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ABSTRACT

Despite the rapid development of adversarial attacks on machine learning models, many types of

new adversarial examples remain unknown. Undiscovered types of adversarial attacks pose a

serious concern for the safety of the models, which raises the issue about the effectiveness of

current adversarial robustness evaluation. Image semantic segmentation is a practical computer

vision task. However, segmentation networks’ robustness under adversarial attacks receives

insufficient attention. Recently, machine learning researchers started to focus on generating

adversarial examples beyond the norm-bound restriction for segmentation neural networks. In

this thesis, a simple and efficient method: AdvDRIT is proposed to synthesize unconstrained

controllable adversarial images leveraging conditional-GAN. Simple CGAN yields poor image

quality and low attack effectiveness. Instead, the DRIT (Disentangled Representation Image

Translation) structure is leveraged with a well-designed loss function, which can generate valid

adversarial images in one step. AdvDRIT is evaluated on two large image datasets: ADE20K and

Cityscapes. Experiment results show that AdvDRIT can improve the quality of adversarial

examples by decreasing the FID score down to 40% compared to state-of-the-art generative

models such as Pix2Pix, and also improve the attack success rate 38% compared to other

adversarial attack methods including PGD.

10



CHAPTER 1. INTRODUCTION

1.1 Scope

Deep Learning has become the core technique in many real-world vision systems, such as

autonomous driving (Ess, Mueller, Grabner, & Van Gool, 2009), computer-aided diagnose

systems (Milletari, Navab, & Ahmadi, 2016), and facial recognition systems. Due to the

inexplicability of the deep learning model, the decision-making process inside the model is

opaque to users. The inexplainable decision-making process raises concerns while deploying

deep learning models in security-critical systems. Recently, researchers of machine learning

security have found that deep learning and machine learning models are fragile to a class of attack

methods: Adversarial attack (Szegedy et al., 2013). Adversarial attackers can mislead the

model’s behavior without disturbing humans by carefully manipulating the model’s input.

Machine learning researchers have made strenuous efforts to address the model’s security

issue under the adversarial attacks. For example, researchers can use adversarial examples to

retrain models so that the models can not be easily fooled (Goodfellow et al., 2015). Existed

defense techniques can only solve the security vulnerabilities brought from norm-bounded

adversarial attacks such as PGD (Madry, Makelov, Schmidt, Tsipras, & Vladu, 2018).

Unrestricted attacks still remain a massive concern to current machine learning systems, which

inspires researchers to explore more effective and realistic attacks, such as using Wasserstein

distance (Wong, Schmidt, & Kolter, 2019)) and realistic image transformations (Engstrom, Tran,

Tsipras, Schmidt, & Madry, 2017).
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In particular, Song, Shu, Kushman, and Ermon (2018) proposed a conditional-GAN based

unrestricted adversarial attack for classification tasks. However, their method can only be applied

to low-resolution images because of the limited model capacity. The synthetic images have poor

quality. Besides, the generation stage is uncontrollable, which means researchers can not

guarantee that the generated example has the features they want. Meanwhile, the image

classification tasks are mainly what current studies of adversarial attacks focus on. To solve the

above problems, we pay attention to the controllable unrestricted adversarial example generation

for image semantic segmentation tasks in this thesis.

1.2 Significance

By constructing robust image segmentation models, deep learning image segmentation

techniques can be deployed into fields in a wide range, including security-critical areas.

Currently, the most effective defense method is to augment the dataset with adversarial examples.

This method is called adversarial training (Madry et al., 2018). Therefore, generating effective

and realistic adversarial examples are the prerequisites for constructing robust deep learning

models. The significance of this thesis is to discover more powerful and effective adversarial

examples for image segmentation models. These adversarial examples can be further used in

defense techniques such as adversarial training in the future.
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1.3 Research Question

This thesis questions whether the proposed AdvDRIT framework can improve the quality

of adversarial examples compared to state-of-the-art attack methods on target semantic

segmentation networks. In order to evaluate the quality of generated adversarial examples, we

leveraged several valid evaluation metrics including mIoU drop, FID score and attack success

rate. To demonstrate the improvement of AdvDRIT, we considered lots of state-of-the-art attack

methods as our baseline methods including PGD (Madry et al., 2018), DAG (Xie et al., 2017),

Houdini (Cisse, Adi, Neverova, & Keshet, 2017) and AdvGAN (C. Xiao et al., 2018), etc. For

the target segmentation network models, we also used the most advanced segmentation models

including DRN (Yu, Koltun, & Funkhouser, 2017), Upernet (T. Xiao, Liu, Zhou, Jiang, & Sun,

2018), etc. We introduced the detail of evaluation metrics, baseline models and target models

thoroughly in Chapter 4. In conclusion, this thesis questions whether the proposed AdvDRIT

framework can improve the quality (mIoU drop, FID and attack success rate) of adversarial

examples compared to existed state-of-the-art attack methods(PGD, DAG, Houdini, etc) on target

semantic segmentation networks including DRN, Upernet.

1.4 Assumptions

We make the following assumptions in this thesis:

• All images from the dataset are independent and identical distributed.

• All images follow an implicit high dimensional probability distribution.

• All images are generated by several disentangled parts.
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1.5 Limitations

The proposed attack method relies on generative models. GAN is used to synthesize

realistic adversarial images, which are insensible to humans but vulnerable to deep learning

models. The limitation of this research is caused by GAN. First of all, GAN is very difficult to

train. Training GAN is a time-consuming and complex process. Over 20 hyper-parameters in the

network need to be selected carefully. In the worst case, generated images are artificial, which is

useless for adversarial attacks. Secondly, there is a gap in image quality between synthesis images

and natural images. Humans can still find some small artifacts in the generated images, which

may cause the failure of adversarial attacks. In this thesis, we do not propose a new method to

stabilize the GAN training phase.

1.6 Delimitations

We define the delimitation in this thesis. First of all, we only pay attention to the

adversarial attacks using generative models. Secondly, we focus on the adversarial attacks on the

image semantic segmentation task. Thirdly, we only consider the adversarial attack on the

gradient based deep learning neural networks. Fourthly, we only consider the untargeted

adversarial attack in this thesis. Last but not least, we only evaluate the proposed method on two

image datasets: ADE20K (Zhou et al., 2018) and Cityscapes (Cordts et al., 2016).

