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NOMENCLATURE 

𝑇: Temperature 

𝑃: Pressure 

�̇�: Power 

�̇� – Rate of mass flow  

�̇� – Rate of heat transfer 

Subscripts: 

𝑆𝐻: Superheater 

𝑅𝐻: Reheater 

𝐴𝐻: Air heater 

𝐸𝑐𝑜𝑛: Economizer 

DSH – Desuperheater  

BD – Blowdown  

Coal – Pulverized coal  

SA – Secondary air 

PA – Primary air  

𝐹𝐺: Flue gas 

𝐹𝑊: Feedwater 

𝐼𝑛: Component inlet 

𝑂𝑢𝑡: Component outlet 
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ABSTRACT 

The intermittent nature of renewable energy, variations in energy demand, and fluctuations in oil 

and gas prices have all contributed to variable demand for power generation from coal-burning 

power plants. The varying demand leads to load-follow and on/off operations referred to as cycling. 

Cycling causes transients of properties such as pressure and temperature within various 

components of the steam generation system. The transients can cause increased damage because 

of fatigue and creep-fatigue interactions shortening the life of components. The data-driven model 

based on artificial neural networks (ANN) is developed for the first time to estimate properties of 

the steam generator components during cycling operations of a power plant. This approach utilizes 

data from the Coal Creek Station power plant located in North Dakota, USA collected over 10 

years with a 1-hour resolution. Cycling characteristics of the plant are identified using a time-series 

of gross power. The ANN model estimates the component properties, for a given gross power 

profile and initial conditions, as they vary during cycling operations.  As a representative example, 

the ANN estimates are presented for the superheater outlet pressure, reheater inlet temperature, 

and flue gas temperature at the air heater inlet. The changes in these variables as a function of the 

gross power over the time duration are compared with measurements to assess the predictive 

capability of the model. Mean square errors of 4.49E-04 for superheater outlet pressure, 1.62E-03 

for reheater inlet temperature, and 4.14E-04 for flue gas temperature at the air heater inlet were 

observed. 
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 MOTIVATION AND OBJECTIVES 

1.1 Motivation 

Renewable energy sources are being utilized for electricity generation in the United States 

with a significantly increased share from 10.6% in 2009 [1] to 19% in 2019.  The share is expected 

to increase further to reach 21% in 2021 [2]. Among the renewable sources, wind and solar 

constituted approximately 35% of the 19% electricity generation in 2019. The wind energy and 

solar energy sources are intermittent and contribute to fluctuating demands (i.e., cycling) for power 

generation from coal power plants. Fluctuating demand for coal also results from the availability 

of low-cost gaseous fuels and ups and downs in the North American and world economic activities.  

The resulting cycling operations have impacted many coal power plants severely resulting in 

significant component damages and financial losses [3]–[6]. As a result, some coal-fired power 

plants have recently retired [7] and some are on the verge of a shutdown. The remaining coal-

burning power plants need to operate safely at optimized costs even under load cycling conditions 

[4]. 

 

Figure 1.1: U.S. electricity generation by major energy source [1] 

The majority (~95%) of the existing coal-fired power plants in the US were designed to 

operate at baseload conditions with minor load-following [8]. Switching between baseload to 
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cycling operation affects the maintenance cost and life expectancy of the equipment. The effects 

of cycling operation are most significant on high temperature and pressure components. The 

present study considers the steam generation system including air heaters, superheaters, and 

reheaters. These components experience large temperature and pressure gradients during cycling 

operations. Schröder et. al. [9] have reported that 52-57% of the cycling-related capital and 

maintenance costs are associated with the steam generation system.  

 

Figure 1.2: Variation of electricity generation with time from coal and renewable sources (wind 

and solar) 

The statistical measures for estimating the cost of cycling power plants considering data 

from several power plants are reported in the literature [3], [8]–[15]. However, significant 

variations in the design and operation of power plants exist and unit-specific cost models are more 

relevant than their statistical counterparts. The life and efficiency of power plant components 

depend on the variations in the properties during the cycling operation. Hence, it is important to 

create a model for the estimation of properties to which the components are subjected during 

cycling operations. Machine learning algorithms are highly effective for relating complex 

variations of pressures, temperatures, flow rates, and compositions during transient power plant 

operations. A well trained and validated machine learning model based on the data from an actual 

power plant can be used to estimate the necessary properties for future cycling operations. 
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1.2 Objectives 

Following are the objectives of the present study: 

1. Study the cost associated with cycling operation 

2. Identify cycling operations from the gross power data of a coal powerplant 

3. Develop a relationship between power plant load cycling and variation of system 

properties using Artificial Neural Networks (ANN) 
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 LITERATURE REVIEW 

2.1 What is Cycling? 

The operation of electricity generation units at varying load levels in response to varying 

dispatch requirements is called cycling [10]. This includes on/off operation and load-follow 

cycling operation. As opposed to cycling, baseload operation corresponds to the continuous 

operation of a power plant at the designed nominal capacity. Cycling is caused by the change in 

the demand. Since electricity is not stored, its production must always match the demand. The 

demand for electricity varies with time of the day, day of week, and seasons. Such variations in 

demand were predictable and the need for cycling power plants was relatively low. However, as 

the integration of variable renewable energy sources is increasing the fluctuations in the electricity 

demand have increased forcing increased cycling of conventional power plants.     

Le et. al. [16] presented the pros and cons of cycling units from the perspective of a system 

operator and plant personnel. The flexibility afforded by cycling is an asset for the system operator. 

A system operator tries to minimize the total generation costs by considering factors such as 

minimum loads, changing load forecasts, forced outages, and opportunistic purchase and sale 

transactions. The authors reported a 1.5% reduction in operating cost when the minimum up/down 

time requirements for units was reduced from 168 hours to 12 hours. The flexibility of cycling 

units with short start-up times is advantageous as the unit commitment software can then react to 

the changing load forecasts.   

On the other hand, plant personnel try to maximize the unit efficiency and minimize 

equipment stress. The electricity generation units were designed and optimized to operate at the 

maximum capacity and hence the efficiency of the power plants changes when operated at a 

reduced capacity. Also, these units were designed for continuous operation rather than a cycling 

operation. Cycling causes the heat-rate to increase and shorten the equipment lifetime. As 

compared to controlled shutdowns which are relatively risk-free, forced shutdowns can lead to 

higher equipment damage due to sudden interruptions and large temperature gradients. These 

hidden costs make cycling undesirable for plant operators. The impact of cycling operations can 

be categorized as load efficiency cost, capital and maintenance cost, and forced outage cost.   
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Several studies have tried to include the cycling cost in the unit commitment models [17]–

[19]. Bergh et. al. [17] studied the impact of cycling parameters of conventional generation units 

to determine the optimal scheduling of the electricity generation system by simulating. The cycling 

of conventional units is simulated using a commitment model, demand time-series, renewable 

generation time-series and a model for the electricity grid. Four weeks of data at 15-minutes 

resolution was used. All types of cost of cycling: direct start costs, indirect start costs, forced costs, 

ramping costs and efficiency costs were considered. These costs were estimated using data 

provided by [9] and [10] which was based on statistical studies of various power-plants. Bergh et. 

al. concluded that the cycling cost can be reduced by 40% by considering all cycling costs in the 

unit commitment scheduling. 

