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ABSTRACT

Shankman, Daniel Ph.D., Purdue University, May 2020. Local Langlands Correspon-
dence for Asai L and Epsilon Factors. Major Professor: Freydoon Shahidi.

Let E/F be a quadratic extension of p-adic fields. The local Langlands corre-

spondence establishes a bijection between n-dimensional Frobenius semisimple rep-

resentations of the Weil-Deligne group of E and smooth, irreducible representations

of GL(n,E). We reinterpret this bijection in the setting of the Weil restriction of

scalars Res(GL(n), E/F ), and show that the Asai L-function and epsilon factor on

the analytic side match up with the expected Artin L-function and epsilon factor on

the Galois side.
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INTRODUCTION

Local Langlands correspondence for general reductive groups

Let k be a local field of characteristic zero, and W ′
k the Weil-Deligne group of k.

To each finite dimensional, complex, Frobenius semisimple representation ρ of W ′
k,

and each nontrivial unitary character ψ of k, there is an associated Artin L-function

L(s, ρ) and ε-factor ε(s, ρ, ψ), both meromorphic functions of the complex variable s

[Ta79]. There is also the gamma factor

γ(s, ρ, ψ) =
L(1− s, ρ∨)ε(s, ρ, ψ)

L(s, ρ)

where ρ∨ is the contragredient of ρ.

Let G be a connected, reductive group over k. To each irreducible, admissible

representation π of G(k), each continuous, finite dimensional complex representation

r of the L-group LG of G whose restriction to the connected component of LG is

complex analytic, and each nontrivial unitary character ψ of k, there are associated

a conjectural L-function L(s, π, r) and epsilon factor ε(s, π, r, ψ). The conjectural

gamma factor γ(s, π, r, ψ) is defined by

γ(s, π, r, ψ) =
L(1− s, π∨, r)ε(s, π, r, ψ)

L(s, π, r)
.

These factors are defined in many special cases, in particular by the Langlands-Shahidi

method ([Sh81], [Sh90]).

The conjectural local Langlands correspondence (LLC) predicts the following:

1. A partition of the classes of irreducible, admissible representations of G(k) into

finite sets, called L-packets.
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2. A bijection from the set of L-packets to the set of classes of admissible homo-

morphisms of W ′
k into LG (8.2 of [Bo79]).

3. For each representation r of LG, an equality of L and epsilon factors

L(s, π, r) = L(s, r ◦ ρ),

ε(s, π, r, ψ) = ε(s, r ◦ ρ, ψ),

whenever π is an element of an L-packet corresponding to ρ, and whenever the

left hand sides can be defined.

Parts 1 and 2 of the LLC are notably established for archimedean groups [Kn94],

tori [Yu09], and the general linear group. For archimedean groups, the left hand

sides of part 3 are defined as the right hand sides. For GLn, part 3 is established for

the standard representation ([He00], [HaTa01], [Sc13]), and for the symmetric and

exterior square representations [CoShTs17].

We remark that whenever the partition and bijection of parts 1 and 2 are estab-

lished for G, they are also established for the group Resk/k0 G, where k0 is a local field

contained in k (8.4 of [Bo79]). Here Resk/k0 denotes Weil restriction of scalars. This

procedure is compatible with the existing correspondence for archimedean groups and

for tori.

The Asai representation

Let E/F be a quadratic extension of characteristic zero local fields. Let M be the

group ResE/F GLn obtained by Weil restriction of scalars. Then M is a connected,

reductive group over F , with M(F ) = GLn(E). The L-group LM can be identified

with the semidirect product of GL(V ) × GL(V ) by Gal(E/F ), where V is an n-

dimensional complex vector space, and Gal(E/F ) acts by σ.(T, S) = (S, T ), where σ
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is the nontrivial element of Gal(E/F ). We define the Asai representation R : LM→

GL(V ⊗ V ) by

R(T, S) = T ⊗ S,

R(σ)(v ⊗ v′) = v′ ⊗ v.

Now let π be an irreducible, admissible representation of GLn(E), corresponding to

the Frobenius semisimple representation ρ : W ′
E → GL(V ) under the local Langlands

correspondence. As explained in 8.4 of [Bo79], this corresponds to an admissible

homomorphism

ρ : W ′
F → LM

which we can explicitly describe as follows: identifying W ′
E as a subgroup of W ′

F ,

choose a z ∈ W ′
F which is not in W ′

E. Then

ρ(a) =


(ρ(a), ρ(zaz−1, 1E) if a ∈ W ′

E

(ρ(az−1, za, σ) if a 6∈ W ′
E.

Thus π ↔ ρ is the local Langlands correspondence for M. Our main result, which we

formulate in various equivalent ways in (2.6.3), is that the equality of epsilon factors

holds for the Asai representation:

Main Theorem. If π is an irreducible, admissible representation of GLn(E), and ρ

is the n-dimensional Frobenius semisimple representation of W ′
E corresponding to π,

then

ε(s, π,R, ψ) = ε(s,R ◦ ρ, ψ).

Remark. The equality of L-functions

L(s, π,R) = L(s,R ◦ ρ)
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is already a theorem due to Henniart (Theorem 5.2 of [He10]). Henniart proved the

existence of a root of unity ζ such that

ζγ(s, π,R, ψ) = γ(s,R ◦ ρ, ψ).

As we explain in (2.7), since Henniart knew the gamma factors were equal up to a

root of unity, he was able to deduce the equality of L-functions.

In our work, we show the exact equality of the gamma factors (Theorem 2.6.3.6).

This is to say, we show that ζ = 1. Using Henniart’s method, we recover the equality of

the L-functions, and finally deduce the equality of epsilon factors (Corollary 2.6.3.7).

The Asai L-function L(s, π,R) and epsilon factor ε(s, π,R, ψ) can be defined using

the Langlands-Shahidi method [Go94]. Granting the local Langlands correspondence

for archimedean groups, and its compatability with Weil restriction of scalars, our

Main Theorem holds trivially in the archimedean case, because the left hand side is

equal to the right hand side, by definition. Thus our main interest in the theorem is

in the p-adic case.

Asai L-functions were originally considered by T. Asai in [As77]. He considered

the case of a real quadratic extension K of Q, and associated an L-function L(f, s)

to a Hilbert modular form f of K/Q. This was central to the work of Harder,

Langlands, and Rapoport in their work on Tate’s conjecture for Hilbert modular

surfaces [HaLaRa86]. When f is a normalized newform, L(f, s) has a factorization

over the places of Q. The local factor of L(f, s) at the rational primes p which do not

split in K is of the type defined above.

Summary of the proof of the Main Theorem

As we mentioned in the Remark above, Henniart’s argument (2.7.1) reduces the

main theorem to the problem of showing the equality of gamma factors (Theorem

2.6.3.6) on both sides. This already holds in the case where F is archimedean, or

when F is nonarchimedean and π has an Iwahori fixed vector.
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Chapter One of this thesis is a review of the Weil and Weil-Deligne group for

characteristic zero local and global fields. We define these groups and explain how

L-functions may be attached to their representations.

In Chapter Two, we give a summary of the Langlands-Shahidi method, and explain

how the Asai factors are defined using this method. We also prove a multiplicativity

result for Asai factors. We summarize the Bernstein-Zelevinsky classification of irre-

ducible, admissible representations of GLn for a p-adic field, state our main theorem,

and at the end of the chapter give an exposition of Henniart’s proof of the equality

of Asai L factors with the corresponding Artin L factors.

Our proof of Theorem 2.6.3.6 is global. One realizes the extension E/F as the

completion of a quadratic extension of number fields K/k, and realizes various repre-

sentations of GLn(E) as local components of cuspidal automorphic representations Π

of GLn(K). On the Galois side, one realizes various representations of the local Weil

group WE as coming from representations Σ of the global Weil group WK . The global

functional equations of L-functions associated to Π and Σ are compared in a way that

a finite number of local gamma factors on each side can be isolated and compared.

This is the content of Chapter Three. The idea behind this global method was carried

out successfully by Cogdell, Shahidi, and Tsai in their proof of the local Langlands

correspondence for symmetric and exterior square epsilon factors in [CoShTs17].

One part of the global argument, called stable equality (Proposition 3.2.2.2), relies

a purely local result, called analytic stability (Proposition 3.2.2.8). Analytic stability

states that the Asai gamma factor of a supercuspidal representation only depends on

its central character, up to highly ramified twist.

The proof of analytic stability is long, and occupies Chapters Four and Five. In

Chapter Five, we apply Shahidi’s local coefficient formula to write the Asai gamma

factor of a supercuspidal representation as a Mellin transform of a partial Bessel

integral. Chapter Four is a detailed analysis of the partial Bessel integral, in particular

its asymptotic expansion. It is through the asymptotic expansion of partial Bessel

integrals that the analytic stability result falls out. A similar asymptotic expansion
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was developed by Cogdell, Shahidi, and Tsai in [CoShTs17], and our approach in

Chapter Four closely follows theirs.

Normalization of Langlands-Shahidi local factors

It should be pointed out that the Langlands parameterization of the semisimple

conjugacy classes in the L-group given in Langlands’ paper Euler Products [La71] is

different from the one we use in this thesis. The parameterization in Euler Prod-

ucts leads to the appearance of contragredients in the local factors occurring in the

Langlands-Shahidi method. Our change in the parameterization will remove the con-

tragredients throughout the theory and is farily formal.

Thus in our notation, the Langlands-Shahidi gamma factor γ(s, π, r, ψ) denotes

what is normally written in the literature as γ(s, π, r∨, ψ). The same goes for the

other local factors. See Theorem 2.2.20.1 and the remarks below it.

The discrepancy comes from the definition of Langlands’ L-function L(s, π, r) in

the unramified case and the choice of Harish-Chandra map: if G is a split group

over a p-adic field k, and π is an unramified representation of G(k), then the Satake

isomorphism attaches to π an unramified character χπ of the k-points of a maximal

k-split torus T of G.

If we let LT be a maximal torus in LG, and X(LT) the additive group of rational

characters of LT, the Harish-Chandra map

Λ : T(k)→ HomZ(X(T),Z) = X(LT)

induces an isomorphism of T(k)/T(Ok) with X(LT), and therefore identifies χπ with

an element Aπ of Homgrp(X(LT),C∗) = LT. Then Langlands defines

L(s, π, r) = det(1− q−sr(Aπ))−1.
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Here q is the number of elements in the residue field of the ring of integers Ok of k.

There are two ways to define Λ. One way is

〈η,Λ(t)〉 = − logq |η(t)|. (η ∈ X(T))

This is how Langlands defines it in Problems in Automorphic Forms [La70]. The

other way is

〈η,Λ(t)〉 = logq |η(t)|.

This is how Langlands defines it in [La71]. Shahidi defines his local factors so that

his local L-functions L(s, π, r) agree with those of Langlands in the case where π is

unramified and Λ is defined in the second way: 〈η,Λ(t)〉 = logq |η(t)|.

We take the opposite definition of Λ, following the convention of [La70]. We do

this so that the Langlands-Shahidi gamma factors will agree with the Artin factors

under the version of the local Langlands correspondence which we state in (2.3.8).

We remark that Euler Products, although it was published a year later than Prob-

lems in Automorphic Forms, is actually earlier material, as it was a monograph based

on lectures given by Langlands at Yale in the spring of 1967.

These adjustments are not serious and do not affect the main results of the

Langlands-Shahidi method in any significant way, nor their proofs. The main differ-

ence is that Shahidi states many results in terms of subrepresentations of parabolically

induced representations, and with our adjustment we must use instead use quotients.

We remark that if HT is the Harish-Chandra map defined in (2.2.16), then our choice

of Λ satisfies Λ = −HT .
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1. THE ARITHMETIC THEORY

In this chapter, we review the theory of local and global Weil groups and their rep-

resentations. Our primary references are [Ta79] and [BuHe06].

1.1 The Weil group of a p-adic field

1.1.1 The basic setting

Let F be a p-adic field, i.e. a finite extension of Qp. Let OF be the integral closure

of Zp in F ; it is a discrete valuation ring whose unique maximal ideal we will denote

by pF . Let $ = $F denote a uniformizer for F . The residue field κ = κF of OF is a

finite field of characteristic p. Let q = qF be the number of elements of κ. We fix an

absolute value | · | = | · |F on F , normalized so that a uniformizer has value q−1.

1.1.2 The maximal unramified extension

Let F be an algebraic closure of F . Let F ur be the maximal unramified extension

of F inside F . The integral closure of OF in F ur is a local ring, whose residue field

κ identifies as an algebraic closure of κ. The Galois group of F ur over F can be

identified with the Galois group over κ over κ.
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1.1.3 Definition of the Weil group and geometric Frobenius

Let IF be the inertia group of F . It is the Galois group of F over F ur. Since the

Galois group of F ur over F identifies with that of κ over κ (1.1.2), we have an exact

sequence of topological groups

1→ IF → Gal(F/F )→ Gal(κ/κ)→ 1.

The local Weil group WF is defined to be the subgroup of those τ ∈ Gal(F/F ) which

induce on κ an automorphism of the form x 7→ xq
n

for some n ∈ Z. Any element of

WF which induces an automorphism of the form x 7→ xq
−1

will be called a geometric

Frobenius. If Φ is a geometric Frobenius of WF , then Φ has infinite order, and WF

is the semidirect product of the inertia group and the cyclic group generated by Φ.

The choice of Φ yields a split exact sequence of groups

1→ IF → WF → Z→ 0

and therefore a bijection of sets WF → IF × Z. We give WF the product topology,

where IF is assumed to have its usual profinite topology, and Z is given the discrete

topology. Then WF is a locally profinite topological group, i.e. a Hausdorff topological

group in which every neighborhood of the identity contains a compact open subgroup.

The topology on WF is defined independently of the choice of Φ.

1.1.4 Galois representations as representations of the Weil group

The topology on WF defined in (1.1.3) is not the induced topology from Gal(F/F ).

However, the inclusion of WF into Gal(F/F ) is continuous with dense image. In fact,

Gal(F/F ) is the profinite completion of WF . Therefore, if (ρ, V ) is a continuous,

finite dimensional, complex representation of Gal(F/F ), then ρ is determined up to

isomorphism by its restriction to WF . Moreover, ρ is irreducible if and only if ρ|WF

is.
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For the rest of (1.1), “representation” will mean “continuous, finite dimensional,

complex representation,” unless specified otherwise. If (ρ, V ) is a representation of

WF , we will say that ρ is a Galois representation if it is the restriction to WF of

a representation of Gal(F/F ).

By an “abstract representation” of a group H, we will mean a group homomor-

phism of π of H into the group GL(V ) of linear automorphisms of a complex vector

space V , where V is not necessarily finite dimensional.

Note that if H is a locally profinite group, for example WF , IF , or Gal(F/F ),

and (ρ, V ) is an abstract representation of H whose underlying space V is finite

dimensional, then ρ is continuous if and only if the kernel of ρ is an open subgroup of

H. This follows from the fact that GL(V ) has a neighborhood of the identity which

contains no nontrivial subgroups.

1.1.5 Weil group norm

If w ∈ WF , then there is a unique integer n such that w induces the automorphism

x 7→ xq
n

on κ. We define the norm ||w|| of w to be qn. This norm is multiplicative

(||ww′|| = ||w|| · ||w′||). The inertia group is the group of norm one elements of WF ,

and an element is a geometric Frobenius (1.1.3) if and only if it has norm q−1.

The norm map is a continuous homomorphism of WF into C∗, i.e. a one dimen-

sional representation. If (ρ, V ) is a representation of WF , and s ∈ C, we may then

define a representation ρ|| · ||s of WF with underlying space V by w 7→ ρ(w)||w||s. If

ρ is irreducible, there always exists an s such that ρ|| · ||s is a Galois representation

(1.1.4) ([BuHe06], Proposition 28.6).

A character of a topological group will always mean a continuous homomorphism

of that group into the multiplicative group of complex numbers. A character χ of WF

will be called unramified if it is trivial on the inertia group. If χ is an unramified

character of WF , then there exists a complex number s such that χ(w) = ||w||s. The
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real part of s is uniquely determined, while the imaginary part of s is determined up

to an integer multiple of 2πi
log q

.

1.1.6 The relative setting

Let E be a finite extension of F . Then F is also an algebraic closure of E,

and we have Eur = EF ur. In this way, we can define the Weil group WE of E

in the same way that we have defined the Weil group of F . In fact, we will have

WE = WF ∩ Gal(F/E), and the inclusion of WF into Gal(F/F ) induces a bijection

of WF/WE onto Gal(F/F )/Gal(F/E).

In particular, [E : F ] = [WF : WE], and if E is a Galois extension of F , then

WF/WE can be identified with the Galois group of E over F .

Just as have we have defined the norm || · || for WF (1.1.5), we also define the

norm for WE. This can be done by simply restricting the norm on WF to WE. Thus

there is no need to distinguish between different norms, e.g. || · ||F or || · ||E.

1.1.7 Definition of local Artin L-functions

Let (ρ, V ) be a representation of WF . Then V IF , the set of v ∈ V which are fixed

pointwise by IF , is a subrepresentation of ρ. If Φ is a geometric Frobenius of WF ,

then ρ(Φ) is well defined as a linear map on V IF , independent of the choice of Φ. The

local Artin L-function is defined by

L(s, ρ) = det(1− q−sF ρ(Φ)|V IF )−1.

It is a nonzero meromorphic function of the complex variable s. In fact, its inverse

is a polynomial in q−s. If ρ is irreducible, then L(s, ρ) = 1 unless ρ is a nontrivial

unramified character, i.e. ρ is one dimensional and trivial on the inertia group.

We remark that Artin originally defined his L-functions the other way, replacing

Φ by its inverse, the arithmetic Frobenius.
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1.1.8 Inductivity and additivity of L-functions

Let H be a subgroup of a group G. If (ρ, V ) is an abstract representation of H, let

IndGH ρ be the representation of G induced by ρ. This is the representation of G whose

underlying space consists of all functions f : G→ V satisfying f(hg) = ρ(h)f(g) for

all g ∈ G and h ∈ H, and G acts on these functions by right translation.

Let E be a finite extension of F . Identify the Weil group of E as a subgroup of

the Weil group of F as in (1.1.6). If (ρ, V ) is a representation of WE, then IndE/F ρ =

IndWF
WE

ρ is continuous as a representation of WF , and we have

L(s, IndE/F ρ) = L(s, ρ).

That is, L-functions are inductive ([Ta79], equation (3.3)). Also, L-functions are

additive, which is to say that if

0→ ρ′ → ρ→ ρ′′ → 0

is an exact sequence of representations of WF , then

L(s, ρ) = L(s, ρ′)L(s, ρ′′).

1.1.9 The abelianized Weil group

Let W ab
F denote the abelianization of WF , i.e. the quotient of WF by the closure of

its derived group. The continuous inclusion of WF into Gal(F/F ) induces a continu-

ous injection of W ab
F into Gal(F/F )ab = Gal(F ab/F ), where F ab denotes the maximal

abelian extension of F inside F .

Actually, the abelianization of W ab
F can be defined directly, without reference to

WF itself. Recall that the Galois group of F ur over F identifies with the Galois group
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of κ over κ, where κ is the residue field of F (1.1.2). We have an exact sequence of

topological groups

1→ Gal(F ab/F ur)→ Gal(F ab/F )→ Gal(κ/κ)→ 1

and W ab
F (or rather, its image inside Gal(F ab/F )) can be defined to be the subgroup

of those τ ∈ Gal(F ab/F ) which induce on κ an automorphism of the form x 7→ xq
n

for some n ∈ Z. Any element of W ab
F which induces an automorphism of the form

x 7→ xq
−1

will be called a geometric Frobenius of W ab
F . If Φ is a geometric Frobenius

of W ab
F , then Φ has infinite order, and W ab

F is the direct product of Gal(F ab/F ur) and

the cyclic group generated by Φ. The choice of Φ yields a split exact sequence of

abelian groups

1→ Gal(F ab/F ur)→ W ab
F → Z→ 0

and therefore an isomorphism of abelian groups W ab
F → Gal(F ab/F ur)× Z. We give

W ab
F the product topology. Then W ab

F is a locally profinite group, and its topology

is defined independently of the choice of Φ. In fact, the topology which we have just

defined on W ab
F is the same as the quotient topology coming from WF .

The topology on W ab
F is not the induced topology from Gal(F ab/F ). However, the

inclusion of W ab
F into Gal(F ab/F ) is continuous with dense image, and Gal(F ab/F )

is the profinite completion of W ab
F .

1.1.10 Local class field theory

By the main results of local class field theory, there exists a unique isomorphism

of topological groups Art = ArtF : F ∗ → W ab
F which sends uniformizers to geometric

Frobenius elements, and such that if E is a finite abelian extension of F , the kernel

of the induced map

F ∗ → W ab
F → Gal(F ab/F )→ Gal(E/F )
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is NE/F (E∗), the image of the norm. We will call this isomorphism the local Artin

map. In more traditional treatments of local class field theory, the local Artin map

is defined to be the composition F ∗
Art−−→ W ab

F → Gal(F ab/F )
x 7→x−1

−−−−→ Gal(F ab/F ).

1.1.11 Identification under the local Artin map

If E is a finite extension of F (not necessarily Galois or abelian), then the ho-

momorphism W ab
E → W ab

F induced by inclusion WE ⊂ WF corresponds to the norm

under the Artin reciprocity map:

E∗ W ab
E

F ∗ W ab
F .

NE/F

ArtE

ArtF

(1.1.11.1)

The norm || · || on WF (1.1.5), being continuous, is well defined as a continuous

homomorphism on W ab
F . One advantage of defining the local Artin map in the way

we have is that the norm on W ab
F is compatible with the normalized absolute value

on F :

||ArtF (x)|| = |x|F . (x ∈ F ∗)

Since the normalized absolute value on E can be defined in terms of the normalized

absolute value on F by |y|E = |NE/F (y)|F , the commutativity of the diagram in

(1.1.11) gives a proof that the restriction to WE of the norm || · || on WF is equal to

the norm on WE, as we have remarked in (1.1.6).

Assume E is a Galois extension of F . Let z ∈ WF , and let τ be the image of z in

WF/WE = Gal(E/F ). Then the diagram

E∗ W ab
E

E∗ W ab
E

τ

ArtE

ιz

ArtF

(1.1.11.2)
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is commutative, where ιz denotes conjugation by z (w 7→ zwz−1).

1.1.12 Self dual measures and Fourier transform

Let dx be a Haar measure on F . Let ψ be a nontrivial additive character of F ,

i.e. a continuous homomorphism of F into C∗. Note that ψ is automatically unitary,

because F is the union of its compact open subgroups. Define C∞c (F ) (resp. C∞c (F ∗))

to be the algebra of locally constant and complex valued functions on F (resp. F ∗)

which vanish outside a compact set. If f ∈ C∞c (F ), the Fourier transform f̂ is an

element of C∞c (F ) defined by

f̂(x) =
∫
F

f(y)ψ(xy) dy.

There is a unique choice of Haar measure on F (depending on ψ) such that the Fourier

inversion formula

ˆ̂
f(x) = f(−x)

holds for all f ∈ C∞c (F ). We will call such a measure self dual (with respect to ψ).

Given ψ, we will always assume that the Haar measure dx on F is chosen to be self

dual.

1.1.13 Local factors for nonarchimedean GL1

Let χ be character of F ∗ = GL1(F ) (assumed always to be continuous, but not

necessarily unitary). We say that χ is unramified if χ is trivial on O∗F , and otherwise

we say χ is ramified. We define the local analytic L-function

L(s, χ) =


(1− q−sχ($))−1 χ unramified

1 χ ramified.
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It is a meromorphic function of the complex variable s. Note that when χ is unram-

ified, χ($) is independent of the choice of uniformizer $.

Let ψ be a nontrivial character of F . Assume the Fourier transform on F is

defined according to the character ψ and the Haar measure dx which is self dual with

respect to ψ (1.1.12). Let d∗x be any Haar measure on F ∗, for example dx
|x| . There is

a meromorphic function ε(s, χ, ψ) of the complex variable s, with the property that

for any f ∈ C∞c (F ∗),

∫
F ∗ f̂(x)χ(x)−1|x|1−s d∗x

L(1− s, χ−1)
= ε(s, χ, ψ)

∫
F ∗ f(x)χ(x)|x|s d∗x

L(s, χ)

([Ta79], equation (3.21)). We call ε(s, χ, ψ) the local epsilon factor. It is a mono-

mial in the variable q−s. We also define the local gamma factor γ(s, χ, ψ) by

γ(s, χ, ψ) =
ε(s, χ, ψ)L(1− s, χ−1)

L(s, χ)
.

The conductor of ψ is defined to be the largest integer d such that ψ is trivial on

p−dF . The conductor of χ is defined to be 0 if χ is unramified, and the smallest

natural number f such that χ is trivial on 1 + pfF if χ is ramified.

Let d and f be the conductors of ψ and χ. Assume that χ is ramified. If we take

the Haar measure d∗x = dx
|x| , then

∫
x∈F ∗

ordp(x)=k

χ(x)|x|sψ(x)d∗x =


γ(s, χ, ψ)−1 if k = −d− f

0 if k 6= −d− f.
(1.1.13.1)

Thus the gamma factor can be calculated formally as an integral

γ(s, χ, ψ)−1 =
∫
F ∗

χ(x)|x|sψ(x)d∗x

even though the right hand side does not converge absolutely.
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1.1.14 Definition of local factors for characters of the Weil group

Let ρ be one dimensional representation of WF , i.e. a character. Then ρ can be

identified with a character of W ab
F , so that χ = Art−1(ρ) is a character of F ∗. Here

Art is the local Artin map of (1.1.10). Then we have

L(s, ρ) = L(s, χ)

where the left hand side was defined in (1.1.7), and the right hand side was defined

in (1.1.13). We define

ε(s, ρ, ψ) = ε(s, χ, ψ)

γ(s, ρ, ψ) = γ(s, χ, ψ)

so that

γ(s, ρ, ψ) =
ε(s, ρ, ψ)L(1− s, ρ−1)

L(s, ρ)
.

1.1.15 The Grothendieck group of WF

If (ρ, V ) is a representation of WF , then ρ need not be semisimple, i.e. V need not

decompose into a direct sum of irreducible representations. However, ρ always has a

composition series, i.e. a sequence 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vr = V of subrepresentations

of ρ such that each quotient representation Vi/Vi−1 is irreducible. We define the

semisimplification ρss of ρ to be the semisimple representation V1/V0⊕· · ·⊕Vr/Vr−1.

Up to isomorphism, it does not depend on the choice of composition series, and ρ is

semisimple if and only if ρ is isomorphic to its semisimplification.

A representation (ρ, V ) of WF is semisimple if and only if the image of a geometric

Frobenius of WF in GL(V ) is diagonalizable ([BuHe06], Proposition 28.7). In fact,

since we are dealing only with representations in characteristic zero, it suffices for a

nonzero power of the image of a geometric Frobenius to be diagonalizable.
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Let R(WF ) be the Grothendieck group of WF , which is the free abelian group on

the isomorphism classes of (continuous, finite dimensional) irreducible representations

of WF . If ρ is a representation of WF , let [ρ] be the image of ρ in R(WF ): by definition,

this is the sum of the classes of the composition factors of ρ. We have [ρ⊕ρ′] = [ρ]+[ρ′],

and more generally if

0→ ρ′ → ρ→ ρ′′ → 0

is an exact sequence of representations of WF , then [ρ] = [ρ′] + [ρ′′]. It follows that

[ρ] = [ρss].

A typical element of R(WF ) is n1[ρ1] + · · ·+ nr[ρr] for irreducible representations

ρi of WF and integers ni. We define the degree of such an element to be n1 + · · ·+nr.

Let E be a finite extension of F . Since IndE/F is an exact functor from the

category of representations of WE to representations of WF , it is well defined as a

function R(WE)→ R(WF ). Then for any representation ρ of WE, we have

IndE/F [ρ] = [IndE/F (ρ)].

1.1.16 Local factors for representations of WF

We have defined the epsilon factor ε(s, ρ, ψ) for one dimensional representations

of WF (1.1.14). More generally, Deligne has shown the existence of epsilon factors for

general representations of WF ([De72]):

Theorem 1.1.16.1. (Deligne) There is a unique function ε which associates to each

finite extension E of F , each nontrivial character ψE of E, and each representation

ρ of WE a meromorphic function ε(s, ρ, ψE) such that:

(i): ε(s, ρ, ψE) = ε(s, χ, ψE) if ρ is a one dimensional representation corresponding

to a character χ of WE as in (1.1.14).

(ii): ε(s, ρ, ψE) is additive in the variable ρ of representations of WE (hence well

defined on R(WE)).



12

(iii): If F ⊂ E ⊂ E ′ are finite extensions of F , and [ρ] ∈ R(WE′) has degree zero,

then

ε(s, [ρ], ψE ◦ TrE′/E) = ε(s, IndE/E′ [ρ], ψE).

(iv): If χ is the character w 7→ ||w||s0 of WE for some complex number s0, and ρ is

a representation of WE, then

ε(s, ρχ, ψE) = ε(s+ s0, ρ, ψE).

The epsilon factor ε(s, ρ, ψE) turns out to always be a monomial in q−sE . Although

epsilon factors are not inductive in general (only in degree zero), there is an induction

formula for them:

λ(E/F, ψ)dim ρε(s, ρ, ψ ◦ TrE/F ) = ε(s, IndE/F (ρ), ψ)

where λ(E/F, ψ) is the Langlands lambda function ([BuHe06], Section 30.4). We

finally define the gamma function γ(s, ρ, ψ) by

γ(s, ρ, ψ) =
ε(s, ρ, ψ)L(1− s, ρ∨)

L(s, ρ)

where ρ∨ is the contragredient of ρ. Like epsilon factors, gamma factors are additive,

and satisfy the inductivity formula:

λ(E/F, ψ)dim ργ(s, ρ, ψ ◦ TrE/F ) = γ(s, IndE/F (ρ), ψ) (1.1.16.1)

for all finite extensions E of F and all representations ρ of WE.
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1.1.17 Tensor induction

Let G be a group, and let H be a subgroup of G which is of index 2. Let z be an

element of G which is not in H. If (ρ, V ) is a representation of H, let (σ, V ⊕ V ) be

the representation of G given by

σ(g)(v, v′) =


(ρ(g)v, ρ(zgz−1)v′) if g ∈ H

(ρ(gz−1)v′, ρ(zg)v) if g 6∈ H.

Up to isomorphism, this representation does not depend on the choice of z, and in

fact this representation is isomorphic to the induced representation IndGH ρ (1.1.8). An

isomorphism is given by sending a function f : G → V satisfying f(hg) = ρ(h)f(g)

to the pair (f(1), f(z)).

Similarly, we define a representation of G with underlying space V ⊗ V by the

formula

g.(v ⊗ v′) =


ρ(g)v ⊗ ρ(zgz−1)v′ if g ∈ H

ρ(gz−1)v′ ⊗ ρ(zg)v if g 6∈ H.

We call this the representation of G obtained from ρ by tensor induction, and

denote it by ⊗ IndGH ρ. Up to isomorphism, it does not depend on the choice of z.

1.1.18 Tensor induction and composition series

Let G, H, and z be as in the last section.

Lemma 1.1.18.1. Let (ρ1, V ) and (ρ2,W ) be representations of H. Define a repre-

sentation δ of G with underlying space (V ⊗W )⊕ (V ⊗W ) by

δ(g).(v ⊗ w, v′ ⊗ w′) =


(ρ1(g)v ⊗ ρ2(zgz−1)w, ρ1(zgz−1)v′ ⊗ ρ2(g)w′) if g ∈ H

(ρ1(gz−1)v′ ⊗ ρ2(zg)w′, ρ1(zg)v ⊗ ρ2(gz−1)w) if g 6∈ H.

Then δ ∼= IndGH ρ1 ⊗ (ρ2 ◦ ιz), where ιz denotes conjugation by z (g 7→ zgz−1).
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Proof: Consider the restriction of δ toH. Then δ|H = (ρ1⊗(ρ2◦ιz))⊕((ρ1◦ιz)⊗ρ2).

Since z2 ∈ H, we have ρ ◦ ιz2 ∼= ρ for any representation ρ of H, and therefore

(ρ1 ◦ ιz)⊗ ρ2
∼= ((ρ1 ◦ ιz)⊗ ρ2) ◦ ιz2

= ((ρ1 ◦ ιz)⊗ ρ2) ◦ ιz ◦ ιz

= ((ρ1 ◦ ιz2)⊗ (ρ2 ◦ ιz)) ◦ ιz
∼= (ρ1 ⊗ (ρ2 ◦ ιz)) ◦ ιz.

This implies that

δ|H ∼= (ρ1 ⊗ ρ2 ◦ ιz)⊕ (ρ1 ⊗ ρ2 ◦ ιz) ◦ ιz

which is exactly the restriction of IndGH ρ1⊗ (ρ2 ◦ ιz) to H (given in the form (1.1.7)).

One checks that these isomorphisms actually intertwine the action of G, not just H.

�

If V is a complex vector space which is equal to a direct sum V1 ⊕ · · · ⊕ Vr, then

V ⊗ V is equal to a direct sum

[
r⊕
i=1

Vi ⊗ Vi]⊕ [
⊕

1≤i<j≤r
(Vi ⊗ Vj)⊕ (Vi ⊗ Vj)].

The same procedure allows us to decompose a representation obtained by tensor

induction:

Lemma 1.1.18.2. Suppose that (ρ, V ) is a representation of H which decomposes as

a direct sum of subrepresentations (ρ1, V1) ⊕ · · · ⊕ (ρr, Vr). Then (⊗ IndGH ρ, V ⊗ V )

decomposes as a direct sum of subrepresentations

⊗ IndGH ρ =
r⊕
i=1

⊗ IndGH ρi ⊕
⊕

1≤i<j≤r
IndGH ρi ⊗ (ρj ◦ ιz).

Proof: This follows from direct computation and applying Lemma 1.1.18.1. �



15

If instead of a direct sum of subrepresentations, we have a filtration of subrep-

resentations of ρ, then we can find a corresponding filtration of subrepresentations

⊗ IndGH ρ as in Lemma 1.1.18.2.

Lemma 1.1.18.3. Suppose that (ρ, V ) is a finite dimensional representation of H.

Let (V1, ρ1), ..., (Vr, ρr) be the composition factors of a composition series of ρ. There

is a sequence of subrepresentations of ⊗ IndGH ρ

0 = L0 ⊂ L1 ⊂ · · · ⊂ V ⊗ V

for which the following representations show up as the quotients Li/Li+1:

⊗ IndGH ρi : 1 ≤ i ≤ r

IndGH ρi ⊗ (ρj ◦ ιz) : 1 ≤ i < j ≤ r.

Proof: Let W be a subrepresentation of V such that V/W is irreducible. Let π

be the quotient map V → V/W , let ρ be the corresponding representation of H on

V/W , and let ρ1 be the representation of H on W . Then (⊗ IndGH , V ⊗V ) has W ⊗W

as a G-stable subspace, with W ⊗W ∼= ⊗ IndGH ρ1.

We will investigate the representation (V ⊗ V )/(W ⊗W ) of G. First, note that

the quotient map π ⊗ π : (V ⊗ V,⊗ IndGH ρ)→ (V/W ⊗ V/W,⊗ IndGH ρ) is a G-linear

map with kernel W ⊗ V + V ⊗W .

We next define a linear map

T : W ⊗ V + V ⊗W → (W ⊗ V/W )⊕ (V/W ⊗W )

as follows: if x ∈ W ⊗ V , and y ∈ V ⊗W , then we set

T (x+ y) = ((1W ⊗ π)(x), (π ⊗ 1W )(y)).
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This is well defined, since W ⊗ V ∩ V ⊗W = W ⊗W . Furthermore, T is surjective

with kernel W ⊗W , and the induced representation on the image of T is easily seen

to be isomorphic to

IndGH ρ⊗ (ρ1 ◦ ιz).

The computation is the same as that for Lemma 1.1.18.1.

We have found subrepresentations

W ⊗W ( W ⊗ V + V ⊗ V ( V ⊗ V

whose quotients are of the form in the statement of the lemma. If W is irreducible,

we are done. If W is not irreducible, then we take a subrepresentation W0 of W

such that W/W0 is irreducible, and iterate the same procedure with the inclusion

W0 ⊗W0 ⊆ W ⊗W . �

We finally note that tensor induction commutes with taking the contragredient.

Lemma 1.1.18.4. Suppose that (ρ, V ) is a representation of H. Let (ρ∨, V ∗) be the

contragredient representation of H, where V ∗ = HomC(V,C) is the dual space of V .

Then

⊗ IndGH(ρ∨) ∼=
Ä
⊗ IndGH ρ

ä∨
.

Proof: The underlying space of the first representation is V ∗ ⊗ V ∗, while the

underlying space of the second representation is (V ⊗ V )∗. An isomorphism of these

vector spaces is defined by sending an elementary tensor v∗⊗w∗ to the linear functional

on V ⊗ V defined by

v ⊗ w 7→ 〈v∗, v〉〈w∗, w〉.

It is immediate that this isomorphism intertwines the action of G. �
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1.1.19 Tensor induction and twisting by characters

If η is a character of H, and ρ is a representation of G, then ⊗ IndGH η is a character

of G, and

⊗ IndGH(ρη) = (⊗ IndGH ρ)(⊗ IndGH χ).

Let E/F be a quadratic extension of p-adic fields. Identify the Weil group WE of E

as a subgroup of index two of WF (1.1.6). If ρ is a representation of WE, we will write

⊗ IndE/F ρ instead of ⊗ IndWF
WE

ρ.

Lemma 1.1.19.1. Let E/F be a quadratic extension of p-adic fields. Let ρ be a

character of the Weil group WE.

(i): If ρ is an unramified character of WE, then ⊗ IndE/F ρ is an unramified

character of WF . More specifically, if || · || is the Weil group norm, and ρ = || · ||s0

for a complex number s0, then ⊗ IndE/F ρ = || · ||2s0.

(ii): The character ⊗ IndE/F ρ can be made highly ramified by choosing ρ to be

highly ramified.

Proof: (i) is a straightforward computation, and (ii) can be seen by identifying

W ab
F and W ab

E with F ∗ and E∗ via local class field theory. One uses the fact that

the homomorphism W ab
E → W ab

F coming from the inclusion map WE ⊂ WF identifies

with the norm E∗ → F ∗. �

1.2 The Weil-Deligne group of a p-adic field

As in the previous section, every representation of a locally profinite group will be

assumed to be finite dimensional, complex, and continuous. Let F be a p-adic field.

Recall that a representation of Gal(F/F ) is completely determined by its restriction

to the local Weil group WF . The class of representations of the Galois group is

therefore a subset of the class of representations of the Weil group.

In order to formulate the local Langlands correspondence, which relates the finite

dimensional representations of this chapter to (usually infinite dimensional) represen-
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tations of reductive groups, it will be necessary to further expand the class of finite

dimensional representations which we will consider. The natural way to do this is by

extending the Weil group WF to a larger group called the Weil-Deligne group.

1.2.1 Definition of the Weil-Deligne group

Let G be a profinite group, and let R be the ring of locally constant functions from

G to Q. Then R is a zero dimensional ring, and g 7→ {f ∈ R : f(g) = 0} defines a

homeomorphism of G onto SpecR. In this way, G is naturally an affine group scheme

over Q with global section R.

Let F be a p-adic field, and let WF be the Weil group of F . Each coset of the

inertia group IF in WF is a scheme over Q, being isomorphic to IF . Since WF is the

disjoint union of these cosets, we can regard WF as a scheme over Q. In fact, the

group structure of WF makes WF into a group scheme over Q.

Let Ga be the additive group over Q. We define the Weil-Deligne group W ′
F of

F to be the Q-group scheme Ga oWF , where WF acts on Ga by w.x = ||w||x. The

Weil-Deligne group is neither affine nor of finite type.

1.2.2 Representations of the Weil-Deligne group

The group of C-rational points W ′
F (C) = HomQ(SpecC,W ′

F ) can be identified

with the semidirect product of C by W ′
F , where WF acts on C by w.x = ||w||x.

Actually, we will always identify W ′
F with its C-rational points.

Let V be a finite dimensional complex vector space. The following three objects

are in bijective correspondence, and can be naturally identified:

• A morphism of group schemes W ′
F ×Q SpecC→ GL(V ).

• A group homomorphism C oWF → GL(V ) whose restriction to WF is contin-

uous, and whose restriction to C is a morphism of varieties.
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• A pair (ρ,N), where ρ is a (continuous, finite dimensional, complex) represen-

tation of WF with underlying space V , and N is a nilpotent linear operator on

V such that ρ(w)Nρ(w)−1 = ||w||N for all w ∈ WF .

Any of these three objects will be called a representation of W ′
F . We will explain the

equivalence of the second and third notions. Given ρ and N of the third description,

we extend ρ to a homomorphism on W ′
F = CoWF by sending (x,w) to exp(xN)ρ(w).

Given a homomorphism ρ′ : W ′
F → GL(V ) of the second description, we first let ρ

be the restriction of ρ′ to WF . The restriction of ρ′ to C, being a one parameter

subgroup of the complex Lie group GL(V ), must be of the form x 7→ exp(xN) for a

unique linear operator N of V . But being a morphism of varieties, the series defining

exp(xN) must also be a polynomial in x, so N must be nilpotent.

In light of these equivalences, we can say that a representation of WF is the same

thing as a representation of W ′
F whose nilpotent operator is zero. Since the kernel of

the nilpotent operator is WF -stable, it is clear that a representation of W ′
F is never

irreducible unless it is actually just a representation of WF , i.e. its nilpotent operator

is zero.

1.2.3 Operations on Weil-Deligne representations

If (ρ′, V ) is a representation of W ′
F = C oWF , we have shown in the previous

section that we can identify ρ′ with the triple (ρ, V,N), where ρ = ρ′|WF
, and N is

the derivative at x = 0 of the map x 7→ ρ′|C(x). If an operation is applied to ρ′

(direct sum, tensor product, contragredient), it is useful to to know the underlying

Weil representation and nilpotent operator.

Let ρ′1 = (ρ1, V1, N1) and ρ′2 = (ρ2, V2, N2) be two representations of W ′
F . Then

we have

ρ′1 ⊕ ρ′2 = (V1 ⊕ V2, ρ1 ⊕ ρ2, N1 ⊕N2)

ρ′1 ⊗ ρ′2 = (V1 ⊗ V2, ρ1 ⊗ ρ2, N1 ⊗ 1 + 1⊗N2)
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ρ′∨1 = (ρ∨1 , V
∗,−N∨1 )

where ∨ denotes the contragredient.

1.2.4 The special representations Sp(m)

For m ≥ 1, define Sp(m) to be the following m-dimensional representation of

W ′
F : the underlying space is the m dimensional vector space Ce0 ⊕ · · · ⊕ Cem−1, the

underlying representation of WF is given by w.ei = ||w||iei, and the nilpotent operator

N is given by

Nei =


ei+1 if i 6= m− 1

0 if i = m− 1.

If (ρ, V ) = (ρ, V, 0) is a representation of WF , then ρ ⊗ Sp(m) can be thought of in

the following way: the underlying Weil representation is the direct sum

(ρ⊕ ρ|| · || ⊕ · · · ⊕ ρ|| · ||m−1,
m−1⊕
i=0

V )

and the nilpotent operator is given by

(v0, ..., vm−2, vm−1) 7→ (0, v1, ..., vm−2).

1.2.5 Classification of Weil-Deligne representations

A representation of W ′
F is said to be Frobenius semisimple if its restriction to

WF is semisimple. A representation of W ′
F is said to be indecomposable if it cannot

be written as a direct sum of two proper subrepresentations.

Every indecomposable, Frobenius semisimple representation ρ′ of W ′
F is isomor-

phic to ρ ⊗ Sp(m) for an irreducible representation ρ of WF and a positive integer

m. It is a represention of WF (in the sense that the nilpotent operator is zero) if and

only if m = 1. The class of ρ and the integer m are determined by ρ′.
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If ρ′ is a representation of W ′
F which is Frobenius semisimple, then there exist

irreducible representations ρ1, ..., ρr of WF and positive integers m1, ...,mr such that

ρ′ = ρ1 ⊗ Sp(m1)⊕ · · · ⊕ ρr ⊗ Sp(mr).

The pairs (ρi,mi) are uniquely determined.

1.2.6 Induced representations

Let E be a finite extension of F . As usual, we will consider WE as a subgroup

of WF (1.1.6). Since the norm on WF restricts to the norm on WE, the inclusion

homomorphism of WE into WF induces an inclusion homomorphism of W ′
E into W ′

F .

We have [W ′
F : W ′

E] = [E : F ].

Let ρ′ = (ρ, V,N) be a representation of W ′
E. Consider the induced representa-

tion Ind
W ′F
W ′E

ρ′ of W ′
F , and an element f : W ′

F → V of the underlying space of this

representation. Since for x ∈ C, we have

f(x) = exp(xN)f(1W ′F )

we see immediately that f 7→ f |WF
defines an isomorphism of WF -representations

Ind
W ′F
W ′E

ρ′ → IndWF
WE

ρ.

We can then identify Ind
W ′F
W ′E

ρ′ with the representation IndE/F ρ of WF , together with

the nilpotent operator T given by (T · f)(w) = exp(||w||N)f(w). We will write

IndE/F ρ
′ instead of Ind

W ′E
W ′F

ρ′.
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1.2.7 Local factors for Weil-Deligne representations

Let ρ′ = (ρ, V,N) be a Frobenius semisimple representation of W ′
F . Then ρN =

KerN is a subrepresentation of ρ. We define the L-function and epsilon factor by

L(s, ρ′) = L(s, ρN)

ε(s, ρ′, ψ) = ε(s, ρ, ψ)
L(1− s, ρ∨)
L(s, ρ)

L(s, ρ′)

L(1− s, ρ′∨)
.

Here ψ is a nontrivial character of F , and the factors on the right hand side were

defined in (1.1.7) and (1.1.16). The epsilon factor remains a monomial in q−s. The

gamma factor is again defined by

γ(s, ρ′, ψ) =
ε(s, ρ′, ψ)L(1− s, ρ′∨)

L(s, ρ′)
.

Notice that γ(s, ρ′, ψ) = γ(s, ρ, ψ). That is, the gamma factor depends only on the

underlying Weil representation.

