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ABSTRACT

Author: Wang, Yaqin. M.S.
Institution: Purdue University
Degree Received: May 2020
Title: Automated Disconnected Towing System
Major Professor: Eric T. Matson

Towing capacity affects a vehicle’s towing ability and it is usually costly to buy or even

rent a vehicle that can tow certain amount of weight. A widely swaying towing trailer is

one of the main causes for accidents that involves towing trailers. This study propose an

affordable automated disconnected towing system (ADTS) that does not require physical

connection between leading vehicle and the trailer vehicle by only using a computer

vision system. The ADTS contains two main parts: a leading vehicle which can perform

lane detection and a trailer vehicle which can automatically follow the leading vehicle by

detecting the license plate of the leading vehicle. The trailer vehicle can adjust its speed

according to the distance from the leading vehicle.
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CHAPTER 1. INTRODUCTION

1.1 Background

Towing capacity determines the maximum weight that a vehicle can pull while

towing any kind of cargo, such as a trailer, another vehicle or a boat. Even though we

often refer towing for transportation, towing capacity also involves in water-based

transportation (Job, 1978). People need to own or rent pickup trucks or large SUVs when

towing is needed. Table 1.1 shows the towing capacity of the popular vehicle models

(Advisor, 2019 (accessed November 7, 2019)) in the market, as well as the manufacturer

suggested retail price (MSRP).

From Table 1.1, we can see that it is very costly to buy or even rent a vehicle that

can tow a certain amount of weight. According to Santander Consumer USA, the most

popular vehicle model in USA in 2019 is Toyota Camry (Macesich, 2019 (accessed

November 7, 2019)), which only has about 1000 pounds towing capacity. The other

problem with towing is the high risk of vehicle accidents happening every year. According

to NHTSA, there are over 50000 accidents every year that are related to towing, and over

400 people have died in those accidents (Koenigsberg, 2019 (accessed November 7,

2019)). Most of those accidents are caused by the widely swaying towing trailer. If a

pickup truck turns or brakes too suddenly, the side forces will cause the trailer swaying

from side to side behind the tow vehicle, which is also called ”fishtailing.” It is usually

impossible to stop a swaying trailer and the tow vehicle will end up dragged by the trailer

and cause a severe accident.
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Table 1.1. Towing capacity for selected SUVs and pickup trucks in 2018.

Make Model Trim Engine Max Tow MSRP
Capacity

Jeep Grand Cherokee 4WD 3.6L V-6 6200 $30895
Acura MDX AWD 3.5L V-6 3,500 $46200
Audi Q7 Turbocharged 2.0L 4,400 $49900
BMW X5 All All 6,000 $57200
Ram 1500 Reg Std 4WD 3.6L V-6 7050 $46500
Ford F-150 Reg Shortbed 4WD 3.3L V-6 7400 $37025
Chevrolet Silverado Reg Cab Bed 4WD 5.3L V-8 6500 $40230
Toyota Tundra Double Cab Bed 4WD 5.7L V-8 9900 $43635
Nissan Titan Reg Cab Bed 4WD 5.6L V-8 9560 $34000

1.2 Research Question

This study proposes an automated disconnected towing system (ADTS) that does

not require a physical connection between a leading vehicle and a trailer vehicle by only

using a computer vision system. Each of the leading and trailer vehicles has a depth

camera mounted in the front. The cameras on the leading vehicle are able to perform lane

detection. And the one on the trailer vehicle is able to perform license detection and to

detect the distance from the leading vehicle and adjust the speed accordingly.

1.3 Significance

The contribution of this study are: Firstly, for those who own small vehicles, such

as a Volkswagen beetle, can tow a few thousands of pounds of cargo. People will not need

to worry about the towing capacity of their vehicles when towing. Secondly, ADTS can

help reducing vehicle accidents that are related to towing. Also, it is possible to adopt

ADTS in any type of small vehicle, which is a not large truck or a semi bus, or a

non-commercial vehicle. In that way, any vehicle can turn into a trailer.
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1.4 Assumptions

There are several assumptions for the automated disconnected towing system to

work. Firstly, the ADTS requires both leading and trailer vehicles having own individual

their power systems. In addition, ADTS requires no other vehicles or objects appearing in

between the leading vehicle and the trailer vehicle. Also, the leading vehicle can not

conduct sudden braking because the trailer vehicle needs a certain time to process the

distance information and adjust the speed accordingly.