1.7 Definitions

Generative Model - A generative model describes the process of generating a data distribution.

GAN - A generative adversarial network is a family of models with certain designed architecture

for simulating data distribution.

Adversarial Attack - An adversarial attack consists of subtly modifying a benign image in an

adversarial way that the changes are almost undetectable to the human eyes, meanwhile

leading to the poor performance of machine learning models.
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Semantic Segmentation - Semantic segmentation is a dense visual task for predicting the label

information of each pixel in an image.

Disentanglement Representations - Disentanglement representation (Bengio, Courville, &

Vincent, 2013) refers to a representation of data in which a change in a single underlying

factor of variation leads to a change in a certain feature factor in the learned representation.

White Box Attacks - The attacker knows the inner architectures, gradient and weights of target

models and leverages all such information to generate attack samples.

Black Box Attack - The attacker does not know the inner structure and information of target

models and leverages other knowledge to attack target models.

Targeted Attack - The attacker generates adversarial examples which are mis-classified as a

certain target class.

Untargeted Attack - The attacker generates adversarial examples which are mis-classified as any

classes except the correct class.

1.8 Summary

This chapter introduces the research question in this thesis, points out the scope, significance,

assumptions, definitions, limitations and delimitations.
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CHAPTER 2. REVIEW OF LITERATURE

Controllable unrestricted adversarial examples generation is a comprehensive problem

that including several sub-problems in the area of deep learning model security. In order to solve

this question properly, a review of the previous work is necessary. This chapter includes the

introduction of several core techniques we use to solve the research question in this thesis. Then

we present the research gap in the robustness of deep learning models.

As a class of machine/deep learning models, a generative model aims to learn a

probability distribution behind real data(image, voice, etc.): Pdata. Once researchers gain a

representative distribution, they can generate new data by sampling from Pdata. Therefore, we

firstly introduce the most popular generative model in the deep learning field: Generative

Adversarial Network(GAN) and the variants based on it, such as Conditional-GAN, Pix2Pix,

Cycle-GAN, etc. Secondly, we discuss some breakthrough work for the semantic segmentation

task. The-state-of-art attacks, defense methods for deep learning models and their flaws are

introduced in the third and fourth sections. Last but not least, the authors introduce the definition

of disentangled representation.

2.1 Generative Adversarial Nets

Definitions of 5 different Generative Adversarial Nets and their advantages and

disadvantages are introduced in this section.

2.1.1 Vanilla GAN

Generative Adversarial Networks have received tremendous success recently. A

GAN (Goodfellow et al., 2015) contains two networks: a discriminator network(D) and a

generator network(G). G takes a random noise as the input and maps it to natural images. D is

required to differentiate real images and G generated images. G and D construct a mini-max

two-player game. The loss function of vanilla GAN is as follows:
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min
G

max
D

V (G,D) = Ex∼Pdata(x)[logD(x)]+Ez∼Pz(z)[log(1−D(G(z)))] (2.1)

Figure 2.1. Images generated by GAN on MNIST handwritten digit
datasets (Goodfellow et al., 2015)

In the Eq 2.1 (Goodfellow et al., 2015), G and D are two neural networks with different

architectures. Z is a random noise sampled from a probability distribution, such as a Gaussian

Distribution. D aims to discriminate whether an input image is from natural or synthesis image

distribution. In contrast, G is required to generate data that are able to fool D. By training two

networks D and G in turns, researchers can gain a generator G, which can produce realistic

images theoretically. The Fig 2.1 (Goodfellow et al., 2015) shows the generated images by

vanilla GAN on MNIST dataset (LeCun & Cortes, 2010).
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2.1.2 Conditional-GAN

One of the drawbacks of vanilla GAN is that the image generation is random. For

instance, from the Fig 2.1, the digits in generated images are random. People can not control the

digits in images during the GAN training phase. Mirza and Osindero (2014) proposed

Conditional-GAN (CGAN) to address this issue. The main difference between CGAN and vanilla

GAN is the generator’s input z. In CGAN, the input vector of the G combines random noise and

the class label of data researchers want to generate. Therefore, researchers can generate images

with different contents by controlling label information in the generator input. The formal

definition of CGAN is as follows:

min
G

max
D

V (G,D) = Ex∼Pdata(x)[logD(x|y)]+Ez∼Pz(z)[log(1−D(G(z|y)))] (2.2)

Figure 2.2. Images generated by CGAN on MNIST handwritten digit dataset (Mirza
& Osindero, 2014)

In the Eq 2.2 (Mirza & Osindero, 2014), y stands for the label information of

corresponding images. In most practical situations, researchers want to control the type of images

GAN generates. It is also the reason why Conditional-GAN is more widely used than Vanilla

GAN. The Fig 2.2 (Mirza & Osindero, 2014) shows the images generated by CGAN.
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2.2 Image-to-Image Translation

With the fast development of GAN, a specific type of vision task emerges:

Image-to-Image Translation. I2I translation refers to the task of projecting images between two

different domains. I2I Translation has a lot of applications, such as colorization(grey-scale image

to RGB image), image segmentation (RGB image to a semantic label) and image generation

(semantic label to RGB image). CGAN is widely used in I2I translation tasks. Researchers

consider images from domain A as the conditional information in the generator G. The G aims to

generate images in domain B conditional on images in domain A. However, both vanilla GAN

and Conditional-GAN are only applied to low-resolution image dataset such as MNIST. Image

size in MNIST is 28x28. Directly deploying CGAN on a high-resolution real-scene dataset causes

a lot of problems. For instance, the generated images’ quality is very low. There are lots of

noticeable artifacts in the generated images. Besides, the generator is hard to generate legitimate

images if the discriminator D can easily distinguish the difference between generated and real

images. Therefore, substantial works have been done to propose better CGAN architectures for

I2I Translation including Pix2Pix (Isola et al., 2017), Cycle-GAN (Zhu et al., 2017) and

SPADE (Park et al., 2019). All of these models are extensions of Conditional-GAN.

2.2.1 Pix2Pix Models

Pix2Pix is one of the earliest models proposed for solving I2I Translation tasks. It learns

the domain transfer mapping and a target loss which is applied to train such mapping. Compared

to Conditional-GAN, Pix2Pix adds an additional loss item in Generator G objective function. G

needs to fool the D. Meanwhile, synthetic images are required to be close to the real images.

