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ABSTRACT

Sridhar, Venkatesh Ph.D., Purdue University, May 2020. Parallel Computational
Methods for Model-Based Tomographic Reconstruction and Coherent Imaging. Ma-
jor Professors: Charles A. Bouman, Gregery T. Buzzard.

Non-destructive imaging modalities for evaluating the internal properties of ma-

terials can be formulated as physics-driven inverse problems. Model-based Iterative

reconstruction (MBIR) methods that integrate a forward model of the imaging sys-

tem and a prior model of the object being imaged can provide superior reconstruction

quality relative to conventional methods. However, making MBIR feasible for prac-

tical applications faces two key challenges. First, we require efficient computational

methods for MBIR that allow large-scale reconstructions in real-time. Second, we

must develop forward models that accurately capture the physics and geometry of

the imaging system, and, support the use of advanced denoisers that enhance image

quality as prior models.

This thesis attempts to address the aforementioned challenges and is divided into

three main chapters, each corresponding to a different inverse imaging application.

In the first chapter of this thesis, we propose a novel 4D model-based iterative

reconstruction (MBIR) algorithm for low-angle coherent-scatter X-ray Diffraction

(XRD) tomography that can substantially increase the SNR. Our forward model

is based on a Poisson photon counting model that incorporates a spatial point-spread

function, detector energy response and energy-dependent attenuation correction. Our

prior model uses a Markov random field (MRF) together with a reduced spectral bases

set determined using non-negative matrix factorization. Our algorithm efficiently

computes the Bayesian estimate by exploiting the sparsity of the measurement data.

We demonstrate the ability of our method to achieve sufficient spatial resolution
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from sparse photon-starved measurements and also discriminate between materials of

similar densities with real datasets.

In the second chapter of this thesis, we propose a multi-agent consensus equi-

librium (MACE) algorithm for distributing both the computation and memory of

MBIR for Computed Tomographic (CT) reconstruction across a large number of par-

allel nodes. In MACE, each node stores only a sparse subset of views and a small

portion of the system matrix, and each parallel node performs a local sparse-view

reconstruction, which based on repeated feedback from other nodes, converges to the

global optimum. Our distributed approach can also incorporate advanced denoisers

as priors to enhance reconstruction quality. In this case, we obtain a parallel solution

to the serial framework of Plug-n-play (PnP) priors, which we call MACE-PnP. In

order to make MACE practical, we introduce a partial update method that eliminates

nested iterations and prove that it converges to the same global solution. Finally, we

validate our approach on a distributed memory system with real CT data. We also

demonstrate an implementation of our approach on a massive supercomputer that

can perform large-scale reconstruction in real-time.

In the third chapter of this thesis, we propose a method that makes MBIR feasible

for real-time single-shot holographic imaging through deep turbulence. Our method

uses surrogate optimization techniques to simplify and speedup the reflectance and

phase-error updates in MBIR. Further, our method accelerates computation of the

surrogate-updates by leveraging cache-prefetching and SIMD vector processing units

on a single CPU core. We analyze the convergence and real CPU time of our method

using simulated datasets, and demonstrate its dramatic speedup over the original

MBIR approach.
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1. MODEL-BASED RECONSTRUCTION FOR X-RAY

DIFFRACTION IMAGING

1.1 Introduction

X-ray Diffraction (XRD) Tomography is emerging as an important imaging modal-

ity for transportation security applications. Recently, baggage scanners equipped with

both dual-energy Computed Tomography (CT) and XRD modalities have been de-

ployed at airports for the inspection of carry-on luggage. XRD scanners reconstruct

the voxel-wise spectral profile which is characteristic of molecular composition of the

material [1–3]. In contrast to conventional CT imaging, this gives XRD the ability to

even distinguish between materials with similar densities based on their diffraction

profiles.

However, current X-ray diffraction imaging (XDi) system designs often face chal-

lenges in achieving sufficient spatial resolution and signal-to-noise ratio (SNR) due

to the limited number of detected photons. One important consideration in XDi

scanner design is the tradeoff between low-angle scatter detection versus wide-angle

scatter detection. Wide-angle detection systems can accept scatter at high angles

thereby achieving higher photon counts. However, wide-angle systems also require

attenuation correction from an auxiliary X-ray transmission scan. Low-angle detec-

tors have the important advantage that both the scattered photons and the directly

transmitted photons travel along similar paths. This allows autonomous correction

for attenuation, but it also reduces the photon count, making it more difficult to

achieve the needed signal-to-noise ratio and resolution.

In this thesis, we deal with a 3rd generation XDi scanner that implements the

Multiple Inverse Fan-Beam (MIFB) geometry [2]. In stark comparison to 1st gener-

ation XDi topologies which scan only a single object point in time, 3rd generation
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systems have the capability to acquire highly-parallel measurements [2]. This partic-

ular advantage translates into drastic reductions in scan times of checked baggage.

We propose a novel 4D model-based iterative reconstruction (MBIR) algorithm for

low-angle scatter XRD that can substantially increase the SNR by fully accounting

for both the forward model of the scanner and the prior model of the image [4].

Our forward model is based on a Poisson photon counting model that utilizes a spa-

tial point-spread function to incorporate the scanner-geometry and corrects for the

energy-dependant attenuation of the X-ray spectrum along the path from source to

detector. Our prior model is based on the combination of a Markov random field

(MRF) spatial prior together with a reduced non-negative spectral bases set. Using

these models, we compute the maximum a posteriori (MAP) estimate to render a

4D reconstruction in space and momentum spectrum. The computation of the MAP

estimate is based on an iterative voxel-wise update strategy similar to that considered

by Bouman et al. [5] and exploits the sparsity in photon-count measurements. We

validate the performance of our reconstruction technique with actual baggage data.

1.2 XRD Forward Model

1.2.1 Fundamentals of Coherent Scatter Detection

XDi systems utilize a range of X-ray photon energies that result in coherent scat-

ter. In this type of X-ray interaction with matter, the incident photon does not have

enough energy to ionize electrons from the atomic shell of the medium. This leads to

a change in direction of the photon, but its energy remains the same.

Figure 1.1 illustrates the diffraction of an incident X-ray beam by a single voxel.

Photons that are deflected by an angle θ are sensed by a detector. Furthermore, let

us denote the solid angle subtended by the detector as Ω. Notice that this solid angle

is dependent on both the voxel location and the detector position.

Let us assume that the voxel contains a homogenous material. Furthermore, let

us assume that this material is amorphous or polycrystalline with crystal grains at
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θ

X-ray Source 

        Detector 

Voxel Transmitted Beam 

Incident beam 

Fig. 1.1. Illustration of X-ray diffraction and transmission. The solid red
line depicts the trajectory of photons scattered at angle θ, whereas the
solid green line represents the direct path. The dotted red lines indicate
the angle subtended by the detector at the voxel.

random orientations that are small compared to the size of a voxel. In this general

case, intensity of the scattered X-rays will generally be proportional to the quantity

Xg(E, θ) = np
dσp
dΩ

(E, θ)

where np is the number density of constituent particles in the voxel (units of particles/cm3),

and dσp
dΩ

is the differential cross-section of the constituent particles (units of cm2/(sr−

particle)). Notice that the differential cross-section represents the scatter cross-

section per steradian of scatter angle. Since the material composition of the object

can change from voxel to voxel, the differential cross-section is a function of r as well

as the energy of the photon E and the scatter angle θ. From this definition, we see

that X has units of 1/(sr − cm).

For the aforestated type of material, it is commonly assumed that X is only a

function of the momentum transfer, which is defined as

q =
E

hc
sin

(
θ

2

)
. (1.1)

This is a very important constraint since this means that we need must only recon-

struct the quantity

X(q) = Xg(E, θ) ,

where q is given as a function of E and θ.
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Let λ(E) be the detected photon rate for photons at a energy E. Then in general,

λ(E) is given by

λ(E) = Is(E)AI(E)X(q)AD(E) ΩV (1.2)

where Is(E) is the source intensity at energy E, AI(E) is the source to voxel attenu-

ation, AD(E) is the voxel to detector attenuation, Ω is the solid angle subtended by

the detector, and V is the volume of the voxel. Here the photon intensity is Is(E) has

units of photons/cm2, and both AI(E) and AD(E) are unitless, so λ(E) has units of

photons.

For our applications, θ is very low, typically in the range of 0 to 50 milli-radians.

This implies that the attenuation along the path from source to detector is approx-

imately same as that experienced by the directly transmitted beam [3, 6]. So in the

low angle case this approximation can be written as

Is(E)AI(E)AD(E) ≈ f(E) , (1.3)

where f(E) is the spectrum of the detected X-ray photons along the direct path. In

practice, f(E) must be measured for each beam since the attenuation will be object

dependent. The details on how f(E) is measured are described in the following

section.

The product of the solid angle of scatter, and the voxel volume form a single

constant that is not a function of energy given by

β = ΩV .

In practice, β can be determined through a calibration procedure since it is only a

function of the scanner geometry and not a function of the object being scanned.

So then the final relationship between the unknown X and the measured photon

rate at energy E is given by

λ(E) = βf(E)X(q) (1.4)
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1.2.2 Data Collection and Preprocessing

Figure 1.2 illustrates the geometry of the XDi system. An array of sources are

used to image a 2D plane through the object, which in this case, is the x-z plane.

Each source is collimated into a fan of X-ray pencil beams that pass through the

object. However, Figure 1.2 merely shows what happens along one such pencil beam.

A dual-energy X-ray detector measures the flux of the directly transmitted beam. An

array of scatter detectors are collimated so that each detector measures the scatter

at one point along the pencil beam. The collimation is performed so that the angle

of scatter, θ, is relatively small and approximately constant for all the detectors.

We will refer to the point of intersection of the pencil beam and the detector

collimation as a scatter center. The scatter center represents the location of material

being measured. We will index each scatter center by o, and we note that the scatter

center is specified by a combination of the source s and the detector d. Equivalently,

each scatter center o uniquely specifies a source-detector pair (s, d). In addition, the

object being imaged is moved through the XDi system with a belt. So each scatter

center belongs to a slice through the object.

1

Object space 

Scatter Centers 

Source 

Scatter  Detector  Array 

Primary Collimator 

Pencil beam 
x

Secondary Collimators 

y

θ Transmission Detector 

 Object Movement 

Fig. 1.2. Schematic depicting the basic geometry of the XDi system. The
measurement of scatter is localized to specific points in object-space, or
scatter-centers, which are highlighted in red.
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1.2.2.1 XDi List-mode Data

In order to maximize signal-to-noise, the detectors count photons and report an

energy for each detected photon. This data is reported in list-mode format; so a list

of photon counts with associated energy are reported for each scatter center.

More specifically, for a given scatter-center, o, the list-mode measurement data

provides us three pieces of information represented by {No, θo, Eo}. Here, No denotes

the number of detected photons from the o-th scatter center, and Eo ∈ RNo is a vector

whose entry Eo,i represents the energy of the i-th detected photon, 1 ≤ i ≤ No. The

scatter-angle may deviate slightly from the nominal angle θ̄ and its value for the o-th

scatter center is denoted by θo ∈ R+.

For each photon energy, Eo,i, we may compute an associated momentum transfer

value that accounts for that the specific detector’s scatter angle.

qo,i = Eo,i
sin(θo/2)

hc
(1.5)

The momentum transfer value is then quantized by mapping it to the closest of

a set of NM values given by {q̃m}NMm=1. Let Mo,i be this discrete quantization level.

Then the photon count for the o-th scatter-center and m-th momentum bin, λo,m,

can then be expressed as

λo,m =
No∑
i=1

δ(Mo,i −m) , (1.6)

where the function δ(·) is defined as 1 when argument is 0, and 0 otherwise. So intu-

itively, λo,m is the number of photons from scatter center o that fall into momentum

transfer bin m.

Assuming that NM is sufficiently large, detected photons from a given scatter-

center o that fall within the same momentum bin m, have approximately the same

energy. Accounting for the detector-specific scatter angle θo, we can express this

discrete energy Ẽo,m as follows

Ẽo,m = q̃m
hc

sin(θo/2)
(1.7)
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1.2.2.2 Attenuation Correction

For each scatter-center o, we estimate the momentum-spectrum of photons along

the direct transmission path, represented by the vector Io ∈ RNM . However, note

that this spectrum, Io, accounts for the energy-dependent attenuation undergone by

the detected photons. So, the m-th entry of Io is expressed as

Io,m = fo(Ẽo,m) (1.8)

where fo(·) is a function specific to the incident pencil-beam, since the attenuating

medium varies for different beam-paths. The above function is common to all scatter-

centers that share the same transmission path.

We derive fo(·) from the dual-energy flux measured by the transmission detector.

This is accomplished through techniques similar to Beam-Hardening correction for

dual-energy CT. A common approach is to select two basis materials with markedly

different attenuation characteristics, and then decompose the medium along the direct

beam path into these basis materials [7,8]. For this approach, fo(E) can be determined

in accordance with Beer’s law, as follows

fo(E) = Ĩs(E) exp

{
−

2∑
j=1

dj,oµj(E)

}
(1.9)

where dj,o and µj(E) represent the effective thickness and attenuation coefficient of

the jth basis material respectively, and Ĩs(E) denotes the source X-ray spectrum.

