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NOMENCLATURE

T: Temperature

P: Pressure

W' Power

m — Rate of mass flow
0 — Rate of heat transfer
Subscripts:

SH: Superheater

RH: Reheater

AH: Air heater

Econ: Economizer
DSH — Desuperheater
BD — Blowdown

Coal — Pulverized coal
SA — Secondary air

PA — Primary air

FG: Flue gas

FW': Feedwater

In: Component inlet

Out: Component outlet
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ABSTRACT

The intermittent nature of renewable energy, variations in energy demand, and fluctuations in oil
and gas prices have all contributed to variable demand for power generation from coal-burning
power plants. The varying demand leads to load-follow and on/off operations referred to as cycling.
Cycling causes transients of properties such as pressure and temperature within various
components of the steam generation system. The transients can cause increased damage because
of fatigue and creep-fatigue interactions shortening the life of components. The data-driven model
based on artificial neural networks (ANN) is developed for the first time to estimate properties of
the steam generator components during cycling operations of a power plant. This approach utilizes
data from the Coal Creek Station power plant located in North Dakota, USA collected over 10
years with a 1-hour resolution. Cycling characteristics of the plant are identified using a time-series
of gross power. The ANN model estimates the component properties, for a given gross power
profile and initial conditions, as they vary during cycling operations. As a representative example,
the ANN estimates are presented for the superheater outlet pressure, reheater inlet temperature,
and flue gas temperature at the air heater inlet. The changes in these variables as a function of the
gross power over the time duration are compared with measurements to assess the predictive
capability of the model. Mean square errors of 4.49E-04 for superheater outlet pressure, 1.62E-03
for reheater inlet temperature, and 4.14E-04 for flue gas temperature at the air heater inlet were

observed.
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1. MOTIVATION AND OBJECTIVES

1.1 Motivation

Renewable energy sources are being utilized for electricity generation in the United States
with a significantly increased share from 10.6% in 2009 [1] to 19% in 2019. The share is expected
to increase further to reach 21% in 2021 [2]. Among the renewable sources, wind and solar
constituted approximately 35% of the 19% electricity generation in 2019. The wind energy and
solar energy sources are intermittent and contribute to fluctuating demands (i.e., cycling) for power
generation from coal power plants. Fluctuating demand for coal also results from the availability
of low-cost gaseous fuels and ups and downs in the North American and world economic activities.
The resulting cycling operations have impacted many coal power plants severely resulting in
significant component damages and financial losses [3]-[6]. As a result, some coal-fired power
plants have recently retired [7] and some are on the verge of a shutdown. The remaining coal-
burning power plants need to operate safely at optimized costs even under load cycling conditions
[4].

U.S. electricity generation by major energy source, 1950-2018
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Figure 1.1: U.S. electricity generation by major energy source [1]

The majority (~95%) of the existing coal-fired power plants in the US were designed to
operate at baseload conditions with minor load-following [8]. Switching between baseload to
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cycling operation affects the maintenance cost and life expectancy of the equipment. The effects
of cycling operation are most significant on high temperature and pressure components. The
present study considers the steam generation system including air heaters, superheaters, and
reheaters. These components experience large temperature and pressure gradients during cycling
operations. Schroder et. al. [9] have reported that 52-57% of the cycling-related capital and
maintenance costs are associated with the steam generation system.

U.S. electricity generation by energy source 01/19/2020 - 2/7/2020, EST
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Figure 1.2: Variation of electricity generation with time from coal and renewable sources (wind
and solar)

The statistical measures for estimating the cost of cycling power plants considering data
from several power plants are reported in the literature [3], [8]-[15]. However, significant
variations in the design and operation of power plants exist and unit-specific cost models are more
relevant than their statistical counterparts. The life and efficiency of power plant components
depend on the variations in the properties during the cycling operation. Hence, it is important to
create a model for the estimation of properties to which the components are subjected during
cycling operations. Machine learning algorithms are highly effective for relating complex
variations of pressures, temperatures, flow rates, and compositions during transient power plant
operations. A well trained and validated machine learning model based on the data from an actual

power plant can be used to estimate the necessary properties for future cycling operations.
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1.2 Objectives

Following are the objectives of the present study:
1. Study the cost associated with cycling operation
2. Identify cycling operations from the gross power data of a coal powerplant
3. Develop a relationship between power plant load cycling and variation of system

properties using Artificial Neural Networks (ANN)

14



2. LITERATURE REVIEW

2.1 What is Cycling?

The operation of electricity generation units at varying load levels in response to varying
dispatch requirements is called cycling [10]. This includes on/off operation and load-follow
cycling operation. As opposed to cycling, baseload operation corresponds to the continuous
operation of a power plant at the designed nominal capacity. Cycling is caused by the change in
the demand. Since electricity is not stored, its production must always match the demand. The
demand for electricity varies with time of the day, day of week, and seasons. Such variations in
demand were predictable and the need for cycling power plants was relatively low. However, as
the integration of variable renewable energy sources is increasing the fluctuations in the electricity
demand have increased forcing increased cycling of conventional power plants.

Le et. al. [16] presented the pros and cons of cycling units from the perspective of a system
operator and plant personnel. The flexibility afforded by cycling is an asset for the system operator.
A system operator tries to minimize the total generation costs by considering factors such as
minimum loads, changing load forecasts, forced outages, and opportunistic purchase and sale
transactions. The authors reported a 1.5% reduction in operating cost when the minimum up/down
time requirements for units was reduced from 168 hours to 12 hours. The flexibility of cycling
units with short start-up times is advantageous as the unit commitment software can then react to
the changing load forecasts.

On the other hand, plant personnel try to maximize the unit efficiency and minimize
equipment stress. The electricity generation units were designed and optimized to operate at the
maximum capacity and hence the efficiency of the power plants changes when operated at a
reduced capacity. Also, these units were designed for continuous operation rather than a cycling
operation. Cycling causes the heat-rate to increase and shorten the equipment lifetime. As
compared to controlled shutdowns which are relatively risk-free, forced shutdowns can lead to
higher equipment damage due to sudden interruptions and large temperature gradients. These
hidden costs make cycling undesirable for plant operators. The impact of cycling operations can
be categorized as load efficiency cost, capital and maintenance cost, and forced outage cost.
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Several studies have tried to include the cycling cost in the unit commitment models [17]-
[19]. Bergh et. al. [17] studied the impact of cycling parameters of conventional generation units
to determine the optimal scheduling of the electricity generation system by simulating. The cycling
of conventional units is simulated using a commitment model, demand time-series, renewable
generation time-series and a model for the electricity grid. Four weeks of data at 15-minutes
resolution was used. All types of cost of cycling: direct start costs, indirect start costs, forced costs,
ramping costs and efficiency costs were considered. These costs were estimated using data
provided by [9] and [10] which was based on statistical studies of various power-plants. Bergh et.
al. concluded that the cycling cost can be reduced by 40% by considering all cycling costs in the
unit commitment scheduling.