Besides, both G and D are convolutional neural networks. In order to improve the models’

representation ability, authors add more hidden layers in both D and G. The loss function of

pix2pix is shown as follows:

LCGAN(G,D) = Ex,y[logD(x,y)]+Ez,x[log(1−D(x,G(z,x)))] (2.3)

LL1(G) = Ex,y,z[||y−G(x,z)||1] (2.4)
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G∗ = argmin
G

max
D

LCGAN(G,D)+LL1(G) (2.5)

Figure 2.3. Images generated by Pix2Pix (Isola et al., 2017)

In the Eq 2.3 and the Eq 2.4 (Isola et al., 2017), x stands for the real image, y stands for

the corresponding semantic label and z means the random noise vector. As shown in the Fig

2.3 (Isola et al., 2017), Pix2Pix can synthesize images with resolution 286x286, which is much

larger than the image resolution in MNIST.
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2.2.2 Cycle-GAN

Pix2Pix can transfer images between the different domains only if researchers have

pair-to-pair images data from two domains. This requirement is unpractical especially when

researchers apply such technique in a real-world engineering project. Labeling data is

time-consuming. Therefore, researchers only have unaligned images from two domains in

real-world scenarios. Cycle-GAN is proposed to address the unaligned images transfer problems

in Image-to-Image translation. In this situation, researchers only have two branches of data from

two different domains. It is more challenging for a model to learn the translation projection since

the input data pair is unaligned. In Cycle-GAN (Zhu et al., 2017), a dual GAN structure is

proposed to solve the issue of data unalignment . In CycleGAN, there are two GANs G and F,

including two generators and two discriminators. G is tasked to transfer an image from domain X

to domain Y and F is inverse. For both GANs, authors add a content-maintain loss item in the

objective function of the G to shorten the distance between the original image and the repaired

image as shown in the Fig 2.4 (Zhu et al., 2017). Due to such structure, the label information is

not required during the training stage. The Fig 2.4 (Zhu et al., 2017) illustrates the structure of

CycleGAN. The Fig 2.5 (Zhu et al., 2017) illustrates the images generated by CycleGAN.

Figure 2.4. CycleGAN Architecture (Zhu et al., 2017)

The target loss function of CycleGAN is as follow:

LGAN(G,DY ,X ,Y ) = Ey∼Pdata(y)[logDY (y)]+Ex∼Pdata(x)[log(1−DY (G(x)))] (2.6)
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Lcyc(G,F) = Ex∼Pdata(x)[||F(G(X))− x||1]+Ey∼Pdata(y)[||G(F(y))− y||1] (2.7)

L(G,F,DX ,DY ) = LGAN(G,DY ,X ,Y )+LGAN(F,DX ,Y,X)+λLcyc(G,F) (2.8)

Figure 2.5. Images generated by CycleGAN (Zhu et al., 2017)

2.2.3 SPADE

Spatial Denormalization(SPADE) is the latest I2I translation architecture (Park et al.,

2019). It further improves the generated images’ quality. In short, SPADE replaces batch

normalization layers in G and D networks with a new carefully designed module - SPADE.

SPADE regularizes the output of each layer in the network in a channel-wise manner and adjusts

it by scale γ and bias β which are learned dynamically from two simple two-layer CNNs

respectively. Let m, a denote the input semantic label and adjusted activation map. hi
n,c,y,x stands

for the i-th layer’s original activation value of n-th sample at location (c,x,y). (c stands for the

number of channels, x,y represent the width, and the height of the layer output map.)

a = γ
i
c,y,x(m)

hi
n,c,y,x−µ i

c

σ i
c

+β
i
c,y,x(m) (2.9)
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Figure 2.6. Generator,discriminator and encoder architectures (Park et al., 2019)

where µ i
c and σ i

c are calculated by:

µ
i
c =

1
NH iW i ∑

n,y,x
hi

n,c,y,x (2.10)

σ
i
c =

√
1

NH iW i σn,y,x(hi
n,c,y,x)

2− (µ i
c)

2 (2.11)

N stands for the batch size. H,W mean the height and the width of the activation map in

the corresponding layer respectively.
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Figure 2.7. SPADE ResBlock Architecture (Park et al., 2019)

Figure 2.8. Generated Images by SPADE (Park et al., 2019)

Encoder part is unnecessary for the generator due to SPADE module. The simplified

lightweight network takes the semantic label and a random vector as input. After going through

alternate SPADE modules and upsampling layers, SPADE can generate high-quality realistic

images. For the discriminator structure, SPADE provides an easier and straightforward way to

synthesize multi-modal realistic images. The Fig 2.6 (Park et al., 2019) and the Fig 2.7 (Park et

al., 2019) show the implementation details of the generator and the discriminator.

2.3 Image Semantic Segmentation

Image semantic segmentation is a well-applied and critical vision task, which requires

detail information from the model output (Barrow & Tenenbaum, 1981). Semantic segmentation

is the core technique in multiple vision-related applications, such as autonomous driving (Ess et

al., 2009) and computer-aided diagnose system (Ronneberger, Fischer, & Brox, 2015), etc.
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Researchers proposed a lot of model architectures to achieve more and more accurate

results for the segmentation task (Long, Shelhamer, & Darrell, 2015; Ronneberger et al., 2015;

T. Xiao et al., 2018; Yu et al., 2017). Generally, a segmentation model contains two

sub-modules: an encoder E and a decoder D. E aims to extract the features and D aims to restore

the output dimension. Although the structural design of segmentation networks have been

well-studied, very few studies (Arnab, Miksik, & Torr, 2018; Xie et al., 2017) focus on the

robustness of segmentation networks under adversarial attacks.

2.4 Adversarial Attack

Adversarial samples are images that carefully constructed to fool machine learning

models, while still perceived the same by the humans. Adversarial perturbations can cause a deep

learning model to misbehave when added on a benign image. Most of the researches for

adversarial attacks pay attention to the norm bounded attack presented by FGSM (Goodfellow et

al., 2015). FGSM constructs adversarial perturbations by maximizing the loss of network w.r.t

the model’s input. Let L denote the loss function in the neural network, f stands for the network

model and θ and y represent all parameters in the network and groud-truth labels respectively.

