMTK)

platform. The converter is a new version of the currently provided Dataport converter, aiming to

import recent Dataport datasets successfully and reflect solar-generated power when using

NILMTK. This task was performed by modifying some functions and metadata. After converting

datasets into NILMTK-format, two classifiers-Combinatorial Optimization (CO) and Factorial

Hidden Markov Model (FHMM) trained and tested data as NILM algorithms. The experiments

were conducted under different conditions: the sampling frequency of data, the number of data

points, consideration of solar influx. Finally, the outputs of the experiment were displayed, stored,

and exported to a local cloud server. The outputs include Root Mean Squared Error (RMSE) as

one of accuracy metrics, plots for ground-truths and predictions of EV charging loads, and a list

of information that contains start/end/elapsed time of EV charging loads based on the predictions.

In general, the classifiers trained with sum power (the total power consumption)

outperform those with net power (the power measured on the grid subtracted by solar-generated

power) in both short-term and long-term data experiments. With the presence of sum power, all

the test successfully identified the start and end time of EV charging loads, but the accuracy of

elapsed time varies due to the sampling frequency of datasets. As for the tests with net power, the

short-term data experiments showed comparable results with those with sum power. The

predictions in long-term data experiments, however, showed one or two strong non-EV signals

along with the real EV signals in every test.

66

As expected, the CO algorithm had a much faster runtime duration to train classifiers and

disaggregate energy data, while FHMM showed better performance with a large amount of data.

It must be noted that high sampling frequency data do not guarantee better performance of the

NILM algorithms. The tests with higher sampling frequency data generally showed more noise

and did not always identify EV loads well, especially for net power experiments. The tests with

lower sampling frequency data showed an almost similar success rate to those with higher

sampling frequency data for the number of data points when it comes to generating predictions

for EV charging loads. However, the 15-minute frequency data is not always suitable for this

study because of the lower accuracy in the elapsed time of the EV loads. Overall, 1-minute

frequency data ensures the performance of both classifiers and an extraction algorithm for energy

disaggregation.

In conclusion, it is verified that a low-power edge device identifies the electric vehicle

(EV) charging load from smart meter datasets using Non-Intrusive Load Monitoring (NILM)

algorithms, and further send results to the cloud. This has essential meanings for upcoming smart

cities as a low-power, low-cost, tiny edge device can contribute to stable and sustainable smart

power grids by providing core data and reducing a substantial amount of costs for sending a

whole data. This study has also enhanced the capabilities of NILM approach not only by

improving the compatibility between Dataport and NILMTK, but also by extending the study

more practical with the consideration of obtained solar-generated power.

Finally, this research leaves a few tasks for future research. First, more algorithms for

training datasets will be studied to allow the system to identify EV loads more precisely. Also,

future research would work to improve the extraction method to list information about EV

charging loads based on predictions correctly. This issue can be resolved by having EV profiles,

such as average duration of charge, a maximum peak value of the EV power load. Additionally,

along with the currently used data, more data from different household or different state can be

compared to evaluate the classifiers and the extraction algorithm.

67

REFERENCES

Anderson, K., Ocneanu, A., Benitez, D., Carlson, D., Rowe, A., & Berges, M. (2012, August).
BLUED: a fully labeled public dataset for Event-Based Non-Intrusive load monitoring
research. In Proceedings of the 2nd KDD workshop on data mining applications in
sustainability (SustKDD). Beijing, China.

Barker, S., Mishra, A., Irwin, D., Cecchet, E., Shenoy, P., & Albrecht, J. (n.d.). Smart*: An open
data set and tools for enabling research in sustainable homes.