1.5 Limitations and Future Works

There are a few limitations to this project. Firstly, the prototype is only tested in

the parking lot and the speed is hardcoded up to 10 MPH. Secondly, the computer vision

system may not work in extreme weather, such as heavy rain or fog. Lastly, there is not

object detection or pedestrian detection function added to the vision system. Also, this

study mainly focuses on software-related system design. All of these can be considered as

part of the future work.

1.6 Summary

Lane detection is one of the main tasks in an autonomous driving system. This

project is to design an affordable automated disconnected towing system (ADTS) by using

color filters in the computer vision system. ADTS contains two main parts: a leading

vehicle which can perform lane detection and a trailer vehicle which can automatically

follow the leading vehicle by detecting the license plate of the leading vehicle. The trailer

vehicle can adjust its speed according to the distance from the leading vehicle. If the

distance is too far away, the trailer vehicle will speed up; and if the distance is too close, it

will slow down or come to a full stop.
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The rest of the paper is structured as follows. In chapter II, a thorough discussion

of related work is presented which builds the foundations of this research. Next, chapter

III articulates the technical details of the system. In chapter IV, the results of experiments

and tests of the proposed system are presented. Finally, chapter V concludes this study

and addresses future work.
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CHAPTER 2. REVIEW OF LITERATURE

2.1 Advanced Driver-Assistance System

ADAS (advanced driver-assistance system) assists human drivers when driving or

parking. Current ADAS technology uses electronic systems, such as vehicle onboard

computer system (Meier, Tanskanen, Fraundorfer, & Pollefeys, 2011), electronic control

units(ECU), and microcontroller units (MCU). The purpose of ADAS is to improve

driver’s safety and comfort, and more generally, to improve road safety and traffic flow

(Van Arem, Van Driel, & Visser, 2006).

According to ASIRT, there are about 1.25 million motor vehicle crash deaths each

year, which is about 3287 per day (ASIRT, 2019). Among those, most of the vehicle

accidents are caused by human error (Brookhuis, De Waard, & Janssen, 2019). ADAS is

developed to support, assist, automate, and improve safety and more comfortable driving

for human drivers. ADAS has been proven to help minimize human errors to decrease

fatal road accidents (Hamid et al., 2017).

ADAS helps by reducing collisions and road accidents using its safety features.

The technologies that ADAS provides can alert human drivers about potential risks and

problems. Current ADAS technology can also detect objects and pedestrians, perform

basic classification, and in some cases, take control of the vehicles when necessary. The

conventional ADAS features in nowadays vehicles include automated lightning system,

adaptive cruise control (ACC), lane keeping system, blind-spot monitoring, forward

collision warning, surround-view cameras, lane departure warning, pedestrian detection

system, road sign recognition, autonomous emergency braking, and parking assist

(Biassoni, Ruscio, & Ciceri, 2016).
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2.2 Levels of Automotive Autonomy

2.2.1 SAE Standard

In 2018, SAE International released a new standard, J3016 (Committee et al.,

n.d.), which is called “Levels of Driving Automation”. The standard defines the six levels

of driving automation, from no automation to full automation.

2.2.2 Levels of Automation

There is a total of six levels of automation defined by SAE J3016, from level 0 to

level 5. For the first three levels, ADAS features will assist the human driver when driving

or parking. Even when a human driver is not controlling the acceleration pedal or his or

her hands are off the steering wheel by using adaptive cruise control, or lane keeping, the

human driver is still in control of the vehicle, which means he or she has to supervise the

supporting features. On the contrary, for the last three levels, the human driver is not in

control of the vehicle when the autonomous features are engaged. Even when the human

driver is seating in the driver’s seat, he or she does not need to supervise the autonomous

features. Human drivers may not even be required to seat in the driver’s seat for the 5th

level of automation.

Level 0 provides features that are limited to constantly support and even to warn

the human driver. Automation features in level 0 include automatic emergency brake,

blind-spot warning, and lane departure warning. Level 0 is considered as no automation at

all levels.

Level 1 provides features that can assist steering or acceleration pedal (accelerate

and brake) for human drivers. Features in Level 1 can be adaptive cruise control or lane

centering. Level 1 provides more assistance to the drivers than level 0.
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Level 2 provides both steering and acceleration assists to the human driver. Level

2 automation can perform both adaptive cruise control and lane centering. Level 2 is

considered as partial automation.

Level 3 is considered as conditional automation. One of the features of level 3 is

traffic jam assist. Traffic jam assist can control the vehicle by using lane markings, traffic

signs, and other vehicles on the road as reference. Driver is still necessary but is not

required to supervise the driving.