Fast Gradient Sign Method can be denoted as follows:

xadv = x+ ε · sign(∇L( f (x;θ),y)) (2.12)

The generated adversarial example is bounded by parameter ε . Note that it is the

untargeted version of FGSM. To further increase the possibility that the target network is fooled

by adversarial examples, Kurakin, Goodfellow, and Bengio (2016) extended the Fast Gradient

Sign Method in an iterative way:

xadv
0 = x,xadv

N+1 =Clipx,ε{xadv
N +α · sign(∇L( f (x;θ),y))}. (2.13)
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Clip operation ensures that adversarial examples are in the range of [x+ ε,x− ε] after

each iteration. In recent years, researchers have proposed multiple adversarial attack methods for

the image classification task (Carlini & Wagner, 2017; Madry et al., 2018). Hand-crafted

metrics, such as Lp norm bound (Feinman, Curtin, Shintre, & Gardner, 2017) and Wesstrasien

distance (Wong et al., 2019), are leveraged to preserve the adversarial examples’ semantic

meaning. Several researchers focused on the adversarial attack for segmentation neural

networks. Xie et al. (2017) proposed an adaptive attack method on segmentation models: Dense

Adver-sary Generation(DAG), which can successfully attack deep segmentation and detection

networks. However, DAG still generates small perturbations based on certain norm

distances. Cisse et al. (2017) proposed Houdini loss to make loss function of segmentation neural

networks to be differential. Song et al. (2018) proposed a GAN-related attack technique to

construct unrestricted attack samples. Researchers used a type of GAN: Auxiliary

Classifier-Generative Adversarial Network (AC-GAN) (Odena, Olah, & Shlens, 2016) to generate

adversarial handwritten digits images beyond any norm bound. Existed GAN-based attack

methods (Song et al., 2018; Wang, He, & Hopcroft, 2019) adopt two-step procedures that

involve many steps of gradient descent on the second part.

2.5 Defense Methods

Adversarial training (Goodfellow et al., 2015; Hinton, Vinyals, & Dean, 2015; Madry et

al., 2018; Szegedy et al., 2013) is the most promising method for training robust classifiers

currently. Besides, input transformation defense methods on semantic segmentation networks,

including rescaling, image compression and Gaussian filtering are evaluated by Arnab et al.

(2018). However, all defense methods above rely on obfuscated gradients rather than bringing

true robustness to deep learning models (Athalye, Carlini, & Wagner, 2018).
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2.6 Disentangled Representations

Disentangled representation targets to model each component in a data distribution.

Previous researches leveraged data and label to disentangle features into class-related and

class-independent factors (Cheung, Livezey, Bansal, & Olshausen, 2014; Kingma, Rezende,

Mohamed, & Welling, 2014; Makhzani, Shlens, Jaitly, Goodfellow, & Frey, 2015; Mathieu,

Zhao, Sprechmann, Ramesh, & LeCun, 2016). Recently, unsupervised disentangled

representation methods have been explored (X. Chen et al., 2016; Denton et al., 2017). Lee et al.

(2018) firstly brought disentangled representation into the I2I translation task. The author

introduced DRIT (Disentangled Representation Image Translation) framework to transfer images

between different domains in a disentangled way. The author assumed that images from two

different domains shared the same content feature space and had independent attribute feature

space. The authors gained content features and attribute features from separate encoder networks

and fed learned features into a generator to generate images in the target domain.

Figure 2.9. DRIT Architecture (Lee et al., 2018)

The Fig 2.9 (Lee et al., 2018) illustrates the framework of DRIT in the Image-to-Image

translation task. In this example, researchers want to process the image translation between cat

and dog images. In consideration of an one-direction translation(cat to dog), the input cat image x

is encoded to cat attribute feature space and content feature space by Ea
x and Ec

x respectively. The

input dog image y is encoded to dog attribute feature space and content feature space by Ea
y and

Ec
y respectively. Then, the generator Gy takes encoded content feature Ec

x and dog attribute feature

Ea
y as the input and generate the transfer dog image v.
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CHAPTER 3. RESEARCH METHODOLOGY

In this chapter, AdvDRIT is proposed to construct controllable adversarial examples for

semantic segmentation. Firstly, we introduce the data collection in this project. Then, we propose

an additional well-designed loss item for vanilla DRIT framework. After that, we show that the

modified DRIT framework is able to generate unrestricted adversarial examples for semantic

segmentation. Then, we leverage the AdvDRIT framework to learn the disentangled

representation to make the generation stage controllable. Finally, we describe the experimental

design which can prove the effectiveness of the proposed AdvDRIT. Besides, authors also show

the experimental design for robust training by considering proposed unrestricted controllable

examples.
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3.1 Image Data Set

Well-labeled data is critical to deep learning models. Training networks need tons of

image data. For example, a standard deep learning network needs over 10000 images for the

training and inference. It is impractical to collect data personally. Nowadays, due to the vast need

of the well-labeled image data, big IT companies or institutions such as Microsoft and Google,

have released several public image datasets for the convenience of researchers. An image dataset

for deep learning/ machine learning contains two parts: train set and test set. For the data in the

train set, it has label information, such as classes, bounding box locations. During the training

stage, researchers need to minimize the loss function between the models’ prediction and label to

improve the model’s accuracy. For the test set, image data does not have the corresponding label.

In this thesis, we select two large scale image segmentation datasets: ADE20K (Zhou et al.,

2018) and Cityscapes (Cordts et al., 2016) to train and evaluate our method. ADE20K is a scene

parsing image dataset, which contains over 20000 scenes images well labeled with objects. In

detail, train set contains 20000 images, and 2000 images in the test set. There are 150 classes

including stuff like cloud, wall, tree, and discrete objects like people, car, lamp. Cityscapes is a

road view dataset that includes recorded videos and images in street scenes from 50 cities and

regions with semantic annotations. There are over 3000 images in the train set and 500 images in

the test set.