Estimating dj,o, involves a two-step procedure. Let the pair {TL,o, TH,o} ∈ R2

represent the dual-energy flux measured for the transmission path of the o-th scatter-

center. This is dependent on the object being scanned. Let {T̃L,o, T̃H,o} represent

the corresponding measurements from an air-calibration scan. First, we generate the

standard dual-energy projections, pL,o and pH,o, defined by equation (1.10). Next,

we apply an empirical 2nd order polynomial correction method that gives us dj,o as

shown in equation (1.11).

pL,o = log

[
T̃L,o
TL,o

]
and pH,o = log

[
T̃H,o
TH,o

]
(1.10)
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dj,o = γj,1 pL,o + γj,2 pH,o + γj,3 pL,opH,o + γj,4 p
2
L,o + γj,5 p

2
H,o , j ∈ {1, 2} (1.11)

The polynomial coefficients γj,∗ are obtained empirically through experiments with

real objects, which are made from various compositions of the two basis materials.

1.2.3 Point Spread Function

The practical limitations of source and detector collimation result in scatter cen-

ters that are each spatially spread out, as opposed to narrow points in space. As

shown in Figure 1.3, the finite aperture of the detector collimation results in the

elongation of the scatter-center along the path of the incident pencil beam. Further-

more, the aperture of the source collimation, or equivalently the cross-section of the

pencil beam, causes the scatter-center to also spread out along the transverse direc-

tion of the pencil beam. The overall spatial distribution of the scatter-center on the

imaging plane, illustrated by the zoomed-in section of Figure 1.3, is modeled as a

point-spread function (PSF). In this figure, we denote the PSF for the o-th scatter

center as ho(x, z), where (x, z) are coordinates of any given point on the imaging

plane. The PSF is only dependent on the scanner geometry, and is modeled through

ray-trace simulations of the XDi system.

We render a sparse matrix H, whose entries Ho,r represent the contribution of

the r-th voxel to the spatial region encompassed by the o-th scatter center. Ho,r

is computed by finely sampling the point-spread function of the o-th scatter center,

ho(x, z), at multiple points within the voxel r, and then taking the average of these

PSF values. Finally, H is normalized such that

Nr∑
r=1

Ho,r = 1 ,

where Nr is the total number of voxels.
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1
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Transmission Detector 
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X-Z Voxel grid 

           Scatter Center PSF :    

Secondary  
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Beam path 

θ

Scatter Detectors  

Fig. 1.3. Schematic depicting the spatial spread of a scatter-center due
to the finite aperture of the detector collimation. The zoomed in section
on the left illustrates the PSF of the scatter-center on the imaging plane,
where the different “rings” or contours correspond to different PSF values.

1.2.4 Discretized Forward Model

Let X ∈ RNr×NM represent the unknown matrix to be reconstructed, where its

entries Xr,m denote the diffraction profile of the r-th voxel at momentum-transfer

bin m. The scatter photon count received from the o-th scatter-center and m-th

momentum-bin, λo,m, is a Poisson random variable. Along the same lines as equation

(1.4), we can express the mean of λo,m as follows

E[λo,m|X] =

NM∑
m′=1

Po,m,m′ βoIo,m′

Nr∑
r=1

Ho,rXr,m′ (1.12)

where βo is a geometry-dependent calibration factor that is specific to the scatter-

center, and Po ∈ RNM×NM , is a matrix that accounts for the non-ideal response of

the detector to various photon energies. Its entries, Po,m,m′ , represent the probability

that a photon’s detected momentum transfer falls within bin m, given that its true

momentum transfer pertains to bin m′. Po is empirically calibrated for each detector

of the XDi system and is independent of the object being scanned. It is typically

a lower triangular matrix, because photons impinging on a detector are most likely

detected at energies roughly equal to or lower than its true energy.
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1.2.4.1 Reconstruction of XRD spectrum on reduced subspace

Reconstructing the diffraction profileXr,∗, at every voxel r, over allNM momentum-

bins is too computationally expensive. A particular way to reduce this computational

cost is to reduce the dimension of X in momentum-space. We assert that each row

of X can be adequately represented by a reduced set of spectral features. The tech-

nique we apply to solve this dimensional reduction problem, coupled with a positivity

constraint on X, is non-negative matrix factorization (NNMF).

We model X as a product of two matrices, X̃ and T , both of which have nonneg-

ative elements. X̃ is a tall-and-thin matrix of size Nr×Np and T is a short-and-wide

matrix of size Np ×NM , where Np � NM .

X = X̃T . (1.13)

Each row of T represents a basis spectrum used to represent the momentum-spectra

of X. The plots in Figure 1.4 are the rows of T when Np = 4. So now, for every voxel

r, instead of reconstructing the entire diffraction profile {Xr,m}NMm=1, we only need to

recover the Np coefficients of the basis spectra, {X̃r,p}Npp=1

Momentum Transfer in 8A!1
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Fig. 1.4. Basis spectra obtained through NNMF decomposition of the
training data, when number of basis components, Np is 4
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Currently we use a training data set comprising the diffraction profiles of vari-

ous materials of interest, acquired through an offline measurement device. Then we

quickly render a T matrix by NNMF decomposition [9] of the training data, and

normalize T such that each row sums to 1.

NM∑
m=1

Tp,m = 1 ∀p

1.3 Statistical Model and Reconstruction Approach

Our framework for XDi reconstruction is based on standard maximum a posteriori

(MAP) estimation. Let λ represent the matrix of photon-counts detected from each

scatter-center and momentum bin. The MAP estimate of X is formulated as

X̂ = X̃T, where

X̃ ← argmin
X̃≥0

{
− log p(λ|X̃)− log p(X̃)

}
(1.14)

In the following sections we shall first discuss the likelihood and prior models, p(λ|X̃)

and p(X̃) respectively, and then move on to describing an iterative optimization

strategy to solve equation (1.14).

1.3.1 Likelihood function

The measured photon count from scatter center o and with a momentum-transfer

bin m is modeled as a poisson distribution shown below

p(λo,m|X̃) = e−λ̄o,m
(λ̄o,m)λo,m

λo,m!
, (1.15)

where λ̄o,m is the mean photon count given by

λ̄o,m =

NM∑
m′=1

Po,m,m′ βoIo,m′

Nr∑
r=1

Np∑
p=1

Ho,rX̃r,pTp,m′ . (1.16)



12

We accumulate the pre-computed coefficients that characterize the detector-response,

attenuation correction, and the NNMF spectral bases in the above equation into a

single parameter η as expressed below

ηp,o,m , βo

NM∑
m′=1

Po,m,m′Io,m′Tp,m′ (1.17)

Now, we can conveniently re-write the mean photon count as

λ̄o,m =
∑
r,p

Ho,r X̃r,p ηp,o,m . (1.18)

The likelihood term assuming independence between measurements is then given by,

− log p(λ|X̃) =
∑
o,m

− log p(λo,m|X̃)

=
∑
o,m

{∑
r,p

Ho,r X̃r,p ηp,o,m − λo,m log

(∑
r,p

Ho,r X̃r,p ηp,o,m

)}
+ c(λ) .

(1.19)

The term c(λ) groups all additive terms that are not a function of X, which can

therefore be dropped from the cost function.

1.3.2 Prior model

The prior distribution of X̃ is modeled as a Markov random field (MRF) with

a symmetric 26-point neighborhood system in 3-D space. The prior model of X̃

incorporates a pair-wise Gibbs distribution with its general form given by

p(X̃) =
1

z

Np∏
p=1

exp

− 1

σ

∑
(r,s)∈C

br,s ρ
(
X̃r,p − X̃s,p

) (1.20)

where C denotes the set of all pair-wise cliques in X̃, and ρ(·) is the positive and sym-

metric potential function. The parameter σ determines the overall level of smoothing,

and z is a normalizing constant. The specific prior chosen for our application was a
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Q-generalized Gaussian Markov random field, or Q-GGMRF [10] prior, where shape

of the potential function is controlled by the parameters q and c as expressed below

ρ(∆) = |∆|p |∆/c|
q−p

1 + |∆/c|q−p
(1.21)

The penalty levied on differences between neighboring pixel varies as ρ(∆) ≈ cp−q|∆|q

for very small differences where |∆|� c, and ρ(∆) ≈ |∆|p in the range where |∆|� c.

This approximate piece-wise behavior of the potential function permits us to tune our

prior through a suitable choice of parameters p and q to preserve both low-contrast

details as well as edge characteristics. Common choice of parameters is p = 2, and

q in the interval [1, 2]. Note that these values result in a convex potential function,

which ultimately ensures an overall convex cost function. Selecting q = 1 further

simplifies the prior and its derivative, and thus expedites computation.

1.3.3 Iterative coordinate descent

To solve the multi-variable optimization problem posed by equation (1.14), we

use the iterative coordinate descent (ICD) strategy which minimizes the cost function

g(X̃) through a series of successive 1D minimizations [5,11]. Substituting expressions

for the log likelihood and log prior in equation (1.14), the global cost function is

g(X̃) =
∑
o,m

{∑
r,p

Ho,r X̃r,p ηp,o,m − λo,m log

(∑
r,p

Ho,r X̃r,p ηp,o,m

)}

+
1

σ

∑
p

∑
(r,s)∈C

br,sρ
(
X̃r,p − X̃s,p

)
. (1.22)

Note that since the above cost function is convex, our optimization algorithm ulti-

mately converges to the global minimum. Here each ICD update minimizes the cost

function with respect to a single optimization variable keeping all the other NrNp−1

variables fixed. The update for the voxel s and spectral feature q is given by

X̃s,q ← argmin
u≥0

gl(u) ,where (1.23)
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gl(u) =
∑
o,m

{
u Ho,sηq,o,m − λo,m log

[(
u− X̃s,q

)
Ho,s ηq,o,m +

∑
r,p

Ho,r X̃r,p ηp,o,m

]}

+
1

σ

∑
r∈∂s

bs,rρ
(
u− X̃r,q

)
(1.24)

and ∂s denotes the neighborhood of voxel s and gl(u) is the localized cost function.

The solution to equation (1.23) does not have a closed form expression. However,

because gl(·) is convex, the solution can be obtained by finding the root of the local

cost function’s derivative g′l(u). By exploiting the sparse nature of both the PSF ma-

trix H and measurements λ, the computation of g′l(u) can be accelerated. Algorithm

1 provides the pseudo-code for the above ICD optimization approach.

1.4 Results and Discussion

To validate our forward model and ICD optimization algorithm, we perform re-

constructions on XRD measurements acquired from actual baggage. Further we in-

vestigate the effect of various parameters such as the voxel resolution, level of reg-

ularization contributed by the prior, and the dimensionality of the reduced spectral

subspace, Np, on the quality of reconstruction.

A key benefit of introducing the point spread function to the reconstruction is

that it allows flexibility in the definition of the voxel grid in object space. More,

specifically we can reconstruct at any spatial resolution we choose. However, beyond

some spatial sampling rate, we will no longer recover any additional spatial resolution.

Fig. 1.5 depicts various reconstructions of a test bag containing two bottles filled

to capacity with two different liquids. The conventional X-ray transmission image of

the bag taken prior to the scan is shown in (a). The two liquids in this bag have

similar densities. Their scatter-strengths, which is the sum of the diffraction spectra

over all momentum-bins, differ by less than 15%.

Back-projection of the photon-count measurements onto the voxel grid using a

high resolution PSF matrix H is shown in Fig. 1.5(b). The reconstructed images Fig.

1.5(c) to (f) represent the scatter-strength, which in this case is the sum of X̃ over all
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Algorithm 1 ICD Algorithm for MAP estimation

1: # Notation: o - scatter-center index, m - momentum-bin index, p - NNMF basis

index, r - voxel index

2: for every (p, o) do

3: for every m do

4: ηp,o,m = βo
∑
m′
Po,m,m′Io,m′Tp,m′

5: end for

6: ñp,o =
∑
m

ηp,o,m

7: end for

8: for every o do

9: Mo = {m | λo,m > 0}

10: for every m ∈Mo do

11: So,m =
∑
r,p

Ho,r X̃r,p ηp,o,m . state vector

12: end for

13: end for

14: while not converged do

15: for every voxel s and NNMF component q do

16: v ← X̃s,q

17: O ← {o | Ho,s 6= 0}

18: # Root-search on derivative of cost function specified by (1.24) :

19: X̃s,q ← {u | g′l(u) = 0 } where

g′l(u) =
∑
o∈O

{
Ho,sη̃q,o −

∑
m∈Mo

λo,mHo,sηq,o,m

(u−X̃s,q)Ho,sηq,o,m+So,m

}
+
∑
r∈∂s

bs,r
σ
ρ′
(
u− X̃r,q

)
.

20:

21: for every (o,m) where Ho,s 6= 0 do

22: So,m ← So,m + (X̃s,q − v)Ho,sηq,o,m

23: end for

24: end for

25: end while
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Np basis components, because each basis spectrum sums to 1. First, we investigate

if we can extract finer spatial information from the XDi bag scans by decreasing

the voxel size. Results Fig. 1.5(c) and (d) pertain to reconstructions performed

at the standard voxel size of the scanner. We then tried doubling resolution in each

spatial dimension and re-defined the PSF matrix accordingly. We were able to achieve

enhanced image quality as illustrated by the resulting high-resolution reconstructions

in Fig. 1.5(d) and (e). Next, we examine the effect of the prior on image quality.

A comparison of results Fig. 1.5(d) vs (f), and Fig. 1.5(c) vs (e) demonstrates that

a higher level of regularization results in greater smoothness and removal of high-

contrast artifacts.

The results in Fig. 1.6 are based on the NNMF basis spectra shown in Fig. 1.4.