Corio et. al. [8] noted in an EPRI report that the metrics used to define cycling vary between 

different studies. Engineering firms that design and build power plants classify cycling as on/off 

cycling, also known as two-shifting, and load cycling. The electric industry sources, like the North 

American Electric Reliability Council (NERC), classify the power plant operation in 5 categories: 

(i) Baseload with minor load following, (ii) Periodic startup, load follow daily, reduced load 

nightly, (iii) Weekly startup, load follow daily, reduced load nightly, (iii) Daily startup, load follow 

daily, off-line nightly and (v) Startup chiefly to meet daily demand. Previous statistical studies [10] 

have looked at the number of different types of start-up operations, the number of load-follow 

operations and their ramp rates as metrics for the estimation of cost of cycling. Corio et. al 

proposed 14 functional forms for defining the metrics of cycling operations. These functional 

forms were close to the categories used by NERC and had attributes such as frequency, periodicity, 

and amplitude. 

2.2 Capital and Maintenance (C&M) Cost 

When the power plant is operated it causes damage to the generating units. The operation 

can be under base-load or cycling conditions. The damage accumulated by the power plant is due 

to a combination of mechanisms such as creep, fatigue, erosion and corrosion [14], [20]–[22]. 

Creep damage occurs when components under stress are subjected to high temperatures. Under 

base-load conditions, the system properties such as pressures and temperatures remain relatively 

constant leading to creep conditions. Powerplants are designed to operate under these conditions 

using creep-resistant materials. The variation of temperatures and pressures experienced by 
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components during cycling conditions causes damage due to fatigue. During cycling operations, 

both creep and fatigue mechanisms are active for high-temperature components leading to 

premature failures. This is known as creep-fatigue interaction.  

Shibli et. al. [21] provides a brief overview of component failures resulting from creep-

fatigue interaction. Thick wall components such as the boiler are prone to thermal fatigue cracking.     

Superheater and reheater header ligament can experience thermal fatigue cracking due to poor 

temperature control. The expansion and contraction of the furnace wall tubes during cycling 

operation is not uniform and causes internal stress which can eventually lead to thermal fatigue 

cracking in the evaporator and economizer headers. The pipes in the boiler are attached to the 

furnace walls or other pipes using slip ties and brackets. Failure of these attachments due to thermal 

variation is one of the main causes of forced shutdowns.  

Component level studies have been reported for estimation of the remaining life of 

components [20]. Creep-fatigue interaction was identified as the key damage mechanism. Creep 

damage depends on the dwell time for which the component is exposed to high temperatures while 

fatigue damage depends on the number of cycling operations. The cumulative damage due to creep 

and fatigue can be estimated using four main techniques: linear damage summation analysis, 

frequency-modified strain range analysis, strain range partitioning analysis and ductility 

exhaustion analysis. All these techniques depend on data coming from laboratory testing of 

materials used in the components. This affects the accuracy of the component life estimation as 

uncertainties in plant operation are not accounted for. 

 Statistical models for the estimation of cost of cycling involves a collection of plant or unit-

level data from several plants. These studies also lack inaccuracy as it is extremely difficult to 

distinguish the cost associated with wear and tear due to normal operation from that due to cycling 

operation. For a typical large (300-900MW) coal-fired sub-critical steam power plant, the average 

C&M cost for load-following cycling operation was estimated to be 2.45$/(MW capacity) by 

Lefton et. al. [10]. This cost was reported in terms of the 2011$ amount. The cost was multiplied 

by a factor ranging from 1.5 to 10 for higher ramp rates. Corio et. al. [8] proposed a methodology 

for estimation of the cost of cycling using the functional form for defining cycling operations.    
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2.3 Forced Outage Cost 

The rate of damage accumulation increases due to cycling operations which leads to an 

increased number of forced outages. The reliability of the power plant can be measured in terms 

of Equivalent Forced Outage Rate (EFOR) which is a ratio of offline hours during demand to the 

total number of service hours. If the power plant must procure replacement power, the cost of 

increased EFOR includes the lost revenue and the cost of replacement power. The effect of cycling 

operations on EFOR has been reported in [10]. The study was conducted for 10 similar steam-

electric units. An increase in the number of cycling operations is followed by an increased EFOR. 

However, the increase in EFOR is not immediate. As the plant gets older, it starts to accumulate 

more damage due to cycling leading to more frequent forced outages.  

After a forced outage, additional resources are required to bring the boiler back online. The 

startup cost includes the cost of materials such as fuel, water and chemicals. The cost associated 

with auxiliary power must also be included if supplied during startup. Increased manpower is 

required during startup as compared to base-load operation. This is reflected in the increased labor 

costs. During ramp-up or ramp-down operation, the boiler efficiency is also lower than the base-

load operation. The cost of replacement power to be purchased during the offline hours is a major 

part of the cost associated with forced outages.  

Ramping-up the output of a unit after shutdown also leads to significant damage to components 

leading to higher maintenance and capital expenditures as described in section 2.2. The damage to 

the components depends on the range and the rate of change of the temperatures and pressures [8]. 

Hence, the startup costs vary significantly with the type of startup classified based on the downtime 

of the unit. A warm start refers to startup operation after 12-40 offline hours. If the number of 

offline hours is lesser than 12, then it’s referred to as a hot start. Cold start corresponds to startup 

operation after 40 of offline hours. During a cold start, the power plant components experience a 

larger range of temperature as compared to a hot start. These classifications are based on [10] for 

large sub-critical coal-fired power plants. 

The capital and maintenance cost associated with startup operations is challenging to estimate. 

Keatley et. al. [23] created a statistical model for forecasting the cost of a hot, warm or cold start 

as a function of the unit’s service life. They considered 19 power-generation units from the Irish 

Single Electricity Market (SEM). Out of these 19 units, 5 were coal-fired conventional units, 4 

were gas-fired conventional units and 10 were combined-cycle gas turbine (CCGT) units. The 
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operation and cycling cost data in the European Technology Development (ETD) database was 

used to estimate the annual non-fuel operation and maintenance (O&M) cost for the units in the 

Irish system. This cost was related to the unit’s actual consumption of service life. Per-start cost 

for the unit was calculated by dividing the annual O&M cost by the number of starts per year. The 

cost due to the long-term increase in heat rate, increased forced outages and foregone energy 

payments was not included. The resulting cost data for the units was studied with the creep life 

and fatigue life. The creep life was determined in terms of on-line hours and the fatigue life was 

determined based on the number of startup operations. Correlations relating the annual O&M cost 

to creep life and fatigue were derived. They noted that the creep life does not strongly relate to the 

O&M costs whereas there is a strong correlation between the fatigue life and the O&M costs. 

Kumar et. al. [10] have provides a good overview of power plant cycling costs and systems 

commonly affected by cycling. They analyzed detailed cost data for several hundred units in North 

America. These units included various coal-fired and gas-fired power plants. Table 2.1 shows the 

lower bound cycling costs for a typical large (300-900MW) coal-fired sub-critical steam power 

plant [10]. All costs are in 2011$ amount.  

Table 2.1: Cost of cycling for large coal-fired power plants [10] 

Operation Cost item Median value 

Hot start 

C&M ($/MW capacity) 59 

EFOR (%) 0.0057 

Startup fuel (MMBTU/MW capacity) 7.50 

Other startup costs ($/MW) 

(aux power, chemicals, water, additives, etc.) 
5.61 

Warm start 

C&M ($/MW capacity) 65 

EFOR (%) 0.0070 

Other startup costs ($/MW) 

(aux power, chemicals, water, additives, etc.) 
7.98 

Startup fuel (MMBTU/MW capacity) 10.00 

Cold start 

C&M ($/MW capacity) 105 

EFOR (%) 0.0088 

Startup fuel (MMBTU/MW capacity) 14.00 

Other startup costs ($/MW) 

(aux power, chemicals, water, additives, etc.) 
10.15 
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2.4 Efficiency Cost 

Since most of the coal-fired powerplants were not designed for cycling operation, their 

efficiency is generally lower when operated at below maximum capacity [10], [14]. This includes 

the ramp-up and ramp-down during startup and shutdown. The heat rate, which is a ratio of the 

energy input to the system and electricity generated, increases as the power plant is operated at 

lower output [12]. As the power plant accumulates damage, the heat rate further increases. One 

study has estimated this increase to be about 0.44% per startup operation for large subcritical coal-

fired power plant [10].   