3.2 Generating Unrestricted Adversarial Examples

In this section, we introduce a well-designed additional loss item: Unrestricted

Adversarial Loss, which is able to encourage CGAN architectures to generate unrestricted

adversarial examples.
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3.2.1 Unrestricted Adversarial Loss

An adversarial loss term was proposed for generating adversarial examples beyond the

norm-bound restriction. At a high level, the generator is aimed to fool the target semantic

segmentation neural network. Under such training strategy, the generated images need to fool

both the discriminator and target segmentation network. We embedded the target model into the

image generation framework and encouraged the framework to maximize the target model’s loss

during the training stage. Let S denote the target semantic segmentation neural network, G denote

the image generator, y denote the semantic label and z as the input random vector. The

Unrestricted Adversarial Loss is defined as follows:

LAT K =−Ez∼Pz(z) log f (S(G(z|y)),y) (3.1)

Dice Loss (Sudre, Li, Vercauteren, Ourselin, & Jorge Cardoso, 2017) f was used in the Eq

3.2.1. A natural image I is fed into the encoder E and the outputs are a mean variable µE(I) and a

variance variable σE(I). Then, we reparameterize the random noise z (Kingma & Welling, 2013).

z = µE(I)+σE(I) · ε,ε ∼N (0, I) (3.2)

3.3 Generating Controllable Adversarial Examples

In order to generate controllable adversarial examples. Authors applied the

disentanglement to learn the disentangled representation of input data.
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3.3.1 Disentangled Representations

Inspired by Lee et al. (2018), we disentangled an image to domain-adversary and

domain-benignity representations and considered adversarial examples generation as an I2I

translation problem: transferring an image in a benign field to an adversarial field. We assumed

that each image can be disentangled into two independent feature spaces: adversarial and benign

feature space. Features in benign space are innocuous and hard to manipulate to make images

adversarial. In detail, manipulating features in benign space may cause the generated adversarial

images unnatural or to contain many noticeable artifacts. The discriminator aims to distinguish

whether a feature is from adversarial space or benign space. During the training phase, authors

only manipulate features in the adversarial space, by feeding modified adversarial features and

benign features into a generator, authors are able to generate adversarial examples. The designed

architecture is shown in the Fig 3.1.

Figure 3.1. Disentangled Adversarial Generation Workflow

In total, there are 10 networks in our framework. The target of this project is to generate

adversarial examples (A ∈ RH∗W∗3) from natural clean images (N ∈ RH∗W∗3) in the disentangled

way. As shown in the Fig 3.1, the framework contains content encoders {Ec
N ,E

c
A}, feature

encoders {E f
N ,E

f
A}, generators {GN ,GA}, and domain discriminators {DN ,DA}, a content

discriminator Dc
adv, and a target segmentation network S. In practice, the content encoder Ec

N maps

natural clean image N to a content feature space (Ec
N : N→C) and the feature encoder E f

A projects

image to a domain-independent feature space (E f
A : A→ Fa). The generator GN will generate an

adversarial example conditioned on both content and feature variables (GN : {C,Fa}→ A).
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In order to achieve the representation disentanglement, we followed the same method

suggested in Lee et al. (2018): a content discriminator and network weight sharing. Authors used

the same parameters in the last layer of Ec
N and Ec

A. We also used the same parameters in the first

layer of GN and GA. By doing this operation, the content features can to be projected to the same

space. Besides, the content discriminator Dc
adv aims to distinguish the difference between encoded

content features zc
N and zc

A. If the well-trained discriminator can not distinguish the above content

features, we can guarantee that the two content encoders successfully project images from two

different fields to the same feature space. In formal, the content adversarial loss can be written as

follows:

L content
adv (Ec

N ,E
c
A,D

c
adv) = En[

1
2

logDc
adv(E

c
N(n))+

1
2

log(1−Dc
adv(E

c
N(n)))]

+Ea[
1
2

logDc
adv(E

c
A(a))+

1
2

log(1−Dc
adv(E

c
A(a)))] (3.3)

Instead of content adversarial loss, authors also leverage several loss functions to stabilize

the framework training process: Domain adversarial loss and KL loss.

Domain adversarial loss Ldomain
adv is used to stimulate generators to generate high-quality

images. In detail, DN and DA aim to differentiate natural images and synthetic adversarial images

and GA and GN aim to generate realistic images. Ldomain
adv can be written as follows:

L domain
adv (DN ,DA,GN ,GA) = En,a[logDA(a)+ log(1−DA(GA(n)))]

+En,a[logDN(n)+ log(1−DN(GN(a)))] (3.4)

KL loss is used to force the feature vector Fa to be close to a probability distribution under

the KL divergence measurement which is helpful to perform stochastic sampling in the test phase.

In this thesis, authors used a standard Gaussian distribution N(0,1) .

LKL = E[DKL(( fa)||N(0,1))],where DKL(p,q) =−
∫
(p(z)log

p(z)
q(z)

dz) (3.5)
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After combining the above loss items with our designed unrestricted adversarial loss 3.2.1,

the whole objective function of the proposed AdvDRIT is:

min
G,Ec,E f

max
D,Dc

λ
content
adv L content

adv +λ
domain
adv L domain

adv +λKLLKL +λAT KLAT K (3.6)

Appropriate hyper-parameters are crucial to the experiment results. In this thesis, authors

leverage a two-step method to gain suitable hyper-parameters for each loss item. Grid

search (Pedregosa et al., 2011) is a popular method to optimize the hyper-parameters. However,

training AdvDRIT is time-consuming. It’s impractical to apply grid search in a wide range.

Instead, we optimized the hyper-parameters in two steps. In the first step, we manually adjusted

the value of each λ to make the value of each loss item in the same order of magnitude. It is

because each loss item should have the similar contribution to the total loss. After manually

adjustment, we applied a simple grid search around the value of hyper-paramaters in the first step.

For each hyper-parameter λ , authors applied grid search in a sub-region {λ -5,λ+5} with step size

2.5. We introduce the value of each hyper-parameter after the optimization in the next chapter.
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CHAPTER 4. EXPERIMENTS AND RESULTS

We designed three main experiments to thoroughly evaluate our proposed AdvDRIT on

modern deep learning segmentation models. Firstly, we compared AdvDRIT with traditional

norm-bound attack methods on several popular state-of-the-art segmentation models such as

DRN-105 ,DRN-38,DRN-22 (Yu et al., 2017) and Upernet-105 (T. Xiao et al., 2018), on two

datasets (ADE20K,Cityscapes). We leveraged the attack success rate, mIoU descending and FID

score to evaluate the effectiveness of all attack methods under the same setting. Second, we

applied our method on robust models defended by traditional norm-bounded adversarial examples

to show the strength of our adversarial examples. Third, we used our controllable unrestricted

adversarial examples to robust train segmentation models and test the model’s robustness against

various adversarial attacks.