Corio et. al. [8] noted in an EPRI report that the metrics used to define cycling vary between
different studies. Engineering firms that design and build power plants classify cycling as on/off
cycling, also known as two-shifting, and load cycling. The electric industry sources, like the North
American Electric Reliability Council (NERC), classify the power plant operation in 5 categories:
(i) Baseload with minor load following, (ii) Periodic startup, load follow daily, reduced load
nightly, (iii) Weekly startup, load follow daily, reduced load nightly, (iii) Daily startup, load follow
daily, off-line nightly and (v) Startup chiefly to meet daily demand. Previous statistical studies [10]
have looked at the number of different types of start-up operations, the number of load-follow
operations and their ramp rates as metrics for the estimation of cost of cycling. Corio et. al
proposed 14 functional forms for defining the metrics of cycling operations. These functional
forms were close to the categories used by NERC and had attributes such as frequency, periodicity,

and amplitude.

2.2 Capital and Maintenance (C&M) Cost

When the power plant is operated it causes damage to the generating units. The operation
can be under base-load or cycling conditions. The damage accumulated by the power plant is due
to a combination of mechanisms such as creep, fatigue, erosion and corrosion [14], [20]-[22].
Creep damage occurs when components under stress are subjected to high temperatures. Under
base-load conditions, the system properties such as pressures and temperatures remain relatively
constant leading to creep conditions. Powerplants are designed to operate under these conditions

using creep-resistant materials. The variation of temperatures and pressures experienced by
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components during cycling conditions causes damage due to fatigue. During cycling operations,
both creep and fatigue mechanisms are active for high-temperature components leading to
premature failures. This is known as creep-fatigue interaction.

Shibli et. al. [21] provides a brief overview of component failures resulting from creep-
fatigue interaction. Thick wall components such as the boiler are prone to thermal fatigue cracking.
Superheater and reheater header ligament can experience thermal fatigue cracking due to poor
temperature control. The expansion and contraction of the furnace wall tubes during cycling
operation is not uniform and causes internal stress which can eventually lead to thermal fatigue
cracking in the evaporator and economizer headers. The pipes in the boiler are attached to the
furnace walls or other pipes using slip ties and brackets. Failure of these attachments due to thermal
variation is one of the main causes of forced shutdowns.

Component level studies have been reported for estimation of the remaining life of
components [20]. Creep-fatigue interaction was identified as the key damage mechanism. Creep
damage depends on the dwell time for which the component is exposed to high temperatures while
fatigue damage depends on the number of cycling operations. The cumulative damage due to creep
and fatigue can be estimated using four main techniques: linear damage summation analysis,
frequency-modified strain range analysis, strain range partitioning analysis and ductility
exhaustion analysis. All these techniques depend on data coming from laboratory testing of
materials used in the components. This affects the accuracy of the component life estimation as
uncertainties in plant operation are not accounted for.

Statistical models for the estimation of cost of cycling involves a collection of plant or unit-
level data from several plants. These studies also lack inaccuracy as it is extremely difficult to
distinguish the cost associated with wear and tear due to normal operation from that due to cycling
operation. For a typical large (300-900MW) coal-fired sub-critical steam power plant, the average
C&M cost for load-following cycling operation was estimated to be 2.45%/(MW capacity) by
Lefton et. al. [10]. This cost was reported in terms of the 2011$ amount. The cost was multiplied
by a factor ranging from 1.5 to 10 for higher ramp rates. Corio et. al. [8] proposed a methodology
for estimation of the cost of cycling using the functional form for defining cycling operations.
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2.3 Forced Outage Cost

The rate of damage accumulation increases due to cycling operations which leads to an
increased number of forced outages. The reliability of the power plant can be measured in terms
of Equivalent Forced Outage Rate (EFOR) which is a ratio of offline hours during demand to the
total number of service hours. If the power plant must procure replacement power, the cost of
increased EFOR includes the lost revenue and the cost of replacement power. The effect of cycling
operations on EFOR has been reported in [10]. The study was conducted for 10 similar steam-
electric units. An increase in the number of cycling operations is followed by an increased EFOR.
However, the increase in EFOR is not immediate. As the plant gets older, it starts to accumulate
more damage due to cycling leading to more frequent forced outages.

After a forced outage, additional resources are required to bring the boiler back online. The
startup cost includes the cost of materials such as fuel, water and chemicals. The cost associated
with auxiliary power must also be included if supplied during startup. Increased manpower is
required during startup as compared to base-load operation. This is reflected in the increased labor
costs. During ramp-up or ramp-down operation, the boiler efficiency is also lower than the base-
load operation. The cost of replacement power to be purchased during the offline hours is a major
part of the cost associated with forced outages.

Ramping-up the output of a unit after shutdown also leads to significant damage to components
leading to higher maintenance and capital expenditures as described in section 2.2. The damage to
the components depends on the range and the rate of change of the temperatures and pressures [8].
Hence, the startup costs vary significantly with the type of startup classified based on the downtime
of the unit. A warm start refers to startup operation after 12-40 offline hours. If the number of
offline hours is lesser than 12, then it’s referred to as a hot start. Cold start corresponds to startup
operation after 40 of offline hours. During a cold start, the power plant components experience a
larger range of temperature as compared to a hot start. These classifications are based on [10] for
large sub-critical coal-fired power plants.

The capital and maintenance cost associated with startup operations is challenging to estimate.
Keatley et. al. [23] created a statistical model for forecasting the cost of a hot, warm or cold start
as a function of the unit’s service life. They considered 19 power-generation units from the Irish
Single Electricity Market (SEM). Out of these 19 units, 5 were coal-fired conventional units, 4

were gas-fired conventional units and 10 were combined-cycle gas turbine (CCGT) units. The
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operation and cycling cost data in the European Technology Development (ETD) database was
used to estimate the annual non-fuel operation and maintenance (O&M) cost for the units in the
Irish system. This cost was related to the unit’s actual consumption of service life. Per-start cost
for the unit was calculated by dividing the annual O&M cost by the number of starts per year. The
cost due to the long-term increase in heat rate, increased forced outages and foregone energy
payments was not included. The resulting cost data for the units was studied with the creep life
and fatigue life. The creep life was determined in terms of on-line hours and the fatigue life was
determined based on the number of startup operations. Correlations relating the annual O&M cost
to creep life and fatigue were derived. They noted that the creep life does not strongly relate to the
O&M costs whereas there is a strong correlation between the fatigue life and the O&M costs.