2.5 Machine Learning in Power Plants 

In [10] Kumar et. al. noted that “use of the cycling cost numbers without accounting for 

actual unit operations can result in significant under/over estimation of power plant cycling costs.” 

All the categories of the cost of cycling discussed in the previous sections depend on the variation 

of the system properties during cycling operation. Hence, to accurately estimate the cost of cycling, 

it is important to create models that can estimate this variation of the system properties. A power 

plant is a highly complex system of systems. The physical laws that govern these systems involve 

parameters such as friction coefficient of pipes, heat transfer coefficients, etc. that are specific to 

the power plant under consideration. Also, the values of these parameters change over time. An 

example of such a change was discussed in section 2.3 where it was noted that the plant 

accumulates damage at a faster rate as it grows older. Hence, estimating the variation of system 

properties during cycling operation is challenging using only the physical equations. Machine 

Learning models are very useful for such problems. Using the power plant operation data, very 

complex relations can be derived between the input and output variables. Once trained, these 

models can estimate system properties for cycling operation quickly as compared to detailed power 

plant simulations.  

Studies have been conducted using measurements [24]–[31] as well as results of simulations 

[32]–[36] from power plants as inputs to machine learning algorithms for boiler models. Kljajić et. 

al. [37] implemented an ANN model for predicting the boiler efficiency. The data for this model 

was collected by surveying 65 boilers from various sectors such as industrial, district heating 

systems, and healthcare facilities in Serbia. The input variables for the ANN model were the type 
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of fuel, type of boiler, oxygen content in flue gases, exploitation period, normal capacity, and load 

range. Liu et. al. [27] compared the linear model, neural network, and fuzzy neural network for 

prediction of power output, steam pressure, and separator outlet steam temperature using real data 

from an ultra super-critical steam boiler.  

Smrekar et. al. [24] examined the feasibility of developing an Artificial Neural Network 

(ANN) model for a boiler of a coal-fired power plant. The objective of the model was to predict 

the mass flow rate, temperature, and pressure of the steam exiting the boiler using the mass 

flowrate of coal, opening of the boiler valve, and the feedwater pressure. The input variables were 

chosen after performing a sensitivity analysis by evaluating the ANN model with different sets of 

input variables. The set of input variables for which the ANN model had the least error was chosen. 

The coal mass flowrate used for training the ANN model was calculated using the known boiler 

efficiency and calorific value of coal. An alternate ANN model was created by replacing the 

calculated mass flow rate of coal as input by the conveyor speed. The model was trained and 

validated using 12 days of real coal-fired power plant in Slovenia with a 1-minute resolution. 

Sections of data corresponding to rapid changes and off-nominal load operation were excluded 

from the training set. In [25], Smrekar et. al. used a similar method to train ANN models for boiler 

and turbine using one month of data for a power plant in India with a 30-minute resolution. They 

integrated these two models for predicting the power output of the plant. This study was also based 

on only steady-state data.  

Very few studies have incorporated the transient data in the machine learning models for 

boilers [26], [28], [30]–[32]. Smrekar et. al. [26] compared linear and non-linear models for multi-

step-ahead prediction of NOx. The linear models included an auto-regressive model with 

exogenous inputs (ARX) and auto-regressive moving-average model with exogenous inputs 

(ARMAX) models while the non-linear models included artificial neural networks and support 

vector regression models. These models were trained and validated using 9 days of data including 

transient operations. The original data with 10-second resolution was resampled to obtain a 

resolution of 1 minute. The inputs for these models were selected from a set of 32 variables such 

as conveyor belt speed, air flowrates, steam pressure, steam flow rate, air-fuel ration, etc. after 

conducting a sensitivity analysis. The ARX model was found to have the least mean absolute error.  

Oko et. al. [32] adopted the nonlinear auto-regressive with exogenous inputs (NARX)  neural 

network for predicting the boiler drum pressure and water level.  NARX is a type of recurrent 
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neural network (RNN) that predicts an output variable based on the time history of the output 

variable and the current value and the time history of input variables. The inputs to the NARX 

model used in this study are the heat input, steam flowrate, and feedwater flowrate. A synthetic 

dataset was created by simulating a 160 MWe coal-fired power plant. The inputs were perturbed 

with a series of step changes to incorporate randomness in this synthetic dataset. The final dataset 

had a duration of 3 hours with a 1-second resolution.  

Laubscher et. al. [28] developed a model for forecasting the reheater metal temperature in a 

coal-fired power plant. An encoder-decoder Gated Recurrent Unit (GRU) framework was used 

with an input sequence of length 8 and an output sequence of length 5. The time-series data had a 

resolution of 1 minute. The input sequence represents the 8-minute history of 92 parameters such 

as wind-box pressures, fuel flow rate, boiler load, primary fan parameters, induced fan parameters, 

ambient conditions, reheater metal temperatures, etc. The output sequence represents the 5-minute 

prediction of the reheater metal temperatures. The data for training the model was collected from 

a 290 MWe drum-type boiler for 10 days with a 1-minute resolution. An extensive hyperparameter 

search was performed to find the optimal model. Root-mean-squared error (RMSE) of 6.2 0C was 

observed on the test set.  
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 EXPLORATORY DATA ANALYSIS 

3.1 Coal Creek Station 

The data used in this study was collected from the Coal Creek Station (CCS) owned by the 

Great River Energy. It is an 1100 MW lignite-based power plant in North Dakota. It has two 

tangentially fired Combustion Engineering Circulation boiler units each rated at 550 MW. A 

schematic of the steam generator is shown in Figure 3.2. The boiler was designed for 1005 F main 

steam and reheat steam temperature at a pressure of 2520 psig for feedwater temperature of 490 F. 

The boilers use lignite with a typical higher heating value of 6800 Btu/lb and moisture content of 

about 36.6%. The superheater steam temperature is controlled by interstage desuperheating and 

reheater steam temperature is controlled by fuel nozzle tilt. Reheat desuperheaters are also 

provided in the cold reheat piping in case of an emergency.  

 

 

Figure 3.1: Aerial photo of the Coal Creek Station 

There are eight pulverizers connected to the windbox by 20-inch pipes. The ignition energy 

is provided by four oil guns and high energy arc ignitors. The steam generator has two air 

preheaters, two primary air fans and two forced draft fans. The air preheaters are designed to heat 

the output of the primary air fans for delivering primary air at 768 F to the pulverizers. The cold 

primary air (output of the primary air fans) can be mixed with the hot primary air via tempering
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Figure 3.2: Schematic diagram of the steam generator with components 
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dampers for maintaining the temperature required for fuel drying in the pulverizers. The air 

preheaters supply secondary air at 741 F to the windbox using the output of the forced draft fans. 

The flue gas entering the air preheaters is cooled from 838 F to 338 F. The furnace has 28 soot 

blowers and 170 wall blowers. A schematic of the steam generator is shown in Figure 3.2. 

3.2 Outlier detection 

Data from the Coal Creek Station was available as 1-hour averaged time-series from 2010 

to 2019. The data collected from the power plant contains outliers and needs to be cleaned. There 

are three types of outliers [38]: 

1. Global outliers 

2. Contextual outliers 

3. Collective outlier 

Global outliers correspond to data points that are significantly different from the rest of the 

data. For example, the time-series of gross power contains unphysically high values like 

60000MW. Such outliers are removed by defining the range of value that a property or variable 

can physically exhibit. In the case of gross power, the range is set to 0 to 650MW. Figure 3.3 

shows the variation of gross power with time after the removal of global outliers. The range of 

values set for global outlier detection is given in Table 3.1. 