4.1 Experimental Set-up

4.1.1 Model Training Details

Following Park et al. (2019), we applied the Spectral Norm (Miyato, Kataoka, Koyama, &

Yoshida, 2018) in all layers in the generator and the discriminator. On Cityscapes, we trained

AdvDRIT 70 epochs. On ADE20K, we trained AdvDRIT 120 epochs. The learning rate is 0.0002

for the generator and the discriminator. Authors applied the ADAM (Kingma & Ba, 2014)

optimizer with β1 = 0.5, β2 = 0.9999. After hyper-parameters optimization, we set λ content
adv = 1,

λ domain
adv = 11, λKL = 0.01 on two evaluation dataset, and λAT K = 10 for Cityscapes, λAT K = 70

for ADE20K in the Eq 3.6. We used a workstation with Linux Ubuntu 18.04 and a single

NVIDIA GTX 2080Ti GPU for all experiments in this thesis.
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4.1.2 Evaluation Metric

Based on the intuition that a successful attack should mislead most of the prediction in a

semantic segmentation prediction map, authors proposed the following evaluation metric: Denote

I H×W×C be a set in which all images with W width, H height and number of channels C. Denote

L H×W be the semantic labels set for images in I . Assume a oracle o : O ⊆I →L is able to

project all images from its own field O to L correctly. O stands for a set including every image

looking realistic from a human perspective. A segmentation neural network S : I →L is able

to generate dense output for all images in I . Authors evaluated two different classes of

adversarial examples: Firstly, an unrestricted adversarial example x should fulfill the

requirements: x⊆ O , ∑i, j(oi, j(x)6=Si, j(x))
H·W > θ . Secondly, Assume a constant value ε > 0 and a

mathematical norm ‖·‖, a restricted adversarial example x should fulfill the requirements: x⊆O ,

∃x′ ⊆ O ‖x− x′‖< ε , ∑i, j(oi, j(x)6=Si, j(x))
H·W > θ .

oi, j(x),Si, j(x) mean the predicted classes given by oracle o and network S at location

x(i, j). θ is a hyper-parameter ranged in [0,1]. In this thesis, θ = 0.95. In the Fig 4.2, we also

showed the relation between attack success rate and different θ .

Instead of attack success rate, we applied two metrics to evaluate the quality and

effectiveness of AdvDRIT: Mean Intersection-over-Union (mIoU) and Fréchet Inception Distance

(FID). mIoU is a standard evaluation metric in semantic segmentation task which evaluates the

network prediction accuracy over all classes. In the attack scenario, lower mIoU score stands for

more valid adversarial examples. We also applied FID (Heusel, Ramsauer, Unterthiner, Nessler,

& Hochreiter, 2017) to calculate the generated adversarial examples’ quality. FID computes the

distributional distance between the two different data manifolds. In particular, authors computed

the FID between synthesis adversarial images and natural images from dataset. Small FID means

adversarial examples are close to natural images and have good qualities.
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4.1.3 Baseline Models

Authors compared AdvDRIT attack with traditional attacks in two ways: (1) natural

images adding perturbation and (2) GAN-generated benign images adding perturbation. For (2),

authors generated benign images with vanilla DIRT and then applied traditional attack methods to

generate restrict perturbation. On cityscapes, authors chose DRN-D-105 as the target model. On

ADE20K, authors selected Upernet-101. Besides, authors also selected some open-source

advanced segmentation models to measure the transferability of AdvDRIT under the black-box

manner. On cityscapes, we selected DRN-38, DRN-22 (Yu & Koltun, 2016; Yu et al., 2017),

DeepLab-V3 (L.-C. Chen, Papandreou, Schroff, & Adam, 2017) and PSPNet-34-8s (Zhao, Shi,

Qi, Wang, & Jia, 2017). On ADE20K, we selected PPM-18, MobilenetV2, Upernet-50 and

PPM-101 (Zhou et al., 2018).

Authors compared AdvDRIT with two attacks using GAN (Song et al., 2018; C. Xiao et

al., 2018). For AdvGAN, authors replaced the cross-entropy loss to dice loss which is consistent

with AdvDRIT. We implemented AdvGAN with two hyper-parameter values (λadv =−1,−100)

Experimental results are shown in the Table 4.5.

We implemented Song’s method (Song et al., 2018) on DIRT. The input random noise z

dimension is 256. Authors ran DIRT with 70 epochs and then ran 70 epochs to optimize

adversarial loss. Authors also compared the transferability between AdvDRIT and Song’s

unrestricted attack with the black-box setting. The results can be seen in the Table 4.1.

Authors also considered DAG (Xie et al., 2017) and Houdini (Cisse et al., 2017), two

adversarial attacks for segmentation tasks as baseline methods on Cityscapes. For DAG, we set

hyper-parameter γ = 0.5 and number of iteration N = 200 as Xie et al. (2017) suggested in their

paper. For Houdini, authors replaced the loss function to surrogate Houdini loss in PGD attack

with setting l∞ norm bound size ε = 8, number of iteration N = 300. Since Houdini and DAG are

both white-box attack methods, authors also chose DRN-D-105 (Yu et al., 2017) for Cityscapes

as target segmentation network for a fair comparison.
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4.2 Experiment Results

4.2.1 Evaluating Generated Adversarial Images.

Authors compared the mIoU score and FID score between AdvDRIT adversarial

examples and other types of images including natural real images and vanilla DRIT generated

benign images. The Table 4.2 and the Table 4.1 illustrated the experiment results.

Table 4.1. The mIoU metric of the AdvDRIT
Cityscapes ADE20K

Attack Methods Target Model Natural Image DRIT Song’s Attack AdvDRIT Target Model Natural Image DRIT AdvDRIT

White-box DRN-105 0.756 0.618 0.465 0.010 Upernet-101 0.424 0.410 0.009

black-box DRN-38 0.714 0.551 0.520 0.307 MobilenetV2 0.348 0.317 0.112
DRN-22 0.68 0.526 0.489 0.257 PPM-18 0.340 0.362 0.009
DeepLab-V3 0.68 0.54 0.501 0.302 Upernet-50 0.404 0.395 0.092
PSPNet-34-8s 0.691 0.529 0.495 0.321 PPM-101 0.422 0.409 0.089

The Table 4.1 showed that AdvDRIT adversarial images can make a huge drop on mIoU

score under white-box attack setting which indicated the effectiveness of AdvDRIT. In detail,

AdvDRIT can make mIoU drop to 0.01 on cityscapes and 0.009 on ADE20K. Even under the

transfer-based black-box setting, AdvDRIT adversarial examples can also make a non-trivial

mIoU drop, which indicated the transferability of advDRIT examples between different

architectures. For examples, AdvDRIT can drop the mIoU score of DRN-22 down to 0.257 on

Cityscapes. Note that Song’s attack can only drop mIoU down to 0.489 under the same setting.