Kumar et. al. [10] have provides a good overview of power plant cycling costs and systems
commonly affected by cycling. They analyzed detailed cost data for several hundred units in North
America. These units included various coal-fired and gas-fired power plants. Table 2.1 shows the
lower bound cycling costs for a typical large (300-900MW) coal-fired sub-critical steam power
plant [10]. All costs are in 2011$ amount.

Table 2.1: Cost of cycling for large coal-fired power plants [10]

Operation Cost item Median value
C&M ($/MW capacity) 59
EFOR (%) 0.0057
Hot start Startup fuel (MMBTU/MW capacity) 7.50
Other startup costs ($/MW) 561
(aux power, chemicals, water, additives, etc.) '
C&M ($/MW capacity) 65
EFOR (%) 0.0070
Warm start | Other startup costs ($/MW) 798
(aux power, chemicals, water, additives, etc.) '
Startup fuel (MMBTU/MW capacity) 10.00
C&M ($/MW capacity) 105
EFOR (%) 0.0088
Cold start | Startup fuel (MMBTU/MW capacity) 14.00
Other startup costs ($/MW) 10.15
(aux power, chemicals, water, additives, etc.) )
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2.4 Efficiency Cost

Since most of the coal-fired powerplants were not designed for cycling operation, their
efficiency is generally lower when operated at below maximum capacity [10], [14]. This includes
the ramp-up and ramp-down during startup and shutdown. The heat rate, which is a ratio of the
energy input to the system and electricity generated, increases as the power plant is operated at
lower output [12]. As the power plant accumulates damage, the heat rate further increases. One
study has estimated this increase to be about 0.44% per startup operation for large subcritical coal-

fired power plant [10].

2.5 Machine Learning in Power Plants

In [10] Kumar et. al. noted that “use of the cycling cost numbers without accounting for
actual unit operations can result in significant under/over estimation of power plant cycling costs.”
All the categories of the cost of cycling discussed in the previous sections depend on the variation
of the system properties during cycling operation. Hence, to accurately estimate the cost of cycling,
it is important to create models that can estimate this variation of the system properties. A power
plant is a highly complex system of systems. The physical laws that govern these systems involve
parameters such as friction coefficient of pipes, heat transfer coefficients, etc. that are specific to
the power plant under consideration. Also, the values of these parameters change over time. An
example of such a change was discussed in section 2.3 where it was noted that the plant
accumulates damage at a faster rate as it grows older. Hence, estimating the variation of system
properties during cycling operation is challenging using only the physical equations. Machine
Learning models are very useful for such problems. Using the power plant operation data, very
complex relations can be derived between the input and output variables. Once trained, these
models can estimate system properties for cycling operation quickly as compared to detailed power
plant simulations.

Studies have been conducted using measurements [24]-[31] as well as results of simulations
[32]-[36] from power plants as inputs to machine learning algorithms for boiler models. Kljajic et.
al. [37] implemented an ANN model for predicting the boiler efficiency. The data for this model
was collected by surveying 65 boilers from various sectors such as industrial, district heating

systems, and healthcare facilities in Serbia. The input variables for the ANN model were the type
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of fuel, type of boiler, oxygen content in flue gases, exploitation period, normal capacity, and load
range. Liu et. al. [27] compared the linear model, neural network, and fuzzy neural network for
prediction of power output, steam pressure, and separator outlet steam temperature using real data
from an ultra super-critical steam boiler.

Smrekar et. al. [24] examined the feasibility of developing an Artificial Neural Network
(ANN) model for a boiler of a coal-fired power plant. The objective of the model was to predict
the mass flow rate, temperature, and pressure of the steam exiting the boiler using the mass
flowrate of coal, opening of the boiler valve, and the feedwater pressure. The input variables were
chosen after performing a sensitivity analysis by evaluating the ANN model with different sets of
input variables. The set of input variables for which the ANN model had the least error was chosen.
The coal mass flowrate used for training the ANN model was calculated using the known boiler
efficiency and calorific value of coal. An alternate ANN model was created by replacing the
calculated mass flow rate of coal as input by the conveyor speed. The model was trained and
validated using 12 days of real coal-fired power plant in Slovenia with a 1-minute resolution.
Sections of data corresponding to rapid changes and off-nominal load operation were excluded
from the training set. In [25], Smrekar et. al. used a similar method to train ANN models for boiler
and turbine using one month of data for a power plant in India with a 30-minute resolution. They
integrated these two models for predicting the power output of the plant. This study was also based
on only steady-state data.

Very few studies have incorporated the transient data in the machine learning models for
boilers [26], [28], [30]-[32]. Smrekar et. al. [26] compared linear and non-linear models for multi-
step-ahead prediction of NOx. The linear models included an auto-regressive model with
exogenous inputs (ARX) and auto-regressive moving-average model with exogenous inputs
(ARMAX) models while the non-linear models included artificial neural networks and support
vector regression models. These models were trained and validated using 9 days of data including
transient operations. The original data with 10-second resolution was resampled to obtain a
resolution of 1 minute. The inputs for these models were selected from a set of 32 variables such
as conveyor belt speed, air flowrates, steam pressure, steam flow rate, air-fuel ration, etc. after
conducting a sensitivity analysis. The ARX model was found to have the least mean absolute error.

Oko et. al. [32] adopted the nonlinear auto-regressive with exogenous inputs (NARX) neural

network for predicting the boiler drum pressure and water level. NARX is a type of recurrent
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neural network (RNN) that predicts an output variable based on the time history of the output
variable and the current value and the time history of input variables. The inputs to the NARX
model used in this study are the heat input, steam flowrate, and feedwater flowrate. A synthetic
dataset was created by simulating a 160 MWe coal-fired power plant. The inputs were perturbed
with a series of step changes to incorporate randomness in this synthetic dataset. The final dataset
had a duration of 3 hours with a 1-second resolution.