 

Figure 3.3: Variation of gross power after removing outliers 
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Table 3.1: Range of properties for global outlier detection 

Property/ 

Variable 

State 

(Figure 3.2) 

Tag Min 

value 

Max 

value 

Units 

�̇�𝐹𝐺,𝐴𝐻_𝑂𝑢𝑡 10 AHT_11_GASOUT:Flow 0 4000 klb/hr 

𝑇𝐹𝐺,𝐴𝐻_𝑂𝑢𝑡 10 AHT_11_GASOUT:Temperature 0 400 F 

�̇�𝐵𝐷 35 BLOWDOWN_SIG:Flow 0 150 lb/hr 

�̇�𝐹𝑊 1 FEEDWATER:Flow 0 4500 klb/hr 

𝑃𝐹𝑊 1 FEEDWATER:Pressure 0 3500 psia 

𝑇𝐹𝑊 1 FEEDWATER:Temperature 0 300 F 

𝑃𝑆𝐻_𝑂𝑢𝑡 4a MAIN_STEAM:Pressure 0 3500 psia 

𝑇𝑆𝐻_𝑂𝑢𝑡 4a Plant_Measurement:DCS_SGT406U2 0 1050 F 

𝑃𝑅𝐻_𝐼𝑛 5a COLD_REHEAT:Pressure 0 700 psia 

𝑇𝑅𝐻_𝐼𝑛 5a COLD_REHEAT:Temperature 0 650 F 

𝑃𝑅𝐻_𝑂𝑢𝑡 6a Plant_Measurement:DCS_2SG256AI 0 650 psia 

𝑇𝑅𝐻_𝑂𝑢𝑡 6a Plant_Measurement:DCS_SGT413U2 0 1050 F 

�̇�𝑃𝐴,𝐴𝐻_𝐼𝑛 19 AHT_12_PRI_AIRIN:Flow 0 4000 klb/hr 

𝑃𝑃𝐴,𝐴𝐻_𝐼𝑛 19 FAN_PA_22:Total_Static_Press 0 45 In Wg 

𝑇𝑃𝐴,𝐴𝐻_𝐼𝑛 19 FAN_PA_22:Inlet_Temp -30 120 F 

�̇�𝑆𝐴,𝐴𝐻_𝐼𝑛 16 FAN_FD_21:Mass_Flow 0 2500 klb/hr 

𝑃𝑆𝐴,𝐴𝐻_𝑖𝑛 16 FAN_FD_21:Total_Static_Press 0 15 In Wg 

𝑇𝑆𝐴,𝐴𝐻_𝑖𝑛 16 FAN_FD_21:Inlet_Temp -30 120 F 

�̇�𝑔𝑟𝑜𝑠𝑠 - GEN:Power 0 650 MW 

𝜂𝑆𝐺,𝐼𝑂 - SG_IO:Efficiency 0 100  

�̇�𝑆𝐺𝐼 - SG_IO:Heat_input 0 7500 MBtu/hr 

�̇�𝑚𝑎𝑖𝑛𝑆𝑡𝑒𝑎𝑚,𝑆𝐺𝑂 - SG_IO:Heat_reheat 0 1200 MBtu/hr 

�̇�𝑟𝑒ℎ𝑒𝑎𝑡𝑆𝑡𝑒𝑎𝑚,𝑆𝐺𝑂 - SG_IO:Heat_mainsteam 0 4500 MBtu/hr 

 

Conditional outliers correspond to data points whose values may not be perceived as 

anomalous, but the data point is an outlier for a given condition. These outliers are within the range 

defined in Table 3.1 but are unphysical. For example, in Figure 3.4, the superheater outlet steam 

pressure (main steam pressure) and the superheater inlet steam pressure is 0 even when the gross 

power is not equal to 0 and vice versa during multiple instances. Data points corresponding to such 

conditions are removed from the dataset.  
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Figure 3.4: (a) Superheater outlet pressures (main steam pressure) and (b) superheater inlet 

pressure vs. gross power 

 Collective outliers correspond to data points which are outliers as a group but not 

individually. For example, if the value of a superheater outlet pressure remains constant to the last 

significant figure over a long duration, it indicates a sensor failure or problem with data retrieval. 

Such outliers are difficult to find in the time-averaged data and are not filtered out in the present 

study.  

3.3 Identification of cycling operations 

It was noted in section 2.5 that the cost of cycling power plants depends on the operation history 

of the unit. Hence, it is important to identify the cycling operations from the operation history of 

the power plant. A typical cycling operation is illustrated in Figure 3.5 and consists of a constant 

power operation between 10 and 14 hours on 8/27/2019 followed by a ramp-down segment with 

three rates between 14 hours and 16 hours, followed by a constant power operation between 16 

and 18 hours followed by a ramp-up segment between 21.5 hours, finally terminating in a constant 

segment between 21. 5 hours and 24.00 hours. The ramp-up and ramp-down segments have smaller 

sub-segments of different ramp-rates. The cycling operations are identified by finding instances 

corresponding to the starting point of the ramp-down segment and stopping point of a ramp-up 

segment. The start of a cycling operation is defined by the time instance at which the gross power 

starts to deviate from the nominal value. The end of the cycling is defined by the time instance at 

which the gross power is restored to its nominal value.  

(a) (b) 
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Figure 3.5: Ramp-down, constant and ramp-up operation segments of a cycling operation 

 

 

Figure 3.6: Algorithm for identifying cycling from the gross power time-series 

 

Figure 3.6 shows an algorithm for identifying cycling operation from the time-series data of 

gross power. A program based on this algorithm considers the data points in the time-series 

sequentially. At 𝑡 = 0, the algorithm checks if the absolute difference between the gross power 

(�̇�𝑔𝑟𝑜𝑠𝑠) and median value of the gross power (�̇�𝑔𝑟𝑜𝑠𝑠,𝑚𝑒𝑑𝑖𝑎𝑛) is greater than a defined threshold 

(𝛿). This threshold defines the magnitude of the fluctuations in the gross power that are considered 

as cycling. A gross power deviation of approximately 15-20% from the nominal rated gross power 
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is considered to be a load follow cycling operation [10]. A ramping segment is identified if 

|�̇�𝑔𝑟𝑜𝑠𝑠, 𝑡+1 − �̇�𝑔𝑟𝑜𝑠𝑠,𝑚𝑒𝑑𝑖𝑎𝑛 | > 𝛿. Since the time (𝑡) for which this condition becomes true has 

some delay based on the threshold (𝛿) and is not the actual starting time of the cycling operation, 

a tolerance value 𝜖  is subtracted from it. This time instance is stored as 𝑡𝑠𝑡𝑎𝑟𝑡  of the cycling 

operation. To find the time instance when the cycling operation ends, the algorithm increments 𝑡 

until |�̇�𝑔𝑟𝑜𝑠𝑠, 𝑡+1 − �̇�𝑔𝑟𝑜𝑠𝑠,𝑚𝑒𝑑𝑖𝑎𝑛 | < 𝛿 . The time at which this condition is met is further 

incremented by tolerance of 𝜖 and stored as the stopping time of the cycling operation. The starting 

and stopping times of all the cycling operations are found by repeating this algorithm. The 

algorithm captures both load-follow and on/off cycling operations. In the present study, the value 

of 𝛿 is chosen to be 10% of the median value of the gross power. The value of 𝜖 is taken to be 2 

hours for a reasonable visualization of the cycling operation. In the present study, the value of 𝛿 

is chosen to be 10% of the median value of the gross power. The value of 𝜖 is taken to be 2 hours 

for better visualization of cycling operation.  