Level 4 is considered high automation, in which the vehicle is able to perform all

functions in driving and parking under certain conditions. Level 4 automation can be

applied to local driver-less taxi.

Level 5 automation is the highest level which is considered as full automation. A

vehicle with level 5 automation is capable of performing all functions in the driving and

parking under all conditions. Vehicles with level 5 automation are considered as

self-driving cars.

2.3 Lane Detection

It seems that the issue of lane detection is not so difficult. Bear this in mind, the

vehicle only needs to identify the host lane, and detect a short distance ahead of itself. A

commonly used, simple hue transform-based algorithm can solve the problem in about

90% of the high way scenarios (Borkar, Hayes, Smith, & Pankanti, 2009). However, there

is no easy answer for lane detection. It takes a lot of effort, resource, and time to build an

efficient lane detection system, because of the obvious gaps in research, diversity

scenarios, and high liability requirement (Hillel, Lerner, Levi, & Raz, 2014).



8

2.3.1 Issue in Current Research

Soon, the trend for the automotive industry will switch from an increasing amount

of semi-automatic functions to full automation. Table 2.1 summarized some of the major

automatic functions on vehicles in recent five years. It is obvious that lane departure

warning (LDW) has been a popular research area in both academic and industrial

research. The complicated scenarios on the road require LDW to be able to detect and

identify the host lane and the nearby area in front of the human driver. Significant research

effort was also devoted to full autonomy, mainly due to the DARPA challenges (Bacha et

al., 2008; Borkar et al., 2009; Broggi & Cattani, 2006; Kammel & Pitzer, 2008;

Kong, Audibert, & Ponce, 2009; Kornhauser et al., 2007; Levinson et al., 2011; Lipski

et al., 2008; Montemerlo et al., 2008; Rasmussen & Korah, 2005; Urmson et al.,

2008; Ying & Li, 2016). However, there are a limited number of people have sufficient

understanding about the complicity of road and lane as shown in Table 2.1 and 2.2.

In fact, full automation is the most complicated task in the autonomous driving

system because it needs to deal with all the subsystems and overall structure.

Undoubtedly, people may believe that the functions listed in Table 1 have been fully

explored by researchers on fully autonomous vehicles. However, this might not be true

under certain circumstances, such as non-highway scenarios. Those features in Table 1

need to be combined with highly accurate map information and on-board the localization

system to perform a relatively good road and lane perception.

According to the discussion above, studies on autonomous driving did not pay

much attention to perception systems, which is expected to be a popular research field in

the automotive industry in the near future(Hillel et al., 2014). The unsolved problems

include how to deal with unexpected complexity of the road and lane conditions, and how

to extend the range of the area in front of the vehicle.
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Table 2.1. Current autonomous features I.

Lane Keeping Assist System

Function Actively assist the driver to remain in the marked lane
Requirements 1. Focus on host lane only

2. Identify small range of the in front of the car
3. Moderate reliability

Lane Departure Warning System

Function Warn drivers of straying from the lane
Requirements 1. Focus on host lane only

2. Identify small range of the area in front of the car
3. Low reliability

Lane Centering System

Function Keep a car centered in the lane
Requirements 1. Focus on host lane only

2. Identify medium range of the area in front of the car
3. High reliability
4. Split lane identification

Lane Change Assist System

Function Assist steering around an imminent crash
Requirements 1. Focus on multi lanes

2. Identify large area in the front and back of the car
3. Moderate reliability

Steering Assist System

Function Assist steering around an imminent crash
Requirements 1. Focus on host lane only

2. Identify small range of the area in front of the car
3. Moderate reliability

Left Turn Assist System

Function Warn the driver of opposing traffic and brake automatically
Requirements 1. All lanes

2. Identify medium range of the area in front of the car
3. Moderate reliability

2.3.2 Requirement of High Accuracy and Reliability

Driver assistance system should fulfill the requirement of an extremely low error

rate in order to serve the great public. In such alarming systems like LDW, a false alarm

rate must have a lower limit because its high frequency would disturb the drivers and bring

about the public to against it. The exact acceptable rate of the false alarm is still under
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Table 2.2. Current autonomous features II.