Batra, N. (2015). Non intrusive load monitoring: Systems, metrics and use cases. In Proceedings
of the 13th acm conference on embedded networked sensor systems (p. 501–502). New
York, NY, USA: Association for Computing Machinery. Retrieved from
https://doi.org/10.1145/2809695.2822523 doi: 10.1145/2809695.2822523

Batra, N., Gulati, M., Singh, A., & Srivastava, M. (2013, 11). It’s different: Insights into home
energy consumption in india.. doi: 10.1145/2528282.2528293

Batra, N., Kelly, J., Parson, O., Dutta, H., Knottenbelt, W., Rogers, A., . . . Srivastava, M. (2014).
Nilmtk: An open source toolkit for non-intrusive load monitoring. In Proceedings of the
5th international conference on future energy systems (p. 265–276). New York, NY, USA:
Association for Computing Machinery. Retrieved from
https://doi.org/10.1145/2602044.2602051 doi: 10.1145/2602044.2602051

Batra, P., Kelly. (2019a). Currently provided nilmtk converter for dataport.
https://github.com/nilmtk/nilmtk/blob/master/nilmtk/

dataset converters/dataport/download dataport.py. GitHub.

Batra, P., Kelly. (2019b). Types of available database supported by nilmtk.
https://github.com/nilmtk/nilmtk/tree/master/nilmtk/dataset converters.
GitHub.

Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the internet
of things. In Proceedings of the first edition of the mcc workshop on mobile cloud
computing (pp. 13–16). New York, NY, USA: ACM. Retrieved from
http://doi.acm.org/10.1145/2342509.2342513 doi: 10.1145/2342509.2342513

Buneeva, N., & Reinhardt, A. (2017). Ambal: Realistic load signature generation for load
disaggregation performance evaluation. In 2017 ieee international conference on smart
grid communications (smartgridcomm) (p. 443-448).

68

Cannon, J. (2014). High availability for the lamp stack: Eliminate single points of failure and
increase uptime for your linux, apache, mysql, and php based web applications. North
Charleston, SC, USA: CreateSpace Independent Publishing Platform.

Chai, T., & Draxler, R. R. (2014). Root mean square error (rmse) or mean absolute error (mae)
arguments against avoiding rmse in the literature. Geoscientific Model Development, 7(3),
1247–1250. Retrieved from https://www.geosci-model-dev.net/7/1247/2014/

doi: 10.5194/gmd-7-1247-2014

Chen, S., Wen, H., Wu, J., Lei, W., Hou, W., Liu, W., . . . Jiang, Y. (2019). Internet of things
based smart grids supported by intelligent edge computing. IEEE Access, 7,
74089-74102. doi: 10.1109/ACCESS.2019.2920488

Dinesh, C., Welikala, S., Liyanage, Y., Ekanayake, M. P. B., Godaliyadda, R. I., & Ekanayake, J.
(2017). Non-intrusive load monitoring under residential solar power influx. Applied
Energy, 205(C), 1068-1080. Retrieved from
https://ideas.repec.org/a/eee/appene/v205y2017icp1068-1080.html doi:
10.1016/j.apenergy.2017.0

Ferrandez, J., Mora, H., Jimeno-Morenilla, A., & Volckaert, B. (2018, 10). Deployment of iot
edge and fog computing technologies to develop smart building services. Sustainability,
10, 3832:1-23. doi: 10.3390/su10113832

Gaur, M., Makonin, S., Bajić, I. V., & Majumdar, A. (2019). Performance evaluation of
techniques for identifying abnormal energy consumption in buildings. IEEE Access, 7,
62721-62733.

Ghahramani, Z., & Jordan, M. I. (1995). Factorial hidden markov models. Machine Learning, 29,
245-273.

Gron, A. (2017). Hands-on machine learning with scikit-learn and tensorflow: Concepts, tools,
and techniques to build intelligent systems (1st ed.). O’Reilly Media, Inc.

Hart, G. W. (1992a). Nonintrusive appliance load monitoring. Proceedings of the IEEE, 80(12),
1870-1891.