Example 1.2.7.1. Let ρ be a representation of WF . Consider the representation

ρ ⊗ Sp(m) of W ′
F . The underlying space of this representation is the direct sum of

m copies of V , as in (1.2.4). We see that the kernel of the nilpotent operator is the

representation (ρ|| · ||m−1, V ) of WF , so

L(s, ρ⊗ Sp(m)) = L(s, ρ|| · ||m−1) = L(s+m− 1, ρ).

1.2.8 Inductivity and additivity for Weil-Deligne representations

If ρ′1, ρ
′
2 are representations of W ′

F , then

L(s, ρ′1 ⊕ ρ′2) = L(s, ρ′1)L(s, ρ′2)

ε(s, ρ′1 ⊕ ρ′2), ψ) = ε(s, ρ′1, ψ)ε(s, ρ′2, ψ).
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However, these factors are not additive over short exact sequences. On the other

hand, the gamma factors are additive, i.e. if

0→ ρ′1 → ρ′2 → ρ′3 → 0

is an exact sequence of representations of W ′
F , then

γ(s, ρ′2, ψ) = γ(s, ρ′1, ψ)γ(s, ρ′3, ψ).

This is because the gamma factor only depending on the underlying representation of

WF (1.2.7), and the gamma factor of a Weil representation is additive. L-functions of

Weil-Deligne representations are inductive, and gamma and epsilon factors of Weil-

Deligne representations satisfy the same inductivity rule as Weil representations. If

ρ′ is a representation of W ′
E for a finite extension E of F , then

L(s, IndE/F ρ
′) = L(s, ρ′)

λ(E/F, ψ)dim ρ′ε(s, ρ′, ψ ◦ TrE/F ) = ε(s, IndE/F (ρ′), ψ)

λ(E/F, ψ)dim ρ′γ(s, ρ′, ψ ◦ TrE/F ) = γ(s, IndE/F (ρ′), ψ)

where λ(E/F, ψ) is the Langlands lambda function (1.1.6).

1.2.9 Weil-Deligne representations as representations of WF × SL2(C)

There is another way to think of Frobenius semisimple Weil-Deligne representa-

tions which is useful in considering tempered representations (see 1.2.10). If ρ′ =

(ρ, V,N) is a Frobenius semisimple representation of W ′
F , there are unique elements

h, f ∈ End(V ) such that ρ(w)fρ(w)−1 = ||w||−1f and ρ(w)hρ(w)−1 = h for all

w ∈ WF , and such that N, h, f form an sl2-triple, which is to say:

[h,N ] = 2N [h, f ] = −2f [N, f ] = h
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where [X, Y ] = XY − Y X. We construct a representation τ of WF × SL2(C) by

defining

τ(w) = exp(
−v(w)

2
log(q)h)ρ(w) (w ∈ WF )

where v(w) = − logq ||w||, and defining τ |SL2(C) to be the unique complex analytic

representation of SL2(C) whose tangent space map is given byÖ
0 1

0 0

è
7→ N

Ö
1 0

0 −1

è
7→ hÖ

0 0

1 0

è
7→ f.

If τ is a representation of WF ×SL2(C) whose restriction to SL2(C) is algebraic, then

we can recover ρ′ = (ρ, V,N) by

ρ(w) = τ(w,

Ö
||w|| 12

||w||− 1
2

è
) , N = dτ

Ö
0 1

0 0

è
.

Proposition 1.2.9.1. ρ′ 7→ τ defines a bijection from Frobenius semisimple rep-

resentations of W ′
F to representations of WF × SL2(C) whose restriction to WF is

continuous, whose restriction to SL2(C) is algebraic, and for which the image of a

geometric Frobenius is semisimple.

Proof: This is essentially the Proposition of Section 6 of [Ro94]. �
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1.2.10 Tempered and square integrable Weil-Deligne representations

Let ρ′ = ρ ⊗ Sp(m) be an indecomposable Frobenius semisimple representation

of W ′
F , for ρ an irreducible representation of WF and m ≥ 1. We will say that ρ′ is

square integrable if det(ρ|| · ||m−1
2 ) is a unitary character of WF .

If ρ′ is an arbitrary Frobenius semisimple representation of W ′
F , we will say that

ρ′ is tempered if all its indecomposable constituents are square integrable.

Lemma 1.2.10.1. If ρ′ is tempered, then so is its contragredient, and L(s, ρ′) has no

poles for Re(s) > 0.

Proof: We may assume that ρ′ is square integrable, and write ρ′ = ρ⊗ Sp(m) for

an irreducible representation (ρ, V ) of WF , and an integer m ≥ 1. If we write ρ′∨ in

the form ρ⊗ Sp(n) for some representation ρ of WF , we see that n = m and ρ must

be equal to ρ∨|| · ||−(m−1). Then

ρ|| · ||
m−1

2 = ρ∨|| · ||−
m−1

2 = (ρ|| · ||
m−1

2 )∨

which has unitary composition with the determinant since its contragredient ρ||·||−m−1
2

has unitary composition with the determinant by assumption. This shows that ρ′∨ is

square integrable and hence tempered. As for the L-function, we have

L(s, ρ′) = L(s, ρ|| · ||m−1) = L(s+
m− 1

2
,Σ)

where Σ = ρ|| · ||m−1
2 is a representation of WF such that det ◦Σ is unitary. If Σ has

dimension greater than one, or if Σ has dimension one but is not trivial on the inertia

group, the L-function is identically 1 and we are done. Otherwise, Σ is an unramified

character of WF , Σ(Φ) lies on the unit circle for Φ a geometric Frobenius, and

L(s,Σ)−1 = (1− q−sΣ(Φ))
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We see that L(s,Σ)−1 cannot have a zero with Re(s) > 0. Hence L(s,Σ) has no pole

with Re(s) > 0. This implies L(s, ρ′) = L(s+m−1
2
,Σ) has no pole with Re(s) > −m−1

2
,

and hence no pole with Re(s) > 0. �

There is a criterion for a representation to be tempered using representations of

WF × SL2(C).

Theorem 1.2.10.2. Let ρ′ be a Frobenius semisimple representation of W ′
F , and let

τ be the corresponding representation of WF × SL2(C). The following are equivalent:

(i): ρ′ is tempered. (ii): The image of WF under τ is bounded. (iii): The image

of a geometric Frobenius under τ has all its eigenvalues on the unit circle.

Proof: This is proved in 5.2.2 of [Ku94]. �

1.2.11 Tensor induction preserves temperedness

Assume that E is a quadratic extension of F . Let z be an element of WF which

is not in WE, so z is an element of W ′
F which is not in W ′

E.

Let ρ′ = (ρ, V,N) be a Frobenius semisimple representation of W ′
E. Recall the

definition of tensor induction (1.1.17). Then ⊗ IndE/F ρ
′ := ⊗ Ind

W ′F
W ′E

ρ′ is a repre-

sentation of W ′
F . Its underlying Weil representation is (⊗ IndE/F ρ, V ⊗ V ), and the

nilpotent operator T is easily seen to be N ⊗ 1 + 1 ⊗ ||z||N , where z is the chosen

element of WF , not in WE, which defines ⊗ IndE/F ρ.

Proposition 1.2.11.1. The tensor induced representation ⊗ IndE/F ρ
′ is Frobenius

semisimple. If ρ′ is tempered, then so is ⊗ IndE/F ρ
′.

Proof: Recall that for a Weil-Deligne representation to be Frobenius semisimple,

it is necessary and sufficient that a nonzero power of a geometric Frobenius element

define a semisimple linear operator (1.1.15). If Φ is a geometric Frobenius of WF ,

then Φ2 is a power of the geometric Frobenius of WE, and it suffices to show that Φ2

defines a semisimple linear operator of V ⊗ V . The representation ⊗ IndE/F ρ
′ of WF

applied to Φ2 is

ρ(Φ2)⊗ ρ(zΦ2z−1)
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which is semisimple because ρ and hence ρ(Φ2) and ρ(zΦ2z−1) are semisimple.

Suppose that ρ′ is tempered. There exist h, f ∈ End(V ) as in (1.2.9) such that

N, h, f form an sl2-triple, whereN is the nilpotent operator of ρ′. Let Ψ be a geometric

Frobenius of WE. By the Theorem of 1.2.10, we know that all the eigenvalues of

exp(−1

2
log(qE)h)ρ(Ψ)

lie on the unit circle.

The nilpotent operator of ⊗ IndE/F ρ
′ is T = N ⊗1 + 1⊗||z||N , and it is straight-

forward to check that if we define

H = h⊗ 1 + 1⊗ h

F = f ⊗ 1 + 1⊗ ||z||−1h ∈ End(V ⊗ V )

then T,H, F form an sl2 triple in End(V ⊗ V ) and satisfy the required relations of

(1.2.9). Then if Φ is any geometric Frobenius of WF , we are done by the Theorem of

1.2.10 if we can show that all the eigenvalues of the operator

exp(−1

2
log(qF )H)Φ

on V ⊗ V lie on the unit circle. Since H and Φ commute with each other, it will

actually suffice to show that the eigenvalues of

exp(−1

2
log(qF )H)lΦl

lie on the unit circle, where l is a positive integer. If E/F is ramified, then qE = qF

and we can take Φ = Ψ and l = 1, so that

exp(−1

2
log(qF )H)lΦl = exp(−1

2
log(qE)h)Ψ⊗ exp(−1

2
log(qE)h)Ψ
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which is unitary. If E/F is unramified, then qE = q2
F , Ψ = Φ2 is a geometric Frobenius

for WE, and we take l = 4:

exp(−1

2
log(qF )H)lΦl = exp(−1

2
log(qE)H)2Ψ2

= (exp(−1

2
log(qE)H)Ψ)2

=

Ç
exp(−1

2
log(qE)h)Ψ⊗ exp(−1

2
log(qE)h)Ψ

å2

which is unitary. �

1.3 The Weil group of an archimedean local field

1.3.1 Definition of the Weil group

Suppose that k is an archimedean local field, so that k ∼= C. If k is real, we take

the local Weil group Wk to be the topological group k
∗ ∪ jk∗, where j2 = −1, and

jxj−1 = σ(x), where σ is the nontrivial element of Gal(k/k). We have a continuous

surjective homomorphism Wk → Gal(k/k) sending j to σ, and everything else to 1k.

If k is complex, then we take Wk to be k
∗
. The Galois group Gal(k/k) is trivial,

and we have a continuous surjective homomorphism Wk → Gal(k/k) defined in the

only possible way, taking everything to 1k.

This defines the Weil group of an archimedean local field k. There is no analogue

of a Weil-Deligne group in the archimedean case. For uniformity of notation, we will

define the Weil-Deligne group W ′
k of an archimedean local field to just be the Weil

group Wk.

1.3.2 Archimedean and nonarchimedean Weil groups

If k is any local field of characteristic zero, and k is an algebraic closure of k, then

we have defined in all cases (k nonarchimedean, real, complex) a local Weil group

Wk together with a continuous homomorphism Wk → Gal(k/k) with dense image.
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If K is a finite extension of k (if k is archimedean, then either K = k or K = k),

and we can define a Weil group of WK by taking the preimage of Gal(k/K) under

Wk → Gal(k/K).

1.3.3 Local factors for representations of the archimedean Weil group

Suppose again that k is archimedean. The (continuous, finite dimensional, com-

plex) irreducible representations of Wk are completely classified. When k is complex,

every irreducible representation of Wk
∼= C∗ is just a character of C∗. When k is real,

the irreducible representations of Wk are either one or two dimensional.

The irreducible representations of Wk being completely classified, one then obtains

a classification of all semisimple representations of Wk.

We refer to Knapp ([Kn94]) for the definition of the L-function L(s, ρ) and epsilon

factor ε(s, ρ, ψ) associated to a semisimple representation ρ and nontrivial additive

character ψ of k. These factors are additive over short exact sequences of semisimple

representations and satisfy inductivity formulas: if K is a finite extension of k, ρ is a

representation of WK , and ψ is a nontrivial unitary character of k, then

L(s, ρ) = L(s, IndK/k ρ)

ε(s, ρ, ψ ◦ TrK/k)λ(K/k, ψ)ε(s, IndK/k ρ, ψ)

where λ(K/k, ψ) is the Langlands lambda function for real groups. Just as in the

nonarchimedean case, the local gamma factor is defined by

γ(s, ρ, ψ) =
ε(s, ρ, ψ)L(1− s, ρ∨)

L(s, ρ)
. (1.3.3.1)

1.4 The Weil group of a number field

Our main reference for this section is [Ta79].
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1.4.1 Essential properties of the global Weil group

Let k be a number field. The construction of the global Weil group Wk is more

complicated than the construction of a local Weil group, and is not important for our

purposes. We refer to [Ta79] for a proof of this construction.

The essential property of the global Weil group is that it is a Hausdorff topological

group Wk, together with a continuous homomorphism ϕ : Wk → Gal(k/k) with dense

image, and an isomorphism rk : A∗k/k∗ → W ab
k , where Ak is the ring of adeles of

k, and W ab
k is the abelianization of Wk. For each finite extension K of k, WK =

ϕ−1 Gal(k/K) is a Weil group of K, which is equipped with an isomorphism rK :

A∗K/K∗ → W ab
K which is compatible with rk via the “transfer homomorphism” (see

the first section of [Ta79]).

1.4.2 Connection between the global Weil group Wk and the local Weil

groups Wkv

For each place v of k, choose an algebraic closure kv of kv and an embedding

iv : k → kv of algebraic closures. Then iv induces an injection Gal(kv/kv)→ Gal(k/k)

defined by τ 7→ i−1
v ◦ τ ◦ iv.

Define the Weil group Wkv as in either (1.3.1) or (1.1.3), depending on whether v

is archimedean or not, together with the map Wkv → Gal(kv/kv).

There exists a continuous homomorphism θv : Wkv → Wk, unique up to inner

isomorphism by an element of Kerϕ, such that the diagram

Wk Gal(k/k)

Wkv Gal(kv/kv)

ϕ

θv

is commutative ([Ta79], Proposition 1.6.1).
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1.4.3 L and epsilon factors for the global Weil group

For each place v of k, let θv be as in (1.4.2). If Σ : Wk → GL(V ) is a representation

of Wk (assumed as usual to be continuous, finite dimensional, and complex), let

Σv = Σ ◦ θv, the “restriction of Σ to Wkv .” Define the global L-function and epsilon

factor

L(s,Σ) =
∏
v

L(s,Σv)

ε(s,Σ) =
∏
v

ε(s,Σv,Ψv)

where Ψ = ⊗Ψv is any nontrivial character of Ak/k. For a given character Ψ, the

local epsilon factor ε(s,Σv,Ψv) will be equal to 1 at almost all places v, and their

product ε(s,Σ) will not depend on the choice of Ψ.

The infinite product defining the global L-function will converge to an analytic

function of s in some right half plane. Moreover, L(s,Σ) admits a meromorphic

continuation to the entire complex plane satisfying the functional equation

L(s,Σ) = ε(s,Σ)L(1− s,Σ∨)

where Σ∨ is the contragredient of Σ ([Ta79], Theorem (3.5.3)). Note that L(s,Σ∨) =∏
v
L(s,Σ∨v ).

1.4.4 Global Weil groups in the relative setting

Suppose that K is a quadratic extension of k. Then WK = ϕ−1 Gal(k/K) is a

Weil group of K, WK is a normal subgroup of Wk, and we can identify the quotient

Wk/WK with the Galois group Gal(K/k). For the rest of this section, let us choose

once and for all an element Z in Wk which is not in WK , and let σ̃ = ϕ(Z).

For each place v of k, the embedding iv : k → kv determines a place w of K which

lies over v: the completion Kw is the composite field iv(K)kv, in which iv embeds K

as a dense subfield.
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If kv is properly contained in Kw, then w is the only place of K lying over v. If

not, then there is another place w′ which also lies over v, which we now describe: just

as Kw = kv, together with the embedding iv : K → Kw, is the completion of K at the

place w, we also have that Kw′ = kv, together with the embedding iv◦σ̃−1 : K → Kw′ ,

is the completion of K at the place w′.

1.4.5 Connection between the global Weil group WK and the local Weil

groups WKw

For each place v of k, we have a place w of K lying over v, determined by the

embedding iv : kv → k. Given our Weil group Wkv → Gal(kv/kv) (1.3.2), we can

define the Weil group WKw of Kw as usual to be the preimage of Gal(kv/Kw) under

this last map, so that [Kw : kv] = [Wkv : WKw ].

1.4.6 Splitting of places in K/k

We had fixed a continuous homomorphism θv : Wkv → Wk, defined in (1.4.2),

satisfying a compatability property and unique up to inner isomorphism by Ker θ.

Now for the place w lying over v, determined by the embedding iv : k → kv (1.4.4),

we do the same for WKw and WK . We do this simply by taking θw : WKw → WK to

be the restriction of θv to WKv .

Suppose that w is not the only place of K which lies over v. Let w′ be the other

one. Then the map iw′ = iv ◦ σ̃−1 : k → kv gives an embedding of algebraic closures

of K,Kw′ respectively, through which we obtain a homomorphism Gal(kv/Kw′) →

Gal(k/K). Then we may take θw′ : WKw′
→ WK to be the homomorphism given by

θw′(x) = Zθw(x)Z−1. We see immediately that the diagram

WK Gal(k/K)

WKw′
Gal(kv/Kw′)

ϕ

θw′
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is commutative. Of course, under our identifications, Kw = Kw1 = kv, and WKw =

WKw1
= Wkv .

The point of doing all of this is that in terms of the fixed homomorphisms θv :

v a place of k, and the choice of Z ∈ Wk −WK , we now have for every place of K a

homomorphism θw : WKw → WK as in (1.4.2).

1.4.7 Tensor induction when K/k does not split at v

Now suppose that (Σ, V ) is a representation of the global Weil group WK . We

will consider the tensor induced representation (⊗ IndK/k Σ, V ⊗V ) of the global Weil

group Wk (1.1.7) defined by our choice of Z ∈ Wk (1.4.4).We recall that ⊗ IndK/k Σ

is defined by

w.(v ⊗ v′) =


Σ(w)v ⊗ Σ(ZwZ−1)v′ if w ∈ WK

Σ(wZ−1)v′ ⊗ Σ(Zw)v if w 6∈ WK .

We will consider the restriction (⊗ IndK/k Σ)v of this representation of Wk to various

Wkv .

Let v be a place of k, and let w be the place of K lying over v as in (1.4.4).

Suppose first that kv = Kw, so that there is another place w′ of K which lies over

k. Then the image of θv is contained in WK , and the representation (⊗ IndK/k Σ)v of

Wkv is given by

a.(v ⊗ v′) = Σ(θv(a))v ⊗ Σ(Zθv(a)Z−1)v′

for all a ∈ Wkv . But recall that under our identifications (1.4.6), Wkv = WKw = WKw′
,

θv = θw, and ιZ ◦ θv = θw′ , where ιZ denotes conjugation by Z. Therefore, we have

(⊗ IndK/k Σ)v = Σw ⊗ Σw′

whenever there are two distinct places w and w′ lying over v.
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1.4.8 Tensor induction when K/k splits at v

We remain in the setting of (1.4.7), but now suppose that w is the only place of

K lying over v, so that [Kw : kv] = 2. If a ∈ Wkv , then θv(a) lies in WK if and only if

a is in WKw . Consequently, (⊗ IndK/k Σ)v is given for a ∈ Wkv by

a.(v ⊗ v′) =


Σ(θw(a))v ⊗ Σ(Zθw(a)Z−1)v′ if a ∈ WKw

Σ(θv(a)Z−1)v′ ⊗ Σ(Zθv(a))v if a 6∈ WKw .

Let z be any element of Wkv which is not in WKw . Then θv(z) is an element of Wk

which is not in WK . Consequently, θv(z)Z−1 lies in WK , and the map v ⊗ v′ 7→

v ⊗ Σ(θv(z)Z−1)v′ defines an isomorphism

(⊗ IndK/k Σ)v
∼=−→ ⊗ IndKw/kv Σw.
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2. THE ANALYTIC THEORY

In the previous chapter we summarized what we needed from the Galois side. In this

chapter, we do the same on the analytic side. In Section 1, we define the Langlands

dual group of a reductive group, and explain the conjectural objects associated to

its representations. In Section 2, we give a summary of what we will need from

the Langlands-Shahidi method. In Section 3, we give an exposition of the Bernstein-

Zelevinsky (BZ) classification of smooth, irreducible representations of GLn(k), where

k is a p-adic field. We also summarize the local Langlands correspondence for GLn

and explain how arbitrary Frobenius semisimple representations of the Weil-Deligne

group are built out of irreducible representations in the same way that arbitrary

smooth, irreducible representations of GLn are built out of supercuspidals from the

BZ-classification.

In Section 4, we apply the Langlands-Shahidi method in the setting of Weil re-

striction of scalars. As far as we know, the content of Section 4 has not been written

down anywhere in published form, although it is surely known to the experts. Section

5 is an application of the result of Section 4, where we show that certain local factors

showing up in the multiplicativity formula for Asai representations are really Rankin

products.

Finally in Section 6 we define the Asai representation and state our main result,

the equality of the local Asai epsilon factor as defined by the Langlands-Shahidi

method, with the expected epsilon factor on the Galois side via the local Langlands

correspondence. We prove the multiplicativity formula for the Asai gamma factors.

We remark that the equality of the local Asai L-function with the expected L-

function on the Galois side is already a theorem due to Henniart. In fact, Henniart

had shown that the Asai gamma factors were equal up to a root of unity. In Section 7

we explain Henniart’s argument. Our approach to proving our main theorem will be
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to show the exact equality of the gamma factors. On account of Henniart’s result of

the equality of L-factors, we will get the equality of epsilon factors as a consequence.

2.1 The Langlands dual group

The Langlands dual group, or L-group, is a complex Lie group associated to a

connected, reductive group. It is used in defining L-functions, epsilon factors, and

gamma factors on the analytic side. In this section, we explain how the L-group is

defined and state some of its associated properties and conjectures. Our primary

reference for this section is [Bo79].

2.1.1 Based root data

Let G be a connected, reductive group, defined and quasi split over a field k. Let

S be a maximal k-split torus of G, T = ZG(S) a maximal torus of G which is defined

over k, and B a Borel subgroup of G which is defined over k and contains T.

Let X(T) be the group of rational characters of T, and X∨(T) the group of

rational cocharacters of T. Let Φ = Φ(G,T) be the set of roots of T in G, and Φ∨ =

Φ∨(G,T) the set of coroots of T in G. Then the quadruple (X(T),Φ, X∨(T),Φ∨) is

a root datum. The group G is determined up to k-isomorphism by its root datum.

The choice of the Borel subgroup B determines a set ∆ of simple roots for Φ and a

set ∆∨ of simple coroots of Φ∨. Then the sextuple R = (X(T),Φ,∆, X∨(T),Φ∨,∆∨)

is a based root datum.

2.1.2 Root vectors and splitting

For each root α ∈ Φ, let Uα be the corresponding root subgroup. A root vector

for α is an isomorphism xα : Ga → Uα of algebraic groups over k.

A splitting is a collection xα : α ∈ ∆ of simple root vectors. The group

Aut(G,B,T) of k-automorphisms of G which stabilize B and T acts on the set
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of splittings. Given a splitting xα : α ∈ ∆, the group Aut(G,B,T,xα : α ∈ ∆) of

automorphisms in Aut(G,B,T) which fix the splitting is isomorphic to the group of

automorphisms of the based root datum R.

Furthermore, Aut(G) is the semidirect product of the group of inner automor-

phisms of G and Aut(G,B,T, xα : α ∈ ∆) ([Sp79], 2.14).

2.1.3 Definition of the L-group

Let Γ be the Galois group Gal(ks/k), where ks is a separable closure of k. For

each finite Galois extension K of k, let ΓK = Gal(K/k). Then Γ acts as a group of

automorphisms on X(T) and X∨(T), and in fact acts as a group of automorphisms

on the based root datum R and its dual R∨ = (X∨(T),Φ∨,∆∨, X(T),Φ,∆).

Let G∨ be a connected, reductive group over C, with Borel subgroup B∨ con-

taining a maximal torus T∨, whose based root datum is isomorphic to R∨. Let

xα∨ : α∨ ∈ ∆∨ be a splitting for this based root datum. The choice of this splitting

gives an injection of AutR∨ into Aut(G∨,B∨,T∨), as explained in the previous sec-

tion. In this way, the Galois group Γ acts as a group of automorphisms of G∨ which

stabilize B∨ and T∨.

The Langlands dual group, or L-group, LG is defined to be the semidirect

product of G by Γ according to this action. It is a complex Lie group with connected

component LG◦ = G∨. Up to Γ-isomorphism, it does not depend on any of the

choices we have made for B,T,G∨,B∨,T∨ or the splitting for (G∨,B∨,T∨).

If T splits over a Galois extension K of k, then Gal(ks/K) acts trivially on X(T)

and X∨(T), hence trivially on LG◦. Then the L-group of G is often identified with

the semidirect product LG◦ o Gal(K/k).
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2.1.4 Representations of the L-group

By a representation of LG, we will mean a continuous, finite dimensional com-

plex representation of LG whose restriction to the complex Lie group LG◦ is holo-

morphic.

Suppose that G is defined over a number field k. For each place v of k, and

algebraic closure kv of kv, the choice of k-embedding k → kv defines an injection

Gal(kv/kv)→ Gal(k/k).

Let Gv = G ×k kv. Since a based root datum for G is also one for Gv, we can

arrange that LG◦ = LG◦v, so that the inclusion of Gal(kv/kv) into Gal(k/k) defines

an inclusion LGv into LG. If r is a representation of LG, we let rv be the restriction

of r to LGv.

2.1.5 Identification of L-groups

Let ϕ : G → G′ be an isomorphism of algebraic groups which is defined over k.

If we identify (G′, ϕB, ϕT) with (G,B,T), we can define the L-group of G′ together

with a corresponding isomorphism ϕ∨ : LG′ → LG.

2.1.6 Conjectural local factors

Assume that k is a local field of characteristic zero. To each representation r of

LG, each irreducible, admissible representation π of G(k), and each nontrivial unitary

character ψ of k, there is a conjectural local analytic L-function L(s, π, r) and a

conjectural local analytic epsilon factor ε(s, π, r, ψ). There is also the gamma

factor

γ(s, π, r, ψ) =
L(1− s, π∨, r)ε(s, π, r, ψ)

L(s, π, r)
. (2.1.6.1)

These are defined in many special cases, in particular by the Langlands-Shahidi

method. We give a summary of the method in the next section. There are two

important representations of L-groups which we will define. They are the standard
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representation, and the tensor product. First, if G = GLn, then the L-group of G can

be identified with GL(V ), where V is an n-dimensional complex vector space. The

identity map r on GL(V ) is called the standard representation. The standard

L-function L(s, π, r) is written as just L(s, π) with the r omitted, and the same goes

for the standard epsilon and gamma factor.

Next, suppose G = GLn×GLm. Then the L-group of G can be identified with

GL(V )×GL(W ), where V and W are complex vector spaces of dimensions n and m.

Let r be the tensor product representation LG→ GL(V ⊗W ) given by (T, S) 7→ T⊗S.

An irreducible, admissible representation π of G(k) factors as a tensor product π1�π2,

where π1 and π2 are irreducible admissible representations of GLn(k) and GLm(k),

respectively. Their isomorphism classes are determined uniquely by that of π. The

Rankin product L-function L(s, π1 � π2, r) is written as L(s, π1 × π2), and the

epsilon and gamma factors are similarly written, e.g. ε(s, π1 × π2, ψ).

2.1.7 Conjectural local Langlands correspondence

Assume that k is a local field of characteristic zero, and let W ′
k be the Weil-

Deligne group of k. Recall that for k archimedean, W ′
k is defined to just be the

Weil group. In ([Bo79], 8.1), Borel gives a definition of an admissible homomorphism

ϕ : W ′
k → LG. Two admissible homomorphisms are equivalent if they differ by an

inner automorphism of LG◦.

The conjectural local Langlands correspondence (as stated by Borel in [Bo79],

Chap. III) hopes to associate, to a general reductive group G, the following:

• A partition of the set of isomorphism classes of irreducible, admissible repre-

sentations of G(k) into finite sets, called L-packets

• A bijection from the set of equivalence classes of admissible homomorphisms

ρ′ : W ′
k → LG to the set of L-packets
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such that if π is an element of the L-packet corresponding to ρ′, then

L(s, r ◦ ρ′) = L(s, π, r) (2.1.7.1)

ε(s, r ◦ ρ′, ψ) = ε(s, π, r, ψ) (2.1.7.2)

whenever the right hand sides can be defined.

2.1.8 Some special cases of the local Langlands correspondence

Let k be a local field of characteristic zero. For k archimedean, the conjectural

partition and bijection for the local Langlands correspondence for G have been estab-

lished in terms of Langlands classification ([La89], see also [Kn94]). One then typically

defines L(s, π, r) and ε(s, π, r, ψ) to be the left hand sides of equations (2.1.7.1) and

(2.1.7.2), effectively establishing the archimedean local Langlands correspondence for

general reductive groups.

For k nonarchimedean, and G = GLn, the conjectural partition and bijection

have been established. The L-packets are singleton sets, and the bijection is the

celebrated “Local Langlands correspondence for GLn” proved independently in by

Henniart [He00] in 2000, and Harris and Taylor [HaTa01] in 2001. A new proof was

given by Scholze [Sch10] in 2010. The function field version was proved in 1993 by

Laumon, Rapoport, and Stuhler [LaRaSt93].

For G = GLn, the L-group LG can be identified with GLn(C), and the L and

epsilon factors are shown to agree for r = 1GLn(C). Establishing the equality of L and

epsilon factors for general r, when the local analytic L and epsilon factors are defined,

is an ongoing task, although the equality has been established in many special cases.

For example, it has been established for r = Sym2 and r = Λ2 in by Cogdell,

Shahidi, and Tsai [CoShTs17] and G. Henniart [He10]. Henniart proved the equality

of L-functions for these r; he did this by proving first that the gamma factors were

equal up to a root of unity, and then deducing the equality of L-functions as a conse-
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quence. Later, Cogdell, Shahidi, and Tsai proved a crucial “analytic stability” result

which, combined with some global arguments, allowed them to get an exact equality

of the gamma factors.

When G is a torus, the conjectural partition and bijection have been established

by Langlands ([La97], [Yu09]). This is the “local Langlands correspondence for tori.”

In this case, the L-packets are again singleton sets.

2.1.9 The L-group and restriction of scalars

Suppose that E/F is a finite extension of local fields of characteristic zero. Let G

be a connected, reductive group over E, and let G = ResE/F G, the Weil restriction

of scalars of E/F (see (2.4.1)). Then we can identify G(E) = G(F ). As Borel ex-

plains in 8.1 of [Bo79], there is a canonical bijection from the set of equivalence classes

of admissible homomorphisms of W ′
E into LG, and the set of equivalence classes of

admissible homomorphisms of W ′
F into LG. So if a conjectural local Langlands cor-

respondence is established for G, then we have also a conjectural local Langlands

correspondence for LG. This bijection is compatible with the local Langlands corre-

spondence for tori and for archimedean groups.

2.2 Langlands-Shahidi method

Let M be a connected, reductive group, quasi split over a characteristic zero

local field k. Let LM be the Langlands dual group of M (2.1.3). In this section,

we give a summary of the Langlands-Shahidi method which defines the L-function

L(s, π, r) and epsilon factor ε(s, π, r, ψ) for a nontrivial unitary character ψ of k,

certain irreducible, admissible representations π of M(k), and certain representations

r of LM. Our primary references for this section are [Sh81], [Sh90], and [Sh10].
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2.2.1 The setting

Let G be a connected, reductive group which is quasi split over the local field

k. Let B,T,S be as in (2.1.1). Assume that M is a standard Levi subgroup of a

parabolic k-subgroup P of G which contains B. Let N be the unipotent radical of

P, and let U be the unipotent radical of B. Then BM = B ∩M is a Borel subgroup

of M with unipotent radical UM = U ∩M.

The choice of B defines a set of simple absolute roots ∆ ⊂ Φ = Φ(G,T) and

a set ∆k ⊂ Φk = Φ(G,S) of simple relative roots. The parabolic subgroup P is

parameterized by a subset θ of ∆, as well as by a subset θk of ∆k.

2.2.2 LS-representations I

The L-group LM of M can be chosen in a natural way as a subgroup of the L-

group LG, since LM◦ is isomorphic to the standard Levi subgroup of (LG◦,L B◦,L T◦)

which corresponds to the subset θ∨ of ∆∨.

If LP◦ is the corresponding standard parabolic subgroup of LG◦, let LN◦ be its

unipotent radical, and let Ln be the Lie algebra of LN◦. Then LM acts on Ln by the

adjoint representation

Ad : LM→ GL(Ln).

The Langlands-Shahidi method defines gamma factors, and consequently L and ep-

silon factors for those representations r which are isomorphic to irreducible con-

stituents of an adjoint representation as above. We shall call such a representation of

LM an LS-representation. The factors will depend only on the isomorphism class

of r, not on the choice of G or the way in which M sits inside G as a Levi subgroup.

More generally, suppose that H is a connected, reductive quasi split group over

k, r is an irreducible representation of LH, and suppose there exists a Levi subgroup

M of a group G as above together with an isomorphism ϕ : H → M of algebraic

groups over k. Then ϕ induces an isomorphism of L-groups ϕ∨ : LM → LH. If
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r ◦ ϕ∨ is an LS-representation of M in the above sense, then we will also call r an

LS-representation.

If π is an irreducible, admissible representation of H(k), then π ◦ ϕ−1 is one of

M(k). Suppose that r is an LS-representation of LH, and the gamma factor, L-

function, and epsilon factor are defined for (π ◦ ϕ−1, r ◦ ϕ∨). Then we can define the

corresponding factors for H by

γ(s, π, r, ψ) = γ(s, π ◦ ϕ−1, r ◦ ϕ∨, ψ)

L(s, π, r) = L(s, π ◦ ϕ−1, r ◦ ϕ∨)

ε(s, π, r, ψ) = ε(s, π ◦ ϕ−1, r ◦ ϕ∨, ψ).

These definitions are independent of the choice of isomorphism ϕ as well as the way

in which M sits inside G as a Levi subgroup.

2.2.3 LS-representations II

The Langlands-Shahidi method actually defines gamma factors for certain rep-

resentations r which are not necessarily irreducible. If r1, ..., rt are the irreducible

constituents of such a representation r, then the gamma factor for r will be the prod-

uct of the corresponding gamma factors for the ri. For example, suppose that k is

a number field, M is a maximal Levi, and the adjoint representation of LM on LN

is irreducible. Then rv, the restriction of r to LMv (see 2.1.4), is not necessarily

irreducible, but the gamma factor is still defined.

If r is an arbitrary representation of LM whose irreducible constituents ri are

LS-representations, one expects that the L, gamma, or epsilon factor for r should be

the product of the corresponding factors of the ri. But there is at present no way to

ensure that such factors are well defined.
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2.2.4 Splitting and generic characters

Let Γ be the Galois group of k/k, and let xα : α ∈ ∆ be a splitting for G,B,T

(2.1.2). Then Γ acts on the set of splittings. We will say that a splitting is defined

over k if it is fixed by Γ. Since G is quasi split, there always exists a splitting which

is defined over k.

Given a splitting xα : α ∈ ∆ which is defined over k, every element u of U(k) can

be written as

u =
∏
α∈∆

xα(aα)u′

for aα ∈ k and u′ ∈ U(k)der. Changing the order of the product will change the

element u′, but it will not change any aα. The sum of the aα will lie in k. Given a

nontrivial unitary character ψ of k (automatically unitary when k is nonarchimedean),

define

χ(u) = ψ
Å ∑
α∈∆

aα

ã
.

Then χ is a character of U(k), called a generic character. It depends on ψ and

the given splitting. For every unitary character χ of U(k) which is nontrivial on each

simple root subgroup, and every choice of ψ, there exists a splitting which defines χ

in this way.

Also, xα : α ∈ θ is a splitting for (M,BM,T) which is defined over k, and the

corresponding generic character of UM(k) with respect to ψ is χ|UM(k).

2.2.5 Generic representations

Given a nontrivial unitary character ψ of k, and the corresponding generic char-

acter χ of UM(k), an irreducible, admissible representation (π, V ) of M(k) is said to

be generic with respect to χ, or χ-generic, if there exists a nonzero linear functional

λ : V → C such that λ(π(u)v) = χ(u)λ(v) for all u ∈ UM(k) and v ∈ V . When k is

archimedean, λ must be a bounded linear functional.
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Note that a given representation of M(k) may be generic with respect to one

generic character, but not with respect to another. However, when M = GLn, or

more generally when M is a product of copies of restriction of scalars of general linear

groups, a representation is generic with respect to one generic character if and only

if it is generic with respect to all generic characters. Furthermore, all supercuspidal

representations of such groups are generic.

Assume k is nonarchimedean. The Langlands-Shahidi method will define L-

functions and epsilon factors for generic representations (with respect to a given

character). But in the case when M = GLn, or more generally when M is a finite

product of copies of restriction of scalars of general linear groups, we will be able to

define L- and epsilon factors for general irreducible admissible representations (see

2.2.9). When k is archimedean, the Langlands-Shahidi method defines the gamma

factors for generic representations, but not the L and epsilon factors. The L and ep-

silon factors in the archimedean case are defined to correspond directly to the factors

on the Galois side under the local Langlands correspondence for archimedean groups

(2.1.8). It is known that the gamma factors defined by the Langlands-Shahidi method

coincide with the corresponding Artin gamma factors ([Sh90], Theorem 3.5, (1) ).

Assume k is nonarchimedean. Let r be an LS-representation of LM (2.2.2), and

π a generic representation of LM (that is, generic with respect to a given character

ψ). The Langlands-Shahidi method defines the gamma factor γ(s, π, r, ψ) first. The

L and epsilon factors are consequently defined in terms of the gamma factor. We will

not explain how the gamma factors are defined in general, but we will explain how

the L- and epsilon factors are consequently defined in terms of gamma factors (2.2.9).

2.2.6 Multiplicativity of gamma factors

We return to k being an arbitrary local field of characteristic zero. Let π be an

irreducible, admissible, χ-generic representation of M(k). Let M∗ be a standard Levi

subgroup of M, and suppose there exists an irreducible, admissible representation
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π∗ of M∗(k) such that π is isomorphic to a quotient of IMM∗π∗. Here IMM∗ denotes

normalized parabolic induction.

Then a gamma factor for π can be expressed as a product of gamma factors of π∗

in a process called “multiplicativity.” Here is one way of stating multiplicativity. Let

r be an LS-representation of LM. The L-group of M∗ is contained in the L-group of

M. Let r1, ..., rt be the irreducible constituents of the restriction of r to LM∗. Then

each ri is an LS-representation of LM∗, and

γ(s, π, r, ψ) =
t∏
i=1

γ(s, π∗, ri, ψ).

2.2.7 Removing nonrelevant groups

Suppose that M is a product of quasi split groups M1 ×k · · · ×k Mt. Let M̂i be

the product of the Mj with the ith term omitted. A Borel subgroup/maximal torus

for M can be obtained by taking a product of Borel subgroups/maximal tori for the

Mi, so we can identify the dual group of M with the product of the dual groups of

the Mi. Consequently, the L-groups of Mi and M̂i can be identified as subgroups of

the L-group of M.

Let π be an irreducible, admissible representation of M(k). It factors as a tensor

product π1� · · ·�πt of irreducible, admissible representations πi of the groups Mi(k),

their isomorphism classes being determined by that of π. Let π̂i be the representation

of M̂i(k) obtained by deleting πi.

Suppose that r is an LS-representation of LM whose restriction to LM◦
i is trivial.

Let r̂i be the restriction of r to LM̂i. Then r̂i is also an LS-representation, and

γ(s, π, r, ψ) = γ(s, π̂i, r̂i, ψ)

and the same goes for the L and epsilon factors.

Example 2.2.7.1. Consider the group H = GLn×GLm, whose L-group we can

identify with GL(V )×GL(W ), where V and W are complex vector spaces of dimen-
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sions n and m. Let π1 � π2 be an irreducible, admissible representation of H(k) =

GLn(k)×GLm(k), and suppose π2 is isomorphic to a quotient of IGLm
GLm1 ×GLm2

σ1 � σ2

for a Levi subgroup GLm1 ×GLm2 of GLm. Then π1 � π2 is isomorphic to a quotient

of

π1 � IGLm
GLm1 ×GLm2

(σ1 � σ2) ∼= IGLn×GLm
GLn×GLm1 ×GLm2

(π1 � σ1 � σ2).

Let H∗ be the Levi subgroup GLn×GLm1 ×GLm2 of H. The L-group of H∗ can be

identified with GL(V )×GL(W1)×GL(W2), where W1,W2 are complex vector spaces

of dimensions m1 and m2 with W1 ⊕W2 = W .

The tensor product representation r : LH = GL(V ) × GL(W ) → GL(V ⊗ W )

sending (T, S) to T ⊗S gives the Rankin product L-function. If we restrict r to LH∗,

then r breaks up into two irreducible representations r1 ⊕ r2, where

r1 : LH∗ → GL(V ⊗W1), (T, S1, S2) 7→ T ⊗ S1

r1 : LH∗ → GL(V ⊗W2), (T, S1, S2) 7→ T ⊗ S2.

Multiplicativity tells us that

γ(s, π1 × π2, ψ) = γ(s, π1 � σ1 � σ2, r1, ψ)γ(s, π1 � σ1 � σ2, r2, ψ)

and the above principle tells us that γ(s, π1 � σ1 � σ2, ri, ψ) = γ(s, π1 × σi, ψ). Con-

sequently, multiplicativity tells us that

γ(s, π1 × π2, ψ) = γ(s, π1 × σ1, ψ)γ(s, π1 × σ2, ψ).

2.2.8 Langlands classification

Suppose that k is nonarchimedean. If r is an LS-representation, and π is χ-

generic, the definition of L(s, π, r) relies on the Langlands classification for p-adic

groups ([Si78], [Ko03]).
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There are two versions of the Langlands classification, one for subrepresentations

and one for quotients. Let M∗ be a standard Levi subgroup of M, and let θ∗ be the

subset of θ defining M∗. The restriction map X(M∗)k → X(S) induces an injection

of X(M∗)k ⊗Z R into X(S)⊗Z R. An element ν ∈ X(M∗)k ⊗Z R is said to lie in the

positive (resp. negative) Weyl chamber of M∗ if 〈ν, β∨〉 is positive (negative) for all

roots β ∈ θ − θ∗.

Theorem. (Langlands classification) Let M∗ be a standard Levi subgroup of M. If

π∗ is a smooth, irreducible representation of M∗(k) which is tempered (see 2.3.5), and

ν lies in the positive (resp. negative) Weyl chamber of M∗, then

IMM∗π∗q
〈ν,HM∗ (−)〉

has a unique irreducible quotient (resp. subrepresentation) π. If we consider the set

of triples (M∗, ν, π∗), where M∗ is a standard Levi subgroup of M, ν is in the positive

(resp. negative) Weyl chamber of M∗, and π∗ is a tempered representation of M∗(k),

then (M∗, ν, π∗) 7→ π is bijective (with π∗ and π each being taken up to isomorphism).

If π is given in the Langlands classification for quotients as a triple (M∗, ν, π∗), then

its contragredient π∨ is given in the Langlands classification for subrepresentations

as a triple (M∗,−ν, π∨∗ ).

2.2.9 Definition of L and epsilon factors in terms of gamma factors

Suppose that k is nonarchimedean. Once the gamma factors have been defined

by the Langlands-Shahidi method, the L-functions and the epsilon factors are conse-

quently defined by a process which we now explain. Suppose first that π is a χ-generic

representation of M(k) which is tempered. If r is an LS-representation of LM, the
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gamma factor γ(s, π, r, ψ) is a rational function in q−s = q−sk . It is independent of χ.

Let R(X) ∈ C(X) be such that R(q−s) = γ(s, π, r, ψ). We can write R uniquely as

R(X) = aXαP (X)

Q(X)

where a ∈ C∗, α ∈ Z, and P,Q ∈ C[X] are relatively prime with P (0) = Q(0) = 1.

Then we define

L(s, π, r) = P (q−s)−1.

This is independent of ψ and χ.

If π is a χ-generic representation of M(k) which is quasi-tempered, then there

exists an unramified character µ of M(k) such that πµ is tempered. There exists a

complex number s0 such that γ(s+ s0, πµ, r, ψ) = γ(s, π, r, ψ). We then define

L(s, π, r) = L(s+ s0, πµ, r).

Since the gamma factor and L-function for quasi-tempered χ-generic representations,

the epsilon factor is consequently defined by equation (2.1.6.1).

Now let π be an arbitrary χ-generic representation of M(k). By the Langlands

classification for p-adic reductive groups (2.2.8), there exists a standard Levi subgroup

M∗ of M and a quasi-tempered representation π∗ of M∗(k) with positive Langlands

parameter such that π is a quotient of

IMM∗π∗.

Since π is χ-generic, so is π∗. If r1, ..., rt are the irreducible constituents of the

restriction of r to LM∗, then multiplicativity tells us that

γ(s, π, r, ψ) =
t∏
i=1

γ(s, π∗, ri, ψ). (2.2.9.1)
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We consequently define

L(s, π, r) =
t∏
i=1

L(s, π∗, ri). (2.2.9.2)

Then the epsilon factor ε(s, π, r, ψ) is defined by equation (2.1.6.1), and we have

ε(s, π, r, ψ) =
t∏
i=1

ε(s, π∗, ri, ψ). (2.2.9.3)

2.2.10 Local factors for nongeneric representations

Suppose that k is nonarchimedean, and every quasi-tempered representation of

every Levi subgroup of M is generic with respect to every generic character. This

is the case for GLn, or more generally for a finite product of restriction of scalars

of general linear groups. Then for every LS-representation r of LM, we can define

the gamma factor, epsilon factor, and L-function for every irreducible, admissible

representation π of M(k). One uses the Langlands classification to realize π as a

quotient of IMM∗π∗ as in (2.2.8), and then one defines L(s, π, r) and ε(s, π, r, ψ) by

means of equations (2.2.9.2) and (2.2.9.3) above. Then equation (2.2.9.1) holds for

γ(s, π, r, ψ).