Laubscher et. al. [28] developed a model for forecasting the reheater metal temperature in a
coal-fired power plant. An encoder-decoder Gated Recurrent Unit (GRU) framework was used
with an input sequence of length 8 and an output sequence of length 5. The time-series data had a
resolution of 1 minute. The input sequence represents the 8-minute history of 92 parameters such
as wind-box pressures, fuel flow rate, boiler load, primary fan parameters, induced fan parameters,
ambient conditions, reheater metal temperatures, etc. The output sequence represents the 5-minute
prediction of the reheater metal temperatures. The data for training the model was collected from
a 290 MWe drum-type boiler for 10 days with a 1-minute resolution. An extensive hyperparameter
search was performed to find the optimal model. Root-mean-squared error (RMSE) of 6.2 °C was

observed on the test set.
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3. EXPLORATORY DATA ANALYSIS

3.1 Coal Creek Station

The data used in this study was collected from the Coal Creek Station (CCS) owned by the
Great River Energy. It is an 1100 MW lignite-based power plant in North Dakota. It has two
tangentially fired Combustion Engineering Circulation boiler units each rated at 550 MW. A
schematic of the steam generator is shown in Figure 3.2. The boiler was designed for 1005 F main
steam and reheat steam temperature at a pressure of 2520 psig for feedwater temperature of 490 F.
The boilers use lignite with a typical higher heating value of 6800 Btu/Ib and moisture content of
about 36.6%. The superheater steam temperature is controlled by interstage desuperheating and
reheater steam temperature is controlled by fuel nozzle tilt. Reheat desuperheaters are also

provided in the cold reheat piping in case of an emergency.

Figure 3.1: Aerial photo of the Coal Creek Station

There are eight pulverizers connected to the windbox by 20-inch pipes. The ignition energy
is provided by four oil guns and high energy arc ignitors. The steam generator has two air
preheaters, two primary air fans and two forced draft fans. The air preheaters are designed to heat
the output of the primary air fans for delivering primary air at 768 F to the pulverizers. The cold

primary air (output of the primary air fans) can be mixed with the hot primary air via tempering
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dampers for maintaining the temperature required for fuel drying in the pulverizers. The air
preheaters supply secondary air at 741 F to the windbox using the output of the forced draft fans.
The flue gas entering the air preheaters is cooled from 838 F to 338 F. The furnace has 28 soot

blowers and 170 wall blowers. A schematic of the steam generator is shown in Figure 3.2.

3.2 Outlier detection

Data from the Coal Creek Station was available as 1-hour averaged time-series from 2010
to 2019. The data collected from the power plant contains outliers and needs to be cleaned. There
are three types of outliers [38]:

1. Global outliers
2. Contextual outliers
3. Collective outlier

Global outliers correspond to data points that are significantly different from the rest of the
data. For example, the time-series of gross power contains unphysically high values like
60000MW. Such outliers are removed by defining the range of value that a property or variable
can physically exhibit. In the case of gross power, the range is set to 0 to 650MW. Figure 3.3
shows the variation of gross power with time after the removal of global outliers. The range of

values set for global outlier detection is given in Table 3.1.
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Figure 3.3: Variation of gross power after removing outliers
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Table 3.1: Range of properties for global outlier detection

Property/ State Tag Min | Max | Units
Variable (Figure 3.2) value | value
Mrg.aH out 10 AHT_11 GASOUT:Flow 0 4000 | Kib/hr
TrG AH out 10 AHT_11 GASOUT:Temperature 0 400 F
Mgp 35 BLOWDOWN SIG:Flow 0 150 Ib/hr
Mpy 1 FEEDWATER:Flow 0 4500 | Klb/hr
Pry 1 FEEDWATER:Pressure 0 3500 psia
Tey 1 FEEDWATER:Temperature 0 300 F
Py out 4a MAIN_STEAM:Pressure 0 3500 psia
Tsy out 4a Plant_Measurement:DCS_SGT406U2 0 1050 F
Pry 5a COLD_REHEAT:Pressure 0 700 psia
TrH 5a COLD_REHEAT:Temperature 0 650 F
Pry out 6a Plant_Measurement:DCS_2SG256Al 0 650 psia
TrH out 6a Plant_Measurement:DCS_SGT413U2 0 1050 F
MpaaH In 19 AHT 12 PRI_AIRIN:Flow 0 4000 | Kib/hr
Ppsan in 19 FAN_PA 22:Total Static_Press 0 45 In Wg
Tpaan 19 FAN_PA 22:Inlet_Temp -30 120 F
MsaAH In 16 FAN_FD_21:Mass_Flow 0 2500 | Kklb/hr
Ps At in 16 FAN_FD_21:Total Static_Press 0 15 In Wg
Tsaan in 16 FAN_FD_21:Inlet_Temp -30 120 F
Wyross - GEN:Power 0 650 | MW
NsG.10 - SG_IO:Efficiency 0 100
Qs - SG_l0O:Heat_input 0 | 7500 | MBtu/hr
Qmaingteam,ggo - SG 10:Heat_reheat 0 1200 | mMBtu/hr
QreheatSteam,SGO ~ SG 10:Heat mainsteam 0 4500 | MBtu/hr

Conditional outliers correspond to data points whose values may not be perceived as
anomalous, but the data point is an outlier for a given condition. These outliers are within the range
defined in Table 3.1 but are unphysical. For example, in Figure 3.4, the superheater outlet steam
pressure (main steam pressure) and the superheater inlet steam pressure is 0 even when the gross
power is not equal to 0 and vice versa during multiple instances. Data points corresponding to such

conditions are removed from the dataset.
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Figure 3.4: (a) Superheater outlet pressures (main steam pressure) and (b) superheater inlet
pressure Vvs. gross power

Collective outliers correspond to data points which are outliers as a group but not
individually. For example, if the value of a superheater outlet pressure remains constant to the last
significant figure over a long duration, it indicates a sensor failure or problem with data retrieval.
Such outliers are difficult to find in the time-averaged data and are not filtered out in the present

study.

3.3 Identification of cycling operations

It was noted in section 2.5 that the cost of cycling power plants depends on the operation history
of the unit. Hence, it is important to identify the cycling operations from the operation history of
the power plant. A typical cycling operation is illustrated in Figure 3.5 and consists of a constant
power operation between 10 and 14 hours on 8/27/2019 followed by a ramp-down segment with
three rates between 14 hours and 16 hours, followed by a constant power operation between 16
and 18 hours followed by a ramp-up segment between 21.5 hours, finally terminating in a constant
segment between 21. 5 hours and 24.00 hours. The ramp-up and ramp-down segments have smaller
sub-segments of different ramp-rates. The cycling operations are identified by finding instances
corresponding to the starting point of the ramp-down segment and stopping point of a ramp-up
segment. The start of a cycling operation is defined by the time instance at which the gross power
starts to deviate from the nominal value. The end of the cycling is defined by the time instance at

which the gross power is restored to its nominal value.
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Figure 3.5: Ramp-down, constant and ramp-up operation segments of a cycling operation
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Figure 3.6: Algorithm for identifying cycling from the gross power time-series