As opposed to the overall scatter strength, Fig. 1.6(a) and (b) separately show the

reconstructed coefficients for the 2nd and 3rd NNMF basis spectra respectively. Fur-

ther, Fig. 1.6(c) and (d) shows the reconstructed momentum spectrum of the two

liquids in the scanned bag. The spectra are averaged over the volume of each bottle

and displayed for reconstructions with different values of Np. In general, most liquids

have relatively smooth diffraction profiles, rather than a rugged profile with several

sharp peaks that solid crystals and powders usually exhibit. Typically, accounting

for a higher number of basis spectra should lead to major improvements in the recon-

structed spectral profile and cause it to converge towards the true spectrum. In our

current example, the spectral reconstructions do not vastly vary between using four

and six basis components, because the predominant spectral features in the actual

data resemble the 2nd basis spectrum.

The reconstruction was performed over 97 bags containing liquids A and B, sim-

ilar to that shown in 1.5(a). The XRD measurements for these bags were acquired

from various scanners and scan-times. We designed a linear classification algorithm

that identifies the liquids from their reconstructions. Fifteen bags were reserved for

training our classification algorithm, while the other 82 bags were used for testing.

More specifically, from the former set of bags, we used every voxel that is internal
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(a) Transmission prescan image (b) Back-Projection with PSF, high resolu-
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(f) Reconstructed, high resolution, σ = 0.6

Fig. 1.5. Model-based scatter strength reconstructions of an actual bag,
with its prescan image depicted in (a). All slices shown are coronal, i.e.
looking down on the scanner tunnel. In (d) and (f), the voxel size is halved
in all 3-dimensions. The number of basis spectra Np was chosen to be 4.
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Fig. 1.6. (a) -(d): Reconstructed diffraction profiles of two liquids A and
B, contained within the bottles of the scanned bag. (e): Histogram for
classification of the two liquids based on XDi scans of 82 different bags; x-
axis represents a linear projection of the 4 spectral coefficients and y-axis
represents the fraction of scanned bags.
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to either liquid bottle as a training sample for our classifier. Subsequently, from the

training data, we determined an optimal linear discriminant based on all the four

NNMF basis coefficients that separates the two liquids. From Fig. 1.6(e), we observe

that there is an optimal threshold for the linear-projection output of the classifier

that clearly distinguishes between the two liquids. We deliberately do not include

details pertaining to the optimal threshold value and corresponding detection and

false-alarm rate results of our classification method.

1.5 Conclusion

In this chapter of the thesis, we presented a 4-D model-based iterative reconstruc-

tion (MBIR) method for a low-angle detection XDi scanner. We proposed a novel

forward model that includes a system-dependent spatial point-spread function, cor-

rects for the energy-dependent X-ray attenuation, and also captures the non-ideal

energy-response of the detectors. To reduce computational cost, we represented the

unknown spectra with a reduced spectral bases. Reconstructions with real bag data

show that it is possible to achieve sufficient spatial resolution despite very low photon

counts. Further, we demonstrated the ability of our approach to distinguish between

materials of similar densities based on the reconstructed basis spectral coefficients.
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2. DISTRIBUTED ITERATIVE CT RECONSTRUCTION

USING MULTI-AGENT CONSENSUS EQUILIBRIUM

2.1 Introduction

Tomographic reconstruction algorithms can be roughly divided into two categories:

analytical reconstruction methods [12, 13] and regularized iterative reconstruction

methods [14] such as model-based iterative reconstruction (MBIR) [15–18]. MBIR

methods have the advantage that they can improve reconstructed image quality par-

ticularly when projection data are sparse and/or the X-ray dosage is low. This is

because MBIR integrates a model of both the sensor and object being imaged into

the reconstruction process [15,17–19]. However, the high computational cost of MBIR

often makes it less suitable for solving large reconstruction problems in real-time.

One approach to speeding MBIR is to precompute and store the system matrix

[20–22]. In fact, the system matrix can typically be precomputed in applications such

as scientific imaging, non-destructive evaluation (NDE), and security scanning where

the system geometry does not vary from scan to scan. However, for large tomographic

problems, the system matrix may become too large to store on a single compute node.

Therefore, there is a need for iterative reconstruction algorithms that can distribute

the system matrix across many nodes in a large cluster.

More recently, advanced prior methods have been introduced into MBIR which

can substantially improve reconstruction quality by incorporating machine learning

approaches. For example, Plug-n-play (PnP) priors [18, 19], consensus equilibrium

(CE) [23], and RED [24] allow convolutional neural networks (CNN) to be used in

prior modeling. Therefore, methods that distribute tomographic reconstruction across

large compute clusters should also be designed to support these emerging approaches.
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In order to make MBIR methods useful, it is critical to parallelize the algorithms

for fast execution. Broadly speaking, parallel algorithms for MBIR fall into two cat-

egories: fine-grain parallelization methods that are most suitable for shared-memory

(SM) implementation [20,21,25,26], and course-grain parallelization methods that are

most suitable for distributed-memory (DM) implementation [27–29]. So for example,

SM methods are best suited for implementation on a single multi-core CPU processor

or a GPU, while DM methods are better suited for computation across a large cluster

of compute nodes. Further, DM methods ensure that the overhead incurred due to

inter-node communication and synchronization does not dominate the computation.

In particular, some DM parallel methods can handle large-scale tomographic prob-

lems by distributing the system-matrix across multiple nodes, while others do not.

For example, the DM algorithm of Wang et al. [27] parallelizes the reconstruction

across multiple nodes, but it requires that each node have a complete local copy

of the system matrix. Alternatively, the DM algorithms of Linyuan et al. [28] and

Cui et al. [29] could potentially be used to parallelize reconstruction across a clus-

ter while distributing the system matrix across the nodes. However, the method of

Linyuan [28] is restricted to the use of a total variation (TV) prior [30, 31] and in

experiments has required 100s of iterations for convergence, which is not practical for

large problems. Alternatively, the the method of Cui [29] is for use in unregularized

PET reconstruction.

In this thesis chapter, we present a Multi-agent Consensus Equilibrium (MACE)

reconstruction algorithm that distributes both the computation and memory of iter-

ative CT reconstruction across a large number of parallel nodes [32–34]. The MACE

approach uses the consensus equilibrium [23] framework to break the reconstruction

problem into a set of subproblems which can be solved separately and then integrated

together to achieve a high-quality reconstruction. By distributing computation over

a set of compute nodes, MACE enables the solution of reconstruction problems that

would otherwise be too large to solve.
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Figure 2.1 illustrates our two approaches to this distributed CT reconstruction

problem. While both the approaches integrate multiple sparse-view reconstructions

across a compute cluster into a high-quality reconstruction, they differ based on how

the prior model is implemented. Figure 2.1(a) depicts our basic MACE approach

that utilizes conventional edge-preserving regularization [15,35] as a prior model and

converges to the maximum-a-posteriori (MAP) estimate. Figure 2.1(b) shows our

second approach called MACE-PnP which allows for distributed CT reconstruction

using plug-and-play (PnP) priors [18, 19]. These PnP priors substantially improve

reconstructed image quality by implementing the prior model using a denoising algo-

rithm based on methods such as BM3D [36] or deep residual CNNs [37]. We prove

that MACE-PnP provides a parallel algorithm for computing the standard serial PnP

reconstruction of [18].

A direct implementation of MACE is not practical because it requires repeated

application of proximal operators that are themselves iterative. In order to overcome

this problem, we introduce the concept of partial updates, a general approach for

replacing any proximal operator with a non-iterative update. We also prove the

convergence of this method for our application.

Our experiments are divided into two parts and are based on real CT datasets

from synchrotron imaging and security scanning. In the first part, we use the MACE

algorithm to parallelize 2D CT reconstructions across a distributed CPU cluster of 16

compute nodes. We show that MACE both speeds up reconstruction while drastically

reducing the memory footprint of the system matrix on each node. We incorporate

regularization in the form of either conventional priors such as Q-GGMRF, or alterna-

tively, advanced denoisers such as BM3D that improve reconstruction quality. In the

former case, we verify that our approach converges to the Bayesian estimate [15,17],

while in the latter case, we verify convergence to the PnP solution of [18,23].

In the second part of our experiments, we demonstrate an implementation of

MACE on a large-scale supercomputer that can reconstruct a large 3D CT dataset.

For this problem, the MACE algorithm is used in conjunction with the super-voxel
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ICD (SV-ICD) algorithm [20] to distribute computation over 1200 compute nodes,

consisting of a total of 81,600 cores. Importantly, in this case the MACE algorithm

not only speeds reconstruction, it enables reconstruction for a problem that would

otherwise be impossible since the full system matrix is too large to store on a single

node.

2.2 Distributed CT Reconstruction using Conventional Priors

2.2.1 CT Reconstruction using MAP Estimation

We formulate the CT reconstruction problem using the maximum-a-posteriori

(MAP) estimate given by [38]

x∗ = argmin
x∈Rn

f(x; β) , (2.1)

where f is the MAP cost function defined by

f(x; β) = − log p(y|x)− log p(x) + const ,

y is the preprocessed projection data, x ∈ Rn is the unknown image of attenuation

coefficients to be reconstructed, and const represents any possible additive constant.

For our specific problem, we choose the forward model p(y|x) and the prior model

pβ(x) so that

f(x; β) =

Nθ∑
k=1

1

2
‖yk − Akx‖2

Λk
+βh(x) , (2.2)

where yk ∈ RND denotes the kth view of data, Nθ denotes the number of views,

Ak ∈ RND×n is the system matrix that represents the forward projection operator

for the kth view, and Λk ∈ RND×ND is a diagonal weight matrix corresponding to the

inverse noise variance of each measurement. Also, the last term

βh(x) = − log p(x) + const ,

represents the prior model we use where β can be used to control the relative amount

of regularization. In this section, we will generally assume that h(·) is convex, so then
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    View-subset 1 sinogram     View-subset N sinogram 

Partial-update  
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Consensus Merge 

Prior Model 

(a) MACE

    View-subset 1 sinogram     View-subset N sinogram 

Partial-update  
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Partial-update 
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Consensus Merge 

PnP Denoiser 

(b) MACE-PnP

Fig. 2.1. Illustration of the MACE algorithm for distributing CT recon-
struction across a parallel cluster of compute nodes. (a) An illustration
of the MACE algorithm using a conventional prior model. The MACE
algorithm works by splitting the data into view subsets and reconstruct-
ing them in parallel. The individual reconstructions are them merged in
an iterative loop that results in the true MAP reconstruction for the full
data set. (b) An illustration of the MACE-PnP algorithm which extends
the MACE framework to the use of Plug-n-Play prior models to improve
reconstruction quality. In this case, a denoiser is run in the MACE loop
in order to implement an advanced prior model. The MACE and MACE-
PnP algorithms distribute both computation and memory across parallel
clusters of computers, thereby enabling the reconstruction of large tomo-
graphic data sets.
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f will also be convex. A typical choice of h which we will use in the experimental

section is the Q-Generalized Gaussian Markov Random Field (Q-GGMRF) prior [35]

that preserves both low contrast characteristics as well as edges.

In order to parallelize our problem, we will break up the MAP cost function into a

sum of auxiliary functions, with the goal of minimizing these individual cost functions

separately. So we will represent the MAP cost function as

f(x; β) =
N∑
i=1

fi(x; β) ,

where

fi(x; β) =
∑
k∈Ji

1

2
‖yk − Akx‖2

Λk
+
β

N
h(x) , (2.3)

and the view subsets J1, · · · , JN partition the set of all views into N subsets.1 In

this thesis, we will generally choose the subsets Ji to index interleaved view subsets,

but the theory we develop works for any partitioning of the views. In the case of

interleaved view subsets, the view subsets are defined by

Ji = { m : m mod N = i, m ∈ {1, · · · , Nθ} } .

2.2.2 MACE framework

In this section, we introduce a framework, which we refer to as multi-agent con-

sensus equilibrium (MACE) [23], for solving our reconstruction problem through the

individual minimization of the terms fi(x) defined in (2.3).2 Importantly, minimiza-

tion of each function, fi(·), has exactly the form of the MAP CT reconstruction

problem but with the sparse set of views indexed by Ji. Therefore, MACE integrates

the results of the individual sparse reconstruction operators, or agents, to produce a

consistent solution to the full problem.

1By partition, we mean that ∪Ni=1Ji = {1, 2, · · · , Nθ} and ∩Ni=1Ji = ∅.
2In this section, we suppress the dependence on β for notational simplicity.
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To do this, we first define the agent, or in this case the proximal map, for the ith

auxiliary function as

Fi(x) = argmin
z∈Rn

{
fi(z) +

‖z − x‖2

2σ2

}
, (2.4)

where σ is a user selectable parameter that will ultimately effect convergence speed

of the algorithm. Intuitively, the function Fi(x) takes an input image x, and returns

an image that reduces its associated cost function fi and is close to x.

Our goal will then be to solve the following set of MACE equations

Fi(x
∗ + u∗i ) = x∗ for i = 1, ..., N , (2.5)

N∑
i=1

u∗i = 0 , (2.6)

where x∗ ∈ Rn has the interpretation of being the consensus solution, and each

u∗i ∈ Rn represents the force applied by each agent that balances to zero.

Importantly, the solution x∗ to the MACE equations is also the solution to the

MAP reconstruction problem of equation (2.1) (see Theorem 1 of [23]). In order to

see this, notice that since fi is convex we have that

∂fi(x
∗) +

x∗ − (x∗ + u∗i )

σ2
3 0, i = 1, · · · , N,

where ∂fi is the sub-gradient of fi. So by summing over i and applying (2.6) we have

that

∂f(x∗) 3 0 .

Which shows that x∗ is a global minimum to the convex MAP cost function. We can

prove the converse in a similar manner.