Furthermore, multiplicativity as stated in (2.2.6) and the property (2.2.7) hold for

γ(s, π, r, ψ).

2.2.11 Local Langlands correspondence for tori and Langlands-Shahidi

gamma factors

Assume that k is nonarchimedean. The group T(k) has a unique maximal compact

subgroup which is open in T(k). A character χ of T(k) is said to be unramified if it is

trivial on this subgroup. Suppose π is an irreducible, admissible generic representation

of M(k). Assume that π has a nonzero Iwahori fixed vector. Equivalently, π is

isomorphic to a subquotient of IMT χ for some unramified character χ of T(k).
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Let ρ : Wk → LT be the admissible homomorphism corresponding to χ by the

local Langlands correspondence for tori. If r is an LS-representation of LM, we may

consider the restriction of r to a representation of LT. Then ([Sh90], Theorem 3.5,

(1))

γ(s, π, r, ψ) = γ(s, r ◦ ρ, ψ).

Under the conjectural local Langlands correspondence for general reductive groups

(2.1.7), it is expected that π should be parameterized by a homomorphism ρ′ : W ′
k →

LM. It is also expected that the restriction of ρ′ to Wk should equal ρ. Since the

gamma factor is determined by its underlying Weil representation, this will imply

γ(s, π, r, ψ) = γ(s, r ◦ ρ′, ψ).

2.2.12 Local Langlands correspondence for real groups and Langlands-

Shahidi gamma factors

Suppose that k is archimedean, π is an irreducible, admissible representation of

M(k), and r is an LS-representation. Let ρ′ : W ′
k = Wk → LM be the Langlands

parameterization for π (2.1.8). Suppose that π is generic, so that the gamma factor

γ(s, π, r, ψ) is defined by the Langlands-Shahidi method. Then this gamma factor

agrees with the one on the Galois side ([Sh90], Theorem 3.5, (1)):

γ(s, π, r, ψ) = γ(s, r ◦ ρ′, ψ).

We then define

L(s, π, r) = L(s, r ◦ ρ′), ε(s, π, r, ψ) = ε(s, r ◦ ρ′, ψ).
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2.2.13 Local factors and contragredients

Let k be a local field of characteristic zero. In all situations where the gamma

factor γ(s, π, r, ψ) is defined by Shahidi’s method, the gamma factors γ(s, π, r∨, ψ)

and γ(s, π∨, r, ψ) are also defined, and we have

γ(s, π, r∨, ψ) = γ(s, π∨, r, ψ)

L(s, π∨, r) = L(s, π, r∨)

ε(s, π∨, r, ψ) = ε(s, π, r∨, ψ).

2.2.14 The global functional equation

Suppose that k is a number field, and M is a quasi split group over k. Let

T be a maximal torus of M which is defined over k, and B a Borel subgroup of M

containing T which is defined over k. There is a global analogue of a generic character

χ of UM(Ak), where UM is the unipotent radical of BM. The generic character is

defined in terms of a nontrivial character Ψ = ⊗ψv of Ak/k. Then χ factors as a

tensor product of characters χv of UM(kv), generic with respect to ψv and a given

global splitting.

Let K be the smallest field containing k over which T splits. Let w0 | v0 be an

extension of places of K/k for which [K : k] = [Kw0 : kv0 ], and suppose that Mv0 does

not split over any proper subfield of Kw0 . Then we can identify LM = LMv. Let r

be an LS-representation of LMv, regarded as a representation of LM.

Let Π be a cuspidal automorphic representation of M(Ak) which is globally generic

with respect to χ. Then Π factors as a tensor product of unitary, χv-generic, irre-

ducible, admissible representations πv of M(kv). We then set

L(s,Π, r) =
∏
v

L(s, πv, rv).
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The right hand side converges to an analytic function of s in some right half plane, and

L(s,Π, r) admits a meromorphic continuation to the entire complex plane satisfying

a global functional equation

L(s,Π, r) = ε(s,Π, r)L(1− s,Π∨, r)

where ε(s,Π, r) =
∏
v
ε(s, πv, rv, ψv) ([Sh10], Theorem 8.4.5). The global epsilon factor

ε(s,Π, r) is actually a finite product, since ε(s, πv, rv, ψv) = 1 whenever πv and ψv are

unramified.

2.2.15 A special case of the Langlands-Shahidi method

Since we will need it later, we will explain in this section a special case of

how gamma factors are defined. Suppose throughout this section that k is nonar-

chimedean, and G,T,S,M,P,N,B,U,BM,UM are as before. Let W (G,T) =

NG(T)/T be the Weyl group of T in G, andW (G,S) = NG(S)/T = NG(k)(S(k))/T(k)

the relative Weyl group.

We also will assume that:

• P is a maximal k-parabolic.

• The adjoint action r of LM on Ln is irreducible.

• The root system Φ(G,S) is reduced.

2.2.16 Harish-Chandra map

The maximal k-parabolic subgroup P is defined by a simple root α ∈ ∆ ⊂ X(S).

Let (−,−) be a symmetric, positive definite bilinear form on X(T) ⊗Z R which is
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both Γ = Gal(k/k) and W (G,T)-invariant. Let ρ be half the sum of the roots of T

in N, let α′ be any root of T in G whose restriction to X(S) is α, and define

α̃ =
(α′, α′)

2(ρ, α′)
ρ.

This will not depend on the choice of form (−,−), nor on the choice of α′. We

may restrict α̃ to an element of X(AM) ⊗Z R, where AM is the split component of

M, and then identify α̃ as an element of a∗M = X(M)k ⊗Z R, where X(M)k is the

group of rational characters of M which are defined over k. This is on account of

the fact that restriction of rational characters of M to AM defines an injection from

X(M)k onto a subgroup of finite index of X(AM), and consequently an isomorphism

a∗M → X(AM)⊗Z R.

We can identify the dual vector space HomR(a∗M,R) of a∗M with

aM = HomZ(X(M)k,R).

The pairing 〈−,−〉 : a∗M × aM → R extends to a pairing 〈−,−〉 : a∗M,C × aM → C,

where a∗M,C = a∗M ⊗R C. If HM : M(k)→ aM is the Harish-Chandra map defined by

HM(g)(χ) = logq |χ(g)|

then for any ν ∈ a∗M,C, we can define a (continuous, complex valued) character of

M(k) by q
〈ν,HM(−)〉
k . A character of this form on M(k) is called unramified. This

generalizes the definition of an unramified character of the torus T(k) defined in

(2.2.11).
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2.2.17 Canonical Weyl group representatives in terms of a splitting

Let β ∈ ∆ be a simple root of S in G. For each root β̃ of T in G restricting to β,

we have a root vector xβ̃ : Ga → Uβ̃ from the splitting. There exists a unique root

vector x−β̃ : Ga → U−β̃ such that

mβ̃ = xβ̃(1)x−β̃(1)xβ̃(1)

lies in the derived group of G(k) and normalizes T. Then all the mβ̃ commute with

each other, and we define

wβ =
∏

β̃|S=β

mβ̃ ∈ NG(S)(k).

The image of wβ in W (G,S) is the simple reflection w̃β corresponding to β.

Now for any element w̃ ∈ W (G,S), we take a reduced decomposition (w̃β1 , ..., w̃βt)

and define a representative

w = wβ1 · · ·wβt

of w̃. This will be independent of the choice of reduced decomposition. In this

way, we have a canonical Weyl group representative w of every element w̃ of W (G,S).

2.2.18 Self dual measures

Let β be a simple root of S in G. Let β̃ be a root of T in G which restricts to β.

The roots of T in G which restrict to β are all simple, and form a Galois orbit. Let

Kβ̃ be the splitting field of β̃, the intersection of all subfields of k over which β̃ splits.

The roots of T which restrict to S are τ.β̃, as τ runs through the k-embeddings of

Kβ̃ into k.

The root subgroup Uβ is the product of all the Uτ.β̃, and in fact Uβ is isomorphic

to ResKβ̃/k Uβ̃. Consequently, our splitting chosen earlier gives an isomorphism of
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Uβ(k) onto the additive group Kβ̃, and we can choose a Haar measure on Uβ(k)

corresponding to the self dual Haar measure on Kβ̃ with respect to ψ ◦ TrKβ̃/k. This

Haar measure will not depend on the choice of root β̃ restricting to β.

Now suppose β is any root of S in G. There exists a w̃ ∈ W (G,S) such that w̃.β

is a simple root. Let w be the canonical representative of w̃ defined in (2.2.17). Then

wUβ(k)w−1 = Uw̃.β(k), and we transfer on Uβ(k) the self dual measure on Uw̃.β(k)

just defined. This measure does not depend on the choice of w̃, only on ψ and the

initial splitting xβ̃ : β ∈ ∆.

Consider a Zariski-closed subgroup U0 of U which is defined over k and normalized

by T. Then as a variety over k, U0 is the product of the root subgroups it contains.

We take products of measures just defined and obtain a Haar measure on U0(k).

2.2.19 Whittaker functionals for induced representations

There is a unique element w̃0 ∈ W (G,S) which maps ∆ − α into ∆ and sends

α to a negative root. Let w0 be a representative of w̃0. The group M′ = w0Mw−1
0

is a standard Levi subgroup of G. Let P′ be the corresponding standard parabolic,

and N′ its unipotent radical. We call P′ the parabolic subgroup associated to P. If

P = P′, then P is called self associate.

Suppose that π is an irreducible, admissible χ-generic representation of M(k). Let

πs = πq
〈sα̃,HM(−)〉
k , and let I(s, π) = IGMπs.

If λ is a χ-Whittaker functional of π, then λχ(s, π) is one for I(s, π), defined by

λχ(s, π)f =
∫

N′(k)

〈f(xn), λ〉 dn′ (2.2.19.1)

where x is a representative of the inverse of w̃0, and the Haar measure dn′ on N′(k)

is defined as in (2.2.18).

Some explanation of the formula (2.2.19.1) is in order. First, the integral as given

does not converge for general f (it does converge if f is supported inside the open set
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P(k)w̃0
−1N′(k) of G(k)); rather the integration is really defined over a suitably large

open compact subgroup N0 of N′(k) (depending on f), with the property that the

value of the integral does not change if N0 is replaced with any larger open compact

subgroup ([Sh10], Theorem 3.4.7).

Second, in order for (2.2.19.1) to actually define a Whittaker functional, the rep-

resentative x must be compatible with χ in the sense that χ(xux−1) = χ(u) for any

u ∈ UM′(k), where UM′ = U∩M′. The canonical Weyl group representative of w̃0
−1

from (2.2.18) is compatible with χ in this sense.

In the following section (2.2.20), we will take x to be the canonical representative

of w̃0
−1 (which is generally not the same as the inverse of the canonical representative

w0 of w̃0). In the case that P is self associate, we have w̃0 = w̃0
−1, and both x and

x−1 are compatible with χ.

2.2.20 Definition of the Shahidi local coefficient

Let w0(π) be the representation of M′(k) given by w0(π)(m′) = π(w−1
0 m′w0).

Since M′ is also a maximal k-parabolic subgroup of G, we can define the analogous

representation I(s, w0(π)) of G(k) obtained by normalized induction from P′(k) to

G(k), and its Whittaker functional λχ(s, w0(π)).

We have an intertwining operator

A(s, π) : I(s, π)→ I(−s, w0(π))

defined for Re(s) sufficiently large by a Gelfand-Pettis integral

A(s, π)f(g) =
∫

N′(k)

f(w−1
0 n′g) dn′.
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There exists a meromorphic function Cχ(s, π) on C, called the Shahidi local coef-

ficient, such that

Cχ(s, π)λχ(−s, w0(π)) ◦ A(s, π) = λχ(s, π).

For each root β of S in N′, choose a root β̃ of T restricting to β, and let Kβ̃ be the

splitting field of β̃. The Langlands lambda function λ(Kβ̃/k, ψ) is independent of the

choice of β̃. Define

λ(w0, ψ) =
∏

β∈Φ(N,S)

λ(Kβ̃/k, ψ).

Theorem 2.2.20.1. (Shahidi) The gamma factor and local coefficient are related by

Cχ(s, π) = λ(w0, ψ)−1γ(s, π, r, ψ).

This is a special case of Theorem 3.5 of [Sh90], and can be considered a definition

of γ(s, π, r, ψ). We remark that we are using an unconventional normalization of

Shahidi’s gamma factors. Our term γ(s, π, r, ψ) is what is normally written in the

literature as γ(s, π, r∨, ψ).

The change from ψ to ψ is done to agree with Proposition 3.4 of [KeSh88], as well

as Theorem 3.1 of [Sh85] when the presence of lambda functions were first noticed.

The removal of the contragredient from r comes from the way Langlands’ L-

function L(s, π, r) is defined in the unramified case. We refer to [La70] or [La71] for

the details. In this situation, k is p-adic, M and π are unramified, and π is attached

to a semisimple conjugacy class Aπ in LM. Langlands defines

L(s, π, r) = det(1− r(Aπ)q−s)−1.

The assignment π 7→ Aπ depends on a choice of Harish-Chandra map. Our choice

of Harish-Chandra map in this situation would be that of [La70], page 7, which

Langlands refers to as v. Shahidi’s choice is that of [La71], page 7, which Langlands

refers to as λ. The relationship between these choices is λ = −v. Consequently,
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the semisimple conjugacy class Aπ we assign to π is the inverse of the one used by

Langlands in [La71], and the unramified L-function L(s, π, r) in [La70] would be called

L(s, π, r∨) in [La71].

The Langlands-Shahidi local factors are defined to coincide with those of Lang-

lands in the unramified case. Following [La71] leads to the appearance of contragre-

dients in the Langlands-Shahidi method, while following [La70] removes them.

The reason we follow [La70] is that the resulting Langlands-Shahidi factors agree

with the Artin factors under the version of the local Langlands correspondence stated

in (2.3.7).

Example 2.2.20.2. Suppose k is p-adic, G = GL2, M = GL1×GL1, and N is

the group of upper triangular matrices in G with 1s on the diagonal. If π is the

representation of M(k) given byÖ
t1

t2

è
7→ χ1(t1)χ2(t2)

for two characters χi of k∗, then the local coefficient turns out to be

Cχ(s, π) = γ(s, χ1χ
−1
2 , ψ)

where the right hand side is the gamma factor defined in (1.1.13).

2.2.21 Unramified twists and gamma factors

Assume k is nonarchimedean. Let s0 be a complex number, let π be a generic

representation of M(k), and let π0 = πq〈s0α̃,HM(−)〉. Then ([Sh90], Theorem 3.5, (2))

γ(s, π0, r, ψ) = γ(s+ s0, π, r, ψ). (2.2.21.1)

Note that since we are using a different normalization of Shahidi’s local factors

(2.2.20), this formula must also be adjusted from its original statement.
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When every quasi-tempered representation of M(k) is generic (for example, when

M = GLn), the gamma factors, L-functions, and epsilon factors can be defined for

arbitrary irreducible, admissible representations π of M(k), not just generic ones

(2.2.10). Then the same formula (2.2.21.1) holds for arbitrary π. We also have

L(s, π0, r) = L(s+ s0, π, r).

2.3 Classification of smooth, irreducible representations of GLn(k)

Throughout this section, k is a nonarchimedean local field of characteristic zero.

If H is a connected, reductive group over k, then an irreducible, admissible represen-

tation of H(k) is the same thing as an irreducible, smooth representation of H(k).

In this section, we review the local Langlands correspondence (LLC) for GLn(k),

which gives a bijection between smooth irreducible representations of GLn(k) and

n-dimensional Frobenius semisimple representations of the Weil-Deligne group W ′
k.

In order to do this, we need to state the Bernstein-Zelevinsky classification theorems,

which explain how arbitrary smooth irreducible representations of GLn(k) are built

out of supercuspidal representations of smaller GLs. Our primary references for the

Bernstein-Zelevinsky classification are [Ze80], [Rod82], and Chapter 14.5 of [GoHu11].

We can summarize the LLC as follows: there is a bijection between supercuspi-

dal representations of GLn(k) and irreducible representations of the local Weil group

Wk. Granting this bijection, the correspondence for general smooth irreducible rep-

resentations of GLn(k) follows from the fact that arbitrary representations of GLn(k)

are built out of supercuspidals in a compatible manner in which arbitrary Frobenius

semisimple representations of W ′
k are built from irreducibles.

2.3.1 Normalized parabolic induction for GLn

Let M be a standard Levi subgroup of GLn(k), i.e. a subgroup of the form

GLn1(k) × · · · × GLnr(k), where the ni are positive integers whose sum is n. Let P
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be the standard parabolic corresponding to M , and N the unipotent radical of P .

If π is a smooth, irreducible representation of M , then π decomposes as a tensor

product π1 � · · · � πr, where πi is a smooth, irreducible representation of GLni(k).

The isomorphism classes of the πi are uniquely determined by π. The representation

π is supercuspidal if and only if all the πi are supercuspidal.

We may extend π to a representation of P by making it trivial on N . Let

IndGLn(k) π1 � · · ·� πr, or just Indπ1 � · · ·� πr, designate the smooth representation

of GLn(k) obtained from P by normalized parabolic induction. In (2.2) we used IGLn
M

to denote normalized parabolic induction, and in the more traditional notation,

IndGLn(k) π1 � · · ·� πr = Ind
GLn(k)
P πδ

1
2
P

where δP is the modulus character of P . Explicitly, IndGLn(k) π consists of all locally

constant functions f from GLn(k) to the underlying space of π which satisfy

f(mng) = π(m)δP (m)
1
2f(g)

for all m ∈M,n ∈ N, g ∈ G, and GLn(k) acts on these functions by right translation.

2.3.2 A basic classification result

Here is a basic classification theorem of smooth, irreducible representations of

GLn(k).

Theorem 2.3.2.1. ([Ze80], Proposition 1.10) Let π be a smooth, irreducible repre-

sentation of GLn(k). Then there exists a partition (n1, ..., nr) of n and irreducible,

supercuspidal representations πi, 1 ≤ i ≤ r of GLni(k) such that π is a subquotient of

IndGLn(k) π1 � · · ·� πr.

If (m1, ...,mr′) is another partition of n, and π′i, 1 ≤ i ≤ r′ are irreducible, super-

cuspidal representations of GLmi(k), such that π is a subquotient of IndGLn(k) π′1 �

· · · � π′r′, then r = r′, and after some permutation, ni = mi and πi ∼= π′i. Moreover,
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the ni can be permuted in such a way that π is a subrepresentation or quotient of

IndGLn(k) π1 � · · ·� πr.

The unordered tuple (π1, ..., πr) of supercuspidal representations is called the su-

percuspidal support of π.

The Bernstein-Zelevinsky classification gives a more detailed classification of smooth,

irreducible representations of GLn(k) in terms of supercuspidal representations. We

will formulate it in order to state the local Langlands correspondence (2.3.4).

2.3.3 The unique irreducible quotient associated to an interval

If π is a smooth representation of GLn(k), and z is a complex number, let π(z)

be the smooth representation π| det(−)|z of GLn(k). It is of course irreducible, or

supercuspidal, if and only if π is, and for π irreducible and zi real, we have π(z1) ∼=

π(z2) if and only if z1 = z2. This is on account of the fact that if z1 6= z2, then the

central characters of π(z1) and π(z2) will be different.

By an interval, we will mean a set of isomorphism classes of supercuspidal rep-

resentations of GLn of the form {π, π(1), ..., π(m− 1)}. We define the length of such

an interval to be m, and the degree of such an interval to be nm.

Proposition 2.3.3.1. ([Rod82], Proposition 9) Let ∆ = {π, π(1), ..., π(m − 1)} be

an interval of length m and degree n. Then IndGLn(k) π � π(1) � · · · � π(m − 1)

has a unique irreducible quotient and a unique irreducible subrepresentation. The

supercuspidal support of this irreducible quotient is (π, π(1), ..., π(m− 1)).

We will denote this unique irreducible quotient by Q(∆).

2.3.4 The Bernstein-Zelevinsky classification theorem

Let ∆ = {π, π(1), ..., π(m−1)} and ∆′ = {π′, π′(1), ..., π′(m′−1)} be two intervals

of lengths m and m′, and degrees nm and n′m′, so that π and π′ are representations

of GLn(k) and GLn′(k).
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We define a partial ordering on the set of isomorphism of supercuspidal represen-

tations by saying that σ1 is less than or equal to σ2 if σ2
∼= σ1(m) for some nonnegative

integer m. If σ1 and σ2 are representations of different size general linear groups, then

σ1 and σ2 are incomparable.

We will say that ∆ and ∆′ are linked if n = n′, neither of ∆ or ∆′ is a subset of

the other, and ∆ ∪ ∆′ is an interval. We say that ∆ precedes ∆′ if ∆ and ∆′ are

linked, and the minimal element of ∆ is smaller than the minimal element of ∆′.

If ∆1, ...,∆r are intervals, we say that ∆1, ...,∆r satisfy the “does not precede

condition” if whenever i < j, ∆i does not precede ∆j. By permuting the indices,

it is always possible to ensure that an ordered list of intervals satisfies the “does not

precede” condition.

Theorem 2.3.4.1. (Zelevinksy)

(i): Suppose that ∆1, ...,∆r are intervals of degrees d1, ..., dr which satisfy the

“does not precede” condition. Then

IndGLd1+···+dr (k) Q(∆1) � · · ·�Q(∆r)

has a unique irreducible quotient, which we denote by Q(∆1, ...,∆r). This induced

representation is irreducible if and only if no two of the intervals ∆i,∆j are linked.

(ii): Every smooth, irreducible representation of a general linear group is isomor-

phic to a representation Q(∆1, ...,∆r) of the form (i).

(iii): If ∆′1, ...,∆
′
r′ is another collection of intervals which satisfy the “does not

precede” condition, and Q(∆1, ...,∆r) ∼= Q(∆′1, ...,∆
′
r′), then r = r′, and the indices

can be permuted so that ∆i = ∆′i.

If ∆i = {πi, πi(1), ..., πi(mi − 1)}, then the supercuspidal support of Q(∆1, ...,∆r)

is the unordered tuple (πi(j) : 1 ≤ i ≤ r, 1 ≤ j ≤ mi − 1).

The original formulation of this theorem, using subrepresentations instead of quo-

tients, is Theorem 6.1 of [Ze80]. This version, formulated by Rodier, can be found as

Theorem 3 in [Rod82].
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2.3.5 Tempered and square integrable representations

Let π be a representation of the group G of rational points of a connected, re-

ductive group over k, and let r be a positive real number. We say that π is Lr if

the central character of π is unitary, and if for any matrix coefficient f of π, the

integral
∫

G/Z

|f(g)|r dg is finite, where Z is the center of G. We say that π is square

integrable (resp. tempered) if it is L2 (resp. L2+ε for every ε > 0). We say that π

is essentially square integrable (resp. quasi-tempered) if some twist of π by an

unramified character is square integrable (tempered).

Under the Bernstein-Zelevinsky classification, a representation of GLn(k) is es-

sentially square integrable if and only if it is of the form Q(∆). A representation

π = Q(∆1, ...,∆r) is tempered if and only if each Q(∆i) is square integrable ([Rod83],

Propositions 11-13). If this is the case, then no two of the intervals ∆i or ∆j are

linked, so π is fully induced by the Q(∆i). This follows from the fact that if Q(∆i)

is square integrable, then it has a unitary central character, which means that the

central character of πi � · · ·� πi(mi − 1) must be unitary as well.

2.3.6 Connection with the Langlands classification

In this section, we relate the Bernstein-Zelevinsky classification to the Langlands

classification (2.2.8). We will rely on two facts about induced representations. First,

if πi is a smooth representation of GLni(k) for 1 ≤ i ≤ r, n = n1 + · · ·+ nr, and Π is

the representation Ind π1 � · · ·� πr of GLn(k), then

Π(z) = Indπ1(z) � · · ·� πr(z)
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for all z ∈ C. Second, suppose that each πi is itself induced from a smooth represen-

tation σ1,i � · · ·� σji,i of a Levi subgroup of GLni(k), Then

Ind π1 � · · ·� πr = Ind

Ñ
Ind
Ä
σ1,1 � · · ·� σj1,1

ä
� · · ·� Ind

Ä
σ1,r � · · ·� σjr,r

äé
∼= Indσ1,1 � · · ·� σjr,r.

Suppose that π is a representation of GLn(k), given in the Bernstein-Zelevinsky clas-

sification by intervals ∆1, ...,∆r. For each 1 ≤ i ≤ r, there is a unique xi ∈ R such

that Q(∆i)(−xi) is square integrable. We arrange the order on the intervals ∆i so

that

y1 = x1 = · · · = xn1 > y2 = xn1+1 = · · · = xn2 > · · · = ys.

One can check that this arrangement of the intervals satisfies the “does not precede

condition,” so π is the unique irreducible quotient of IndQ(∆1) � · · ·�Q(∆r). Now

for 1 ≤ i ≤ s, and ni−1 + 1 ≤ j ≤ ni (taking n0 = 0), let ∆′j be the interval obtained

by twisting each element of ∆j by | det(−)|−yi . Then

Q(∆j)(−yi) = Q(∆′j)

is square integrable, and by (2.3.5), none of the intervals ∆′j for ni−1 + 1 ≤ j ≤ ni are

linked, so if we set

πi = Ind�ni
j=ni−1+1Q(∆′j)

then πi is irreducible and tempered. Now

π∗ = π1 � · · ·� πs
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is a tempered representation of a standard Levi subgroup M of GLn(k). If we let

D1, ..., Ds be the determinant maps on the blocks of M , then ν = y1D1 + · · ·+ ysDs

lies in the positive Weyl chamber of M . The Langlands classification tells us that

Ind π∗q
〈ν,HM (−)〉

has a unique irreducible quotient. But since

πi(yi) = Ind�ni
j=ni−1+1Q(∆′j)(yi) = Ind�ni

j=ni−1+1Q(∆j)

we have

Ind π∗q
〈ν,HM (−)〉 = Indπ1(y) � · · ·� πs(y)

= Ind�s
i=1 Ind�ni

j=ni−1+1Q(∆j)

= IndQ(∆1) � · · ·�Q(∆r).

We have expressed π as a unique irreducible quotient in the Langlands classification.

2.3.7 Local Langlands correspondence for GLn

Recall the local Artin map Art = Artk : k∗ → W ab
k (1.1.10), which sends a

uniformizer to a geometric Frobenius. The local Artin map gives the “local Langlands

correspondence for GL1(k) = k∗.” That is, χ 7→ χ ◦Art−1 defines a bijection between

smooth irreducible representations (characters) of GL1(k) = k∗ and characters of Wk.

Notice that a one dimensional Frobenius semisimple representation of W ′
k is the same

thing as a one dimensional represenation of Wk.

More generally, there is the local Langlands correspondence for GLn(k), which

gives a bijection between smooth, irreducible representations of GLn(k) and n-dimensional

Frobenius semisimple representations of W ′
k. Let An be the set of isomorphism classes

of smooth, irreducible representations of GLn(k), and let Gn be the set of isomorphism

classes of n-dimenional Frobenius semisimple representations of W ′
k.
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Theorem 2.3.7.1. (Local Langlands Correspondence) There is a unique collection of

bijections An → Gn : n ≥ 1 satisfying the following properties:

1. The bijection for n = 1 is the correspondence χ 7→ χ ◦ Art−1 given just above

by the local Artin map.

2. If πi corresponds to ρ′i (i = 1, 2), then

L(s, π1 × π2) = L(s, ρ′1 ⊗ ρ′2)

ε(s, π1 × π2, ψ) = ε(s, ρ′1 ⊗ ρ′2, ψ)

for all nontrivial characters ψ of k.

3. If π corresponds to ρ′, then the contragredient π∨ of π corresponds to the con-

tragredient ρ′∨ of ρ′.

4. If π corresponds to ρ′, then the central character $π of π corresponds to det ρ

under the local Artin map.

5. If π corresponds to ρ′, and a character η of k∗ corresponds to a character χ of

Wk, then π(χ ◦ det) corresponds to ρ′ ⊗ η.

The theorem was proved for p-adic fields independently by Henniart [He00] and

Harris and Taylor [HaTa01]. A new proof was given later by Scholze [Sc10].

2.3.8 A description of the local Langlands correspondence

Under the local Langlands correspondence, irreducible supercuspidal represen-

tations correspond to irreducible representations of the Weil group. It is difficult to

describe the local Langlands correspondence explicitly, but granting a correspondence

between the supercuspidals and the irreducibles, the remaining representations may

be described as follows:
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Suppose that π is a smooth, irreducible representation of GLn(k) which occurs in

the Bernstein-Zelevinsky classification asQ(∆1, ...,∆r), where ∆i = (πi, πi(1), ..., πi(mi−

1)) is an interval of length mi, and πi is an irreducible supercuspidal representation.

Suppose that πi corresponds to an irreducible representation ρi of the Weil group Wk.

Then π corresponds to

ρ′ =
r⊕
i=1

ρi ⊗ Sp(mi).

Furthermore, π is tempered in the sense of (2.3.5) if and only if ρ′ is tempered in the

sense of (1.2.10).

2.3.9 Galois representations and the local Langlands correspondence

Suppose that ρ and ρ′ are Galois representations (1.1.4) of dimensions n1 and

n2. Let n = n1 + n2, and let Π, π, π′ be the smooth, irreducible representations of

GLn(k),GLn1(k),GLn2(k) which correspond to ρ⊕ ρ′, ρ, and ρ′ respectively.

Write ρ and ρ′ as a direct sum of irreducible Galois representations:

ρ = ρ1 ⊕ · · · ⊕ ρs

ρ′ = ρ′1 ⊕ · · · ⊕ ρ′t

and let πi, π
′
i be the supercuspidal representations corresponding to ρi, ρ

′
i. Since the

ρi and ρ′i and Galois representations, none of the singleton intervals {πi} or {π′i} are

linked, so Π, π, π′ are fully induced from their supercuspidal supports (2.3.5):

Π = IndGLn(k) π1 � · · ·� πs � π′1 � · · ·� π′t

π = IndGLn1 (k) π1 � · · ·� πs

π′ = IndGLn2 (k) π′1 � · · ·� π′t.
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Then

IndGLn(k) π � π′ = IndGLn(k)

Ñ
IndGLn1 (k) π1 � · · ·� πs

é
�

Ñ
IndGLn2 (k) π′1 � · · ·� π′t

é
= IndGLn(k) π1 � · · ·� πs � π′1 � · · ·� π′t

= Π.

2.3.10 Local Langlands correspondence and field automorphisms

Suppose that σ is an automorphism of k which fixes Qp, so that σ defines an

isomorphism of p-adic fields k → σk. We have the Weil groups Wk and Wσk, and the

local Langlands correspondence of (2.3.7) holds for each.

Then σ defines an isomorphism of Weil groups Wσk → Wk, w 7→ τστ−1. This

isomorphism extends naturally to an isomorphism of Weil-Deligne groups. If ρ′ is

an n-dimensional, Frobenius semisimple representation of W ′
k which corresponds to

a smooth, irreducible representation π of GLn(k), then ρ ◦ ισ is an n-dimensional

representation of W ′
σk which corresponds to the smooth, irreducible representation

π ◦ σ−1 of GLn(σk).

In particular, suppose E/F is a quadratic extension of p-adic fields, σ is the

nontrivial element of Gal(E/F ), and z is any element of WF which is not in WE. If ρ′

is an n-dimensional, Frobenius semisimple representation of WE, and π is the smooth,

irreducible representation of GLn(E) corresponding to ρ′ under the local Langlands

correspondence, then ρ′ ◦ ιz corresponds to π ◦ σ.

2.3.11 Example: principal series representations of GL2

It is interesting to interpret the non-supercuspidal representations of GL2(k) in

terms of two dimensional Frobenius semisimple representations of W ′
k. Suppose that π

is an irreducible representation of GL2(k) which is not supercuspidal. Then according

to the Bernstein-Zelevinsky classification, it must be a constituent of a principal
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series. This is to say, there exist characters χ1 and χ2 of k∗ such that π is isomorphic

to a subquotient of IndGL2(k) χ1 � χ2. Such a realization of π is almost unique. To

describe the possibilities without repetition, we can reduce to three cases.

1. The first case is where π is isomorphic to Q(∆1,∆2), where the singleton in-

tervals ∆i = {χi} are not linked. In other words, χ1 6= χ2(±1). In this case,

π = Indχ1 � χ2 is irreducible and infinite dimensional, and we have

L(s, π) = L(s, χ1 ⊕ χ2) = L(s, χ1)L(s, χ2).

2. The second case is where π is isomorphic to Q(∆1,∆2) as before, but the in-

tervals ∆i are linked. In order to arrange the “does not precede” condition, we

must order the intervals so that χ1 = χ2(1). If we set χ = χ1, then π is the

unique irreducible quotient of Indχ(1)�χ. Actually, this quotient turns out to

be one dimensional, so π is a character of GL2(k). In terms of L-functions, we

have

L(s, π) = L(s, χ(1)⊕ χ) = L(s+ 1, χ)L(s, χ).

3. The last case is where π is isomorphic to Q(∆), where ∆ = {χ, χ(1)} for a

character χ of k∗. Here π is the unique irreducible quotient of Indχ� χ(1). It

is infinite dimensional and essentially square integrable, and we have

L(s, π) = L(s, χ⊗ Sp(2)) = L(s+ 1, χ).

It is also interesting to recall in this situation how the L-function can be read from

the gamma factor in the tempered case (see (2.2.9) and (2.7.3)). Let us consider the

third case above, where π is essentially square integrable and hence quasi-tempered.

Even if π is not tempered in this case, the L-function can be read from the gamma
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factor. The underlying representation of the Weil group of χ⊗Sp(2) is χ⊕χ(1), and

since the gamma factor only depends on the restriction to Wk, we have

γ(s, π, ψ) = γ(s, χ⊕ χ(1), ψ) = ε(s, χ⊕ χ(1), ψ)
L(1− s, χ−1)L(−s, χ−1)

L(s, χ)L(s+ 1, χ)
.

Then L(−s, χ−1)/L(s, χ) cancels out to become a constant times a monomial in q−s,

and can be absorbed into the epsilon factor. The L-function L(s+ 1, χ) can then be

read off from here as the inverse of the numerator of γ(s, π, ψ), realized as a simplified

rational function in q−s.

In the second and third cases, the underlying representations of Wk are the same,

and so the gamma factors are identical. But in the second case, the L-function

cannot be read from the gamma factor, because characters of GL2(k) are never quasi-

tempered.

To recover the L-functions from the gamma factors in the first and second cases

as in (2.2.9), one must realize π in the Langlands classification and possibly apply

multiplicativity, if π cannot be twisted by an unramified character to become tem-

pered.

2.4 Weil restriction and local coefficients

In the next few sections, we will show the compatibility of gamma factors defined

by the Langlands-Shahidi method in the setting of restriction of scalars (Theorem

2.4.9.1). Although it should be possible to prove compatibility in much greater gen-

erality than we do, we will work in a very special case, since it is all that we will

need.

What we will do is follow the arguments from (2.2.15) to (2.2.20) and show that the

local coefficient is independent of whether it is calculated in the setting of restriction of

scalars or not. Since the gamma factor is related to the local coefficient by Shahidi’s

theorem (Theorem 2.2.20.1), we will then establish our desired result on gamma

factors.
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2.4.1 Definition of Weil restriction of scalars

Let K/k be a finite extension of fields of characteristic zero. The fiber product

functor H 7→ H ×k K from the category of linear algebraic groups over k to the

category of linear algebraic groups over K has a right adjoint ResK/k, called the Weil

restriction of scalars. That is, ResK/k is a functor from the category of linear algebraic

groups over K to the category of linear algebraic groups over k, such that for any

linear algebraic groups G over k and H over K, there is a bijection

HomK-grp(G×k K,H)→ Homk-grp(G,ResK/k H)

natural in G and H. When [K : k] = 2, and G is a linear algebraic group over k, there

is a particularly nice construction of G = ResK/k(G ×k K) (which we abbreviate as

simply ResK/k(G)) which will be used. Let k be an algebraic closure of k containing

K, and let Γ = Gal(k/k). As a group over k, G is given on closed points by

G(k) = G(k)×G(k)

with Γ acting on G(k) by

τ.(x, y) =


(τ(x), τ(y)) if τ ∈ Gal(k/K)

(τ(y), τ(x)) if τ 6∈ Gal(k/K).

Thus G(K) = G(K)×G(K), and G(k) identifies with G(K).

2.4.2 Some hypotheses on our groups

Let E/F be a quadratic extension of p-adic fields with nontrivial automorphism

σ ∈ Gal(E/F ). Let G be a split reductive group over F , regarded as a group over

E. Let T be a maximal torus of G which is defined over F , and let B be a Borel

subgroup of G containing T. Let P be a maximal parabolic subgroup of G containing
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B, with Levi decomposition P = MN. Suppose that the adjoint action r of LM on

Ln is irreducible.

For each algebraic variety Z which is defined over E, let Z = ResE/F Z. Then G

is a quasi split group over F with Borel subgroup B and maximal torus T, and P is

a maximal F -parabolic subgroup of G with Levi decomposition P = MN.

2.4.3 Maximal and maximal split tori

Over an algebraic closure, we can identify the maximal torus T of G with the

product T × T. The image S of the diagonal embedding T → T is a maximal F -

split torus of G, and under this isomorphism we have a natural identification of the

character lattices X(T) and X(S). This identifies the roots (resp. positive roots)

(resp. simple roots) of T in G with respect to B, with those of S in G with respect

to B.

The diagonal embedding of NG(T) into G induces an isomorphism of the Weyl

group W (T,G) of T in G with the Weyl group W (S,G) of S in G, and under this

isomorphism, the action of W (T,G) on X(T) identifies with that of W (S,G) on

X(S).

2.4.4 Identifying characters of M and M

The maximal parabolic subgroup P of G is defined by the choice of a simple root

α of T in B. If we identify α with a simple root of S in B, then P = MN is also

defined by α.

We can identify X(M) = X(M) ×X(M), and for a character (χ1, χ2) ∈ X(M),

we have that (χ1, χ2) is defined over F if and only if χ2 = σ.χ1. Thus we can identify

X(M)F = X(M), and hence a∗M,C = a∗M,C.
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We have M = M×M, with M(F ) = {(m,σ(m)) : m ∈M(E)}. Let (m,σ(m)) ∈

M(F ). and let (χ, σ.χ) be an element of X(M)F . Then

q
〈(χ,σ.χ),HM((m,σ.(m)))〉
F = |χ(m)σ.χ(σ(m)))|F

= |χ(m)σχ(m)|F

= |NE/F (χ(m))|F

= |χ(m)|E

= q
〈χ,HM(m)〉
E .

From here we can immediately conclude the following. Suppose we identify:

• G(F ) = G(E)

• P(F ) = P(E)

• M(F ) = M(E)

• a∗M,C = a∗M,C

If π is a smooth, irreducible representation of M(F ) = M(E), and ν is an element

of a∗M,C = a∗M,C, then the representations IGMπq
〈ν,HM(−)〉
E and I

G
Mπq

〈ν,HM(−)〉
F of G(F ) =

G(E) obtained by normalized parabolic induction are equal.

Note that normalized parabolic induction is the same in both cases, because the

modulus characters of P(F ) = P(E) are equal.

2.4.5 Identifying Weyl group invariant forms

From any symmetric, nondegenerate, W (G,T)-invariant bilinear form (−,−) on

X(T), we get a symmetric, nondegenerate, W (G,T) and Gal(E/F )-invariant form

(−,−)1 on X(T) = X(T)⊕X(T) by

((χ1, χ
′
1), (χ2, χ

′
2))1 = (χ1, χ2) + (χ′1, χ

′
2).
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If ρ is half the sum of the roots of T in B, then (ρ, ρ) is half the sum of the roots of

T in B. If α is the simple root of T in G which defines P, then (α, 0) is a root of T

in G whose restriction to the maximal split torus S of T is α.

It is then straightforward to check that under the identification a∗M,C = a∗M,C, the

element α̃ of (2.2.16) is the same whether it is calculated for G or for G.

2.4.6 Identifying splitting and Weyl group representatives

For each root β of T in B, we have the root subgroup Uβ of U. If we interpret β

as a root of S in B, then the root subgroup of β in U is the restriction of scalars Uβ.

The simple roots of T in B come in pairs, as α1 = (α, 0) and α2 = (0, α), where α

is a simple root of T in G. Given a splitting xα : Ga → Uα : α ∈ ∆ which is defined

over E (that is, all the xα are defined over E), we get a splitting for the simple roots

of T by taking the pairs

xα1 : Ga
xα−→ Uα

x7→(x,1)−−−−→ Uα1

xα2 : Ga
σ.xα−−→ Uα

x 7→(1,x)−−−−→ Uα2
.

This splitting is defined over F . Thus we have two related splittings for G and G,

through which we define canonical Weyl group representatives and generic characters.

It follows from (2.2.4) that if we identify the normalizer of T(F ) in G(F ) with the

normalizer of S in G(F ) via n 7→ (n, n), then the canonical Weyl group representatives

(2.2.17) for W (G,T) are the same as the canonical Weyl group representatives for

W (G,S).

It also follows from (2.2.4) that if ψ is a nontrivial character of F , and we identify

U(F ) = U(E), then the generic character χ of U(F ) coming from ψ and the splitting

for G, is equal to the generic character χ of U(E) coming from ψ ◦ TrE/F and the

splitting for G.
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2.4.7 Local coefficients are unchanged by restriction of scalars

Now let π be a smooth, irreducible representation of M(F ) = M(E). Then π is

generic with respect to χ if and only if it is generic with respect to χ. The induced

representation I(s, π) is the same whether we are considering it as a representation

of G(F ) or G(E).

The self dual Haar measure on N′(F ) = N′(E) of (2.2.18), is the same, regardless

of the field over which the group is considered, a χ-Whittaker functional for π is the

same as a χ-Whittaker functional for π. The canonical Weyl group representative

w0 is same regardless of the field over which the groups are considered. So is the

intertwining operator A(s, π) and the Whittaker functionals λχ(s, π) = λχ(s, π). It

follows from here that

Cχ(s, π) = Cχ(s, π). (2.4.7.1)

That is, the local coefficient does not depend on whether we consider π as a generic

representation of M(E) or of M(F ).

2.4.8 Adjoint action of the L-group

Let r be the adjoint action of LM on Ln. Since M is split, we will identify

LM = LM◦. Recall we are assuming that r is irreducible. The L-group of M can be

identified with the semidirect product of LM × LM by Gal(E/F ), where σ acts by

σ.(x, y) = (y, x).

The Lie algebra Ln identifies with Ln⊕ Ln, and the adjoint action r of LM on Ln

is then given by

r(x, y, 1)(X, Y ) = (r(x)X, r(y)Y )

r(σ)(X, Y ) = (Y,X).

Then r is clearly irreducible.
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2.4.9 Gamma factors and Weil restriction of scalars

For π a χ-generic representation of M(E), the local coefficient and gamma factor

are related by Shahidi’s theorem (2.2.20)

Cχ(s, π) = γ(s, π, r, ψ ◦ TrE/F ).

Since M is split over E, the number λ(w0, ψ ◦ TrE/F ) showing up in the formula of

Shahidi’s theorem in (2.3.6) will be 1.

If we consider π as a χ-generic representation of M(F ), then the number λ(w0, ψ)

is equal to λ(E/F, ψ)DimN. Then Shahidi’s formula tells us that

Cχ(s, π) = λ(E/F, ψ)−DimN′γ(s, π, r, ψ).

Putting this together with equation (2.4.7.1), we have

λ(E/F, ψ)−DimN′γ(s, π, r, ψ) = γ(s, π, r, ψ ◦ TrE/F ).

We state this as a theorem:

Theorem 2.4.9.1. Let E/F be a quadratic extension of p-adic fields. Let M be a

split reductive group over F , base changed to E. Let r be an LS-representation of

LM, and let r be the representation of (2.4.8). Suppose that M is isomorphic to

a Levi subgroup M0 of a maximal parabolic subgroup P0 = M0N0 of some reductive

group, and that under this isomorphism the representation r of LM identifies with the

adjoint action of LM0 on Ln0. Then r is an LS-representation of M = ResE/F M,

and

γ(s, π, r, ψ) = λ(E/F, ψ)Dim rγ(s, π, r, ψ ◦ TrE/F )

for any generic representation π of M(E).
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2.5 Weil restriction and Rankin products

Still E/F is a quadratic extension of p-adic fields, and ψ is a nontrivial character

of F .

2.5.1 Some computations with the L-group of ResE/F GLn×GLm

We will apply Theorem 2.4.9.1 in particular to the group M = GLn×GLm. Let

V and W be complex vector spaces of dimensions n and m. We can identify the

L-group of M with GL(V )×GL(W ). Let R be the tensor product representation of

LM:

R : LM→ GL(V ⊗W )

R(T, S) = T ⊗ S.

This representation satisfies the hypothesis of Theorem 2.4.9.1, since

(g, h) 7→

Ö
g

th−1

è
is an isomorphism of M onto a maximal Levi subgroup of GLn+m, under which R

identifies with corresponding adjoint action.

We can identify the L-group of M = ResE/F GLn×GLm with

GL(V )×GL(W )×GL(V )×GL(W ) o Gal(E/F )

where Gal(E/F ) acts by σ.(T1, S1, T2, S2) = (T2, S2, T1, S1).

The corresponding representation R of (2.4.8) has underlying space (V ⊗W ) ⊕

(V ⊗W ), and is given by

(T1, S1, T2, S2).(v ⊗ w, v′ ⊗ w′) = (T1v ⊗ S1w, T2v
′ ⊗ S2w

′)
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σ.(v ⊗ w, v′ ⊗ w′) = (v′ ⊗ w′, v ⊗ w).

Theorem 2.4.9.1 tells us that if π1 and π2 are generic representations of GLn(E) and

GLm(E), then

γ(s, π1 � π2, R, ψ) = λ(E/F, ψ)nmγ(s, π1 � π2, R, ψ ◦ TrE/F )

= λ(E/F, ψ)nmγ(s, π1 × π2, ψ ◦ TrE/F ).

If π1 and π2 are not necessarily generic, then this last equation still holds, since π1

and π2 have generic inducing data. One applies multiplicativity on both sides ((2.2.6)

and Example 2.2.7.1).

2.5.2 The peculiar representation R

In this section we describe the properties of a particular L-group representation

which will show up in the multiplicativity of Asai gamma factors.

