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ABSTRACT

Lin, Chengyuan Ph.D., Purdue University, May 2020. Lightweight and Sufficient Two
Viewpoint Connectionsfor Augmented Reality. Major Professor: Voicu S. Popescu.

Augmented Reality (AR) is a powerful computer to human visual interface that

displays data overlaid onto the user’s view of the real world. Compared to conven-

tional visualization on a computer display, AR has the advantage of saving the user

the cognitive effort of mapping the visualization to the real world. For example, a

user wearing AR glasses can find a destination in an urban setting by following a

virtual green line drawn by the AR system on the sidewalk, which is easier to do than

having to rely on navigational directions displayed on a phone. Similarly, a surgeon

looking at an operating field through an AR display can see graphical annotations

authored by a remote mentor as if the mentor actually drew on the patient’s body.

However, several challenges remain to be addressed before AR can reach its full

potential. This research contributes solutions to four such challenges. A first chal-

lenge is achieving visualization continuity for AR displays. Since truly transparent

displays are not feasible, AR relies on simulating transparency by showing a live video

on a conventional display. For correct transparency, the display should show exactly

what the user would see if the display were not there. Since the video is not captured

from the user viewpoint, simply displaying each frame as acquired results in visu-

alization discontinuity and redundancy. A second challenge is providing the remote

mentor with an effective visualization of the mentee’s workspace in AR telementor-

ing. Acquiring the workspace with a camera built into the mentee’s AR headset is

appealing since it captures the workspace from the mentee’s viewpoint, and since it

does not require external hardware. However, the workspace visualization is unstable

as it changes frequently, abruptly, and substantially with each mentee head motion.
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A third challenge is occluder removal in diminished reality. Whereas in conventional

AR the user’s visualization of a real world scene is augmented with graphical annota-

tions, diminished reality aims to aid the user’s understanding of complex real world

scenes by removing objects from the visualization. The challenge is to paint over oc-

cluder pixels using auxiliary videos acquired from different viewpoints, in real time,

and with good visual quality. A fourth challenge is to acquire scene geometry from

the user viewpoint, as needed in AR, for example, to integrate virtual annotations

seamlessly into the real world scene through accurate depth compositing, and shadow

and reflection casting and receiving.

Our solutions are based on the thesis that images acquired from different view-

points should not always be connected by computing a dense, per-pixel set of cor-

respondences, but rather by devising custom, lightweight, yet sufficient connections

between them, for each unique context. We have developed a self-contained phone-

based AR display that aligns the phone camera and the user by views, reducing

visualization discontinuity to less than 5% for scene distances beyond 5 m. We have

developed and validated in user studies an effective workspace visualization method

by stabilizing the mentee first-person video feed through reprojection on a planar

proxy of the workspace. We have developed a real-time occluder in-painting method

for diminished reality based on a two-stage coarse-then-fine mapping between the

user and the auxiliary view. The mapping is established in time linear with occluder

contour length, and it achieves good continuity across the occluder boundary. We

have developed a method for 3D scene acquisition from the user viewpoint based

on single-image triangulation of correspondences between left and right eye corneal

reflections. The method relies on a subpixel accurate calibration of the catadioptric

imaging system defined by two corneas and a camera, which enables the extension of

conventional epipolar geometry for a fast connection between corneal reflections.
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1 INTRODUCTION

Augmented reality (AR) technologies aim to improve a user’s visualization of the

real world by overlaying 3D computer graphics annotations over the user’s field of

view. These annotations are superimposed onto real world objects in order to help

the user’s understanding of the scene [1].

AR interfaces can be classified into two main categories based on the type of

display they employ. Hand-held AR uses a small display such as a computer tablet

or phone that acquires the real world with the back-facing video camera and shows

it to the user together with annotations. Head-mounted display (HMD) AR uses a

headset worn by the user. In the case of optical see-through AR HMD’s, the user sees

the real world directly, through a transparent glass. In the case of video see-through

AR HMD’s, the user sees a live video stream of the real world.

AR technology has proven to be useful in many scenarios. One such scenario is

surgical telementoring [2, 3], which is a promising approach for transmitting surgical

expertise over large geographic distances promptly and efficiently, allowing a local

general surgeon to provide urgent care without the delay of transporting the patient

or the expert surgeon. The conventional approach in surgical telementoring is based

on telestrators that allow the remote mentor to annotate a live video feed of the

surgery, and the annotated video feed is shown to the mentee on a nearby display.

This requires the mentee to continually shift focus away from the surgical field in

order to consult the nearby display, to memorize the instructions provided by the

mentor, and to transfer them, from memory, in the context of the actual surgical field,

which can lead to surgery delays and even errors. By contrast, AR allows integrating

the mentor-authored annotations directly into the field of view of the mentee. The

mentee sees the annotations as if the mentor actually drew them onto the surgical
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field, avoiding focus shifts and alleviating the high cognitive load of having to map

annotations to the surgical field, avoiding surgery delays and errors.

AR is not only capable of adding virtual objects to the scene, but in some use

cases, AR can be also called upon to remove some elements from the real world

to facilitate its understanding by the user. This specialization of AR technology

is called diminished reality (DR) [4]. DR covers real objects with images of their

occluded background to make the objects virtually invisible to the user. One goal of

DR applications is the removal of an occluder that hides a part of the scene that is

of interest to the user. Most DR displays are video see-through for their advantage

of providing perfect opacity compared to optical see-through displays. Indeed, an

optical see-through display cannot erase a bright surface when the object it occludes

is dark.

One example DR application is the visualization of an object that moves through

a crowded scene, such as a pedestrian or a car moving on a busy street. As the target

moves, the target can become temporarily occluded by other objects in the scene.

The conventional solution is to acquire the scene with multiple surveillance cameras

and to switch between video feeds to keep sight of the target. However, constantly

switching between different viewpoints requires the additional cognitive load of es-

tablishing spatial mappings between consecutive viewpoints. For example, one can

easily misjudge the trajectory of the target when switching from one camera to a

second camera with a considerably different view direction. Furthermore, the remote

visualization of the scene requires transmitting all the feeds to the user, which strains

the network connection. On the other hand, the DR approach avoids these short-

comings by erasing the occluders from the main user view, keeping the target visible

at all times. The DR visualization demands a lower cognitive load than constantly

switching between views, and the continuity of the target trajectory is preserved. Fur-

thermore, the DR approach effectively integrates the many video feeds into a single

non-redundant video feed, lowering the bandwidth requirement considerably.
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Figure 1.1.: An example of dual-view perceptual issue. Discontinuity and redundancy

occur between a hand-held AR display and the scene.

1.1 AR Challenges

In order for AR to reach its full potential in applications, several challenges have

to be overcome.

A first AR challenge is to remove the discontinuity at the boundary of hand-held

AR displays. As the augmented video on the display is not adapted to the user’s

viewpoint, this leads to a discontinuity and a redundancy between the parts of the

scene viewed directly by the user and the parts viewed on the display (Figure 1.1).

The problem, also known as the dual-view perceptual issue [5], places an additional

cognitive load on the user who has to map the information given, from the context of

the display, to the context of the scene observed directly. Also, the user has to switch

back and forth between the display and the scene to translate the information received

on the display to the real world. Furthermore, relying on the device-perspective view

of the scene shown on the display can lead to incorrect depth interpretation and an

inability to properly estimate distances.
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The challenge will go away once there will be truly transparent hand-held displays.

However, for the foreseeable future, phone and tablet components such as the battery,

the CPU, and the GPU will remain opaque and of considerable size. The shortest

path towards a truly transparent hand-held display might be a tablet design with a

transparent screen with all opaque components moved away from the screen, but no

such tablet exists so far.

In order to make conventional tablets and phones work effectively as an AR plat-

form, what is needed is to simulate the transparency of the display by showing on the

screen exactly what the user would see in the absence of the display. This would turn

the display into a frame through which the user can freely observe the scene, with the

benefit of AR guidance rendered on top. Tablets and phones do have a back-facing

video camera that acquires the real world the user sees. In order to warp the frames

acquired by the device camera to the user viewpoint, two pieces of information are

required: the position of the user head, and the geometry of the scene. This way the

scene can be rendered from the user’s viewpoint, projectively texture mapped with

the video frame, to simulate a transparency effect.

A second AR challenge is to convey the workspace of one user to a remote col-

laborator. For example, in the context of telementoring, the mentor relies on high

quality visualization of the mentee’s workspace in order to provide effective guidance

(Figure 1.2).

One approach is to acquire the workspace with a static auxiliary video camera and

to send its video feed to the mentor. This approach requires additional hardware,

and furthermore, the auxiliary camera captures the workspace from a view that is

substantially different from the mentee’s view. This view discrepancy reduces tele-

mentoring effectiveness, as the mentor can best guide the mentee when the mentor

sees what the mentee sees. Furthermore, the mentor annotations are most effective

when they are drawn in the mentee’s frame of reference. For example, the mentee

might need help with a part of the workspace that is not visible to the mentor due to
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Figure 1.2.: Mentor authorizing annotations on video feed of mentee’s workspace. Ef-

fective guidance can only be provided when high quality visualization of the workspace

is available.

occlusions, or, conversely, the mentor might annotate a part of the workspace that is

not visible to the mentee.

Another approach is to use a camera mounted on the mentee head. With the

advancement of technology, self-contained HMDs typically incorporate an on-board

scene-looking camera, which can capture the workspace from a viewpoint close to the

mentee’s viewpoint. Such a camera provides the mentor with a visualization of the

workspace that matches the mentee’s visualization and therefore has the potential to

facilitate effective telementoring. However, simply providing the mentee first-person

video directly to the mentor is inadequate. As the mentee changes head position and

view direction, the mentor’s visualization of the workspace changes frequently and
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substantially, which adversely affects the mentor’s understanding of the scene, the

instructional quality of the mentor annotations, and ultimately the performance of

the mentee.

By combining the advantages of the approaches above, another approach is to first

capture the geometry of the workspace, and then to render the workspace geometry

from the mentor viewpoint, projectively texture mapped with the mentee’s first-

person video frame. If the mentor viewpoint matches the mentee’s viewpoint, the

method has the advantage of a good view agreement between mentor and mentee,

a prerequisite for effective telementoring. Furthermore, since the mentor viewpoint

is stationary, or under the mentor’s control, the approach effectively decouples the

mentor view from the mentee view, avoiding the sudden view changes that plague

using the mentee first person directly at the mentor. However, high-quality real

time depth acquisition and geometric modeling of a dynamic scene with complex

geometric and reflectance properties remains a challenging problem. Furthermore,

the workspace has to be acquired from multiple viewpoints to avoid the objectionable

artifacts caused by disocclusion errors, which increases the complexity of the system,

making it inappropriate for deployment outside laboratories, in austere conditions.

A third AR challenge is to improve the user’s visualization of an object of interest,

i.e. a target, in a complex scene with occluders. The goal is to keep the target always

visible, free of occlusions. Occlusion removal is a difficult problem, which entails

finding the footprint of the occluder in the user’s view, finding the target footprint in

an auxiliary view, and transferring the auxiliary view target pixels to the user view

in order to effectively erase the occluder. One approach is again 3D scene acquisition.

Once the geometry of the scene is known, segmenting the occluder becomes easier, and

rendering the scene without the occluder from the user’s viewpoint provides exactly

what the user would see without the occluder. However, as discussed above, the real

time acquisition of a dynamic scene with complex geometry is challenging, especially

when the equipment cost has to be minimized. Figure 1.3 illustrates a scenario where

an occluder hinders keeping track of a moving target across the scene.
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Figure 1.3.: An object person on a scooter (highlighted by red circles) moving across

the scene. Tracing the target is difficult when the target is occluded by other objects

in the scene.
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1.2 Thesis Statement

Our thesis is based on an insight that promises to address the three challenges above.

A dense, per-pixel connection between two images, acquired from different viewpoints,

does allow approximating the scene geometry, and the geometry does provide a bidi-

rectional mapping between the two images. However, such a dense connection is

difficult to establish, typically requires extra hardware, and not suitable for austere

settings. Furthermore, it is not sufficient to address adequately the AR challenges

above.

Regarding the simulated transparent display challenge, one could use a hand-held

display with two on-board back-facing cameras to acquire the scene geometry with

conventional stereo. Similarly, one could use frames acquired from different locations

by a single back-facing camera of the hand-held display, and reconstruct the scene

geometry with conventional structure from motion. However, this requires establish-

ing a dense set of correspondences between two images, i.e. O(wh) correspondences

for images of resolution w × h. Even at this high computational cost, the resulting

correspondence map will only cover the intersection of the two images. Furthermore,

mapping camera’s view using this correspondence map to the user’s viewpoint will

leave holes where the user sees parts of the scene that are not seen by the cam-

era. Figure 1.4 illustrates the problem: O1 is the user viewpoint, O2 is the display’s

back-facing camera. FG is the display, around which the discontinuity needs to be

removed. Even if camera O2 is enhanced with a perfect per-pixel depth acquisition, it

will not sample the green object between B and D, leaving a gap, i.e. a disocclusion

error, between B and C. What is needed is a mapping from the on-board camera to

the user viewpoint that can be computed quickly and that preserves the quality of

the image.

Similarly, regarding the challenge of providing to the mentor an effective visualiza-

tion of the mentee’s workspace, an incomplete acquisition of the workspace geometry

will result in the same disocclusion artifacts. What is needed is a mapping from
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Figure 1.4.: Scene geometry (left) and views captured from two different viewpoints

(right) (e.g. a user and a camera). O2 samples the green object from the left until B,

and then the blue object from C towards the right (right, top). O1 is affected by the

occluder FG, it sees the green object from the left until A, then the occluder, and

then the blue object from E to the right (right, middle). Even if the view from O2

comes with perfect per-pixel depth, projecting the 3D samples onto O1 will leave a

gap between the projection of B and the projection of D, due to the occlusion from

the blue object.

the mentee first person camera feed to a stable mentor viewpoint that results in a

high-quality visualization of the workspace for effective telementoring. Figure 1.5

illustrates the problem, where O1 is the mentor viewpoint, and O2 is the mentee

viewpoint, also the head-mounted camera’s viewpoint. The disparity between two

viewpoints leads to part of the scene BD not sampled by the camera, translates to

artifacts because of disocclusion errors in BC. Indeed, a mapping from the moving

mentee viewpoint to a static viewpoint for the mentor computed in real-time will

serve better the purpose of conveying the workspace effectively.

Finally, regarding the challenge of painting over an occluder to reveal the target

behind it, even if the feed of the auxiliary camera is enhanced with per-pixel depth,
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Figure 1.5.: Scene geometry (left) and views captured from two different viewpoints

(right) (e.g. two cameras at different locations).

which comes at the high cost of passive (i.e. stereo or structure from motion) or

active depth acquisition (i.e. LIDAR), reprojecting the feed to the user’s viewpoint

can leave gaps where the occluder is not erased. Again, referring to Figure 1.5,

with the user’s viewpoint at O1 and the auxiliary camera at O2, the disocclusion

error in BC cannot be avoided by methods based on geometry acquisition. What

is needed is a mapping from the auxiliary camera view to the user view that allows

erasing the entire occluder, with good continuity between the inpainted target and

the surrounding background.

Thesis Statement

For some Augmented Reality problems that require establishing a connection be-

tween two images with a different viewpoint, the traditional approach of computing

a dense, per-pixel set of correspondences between the images is both challenging and

insufficient; instead, a custom connection can be designed to provide an inexpensive

yet effective solution to each problem.
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Figure 1.6.: Our prototype of the transparent display. There is no discontinuity

around the display and no redundancy between the AR display and the scene.

Our thesis advocates abandoning the pursuit of O(wh) mappings between images

of resolution w× h and instead designing O(w) or even O(1) mappings that preserve

image quality and therefore solve each problem well.

To remove the discontinuity at the boundary of a video see-through display, we

assume the scene geometry is infinitely far away. This allows us to establish the

connection between the user viewpoint and the viewpoint of the on-board back-facing

camera in constant time O(1), a negligible overhead for the regular rendering pipeline.

We prove that the achieved transparency effect error is below 5% when the scene is

farther than 6 m, and we demonstrate a compelling simulated transparency effect on a

self-contained and compact mobile phone, without any additional devices. Figure 1.6

shows one example frame of our transparent display, where the discontinuity around

the contour of the display is removed, and there is no redundancy between the scene

viewed on the display and viewed directly.

To improve the effectiveness of telementoring, we propose to use a plane to ap-

proximate the workspace geometry. This also allows us to establish the connection
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Figure 1.7.: Our telementoring system in operation. Left column showcases third-

person views, right column shows the corresponding stabilized view and the unstabi-

lized view (raw camera feed).
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between mentor viewpoint and mentee viewpoint in constant time O(1). We then

projectively texture map the mentee video feed onto the planar approximation of the

workspace geometry, providing an effective real-time visualization of the workspace

to the mentor. The visualization is of high quality, i.e. without distortions due to

inadequate geometric approximation, and without tears due to disocclusion errors.

All scene lines project to lines in the visualization. All these properties contribute to

the effectiveness of telementoring. Figure 1.7 shows our system for AR telementoring

implementing this method.

To remove an occluder from a video feed that captures a real world scene in real

time, we propose an O(w) mapping from the view of an auxiliary camera to the

user view, which is sufficient to paint the target over the occluder. The mapping is

based on a global rotation and a contour pixel correspondence refinement. Given a

primary, i.e. user, view and a secondary, i.e. auxiliary camera, view of a target, our

method first computes an approximate global mapping between views, then splices

in the occluder footprint with pixels from the secondary video feed. The result is a

multi-perspective visualization, where the scene surrounding the occluder is shown

conventionally, from the user viewpoint, and the scene behind the occluder is shown

from the second camera viewpoint. Switching abruptly from one perspective to the

other at the occluder contour would create a discontinuity. Instead, our method

connects the two perspectives seamlessly with a local mapping that achieves a gradual

transition from one viewpoint to the other (Figure 1.8).

Of course, our thesis does not advocate that there are no applications where depth

acquisition of the 3D scene based on a dense set of correspondences between two or

more images with different viewpoints is the best approach. Even in the context

of AR, a measure of scene geometry is important, for example when attempting to

integrate the computer graphics annotations of the real world scene in a way that

is as convincing as possible. More specifically, in the AR surgical telementoring

context, the annotations have to be placed at an appropriate depth, on the operating
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Figure 1.8.: An object person on a scooter (highlighted by red circles) moving

across the scene. Tracing the target is made easy with the occluder rendered semi-

transparently using our method. The target is free from occluder (pedestrians, cars)

in the scene.
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Figure 1.9.: An example of scene reconstruction using corneal reflections. Top row

shows the input image, cropped to eye region, bottom row shows the output recon-

struction (colored wireframe) from two corneal reflections, aligned with truth geom-

etry (gray points).

field surfaces, and they need to be occluded appropriately by instruments or surgeon

hands.

An appealing solution is to acquire a geometry and color model of the scene,

from the user’s viewpoint, with minimal hardware. One possibility that we have

investigated is to use the catadioptric system defined by a camera and the user’s

corneas. The interpupillary distance provides a baseline that introduces disparity

between the left and right eye reflection, which could be exploited to recover the

geometry and color of the scene, from the user viewpoint, with a single camera.

The approach brings important challenges such as modeling the corneas-plus-camera

catadioptric system, establishing correspondences between the two reflections, as well

as acquiring the cornea reflections with sufficient resolution.
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Reflections on convex surfaces, such as corneas, are particularly rich in informa-

tion, as the divergent reflected rays sample the scene with a large field of view. From

a single image of the user’s eyes, we are able to recover the 3D geometry of the scene.

We designed a procedure for calibrating the catadioptric model defined by two corneal

spheres and a camera. We managed to calibrate precisely the position of the eyes with

respect to the camera with subpixel accuracy. We then use the corneal imaging model

to recover dense depth through stereo matching and further generate a 3D model of

the scene geometry, captured from the user perspective. This user perspective 3D

reconstruction could benefit AR applications by reducing artifacts due to different

viewpoints. Figure 1.9 shows the reconstruction result using our method of a desktop

scene using a corneal image.
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2 SIMULATED DISPLAY TRANSPARENCY ON HAND-HELD,

SELF-CONTAINED MOBILE DEVICES

2.1 Introduction

The advancement on the computational power of hand-held smartphones and

tablets has opened the door to augmented reality (AR) applications, which overlay

information onto the real world without the need for a dedicated device. For example,

a technician can receive graphical guidance from a table in front of a car engine. A

tourist can use their smartphone to receive navigational guidance overlaid directly

onto the view of the streets. In the case of telementoring, a general surgeon can

received guidance from a tablet placed above an operating field streaming annotations

authorized from an expert surgeon that is physically thousands of miles away.

Nowadays, hand-held mobile devices video camera captures the real world in high

resolution and show to the user on a high-quality display. Overlaying textual and

graphical annotations directly on this video feed provides the user with information

about the scene with more situational awareness. In this way, this additional infor-

mation is easy to parse, as each piece of information is right on top of the real world

element that it annotates. However, the part of the scene captured by the camera,

and shown on the display, usually has a larger field of view than that should be seen

if the display was not there. In other words, the video shown on the display is not

adapted to the user viewpoint, resulting in visual discontinuity and redundancy be-

tween the parts of the scene viewed directly and the parts viewed on the display. In

this case, the user has to map the guidance from the context of the display, to the

context of the real world scene observed directly, placing an additional cognitive load

on the user. This is especially true when the real world scene is constantly changing

(for example, as user move) and that the information need to keep updating accord-
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ingly. The user has to constantly switch back and forth between the world seen on

the display and seen directly, maintaining a mental mapping between the two worlds.