Figure 3.6 shows an algorithm for identifying cycling operation from the time-series data of
gross power. A program based on this algorithm considers the data points in the time-series
sequentially. At t = 0, the algorithm checks if the absolute difference between the gross power
(W,r0ss) @nd median value of the gross power (W, oss meaian) i greater than a defined threshold
(6). This threshold defines the magnitude of the fluctuations in the gross power that are considered

as cycling. A gross power deviation of approximately 15-20% from the nominal rated gross power
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is considered to be a load follow cycling operation [10]. A ramping segment is identified if
[Wiross, e+1 — Wyrossmeaian | > 6. Since the time (¢) for which this condition becomes true has
some delay based on the threshold (&) and is not the actual starting time of the cycling operation,
a tolerance value € is subtracted from it. This time instance is stored as tg:4+ Of the cycling
operation. To find the time instance when the cycling operation ends, the algorithm increments ¢
until |Wyposs, 41 — Wyrossmeaian | < 6. The time at which this condition is met is further
incremented by tolerance of € and stored as the stopping time of the cycling operation. The starting
and stopping times of all the cycling operations are found by repeating this algorithm. The
algorithm captures both load-follow and on/off cycling operations. In the present study, the value
of & is chosen to be 10% of the median value of the gross power. The value of € is taken to be 2
hours for a reasonable visualization of the cycling operation. In the present study, the value of &
is chosen to be 10% of the median value of the gross power. The value of € is taken to be 2 hours
for better visualization of cycling operation.

A few examples of the cycling operations in 2019 identified by the algorithm discussed
above are illustrated in Figure 3.7. The range of gross power during cycling operation at different
time instances in the year varies significantly. Figure 3.7 (a) shows a typical short-duration cycling
operation lasting for about 6 hours and has a gross power range of less than ~100 MW. The cycling
operations in Figure 3.7 (b) and Figure 3.7 (c) have a gross power range of ~300MW and ~400MW
respectively. The ramp-up and ramp-down segments of these operations are also steeper than those
shown in Figure 3.7 (a). Steeper ramp-rates correspond to greater damage to the components.
Figure 3.7 (d) shows an on/off operation and the zero gross power corresponds to the shutdown

event.
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Figure 3.7: Sample cycling operations

In the following analysis, the cycling operations are classified into two categories: load-
follow and on/off cycling operations. Load-follow cycling operations are conducted to follow the
load demand. There is a large variation in the number of these cycling operations with year. It can
be seen from Figure 3.8 that the number of cycling operations was significantly higher during the
years 2015-2017. The number of cycling operations is not uniformly distributed across months of
the year. In 2019, most of cycling operations were conducted during the months of Aug-Oct.

The gross power range and duration for the load-follow cycling operations vary significantly.
Most of the load-follow cycling operations have a duration of 5 to 15 hours and the gross power
range is less than 400 MW. A few cycling operations with gross power range greater than 400 MW

are shown in Figure 3.10. The gross power falls significantly within a very short duration.
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Figure 3.10: Abnormal load-follow cycling operations
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The number of shutdowns (on/off operations) increased in the years 2017 and 2018 as shown
in Figure 3.11 (a). The distribution of the number of shutdowns with their duration is shown in
Figure 3.11 (b). There were 10 shutdowns with offline hours greater than 5 days which are not
included in this figure for better visualization of the distribution. The start-up operations are
classified based on the number of offline hours of the shutdown. A warm start refers to startup
operation after 12-40 offline hours. If the number of offline hours is lesser than 12, then it’s
referred to as hot start and cold start corresponds to startup operation after 40 of offline hours.
These classifications are based on the [10] for large sub-critical coal-fired power plants. The

number of hot, warm and cold startup operations for 2010-2020 is given in Table 3.2.

Table 3.2: Classification of start-up operations for years 2010-2020

Type of start-up operation | Offline hours | Number of start-up operations
Cold > 40 33
Warm 12 to 40 64
Hot <12 41

3.4 ldentification of ramp-up, ramp-down and constant operation

The flexibility of power plants for unit commitment and dispatch is characterized by the
parameters like start-up time, ramping load gradients, minimum load and minimum up/down time

[9]. The operation of the power plant can be divided into ramp-up, ramp-down, and constant
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operation segments. The ramp-down and ramp-up segments may consist of smaller segments with
different slopes. These smaller segments are clubbed together and classified as a single segment
with an average slope. The algorithm for identifying ramp-up, ramp-down and constant segments
of operation is described in this section.

The identification of ramp-up, ramp-down, and constant segments begins with the

computation of the derivative of gross power.

. N Wgross, t+1 Wgross,t
Wgross,t+1 ~ At

The value of l/'l'/‘_qn,ssjt+1 is compared to a threshold value () for classifying each data point as

follows,

|Wgross,t+1| <y = A =0 (constant)

Wyrosst+1 < —X = A = —1 (ramp — down)
Wyrosser1 > X = A = +1 (ramp — up)
A is the numeric indicator for segment type. A sequence of data points with the same value of 1 is
considered as one segment. For example, if p data points from time t = t; to t = t;,, have A =
—1, then the sequence of these data points is considered as one segment. This segment is

characterized by an average slope (mgy,g), starting gross power (ngss, tk) and the duration of

the segment (Atseg = tyap — tk). The average slope for the segment is calculated as follows:

Wgross, thevp Wgross, ty

Mayg =
lk+p — Uk

In the present analysis, y is chosen to be 5% of the median gross power. Figure 3.12 shows
the distribution of the number of ramp-up and ramp-down segments with the duration of the
segment. The ramp-up operations last for 1-8 hours and ramp-down operation segments last for 1-
6 hours. The constant operation segments have a wide range of duration as shown in Figure 3.13.
The damage to the steam generator increases with the magnitude of ramp-rate. Figure 3.14 shows
the distribution of the number of segments with the ramp rate. A few segments can be seen to have

a very large magnitude of ramp-rate.
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4. ARTIFICIAL NEURAL NETWORK (ANN) FOR ESTIMATING
SYSTEM PROPERTIES

4.1 Variation of component properties

Many properties like the steam pressure at the superheater outlet, flue gas temperature at the
inlet of air heater, steam pressure at reheater outlet vary during cycling operation. The changes in
these properties depend on the changes in the demand for gross power and larger changes cause
greater damage to the components. The damage is higher for high-temperature and high-pressure
components like superheater, reheater, and air heater. The steam pressure at the superheater outlet,
reheater inlet temperature and the flue gas temperature at the air heater inlet are selected as
representative properties to monitor in the present study. These properties are known to impact

the components’ life and vary significantly with gross power.
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Figure 4.1: (a) Variation of gross power and main steam pressure for a sample cycling operation
(b) Variation of main steam pressure with gross power for the years 2010-2019