Again let M = ResE/F GLn×GLm. Let V and W be complex vector spaces of

dimensions n and m, so that the L-group of M again identifies with the semidirect

product of GL(V )×GL(W )×GL(V )×GL(W ) by Gal(E/F ), with Gal(E/F ) acting

by sending (T1, S1, T2, S2) to (T2, S2, T1, S1).

Define a representation R of LM with underlying space (V ⊗W )⊕ (V ⊗W ), by

R(T1, S1, T2, S2)(v ⊗ w, v′ ⊗ w′) = (T1v ⊗ S2w, T1v
′ ⊗ S1w

′)

R(σ)(v ⊗ w, v′ ⊗ w′) = (v′ ⊗ w′, v ⊗ w)

Define an automorphism ϕ of M by (x, y, x′, y′) 7→ (x, y′, x′, y). Then ϕ = ϕ−1 is

defined over F , and if we identify M(F ) = GLn(E)×GLm(E), then ϕ is defined on

points by

ϕ(x, y) = (x, σ(y)).

Let us state this as a lemma.
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Lemma 2.5.2.1. If π = π1 � π2 is a smooth, irreducible representation of M(F ) =

GLn(E)×GLm(E), then π ◦ϕ is isomorphic to the representation π1� (π2 ◦σ), where

σ is the nontrivial element of Gal(E/F ).

Now ϕ induces an automorphism ϕ∨ of LM, which sends (T1, S1, T2, S2) to (T1, S2, T2, S1).

Recall the LS-representation R of the last section. It is straightforward to check

that R ◦ ϕ∨ ∼= R, and therefore by (2.2.2), for any representation π = π1 � π2 of

M(F ), we have

γ(s, π � π2,R, ψ) = γ(s, π1 � (π2 ◦ σ), R, ψ).

Putting this together with (2.5.1), we have:

Proposition 2.5.2.2. Suppose that π1�π2 is an irreducible, admissible representation

of M(F ) = GLn(E)×GLm(E). Then

γ(s, π1 � π2,R, ψ) = λ(E/F, ψ)nmγ(s, π1 × (π2 ◦ σ), ψ ◦ TrE/F ).

Corollary 2.5.2.3. Suppose that π1 � π2 is an irreducible, admissible representation

of M(F ) = GLn(E)×GLm(E). Then

L(s, π1 � π2,R) = L(s, π1 × (π2 ◦ σ)).

Proof: The equality of gamma factors γ(s, π1 � π2,R, ψ) and γ(s, π1 × π2 ◦ σ, ψ ◦

TrE/F ), up to a root of unity, suffices to deduce the equality of the L-functions. The

L-functions on both sides are initially defined for tempered representations. Since

a polynomial in q−sE is also a polynomial in q−sF , we see from the definition of the

L-function in the tempered case that the L-functions agree when π1 �π2 is tempered.

We also get the equality of L-functions in the quasi-tempered case, since a twist

by an unramified character affects both L-functions in the same way.

We then get the equality of L-functions for general π1 and π2, since Langlands

classification is the same whether we formulate it for M(F ) or for GLn(E)×GLm(E),

and multiplicativity is analogous for both groups. �
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2.6 The Asai representation

We finally state our main result in this section. In (2.6.1), we define the Asai

representation R, which is an LS-representation of the L-group of ResE/F GLn, where

E/F is a quadratic extension of characteristic zero local fields. The gamma, epsilon,

and L factors as defined by the Langlands-Shahidi method will be called Asai factors.

In (2.6.2), we state the local Langlands correspondence for ResE/F GLn in terms

of the local Langlands correspondence for GLn, using 8.1 of [Bo79]. If ρ′ is an admissi-

ble homomorphism from the Weil-Deligne group W ′
F into the L-group of ResE/F GLn,

then the Frobenius semisimple representation R ◦ ρ′ will be called the Asai repre-

sentation on the Galois side, and the corresponding Artin gamma, epsilon, and

L-functions will be called Asai factors on the Galois side.

In (2.6.3), we state our main theorem, which is the equality of the Asai epsilon

factor with the corresponding Asai epsilon factor on the Galois side. We also cite

two of Henniart’s results in [He10]. First, Henniart proved the equality of the Asai

gamma factors on both sides, up to a root of unity. Next, Henniart used this equality

to sketch a proof of the equality of the Asai L-functions on both sides. In Section 2.7,

we will flesh out Henniart’s argument in detail and reprove the equality of the Asai

L-functions, granting the equality of Asai gamma factors up to a root of unity.

We remark that, since we know that the Asai L-functions on both sides are equal,

an equivalent formulation of our main theorem is the exact equality of the Asai gamma

factors on both sides. This is the theorem which we will actually prove.

In (2.6.4), we state how our factors are affected unramified twists. Finally in

(2.6.5), we prove a formula for the multiplicativity of the Asai gamma factor.

2.6.1 Definition of the Asai representation

Let E/F be a quadratic extension of characteristic zero local fields, and let

M = ResE/F GLn. As in (2.4.1), we identify M(F ) = GLn(F ) × GLn(F ). Let
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ΓE = Gal(E/F ), with nontrivial automorphism σ. We take the Borel subgroup and

maximal torus of M to be the product of the usual ones of GLn.

The L-group LM can be identified with the semidirect product of LM◦ = GLn(C)×

GLn(C) by ΓE, where σ acts on GLn(C) × GLn(C) by σ.(x, y) = (y, x). In fact,

let V be an n-dimensional complex vector space. Then we can identify LM◦ with

GL(V )×GL(V ).

The Asai representation R = Rn is defined to be the following representation

of LM with underlying space V ⊗ V :

R(T, S, σn)v ⊗ v′ =


Tv ⊗ Sv for n = 0

Tv′ ⊗ Sv for n = 1.

It is an LS-representation, corresponding to the adjoint action of M embedded as a

maximal Siegel levi inside the unitary group U(n, n) of E/F (5.1.2).

2.6.2 Restriction of scalars and tensor induction

Since we have a local Langlands correspondence for GLn ((2.3.7) in the nonar-

chimedean case and (2.1.8) in the archimedean), we also have one for M by (2.1.9).

Specifically, let V be an n-dimensional complex vector space, and let

ρ′ : W ′
E → GL(V ) = L GLn,E

be an admissible homomorphism of W ′
E (2.1.7). Choose a z ∈ WF which is not in

WE. Define a homomorphism

ρ′ : W ′
F → GL(V )×GL(V ) o Gal(E/F ) = LM
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by

ρ′(a) =


(ρ′(a), ρ′(zaz−1), 1) if a ∈ W ′

E

(ρ′(az−1), ρ′(za), σ) if a 6∈ W ′
E.

Up to equivalence, this does not depend on the choice of z. This association ρ′ 7→ ρ′

is exactly the bijection defined by Borel in (8.1, [Bo79]).

Proposition 2.6.2.1. The representation R ◦ ρ′ : W ′
F → LM is isomorphic to

⊗ IndE/F ρ
′, the representation of W ′

F obtained from ρ′ by tensor induction (1.1.17).

Proof: Direct computation. �

2.6.3 Statement of our main results

We now state our main theorem. Suppose E/F is a quadratic extension of char-

acteristic zero local fields, and M = ResE/F GLn,E. If π is an irreducible, admissible

representation of M(F ) = GLn(E), and ψ is a nontrivial unitary character of F (there

is no need to specify that ψ is unitary when F is nonarchimedean), the gamma factor

γ(s, π,R, ψ), L-function L(s, π,R), and epsilon factor ε(s, π,R, ψ) are all defined by

the Langlands Shahidi method, where R is the Asai representation of (2.6.1).

If ρ′ is the n dimensional representation of W ′
E corresponding to π under the local

Langlands correspondence for GLn(E), define ρ′ as in (2.6.2). Then π 7→ ρ′ is the

local Langlands correspondence for M.

Let us state formally what we want to prove with our Asai factors. As we explain

below, some of this has already been proved by Henniart in [He10], and some of this

is new.

Theorem 2.6.3.1. Let π be an irreducible, admissible representation of GLn(E), and

let ρ′ correspond to π as above. Then:

(i): (Equality of Asai epsilon factors)

ε(s, π,R, ψ) = ε(s,R ◦ ρ′, ψ)
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(ii): (Equality of Asai gamma factors)

γ(s, π,R, ψ) = γ(s,R ◦ ρ′, ψ)

(iii): (Equality of Asai L-functions)

L(s, π,R) = L(s,R ◦ ρ′).

From the general results of the Langlands-Shahidi method, we can already con-

clude that Theorem 2.6.3.1 holds in two particular cases.

Remark 2.6.3.2. Theorem 2.6.3.1 holds in the archimedean case. It also holds in

the p-adic case when π has an Iwahori fixed vector.

Proof: In either case, the passage from ρ′ to ρ′ is compatible with the existing local

Langlands correspondence for archimedean groups or tori (2.1.9). As we remarked

in (2.12), in the archimedean case, the equality of the Langlands-Shahidi gamma

factor with the corresponding Artin gamma factor is a theorem of Shahidi ([Sh90],

Theorem 3.5, (1)). The Langlands-Shahidi L and epsilon factors are by definition the

corresponding Artin factors.

In the nonarchimedean case when π has an Iwahori fixed vector, [Sh90], Theorem

3.5 (1) also takes care of the equality of gamma factors on both sides. The equality

of L factors in this case is implied by Henniart’s result which we state below. The

equality of epsilon factors falls out as a result of the equality of gamma and L factors.

�

Now we cite two of Henniart’s results (Theorem 5.2 of [He10]).

Theorem 2.6.3.3. (Henniart) Assume F is p-adic. There exists a root of unity ζ

such that

ζγ(s, π,R, ψ) = γ(s,R ◦ ρ′, ψ).

Theorem 2.6.3.4. (Henniart) Assume F is p-adic. The equality of L-functions ((iii)

of Theorem 2.6.3.1) holds.
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We have stated our main results in a way that is amenable to the local Langlands

correspondence for general reductive groups. In light of Proposition 2.6.2.1 and the

isomorphism R◦ρ′ ∼= ⊗ IndE/F ρ
′, we can restate our main theorem in a more practical

way.

Theorem 2.6.3.5. (Equivalent formulation of Theorem 2.6.3.1) Let π be an irre-

ducible, admissible representation of GLn(E), and let ρ′ be the representation of W ′
E

corresponding to π under the local Langlands correspondence for GLn. Then: (i):

(Equality of Asai epsilon factors)

ε(s, π,R, ψ) = ε(s,⊗ IndE/F ρ
′, ψ)

(ii): (Equality of Asai gamma factors)

γ(s, π,R, ψ) = γ(s,⊗ IndE/F ρ
′, ψ)

(iii): (Equality of Asai L-functions)

L(s, π,R) = L(s,⊗ IndE/F ρ
′)

where ⊗ IndE/F ρ
′ is the representation of W ′

F obtained by tensor induction.

As we remarked above, Henniart had proved the equality of Asai gamma factors

up to a root of unity. The main result of this thesis is the exact equality of the Asai

gamma factors:

Main Theorem 2.6.3.6. The equality of gamma factors ((ii) of Theorem 2.6.3.1,

or equivalently its reformulation in Theorem 2.6.3.5), holds. That is,

γ(s, π,R, ψ) = γ(s,⊗ IndE/F ρ
′, ψ).

As a consequence of our main theorem, combined with Henniart’s result of the

equality of L factors, we get the equality of the epsilon factors.
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Corollary 2.6.3.7. The equality of epsilon factors ((i) of Theorem 2.6.3.1, or equiv-

alently its reformulation in Theorem 2.6.3.5), holds. That is,

ε(s, π,R, ψ) = ε(s,⊗ IndE/F ρ
′, ψ).

Following the corollary our result, together with Henniart’s results, finally estab-

lishes the entirety of Theorem 2.6.3.1.

2.6.4 Unramified twists and Asai factors

Assume that E/F is p-adic. As we will show in Chapter Five, the Asai represen-

tation is defined by embedding M = ResE/F GLn as a Siegel Levi subgroup of the

unitary group G = U(n, n). If α̃ is as in (2.2.16), it is a consequence of Lemma 5.1.3.1

(i) that

q
〈sα̃,HM(m)〉
F = | det(m)|

s
2
E

for all m ∈ GLn(E) = M(F ). It follows from (2.2.21) that

γ(s, π| det(−)|s0E ,R, ψ) = γ(s+ 2s0, π,R, ψ)

L(s, π| det(−)|s0E ,R) = L(s+ 2s0, π,R).

Let ρ′ be a representation of W ′
E. By Lemma 1.1.9.1 and Theorem 1.1.16.1, part (iv),

we see that the same effect from an unramified twist occurs on the Artin side:

γ(s,⊗ IndE/F ρ
′|| · ||s0 , ψ) = γ(s+ 2s0,⊗ IndE/F ρ

′, ψ)

L(s,⊗ IndE/F ρ
′|| · ||s0 , ψ) = L(s+ 2s0,⊗ IndE/F ρ

′, ψ).



87

2.6.5 Multiplicativity of Asai gamma factors

Again assume that E/F is p-adic. Let M∗ = ResE/F GLn1 ×GLn2 be a standard

Levi subgroup of M. Let π be an irreducible, admissible representation of M∗(F ) =

GLn(E), and suppose that π is isomorphic to a quotient of IMM∗π1�π2, for irreducible

admissible representations πi of GLni(E).

In order to apply multiplicativity, we must consider the restriction of the Asai

representation R = Rn to LM∗.

Let V be an n dimensional complex vector space, and let V1 and V2 be n1 and n2

dimensional subspaces of V such that V1 ⊕ V2 = V . Then we can identify

LM = GL(V )×GL(V ) o Gal(E/F )

LM∗ = GL(V1)×GL(V2)×GL(V1)×GL(V2) o Gal(E/F ).

Now we can break up V ⊗ V into three subspaces: V1 ⊗ V1, V2 ⊗ V2, (V1 ⊗ V2)⊕

(V1 ⊗ V2). We see that each subspace is stable under the action of LM∗, and:

• The subrepresentation (V1⊗ V2)⊕ (V1⊗ V2) of LM∗ is isomorphic to the repre-

sentation R of (2.5.2).

• The restriction of R|LM∗ to GL(V1) × GL(V1) o Gal(E/F ) is trivial, and the

restriction to GL(V2)×GL(V2) o Gal(E/F ) is isomorphic to Rn2 .

• The restriction of R|LM∗ to GL(V2) × GL(V2) o Gal(E/F ) is trivial, and the

restriction to GL(V1)×GL(V1) o Gal(E/F ) is isomorphic to Rn1 .

Therefore, by (2.2.6) and (2.2.7), we can conclude that

γ(s, π,R, ψ) = γ(s, π1,Rn1 , ψ)γ(s, π2,Rn2 , ψ)γ(s, π1 � π2,R, ψ).
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But on account of Proposition 2.5.2.2, this last gamma factor is really that of a Rankin

product:

γ(s, π,R, ψ) = γ(s, π1,Rn1 , ψ)γ(s, π2,Rn2 , ψ)λ(E/F, ψ)n1n2γ(s, π1×(π2◦σ), ψ◦TrE/F )

where σ is the nontrivial element of Gal(E/F ). Applying the same reasoning to the

general case, we have:

Theorem 2.6.5.1. Suppose that π is an irreducible, admissible representation of

ResE/F GLn(F ) = GLn(E), and π is isomorphic to a quotient of IndGLn(E) π1�· · ·�πr.

Then

γ(s, π,R, ψ) =
r∏
i=1

γ(s, πi,Rni , ψ)
∏

1≤i<j≤r
λ(E/F, ψ)ninjγ(s, πi × (πj ◦ σ), ψ ◦ TrE/F )

where πi is a representation of GLni(E).

Thus multiplicativity allows us to write an Asai gamma factor as a product of

smaller dimension Asai gamma factors, and a product of Rankin product gamma

factors.

Remark 2.6.5.2. In the case where π1�· · ·�πr is quasi-tempered with positive Lang-

lands parameter, Goldberg calculates this same multiplicativity formula for γ(s, π,R, ψ)

(Section 5 of [Go94]).

2.7 Equality of gamma factors implies equality of L-functions

Again E/F is p-adic. In this section we give a detailed exposition of Henniart’s

proof of the equality of L-functions (Theorem 2.6.3.4), granting his result that the

gamma factors are equal, up to a root of unity (Theorem 2.6.3.3).

The idea is to first prove the equality of L-functions for tempered representations,

making use of the general result that the L-functions for tempered representations

(on either the analytic or Galois side) can be read off from the gamma factors.
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The equality for L-functions of arbitrary representations following from the tem-

pered case using Langlands classification.

2.7.1 The tempered case I

Let ρ′ = (ρ, V,N) be a representation of the Weil-Deligne group W ′
F . Recall that

(1.2.7)

L(s, ρ′) = det(1− q−sρN(Φ))−1

where ρN is the kernel of N , and q = qF . The function L(s, ρ′)−1 is a polynomial in the

variable q−s. Let us write L(s, ρ′)−1 = F (q−s), for a unique polynomial F (X) ∈ C[X].

It is clear that for σ ∈ R,

lim
σ→∞

L(σ, ρ′) = 1.

Therefore, we must have F (0) = 1.

2.7.2 The tempered case II

Suppose that H is a polynomial in C[X] with H(0) = 1. There is a unique rational

function G1 ∈ C(X) such that H(qs−1) = G1(q−s). If t is the degree of H, then there is

a unique polynomial G ∈ C[X] and a unique c1 ∈ C such that G1(X) = c1X
−tG(X),

with G(0) = 1.

2.7.3 The tempered case III

Let π be a tempered representation of GLn(E), and let ρ′ be the corresponding

representation of W ′
E. By Theorem 2.6.3.3 of Henniart, we know that

ζγ(s, π,R, ψ) = γ(s,⊗ IndE/F ρ
′, ψ) (2.2.7.1)
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for some root of unity ζ. We will show that L(s, π,R) = L(s,⊗ IndE/F ρ
′). There

exists a rational function f ∈ C(X) such that

γ(s, π,R, ψ) = f(q−s).

We can find unique α ∈ C, a ∈ Z, and P,Q ∈ C[X] such that f(X) = αXa P (X)
Q(X)

, with

P (0) = Q(0) = 1. Since π is tempered, we know that L(s, π,R) = P (q−s)−1 (2.2.9).

Now, let F and H be polynomials for which

L(s,⊗ IndE/F ρ
′, ψ) = F (q−s)−1, L(s,⊗ IndE/F ρ

′∨, ψ) = H(q−s)−1.

We know that F (0) = H(0) = 1 (2.7.1). We also know that, since π is tempered, so

are ρ′ and ρ′∨ (2.3.8), and so are ⊗ IndE/F ρ
′ and ⊗ IndE/F ρ

′∨ (Proposition 1.2.11.1).

Hence F (q−s) and H(q−s) have no zeroes for Re(s) > 0 (Lemma 1.2.10.1). This

implies that F (q−s) and H(qs−1) have no zeroes in common whatsoever.

Let c, t, G1, G be as in (2.7.2). Then

H(qs−1) = G1(q−s) = c1q
tsG(q−s)

and we see that G(q−s) and F (q−s) have no zeroes in common. Therefore, the poly-

nomials G(X) and F (X) must be relatively prime.

We also have ε(s,⊗ IndE/F ρ
′, ψ) = cqns for some c ∈ C and n ∈ Z. Writing

γ(s,⊗ IndE/F ρ
′, ψ) =

ε(s,⊗ IndE/F ρ
′, ψ)L(1− s,⊗ IndE/F ρ

′∨)

L(s,⊗ IndE/F ρ′)

= cc−1
1 q(n−t)sF (q−s)

G(q−s)

and putting this together with equation (2.2.7.1) we get

ζαq−as
P (q−s)

Q(q−s)
= cc−1

1 q(n−t)sF (q−s)

G(q−s)
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and hence

ζαXaP (X)

Q(X)
= cc−1

1 X(t−n)F (X)

G(X)
.

The pairs of polynomials P,Q and F,G are relatively prime, and satisfy P (0) =

Q(0) = F (0) = G(0) = 1. We must conclude that cc−1
1 = α, t − n = a, and

F (X) = P (X), G(X) = Q(X). In particular,

L(s, π,R) = P (q−s)−1 = F (q−s)−1 = L(s,⊗ IndE/F ρ
′).

This completes the proof of Theorem 2.2.6.4 in the case where π is tempered.

2.7.4 Proof of the quasi-tempered case

Suppose that π is a quasi-tempered representation of GLn(E). Let ρ′ be the

corresponding representation of W ′
E. There exists a complex number s0 such that

π| det(−)|s0 is tempered. Then by (2.6.4) and (2.7.3), we have

L(s, π,R) = L(s− 2s0, π| det(−)|s0 ,R)

= L(s− 2s0,⊗ IndE/F ρ
′|| · ||s0)

= L(s,⊗ IndE/F ρ
′).

This completes the proof of Theorem 2.2.7.4 in the case when π is quasi-tempered.

2.7.5 The general case

Finally, suppose that π is an arbitrary smooth, irreducible representation of

GLn(E), and ρ′ is the corresponding representation of W ′
E. Recall that the L-function

L(s, π,R) is defined using Langlands classification for quotients ((2.2.8) and (2.2.9)).

We use the relationship between Bernstein-Zelevinsky classification and Langlands

classification given in (2.3.6).
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Let ∆1, ...,∆r be intervals such that π = Q(∆1, ...,∆r) in the Bernstein-Zelevinsky

classification. Let

∆j = {πj, πj(1), ..., πj(mj − 1)}

for irreducible supercuspidal representations πj and integers mj ≥ 1. Let ρj be the

irreducible representation of WE corresponding to πj, and let ρ′j = ρj ⊗ Sp(mj), so

that π corresponds to ρ′1 ⊕ · · · ⊕ ρ′r under the local Langlands correspondence.

For each 1 ≤ j ≤ r, there is a unique real number xj such that Q(∆j)(−xj) =

Q(∆′j) is square integrable, where

∆′j = {πj(−xj), πj(−xj + 1), ..., πj(−xj +mj − 1)}.

We may assume that the intervals ∆j are ordered so that

y1 = x1 = · · · = xn1 > y2 = xn1+1 = · · · = xn2 > · · · = ys.

If for 1 ≤ i ≤ s and ni−1 + 1 ≤ j ≤ ni (taking n0 = 0), we set

δi = Q(∆ni−1+1) � · · ·�Q(∆ni)

δ′i = Q(∆′ni−1+1) � · · ·�Q(∆′ni)

then τ ′i = Ind δ′i is irreducible and tempered, and coincides with Q(∆′ni−1+1, ...,∆
′
ni

) in

the Bernstein-Zelevinsky classification. Hence τi = τ ′i(yi) = Ind δi is irreducible and

quasi-tempered, and coincides with Q(∆ni−1+1, ...,∆ni) in the Bernstein-Zelevinsky

clasification.

Now τ = τ1 � · · · � τs (resp. τ ′ = τ ′1 � · · · � τ ′s) is a quasi-tempered (resp.

tempered) representation of a standard Levi subgroup M of GLn(E). If we let Di

be the determinant on the ith block of M , and let ν be the unramified character

y1D1 + · · · + ysDs of M , then ν lies in the positive Weyl chamber of M , and τ =
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τ ′q〈ν,HM (−)〉. As we explained in (2.3.6), π is the unique irreducible quotient of Ind τ =

Ind τ ′q〈ν,HM (−)〉.

Then (2.2.9), Theorem 2.6.5.1, and Corollary 2.5.2.3 give us a multiplicativity

formula for the Asai L-function L(s, π,R) analogous to that of the Asai gamma

factor:

L(s, π,R) =
s∏
i=1

L(s, τi,R)
∏

1≤i<j≤s
L(s, τi × (τj ◦ σ))

where σ is the nontrivial element of Gal(E/F ). On the other hand, if for 1 ≤ i ≤ s

we set
•
ρi = ρ′ni−1+1 ⊕ · · · ⊕ ρ′ni

then
•
ρi corresponds to the quasi-tempered representation τi under the local Langlands

correspondence, with

ρ =
•
ρ1 ⊕ · · · ⊕

•
ρs.

Then we have

L(s,⊗ IndE/F ρ
′) =

s∏
i=1

L(s,⊗ IndE/F
•
ρi)

∏
1≤i<j≤s

L(s,
•
ρi × (

•
ρj ◦ ιz))

=
s∏
i=1

L(s, τi,R)
∏

1≤i<j≤s
L(s, τi ⊗ (τj ◦ σ))

= L(s, π,R)

where z is an element of WF that is not in WE. We have used Lemma 1.1.18.2, the fact

that L-functions of Weil-Deligne representations are additive over direct sums, the fact

that Rankin products go to tensor products under the local Langlands correspondence

(2.3.7), and that composition by σ corresonds to conjugation by z under the local

Langlands correspondence (2.3.10). This completes the proof of Theorem 2.6.4 in

general.
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3. PROOF OF THE MAIN THEOREM

In this chapter we prove our main theorem, Theorem 2.6.3.6, which is the equality

of the Asai gamma factor, as defined by the Langlands-Shahidi method, with the

corresponding gamma factor on the Galois side. By Remark 2.6.3.1, the theorem

already holds in the archimedean case. Our proof uses global methods, and is very

general. The methods of proof we use were originally carried out successfully in

[CoShTs17] to prove the equality of the symmetric and exterior square gamma factors,

as defined by Langlands-Shahidi method, with the corresponding factors on the Galois

side.

The method of proof in this chapter depends critically on a highly technical pro-

posotion, called “analytic stability” (Proposition 3.2.2.8). The proposition says that

if two supercuspidal representations of GLn(E) have the same central character,

then their corresponding Asai gamma factors become equal if the representations

are twisted by a sufficiently highly ramified character. Our proof of analytic stability

is completely local, and we postpone it to Chapters Four and Five. Our method of

proof of stability was originally carried out in [CoShTs17].

3.1 Preliminaries

Before we state the proof of the main theorem, we give an overview of the methods

involved. We also make a remark on the choice of the additive character occurring in

the gamma factors.
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3.1.1 Summary of the proof of the main theorem

We give a summary of the content of this chapter. Our quadratic extension of

p-adic local fields E/F will be realized as the respective completions of a quadratic

extension of number fields K/k at an extension of places w0 | v0. We will encounter

certain representations Σ of the global Weil group WK , and consider their restrictions

Σw to the local Weil groups WKw . If Πw is the representation of GLn(Kw) correspond-

ing to Σw via the local Langlands correspondence, our tensor product Π = ⊗wΠw will

be a cuspidal automorphic representation of GLn(AK).

We will compare the Artin L-function L(s,⊗ IndWk
WK

Σ) of the tensor induced rep-

resentation of Σ to Wk, and the global Asai L-function L(s,Π, R), where R is the

“global Asai representation” and Π is realized as a cuspidal automorphic representa-

tion of ResK/k GLn(Ak).

In considering the global L-functions and their respective functional equations, we

will be able to match up the local factors on both sides at almost all places. What

we will end up with is a finite set S of places of k containing v0, such that each place

v ∈ S has exactly one place w of K lying over it, and such that

∏
v∈S

γ(s,⊗ Ind
Wkv
WKw

Σw,Ψv) =
∏
v∈S

γ(s,Πw,R,Ψv)

where R is the Asai representation of the L-group of ResKw/kv GLn, and Ψ = ⊗vΨv

is a nontrivial character of Ak/k.

Our first main result is a “stable version” of our main theorem (Proposition

3.2.2.2): we show that our main theorem holds for supercuspidal representations up

to highly ramified twist. This result uses the idea above of matching up a global Weil

representation with a cuspidal automorphic representation. It also relies the analytic

stability result (Proposition 3.2.2.8) which will be proved later in Chapters Four and

Five. Proposition 3.2.2.2 is done by induction on n, the induction hypothesis being

that stable equality holds for all quadratic extensions of p-adic local fields, not just

the extension E/F we started with.
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Using multiplicativity, we readily remove the supercuspidal assumption in Corol-

lary 3.2.2.9 for the stable version of our main theorem. We next use another global

argument to show that our main theorem holds for monomial representations on the

Galois side (Proposition 3.2.3.1). From there, Brauer’s theorem gives us the main

theorem for Galois representations (Proposition 3.2.4.1). Since irreducible represen-

tations of the local Weil group are unramified twists of Galois representations, we

get the main theorem for supercuspidals. Finally, multiplicativity gives us our main

theorem for arbitrary representations.

3.1.2 On the choice of additive character

Let E/F be a quadratic extension of p-adic fields. The gamma factors γ(s,⊗ IndE/F ρ
′, ψ)

and γ(s, π,R, ψ) depend on a choice of nontrivial character ψ of F . At several places

in this chapter, F will be taken to be the completion of a number field k at a place v0,

and ψ will be assumed to be a local constituent of a nontrivial character Ψ = ⊗vΨv

of Ak/k such that Ψv0 = ψ. The extensions E/F and the global field k are variable

throughout the chapter.

Not all characters ψ of F = kv0 occur as a local constituent of a global character.

Consequently, a given global argument in this chapter will appear to give an equality

of gamma factors only for certain characters ψ. Fortunately, the density of k in F

takes care of this issue.

If a ∈ F , let ψa be the character x 7→ ψ(ax) of F . Similarly, if a ∈ k, let Ψa be

the character x 7→ Ψ(ax) of Ak/k. Every nontrivial character of F is equal to ψa for a

unique 0 6= a ∈ F , and every nontrivial character of Ak/k is equal to Ψa for a unique

0 6= a ∈ k. In this way, the characters of F of the form Ψv0 form a dense set of all

characters.

For fixed s, π, and ρ′, the factors γ(s,⊗ IndE/F ρ
′, ψa) and γ(s, π,R, ψa) are con-

tinuous functions of a ∈ F . Therefore during this chapter, if for a given quadratic
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extension E/F , a given number field k, and a given place v0 such that kv0 = F , any

equality of the form

γ(s,⊗ IndE/F ρ
′, ψ) = γ(s, π,R, ψ) (3.1.2.1)

is proved to hold for characters ψ of the form Ψv0 , then the equality also holds for

arbitrary ψ. Therefore there is no loss of generality in always assuming that ψ takes

the form Ψv0 .

3.2 Proof of the main theorem

3.2.1 Template of the global argument

We return to the notation and conventions of (1.4). In particular, K/k is a

quadratic extension of number fields. In this section we go through a global argument

which will be used repeatedly in the proof of Theorem 2.6.3.6. Let Σ be an n-

dimensional representation of the global Weil group WK , and let Ψ = ⊗Ψv be a

nontrivial character of Ak/k with Ψv0 = ψ. Consider the representation ⊗ IndK/k Σ

of Wk obtained from Σ by tensor induction (1.4.7). We have the global L-function

and epsilon factor (1.4.3)

L(s,⊗ IndK/k Σ) =
∏
v

L(s, (⊗ IndK/k Σ)v)

ε(s,⊗ IndK/k Σ) =
∏
v

ε(s, (⊗ IndK/k Σ)v,Ψv).

The global epsilon factor is actually a finite product. The L-function is initially only

well defined in some right half plane, but admits a meromorphic continuation to all

of C satisfying the global functional equation

L(s,⊗ IndK/k Σ) = ε(s,⊗ IndK/k Σ)L(1− s, (⊗ IndK/k Σ)∨). (3.2.1.1)

Let Πw be the representation of GLn(Kw) corresponding to the semisimplification of

Σw under the local Langlands correspondence. Suppose that Π = ⊗Πw is a cuspidal
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automorphic representation of GLn(AK). We will let H = ResK/k GLn, and consider

Π = ⊗vπv as a cuspidal automorphic representation of H(Ak). The L-group of H is

the semidirect product of GL(V )×GL(V ) by Gal(K/k), where V is an n-dimensional

complex vector space, and we can define the global Asai representation R of LH

exactly as in the local case (2.6.1). We have the global L-function and epsilon factor

L(s,Π, R) =
∏
v

L(s, πv, Rv)

ε(s,Π, R) =
∏
v

ε(s, πv, Rv,Ψv)

where Rv is the composition of LHkv → LH and R (2.2.14). The global epsilon factor

is a finite product, while the global L-function admits a meromorphic continuation

to all of C and satisfies the global functional equation

L(s,Π, R) = ε(s,Π, R)L(1− s,Π∨, R). (3.2.1.2)

Proposition 3.2.1.1. If v is a place of k, and any of the following conditions is met:

(i): There are two places w and w′ of K lying over v

(ii): v is archimedean

(iii): v is nonarchimedean and πv has an Iwahori fixed vector

then

γ(s, πv, Rv,Ψv) = γ(s, (⊗ IndK/k Σ)v,Ψv)

L(s, πv, Rv) = L(s, (⊗ IndK/k Σ)v)

L(s, π∨v , Rv) = L(s, (⊗ IndK/k Σ)∨v )

ε(s, πv, Rv,Ψv) = ε(s, (⊗ IndK/k Σ)v,Ψv).
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Proof: Assume we are in the case (i). Then we can identify kv = Kw = Kw′ , and

we have

Hkv = GLn×GLn

LHkv = GL(V )×GL(V )

πv = Πw � Πw′

γ(s, πv, Rv,Ψv) = γ(s,Πw × Πw′ ,Ψv)

(⊗ IndK/k Σ)v = Σw ⊗ Σw′

where this last equality is from (1.4.7). We then have the equality of gamma fac-

tors, because tensor products go to Rankin products under the local Langlands cor-

respondence. Note that the gamma factor on the Artin side only depends on the

semisimplification of the representation.

Assume that we are not in the case (i), so there is only one place w of k lying over

v. Then

Hkv = ResKw/kv GLn

πv = Πw

Rv = R

(⊗ IndK/k Σ)v = ⊗ IndKw/kv Σw

where the last equality is (1.4.8). The equality of gamma factors is then exactly the

assertion of Theorem 2.6.3.6, which we have remarked is valid in the cases (ii) and

(iii) (see Remark 2.6.3.2).

Note that for all places v, we have the equality of L factors, since these are

either Rankin products (Rankin product L factors are equal by the local Langlands

correspondence for GLn), archimedean factors (the analytic L-factors are equal to the

Galois ones by definition), or nonarchimedean factors (since the gamma factors for

Iwahori fixed representations match up, so do the L-factors by Henniart’s argument
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(2.7)). Thus in the cases (i), (ii), (iii) we have also the equality of epsilon factors by

equations (1.3.3.1) and (2.1.6.1). �

Corollary 3.2.1.2. With the notation as above, we have

∏
v∈S

γ(s, πv,R,Ψv) =
∏
v∈S

γ(s,⊗ IndKw/kv Σw,Ψv)

where S is a finite set of finite places v of k, each of which has only one place w of K

lying over it. We may exclude from S any place v at which πv has an Iwahori fixed

vector.

Proof: By Proposition 3.2.1.1, the local L and epsilon factors match up at all

places outside S. We may therefore divide equation (3.2.1.1) by equation (3.2.1.2) to

obtain

∏
v∈S

L(s, πv, Rv)

L(s, (⊗ IndK/k Σ)v)
=

∏
v∈S

ε(s, πv, Rv,Ψv)

ε(s, (⊗ IndK/k Σ)v,Ψv)

L(1− s, π∨v , Rv)

L(1− s, (⊗ IndK/k Σ)∨v )
.

At the places v in S, we know thatRv = R is the Asai representation, and (⊗ IndK/k Σ)v

is the representation ⊗ IndKw/kv Σw (1.4.8). Clearing the denominators of this last

equation gets us the desired equality. �

3.2.2 The stable equality

From now on, E/F will be a quadratic extension of p-adic fields. Let π be a

smooth, irreducible representation of GLn(E), corresponding to an n-dimensional

Frobenius semisimple representation ρ of W ′
E. Let η be a character of WE, which

we identify as a character of E∗ by local class field theory. Then define πη to be

π(η ◦ det). Then πη corresponds to ρη under the local Langlands correspondence

(LLC).

The following lemma is a restatement of (2.6.4). Since we use it repeatedly in this

chapter, we include it here.
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Lemma 3.2.2.1. Let η = || · ||s0 be an unramified character of WE, and π a smooth,

irreducible representation of GLn(E). Then

γ(s, πη,R, ψ) = γ(s+ 2s0, π,R, ψ)

γ(s,⊗ IndE/F (ρη), ψ) = γ(s+ 2s0,⊗ IndE/F ρ, ψ).

It follows from Lemma 3.2.2.1 that if Theorem 2.6.3.6 holds for a given represen-

tation π, it also holds for unramified twists of π.

In this section, we prove the following stable version of Theorem 2.6.3.6 for super-

cuspidal representations:

Proposition 3.2.2.2. (Stable equality for supercuspidals) Let π be a supercuspidal

representation of GLn(E), corresponding to an irreducible representation ρ of WE.

Then for all sufficiently highly ramified characters η of WE, we have

γ(s, πη,R, ψ) = γ(s,⊗ IndE/F (ρη), ψ).

We first prove Proposition 3.2.2.2 in the case n = 1. For this, we require a simple

lemma on idelic characters:

Lemma 3.2.2.3. Let K be a number field, w1, ..., wr finite places of K, and η1, ..., ηr

characters of K∗w1
, ..., K∗wr . There exists a unitary character X = ⊗wXw of A∗K/K∗

such that Xwi and ηi agree on O∗wi for 1 ≤ i ≤ r, and Xw is unramified at all other

finite places w.

Proof: Consider the compact subgroup
∏

w<∞
O∗w of A∗K . Define a unitary character

X = ⊗Xw of this compact subgroup by setting Xwi = ηi for 1 ≤ i ≤ r, and Xw = 1

for all other finite places w. Since this compact subgroup has trivial intersection with

K∗, we can extend X to a unitary character of K∗
∏

w<∞
O∗w by making it trivial on

K∗. Now K∗
∏

w<∞
O∗w is closed A∗K , being the product of a closed set and a compact

set. Hence X can be extended to a unitary character of A∗K by Pontryagin duality.

It is trivial on K∗, and satisfies the requirements of the lemma. �
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Lemma 3.2.2.4. Theorem 2.6.3.6 (and hence Proposition 3.2.2.2) holds for the case

n = 1.

Note that Proposition 3.2.2.2 follows from Theorem 2.6.3.6, because the local

Langlands correspondence is compatible with twisting by characters.

Proof: In this case, π is a character χ of E∗ = ResE/F GL1(F ), and the ρ corre-

sponding to χ is a character of WE. We globalize the situation by finding:

1. A quadratic extension of number fields K/k, with places w0 | v0, such that

Kw0 = E, kv0 = F

2. A unitary character X = ⊗Xw of AK/K
∗ such that Xw0 agrees with χ on O∗E,

and Xw is unramified for finite w 6= w0 (Lemma 3.2.2.3)

3. A character Ψ = ⊗Ψv of Ak/k such that Ψv0 = ψ.

We identify X as a one dimensional representation of the global Weil group, so that

for each place w of K, the one dimensional representation (X )w of WKw (defined

in (1.4.3)) identifies with the character of Xw of K∗w via the local Artin map. Now

we identify X = ⊗vXv as a cuspidal automorphic representation of ResK/k GL1(Ak).

Note that if a place v of k has only one place w of K lying over it, then Xv = Xw.

Using the template of the global argument (3.2.1), we have

∏
v∈S

γ(s,Xw,R,Ψv) =
∏
v∈S

γ(s,⊗ IndKw/kv Xw,Ψv)

where S is a finite set of finite places containing v0, such that each place v of S has

only one place w of K lying over it. But since Xw is unramified at every place other

than w0, the situation (iii) of the Proposition 3.2.1.1 applies to allow us to cancel off

all the gamma factors other than at v0, giving us

γ(s,Xw0 ,R, ψ) = γ(s,⊗ IndE/F Xw0 , ψ).
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Now π = χ agrees with Xw0 on O∗E, hence they differ by an unramified character

|| · ||s0 for some complex number s0. Since both gamma factors are compatible with

twisting by unramified characters (Lemma 3.2.2.1), we get the required equality. �

Now, we will finish the proof of the stability equality theorem by induction on n.

Let us state formally our induction hypothesis:

Induction Hypothesis. Let n ≥ 2. For each integer m < n, each quadratic exten-

sion E/F of p-adic local fields, and each supercuspidal representation π of GLm(E),

corresponding to an m-dimensional irreducible representation ρ of the Weil group WE,

we have

γ(s, πη,R, ψ) = γ(s,⊗ IndE/F (ρη), ψ)

for all sufficiently highly ramified characters η of WE, with necessary degree of rami-

fication depending on E/F , π, and ψ.

Assume for the rest of this section that the induction hypothesis holds for a given

n. Let E/F be a quadratic extension of p-adic fields, π a supercuspidal representation

of GLn(E), and ρ the n-dimensional irreducible representation of WE corresponding

to π. Our first step in showing that the stable equality theorem holds for n+ 1 is to

show “equality at a base point.”

Propositon 3.2.2.5. (Equality at a base point) Let n ≥ 2 be an integer, and assume

the induction hypothesis for n. Let ω0 be any character of E∗. Then exists an n-

dimensional irreducible representation ρ0 of WE, with det ρ0 corresponding to ω0 by

local class field theory, such that if π0 is the supercuspidal representation of GLn(E)

corresponding to ρ0, and η is any character of E∗, then

γ(s, π0η,R, ψ) = γ(s,⊗ IndE/F (ρ0η), ψ).

Our proof of equality at a base point will be a global argument. We start with a

lemma of Henniart.
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Lemma 3.2.2.6. Let ω0 be the character in Proposition 3.2.2.5. There exists a

quadratic extension of number fields K/k, and an n-dimensional complex representa-

tion Σ of WK, with the following properties:

(i): There exist places w0 and v0 of K and k, respectively, such that kv0 = F and

Kw0 = E.

(ii): The representation ρ0 := Σw0 of WKw0
= WE is irreducible, and det Σw0

corresponds to ω0 by local class field theory.

(iii): At all finite places w of K with w 6= w0, the representation Σw is not

irreducible.

(iv): If πw is the representation of GLn(Kw) corresponding to the semisimplication

(Σw)ss of Σw by the local Langlands correspondence, then Π =
⊗

w πw is a cuspidal

automorphic representation of GLn(AK).

Proof: This is essentially Lemma 3.1 of [CoShTs17]. The only difference is the

lemma only mentions the field K, not the field k. In the proof, one fixes the unramified

extension M of E of degree n, and produces a degree n extension of number fields

M/K and an extension of places w′/w for which Mw′ = M,Kw = E. We can choose

k,M, and K at the same time to satisfy the hypotheses of our modified lemma. �

Proof: (of Proposition 3.2.2.5) Following the global template (3.2.1), we have

∏
v∈S

γ(s, πv,R,Ψv) =
∏
v∈S

γ(s,⊗ IndKw/kv Σw,Ψv)

for a finite set S of finite places of k containing v0, where each place v of S has only

one place w of K lying over it. Let T = S−{v0}. For each place v of T , we know that

Σw is not irreducible, so the semisimplification (Σw)ss decomposes as Σw,1⊕· · ·⊕Σw,rw

for an irreducible representation Σw,i of WKw of dimension nw,i < n. Let Πw,i be the

supercuspidal representation GLnw,i(Kw) corresponding to Σw,i. By the induction

hypothesis, we have for all sufficiently highly ramified characters Xw of WKw , that

γ(s,Πw,iXw,R, ψ) = γ(s,⊗ IndKw/kv Σw,iXw, ψ). (3.2.2.1)



105

We apply Lemma 3.2.2.3 to find a unitary character X = ⊗Xw of A∗K/K∗, such that

Xw is unramified for all finite places w with w | v and v 6∈ S, Xw0 agrees with ω0

on O∗E, and for each v ∈ T with w | v, Xw is sufficiently highly ramified such that

(3.2.2.1) holds for all 1 ≤ i ≤ rw.

We now apply the global template again, replacing Σ by ΣX , and Π by ΠX , so

that ∏
v∈S

γ(s,ΠwXw,R,Ψv) =
∏
v∈S

γ(s,⊗ IndKw/kv(ΣwXw),Ψv). (3.2.2.2)

We have the same set S as before, since Xw is unramified for all finite places v 6∈ S,

w | v. For v ∈ T , and w | v, we have that Πw,iXw, 1 ≤ i ≤ rw, is the supercuspidal

support of ΠwXw, so that after relabeling the Πw,iXw,

ΠwXw ⊂ IndGLn(E)(Πw,1Xw) � · · ·� (Πw,rwXw)

and therefore multiplicativity (Theorem 2.6.5.1) gives

γ(s,ΠwXw,R,Ψv) =
rw∏
i=1

γ(s,Πw,iXw,R,Ψv)
∏

1≤i<j≤rw
λ(Kw/kv,Ψv)

nwinwj

γ(s, (Πw,iXw)× (Πw,jXw ◦ σw),Ψv ◦ Trw/v)

where σw is the nontrivial element of Gal(Kw/kv). On the other hand, ΣwXw has

the irreducible representations Σw,iXw as the factors of its composition series, so by

Lemma 1.1.18.3, we have

γ(s,⊗ IndKw/kv ΣwXw,Ψv) =
rw∏
i=1

γ(s,⊗ IndKw/kv Σw,iXw,Ψv)

∏
1≤i<j≤rw

γ(s, IndKw/kv Σw,iXw ⊗ (Σw,jXw ◦ ιz),Ψv)
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where z is an element of Wkv which is not in WKw . By equation (1.1.16.1), (2) of

Theorem 2.3.7.1, and (2.3.10), we have

λ(Kw/kv,Ψv)
nwinwj γ(s, (Πw,iXw)× (Πw,jXw ◦ σw),Ψv ◦ Trw/v)

= γ(s, IndKw/kv Σw,iXw ⊗ (Σw,jXw ◦ ιz),Ψv).

Combining this with equation (3.2.2.1), we see that the equality of gamma factors

γ(s,ΠwXw,R,Ψv) = γ(s,⊗ IndKw/kv(ΣwXw),Ψv)

holds for every place v ∈ T . Thus from equation (3.2.2.2), we get

γ(s, π0Xw0 ,R, ψ) = γ(s,⊗ IndE/F (ρ0Xw0), ψ).

Since Xw0 and ω0 agree on O∗E, they differ by an unramified character, so Lemma

3.2.2.1 completes the proof of equality at a base point. �

To proceed with the proof of stable equality, we will need the following stability

results on both sides.