The user needs to translate the information received on the display to the real world.

Furthermore, since the device’s camera is closer than the user’s eye, directly using

camera’s view without any processing can lead to incorrect depth perception and

difficulty to properly estimate distances [5].

What is needed is a transparent display that lets the user see the real world as if

they are looking through a window. There is a perfect alignment with no discontinuity

and redundancy between the parts of the scene viewed on the display and viewed

directly by the user when using such a transparent display. This enables integrating

the AR annotations seamlessly into the field of view of the user.

One approach is to develop physically transparent displays. Large OLEDs of 40%

transparency have been developed [6], but are far away from full transparency, and

further improving on the transparency to let more light pass through is a substantial

challenge. Furthermore, to make the system remain in a self-contained and compact

form, the technology of making other parts of a smartphone or a tablet, such as the

battery, the CPU, and the GPU to be also transparent, or at least minimized. This

remains elusive in a foreseeable future.

Another approach, and the approach we take, is to simulate the transparency by

reprojecting the video feed acquired by the camera to the user’s viewpoint, before

showing them on the display. With this approach, the world displayed on screen ap-

pears aligned with the real-world viewed directly outside the screen’s borders, making

the display appear virtually transparent.

In this paper, we describe the algorithm of hand-held self-contained simulated

transparent display, as well as our prototype implementation. Under the assumption

that the geometry is far away, simulating a transparent display requires acquiring

the color of the scene, tracking the user’s head position, and rendering the color on

the display from the user’s viewpoint. Color acquisition, 3D rendering, and display

are solved problems since modern tablets and smartphones have capable back-facing
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cameras, GPUs, and LCDs. User head tracking technology is beginning to appear in

hand-held devices recently.

Our prototype is based on a smartphone with built-in head tracking support.

It is compact and fully self-contained, that all the acquisition and computation is

performed on board, with no need for tethered connection, which is an essential

requirement in an austere setting. It adapts to the user’s viewpoint, that we validated

the transparency error is less than 5% once the scene is beyond 6 m. It does not require

geometry acquisition capability, nor passive or active depth acquisition, making it

more suitable for outdoor scenes. Our prototype shows its usability for mobile AR

applications (Figure 2.1). All the first person view of the transparent display effect

shown in this paper were captured by wearing a head mounted camera (i.e. Google

Glass). Wearing the camera is not needed during the normal use of our prototype,

but is only needed to capture the first-person illustrative footage.

2.2 Prior Work

There exists prior work on simulated transparent display systems, one of the early

attempts is ARScope [7]. The user holds an opaque surface as the display like they

would hold a magnifying glass. The surface is made transparent to the user by

projecting an image on it that contains what the user would see in the absence of the

surface, using a head mounted projector. The system works by acquiring the scene

with two cameras, one head-mounted, and one attached to the hand-held surface that

captures the scene. A homography is computed between acquired images from the

two cameras based on correspondences, the homography is then used to warp the

scene-looking camera’s video feed to the user’s viewpoint, and the warped image is

projected onto the hand-held surface using the projector. This system demonstrates

the simulated transparency, but it suffers from a few important limitations such as

the reliance on additional hardware, such as head-mounted cameras and projectors,

and the reliance on tethering to a nearby workstation.
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Figure 2.1.: Actual first-person photographs of our transparent display prototype,

which is compact and it adapts to the user’s viewpoint, the transparency effect is

accurate for scenes that are far away .

Systems using passive surfaces requiring external projector to make it transparent,

and was later preceded by systems using an LCD that can display the image to

simulate transparency without the need of the projector. We summary prior simulated

transparent display systems based on LCD according to how they track the user’s

head, to how they acquire the scene geometry, and to whether or not they are tethered

or not.

Some systems track the user’s head with a head-mounted sensor [8,9]. The encum-

brance of a head-mounted device can be avoided by tracking the user with a camera

attached to the display. Some prior works assume that the scene is planar, so scene

geometry acquisition is simplified to the problem of registration of display pose with

respect to the scene proxy plane. Registration is done using either manually [10],

based on markers placed in the scene [9, 11, 12], or using features detected in the
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scene image [13]. Other systems reconstruct the scene geometry either actively using

on-board depth cameras [14], or passively from the scene video frames [15].

Take the advantage of the general-purpose and graphics computing capabilities

of modern mobile devices, recent systems attempt to untether the smartphones and

tablets from a nearby workspace and to perform all computation in situ [9,10], making

the systems to be more self-contained and compact.

Our prototype advances the state of the art in simulated transparent displays as

follows. It is the first untethered transparent display system that uses integrated

multi-camera head position tracking; the user’s head position is triangulated using

multiple front-facing cameras which improves z-tracking accuracy compared to prior

systems that use a single camera [16].

2.3 Simulated Transparent Display

To simulate a transparent display using a conventional LCD, one has to display

the image that the user would see in the absence of the display. The part of the scene

obstructed by the LCD has to be captured with a camera. Placing the camera at the

user’s viewpoint is not beneficial because the camera’s view would also be obstructed

by the LCD, in addition to the disadvantage of the user having to wear the camera.

Consequently, the camera has to be placed at a different viewpoint, beyond the LCD,

such that the scene is captured without occlusions. The frame captured by the camera

has to be reprojected to the user’s viewpoint, with the assumption of geometry is far

away. This is essentially a texture resampling, which is fast on GPUs. In Figure 2.2,

the parts of the scene in the display occlusion shadow are acquired with a color camera.

The user’s viewpoint is acquired with a tracker that triangulates the position of the

user’s head. The acquired color data is rendered from the user’s viewpoint to simulate

transparency.
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(a)

(b)

Figure 2.2.: Overview of our simulated transparent display.

2.4 Implementation and Results

We pursue the implementation of the simulated transparent display pipeline in

a form that is as compact as possible, without wires, and without the need for an

auxiliary workstation. All tablet and smartphone platforms now have high resolu-

tion video cameras and display. We have implemented the prototype which takes

advantage of a smartphone with integrated head tracking capability.



23

Figure 2.3.: Our prototype.

2.4.1 Prototype Implementation

The prototype leverages Amazon’s Fire Phone [17], a 4.7-inch smartphone with

four front-facing cameras dedicated to tracking the user’s head (Figure 2.3). The

device has four cameras to increase the chance that at least two of them have a good

view of the user’s head, free of finger occlusion. The head position is triangulated

from the frames of the two cameras that provide the best view of the user’s head.

Compared to tracking the user’s head with a single camera, triangulation has the ad-

vantage of better z tracking accuracy. The Fire Phone API provides a tracking frame

rate of up to 100Hz. The Fire Phone does not have depth acquisition capability.

We compute the transparency effect under the assumption that the scene is infinitely

far away, an assumption that is reasonable for outdoor scenes. As discussed in Sec-

tion 2.4.2, the transparency effect error is below 5% when the scene is farther than

6 m. As can be seen in Figures 2.1 and 2.3, our prototype is well suited for outdoor
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Figure 2.4.: Maximum transparency error of our prototype due to the infinite scene

depth assumption, as a function of actual scene depth.

scenes. It is very compact and portable, which readily supports driving and walking

navigation assistance applications. Although active depth acquisition outdoors is not

yet practical for smartphone-like devices, the benefit from depth acquisition would

be small since the scene is typically away from the user.

2.4.2 Quality of transparent display effect

Perfect transparency requires displaying exactly what the user would see if the dis-

play were not there. We analyze the quality of the transparent display effect achieved



25

Figure 2.5.: Maximum transparency error of our prototype due to head tracking error

in x- and z-direction, respectively.

by our prototypes both theoretically and empirically. We define the transparency

error ε at a point p on the simulated transparent display as

ε =
∥∥p− p0∥∥ /d (2.1)

The numerator is the distance in pixels between the actual position p and the

correct position p0 of the scene 3D point imaged at p, and d is the length of the

diagonal of the display in pixels.

Figure 2.4 shows the maximum transparency error for our prototype as a function

of the depth of the scene. The maximum error is defined as the largest error over the

four corners of the display. Because we assume that scene geometry is infinitely far

away from the display, the transparency error is only low when the scene geometry is

far from the display (e.g. ε < 5% beyond 6 m).



26

Figure 2.6.: Maximum transparency error of our prototype due to head tracking error

in x- and z-direction, respectively.

Figure 2.5 shows the maximum transparency error for our prototype as a function

of user head position tracking error in x (similar for y). Figure 2.6 shows the maximum

transparency error as a function of the head tracking error in z. Negative head

tracking errors in z indicate that the true head position is farther from the display

than tracked, while positive errors indicate that the true head position is closer to the

display than tracked. The user’s head is assumed to be 0.5 m away from the displays;

the scene is assumed to be 10 m away, which are typical use cases. The transparency

error depends more on the x than the z head tracking error. For our prototype, head

tracking is typically accurate to less than 10 mm in x and 30 mm in z, which translates

to maximum transparency errors of 8.4%.

All first person images were taken by having the user wear the Google Glass

head mounted camera [18]. In addition to their illustrative purpose, we also use
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(a) Reference image of the scene taken by Google

Glass.

(b) Image took by Google Glass while using the

transparent display.

(c) Overlay image.

Figure 2.7.: Empirical transparency error measurement. The red dots illustrate man-

ually selected salient features in the region outside of the transparent display, which

are used to align the two images. Overlay image is where the actual transparency

error is measured, using manually selected correspondences (green dots) in the region

covered by the transparent display.
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Table 2.1.: Empirical transparency errors for our simulated transparent display pro-

totype.

Scene Figure 2.3 Figure 2.1

Transparency error ε [%] 1.2 1.7

these first person images to estimate the transparency error empirically, as shown in

Figure 2.7. First, the user acquires an image I1 of the scene using the Google Glass

camera (Figure 2.7, left). Next, the user acquires a second image I2 of the scene while

holding up the simulated transparent display, which has been calibrated to generate a

transparent effect for the viewpoint of the Google Class camera (Figure 2.7, middle).

Since the user is likely to tilt their head slightly as they acquire the two images, I1 and

I2 have to be first aligned using the region outside the transparent display. We align

the two images by computing a homography between I1 and I2 using manually selected

corresponding salient features in the region outside the display. The homography is

used to compute an overlaid image I3 (Figure 2.7, right). The transparency error is

then computed by measuring the distance between manually selected corresponding

features in I3 that are within the transparent display region. Table 2.1 gives actual

transparency error values for our prototypes. These empirical results show that our

prototypes achieve a good transparency effect. The small error values indicate that the

actual head tracking errors are smaller than the upper bounds used in the theoretical

analysis above.

2.4.3 Frame rate and latency

As objects in the scene move and as the user’s head moves with respect to the

display, the transparent effect has to be recomputed to match the current configura-

tion. There is a delay, or latency, between when the change in the scene or in the

head position occurs and when the transparent effect is reestablished. The latency



29

is due to delays accumulated in the color acquisition, depth acquisition, depth hole

filling, triangulation, head tracking, head tracking communication, and rendering.

Color is acquired by the on-board color camera at 30 Hz our prototype. The user

head tracking on Fire Phone operates at 100 Hz. Rendering only takes 3 ms.

The average latency for our simulated transparent display prototypes is 120 ms.

The latency was measured using the Google Glass first person video feed by counting

the number of frames it takes to the transparency effect to converge after a change

in the scene or in the user’s head position occurs. We have also measured the latency

of displaying a video frame as it is acquired, without any processing. For the Fire

Phone, the device that underlies our prototype, this acquire-and-display latency is

114 ms. Consequently, most of the latency of our prototypes comes from the latency

with which the devices display the images they acquire. The additional latency due

to the processing required to achieve the transparent effect is less than a third of the

total latency. For our prototype, this additional latency is negligible (i.e. 6 ms out

of the total 120 ms), as the computation is simple. This indicates that, in addition

to integrating the user head tracking capability into next generation tablets and

smartphones, portable device manufacturers should pursue improving support for

AR applications by also reducing the acquire-and-display latency of their devices.

2.4.4 Limitations

As discussed, our prototype does not acquire scene geometry, so an accurate trans-

parent effect requires the scene to be far away. Also, displays exhibit latency. An

important limitation arises from the fact that the transparent display caters only to

a single viewpoint. Our transparent displays can cater to one of the eyes, or to the

midpoint of the interpupillary segment. The lack of disparity between the images

shown to the user’s eyes hinders depth perception. Furthermore, when the scene is

far away from the display and the display is close to the user, the user cannot focus

both on the scene and on the display.
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2.5 Conclusions and Future Work

We have demonstrated the feasibility of a simulated transparent display that is

completely self-contained, i.e. untethered. The user does not have to wear any sensors

and the scene does not have to be enhanced with markers. We have developed a

prototype that takes advantage of user tracking capability on the emerging mobile

platforms. We believe that this function will be commonplace for the next smartphone

and tablet generations, in support of powerful AR applications.

In addition to improving our simulated transparent displays to alleviate the lim-

itations discussed above, future work also includes using the transparent displays in

actual AR applications such as car and pedestrian navigation assistance and surgical

telementoring.
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3 EFFECTIVE WORKSPACE VISUALIZATION IN AR TELEMENTORING

In this chapter, we describe our research towards achieving an effective visualization

of the workspace for the mentor in AR-based surgical telementoring. The fundamen-

tal challenge is to capture the workspace from an inherently different viewpoint than

that of the beneficiary of the visualization, i.e. than that of the mentor, and then

making this visualization as useful as effective as possible by connecting the acqui-

sition viewpoint to the mentor’s viewpoint. We have investigated two approaches.

The first approach captures the workspace, i.e. the operating field, using an overhead

camera (Section 3.1). The second approach investigates capturing the workspace

using a video camera built into the mentee’s AR headset, which poses the main chal-

lenge of stabilizing the visualization by attenuating the abrupt changes caused by the

mentee’s head motions (Section 3.2).

3.1 A First-Person Mentee Second-Person Mentor AR Interface for Surgical Tele-

mentoring

3.1.1 Introduction

As surgery continues to specialize more narrowly and deeply, it becomes more

and more challenging to provide all needed surgical expertise at all points of care.

Surgical telementoring is a promising approach for transmitting surgical expertise

over large distances promptly and efficiently. Consider a rural surgery center staffed

with only a general surgeon. An expert surgeon from a major urban hospital could

”virtually scrub in” to assist with a procedure that the general surgeon is not en-

tirely comfortable performing alone. Consider the scenario of a critical patient who

cannot be urgently transported to a facility where the required surgical expertise is
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available. This could be the case, for example, in a combat zone where a compart-

ment syndrome relieving fasciotomy procedure has to be performed urgently at a

forward operating base to save a patient’s leg, and evacuating the patient is too slow

or too dangerous. An orthopaedic trauma surgeon from a major military hospital

could assist from thousands of miles away via telementoring. As a third example, a

novel surgical procedure can be rapidly disseminated through surgical telementoring.

Finally, telementoring could also benefit surgical training, with a single instructor

working in parallel with multiple surgical residents, providing assistance on demand,

to the trainees who need it.

The conventional approach for surgical telementoring is based on a telestrator that

allows a remote mentor to annotate graphically a video feed of the surgery, which is

then shown to the mentee on a nearby display. This requires the mentee to shift focus

away from the surgery, and to map mentally the instructions from the nearby display

to the surgical field, which can lead to surgery delays and even errors. Augmented

Reality (AR) is a promising alternative for surgical telementoring because it allows

to integrate the mentor-authored annotations directly into the field of view of the

mentee. The mentee sees the annotations as if the mentor actually drew them onto

the surgical field, which avoids focus shifts and the high cognitive load of having to

map annotations to the surgical field.

One possible AR interface for surgical telementoring is a transparent display that

is placed between the mentee and the patient and that shows the mentor annota-

tions overlaid onto the surgical field. However, truly transparent displays are not yet

available. Video see-through transparent displays simulate transparency by showing

the real world scene with the help of a video camera. Such a display supports only

monoscopic viewing of the surgical field, which reduces depth perception and can

decrease surgical performance. Furthermore, the transparent display approach poses

the challenge of work-space encumbrance, as the surgeon has to reach around the

display. An alternative interface is an optical see-through AR head-mounted display
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(HMD). The AR HMD avoids workspace encumbrance and it allows the mentee to

see the surgical field directly, with natural depth perception.

We are a group of computer science and industrial engineering researchers, trauma

and orthopaedic trauma surgeons, and surgery educators. In this application paper

we describe a novel system for surgical telementoring based on an AR HMD, as

well as an initial evaluation in a study where surgery residents performed lower-leg

fasciotomies on cadaver patient models.

Figures 3.1 and 3.2 gives an overview of our system. The surgical field is acquired

with an overhead camera whose feed is sent to the remote mentor site where it is

displayed on a custom full-size interaction table. The mentor annotates the surgical

field using touch-based gestures. The annotations are sent to the mentee site where

they are integrated into the mentee’s view of the surgical field using an AR HMD. The

annotations are converted from 2D to 3D by projection from the overhead camera

view to the 3D geometry of the surgical field acquired by the AR HMD. In this way,

the remote mentor can annotate the surgical field in real time, and the annotations

are shown to the mentee anchored to the surgical field, with correct depth perception.

Our AR interface provides a first-person view to the mentee, who sees the annotations

from their own viewpoint, and a second-person view for the mentor, who sees the

surgical field and authors annotations from the overhead camera viewpoint.

We have conducted a user study to test our system with fourteen surgery resi-

dents and six medical students, who were asked to perform a lower-leg fasciotomy

on a cadaver patient model. The participants were assigned to two groups: a con-

trol group (CG), which performed the fasciotomy after studying the procedure from

printed surgery course materials, and an experiment group (EG), which performed

the fasciotomy under telementoring guidance using our system. Participant perfor-

mance was rated by an expert surgeon who witnessed the procedure and quantified

performance using an Individual Procedure Score (IPS) metric. The EG participants

received an IPS score 16% higher than the CG participants. The two groups were also

evaluated using a system usability questionnaire. The answers to all eight questions
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Figure 3.1.: Mentee subsystem of our telementoring system, based on an AR HMD.

indicate a usability advantage for our system, and for four of the questions the advan-

tage was statistically significant. Finally, the two groups were also evaluated based

on self-reported confidence in the knowledge of the fasciotomy procedure, before and

after the study. The EG group showed statistically significant growth for all four

confidence metric questions, and they ended up with a higher confidence level than

the CG group.
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Figure 3.2.: Mentor subsystem of our telementoring system, based on a full-size

touch-based interaction table.

3.1.2 Prior Work

The conventional approach for surgical telementoring is based on a telestrator.

The live video feed of the surgical field is transmitted to the remote mentor, who

annotates it, the annotations are sent back to the mentee, and the annotated video

is shown to the mentee on a nearby display [19]. Such annotations are not naturally

seen by the mentee due to the lack of depth perception, due to the lack of parallax,

and due to occasional occlusions. Another shortcoming is the need for the trainee to

shift focus repeatedly from the surgical field to the nearby display. Each time, the

mentee has to remember the position and type of individual annotations, and then to

map them from memory onto the actual surgical field. These focus shifts increase the

cognitive load of the mentee, which can translate to surgery delays or even surgical

errors [19].
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AR interfaces can provide a natural approach for overlaying annotations into

mentee’s field of view, as if the mentor actually drew them there, thus eliminat-

ing focus shifts. This potential of AR in surgery has been noted for a long time [20].

The recent leap forward of AR technology has intensified anew research efforts aimed

at bringing AR into the operating room.

There are two major options for designing the AR interface: based on a trans-

parent display interposed between the mentee and the patient, and based on an AR

HMD [21]. In previous work we have explored the transparent display option [3]. A

video-see through display, implemented by a computer tablet, was suspended above

the surgical field. The camera built into the tablet acquires the surgical field, the

video feed is sent to the mentor, and the mentor uses a touch-based interface to an-

notate the surgical field. The annotations are sent back to the trainee site, shown on

the tablet, and superimposed onto the live view of the surgical field. The trainee can

then follow the instructions from the mentor to complete the surgery, without having

to switch focus away from the surgical field. Compared to a conventional telestrator

system, a user study revealed that our system led to 57% smaller surgical port and

instrument placement errors, and to 65% fewer focus shifts. One of the shortcomings

of such a tablet-based AR interface is the lack of depth perception that ensues from

the monoscopic visualization of the surgical field. A second important shortcoming

is the workspace encumbrance brought by the tablet, which can require the mentee

to deviate from their preferred arm and hand poses and motions during surgery.

In this paper we investigate the use of an optical see-through AR HMD interface,

which has the potential to address these shortcomings. The mentee sees the surgical

field directly, with natural depth perception. The annotations are drawn in 3D, with

correct parallax between the left and right eyes, so the annotations are seen with depth

perception as well. Furthermore, the HMD does not interfere with the mentee’s arm

motions. Prior work investigation of the use of AR HMD interfaces in the operating

room have found benefits in the context of overlaying a static image or model onto
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the patient [22,23], and of overlaying a visualization of patient specific data acquired

with an imaging system [24].

3.1.3 Surgical Telementoring through Head-Mounted Display Augmented Reality

The goal of surgical telementoring is to allow the mentee to see the mentor-

authored annotations naturally, as if the mentor actually drew them on the patient.

We have developed a system that allows the mentor to see and annotate the surgical

field, and that integrates the annotations into the mentee’s field of view of the surgical

field. We first discuss the design of the AR interface at the mentor and mentee that

enables telementoring, and then we give an overview of the calibration and operation

of our system that implements the AR interface.