Adaptive Cruise Control System

Function Automatically adjusts the vehicle speed to
maintain a safe distance from vehicles ahead

Requirements 1. Focus on host lane only
2. Identify medium range of the area in front
3.High reliability
4. Adjust speed and auto break

Full-Autonomous in Paved Road

Function Autonomous driving in city and highway
Requirements 1. All lanes

2. Identify large area including junctions,
round-about, and road under construction

Full-Autonomous in Non-Paved Road

Function Autonomous driving in all road conditions,
including unpaved road

Requirements 1. All lanes
2. Identify large area including
junctions, round-about, and road under construction
3. Identify the road without lane lines”

discussion (Barickman, Smith, & Jones, 2007; Burzio et al., 2010). Some existing

systems will have a few false alarms per hour, in which, one false alarm per hour equals

with one error in 54000 frames (Batavia, 1999). For those features in closed-loop

automatic driving, errors should be even lower(Hillel et al., 2014). This kind of lower

error rate is very difficult to achieve in vision-oriented systems. For other kinds of

complicated computer vision system, such as a web-based searching application or

surveillance system, people tend to be more forgiven about the error rate in such systems

(Hillel et al., 2014).

Complexity in Road and Lane Conditions As mentioned above, the complexity

of road and lane conditions are the main challenge for a sufficient lane detection system.

To be able to detect in different lane and road conditions, different algorithms and

subsystems need to be developed and fully tested. The complexity of the road and lane

conditions include:
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First of all, most lane marks are white or yellow with a width of 0.1m, but there are

also many other exceptions like circular reflectors, cat’s-eyes, lane marks with special

colors and with changing the width.

In addition, in the US, lanes are usually 3.05 to 3.66 meters wide((US), 2007),

with the overall exception range of 12%. Also, the number of lanes may be different in

different areas and different parts of the road. For the most part, the road is straight, and

the curvature is usually under certain limits (Hillel et al., 2014). Usually in urban roads,

the curve radius is larger than 80 meters for 50 KPH (von Reyher, Joos, & Winner, 2005).

Again, there are also exceptions.

In most cases, the road is open and human drivers can see things clearly in front of

a vehicle. However, we need to consider uncommon circumstances, such as other

vehicles, shadow on the surface of the road or bad weather. Sometimes, the vehicles in the

other lane may block our vision. Trees and buildings along the road may create shadows

interfering with our vision while driving. Sometimes, when our vehicle comes out of a

tunnel, there would be a sudden change of lightning causing the overexposure to the light

of images.

No matter what kind of weather it is, the lane detection system is expected to

function normally. At least, the system should be able to identify the change of road and

lightning conditions and adjust corresponding variables accordingly. Those situations

discussed above requires a more advanced design of algorithms and sub-systems. There

are still a lot of challenges even the most asic autonomous feature. Current technology and

algorithms still need improvements to achieve higher accuracy in various and challenging

scenarios.

2.4 Computer Vision

Lane detection is one of the most important topics in current autonomous driving.

Researchers in both academics and industries have achieved much success in recent years

(Hillel et al., 2014). Among many techniques approaching the lane detection function,

computer vision is the most popular method. There are a few reasons why computer
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vision is the most frequent-used method when approaching lane detection. Firstly, when

we human drive, we also mostly rely on vision input as a reference. And it is the same for

a computer vision system to conduct the lane detection function. Secondly, comparing to

other autonomous driving techniques, like LiDAR or radar system, cameras that used in

the computer vision system is one of the cheapest sensor equipment. Besides, the image

input from the camera is relatively reliable, and we don’t need to process them much to

implement dependent settings.

In lane detection technology in computer vision system, figure-based method is

one of the two frequent-used methods (Ozgunalp & Dahnoun, 2014; Su, Zhang, Lu,

Yang, & Kong, 2017; Sun, Tsai, & Chan, 2006; Ying, Li, Wen, & Tan, 2017). When

applying the figure-based method, the computer vision system separates the lane lines

from other markings by features in the image input, which could be shape, dimension,

color, the texture of the road in the image. Generally speaking, in order to detect the lane

line, the figure-based method is based on the algorithm that recognizes various unstable

features in an image input of the road. In most cases, the figure-based method requires the

road to be clean and the borderlines of the lane to be obvious with distinct colors from

other objects in the image. If the requirements are not met, the computer vision system is

easily interfered with by noise, which could be a shadow or different colors of the

pavement on the road. The vision system is unlikely to have good performance when

those requirements are not met.