Proposition 3.2.2.7. (Arithmetic stability) Let ρ1, ρ2 be two representations of WE

with det ρ1 = det ρ2. Then for all sufficiently highly ramified characters η of WE, we

have

γ(s,⊗ IndE/F (ρ1η), ψ) = γ(s,⊗ IndE/F (ρ2η), ψ).

Proof: It is a consequence of Deligne’s proof of the existence of the local epsilon

factors that if det ρ1 = det ρ2, then γ(s, ρ1η,Ψ) = γ(s, ρ2η,Ψ) for all characters

Ψ of E and all sufficiently highly ramified characters of η of WE (Lemma 4.16 of

[De72]). We need only observe that under our hypothesis, we have det⊗ IndE/F ρ1 =

det⊗ IndE/F ρ2, ⊗ IndE/F (ρiη) = (⊗ IndE/F ρi)(⊗ IndE/F η), and that (⊗ IndE/F η) is

highly ramified if η is (Lemma 1.1.19.1 (ii)). �
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The stability result on the analytic side, Proposition 3.2.2.8, is much more difficult.

Our proof, which is the content of Chapters Four and Five, is purely local, and mirrors

the approach taken by Shahidi, Cogdell, and Tsai in [CoShTs17].

Proposition 3.2.2.8. (Analytic stability) Let π1, π2 be supercuspidal representations

of GLn(E) with the same central character. Then for all sufficiently highly ramified

characters η of E∗, we have

γ(s, π1η,R, ψ) = γ(s, π2η,R, ψ).

Proof: This proposition will be shown to be equivalent to Theorem 5.1.3.3, whose

proof will occupy the entirety of Chapters Four and Five. �

Granting the analytic stability result, Proposition 3.2.2.8, we can now finally finish

the proof of stable equality (Proposition 3.2.2.2). Let π be a supercuspidal represen-

tation of GLn(E), and ρ the corresponding n-dimensional irreducible representation

of WE. Let ω0 be the central character of π, identified with a character of WE, so

that det ρ = ω0. By Proposition 3.2.2.5, there exists an n-dimensional irreducible

representation ρ0 of WE with det ρ0 = det ρ, such that if π0 is the supercuspidal

representation GLn(E) corresponding to ρ0, then

γ(s, π0η,R, ψ) = γ(s,⊗ IndE/F (ρ0η), ψ)

for all characters η of E∗. Now π and π0 have the same central character ω0. Taking

η to be very highly ramified, we have by Propositions 3.2.2.7 and 3.2.2.8,

γ(s, πη,R, ψ) = γ(s, π0η,R, ψ)

= γ(s,⊗ IndE/F (ρ0η), ψ)

= γ(s,⊗ IndE/F (ρη), ψ).

This completes the proof of the induction step, and the proof of Proposition 3.2.2.2.
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Corollary 3.2.2.9. (Stable equality for general representations) Let π be a smooth,

irreducible representation of GLn(E), corresponding to a Frobenius semisimple repre-

sentation ρ of W ′
E. Then for all sufficiently highly ramified characters η of WE, we

have

γ(s, πη,R, ψ) = γ(s,⊗ IndE/F (ρη), ψ).

Proof: This follows from Proposition 3.2.2.2 and the following facts:

1. If π1, ..., πr are supercuspidal representations of smaller GLs with π isomorphic

to a subquotient of IndGLn(E) π1 � · · · � πr, and ρi is the irreducible Weil rep-

resentation corresponding to πi, then the underlying Weil representation of ρ is

the direct sum of the ρi.

2. The gamma factor on the Artin side depends only on the underlying Weil rep-

resentation.

3. The local Langlands correspondence is compatible by twisting of characters.

4. Multiplicativity of gamma factors on both sides (Lemma 1.1.18.3 and Theorem

2.6.5.1), as well as equation (1.1.16.1).

�

3.2.3 Equality for monomial representations

In this section, we prove the equality of gamma factors when ρ is a monomial

representation, which is to say a representation of WE which is induced from a finite

order character of a finite Galois extension of E.

Proposition 3.2.3.1. (Equality for monomial representations) Let E ⊆ L ⊆ M ⊆

F be fields with M a finite Galois extension of E, and n = [L : E]. Let χ be

a character of Gal(M/L), and let ρ = IndL/E(χ). Let π be the representation of

GLn(E) corresponding to ρ. Then

γ(s, π,R, ψ) = γ(s,⊗ IndE/F ρ, ψ).
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The representation ρ need not be irreducible, but being a Galois representation,

it decomposes into a direct sum of irreducible representations ρ1, ..., ρr with degrees

n1, ..., nr. Let πi be the supercuspidal representation of GLni(E) corresponding to ρi.

Then since ρ is a Galois representation, π is fully induced from π1, ..., πr.

We will require the following lemma of Henniart:

Lemma 3.2.3.2. There exist number fields

k ⊂ K ⊂ L ⊂M

together with a character Y of A∗L/L∗, and a place w′′0 of M, such that:

1. If w′0, w0, v are the places of L, K, k over which w′′0 lies, then F = kv0 , E =

Kw0 , L = Lw′0 ,M = Mw′′0
.

2. M is Galois over K, with [M : K] = [Mw′′0
: Kw0 ] = [M : E]. Hence w′′0 is the

only place of M lying over w0.

3. Yw′0
= χ under local class field theory.

4. Let Σ = Ind
Gal(M/K)
Gal(M/L) (Y ), so that ρ = Σw0. Then there is a cuspidal automorphic

representation Π = ⊗wΠw of GLm(AK) (where m = [L : E]) such that Σw

corresponds to πw under the LLC at each place w of K. In particular, π = Πw0.

This is Lemma 3.2 of [CoShTs17]. Like Lemma 3.2.2.6, the original statement of

this lemma did not include the field k, but we can easily modify the construction to

include it.

Following the template of the global argument (3.2.1), we have as usual

∏
v∈S

γ(s,Πw,R,Ψv) =
∏
v∈S

γ(s,⊗ IndKw/kv Σw,Ψv)

where S is a finite set of finite places v of k containing v0, each of which has only one

place w of K lying over it. Note that in the notation of (3.2.1), we have Πw = πv for
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each v ∈ S. Let X = ⊗Xw be a character of A∗K/K∗ which is very highly ramified

at v ∈ S − {v0} and unramified at all other finite places. We replace Σ by ΣX in

the template of the global argument, giving us

∏
v∈S

γ(s,ΠwXw,R,Ψv) =
∏
v∈S

γ(s,⊗ IndKw/kv(ΣwXw),Ψv)

for the same set S. Note that in our previous notation of writing X = ⊗vXv as a

character of ResK/k GL1(Ak), we have Xv = Xw for each place v ∈ S, which has only

one place w of K lying over it.

By Corollary 3.2.2.9, and the fact that each Xw for v ∈ S−{v0} is highly ramified,

we have equality of the gamma factors at all places v 6= v0, and therefore

γ(s, πXw0 ,R, ψ) = γ(s,⊗ IndE/F (ρXw0), ψ).

Now Xw0 is unramified and therefore of the form || · ||s0 for some s0 ∈ C, so Lemma

3.2.2.1 concludes the proof of the proposition.

3.2.4 Equality for Galois representations

Using the equality of gamma factors for monomial representations and Brauer’s

theorem, we will prove the equality of gamma factors for all irreducible Galois repre-

sentations.

Proposition 3.2.4.1. (Equality for Galois representations) Let ρ be an irreducible

n-dimensional Galois representation, and let π be the corresponding supercuspidal

representation of GLn(E). Then

γ(s, π,R, ψ) = γ(s,⊗ IndE/F ρ, ψ).
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Proof: Choose z ∈ WF which is not in WE. By Brauer’s theorem, there exist

monomial representations ρ1, ..., ρr, ρ
′
1, ..., ρ

′
t, not necessarily all distinct, such that

Σ := ρ⊕
t⊕
i=1

ρ′i =
r⊕
i=1

ρi.

We can compute γ(s,⊗ IndE/F Σ, ψ) in two ways using Lemma 1.1.18.2. First,

γ(s,⊗ IndE/F Σ, ψ) =
r∏
i=1

γ(s,⊗ IndE/F ρi, ψ)
∏

1≤i<j≤r
γ(s, IndE/F ρi ⊗ (ρj ◦ ιz), ψ).

Second, we can write γ(s,⊗ IndE/F Σ, ψ) as

γ(s,⊗ IndE/F Σ, ψ) =γ(s,⊗ IndE/F ρ, ψ)
t∏
i=1

γ(s,⊗ IndE/F ρ
′
i, ψ)

∏
1≤j≤t

γ(s, IndE/F ρ⊗ (ρ′j ◦ ιz), ψ)
∏

1≤i<j≤t
γ(s, IndE/F ρ

′
i ⊗ (ρ′j ◦ ιz), ψ).

Let π1, ..., πr, π
′
1, ..., π

′
t be the smooth, irreducible representations corresponding to the

Galois representations ρ1, ..., ρr, ρ
′
1, ..., ρ

′
t. Let ni, n

′
i be the degrees of πi, π

′
i. Let Π

be the smooth, irreducible representation of GLn(E) corresponding to Σ. Applying

(2.3.9), on the analytic side we have

Π = IndGLn(E) π � π1 � · · ·� πr = IndGLn(E) π′1 � · · ·� π′t.

Then we can apply multiplicativity of gamma factors (Theorem 3.6.5.1) in two dif-

ferent ways:

γ(s,Π,R, ψ) =
t∏
i=1

γ(s, π′i,R, ψ)

∏
1≤i<j≤t

λ(E/F, ψ)n
′
in
′
jγ(s, π′i × (π′j ◦ σ), ψ ◦ TrE/F )
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and

γ(s,Π,R, ψ) =γ(s, π,R, ψ)
r∏
i=1

γ(s, πi,R, ψ)

r∏
j=1

λ(E/F, ψ)nniγ(s, π × (πj ◦ σ), ψ ◦ TrE/F )

∏
1≤i<j≤r

λ(E/F, ψ)ninjγ(s, πi × (πj ◦ σ), ψ ◦ TrE/F ).

Considering the first way we have applied multiplicativity on both sides, we have that

λ(E/F, ψ)n
′
in
′
jγ(s, π′i × (π′j ◦ σ), ψ ◦ TrE/F ) = γ(s, IndE/F (ρi ⊗ (ρj ◦ ιz)), ψ)

and we also have the equality of γ(s, π′i,R, ψ) and γ(s,⊗ IndE/F ρ
′
i, ψ) by Proposition

3.2.3.1. Thus

γ(s,Π,R, ψ) = γ(s,⊗ IndE/F Σ, ψ).

Now we write out the left and right hand sides of this last equation in the second way

that we have described each. We match up the terms again using the same arguments,

giving us

γ(s, π,R, ψ) = γ(s,⊗ IndE/F ρ, ψ).

This completes the proof of equality for Galois representations. �

We now complete the proof of Theorem 2.6.3.6. Let π be a supercuspidal represen-

tation of GLn(E), and ρ the corresponding n-dimensional irreducible representation

of WE. Then there exists an unramified character η of WE such that ρη is a Galois

representation (1.1.5). Identifying η as a character of GLn(E) through the determi-

nant, we know that πη corresponds to ρη under the local Langlands correspondence.

Proposition 3.2.4.1 tells us that Theorem 2.6.3.6 holds for πη and ρη. Since the gamma

factors on both sides are compatible by twisting by unramified characters (Lemma

3.2.2.1), we see that Theorem 2.6.3.6 holds for supercuspidal representations.

Having established Theorem 2.6.3.6 for supercuspidals, we have Theorem 2.6.3.6

for general representations by the same reductions as in Corollary 3.2.2.9.
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4. ANALYSIS OF PARTIAL BESSEL INTEGRALS

Throughout, E/F is a quadratic extension of p-adic fields, with nontrivial automor-

phism σ. If x ∈ E, then we will write x for σ(x), and if g is a matrix with entries in

E, then g will denote the entrywise application of σ to g.

Let G = GLn(E), A the group of diagonal matrices of G, U the group of upper

triangular unipotent matrices in G, and B = AU the usual Borel subgroup of G. Let

W (G) be the Weyl group of G. Associated to A and U is the set ∆ of simple roots

of A in U . In this chapter we will fix once and for all an irreducible, supercuspidal

representation π of G with central character ωπ.

The goal of this chapter is to establish an asymptotic expansion formula for partial

Bessel integrals (Theorem 4.0.2). It is through this formula that we will be able to

establish the stability of the Asai gamma factor for supercuspidal representations

(Proposition 3.2.2.8, equivalently Theorem 5.1.3.3). This stability result is necessary

for the proof of our main result (Theorem 2.6.3.6) given in Chapter Three.

Our asymptotic expansion formula is extremely similar to the one developed by

Cogdell, Shahidi, and Tsai in their proof of stability for exterior square gamma factors

in [CoShTs17]. The proof given in this chapter is essentially the same as theirs. Their

field is F , and our field is E. Their use of the transpose tg must be replaced by the

use of the conjugate transpose tg.
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4.1 Preliminaries

4.1.1 Characters and Weyl group representatives

Let ψ be a nontrivial character of F , fixed once and for all. Note that ψ is

automatically unitary. We define a character χ of U by the formula

χ



1 a1 ∗

1 a2

. . . . . .

1 an−1

1


= ψ

Å n−1∑
i=1

TrE/F (ai)
ã
.

Let e1, ..., en be the standard basis of rational characters of A. Then ∆ = {e1 −

e2, ..., en−1 − en} is the set of simple roots of A in G corresponding to U . To each

α = ei − ei+1 ∈ ∆, define the canonical representative

ẇα =



Ii−1

0 1

−1 0

In−i−1


∈ NG(T )

of the corresponding simple reflection wα ∈ W (G). The representatives ẇα : α ∈ ∆

give us representatives for every w ∈ W (G): if w ∈ W (G), let (wα1 , ..., wαt) be a

reduced decomposition of w, for αi ∈ ∆. Then define

ẇ = ẇα1 · · · ẇαt .

This will be independent of the choice of reduced decomposition. The Weyl group

representatives are compatible with χ in the sense that if w ∈ W (G), u ∈ U , and

ẇuẇ−1 ∈ U , then χ(ẇuẇ−1) = χ(u).
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If wG is the long element of W (G), then the representative ẇG attached to wG is

the matrix

J = Jn =



1

−1

···

(−1)n−1


.

Each parabolic subgroup of G containing B has a unique Levi subgroup M containing

A, with Borel subgroup B ∩M . The Weyl group W (M) of A in M is a subgroup of

W (G), and has a corresponding long element wM . The group M is a block diagonal

sum GLn1(E) × · · · × GLnt(E), where n1 + · · · + nt = n, and the representative ẇM

is equal to

ẇM =



Jn1

Jn2

. . .

Jnt


.

4.1.2 Bruhat decomposition

If w ∈ W (G), let C(w) be the Bruhat cell BwB. Then G is the disjoint union

of the cells C(w) : w ∈ W (G). This is the Bruhat decomposition for G. Each cell

is open in its closure. The only closed cell is C(1W ) = B, and the only open cell is

C(wG). We call C(wG) the big cell. The big cell is dense in G.

In order describe the elements of the Bruhat cells with uniqueness of expression,

we will need to introduce certain subgroups of U . Let U− be the group of lower

triangular unipotent matrices in G. For w ∈ W (G), let U+
w = U ∩ w−1Uw, and

U−w = U ∩ w−1U−w. Then U+
w (resp. U−w ) is directly spanned by the root subgroups

of those positive roots which remain positive (resp. which are made negative) by w.

Then

C(w) = UẇAU−w
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with uniqueness of expression. In fact, the map from U × A × U−w to C(w) which

sends (u, a, n) to uẇan is a homeomorphism.

4.1.3 Bruhat decomposition for Levi subgroups

If M is a standard Levi subgroup of G, there is also a Bruhat decomposition for

M . Let BM = B∩M , and UM = U∩M . If for w ∈ W (M), we let CM(w) = BMwBM ,

then M is the disjoint union of the cells CM(w) : w ∈ W (M), each cell is open in its

closure, the only closed cell is CM(1W ) = BM , and the open cell is CM(wM). We call

C(wM) the big cell of M . It is dense in M .

We have

CM(w) = UM ẇAU
−
w

again with uniqueness of expression. In fact, the map from UM × A× U−w to CM(w)

seneding (u, a, n) to uẇan is a homeomorphism. We remark that U−w is already

contained in UM ; there is no need to intersect it with UM .

4.1.4 Functions which are compactly supported modulo the center of G

Let Z be the center of G. If S is any locally closed subset of G containing Z,

let C∞c (S;ωπ) be the space of locally constant functions f : S → C which satisfy

f(zg) = ωπ(z)f(g) for all z ∈ Z and g ∈ G, and which are compactly supported

modulo Z. This last condition means that there exists a compact set Ω ⊂ S such

that if f(g) 6= 0, then zg ∈ Ω for some z ∈ Z.

If S ′ is an open subset of S containing Z, we can identify C∞c (S ′;ωπ) as the

subspace of C∞c (S;ωπ) consisting of those functions which vanish on S − S ′. If E is

a closed subset of S containing Z, the restriction map C∞c (S;ωπ) → C∞c (E;ωπ) is

surjective. Thus the sequence

0→ C∞c (S ′;ωπ)→ C∞c (S;ωπ)→ C∞c (S − S ′;ωπ)→ 0
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is exact.

4.1.5 Stripping off the center of G

Let

A′ = {



1

a2

. . .

an


: ai ∈ E∗}.

Then A is the direct product of the center Z of G and A′, algebraically and topo-

logically. Let C ′(w) = UẇA′U−w , so that C(w) = ZC ′(w), again with uniqueness of

expression. For g ∈ C(w), let g′ be the component of g in C ′(w). Thus g = zg′, with

z ∈ Z.

Lemma 4.1.5.1. Let w ∈ W (G). Consider the homeomorphism

U × A× U−w → C(w)

sending (u, a, u−) to uẇau−. If f ∈ C∞c (C(w);ωπ), then there exist compact open

subgroups U1 ⊂ U,U2 ⊂ U−w , and a compact set K ′ ⊆ A′ such that if f(uẇau−) 6= 0,

then u ∈ U1, u
− ∈ U2, and a′ ∈ K ′.

Here we are uniquely writing a ∈ A as a product za′, with z ∈ Z and a′ ∈ A′.

Proof: There exists a compact set Ω ⊆ C(w) such that if f(g) 6= 0, then zg ∈ Ω

for some z ∈ Z. Via the homeomorphism U × Z × A′ × U−w sending (u, z, a′, u−)

to uẇza′u−, let K1, K
′, K2 be the projections of Ω onto U,A′, U−w . Choose open

compact subgroups U1 and U2 of U and U−w containing K1 and K2, respectively.

Assume g = uẇza′u− ∈ C(w) with f(g) 6= 0. Then there exists a z1 ∈ Z such that

gz1 = uẇzz1a
′u− ∈ Ω. This implies u ∈ K1 ⊆ U1, a

′ ∈ K ′, and u− ∈ K2 ⊆ U2. �
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4.1.6 The Bruhat order and cell closures

We begin with a lemma from group theory.

Lemma 4.1.6.1. Let (W,S) be a Coxeter system. For w1, w2 ∈ W , the following are

equivalent:

(i): There is a reduced decomposition of w2 containing a subexpression which is a

reduced decomposition of w1.

(ii): Every reduced decomposition of w2 contains a subexpression which is a reduced

decomposition of w1.

Proof: This is Corollary 2.2.3 of [BjBr05]. �

If these conditions are satisfied, we write w1 ≤ w2. This defines a partial ordering

on (W,S) called the Bruhat order. If W has a long element wl, then multiplication

by wl reverses the Bruhat order, i.e. w1 ≤ w2 if and only if wlw1 ≥ wlw2 (Corollary

2.2.5 of [BjBr05]).

The Weyl group W (G), together with the set of simple reflections wα correspond-

ing to elements of ∆, is a Coxeter system. If M is a standard Levi subgroup of

G corresponding to the subset θ of ∆, then so is W (M), together with the simple

reflections wα : α ∈ θ.

The Bruhat order on W (G) is related to the closure of Bruhat cells in G. For

w1, w2 ∈ W (G), we have w1 ≤ w2 if and only if C(w1) ⊂ C(w2) ([Bo91], Theorem

21.26). Therefore, we have

C(w) =
⋃

w′∈W (G)
w′≤w

C(w′). (4.1.6.1)

If M is a standard Levi subgroup of G, the same goes for the Bruhat order on W (M)

and the closure of the Bruhat cells of M .
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4.1.7 Weyl group elements which support Bessel functions

Let Φ be a root system with base ∆ and Weyl group W. For each θ ⊆∆, there is

one and only one element w0 of W which satisfies the following equivalent conditions:

1. w0 maps θ into ∆, and maps ∆− θ into the negative roots.

2. We have `(w0w) = `(w0) + `(w) for all w in the Weyl group Wθ of the root

system spanned by θ, and w0 is of maximal length with respect to this property.

3. w0 = w`w`,θ, where w` and w`,θ are the long elements of W and Wθ.

If w0 satisfies these conditions for some θ, then w0 is said to support a Bessel

function, and we can recover θ as {α ∈ ∆ : w0(α) > 0}. The number of elements of

W which support Bessel functions is 2|∆|; there is one for each subset of ∆.

We will let B(G) be the set of w ∈ W (G) which support Bessel functions, and for

M a standard Levi subgroup of G, we will let B(M) be the set of w ∈ W (M) which

support Bessel functions.

Let w ∈ B(G), and let M be the standard Levi subgroup corresponding to w.

That is, let θ be the subset of ∆ to which w corresponds, let P be the parabolic

subgroup of G containing B and corresponding to θ, and let M be the unique Levi

subgroup of P containing A. If we set

Aw =
⋂
α∈θ

Kerα

then Aw = ZM , the center of M . Furthermore we have

UM = U+
w N = U−w

where N is the unipotent radical of P , UM = U ∩M , and U+
w , U

−
w are as in (4.1.2).

The Bruhat order reverses the containment of the Levi subgroups: if w′ ∈ B(G)

corresponds to M ′, then w ≤ w′ if and only if M ′ ⊆ M , if and only if Aw = ZM is

contained in Aw′ = ZM ′ .
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If w ∈ B(M) corresponds to a standard Levi subgroup L of M , we often write

w = wML . In terms of the canonical representatives defined in (4.1.1), it follows from

the second of the three equivalent conditions of wML given above that ẇML = ẇM ẇ
−1
L .

Note that wGL = wMG w
L
M , and even ẇGL = ẇMG ẇ

L
M .

4.1.8 The open sets Ωw

If w ∈ W (G), let

Ωw =
⋃
w′≥w

C(w′).

It follows formally from equation (4.1.6.1) that Ωw is open in G, and C(w) is closed

in Ωw. We will be particularly interested in Ωw in the case where w supports a Bessel

function. In this case, the cell structure of Ωw will parallel that of the cell structure

of the Levi subgroup to which w corresponds.

Lemma 4.1.8.1. Let w = wMG ∈ B(G), corresponding to the Levi subgroup M . Let

E = {w′ ∈ W (G) : w′ ≥ w}. Then x 7→ wx defines a bijection W (M) → E. This

bijection preserves the Bruhat order.

Proof: If x ∈ W (M), then `(wx) = `(w) + `(x), where ` is the length function.

This implies that a reduced decomposition for wx can be obtained by concatenating

one of w with one of x. In particular, wx ≥ w in the Bruhat order, and x 7→ wx

preserves the Bruhat order.

Conversely, suppose that w′ ≥ w. Since w = wGwM , and multiplication by

wG reverses the Bruhat order, we have wGw
′ ≤ wM . This implies that a reduced

decomposition of wGw
′ consists of simple reflections from M . Thus wGw

′ ∈ W (M),

and if we set x = wMwGw
′ ∈ W (M), then w′ = wx. �

Proposition 4.1.8.2. Let w ∈ B(G) correspond to a Levi subgroup M . Then

U−w−1 × {ẇ} ×M × U−w → Ωw

(x,m, u) 7→ xẇmu
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is a homeomorphism.

The proposition shows that the Bruhat decomposition in Ωw is the same as that

in M with unipotent groups Uw−1 and U−w tacked on the side of each of the cells

CM(x) : x ∈ W (M).

Proof: By the Bruhat decomposition for M , we have that M is the disjoint union

of the direct products UM ×{x}×A×U−x for x ∈ W (M). Letting w′ = wx, we leave

it to the reader to check that

wUMw
−1 = U+

w−1

U−x U
−
w = U−w′ .

Therefore the Bruhat cell CM(x) is

UMxAU
−
x = w−1wUMw

−1wxAU−x = w−1U+
w−1w

′AU−x

and since U−w−1U
+
w−1 = U as a direct product of topological spaces, we have

U−w−1wCM(x)U−w = U−w−1U
+
w−1w

′AU−x U
−
w = Uw′AU−w′ = C(w′)

and we can conclude that we have a homeomorphism

Uw−1 × {w} × CM(x)× U−w ∼= C(w′).

The proposition is now a consequence of Lemma 4.1.8.1. �

It follows from equation (4.1.6.1) that the Bruhat order reverses the containment

of the open sets Ωw. That is, if w1, w2 ∈ B(G), then w1 ≤ w2 if and only if Ωw2 ⊂ Ωw1 .

Note that Ωe = G.
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4.1.9 Transferring from C∞c (Ωw;ωπ) to C∞c (M ;ωπ)

Let M be a standard Levi subgroup of G. Then C∞c (M ;ωπ) was defined to be

the space of locally constant, complex valued functions f on M which are compactly

supported modulo the center of G (not the center of M) and which satisfy f(zm) =

ωπ(z)f(m) for all z in the center Z of G and all m in M .

Let w ∈ B(G) correspond to M . Proposition 4.1.8.2 shows that Ωw has a very

similar structure to M , just with unipotent groups tacked on both sides. If f ∈

C∞c (Ωw;ωπ), define hf ∈ C∞c (M ;ωπ) by

hf (m) =
∫

U−
w−1

∫
U−w

f(xẇmu)χ(xu)dudx.

Lemma 4.1.9.1. The assignment f 7→ hf defines a surjection C∞c (Ωw;ωπ)→ C∞c (M ;ωπ).

Proof: Let us first verify the convergence of this integral. Since f is compactly

supported modulo Z, it is easy to see that there are compact open subgroups U0 and

U1 of Uw−1− and U−w such that for every m ∈ M , f(xẇmu) 6= 0 implies x ∈ U0 and

u ∈ U1. Thus hf (m) is really an integral over the compact set U0 × U1. Thus hf (m)

converges absolutely.

To see that hf lies in C∞c (M ;ωπ), note that since M is closed in Ωw, we have that

for each x ∈ U−w−1 and u ∈ U−w , the mapping m 7→ f(xẇmu) lies in C∞c (M ;ωπ). Since

f and χ are locally constant, and the integrand vanishes for x and u outside U0 and

U1, and we see that hf is a finite linear combination of functions in C∞c (M ;ωπ), so it

too lies there.

To show that f 7→ hf is surjective, let h ∈ C∞c (M ;ωπ). Let U0 and U1 be small

open compact subgroups of U−w−1 and U−w which are contained in the kernel of χ.

Setting

f(xẇmu) =
1

meas(U0) meas(U1)
h(m)

it is straightforward to see that f lies in C∞c (Ωw;ωπ), and hf = h. �
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4.2 Bessel Integrals on Levi subgroups

In this section, we fix a standard Levi subgroup M of G. Recall that UM = U∩M ,

and wM is the long element of M .

Let h ∈ C∞c (M ;ωπ). We formally define the Bessel integral by the formula

m 7→
∫
UM

∫
UM

h(xmu)χ(xu)dxdu. (m ∈M)

We can understand this formula as an integral over part of the Bruhat cell BMmBM .

However, this integral generally does not converge. In order to deal with a conver-

gent integral, we modify the definition of the Bessel integral by introducing a cutoff

function

4.2.1 Definition of the partial Bessel integral

Define a right action of UM on Matn(E) by x.u = ẇM
tuẇ−1

M xu. If m ∈ M , we

will let UM,m be the stabilizer of m under this action.

Let X ⊂ Matn(E) be an open compact set, and let ϕ be the characteristic function

of X. Define the partial Bessel integral BM
ϕ (m,h) by

BM
ϕ (m,h) =

∫
UM,m\UM

∫
UM

h(xmu)ϕ(tuẇ−1
M m′u)χ(xu)dxdu.

Here m′ is the element of M obtained by “stripping off the center” as in (4.1.5). Note

that UM,m = UM,m′ . In defining the partial Bessel integral we have removed some

redundancy in u by taking UM modulo its centralizer, and we are only integrating

over those u for which tuẇMm
′u lies within a certain bound.

In the next section, we will prove the absolute convergence of Bϕ(m,h). For now,

let us show formally that the integral is well defined.
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Lemma 4.2.1.1. If u ∈ UM , then

u 7→
∫
UM

h(xmu)ϕ(tuẇ−1
M m′u)χ(xu)dx

is well defined as a function on UM,m\UM .

Proof: We need to show that if u1 ∈ UM,m, then the expression in the statement of

the lemma is unchanged when we replace u by u1u. So we begin with the expression

∫
UM

h(xmu1u)ϕ(t(u1u)ẇ−1
M m′u1u)χ(xu1u)dx. (4.2.1.1)

Since u1 ∈ UM,m = UM,m′ , we have m′ = ẇM
tu1ẇ

−1
M m′u1, or ẇ−1

M m′ = tu1ẇ
−1
M m′uu1.

Therefore

ϕ(tu1uẇ
−1
M m′u1u) = ϕ(tu(tu1ẇ

−1
M m′u1)u) = ϕ(tuẇ−1

M m′u).

Thus (4.2.1.1) is equal to

∫
UM

h(xmu1u)ϕ(tuẇ−1
M m′u)χ(xu1u)dx.

We also have mu1 = ẇM
tu−1

1 ẇ−1
M m, and so (4.2.1.1) is equal to

∫
UM

h(x(ẇM
tu−1

1 ẇ−1
M )mu)ϕ(tuẇ−1

M m′u)χ(xu1u)dx.

We replace x by x(ẇM
tu1ẇ

−1
M ) in the integral. We are done if we verify that

χ(ẇM
tu1ẇ

−1
M ) = χ(u1).

We observe that replacing u1 by u1 does not change the value of χ, since χ is ob-

tained by taking the trace from E to F . We finally use the fact that u1 is a block

combination of upper triangular unipotent matrices and ẇM is a block combination
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of antidiagonal matrices. The verification then reduces to the case of M = G, which

is straightforward. �

4.2.2 Convergence of the partial Bessel integral

We now prove the absolute convergence of the partial Bessel function BM
ϕ (m,h).

We begin by showing the convergence of the inner integral.

Proposition 4.2.2.1. If u ∈ U and m ∈M , then the integral

∫
UM

h(xmu)χ(xu)dx

converges absolutely.

Proof: Replacing mu by m and taking χ(u) out of the integral, it suffices to prove

the absolute convergence of ∫
UM

h(xm)χ(x)dx. (4.2.2.1)

Since h is compactly supported modulo Z, there is a compact set Ω ⊂ M such that

h(m′) 6= 0 implies m′z ∈ Ω for some z ∈ Z. Since UMZ is a closed direct product in

M , the projection Ω0 of Ωm−1∩UMZ to UM is compact. Clearly Ω0 consists of those

x ∈ UM for which xmz ∈ Ω for some z ∈ Z.

It follows that if h(xm) 6= 0, then x lies in Ω0. This shows that the integrand of

(4.2.2.1) vanishes outside a compact set, and implies the required absolute conver-

gence. �

The absolute convergence of the outer integral is more subtle and relies on the

fact that orbits of unipotent algebraic groups on affine varieties are closed.

We will briefly review some facts about analytic manifolds over p-adic fields which

we will need. For a general reference, see [Se65]. If k is a p-adic field, and X is a

smooth affine variety over k, then X(k) is an analytic manifold. If H is a linear

algebraic group over k, then H(k) is a p-adic Lie group.
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Suppose that H acts on X as a morphism of varieties, and that this action is

defined over k. Then this induces an analytic action of the Lie group H(k) on the

manifold X(k). The orbits of X(k) under H(k) are locally closed.

Lemma 4.2.2.2. Let x ∈ X(k), and let H(k)x be the stabilizer of x in H(k). The

orbit H(k).x is a locally closed submanifold of X, and the natural bijection

H(k)/H(k)x → H(k).x

induced by h 7→ h.x is an isomorphism of analytic manifolds.

Proof: This is generally true when H is an analytic Lie group over a characteristic

zero local field acting on an analytic manifold X. The result holds as long as H is a

countable union of compact sets and the orbits of X under the action of H are known

to be locally closed. See [Se65], Chapter IV, § 5, Theorem 4. �

The proof of the absolute convergence of the partial Bessel function will use

Lemma 4.2.2.2 as well as some nonabelian Galois cohomology. We refer to [Se02]

for the definition and basic properties of nonabelian Galois cohomology. We fix an

algebraic closure k of k and let Γ = Gal(k/k).

Lemma 4.2.2.3. Let H be a unipotent linear algebraic group over k. Then H is

connected, and H1(Γ,H) = 1.

Proof: Since we are in characteristic zero, the exponential map is well defined on

upper triangular unipotent matrices, in which all unipotent groups can be embedded.

The Baker-Campbell-Hausdorff formula applies and gives a bijection between Lie

subalgebras of upper triangular nilpotent matrices and closed subgroups of upper

triangular unipotent matrices. In particular, every unipotent linear algebraic group

is connected in characteristic zero.

So H is connected and therefore split in the sense of § 15 of [Bo91]. Then H

has a composition series 1 = N0 ⊆ · · · ⊆ Ns = H of closed, connected k-subgroups

of N such that each quotient Ni/Ni−1 is k-isomorphic to the additive group Ga.



127

We prove inductively that each H1(Γ,Ni) is trivial. It is a standard result that

H1(Γ,Ga) = H1(Γ, k) = 1 (Chapter X, § 1, Proposition 1 of [Se91]), so this takes

care of the case i = 1.

For general i, we take cohomology of the short sequence sequence

1→ Ni−1 → Ni → Ga → 0

to obtain a long exact sequence

· · · → H1(Γ,Ni−1)→ H1(Γ,Ni)→ H1(Γ,Ga)→ · · · .

with H1(Γ, k) = 1, and also H1(Γ,Ni−1) = 1 by induction. This implies that

H1(Γ,Ni) = 1. �

If x ∈ X(k), let H.x be the orbit of x under H. It is a locally closed subvariety of

X which is defined over k. It is not generally true that the set [H.x](k) of k-rational

points in this orbit is equal to the orbit H(k).x of x under H(k). We only have a

containment H(k).x ⊂ [H.x](k). On the other hand, if Hx is the stabilizer of x in H,

then Hx is defined over k, and it is obvious that Hx(k) = H(k)x.

Proposition 4.2.2.4. Assume that H is unipotent. Then all orbits of H(k) on X(k)

are closed. If x ∈ X(k), and H.x is the orbit of x, then [H.x](k) = H(k).x.

Proof: It suffices to prove the second assertion. Indeed, it is a basic result that

orbits of unipotent algebraic groups on affine varities over algebraically closed fields are

closed (Proposition 4.10 of [Bo91]). In other words, H.x is already a closed subvariety

of X. Passing to k-rational points gives a closed immersion [H.x](x) → X(k) of

topological spaces.

To prove the second assertion, we must use the fact that the short exact sequence

of pointed sets

1→ Hx → H→ H.x→ 1
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induces a long exact sequence

1→ H(k)x → H(k)→ [H.x](k)→ H1(Γ,Hx)→ · · ·

We have used the fact that Hx(k) = H(k).x. Since Hx is unipotent, Lemma 4.2.2.3

tells us that H1(Γ,Hx) is trivial. Thus the natural injection

H(k).x = H(k)/H(k)x → [H.x](k)

is a bijection. �

Now we can prove the convergence of the partial Bessel integral (4.2.1.1). As

before, the group UM acts on the space Matn(E) of all n by n matrices with entries in

E, by the right action m.u = ẇM
tuẇ−1

M mu. By restriction of scalars, we may identify

UM and Matn(E) as the F -points of affine varieties. Under the identification, the

action of UM on Matn(E) is a morphism of varieties. Proposition 4.2.2.4 applies and

tells us that the orbits of Matn(E) under this action are closed.

Now let m ∈M , and write m = zm′ for z ∈ Z as in 4.1.5. We have

BM
ϕ (m,h) =

∫
UM,m′\UM

W f (mu)ϕ(tuẇ−1
M m′u)χ(u)du (4.2.2.1)

where the integrand is a locally constant function of u ∈ UM,m′\UM . Let m′.UM be

the orbit of m′, which we know is closed in Matn(E). Let X be the open compact set

in Matn(E), of which ϕ is the characteristic function.

Since m′.UM is closed in Matn(E), the intersection (ẇMX)∩m′.UM remains com-

pact. Since the natural map p : UM,m′\UM → m′.UM is a homeomorphism by Lemma

4.2.2.2, the preimage Y = p−1((ẇMX) ∩m′.UM) is compact in UM,m′\UM .

Now that we know that integrand of (4.2.2.1) is locally constant and vanishes off

of the compact set Y , we can conclude that it converges absolutely.
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4.2.3 A choice of open compact neighborhood X(N)

In the definition of the partial Bessel integral BM
ϕ (m,h), ϕ is the characteristic

function of an open compact subset of Matn(E). We will now fix a choice of such

functions ϕ. Let ωF be a uniformizer for OF , and let (ωF ) be the ideal generated by

ωF in OE. For each positive integer N , let

X(N) =



($F )−N ($F )−2N ($F )−3N · · ·

($F )−2N ($F )−3N

($F )−3N . . .
...


.

We can also describe X(N) as

X(N) = {x ∈ Matn(E) : xij ∈ (ωF )−(i+j−1)N}.

Then X(N) is an open compact neighborhood of zero, and the union of the X(N) is

all of Matn(E). From now on, ϕN will be the characteristic function of X(N), and

when N is not specified, ϕ will mean ϕN for some N . By abuse of notation, we will

say “for sufficiently large ϕ” in place of “for sufficiently large N .”

Also, let U(N) be the set of upper triangular unipotent n by n matrices u with

entries in E, such that uij ∈ ($F )(j−i)N for all i < j. Then U(N) is an open compact

subgroup of U , and U is the union of the U(N).

Lemma 4.2.3.1. For u ∈ U(N) and X ∈ Matn(E), we have ϕN(tuXu) = ϕN(X).

That is, X(N) is stable under the right action of U(N) by X.u = tuXu.

Proof: Let u ∈ U(N) and X ∈ Matn(E). By taking inverses, we may assume

without loss of generality that X ∈ X(N). First, let A = tuX. We have

Aij =
n∑
l=1

ukiXkj =
i∑
l=1

ukiXkj
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and so the ijth entry of tuXu is

n∑
l=1

Ailulj =
j∑
l=1

Ailulj

=
j∑
l=1

i∑
k=1

ukiXklulj

where each term in the sum lies in

($F )−(i−k)N($F )−(k+l−1)N($F )−(j−l)N = ($F )−(i+j−1)N .

�

4.2.4 Pure Bessel integrals

The cutoff function ϕ is necessary for the general convergence of our partial Bessel

integrals. But there are certain circumstances in which the cutoff function can be

omitted in order to simplify computations.

Let w ∈ W (M), and consider the Bruhat cell CM(w) = UM ẇAU
−
w (direct product)

inside M . Let f ∈ C∞c (M ;ωπ) be a function whose restriction to CM(w) is compactly

supported modulo Z, i.e. whose restriction to CM(w) lies in C∞c (CM(w);ωπ). Under

this hypothesis we will define the pure Bessel integral of f on the cell CM(w) by

BM(m, f) =
∫

UM×U−w

f(xmu)χ(xu)dudx

for all m ∈ CM(w). Our hypothesis on f indicates that the integrand vanishes off of

a compact set.

Remark 4.2.4.1. Generally, the restriction of f to a given Bruhat cell will not be

compactly supported modulo Z. This is because CM(w) is generally not closed in M ,

but only locally closed. This is why the cutoff function ϕ is necessary for convergence.
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There will be some reoccuring circumstances in which we will be able to use the

pure Bessel integral, however. There is first of all the case where the w = 1M , and so

the cell CM(w) = BM in question is in fact closed in M .

The other is the case in which f is already known to be supported inside a union of

certain cells. For example, suppose that M = G, w ∈ W (G), and f ∈ C∞c (Ωw;ωπ).

Then since C(w) is closed in Ωw, the restriction of f to C(w) will be compactly

supported modulo Z.

Let L be a standard Levi subgroup of M , and let w = wMwL ∈ W (M). Consider

for a ∈ A, and the element a′ ∈ A′ obtained by stripping off the center of a, the

integral

ϕ̃ML (a′) =
∫

UM,ẇ\UL

ϕ(tuẇ−1
M a′u)du.

The following lemma shows that UM,ẇ ⊂ UL, so the domain of integration makes

sense. Proposition 4.2.2.4 shows that ϕ̃ML (a′) converges as an integral over a compact

set.

Since w sends the simple roots of L to positive roots, and all the rest of the simple

roots of M to negative roots, we actually have UL = U+
w ∩ UM , the unipotent radical

of B ∩ L.

Lemma 4.2.4.2. (Twisted centralizer lemma) Let L ⊂M be standard Levi subgroups

of G. Let w = wMwL.

(i): If a ∈ A, then UM,wa ⊂ U+
w ∩ UM = UL.

(ii): If moreover a ∈ ZL, then UM,ẇa = UM,ẇ

Proof: (i): We have ẇ = ẇM ẇ
−1
L . Suppose that u ∈ UM,ẇa, so that ẇM ẇ

−1
L a =

ẇM
tuẇ−1

M ẇau. Rearrange this to tu = ẇLau
−1a−1ẇ−1

L . Now au−1a−1 is an upper

triangular matrix in UM , and tu is lower triangular. Now conjugation by ẇL sends

all the roots subgroups in UL to negative roots, and permutes all the other upper

triangular root subgroups. This means that au−1a−1 and therefore u must actually

lie in UL.
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(ii): We already know that both UM,ẇa and UM,ẇ are contained in UL. For u ∈ UL,

we have u ∈ UM,ẇa if and only if ẇM ẇ
−1
L a = ẇM

tuẇ−1
M ẇau if and only if ẇM ẇ

−1
L a =

ẇM
tuẇ−1

M ẇua if and only if ẇM ẇ
−1
L = ẇM

tuẇ−1
M ẇu, if and only if u ∈ UM,ẇ. �

The transfer factor ϕ̃ML shows up in the difference between the partial and pure

Bessel integral.

Proposition 4.2.4.3. Let L ⊂ M be standard Levi subgroups of G. Let f ∈

C∞c (M ;ωπ), and suppose that the restriction of f to CM(w) is compactly supported

modulo Z, where w = wMwL. Then for sufficiently large ϕ depending on f , we have

BM
ϕ (ẇa, f) = ϕ̃ML (a′)BM(ẇa, f)

for all a ∈ ZL.

Proof: We can write UM as a direct product (U+
w ∩ UM)U−w = ULU

−
w , with UL

normalizing U−w . Lemma 4.2.4.2 shows that UM,ẇa = UM,ẇ is contained in UL, so in

the partial Bessel integral BM
ϕ (ẇa, f), we can write the quotient space UM,ẇ\UM as

a direct product of topological spaces:

UM,ẇ\UM = (UM,ẇ\UL)× U−w .

The quotient measure for UM,ẇ\UM also decomposes as the product of the quotient

measure for UM,ẇ\UL and the Haar measure on U−w . Thus we have

BM
ϕ (ẇa, f) =

∫
UM,ẇa\UM

∫
UM

f(xẇau)ϕ(tuẇ−1
M ẇa′u)χ(xu)dxdu

=
∫

UM,ẇa\UM

∫
UM

f(xẇau)ϕ(tuẇ−1
L a′u)χ(xu)dxdu

=
∫

UM,ẇ\UL

∫
U−w

∫
UM

f(xẇauLuw)ϕ(tuw
tuLẇ

−1
L a′uLuw)

χ(xuLuw)dxduwduL.
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Since a ∈ ZL, we can write f(xẇauLuw) = f(xẇuLẇ
−1ẇauw). Since conjugation

by w = wMwL keeps UL inside of UM , we can make the change of variables x 7→

x(ẇuLẇ
−1)−1. We get a cancellation in the argument of χ, since by compatibility we

have χ(ẇuLẇ−1) = χ(uL). So our partial Bessel integral is

BM
ϕ (ẇa, f) =

∫
UM,ẇ\UL

∫
U−w

∫
UM

f(xẇauw)ϕ(tuw
tuLẇ

−1
L a′uLuw)χ(xuw)dxduwduL.

Now in order to separate out integration over UM,ẇ\UL from the other two integrals,

we finally use our assumption that f is compactly supported modulo Z when restricted

to the cell CM(w). There must exist a compact open subgroup U1 of U−w such that

f(xẇauw) = 0 for all x ∈ UM , a ∈ A, and uw outside U1. If we take ϕ = ϕN

sufficiently large, then we will have ϕ(tuwguw) = ϕ(g) for all g ∈ G and uw ∈ U1. So

for sufficiently large ϕ, we will have

BM
ϕ (ẇa, f) =

∫
UM,ẇ\UL

∫
U−w

∫
UM

f(xẇauw)ϕ(tuLẇ
−1
L a′uL)χ(xuw)dxduwduL

=
∫

UM,ẇ\UL

ϕ(tuLẇ
−1
L a′uL)duL

∫
U−w

∫
UM

f(xẇauw)χ(xuw)dxduw

= ϕ̃ML (a′)BM(ẇa, f).

�

Lemma 4.2.4.4. For sufficiently large ϕ depending on f , and all a ∈ ZL, we have

BM
ϕ (ẇa, f) 6= 0 if and only if BM(ẇa, f) 6= 0.

Proof: Since the restriction of f to CM(w) is compactly supported modulo Z,

there must be a compact set K ′ ⊂ A′ such that BM(ẇa, f) 6= 0 implies a′ ∈ K ′. If

we take ϕ sufficiently large, we may guarantee that ϕ(ẇ−1
M a′) = 1 for all a′ ∈ K ′.