AR Interface Design

We developed the AR interface of our surgical telementoring system based on the

following considerations. First, we wanted the mentee to see the annotations directly

overlaid onto the surgical field. This was satisfied by using an AR interface. The

second consideration was to provide the mentee with depth perception for the surgical

field and the annotations. This was satisfied by resorting to an optical see-through

AR HMD, through which the surgical field can be seen directly, and which visualizes

the annotations stereoscopically. The third consideration was to avoid encumbering

the mentee workspace, which reinforced our choice for an HMD AR interface, as

opposed to interposing a display in between the mentee and the patient.

The fourth consideration was to provide the mentor with an appropriate visual-

ization of the surgical field. Our first attempt was to use the on-board camera already

built into the AR HMD. However, in our preliminary tests, such a visualization proved

to be ineffective, as it changes frequently, abruptly, and substantially as the mentee

moves their head. This unstable visualization of the surgical field is particularly dis-

concerting to the mentor when trying to draw an annotation. Furthermore, directly
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Figure 3.3.: System diagram. Solid and dotted arrows correspond to wired and

wireless communication, respectively. Red illustrates system calibration, and black

illustrates system operation.

inheriting another user’s first person view can be disorienting and it can even induce

nausea [25]. To avoid these problems, we decided to deploy an external overhead

camera that captures the surgical field from a stationary position above the surgical

field. In conclusion, our interface uses a first person view for the mentee and a second

person view for the mentor.
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Figure 3.4.: Calibration process. The overhead camera (green ray visualization) is

registered with respect to the camera built into the AR HMD (red rays) using a

calibration checkerboard.

System Calibration

Figure 3.3 gives an overview of our surgical telementoring system (Figures 3.1

and 3.2). We describe our system using the ξA,B notation for the SE(3) transforma-

tion between coordinate systems A and B.

There is a one-time calibration process after which the system becomes opera-

tional. We use an untethered, self-tracking AR HMD, which, for every frame, pro-

vides the position and orientation of the HMD with respect to the world. The goal

of the calibration stage is to determine the pose ξoc,w of the overhead camera (OC) in

the world coordinate system (W) of the AR HMD. Our AR HMD has a built-in video
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camera which we leverage for this calibration process. We use a standard calibration

procedure [26] that first calibrates the intrinsics of the overhead and built-in cameras.

Then the overhead and built-in camera extrinsics are found by showing a calibration

checkerboard to both cameras simultaneously (Figure 3.4). The overhead camera

sends its image to the host computer (c1 in Figure 3.3), where the checker corners are

detected and the pose ξoc,cp relative to the checkerboard pattern (CP) is computed by

solving a perspective-n-point problem [27]. The pose of the AR HMD relative to the

checkerboard pattern ξhmd,cp is computed similarly. ξoc,cp is sent to the AR HMD (c2),

where the pose of the overhead camera ξoc,w is finally computed with the following

concatenation of transformations (Equation (3.1)), where ξhmd,w is the HMD pose

tracked for the frame that captures the checkerboard pattern. ξoc,w is stored on the

AR HMD and used during operation to visualize the mentor annotations.

ξoc,w = ξoc,cp · ξ−1hmd,cp · ξhmd,w (3.1)

System Operation

The overhead camera captures a live video feed of the surgical field (r1 in Fig-

ure 3.3), which is sent to the remote mentor via the Internet (r2). The feed is received

at the mentor subsystem (r3), where it is displayed on the touch-based interaction

table (r4). The mentor examines the surgical field, zooms in and pans the view digi-

tally, and authors annotations as needed using touch-based gestures. The annotation

authoring commands are collected (r5) and sent to the mentee subsystem via the

Internet (r6). The AR HMD is connected to the Internet and directly receives the

annotation commands (r7), which it uses to draw the annotations for the mentee as

follows.

Given a 2D annotation point p in the overhead camera image plane, its 3D position

P is computed by unprojection to the overhead camera ray roc, by transforming the

ray to world coordinates rW = ξoc,wroc, and by intersecting the ray with the surgical
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Figure 3.5.: Annotation projection. The incision line, the scalpel tip, and the textual

label stem tip are projected from the overhead camera perspective onto the geometry

of the surgical field. The incision line lies on the patient, whereas the scalpel and the

label annotations float above the patient.

field geometry G, i.e. P = rw ∩ G. We approximate G with the coarse geometric

model of the scene acquired by our AR HMD. Figure 3.5 illustrates the process of

mapping 2D authored annotations to 3D by projection onto surgical field geometry

along overhead camera rays.

3.1.4 Results and Discussion

We implemented our system using a Microsoft HoloLens AR HMD which has

the advantages of being untethered, allowing the mentee to move freely, of having

a built-in video camera, allowing for overhead camera calibration, of self-tracking,

allowing annotation anchoring as the mentee moves, and of acquiring a geometric

proxy of the scene, allowing for annotation projection. The AR HoloLens display has

a 1, 280×720 resolution and a refresh rate of 60Hz. An important shortcoming of the

HoloLens is the small field of view of the AR display (i.e. about 30 by 17.5 degrees),

which restricts annotation display to the center of the field of view of the mentee.
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The overhead camera is a Logitech PTZ Pro 2, acquiring 1920× 1080 pixel frames at

30fps. Audio communication between the mentor and the mentee was provided with

a conventional phone in speaker mode. The interaction table at the mentor was built

from a multi-touch interaction Sharp LCD (1920 × 1080 resolution, 60 fps, physical

size of 52.3× 29.4 inches), connected to a PC.

We first discuss system performance based on technical metrics, then we describe

a user study where we tested our system in the context of fasciotomy telementoring,

and we end the section with a discussion of the limitations of our system.

System Performance

One important aspect of our real-time visual communication system is latency.

One latency is the delay with which the overhead camera video feed is transmitted

from the mentee site to the mentor site. We have measured ping times from 50ms

within our Purdue servers, to over a second from Purdue to universities in South-

East Asia and Australia. The encoding and decoding of the video stream are done

with negligible delay. In our experiments network bandwidth was not a concern as it

was sufficient to transmit the overhead camera feed at full resolution with levels of

compression that did not affect video quality. Another latency is the delay between

the mentee head movement and the required repositioning of annotations, which for

our AR HMD is an almost unnoticeable 16ms. In other words, when the mentee

moves their head, the annotations appear stationary in the 3D world, and do not

“follow” the mentee’s view direction.

The annotation display error is the cumulative effect of camera calibration, mentee

head tracking, surgical field geometry, and HMD fitting errors. We have measured the

annotation display error empirically, by placing a physical marker A in the surgical

field, asking the mentor to annotate the position of the marker in the overhead camera

feed, and then by asking the mentee to place a second physical marker B at the

location where they see the annotation drawn. The annotation display error is the
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distance between markers A to B. By marking the entire surgical field, we measured

a maximum and average annotation display error of 1.60cm and 1.22cm, respectively.

As the direction and length of the AB segment is consistent over the surgical

field, we have devised an optional additional calibration procedure that improves

annotation display accuracy under the assumption that most of the systematic error is

due to an consistent overestimation of scene geometry by the HoloLens. Indeed, using

the built-in Kinect-like depth camera, the HoloLens builds an approximate geometric

model of the scene that consistently overestimates scene geometry, by wrapping a

coarse geometric mesh over the actual detailed geometry. The additional calibration

procedure is based on interaction between mentor and mentee. The mentor places

an annotation and then asks the mentee to place and hold their index where they

see the virtual annotation. The annotation display error is apparent to the mentor

in their overhead camera view as a distance between the mentee’s finger tip and

where the mentor drew the annotation. Using this visualization, the mentor shifts

the approximate geometric model of the surgical field to reduce the annotation display

error.

User Study

We have conducted a user study at the Indiana University School of Medicine

with n = 20 participants: 14 surgery residents and 6 medical students. The task

was a four-compartment release by dissecting lower-leg fascia on cadaver models.

Such a fasciotomy intervention is an emergency procedure for treating compartment

syndrome, which is a lack of blood circulation to the limb due to excessive swelling as

the result of blunt trauma. If left untreated, compartment syndrome leads to the loss

of the affected limb. Fasciotomies remain challenging surgical procedures. In a recent

systematic review on the surgical management of chronic exertional compartment

syndrome, the overall success rate was reported at 66%, the satisfaction rate was 84%,

and the rate of return to previous or full activity was 75% [28]. Furthermore, symptom
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Figure 3.6.: EG participant in the fasciotomy user study. The virtual incision line and

instruments are only seen by the participant, and they were added here for illustration

purposes.

recurrence was up to 44.7%, reoperation rate up to 19%, and overall complication rate

was 13%.

Participants were randomly assigned to one of two groups: a control group (CG),

which received instruction on how to perform the fasciotomy from an illustrated

brochure, i.e. the Advanced Surgical Skills for Exposure in Trauma [29] course mate-

rial on fasciotomies, and an experiment group (EG), which received real-time guidance

with our telementoring system. The EG group did not receive any fasciotomy instruc-

tion prior to actually performing the procedure. Figure 3.6 and Figure 3.7 show a

participant in the experiment group and control group, respectively. The additional

interactive calibration procedure was performed by the mentor with each mentee, as

the procedure depends on the actual surgical field geometry, and the cadaver lower

leg models had great shape and size variability.
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Figure 3.7.: CG participant in the fasciotomy user study.

The two groups were compared based (1) on expert rating, (2) on self-reported

usability, (3) on self-reported confidence in procedure knowledge, and (4) on procedure

completion time. To analyze the data, we first check the data normality assumption

using the Shapiro-Wilks test [30] and in our case no data was normal. For the unpaired

(between subject) data (1, 2 and 4), we use the Mann-Whitney U test [31] to test

for statistical significance. For the paired (i.e. within subject) data (3), statistical

significance is tested with the Wilcoxon signed-rank test [32].

(1) An expert surgeon evaluated the performance of each participant during and

after the experiment using the Individual Procedure Score metric [33], which we

adapted to fasciotomy. IPS is a test that assesses whether a training course is being
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Table 3.1.: Self-reported support method usability. P-values with an asterisk (*)

represent a statistically significant difference between the two groups. For questions

6 and 8, a lower score is indicates a higher preference.

Question EG CG p-value

[1] Sufficient information provided 5.0 ±1.00 4.0 ± 0.50 0.024*

[2] Instructions easy to follow 5.0 ± 1.00 4.0 ± 1.25 0.018*

[3] Instructions conveyed effectively 4.0 ± 1.25 4.0 ± 1.00 0.415

[4] Cleared procedure doubts 4.0 ± 1.25 3.0 ± 1.50 0.063

[5] Expedited procedure completion 5.0 ± 2.25 3.5 ± 2.25 0.111

[6] Generated frustration 2.0 ± 1.25 3.0 ± 2.00 0.037*

[7] Better than side-by-side mentoring 2.0 ± 2.00 2.0 ± 1.00 0.139

[8] Worse than side-by-side mentoring 2.5 ± 2.25 4.0 ± 2.00 0.028*

effective on improving the overall surgical expertise of a participant. The test includes

an objective analysis of the participant’s execution of the required procedural steps,

as well as a subjective analysis to identify any errors that occur during procedure

execution. EG participants received a median IPS of 81.15 with an interquartile range

of ± 23.25, which was 16% higher than for CG participants (69.55 ± 33.40). The

interquartile range is defined by the score received by the 25th percentile participant

and the 75th percentile participant, and was used here as the data pointed to non-

normality. However, the greater EG IPS scores were not statistically significant

(p = 0.26).

(2) The two groups were compared based on self-reported usability through a

five-level Likert scale questionnaire (Table 3.1). EG participants reported a higher

preference for their condition than CG participants. For four out of the eight ques-

tions, the difference was statistically significant.
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Table 3.2.: EG participant self-reported confidence scores. All p-values report a

significant improvement.

Confidence Assessment Aspect
Self-Reported Confidence

Difference
p-value

Identify anatomical landmarks 1.0 ± 1.25 0.014*

Knowledge of procedural steps 1.0 ± 1.00 0.006*

Instrument handling technique 1.0 ± 1.25 0.014*

Perform procedure alone 1.5 ± 1.00 0.006*

(3) The two groups were also compared in terms of self-reported confidence in

performing a fasciotomy procedure. Table 3.2 and Table 3.3 report the increase in

participant confidence level from before to after the experiment, for EG and CG

participants, respectively. The confidence scores are assigned on a scale from 1 to 5.

EG participants reported a statistically significant improvement in all four confidence

categories, whereas CG participants reported statistically significant improvements

in only half of the categories. Table 3.4 and Table 3.5 provide the initial and final

confidence levels, for the two participant groups. The CG participants were more

confident than the EG participants in their knowledge of the procedure before the

task, but EG participants were more confident after the task.

(4) EG participants completed the procedure marginally faster (i.e. 4% faster,

1,379s median completion time with a ± 380s interquartile range) than CG partici-

pants (1,444s ± 685s).

This first study indicates that our AR surgical telementoring has the potential to

provide surgical expertise remotely in an effective way. Not all advantages detected

are statistically significant. One reason is the great variability and low number of par-

ticipants. Another reason is that the remote mentor was a faculty member overseeing

the surgery residency program, who was known to the participants, which added sig-
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Table 3.3.: CG participant self-reported confidence scores. p-values with an asterisk

(*) represent a statistically significant improvement.

Confidence Assessment Aspect
Self-Reported Confidence

Difference
p-value

Identify anatomical landmarks 1 ± 1.00 0.022*

Knowledge of procedural steps 1 ± 2.00 0.036*

Instrument handling technique 0 ± 1.00 0.225

Perform procedure alone 1 ± 0.25 0.11

Table 3.4.: Participants’ self-reported confidence before the experiment.

Confidence Assessment Aspect EG CG

Identify anatomical landmarks 3.00 ± 1.25 3.50 ± 1.00

Knowledge of procedural steps 3.00 ± 0.50 2.50 ± 2.00

Instrument handling technique 3.00 ± 2.00 4.00 ± 1.50

Perform procedure alone 2.00 ± 1.25 3.00 ± 1.25

Table 3.5.: Participants’ self-reported confidence after the experiment.

Confidence Assessment Aspect EG CG

Identify anatomical landmarks 4.00 ± 1.25 4.00 ± 1.00

Knowledge of procedural steps 4.00 ± 0.00 3.50 ± 1.25

Instrument handling technique 4.00 ± 2.00 4.00 ± 2.00

Perform procedure alone 3.50 ± 1.00 3.50 ± 1.50

nificant performance pressure on EG participants, whereas CG participants worked

without the pressure of being evaluated by one of their professors. Furthermore, the
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telementoring sessions turned into practical lessons of surgery, which included revis-

iting of fundamental concepts in anatomy and in surgical procedures. This was of

course not the case for CG participants. Not counting the tangential teaching mixed

in with fasciotomy telementoring is difficult to do objectively, but it is likely to reduce

the overall procedure completion times considerably for EG participants.

Limitations

Both the mentee and the mentor complained occasionally that the annotation

showing the incision line would obstruct the view of the actual incision, as the incision

progressed as it was executed. A possible solution for this problem that we will explore

in a future study is to ask the mentee to transfer the annotation on the actual skin

of the patient with a surgical marker before actually performing the incision.

Another limitation of our system is that the AR HMD is not very bright, and

annotations appear faint when the background is brightly lit, as it is the case of

surgical fields illuminated by surgical lights. A video see-through AR HMD is able

to have opaque annotation pixels that completely erase the real world pixels, but an

optical see-through AR HMDs can only draw semi-transparent annotations on top of

the user’s view of the real world.

Our system inherits additional limitations of the AR HMD, such as a small field

of view of the active part of the display, which confines annotation display to the

center of the mentee’s field of view. Another limitation is the poor ergonomics of

operating with a heavy and sometimes poorly fitting contraption attached to one’s

head. Several participants reported back and neck strain, especially the ones with

little surgical experience who would tilt their head forward, moving the weight of

their head and of the display away from their body.
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3.1.5 Conclusions and Future Work

In this application paper we have presented the design and implementation of a

surgical telementoring AR interface, and we have validated our system in a user study

where participants performed a cadaver-leg fasciotomy under telementoring. Our

system promises surgical telementoring benefits, although not all benefits measured

were statistically significant in this initial study.

Another direction of future work is to improve the mentor’s sense of presence in

the operating room. One option is to directly use the video feed acquired by the

AR HMD from the mentee’s viewpoint. As discussed in Section 3.1.3, the challenge

is to stabilize this first-person view. This not only simplifies the system, but also

potentially increases the accuracy of the annotations, by authoring annotations in a

view similar to the one from where they will be seen. Another option is to not only

provide a video feed of the surgery, but actually an RGBZ stream of frames with per

pixel depth, which allows the mentor to choose his viewpoint interactively, to draw

annotations more accurately in 3D (e.g. a non-planar incision curve), and even to

visualize the surgical field immersively, e.g. with a Virtual Reality headset.

Telementoring could also benefit from extending the types of annotations sup-

ported with the ability to send a visual depiction of the mentor’s hands, as surgical

instruction includes mid-air gestures that sketch, for example, the use of an instru-

ment. We foresee that the quickest path to achieving this is to capture the mentor

hands with a video stream, to segment them, and to display them at the mentee.

Our current surgical telementoring system relies on a high-quality network, which

is not always available in the case of austere environments. For this, the system

should be enhanced with AI mentoring capabilities that can provide basic assistance

to the mentee when the network connection is failing, or is not available at all. One

of the major challenges is to recognize automatically the current state of the surgery,

a difficult case for computer vision algorithms as surfaces are fragmented, with view-

dependent reflective properties, with complex occlusions, and deforming rapidly.
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Beyond system refinements, additional user studies are needed to specialize the

interface and to optimize the surgical telementoring benefits of our system in the

context of many other types of surgical procedures.
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3.2 Robust High-Level Video Stabilization for Effective AR Telementoring

3.2.1 Introduction

As science and technology specialize ever more deeply, it is more and more chal-

lenging to gather in one place the many experts needed to perform a complex task.

Telecollaboration can transmit expertise over large geographic distances promptly

and effectively [34].

A special case of telecollaboration is telementoring, where a mentee performs a

task under the guidance of a remote mentor. One approach is to rely only on an

audio channel for the communication between mentor and mentee. Telestrators add

a visual channel—the mentor annotates a video feed of the workspace, which is then

shown to the mentee on a nearby display [35]. The challenge is that the mentee has

to switch focus repeatedly away from the workspace, and to remap the instructions

from the nearby display to the actual workspace, which can lead to a high cognitive

load on the mentee, and ultimately to task completion delays and even errors [19].
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Augmented Reality (AR) technology can solve this problem by directly integrating

the annotations into the mentee’s field of view. The mentee sees the annotations as

if the mentor actually drew them on the 3D geometry of the workspace, eliminating

focus shifts [36].

A problem less studied but nonetheless of great significance is conveying the

workspace to the remote mentor effectively [21, 37]. One approach is to acquire

the workspace with an auxiliary video camera, and to send its video feed to the

mentor [38]. The approach requires additional hardware, and the auxiliary camera

captures the workspace from a different view than that of the mentee. Effective tele-

mentoring requires the mentor to see what the mentee sees for the instructions to be

as relevant and easy to understand as possible [39]. For example, the mentor might

annotate a part of the workspace that is not visible to the mentee due to occlusions,

or, conversely, the mentor might not see the part the mentee is working on.

With the advancement of AR, self-contained optical see-through head mounted

displays (HMDs) are now available. Such HMDs typically incorporate a camera,

which can capture the workspace from a viewpoint close to the mentee’s viewpoint.

However, simply providing the mentee first-person video to the mentor is insuffi-

cient for effective telementoring [40]. As the mentee changes head position and view

direction, the mentor’s visualization of the workspace changes frequently and sub-

stantially, which adversely affects the mentor’s understanding of the scene. This in

turn degrades the quality of the guidance provided by the mentor, and ultimately the

mentee’s performance. For example, when the mentee looks to the left, the workspace

visualization shifts by hundreds of pixels to the right; when the mentee moves to the

other side of the workspace as might be needed for best access during task perfor-

mance, the visualization rolls 180◦, which results in an upside-down visualization

that is frustratingly difficult to parse. What is needed is a robust stabilization of

the mentee first-person video, such that it can provide an effective visualization of

the workspace to the mentor. The needed high-level stabilization has to neutralize

the effects of substantial rotations and translations of the acquisition camera, and
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cannot be provided by prior work low-level stabilization techniques that remove jitter

in hand-held acquired video.

In this paper we present the design, implementation, and evaluation of a method

for robust high-level stabilization of a video feed acquired from a mentee’s first-person

view, in order to provide a remote mentor with an effective visualization of the

mentee’s workspace. The output visualization has to be (1) stable, i.e. to show

the static parts of the scene at a constant image location, (2) real-time, i.e. to keep

up with the input feed, and (3) of high quality, i.e. without distortions, tears and

other artifacts. In addition to conveying the workspace to the mentor, the output

visualization should also be a (4) suitable canvas on which the mentor can author an-

notations to provide guidance. The paper investigates three approaches and adopts

projective video texture-mapping onto a planar proxy of the workspace geometry, as

the approach that best satisfies the design requirements. Figure 3.8 illustrates the

robustness of our stabilization method on a variety of challenging workspaces.