We can represent the MACE equilibrium conditions of (2.5) and (2.6) in a more

compact notational form. In order to do this, first define the stacked vector

v =


v1

...

vN

 , (2.7)
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where each component vi ∈ Rn of the stack is an image. Then we can define a

corresponding operator F that stacks the set of agents as

F(v) =


F1(v1)

...

FN(vN)

 , (2.8)

where each agent Fi operates on the i-th component of the stacked vector. Finally,

we define a new operator G(v) that computes the average of each component of the

stack, and then redistributes the result. More specifically,

G(v) =


v̄
...

v̄

 , (2.9)

where v̄ = 1
N

∑N
i=1 vi.

Using this notation, the MACE equations of (2.5) and (2.6) have the much more

compact form of

F(v∗) = G(v∗) , (2.10)

with the solution to the MAP reconstruction is given by x∗ = v̄∗ where v̄∗ is the

average of the stacked components in v∗.

The MACE equations of (2.10) can be solved in many ways, but one convenient

way to solve them is to convert these equations to a fixed-point problem, and then

use well known methods for efficiently solving the resulting fixed-point problem [23].

It can be easily shown (see appendix A) that the solution to the MACE equations

are exactly the fixed points of the operator T = (2F− I)(2G− I) given by

Tw∗ = w∗ , (2.11)

where then v∗ = (2G− I)w∗.

We can evaluate the fixed-point w∗ using the Mann iteration [39]. In this ap-

proach, we start with any initial guess and apply the following iteration,

w(k+1) = ρTw(k) + (1− ρ)w(k), k ≥ 0 , (2.12)
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which can be shown to converge to w∗ for ρ ∈ (0, 1). The Mann iteration of (2.12)

has guaranteed convergence to a fixed-point v∗ if T is non-expansive. Both Fi, as well

as its reflection, 2Fi − I, are non-expansive, since each proximal map Fi belongs to a

special class of operators called resolvents [39]. Also, we can easily show that 2G− I

is non-expansive. Consequently, T is also non-expansive and (2.12) is guaranteed to

converge.

In practice, F is a parallel operator that evaluates N agents that can be distributed

over N nodes in a cluster. Alternatively, the G operator has the interpretation of a

reduction operation across the cluster followed by a broadcast of the average across

the cluster nodes.

2.2.3 Partial Update MACE Framework

A direct implementation of the MACE approach specified by (2.12) is not prac-

tical, since it requires a repeated application of proximal operators Fi, i = 1, · · · , N ,

that are themselves iterative. Consequently, this direct use of (2.12) involves many

nested loops of intense iterative optimization, resulting in an impractically slow algo-

rithm.

In order to overcome the above limitation, we propose a partial-update MACE

algorithm that permits a faster implementation without affecting convergence. In

partial-update MACE, we replace each proximal operator with a fast non-iterative

update in which we partially evaluate the proximal map, Fi, using only a single pass

of iterative optimization.

Importantly, a partial computation of Fi(· ;σ) resulting from a single pass of

iterative optimization will be dependent on the initial state. So, we use the notation

F̃i(· ;σ,Xi) to represent the partial-update for Fi(· ;σ), where Xi ∈ Rn specifies

the initial state. Analogous to (2.8), F̃(v;σ,X) then denotes the partial update for

stacked operator F(v;σ) from an initial state X ∈ RnN .
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Algorithm 2 provides the pseudo-code for the Partial-update MACE approach.

Note that this algorithm strongly resembles equation (2.12) that evaluates the fixed-

point of map (2F − I)(2G − I), except that F is replaced with its partial update as

shown in line 7 of the pseudo-code. Note that this framework allows a single pass of

any optimization technique to compute the partial update. In this thesis, we will use a

single pass of the the Iterative Coordinate Descent (ICD) optimization method [17,20],

that greedily updates each voxel, but single iterations of other optimization methods

can also be used.

Algorithm 2 Partial-update MACE with conventional priors

1: Initialize:

2: w(0) ← any value ∈ RnN

3: X(0) = G(w(0))

4: k ← 0

5: while not converged do

6: v(k) = (2G− I) w(k)

7: X(k+1) = F̃
(
v(k);σ,X(k)

)
. Approximate F(v(k))

8: w(k+1) = 2X(k+1) − v . ≈ (2F− I)(2G− I)w(k)

9: w(k+1) ← ρw(k+1) + (1− ρ) w(k) . Mann update

10: k ← k + 1

11: end while

12: Solution:

13: x∗ = w̄(k) . Consenus solution

In order to understand the convergence of the partial-update algorithm, we can

formulate the following update with an augmented state asw(k+1)

X(k+1)

 =

ρ 0

0 1

2F̃
(
v(k);X(k)

)
− v(k)

F̃
(
v(k);X(k)

)
 (2.13)

+

1− ρ 0

0 0

w(k)

X(k)

 ,
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where v(k) = (2G− I)w(k). We specify F̃ more precisely in Algorithm 3. In Theorem

2.2.1, we show that any fixed-point (w∗,X∗) of this partial-update algorithm is a

solution to the exact MACE method of (2.11). Further, in Theorem 2.2.2 we show

that for the specific case where fi defined in (2.3) is strictly quadratic, the partial-

update algorithm has guaranteed convergence to a fixed-point.

Theorem 2.2.1 Let fi : Rn → R, i = 1, · · · , N be a strictly convex and differen-

tiable function. Let Fi denote the proximal map of fi. Let F̃i(v;x) denote the partial

update for Fi(v) as specified by Algorithm 3. Then any fixed-point (w∗,X∗) of the

Partial-update MACE approach represented by (2.13) is a solution to the exact MACE

approach specified by (2.11).

Proof Proof is in Appendix B.

Theorem 2.2.2 Let B be a positive definite n× n matrix, and let fi : Rn → Rn, i =

1, ..., N each be given by

fi(x) =
∑
k∈Ji

1

2
‖yk − Akx‖2

Λk
+
β

N
xTBx.

Let Fi denote the proximal map of fi. Let F̃i(v;x, σ), v, x ∈ Rn, denote the partial

update for proximal operation Fi(v;σ) as shown in Algorithm 3. Then equation (2.13)

can be represented by a linear transformw(k+1)

X(k+1)

 = Mσ2

w(k)

X(k)

+ c(y,A, ρ),

where Mσ2 ∈ R2Nn×2Nn and c ∈ R2Nn. Also, for sufficiently small σ > 0, any

eigenvalue of the matrix Mσ2 is in the range (0,1) and hence the iterates defined by

(2.13) converge in the limit k → ∞ to (w∗,X∗), the solution to the exact MACE

approach specified by (2.11).

Proof Proof is in Appendix B.
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Consequently, in the specific case of strictly convex and quadratic problems, the

result of Theorem 2.2.2 shows that despite the partial-update approximation to the

MACE approach, we converge to the exact consensus solution. In practice, we use

non-Gaussian MRF prior models for their edge-preserving capabilities, and so the

global reconstruction problem is convex but not quadratic. However, when the priors

are differentiable, they are generically locally well-approximated by quadratics, and

our experiments show that we still converge to the exact solution even in such cases.

Algorithm 3 ICD-based Partial-update for proximal operation Fi(v) using an initial

state x
1: Define εs = [0, · · · , 1, · · · , 0]t ∈ Rn . entry 1 at s-th position

2: z = x . Copy initial state

3: for s = 1 to n do

4: αs = argminα
{
fi(z + αεs) + 1

2σ2‖z + αεs − v‖2
}

5: z ← z + αsεs

6: end for

7: F̃i(v;x) = z . Partial update

2.3 MACE with Plug-and-Play Priors

In this section, we generalize our approach to incorporate Plug-n-Play (PnP)

priors implemented with advanced denoisers [18]. Since we will be incorporating the

prior as a denoiser, for this section we drop the prior terms of in equation (2.2) by

setting β = 0. So let f(x) = f(x; β = 0) denote the CT log likelihood function of (2.2)

with β = 0 and no prior term, and let F (x) denote its corresponding proximal map.

Then Buzzard et al. in [23] show that the PnP framework of [18] can be specified by

the following equilibrium conditions

F (x∗ − α∗; σ) = x∗ (2.14)

H(x∗ + α∗) = x∗, (2.15)
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where H : Rn → Rn is the plug-n-play denoiser used in place of a prior model. This

framework supports a wide variety of denoisers including BM3D and residual CNNs

that can be used to improve reconstruction quality as compared to conventional prior

models [18, 19].

Let fi(x) = fi(x; β = 0) to be the log likelihood terms from (2.3) corresponding to

the sparse view subsets, and let Fi(x) be their corresponding proximal maps. Then in

Appendix C we show that the PnP result specified by (2.14) and (2.15) is equivalent

to the following set of equilibrium conditions.

Fi(x
∗ + u∗i ; σ) = x∗, i = 1, · · · , N, (2.16)

H(x∗ + α∗) = x∗, (2.17)

N∑
i=1

u∗i + α∗ = 0. (2.18)

Again, we can solve this set of balance equations by transforming into a fixed point

problem. One approach to solving equations (2.16) – (2.18) is to add an additional

agent, FN+1 = H, and use the approach of Section 2.2.2 [40]. However, here we take

a slightly different approach in which the denoising agent is applied in series, rather

than in parallel.

In order to do this, we first specify a rescaled parallel operator F and a novel

consensus operator GH , given by

F =


F1(v1;

√
Nσ)

...

FN(vN ;
√
Nσ)

 and GH(v) =


H(v̄)

...

H(v̄)

 , (2.19)

where v̄ =
∑N

i=1 vi/N .

In Theorem 2.3.1 below we show that we can solve the equilibrium conditions of

(2.16) – (2.18) by finding the fixed-point of the map TH = (2F − I)(2GH − I). In

practice, we can implement the GH first computing an average across a distributed

cluster, then applying our denoising algorithm,followed by broadcasting back a de-

noised, artifact-free version of the average.
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Theorem 2.3.1 Let Fi, i = 1, · · · , N , denote the proximal map of function fi. Let

maps F and GH be defined by (2.19). Let x̂∗ denote N vertical copies of x∗. Then,

(x∗,u∗) ∈ Rn × RnN is a solution to the equilibrium conditions of (2.16) – (2.18) if

and only if the point w∗ = x̂∗−Nu∗ is a fixed-point of map TH = (2F− I)(2GH − I)

and GH(w∗) = x̂∗.

Proof Proof is in Appendix C.

When TH is non-expansive, we can again compute the fixed-point w∗ ∈ RnN using

the Mann iteration

w(k+1) = ρ(2F− I)(2GH − I)w(k) + (1− ρ)w(k) . (2.20)

Then, we can compute the x∗ that solves the MACE conditions (2.16) – (2.18), or

equivalently, the PnP conditions (2.14) – (2.15), as x∗ = Hw̄∗. Importantly, (2.20)

provides a parallel approach to solving the PnP framework since the parallel oper-

ator F typically constitutes the bulk of the computation, as compared to consensus

operator GH .

In the specific case when the denoiser H is firmly non-expansive, such as a proximal

map, we show in Lemma 2.3.2 that TH is non-expansive. While there is no such

guarantee for any general H, in practice, we have found that this Mann iteration

converges. This is consistent with previous experimental results that have empirically

observed convergence of PnP [19,23] for a wide variety of denoisers including BM3D

[36], non-local means [41], or Deep residual CNNs [37,40].

Lemma 2.3.2 If F and GH are defined by (2.19), and H is firmly non-expansive,

then TH = (2F − I)(2GH − I) is non-expansive and the Mann iteration of (2.20)

converges to the fixed point of TH .

Proof The proof is in Appendix C.

The Algorithm 4 below shows the partial update version of the Mann iteration

from equation (2.20). This version of the algorithm is practical since it only requires

a single update of each proximal map per iteration of the algorithm.
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Algorithm 4 Partial-update MACE with PnP priors

1: Initialize:

2: w(0) ← any value ∈ RnN

3: X(0) = GH(w(0))

4: k ← 0

5: while not converged do

6: v(k) = (2GH − I) w(k)

7: X(k+1) = F̃
(
v(k);σ,X(k)

)
. Approximate F(v(k))

8: w(k+1) = 2X(k+1) − v . ≈ (2F− I)(2GH − I)w(k)

9: w(k+1) ← ρw(k+1) + (1− ρ) w(k) . Mann update

10: k ← k + 1

11: end while

12: Solution:

13: x∗ = Hw̄(k) . Consenus solution

2.4 Experimental Results

Our experiments are divided into two parts corresponding to 2D and 3D recon-

struction experiments. In each set of experiments, we analyze convergence and de-

termine how the number of view-subsets affects the speedup and parallel-efficiency of

the MACE algorithm.

Table 2.1(a) lists parameters of the 2D data sets. The first 2D data set was

collected at the Lawerence Berkeley National Laboratory Advanced Light Source

synchrotron and is one slice of a scan of a ceramic matrix composite material. The

second 2D data set was collected on a GE Imatron multi-slice CT scanner and was

reformated into parallel beam geometry. For the 2D experiments, reconstructions

are done with a image size of 512 × 512, and the algorithm is implemented on a

distributed compute cluster of 16 CPU nodes using the standard Message Parsing

Interface (MPI) protocol. Source code for our distributed implementation can be

found in [42].
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Table 2.1(b) lists parameters of the 3-D parallel-beam CT dataset used for our

supercomputing experiment. Notice that for the 3D data set, the reconstructions are

computed with an array size of 1280× 1280, effectively doubling the resolution of the

reconstructed images. This not only increases computation, but makes the system

matrix larger, making reconstruction much more challenging. For the 3D experiments,

MACE is implemented on the massive NERSC supercomputer using 1200 multi-core

CPU nodes belonging to the Intel Xeon Phi Knights Landing architecture, with 68

cores on each node.