The other method that is frequently used in lane detection is model-based method

(Su et al., 2017; C.-K. Wang, Huang, & Shieh, 2009; J. Wang & An, 2010, ?). The

most significant difference of the model-based method is that it solves the lane detection

problem as it solves the parameters solution of a mathematical problem (Tan, Zhou, Zhu,

Yao, & Li, 2014). Because this method relies on a mathematical model in which the

model is built based on the shape of the road (Deng & Han, 2013; Kim, 2006; Ruyi,

Reinhard, Tobi, & Shigang, 2011). The model-based method collects the parameters of

the mathematical model through the feature points of lane marks in the image input. In

this way, comparing to the figure-based method, the model-based method is less likely to

be interfered with by the noise. Even when the lane lines are not so clear on the road, the
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model-based method can detect the lanes better than the figure-based method. However

the model-based method usually requires higher computational power (Chen & Wang,

2006; Jung & Kelber, 2005), than figure-based method. If we simplify the model to fit

with smaller computers, the accuracy of the result will be lower.

Based on the discussion in the previous paragraphs, the figured-based method is

too sensitive to the noise, while the model-based method requires higher computational

power to conduct complicated algorithms. In this research, the goal is to explore an

alternative way in lane detection technology by employing a computer vision system,

which is more tolerant of the noise and requires less computing power in processing the

image input.

2.5 Color Spaces

2.5.1 Definition of Noise

When employing a computer vision system in lane detection, interfering noise is

one of the biggest challenges (Srivastava, Singal, & Lumba, 2014). The noise usually

refers to shadows caused by different lighting conditions. But when detecting the lane

lines, the noise could be a lot of other things, such as skid marks caused by a sudden stop,

pavement stains, heavy rains or snow, fog, and more. Figure 2.1 shows the noise created

by the shadow and skid marks on the road that might interfere with the lane detection

result. Image processing for lane detection is crucial in the autonomous/assistive driving

system, and there are still problems remaining unsolved. Whenever there is interfering

noise in the input image, the detection result will be compromised. To find a way to

reduce the noise in image processing is a crucial step in lane detection using a computer

vision system.
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Figure 2.1. Example of noises in the road and lane detection.

2.5.2 Color Spaces

One of the common tools used in image processing in lane detection is color filters

(Chiu & Lin, 2005; Crisman & Thorpe, 1993; He, Wang, & Zhang, 2004; Kong,

Audibert, & Ponce, 2010; Srivastava et al., 2014; C.-K. Wang et al., 2009). Crisman

and Thorpe developed a SCARF system which includes two-color cameras to process

image segmentation by color. The different regions that are separated by color are

classified. At the same time, they also use the hough-like transform to vote for various

binary road models (Crisman & Thorpe, 1993). Turk developed the VITS system that

also uses a two-color camera (Turk, Morgenthaler, Gremban, & Marra, 1988). In VITS,

the color red and blue is used to decrease the interfering noise caused by shadows.

Another two-model algorithm developed by He can detect the right and left edges of the

borderline of the road and can recognize and enhance the borderlines of the road (He et

al., 2004). Instead of a two-color camera, this two-model algorithm uses a full-color

camera to process the input image. The other color-based method is approached by Chui

and Lin, which can be applied in more challenging scenarios (Chiu & Lin, 2005). Their

system can distinguish the borderlines of the lane by using color-based segmentation in

image processing.
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There have been many efforts made to reduce the interfering noise in image

processing in lane detection. One of the common techniques used is color filters (Liu,

Wang, & Chen, 2019). In this research, we have considered a few in the image

processing, which are BGR, LAB, HSV, HSL, and LUV. By utilizing various color filters

and setting different thresholds of each individual channel of the color filter, color filters

could improve the accuracy of the computer vision system in the lane detection.

Figure 2.2. RGB color space.

The RGB color space uses the three primary colors, which are red, green, and

blue, to present all the other colors in the images on the digital displays, for example, the

digital screens for phones, televisions, and laptop computers. In order to create all

possible colors in the visible spectrum, we can combine the three primary colors and they

can be combined in different proportions (Liu et al., 2019). Each primary color in the

RGB color space is also called the channel, ranges from 0 to 255. The numbers in the

range of the channel represent the percentage of full intensity from 00000000 to 11111111

in binary or 00 to FF in hexadecimal (Xiao & Ma, 2006). The total possible combinations

of color is about 256×256×256 = 16777216. Figure 2.2 shows the color wheel of the

RGB color space.
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Figure 2.3. HSV color space.

The HSV color space stands for hue, saturation, and value, as shown in Figure

2.3. This color space can better explain the concept of light than RGB. Also, many

complicated digital color pickers are based on HSV color space, such as Abobe software

(Bear, 2019 (accessed November 2, 2019)). In HSV, hue represents the color portion of

the space, ranging from 0 to 360 degrees. Within the scope, the color of red ranges from 0

to 60 degrees; yellow ranges from 61 to 120; green ranges from 121 to 180; cyan ranges

from 181 to 240; blue ranges from 241 to 300; and magenta ranges from 301 to 360

degrees. The HSV color space is commonly used in computer graphics.