Hart, G. W. (1992b, Dec). Nonintrusive appliance load monitoring. Proceedings of the IEEE,
80(12), 1870-1891. doi: 10.1109/5.192069

69

Kelly, J., Batra, N., Parson, O., Dutta, H., Knottenbelt, W., Rogers, A., . . . Srivastava, M. (2014).
Nilmtk v0.2: A non-intrusive load monitoring toolkit for large scale data sets: Demo
abstract. In Proceedings of the 1st acm conference on embedded systems for
energy-efficient buildings (p. 182–183). New York, NY, USA: Association for Computing
Machinery. Retrieved from https://doi.org/10.1145/2674061.2675024 doi:
10.1145/2674061.2675024

Kelly, J., & Knottenbelt, W. (2015a). Neural nilm: Deep neural networks applied to energy
disaggregation. In Proceedings of the 2nd acm international conference on embedded
systems for energy-efficient built environments. New York, NY, USA: Association for
Computing Machinery. Retrieved from https://doi.org/10.1145/2821650.2821672

doi: 10.1145/2821650.2821672

Kelly, J., & Knottenbelt, W. J. (2015b). The uk-dale dataset, domestic appliance-level electricity
demand and whole-house demand from five uk homes. In Scientific data.

Khan, L. U., Yaqoob, I., Tran, N. H., Kazmi, S. M. A., Tri, N. D., & Hong, C. S. (2019). Edge
computing enabled smart cities: A comprehensive survey. ArXiv, abs/1909.08747.

Kolter, J., & Johnson, M. (2011, 01). Redd: A public data set for energy disaggregation research.
Artif. Intell., 25.

Korte, B., & Vygen, J. (2012). Combinatorial optimization: Theory and algorithms (5th ed.).
Springer Publishing Company, Incorporated.

Lai, C., Chien, W., Yang, L. T., & Qiang, W. (2019, April). Lstm and edge computing for big data
feature recognition of industrial electrical equipment. IEEE Transactions on Industrial
Informatics, 15(4), 2469-2477. doi: 10.1109/TII.2019.2892818

Liu, Y., Yang, C., Jiang, L., Xie, S., & Zhang, Y. (2019, March). Intelligent edge computing for
iot-based energy management in smart cities. IEEE Network, 33(2), 111-117. doi:
10.1109/MNET.2019.1800254

Makonin, S., Ellert, B., Bajic, I. V., & Popowich, F. (2016). Electricity, water, and natural gas
consumption of a residential house in Canada from 2012 to 2014. Scientific Data,
3(160037), 1–12.

Makonin, S., Popowich, F., Bartram, L., Gill, B., & Bajić, I. V. (2013). Ampds: A public dataset
for load disaggregation and eco-feedback research. In 2013 ieee electrical power energy
conference (p. 1-6).

McKinney, W., et al. (2010). Data structures for statistical computing in python. In Proceedings
of the 9th python in science conference (Vol. 445, pp. 51–56).

70

Munshi, A. A., & Mohamed, Y. A. I. (2019, Jan). Unsupervised nonintrusive extraction of
electrical vehicle charging load patterns. IEEE Transactions on Industrial Informatics,
15(1), 266-279. doi: 10.1109/TII.2018.2806936

Murugan, D., Garg, A., & Singh, D. (2017). Development of an Adaptive Approach for Precision
Agriculture Monitoring with Drone and Satellite Data. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 10(12), 5322–5328. doi:
10.1109/JSTARS.2017.2746185

Nguyen, H.-H. (2020, 01). Nonintrusive load monitoring algorithms: A comparative study. In
(p. 212-221). doi: 10.1007/978-981-32-9186-7 23

Okay, F. Y., & Ozdemir, S. (2016, May). A fog computing based smart grid model. In 2016
international symposium on networks, computers and communications (isncc) (p. 1-6).
doi: 10.1109/ISNCC.2016.7746062

Oliphant, T. E. (2006). A guide to numpy (Vol. 1). Trelgol Publishing USA.