Figure 4.1 (a) shows the variation of the steam pressure at the superheater outlet (Psy_om)
for a sample cycling operation. The steam pressure has negligible variation when the steam
generator is operating at a constant output. As gross power decreases, the value of Pgy o, also
decreases and vice versa. However, the relationship between Pgy o, and the gross power is non-
linear as shown in Figure 4.1 (b). The performance of the power plant components changes with
their age which may lead to different values of Psy o, for the same gross power. Variation in
properties of other components and external conditions also contribute to the variation of Psy oy,

for identical gross power.
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Figure 4.2: (a) Variation of gross power and reheater inlet temperature for a sample cycling
operation (b) Variation of reheater inlet temperature with gross power for the years 2010-2019
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Figure 4.3: (a) Variation of gross power and flue gas temperature at air heater inlet for a sample
cycling operation (b) Variation of flue gas temperature at air heater inlet with gross power for the
years 2010-2019

The variations of the reheater inlet temperature (TRH_,n) and the flue gas temperature at the air
heater inlet (TFG,AH_,n) are shown in Figure 4.2 and Figure 4.3 respectively. During the cycling
operation, the variations of Trg 4y 1 and Try 1, also follow the variations of gross power. The
changes in these properties are relatively small as compared to the changes in Psy gy¢- The Try m
contains fluctuations which are not directly related to the gross power as can be seen from its
variation in the segment with constant gross power. The scatter plots of Tz oy 1, and Try 1, Show
that the variation of these properties with gross power are relatively small as compared to the
variations of Pgy o, With gross power. Hence, different ANN models are required to capture the
variance in each of these properties. The ANN models developed for the estimation of Py oy,
TrG.an m and Try 1, are described in the following sections. The variation of a few other important

system properties is shown in Appendix A.
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4.2 Description of the ANN-based model

Acrtificial Neural Networks (ANN) is a type of machine learning algorithm that is utilized to
model non-linear behavior of a system [39]. As illustrated in Figure 4.4, it consists of
interconnected nodes arranged in layers. The first layer is called the input layer and the final layer
is called the output layer. The layers between the input and the output layers are called the hidden
layers. Figure 4.4 shows the ANN model architecture for a gross power profile with a duration of
3 hours. The ANN architecture has 1 input layer, 3 hidden layers, and 1 output layer. The hidden
layers have the same number of nodes as the input layer. The inputs to the ANN model include the
component properties related to the superheater at the current instance (t;) and the gross profile

of 3 hours duration. The component properties at the current time instance fed to the ANN model

are superheater inlet pressure (PSH_,n(tk)), superheater outlet pressure (PSH_Out(tk)): superheater
outlet temperature (TSH_Out(tk)) and gross power (ngss(tk)). The gross power profile with a

duration of 3 hours is fed as (l/i{gmss(tkﬂ)), (l/i{gmss(th,z)) and (l/i/gmss(tk+3)). The output of

the model is the main steam pressure corresponding to the input gross power profile.
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Figure 4.4: ANN architecture for gross power profile duration of 3 hours
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The activation of the i neuron in the I*" layer is calculated from the neurons in the previous layer

as follows:

Si-1

af? =g | ) wyal ™V + b0 (1)
j=1

where s;_, is the number of neurons in the (I — 1)" layer, w;; are the weights multiplied to the

activations of the previous layer, b1 is the value of the bias neuron and g() is an activation
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function such as sigmoid, tanh, rectified linear unit (ReLU), etc which adds non-linearity to the
model. The activation function can be different for different layers. The values of the weights and
bias are optimized by minimizing a loss function based on the output of the ANN and the true
values of the output. For a general neural network with n input variables, K output variables, L
layers, s; nodes in the I*" layer, m training examples and weights w, the cost function J(©) with

Mean Square Error (MSE) is given as:

m K
1 2
Jw) = @; ;(f’k,i — Yii) 2

The ANN model is developed in two stages. In the first stage the optimal output size is
determined by conducting a sensitivity analysis with the length of the gross power profile. The
output size of the ANN model is the same as the length of the gross power profile for which the
component properties are estimated. After fixing the output size, the ANN model is further refined
by considering 15 representative architectures. The ANN architecture with the least error on the

validation set is chosen.

4.2.1 Selection of optimal ANN output size

The ANN model aims to estimate the component properties corresponding to a gross power
profile. The duration of this gross power profile affects the ANN model’s performance. Hence, it
is important to identify the duration for which the error is within acceptable limits. The optimal
duration for the gross power profile was determined by training ANN models for estimating the
main steam pressure at the superheater outlet, for different time lengths of the gross power profile.
The data from Coal Creek Station were available as 1-hour averaged time-series for component
properties and performance parameters from 2010 to 2019. The dataset for training the ANN model
is created by taking each datapoint in the time-series as a current time instance. The following 3
data points in the gross power time series are used as the gross power profile to be fed as input.
The 3 data points in the time-series of Pgy ,,,¢ after the current time instance are used as output for
training the ANN model. The dataset is normalized to get a range of 0 to 1 for all the input and
output variables. The normalized dataset is divided sequentially into three parts: the first 80% of

the dataset from 2010 is used for training, the next 10% for validation, and the last 10% for testing.
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The steps of the data preprocessing described above for the gross power profile duration of
3 hours are repeated to get datasets corresponding to gross power profile durations of 1 — 20 hours.
One ANN architecture is created for each of the gross power profile durations. Each of these ANN
architectures has 1 input layer, 3 hidden layers, 1 output layer, and all the hidden layers have the
same number of nodes as the input layer.

Each of these 20 models was implemented in Python 3.6 using TensorFlow 2.0 [40]. The
training was performed for 100 epochs with a batch size of 256. Rectified Linear Unit (ReLU)
activation is applied to the input layer and all the hidden layers. The trainable parameters are
optimized by minimizing the Mean Square Error (MSE) between the ANN output and the true
value of the main steam pressure corresponding to the input gross power profile. Adam optimizer

[41] was used with a constant learning rate of 107,

4.2.2 Hyperparameter Tuning

The ANN model is further optimized by tuning additional hyperparameters of ANN
architecture such as the number of units in the hidden layers, activation function, and regularization
parameters. Fifteen ANN architectures were considered with 14 nodes in the input layer and 10
nodes in the output layer. ANN architectures with different number of hidden layers and different
number of neurons in the hidden layers were considered. The number of trainable parameters in
the 15 ANN architectures considered is given in Table 4.1. The number of trainable parameters in
an ANN architecture represents its complexity. An ANN architecture with high complexity can
have high accuracy on the training data set but perform poorly on the validation set. This problem
of overfitting is addressed by adding regularization. Regularization was included in some ANN
architectures in the form of dropout layers and regularization parameter. ReLU and sigmoid
activation functions were considered. The architecture with the lowest validation MSE was chosen.