Table 4.2. FID score of AdvDRIT and several advanced GAN models

Dataset
Model

Vanilla DRIT Pix2PixHD CRN AdvDRIT

Cityscapes 61.93 95.0 104.7 63.32
ADE20K 32.2 81.8 73.3 43.59

According to the Table 4.2, we noticed that the FID of AdvDRIT adversarial images only

raised mildly compared to vanilla DIRT (61.32 to 63.32 on Cityscapes, 32.2 to 43.59 on

ADE20K). Compared to other advanced generative models like Pix2PixHD and CRN, AdvDRIT

achieved lower FID score on both datasets. The result showed that AdvDRIT adversarial images

have comparable quality than other advanced image generation models.
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The Fig 4.3 showed some AdvDRIT adversarial images. The first row showed the original

real images. The second row showed the corresponding semantic labels. The third row showed

the adversarial examples generated by AdvDRIT. The last row showed the prediction results of

adversarial examples. We noticed that adversarial examples have similar semantic meaning with

original real images. However, the prediction results were completely different with ground-truth

semantic labels. It indicated that AdvDRIT generated adversarial examples can successfully

mislead the target segmentation models.

Table 4.3. White-Box Attack Success Rate
DRN-105 Upernet-101

Pert Size Natural Images DRIT Pert Size Natural Images DRIT
Attacks (ε) +Pert +Pert Attacks (ε) +Pert +Pert

FGSM

0.25 0% 0%

FGSM

0.25 0.4% 0.9%
1 0% 0% 1 0.9% 1.8%
8 0% 0% 8 2.6% 2.6%

32 15.6% 16.4% 32 6.1% 8.0%

PGD

0.25 0% 0%

PGD

0.25 0.4% 0.9%
1 0% 0% 1 0.8% 2.8%
8 22.2% 43.4% 8 11.5% 24.2%

32 33.8% 47.2% 32 39.0% 44.1%

AdvDRIT 89.2% AdvDRIT 77.1%

We compared the attack success rate of AdvDRIT with FGSM and PGD (Goodfellow et

al., 2015) on Cityscapes and ADE20K. The size of l∞ norm bound ε is equal to 0.25,1,8,32 for

both traditional attacks. For PGD, we followed the setting from Arnab et al. (2018). The number

of attack iterations is computed by min{bε +4c,d1.25εe}. Authors used PGD and FGSM to

generate perturbation and added them to natural and synthetic images from vanilla DIRT. Then,

we compared the their mIoU and FID scores with AdvDRIT. The Table 4.3 indicated that

traditional attacks(FGSM, PGD) can not successfully attack target networks when bound size is

limited (ε = 0.25,1,8). For instance, FGSM attack can only get 0% attack success rate when

bound size ε = 1 on both benchmarks for target models. However, AdvDRIT was able to

successfully attack the target model with high attack success rate (89.2% and 77.1% on target

models respectively).
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The Table 4.4 showed the mIoU and FID score comparison between AdvDRIT and

norm-bounded attacks(FGSM and PGD). For the norm-bounded attacks, authors considered two

different settings: generating perturbation based on real images and generating perturbation based

on Vanilla DRIT generated clean images. Since FID score can only be used to evaluate the quality

of generated images, authors did not report FID score of natural images with perturbation. The

FID score can be seen from the brackets in the Table 4.4.

Table 4.4. Attack Effectiveness
DRN-105 Upernet-101

Pert Size Natural Image DRIT Pert Size Natural Image DRIT
Attack (ε) +Pert +Pert Attack (ε) +Pert +Pert

FGSM

0.25 0.557 0.431 (63.354)

FGSM

0.25 0.346 0.286 (33.821)
1 0.408 0.355 (64.455) 1 0.278 0.221 (35.254)
8 0.196 0.152 (82.144) 8 0.178 0.152 (60.563)

32 0.009 0.009 (248.175) 32 0.070 0.048 (166.724)

PGD

0.25 0.557 0.431 (63.354)

PGD

0.25 0.346 0.286 (33.821)
1 0.339 0.287 (63.971) 1 0.276 0.181 (34.876)
8 0.036 0.022 (69.162) 8 0.070 0.022 (62.289)

32 0.013 0.009 (89.998) 32 0.013 0.007 (113.553)

AdvDRIT 0.01 (61.93) AdvDRIT 0.09 (43.59)

The Table 4.4 revealed that traditional norm-bound attack methods such as FGSM, PGD,

required large distortion to generate valid adversarial examples for segmentation networks. Since

the distortion is so large, the quality of adversarial examples can not be guaranteed and humans

can differentiate adversarial examples and benign images easily. High FID score showed the

decline on the quality of traditional adversarial images. Meanwhile, PGD and FGSM adversarial

examples can not decrease mIoU as much as AdvDRIT if keeping the high image quality. For

instance, on Cityscapes, vanilla DIRT synthetic images with bound size ε = 1, the FID which

with 64.455 is comparable with AdvDRIT samples. However, their mIoU score (0.355) is much

larger than AdvDRIT examples (0.01).

The Fig 4.1 showed AdvDRIT samples and traditional images when their mIoU score is

comparable (around 0.01). Authors can simply notice the noise in traditional adversarial samples

instead of in AdvDRIT images.
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Figure 4.1. Comparison of traditional and AdvDRIT adversarial images on ADE20K

.

Figure 4.2. Relationship Between Attack Successful Rate and value of θ on
Cityscapes

4.2.2 GAN-based and Segmentation Adversarial Attack.

Authors compared the mIoU decline between Song’s GAN based unrestricted attack

methods (Song et al., 2018) and AdvDRIT on Cityscapes.
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The Table 4.1 showed the results. The results indicated Song et al. (2018) generated

examples are not effective and can only cause a trivial mIoU decline (from 0.62 to 0.461).

Instead, AdvDRIT adversarial images can drop mIoU to 0.010. The transferability of Song’s

examples is also limited (mIoU drop of 3%). The comparison experimental results demonstrated

ineffectiveness of their attacks for semantic segmentation task.