The HSV color wheel also contributes to high-quality graphics (Liu et al., 2019).

Figure 2.3 shows the HSV color space.

Along with HSV, HSL are the other alternative color spaces for the RGB color

space (Liu et al., 2019), as shown in Figure 2.4. The HSL represents hue, saturation, and

lightness, and the HSV represents hue, saturation, and value. Both of HSL and HSV are

intended to perform more closely as human eyes process colors. In HSL color space, the

center axis from bottom to the top represents color black and white, respectively. In HSL,

channel H represents color from red to green, and blue. The red is represented by

percentage 0 or 360. The green is 120, and the blue is 240. The number between the three
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Figure 2.4. HSL color space.

colors are different shades. The channel S ranges from 0 to 100, which is a percentage

value. And 100 in channel S represents a full color. Channel L is also a percentage

number, which also ranges from 0 to 100. 0 percentage means dark (black), and 100 is

light (white).

The other frequently used color space is LAB color space. Comparing to the three

color spaces discussed previously, LAB is regarded as the most authentic method to

represent the color. LAB also contains three channels, in which each channel represents

color in a real number. Channel L represents lightness, and it ranges from 0 to 100, which

indicates the color black and white, respectively. Channel A ranges from -128 to 0, and to

127, which indicates the color green, gray, and red, respectively. Channel B ranges from

-128 to 0, and to 127, which indicates the color blue, gray, and yellow.

The other three-dimensional color space is LUV, and it is easier to compute than

the other ones (Liu et al., 2019). Channel L represents illuminance and brightness. The

channel U changes from the color green to red, while the parameter number of U

increases. Channel V changes between the color blue and purple. When both channels U

and V have the value equal to 0, the L channel represents a gradient change of the

gray-scale.
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2.6 Summary

In this chapter, a detailed discussion of related work is presented which builds the

foundations of this project, including the current features of ADAS technologies, levels of

autonomy by SAE standard, issues in current lane detection technology, and some

commonly used color spaces in computer vision systems.
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CHAPTER 3. METHODOLOGY

The goal of this study is to design an automated disconnected towing system

(ADTS) that does not require a hard connection between the leading vehicle and trailer

vehicle. ADTS contains two subsystems: a lane following system for the leading vehicle

and license plate following system for the trailer vehicle. The lane following system

allows the leading vehicle to follow the lane line and drive by itself. And the automated

disconnected towing system allows the trailer to detect the license plate that is attached to

the back of the leading vehicle. The other important function of ADTS is to adjust the

trailer car’s current speed according to the distance from the leading vehicle. In the rest of

this chapter, the requirements of the hardware and software will be discussed in the rest of

this chapter.

3.1 Line Following System

The goal of the line following system is to design an image processing system that

enables the leading vehicle to drive itself autonomously by following a lane line. Overall,

this line following system takes video images as input and produces cross track error

(CTE) as output. The CTE is used by Roboteq, which is a type of DC motor controller, to

calculate the steering angle command. The overall structure is demonstrated in Figure 3.1.

Figure 3.1. Line following system overview.
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In order for the leading vehicle to follow the yellow lane line, it has to be able to

recognize it first. A standard yellow tape is used to do indoor testing on the vision system

and later, a pavement marking tape is used for outdoor testing. The camera will filter out

the colors based on the RGB range, and it will only look for the color yellow. Then it will

find the contour of the yellow area. If all the conditions are met and the lane line is found,

the system will draw a blue cross in the middle of the yellow contour, as shown in Figure

3.2.

Figure 3.2. The line following system detects the lane and draw a blue cross in the middle

of the yellow contour.

3.1.1 Hardware Requirement

The hardware requirements for lane following system include a camera and an

NVIDIA Jetson TX2. The camera used in this project is a ZED stereo camera. However,

for line following purpose, almost any webcam can perform the task.
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3.1.2 Software Requirement

All the computer programs in this project are written in Python. The Robotic

Operating System (ROS) is used as the platform in this project to run all the computer

programs.

In order for the leading vehicle to follow the yellow lane line, it has to be able to

recognize it first. To do so, firstly, the camera needs to find the region of interest in the

input image. The region of interest (ROI) is set to be about lower one-third of the height

of the original image, and about center one-third of the image. And then, the program

turns the ROI into an array of points. An image filled with zero intensities with the same

dimensions of the trimmed image is created as a mask. Then, the program fills the mask

with values of 1 when the area overlaps with the frame (RIO) and fills with values of zero

outside of RIO. A bitwise operation is conducted between the mask and the frame to only

keep the triangular area of the frame.