4.3 Results and Discussion

The ANN models are demonstrated for superheater outlet pressure, reheater inlet
temperature, and the flue gas temperature at the air heater inlet for the given cycling gross power
profile. A sensitivity study is presented for the superheater outlet pressure with the gross power to

assess the predictive capability over the time duration. The MSE for the 20 models, for estimation
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of Psy oue, COrresponding to the gross power duration of 1-20 hours is shown in Figure 4.5. The
training and validation MSE is lowest for the shortest duration of the gross power profile. The
error increases rapidly with the gross power duration up to 6 hours. The curve of validation MSE
flattens as the duration of the gross power profile was increased above 15 hours. There is a tradeoff
between accuracy and the length of the gross power profile for which the component properties
are to be estimated. In this study, the maximum duration for which the MSE is less than 1E-3 was

chosen, which was 10 hours.
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Figure 4.5: Mean square error for Psy o, VS. gross power profile duration

The hyperparameters of the Psy o, ANN model with the chosen output duration were
tuned by considering fifteen architectures as described in section 4.2.2. The MSE for these ANN
architectures is given in Table 4.1. Architectures 9 and 13 have the lowest validation error.
Architecture 9 is chosen since it has a lesser number of parameters which leads to a faster
computation. The same 15 ANN architectures were also considered for estimation of the Try 1,
and Trg 4y 1n- 1t was found that ANN architecture 9 was best suited for these properties as well.
The inputs and outputs of the final ANN models for Psy oy, Try in @0 Trg an 1n are listed in

Table 4.2. Along with the gross power profile, the inputs for the Try ;, ANN model are

economizer outlet flue gas temperature (TFG, Econ_out(tk)), feedwater temperature (Tey (t;)), air
heater inlet flue gas temperature (TFG, AH_,n(tk)) and the gross power at the current time instance.
The Try 1 ANN model takes reheater inlet temperature (TRH_,n(tk)), reheater outlet temperature

(TRH_Out(tk)), economizer outlet flue gas temperature (TFG,Ewn_Out(tk)) and the gross power at

the current time instance as inputs along with the gross power profile.
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Table 4.1: Training and validation Mean Square Error (MSE) for ANN architectures for Psy ¢

Sr. No. | No. of trainable parameters | Training MSE | Validation MSE
0 507 0.00093 0.00173
1 360 0.00080 0.00129
2 570 0.00072 0.00124
3 780 0.00072 0.00129
4 990 0.00066 0.00126
5 360 0.00086 0.00146
6 570 0.00102 0.00179
7 780 0.00135 0.00238
8 990 0.00245 0.00433
9 3132 0.00044 0.00085
10 10140 0.00179 0.00308
11 36444 0.00101 0.00191
12 138204 0.00060 0.00125
13 538332 0.00040 0.00085
14 3420 0.00077 0.00141

One of the concerns with ANN models is overfitting. Overfitting occurs when the model
performs well on the input data that the model has been trained for but the accuracy is not good
for new input data. Overfitting can be checked by plotting the model cost function (MSE) vs
epochs. For all the three properties, the training and validation MSE is decreasing with the number
of epochs as shown in Figure 4.6. This indicates that the present models do not have the overfitting

problem.
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Figure 4.6: MSE vs epoch for superheater outlet pressure, air heater inlet flue gas temperature,
and reheater inlet temperature

The MSE of final ANN models for Psy gy¢, TRy m and Trg an 1 ON the training, validation,
and test set after 100 epochs are given in Table 4.3. The MSE on the test set for Psy o, is lower

than the validation MSE. This was due to a relatively larger number of cycling operations in the
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validation set for Pgy . Figure 4.7 shows the true values and predicted value of Pgy o, during
a cycling operation from the test set. The green circles represent the history of Pgy o, before
cycling operation. The duration of this cycling operation is less than 10 hours and the ANN model
was able to estimate the variation of Psy o,,c. The MSE for Trg 4y 1n ON the test set is close to the
validation and training set MSE. It can be observed from the Figure 4.7, Figure 4.8 and Figure 4.9
that the maximum error of the Psy ou¢, Trg an m @nd Try 1, ON the sample cycling operation at

any time instance in the gross power profile is less than 5%.

Table 4.2: Inputs and Outputs for ANN models

Component

Property ANN model inputs

Psy m(tx)
Psy out (tx)

ANN model outputs

Steam Pressure at Psy out(tk+1)

Superheater Outlet Tsy out(ty) Psyt out(ts2)s -
(Pst_out) Wyross (i) Psu_out(tks10)
Vi/gross(tk+1); I/i{gross(tk+2) I/i{gross(tk+10)
Flue gas TFG,;:con_out (tk)

Temperature at Air Too ’; V;(Itk()t ) . Tre, an_in(tx),
heater Inlet G, AH In "k 76, at_in(Ck+1), -
(Trg an m) i _ Waross (te) . T, an_in (tk+10)

T VVgross(tk+1); Vl/:qross(tk+2) Vl{qross(tk+10)
Tri_n(tk)

Try out (tx)
TFG, Econ_Out (tk)

Steam Temperature
at Reheater Inlet

Try i (te),
Tr in(tis1)) -

(TRH_In) ' . Wgross(tk) ' Tru_m (ti+10)
M{gross(tk+1)' %ross(tk+2) %ross(tk+10)
Table 4.3: Training, Validation and Test MSE
Training MSE Validation MSE Test MSE
Psy out 0.000449 0.000838 0.000449
TrG an In 0.000343 0.000367 0.000414
Tru m 0.000485 0.000446 0.001617

The MSE on the test set for Try ;,, ANN model is an order of magnitude higher than the
validation and training MSE. In section 4.1 it was noted that Try ;,, contains fluctuations arising
from sources other than gross power. Machine learning algorithms work well when the training,

validation and testing data set are derived from the same distribution. The large difference between
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the test set MSE and the validation and training set MSE shows that the distribution of data is
different between these sets. Further analysis of the power plant data is required to determine the
cause of this change and is planned in future work. Additional variables will be included to account
for this change in the data distribution of the test set.
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Figure 4.7: True and predicted values of the superheater outlet pressure during cycling
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Figure 4.8: True and predicted values of the air heater inlet flue gas temperature during cycling
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Figure 4.9: True values and predicted values of the reheater inlet temperature during cycling

43



5. CONCLUSION AND FUTURE WORK

A data-driven modeling approach based on artificial neural networks (ANN) is proposed for
establishing a relationship between power plant load cycling and variation of component properties
of the steam generator. Data from a coal-fired power plant over 10 years were used in this study.
Cycling operations were identified using the gross power time-series data. The data visualization
revealed that the component properties such as superheater outlet pressure, reheater inlet
temperature, and air heater inlet flue gas temperature are correlated with gross power during
cycling operation. However, these properties exhibited a large variation for the same gross power
for 10 years. ANN models were developed for the estimation of these properties corresponding to
a given gross power profile and initial conditions. A sensitivity study of the model with the gross
power profile duration showed that the model accuracy decreased with an increase in the time
range of the property predictions. The model was found to perform well for 10 hours. The
performance of the models was tested on a sample cycling operation from the test set and the
maximum absolute error for all three properties considered in this study was found to be less than
5% during this cycling operation. The MSE on the test set for reheater inlet temperature was an
order of magnitude larger than the validation and training set MSE. This indicated that there was
a difference in the distribution of data in the test set as compared to the training and validation sets.