A few examples of the cycling operations in 2019 identified by the algorithm discussed 

above are illustrated in Figure 3.7. The range of gross power during cycling operation at different 

time instances in the year varies significantly. Figure 3.7 (a) shows a typical short-duration cycling 

operation lasting for about 6 hours and has a gross power range of less than ~100 MW. The cycling 

operations in Figure 3.7 (b) and Figure 3.7 (c) have a gross power range of ~300MW and ~400MW 

respectively. The ramp-up and ramp-down segments of these operations are also steeper than those 

shown in Figure 3.7 (a). Steeper ramp-rates correspond to greater damage to the components. 

Figure 3.7 (d) shows an on/off operation and the zero gross power corresponds to the shutdown 

event. 
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Figure 3.7: Sample cycling operations 

In the following analysis, the cycling operations are classified into two categories: load-

follow and on/off cycling operations. Load-follow cycling operations are conducted to follow the 

load demand. There is a large variation in the number of these cycling operations with year. It can 

be seen from Figure 3.8 that the number of cycling operations was significantly higher during the 

years 2015-2017. The number of cycling operations is not uniformly distributed across months of 

the year. In 2019, most of cycling operations were conducted during the months of Aug-Oct.  

The gross power range and duration for the load-follow cycling operations vary significantly. 

Most of the load-follow cycling operations have a duration of 5 to 15 hours and the gross power 

range is less than 400 MW. A few cycling operations with gross power range greater than 400 MW 

are shown in Figure 3.10. The gross power falls significantly within a very short duration.  

(a) (b) 

(c) (d) 
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Figure 3.8: Number of load-follow cycling operations vs (a) yeas and (b) month 

  

Figure 3.9: Distribution of number of load-follow cycling operations with (a) cycling duration 

and (b) range of gross-power 

 

Figure 3.10: Abnormal load-follow cycling operations 

 

  

(a) (b) 

(a) (b) 
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Figure 3.11: (a) Number of shutdowns vs. year (b) Distribution of number of shutdowns with 

duration (H) 

The number of shutdowns (on/off operations) increased in the years 2017 and 2018 as shown 

in Figure 3.11 (a). The distribution of the number of shutdowns with their duration is shown in 

Figure 3.11 (b). There were 10 shutdowns with offline hours greater than 5 days which are not 

included in this figure for better visualization of the distribution. The start-up operations are 

classified based on the number of offline hours of the shutdown. A warm start refers to startup 

operation after 12-40 offline hours. If the number of offline hours is lesser than 12, then it’s 

referred to as hot start and cold start corresponds to startup operation after 40 of offline hours. 

These classifications are based on the [10] for large sub-critical coal-fired power plants. The 

number of hot, warm and cold startup operations for 2010-2020 is given in Table 3.2. 

Table 3.2: Classification of start-up operations for years 2010-2020 

Type of start-up operation Offline hours Number of start-up operations 

Cold ≥ 40 33 

Warm 12 𝑡𝑜 40 64 

Hot ≤ 12 41 

 

3.4 Identification of ramp-up, ramp-down and constant operation 

The flexibility of power plants for unit commitment and dispatch is characterized by the 

parameters like start-up time, ramping load gradients, minimum load and minimum up/down time 

[9]. The operation of the power plant can be divided into ramp-up, ramp-down, and constant 

(a) (b) 
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operation segments. The ramp-down and ramp-up segments may consist of smaller segments with 

different slopes. These smaller segments are clubbed together and classified as a single segment 

with an average slope. The algorithm for identifying ramp-up, ramp-down and constant segments 

of operation is described in this section. 

The identification of ramp-up, ramp-down, and constant segments begins with the 

computation of the derivative of gross power.  

�̈�𝑔𝑟𝑜𝑠𝑠,𝑡+1 ≈  
�̇�𝑔𝑟𝑜𝑠𝑠, 𝑡+1 − �̇�𝑔𝑟𝑜𝑠𝑠,𝑡

Δ𝑡
 

The value of �̈�𝑔𝑟𝑜𝑠𝑠,𝑡+1 is compared to a threshold value (𝜒) for classifying each data point as 

follows, 

|�̈�𝑔𝑟𝑜𝑠𝑠,𝑡+1| < 𝜒 ⇒ 𝜆 = 0 (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

�̈�𝑔𝑟𝑜𝑠𝑠,𝑡+1 < −𝜒 ⇒ 𝜆 = −1 (𝑟𝑎𝑚𝑝 − 𝑑𝑜𝑤𝑛) 

�̈�𝑔𝑟𝑜𝑠𝑠,𝑡+1 > 𝜒 ⇒ 𝜆 = +1 (𝑟𝑎𝑚𝑝 − 𝑢𝑝) 

𝜆 is the numeric indicator for segment type. A sequence of data points with the same value of 𝜆 is 

considered as one segment. For example, if 𝑝 data points from time 𝑡 = 𝑡𝑘 to 𝑡 = 𝑡𝑘+𝑝 have 𝜆 =

−1 , then the sequence of these data points is considered as one segment. This segment is 

characterized by an average slope (𝑚𝑎𝑣𝑔), starting gross power (�̇�𝑔𝑟𝑜𝑠𝑠, 𝑡𝑘
) and the duration of 

the segment (Δ𝑡𝑠𝑒𝑔 = 𝑡𝑘+𝑝 − 𝑡𝑘). The average slope for the segment is calculated as follows: 

𝑚𝑎𝑣𝑔 =
�̇�𝑔𝑟𝑜𝑠𝑠, 𝑡𝑘+𝑝

− �̇�𝑔𝑟𝑜𝑠𝑠, 𝑡𝑘

𝑡𝑘+𝑝 − 𝑡𝑘
 

 In the present analysis, 𝜒 is chosen to be 5% of the median gross power. Figure 3.12 shows 

the distribution of the number of ramp-up and ramp-down segments with the duration of the 

segment. The ramp-up operations last for 1-8 hours and ramp-down operation segments last for 1-

6 hours. The constant operation segments have a wide range of duration as shown in Figure 3.13. 

The damage to the steam generator increases with the magnitude of ramp-rate. Figure 3.14 shows 

the distribution of the number of segments with the ramp rate. A few segments can be seen to have 

a very large magnitude of ramp-rate. 
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Figure 3.12: Distribution of (a) number of ramp-up operation segments and (b) number of ramp-

down operation segments with the duration of the segment 

 

Figure 3.13: Distribution of the number of constant operation segments with the duration of the 

segment 

 

Figure 3.14: Distribution of the number of segments with average ramp-rate (MW/H) 

(a) (b) 
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 ARTIFICIAL NEURAL NETWORK (ANN) FOR ESTIMATING 

SYSTEM PROPERTIES 

4.1 Variation of component properties 

Many properties like the steam pressure at the superheater outlet, flue gas temperature at the 

inlet of air heater, steam pressure at reheater outlet vary during cycling operation. The changes in 

these properties depend on the changes in the demand for gross power and larger changes cause 

greater damage to the components. The damage is higher for high-temperature and high-pressure 

components like superheater, reheater, and air heater. The steam pressure at the superheater outlet, 

reheater inlet temperature and the flue gas temperature at the air heater inlet are selected as 

representative properties to monitor in the present study.  These properties are known to impact 

the components’ life and vary significantly with gross power.  

 

Figure 4.1: (a) Variation of gross power and main steam pressure for a sample cycling operation 

(b) Variation of main steam pressure with gross power for the years 2010-2019 

 

Figure 4.1 (a) shows the variation of the steam pressure at the superheater outlet (𝑃𝑆𝐻_𝑂𝑢𝑡) 

for a sample cycling operation. The steam pressure has negligible variation when the steam 

generator is operating at a constant output. As gross power decreases, the value of 𝑃𝑆𝐻_𝑂𝑢𝑡 also 

decreases and vice versa. However, the relationship between 𝑃𝑆𝐻_𝑂𝑢𝑡 and the gross power is non-

linear as shown in Figure 4.1 (b). The performance of the power plant components changes with 

their age which may lead to different values of 𝑃𝑆𝐻_𝑂𝑢𝑡 for the same gross power. Variation in 

properties of other components and external conditions also contribute to the variation of 𝑃𝑆𝐻_𝑂𝑢𝑡 

for identical gross power. 