Table 2.1.
CT Dataset Description

(a) 2-D Datasets

Dataset #Views #Channels Image size

Low-Res. Ceramic
Composite (LBNL) 1024 2560 512×512

Baggage Scan (ALERT) 720 1024 512×512

(b) 3-D Dataset

Dataset #Views #Channels Volume size

High-Res. Ceramic
Composite (LBNL) 1024 2560 1280×1280×1200

2.4.1 Methods

For the 2D experiments, we compare our distributed MACE approach against a

single-node method. Both the single-node and MACE methods use the same ICD

algorithm for reconstruction. In the case of the single-node method, ICD is run on a

single compute node that stores the complete set of views and the entire system ma-

trix. Alternatively, for the MACE approach computation and memory is distributed
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among N compute nodes, with each node performing reconstructions using a subset

of views. The MACE approach uses partial updates each consisting of 1 pass of ICD

optimization.

We specify the computation in units called Equits [43]. In concept, 1 equit is

the equivalent computation of 1 full iteration of centralized ICD on a single node.

Formally, we define an equit as

# Equits =
(# of voxel updates)

(# of voxels in ROI)*(# of view subsets)
.

For the case of a single node, 1 equit is equivalent to 1 full iteration of the centralized

ICD algorithm. However, equits can take fractional values since non-homogeneous

ICD algorithms can skip pixel updates or update pixels multiple times in a single

iteration. Also notice this definition accounts for the fact the the computation of an

iteration is roughly proportional to the number of views being processed by the node.

Consequently, on a distributed implementation, 1 equit is equivalent to having each

node perform 1 full ICD iteration using its subset of views.

Using this normalized measure of computation, the speedup due to parallelization

is given by

Speedup(N) = N × (# of equits for centralized convergence)

(# of equits for MACE convergence)
,

where again N is the number of nodes used in the MACE computation. From this

we can see that the speedup is linear in N when the number of equits required for

convergence is constant.

In order to measure convergence of the iterative algorithms, we define the NRMSE

metric as

NRMSE(x, x∗) =
‖x− x∗‖
‖x∗‖

.

where x∗ is the fully converged reconstruction.

All results using the 3D implemented on the NERSC supercomputer used the

highly parallel 3-D Super-voxel ICD (SV-ICD) algorithm described in detail in [20].

The SV-ICD algorithm employees a hierarchy of parallelization to maximize utiliza-

tion of each cluster nodes. More specifically, the 1200 slices in the 3D data set are
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processed in groups of 8 slices, with each group of 8 slices being processed by a sin-

gle node. The 68 cores in each node then perform a parallelized version of ICD in

which pixels are processed in blocks called super-voxels. However, even with this very

high level of parallelism, the SV-ICD algorithm has two major shortcomings. First,

it can only utilize 150 nodes in the super-computing cluster, but more importantly,

when the system matrix is too large to store on a single node, high resolution 3D

reconstruction is impossible without the MACE algorithm.
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Fig. 2.2. Single node reconstruction for (left) Low-Res. Ceramic Compos-
ite dataset (right) Baggage Scan dataset.

Table 2.2.
MACE convergence (equits) for different values of ρ, N=16.

Dataset ρ

0.5 0.6 0.7 0.8 0.9

Low-Res. Ceramic 18.00 16.00 15.00 14.00 14.00

Baggage scan 12.64 10.97 10.27 9.52 12.40
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(b) MACE reconstruction, N = 16
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Fig. 2.3. Comparison of reconstruction quality for MACE method using
16 parallel nodes each processing (1/16)th of the views, against centralized
method. (a) and (c) Centralized method. (b) and (d) MACE. Notice that
both methods have equivalent image quality.

2.4.2 MACE Reconstruction of 2-D CT Dataset

In this section, we study the convergence and parallel efficiency of the 2D data sets

of Table 2.1(a). Figure 2.2 shows reconstructions of the data sets, and Figure 2.3 com-

pares the quality of the centralized and MACE reconstructions for zoomed-in regions

of the image. The MACE reconstruction is computed using N = 16 compute nodes

or equivalently N = 16 view-subsets. Notice that the MACE reconstruction is visu-
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Scan dataset

Fig. 2.4. MACE convergence for different number of nodes, N , using
ρ = 0.8: (a) Low-Res. Ceramic composite dataset (b) Baggage Scan
dataset. Notice that number of equits tends to gradually increase with
number of parallel processing nodes, N .

Table 2.3.
MACE memory usage for the system-
matrix (gigabytes) as a function of num-
ber of nodes, N 1

Dataset N

1 2 4 8 16

Low-Res. Ceramic 14.83 7.42 3.71 1.86 0.93

Baggage scan 5.04 2.52 1.26 0.63 0.32

1 System-matrix represented in sparse matrix format and

floating-point precision

ally indistinguishable from the centralized reconstruction. However, for the MACE
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TO Distributed Reconstruction using PnP priors
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(c) Convergence for different #nodes

Fig. 2.5. MACE-PnP reconstruction of Baggage Scan data set: (a) MACE
PnP reconstruction using N = 16 nodes; (b) Zoomed-in regions of PnP
versus conventional prior; (c) MACE-PnP convergence as a function of
number of nodes N . Notice that PnP prior produces better image quality
with reduced streaking and artifacts. In addition, the number of equits
required for convergence of the MACE-PnP does not tend to increase
significantly with number of nodes N .

reconstruction, each node only stores less than 7% of the full sinogram, dramatically

reducing storage requirements.
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Fig. 2.6. MACE speedup as a function of the number of nodes, for different
datasets and prior models. Importantly, note that in the case of PnP
priors, we achieve a near linear speedup for both datasets.

Table 2.2 shows the convergence of MACE for varying values of the parameter ρ,

withN=16. Notice that for both data sets, ρ = 0.8 resulted in the fastest convergence.

In fact, in a wide range of experiments, we found that ρ = 0.8 was a good choice and

typically resulted in the fastest convergence.

Figures 2.4 shows the convergence of MACE using a conventional prior for varying

numbers of compute nodes, N . Notice that for this case of the conventional QGGMRF

prior model, as N increased, the number of equits required for convergence tended to

increase for both data sets.

Figure 2.5 shows results using the MACE with the PnP prior (MACE-PnP) with

the Baggage Scan data set. Notice that the PnP prior results in improved image

quality with less streaking and fewer artifacts. Also notice that with the PnP prior,

the number of equits required for convergence shown in Figure 2.5(c) does not signif-

icantly increase with number of compute nodes, N .
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Figure 2.6 summarizes this important result by plotting the parallel speed up as

a function of number of nodes for both data sets using both priors. Notice that the

MACE-PnP algorithm results in approximately linear speedup for N ≤ 8 for both

data sets, and near linear speedup up to N = 16. We conjecture that the advance

prior tends to speed convergence due the stronger regularization constraint it provides.

Table 2.3 shows the system matrix memory as a function of the number of nodes,

N . Note that MACE drastically reduces the memory usage per node by a factor of

N .
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ceramic high-resolution reconstruction
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(b) MACE Reconstruction, N = 8
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ceramic high-resolution reconstruction
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(d) MACE Reconstruction, N = 8

Fig. 2.7. Comparison of quality between (a),(c) fully converged result and
(b),(d) the MACE reconstruction using 8 view-subsets on the NERSC
supercomputer. Notice that both have equivalent image quality.
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Fig. 2.8. MACE convergence for the High-Res. ceramic reconstruction on
the NERSC supercomputer as a function of view-subsets (reconstruction
size 1280× 1280× 1200).

Table 2.4.
Computational performance for 3-D MACE reconstruction on the NERSC
supercomputer as a function of #view-subsets

#View-subsets 1 2 4 8

#Nodes 150 300 600 1200

#Cores 10,200 20,400 40,800 81,600

Memory usage 2(GB) - 25.12 12.56 6.28

#Equits - 23.91 26.67 34.03

#Time (s) - 275 154 121

MACE Algorithmic
Speedup - 2 3.58 5.62

Machine-time
Speedup - 2 3.57 4.55

2 rough estimate when system-matrix is represented in conven-

tional sparse matrix format, floating-point precision
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2.4.3 MACE Reconstruction for large 3D datasets

In this section, we study the convergence and parallel efficiency of the 3D data

sets of Table 2.1(b) using the MACE algorithm implemented on the NERSC super-

computer.

All cases use the SV-ICD algorithm for computation of the reconstructions at

individual nodes with a Q-GGMRF as prior model and ρ = 0.8 as value of Mann

parameter. As noted previously, for this case the system matrix is so large that it is

not possible to compute the reconstruction with N = 1 view subset. So in order to

produce our reference reconstruction, we ran 40 equits of MACE with N = 2 view

subsets, which appeared to achieve full convergence.

Figure 2.7 compares zoomed in regions of the fully converged result with MACE

reconstructions using N = 8 view subsets. Notice both have equivalent image quality.

Figure 2.8 shows the convergence of MACE as a function of number of equits.

Notice that, as in the 2D case using the Q-GGMRF prior, the number of equits tends

to increase as the number of view subsets, N , increases.

Table 2.4 summarizes the results of the experiment as a function of the number of

view subsets, N . Notice that the memory requirements for reconstruction drop rapidly

with the number of view subsets. This makes parallel reconstruction practical for large

tomographic data sets. In fact, the results are not listed for the case of N = 1, since

the system matrix is too large to store on the nodes of the NERSC supercomputer.

Also, notice that parallel efficiency is good up until N = 4, but it drops off with

N = 8.

2.5 Conclusion

In this chapter of the thesis, we proposed a novel MACE algorithm that distributes

both the memory and computation of iterative CT reconstruction across a large num-

ber of parallel nodes. MACE integrates multiple sparse-view reconstructions across

the compute cluster into a high-quality reconstruction. Further, we introduced a vari-



45

ant of MACE called MACE-PnP that supports the use of advanced PnP denoisers

that improve reconstruction quality. We proved that MACE converges to the MAP

estimate, while MACE-PnP converges to the solution of the serial PnP framework.

In order to make MACE feasible for practical applications, we proposed a partial-

update implementation that utilizes non-iterative proximal updates and proved con-

vergence for the same. We analyzed the convergence and speedup of our method

on a distributed memory system with real CT data. Finally, we demonstrated an

implementation of our method on a massive supercomputer that enables large-scale

reconstructions in real-time.
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3. FAST ALGORITHMS FOR MODEL-BASED IMAGING

THROUGH TURBULENCE

3.1 Introduction

Digital holography (DH) systems can acquire high-resolution images of far-away

targets using a coherent laser source and an image-sensor such as a Focal plane array

(FPA). The main advantage of DH systems is their ability to coherently detect weak

signal fields that are modulations of the source optical field. The resulting complex

images can be processed to remove severe distortions that would not otherwise be

possible with conventional non-coherent detection. Consequently, DH imaging has

huge potential for real-time remote-sensing and surveillance (ISR) applications.

Figure 3.1 illustrates remote-sensing using a DH system. Reflected light from

the target is focused onto the FPA using a lens-array. This weak received field is

then demodulated by mixing it with a strong reference field that is identical to the

source but has a linear pixel-wise phase offset 1. This demodulation technique is

known as optical heterodyning [44, 45], and the resulting FPA measurement is the

hologram. While most DH systems use simple Fourier-based methods to form the

target image from the hologram, advanced image-formation methods such as [45,46]

can significantly improve quality.

The presence of deep atmospheric turbulence between the target and image sensor

can pose a strong challenge to DH systems. As shown in Figure 3.1, turbulence

distorts the point-wise phase of the pupil-plane optical field 2, or equivalently, the

Fresnel diffraction pattern of the target. In this case, DH systems must remove these

phase-errors in order to recover a focused image of the target.

1projecting the field at an oblique angle onto the FPA produces such a phase-offset
2We assume isoplanatic atmospheric conditions, which allows us to accumulate the phase-errors
during wave propagation in the pupil-plane
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Image sharpening (IS) [47–49] and model-based iterative reconstruction (MBIR)

[44–46,50] are perhaps the two major classes of algorithms for estimating the unknown

phase errors from DH images. The IS and DH-MBIR methods primarily differ in

two ways. First, the IS method estimates the complex-valued reflection coefficient,

which typically has abrupt spatial variations due to speckle. Alternatively, DH-MBIR

estimates the real-valued reflectance [44,50], which is typically much smoother as seen

in Figure 3.4. Second, IS and DH-MBIR use very different mathematical frameworks,

and consequently, different iterative computations to estimate the phase-errors and

the target image.

IS methods are based on maximizing the sharpness of the intensity image specified

by the magnitude-squared of reflection coefficient, g. More specifically, IS uses sim-

ple Fourier-inversion methods to express g as a function of the detected pupil-plane

field, y, and the unknown phase-errors, φ. Then, the phase-errors are estimated by

maximizing a sharpness metric associated with the image |g|2. However, g is affected

by speckle noise, 3 which limits the quality of both the sharpened image and the

estimated phase-errors [44].

In contrast, DH-MBIR methods use a Bayesian framework to jointly estimate the

target’s reflectance, r and the unknown phase-errors, φ from the detected pupil-

plane field y. The key advantage of DH-MBIR is that DH-MBIR estimates the

reflectance, r, which is much smoother than the reflection coefficient, |g|2, estimated

by IS. Therefore, since the unknown has fewer degrees of freedom, the estimation

problem can be more accurately solved with with less data.