We evaluated the effectiveness of our stabilization method in two controlled within-

subject user studies. One study (n = 30) investigated workspace visualization quality

by asking participants to find matching numbers in a video of a workspace anno-

tated with numbers. The study used three workspaces: a Sandbox, a Workbench,

and an Engine (the Workbench and the Engine are shown in Figure 3.8 without the

numbers). In the control condition, participants watched the original (unstabilized)

video acquired with the HMD camera; in the experimental condition, the video was

stabilized with our method, which showed significant advantages in terms of task

performance and participant workload. For the sandbox workspace we compared our

method to a perfectly stable video acquired from a tripod, and there were no signifi-

cant differences in performance. The second study tested our method in the context

of surgical telementoring, where participants (n = 20) practiced cricothyroidotomy

(cric) procedures on patient simulators (Figure 3.9). The study was conducted in an

austere setting of an empty room, with the patient simulator on the floor, with poor

visibility achieved with a fog machine, and with loud combat-like noises. Compared
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Figure 3.8.: Original (unstabilized) and stabilized video frame pairs for four sample

workspaces. The videos are acquired with the camera built in an AR HMD worn

by a user who walks around and rotates their head. Our method alleviates the view

changes in the original first-person videos, which results in a stable visualization of the

workspace, suitable for a remote collaborator, e.g. a mentor. Our method can handle

complex 3D geometry (all examples), large view changes (Workbench, Lobby), large

depths (Lobby), and dynamic geometry, complex reflectance properties, and outdoor

scenes (running Fountain).

to audio-based telementoring, the stabilized video telementoring improved surgical

performance significantly.

3.2.2 Prior Work

The widespread availability of digital cameras and of broadband internet connec-

tivity enable telecollaboration by acquiring the local workspace with a video camera

whose feed is transmitted to a remote site. An important design decision is where to

place the camera in order to provide an effective remote visualization of the workspace.
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Figure 3.9.: Cricothyroidotomy training in austere environment using video feed sta-

bilized with our method. The mentee wears an AR HMD that acquires the surgical

field (top left), the video feed is sent to the mentor where it is stabilized (rows 2-3,

raw left, stabilized right), the mentor annotates the stabilized feed (top right), and

the annotations are sent to the mentee where they are displayed with the AR HMD.

The first frame (grayscale) is used for context.

One approach is to mount the camera on a tripod. This approach was used to

build a surgical telementoring system where the operating field was acquired with a

ceiling-mounted overhead camera [38]. The top view is substantially different from

the mentee’s view, which reduces telementoring effectiveness, as a mentor can best

guide a mentee when the mentor sees what the mentee sees, and when the mentor

issues instructions in the mentee’s frame of reference. Another surgical telementoring
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system acquires the operating field with the back-facing camera of a computer tablet

mounted with a bracket between the mentee and the patient [3]. The operating field

is acquired from a view similar to that of the mentee, but the tablet creates workspace

encumbrance. A shortcoming common to both systems is that the operating field is

acquired from a fixed view. A second approach is to rely on the local site collabora-

tor to acquire the workspace with a hand-held video camera, changing camera pose

continually for a good visualization for the remote collaborator [41]. The problem is

that the local collaborator becomes a cameraman, which hinders collaboration.

A third approach is to rely on a head mounted camera [42]. This brings freedom

to the local collaborator, who can focus more on the task. A 360◦ video camera

captures more of the environment and provides the remote collaborator with more

awareness of the local space [43]. One disadvantage is having to wear the head

mounted camera. The disadvantage has been alleviated as internet-connected cameras

have been miniaturized, e.g. telecollaboration using Google Glass [44]. We have

adopted this third approach. In our context, having to wear the head-mounted camera

is not an additional concern since the mentee already has to wear an AR HMD.

The fundamental challenge of acquiring the workspace with a head-mounted cam-

era is that the visualization of the workspace provided to the mentor changes abruptly,

substantially, and frequently as the local collaborator moves their head during task

performance. Such a visualization can lead to a loss of situational awareness, to a

high cognitive load, to task performance delays and errors, and to cybersickness. Re-

searchers have investigated addressing this challenge by attempting to stabilize the

video such that it does not change as the local collaborator moves their head.

One approach of stabilization is to use optical flow to track features over the

sequence of frames, to define homographies between consecutive frames using the

tracked features, to register all frames in a common coordinate system, and to stabilize

each frame by 2D morphing it to the common coordinate system [42]. A second

approach is to acquire a 3D geometric model of the workspace, to track the video

camera, and to projectively texture map the model with the video frames, from a



57

constant view. One option for acquiring the model is SLAM [41], another option is

to use real-time active depth sensing. As we designed our stabilization technique, we

investigated both of these approaches, as discussed in Section 3.2.3.

Researchers have developed low-level video stabilization techniques designed to

remove small, high-frequency camera pose changes, such as the jitter of a hand-held

camera [45, 46], or of a bicycle helmet mounted camera [47]. However, the large

amplitude camera pose changes remain. If a hand-held camera is rolled 30◦, low-level

stabilization preserves the 30◦ roll, striving for a smooth angle change from 0◦ to 30◦.

In contrast, high-level stabilization aims to remove the 30◦ roll altogether.

Beyond technical challenges, researchers have also investigated video telecollab-

oration design from a user perspective, to optimize collaboration effectiveness. The

problem of obtaining a good view of the workspace has been studied extensively in

the context of telemedical consultation [48], where fixed, head-mounted, or hand-held

cameras, 2D (view dependent) or 3D (view independent) interfaces each have ad-

vantages and disadvantages. A recent study finds that giving remote collaborators

independent views is more beneficial than letting the local participant choose the

view for the remote participant [49]. The benefit of view independence were also

noted in the context of shared live panorama viewing [50], and remote instruction of

cockpit operation [51]. Another study found that a scene camera was preferred in

video telecollaboration over a head-mounted camera, not just by the remote helper

who enjoyed the stable, comprehensive view of the workspace, but also by the worker

who preferred not having to wear the camera [40].

Researchers have also demonstrated the acquisition of a complex environment

with simple hardware, such as a tablet and its camera [41], to allow a remote col-

laborator a view-independent exploration of the environment; however, such systems

are limited to static environments. Some systems allow the remote collaborator to

suggest placement of objects in the workspace [52], again, under the assumption of an

otherwise static environment. Complex dynamic scenes are handled by doing away

with geometry acquisition, under the assumption that the entire scene is sufficiently
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far away, which enables panorama acquisition and rendering [53], but this precludes

nearby workspaces. Finally, dynamic geometry has been handled through the volu-

metric fusion of data acquired with multiple off-the-shelf depth cameras, which affords

a remote collaborator an independent visualization of the workspace [54]; however,

this comes at the cost of additional hardware, intractable in austere environments,

and it is limited to the outside-looking-in scenario.

3.2.3 High-Level Stabilization of First-Person Video

Consider the AR telementoring scenario with a mentee wearing an optical see

through AR HMD. The HMD has a built-in back-facing video camera that captures

what the mentee sees. The goal is to use this video feed to inform a remote mentor

of the current state of the workspace. In addition to audio instructions, the mentor

also provides guidance through graphical annotations of the workspace. Therefore,

the video feed should also serve as a canvas on which the mentor authors annotations

of the workspace.

Effective Mentor-Side Visualization Requirements

An effective mentor-side workspace visualization has to satisfy the following re-

quirements:

Stability. The visualization of the workspace should not move, to allow the mentor

to examine it in detail. Complex tasks require for the mentor to concentrate on the

workspace, and unexpected changes in the visualization are particularly frustrating,

forcing the mentor to abandon the AR-enabled graphical communication channel,

and to take refuge in the trusted audio communication.

View agreement. The mentor’s view of the workspace should be similar to that

of the mentee, for the mentor to provide guidance directly in the mentee’s context,

avoiding any remapping that could confuse the mentee. Furthermore, different view-

points could show different parts of the workspace to the mentor and mentee, which
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impedes communication when one party refers to workspace elements not visible to

the other party.

Real time. The visualization of the workspace should be up to date, as latency

leads to workspace inconsistencies between mentor and mentee, complicating com-

munication.

High visual quality. The visualization should be free of static and temporal arti-

facts such as tears, holes, and distortions. Of particular importance are scene lines,

which should project to lines in the visualization. This is essential for the mentor’s

ability to understand and annotate the workspace.

Approaches Considered

Acquiring the workspace with a fixed camera satisfies the stability requirement,

but not the view agreement one. A mentee-acquired first-person video satisfies the

view agreement requirement, and it is well suited for austere environments since it

does not require additional equipment. However, meeting the stability requirement

is challenging. As the mentee looks away from the workspace, e.g. to grab a tool, the

mentor’s visualization changes abruptly and significantly.

The first is a 2D stabilization approach similar to the one described by Lee and

Höllerer [42], based on tracking and stabilizing 2D video features. The approach

lacked robustness in our context, with occasional incorrect feature tracking causing

unacceptable stabilization artifacts. The second approach is based on the acquisition

of workspace geometry (Figure 3.10). Real-time acquisition of complex 3D scenes is

imperfect, resulting in stabilized frame distortions (Figure 3.10d); furthermore, the

workspace has to be acquired from multiple viewpoints to avoid disocclusion errors

(Figure 3.10e).
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(a) Initial view (b) Current frame

(c) Acquired geometry (d) w/ acquired geometry

(e) w/ true (manual) geometry (f) w/ planar proxy

Figure 3.10.: Stabilization of current frame (b) to initial view (a) by projective

texture-mapping onto acquired (c, d), truth (e), or proxy geometry (f). Disocclu-

sion errors are highlighted in green.

Stabilization by Projection on Planar Proxy

The third approach investigated, which we adopted, is to projectively texture map

the tracked video feed onto a planar approximation of the workspace geometry. The

planar proxy is defined once per session. Rendering the textured planar proxy takes

negligible time, even on the thinnest of mentor platforms, such as a computer tablet

or a smartphone, so the visualization is real time. The visualization is of high quality

(Figure 3.10f), i.e. without distortions due to inadequate geometric approximation,
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and without tears due to disocclusion errors. All scene lines project to lines in the

visualization. The effect is similar to a photograph of a photograph of a 3D scene. The

concatenation of an additional projection does not make the visualization confusing,

the same way a visualization makes sense to two or more users seeing it on a display,

with no one assuming the true viewpoint from where it was rendered.

3.2.4 Theoretical Visualization Stability Analysis

The two possible sources of visualization instability are workspace geometry ap-

proximation error, and video camera tracking error. In this section we provide a

theoretical analysis of the impact of these two errors on visualization stability. In the

next section we provide empirical measurements of visualization stability.

Visualization instability definition

Given a 3D workspace point P , an initial frame F0 with view V0, and a current

frame Fi with view Vi, we define the reprojection error of P as the distance ei(P )

between where P should be seen from V0 and where it is actually seen in the stabilized

Fi. In Equation (3.2), the actual location of P in the stabilized frame is denoted with

χ(P, Vi, V0), and the correct location π(P, V0) is obtained by projecting P with V0.

The approximate projection function χ depends on the stabilization approximation

errors. ei(P ) is relative to the frame’s diagonal d to obtain an adimensional, image

resolution independent measure of reprojection error.

ei(P ) =
‖χ(P, Vi, V0)− π(P, V0)‖

d
(3.2)

Given a point P and two consecutive frames Fi and Fi+1, we define visualization

instability at P as the absolute change in reprojection error from Fi to Fi+1, as given

by Equation (3.3).

εi(P ) = |ei+1(P )− ei(P )| (3.3)
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Figure 3.11.: Visualization stability analysis through simulation.

Simulation scenario

We analyze visualization instability in a typical telementoring scenario. The

workspace is 1m×1m wide, and it is 1m above the floor (Figure 3.11a). This is

the largest workspace size for which the mentee can work in the outside looking in

scenario—for larger workspaces the mentee would have to travel from one area to an-

other, and stabilizing the mentor view to a single view is not applicable. The actual

workspace geometry is in between two planes (dotted lines) that are 20cm apart. This

height variation is sufficient to model a workbench with tools on it. The workspace

geometry is approximated with the solid line rectangle. The mentee is 1.8m tall, and

their default view, to which the video is stabilized, is shown with the black frustum.

We consider two typical mentee view sequences. The first sequence is a 25◦ pan

to the left (blue frustum in Figure 3.11a), as needed, for example, to reach for a tool

placed just outside the workspace. The panning sequence also has a small lateral
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translation of 10cm, to account for the translation of the eyes when someone turns

their head to the side. The second sequence corresponds to the mentee moving to the

corner of the workspace to see it diagonally (green frustum in Figure 3.11a), which

implies a 50cm lateral translation from the initial position, while looking at the center

of the workspace. Instability depends on frame to frame view changes. We assume the

sequence is completed in 1s, which implies 30 frames at 30Hz. This is a conservative

upper bound for the view change speed. For abrupt focal point changes, the mentee

does not want to and cannot focus on the workspace during the transition, so any

instability will not be perceived, as also noted in walking redirection research that

takes advantage of saccadic eye movement to manipulate the visualization [55].

Dependence on Geometry Approximation Error

In Figure 3.12, point P is acquired by video frame Vi and projected onto the proxy

plane w at PG. P and PG project at different locations onto the stabilized view V0,

which results in the reprojection error eGi (P ). The dependence of visualization insta-

bility on geometry approximation error is obtained by plugging into Equation (3.3)

the expression for χ given in Equation (3.4), where ViP ∩ w is PG in Figure 3.12.

χ(P, Vi, V0) = π(ViP ∩ w, V0) (3.4)

The instability induced by geometry approximation error is largest where the

true location of a workspace point is farthest from the proxy plane, i.e. on the dotted

rectangles in Figure 3.11. Figure 3.11 illustrates the reprojection errors at the center C

and corner L of the workspace proxy, for the last frames of the panning (Figure 3.11b)

and translation (Figure 3.11c) sequences. The correct projections of Lu, Ld, Cu, and

Cd are shown with black dots. The actual projections are shown with blue dots for

the panning sequence, and with green dots for the translation sequence. As expected,

the reprojection error is tiny for the panning sequence since the viewpoint translation

is minimal. Pure panning would have a zero reprojection error.
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Figure 3.12.: Reprojection error eGi (P ) due to workspace geometry approximation

error, and eCi (PG) due to camera tracking error.

Table 3.6.: Visualization instability due to geometric approximation error for two

mentee sequences.

Panning Translation

Center 0.03% 0.17%

Max 0.05% 0.25%

Table 3.6 gives the visualization instability for each of the two sequences. The

maximum instability at the center of the workspace (i.e. C in Figure 3.11) is 0.03%

and 0.17% for the panning and translation sequences, respectively. The maximum is

reached for the last frame of the sequence, where the viewpoint translation is largest.

For an HDTV display with a diagonal of 2,200 pixels and 1m in length, the instability

figures translate to 1.1pix and 0.5mm for the panning sequence, and 5.5pix and 2.5mm

for the translation sequence. We computed the maximum instability over the entire

workspace to be 0.05% and 0.25% for the two sequences, respectively, which occurs

at the workspace corners, i.e. Ln and Rn in Figure 3.11a, for the last frame.
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An important advantage of our method is that the geometric approximation is

constant, i.e. the proxy plane does not change. This means that, when the mentee

translates their viewpoint, the instability is not only small, but also smooth, and

when the mentee pauses to focus on a part of the workspace, the instability is 0. For

a method that uses a geometric model acquired in real time, the instability is noisy,

even when the mentee does not move.

Dependence on Camera Tracking Error

The second source of visualization instability is the error in tracking the video

camera which acquires the workspace. Using Figure 3.12 again, let us now assume

that proxy plane point PG is an actual workspace point to factor out all geometry

approximation error. PG is captured at pixel p by the frame with true viewpoint Vi. If

Vi is incorrectly tracked at V ′i , then p is incorrectly projected onto the proxy at point

PC , which generates reprojection error eCi (PG). The dependence of visualization

instability on camera tracking error is obtained by plugging into Equation (3.3) the

expression for χ given by Equation (3.5), where w is the workspace proxy.

χ(P, Vi, V0) = π(V ′i p ∩ w, V0) (3.5)

Unlike for the instability due to the workspace geometry approximation, tracking

inaccuracy affects the entire frame uniformly. We have measured tracking accuracy

to be 2 degrees for rotations and 2cm for translations. In the scenario above, these

maximum tracking errors translate to a 2.68% and a 1.45% instability, figures that

dwarf the instability caused by geometric approximation error (Section 3.2.4). Even

assuming tracking that is an order of magnitude more accurate than what our AR

HMD provides, instability due to geometry approximation will still be smaller than

instability due to tracking.
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In conclusion, we have defined instability metrics to be used in the empirical

validation, and we have established that instability due to geometric error is dwarfed

by that due to camera tracking error, which validates, at principle level, our approach.

3.2.5 User Study I: Number Matching

We developed a method for stabilizing the video of a workspace captured by a head

mounted camera. The stabilized video serves as a visualization of the workspace for

a remote collaborator. In a first controlled user study, we tested the effectiveness

of workspace visualization by asking participants to find matching numbers in the

original and the stabilized videos, for three workspaces.

Experimental Design

Participants. We recruited participants (n = 30, 8 female) from the graduate

student population of our university, in the 24–30 age group. We opted for a within-

subject design, with each participant performing the task in all conditions.

Task. A participant was seated 2m away from an LCD monitor with a 165cm

diagonal. The monitor displays a video of a workspace annotated with numbers, and

the participant is asked to find pairs of matching numbers. When a participant spots

a matching pair, they call out the number, and an experimenter tallies the number

of matches found. All numbers called out by participants were correct matches, i.e.

they were not just reading out numbers at random.

Workspace 1: Sandbox. The first workspace is a sandbox in our lab (Figure 3.13).

The sandbox is approximately 1m×1m in size, and it is placed about 1m off the floor.

The sand had a depth variation of about 20cm, so this corresponds to the scenario

investigated by the theoretical instability analysis in Section 3.2.4. An overhead

projector displays a matrix of 4×4 numbers on the sandbox. The workspace was

acquired with the back-facing camera of an AR HMD (i.e. Microsoft’s HoloLens

[56]) worn by an experimenter who walked around the sandbox while looking at its
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Unstabilized Stabilized

Projector
AR
HMD

Workspace

Figure 3.13.: Sandbox workspace with overhead projected numbers acquired with

video-camera built into an AR HMD (left column), original, unstabilized video frame

(middle), and stabilized video frame (right).

center. The experimenter starts out at the default position, where the numbers are

correctly oriented (first row of Figure 3.13). This is also the view to which the video

was stabilized. The experimenter occasionally pans the view to the side. Then the

experimenter walks to the corner of the sandbox (second row of Figure 3.13), and even

on the other side, which makes the numbers appear upside down in the video (third

row of Figure 3.13). This results in a video sequence where the matrix of numbers

moves considerably. The video shows 21 matrices, and each matrix was shown for 5s,

for a total video length of 105s. 18 of the 21 matrices had exactly one pair of matching

numbers, and 3 of the matrices had no matching numbers. Half the numbers of two

consecutive matrices are the same, which means that when the video switches from

one matrix to the next, exactly 8 of the 16 numbers change. All 8 numbers change
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Figure 3.14.: Workbench (top) and Engine workspaces used in study I.

simultaneously at the end of the 5s. When a matrix had a matching pair, at least one

of the numbers in the pair was replaced for the next matrix, such that a matching

pair would not persist longer than the 5s that each matrix is displayed.

Workspace 2: Workbench. The second workspace is an actual workbench cluttered

with tools (Figure 3.8 and Figure 3.14). The acquisition path was similar to that for

the Sandbox workspace. The tallest tool reached 30cm above the workbench plane.
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The experimenter wearing the AR HMD impersonating a mentee started out at the

default position, then panned the view, and then finally moved to the side of the

workbench to see it from a direction rotated by 90◦. The numbers were added to the

workspace using pieces of paper, all facing the mentee in the initial position. There

were 24 numbers, 8 of which appeared twice, so 8 numbers were unique. Although the

numbers on paper did not change, the mentee moved tools on the workbench covering

and uncovering a few numbers. Furthermore, as the mentee viewpoint translated,

some of the numbers would appear and disappear due to occlusions.

Workspace 3: Engine. The third workspace is an Engine mounted on the floor,

80cm high (Figure 3.8 and Figure 3.14). The Engine was decorated with numbers

and was acquired similarly to the Workbench.

Conditions. Each participant performed the number matching task for the Sand-

box workspace in each of three conditions, in randomized order. In one control condi-

tion, the participant was shown the raw video with no stabilization (NS). In a second

control condition, the participant was shown a perfectly stable (PS) video that was

acquired by placing the AR HMD on a mannequin head mounted on a tripod at the

default position. In the experimental condition, the participant was shown the video

stabilized with our method (S). The hypotheses related to the Sandbox were that (1)

participants will perform better in the S condition compared to the NS condition,

and that (2) participants will not perform better in the PS condition compared to

the S condition. A subgroup of 20 participants were tested for each of the Workbench

and the Engine workspaces, for each of two conditions. Participants were shown the

original, unstabilized video in the control condition, and the stabilized video in the

experimental condition.

Metrics. We measured participant task performance as the number of pairs found.

We also measured participant workload using the NASA Task Load Index (NASA-

TLX) questionnaire [57], and participant simulator sickness using the Simulator Sick-

ness Questionnaire (SSQ) [58]. Better performance means more matching pairs found,

lower cognitive load, and absence of simulator sickness.
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Results and Discussion

A within-subject statistical analysis compared the three Sandbox conditions, with

three data points for each metric and for each participant. The participants and

the order of the trials were treated as blocks in the statistical design. The data

normality assumption was confirmed with the Shapiro-Wilk test [30]. In addition,

the data equal-variance assumption was confirmed with the Levene test [59], so no

data transformation was needed. We ran a repeated measures ANOVA [60] with

Bonferroni correction [61] for each condition pair, i.e. PS vs NS, PS vs S, and S

vs NS. The two conditions for the Workbench and Engine were similarly compared,

except that no Bonferroni correction is needed.