(a) (b) 
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Figure 4.2: (a) Variation of gross power and reheater inlet temperature for a sample cycling 

operation (b) Variation of reheater inlet temperature with gross power for the years 2010-2019 

 

Figure 4.3: (a) Variation of gross power and flue gas temperature at air heater inlet for a sample 

cycling operation (b) Variation of flue gas temperature at air heater inlet with gross power for the 

years 2010-2019 

The variations of the reheater inlet temperature (𝑇𝑅𝐻_𝐼𝑛) and the flue gas temperature at the air 

heater inlet (𝑇𝐹𝐺,𝐴𝐻_𝐼𝑛) are shown in Figure 4.2 and Figure 4.3 respectively. During the cycling 

operation, the variations of 𝑇𝐹𝐺,𝐴𝐻_𝐼𝑛 and 𝑇𝑅𝐻_𝐼𝑛 also follow the variations of gross power. The 

changes in these properties are relatively small as compared to the changes in 𝑃𝑆𝐻_𝑂𝑢𝑡. The 𝑇𝑅𝐻_𝐼𝑛 

contains fluctuations which are not directly related to the gross power as can be seen from its 

variation in the segment with constant gross power. The scatter plots of 𝑇𝐹𝐺,𝐴𝐻_𝐼𝑛 and 𝑇𝑅𝐻_𝐼𝑛 show 

that the variation of these properties with gross power are relatively small as compared to the 

variations of 𝑃𝑆𝐻_𝑂𝑢𝑡with gross power. Hence, different ANN models are required to capture the 

variance in each of these properties. The ANN models developed for the estimation of 𝑃𝑆𝐻_𝑂𝑢𝑡,  

𝑇𝐹𝐺,𝐴𝐻_𝐼𝑛 and 𝑇𝑅𝐻_𝐼𝑛 are described in the following sections. The variation of a few other important 

system properties is shown in Appendix A. 

(a) (b) 

(a) 
(b) 
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4.2 Description of the ANN-based model 

Artificial Neural Networks (ANN) is a type of machine learning algorithm that is utilized to 

model non-linear behavior of a system [39]. As illustrated in Figure 4.4, it consists of 

interconnected nodes arranged in layers. The first layer is called the input layer and the final layer 

is called the output layer. The layers between the input and the output layers are called the hidden 

layers. Figure 4.4 shows the ANN model architecture for a gross power profile with a duration of 

3 hours. The ANN architecture has 1 input layer, 3 hidden layers, and 1 output layer. The hidden 

layers have the same number of nodes as the input layer. The inputs to the ANN model include the 

component properties related to the superheater at the current instance (𝑡𝑘) and the gross profile 

of 3 hours duration. The component properties at the current time instance fed to the ANN model 

are superheater inlet pressure (𝑃𝑆𝐻_𝐼𝑛(𝑡𝑘)), superheater outlet pressure (𝑃𝑆𝐻_𝑂𝑢𝑡(𝑡𝑘)), superheater 

outlet temperature (𝑇𝑆𝐻_𝑂𝑢𝑡(𝑡𝑘)) and gross power (�̇�𝑔𝑟𝑜𝑠𝑠(𝑡𝑘)). The gross power profile with a 

duration of 3 hours is fed as (�̇�𝑔𝑟𝑜𝑠𝑠(𝑡𝑘+1)), (�̇�𝑔𝑟𝑜𝑠𝑠(𝑡𝑘+2)) and (�̇�𝑔𝑟𝑜𝑠𝑠(𝑡𝑘+3)). The output of 

the model is the main steam pressure corresponding to the input gross power profile. 

 

Figure 4.4: ANN architecture for gross power profile duration of 3 hours 

 

The activation of the 𝑖𝑡ℎ neuron in the 𝑙𝑡ℎ layer is calculated from the neurons in the previous layer 

as follows: 

 𝑎𝑖
(𝑙)

= 𝑔 (∑ 𝑤𝑖𝑗𝑎𝑗
(𝑙−1)

𝑠𝑙−1

𝑗=1

+ 𝑏(𝑙−1)) (1) 

where 𝑠𝑙−1 is the number of neurons in the (𝑙 − 1)𝑡ℎ layer, 𝑤𝑖𝑗 are the weights multiplied to the 

activations of the previous layer, 𝑏(𝑙−1) is the value of the bias neuron and 𝑔() is an activation 
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function such as sigmoid, tanh, rectified linear unit (ReLU), etc which adds non-linearity to the 

model. The activation function can be different for different layers. The values of the weights and 

bias are optimized by minimizing a loss function based on the output of the ANN and the true 

values of the output. For a general neural network with 𝑛 input variables, 𝐾 output variables, 𝐿 

layers, 𝑠𝑙 nodes in the 𝑙𝑡ℎ layer, 𝑚 training examples and weights 𝐰, the cost function 𝐽(Θ) with 

Mean Square Error (MSE) is given as: 

 𝐽(𝒘) =
1

𝐾𝑚
∑ ∑(�̂�𝑘,𝑖 − 𝑦𝑘,𝑖)

2
𝐾

𝑘=1

𝑚

𝑖=1

 (2) 

The ANN model is developed in two stages. In the first stage the optimal output size is 

determined by conducting a sensitivity analysis with the length of the gross power profile. The 

output size of the ANN model is the same as the length of the gross power profile for which the 

component properties are estimated. After fixing the output size, the ANN model is further refined 

by considering 15 representative architectures. The ANN architecture with the least error on the 

validation set is chosen.  

4.2.1 Selection of optimal ANN output size 

The ANN model aims to estimate the component properties corresponding to a gross power 

profile. The duration of this gross power profile affects the ANN model’s performance. Hence, it 

is important to identify the duration for which the error is within acceptable limits. The optimal 

duration for the gross power profile was determined by training ANN models for estimating the 

main steam pressure at the superheater outlet, for different time lengths of the gross power profile. 

The data from Coal Creek Station were available as 1-hour averaged time-series for component 

properties and performance parameters from 2010 to 2019. The dataset for training the ANN model 

is created by taking each datapoint in the time-series as a current time instance. The following 3 

data points in the gross power time series are used as the gross power profile to be fed as input. 

The 3 data points in the time-series of 𝑃𝑆𝐻_𝑜𝑢𝑡 after the current time instance are used as output for 

training the ANN model. The dataset is normalized to get a range of 0 to 1 for all the input and 

output variables. The normalized dataset is divided sequentially into three parts: the first 80% of 

the dataset from 2010 is used for training, the next 10% for validation, and the last 10% for testing. 
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The steps of the data preprocessing described above for the gross power profile duration of 

3 hours are repeated to get datasets corresponding to gross power profile durations of 1 – 20 hours. 

One ANN architecture is created for each of the gross power profile durations. Each of these ANN 

architectures has 1 input layer, 3 hidden layers, 1 output layer, and all the hidden layers have the 

same number of nodes as the input layer.  

Each of these 20 models was implemented in Python 3.6 using TensorFlow 2.0 [40]. The 

training was performed for 100 epochs with a batch size of 256. Rectified Linear Unit (ReLU) 

activation is applied to the input layer and all the hidden layers. The trainable parameters are 

optimized by minimizing the Mean Square Error (MSE) between the ANN output and the true 

value of the main steam pressure corresponding to the input gross power profile. Adam optimizer 

[41] was used with a constant learning rate of 10−4.  