Now enlarge ϕ further so that the conclusion of Proposition 4.2.4.3 holds, that is

BM
ϕ (ẇa, f) = ϕ̃ML (a′)BM(ẇa, f) for all a ∈ ZL.

Of course BM
ϕ (ẇa, f) 6= 0 implies BM(ẇa, f) 6= 0. Conversely, suppose that

BM(ẇa, f) 6= 0. Then a′ must lie in K ′. This implies that ϕ(ẇ−1
M a′) = 1. We can
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conclude that ϕ̃ML (a′) 6= 0, since this is essentially the volume of a nonempty compact

open set inside the locally compact space UM,ẇ\UL. We conclude that BM
ϕ (ẇa, f) 6= 0.

�

4.2.5 Uniform smoothness of BM
ϕ on the big cell of M

Let h ∈ C∞c (M ;ωπ). As part of our proof of stability, we will be interested in

finding a function h1 ∈ C∞c (M ;ωπ) such that:

• BM
ϕ (m,h) and BM

ϕ (m,h1) agree for m in a “relevant” part of the small cell

BM(1W ) = BM of M .

• BM
ϕ (m,h1) has a “uniform smoothness” property for m in the big cell BM(wM).

We will make both of these notions precise soon.

Lemma 4.2.5.1. MderZM (resp. (A∩Mder)ZM is an open and finite index subgroup

of M (resp. A). The intersection Mder ∩ ZM = (A ∩Mder) ∩ ZM is finite.

Proof: Our Levi subgroup M is a product of block diagonal matrices GLn1(E)×

· · · × GLnt(E), with n = n1 + · · · + nt. The intersection of Mder with ZM , which is

the same as the intersection of A ∩Mder with ZM consists of all diagonal matrices

b =



b1In1

b2In2

. . .

btInt



with bnii = 1, so this intersection is finite. For an arbitrary element

b =



g1

g2

. . .

gt


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in M , it is not difficult to see that b lies in MderZM if and only if the determinant of

each matrix gi ∈ GLni(E) lies in (E∗)ni . Since (E∗)ni is open and finite index in E∗,

so is MderZM inside M . The same argument shows that (A∩Mder)ZM is an open and

finite index subgroup of A. �

We will make use of the pure Bessel integral BM (4.2.2) on the small cell. Since

U−e = 1, this is defined for b ∈ BM by

BM(b, h0)
∫
UM

f(xb)χ(x)dx

whenever h0 ∈ C∞c (BM ;ωπ).

Lemma 4.2.5.2. There exists an h0 ∈ C∞c (M ;ωπ) such that BM(e, h0) = 1
κM

, where

κM = |Z ∩Mder|, and BM(c, h0) = 0 for c ∈ ZM ∩Mder, 6∈ Z.

Proof: Let S be the set of a′ ∈ A′ such that za′ ∈ ZM ∩Mder for some z ∈ Z.

Since A = ZA′ is a direct product, and ZM ∩ Mder is finite, so is S. Let V be a

compact open neighborhood of the identity in A′ which does not contain any points

in S except for the identity. We define a function h0 : A′ → C by setting

h0(a′) =


1
κM

if a′ ∈ V

0 if a′ 6∈ V.

We extend h0 to a function on A by setting h0(za′) = ωπ(z)h0(a′). Next, let U1 be an

open compact subgroup of UM , chosen sufficiently small to be contained in the kernel

of χ. We extend h0 to a function on BM = UMA by

h0(xa) =


h0(a)

meas(U1)
if x ∈ U1

0 if x 6∈ U1.
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It is not difficult to see that h0 lies in C∞c (BM ;ωπ), and we may further extend h0 to

a function on C∞c (M ;ωπ) by the surjectivity of the exact sequence in (4.1.4). Then

for c ∈ A, we have

BM(c, h0) =
∫
UM

h0(xc)χ(x)dx = h0(c)

which by construction is 1
κM

if c = e, and is zero if c is in ZM ∩Mder but not in Z. �

We recall from Proposition 4.2.5.1 that ZMMder is open and finite index in M ,

and ZM ∩Mder is finite, consisting of diagonal matrices

ξ =



ζ1In1

ζ2In2

. . .

ζtInt


(4.2.5.1)

with ζi ∈ E∗ and ζnii = 1. We will consider all the ways (at most finitely many) a

given m ∈M can be written as m = m′c, with m′ ∈Mder and c ∈ ZM . We set

h1(m) =


∑

m′c=m
h0(m′)BM(c, h) if m ∈ ZMMder

0 if m 6∈ ZMMder.

Note that if m = m′c is a fixed decomposition of a given m, with m′ ∈ Mder and

c ∈ ZM , then

h1(m) =
∑

ξ∈ZM∩Mder

h0(m′ξ)BM(ξ−1c, h).

We must first check that h1 has suitable analytic behavior.

Lemma 4.2.5.3. We have h1 ∈ C∞c (M ;ωπ).

Proof: Define a map δ : Mder × ZM → C by

δ(m′, c) =
∑

ξ∈ZM∩Mder

h0(m′ξ)BM(ξ−1c, h).
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It is locally constant and therefore continuous. It also well defined on the quotient

group (Mder × ZM)/(ZM ∩ Mder), where ZM ∩ Mder is embedded diagonally. This

quotient is isomorphic as a topological group to the open subgroup MderZM of M , so

δ identifies with a function there, and this function is precisely our h1. If we extend

h1 by zero outside of MderZM , it remains locally constant.

Let us make sure that h1(zm) = ωπ(z)h1(m) for all m ∈ M and z ∈ Z. If

m 6∈ MderZM , then neither is zm, so h1(zm) = h1(m) = 0. If m ∈ MderZM , let

m = m′c be a fixed decomposition. Then zm = m′(zc) is a fixed decomposition of

zm, and we have

h1(zm) =
∑

ξ∈ZM∩Mder

h0(m′ξ)BM(ξ−1zc, h)

= ωπ(z)
∑

ξ∈ZM∩Mder

h0(m′ξ)BM(ξ−1c, h)

= ωπ(z)h1(m).

The last thing to check is that h1 is actually compactly supported modulo Z. Since h0

is compactly supported modulo Z, there is a compact set Ω0 in M such that h0(m) 6= 0

implies zm ∈ Ω0 for some z ∈ Z. The same goes for h: there is a compact set Ω in

M such that if a ∈ A and BM(a, h) 6= 0, then zc ∈ Ω for some z ∈ Z. Supposing

h1(m) 6= 0, we must have m ∈ MderZM . Let m = m′c be a fixed decomposition, so

that

h1(m) =
∑

ξ∈ZM∩Mder

h0(m′ξ)BM(ξ−1c, h).

Since h1(m) 6= 0, there is at least one ξ such that h0(m′ξ) and BM(ξ−1c, h) are both

not zero. We then have z1m
′ξ ∈ Ω0 and z2ξ

−1c ∈ Ω for some z1, z2 ∈ Z. Then

z1z2m = (z1m
′ξ)(z2ξ

−1c) ∈ Ω0Ω.

We have shown that if h1(m) 6= 0, then there is a z ∈ Z such that zm lies in the

compact set Ω0Ω. This completes the proof. �
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It is in h1 that we will find our uniform smoothness in the big cell of M . We will

only be able to relate h and h1 on the small cell of M .

Proposition 4.2.5.4. For sufficiently large ϕ, depending on h and h1, we have

BM
ϕ (a, h1) = BM

ϕ (a, h)

for all a ∈ ZM .

Proof: We are in a situation where we can use pure Bessel integrals as in (4.2.4).

By Proposition 4.2.4.3, we have for sufficiently large ϕ that

BM
ϕ (a, h1) = ϕ̃MM(a′)BM(a, h1)

BM
ϕ (a, h) = ϕ̃MM(a′)BM(a, h)

for all a ∈ ZM . The problem then becomes to show that BM(a, h1) = BM(a, h). We

have

BM(a, h1) =
∫
UM

h1(xa)χ(x)dx.

In order to expand this further, we must decompose each xa as a product in Mder

and ZM . But already x ∈Mder and a ∈ ZM . Therefore

BM(a, h1) =
∫
UM

∑
ξ∈ZM∩Mder

h0(xξ)BM(ξ−1a, h)χ(x)dx

=
∑

ξ∈ZM∩Mder

BM(ξ−1a, h)
∫
UM

h0(xξ)χ(x)dx

=
∑

ξ∈ZM∩Mder

BM(ξ−1a, h)BM(ξ, h0).
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If ξ ∈ ZM ∩Mder, it follows from by our construction of h0 in Lemma 4.2.5.2 that

BM(ξ, h0) = 0 unless ξ ∈ Z ∩Mder, in which case BM(ξ, h0) = ωπ(ξ)
κM

, where κM =

|Z ∩Mder|. So

BM(a, h1) =
∑

ξ∈Z∩Mder

BM(ξ−1a, h)BM(ξ, h0) =
1

κM

∑
ξ∈Z∩Mder

BM(a, h) = BM(a, h).

�

We will finally state the smoothness property we want. Let T be a subtorus of A,

and let φ : T → C be a locally constant function. We will say that φ is uniformly

smooth if there exists an open compact subgroup T0 of T such that φ(tt0) = φ(t) for

all t ∈ T and t0 ∈ T0.

Now, consider a given a ∈ A, and suppose that a admits a decomposition as bc,

with b ∈ A∩Mder and c ∈ ZM . Recall that (A∩Mder)ZM is open and finite index in

A, and that every other such decomposition of a is equal to (bξ−1)(ξc) with ξ in the

finite intersection ZM ∩Mder. Let

Z ′M = {



In1

c2In2

. . .

ctInt


: ci ∈ E∗}

and let c′ ∈ Z ′M be the element of ZM obtained by stripping off the center of c as in

(4.1.5). If we write c = c′z with z ∈ Z, then we have

BM
ϕ (ẇMa, h1) = BM

ϕ (ẇMbc, h1) = ωπ(z)BM
ϕ (ẇMbc

′, h1).

Theorem 4.2.5.5. For every b ∈ A ∩Mder,

BM
ϕ (ẇMbc

′, h1)
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is uniformly smooth as a function of c′ ∈ Z ′M . The open compact subgroup of Z ′M

occurring in the definition of uniform smoothness will depend on h1 and h, but will

be independent of b and ϕ.

The theorem says that there exists an open compact subgroup H of Z ′M such that

for all sufficiently large ϕ and all b ∈ A ∩ ZM , c′ ∈ Z ′M , and c′′ ∈ H,

BM
ϕ (ẇMbc

′c′′, h1) = BM
ϕ (ẇMbc

′, h1).

Proof: Since we are in the big cell, the twisted centralizer in UM is always trivial,

so

BM
ϕ (ẇMbc

′, h1) =
∫
UM

∫
UM

h1(xẇMbc
′u)ϕ(tub′c′u)χ(xu)dudx.

Now to invoke the definition of h1, we use the fact that xẇMbu is already in Mder and

c′ ∈ ZM . Thus

h1(xẇMbc
′u) = h1(xẇMbuc

′) =
∑

ξ∈ZM∩Mder

h0(xẇMbξ
−1u)BM(ξc′, h).

Set ϕc(x) = ϕ(xc) for c ∈ ZM . Since each ξ ∈ ZM ∩Mder consists of roots of unity

on the diagonal, it is clear that ϕξ(x) = ϕ(ξx) = ϕ(x) for all x ∈ M , and so we can

write BM
ϕ (ẇMbc

′, h1) as

∫
UM

∫
UM

∑
ξ∈ZM∩Mder

h0(xẇMbξ
−1u)BM(ξc′, h)ϕ(tub′c′u)χ(xu)dudx

=
∑

ξ∈ZM∩Mder

∫
UM

∫
UM

h0(xẇMbξ
−1u)BM(ξc′, h)ϕc

′
(tub′u)χ(xu)dudx

=
∑

ξ∈ZM∩Mder

BM(ξc′, h)
∫
UM

∫
UM

h0(xẇMbξ
−1u)ϕc

′
(tub′ξ−1u)χ(xu)dudx

=
∑

ξ∈ZM∩Mder

BM(ξc′, h)BM
ϕc′ (ẇMbξ

−1, h0).
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We have shown that

BM
ϕ (ẇMbc

′, h1) =
∑

ξ∈ZM∩Mder

BM(ξc′, h)BM
ϕc′ (ẇMbξ

−1, h0). (4.2.5.2)

We have finally written BM
ϕ (ẇMbc

′, h1) in a way in which its uniform smoothness as

a function of c′ ∈ Z ′M will become transparent. Consider first the pure Bessel integral

BM(ξc′, h) =
∫
UM

h(xξc′)χ(x)dx.

There exists an open compact subgroup U0 of UM , and a compact set Ω ⊂ A, such

that h(xa) = 0 implies x ∈ U0 and za ∈ Ω for some z ∈ Z. Since Z ′MZ is a closed

direct product in A, the set

Ω1 = {c′ ∈ Z ′M : zc′ ∈ Ω for some z ∈ Z}

is compact. This shows that the function on UM × Z ′M given by (x, c′) 7→ h(xc′)

vanishes outside the compact set U0 × ZM ′ . Since h is also locally constant, there

must exist a compact open neighborhood H of the identity such that h(xc′c′′) = h(xc′)

for all c′′ ∈ H. We can moreover take H to be a subgroup.

Strip each ξ ∈ ZM ∩Mder of its center, writing it as ξ = zξξ
′ with zξ ∈ Z and

ξ′ ∈ Z ′M . We may shrink H even further to ensure that h(xξ′c′c′′) = h(xξ′c′) for all

x ∈ UM , c′ ∈ Z ′M , c′′ ∈ H, and all ξ′. Therefore, each

BM(ξc′, h) = ωπ(zξ)
∫
UM

h(xξ′c′)χ(x)dx

has the property that BM(ξc′c′′, h) = BM(ξc′, h) for all c′′ ∈ H.
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Now we return to equation (4.2.5.2). Since the entries of H are all units, they do

not affect the scaling of our cutoff function ϕ. In other words, ϕc
′′

= ϕ for all c′′ ∈ H.

Therefore, we have for all b ∈ A ∩Mder, c
′ ∈ Z ′M , and c′′ ∈ H, that

BM
ϕ (ẇMbc

′c′′, h1) =
∑

ξ∈ZM∩Mder

BM(ξc′c′′, h)BM
ϕc′c′′ (ẇMbξ

−1, h0)

= BM
ϕ (ẇMbc

′, h1) =
∑

ξ∈ZM∩Mder

BM(ξc′, h)BM
ϕc′ (ẇMbξ

−1, h0)

= BM
ϕ (ẇMbc

′, h1).

It is clear from our construction of H that it only depended on h1 and h, not on ϕ

and not on b. This completes the proof of the theorem. �

4.3 Partial Bessel integrals on G

We have introduced partial Bessel integrals on Levi subgroups of G = GLn(E).

Now we will consider such integrals on G itself. If f ∈ C∞c (G;ωπ), and g ∈ G, the

partial Bessel integral was defined in (4.2.1) by

BG
ϕ (g, f) =

∫
Ug\U

∫
U

f(xgu)ϕ(tuẇ−1
G g′u)χ(xu)dxdu

where Ug = {u ∈ U : ẇG
tuẇ−1

G gu = g} is the twisted centralizer of g, and g′ is the

element of G obtained by “stripping off the center” of g. The absolute convergence

of BG
ϕ (g, f) was established in (4.2.2).

Assume f is a matrix coefficient of our supercuspidal representation π. The el-

ements ẇGa for a ∈ A in the big cell may be considered as elements on a torus.

Speaking very loosely, the Shahidi local coefficient Cχ(s, π) will be shown to be equal

to an integral of BG
ϕ (ẇGa, f) over the F -points of a subtorus of A. The goal of this

chapter and the next is to show that when π is twisted by a very highly ramified char-

acter of G, the local coefficient Cχ(s, π) becomes independent of π and only depends

on the central character $π of π.
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The way we will do this is by writing BG
ϕ (ẇGa, f) as a sum of two functions F1(a)

and F2(a). The first function, F1, will only depend on the central character of π.

The second function, F2, will have a certain “smoothness,” which ensures that when

Cχ(s, π) is obtained by integrating F1 +F2 over the aforementioned torus, the integral

over F2 will vanish when the central character of π is very highly ramified, by the

same trick that the integral of a nontrivial character of a compact abelian group is

zero. This will show that Cχ(s, π) is an integral of a function which depends only on

the central character of π, which will prove the analytic stability we want.

The functions F1 and F2 come from an inductive process of starting with f and

obtaining successive functions fw ∈ C∞c (G;ωπ) which are supported inside the open

sets Ωw : w ∈ B(G). The process of obtaining these functions is what we will call the

asymptotic expansion of partial Bessel integrals.

4.3.1 A summary of asymptotic expansion

Our process begins with a given f ∈ C∞c (G;ωπ). To each maximal (proper) Levi

subgroup M of G, and each corresponding w = wGwM ∈ B(G), we will find functions

Λw ∈ C∞c (Ωw;ωπ), as well as a function Λ ∈ C∞c (G), such that

BG
ϕ (ẇGa, f) = BG

ϕ (ẇGa,Λ) +
∑
w

BG
ϕ (ẇGa,Λw)

for all a ∈ A. The function Λ will only depend on the central character $π of π,

not on f (and thus not on π). The function BG
ϕ (ẇa,Λ) will be our F1 above. The

sum over the maximal Levis will be our F2. But we are still far from getting the

smoothness property we need for F2.

We must do an analogous process on each of the open sets Ωw and the functions

Λw supported inside them. Keep in mind that there is not much difference between

Ωw and M : one tacks on two unipotent groups on the ends of M to obtain Ωw.

Accordingly, the analysis of partial Bessel integrals of functions on G which are sup-
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ported inside Ωw reduces to that of partial Bessel functions on M . In particular, our

results of (4.2) will be applied during this part.

We will work on the maximal Levi subgroups M of G, and corresponding w =

wGwM ∈ B(G), one at a time. To each maximal proper Levi subgroup M ′ of M , and

each corresponding w′ = wGwM ′ ∈ B(G), we will find functions Λw′ ∈ C∞c (Ωw′ ;ωπ),

as well as a function fw ∈ C∞c (Ωw), such that

BG
ϕ (ẇGa,Λw) = BG

ϕ (ẇGa, fw) +
∑
w′
BG
ϕ (ẇGa,Λw′)

for all a ∈ A. The function BG
ϕ (ẇGa, fw) has the kind of smoothness property that we

want. It will come from what we developed in (4.2.5). The functions BG
ϕ (ẇGa,Λw′)

still do not yet have the smoothness property we want. We will need to do the same

process again on each BG
ϕ (ẇGa,Λw′), expanding it as a “smooth” piece BG

ϕ (ẇGa, fw′)

plus a sum of partial Bessel integrals BG
ϕ (ẇGa,Λw′′) over all maximal Levi subgroups

of M ′.

Eventually, all the Levi subgroups of G will be exhausted, and we will have written

BG
ϕ (ẇGa, f) as BG

ϕ (ẇGa,Λ), which only depends on the central character of π, plus

the sum over all 1W 6= w ∈ B(G) of various partial Bessel integrals BG
ϕ (ẇGa, fw) with

the smoothness property we want. The sum of these BG
ϕ (ẇGa) will be our F2.

4.3.2 Transferring between partial Bessel integrals on Ωw and on M

Let M be a standard Levi subgroup of G, and let w = wGwM . We mentioned in

(4.1.9) that we have a surjection C∞c (Ωw;ωπ)→ C∞c (M ;ωπ), f 7→ hf given by

hf (m) =
∫

Uw−1

∫
U−w

f(xẇmu)χ(xu)dudx.

There is not much difference topologically between Ωw and M . We made this precise

in (4.1.8). There is a natural bijection between the Bruhat cells. There is also a



145

natural identification of their partial Bessel integrals, as we will make precise with

Proposition 4.3.2.2.

If L ⊂ M are standard Levi subgroups of G, let wML = wMwL. Note that ẇML =

ẇM ẇ
−1
L . Before we state Proposition 4.3.2.2, we need a lemma on twisted centralizers.

Lemma 4.3.2.1. If L ⊂M are standard Levi subgroups of G, then

UM,ẇML a = UM,ẇML
= UẇGL = UẇGL a

for all a ∈ ZL

Keep in mind that in the lemma we are considering two different actions, one of

UM and one of U = UG.

Proof: The left and right equalities are Lemma 4.2.4.2 (i). For the middle equality,

note that UM,ẇML
and UẇGL are both contained in UL by Lemma 4.2.4.2 (ii). If u ∈ UL,

we have u ∈ UM,ẇML
if and only if (ẇM

tuẇ−1
M )ẇML u = ẇML , and we have u ∈ UẇGL if

and only if (ẇG
tuẇ−1

G )ẇGLu = ẇGL . Since ẇML = ẇM ẇ
−1
L and ẇGL = ẇGẇ

−1
L , we see

that these conditions are respectively equivalent to tuẇLu = ẇL. �

Proposition 4.3.2.2. Let f ∈ C∞c (Ωw;ωπ), and let h = hf be as above. Then for

sufficiently large ϕ, we have

BG
ϕ (ẇGLa, f) = BM

ϕ (ẇML a, h)

for all standard Levi subgroups L ⊂M and all a ∈ ZL.

Proof: Let a ∈ ZL. By Lemma 4.3.2.1, we have

BG
ϕ (ẇGLa, f) =

∫
U
ẇG
L
\U

∫
U

f(xẇGLau)ϕ(tuẇ−1
L a′u)χ(xu) dxdu

and

BM
ϕ (ẇML a, h) =

∫
U
ẇM
L
\UM

∫
UM

h(x′ẇML au
′)ϕ(tu′ẇ−1

L a′u′)χ(x′u′) dx′du′.
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Since U = U−w−1U
+
w−1 , we can decompose the integration over U as dx = dx−dx+. We

also have U = U−wU
+
w = NUM , and can decompose integration over U as du = du−du′.

Write ẇGL = ẇGẇ
−1
L = ẇGẇ

−1
M ẇM ẇ

−1
L = ẇGM ẇ

M
L = wẇML . Then

f(xẇGLau) = f(x−x+ẇẇML au
+u−) = f(x−ẇ(ẇ−1x+ẇ)ẇML au

+u−).

Since conjugation by ẇ−1 takes U+
ẇ−1 to U+

ẇ = UM , we can replace (ẇ−1x+ẇ) by

x′ ∈ UM , and get

f(xẇGLau) = f(x−ẇ(x′ẇML au
′)u−)

where u′ ∈ UM .

Decomposing UẇGL \U = UẇML \U as (UẇML \U)×N = (UẇML \UM)U−w , we can write

BG
ϕ (ẇGLa, f) =

∫
U
ẇM
L
\UM×U−w

ï ∫
U−
w−1×UM

f(x−ẇ(x′ẇML au
′)u−)ϕ(tu−(tu′ẇ−1

L a′u′)u−)

× χ(x−u−) dx−dx′
ò
χ(x′u′) du−du′

=
∫

U
ẇM
L
\UM×UM

ï ∫
U−
w−1×U

−
w

f(x−ẇ(x′ẇML au
′)u−)ϕ(tu−(tu′ẇ−1

L a′u′)u−)

× χ(x−u−) dx−du−
ò
χ(x′u′) dx′du′.

From the decomposition Ωw = U−w−1 × ẇM × U−w , and the fact that f is compactly

supported on Ωw modulo Z, there are compact sets U1 ⊂ U−w−1 , U2 ⊂ U−w such that

f(x−ẇmu−) 6= 0 implies that x− ∈ U1 and u− ∈ U2. If we take ϕ sufficiently large

(depending on U2), then we will have

ϕ(tu−(tu′ẇ−1
L a′u′)u−) = ϕ(tu′ẇ−1

L a′u′)
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for all u′ ∈ U2. Then

BG
ϕ (ẇGLa, f) =

∫
U
ẇM
L
\UM×UM

[
∫

U−
w−1×U

−
w

f(x−ẇ(x′ẇML au
′)u−)ϕ(tu′ẇ−1

L a′u′)

× χ(x−u−) dx−du−]χ(x′u′) dx′du′

=
∫

U
ẇM
L
\UM×UM

h(x′ẇML au
′)ϕ(tu′ẇ−1

L a′u′)χ(x′u′) dx′du′

= BM
ϕ (ẇML a, h).

�

4.3.3 Moving up the cells, I

Let M be a standard Levi subgroup of G, and let w = wGwM ∈ B(G). Suppose

f ∈ C∞c (G;ωπ) is supported inside the open set Ωw. Recall that there is a parallel

cell structure on M as there is on Ωw. The small cell BM in M corresponds to the

smallest cell C(w) in Ωw, and in turn, C(w) is closed in Ωw.

Suppose that BG
ϕ (g, f) vanishes for g ∈ C(w). Since Ω◦ = Ωw − C(w) is open

in Ωw, we can identify f as an element of the space C∞c (Ω◦w;ωπ). Considering all

the maximal Levi subgroups L of M , with corresponding Weyl group elements w′ =

wGwL ∈ B(G), we have inclusions Ωw ⊂ Ωw′ . We will be interested in finding

functions fw′ ∈ C∞c (Ωw′ ;ωπ) such that

BG
ϕ (g, f) =

∑
w′
BG
ϕ (g, fw′).

The main difficulty in producing such functions entails considering cells of elements

in the Weyl group which do not support Bessel functions: if we set

Ω1 =
⋃
w′

Ωw′
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as w′ runs through those elements in B(G) corresponding to maximal Levi subgroups

of M , then Ω1 − C(w) is a union of cells C(w′′) with w′′ 6∈ B(G). We will need to

produce a function f1 ∈ C∞c (G) which is supported inside Ω1, i.e. which vanishes on

these cells, and which satisfies BG
ϕ (g, f) = BG

ϕ (g, f1) for all g ∈ G.

The process of doing all of this is what we will call moving up the cells. That

is, we will be replacing f by functions in C∞c (G;ωπ) which have smaller support. In

doing this we will even be able to weaken the assumption that BG
ϕ (g, f) vanishes on

all of C(w) = UẇAU−w , and just assume that f vanishes on the relevant part of the

cell Cr(w) = UẇZMU
−
w .

Lemma 4.3.3.1. (Basic lemma) For f ∈ C∞c (G,ωπ), and U1, U2 open compact sub-

sets of U , set

f ′(g) =
1

meas(U1 × U2)

∫
(U1×U2)

f(u1gu2)χ(u1u2) du1du2.

Let U2 be given. Then for sufficiently large ϕ,

BG
ϕ (g, f) = BG

ϕ (g, f ′)

for all U1, f, and g.

Proof: We have

BG
ϕ (g, f ′) =

∫
Ug\U

∫
U

f ′(xgu)ϕ(tuẇ−1
G g′u)χ(xu) dxdu

which is equal to

1

meas(U1 × U2)

∫
Ug\U

∫
U

∫
U1×U2

f(u1xguu2)ϕ(tuẇ−1
G g′u)χ(u1u2xu) du1du2dxdu.



149

Since U1 × U2 is compact, we can interchange the integration as

1

meas(U1 × U2)

∫
U1×U2

∫
Ug\U

∫
U

f(u1xguu2)ϕ(tuẇ−1
G g′u)χ(u1u2xu) dxdudu1du2.

Make the substitutions x 7→ u−1
1 x and u 7→ uu−1

2 :

1

meas(U1 × U2)

∫
U1×U2

∫
Ug\U

∫
U

f(xgu)ϕ(tu−1
2

t
uẇ−1

G g′uu−1
2 )χ(xu) dxdudu1du2.

Since U2 is compact, we can choose ϕ large enough so that ϕ(tu2
−1yu−1

2 ) = ϕ(y)

for all u2 ∈ U2 and y ∈ Matn(E) (Lemma 4.2.3.1). In this case, the integrand is

independent of u1 and u2, leaving us with

∫
Ug\U

∫
U

f(xgu)ϕ(tuẇ−1
G g′u)χ(xu) dxdu = BG

ϕ (g, f).

�

Let w ∈ B(G), with corresponding Levi M . Let Cr(ẇ) = UẇZMN be the relevant

part of the Bruhat cell. It is closed in C(w) = UẇAN , hence in Ωw. Let Ω′ẇ =

Ωw − Cr(ẇ).

Lemma 4.3.3.2. Let f ∈ C∞c (Ωw;ωπ). Suppose that BG
ϕ (ẇa, f) = 0 for all a ∈ ZM .

Then there exists f0 ∈ C∞c (Ω′ẇ;ωπ) such that for all sufficiently large ϕ,

BG
ϕ (g, f) = BG

ϕ (g, f0)

for all g ∈ G.

Proof: Since C(w) is closed in Ωw, the restriction of f to C(w) remains compactly

supported modulo Z. Then we can take open compact subgroups U1 ⊆ U,U−2 ⊆ N
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such that for all a ∈ A, u ∈ U, n ∈ N the condition f(uẇan) 6= 0 implies that u ∈ U1

and n ∈ U−2 . By Lemma 4.2.4.3, we have for all a ∈ ZM ,

BG
ϕ (ẇa, f) = ϕ̃GM(a′)BG(ȧ, f)

= ϕ̃GM(a′)
∫

U×N

f(xẇan)χ(xn) dxdn

= ϕ̃GM(a′)
∫

U1×U−2

f(xẇan)χ(xn) dxdn.

We are assuming that BG
ϕ (ẇa, f) = 0 for all a ∈ ZA. For ϕ sufficiently large, Lemma

4.2.4.4 tells us that also

BG(ẇa, f) =
∫

U1×U−2

f(xẇan)χ(xn) dxdn = 0

for all a ∈ ZM . Let U+
2 ⊆ UM be an open compact subgroup such that ẇUM ẇ

−1 ⊆ U1.

Let U2 = U+
2 U

−
2 ⊆ U . Enlarging U−2 if necessary, we may assume that U+

2 normalizes

U−2 , so that U2 is a subgroup of U . Define

f0(g) =
1

meas(U1 × U2)

∫
U1×U2

f(u1gu2)χ(u1u2) du1du2.

This function lies in C∞c (G;ωπ), and by Lemma 4.3.2.1, BG
ϕ (g, f) = BG

ϕ (g, f0) for

all g ∈ G. We are done if we can show that f0 vanishes on the relevant part of the

Bruhat cell Cr(ẇ). Let us first evaluate f0(ẇa) for a ∈ ZM . We expand integration

over U1 × U2 as

1

meas(U1 × U2)

∫
U+
2

∫
U−2

∫
U1

f(u1ẇau
+
2 u
−
2 )χ(u1u

+
2 u
−
2 ) du1du

−
2 du

+
2 .
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Since a ∈ ZM and u+
2 ∈ UM , a and u+

2 commute. Write u1ẇau
+
2 u
−
2 = u1ẇu

+
2 ẇ
−1ẇa.

By assumption, ẇu+
2 ẇ
−1 ∈ U1, so we can make the substitution u1 7→ u1(ẇu+

2 ẇ
−1)−1

By compatibility, χ(ẇu+
2 ẇ
−1) = χ(u+

2 ), so we obtain

1

meas(U1 × U2)

∫
U+
2

∫
U−2

∫
U1

f(u1ẇau
−
2 )χ(u1u

−
2 ) du1du

−
2 du

+
2

for all a ∈ ZM . This removes the dependence of the integrand on u+
2 , so we obtain

f0(ẇa) =
meas(U+

2 )

meas(U1 × U2)

∫
U−2

∫
U1

f(u1ẇau
−
2 )χ(u1u

−
2 ) du1du

−
2 (4.3.3.2)

which is a nonzero constant multiple of the pure Bessel function BG(ẇa, f). Since

BG(ẇa, f) = 0 for all a ∈ ZM , we therefore have f0(ẇa) = 0 for all a ∈ ZM .

To finish showing that f0(g) = 0 for all g ∈ Cr(ẇ), suppose that f0(uẇax) 6= 0

for some u ∈ U, x ∈ N, a ∈ ZM . Then we must have f(u1uẇaxu2) 6= 0 for some

u1 ∈ U1 ⊆ U and u2 ∈ U . Via the decomposition U2 = U+
2 U

−
2 , write u2 uniquely as

u+
2 u
−
2 . Using the fact that a ∈ ZM and wUMw

−1 ⊂ U , and writing u1uẇaxu2 in the

“standard form” in C(w) = UẇAN as

u1uẇaxu2 = u1u(ẇu+
2 ẇ
−1)ẇa(u+

2 )−1xu+
2 u
−
2

we have that f(u1u(ẇu+
2 ẇ
−1)ẇa(u+

2 )−1xu+
2 u
−
2 is not zero. This implies

u1u(ẇu+
2 ẇ
−1) ∈ U1

and (u+
2 )−1xu+

2 u
−
2 ∈ U−2 .
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Our assumption that ẇU+
2 ẇ ⊂ U1 and U+

2 normalizes U−2 show that u ∈ U1 and

x ∈ U−2 ⊂ U2. But then in the definition of f0 we can make the substitutions

u1 7→ u1u
−1 and u2 7→ x−1u2 to get

f0(uẇax) =
1

meas(U1 × U2)

∫
U1

∫
U2

f(u1uẇaxu2)χ(u1u2) du2du1

=
χ(ux)

meas(U1 × U2)

∫
U1

∫
U2

f(u1ẇau2)χ(u1u2) du2du1

= χ(ux)f0(ẇa)

= 0

which is a contradiction. �

Recall that we have defined Ω′ẇ to be the complement of Cr(ẇ) in Ωw. Now

define Ω◦w to be the complement of C(w) in Ωw. Then Ω◦w is open in Ωw, and we can

identify C∞c (Ω◦w;ωπ) with those elements of C∞c (Ωw;ωπ) which vanish on the Bruhat

cell C(w).

Lemma 4.3.3.3. Let f : C(w) → C be locally constant and compactly supported

modulo Z.

(i): There are open compact subgroups U1 ⊆ U,U−2 ⊆ N , and a compact set

K ′ ⊆ A′, such that if f(uẇza′n) 6= 0, then u ∈ U1, a
′ ∈ K ′, and n ∈ U−2 .

(ii): If f vanishes on Cr(ẇ), then K ′ can be chosen to be disjoint from Z ′M .

Proof: (i) was already proved in Lemma 4.1.2.1. For (ii), V = {(u, a′, n) ∈

U × A′ × N : f(uẇa′n) 6= 0}. Since f is locally constant, V is a closed (and open)

subset of C(w), and being contained in U1 × K ′ × U−2 , it is compact. Let K ′′ be

the projection of V onto A′. Then K ′′ is compact, and disjoint from A′w, since by

hypothesis f vanishes on Cr(ẇ). Now if g = uẇza′n ∈ C(w) with f(g) 6= 0, then also

f(u · wa′n) = ωπ(z)−1f(g) 6= 0, so (u, a′, n) ∈ V . Then u ∈ U1, a
′ ∈ K ′′, and n ∈ U−2 .

Thus we can replace K ′ by K ′′. �
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Lemma 4.3.3.4. Let f ∈ C∞c (Ωw;ωπ). Suppose that BG
ϕ (ẇa, f) = 0 for all a ∈ ZM .

Then there exists f0 ∈ C∞c (Ω◦w;ωπ) such that for all sufficiently large ϕ,

BG
ϕ (g, f) = BG

ϕ (g, f0)

for all g ∈ Ωw.

Proof: By the previous lemma, there is an f ′ ∈ C∞c (Ω′ẇ;ωπ) (referred to as f0 in

that lemma) such that BG
ϕ (g, f) = BG

ϕ (g, f ′) for all g ∈ G. So we may replace f by f ′

and assume from the beginning that f ∈ C∞c (Ω′ẇ;ωπ), i.e. we may assume f vanishes

on Cr(ẇ).

Take U1 ⊆ U,U−2 ⊆ N,K ′ ⊆ A′ as in the previous lemma. The center ZM is the

intersection of the kernels of the simple of roots of A in M . Since K ′ ⊆ A′ is compact,

and disjoint from Z ′M = A′ ∩ ZM , there exists a c > 0 such that for every a′ ∈ K ′,

there exists a simple root α of A in M such that |α(a′)− 1| > c.

Let U+
2 be an open compact subgroup of UM , chosen sufficiently large so that the

character

u+
2 7→ χ(ẇa′u+

2 a
′−1ẇ−1u+−1

2 )

is nontrivial on U+
2 for all a′ ∈ K ′. Then for all a′ ∈ K ′,

∫
U+
2

χ(ẇa′u+
2 a
′−1ẇ−1u+−1

2 ) du+
2 = 0.

Next, enlarge U−2 so that it is normalized by U+
2 , and take U2 = U+

2 U
−
2 . Also, enlarge

U1 so that it is decomposable as a semidirect product U−1 U
+
1 , for open compact

subgroups U−1 and U+
2 of N and UM . Further enlarge U+

1 so that ẇa′−1U+
2 a
′ẇ−1 ⊆ U+

1

for all a′ ∈ K ′, and enlarge U−1 so that it remains normalized by U+
1 , and the product

U1 = U−1 U
+
1 remains semidirect.
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Define f1 : Ωw → C by

f1(g) =
∫
U2

∫
U1

f(u1gu2)χ(u1u2) du1du2.

We claim that

f1(ẇa) =
∫
U2

∫
U1

f(u1ẇau2)χ(u1u2) du1du2 = 0

for all a ∈ A. Writing a = za′ for z ∈ Z, a′ ∈ A′, we clearly have f1(ẇa) =

ωπ(z)f1(ẇa′), so it suffices to show that f1(ẇa′) = 0. We have

f1(ẇa′) =
∫
U+
2

∫
U−2

∫
U1

f(u1ẇa
′u+

2 u
−
2 )χ(u1u

+
2 u
−
2 ) du1du

−
2 du

+
2

=
∫
U+
2

∫
U−2

∫
U1

f(u1(ẇa′u+
2 a
′−1ẇ−1)a′ẇu−2 )χ(u1u

+
2 u
−
2 ) du1du

−
2 du

+
2 .

Suppose by way of contradiction that f1(ẇa′) 6= 0. Then we know first of all

that a′ must lie in K ′. Also, if f(u1(ẇa′u+
2 a
′−1ẇ−1)ẇu−2 ) 6= 0, then we know that

u1(ẇa′u+
2 a
′−1ẇ−1) must lie in U1. Hence we may change variables, replacing u1 by

u1(ẇa′u+
2 a
′−1ẇ−1)−1, to get

f1(ẇa′) =
∫
U+
2

∫
U−2

∫
U1

f(u1ẇa
′u−2 )χ(u1u

+
2 u
−
2 )χ(ẇa′u+

2 a
′−1ẇ−1) du1du

−
2 du

+
2

=
∫
U−2

χ(u+
2 )χ(ẇa′u+

2 a
′−1ẇ−1) du+

2

∫
U−2

∫
U1

f(u1ẇa
′u−2 )χ(u1u

−
2 ) du1du2.

The first integral is exactly
∫
U+
2

χ(ẇa′u+
2 a
′−1ẇ−1u+−1

2 ) du+
2 , which we know is zero,

because a′ ∈ K ′. This proves that f1(ẇa′) = 0.
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Next, we want to show that f1(uẇa′) = 0 for all u ∈ U . We have as above,

f1(uẇa′) =
∫
U+
2

∫
U−2

∫
U1

f(u1uẇa
′u+

2 u
−
2 )χ(u1u

+
2 u
−
2 ) du1du

−
2 du

+
2

=
∫
U+
2

∫
U−2

∫
U1

f(u1u(ẇa′u+
2 a
′−1ẇ−1)ẇa′u−2 )χ(u1u

+
2 u
−
2 ) du1du

−
2 du

+
2 .

If we again suppose by way of contradiction that f1(uẇa′) 6= 0, then we must have

a′ ∈ K ′, and if f(u1u(ẇa′u+
2 a
′−1ẇ−1)ẇa′u−2 ) 6= 0, then u1u(ẇa′u+

2 a
′−1ẇ−1) must lie

in U1. Since u1 ∈ U1, and (ẇa′u+
2 a
′−1ẇ−1) ∈ U+

1 ⊆ U1, we must have u ∈ U1. Then

by the definition of f1, we see that f1(uẇa′) = χ(u)f1(ẇa′). We just proved that

f1(ẇa′) = 0, so also f1(uẇa′) = 0.

Finally, we need to show that if u′ ∈ N , then f1(uẇa′u′) = 0. This will show that

f1 vanishes on the Bruhat cell C(w), which will complete the proof. We have

f1(uẇa′u′) =
∫
U+
2

∫
U−2

∫
U1

f(u1uẇa
′u′u+

2 u
−
2 )χ(u1u

+
2 u
−
2 ) du1du

−
2 du

+
2

=
∫
U+
2

∫
U−2

∫
U1

f(u1u(ẇa′u′u+
2 a
′−1ẇ−1)ẇa′(u+−1

2 u′u+
2 )u−2 )

× χ(u1u
+
2 u
−
2 ) du1du

−
2 du

+
2 .

Note that U+
2 ⊆ UM normalizes N , so (u+−1

2 u′u+
2 ) ∈ N . If the integrand is nonvan-

ishing, we must have a′ ∈ K ′ and (u+−1
2 u′u+

2 )u−2 ) ∈ U−2 . Hence u+−1
2 u′u+

2 ∈ U−2 . We

can change variables, replacing u−2 by (u+−1
2 u′u+

2 )−1u−2 , to get

f1(uẇa′u′) =
∫
U+
2

∫
U−2

∫
U1

f(u1u(ẇa′u′u+
2 a
′−1ẇ−1)ẇa′u−2 )

× χ(u1u
+
2 u
−
2 )χ(u′) du1du

−
2 du

+
2

= χ(u′)
∫
U+
2

∫
U−2

∫
U1

f(u1uẇa
′u′u+

2 u
−
2 )χ(u1u

+
2 u
−
2 ) du1du

−
2 du

+
2

= χ(u′)f1(uẇa′) = 0.
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Now, let

f0(g) =
1

meas(U1 × U2)
f1(g) =

1

meas(U1 × U2)

∫
U2

∫
U1

f(u1gu2)χ(u1u2) du1du2

for all g ∈ Ωw. Then f0 ∈ C∞c (Ωw;ωπ), and f0 vanishes on C(w), so f0 ∈ C∞c (Ω0
w;ωπ).

By Lemma 4.3.2.1, we have

BG
ϕ (g, f) = BG

ϕ (g, f0)

for all sufficiently large ϕ and all g ∈ Ωw, which completes the proof. �

4.3.4 Moving up the cells, II

So far, we have dealt with functions f supported in a relevant open set Ωw whose

partial Bessel integrals BG
ϕ (−, f) take the value zero on part or all of the small cell

C(w) in Ωw. We have shown that the function in question can be replaced by one

which vanishes on the small cell.

The next proposition is more technical. It shows that, asymptotically, the “non-

relevant cells” C(w′) for w′ 6∈ B(G) do not contribute to the arguments of the partial

Bessel function, and we may assume that the functions we work with vanish on these

cells.

Proposition 4.3.4.1. Let w ∈ B(G). Let Ωw,0 ⊂ Ωw,1 be U × U and A-invariant

open sets of Ωw such that Ωw,1−Ωw,0 is a union of Bruhat cells C(w′) for w′ 6∈ B(G).

Then for any f1 ∈ C∞c (Ωw,1;ωπ), there exists f0 ∈ C∞c (Ωw,0;ωπ) such that for all

sufficiently large ϕ, we have BG
ϕ (g, f0) = BG

ϕ (g, f1) for all g ∈ G.

Proof: The complement of Ωw,0 in Ωw,1 is a finite union of Bruhat cells. By the

general theory of actions of linear algebraic groups, closed orbits always exist, so we

can inductively find open sets

Ωw,0 = Ω0 ⊂ Ω1 ⊂ · · · ⊂ Ωt = Ωw,1
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such that each complement Ωi−Ωi−1 is a single Bruhat cell C(w′) which is closed in Ωi

and for which w′ 6∈ B(G). By induction, it therefore suffices to prove the proposition

in the special case when the complement Ωw,1 − Ωw,0 is a single Bruhat cell C(w′),

with w′ 6∈ B(G).

Since Ωw,0 is open in Ωw,1, the complement C(w′) is closed in Ωw,1. Therefore the

restriction of f1 to C(w′) remains compactly supported modulo Z.

Recall that C(w′) is homeomorphic to U×Z×A′×U−w′ . Since A = ZA′ normalizes

U−w′ , we can switch the order, and say that the map U × U−w′ × Z × A′ sending

(u, u−, z, a′) to uẇ′u−za′ is a homeomorphism. As in Lemma 4.3.2.3, there exist

compact open subgroups U1 of U , U−2 of U−w′ , and a compact subset K ′ ⊆ A′ such

that f1(uẇ′u−za′) 6= 0 implies u ∈ U1, u
− ∈ U−2 , and a′ ∈ K ′. If we replace U1 and

U−2 by any larger open compact subgroups, or K ′ by any larger compact set, the same

holds.

Let U+
2 = {u+ ∈ U+

w′ : w′−1u+w′ ∈ U1}. In general, an exhaustive sequence of

compact open subgroups of U can be obtained by identifying U with affine space

E ⊕ E ⊕ · · · and taking those vectors whose entries are bounded above in absolute

value. So we may always choose U1 and U−2 in such a way that the direct product

U2 = U+
2 U

−
2 is a subgroup of U . Note that U+

2 does not necessarily normalized U−2 ,

since U−w′ is not necessarily a normal subgroup of U when w′ 6∈ B(G).

Let

Ũẇ′a = {(u1, u2) ∈ U1 × U2 : u1ẇ
′au2 = ẇ′a}

be the stabilizer of ẇ′a under the action of U × U . Note that U acts on U × U on

both the right and the left, so we can define for example

U1 · Ũẇ′ · U−2 = {(uu1, u2u
−) : u ∈ U1, u

− ∈ U−2 , (u1, u2) ∈ Ũẇ′}.

Suppose that for u1, u2 ∈ U and a ∈ A′, we have f(u1ẇ
′u2a

′) 6= 0. Writing

u2 = u+
2 u
−
2 for u+

2 ∈ U+
w′ , u

−
2 ∈ U−w′ , we have u1ẇ

′u2a
′ = u1(ẇ′u+

2 ẇ
′−1)ẇ′u−2 a

′, with
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ẇ′u+
2 ẇ
′−1 ∈ U . This implies that u1ẇ

′u+
2 ẇ
′−1 ∈ U1, u

−
2 ∈ U−2 , and a′ ∈ K ′. Then

((ẇ′u+
2 ẇ
′−1)−1, u+

2 ) ∈ Ũẇ′ , with

(u1, u2) = (u1(ẇ′u+
2 ẇ
′−1)(ẇ′u+

2 ẇ
′−1)−1, u+

2 u
−
2 ) ∈ U1 · Ũẇ′ · U−2 .