Figure 3.15 gives the box and whisker plot [62] of the number of pairs found,

and of the six NASA-TLX subscales, for each of the three Sandbox conditions. The

six subscales are: mental demand, physical demand, temporal demand, performance,

effort, and frustration. All seven metrics are normalized. The plot indicates the inter-

quartile range (IQR) with a box, the average value with an x, the median value with

a horizontal line, farthest data points that are not outliers with whiskers, and outliers

with dots. Outliers are data points “outside the fences”, i.e. more than 1.5 times the

IQR from the end of the box. NS participants found on average 28% or 5.1 of the 18

matching pairs. S participants found on average 36% or 6.5. PS participants found on

average 34% or 6.3. The differences between S and NS, and PS and NS are significant,

while the difference between PS and S is not. The best performing participant found

12 of the 18 matching pairs for both the S and PS conditions, performance levels that

are within the fence and therefore not outliers; this participant only found 8 matching

pairs in the NS condition.

S and PS participants reported significantly lower cognitive load than those in NS

on all six NASA-TLX subscales, and there was no significant difference between PS

and S. For NS, the upper fence exceeded the maximum possible value of 1.0, and it

was therefore capped at 1.0, for all six NASA-TLX subscales. This indicates the high
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Table 3.7.: Comparison between the number of pairs found in the no stabilization

(NS) and stabilization (S) conditions.

Workspace NS S S - NS p-value

Workbench 5.45±0.83 5.95±1.19 0.50±0.28 0.043*

Engine 5.05±1.57 6.10±1.29 1.05±0.31 0.002*

cognitive load in the NS condition, and it eliminates the possibility of outliers. For S

and PS, two of the scales had the upper fence at 1.0, which leaves the possibility of

outliers for the other four scales. However, there was only one outlier for each of the

PS and S conditions, both for the TLX-2 scale, which increases the confidence that

PS and S place less demand on the participant.

Table 3.7 gives the number of pairs found for the Workbench and the Engine

workspaces, for each of the unstabilized (NS) and the stabilized (S) conditions. S has a

significant advantage for both workspaces. Table 3.8 compares the NASA TLX scores

between the S and NS conditions (i.e. NS-S, as lower NASA TLX scores indicate less

demand on the participant). Most S advantages are significant. For the Sandbox

workspace, the analysis of the Total Severity score derived from the SSQ answers

indicates the absence of simulator sickness in all three conditions. Furthermore, there

are no significant differences for any of the three differences PS-NS, S-NS, and PS-S,

for any SSQ subscore. While this suggests that our stabilization might not induce

simulator sickness, and that discomfort levels are similar to those for a perfectly

stabilized video, the absence of differences between PS and NS indicates that the

exposure might have been too short and the workspace too simple for a revealing

simulator sickness comparison between the three conditions.

The SSQ provided more insight in the case of the more visually complex Work-

bench and Engine workspaces (Table 3.9). S had a significant advantage over NS in

terms of Total Severity score, for both workspaces. The S advantage was due to less
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Table 3.8.: p-values of NASA TLX subscore differences between no stabilization (NS)

and stabilization (S) conditions (i.e. NS-S).

Workspace
Mental

Demand
Physical
Demand

Temporal
Demand

Perfor-
mance Effort Frustration

Workbench 0.000* 0.000* 0.001* 0.188 0.356 0.001*

Engine 0.005* 0.050* 0.000* 0.034 0.002* 0.001*

Table 3.9.: p-values of SSQ Total Severity score differences between no stabilization

(NS) and stabilization (S) conditions (i.e. NS-S).

Workspace Nausea Oculomotor Disorientation Total Severity

Workbench 0.019* 0.001* 0.116 0.004*

Engine 0.053 0.060 0.019* 0.021*

nausea and oculomotor effort for the flatter but more cluttered Workbench, and due

to disorientation for the more occlusion/disocclusion prone Engine. Although the

differences between conditions were significant, for no workspace and no condition

did the Total Severity score increase from pre- to post- exposure above the threshold

of 70, which would indicate the presence of simulator sickness.

Empirical Visualization Stability Analysis

Section 3.2.4 defined visualization instability and analyzed its dependence on the

workspace geometry approximation error and on the camera tracking error. Here we

measure the actual instability in the raw video and in the stabilized video by tracking

nine salient feature points over the entire Sandbox sequence. The features are dark

particles mixed in with the white sand, and they cover the matrix area uniformly.

The frame trajectories of the tracked features are shown in Figure 3.16, where the
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Figure 3.16.: Trajectories of 9 tracked feature points, in normalized pixel coordinates,

for the NS (left) and S (right) Sandbox conditions.

Figure 3.17.: Empirical visualization instability measured by tracking feature points

over the video sequences.

coordinates in the 1,280×720 video frame were normalized. Whereas the tracked

points move considerably in the NS video, their trajectory is short and smooth in the

S video. The average reprojection error (Equation (3.2)) over all feature points and

all frames is 13.5%±7.9% for NS and 2.0%±1.8% for S; the maximum reprojection

error is 37.5% for NS and 5.8% for S.
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The average visualization instability (Equation (3.3)) over all 9 feature points is

given in Figure 3.17 for both the unstabilized and the stabilized sequences. These

instability values are based on empirical values for the χ(P, Vi, V0) and π(P, V0) from

the definition of reprojection error Equation (3.2). Instability is large for NS, and it

is largest for the first part of the sequence, when the mentee panned their head left

and right repeatedly. This is expected since, for a non-stabilized sequence, panning

motions change the frame coordinates of workspace features quickly and substantially.

Instability is low for our stabilized sequence, and it is lower for the first part of

the sequence when workspace geometry approximation error has little influence on

instability. For the first part of the sequence, the instability is very low most of the

time, with the exception of some small spikes which we attribute to camera tracking

latency. The average instability is 0.081%± 0.082% for the NS sequence, and about

eight times lower for the S sequence at 0.011%± 0.0093%.

3.2.6 User Study II: Austere Surgical Telementoring

We conducted a second user study, which tests the benefits of stabilization in

the context of a complete surgical telementoring system. The mentee acquires the

surgical field with a back-facing video camera built into their AR HMD, the video

is transmitted to the remote mentor site, the video is stabilized, the stabilized video

is shown to the mentor, the mentor provides guidance by annotating the stabilized

video, and the annotations are sent to the mentee site, where they are overlaid onto

the surgical field using the AR HMD. The study evaluates the benefit of stabilization

indirectly: the hypothesis is that the stabilized video leads to a better mentor under-

standing of the operating field, to better guidance for the mentee, and ultimately to

better mentee performance.
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Experimental Design

Participants. The participants served as mentees in the study. We recruited

participants (n = 20) from the corpsmen of a naval medical center who were training

for performing surgical procedures in austere settings. The participant age range was

18–43, and 3 participants were female. The study used two mentors that are teaching

faculty at a surgery residency program. The mentor site was 900km away from the

mentee site. We opted for a within-subject design, with each participant performing

a task in both conditions.

Task. The participants performed a practice cric on a synthetic patient simulator

in an austere setting (Figure 3.9). The cric is an emergency procedure performed

when a patient is not able to breathe due to airway obstruction. The procedure

entails performing precise incisions through multiple layers of neck tissue, opening

up the cricoid cartilage, inserting and securing a breathing tube, and connecting a

breathing bag to the tube. Since emergent, the procedure stands to benefit greatly

from telementoring.

Conditions. In the experimental condition (EC), the mentee benefited from visual

and verbal guidance from the mentor. The visual guidance was provided through the

AR HMD, which overlaid mentor-authored annotations onto the operating field, such

as freehand sketched incision lines, or dragged-and-dropped instrument icons. The

mentor monitored the operating field and authored annotations based on a first-

person video of the operating field acquired by the mentee, which was stabilized with

our method. In the control condition (CC), the mentee benefited from verbal mentor

guidance.

Metrics. The mentee performance was evaluated by two expert surgeons located

at the mentee site. The experts used the cric evaluation sheet typically used at the

naval center to score the performance of the mentees. The evaluation sheet contains

10 subscales based on procedure steps, which are scored with a 5-level Likert Scale.

The subscales evaluate aspects related to anatomical landmark identification, incision
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performance, and patient airway acquisition. The overall mentee performance score

was computed as the average of the 10 subscale scores.

Results and Discussion

A within-subject statistical analysis was run to compare both conditions, with

two data points for each metric and for each participant. The condition was treated

as an independent variable, while each of the expert evaluation scores were treated

as dependent variables. The participants and the order of the trials were treated as

blocks in the statistical design. The data normality and equal variance assumptions

were confirmed with the Shapiro-Wilk [30] and the Levene test [59], respectively, and

a repeated measures ANOVA was run [60].

The results are shown in Figure 3.18, which gives means and standard deviations.

The total performance score (EE-T) was significantly higher (p = 0.04) for EC than

for CC. The means for each of the ten subscale scores (i.e. EE-1 to EE-10) favor EC

over CC, but only two of the differences are significant, i.e. for EE-8 (p = 0.03) and

for EE-9 (p = 0.01). We attribute the lack of significance for the score differences

for the other subscales to the low number of participants. EE-8 verifies that the cuff

of the Melker canula was inflated with 10ml of air, which indicates that there is air

circulating through the tube. EE-9 verifies that the air actually makes it into the

lungs of the patient (simulator) as indicated by a bilateral rise and fall of the chest.

On the other hand, EE-10 verifies that the cannula is properly secured with tape

for patient transport, so it concerns a step beyond the end of the actual cric, and

participants could score highly on EE-10 even if the procedure actually failed. Thus,

EE-8 and EE-9 are important scores that depend on the success of all previous steps,

and they validate the entire procedure.

The mentee moves their head considerably as they reach for surgical instruments,

which causes numerous, substantial, and abrupt changes in the input video. In one

typical instance, a mentee translated their head for a total of 7.66m over a 3min and



78

F
ig

u
re

3.
18

.:
P

ro
ce

d
u
re

su
b
sc

al
e

(E
E

-1
to

E
E

-1
0)

an
d

ov
er

al
l

(E
E

-T
)

cr
ic

p
er

fo
rm

an
ce

.
E

C
h
as

an
ad

va
n
ta

ge
ov

er
C

C
fo

r

ea
ch

m
et

ri
c.

T
h
e

st
ar

in
d
ic

at
es

a
si

gn
ifi

ca
n
t

ad
va

n
ta

ge
(p
≤

0.
05

).



79

12s sequence, with spikes of over 20cm per second. In the same sequence, the mentee

rotates the view direction by over 1,500◦, which is more than four full rotations. These

large view changes make the raw video unusable at the mentor, and our stabilization

is essential to the success of the AR telementoring system.

The workspace in the surgical telementoring study is highly dynamic, with the

mentee’s hands and instruments moving in the video feed. While such dynamic envi-

ronments are challenging for approaches that rely on real time geometry acquisition,

the dynamic workspace does not pose any additional challenge to our approach. Note

that our definition of instability (Equation (3.3)) does apply to dynamic environments

since it does not simply measure how far the projection of a 3D point moves from

one frame to the next, which would penalize the moving elements of the environment

even in a perfectly stabilized visualization; instead, our definition is based on how

far away the 3D point is in the visualization from where it should be in a perfectly

stabilized visualization.

3.2.7 Conclusion, Limitations, and Future Work

We have presented the design and evaluation of a method for stabilizing a first-

person video of a workspace, such that it can effectively convey the workspace to a

remote collaborator. We investigated three approaches and we chose an approach

that projectively texture maps the registered video feed onto a planar proxy of the

workspace. The approach has the advantages of stability, view agreement, real time

performance, lack of distortions, lack of disocclusion errors, good temporal conti-

nuity, and robustness with workspace geometric, reflectance property, and motion

complexity.

The stabilized video doesn’t always contain all the pixels in the input mentee

video. This happens when the mentee view frustum is not a subset of the mentor

view frustum. For example, in Figure 3.8, for the Engine workspace, the top left

unstabilized frame captures more of the text on the wall than its stabilized counter-
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part. This is due to the fact that the mentor view frustum was chosen to encompass

tightly the workspace, i.e. the engine. A wider mentor field of view would have kept

the entire back wall pixels in the stabilized frame. Certainly, this would come at the

cost of a lower resolution on the workspace, and each application should decide what

works best in its own context. Another possibility to be explored as future work, is

to not insist on a fixed mentor view, but rather a view that slowly keeps up with the

mentee view in order to show the mentor everything the mentee sees. For example, if

the the mentee chooses to focus on a completely different area of the workspace, the

mentor view should gradually focus on that area as well.

When the mentee looks away from the workspace, the mentor’s live visualization

of the workspace is truncated, or even interrupted if the mentee view frustum is

completely disjoint from the mentor view frustum. One solution for mitigating this

problem is to rely on previous frame pixels to maintain workspace visualization con-

tinuity. Of course, these are not live pixels so they can only be used for orientation

purposes, and not for up to date situational awareness. We took this approach in

the cric study, where the a previous frame is used to provide context (see frame in

Figure 3.9, row 3, right). The background frame is shown in grayscale to make it

clear to the mentor that it is not a live shot. Future work could explore updating the

background frame to keep up with a dynamic workspace, i.e. to be more recent and

less obsolete. Another direction of future work is to rely on a series of background

images and to rely on an approach similar to projective texture mapping to choose the

most suitable background image for the current frame. Suitability can be quantified

as the number of missing mentor frame pixels that are filled in, which requires view

direction similarity, and as the continuity of the transition from live to background

pixels, which requires viewpoint similarity.

One limitation to address in future work is that our first study does not provide a

sufficiently long exposure to measure simulator sickness. Another direction of future

work is to examine conveying the workspace to the remote collaborator through a

Virtual Reality (VR) HMD, where simulator sickness is likely to be a bigger factor.
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The current method aims to project the video acquired from one view to a station-

ary default second view. Future work could examine projecting the acquired video to

a stable but changing second view. Indeed, if the mentee moves to a different part of

the workspace, e.g. they move from the head to the legs of the patient, the mentor

visualization should not remain stuck on the head, but rather gradually catch up with

the mentee view. Such gradual view change should discern between abrupt and short

term view changes, as needed, for example, to change focal point on a workspace

that is captured by the default view, or to grab an instrument, and a long term view

change implied by a location change within a large workspace. View stabilization

should eliminate the former, and gradually adopt the latter. Finally, our work could

be extended to transfer one user’s first-person view to the first-person view of a second

user, allowing the second user to change the view on the workspace interactively.

The second user study compared AR telementoring based on our stabilization to

a control condition where the mentor and mentee could only communicate through

audio. One reason for this is that audio communication is the most frequently used

means of communication between mentor and mentee. The second reason is that

the unstabilized video was judged by the expert surgeon mentors as unusable in the

context of the emergent cric and of the austere conditions. In other words, it was

not possible to run a user study where one of the conditions was AR telementoring

with the raw, unstabilized video. Future studies could attempt to isolate the stability

factor in settings where the surgical intervention and the environment are less stressful

to make the unstabilized video acceptable, at least for the purpose of a user study.

Our work tests AR surgical telementoring with actual health care practitioners,

in a real training exercise, in a highly demanding austere setting, towards placing AR

technology into societal service.
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4 FAST INTRA-FRAME VIDEO SPLICING FOR OCCLUSION REMOVAL IN

DIMINISHED REALITY

4.1 Introduction

Augmented reality improves a user’s view of the real world by overlaying graphical

annotations that provide information about the real world objects to which they are

anchored. Sometimes, however, improving the user’s view of the real world calls for

the removal of some objects from the user’s view. Motivations for such diminished

reality visualizations include eliminating distracting clutter, investigating changes to

a real world scene efficiently without actually modifying the scene, and giving the

user line of sight to parts of the scene occluded by objects of little interest.

Removing an occluder from the user’s view of the real world requires finding

the footprint of the occluder in the user’s view, computing what the user should

see in the absence of the occluder, and transferring it to the occluder footprint.

One approach is 3D scene acquisition. Once the geometry of the scene is known,

segmenting the occluder is easier, and rendering the scene without the occluder from

the user’s viewpoint provides exactly what the user would see in the absence of the

occluder. This works well, for example, when one wants to remove an object from a

corner of a room, since the color and the geometry of the three planes defining the

room corner is simple and can be easily acquired.

A challenging case for this geometry acquisition approach is when the parts of the

scene hidden by the occluder have intricate and dynamic appearance and geometry.

Acquiring such a scene in real time, and with minimal equipment remains challenging.

The scene geometry has to be acquired high fidelity to support high quality 3D

rendering from the user viewpoint. Furthermore, acquisition from a single viewpoint
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Figure 4.1.: Results of our fast video occlusion removal method. The scene is acquired

from the user viewpoint with a primary video and from a translated viewpoint with a

secondary video. The output frames are obtained by blending the occluder pixels in

the primary frame with background pixels from the secondary frames, achieving good

continuity at the occluder contour. Our method supports intricate dynamic scenes at

a frame rate between 40 and 60 frames per second.

is not enough since, in the absence of the occluder, the user could see parts of the

scene to which there is no line of sight from the single acquisition viewpoint.

In this paper we propose a method to remove an occluder in a primary video

acquired from the user viewpoint, using pixels from a secondary video acquired from

a translated viewpoint. For each pair of primary and secondary frames, our method

replaces the primary frame occluder pixels with pixels from secondary frame. The
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secondary frame pixels are integrated seamlessly into the primary frame, with good

continuity across the occluder contour. The result is a multiperspective frame, which

shows most of the scene from the user viewpoint, except for the parts hidden by

the occluder, which are shown from the secondary viewpoint. Due to the visual

continuity achieved along the occluder contour, the effect is a good approximation of

the transparency effect needed to remove the occluder, which comes without the high

cost of color and depth acquisition. As shown in Figure 4.1, our method supports

complex, dynamic scenes. Our method removes the occluder from the user video by

splicing in a secondary video. Our method is fast, as it bypasses geometry acquisition.

4.2 Prior Work

The removal of objects that hinder the user’s view of a region of interest is a

typical diminished reality problem [63]. By covering up a real object with the image

of the background it occludes, one can make the object virtually invisible by creat-

ing a ”see-through” effect [4]. Achieving the effect requires the following steps: (1)

acquiring the occluder background (2) modifying the acquired background to fit the

occluder footprint as seen from the user’s viewpoint, and (3) compositing the modified

background into the user’s view.

In order to remove an object from the user’s view, information on the occluded

background is required in order to swap the object with its background. The back-

ground information can be captured with multiple images acquired by the user in

advance [64]. When the hidden background is composed of known hidden objects,

such as a specific person’s face, a pre-captured dataset with angle-dependent images

is sufficient [65]. An internet photo collection can also be used to delete a person in

a video sequence, especially when the scene is at a popular sightseeing spot that is

frequently photographed [66]. However, due to the large time interval between the

pre-acquisition of the images and the occluder removal, there is a sizeable photometric

difference between the pre-acquired images and the image to be processed. Another
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method is to search for the best matching disoccluded view of the target in an earlier

frame. The method was used to disocclude walking human [67]. The same method

was used to remove a person by stitching the current frame with the background from

a previous frame [68]. The method fails when the current background configuration

has not been observed in any of the earlier frames. Both the pre-acquisition and

the temporal resampling methods cannot handle highly dynamic scenes, such as a

football game.

To deal with dynamic scenes, the scene has to be acquired in parallel, from addi-

tional viewpoints. Surveillance cameras have been used to see through walls [69, 70].

Multiple users each with their own hand-held camera can capture the background for

each other [71]. A remotely controlled robot equipped with a camera can be deployed

to acquire background information [72]. Like these prior methods, we acquire the

background information with a secondary camera.

Once the background image is acquired, the image needs to be first transferred

to primary camera viewpoint. By assuming the scene only consists of large planes,

homography matrices have been used to warp the background to the user view [73].

Homographies have also been used to transfer the best matching background image

from an internet image collection to the user view [66]. Another category of methods

is to explicitly extract the 3D geometry of the background scene. Using stereo vision,

the background has been approximated as a set of small planes [63]; stereo vision has

also been used to generate a dense depth map that allows 3D warping the background

to the primary viewpoint [74]. The background geometry has also been acquired

with the help of RGB-D cameras [75]. These methods are usually computationally

heavy, or they require additional hardware such as a depth camera. Reconstructing

an accurate model of a complex 3D scene in real time remains an open research

question, and inaccurate geometry leads to output image artifacts, such as holes and

tears. We bypass 3D geometry acquisition by combining a global alignment based on

a rotation-only assumption and a local alignment for residual mapping, to achieve in
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Figure 4.2.: System pipeline.

a computationally efficient way a good estimate of the mapping between the primary

and secondary view.

4.3 Approach

We first give an overview of our occlusion removal pipeline, and then we describe

the algorithm it implements.

4.3.1 Pipeline Overview

Given a primary input video stream, acquired from the user’s viewpoint, and

a secondary input video stream, acquired from a translated viewpoint, our method

removes an occluder from the primary video using pixels from the secondary video,

according to the pipeline shown in Figure 4.2. First, an initialization stage defines

the occluder contour in the first frame of each video, and computes an approximate
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Algorithm 1 Contour adjustment (also see Figure 4.3)

Input: Image I1, contour C1 in I1, image I2, contour C∗2 in I2

Output: Adjusted contour C2

1: for each vertex pair (p∗2, q
∗
2) in C∗2 do

2: smax = −∞

3: for each pixel center q in neighborhood S of q∗2 do

4: Q1 = I1 patch centered at q1

5: Q2 = I2 patch centered at q

6: sq = sim(Q1, Q2) + λ exp(−|q − q∗2|2/(2σ2))

7: if sq > smax then

8: q2 = q, smax = sq

9: end if

10: end for

11: p2 = p∗2 + q2 − q∗2
12: end for

13: RemoveSelfIntersections(C2)

mapping between the two first frames. Then, pairs of primary and secondary video

frames are processed in four stages: the contour of the occluder is updated in each of

the two frames; an initial mapping between the pair frames is computed as a rotation,

by minimizing color differences outside the occluder; the initial mapping is locally

refined at the occluder contour to enable splicing in the pixels from the secondary

frame with good continuity to the surrounding primary frame pixels; finally, the

occluder is removed from the primary frame by looking up its pixels in the secondary

frame, using a concatenation of the global and local mappings.
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Figure 4.3.: Adjustment of approximate contour C∗2 to C2 in image I2, given the

corresponding contour C1 in image I1 (Algorithm 1). The algorithm searches for

a better position for each inner contour vertex q∗2 over its neighborhood S; a good

position q2 yields a high color similarity between I2 at q2 and I1 at q1; q1 is the inner

contour vertex of C1 corresponding to q∗2. Once q∗2 is adjusted, the corresponding

outer contour vertex p∗2 is adjusted to p2 with the same offset.