4.2.2 Hyperparameter Tuning 

The ANN model is further optimized by tuning additional hyperparameters of ANN 

architecture such as the number of units in the hidden layers, activation function, and regularization 

parameters. Fifteen ANN architectures were considered with 14 nodes in the input layer and 10 

nodes in the output layer. ANN architectures with different number of hidden layers and different 

number of neurons in the hidden layers were considered. The number of trainable parameters in 

the 15 ANN architectures considered is given in Table 4.1. The number of trainable parameters in 

an ANN architecture represents its complexity. An ANN architecture with high complexity can 

have high accuracy on the training data set but perform poorly on the validation set. This problem 

of overfitting is addressed by adding regularization. Regularization was included in some ANN 

architectures in the form of dropout layers and regularization parameter. ReLU and sigmoid 

activation functions were considered. The architecture with the lowest validation MSE was chosen. 

4.3 Results and Discussion 

The ANN models are demonstrated for superheater outlet pressure, reheater inlet 

temperature, and the flue gas temperature at the air heater inlet for the given cycling gross power 

profile. A sensitivity study is presented for the superheater outlet pressure with the gross power to 

assess the predictive capability over the time duration. The MSE for the 20 models, for estimation 
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of 𝑃𝑆𝐻_𝑂𝑢𝑡, corresponding to the gross power duration of 1-20 hours is shown in Figure 4.5. The 

training and validation MSE is lowest for the shortest duration of the gross power profile. The 

error increases rapidly with the gross power duration up to 6 hours. The curve of validation MSE 

flattens as the duration of the gross power profile was increased above 15 hours. There is a tradeoff 

between accuracy and the length of the gross power profile for which the component properties 

are to be estimated. In this study, the maximum duration for which the MSE is less than 1E-3 was 

chosen, which was 10 hours.  

 

Figure 4.5: Mean square error for 𝑃𝑆𝐻_𝑂𝑢𝑡 vs. gross power profile duration 

The hyperparameters of the 𝑃𝑆𝐻_𝑂𝑢𝑡  ANN model with the chosen output duration were 

tuned by considering fifteen architectures as described in section 4.2.2. The MSE for these ANN 

architectures is given in Table 4.1. Architectures 9 and 13 have the lowest validation error. 

Architecture 9 is chosen since it has a lesser number of parameters which leads to a faster 

computation. The same 15 ANN architectures were also considered for estimation of the 𝑇𝑅𝐻_𝐼𝑛 

and 𝑇𝐹𝐺,𝐴𝐻_𝐼𝑛. It was found that ANN architecture 9 was best suited for these properties as well. 

The inputs and outputs of the final ANN models for 𝑃𝑆𝐻_𝑂𝑢𝑡,  𝑇𝑅𝐻_𝐼𝑛 and 𝑇𝐹𝐺,𝐴𝐻_𝐼𝑛 are listed in 

Table 4.2. Along with the gross power profile, the inputs for the 𝑇𝑅𝐻_𝐼𝑛  ANN model are 

economizer outlet flue gas temperature (𝑇𝐹𝐺, 𝐸𝑐𝑜𝑛_𝑜𝑢𝑡(𝑡𝑘)), feedwater temperature (𝑇𝐹𝑊(𝑡𝑘)), air 

heater inlet flue gas temperature (𝑇𝐹𝐺, 𝐴𝐻_𝐼𝑛(𝑡𝑘)) and the gross power at the current time instance. 

The 𝑇𝑅𝐻_𝐼𝑛 ANN model takes reheater inlet temperature (𝑇𝑅𝐻_𝐼𝑛(𝑡𝑘)), reheater outlet temperature 

(𝑇𝑅𝐻_𝑂𝑢𝑡(𝑡𝑘)), economizer outlet flue gas temperature (𝑇𝐹𝐺,𝐸𝑐𝑜𝑛_𝑂𝑢𝑡(𝑡𝑘)) and the gross power at 

the current time instance as inputs along with the gross power profile.  
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Table 4.1: Training and validation Mean Square Error (MSE) for ANN architectures for 𝑃𝑆𝐻_𝑜𝑢𝑡 

Sr. No. No. of trainable parameters Training MSE Validation MSE 

0 507 0.00093 0.00173 

1 360 0.00080 0.00129 

2 570 0.00072 0.00124 

3 780 0.00072 0.00129 

4 990 0.00066 0.00126 

5 360 0.00086 0.00146 

6 570 0.00102 0.00179 

7 780 0.00135 0.00238 

8 990 0.00245 0.00433 

9 3132 0.00044 0.00085 

10 10140 0.00179 0.00308 

11 36444 0.00101 0.00191 

12 138204 0.00060 0.00125 

13 538332 0.00040 0.00085 

14 3420 0.00077 0.00141 

One of the concerns with ANN models is overfitting. Overfitting occurs when the model 

performs well on the input data that the model has been trained for but the accuracy is not good 

for new input data. Overfitting can be checked by plotting the model cost function (MSE) vs 

epochs. For all the three properties, the training and validation MSE is decreasing with the number 

of epochs as shown in Figure 4.6. This indicates that the present models do not have the overfitting 

problem. 

 

Figure 4.6: MSE vs epoch for superheater outlet pressure, air heater inlet flue gas temperature, 

and reheater inlet temperature 

 

The MSE of final ANN models for 𝑃𝑆𝐻_𝑂𝑢𝑡, 𝑇𝑅𝐻_𝐼𝑛 and 𝑇𝐹𝐺,𝐴𝐻_𝐼𝑛 on the training, validation, 

and test set after 100 epochs are given in Table 4.3. The MSE on the test set for 𝑃𝑆𝐻_𝑂𝑢𝑡 is lower 

than the validation MSE. This was due to a relatively larger number of cycling operations in the 
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validation set for 𝑃𝑆𝐻_𝑂𝑢𝑡. Figure 4.7 shows the true values and predicted value of 𝑃𝑆𝐻_𝑂𝑢𝑡 during 

a cycling operation from the test set. The green circles represent the history of 𝑃𝑆𝐻_𝑂𝑢𝑡  before 

cycling operation. The duration of this cycling operation is less than 10 hours and the ANN model 

was able to estimate the variation of 𝑃𝑆𝐻_𝑂𝑢𝑡. The MSE for 𝑇𝐹𝐺,𝐴𝐻_𝐼𝑛 on the test set is close to the 

validation and training set MSE. It can be observed from the Figure 4.7, Figure 4.8 and Figure 4.9 

that the maximum error of the 𝑃𝑆𝐻_𝑂𝑢𝑡, 𝑇𝐹𝐺,𝐴𝐻_𝐼𝑛 and 𝑇𝑅𝐻_𝐼𝑛 on the sample cycling operation at 

any time instance in the gross power profile is less than 5%. 