In this thesis chapter, we propose a method to significantly speedup MBIR for

real-time DH applications. Our approach uses surrogate optimization to simplify the

pixel-wise phase-error and reflectance updates that dominate the computation. We

also show how fast parallel SIMD vector processing instructions together with cache

prefetching can be used to speed these operations even on a single core of a modern

3g is speckled since each pixel value can be modeled as a sum of many small scatterers, whose phase
is a uniform random variable ∈ (0, 2π)
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CPU. In our experiments with simulated datasets we verify the convergence of our

method and show that we achieve dramatic speedup over the original DH-MBIR

approach of [44]. More specifically, we show that on a single CPU core our method

accelerates the reflectance and phase-error updates by a factor of 15.1x and 37.6x

respectively as compared to the original approach, and consequently accelerates each

DH-MBIR iteration by a fctor of 23.7x.
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Fig. 3.1. Illustration of a Digital Holography system for remote-sensing.
A laser source illuminates the target and a lens focuses the reflected light
onto the FPA. The detected field is optically heterodyned with a strong
reference field to form a hologram. However, atmospheric turbulence be-
tween the target and lens can corrupt the pupil-plane field by inducing
phase-errors. These phase-errors must be removed prior to recovering the
target image from the hologram.
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3.2 Stastical Framework for DH-MBIR

In this section, we briefly describe the forward model of the DH system and

summarize the MBIR reconstruction approach developed by Pellizari et al. in [44].

3.2.1 DH Forward Model

Following from Figure 3.1, the detected pupil-plane field y ∈ Cn is given by

y = D(a)D(ejφ)Fg + w (3.1)

where g ∈ Cn represents the object’s reflection coefficient, F ∈ Cn×n represents a

2-D Discrete Spatial Fourier transform (DSFT) that computes the Fresnel diffraction

integral 4, a ∈ {0, 1}n denotes the aperture mask, φ ∈ (−π, π)n represents the phase-

errors in the pupil-plane caused by turbulence, and w ∼ N (0, σ2
wI) represents white

noise. So, we can specify (3.1) using the following conditional distribution

p(y|g, φ) =
1

(2πσ2
w)n/2

exp

{
− 1

2σ2
w

‖y − Aφg‖2

}
, (3.2)

where Aφ = D(a)D(ejφ)F is the system matrix 5.

Since we specify the speckle-free reflectance r as E[|g|2], we can model g as

N (0,D(r)) shown below

p(g|r) =
1

(πn|D(r)|)1/2
exp

{
−gHD(r)−1g

}
. (3.3)

3.2.2 MAP Estimation for DH Reconstruction

In [44], Pellizari et al. formulate the joint estimation of reflectance r ∈ R+n and

phase-errors φ as a Maximum-a-posteriori (MAP) estimation problem given by

(r̂, φ̂) = argmax
r,φ

log p(y|r, φ) + log p(r) + log p(φ), (3.4)

4we neglect the quadratic phase terms in the Fresnel integral
5As in [44], we approximate D(a) = I, so that Aφ is orthogonal
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where p(y|r, φ) denotes the likelihood model, and, p(r) and p(φ) denote the prior

models for r and φ respectively. However, computing the likelihood model in (3.4)

is not tractable without the knowledge of missing information, g. To overcome this

issue, Pellizari et al. in [44] use the Expectation-Maximization (EM) algorithm to

reformulate the MAP estimate of (3.4) as the following iterative update

(r(k), φ(k)) = argmax
r,φ

Q(r, φ; r(k−1), φ(k−1)), (3.5)

where the function Q is specified by

Q(r, φ; r′, φ′) = Eg [log p(y, g|r, φ)|y, r′, φ′] + log p(r) + log p(φ). (3.6)

While the key ideas for deriving the Q function are briefly provided in the Appendix,

the comprehensive derivation is available in [44].

Algorithm 5 shows the pseudo-code for implementing the EM algorithm specified

by (3.5) and (3.6). Each of the M-steps represented by lines 11 and 14 is implemented

using only one pass of Iterative Coordinate Descent (ICD) optimization [17], and, the

prior models for phase and reflectance are specified by Markov Random Field (MRF)

priors.

3.3 Accelerating MBIR

In this section, we propose a method that drastically speeds up the M-steps in

Algorithm 5 that dominate the computation by using surrogate optimization and

SIMD parallelization.

3.3.1 Fast Method for Reflectance Update

Each greedy pixel-wise r update is given by:

rs ← argmin
u>0

{
|µs|2+Cs

u
+ log u+

∑
j∈∂s

bs,jρ(u− rj)

}
, (3.7)

where ρ(.) is a Gibbs-prior potential function, more specifically a Q-Generalized Gaus-

sian Markov random field prior (Q-GGMRF) [35] in this case.
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Algorithm 5 EM Algorithm for DH-MBIR

1: // Initial values: (r′, φ′) ∈ (R+n, (−π, π)n)

2: // Assumption: D(a) = I, so AHφ Aφ = nI

3:

4: while not converged do

5: // E-step: Find Posterior mean µ and covariance C

6: C =
(

1
σ2
w
AHφ′Aφ +D(r′)−1

)−1

= D
(

r′σ2
w

r′n+σ2
w

)
7: µ = CAHφ′y

8: z = A0µ

9:

10: // M-step: Reflectance update

11: r ← argmin
r∈R+n

{
n∑
s=1

(
|µs|2+Cs,s

rs
+ log rs

)
− log p(r)

}
12:

13: // M-step: Phase-error update

14: φ← argminφ

{
− 2
σ2
w

Real
(
yHD(ejφ)z

)
− log p(φ)

}
15: (r′, φ′)← (r, φ)

16: end while

In [45, 46, 50], Pellizari et al. compute the above update almost exactly using

a method based on derivative-rooting. However, this approach requires finding the

root(s) of a cubic polynomial which is computationally expensive.

In order to speed-up the r update, we replace the objective function in (3.7) with a

suitable surrogate that is easy to minimize. However, designing a surrogate typically

requires the objective function to be convex. So first, we substitute the + log(·)

function in (3.7) with its 1st order approximation, which yields a convex optimization

of the form

r̂s ← argmin
u>0

{
|µs|2+Cs

u
+
u

rs
+
∑
j∈∂s

bs,jρ(u− rj)

}
. (3.8)
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We then design a quadratic surrogate function for (3.8) based on the Linear Inter-

polation of Derivative (LID) method [51]. We define the function l(·) : R+ → R

as

l(u) =
|µs|2+Cs

u
+
u

rs
. (3.9)

The first and second derivatives of l(·) are given by

l′(u) = −(|µs|2+Cs)

u2
+

1

rs
, l′′(u) = 2

(|µs|2+Cs)

u3
.

In accordance with the LID method, we specify a quadratic surrogate function that

matches the derivative of l(·) defined by (3.9) at 2 different points, rs and αs, where

rs is the current value of the pixel being updated and αs is another suitably chosen

value in the search direction. In this case, our reflectance update is given by

r̂s ← argmin
u∈S

{
θ2

2
u2 + θ1u+

∑
j∈∂s

bs,jρ(u− rj)

}
, (3.10)

where S denotes the search interval (min(rs, αs),max(rs, αs)), and, θ2, θ1 are given

by

θ2 =
l′(rs)− l′(αs)

rs − αs
= (|µs|2+Cs)

(
rs + αs
r2
sα

2
s

)
θ1 = l′(rs)− θ2rs = −(|µs|2+Cs)

r2
s

+
1

rs
− θ2rs.

We select αs that bounds our search interval as shown below

αs =


rs

1 +M
if l′(rs) +

∑
j∈∂s

bs,jρ
′(rs − rj) > 0

rs(1 +M) e.w. ,

where M > 0. In practice, we suitably vary M such that it decays slowly with the

number of iterations.

We can replace the symmetric Gibbs-prior model in (3.10) with a quadratic sur-

rogate function of its own. Consequently, (3.10) further simplifies to

r̂s ← argmin
u∈S

{
θ2

2
u2 + θ1u+

∑
j∈∂s

bs,j
τj
2

(u− rj)2

}
, (3.11)
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where τj is given by

τj =


ρ′(rs − rj)
(rs − rj)

rs 6= rj

ρ′′(0) rs = rj.

So, the surrogate-based reflectance update is given by

r̂s ← clip

{
−

(
θ1 −

∑
j∈∂s bs,jτjrj

θ2 +
∑

j∈∂s bs,jτj

)
,S

}
, (3.12)

where the clip{x, (a, b)} here denotes x when x ∈ (a, b), a when x < a, and b otherwise.

3.3.2 Fast Method for Phase-error Update

The exact pixel-wise phase-error update is given by

φs ← argmin
u∈[−π,π)

{
−ms cos(u− ϕs) +

∑
j∈∂s

bs,jρ(u− φj)

}
, (3.13)

where ms = 2ysz
∗
s/σ

2
w and ρ(·) is the phase-wrapped quadratic error with the form

ρ(∆) = ( [(∆ + π)mod 2π]− π)2

= min
n

(∆ + 2πn)2 . (3.14)

In [44, 45] Pellizari et al. estimate the phase-errors on a lower-resolution grid

and compute the above ICD update using the Golden-section search (GSS) method.

However, the GSS method is computationally expensive since it involves nested eval-

uations of the local cost function.

We devise a faster update strategy for the ICD update. We first approximate the

cos(·) function in (3.13) with its Taylor’s series expansion of cos(∆) = 1 − 1
2
∆2 to

yield approximate ICD update of

φs ← argmin
u∈[−π,π)

{
1

2
ms(u− ϕs)2 +

∑
j∈∂s

bs,jρ(u− φj)

}
. (3.15)
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Substituting in the form of ρ(·) from (3.14), yields the update

(3.16)φs ← argmin
u∈[−π,π)

{
1

2
ms(u− ϕs)2 +

∑
j∈∂s

bs,j min
nj

(u− φj + 2πnj)
2

}
.

While exact solution of equation (3.16) is difficult, we can get a local minimum using

alternating minimization. One iteration of alternating minimization is given by

nj ← argmin
m∈Z

(φs − φj + 2πm)2, j ∈ ∂s (3.17)

φs ← argmin
u∈[−π,π)

{
ms

2
(u− ϕs)2 +

∑
j∈∂s

bs,j(u− φj + 2πnj)
2

}
. (3.18)

Figure 3.2 illustrates how the above method approximates the wrapped-phase penalty

function in (3.15). Note that since φj, φs ∈ [−π, π), we can show that (3.17) specifies

nj ∈ {−1, 0, 1}, and further, φj − 2πnj ∈ (−2π, 2π). Consequently, equation (3.18)

can be simplified further as

φs ← φ̃s + 2πks (3.19)

where φ̃s is defined as

φ̃s =
msϕs + 2

∑
j∈∂s bs,j(φj − 2πnj)

ms + 2
∑

j∈∂s bs,j
,

and ks is defined as

ks =


1 φ̃s < −π

0 φ̃s ∈ [−π, π)

−1 φ̃s > π.

3.3.3 SIMD Parallelization of ICD updates

ICD optimization is a serial pixel-wise greedy minimization method. However,

from (3.7) and (3.13) we notice that the ICD updates for those pixels that do not

form pair-wise MRF cliques with one another are independent and can be computed

simultaneously. For example, Fig 3.3(a) shows that in the case of a MRF with sym-

metric 8-point neighborhood, we can specify a tiled pixel-grid of 4 different colors
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Fig. 3.2. Approximation of the wrapped-phase penalty function ρ(u −
φj), j ∈ ∂s, for the s-th pixel ICD update. Sub-figures (a) and (b) show
how the approximation varies with different values of (φj, φs).

where ICD updates for pixels of the same color are fully disassociated. Furthermore,

the simplified ICD updates represented by (3.12) and (3.19) can be fully implemented

by basic addition and multiply operations 6. So, we can utilize SIMD units that per-

form fast vector addition and multiplication on a single CPU core to update multiple

disassociated pixels at a time. Figure 3.3(b) illustrates our idea of ICD parallelization

using SIMD processing. Importantly, note that the required data must be packed into

contiguous arrays prior to SIMD computation.

However, our above approach has one key limitation. Accessing the data in an

interleaved manner adds significant overhead that reduces the benefit of the SIMD

parallelism. To overcome this issue, we provide an alternate method that negates the

need to sample data in a tiled fashion.

We alternatively propose a simple row-wise update strategy which extends the

SIMD vector processing method of Figure 3.3(b) towards simultaneously computing

the ICD updates for pixels in contiguous blocks within the same row. In order to

6We choose Q-GGMRF parameters [35] in (3.7) as (q, p) = (2, 1) or (2, 2) so that its surrogate
coefficients τj in (3.11) can be computed easily
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Fig. 3.3. SIMD Parallelization of ICD updates: (a) A tiled grid where pix-
els of the same color have independent ICD updates (b) SIMD processing
units of a CPU can be used to update multiple pixels of the same color
at a time using fast vector add and multiply operations.

explain why this method works in practice, let us assume that within the symmetric

8-point MRF distribution depicted in Figure 3.3(a), the contribution of the horizontal

left neighbor is small compared to the other 7 neighbors put together. In this case, we

can show that our row-wise SIMD method approximates serial pixel-wise minimization

in raster order.
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So, our row-wise update strategy provides dual benefits of fast memory access

and SIMD parallelism. Our experiments demonstrate that this method significantly

speeds-up ICD computation without affecting convergence.