4.3.2 Contour adjustment algorithm

For the purpose of this paper, a contour is a pair of polylines that model the inner

and outer boundaries of an object (at least partially) visible in an image. The inner

contour is on the object and the outer contour is on the background surrounding the

object. The inner and the outer contours have the same number of 2D vertices, the

inner contour is inside the outer contour, the segments of a contour do not intersect,

each contour has disk topology, and contours do not have to be convex. The outer

and inner contours are needed to restrict color comparisons to the occluder object, in
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the case when the inner contour is used, or to the background around the occluder

object, in the case when the outer contour is used.

Our pipeline relies several times on a contour adjustment algorithm, which we

describe first (Algorithm 1). The algorithm takes as input a first image I1, a known

contour C1 in I1, a second image I2, and an estimate C∗2 of C1 in I2. The algorithm

output is a contour C2 obtained by adjusting C∗2 . The algorithm adjusts C∗2 one pair

of vertices (p∗2, q
∗
2) at the time, where p∗2 and q∗2 are corresponding vertices on the

inner and outer contours (line 1). We describe the algorithm for the case when the

adjustment proceeds along the inner contour, as shown in Figure 4.3. Adjustment

along the outer contour is similar.

The algorithm adjusts the position of q∗2 by searching its neighborhood S for a

better location (lines 3-10). For each candidate location q, the algorithm computes

color similarity between I2 at q and I1 at q1. Color similarity is evaluated over square

image patches Q1 and Q2 (lines 4-6). The inner contour vertex q2 is adjusted every

time image similarity improves (lines 7-8). Once the entire neighborhood of q∗2 has

been searched, the contour vertex p2 is adjusted by the same offset q2 − q∗2 as q∗2

(line 11). Once the inner and outer contours have been adjusted, C2 is returned after

any self intersection is removed (line 13). Our algorithm checks and removes self-

intersections by traversing the outer contour; if two outer contour segments (pi2, p
i+1
2 )

and (pj2, p
j+1
2 ) intersect, where i < j, all outer contour vertices from pi+1

2 to pj2 are

removed, together with their corresponding inner contour vertices.

In line 6, the similarity between image patches Q1 and Q2 is computed differently

based on whether images I1 and I2 are frames of the same video, i.e. both primary

or both secondary, or not, i.e. one primary and one secondary. When I1 and I2 are

from the same video, we compute similarity using the inverse of the sum of squared

per pixel color differences:

simintra(Q1, Q2) = −
∑
p

(Q1[p]−Q2[p])
2. (4.1)
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When I1 and I2 are from different videos, we use a cosine similarity [76], in order

to compensate for any large exposure and white balance differences between the two

videos. Cosine similarity is computed by treating each patch as a vector, and by

computing the cosine of the angle between the two vectors:

siminter(Q1, Q2) =

∑
pQ1[p] ·Q2[p]√∑

pQ1[p]2
√∑

pQ2[p]2
. (4.2)

In addition to the color similarity value sim, the aggregate similarity score sq (line

6) also includes a displacement term λ exp(−|δp|2/(2σ2)), which favors small contour

adjustments when sim values are similar. This displacement term aims to avoid large

adjustments for marginal color similarity improvements, as is the case, for example,

when a patch capturing an object edge could slide up and down the edge without

meaningful color similarity changes.

4.3.3 Main algorithm

Our pipeline implements Algorithm 2. The algorithm takes as input the primary

V1 and secondary V2 videos and removes a user specified occluder from V1 using pixels

from V2.

Initialization. The algorithm first performs a once per session initialization (lines

1-5). The user draws in the first frame V 0
1 of the primary video an approximate

piecewise linear outer boundary B0
1 of the occluder to be removed (line 1, red line in

Figure 4.4). An approximate boundary that overestimates the occluder is sufficient,

as the occluder will be removed with safety margins. Whereas other applications of

segmentation have to recover an object contour with high-fidelity, as needed to paste

it inconspicuously into a destination image, our application simply has to make sure

that the entire occluder is discarded.

The outer boundary B0
1 is refined to define the initial contour C1 in frame V 0

1

(line 2), as follows: B0
1 is rasterized to obtain a pixel mask M1; M1 is eroded to pixel
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Algorithm 2 Intra-frame video splicing for occlusion removal

Input: Primary video V1, secondary video V2

Output: Disoccluded primary video Vd

// Initialization

1: B0
1 = UserInputContour(V 0

1 )

2: C1 = RefineContour(B0
1)

3: C∗2 = HomographyMapping(C1, V
0
1 , V

0
2 )

4: C2 = AdjustContour(C1, V
0
1 , C

∗
2 , V

0
2 )

5: R0
1 = I; R0

2 = InitializeRotation(C1, V
0
1 , V

0
2 )

6: for each frame i do

// Contour tracking

7: C1 = AdjustContour(C1, V
i−1
1 , C1, V

i
1 )

8: C2 = AdjustContour(C2, V
i−1
2 , C2, V

i
2 )

// Global alignment

9: j = k × bi/kc

10: Ri
1 = Rj

1 × RotationMapping(C1, V
j
1 , V

i
1 , R

i−1
1 )

11: Ri
2 = Rj

2 × RotationMapping(C2, V
j
2 , V

i
2 , R

i−1
2 )

12: R = (Ri
2)
−1 ×Ri

1

// Local alignment

13: A1 = SalientContourPoints(C1)

14: A2 = AdjustContour2(A1, V
i
1 , R× A1, V

i
2 , R)

// Occlusion removal

15: V i
d = V i

1

16: for each pixel p ∈ C1 do

17: p′ = LookUp(p,R,A1, A2, C2)

18: V i
d [p] = Blend(V i

1 [p], V i
2 [p′])

19: end for

20: end for
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Figure 4.4.: Contour initialization in first frame of the primary video: user drawn

outer contour (red), initial inner (white dots) and outer (white line) contours.

mask M ′
1; the inner contour of C1 is defined as a subset of the outer pixels of M ′

1, i.e.

pixels who have at least one of their eight neighbors not part of M ′
1 (white dots in

Figure 4.4); every inner contour vertex is moved outwards along its normal to define

its outer contour vertex pair (white line in Figure 4.4).

C1 is used to initialize the occluder contour C2 in the secondary video. C1 is

transferred to V 0
2 in two steps.

First, C1 is taken almost all the way to its correct location in V 0
2 with a homog-

raphy mapping from the C1 region of V 0
1 to V 0

2 ; this provides an estimate C∗2 of the

occluder contour in V 0
2 (line 3). The homography assumes that the occluder is a 3D

plane, which is imaged by the two cameras with known intrinsic parameters. The ho-

mography is computed by detecting SURF features [77] inside the occluder region C1

in V 0
1 , and over the entire frame V 0

2 . Each V 0
1 feature is matched to a V 0

2 feature with

similar descriptor using FLANN [78]. The homography is determined by minimiz-

ing the reprojection error of corresponding features, using a RANSAC approach [79],

which provides robustness to outlier feature correspondences. Figure 4.5 shows the

outer and inner contours of C∗2 with white solid and dotted lines, respectively; C∗2
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Figure 4.5.: Contour initialization in first frame of the secondary video: initial contour

transferred from first frame of primary video with a homography (white), and adjusted

contour (green).

does not capture the occluder quite perfectly as the outer contour crosses into, and

the inner contour crosses out of the occluder.

Second, C∗2 is adjusted to C2, using our contour adjustment Algorithm 1 (line

4). Since the frames provided to Algorithm 1 belong to different videos, the cosine

similarity metric is used. Figure 4.5 shows the adjusted contour C2 with green solid

and dotted lines.

The algorithm maintains two arrays of 3D rotations, R1 and R2, one for each

video. Ri
1 rotates frame i of the primary video to frame V 0

1 . Ri
2 rotates frame i of

the secondary video to V 0
1 as well, as the first frame of the primary video serves as

a common reference. The last step of the initialization sets R0
1 and R0

2 (line 5). R0
1
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Figure 4.6.: Initialization of rotation from the first frame of the secondary video V 0
2

(top right) to the first frame of the primary video V 0
1 (top left). The rotation is

visualized by averaging V 0
1 with the rotated V 0

2 (bottom). The rotation is recovered

robustly, as indicated by the alignment of the distant parts of the scene, despite the

considerable disparity between the two frames, indicated by the ghosting on the near

parts of the scene.

is the identity matrix. R0
2 is computed by minimizing feature reprojection error, as

described in Section 4.3.4. Figure 4.6 illustrates R0
2 by blending the rotated V 0

2 on

top of V 0
1 .

After initialization, each pair of primary and secondary video frames is processed

with the four main stages of our pipeline.
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Figure 4.7.: Contour tracking: old contour (blue) is adjusted to the occluder (red).

The algorithm adjusts the contour from the previous frame i − 1; for illustration

clarity, the blue contour shown here is from an older frame, i− 5.

Contour tracking. Contours C1 and C2 are updated in the current frames V i
1 and

V i
2 , using the known contours in the previous frames V i−1

1 and V i−1
2 (lines 7-8). We

use Algorithm 1 again; the frame with the known contour is the previous frame,

the frame where to adjust the contour is the current frame, and the estimate of the

contour in the current frame is given by the contour in the previous frame. The

no-motion contour prediction is sufficient because of the high frame rate of the videos

compared to camera and occluder motion and velocity. The frames are part of the

same video, so similarity is computed using color difference. Figure 4.7 illustrates the

result of our contour tracking stage that snaps the contour (blue) into place (red).
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Figure 4.8.: Global alignment of two frames of the primary video (top). The frames

differ in view direction, see different relative location of light post at right of image,

and in time, see moving car turning in intersection. The blended visualization (bot-

tom) reveals that the global alignment recovers the accurate rotation between the two

camera poses, as indicated by the good alignment of the distant stationary parts of

the scene; the alignment is robust to the motion in the scene (i.e. moving car), and

to the disparity between the frames induced by objects near the camera, such as the

person and the handrail.

Global alignment. The algorithm has to compute a mapping from the primary

video frame V i
1 to the secondary video frame V i

2 . For this, the algorithm first computes

an approximate mapping. The approximate mapping is found by computing, for each

video, the rotation of the current frame i to an earlier frame j of that same video (lines
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9-11). Once the two rotations Ri
1 and Ri

2 are known, the approximate mapping R

from V i
1 to V i

2 is easily obtained by leveraging the common reference V 0
1 of all rotations

(line 12).

To find the rotation of the current frame i with respect to its earlier frames, we

use a more distant key frame j, and not the previous frame i − 1, as consecutive

frames would be too similar, and the alignment would drift. The key frames are

spaced k frames apart. Unlike for initial rotation computation (Section 4.3.4), where

the rotation had to connect two frames acquired from a different viewpoint, by two

different cameras, here the rotation only has to connect two video frames acquired

by the same camera, from a similar viewpoint. Consequently, the global alignment

can be computed by directly minimizing color difference between the two frames i

and j, which bypasses the slower feature detection and matching. However, global

alignment has to avoid the inconsistencies introduced by parts of the scene near the

camera, which create frame disparity even for small camera translations, and by parts

of the scene that move, which appear at different locations in the two frames. Our

global alignment computation is described in Section 4.3.5. Figure 4.8 illustrates the

accuracy and robustness of our global alignment stage.

Local alignment. The mapping R between frames V i
1 and V i

2 will be used to replace

the occluder pixels in frame V i
1 with pixels from V i

2 . The mapping is approximate

when the occluded scene is near and it has to be refined. The inaccuracy of the

mapping is noticeable only at the occluder contour C1, where the V i
2 pixels are spliced

into V i
1 (Figure 4.9, left). The algorithm computes a local alignment that alleviates

color differences on each side of the occluder contour (lines 13-14). First, the outer

contour of C1 is sampled to gather a set of points A1 with large color changes (line 13,

and red dots in Figure 4.9, middle). These points are better suited for computing the

local alignment than the outer contour vertices because they do not sample wastefully

regions of uniform color, and because they sample most regions with large color

changes.
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Figure 4.9.: Local mapping need (left), implementation (middle), and result (right).

Left: disoccluding using only the global mapping results in discontinuities where near

objects cross the occluder contour, e.g. where the sidewalk and handrail cross the

red line in the left image. Middle: the local mapping connects primary frame salient

contour points (red points) to their correspondence in the secondary frame (green

points); the local alignment offset is larger for near objects. Right: disocclusion with

continuity at occluder contour.

The newly defined outer contour A1 is adjusted with an algorithm similar to Algo-

rithm 1, with two differences. The first difference is that the adjustment now proceeds

following the outer contour, and not the inner one. Using Figure 4.3 again, adjust-

ment based on the outer contour is not concerned with the outer contour vertices and

directly moves p′2 to its better position p2 that minimizes the color difference between

I2 at p2 and I1 at p1. The second difference is that the adjustment now compares Q1

to a rotated image patch Q2, and not an axis aligned one (line 6 in Algorithm 1).

The rotated Q2 is computed using rotation R. This more accurate comparison is

now needed because the contour adjustment for the local alignment crosses between

videos, and axis aligned patches do not match. Furthermore, adjustment is performed

at the output frame cut line between the two video sources, so an inaccurate align-

ment would be readily visible. Figure 4.9, middle, visualizes the displacement of the

points of A1 (red dots) to their correct locations A2 (green dots). Figure 4.9, right,
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shows the continuity achieved at contour boundary in the disoccluded frame using

our local alignment.

Occlusion removal. Finally, the algorithm removes the occluder in the primary

frame V i
1 (lines 15-19). The disoccluded frame V i

d starts out as a copy of V i
1 (line 15),

and then pixels p inside the contour are looked up in V i
2 . A pixel p is first rotated to

pr using R, and then pr is offset with a weighted sum of offsets a2−R× a1, for all a1

points in the vicinity of p. We support several disocclusion visualization modes, such

as cutaway, where p′ completely replaces p (Figure 4.9, right), transparency, where

p and p′ are blended together (Figure 4.1), with and without showing the contour

of the occluder. Our disocclusion visualization supports transitioning gradually from

the background of the primary frame to the occluder shadow (Figure 4.11), and from

the occluder shadow to the residual occluder (third column in Figure 4.1).

4.3.4 Rotation Initialization

The videos V1 and V2 are acquired from different viewpoints, so computing the

rotation R0
2 of frame V 0

2 to V 0
1 is challenging, as it does not benefit from frame to

frame coherence. Indeed, the gap between V1 and V2 only has to be bridged for the

first frame of V2, as subsequent V 0
2 frames only have to be registered to their previous

frame, whose rotation to V 0
1 is already known.

R0
2 is computed by finding SURF features [77] in V 0

1 , outside of C1, and in V 0
2 .

V 0
1 features are matched to V 0

2 features using FLANN [78]. A pair of corresponding

features is given a weight commensurate to the confidence in its correctness. The

weight wij of a correspondence between a feature f1i in frame V 0
1 and the most

similar feature f2j in frame V 0
2 is computed with:

wij = |f1i − f2k|/|f1i − f2j| (4.3)
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where f2k is the feature second most similar to f1i, and |fa − fb| is the difference

between the descriptors of two features fa and fb. The smallest possible weight is 1,

when f1i is equally similar to its best two matches, indicating the possibility of an

ambiguous correspondence. When the second most similar feature f2k is considerably

less similar to f1i than f2j is, the correspondence is less likely to be incorrect, hence

the larger weight. The reprojection error of corresponding features is minimized using

a Gauss-Newton non-linear optimization [80], while also leveraging a RANSAC [79]

approach to mitigate possible incorrect correspondences. The selection of the best

rotation out of the multiple RANSAC tries is not done by merely choosing the try

with the highest number of inlier correspondences. Instead, we choose the try with

the highest sum of inlier correspondence weights.

4.3.5 Global Alignment

The global alignment computes the rotation of the current frame i to a previous

key frame j, independently, for each of the two videos. We globally align two frames

with a rotation because it provides a good approximation of the mapping between the

frames without the prerequisite of scene geometry. We use the Gauss-Newton method

[80] to find the three rotational degrees of freedom that minimize color difference.

Given a current frame V i, a key frame V j, the camera intrinsic matrix M , and a

candidate rotation R from V i to V i, the color residual rp at pixel p is given by:

rp(R) = V j[p]− V i[M−1(RM) · p] (4.4)

In Equation (4.4), p is first unprojected from Vi, then rotated, and then pro-

jected to Vj. The stacked color residual vector over the entire frame is given by

~r = (r1, . . . , rn)T , and the color error E(R) is the L2 norm |~r| of the residual vector.

We use a left-compositional formulation. Starting with an initial estimate R∗ given

by the rotation of the previous frame Vi−1 to Vj, we compute an increment δR for

each iteration:
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Figure 4.10.: Weights used in global alignment from Figure 4.8. Moving objects, such

as the car and the pedestrians, and regions with high disparity, such as the contour

of the person near to the camera, are assigned low weights, to reduce noise in the

rotation computation.

δR = −(JTJ)−1JT~r(R), where J =
∂~r(ε⊕R)

∂ε
|ε=0 (4.5)

J is the derivative of the residual vector ~r with respect to an increment ε, and JTJ

is the Gauss-Newton approximation of the Hessian matrix of E. We then update the

current rotation estimate by multiplying it with the iteration’s increment:

R = δR⊕R (4.6)

In order to gain robustness with outliers caused by moving objects, by the disparity

of near objects, and by view dependent effects (e.g. reflections), the minimization is

done in an iteratively reweighted fashion [81]. The weight of a pixel p equals the

inverse 1/rp of its residual. The weight is capped to avoid infinite weights when a

pixel residual is very small. Figure 4.10 visualizes the pixel weights for the global

alignment from Figure 4.8). The weighted rotation increment is given by
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Figure 4.11.: Abrupt (left) and progressive (right) transition from background to

occluder shadow.

δR = −(JTWJ)−1JTW~r(R), where W = diag(1/r1, . . . , 1/rn) (4.7)

For speed, we perform this color residual minimization with a coarse-to-fine ap-

proach, that works at different levels of the image resolution pyramid. We start from

the coarsest level of 30×17, as our frames have a 16:9 aspect ratio, and we stop at for

levels deeper, i.e. at 480× 270 . The minimization converges at each level in between

2 and 4 iterations.

4.4 Results and Discussion

We have tested our occlusion removal method on several scenes, including the

Snow, Terrace, Atrium, and Clutter scenes shown in Figure 4.1, and the Crossing

scene shown in Figure 4.11. All scenes were abundantly dynamic, except for the

Clutter scene, which was stationary. Each scene was acquired with two videos, cap-

tured with separate handheld phone and tripod mounted tablet cameras, from differ-
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Table 4.1.: Average running times [ms] for the stages of our pipeline, and overall

frame rate [fps].

Stage
Global

alignment
Contour
tracking

Local
alignment

Occlusion
removal FPS

Clutter 2.9 3.8 8.8 5.2 48.3

Atrium 2.9 3.2 8.2 3.5 56.0

Crossing 2.9 2.6 10.9 2.5 52.8

Terrace 2.9 4.1 9.8 6.7 42.7

Snow 2.9 2.5 9.0 2.7 58.5

ent viewpoints, matching the scenario described in the paper; the Clutter scene was

acquired with a single handheld camera that revolved around the occluder, and the

later frames were used to disocclude the earlier frames. Our method worked well with

all scenes, alleviating occlusions by creating a convincing transparency effect.

4.4.1 Time

We ran our disocclusion method for each pair of videos on an Intel E5-1620 work-

station with a 3.5 GHz CPU clock. Our implementation only uses the CPU of the

workstation, and not the GPU, and it is strictly serial. The videos were played back

at the original 30 Hz frame rate, and our method was fast enough to comfortably

process the frames in real time, with no precomputation.

Table 4.1 gives the average times for each of the four stages of our pipeline, as

well as the average frame rate, which is at least 40 fps. Global alignment performance

depends on the number of pixels in the resolution pyramid level used, contour tracking

performance depends on the number of contour vertices, local alignment performance

depends on the number of salient contour points, and occlusion removal depends on

the occluder footprint. The slowest stage is the local alignment stage, which evaluates
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color differences with rotated and not axis aligned patches (parameter R of line 14 in

Algorithm 2). In addition to the cost of the rotation itself, comparing color between

a rotated patch and an axis aligned patch introduces a bilinear interpolation per

color comparison. There is very little frame rate variability as the workload is nearly

constant from frame to frame.

4.4.2 Quality

Our method handles well a variety of scenes, replacing the occluder pixels with

pixels from the secondary video, with good continuity. The limitations of our method

are discussed in the next section. Our method relies on a weak connection between

the primary and the secondary frames: the frames are connected by an approximate

mapping inside the occluder contour, and by a more rigorous mapping along the

occluder contour. The weaker connection is faster to compute than the per-pixel

correspondences used in structure from motion. Moreover, the weaker connection has

the advantage of avoiding disocclusion errors.