If we switch the order of our terms, we get a similar result: if f1(u1ẇ
′a′u2) 6= 0, then

writing u1ẇ
′a′u2 = u1ẇ

′a′u2a
′−1a′, we get

(u1, (a
′u2a

′−1)−1) ∈ U1 · Ũẇ · U2 and a′ ∈ K ′.

Since K ′ is compact, we can enlarge U2 to a compact open subgroup which is decom-

posable as U ′2 = U ′+2 U ′−2 , such that for all a′ ∈ K ′ we have a′−1U2a
′ ⊂ U ′2. Then we

have

f1(u1ẇ
′a′u2) 6= 0⇒ (u1, u2) ∈ U1 · Ũẇ′a′ · U ′2 and a′ ∈ K ′. (4.3.4.1)

Since w′ does not support a Bessel function, there is a simple root α such that w′.α

is positive but not simple. If Uα is the root subgroup corresponding to α, then

Uα ⊂ U+
w′ , and χ is nontrivial on Uα, yet trivial on w′Uαw

′−1 = Uw′.α, because this

last root subgroup, being not simple, lies in the derived group of U . Enlarge U ′2,

keeping it decomposable, so that χ is nontrivial on Uα ∩ U ′2 = Uα ∩ U+
2′ . Then

if necessary, enlarge U1 to a larger compact open subgroup U ′1 so that if for some

a′ ∈ K ′ we have (u1, u2) ∈ Ũẇa′ and u2 ∈ U ′2, then u1 ∈ U ′1. Also enlarge U ′1 so that

w′a′U
′+
2 a′−1w′−1 ⊂ U ′1 for all a′ ∈ K ′.

Define f ′0 ∈ C∞c (Ωw′,1;ωπ) by

f ′0(g) =
∫
U ′2

∫
U ′1

f1(u1gu2)χ(u1u2) du1du2.

Consider f ′0(ẇ′a′) for a′ ∈ A′. We have

f ′0(ẇ′a′) =
∫
U ′2

∫
U ′1

f1(u1ẇ
′a′u2)χ(u1u2) du1du2.
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We claim that f ′0(ẇ′a′) = 0. Note that if a′ 6∈ K ′, the integrand is the zero function.

So we may assume that a′ ∈ K ′. Now let u′2 ∈ Uα ∩ U ′2 such that χ(u′2) 6= 1. Then

χ(u′2)f ′0(ẇ′a′) = χ(u′2)
∫
U ′2

∫
U ′1

f1(u1ẇ
′a′u2)χ(u1u2) du1du2

=
∫
U ′2

∫
U ′1

f1(u1ẇ
′a′u2)χ(u1u

′−1
2 u2) du1du2

=
∫
U ′2

∫
U ′1

f1(u1ẇ
′a′u′2u2)χ(u1u2) du1du2

=
∫
U ′2

∫
U ′1

f1(u1(̇w′a′u′2a
′−1ẇ−1)ẇa′u2)χ(u1u2) du1du2.

Since u′2 ∈ U ′2, we have that ẇ′a′u′2a
′−1ẇ−1 ∈ U ′1. So we can replace u1 by u1(ẇ′a′u′2a

′−1ẇ−1)−1

and obtain

χ(u′2)f ′0(ẇ′a′) =
∫
U ′2

∫
U ′1

f1(u1ẇ
′a′u2)χ(u1u2)χ(ẇ′a′u′2a

′−1ẇ′−1u2) du1du2

= χ(ẇ′a′u′2a
′−1ẇ′−1u2)

∫
U ′2

∫
U ′1

f1(u1ẇ
′a′u2)χ(u1u2) du1du2

= χ(ẇ′a′u′2a
′−1ẇ′−1u2)f ′0(ẇ′a′).

By our choice of α, we know that since u′2 ∈ Uα, the element ẇ′a′u′2a
′−1ẇ′−1u2 lies in

a nonsimple root subgroup, on which χ is trivial. Thus

χ(u′2)f ′0(ẇ′a′) = f ′0(ẇ′a′)

and since χ(u′2) 6= 1, we get f ′0(ẇ′a′) = 0. Thus f ′0(ẇ′a′) = 0 for all a′ ∈ A′.

We now claim that f ′0 vanishes on the entire cell C(w′). Let g = u′1ẇ
′za′u′2 with

u′1 ∈ U, u′2 ∈ U−w′ , and let a′ ∈ A′. Suppose that f ′0(g) = ωπ(z)f ′0(u′1ẇ
′a′u′2) 6= 0. In
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order for the integral defining f ′0 to be nonzero, there must exist u1 ∈ U ′1 and u2 ∈ U ′2
such that f0(u1u

′
1ẇ
′a′u′2u2) 6= 0. This implies that

(u1u
′
1, u
′
2u2) ∈ U ′1 · Ũẇ′a′ · U ′2 and a′ ∈ K ′

and hence (u1, u
′
2) ∈ U ′1 · Ũẇ′a′ · U ′2.

So we can write (u′1, u
′
2) = (u0

1v1, v2u
0
2) for (v1, v2) ∈ Ũẇ′a′ and u0

1 ∈ U ′1, u0
2 ∈ U ′2.

Directly from the definition, we get

f ′0(u′1ẇ
′a′u′2) = f ′0(u0

1v1ẇ
′a′v2u

0
2) = f ′0(u0

1ẇ
′a′u0

2)

and since u0
i ∈ U ′i , we can further change variables to get

f ′0(u′1ẇ
′a′u′2) = χ(u0

1u
0
2)f ′0(ẇ′a′) = 0.

This shows that f ′0 is identically zero on the Bruhat cell C(w′). Finally, let

f0(g) =
1

meas(U ′1 × U ′2)
f ′0(g).

By what we just proved, f0 vanishes on C(w′), and since Ωw,1 = Ωw,0 ∪ C(w′), we

have f0 ∈ C∞c (Ωw,0;ωπ). By Lemma 4.3.3.1, we have for sufficiently large ϕ that

BG
ϕ (g, f0) = BG

ϕ (g, f1) for all g ∈ G, which completes the proof. �

4.3.5 The function which only depends on the central character of π

In the asympotic expansion of the partial Bessel integral of a matrix coefficient of

our supercuspidal representation π, we are looking to write the partial Bessel integral

as a sum of two terms. One will only depend on the central character ωπ of π, not

on π itself. The other will have a uniform smoothness property. In this section we

isolate the term which will only depend on the central character of π.
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If f ∈ C∞c (G;ωπ), let us define

W f (g) =
∫
U

f(xg)χ(x)dx.

If f is a matrix coefficient of our supercuspidal representation π, then W f (−) is an

element of the Whittaker model of π, and f can be chosen so that W f (e) = 1. See

the proof of Proposition 1.3 of [PaSt08]).

Convention 4.3.5.1. We will fix once and for all a function f0 ∈ C∞c (G;ωπ) such

that W f (e) = 1. We will call f0 the auxiliary function.

The product group SLn(E)Z is open and finite index in G, and the intersection

SLn(E) ∩ Z is finite. If g ∈ G, we will consider all decompositions g = g′c with

g′ ∈ SLn(E) and c ∈ Z. Define

f1(g) =


1

|Z∩SLn(E)|
∑
g=g′c

f0(g′)ωπ(c) if g ∈ SLn(E)Z

0 if g 6∈ SLn(E)Z.

Then f1 lies in C∞c (G;ωπ). The proof is identical to that of Lemma 4.2.5.3.

Remark 4.3.5.2. The function f1 depends only on the central character ωπ of π and

on the auxiliary funcion that was chosen once and for all. In particular, it does not

depend on π.

We will make use of the pure Bessel integrals again. If f ∈ C∞c (G;ωπ), the

restriction of f to the small cell B remains compactly supported modulo Z, so we

may define the pure Bessel integral

BG(b, f) =
∫
U

f(xb)χ(x)dx = W f (b)

for all b ∈ B. By Proposition 4.2.4.3, we have for all sufficiently large ϕ that

BG
ϕ (a, f) = ϕ̃GG(e)BG(a, f) = ϕ̃GG(e)ωπ(a)W f (e)
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for all a ∈ Z.

Lemma 4.3.5.3. Let f ∈ C∞c (G;ωπ) be a function for which W f (e) = 1. Then for

all sufficiently large ϕ, depending on f and f1, we have BG
ϕ (a, f1) = BG

ϕ (a, f) for all

a ∈ Z.

Proof: For sufficiently large ϕ, we have

BG
ϕ (a, f) = ϕ̃GG(e)BG(a, f) = ϕ̃GG(e)ωπ(a)W f (e) = ϕ̃GG(e)ωπ(a)

and similarly BG
ϕ (a, f1) = ϕ̃GG(e)ωπ(a)W f1(e). Since ϕ̃GG(e) 6= 0 for ϕ sufficiently large,

the problem becomes to show that W f1(e) = 1.

If x ∈ U , then since U ⊂ SLn(E), we have

f1(x) =
1

|Z ∩ SLn(E)|
∑

ξ∈Z∩SLn(E)

f0(xξ−1)ωπ(ξ) = f0(x)

and therefore

W f1(e) =
∫
U

f1(x)χ(x)dx =
∫
U

f0(x)χ(x)dx = W f0(e) = 1.

�

4.3.6 Partitions of unity

The final ingredient in our asympotic expansion formula will make use of partitions

of unity. If X is a locally compact, totally disconnected space, let C∞c (X) be the space

of locally constant, and compactly supported complex valued functions on X. Note

that if U is an open set in X, then we have a natural inclusion C∞c (U) ⊂ C∞c (X) by

extending by zero.

The first result we need is elementary, and we omit the proof.
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Lemma 4.3.6.1. (Partitions of unity) Let X be a locally compact and totally discon-

nected topological space, and suppose U1, ..., Ut are nonempty open subsets of X whose

union is X. If f ∈ C∞c (X), then there exist functions fi ∈ C∞c (Ui) such that

f1(x) + · · ·+ ft(x) = f(x)

for all x ∈ X.

Proposition 4.3.6.2. Let Ω,Ω1, ...,Ωt be open subsets of G such that ZΩ = Ω,

ZΩi = Ωi, and Ω1∪ · · · ∪Ωt = Ω. If f ∈ C∞c (Ω;ωπ), then there exist fi ∈ C∞c (Ωi;ωπ)

such that

f(x) = f1(x) + · · ·+ ft(x)

for all x ∈ G.

Proof: Let p : G → G/Z be the canonical projection, and let X = p(Ω), Ui =

p(Ωi). Then X is an open set in G/Z and is therefore locally compact and totally

disconnected, and X is the union of the Ui.

Let E be the support of f . Then p(E) is a compact and open set in G/Z, so

Lemma 4.3.6.1 gives us functions φi ∈ C∞c (Ui) with Char(p(E)) = φ1 + · · ·+ φt.

Let hi = φi ◦ p, so that

Char(E) = h1 + · · ·+ ht (4.3.6.1)

as locally constant functions on G. One checks that fi := fhi lies in C∞c (Ωi;ωπ).

Multiplifying equation (4.3.6.1) by f gives us f = f1 + · · ·+ ft, as required. �

4.4 Asymptotic expansion of partial Bessel functions

We finally arrive at the main result of this chapter. All the ingredients are in

place to prove the asymptotic expansion. It is this expansion which will allow us to

prove the analytic stability result needed for our main theorem. Recall that π is an
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irreducible, supercuspidal representation of GLn(E) with central character ωπ, and

that we have fixed an auxiliary function f0 ∈ C∞c (G;ωπ) with W f0(e) = 1.

Theorem 4.4.0.1. Let f ∈ C∞c (G;ωπ) with W f (e) = 1. Then there exists a function

f1 ∈ C∞c (G;ωπ), and for each e 6= w ∈ B(G) a function fw ∈ C∞c (Ωw;ωπ), such that

the following hold:

(i): For all sufficiently large ϕ, we have

BG
ϕ (ẇGa, f) = BG

ϕ (ẇGa, f1) +
∑
w

BG
ϕ (ẇGa, fw)

for all a ∈ A.

(ii): f1 depends only on the auxiliary function f0 and on the central character ωπ

of π, not on π itself.

(iii): For each e 6= w ∈ B(G), let M be the standard Levi subgroup of G corre-

sponding to w, and let Z ′M = {z′ : z ∈ ZM}. For sufficiently large ϕ, we have that

BG
ϕ (ẇGa, fw) is zero for a 6∈ (A∩Mder)ZM . Also for sufficiently large ϕ, we have that

for every b ∈ A ∩Mder, the function on Z ′M given by

c′ 7→ BG
ϕ (ẇGbc

′, fw)

is uniformly smooth. The open compact subgroup occurring in the definition of uni-

form smoothness is independent of ϕ, once ϕ is chosen sufficiently large, and also

independent of b.

We give the proof in several steps.
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4.4.1 Passing from G to the maximal Levis

The first step of the proof comes from (4.3.5). Let f1 ∈ C∞c (G;ωπ) be the function

defined there. By Remark 4.3.5.2, f1 only depends on the auxiliary function f0 and

on the central character of π, not π itself. By Lemma 4.3.5.3, we have that

BG
ϕ (a, f − f1) = 0

for all a ∈ Z. We can now apply Lemma 4.3.3.4, noting that G = Ωe. The lemma

tells us that there exists an f2 ∈ C∞c (G;ωπ) which is supported inside Ω◦e = G − B

such that for sufficiently large ϕ,

BG
ϕ (g, f − f1) = BG

ϕ (g, f2)

for all g ∈ G.

Now consider the open set

Ω1 =
⋃
w

Ωw

as w runs through all elements of B(G) which correspond to maximal Levi subgroups

of G (this is actually the same as taking the union over all e 6= w ∈ B(G), since these

are the minimal nonidentity elements in B(G) in the Bruhat order). We have an

inclusion of open sets Ω1 ⊂ Ω◦e whose complement is a union of Bruhat cells C(w′) for

w′ 6∈ B(G). Proposition 4.3.4.1 applies and gives us a function f3 ∈ C∞c (Ω1;ωπ) such

that for sufficiently large ϕ, BG
ϕ (g, f2) = BG

ϕ (g, f3) for all g ∈ G. So for sufficiently

large ϕ, we have

BG
ϕ (g, f − f1) = BG

ϕ (g, f3)

for all g ∈ G.

Now we use a partition of unity. Since Ω1 is the union of the open sets Ωw, as w

runs through all elements of B(G) corresponding to maximal Levi subgroups of G,
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Proposition 4.3.6.2 gives us functions Λw ∈ C∞c (Ωw;ωπ) such that f3 =
∑
w

Λw. We

have shown that for sufficiently large ϕ, we have

BG
ϕ (g, f) = BG

ϕ (g, f1) +
∑
w

BG
ϕ (g,Λw) (4.4.1.1)

for all g ∈ G. Here the sum runs only over those w ∈ B(G) corresponding to maximal

Levi subgroups of G.

4.4.2 The next step

Now on each of the functions Λw ∈ C∞c (Ωw;ωπ), for w ∈ B(G) corresponding to a

maximal Levi M of G, we let h = hΛw ∈ C∞c (M ;ωπ) be as in (4.1.9). By Proposition

4.2.5.4 and Theorem 4.2.5.5, there exists a function h1 ∈ C∞c (M ;ωπ) satisfying two

conditions:

1. For sufficiently large ϕ, we have

BM
ϕ (a, h) = BM

ϕ (a, h1)

for all a ∈ ZM .

2. The function BM
ϕ (ẇMa, h1) vanishes for a 6∈ (A ∩Mder)ZM , and for each b ∈

A ∩Mder, the function on Z ′M given by

c′ 7→ BM
ϕ (ẇMbc

′, h1)

is uniformly smooth. The open compact subgroup occuring in the definition of

uniform smoothness is independent of ϕ and b.
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Now by Lemma 4.1.9.1, there exists a function fw ∈ C∞c (Ωw;ωπ) such that hfw = h1.

Proposition 4.3.2.2 tells us that for sufficiently large ϕ, and for all standard Levi

subgroups L ⊂M , we have

BG
ϕ (ẇGẇ

−1
L a,Λw) = BM

ϕ (ẇM ẇ
−1
L a, h)

BG
ϕ (ẇGẇ

−1
L a, fw) = BM

ϕ (ẇM ẇ
−1
L a, h1)

for all a ∈ ZL. We apply Proposition 4.3.2.2 in two ways, first with L = M and then

with L = A. Applying this with L = M and noting that w = wGwM , we have

BG
ϕ (ẇa,Λw) = BM

ϕ (ẇMa, h) = BM
ϕ (ẇMa, h1) = BG

ϕ (ẇa, fw) (4.1.9.2)

for all a ∈ ZM . Applying this with L = A, we see that BG
ϕ (ẇGa, fw) satisfies the same

uniform smoothness property as BG
ϕ (ẇMa, h1). This is to say:

• For sufficiently large ϕ, BG
ϕ (ẇGa, fw) vanishes for a 6∈ (A ∩Mder)ZM , and for

b ∈ A ∩Mder, the function defined on Z ′M by

c′ 7→ BG
ϕ (ẇGbc

′, fw) = BM
ϕ (ẇMbc

′, h1)

is uniformly smooth. The open compact subgroup occuring in the definition of

uniform smoothness is independent of b, and also independent of ϕ, once ϕ is

sufficiently large so that BG
ϕ (ẇGa, fw) = BM

ϕ (ẇMa, h1) for all a ∈ A.

Now we move up to the next level of Levi subgroups. We are still working with a

fixed maximal Levi subgroup M . Since for sufficiently large ϕ, we have BG
ϕ (ẇa,Λw−

fw) = 0 for all a ∈ ZM , we can proceed exactly as in the last section. Lemma 4.3.3.4

gives us a function f2 ∈ C∞c (G;ωπ) which is supported inside Ω◦w = Ωw − C(w) such

that for sufficiently large ϕ,

BG
ϕ (g,Λw − fw) = BG

ϕ (g, f2)
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for all g ∈ G. Now consider the open set

Ω1 =
⋃
w′

Ωw′

as w′ runs through all those elements of B(G) which correspond to maximal Levi

subgroups of M . We have an inclusion of open sets Ω1 ⊂ Ω◦w whose complement is a

union of Bruhat cells C(w′′) with w′′ 6∈ B(G). Proposition 4.3.4.1 applies and gives us

a function f3 ∈ C∞c (Ω1;ωπ) such that for sufficiently large ϕ, BG
ϕ (g, f2) = BG

ϕ (g, f3)

for all g ∈ G. So for sufficiently large ϕ, we have

BG
ϕ (g,Λw − fw) = BG

ϕ (g, f3)

for all g ∈ G.

Now we use a partition of unity. Since Ω1 is the union of the open sets Ωw′ as w′

runs over all the elements of B(G) corresponding to maximal Levi subgroups of M ,

Proposition 4.3.6.2 gives us functions Λw′ ∈ C∞c (Ωw′ ;ωπ) such that f3 =
∑
w′

Λw′ . We

have shown that for sufficiently large ϕ, we have

BG
ϕ (g,Λw) = BG

ϕ (g, fw) +
∑
w′
BG
ϕ (g,Λw′)

for all g ∈ g. Here the sum runs only over those w′ ∈ B(G) corresponding to maximal

Levi subgroups of M .

4.4.3 Iterating the previous step

Having applied the process of the previous section to each w ∈ B(G) corresponding

to a maximal Levi subgroup of G, we have obtained functions fw ∈ C∞c (Ωw;ωπ) with

the uniform smoothness property, and obtained “error terms” BG
ϕ (g,Λw′) over the w′

corresponding to next to maximal Levi subgroups.
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To each maximal Levi subgroup L of each maximal Levi subgroup M of G, we

proceed with BG
ϕ (g,Λw′) exactly as in the previous section. That is, we produce a

function fw′ ∈ C∞c (Ωw′ ;ωπ) such that for sufficiently large ϕ, the following hold:

• BG
ϕ (ẇ′a,Λw′) = BG

ϕ (ẇ′a, fw′) for all a ∈ ZL.

• BG
ϕ (ẇGa, fw′) vanishes for a 6∈ (A ∩ Lder)ZL, and for b ∈ A ∩ Lder the function

on Z ′L given by

c′ 7→ BG
ϕ (ẇGbc

′, fw′)

is uniformly smooth. The open compact subgroup of Z ′L occurring in the defini-

tion of uniform smoothness is independent of b and also independent of ϕ once

ϕ is large enough.

The differenceBG
ϕ (ẇGa,Λw′)−BG

ϕ (ẇGa, fw′) has an error term indexed by the maximal

Levi subgroups of L. That is, for each w′′ ∈ B(G) corresponding to a maximal Levi

subgroup of L, there exists a function fw′′ ∈ C∞c (Ωw′′ ;ωπ) such that for sufficiently

large ϕ, we have

BG
ϕ (ẇGa,Λw′) = BG

ϕ (ẇGa, fw′) +
∑
w′′
BG
ϕ (ẇGa,Λw′′)

for all a ∈ A.

We do the same process for each Λw′′ on each maximal Levi subgroup of L, ob-

taining a uniformly smooth piece on Ωw′′ plus an error term over the smaller open sets

Ωw′′′ for w′′′ corresponding to even smaller Levis. We collect the uniformly smooth

pieces BG
ϕ (ẇGa, fw) : e 6= w ∈ B(G) as we move down the Levi subgroups. Note

that we may obtain multiple uniformly smooth pieces corresponding to the same Levi

subgroup, which we condense into one.

When we eventually move down to the smallest Levi subgroup, A, we will obtain

a uniformly smooth piece BG
ϕ (ẇGa, fwG), where fwG is supported inside the big cell

ΩwG = C(wG). Here Ader = 1, so this partial Bessel integral is uniformly smooth on
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all of A′. Since there are no more Levi subgroups below A, there will be no further

error terms, giving us the asymptotic expansion of Theorem 4.0.1.
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5. PROOF OF ANALYTIC STABILITY

Throughout this chapter, E/F denotes a quadratic extension of p-adic fields. The

purpose of this chapter is to prove the analytic stability result, Proposition 3.2.2.8.

The proposition states that the Asai gamma factor of a supercuspidal representation

only depends on the central character up to a highly ramified twist. We begin by

explaining how the Asai gamma factor γ(s, π,R, ψ) arises from the Langlands-Shahidi

method, by embedding ResE/F GLn as a maximal Levi subgroup M of the even unitary

group G = U(n, n).

The Asai gamma factor is equal to the Shahidi local coefficient Cχ(s, π), up to a

constant (Lemma 5.1.2.1 and equation (5.1.3.2)). Proposition 3.2.2.8 is then equiv-

alent to the stability of this local coefficient for π supercuspidal (Theorem 5.1.3.3).

Thus Theorem 5.1.3.3 is the main result of this section.

In Theorem 6.2 of [Sh02], Shahidi shows how his local coefficient can be expressed

as a Mellin transform of a partial Bessel integral, under certain conditions. Our ap-

proach to proving Theorem 5.1.3.3 will be to apply Shahidi’s local coefficient formula,

and then apply the delicate analysis of partial Bessel integrals which we developed in

Chapter Four.

If α is the simple root corresponding to M, one of Shahidi’s assumptions (As-

sumption 5.1 of [Sh02]) for his local coefficient formula is the existence of an injection

α∨ : F ∗ → ZM(F )/ZG(F ) such that α ◦ α∨ = 1. Unfortunately, this assumption is

false in our case. But this difficulty is not too serious: we can embed G in a larger

group G̃, having the same derived group as G, for which the assumption holds. Since

local coefficients only depend on the derived group (as we explain in (5.2.1)), we will

be able to apply Shahidi’s formula after all.

Our main references for this chapter are [Go94] and [Sh02].
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5.1 GLn(E) as a Levi subgroup of the unitary group

In this section, we explain the context in which we will encounter the Asai gamma

factor as defined by the Langlands-Shahidi method. In (5.1.1), we define the unitary

group G = U(n, n), and explain some of its structure. We define a maximal parabolic

subgroup P = MN of G whose Levi subgroup M is isomorphic to ResE/F GLn.

In (5.1.2), we show how the Asai representation R of the L-group of ResE/F GLn

occurs as the adjoint action of LM on the Lie algebra of LN.

In (5.1.3), we define a splitting for G and obtain our canonical Weyl group rep-

resentatives as in (2.2.17). We also state the main result of this section, Proposition

3.2.2.8, which is the stability of the Shahidi local coefficient of supercuspidal repre-

sentations for M in G.

In applying Shahidi’s local coefficient formula (Theorem 6.2 of [Sh02]), we will

need to consider a measure on the quotient space of an open dense subset of N(F )

under a certain p-adic Lie group actions. We develop what we will need for this in

(5.1.4).

5.1.1 Definition of the Unitary Group

Let W be the 2n by 2n matrix

W =

Ö
In

−In

è
where In is the n by n identity matrix. The unitary group G = U(n, n) is defined

to be an outer form of GL2n with the following Galois action for X ∈ GL2n(F ) and

γ ∈ Gal(F/F ):

γ.X =


γ(X) if γ|E = 1E

W tγ(X)−1W−1 if γ|E 6= 1E
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where γ(X) denotes the entrywise action of γ on X, and tX denotes the transpose.

In particular, we have

G(E) = GL2n(E)

and in fact G splits over E, with G ×F E = GL2n,E. Moreover, we see that Γ =

Gal(E/F ) acts on GL2n(E) by

σ.X = W tX
−1
W−1

where X is the entrywise application of the nontrivial element σ of Gal(E/F ) to X,

and so

G(F ) = {X ∈ GL2n(E) : W tX
−1
W−1 = X}.

If we start with SL2n instead of GL2n, we can define the special unitary group SU(n, n)

in the same way, and in fact we have SU(n, n) = Gder, the derived group of G.

The verification of the following details are straightforward, and we omit the

proofs.

Proposition/Definition 5.1.1.1. (i): Let T be the maximal torus of G consisting

of diagonal matrices, and let S be the subtorus of T defined by

S(F ) = {



x1

. . .

xn

x−1
1

. . .

x−1
n


}.

Then S is the maximal F -split subtorus of T, and in fact ZG(S) = T. Hence G is

quasi split over F , and S is a maximal F -split torus of both Gder and G.
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(ii): Let ε1, ..., εn be the basis of the character lattice X(S) such that εi sends the

above matrix to xi. Then

∆F = {ε1 − ε2, ..., εn−1 − εn, 2εn}.

is a set of simple roots for S in G. The corresponding relative root system is of type

Cn.

(iii): Let B be the Borel subgroup (minimal parabolic F -subgroup) of G corre-

sponding to ∆F . Let e1, ..., e2n be the standard basis of X(T), where ei sends a 2n by

2n diagonal matrix to its ith entry. The set ∆ of simple roots of T in G corresponding

to B is A ∪B ∪ A′, where

A = {e1 − e2, ..., en−1 − en}

A′ = {−(en+1 − en+2), ...,−(e2n−1 − e2n)}

B = {en − e2n}.

(iv): The nontrivial element σ ∈ Γ = Gal(E/F ) switches ei and −en+i for 1 ≤ i ≤ n.

Hence the orbits of ∆ under the action of Γ are

{ei − ei+1,−(en+i − en+i+1)}

for 1 ≤ i ≤ n − 1, as well as the singleton set {en − e2n}. In particular, en − e2n is

the only simple root in ∆ which is defined over F .

(v): Let θ = ∆F − {2εn}, and let P be the corresponding maximal F -parabolic

subgroup of G. It is self-associate. Let N be the unipotent radical of P, and let M be

the unique Levi subgroup of P containing T. Then

M(F ) = {

Ö
x

tx−1

è
: x ∈ GLn(E)}
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N(F ) = {

Ö
In X

In

è
: X ∈ Matn(E), tX = X}.

5.1.2 The L-group of G

We can identify the L-group LG of G with the semidirect product of GL2n(C)

by Gal(E/F ), where Gal(E/F ) acts on LG by σ.X = W tX−1W−1. The L-group

LM of M can be identified with the semidirect product of GLn(C) × GLn(C) by

Gal(E/F ), which acts by σ.(x, y) = (ty−1, tx−1). The Lie algebra Ln of the L-group

of N identifies with Matn(C), and the adjoint representation r : LM → GL(Ln) is

given by

r(x, y, 1).X = xXy−1

r(σ).X = tX.

It is irreducible.

Lemma 5.1.2.1. Let π be an irreducible, admissible representation of M(F ) =

GLn(E). Then

γ(s, π, r, ψ) = γ(s, π,R, ψ)

where R is the Asai representation (2.6.1).

Proof: We can take ResE/F GLn to be the group defined on E-points by GLn(E)×

GLn(E), with Gal(E/F ) acting by switching the factors. Define an isomorphism

ResE/F GLn →M of algebraic groups over F by

(x, y) 7→

Ö
x

ty−1

è
.

Let V be an n-dimensional complex vector space with basis e1, ..., en. We can identify

the space Ln with V ⊗C V , an isomorphism being given by sending the elementary

matrix Eij to ei⊗ ej. By identifying M with ResE/F GLn via the isomorphism given,
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and taking the corresponding isomorphism of L-groups L ResE/F GLn → LM, it is

straightforward to check that r now identifies with the representation R. The lemma

is now a consequence of (2.2.2). �

5.1.3 The local coefficient for M inside G

Let α = 2εn be the simple root of ∆F which defines the maximal parabolic sub-

group P, and let

ρ = n(ε1 + · · ·+ εn)

be half the sum of the roots of S in N. We can identify α with its unique preimage

in ∆ ⊂ X(T), and ρ with its preimage in X(T) ⊗Z R consisting of half the sum of

the roots of T in N.

We will calculate the element α̃ ∈ X(M)F as defined in (2.2.16). Let (−,−)

denote the standard inner product on X(T)⊗Z R with respect to the basis e1, ..., e2n

of Proposition/Definition 5.1.1.1. It is invariant under the action of the Weyl group

NG(T)/T and the Galois group Gal(F/F ), and we can therefore use it to define α̃.

By definition, α̃ = 〈ρ, α〉−1ρ, where 〈v, w〉 = 2 (v,w)
(w,w)

. We calculate

α̃ = 〈ρ, α〉−1ρ = n−1ρ

which we restrict to the split component AM of M, and identify as an element of

X(M)F ⊗Z R. Then we have:

Lemma 5.1.3.1. (i) For s ∈ C, and all m ∈ GLn(E) = M(F ),

q
〈sρ,HM(m)〉
F = | detm|ns/2E

q
〈sα̃,HM(m)〉
F = | detm|s/2E .
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(ii) If π is a smooth, irreducible representation of GLn(E), and s0 ∈ C, then

γ(s, π| det(−)|s0E ,R, ψ) = γ(s+ 2s0, π,R, ψ).

Proof: (i) is proved in Section 2 of [Go94], and (ii) follows from (i) and (2.2.21).

�

We have defined a set of simple nonrestricted roots ∆. Note that this is not the

usual set of simple roots for GL2n, so the unipotent radical U of B is not the group

of upper triangular unipotent matrices. For each β ∈ ∆, we now define root vectors

xβ : Ga → Uβ on F -points. If β = ei − ei+1, for i = 1, ..., n− 1, we define

xβ(t) = I2n + tEi,i+1

where Ei,i+1 is the 2n by 2n matrix with a 1 in the (i, i + 1) position, and zeroes

elsewhere. If β = −(en+i − en+i+1) for i = 1, ..., n− 1, we define

xβ(t) = I2n − tEn+i,n+i+1.

Finally, if β = α = en − e2n, we define

xα(t) = xβ(t) = I2n + tEn,2n.

This splitting (2.1.2) xβ : β ∈ ∆ is defined over F , in the sense that it is fixed by

the Galois group Gal(F/F ) (2.2.4). Having defined these root vectors, we can then

define our canonical Weyl group representatives as (2.2.17).

Lemma 5.1.3.2. (i): For the set of relative simple roots αi = εi−εi+1 for 1 ≤ i ≤ n−1

and αn = α = 2εn, we have from the above splitting the following canonical Weyl group

representatives for the corresponding simple reflections w1, ..., wn. First, let

C =

Ö
0 1

−1 0

è
.
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For 1 ≤ i ≤ n− 1, we have

ẇi =



Ii−1

C

In−2

C

In−i−1


and

ẇn =



In−1

1

In−1

−1


.

(ii): Let J be the n by n antidiagonal matrix

J =



1

−1

. ..

(−1)n−1



let w` and wθ` be the long elements of G and M, and let w0 = w`w
θ
` . These have

canonical representatives

ẇ` = (−1)n−1

Ö
In

−In

è
, ẇθ` =

Ö
J

J

è
, ẇ0 =

Ö
J

−J

è
.

The splitting defines a generic character (2.2.4) χ of U(F ) in terms of a fixed

additive character ψ of F : if u ∈ U(F ), we can write

u =
∏
β∈∆

xβ(aβ)u′
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for aβ ∈ F and u′ in the derived group of U(F ). The sum of the aβ : β ∈ ∆ lies in

F , and we define

χ(u) = ψ(
∑
β∈∆

aβ).

Note that with our choice of representatives, we have

χ(u) = χ(ẇ0uẇ
−1
0 ) = χ(ẇ−1

0 uẇ0) (5.1.3.1)

for all u ∈ UM(F ) (2.2.19).

If π is a generic representation of GLn(E) = M(F ), then the Langlands-Shahidi

method defines the Shahidi local coefficient Cχ(s, π) (2.2.20). The local coefficient is

related to the Asai gamma factor by the formula

Cχ(s, π) = λ(E/F, ψ)n
2

γ(s, π,R, ψ) (5.1.3.2)

where λ(E/F, ψ) is the Langlands lambda function (Theorem 2.2.20.1). Hence the

main result we want to prove in this section, analytic stability (Proposition 3.2.2.8),

is equivalent to:

Theorem 5.1.3.3. Let π1 and π2 be supercuspidal representations of GLn(E) with

the same central character ω. Then for all sufficiently highly ramified characters η of

E∗, we have

Cχ(s, π1η) = Cχ(s, π2η)

where πiη = πi(η ◦ det).

Our approach to Theorem 5.1.3.3 will be to apply Shahidi’s local coefficient for-

mula (Theorem 6.2 of [Sh02]) and then the Bessel function asymptotics of Chapter

Four. However, the group G is insufficient to apply Shahidi’s formula. In (5.2.2), we

will embed G in a larger group G̃ which has the same derived group, and which has

connected and cohomologically trivial center. The group G̃ satisfies the necessary
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properties to apply Shahidi’s formula. As we explain in (5.2.1), local coefficients only

depend on the derived group, so we will be able to calculate Cχ(s, π) using G̃.

Let N be the unipotent radical of the parabolic opposite to N. For n ∈ N(F ), we

will need an explicit decomposition of ẇ−1
0 n ∈ P(F )N(F ) as in Section 4 of [Sh02].

Lemma 5.1.3.4. Let

n =

Ö
In X

In

è
∈ N(F )

for X ∈ Matn(E) and tX = X. Then ẇ−1
0 n ∈ P(F )N(F ) if and only if X is

invertible, in which case we can uniquely express ẇ−1
0 n = mn′n̄, with m ∈M(F ), n′ ∈

N(F ), n̄ ∈ N(F ). We have

m = (−1)n−1

Ö
JX−1

JX

è
n′ =

Ö
In −X

In

è
n̄ =

Ö
In

X−1 In

è
.

This is essentially Lemma 2.2 of [Go94].

5.1.4 Orbit space measures

Shahidi’s local coefficient formula expresses Cχ(s, π)−1 as an integral with respect

to a measure on the quotient space of N(F ) with respect to the action of a certain

group. In this section, we will explicitly construct the measure which we will need,

and show it satisfies the required properties.

Let UM = M∩U. The group UM(F ), which identifies with the upper triangular

unipotent matrices of GLn(E), acts by conjugation on N(F ), which identifies with

the space of n by n Hermitian matrices in Matn(E). Under these identifications, the

action of UM(F ) on N(F ) is given by

u.X = uX tu.
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In what follows, dx will be an additive Haar measure on either F or E. We will

repeatedly make use of the fact that if f is an integrable function on F , then

∫
F

f(x) dx =
∫
F ∗

f(x) dx.

Given such a measure, d∗x will denote a multiplicative Haar measure: either dx
|x|F

on

F ∗ or dx
|x|E

on E∗. Here | − |F and | − |E are the normalized absolute values on F and

E, related by |NE/F (x)|F = |x|E for x ∈ E. In particular, if x ∈ F , then |x|2F = |x|E.

Proposition 5.1.4.1. Let R be the set of elements in N(F ) of the formÖ
In r

In

è
where r = diag(r1, ..., rn) is an invertible diagonal matrix with entries necessarily in

F . Then:

(i): The elements of R lie in distinct orbits under the action of UM(F ), each with

trivial stabilizer.

(ii): The disjoint union W of the orbits UM(F ).r for r ∈ R is an open dense

subset of N(F ).

(iii): The map UM(F ) × R → W given by (u, r) 7→ u.r is an isomorphism of

analytic manifolds. In particular, the map W → R sending n to the unique element

of R lying in the same orbit is a submersion of manifolds, so R is the quotient of W

under the action of UM(F ) in the category of analytic manifolds.

(iv): Identifying R with (F ∗)n, we place the measure dr =
n∏
i=1
|ri|i−1

E dri on R.

Then integration over N(F ) can be recovered by integration over R:

∫
N(F )

f(n) dn =
∫
R

∫
UM(F )

f(u.r) du dr. (f ∈ C∞c (N(F )))

Here C∞c (N(F )) is the space of locally constant, compactly supported complex

valued functions on N(F ).
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Proof: Assume first that n = 2. Then (i), (ii), and (iii) are straightforward to

verify. For (iv), we identify UM(F ) with E, and N(F ) with F × E × F . Explicitly,

this last identification is Ö
a b

b c

è
7→ (a, b, c).

Then we have for r = diag(r1, r2) ∈ D and f ∈ C∞c (N(F )),

∫
R

∫
UM(F )

f(u.r) du dr =
∫
F

∫
F ∗

∫
E

f(r1 + xx, xr2, r2)|r2|E dx dr2 dr1

=
∫
F ∗

∫
E

∫
F

f(r1 + xx, xr2, r2)|r2|E dr1 dx dr2

=
∫
F ∗

∫
E

∫
F

f(r1, xr2, r2)|r2|E dr1 dx dr2

=
∫
F ∗

∫
E

∫
F

f(r1, x, r2) dr1 dx dr2

=
∫

N(F )

f(n) dn.

From the second to the third line, we have used the translation invariance of the

measure dr1 on F . For the third to the fourth line, we have used the fact that∫
E
F (rx)dx = |r|−1

E

∫
E
F (x)dx for any Haar measure dx on E. Finally we use the fact

that integration over F ∗ is the same as integration over F .

We then proceed by induction on n. Suppose we have verified that R and W work

for a given n. We want to prove the proposition for the corresponding sets ‹R and ›W
of size n + 1. Consider the dense open set O of those matrices X ∈ N(F ) (of size

n+ 1) whose lower right entry x is nonzero. Write

X =

Ö
X0 α

tα x

è
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for X0 Hermitian of size n and α a column vector. Let

u =

Ö
In −x−1α

1

è
so that

untu =

Ö
X0 − x−1αtα 0

0 x

è
.

This procedure allows us to descend to size n and utilize our induction hypothesis.

One checks that ›W consists of those X for which X0 − x−1αtα lies in W . The map

X 7→ X0 − x−1αtα on O is a submersion: this follows from the general fact that any

map p : F k1 × F k2 → F k1 of the form

(x1, ..., xk1 , y1, ..., yk2) 7→ (x1 + f1(y1, ..., yk2), ..., xk1 + fk1(y1, ..., yk2))

is a submersion, where the fi are analytic maps. Indeed, the Jacobian matrix of p

contains a k1 by k1 identity matrix.

Since the map X 7→ X0−x−1αtα on O is a submersion, it is in particular an open

map. Hence the preimage ›W of W is open and dense by induction, giving us (ii). The

other properties (i), (iii), and (iv) are also proved by induction using this method of

descent. �

We also have an action of F ∗ on N(F ) by scaling each entry. This action commutes

with that of UM(F ), so we have an action of F ∗ ×UM(F ) on N(F ). Let R′ be the

set of invertible diagonal matrices of the form diag(1, r2, ..., rn) in N(F ). Define a

measure on F ∗ (not a Haar measure) by |z|n2

F d
∗z = |z|n2−1

F dz and a measure dr′ on

R′ = (F ∗)n−1 by

dr′ =
n∏
i=2

|ri|i−1
E dri =

n∏
i=2

|r′i|2i−1
F d∗r′i.
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Then we see immediately that R′ is the quotient of R under the action of F ∗, and

that integration over R can be recovered by integration over R′ and F ∗:

∫
R

f(r) dr =
∫
R′

∫
F ∗

f(z.r′)|z|n2−1
F dz dr′.

Putting this together with Proposition 5.1.4.1, we have:

Proposition 5.1.4.2. R′ is the quotient of an open dense subset of N(F ) under the

action of F ∗ ×UM(F ), and for f ∈ C∞c (F ), integration over N(F ) can be recovered

by integration over R′ and F ∗ ×UM(F ):

∫
N(F )

f(n) dn =
∫
R′

∫
F ∗

∫
UM(F )

f(u.(zr′))|z|n2

F du d∗z dr′.

5.2 Applying Shahidi’s local coefficient formula

As we mentioned, our approach to Theorem 5.1.3.3 will be to apply Shahidi’s local

coefficient formula (Theorem 6.2 of [Sh02]) and then the Bessel function asymptotics

of Chapter Four. However, the group G is insufficient to apply Shahidi’s formula.

We will embed G in a larger group G̃ which has the same derived group, and which

has connected and cohomologically trivial center. It will have a Levi subgroup ›M
analogous to M (that is, defined by the same set of simple roots).

In (5.2.1), we will prove some general results about representations of groups

having the same derived group, which we will apply to G and G̃. We will show in

particular that if π is a smooth, irreducible representation of M(F ), then there exists

a smooth, irreducible representation π̃ of ›M(F ) whose restriction to M(F ) contains π

as a subrepresentation, and that the local coefficients for π and π̃ are the same. Thus

we will be able to compute the local coefficient Cχ(s, π) using the extended group G̃.

In (5.2.2), we prove some necessary structural properties for G̃. In particular,

we construct an injection α∨ of F ∗ into Z‹M(F )
/Z

G̃(F )
satisfying α ◦ α∨ = 1, which is

necessary for Shahidi’s local coefficient formula.
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In (5.2.3), we apply Shahidi’s local coefficient formula for Cχ(s, π)−1, not just for

a given supercuspidal representation π, but simultaneously for highly ramified twists

of π.

Our main reference for this section is [Sh02].

5.2.1 Reductive groups sharing the same derived group

Consider a connected, reductive group G̃ over F which contains G and shares its

derived group. In this section only, we will denote the group of rational points of a

group H by the corresponding letter H. We will not do this in general, because later

on we will need to consider the group U of upper triangular unipotent matrices in

GLn(E), and we do not want to confuse this with the group U(F ) introduced earlier.

Lemma 5.2.1.1. Let Z
G̃

be the center of ‹G. Let π be an irreducible, admissible

representation of G, and ω a character of ZG.

(i): ω can be extended to a character ω̃ of Z
G̃

.

(ii): If π is an irreducible, admissible representation of G, then there exists an

irreducible, admissible representation π̃ of ‹G whose restriction to G contains π as a

subrepresentation.

(iii): If π has central character ω, then π̃ can be chosen to have central character

ω̃.

Proof: (i): The groups ZG and Z
G̃

each have unique maximal compact open

subgroups K and K̃, with K = ZG ∩ K̃. The restriction of ω to K is unitary, and

then extends by Pontryagin duality to a character ω̃ of K̃. We then extend ω̃ to a

character of ZGK̃ by setting ω̃(zk) = ω̃(z)ω(k). This is well defined, and moreover

continuous since the product map ZG×K̃ → Z
G̃

is an open map. Since C∗ is injective

in the category of abelian groups, ω̃ extends to an abstract homomorphism of Z
G̃

into

C∗. This extension is automatically continuous, because its restriction to the open

subgroup K̃ is continuous.
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(ii) and (iii): We first extend π to a representation of Z
G̃
G by setting π(zg) =

ω̃(z)π(g). This is smooth and admissible. Since Z
G̃
G is of finite index in ‹G, the

smoothly induced representation τ = IndG̃Z
G̃
G π is admissible.

Any irreducible subrepresentation of τ is easily seen to have central character ω̃.

Take a nonzero element in the space of τ and consider the ‹G-subrepresentation W

which it generates. Since W is finitely generated and admissible, it is of finite length,

and must contain an irreducible subrepresentation W0.

Now the restriction of W0 to G is a finite direct sum of irreducible representations

of G ([Tad92], Lemma 2.1). Since the map f 7→ f(1) defines a nonzero intertwining

operator from W0 to the space of π, we see that one of these irreducible representations

must be isomorphic to π. �

The group G̃ is essentially the same as the group G, but with a larger maximal

torus ‹T, which we may take to be one containing T. It has a maximal split torus S̃

inside ‹T. It has a Borel subgroup ‹B = ‹TU, which defines a set of simple restricted

and nonrestricted roots identifiable with those corresponding to the triple G,B,S.

The root vectors can be taken from U, giving us the exact same canonical Weyl group

representatives and generic character χ as before.

Let ‹P = ›MN be the maximal self-associate parabolic subgroup of G̃ correspond-

ing to P (that is, defined by the same set of simple roots), with ›M containing ‹T.

Then ›M and M also have the same derived group, so we can apply Lemma 5.2.1.1.

Lemma 5.2.1.2. Let π be a supercuspidal representation of M = GLn(E) with cen-

tral character ωπ. Let π̃ be an irreducible, admissible representation of ›M whose

restriction to M contains π as a subrepresentation, and whose central character ω̃π

extends that of ωπ.

(i): π̃ is generic, and Cχ(s, π) = Cχ(s, π̃).