After getting the frame of interest, the camera needs to detect the contour of the

yellow lane line. OpenCV is used here to do image processing. The program filters out the

colors based on the settings of the RGB range and all non-yellow colors are filtered out

from the image. Then the program converts the frame to grayscale because the computer

vision only needs the luminance channel for detecting edges. Also, changing the image to

grayscale helps to save some computational power. A 5×5 Gaussian blur is applied to

make the process easier and simpler. Then canny edge detector is applied with a minimum

value of 50 and a maximum value of 150 to get the contour of the image. At the last, the

program draws a blue cross in the middle of the contour, which will be the center of the

lane line.
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3.1.3 Cross Track Error in Line Following

Cross track error (CTE) is the key element to calculate the steering angle. The

current CTE in Figure 3.3 is the angle between the red line and the orange line. To

calculate the current CTE, the program will calculate the absolute value between the

center of the image and the center of the detected lane line, as shown in the green line in

Figure 3.3. The red line in the figure is the shortest absolute value between the center of

the license plate to the bottom of the image. And then the arctangent function in the math

library can calculate the degree of the angle between the red and the green line, which is

the CTE.

Figure 3.3. CTE in line following system.



23

3.2 License Plate Following System

The goal of the automated disconnected towing system (ADTS) is to design a

computer vision system that can detect the license plate of the leading vehicle and follow

it by keeping a certain distance. There are two functions that the license plate following

system has to fulfill: the first one is the plate detection function, which is to be able to

detect the license plate by using similar technology that is used in the line following

system; the second one is the speed control function, which is to control the speed

according to the distance information from the stereo camera. The overview structure of

the license plate following system is showing in Figure 3.4.

Figure 3.4. License plate following system overview.

The license plate attached to the leading vehicle is made with two colors, red and

yellow. The plate detection function allows the camera to detect the license plate by its

colors and shapes. The input of the plate detection function is the image input, and the

output is cross track error (CTE), which is used in calculating the steering angle. At the

same time, the speed control takes the distance information from the stereo camera, and

the program will adjust the speed of the trailer vehicle according to the distance. The input

of the speed control system is the distance, and the output is the speed.
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3.2.1 Hardware Requirement

The hardware requirements for the license plate following system include a stereo

camera and an NVIDIA Jetson Nano. The camera used in this project is a ZED stereo

camera. However, in order to measure the distance between the leading vehicle and the

trailer vehicle, a stereo camera is needed. Jetson Nano is used for ATDS because of its

costs lower. One thing to keep in mind is that the main object of this project is to build an

affordable, efficient automated disconnected towing system. However, if the budget

allows, an NVIDIA Jetson TX2 would be better for its higher computational power.

3.2.2 Software Requirement

The computer programs for the license plate following system are also written in

Python, and the platform to run the programs is the same as the line following sytem,

which is ROS. In order for the trailer vehicle to follow the leading vehicle, it has to be able

to recognize the license plate attached to the leading vehicle first, which is the license

detection function. To do so, firstly, the camera needs to find the region of interest in the

input image. The region of interest (ROI) is set to be about lower one-third of the height

of the original image, and about center of the one-third of the image. And then, the

program turns the ROI into an array of points. An image filled with zero intensities with

the same dimensions of the trimmed image is created as a mask. Then, the program fills

the mask with values of 1 when the area overlaps with the frame (RIO) and fills with

values of zero outside of RIO. A bitwise operation is conducted between the mas and the

frame to only keep the triangular area of the frame.

After getting the frame of interest, the camera needs to detect the contour of the

license plate, which includes shapes: a big rectangle and a relatively smaller circular.

Again, OpenCV is used here to do image processing. The program filters out the colors

based on the settings of the RGB range and all non-yellow and non-red colors are filtered

out from the image. After the program finds the two combinations of colors, it will try to

find a rectangle shape and a circular shape. The program converts the frame to grayscale
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by using it because we only need the luminance channel for detecting the edges of the

shapes. Also, changing the image to grayscale helps to save some computational power. A

5×5 Gaussian blur is applied to make the process easier and simpler. Then Canny edge

detector is applied with a minimum value of 50 and a maximum value of 150 to get the

contour of the target shapes. After both shapes are located, the program draws a blue cross

in the middle of the circular shape, which will be the center of the license plate.