Comparison to depth acquisition. Even if both videos are replaced with perfect

RGBD streams, disocclusion errors can occur when the occluder is removed and the

primary viewpoint gains line of sight to a part of the scene not visible from the

secondary viewpoint. In Figure 4.12, the primary viewpoint is O1 and the secondary

viewpoint is O2. The secondary frame samples the green object from the left until

B, and then the blue object from C towards the right. The primary frame is affected

is affected by the occluder FG. The primary frame sees the green object from the

left until A, then the occluder, and then the blue object from E to the right. Our

occluder removal method replaces in the primary frame the occluder pixels FG with

the secondary frame pixels from A to E. Our local alignment makes sure that the

primary and secondary frames are aligned at A and E. A 3D occluder removal

method leverages the perfect depth available at each secondary frame pixel to project

the secondary frame pixels to their correct location in the primary frame. However,
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3D occluder removal (O1)

A

A

A B

E
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EA
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D

O1 O2

F G

Primary frame (O1)

E

Our occluder removal (O1)

B, C

EC

A

Secondary frame (O2)

EB, C

Figure 4.12.: Disocclusion error caused by 3D occluder removal. The secondary

frame with viewpoint O2 does not capture the green object between B and D. Even

if the secondary frame has perfect depth per pixel, projecting the 3D samples of the

secondary frame onto the primary frame will leave a gap between the projection of B

and the projection of C. Our occluder removal method does not suffer from such a

disocclusion error, as the mapping it uses does not allow B and C to separate in the

primary frame.

since the secondary frame does not sample the green object between B and D, the

3D occluder removal method leaves a gap, i.e. a disocclusion error, between B and

C.

Comparison to ground truth. We have also compared our method to a ground

truth transparency effect. For this, we have recorded primary and secondary video

feeds with the occluder obstructing both views (Figure 4.13a), we extracted the oc-

cluder from both views (Figure 4.13b), we recorded primary and secondary video

feeds without the occluder (Figure 4.13c), we inserted the extracted occluder in each

video feed (Figure 4.13d), and we ran our algorithm on the two video feeds with the

inserted occluder. Our algorithm produces results Figure 4.12f that are substantially
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(a)

(b)
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(e)

(f)

Figure 4.12.: Comparison of our disocclusion method to a ground truth transparency

effect: (a) primary and secondary frames with occluder, (b) extracted occluder, (c)

primary and secondary frames without occluder, (d) extracted occluder b inserted

into frames c, (e) ground truth transparency effect, (f) output of our algorithm.

similar to the ground truth transparency effect (Figure 4.12e), which was acquired by

the primary view camera without the occluder being present. A sliver of the occluder
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Figure 4.13.: Illustration of multiperspective effect achieved by our disocclusion

method: primary and secondary view frames (top), ground truth transparency ef-

fect (bottom left), and output of our algorithm (bottom right).

remains in our output since the secondary view direction is tilted up and it does not

cover that part of the occluder.

Multiperspective occlusion removal. As discussed above, our method does not

recreate the primary view for the disoccluded part of the scene. Instead, the pixels

used to fill in the occluder shadow in the primary view come from the secondary view

which has a different viewpoint, i.e. a different perspective on the disoccluded scene.

The different perspective on the disoccluded scene is maintained, since the global

alignment of our method is a rotation and not a 3D warp, i.e. it does not alleviate

the viewpoint difference, and since the local alignment of our method alleviates the

viewpoint difference only at the boundary between the disoccluded region and the

background.
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Figure 4.13 illustrates on a synthetic scene the multiperspective nature of the

disocclusion effect achieved by our method. The top images show two frames from

the primary and secondary views. In the primary view, the yellow rectangle occludes

a box with red, green, and blue (RGB) faces. In the secondary view, the RGB box is

seen from a translated viewpoint, which reveals the blue and green faces. The bottom

images compare the output of our algorithm to the ground truth transparency effect.

Whereas the ground truth transparency effect only shows the red front face of the

RGB box, our visualization shows the RGB box from the secondary perspective,

revealing the the red, green, and blue faces of the box. Our visualization changes

perspective continuously based on the local alignment step which splices in the pixels

from the secondary view.

4.5 Conclusions. Limitations. Future Work

We have presented a method for removing an occluder from a video, by trans-

ferring pixels from a second video that captures what the first video should show if

the occluder were not present. The method is fast, with a minimum frame rate of

40 fps, and it achieves good results on a variety of scenes with intricate and dynamic

geometry. The pixels from the second video are spliced in with good continuity across

the occluder contour. The method is based on the insight that a convincing trans-

parency effect can be obtained without knowledge of 3D scene geometry. The method

computes an approximate mapping from the first video to the second video. The ap-

proximate mapping orients the second camera the same way as the first camera, but

it does not attempt to translate the second camera viewpoint to the first viewpoint.

The approximate mapping is sufficient to fill in the occluder footprint with plausible

pixels from the second video. The result is a multiperspective visualization, where

the scene surrounding the occluder is shown from the first viewpoint, and the scene

behind the occluder is shown from the second camera viewpoint. Switching abruptly

from one perspective to the other at the occluder contour would create a discontinuity.
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Figure 4.14.: Illustration of multiperspective effect achieved by our disocclusion

method: secondary view frame (left) primary view frame (middle) and output of

our algorithm (right). Both left and right face of the box is visible in our output.

Instead, our method connects the two perspectives seamlessly with a local mapping

that achieves a gradual transition from one viewpoint to the other.

One limitation of our method pertains to near objects that cross the occluder

contour. A near object is imaged from different directions by the two cameras, and

therefore it has a different appearance in the two frames, a difference that cannot

be alleviated by the global mapping rotation. This poses no problems when the

near object is completely hidden behind the occluder. However, when the object

crosses the occluder contour, the local mapping helps switch from one perspective

to to the other continuously, but the object appears distorted as it starts out in one

perspective and ends in the other, the same way Picasso’s cubism portraits distort

the subject, blending in a single image views perpendicular to each side of the face. In

Figure 4.14, the switch from the primary to the secondary perspective occurs over the

RGB box, with the resulting visualization integrating both perspectives of the box. In

Figure 4.15, the handrail crosses the occluder contour in region A, where it switches

from the primary perspective, outside the occluder, to the secondary perspective,

inside the occluder. The switch is continuous, but the handrail is distorted as it is

shown with two perspectives.
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Figure 4.15.: Method limitation due to near object crossing the occluder contour:

perspective switch deformation (A) and extrapolation discontinuity (B).

Another problem posed by near objects that cross the occluder contour arises

when the secondary frame does not see everything the occluder hides in the primary

frame. In such a case, a piece of the object is missing from both frames, and the local

mapping cannot fill in the missing piece. In Figure 4.15, the visualization appears

discontinuous to a a human observer in region B, who knows that the scene has one

straight, uninterrupted handrail, and therefore expects that the disoccluded hand rail

be aligned with the handrail reemerging to the left of the occluder. We call this an

extrapolation discontinuity.

Both the perspective switch deformation and the extrapolation discontinuity prob-

lems discussed above are inherent to our method, in the sense that they occur even

though our algorithms work as intended. The Atrium scene is a worst case scenario

for these problems as the long, straight handrail makes them conspicuous. future

work could aim to reduce the perspective switch deformation by widening the area

over which the switch between perspectives occurs; future work could also aim to

reduce the extrapolation discontinuity, by leveraging or even pursuing a high-level
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Figure 4.16.: Method limitation due to near object crossing the occluder contour: the

local mapping achieves continuity across the occluder contour for the pavement line

(A), for the moving foot (B), but fails for the backpack (C)

understanding of the scene that connects the two parts of the handrail even though

the occlusion shadows of the two frames have a non-zero intersection.

A third problem posed by near objects that cross the occluder contour is that the

local mapping fails occasionally (Figure 4.16). For near objects, correcting the global

mapping requires large offsets, which requires a large search neighborhood in the

local adjustment computation, which is time consuming. The problem is exacerbated

when the object moves quickly, and when the object does not have much texture, as

is the case of the backpack and jacket in region C of Figure 4.16. Using a small search

neighborhood in the interest of performance reduces local mapping robustness. Future



114

work could examine increasing the robustness of the local mapping computation with

a strategy that leverages the image resolution pyramid to search over large distances

to gain robustness without a significant performance trade-off.

Another limitation of the current implementation is that the visualization is not

always perfectly stable. Presently, the set of salient points used by the local mapping

is computed from scratch for every frame. Future implementations could limit the

number of points replaced at every frame, in the interest of stability. Finally, the

current implementation computes the global alignment with respect to a fairly recent

key frame of the same video, and global alignment is computed across videos only

once, for the first pair of frames. This works well for our sequences of 30 s, but

for longer sequences, global alignment drift could be a concern, which will have to

be addressed by occasionally recomputing the global alignment between the current

frames of the two videos.

We have shown that our method runs fast enough on a workstation, using only its

CPU, to keep up with prerecorded videos. Future work should deploy our pipeline to

portable computers, such as phones or tablets, leveraging their GPUs to process the

videos in real time, as they are being acquired. Future work could focus on absorbing

into the local adjustment algorithm the latency of transmitting the secondary video to

the user device where the disocclusion effect is computed. Another possible direction

of future work is to increase the number of secondary video streams to handle complex

occlusions.

Our work describes a multiperspective framework for the continuous and non-

redundant integration of multiple images, which, compared to traditional structure

from motion, comes at the lower cost of having to establish only O(w) and not O(wh)

correspondences between pairs of images of w × h resolution. This framework might

find other applications, in augmented reality and beyond.
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5 SUBPIXEL CATADIOPTRIC MODELING OF HIGH RESOLUTION

CORNEAL REFLECTIONS

5.1 Introduction

Digital cameras now capture images with a resolution that far exceeds conventional

displays. Whereas a display cannot show simultaneously all the pixels of the image,

the underlying high resolution is useful for digital zoom-in operations or for large

format printing. Another important benefit of high resolution is increasing the quality

of 3D scene reconstructions derived from images.

Many real world scenes contain reflective objects, and high resolution images

capture a wealth of scene information in fortuitous reflections. Reflections on convex

surfaces are particularly rich in information, as the divergent reflected rays sample the

scene comprehensively, with a large field of view. Furthermore, reflections introduce

additional sampling viewpoints, which allow measuring disparity and triangulating

3D positions from a single image.

The human eyes are convex reflectors, and researchers have long speculated on the

possibility of using corneal reflections to infer 3D scene structure. One challenge is the

small baseline, i.e. a typical interpupillary distance is 63 mm [82], which translates to

low depth accuracy at distances of 0.5 m and beyond. Another challenge is the low

resolution of the corneal reflections. Both challenges are alleviated by increases in the

overall image resolution. A third challenge is accurate calibration of the catadioptric

system defined by the two eyes and a camera. An accurate catadioptric model is

needed to limit the search for correspondences between corneal reflections to 1D

epipolar curves, and for accurate triangulation of 3D scene points.

In this chapter we present a procedure for calibrating the catadioptric model

defined by two corneal spheres and a camera. The input is a high resolution im-
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(a) Input image cropped to eye region.

(b) 3D reconstruction visualized in filled and

wireframe mode.

(c) 3D reconstruction (shaded) aligned with

truth geometry (grey).

Figure 5.1.: 3D scene reconstruction with our catadioptric modeling approach.

age of a person looking at a 3D scene. In our experiments, the image resolution is

5, 472×3, 648 and each corneal reflection has a resolution of approximately 600×600.

First, a preliminary corneal catadioptric model is inferred from the projection of the

limbus circles in the corneal reflections. Then, the model is refined iteratively using

a custom RANSAC approach that relies on bundle adjustment to minimize feature

reprojection error. We obtain an error between 0.16 and 0.58 pixels. We use the

corneal catadioptric model to recover dense depth through stereo matching with the

support of epipolar-like constraints (Figure 5.1). The truth geometry used for com-

parison (grey points in Figure 5.1c) was obtained by scanning the toys with an active

depth sensing camera.
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5.2 Prior Work

We first give an overview of prior efforts on acquiring scenes using catadioptric imaging

systems, and then we review prior work in modeling the catadioptric imaging system

defined by a camera and the two human eyes.

Researchers have long noticed the benefits of devising acquisition systems that

combine refractive and reflective elements. One such benefit is an increased field of

view. Debevec used a chrome ball as a light probe to capture the complex illumination

of a real world scene with a single shot, and to apply it to synthetic objects integrated

into the scene [83]. Nayar has developed omnidirectional cameras using paraboloidal

mirrors with a single viewpoint, so their images can be resampled to conventional

images [84]. A second scene acquisition benefit of catadioptric systems is the ability

to integrate multiple perspectives in the same image. The additional perspectives

encode depth disparity, which enables single-shot depth from stereo [85]. The addi-

tional perspectives are also useful for devising acquisition systems that are robust to

occlusions, by guiding the scanning laser beam towards hard-to-reach places [86].

Human eyes are often captured in images, and leveraging corneal reflections to

infer information about the scene is appealing and has been carefully studied [87].

The corneal reflections are readily available, without the challenge of augmenting the

camera with reflective elements. Furthermore, the corneal reflections introduce addi-

tional viewpoints that capture parts of the scene missed from the camera viewpoint.

The additional viewpoints not only provide a comprehensive image of the scene, but

also allow measuring disparity to extract depth. The catadioptric system defined by

a camera and two eyes requires modeling the cornea’s reflective surface. Prior work

models this surface as a sphere cap, which is part of the corneal sphere, and delimited

by the sclera sphere [88]. We use the same cornea surface model. Another challenge

is that, unlike for catadioptric imaging devices where the reflective elements have a

fixed, pre-calibrated position and orientation with respect to the camera, in the case
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of corneal reflections the eyes are free to move with respect to the camera, and their

position has to be recovered in every image.

One use of corneal reflections is to capture a panoramic image of the scene, lever-

aging the large field of view sampled by the reflected rays [88]. The information in the

corneal reflection can be used to extract gaze direction in camera-display systems [89],

and also to reconstruct a super resolution image of the environment reflected in the

user’s eyes [90]. Corneal reflections have also been proposed as a way of gaining in-

sight into a crime scene, demonstrating that camera resolution is now sufficient for

identifying humans present in such reflections [91].

We discuss in detail the two prior art papers most relevant to our work. One

describes a system that does not recover 3D scene structure from corneal reflections,

but rather from parabolic metal mirrors [92]. Metal mirrors greatly simplify cata-

dioptric scene reconstruction by providing a precisely known reflective surface shape,

and by generating clear and high contrast reflections. Furthermore, metal mirrors are

perfectly stationary which avoids the blurriness that results from the slight user head

motion as the picture is taken. Moreover, the metal mirrors used are about three

times larger than the corneal sphere, and about four times larger than the limbus cir-

cle, which delimits the reflection in our case. Consequently, the prior work reflections

have a resolution of 2M pixels, compared to the 0.1M pixels for our work, which aids

significantly with reconstruction quality. The earlier system refines calibration with-

out a preliminary RANSAC step to weed out mismatched features. The reprojection

error achieved by the earlier system is about five times larger than ours, most likely

due to the simpler calibration refinement step, as discussed above. Finally, the earlier

work does not report any quantitative measure of the 3D reconstruction error. Our

work validates the 3D reconstruction quality in an absolute sense by reconstructing

objects of known size, as discussed in the following sections.

The other paper highly relevant to our work is the only prior art paper that ac-

tually recovers any 3D structure from corneal reflections [93]. The paper proposes

the idea of finding correspondences between a pair of corneal reflections and of tri-
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angulating them into depth. We extend this work in the following ways. First, the

earlier system calibration stops at our precalibration phase. The earlier system is

crudely calibrated by inferring the position of the corneal spheres from the limbus

circles, whereas our system refines this initial calibration with our custom RANSAC

and bundle adjustment approach, which reduces the reprojection error substantially.

We achieve sub-pixel accuracy, whereas the previous paper doesn’t report calibration

accuracy, which we estimate as being orders of magnitude lower based on the accuracy

achieved by our similar precalibration stage. Second, the earlier system requires es-

tablishing correspondences between the two corneal reflections manually, by clicking

corresponding points. Our system detects, matches, and validates correspondences

automatically. Third, the earlier system does not perform dense stereo reconstruc-

tion, whereas our system does. Finally, the only scene where 3D reconstruction is

demonstrated is that of a large cube with uniformly colored faces. Inspired by their

pioneering work, with the help of our subpixel catadioptric modeling framework, we

demonstrate 3D scene structure recovery from corneal reflections.

5.3 Catadioptric Model of Corneal Reflections

Many scenes of interest to computer vision applications contain humans, and corneal

reflections present the opportunity for catadioptric stereo scene reconstruction. Before

scene reconstruction can begin, one has to model the catadioptric system defined by

two eyes and a camera.

5.3.1 Eye Model

Figure 5.2a shows an outer view of the human eye. The most distinctive compo-

nents are the color-textured iris and the surrounding white sclera. The cornea is the

transparent outer layer of the eye that covers the iris. The cornea has an internal

pressure higher than that of the atmosphere, which maintains the cornea’s convex
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(a) Outer view. (b) Geometric model.

Figure 5.2.: Eye model.

shape. The cornea surface is coated with a thin film of tear fluid which makes it

smooth, with mirror-like reflective characteristics [94].

Geometrically, the eye is well approximated by two intersecting spherical segments

of different radii: a smaller, anterior corneal segment, and a larger, posterior scleral

segment (Figure 5.2b). The intersection of the two segments defines the limbus circle,

i.e. the perimeter of the iris. In the field of anatomy, extensive measurements of the

shape and dimensions of the cornea have been conducted [95]. The corneal segment

covers about one-sixth of the eye, and has a radius of curvature rC of 7.8 mm. The

radius of the limbus circle rL is 5.5 mm. The displacement dLC between the center

of the limbus circle and the center of the corneal sphere can be obtained as

dLC =
√
r2C − r2L ≈ 5.53 mm . (5.1)

5.3.2 Catadioptric Model

We model the catadioptric system defined by a camera and two eyes with the

following parameters: (1) the intrinsic parameters of the camera, (2) the limbus

circle radius rL, (3) the corneal sphere radius rC , and (4) the 3D positions of the

centers of each of the two corneal spheres in the camera coordinate system.
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Figure 5.3.: Corneal catadioptric imaging system.

We measure the camera intrinsic parameters with a standard calibration process

[96]. We assume that both eyes have the same limbus circle radius, and we use the

average value of 5.5 mm. We assume both corneal spheres have the same radius, and

we use the average value of 7.8 mm. We confirm the validity of these assumptions

in Section 5.5.3. The 3D positions of the corneal sphere centers are found for each

image as described in the next section.

Using the catadioptric model (Figure 5.3), given a pixel s in the corneal reflection,

one can compute the corresponding reflected ray SP by reflecting the camera ray OS

off the corneal sphere. The converse, projection operation is more challenging. Given

a scene 3D point P , we compute its corneal reflection projection s = π(C,P ) by first

finding its reflection point S with a fourth order equation [97]. Then s is computed

by projecting S on the image plane.
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5.3.3 Epipolar Geometry

Epipolar geometry is used in stereo matching to reduce the dimensionality of

the correspondence search space from two to one. In our case the rays reflected by

the corneal sphere are not concurrent, so the epipole is ill-defined, and traditional

epipolar geometry does not apply. However, we derive epipolar-like constraints as

follows. Given a pixel s1 in the left corneal reflection (Figure 5.4), we compute its left

corneal sphere reflected ray ~r, we sample ~r with 3D points, and we project each 3D

point P onto the image plane using the right corneal sphere, leveraging the projection

operation described above. The projected points define an epipolar curve in the right

corneal reflection which is known to contain the correspondence s2 of s1, if such a

correspondence exists. Like in traditional stereo, the search for correspondences is

confined to a 1D subset of the image pixels. We note that the epipolar curve can

be described analytically with a quartic [98]. However, we have opted to sample the

epipolar curve by sampling the 3D ray for a better control of the sampling rate, as it

is challenging to sample a high-order parametric curve with steps of equal Euclidean

length.

5.4 System Pipeline

Figure 5.5 shows the stages of our system pipeline.

5.4.1 Eye Region Extraction

The first stage crops the input image to only contain the eyes region. We use

a Haar feature-based cascade classifier specialized for eye detection, proposed by

Viola [99] and improved by Lienhart [100]. Previous approaches for extracting the

eye regions proceed with a preliminary step of finding the faces in the input image.

In our case, a single face dominates the input image, and it can even happen that
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Figure 5.4.: Epipolar geometry of corneal catadioptric system.

Figure 5.5.: System pipeline overview.

an image does not capture the entire face, so face detection is not necessary, and

sometimes not even possible.
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(a) Eye region of input image.

(b) Limbus and feature detec-

tion.

(c) Reconstructed checker-

board.

(d) Side view of checkerboard.

Figure 5.6.: 3D reconstruction of checkerboard. The average out of plane displace-

ment for the checker corners is 7.3 mm.
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5.4.2 Initial Calibration

The second stage of the pipeline derives an estimate of the position of the corneal

spheres in the camera coordinate system. This is achieved with a method similar

to the one described before in the context of achieving super-resolution of corneal

reflections [90]. We summarize the procedure here for completeness.

The limbus projection is detected in each eye region using a weak perspective

assumption. Prior art has also developed methods for recovering the limbus under full-

perspective projection assumption [101]. However, the weak-perspective assumption

is justified by the small limbus diameter relative to the distance to the camera, and

by the fact that at this stage we are only deriving an initial estimate that is then

refined in the subsequent pipeline stages.