(ii): Let W be an element of the Whittaker model of π. Then W extends to an

element W̃ in the Whittaker model of π̃.

Proof: (i): Let λ be a nonzero χ-Whittaker functional for π. Let V be the

underlying space of π̃. The restriction of π̃ to M is a finite direct sum of irreducible
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representations, say V = V1 ⊕ · · · ⊕ Vr, with π = V1. Then the map λ̃ : (v1, ..., vr) 7→

λ(v1) is a nonzero Whittaker functional for π̃.

Consider the induced representations I(s, π) and I(s, π̃) of G and ‹G. If 0 6=

f ∈ I(s, π̃), then f is a function from ‹G to V , so we may write f = (f1, ..., ft).

We see immediately that the restriction of f1 to G is a nonzero element of I(s, π).

Considering the intertwining operators A(s, π) and A(s, π̃), and the Whittaker func-

tionals λχ(s, π) and λχ(s, π̃), both defined by integration over N(F ) with the same

Weyl group representative ẇ0, we see by direct computation that the local coefficient

Cχ(s, π̃) satisfies

Cχ(s, π̃)λχ(−s, π) ◦ A(s, π)f1 = λ(s, π)f1

making it equal to Cχ(s, π).

(ii): There exists an element v in the space of π such that W (m) = λ(π(m)v).

We simply define W̃ (m̃) = λ̃(π̃(m̃)v). �

Now we account for twists of π.

Lemma 5.2.1.3. Let η be a character of E∗, identified with the character η ◦ det of

M = GLn(E). Let π and π̃ be as in Lemma 5.2.1.3. Consider the twisted represen-

tation πη = π(η ◦ det).

(i): The character η of M extends to a character η̃ of ›M .

(ii): Consider the twist π̃η̃ of π̃ by η. Then π̃η̃ is generic, and Cχ(s, πη) =

Cχ(s, π̃η̃).

Proof: (i): By Lemma 5.2.1.1 (ii), there exists an irreducible admissible represen-

tation η̃ of ›M whose restriction to M contains η as a subrepresentation. Since η is a

character, it follows from the proof of that lemma that η̃ is finite dimensional. Since

the derived group of ›M is SLn(E), η̃ must actually be one dimensional, i.e. a charac-

ter. This follows from the fact that the kernel of η̃ is an open normal subgroup of ›M ,

and must therefore contain sufficiently small subgroups of the simple root subgroups

of M . These generate SLn(E), and therefore η̃ factors through the abelian quotient
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an abelian group must be one dimensional.

(ii) follows from Lemma 5.2.1.2 applied to the representation π̃η̃ of ›M , whose

restriction to M contains πη as a subrepresentation. �

Using Lemma 5.2.1.3 (i), we make the following convention.

Convention 5.2.1.4. For each character η of M = GLn(E), choose once and for all

a character η̃ of ›M which extends η.

5.2.2 The extended group G̃

We will now construct the group G̃ of the previous section. The goal is to construct

a connected, reductive group G̃ over F which contains G, shares its derived group,

and has connected and cohomologically trivial center. Then Assumption 5.1 of [Sh02]

will be valid for G̃, allowing us to construct the injection α∨ of F ∗ into Z‹M(F )
/Z

G̃(F )

as in Section 5 of [Sh02]. This will allow us to apply Shahidi’s local coefficient formula

for G̃.

First, define Z̃G = ResE/F ZG. It is cohomologically trivial by Shapiro’s lemma.

Since the F -points of ZG identifies with F
∗
, we can identify the F -points of Z̃G with

F
∗ × F ∗, and for z = (x, y) ∈ Z̃G(F ), and γ ∈ Gal(F/F ), we have γ.z = (γ(x), γ(y))

if γ|E = 1E, and γ.z = (γ(y), γ(x)) if γ|E = σ, where σ is the nontrivial element of

Gal(E/F ).

We embed ZG into Z̃G on F -points by sending x ∈ F
∗

to (x, x−1), where we

identify xI2n with x. This embedding is defined over F . Let K be the finite group

scheme Gder∩ZG, where we have Gder = SU(n, n). The product map Gder×FZG → G

induces an isomorphism of algebraic groups

Gder ×F ZG

K
→ G
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which is defined over F . Here we are regarding K as a subgroup scheme of Gder×F ZG

on closed points by x 7→ (x, x−1). Since K ⊂ ZG ⊂ Z̃G, we may define in the same

way a group G̃ by

G̃ =
Gder ×F Z̃G

K
.

This group contains Gder, ZG, and G as subgroup schemes, and by passing to F -

points, we immediately arrive at the following proposition.

Proposition 5.2.2.1. G̃ is a connected, reductive group over F . Its derived group

is Gder. The center of G̃ is Z̃G, and‹T =
TD ×F Z̃G

K

is a maximal torus of G̃ which contains T and is defined over F . Here TD is the max-

imal torus of Gder whose E-points are the diagonal matrices in SL2n(E) = Gder(E).

For the self-associate maximal parabolic subgroup ‹P = ›MN analogous to P (that

is, defined by the same set of simple roots), we have

›M =
MD ×F Z̃G

K

where MD is the Levi subgroup of Gder analogous to M. The group ›M has center

Z‹M =
ZMD ×F Z̃G

K
.

Note that since the torus Z
G̃

= Z̃G is cohomologically trivial by Shapiro’s lemma,

the inclusion

Z‹M(F )
/Z

G̃(F )
= Z‹M(F )/Z

G̃
(F ) ⊆ Z‹M/ZG̃

(F )

is an equality. We have used the fact that if H is a reductive group over a field k,

then ZH(k) = ZH(k). We will require a simple lemma on tori.
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Lemma 5.2.2.2. Identify all groups with their F -points. Let H be the subtorus

(x, x−1, x−1, x) of G4
m, and K a finite subgroup of H containing c = (−1,−1,−1,−1).

Choose for each 0 6= x ∈ F a square root
√
x, so that

x 7→ (
√
x,

1√
x
,

1√
x
,
√
x)K

is a well defined homomorphism of abstract groups Gm → H/K, independent of the

choice of
√
x for any x. Then this homomorphism is a morphism of varieties.

Proof: Let X(H) be the character lattice of H. We identify H with Gm = F
∗

and

use the fact that H 7→ X(H) defines an antiequivalence of categories between tori

over F and finite rank free abelian groups. The surjection H→ H/K corresponds to

an inclusion

X(H/K)→ X(H).

As a finite subgroup of F
∗
, K is cyclic and generated by some root of unity ζ of

order d. Since −1 ∈ K, d must be even. If we let χ be the basis of X(H) sending

x ∈ F
∗

to itself, then dχ is a basis of X(H/K). The map in the statement of the

lemma is then seen to be the unique morphism of varieties corresponding to the group

homomorphism

X(H/K)→ X(Gm)

dχ 7→ (d/2)χ.

�

Now, we are going to construct the required injection α∨ of F ∗ into Z‹M(F )/Z
G̃

(F )

as in Section 5 of [Sh02]. Let L = ZMD ×F Z̃G. Since

ZMD(F ) = {

Ö
xIn

x−1In

è
: x ∈ F ∗}
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we can identify L(F ) with the three dimensional torus (x, x−1, y, z). For the corre-

sponding group K, we then identify K(F ) = {(x, x−1, x−1, x) : x2n = 1}. Then

Z‹M(F ) = L/K(F ) =
L(F )

K(F )
= {(x, x−1, y, z)K(F ) : x, y, z ∈ F ∗}.

Proposition 5.2.2.3. For each x ∈ F ∗, choose once and for all a square root
√
x.

Define a map Gm(F )→ Z‹M(F ) by

x 7→ (
√
x,

1√
x
,

1√
x
,
√
x)K(F ).

Then this is the map on closed points defined by a cocharacter λ of ZM. It satisfies

〈β, λ〉 = 1 for the unique β ∈ ‹∆ restricting to α = εn−1−εn, and 〈β, λ〉 = 0 for β ∈ ‹∆
not restricting to α. The composition

Gm → Z‹M → Z‹M/ZG̃

maps F -rational points to F -rational, and therefore defines an injection

α∨ : F ∗ → Z‹M/ZG̃
(F ).

Proof: Note that (−1,−1,−1,−1) ∈ K(F ), so by the previous lemma, λ is a well

defined cocharacter. It clearly pairs with the nonrestricted simple roots in the manner

described. We finally have to check that if x ∈ F ∗, then the image of λ(x) in ZG(F )

is an F -rational point.

The torus Z‹M splits over E, so all its cocharacters are defined over E. The

projection Z‹M → Z‹M/ZG̃
is also defined over E. So we just need to check that if

τ ∈ Gal(F/F ), and τ |E 6= 1E, then τ fixes the image of λ(x) modulo Z
G̃

(F ). First,
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using the fact that τ(
√
x) = ±

√
x, that (−1,−1,−1,−1) ∈ K(F ), and that τ acts on

MD(F ) by τ.(x, y) = (τ(y)−1, τ(x)−1) we get

τ.λ(x) = ±(
√
x,

1√
x
,
√
x,

1√
x

)K(F )

= (
√
x,

1√
x
,
√
x,

1√
x

)K(F ).

Next, Z
G̃

(F ) embeds into Z‹M(F ) as (x, y) 7→ (1, 1, x, y)K(F ). For λ(x) modulo

Z
G̃

(F ) to be an F -rational point, it suffices to show that τ.λ(x) is congruent to λ(x)

modulo Z
G̃

(F ). And this is the case, using the element

(1, 1,
1

x
, x)K(F ) ∈ Z

G̃
(F )

and the fact that
√
x
x

= 1√
x

for any x ∈ F ∗ and any choice of square root of x. �

5.2.3 The local coefficient as a partial Bessel integral

In this section, we let π be an irreducible, supercuspidal representation of M(F ) =

GLn(E) with central character ω. We will finally apply Shahidi’s local coefficient

formula to calculate the local coefficient Cχ(s, π) in a way that the analysis in Chapter

Four can be applied.

Let N be the unipotent radical of the parabolic subgroup opposite to P. We

will need a nice collection of open compact subgroups Nκ : κ ∈ Z of N(F ) to work

with. Note that N(F ), like N(F ), identifies with the space of Hermitian matrices in

Matn(E):

N(F ) = {

Ö
In 0

X In

è
: X ∈ Matn(E), tX = X}.
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We will define a collection of open compact neighborhoods X(κ) of the identity in

Matn(E) whose union is the entire space:

X(κ) =



($F )−κ ($F )−2κ ($F )−3κ · · ·

($F )−2κ ($F )−3κ

($F )−3κ . . .
...


.

Here $F is a uniformizer for F , and ($F ) = $FOE. Of course ($F ) = $EOE if E/F

is not ramified, and ($F ) = $2
EOE if E/F is ramified. Equivalently,

X(κ) = {x ∈ Matn(E) : xij ∈ ($F )−κ(i+j−1)}.

We let

Nκ = {

Ö
In 0

X In

è
∈ N(F ) : X ∈ X(κ)}.

Then Nκ is a sequence of open compact subgroups of N(F ) whose union is all of

N(F ).

Lemma 5.2.3.1. For t ∈ F ∗, α∨(t)Nκα
∨(t)−1 only depends on |t|F .

We recall that α∨ : F ∗ → Z‹M(F )/Z
G̃

(F ) was the injection defined in (5.2.2).

Proof: Let t ∈ F ∗. Then α∨(t) is an element of Z‹M(F )
which is only well defined

modulo Z
G̃(F )

. However, conjugation by α∨(t) is well defined, and coincides with

conjugation by the E-rational pointÖ
tIn

In

è
∈ ZM(E)

so we see that conjugation by α∨(t) of an element X of N(F ), identified with a

Hermitian matrix, produces the Hermitian matrix t−1X, and this only depends on

|t|F . �
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Recall that in (5.2.1), we chose once and for all an extension of each character η of

M(F ) to a character η̃ of ›M(F ) (Convention 5.2.1.4). Let π̃ be an irreducible, generic

representation of ›M(F ) whose restriction to M(F ) contains π as a subrepresentation

and whose central character ω̃ extends ω (Lemma 5.2.1.2). Then we have an equality

of local coefficients

Cχ(s, πη) = Cχ(s, π̃η̃)

where the left hand side is the local coefficient of M inside G, and the right hand

side is the local coefficient of ›M inside G̃.

Let us first compute the character ω̃(ẇ0ω̃
−1) (Section 6 of [Sh02]) of F ∗ which is

defined by

ω̃(ẇ0ω̃
−1)(t) = ω̃(α∨(t)ẇ−1

0 α∨(t)−1ẇ0).

This is well defined as a character of F ∗, even though α∨(t) ∈ Z‹M(F ) is only well

defined modulo Z
G̃

(F ). Here ẇ0 was defined in Lemma 5.1.3.2.

Lemma 5.2.3.2. Let t ∈ F ∗. Identifying M(F ) = GLn(E), we have

ω̃(ẇ0ω̃
−1)(t) = ω(tIn).

In particular, ω̃(ẇ0ω̃
−1) does not depend on the choice of character ω̃ extending

ω.

Proof: Choose any square root
√
t ∈ F ∗ of t, and define

z = (
√
t,

1√
t
,

1√
t
,
√
t)K(F ) = [

Ö√
tIn

1√
t
In

è
, (

1√
t
,
√
t)]K(F ) ∈ Z‹M(F ).

Let z0 ∈ Z‹M(F )
be any F -rational representative modulo Z

G̃(F )
of α∨(t). The defini-

tion of ω̃(ẇ0ω̃
−1)(t) is

ω̃(z0ẇ
−1
0 z−1

0 ẇ0).
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By the definition of α∨(t), there exists a g ∈ ZG(F ) such that z = z0g. Then

z0ẇ
−1
0 z−1

0 ẇ0 = zẇ−1
0 z−1ẇ0, with

zẇ−1
0 z−1ẇ0 = [

Ö
tIn

t−1In

è
, (1, 1)]K(F )

which lies in ZM(F ) and identifies with the matrix tIn in the center of GLn(E). �

Let Z0 be the isomorphic image of F ∗ under the homomorphism α∨, and let z ∈ Z0.

Let n be an element of the open dense subset W of N(F ) defined in Proposition

5.1.4.1, so that the stabilizer UM,n(F ) of n under conjugation by UM(F ) is trivial.

Write ẇ−1
0 n = mn′n̄ as in Lemma 5.1.3.4.

We can write ẇ0
−1n̄ẇ0 = n1 for n1 ∈ N(F ), so that

n1 = xα(xα)n′′

for xα ∈ F ∗ and n′′ in the derived group of U(F ). The element xα lies in F , because

the character α = en−e2n of T is defined over F (Proposition/Definition 5.1.1.1 (iii)).

Let us compute the matrices m,n′, n̄ of (5.1.3) and the element xα for special

n ∈ N(F ). Recall that both N(F ) and N(F ) identify naturally with the space of

Hermitian matrices with entries in E. And by Lemma 5.1.3.4, ẇ−1
0 n ∈ P(F )N(F ) if

and only if the Hermitian matrix corresponding to n is invertible.

Lemma 5.2.3.3. Let r′ = diag(1, r′2, ..., r
′
n) be a diagonal matrix with entries in F ∗.

Let

n =

Ö
In r′

In

è
∈ N(F ).

Then ẇ−1
0 n = mn′n̄ with m ∈M(F ), n′ ∈ N(F ), n̄ ∈ N(F ), where

(i): If we identify m with a matrix in GLn(E), then m = (−1)n−1Jr′−1.

(ii): If we identify n̄ with a Hermitian matrix, then n̄ = r′−1.

(iii): The element xα ∈ F ∗ corresponding to n above is −1.
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Here J is as in Lemma 5.1.3.2. Proof: (i) and (ii) are immediate from the Lemma

5.1.3.4. For (iii), we first need to compute n1 = ẇ−1
0 n̄ẇ0. We have

n1 = ẇ−1
0 n̄ẇ0 = (−1)n

Ö
J

−J

èÖ
In

r′−1 In

èÖ
J

−J

è
=

Ö
In (−1)nJr′−1J

In

è
where the lower right entry xα of (−1)nJa′−1J is easily seen to be −1. �

Now let f be a matrix coefficient of π, and let

W f (m) =
∫

UM(F )

f(um)χ(u) du =
∫
U

f(xm)χ(x) dx (5.2.3.1)

where U is the group of upper triangular unipotent matrices in GLn(E). Then W f

lies in the Whittaker model of π. It is known that f may be chosen so that W f is

not identically zero (see the proof of Proposition 1.3 of [PaSt08]), so we may choose

f so that W f (e) = 1.

By Lemma 5.2.1.2, W f extends to a function ›M(F )→ C in the Whittaker model

of π̃. Also call this extension W f . Now that we have defined our lengthy notation,

we can state Shahidi’s local coefficient formula for Cχ(s, π̃).

Theorem 5.2.3.4. (Shahidi) Let π be an irreducible, supercuspidal representation of

GLn(E) with central character ω. Let η be a character of E∗, identified as a character

of GLn(E) through the determinant. Assume that η is sufficiently ramified that the

conductor of ηn is greater than that of ω. Then there exists an integer κη, depending

on η, such that for all κ ≥ κη,

Cχ(s, πη)−1 = γ(s, ωηn, ψ)−1
∫

Z0UM(F )\N(F )

ωη(x−1
α )|xα|−nsF q〈sα̃+ρ,HM (m)〉

η(m)
∫

UM(F )

W f (mu)ϕκ(α
∨(xα)u−1n̄uα∨(x−1

α ))χ(u)dudṅ
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up to a constant depending on the normalization of our measures and on the value of

ω(−1)n+1. Here ϕκ is the characteristic function of Nκ, and γ(s, ωηn, ψ) is the local

gamma factor attached to the restriction of the character ωηn to F ∗.

We have already identified the quotient space Z0UM(F )\N(F ) in (5.1.4) with the

torus R′. Conjugation by Z0 coincides with the action of F ∗ given there, and the

measure dṅ is the measure dr′.

Proof: This is Theorem 6.2 of [Sh02]. For the convenience of the reader, we will

present the proof here. Let Ṽ be the underlying space of π̃. Our element W f in

the Whittaker model of π̃ is a function given by W f (m̃) = λ(π̃(m̃)v), where λ is a

χ-Whittaker functional for π̃, and v ∈ Ṽ satisfies λ(v) = 1.

The Shahidi local coefficient Cχ(s, π̃η̃) = Cχ(s, πη) satisfies

Cχ(s, πη)λχ(−s, ẇ0(π̃η̃)) ◦ A(s, π̃η̃) = λχ(s, π̃η̃) (5.2.3.1)

where the right and left hand sides are linear functionals on the induced space I(s, π̃η̃).

We will choose a nice test function to make the right hand side equal to 1.

Let f : N(F ) → Ṽ be any locally constant and compactly supported function

with the property that ∫
N(F )

χ′(n̄)f(n̄)dn̄ = v (5.2.3.2)

where χ′(n̄) = χ(ẇ−1
0 n̄ẇ0). This integral can be evaluated by integrating over any Nκ

with κ large enough. There is a unique extension of f to a function on ‹P(F )N(F )

which lies in the induced space I(s, π̃η̃). If we set h = Rẇ0(f), the right translate of

f by ẇ0, then the Whittaker functional λχ(s, π̃η̃) is given by

λχ(s, π̃η̃)(h) =
∫

N(F )

〈h(ẇ−1
0 n), λ〉χ(n)dn =

∫
N(F )

〈f(n̄), λ〉χ′(n̄)dn̄.

Since h is supported inside the big cell ‹P(F )ẇ0N(F ), these are absolutely convergent

Lebesgue integrals which vanish outside of a compact set. The reader may notice



198

that the character χ′ on the right hand side ought to be χ(ẇ0n̄ẇ
−1
0 ) after the change

of variables. Our computations are correct up to a constant, however, and we will

have reason to use χ′ as it is. Since ẇ−2
0 is an element in the center of M(F ), we may

write h(ẇ−1
0 n) = ωη(ẇ0)−2h(ẇ0n) and note that ẇ−2

0 = (−1)n+1In ∈ GLn(E), with

ωη(ẇ−2
0 ) = ω(−1)n+1. Since we are interested in the stability of the local coefficient,

a calculation up to constant is all that is needed.

Notice that with our choice of h, we have

λχ(s, π̃η̃)(h) = 〈
∫

N(F )

χ′(n̄)f(n̄)dn̄, λ〉 = 〈v, λ〉 = 1.

Now we evaluate the left hand side of equation (5.2.3.1) at h. The integrals defining

the Whittaker functionals λχ(s, π̃η̃) generally do not converge as Lebesgue integrals;

rather, they are principal value integrals which stabilize over large enough open com-

pact subgroups. To be precise, there exists a κ0 such that for all κ ≥ κ0,

λχ(−s, ẇ0(π̃η̃)) ◦ A(s, π̃η̃)(h) =
∫
Nκ

〈A(s, π̃η̃)(h)(n̄1), λ〉χ′(n̄1)dn̄1.

The κ0 can be chosen independently of s, and can be enlarged arbitrarily. We can

choose κ0 large enough so that Nκ0 contains the support of the function n̄1 7→ h(n̄1)

on N(F ). Now for Re(s) sufficiently large, the right hand side is equal to

∫
Nκ

∫
N(F )

〈h(ẇ−1
0 nn̄1), λ〉χ′(n̄1)dndn̄1 =

∫
Nκ

∫
N(F )′

〈h(ẇ−1
0 nn̄1), λ〉χ′(n̄1)dndn̄1

where N(F )′ = W is the open dense subset of N(F ) as in Proposition 5.1.4.1 (ii). For

n ∈ N(F )′, we may write ẇ−1
0 n = mn′n̄ as in Lemma 5.1.3.4, so that this expression

is equal to

∫
Nκ

∫
N(F )′

〈h(mn′n̄n̄1), λ〉χ′(n̄1)dndn̄1 =
∫

N(F )′

〈
∫
Nκ

χ′(n̄1)h(mn′n̄n̄1)dn̄1, λ〉dn.
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Now in the inner integral, we may change variables n̄1 7→ n̄−1n̄1, as long as n̄ lies

in Nκ. Let ϕκ be the characteristic function of Nκ. Since we are assuming that the

support of the function n̄1 7→ h(n̄1) is contained in Nκ, we have

∫
Nκ

χ′(n̄1)h(mn′n̄n̄1)dn̄1 = ϕκ(n̄)χ′(n̄)
∫
Nκ

χ′(n̄1)h(mn′n̄1)dn̄1

= ϕκ(n̄)χ′(n̄)π̃(m)η̃(m)q〈sα̃+ρ,HM̃ (m)〉
∫
Nκ

χ′(n̄1)h(n̄1)dn̄1

= ϕκ(n̄)χ′(n̄)π̃(m)η̃(m)q〈sα̃+ρ,HM̃ (m)〉v.

We have used the fact that h lies in the induced space I(s, π̃η̃), as well as equation

(5.2.3.3). Right before the statement of Theorem 5.2.3.4, we had defined W f to be

the element of the Whittaker model of π̃ extending the function of the same name on

M(F ). Since W f (m) = λ(π̃(m)v), we may put this together with equation (5.2.3.1)

and say that

Cχ(s, πη)−1 =
∫

N(F )′

η̃(m)W f (m)ϕκ(n̄)q〈sα̃+ρ,HM̃ (m)〉χ′(n̄)dn.

We next expand this integration over its UM(F )-orbits as in (5.1.4). The torus R

in that section identifies with the quotient space UM(F )\N(F ) of N(F )′ under the

conjugation action of UM(F ). Let dṅ be the measure on UM(F )\N(F ) of Proposition

5.1.4.1. Note that if n ∈ N(F )′ is replaced by unu−1, then n̄ changes to un̄u−1 and

m changes to ẇ0(u)mu−1, where ẇ0(u) = ẇ−1
0 uẇ0. Then

Cχ(s, πη)−1 =
∫

UM(F )\N(F )

∫
UM(F )

η̃(ẇ0(u)mu−1)W f (ẇ0(u)mu−1)ϕκ(un̄u
−1)

q〈sα̃+ρ,HM̃ (ẇ0(u)mu−1)〉χ′(un̄u−1)dudṅ.
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We can immediately simplify this formula. By compatibility of ẇ0 with χ (equation

(5.1.3.1)), the Whittaker functional property of W f , and the triviality of η̃ and HM̃

on unipotent elements, we can rewrite this as

Cχ(s, πη)−1 =
∫

UM(F )\N(F )

∫
UM(F )

η̃(m)W f (mu−1)ϕκ(un̄u
−1)χ(u)

q〈sα̃+ρ,HM̃ (m)〉χ′(n̄) dudṅ.

Now we apply Proposition 5.1.4.2 to further expand this integration over the orbits

of F ∗ ∼= Z0
M . We recall that the measure on F ∗ given in that proposition is |t|n2

F

times the Haar measure on F ∗. It is easy to see that |t|n2

F = q〈2ρ,HM̃ (α∨(t))〉. For

z = α∨(t) ∈ Z0, note that when n is replaced by znz−1, m changes to ẇ0(z)mz−1 and

n̄ changes to zn̄z−1:

∫
Z0UM(F )\N(F )

∫
Z0

∫
UM(F )

η̃(ẇ0(z)mz−1)W f (ẇ0(z)mz−1u−1)ϕκ(uzn̄z
−1u−1)χ(u)

q〈sα̃+ρ,HM̃ (ẇ0(z)mz−1)〉χ′(zn̄z−1)du q〈2ρ,HM̃ (z)〉d∗z dṅ.

Since z lies in the center of›M(F ) modulo Z
G̃(F )

, we can write uzn̄z−1u−1 = zun̄u−1z−1.

It is easy to see that for all z = α∨(t),

q〈ν,HM̃ (ẇ0(z))〉 = q〈−ν,HM̃ (z)〉

for all ν ∈ a∗M,C, so we will have a cancellation of modulus characters. It follows from

this and Lemma 5.1.3.1 (ii) that

q〈sα̃,HM̃ (ẇ0(z)z−1)〉 = q〈−2sα̃,HM̃ (α∨(t))〉 = |t|−nsF .

We also have that

η̃(ẇ0(z)mz−1)W f (ẇ0(z)mz−1u−1) = ω̃η̃(ẇ0(z)z−1)η(m)W f (mu−1)
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with ω̃η̃(ẇ0(z)z−1) = ωη(t−1In) by Lemma 5.2.3.2. If xα is the entry of n̄ at the

simple root α, then χ′(zn̄z−1) = ψ(t−1xα). Taking this all into account, we may write

Cχ(s, πη)−1 as

∫
Z0UM(F )\N(F )

∫
F ∗

∫
UM(F )

ωη(t−1In)|t|−nsF q〈sα̃+ρ,HM (m)〉η(m)W f (mu−1)

ϕκ(α
∨(t)un̄u−1α∨(t)−1)χ(u)ψ(t−1xα) du d∗t dṅ.

Change u to u−1 and t to t−1xα, so that if we let Θ(t) be the double integral

∫
Z0UM(F )\N(F )

ωη(x−1
α )|xα|−nsF q〈sα̃+ρ,HM (m)〉η(m)

∫
UM(F )

W f (mu)ϕκ(α
∨(t−1xα)u−1n̄uα∨(tx−1

α ))χ(u)dudṅ

then we will have

Cχ(s, πη)−1 =
∫
F ∗

ωη(tIn)|t|nsF ψ(t)Θ(t)d∗t.

Let us identify the character η of M(F ) = GLn(E) as a character of E∗ through the

determinant, so that ωη(tIn) = ωηn(t). It follows from Lemma 5.2.3.1 that Θ(t) only

depends on the absolute value of t. Therefore, we may expand the integral over F ∗

as a sum over the annuli of elements of F of constant absolute value:

Cχ(s, πη)−1 =
∑
k∈Z

Θ(ωkF )
∫

ordF (t)=k

ωηn(t)|t|nsF ψ(t)d∗t.

Let f be the conductor of ψ, and d the conductor of ωηn. Since ωηn is ramified, we

may apply equation (1.1.13.1) from Chapter One, which tells us that all of the terms
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in the sum are zero except for k = −d− f . Up to a constant depending on ω(−1)n+1

and our choice of measures, we obtain

Cχ(s, πη)−1 = γ(s, ωηn, ψ)−1Θ(ω−d−fF ).

Now inside Θ(ω−d−fF ), the only dependence on ω−d−fF is in the scaling of the charac-

teristic function ϕκ. Recalling that our formula holds for all κ greater than or equal

to a given κ0, we may simply adjust κ0 to a new constant, say κη, such that the

formula

Cχ(s, πη)−1 = γ(s, ωηn, ψ)−1
∫

Z0UM(F )\N(F )

ωη(x−1
α )|xα|−nsF q〈sα̃+ρ,HM (m)〉

η(m)
∫

UM(F )

W f (mu)ϕκ(α
∨(xα)u−1n̄uα∨(x−1

α ))χ(u)dudṅ

holds up to constant for all κ ≥ κη. �

5.3 Proof of Theorem 5.1.3.3

Having successfully applied Shahidi’s local coefficient formula to write Cχ(s, π)−1

as an integral over the torus R′ = Z0UM(F )\N(F ) in Theorem 5.2.3.4, we now

analyze the integrand, which is itself an integral over UM(F ). We will realize this

integrand as a partial Bessel integral, whose asymptotic behavior we investigated in

Chapter Four. We will apply the main theorem of Chapter Four (Theorem 4.4.0.1),

to prove Theorem 5.1.3.3.

The integral over Z0UM(F )\N(F ) is informally called a “Mellin transform.”

In (5.3.1), we briefly review some definitions and notation from Chapter Four, and

then we restate Theorem 5.2.3.4 in that notation. In (5.3.2), we complete the proof

of the main theorem of this chapter, Theorem 5.1.3.3.
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5.3.1 Review of partial Bessel integrals

Let G = GLn(E) = M(F ), B and A the usual Borel subgroup and maximal torus

of G, and U the unipotent radical of B. Let A′ = {(1, a2, ..., an) ∈ A}, so that A is

the direct product of A′ and the center Z of G. If a ∈ A, let a′ be the element of A′

obtained by “stripping off the center” of a (4.1.5), so that a = a′z for z ∈ Z.

Let W (G) be the Weyl group of G. For w ∈ W (G), we keep our Weyl group

representatives ẇ from (5.1.3). Note that our representatives and generic character

of (5.1.3) coincide with those of Chapter Four (4.1.1). For g ∈ G, there is a unique

w ∈ W (G) such that g lies in the Bruhat cell C(w) = BwB. For a locally closed

subset S of G containing Z, define C∞c (S;ω) to be the space of locally constant

functions f : S → C which are compactly supported modulo Z and which satisfy

f(zg) = ω(z)f(g) for z ∈ Z and g ∈ G.

Let f ∈ C∞c (G;ω). For example, f could be a matrix coefficient of π, because π

is supercuspidal. Define a map W f : G→ C by

W f (g) =
∫
U

f(xg)χ(x) dx

where χ is the restriction to U = UM(F ) of our generic character of U(F ). This

integral converges absolutely (Proposition 4.2.2.1), and there exists a choice of f such

that W f is not identically zero. In fact, there exist matrix coefficients f of π so that

W f (e) = 1 (see the proof of Proposition 1.3 of [PaSt08]).

Now U acts on G on the right by g.u = ẇG
tuẇ−1

G gu, where wG = wθ` is the long

element of G. Let Ug be the stabilizer of a given g ∈ G under this action, and let ϕ

be the characteristic function of an open compact subset of Matn(E). We define the

partial Bessel integral BG
ϕ (g, f) by

BG
ϕ (g, f) =

∫
Ug\U

W f (ug)ϕ(tuẇ−1
G g′u)χ(u) du
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where g′ is the element of obtained from g by “stripping off the center” (4.1.5). The

integral converges absolutely, on account of the fact that f is compactly supported

modulo Z, and that for a p-adic field k, the k-points of orbits of unipotent groups

over k acting on affine k-varieties are closed (4.2.2).

We shall now rewrite the formula in Theorem 5.2.3.4. We write that formula again

here, up to a constant:

Cχ(s, πη)−1 = γ(s, ωηn, ψ)−1
∫

Z0UM(F )\N(F )

ωη(x−1
α )|xα|−nsF q〈sα̃+ρ,HM (m)〉

η(m)
∫

UM(F )

W f (mu)ϕκ(α
∨(xα)u−1n̄uα∨(x−1

α ))χ(u)dudṅ.

By the results of (5.1.4), we may identify Z0UM(F )\N(F ) with the space R′ of

matrices of the form diag(1, r′2, ..., r
′
n) with r′i ∈ F ∗. The measure dṅ = dr′ is then

the measure

dr′ =
n∏
i=2

|r′i|2i−1
F d∗r′i

where d∗r′i is the usual Haar measure dri
|ri|F

on R′ = (F ∗)n−1. If n ∈ N(F ) corresponds

to r′, i.e.

n =

Ö
In r′

In

è
then writing ẇ−1

0 n = mn′n̄, we have m = (−1)n−1Jr′−1 = (−1)n−1ẇGr
′−1, n̄ = r′−1,

and xα = −1 (Lemma 5.2.4.3). Note that the matrix J of (5.1.3) is equal to ẇG, the

representative of the long Weyl group element in GLn(E).

Lemma 5.3.1.1. With n,m, n̄ as above, we have

(i): ωηn(xα) = ±1

(ii): q〈sα̃+ρ,HM (m)〉 =
n∏
i=2
|r′i|
−(s+n)
F .

Proof: (i) is on account of the fact that xα = −1. (ii) follows from Lemma 5.1.3.1.

�
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Now we look at inner integral over UM(F ) = U . Since xα = ±1, it does not affect

the scaling of ϕκ, giving us

ϕκ(α
∨(xα)u−1n̄uα∨(x−1

α )) = ϕκ(u
−1n̄u).

If we identify N(F ) with the Hermitian matrices in Matn(E), and UM(F ) with the

group U of upper triangular unipotent matrices with entries in E, then u−1n̄u is

simply

tur′−1u = tuẇ−1
G ẇGr

′−1u.

Writing W f (mu) = W f ((−1)n−1r′−1u) = ω(−1)n−1W f (r′−1u), we see that up to a

constant of ω(−1)n−1 = ±1, we have

∫
UM(F )

W f (mu)ϕκ(u
−1n̄u)χ(u)du =

∫
U

W f (ẇGr
′−1u)ϕκ(

tuẇ−1
G (ẇGr

′−1)u)χ(u)du

= BG
ϕκ(ẇGr

′−1)

where ϕκ is the characteristic function of X(κ) = Nκ. Absorbing the constants ±1

into the local gamma factor, and combining everything together, we get

Cχ(s, πη)−1 = γη(s)
∫
R′

η(r′−1)BG
ϕκ(ẇGr

′−1, f)
n∏
i=2

|r′i|−s−n+2i−1d∗r′i.

Finally making the change of variables r′ 7→ r′−1, we arrive at the following reformu-

lation of Theorem 5.2.3.4:

Proposition 5.3.1.2. Let π be an irreducible, supercuspidal representation of GLn(E)

with central character ω. Let f be a matrix coefficient of π with W f (e) = 1. Let η be

a character of E∗, identified with a character of GLn(E) through the determinant. If

η is sufficiently highly ramified, then there exists an integer κη, depending on η, such

that

Cχ(s, πη)−1 = γη(s)
∫
R′

η(r′)BG
ϕκ(ẇGr

′, f)
n∏
i=2

|r′i|s+n+1−2id∗r′i
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for all κ ≥ κη. Here γη is an entire function depending only on ω and η, not on π.

Remark 5.3.1.3. Proposition 4.3 of [CoShTs17] has a similar formula for the sym-

metric square local coefficient in terms of a partial Bessel integral. The proof is along

similar lines to ours. In their formula, they state that the equality holds for all κ

sufficiently large and uniformly over all twists η, while we do not have a statement

of a uniform κ working over all η. To establish their uniformity, they go into the

proof of Theorem 6.2 of [Sh01] (which we essentially reproved in Theorem 5.2.3.4) to

give a uniform open compact subgroup Nκ over all η, over which the p-adic Whittaker

functionals can be calculated as principal value integrals.

However, the argument given there is incorrect. In fact, how the requisite open

compact subgroup Nκ changes as η becomes more highly ramified seems to be a subtle

and interesting question. For one thing, just because the support of h is very small

modulo ‹P(F ), does not mean the requisite Nκ can be chosen small.

Fortunately, the uniformity of κ over η is not necessary for the stability, either

for their case or ours.

We may investigate the change in Nκ with respect to the change in ramified char-

acter η in the future.

5.3.2 Bessel function asympotics

Proposition 5.3.1.2 expresses the local coefficient Cχ(s, πη)−1 in terms of the par-

tial Bessel integral. Now we can apply the main theorem of Chapter Four to complete

the proof of supercuspidal analytic stability (Theorem 5.1.3.3, or equivalently Propo-

sition 3.2.2.8). We will review the relevant notation and the main result, Theorem

4.0.1, of Chapter Four.

Let M be a standard Levi subgroup of G. For the standard maximal torus A

of G, the product (A ∩ Mder)ZM is an open and finite index subgroup of A. The
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Levi subgroup M is a block diagonal sum of copies of GLni : 1 ≤ i ≤ t, with

n1 + · · ·+ nt = n. Let

Z ′M = {



In1

a2In2

. . .

atInt


: ai ∈ E∗}.

Here is the main result we proved in Chapter Four. We fix once and for all an auxiliary

function f0 ∈ C∞c (G;ω) with W f0(e) = 1.

Theorem 4.0.1. Let f ∈ C∞c (G;ω) with W f (e) = 1. Then there exists an integer

κ0, a function f1 ∈ C∞c (G;ω), and for each proper standard Levi subgroup M of G a

function fM ∈ C∞c (G;ω), such that the following hold for all κ ≥ κ0:

(i): For all a ∈ A,

BG
ϕκ(ẇGa, f) = BG

ϕκ(ẇGa, f1) +
∑
M

BG
ϕκ(ẇGa, fM)

where the sum is over the proper standard Levi subgroups of G.

(ii): The function f1 depends only on the auxiliary function f0 and the central

character ω of π.

(iii): For each proper standard Levi subgroup M of G, the function BG
ϕ (ẇGa, fM)

vanishes for a 6∈ (A ∩Mder)ZM , and there exists an open compact subgroup HM of

Z ′M such that

BG
ϕ (ẇGbc

′c′′, fM) = BG
ϕ (ẇGbc

′, fM)

for all b ∈ A ∩Mder, c
′ ∈ Z ′M , c′′ ∈ H.
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5.3.3 Finishing the proof of supercuspidal analytic stability

Now we prove Theorem 5.3.1.2. Let π1 and π2 be two irreducible, supercuspidal

representations of G with the same central character ω. Let f 1 and f 2 be matrix

coefficients of π1 and π2, respectively, such that W f1(e) = W f2(e) = 1.

For each sufficiently highly ramified character η of E∗, identified with a character

of G, Proposition 5.3.1.2 tells us that there exists an integer κη, depending on η, such

that

Cχ(s, πjη)−1 = γη(s)
∫
R′

η(r′)BG
ϕκ(ẇGr

′, f j)
n∏
i=2

|r′i|s+n+1−2id∗r′

for j = 1, 2 and all κ ≥ κη. Note that κη may become arbitrarily large as η is taken

ever more ramified.

We apply Theorem 4.0.2 to each of the functions f 1 and f 2. There exist integers

κ1
0, κ

2
0, functions f 1

1 , f
2
1 ∈ C∞c (G;ω), and for each proper standard Levi subgroup M

of G functions f 1
M , f

2
M ∈ C∞c (G;ω) and open compact subgroups H1

M , H
2
M of Z ′M

such that the conditions of Theorem 4.0.2 hold for each. In particular, if we set

κ0 = max{κ1
0, κ

2
0}, then

BG
ϕκ(ẇGa, f

1) = BG
ϕκ(ẇGa, f

1
1 ) +

∑
M

BG
ϕκ(ẇGa, f

1
M)

BG
ϕκ(ẇGa, f

2) = BG
ϕκ(ẇGa, f

2
1 ) +

∑
M

BG
ϕκ(ẇGa, f

2
M)

for all κ ≥ κ0 and all a ∈ A.

Now we compute Cχ(s, π1η)−1 − Cχ(s, π2η)−1 as the integral

γη(s)
∫
R′

η(r′)
Å
BG
ϕκ(ẇGr

′, f 1)−BG
ϕκ(ẇGr

′, f 2)
ã n∏
i=2

|ri|s+n+1−2id∗r′.
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This holds for all κ ≥ κη. If moreover κ ≥ κ0, then we can write the difference of the

local coefficients as

γη(s)
∫
R′

η(r′)
Å
BG
ϕκ(ẇGr

′, f 1
1 )−BG

ϕκ(ẇGr
′, f 2

1 )
ã n∏
i=2

|ri|s+n+1−2id∗r′

+γη(s)
∑
M

∫
R′

η(r′)
Å
BG
ϕκ(ẇGr

′, f 1
M)−BG

ϕκ(ẇGr
′, f 2

M)
ã n∏
i=2

|ri|s+n+1−2id∗r′.

Now the functions f 1
1 and f 2

1 depend only on the auxiliary function f0 and on the

central character ω, not on π1 and π2. So f 1
1 = f 2

1 , making the first integral zero.

Now we consider the integrals

∫
R′

η(r′)
Å
BG
ϕκ(ẇGr

′, f 1
M)−BG

ϕκ(ẇGr
′, f 2

M)
ã n∏
i=2

|ri|s+n+1−2id∗r′ (5.3.3.1)

as M ranges over the proper standard Levi subgroups of G. For each such M , let

HM = H1
M ∩H2

M . Keep in mind that as long as κ ≥ κ0, H works uniformly for all κ.

Let

RM = (A ∩Mder)ZM ∩R′

Z ′M(F ) = Z ′M ∩GLn(F )

Since (A ∩Mder)ZM is open in A, RM is an open subgroup of R′, and Z ′M(F ) is a

closed subgroup of RM . Each function BG
ϕ (ẇGr

′, f iM) vanishes for r′ outside RM , so

we may rewrite (5.3.3.1) as an integral over RM , and expand it as a double integral

over RM/Z
′
M(F ) and Z ′M(F ):

∫
RM/Z

′
M (F )

∫
Z′M (F )

η(r′x′)
Å
BG
ϕκ(ẇGr

′x′, f 1
M)−BG

ϕκ(ẇGr
′x′, f 2

M)
ã

n∏
i=2

|rix′i|s+n+1−2id∗x′d∗r̄′.
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For each r̄′ ∈ RM/Z
′
M(F ), and its representative r′ ∈ RM , we may write r′ = bc for

some b ∈ A ∩Mder and c ∈ ZM . Even though r′ has coefficients in F , b and c may

not. Write c = zc′ for z ∈ ZG and c′ ∈ Z ′M . Since

BG
ϕκ(ẇGr

′x′, f iM) = BG
ϕκ(ẇGbzc

′x′, f iM) = ω(z)BG
ϕκ(ẇGbc

′x′, f iM)

we may write the double integral as

∫
RM/Z

′
M (F )

ω(z)η(c)

 ∫
Z′M (F )

η(x′)
Å
BG
ϕκ(ẇGbc

′x′, f 1
M)−BG

ϕκ(ẇGbc
′x′, f 2

M)
ã

n∏
i=2

|x′i|s+n+1−2id∗x′

 n∏
i=2

|r′i|s+n+1−2id∗r̄′.

The subgroup HM ∩ Z ′M(F ) is open and compact inside Z ′M(F ).

Lemma 5.3.3.1. If η is sufficiently highly ramified so that it is nontrivial on HM ∩

Z ′M(F ), then the inner integral

D =
∫

Z′M (F )

η(x′)
Å
BG
ϕκ(ẇGbc

′x′, f 1
M)−BG

ϕκ(ẇGbc
′x′, f 2

M)
ã n∏
i=2

|x′i|s+n+1−2id∗x′

is zero for all κ ≥ κ0.

Proof: Let x′′ be an element of HM ∩Z ′M(F ) with η(x′′) 6= 1. We change variables

x′ 7→ x′x′′, writing D as

∫
Z′M (F )

η(x′x′′)
Å
BG
ϕκ(ẇGbc

′x′x′′, f 1
M)−BG

ϕκ(ẇGbc
′x′x′′, f 2

M)
ã n∏
i=2

|x′ix′′i |s+n+1−2id∗x′.

Since HM ∩ Z ′M(F ) is compact, the entries x′′i of x′′ are units, so we have |x′′i | = 1.

Since also

BG
ϕκ(ẇGbc

′x′x′′, f jM) = BG
ϕκ(ẇGbc

′x′, f jM)

for j = 1, 2 and all κ ≥ κ0, we obtain D = η(x′′)D, so D = 0. �
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The lemma shows that if η is sufficiently highly ramified to be nontrivial on all

the subgroups HM ∩ Z ′M(F ) over all the proper standard Levi subgroups M of G,

then

γη(s)
∫
R′

η(r′)
Å
BG
ϕκ(ẇGr

′, f 1)−BG
ϕκ(ẇGr

′, f 2)
ã n∏
i=2

|ri|s+n+1−2id∗r′ = 0

for all κ ≥ max{κη, κ0}. This shows that

Cχ(s, π1η)−1 − Cχ(s, π2η)−1 = 0

for such η, which gives us Cχ(s, π1η) = Cχ(s, π2η). This completes the proof of

Theorem 5.1.3.3, and therefore the proof of Proposition 3.2.2.8.
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Tad92 M. Tadić, Notes on representations of non-Archimedean SL(n), Pacific J.
Math. Volume 152, Number 2, pp. 375-396, 1992.

Yu09 J.K. Yu, Local Langlands correspondence for tori, Ottawa lectures on admis-
sible representations of p-adic groups, AMS, 2009.

Ze80 A. Zelevinsky, Induced representations of reductive p-adic groups, II, On
irreducible representations of GL(n), Ann. Sci. Ecole Norm. Sup. (4) 13 , no. 2, pp.
165-210. 1980.



VITA



215

VITA

Daniel Shankman was born March 24, 1992 in Northport, Alabama. He grew up

in Memphis, Tennessee, graduating from White Station High School in May 2010.

He received a Bachelor of Science in mathematics from the University of Tennessee,

Knoxville in December 2013, and the next year began graduate studies at Purdue

University.