3.4 Experimental Results

3.4.1 Method

In this section, we compare the computational performance, convergence and

reconstruction quality of our fast DH-MBIR method against the exact DH-MBIR

method of [44] using simulated datasets. We implement both MBIR methods on an

Intel Xeon CPU (E5-2660 v3) in ANSI C with single-threading. The source code was

compiled with the Intel icc compiler (ver. 17.0.1) which automatically converts the

tight vectorizable loops into AVX2 instructions for SIMD processing. We implement

all Fourier-based operations in MBIR using FFT routines from the Intel Math Kernel

Library (MKL).

For our experiments, we simulate 6 different datasets, each based on the same

object reflectance shown in Figure 3.4 but a different phase-error screen and reflection-

coefficient.

We simulate the phase-errors in the pupil-plane based on a Power Spectral density

(PSD) modeling technique [52,53]. For turbulent conditions, the 2-D spatial distribu-

tion of the phase-errors can be modeled as a Kolmogorov PSD in the Fourier domain

(see [53], equation (1)). So, we generate the phase-errors by first scaling white noise in

the Fourier domain with a Kolmogorov PSD and then applying an inverse FFT [44,53].

It is worth noting that the PSD incorporates a key parameter known as the Fried

coherence length, r0, that determines the spatial correlation of the phase-errors. We

specifically parameterize half of our simulated phase-error screens by Da/r0 = 10,

and the other half by Da/r0 = 20, where Da denotes aperture diameter. The top row

of Figure 3.6(c) and (d) illustrates the simulated phase-screens.
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We generate the reflection-coefficient based on the given object reflectance by sam-

pling from the i.i.d complex Gaussian distribution specified by (3.3). Subsequently,

we simulate the detected field in the pupil-plane based on the forward model specified

by (3.1).

For most experiments, the grid-size for both the pupil-plane detection and the

reconstruction is 256× 256. For CPU timing experiments alone we use a grid size of

128× 128.

We quantify the quality of our phase-error estimate based on the Strehl ratio

metric specified by

Strehl ratio =

∫∫
pupil

a(x, y) exp
{
j(φ(x, y)− φ̂(x, y))

}
dxdy∫∫

pupil
a(x, y) dxdy

,

where a represents the aperture mask and φ− φ̂ represents the estimation error.
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Fig. 3.4. Example depicting object reflectance, r and simulated reflection
coefficient, g. Unlike |g|2 (right), the reflectance r (left) is speckle-free and
smooth.

3.4.2 Results

Table 3.1 shows the per-iteration CPU time for the exact and fast DH-MBIR meth-

ods. Notice that even without utilizing SIMD processing, the surrogate ICD updates
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Table 3.1.
CPU Time per EM iteration

DH-MBIR
Method E-step Reflectance update1

Phase-error
update 2 Full Iteration 3

(q, p) = (2, 1) (q, p) = (2, 2)

Exact 0.13 ms 1.25 ms 0.80 ms 9.02 ms 9.95 ms

Fast

(No SIMD) 0.13 ms 0.53 ms 0.33 ms 0.38 ms 0.84 ms

Fast

(with SIMD) 0.13 ms 0.10 ms 0.05 ms 0.24 ms 0.42 ms

1 Prior model is a Q-GGMRF with 4-point neighborhood and power-parameters specified

by (q, p)

2 Prior model is a wrapped-phase GMRF with 8-point neighborhood

3 full iteration time calculated for case (q, p) = (2, 2)

Table 3.2.
Speedup of Fast DH-MBIR over Exact DH-MBIR

Reflectance update Phase-error update Full iteration

(q, p) = (2, 1) (q, p) = (2, 2)

12.50 15.09 37.58 23.7

are significantly faster than the exact ICD updates. In particular, we observe more

than a 20x reduction in time for the phase-error estimation that dominates the exact

DH-MBIR method. Furthermore, notice that SIMD parallelization provides addi-

tional acceleration of the surrogate ICD updates. Specifically, this speedup resulting
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Fig. 3.5. Effect of fast updates for estimating reflectance, r, and phase-
error, φ, on the convergence rate of DH-MBIR. The number of iterations
for DH-MBIR convergence is unchanged when we use fast updates for
φ estimation instead of exact updates, but increases when we use fast
updates for r estimation in place of exact updates.

from SIMD is more prominent in the case of reflectance estimation as compared to

phase-error estimation 7.

Table 3.2 shows the speedup of our fast DH-MBIR method over the exact DH-

MBIR method based on the CPU time in Table 3.1. The combined effect of surrogate

optimization and SIMD parallelization provides a speedup of 15.1x and 37.6x for the

reflectance and phase-error updates respectively, and consequently acclerates each

DH-MBIR iteration by a factor of 23.7x.

7the timing includes complex-arithemtic computation of parameters ms and φs in (3.13) which is
intensive and not SIMD-compatible. Further using SIMD processing to compute (3.17) does not
provide any significant benefit.
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Fig. 3.6. Comparison of reconstruction quality for 6 different simulated
datasets. For each dataset, the reflectance estimate without any phase
recovery in shown the top row of sub-figures (a) and (b) respectively, and
the corresponding phase-errors in the pupil-plane are shown in the top row
of sub-figures (c) and (d). In all sub-figures, the middle row shows recon-
struction using the exact MBIR approach while the bottom rows shows
reconstruction using the fast MBIR approach. For most datasets, the re-
constructions using the fast MBIR method are almost indistinguishable
from the exact MBIR method.

Fig 3.5 shows the effect of fast updates on the convergence rate of DH-MBIR. No-

tice that replacing the exact updates for phase-error estimation with the fast updates
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does not significantly alter the convergence rate. However, when we use fast updates

for reflectance estimation in place of the exact updates, we require more iterations to

converge.

Fig 3.6 compares the reconstruction quality of the fast and exact DH-MBIR ap-

proaches. We can see that for most datasets, the reflectance and phase-error estimates

are almost indistinguishable. For the third dataset alone in Fig 3.6(c), the phase-error

estimate from the fast DH-MBIR approach is more accurate as compared to the exact

DH-MBIR method.

3.5 Conclusion

In this chapter of the thesis, we proposed a method that drastically reduces the

computational cost DH-MBIR for real-time coherent imaging through turbulence.

DH-MBIR jointly estimates the speckle-free object reflectance and atmospheric phase-

errors from holographic sensor measurements. In order to speedup DH-MBIR, we first

designed a surrogate function for the reflectance updates and a simple alternating

minimzation scheme for the wrapped phase-error updates. Further, we introduced

a scheme that accelerates computation of the above surrogate updates using SIMD

vector processing instructions. We demonstrated the effectiveness of our fast DH-

MBIR method for real-time reconstruction with simulated datasets.
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A. MACE FORMULATION AS A FIXED-POINT

PROBLEM

We show that the MACE equations of (2.10) can be formulated as a fixed-point

problem represented by (2.11). For a more detailed explanation see Corollary 3 of [23].

Proof A simple calculation shows that for any v ∈ RnN , operator G defined in (2.9)

follows

GGv = Gv, and so (2G− I)(2G− I)v = v.

Thus 2G− I is self-inverse. We define w∗ as

w∗ = (2G− I)v∗,

in which case v∗ = (2G− I)w∗ due to the above self-inverse property. Additionally,

(2.10) gives

(2F− I)v∗ = (2G− I)v∗.

Note that the RHS of the above is merely w∗. So, plugging v∗ in terms of w∗ on the

LHS, we get

(2F− I)(2G− I)w∗ = w∗.

Hence w∗ fixed-point of a specific map T : RnN → RnN , where T = (2F− I)(2G− I).

Finding w∗ gives us v∗, since v∗ = (2G− I)w∗.
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B. CONVERGENCE OF PARTIAL-UPDATE MACE

APPROACH

Lemma B.0.1 Let Fi : Rn → Rn, denote the proximal map of a strictly convex

and continuously differentiable function fi : Rn → R. Let εs ∈ Rn be defined as

εs = [0, · · · , 1, · · · , 0]t where entry 1 is at s-th index. Let F̃i(v;x) denote the partial-

update for Fi(v) from an initial state x as shown in Algorithm 3. Then Fi(v) = x if

and only if F̃i(v;x) = x.

Proof We first assume F̃i(v;x) = x. Since fi is strictly convex and continuously

differentiable, line 4 of Algorithm 3 can be re-written as

αs =

{
α

∣∣∣∣ εts [∇fi(z + αεs) +
1

σ2
(z + αεs − v)

]
= 0

}
. (B.1)

Since F̃i(v;x) = x, from line 5 of Algorithm 3 and the fact that εs, s = 1, · · · , n are

independent, it follows that αs = 0, s = 1, · · · , n. Applying αs = 0 repeatedly to lines

4-5 of Algorithm 3 and using (B.1), we get

∂fi(x)

∂xs
+

1

σ2
(xs − vs) = 0, s = 1, · · · , n.

Stacking the above result vertically, we get

∇fi(x) +
1

σ2
(x− v) = 0.

Since fi is strictly convex and continuously differentiable the above gives

x = argmin
z

{
fi(z) +

‖z − v‖2

2σ2

}
and so, x = Fi(v). Therefore, F̃i(v;x) = x gives Fi(v) = x.

The converse can be proved by reversing the above steps.
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Proof Proof of Theorem 2.2.1

Assume Partial-update MACE algorithm has a fixed-point (w∗,X∗). Then from

(2.13) we get,

X∗ = F̃(v∗; X∗, σ) and (B.2)

w∗ = 2X∗ − v∗, (B.3)

where v∗ = (2G− I)w∗. So, (B.3) can be re-written as

w∗ = 2X∗ − (2G− I)w∗, which gives

X∗ = Gw∗.

So, X∗i = w̄∗ for i = 1, · · · , N , and consequently, (B.2) can be expressed as

w̄∗ = F̃i(v
∗
i ; w̄∗, σ), i = 1, ...N.

Applying Lemma B.0.1 to the above we get

w̄∗ = Fi(v
∗
i ; σ), i = 1, ..., N.

By stacking the above result vertically, we get

Gw∗ = F(v∗).

Based on definition of v∗, the above gives

Gw∗ = F(2G− I)w∗.

Multiplying both LHS and RHS by 2 and further subtracting w∗ from both sides, we

get

(2F− I)(2G− I)w∗ = w∗.

Therefore, any fixed-point of the Partial-update MACE algorithm, (w∗,X∗), is a

solution to the exact MACE approach specified by (2.11).
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Proof Proof of Theorem 2.2.2 (convergence of the Partial-update MACE

algorithm)

We can express the function fi defined in Theorem 2.2.2 more compactly. For this

purpose, let subset Ji be represented as Ji = {k1, k2, · · · kM}. Then, fi can be com-

pactly written as

fi(x) =
1

2
‖ỹi − Ãix‖2

Λ̃i
+
β

N
xTBx. (B.4)

where ỹi, Ãi and Λ̃i are defined as

ỹi =


yk1
...

ykM

 , Ãi =


Ak1

...

AkM

 and Λ̃i =


Λk1

. . .

ΛkM

 .
From (B.4), we can express Fi, the proximal map of fi, as

Fi(v) = argmin
z∈Rn

{
fi(z) +

‖z − v‖2

2σ2

}
= argmin

z∈Rn

{
1

2
zt
(
Hi +

I

σ2

)
z − zt

(
bi +

v

σ2

)}
, (B.5)

where Hi ∈ Rn×n and bi ∈ Rn are defined as

Hi = ÃtiΛ̃iÃi + (β/N)B and bi = Ãtiỹi.

We can obtain F̃i(v;x), the partial-update for Fi(v) defined in (B.5), by using the

convergence analysis of [38, 54] for ICD optimization. This gives

F̃i(v;x) = −(Li +Di + σ−2I)−1(Ltix− bi − σ−2v), (B.6)

where matrices Li, Di ∈ Rn×n, are defined as

Li = Lower triangular sub-matrix of Hi (excluding diag.)

Di = Diagonal sub-matrix of Hi.

Further we define L̃i ∈ Rn×n by L̃i = Li +Di. We can re-write equation (B.6) as

F̃i(v;x) = −(L̃i + σ−2I)−1(Ltix− bi − σ−2v)

= −σ2(I + σ2L̃i)
−1(Ltix− bi − σ−2v) (B.7)
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Let ε = σ2. For sufficiently small ε2, we can approximate (I + εL̃i)
−1 in (B.7) as

(I + εL̃i)
−1 = I − εL̃i +O(ε2).

Plugging the above approximation into equation (B.7), simplifying, and dropping the

O(ε2) term, we get

F̃i(v;x) = (I − εL̃i)v − εLtix+ εbi (B.8)

and hence

2F̃i(v;x)− v = (I − 2εL̃i)v − 2εLtix+ 2εbi. (B.9)

Define block matrices L ∈ RNn×Nn and L̃ ∈ RNn×Nn with Li and L̃i along the

diagonal, respectively.