The ellipse corresponding to the limbus projection is found in a downsampled eye

region image using a Canny edge detector. Edge segments are assembled from edge

map pixels and the ellipse is assembled from edge segments with a combinatorial

search [102]. The downsampling of the eye region not only helps accelerate ellipse

detection, but also serves as a low-pass filter that improves robustness. In particular,

the downsampling suppresses the corneal reflections, which are an important source

of noise for this stage of the pipeline. Note that the limbus circle is never entirely

visible, as it is occluded by eyelids and eyelashes. Our edge detection/combinatorial

search method handles well the variable occlusion of the limbus. Figure 5.6b shows

a limbus detection example. Once the ellipse is determined, using the known radius

of the limbus circle, the 3D position of the center and the orientation of the limbus

circle are computed leveraging the known camera intrinsics. Since the radius of the

corneal sphere is known, the corneal sphere center is computed using the 3D position

of the center and the normal of the limbus plane [101].
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Figure 5.7.: Corneal reflection feature points for Figure 5.1.

5.4.3 Feature Extraction

The third stage of the pipeline extracts features in the reflections within the two

limbus ellipses. We detect features using the FAST algorithm [103] (Figure 5.7). In

anticipation of feature matching, the features are described with the BRIEF [104]

algorithm. Feature scale and orientation will not vary much between the reflection

in the left eye and the reflection in the right eye. Therefore, the additional memory

and processing costs of scale and orientation invariant descriptors such as SIFT [105]

or SURF [77] are not justified in our context. The BRIEF descriptor is binary, so

the hamming distance between two descriptors can be found quickly using XOR and

counting bit operations.

5.4.4 Calibration Refinement

The fourth stage of the pipeline refines the catadioptric model with a RANSAC

approach we have developed (Algorithm 3). The algorithm takes as input the initial

catadioptric model C0 estimated from the limbus circle projections in the second stage

of the pipeline; the set of features FL and FR detected in the left and right corneal

reflections in the third stage of the pipeline; and the number of RANSAC iterations

k over which to refine the catadioptric model.



127

Algorithm 3 Refinement of catadiotpric model

Input: Initial catadioptric model C0, features FL and FR, number of iterations k

Output: Feature matching M , and refined catadioptric model C

1: M0 = InitialMatching(FL, FR)

2: for each iteration i of k do

3: hexi = {(fL1, fR1), . . . , (fL6, fR6)} ⊂M0

4: Ci = BundleAdjustment(C0, hexi)

5: for each (lj, rj) in M0 do

6: eij = ReprojectionError((lj, rj), Ci)

7: if eij < ε then // inlier correspondence

8: Mi += (lj, rj), ni++

9: end if

10: end for

11: if ni > nbest then

12: nbest = ni, M = Mi, Cbest = Ci

13: end if

14: end for

15: C = BundleAdjustment(Cbest,M)

An initial matching of features M0 is computed (line 1) with an all-pairs approach

that considers each feature fL in FL and matches it to the FR feature with the smallest

distance to fL. However, in the case of scenes with repetitive texture, a feature could

have several matches with similar quality, which can lead to matching ambiguity. We

reject such features using the ratio test [105], which only keeps a feature if its second

best match is significantly worse.

Based on this initial matching M0, each iteration i of the RANSAC approach

computes a possible refined catadioptric model Ci, and retains the best refinement

(lines 2–14). The refined model Ci is computed with a bundle adjustment approach
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from a set of six correspondences hexi that are drawn at random from M0 (line 3).

The bundle adjustment uses a trust-region optimization [106] to find the two corneal

centers CL and CR (2 × 3 = 6 parameters), and the 3D positions Pj of the six

scene features (6 × 3 = 18 parameters). The optimization minimizes the sum of

correspondence reprojection errors. For correspondence (fLj, fRj) the reprojection

error is:

∥∥π (CL, Pj)− fLj
∥∥2 +

∥∥π (CR, Pj)− fRj
∥∥2 , (5.2)

where π is the projection function of the corneal catadioptric system (Section 5.3.2).

An initial guess of a feature’s 3D position Pj is computed by triangulation, as the

midpoint of the common perpendicular segment of the two reflected rays at fLj and

fRj. The six correspondences are sufficient to determine the 6 + 18 = 24 parameters,

since each of the six correspondences contributes two 2D corneal projection equations,

for a total of four scalar equations:

π(CL, Pj)x = fLjx , π(CL, Pj)y = fLjy ,

π(CR, Pj)x = fRjx , π(CR, Pj)y = fRjy .
(5.3)

Then, using the model Ci, the correspondences in M0 are partitioned in inlier

and outlier correspondences (lines 5–10). A correspondence is considered an inlier

if its reprojection error eij (Equation (5.2)) is smaller than a threshold ε. Inlier

correspondences are counted by ni, and are collected in set Mi. The model Cbest with

the most inlier correspondences is found over all k RANSAC iterations (lines 11–

13). In a last step, Cbest is refined over all inlier correspondences M with the bundle

adjustment procedure described above for line 4), to generate the final catadioptric

model C. The catadioptric model refinement reduces the average reprojection error

to subpixel levels (Figure 5.8).

In conventional structure from motion, bundle adjustment is used over multiple

frames, which results in a large but sparse feature correspondence matrix. This

sparsity is exploited by specific optimization methods (e.g. Sparse Bundle Adjustment
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Figure 5.8.: Detected features (green) and reprojected features (red). The average

reprojection error is 0.54 pixels.

based on Levenberg-Marquardt [107]). In our case, we only rely on the two images

provided by the two corneal reflections, so our correspondence matrix is always full

and small, hence our choice of the trust-region optimization.

5.4.5 Dense Stereo

The catadioptric model refinement stage produces a sparse reconstruction of scene

geometry by computing the 3D positions of corresponding features. Scene reconstruc-

tion fidelity is increased in a final stage that attempts to compute a correspondence,

and thereby a 3D point, for each corneal reflection pixel. For every pixel in the left

corneal reflection we search for a correspondence pR in the right corneal reflection

along p′Ls epipolar curve (Figure 5.9, top). The epipolar curve (blue) is truncated

to a short arc (red) based on a depth range estimate inferred from the sparse recon-
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Figure 5.9.: Correspondence search on epipolar curve (top), and rotation of corre-

sponding patches (bottom).

struction. The smaller search space accelerates correspondence finding, and increases

robustness by removing from consideration parts of the image with similar texture.

Given a candidate corresponding point pR on the epipolar curve, the matching

error E(pL, pR) is the sum of squared color differences between square patches RpL

and RpR centered at pL and pR in the left and right reflections:

E(pL, pR) =
∑

pi⊂RpL

‖RpL(pi)−RpR(F (pi))‖2 . (5.4)

Whereas in standard stereo configuration the mapping F from RpL to RpR can

be approximated with the identity, in our case there is significant rotation between

RpL and RpR . We use a mapping that rotates each patch to become aligned with the

epipolar curve tangent (Figure 5.9, bottom).
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Figure 5.10.: Experiment setup.

5.5 Results and Discussion

Figure 5.10 shows our experimental setup. All the pictures were taken with a Canon

E70D camera, which has a resolution of 5,472 x 3,648, and with a 135 mm lens.

Aperture, ISO and shutter time were chosen to best capture the corneal reflections.

Focus bracketing was used to obtain sharp corneal reflections, which is also aided by

the fact that the reflection in a small convex surface is ”shallow”, forming close to the

reflective surface, and focusing close to the surface will capture the entire reflection in

focus, even for a small depth of field. We have tested our pipeline on several scenes:

Checkerboard (Figure 5.6), Toys (Figure 5.1), Presents (Figure 5.11), and Workbench

(Figure 5.12).

5.5.1 Quality

The automatically detected ellipse has an average Hausdorff distance of 1.51 pixels

to a truth ellipse fitted through manually chosen points [108].
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Table 5.1.: Reprojection errors [pixel].

Checkerboard Toys Presents Workbench

Initial 2.44 7.93 13.88 62.26

Refined 0.16 0.54 0.57 0.58

We extract features with OpenCV’s FAST feature detector [103]. The initial

feature matching (line 1 in Algorithm 3) has a low outlier rate, e.g. 8 out of 106 for

the Toys scene. Consequently, a small number of RANSAC iterations (i.e. k = 10) are

sufficient to converge to an accurate catadioptric model since the randomly selected

sets of six correspondences are unlikely to contain outliers. The refinement stage

reduces the average reprojection error (Equation (5.2)) substantially, as shown in

Table 5.1. For the Workbench scene the limbus is heavily occluded in the input

image, so limbus detection is approximate, which leads to a coarse initial calibration.

However, even for this case, model refinement converges, reducing the reprojection

error below one pixel.

For the Checkerboard scene, the average out of plane displacement for the 144

3D points recovered at the 12 × 12 checker corners is 7.3 mm. For the dense-stereo

reconstructed points, the average out of plane displacement is also 7.3 mm. The

length of the reconstructed diagonal of the checkerboard is 0.61 m, whereas the true

diagonal is 0.59 m, which corresponds to a 2.7% error. For a qualitative assessment of

our depth maps, we scanned the Toys and the Presents scenes with a depth camera

(i.e. a Structure sensor). The truth geometry aligns with the geometry reconstructed

from corneal reflections (Figures 5.1c and 5.11). For the Presents scene we fitted

planes to the box faces, with an average error of 15.3 mm. The normals of parallel

faces had an average angle error of 6.2◦.
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Figure 5.11.: Presents scene: reflection, and reconstruction aligned with truth geom-

etry (grey points), for comparison.

Figure 5.12.: Workbench scene: reflection and reconstruction.

5.5.2 Speed

We measured performance on an Intel(R) Core(TM) i5-7600K 3.8 GHz worksta-

tion. The running times of each stage of our pipeline are given in Table 5.2. For eye

region extraction, we use the Haar cascade classifier provided in OpenCV. A mini-

mum eye region size is set to avoid false detections. For the limbus detection in the
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Table 5.2.: Typical running times for our pipeline.

Pipeline stage Time [ms]

Eye region extraction 53

Initial calibration 82

Feature extraction 50

Calibration refinement (Algorithm 3)

Initial feature matching (line 1) 2

RANSAC iterations (lines 2–14) 20

Final bundle adjustment (line 15) 1,053

Dense Stereo 287,327

initial calibration, we start the search at the center of the eye region. The bulk of the

limbus detection time goes to downsampling the image. The dense stereo stage is by

far the slowest, but also the best candidate for parallelization.

5.5.3 Error Analysis

Like any depth from stereo system, our depth accuracy depends on the baseline,

on the image resolution, and on the correspondence detection error. There isn’t much

flexibility for the baseline, which is fixed to the interpupillary distance. In terms of

resolution, we use one of the off-the-shelf highest resolution cameras. Due to the high

curvature of the corneal sphere, correspondence detection errors result in larger depth

errors than in the case of conventional stereo, as reflected rays are more divergent.

The detection error is commensurate to the feature reprojection error, which in our

experiments is consistently below one pixel. For our system, a one pixel detection

error translates to an average depth error of 20 mm at 0.5 m. This error is larger

closer to the limbus circle, where reflected rays are more divergent.
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We use a catadioptric model that assumes known and equal limbus circle radii.

The limbus circle radius is only used in the initial calibration stage, which provides an

initial guess for the model refinement stage. In all our experiments this initial guess

was good enough for the model refinement stage to converge, which indicates that one

can safely use the known and equal limbus circle radii assumption. Our catadioptric

model also assumes that the corneal surfaces are spherical, and that the corneal

sphere radii are known and equal. We have investigated the reconstruction error

sensitivity to deviations from these two assumptions analytically. The reconstruction

error is computed for a 3D point P at a typical distance from the eyes of 0.5 m.

The projections pL and pR of P in the corneal reflections are computed with our

ideal catadioptric model C. Then, for a given imperfect catadioptric model C ′, we

compute a deviated position P ′ of P as follows. First, the camera rays at pL and pR

are reflected according to C ′, and then the reflected rays are triangulated to obtain

P ′. The reconstruction error is defined as the Euclidean distance between P and P ′.

Figure 5.13 shows the reconstruction error dependence on cornea eccentricity and

on left/right eye asymmetry. The same 0 to 0.2 range is used for both independent

variables. Cornea eccentricity is modeled by assuming the true cornea is in fact an

ellipsoid. For an eccentricity of 0.2, which corresponds to a small/large ellipse axis

ratio of 0.98, the reconstruction error is 38 mm. The eye asymmetry is quantified as

the ratio of the radii of the left and right eye corneal spheres. For an eye asymmetry

of 10%, the error is 40 mm. This analysis indicates that the reconstruction error is

quite sensitive to these two parameters.

In our anatomy research review we did not find a human population range for these

parameters. We experimented with extending our bundle adjustment to optimize for

eye asymmetry as well, but the reprojection errors did not decrease significantly. Fur-

thermore, we have also investigated the validity of our assumptions empirically, by

reconstructing our scenes from reflections captured from two high-grade steel bearing

balls of similar size to the human corneal spheres (Figure 5.14). The bearing balls

are truly spherical and of equal size, so the bearing balls catadioptric system satis-
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Figure 5.13.: Reconstruction error analysis.

Figure 5.14.: Steel ball catadioptric system, for comparison.

fies all our assumptions. The reconstructed scene accuracy was comparable to the

reconstructions from corneal reflections for the Checkerboard scene, which indicates

indirectly that our corneal catadioptric system assumptions are valid.
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5.6 Conclusions and Future Work

We described a pipeline for extracting 3D scene structure from high resolution corneal

reflections. The system first calibrates the position of the eyes with respect to the

camera with subpixel accuracy, and then uses the resulting catadioptric model to

triangulate corresponding corneal reflection features and pixels.

One limitation of the system stems from the assumption that the input image

provides a perfect corneal reflection. Future work should take into account the iris

texture, which is a considerable source of noise for light colored eyes. Methods for

separating the local from the global illumination [109] could be used to this effect.

Another limitation of the current pipeline implementation is that the dense stereo

stage relies on a naive patch color matching algorithm, which reduces the quality of

the 3D scene reconstruction. Our paper contributes a subpixel accurate calibration

of the corneal catadioptric imaging system, which can be readily used with more

sophisticated stereo matching algorithms, such as for example those that exploit scene

geometry coherence [110], [111], [112].

Another direction of future work is to accelerate the pipeline to interactive per-

formance, which allows accumulating scene 3D structure over several frames, or even

from a video stream. A first step is to implement the dense stereo stage on a GPU.

For a stationary camera, the 3D points contributed by each frame are already in a

common coordinate system and can be readily merged, without alignment.

Future work to extend our method beyond the lab setting is challenging. Our work

already reduces the calibration error of the catadioptric system below one pixel, which

is an order of magnitude improvement over prior art. But the inherent limitation that

prevents the reconstruction of scenes outside the lab is the large distance from the

eyes to the scene, relative to the interpupillary distance and to the corneal reflection

pixel resolution. Indeed, even for a 0.1 pixel reprojection error, which is the standard

for the calibration error of simple optical systems with one camera, corneal reflection

reconstructions will incur errors of 6.33, 25.3, and 602mm at scene distances of 1,
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2, and 10m, for a 5,472 x 3,648 resolution camera placed at 0.5m from the eyes.

Our corneal catadioptric system calibration and scene reconstruction pipeline already

achieves the best results afforded by the current resolution of commercial digital

cameras, further improvements will have to come from increasing the resolution of

the corneal reflections.

Although images now have sufficient resolution for direct display, giving the user

the option to zoom in on regions of interest, such as faces, and extracting scene

information from corneal and other fortuitous reflections will continue to benefit from

further increases of image resolution. Many of these applications do not require high

resolution throughout the image, and a promising direction of future work in imaging

system design is to achieve a variable resolution over the field of view. Although

consumer-level devices, such as phones, now have multiple cameras with various focal

lengths, achieving a high resolution at application specified locations in the field of

view remains intractable. A more promising approach is to rely on a high resolution

sensor with a wide angle lens and to read and save only the pixels needed, resulting in

a versatile imaging system that helps leveraging secondary rays for scene acquisition.
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6 CONCLUSIONS

Our thesis advocates to design custom and specific solutions for connecting images ac-

quired from different locations, solutions that are inexpensive yet effective for each AR

problem. We presented solutions tailored for simulated transparent display continuity,

effective mentor workspace visualization in AR surgical telementoring, and occlusion

removal for effective diminished reality visualization. In essence, all these challenges

have the fundamental underlying problem of establishing a connection between pairs

of images captured from different viewpoints. Denoting the image resolution as w×h,

we argue that a dense, per-pixel connection, which comes at least at O(wh) cost, is

not only difficult to establish, but it is also insufficient due to disocclusion errors.

We show that, instead, a lightweight connection of cost O(w) or even O(1) can be

designed to address each problem effectively.

The first AR challenge that we focused on is the avoidance of the discontinuity

at the boundary of a video see-through AR display. Assuming the scene geometry is

sufficiently away from the user, we showed that an O(1) mapping from the camera’s

viewpoint to the user viewpoint is sufficient to show the user what they would see

if the display were not there, producing a convincing display transparency effect.

The scene captured by the back-facing camera is warped to the user viewpoint by

alleviating the view direction differences between the camera and the user. This way,

the frame acquired by the camera is cropped to what the user would see through

the display frame, removing visualization discontinuity across the display boundary.

A theoretical analysis shows that the achieved transparency effect has an error of

less than 5% when the scene is farther than 6 m. The effectiveness of simulated

transparency is also validated empirically on a self-contained and compact simulated

transparent display implemented on a mobile phone.
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The second AR challenge is to effectively convey the workspace to the mentor in

telementoring. The workspace visualization has to allow the mentor to understand

the current state of the task performed by the mentee in order to give adequate

guidance, leading to successful telementoring. We have shown that a simple pla-

nar approximation of workspace geometry can be computed quickly and that it is

effective. The planar proxy establishes an O(1) mapping between the mentor and

mentee viewpoints. We project the mentee video feed onto the proxy, and then re-

project the textured proxy to a static viewpoint for the mentor. This provides an

effective real-time visualization of the workspace to the mentor. The visualization is

of high quality, i.e. without distortions due to inadequate geometric approximation,

and without tears due to disocclusion errors. All scene lines project to lines in the

visualization. All these properties contribute to the effectiveness of the workspace

visualization and therefore of the telementoring application.

The third challenge investigated by this thesis is the removal of an occluder from

a video feed, in real time. We presented a method that establishes the mapping

from the view of an auxiliary camera to the user view in O(w) time. The mapping

is based on a global rotation and a local refinement generated from contour pixel

correspondences. The mapping is sufficient for painting over the occluder using pixels

from the auxiliary camera, which amounts to a convincing transparency effect. The

result is a multi-perspective visualization, where the scene surrounding the occluder

is shown conventionally, from the user viewpoint, and the scene behind the occluder

is shown from the second camera viewpoint. A gradual transition is implemented by

our method to connect the two perspectives seamlessly from one viewpoint to the

other.

One traditional approach applicable to all the challenges above is to acquire a

complete geometry model of the scene, then to render the scene geometry from one

viewpoint, with projective texture mapping of images acquired from the second view-

point. However, in the AR contexts investigated by our thesis, this one-size-fits-all

approach is not only time consuming, but also insufficient due to disocclusion errors.
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Depth acquisition has a cost of at least O(wh) since it requires a dense, per-pixel

correspondence mapping to establish the connection between two images. Even with

perfect scene geometry, problems like simulated transparent display continuity or

mentor workspace visualization are not adequately solved due to persistent disocclu-

sion errors. Our proposed custom solutions for such challenges are not only faster

but they also produce better results.

In future work, the algorithms developed in the individual contexts of improving

visualization continuity for simulated transparent displays, of surgical telementoring,

of diminished reality, and of 3D scene reconstruction from corneal reflections can

be combined. For example, one direction of future work could explore devising a

simulated transparent that also handles the case of nearby geometry by acquiring the

real world scene from the user viewpoint by capturing corneal reflections. Another

possibility is to bypass user tracking and geometry acquisition altogether and to

achieve transparent display visualization continuity with a user head mounted camera

that relies on the display camera for the secondary video feed from which to borrow

pixels to inpaint the occluding tablet, making it to appear transparent.

Our work takes a step towards realizing the potential of AR technology. Current

video see-through displays suffer from the dual-view perceptual issue, i.e. part of the

augmented video on the display is redundant with the scene viewed directly by the

user. By removing the discontinuity at the boundary, our method helps to remove

the additional cognitive load required from the user to translate the annotated visual-

ization to the real world context. Truly transparent hand-held displays will probably

remain elusive in the foreseeable future, so improving the visualization effectiveness

of simulated transparent displays is likely to remain an infrastructure contribution

that will continue to benefit many AR applications.

By conveying the mentee workspace to the mentor effectively, our method im-

proves the mentor’s scene understanding, which in turn increases the quality of the

guidance they provide, and ultimately increases mentee performance. Our method

has shown significantly better results than a raw, unstabilized first-person view of
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the workspace. Our AR telementoring system has proven its effectiveness even in

challenging scenarios such as that of practice cricothyroidotomies in austere settings.

Diminished reality is an important case of AR visualization that improves the

user’s visual perception of the scene by reducing scene clutter. One diminished re-

ality approach is to paint over occluders, rendering them transparently. We have

demonstrated the effectiveness of an occluder removal technique based on a fast con-

nection between the user video and an auxiliary video, which opens the door to

effective real time occlusion management by leveraging a multitude of video feeds,

each with its own viewpoint. For example, a group of users watching an event can

provide an occlusion-free visualization of the event to a control and command center,

or to each of the users, using the multiple video sources.

Longer term, we see AR as the ultimate human computer interface, where the

quality and the convenience of the integration of the visual enhancements into the

user’s view of the real world will make traditional displays obsolete.
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