The approach described in this study can be extended to build machine learning models for
the cost of cycling. Following are the suggestions for future work on this topic:

» Asanext step in this study, correlating the property transients with the component damage
is recommended to estimate the C&M cost of a cycling operation

* ANN models can be used for estimation of boiler efficiency during cycling operation to
estimate the cost due to decreased efficiency

» The sequence of cycling operation events can be related to the sequence of shutdown events

using machine learning for estimating the forced outage cost of a cycling operation
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APPENDIX A: STEAM GENERATOR SYSTEM PROPERTY
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Figure A.1: (a) Variation of gross power and superheater outlet temperature for a sample cycling
operation (b) Variation of superheater outlet temperature with gross power for the years 2010-
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Figure A.2: (a) Variation of gross power and reheater inlet pressure for a sample cycling
operation (b) Variation of reheater inlet pressure with gross power for the years 2010-2019
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Figure A.3: (a) Variation of gross power and reheater outlet pressure for a sample cycling
operation (b) Variation of reheater outlet pressure with gross power for the years 2010-2019
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Figure A.4: (a) Variation of gross power and reheater outlet temperature for a sample cycling
operation (b) Variation of reheater outlet temperature with gross power for the years 2010-2019
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Figure A.5: (a) Variation of gross power and air heater out flue gas temperature for a sample
cycling operation (b) Variation of air heater out flue gas temperature with gross power for the
years 2010-2019
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Figure A.6: (a) Variation of gross power and air heater out primary air temperature for a sample
cycling operation (b) Variation of air heater out primary air temperature with gross power for the
years 2010-2019
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Figure A.7: (a) Variation of gross power and air heater out secondary air temperature for a
sample cycling operation (b) Variation of air heater out secondary air temperature with gross
power for the years 2010-2019
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APPENDIX B: ANN MODEL DETAILS

Table B.1: Number of trainable parameters for different durations of gross power profile

Number of
Gross power inable
profile duration traina
parameters
1 126
2 182
3 248
4 324
5 410
6 506
7 612
8 728
9 854
10 990
11 1136
12 1292
13 1458
14 1634
15 1820
16 2016
17 2222
18 2438
19 2664
20 2900
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Table B.2: ANN architectures trained for hyperparameter tuning

Sr.
No.

ANN Architecture

Input layer
No. of nodes = 14
Activation = ReLU

Hidden layer
No. of nodes=7
Activation = RelLU

Hidden layer
No. of nodes =7
Activation = RelLU

Hidden layer
No. of nodes=7
Activation = RelU

Output layer
No. of nodes = 10
Activation= None

Input layer
No. of nodes = 14
Activation = ReLU

Output layer
No. of nodes = 10
Activation = None

Input layer
No. of nodes = 14
Activation = RelLU

Hidden layer
No. of nodes = 14
Activation = RelU

Qutput layer
No. of nodes = 10
Activation = None

Input layer
No. of nodes = 14
Activation = RelLU

Hidden layer
No. of nodes =14
Activation = RelLU

Hidden layer
No. of nodes = 14
Activation = RelLU

Output layer
No. of nodes =10
Activation = None

Input layer
No. of nodes = 14
Activation = RelLU

Hidden layer
No. of nodes = 14
Activation = ReLU

Hidden layer
No. of nodes = 14
Activation = RelLU

Hidden layer
No. of nodes = 14
Activation = RelLU

Output layer
No. of nodes = 10
Activation = None

Input layer
No. of nodes = 14
Activation = Sigmoid

Output layer

No. of nodes = 10
Activation = None

Input layer
No. of nodes = 14
Activation = Sigmoid

Hidden layer
No. of nodes = 14
Activation = Sigmoid

Qutput layer
No. of nodes = 10
Activation = None

Input layer
No. of nodes = 14
Activation = Sigmoid

Hidden layer
No. of nodes = 14
Activation = Sigmoid

Hidden layer
No. of nodes = 14
Activation = Sigmoid

Output layer
No. of nodes =10
Activation= None

Input layer
No. of nodes = 14
Activation = Sigmoid

Hidden layer
No. of nodes = 14

Activation = Sigmoid

Hidden layer
No. of nodes = 14
Activation = Sigmoid

Hidden layer
No. of nodes = 14

Activation = Sigmoid

Output layer
No. of nodes = 10
Activation = None

Input layer
No. of nodes = 14
Activation = RelLU

Hidden layer
No. of nodes = 32
Activation = RelLU

Hidden layer
No. of nodes = 32
Activation = RelLU

Hidden layer
No. of nodes = 32
Activation = ReLU

Output layer
No. of nodes = 10
Activation = None

10

Input layer
No. of nodes = 14
Activation = ReLU

Hidden layer
No. of nodes = 64
Activation = ReLU

Hidden layer
No. of nodes = 64
Activation = ReLU

Hidden layer
No. of nodes = 64
Activation = ReLU

Output layer
No. of nodes = 10
Activation= None

11

Input layer
No. of nodes = 14
Activation = RelLU

Hidden layer
No. of nodes = 128
Activation = RelLU

Hidden layer
No. of nodes = 128
Activation = RelLU

Hidden layer
No. of nodes = 128
Activation = RelLU

Qutput layer
No. of nodes = 10
Activation = None
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Input layer Hidden layer Hidden layer Hidden layer Output layer
No. of nodes = 14 g No. of nodes = 256 No. of nodes = 256 No. of nodes = 256 No. of nodes = 10
12 Activation = ReLU Activation = RelLU Activation = RelLU Activation = RelLU Activation = None
Input layer Hidden layer Hidden layer Hidden layer Output layer
No. of nodes =14 g No. of nodes =512 No. of nodes = 512 No. of nodes =512 No. of nodes =10
13 Activation = ReLU Activation = ReLU Activation = ReLU Activation = RelLU Activation = None
Input layer Hidden layer Output layer
No. of nodes = 14 No. of nodes = 128 No. of nodes = 10
14 Activation = RelLU Activation = ReLU Activation= None

Note: The value of all the dropout layers is 0.5.
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