Osathanunkul, K., & Osathanunkul, K. (2019). Different sampling rates on neural nilm energy
disaggregation. In 2019 joint international conference on digital arts, media and
technology with ecti northern section conference on electrical, electronics, computer and
telecommunications engineering (ecti damt-ncon) (p. 318-321).

Parson, O., Fisher, G., Hersey, A., Batra, N., Kelly, J., Singh, A., . . . Rogers, A. (2015). Dataport
and nilmtk: A building data set designed for non-intrusive load monitoring. In 2015 ieee
global conference on signal and information processing (globalsip) (p. 210-214).

Pecan Street Inc. (2019a). Pecan street dataport. Austin, TX, USA. Retrieved from
https://dataport.pecanstreet.org

Pecan Street Inc. (2019b). Pecan street dataport. Austin, TX, USA. Retrieved from
https://www.pecanstreet.org

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duchesnay, E.
(2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12, 2825–2830.

Plastiras, G., Terzi, M., Kyrkou, C., & Theocharidcs, T. (2018, July). Edge intelligence:
Challenges and opportunities of near-sensor machine learning applications. In 2018 ieee
29th international conference on application-specific systems, architectures and
processors (asap) (p. 1-7). doi: 10.1109/ASAP.2018.8445118

71

Sirojan, T., Phung, T., & Ambikairajah, E. (2017, Dec). Intelligent edge analytics for load
identification in smart meters. In 2017 ieee innovative smart grid technologies - asia
(isgt-asia) (p. 1-5). doi: 10.1109/ISGT-Asia.2017.8378414

Syafrudin, M., Fitriyani, N., Alfian, G., & Rhee, J. (2019, 01). An affordable fast early warning
system for edge computing in assembly line. Applied Sciences, 9, 84. doi:
10.3390/app9010084

U.S. Energy Information Administration. (2018, 2). Annual energy outlook. In (p. 1-74).

Wang, S., Du, L. L., Ye, J., & Zhao, D. (2018). Robust identification of ev charging profiles.
2018 IEEE Transportation Electrification Conference and Expo (ITEC), 1-6.

Yang, C., Chen, X., Liu, Y., Zhong, W., & Xie, S. (2019, May). Efficient task offloading and
resource allocation for edge computing-based smart grid networks. In Icc 2019 - 2019
ieee international conference on communications (icc) (p. 1-6). doi:
10.1109/ICC.2019.8761535

Yi, S., Li, C., & Li, Q. (2015). A survey of fog computing: Concepts, applications and issues. In
Proceedings of the 2015 workshop on mobile big data (pp. 37–42). New York, NY, USA:
ACM. Retrieved from http://doi.acm.org/10.1145/2757384.2757397 doi:
10.1145/2757384.2757397

Zhang, Z., Son, J. H., Li, Y., Trayer, M., Pi, Z., Hwang, D. Y., & Moon, J. K. (2014, Oct).
Training-free non-intrusive load monitoring of electric vehicle charging with low
sampling rate. In Iecon 2014 - 40th annual conference of the ieee industrial electronics
society (p. 5419-5425). doi: 10.1109/IECON.2014.7049328

Zhao, H., Yan, X., & Ma, L. (2019). Training-free non-intrusive load extracting of residential
electric vehicle charging loads. IEEE Access, 7, 117044-117053. doi:
10.1109/ACCESS.2019.2936589

Zhao, H., Yan, X., & Ren, H. (2019). Quantifying flexibility of residential electric vehicle
charging loads using non-intrusive load extracting algorithm in demand response.
Sustainable Cities and Society, 50, 101664. Retrieved from
http://www.sciencedirect.com/science/article/pii/S2210670719306304 doi:
https://doi.org/10.1016/j.scs.2019.101664

Zoha, A., Gluhak, A., Imran, M., & Rajasegarar, S. (2012, 12). Non-intrusive load monitoring
approaches for disaggregated energy sensing: A survey. Sensors (Basel, Switzerland), 12,
16838-16866. doi: 10.3390/s121216838

72