Using (B.8), (B.9), L, and L̃ in (2.13), we can express the Partial-update MACE

update up to terms involving O(ε2) asw(k+1)

X(k+1)

 =

ρ 0

0 1

I− 2εL̃ −2εLt

I− εL̃ −εLt

v(k)

X(k)

+

1− ρ 0

0 0


w(k)

X(k)

+ c

=

ρ 0

0 1

I− 2εL̃ −2εLt

I− εL̃ −εLt

2G− I 0

0 I

w(k)

X(k)

+

1− ρ 0

0 0

w(k)

X(k)

+ c

=

ρ(I− 2εL̃)(2G− I) + (1− ρ)I −2ρεLt

(I− εL̃)(2G− I) −εLt

w(k)

X(k)

+ c, (B.10)

where c ∈ R2nN is a constant term based on variables ρ and bi. Define Mε ∈ R2nN×2nN

and z ∈ R2nN as follows

Mε =

ρ(I− 2εL̃)(2G− I) + (1− ρ)I −2ρεLt

(I− εL̃)(2G− I) −εLt

 (B.11)

z =

w

X

 (B.12)

Then we can re-write (B.10) as follows

z(k+1) = Mεz
(k) + c (B.13)
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For z(k) to converge in the limit k → ∞, the absolute value of any eigenvalue of

Mε must be in the range (0, 1). We first determine the eigenvalues of M0, where

M0 = limitε→0Mε, and then apply a 1st order approximation in ε to obtain the

eigenvalues of Mε. We can express M0 as

M0 =

2ρG + (1− 2ρ)I 0

2G− I 0


Let λ0 ∈ R and z0 = [wt

0 X
t
0]t ∈ R2nN represent eigenvalue and eigenvector of M0.

Then M0z0 = λ0z0, and so

Gw0 =
1

2ρ
(λ0 + 2ρ− 1)w0 (B.14)

(2G− I)w0 = λ0X0 (B.15)

Since G is an orthogonal projection onto a subspace, all of its eigenvalues are 0 or

1. This with (B.14) implies that λ0 + 2ρ− 1 is 0 or 2ρ. In the first case, λ0 = 1− 2ρ,

which lies in the open interval (−1, 1) for ρ in (0, 1). In the second case, λ0 = 1.

Applying this in (B.14) and (B.15), we get X0 = w0 = Gw0, so that each eigenvector

for λ0 = 1 has X0 = w0 with all subvectors identical.

Let λε ∈ R and zε = [wt
ε X

t
ε]
t ∈ RnN represent eigenvalue and eigenvector of Mε

respectively. Let a be the derivative of λε with respect to ε, and let u1 = ∇εwε and

u2 = ∇εXε. Applying a 1st order approximation in ε, λε and zε are given by

λε = λ0 + a(ε− 0) = 1 + aε

zε =

w0 + (ε− 0)u1

X0 + (ε− 0)u2

 =

w0 + εu1

w0 + εu2

 .
If we can prove that a is negative when ε is infinitely small positive, then consequently

|λε|< 1, and so, the system of equations specified by equation (B.10) converges (note

that the case of λ0 = 1−2ρ gives |λε|< 1 by continuity for small ε). Since Mεzε = λεzε,

the first component of equation (B.11) gives[
ρ(I− 2εL̃)(2G− I) + (1− ρ)I

]
(w0 + εu1)

− 2ρεLt(w0 + εu2) = (1 + aε)(w0 + εu1).
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Neglecting terms O(ε2), expanding, and using (2G− I)w0 = w0, the above simplifies

for ε > 0 to

2ρ(G− I)u1 =
[
2ρ(L̃ + Lt) + aI

]
w0.

Applying G to both sides, using G(G− I) = G2 −G = 0 and Gw0 = w0, we get

0 = 2ρG(L̃ + Lt)w0 + aw0

and so,

G(L̃ + Lt)w0 = − a

2ρ
w0. (B.16)

Since L̃i + Lti, i = 1, ..., N is positive definite for each i, so is H = L̃ + Lt. Further,

G ∈ RnN×nN is an orthogonal projection matrix with n-dimensional range. Hence G

can be expressed as G = PP t, where P ∈ RnN×n is orthogonal basis of the range of

G (i.e P tP = I). Since w0 = Gw0, equation (B.16) can be written as

PP tHPP tw0 = − a

2ρ
PP tw0

Multiply both LHS and RHS by P t, and define w̃0 = P tw0. Since P tP = I, we get

P tHP w̃0 = − a

2ρ
w̃0

This implies that −a/(2ρ) is an eigenvalue of P tHP . Since ρ > 0 and P tHP is

positive definite, we have a < 0, and consequently, |λε|< 1.

Since all eigenvalues of Mε have absolute value less than 1, the system of equations

specified by (2.13) converges to a point z∗ = (w∗,X∗) in the limit k → ∞. From

Theorem 2.2.1, w∗ is a solution to the exact MACE approach specified by (2.11).
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C. DERIVING THE MACE-PNP APPROACH

Theorem C.0.1 Let Fi, i = 1, · · · , N , be the proximal map of a closed, convex, dif-

ferentiable function, fi, let
∑N

i=1 fi = f , let F be the proximal map for f , and let H be

any denoiser. Then, the MACE framework specified by equilibirum conditions (2.16)

– (2.18) is exactly equivalent to the standard PnP framework specified by (2.14) and

(2.15).

Proof Assume (2.16) – (2.18) hold. Then, as per (2.16),

x∗ = Fi(x
∗ + u∗i ;σ), i = 1, ..., N.

Since fi is convex, differentiable, and Fi is defined as

Fi(x;σ) = argmin
v∈Rn

{
fi(v) +

‖v − x‖2

2σ2

}
,

it follows from the above stated equilibrium condition that

∇fi(x∗) +
x∗ − (x∗ + u∗i )

σ2
= 0, or,

∇fi(x∗)−
u∗i
σ2

= 0. (C.1)

Summing the above equation over i = 1, ..., N we get

N∑
i=1

∇fi(x∗)−
N ū∗

σ2
= 0,

where ū =
∑N

i=1 ui/N . Since f =
∑N

i=1 fi, the above can be re-written as

∇f(x∗) +
x∗ − (x∗ +N ū∗)

σ2
= 0.

Since f is convex, the above equation implies that

x∗ = argmin
v∈Rn

{
f(v) +

‖v − (x∗ +N ū∗)‖2

2σ2

}
, and so,
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x∗ = F (x∗ +N ū∗;σ).

From (2.17) and (2.18), we additionally get x∗ = H(x∗ − N ū∗). Therefore, we get

(2.14) and (2.15), where α∗ = −N ū∗.

For the converse, assume (2.14) and (2.15) hold. Then, as per (2.14), F (x∗ −

α∗;σ) = x∗. So, we get

∇f(x∗) +
x∗ − (x∗ − α∗)

σ2
= 0.

Since f =
∑N

i=1 fi, we can re-write the above as

α∗ = −
N∑
i=1

σ2∇fi(x∗).

We define u∗i as u∗i = σ2∇fi(x∗). So, from the above equation, we get α∗+
∑N

i=1 u
∗
i = 0,

which gives (2.18). Further from the defintion of u∗i we get

∇fi(x∗) +
x∗ − (x∗ + u∗i )

σ2
= 0, and so,

Fi(x
∗ + u∗i ;σ) = x∗,

which gives (2.16). Also, as per (2.15), H(x∗+α∗) = x∗, which gives (2.17). Therefore,

we obtain (2.16) – (2.18), where u∗i = σ2∇fi(x∗), i = 1, · · · , N .

Remark: As in [23], the theorem statement and proof can be modified to allow

for nondifferentiable, but still convex functions, fi.

Proof Proof of Theorem 2.3.1

Assume (2.16) – (2.18) hold. We define t∗ as t∗ = Nu∗. So, (2.18) gives α∗ +

(
∑N

i=1 t
∗
i )/N = 0, or, α∗ = −t̄∗. Consequently, we can express (2.17) as

H(x∗ − t̄∗) = x∗. (C.2)
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Further, (2.16) specifies Fi(x
∗+u∗i ;σ) = x∗. We showed earlier in (C.1) that this gives

∇fi(x)− ui/σ2 = 0. So, we get

∇fi(x∗)−
Nu∗i
Nσ2

= 0, or,

∇fi(x∗) +
x∗ − (x∗ + t∗i )

(
√
Nσ)2

= 0, or,

Fi(x
∗ + t∗i ;

√
Nσ) = x∗, i = 1, ..., N. (C.3)

Define w∗ as w∗ = x̂∗ − t∗, where x̂∗ is N vertical copies of x∗. We write (C.2) as

GHw∗ = x̂∗. So, based on definition of w∗, we have t∗ = x̂∗ −w∗ = GHw∗ −w∗ =

(GH − I)w∗. We can write (C.3) as F(x̂∗ + t∗) = x̂∗ according to (2.19) , and so, by

plugging in x̂∗ and t∗ in terms of w∗ we get

F(GHw∗ + (GH − I)w∗) = GHw∗, or,

F(2GH − I)w∗ = GHw∗.

Multiplying by 2 and adding w∗ on both sides we get

(2F− I)(2GH − I)w∗ = w∗.

Therefore, w∗ is a fixed-point of TH = (2F− I)(2GH − I), and, GH(w∗) = x̂∗, where

w∗ is given by w∗ = x̂∗ −Nu∗.

For the converse, assume (2F− I)(2GH − I)w∗ = w∗ and GHw∗ = x̂∗ hold. The

former gives F(2GH − I)w∗ = GHw∗. Applying the latter, we get F(2x̂∗−w∗) = x̂∗.

Define t∗ as t∗ = x̂∗ −w∗. So, we have F(x̂∗ + t∗) = x̂∗, or,

Fi(x
∗ + t∗i ;

√
Nσ) = x∗, i = 1, · · · , N.

A calculation with the definition of Fi shows that the above gives

Fi(x
∗ + t∗i /N ;σ) = x∗, i = 1, · · · , N.

Define u∗ = t∗/N . So, from the above, Fi(x
∗ + u∗i ;σ) = x∗, which gives (2.16).

Since GHw∗ = x̂∗, we have x∗ = Hw̄∗. Combining this with w∗ = x̂∗ − t∗, we
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get x∗ = H(x∗ − t̄∗). Define α∗ = −t̄∗. So we have, x∗ = H(x∗ + α∗), which gives

(2.17). Also from definition of α∗ and u∗, we get α∗+
∑N

i=1 u
∗
i = 0, which gives (2.18).

Therefore, we obtain (2.16) to (2.18), where u∗ is given by Nu∗ = x̂∗ −w∗.

Proof Proof of Lemma 2.3.2

First we show that 2GH − I is non-expansive when H is firmly non-expansive. This

proof also applies to the case where H is a proximal map, since proximal maps are

firmly non-expansive [39]. Consider any x,y ∈ RnN . Then

‖(2GH − I)x− (2GH − I)y‖2

= 4‖GHx−GHy‖2+‖x− y‖2−4〈GHx−GHy,x− y〉 (C.4)

By writing GH in terms of H, we simplify the last term as

〈GHx−GHy,x− y〉

=
N∑
i=1

〈Hx̄−Hȳ, xi − yi〉

=
N∑
i=1

〈Hx̄−Hȳ, x̄− ȳ + (xi − x̄)− (yi − ȳ)〉

= N〈Hx̄−Hȳ, x̄− ȳ〉.

Since H is firmly non-expansive, [55, Prop. 4.2] implies that 〈Hx̄−Hȳ, x̄− ȳ〉 ≥

‖Hx̄−Hȳ‖2. This gives

〈GHx−GHy,x− y〉 ≥ N‖Hx̄−Hȳ‖2= ‖GHx−GHy‖2.

Plugging the above into the first equation of this proof, we get

‖(2GH − I)x− (2GH − I)y‖2≤ ‖x− y‖2.

Therefore, (2GH − I) is a non-expansive map. Also, since Fi, i = 1, ..., N is the

proximal map of a convex function, Fi is a resolvent operator, so 2Fi− I is a reflected

resolvent operator, hence non-expansive. This means 2F − I is non-expansive, so

(2F− I)(2GH − I) is non-expansive, since it is the composition of two non-expansive

maps.
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D. EM SURROGATE FUNCTION

To compute the Q-function in (3.6), we first need to compute log p(y, g|r, φ) as well

as the posterior distribution p(g|y, r′, φ′). The former is specified by

log p(y, g|r, φ) = log p(y|g, φ) + log p(g|r)

= − 1

2σ2
w

‖y − Aφg‖2−gHD(r)−1g − log|D(r)|+const. (D.1)

Similarly, we can obtain the posterior distribution as

p(g|y, r′, φ′) = p(y, g|r′, φ′)/p(y|r′, φ′)

=
1

z
exp

{
− 1

2σ2
w

‖y − Aφ′g‖2−gHD(r′)−1g

}
where z is a normalizing constant. The above can be more compactly expressed as a

complex Gaussian distribution

p(g|y, r′, φ′) =
1

z
exp{−(g − µ)HC−1(g − µ)},

where mean µ and covariance matrix C are given by

C =

(
1

σ2
w

AHφ′Aφ′ +D(r′)−1

)−1

µ = CAHφ′g

Consequently the posterior mean and variance are given by

E[g|r′, φ′] = µ and E[ggH |r′, φ′] = µµH + C. (D.2)

From (D.1) and (D.2), we can show that

E[log(y, g|r, φ)|r′, φ′] = −
n∑
s=1

(
|µs|2+Cs,s

rs
+ log rs

)
+

2

σ2
w

Real
(
yHD(ejφ)A0µ

)
+ const.

The full derivation is available in [44], Appendix B.



VITA



80

VITA

Venkatesh Sridhar completed his Bachelors degree in Electronics & Instrumenta-

tion Engineering from the Birla Institute of Technology and Science, Pilani, India, in

2012 and his Masters degree in Electrical & Computer Engineering from Purdue Uni-

versity, West Lafaytte, USA, in 2014. He worked at Intel Corporation, Oregon, USA

as an Analog Engineer from 2014-2015. From August 2015 on-wards, he has been

pursuing his PhD degree at Purdue University, under the supervision of Prof Charles

Bouman and Prof Gregery Buzzard. His research interests include computational

imaging, tomography, radar, inverse problems, parallel computing, and hardware ac-

celeration of signal processing algorithms.