Table 4.5. Evaluation on Houdini,DAG,AdvGAN and AdvDRIT on Cityscapes
Method Bound Size Attack Success Rate mIoU Performance

0.25 0% 0.350
AdvGAN 1 0% 0.344 0.2s/Image

8 0% 0.264
32 0% 0.350

0.25 0% 0.340
AdvGAN 1 0% 0.338 0.2s/Image
(λadv = -100) 8 8.1% 0.075

32 6.4% 0.044

Houdini 8 80.4% 0.013 40s/Image

DAG - 73.8% 0.014 30s/Image

AdvDRIT(Ours) - 89.2% 0.01 0.25s/Image

We also compared AdvGAN (C. Xiao et al., 2018), Houdini (Cisse et al., 2017),

DAG (Xie et al., 2017) and AdvDRIT using several metrics including the attack success rate,

mIoU score and inference time performance on the same experimental environment. According to

the Table 4.5, AdvGAN adversarial examples can not attack the target network with 0% attack

success rate and 0.350 mIoU decrements for a large perturbation size 32. After fine-tuning the

value of hyper-parameter λadv, AdvGAN can only successfully attack the target model when the

bound size is very large. We noticed that the success rate of AdvGAN is 8.1% and mIoU is 0.075

with ε = 8. We noticed that noise in adversarial examples is noticeable when ε = 8. According to

the experimental results, authors concluded that AdvGAN did not generalize well on

segmentation models. Compared to Houdini and DAG, AdvDRIT also showed better attack result

(8.8% higher than Houdini, 15.4% higher than DAG for attack success rate). Meanwhile,

AdvDRIT is over 100 times faster than both DAG and Houdini while generating adversarial

examples. In conclusion, AdvDRIT can generate adversarial examples successfully in an effective

manner.
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Table 4.6. Ablation Results
Loss Name mIoU Score FID Score Attack Success Rate

w/o Content Adversarial Loss 0.027 77.26 57.6%
w/o Domain Adversarial Loss 0.026 86.14 56.0%
w/o Adv Loss 0.62 61.93 0%
w/o KL Loss 0.021 82.2 62%
AdvDRIT 0.01 63.32 89%

Table 4.7. Generalization of proposed attack on different I2I architectures on
DRN-105

Model
Metrics

mIoU Score Attack Success Rate FID Score

AdvDRIT 0.01 89.2% 63.32
AdvSPADE 0.010 84.4% 67.3
AdvPix2Pix 0.030 57.2% 102.7
AdvPix2PixHD 0.021 72.1% 98.4

The Table 4.6 contained the ablation experiments to evaluate each loss item’s necessity in

AdvDRIT on Cityscapes. The results indicated that content adversarial loss domain adversarial

loss and KL loss terms are critical to maintain the adversarial examples quality and attack

effectiveness during the training phase. Deleting any of loss items led to the raising of the FID

score and the decline of the attack success rate.

The Table 4.7 showed the generalization of authors proposed method. The results showed

that by adding our unrestricted adversarial loss, other I2I translation models can also generate

adversarial samples successfully. Notice that AdvDRIT achieves the lowest FID score,mIoU and

highest attack success rate compared to other two models which showed that the quality of

adversarial images and effectiveness of the generation of adversarial samples are beneficial from

the model design.
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4.2.3 Robustness Evaluation.

Authors showed that robust training with traditional adversarial images can improve the

model robustness against restricted adversarial attacks. However, AdvDRIT adversarial examples

can easily bypass such robust models. Authors then showed the robustness results of a

segmentation model based on proposed AdvDRIT examples. Authors followed the training

strategy from Madry, Makelov, Schmidt, Tsipras, and Vladu (2017): authors leveraged Projected

Gradient Descent to be the attack agency and trained models adversarially 150 epochs for both

ADE20K and Cityscapes. During the training phase, perturbation size ε = 8, numbers of attack

iteration is 10 and step size is 1. We used PGD under the same attack strength to construct

norm-bounded adversarial examples on natural and vanilla DIRT generated images. We found

that traditional norm-bound adversarial examples based on natural and generated images can only

decrease mIoU slightly ( 0.35, 0.275 on adversarial trained DRN-105, 0.239 and 0.197 on

adversarial trained Upernet-101). However, AdvDRIT adversarial images can gain 0.042 mIoU

on adversarial-trained DRN and 0.027 on adversarial-trained Upernet, which shows that

AdvDRIT examples can beat the model adversarial-trained with traditional PGD attack examples.

Then, authors adversarial-trained a model with AdvDRIT adversarial images on the Cityscapes

dataset. After the training phase, authors used PGD to attack the robust model. The result

indicated PGD can gain 1.5% attack success rate and 0.101 mIoU drop on DRN-105. The low

success rate showed that models achieve better robustness by considering AdvDRIT examples in

the adversarial training stage.
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Figure 4.3. Visualized Results on ADE20K

Figure 4.4. Visualized Results on Cityscapes
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Figure 4.5. Variety of Proposed Unrestricted Adversarial Examples On Cityscapes
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Figure 4.6. Variety of Proposed Unrestricted Adversarial Examples On ADE20K
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Figure 4.7. Comparison of norm-bounded samples and unrestricted adversarial
examples on same mIoU level

47



CHAPTER 5. CONCLUSIONS

5.1 Conclusions

In this thesis, we presented AdvDIRT: a GAN based method to construct disentangled

adversarial samples for modern semantic segmentation neural networks. Borrowing the idea from

disentangled representation, we separated features into content feature space and adversarial

feature space. Through modifying the loss function of DIRT framework, we further improved the

quality of unrestricted adversarial examples beyond any lp norms, which misled segmentation

networks’ predictions. We demonstrated the robustness and effectiveness of AdvDRIT by

comparing with various advanced existed attack techniques. We also shown that generated

adversarial examples can easily bypass the advanced defense method, including adversarial

training. AdvDIRT raised new concerns towards security-sensitive fields which rely on deep

learning techniques.

5.2 Future Work

Due to the limitation problems in proposed methods, we will further improve the proposed

framework in following ways:

• We will further reduce the quality gap between generated adversarial examples and natural

images and make them more practical in the real world scenarios.

• We will improve the GAN model design to stabilize the adversarial example generation

process.

• We will improve the segmentation networks’ robustness by considering the existence of

norm-free unrestricted adversarial examples.
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