Table 4.2: Inputs and Outputs for ANN models 

Component 

Property 
ANN model inputs ANN model outputs 

Steam Pressure at 

Superheater Outlet 

(𝑃𝑆𝐻_𝑂𝑢𝑡) 

𝑃𝑆𝐻_𝐼𝑛(𝑡𝑘) 

𝑃𝑆𝐻_𝑂𝑢𝑡(𝑡𝑘+1), 
 𝑃𝑆𝐻_𝑂𝑢𝑡(𝑡𝑘+2), …  

𝑃𝑆𝐻_𝑂𝑢𝑡(𝑡𝑘+10) 

𝑃𝑆𝐻_𝑂𝑢𝑡(𝑡𝑘) 

𝑇𝑆𝐻_𝑂𝑢𝑡(𝑡𝑘) 

�̇�𝑔𝑟𝑜𝑠𝑠(𝑡𝑘) 

�̇�𝑔𝑟𝑜𝑠𝑠(𝑡𝑘+1), �̇�𝑔𝑟𝑜𝑠𝑠(𝑡𝑘+2) … �̇�𝑔𝑟𝑜𝑠𝑠(𝑡𝑘+10) 

Flue gas 

Temperature at Air 

heater Inlet 

(𝑇𝐹𝐺, 𝐴𝐻_𝐼𝑛) 

𝑇𝐹𝐺, 𝐸𝑐𝑜𝑛_𝑜𝑢𝑡(𝑡𝑘) 

𝑇𝐹𝐺, 𝐴𝐻_𝐼𝑛(𝑡𝑘),  
𝑇𝐹𝐺, 𝐴𝐻_𝐼𝑛(𝑡𝑘+1), …  

𝑇𝐹𝐺, 𝐴𝐻_𝐼𝑛(𝑡𝑘+10) 

𝑇𝐹𝑊(𝑡𝑘) 

𝑇𝐹𝐺, 𝐴𝐻_𝐼𝑛(𝑡𝑘) 

�̇�𝑔𝑟𝑜𝑠𝑠(𝑡𝑘) 

�̇�𝑔𝑟𝑜𝑠𝑠(𝑡𝑘+1), �̇�𝑔𝑟𝑜𝑠𝑠(𝑡𝑘+2) … �̇�𝑔𝑟𝑜𝑠𝑠(𝑡𝑘+10) 

Steam Temperature 

at Reheater Inlet 

(𝑇𝑅𝐻_𝐼𝑛) 

𝑇𝑅𝐻_𝐼𝑛(𝑡𝑘) 

𝑇𝑅𝐻_𝐼𝑛(𝑡𝑘),  
𝑇𝑅𝐻_𝐼𝑛(𝑡𝑘+1), …  

𝑇𝑅𝐻_𝐼𝑛(𝑡𝑘+10) 

𝑇𝑅𝐻_𝑂𝑢𝑡(𝑡𝑘) 

𝑇𝐹𝐺, 𝐸𝑐𝑜𝑛_𝑂𝑢𝑡(𝑡𝑘) 

�̇�𝑔𝑟𝑜𝑠𝑠(𝑡𝑘) 

�̇�𝑔𝑟𝑜𝑠𝑠(𝑡𝑘+1), �̇�𝑔𝑟𝑜𝑠𝑠(𝑡𝑘+2) … �̇�𝑔𝑟𝑜𝑠𝑠(𝑡𝑘+10) 

Table 4.3: Training, Validation and Test MSE 

 Training MSE Validation MSE Test MSE 

𝑃𝑆𝐻_𝑜𝑢𝑡 0.000449 0.000838 0.000449 

𝑇𝐹𝐺,𝐴𝐻_𝐼𝑛 0.000343 0.000367 0.000414 

𝑇𝑅𝐻_𝐼𝑛 0.000485 0.000446 0.001617 

The MSE on the test set for 𝑇𝑅𝐻_𝐼𝑛 ANN model is an order of magnitude higher than the 

validation and training MSE. In section 4.1 it was noted that 𝑇𝑅𝐻_𝐼𝑛 contains fluctuations arising 

from sources other than gross power. Machine learning algorithms work well when the training, 

validation and testing data set are derived from the same distribution. The large difference between 
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the test set MSE and the validation and training set MSE shows that the distribution of data is 

different between these sets. Further analysis of the power plant data is required to determine the 

cause of this change and is planned in future work. Additional variables will be included to account 

for this change in the data distribution of the test set.  

 

Figure 4.7: True and predicted values of the superheater outlet pressure during cycling 

 

Figure 4.8: True and predicted values of the air heater inlet flue gas temperature during cycling 

 
Figure 4.9: True values and predicted values of the reheater inlet temperature during cycling
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 CONCLUSION AND FUTURE WORK 

A data-driven modeling approach based on artificial neural networks (ANN) is proposed for 

establishing a relationship between power plant load cycling and variation of component properties 

of the steam generator. Data from a coal-fired power plant over 10 years were used in this study. 

Cycling operations were identified using the gross power time-series data. The data visualization 

revealed that the component properties such as superheater outlet pressure, reheater inlet 

temperature, and air heater inlet flue gas temperature are correlated with gross power during 

cycling operation. However, these properties exhibited a large variation for the same gross power 

for 10 years. ANN models were developed for the estimation of these properties corresponding to 

a given gross power profile and initial conditions. A sensitivity study of the model with the gross 

power profile duration showed that the model accuracy decreased with an increase in the time 

range of the property predictions. The model was found to perform well for 10 hours. The 

performance of the models was tested on a sample cycling operation from the test set and the 

maximum absolute error for all three properties considered in this study was found to be less than 

5% during this cycling operation. The MSE on the test set for reheater inlet temperature was an 

order of magnitude larger than the validation and training set MSE. This indicated that there was 

a difference in the distribution of data in the test set as compared to the training and validation sets. 

The approach described in this study can be extended to build machine learning models for 

the cost of cycling. Following are the suggestions for future work on this topic: 

• As a next step in this study, correlating the property transients with the component damage 

is recommended to estimate the C&M cost of a cycling operation 

• ANN models can be used for estimation of boiler efficiency during cycling operation to 

estimate the cost due to decreased efficiency 

• The sequence of cycling operation events can be related to the sequence of shutdown events 

using machine learning for estimating the forced outage cost of a cycling operation 
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APPENDIX A: STEAM GENERATOR SYSTEM PROPERTY 

VARIATION 

 

Figure A.1: (a) Variation of gross power and superheater outlet temperature for a sample cycling 

operation (b) Variation of superheater outlet temperature with gross power for the years 2010-

2019 

 

 

Figure A.2: (a) Variation of gross power and reheater inlet pressure for a sample cycling 

operation (b) Variation of reheater inlet pressure with gross power for the years 2010-2019 

 

 

 

(a) 
(b) 

(a) (a) (b) 
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Figure A.3: (a) Variation of gross power and reheater outlet pressure for a sample cycling 

operation (b) Variation of reheater outlet pressure with gross power for the years 2010-2019 

 

 

Figure A.4: (a) Variation of gross power and reheater outlet temperature for a sample cycling 

operation (b) Variation of reheater outlet temperature with gross power for the years 2010-2019 

 

(a) (b) 

(a) 

(b) 
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Figure A.5: (a) Variation of gross power and air heater out flue gas temperature for a sample 

cycling operation (b) Variation of air heater out flue gas temperature with gross power for the 

years 2010-2019 

 

 

Figure A.6: (a) Variation of gross power and air heater out primary air temperature for a sample 

cycling operation (b) Variation of air heater out primary air temperature with gross power for the 

years 2010-2019 

(a) (b) 

(a) (b) 
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Figure A.7: (a) Variation of gross power and air heater out secondary air temperature for a 

sample cycling operation (b) Variation of air heater out secondary air temperature with gross 

power for the years 2010-2019 

 

(a) (b) 
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APPENDIX B: ANN MODEL DETAILS 

Table B.1: Number of trainable parameters for different durations of gross power profile 

Gross power 

profile duration 

Number of 

trainable 

parameters 

1 126 

2 182 

3 248 

4 324 

5 410 

6 506 

7 612 

8 728 

9 854 

10 990 

11 1136 

12 1292 

13 1458 

14 1634 

15 1820 

16 2016 

17 2222 

18 2438 

19 2664 

20 2900 
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Table B.2: ANN architectures trained for hyperparameter tuning 

Sr. 

No. 
ANN Architecture 

0  

1  

2  

3  

4  

5  

6  

7  

8  

9  

10  

11  
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12  

13  

14  
Note: The value of all the dropout layers is 0.5. 
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