For the speed control system in the license plate following system, the distance

(depth) information is needed from the stereo camera. Figure 3.5 shows the depth view of

captured objects in the image. From the figure, it is obvious to see the edges of objects.

Because on those edges, the camera is not sure about the distance from the object, and it is

showing as the default color. In general, the closer the object is, the darker it is showing in

the depth view.

Figure 3.5. A example of a depth view from a stereo camera.
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Table 3.1. The logic for speed control system in ADTS

if mindepth <= 1.3:
speed = 0

elif 1.3 < mindepth <= 1.4:
speed = speed - 2

elif 1.4 < mindepth <= 1.6:
speed = speed

elif 1.6 < mmindepth <= 2.2:
speed = speed + 2

elif mindepth > 2.2:
speed = speed + 4

In the speed control system, the logic is showing in Table 3.1. If the minimum

distance between the leading vehicle and the trailer vehicle is less than 1.3 meters, the

trailer vehicle comes to a full stop to avoid collision. If the minimum distance is between

1.4 and 1.6 meters, the trailer vehicle remains in a constant speed which is set to be 25

meters per hour. If the minimum distance is between 1.6 and 2.2 meters, the trailer vehicle

increases its speed by 2 miles per hour to catch up with the leading vehicle. If the

minimum distance is greater than 2.2 meters, the trailer vehicle increases its speed by 4

meters per hour to catch up with the leading vehicle.

3.2.3 Cross Track Error in License Plate Following System

Cross track error is the key element to calculate the steering angle. The current

CTE in Figure 3.3 is the angle between the red line and the orange line. To calculate the

current CTE, the program will calculate the absolute value between the center of the

image and the center of the detected lane line, as shown in the red line in the Figure 3.3.

The yellow line in the figure is the shortest absolute value between the center of the license

plate to the bottom of the image. And then the arctangent function in the math library can

calculate the degree of the angle between the red and the orange lines, which is the CTE.
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Figure 3.6. CTE in license plate following system.

3.3 Experiment Setup for Vision System

The vision system for ADST is divided into two parts: indoor testing and outdoor

testing, for different lightning conditions. The camera used in lane following is Logitech

Webcam C270, and the one used for license plate detection is a depth camera, ZED 1.

For the first stage of testing the vision system, the webcam and ZED camera is

mounted to the robot cars. On one of the robot car, we have attached a real licence plate in

the back, which functions as the leading vehicle.
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3.4 Experiment Setup for ADTS

Experiments to test the system will be conducted in two parts: indoor and outdoor

environments. The indoor experiment takes place in the company garage area with a

concrete floor with a smooth finish on the ground, as shown in Figure 3.7. The outdoor

experiments take place in the parking lot outside of the company building with uneven

asphalt surface, as shwon in Figure 3.8.

Figure 3.7. Indoor experiment environment setup.
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Figure 3.8. Outdoor experiment environment setup.

3.4.1 Equipment setup

First, the experiment will use two robot cars to experiment, as shown in Figure 3.9.

Each of the robot car will use NVIDIA Jetson Nano as microprocessor and a webcam for

the vision system.

After testing the system on the robot cars, the next step is to test the system on two

go-karts, and Figure 3.10 is showing one of the go-karts. The NVIDIA Jetson TX2 will be

used on the leading vehicle, for its availability, and the Jetson Nano will be used in the

trailer vehicle for the low-cost purpose. The experiments on the course tracks will only

use the go-karts.

3.4.2 Course tracks design and setup

There are three different course tracks to test the system, in different shapes,

different lengths, and different floor surfaces. Course track I consists of 10-meter straight

lines in both indoor and outdoor environments, as shown in Figure 3.11.

Course track II is a combination of straight lines and curves, about 20-meter long

and 8-meter wide, as shown in Figure 3.12.
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Figure 3.9. RC car to be used in the experiment.

Figure 3.10. Go-kart to be used in the experiment.

Course track III is an Figure-8 course with about 10-meter straight lines and

2.5-meter radius curves.
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Figure 3.12. Course track II.
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Figure 3.13. Course Track III.
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Table 3.2. Experiment plan for testing ADST on course track 1.

Course Track 1 1st Run 2nd Run 3rd Run 4th Run ...

Test Environment
Time of Experiment
Running Time
Error Type
Error Location
Estimate Running Distance

3.4.3 Experiment plans

An example of a detailed experiment plan is showing in Table 3.2. ADTS will run

30 times on each course track. And for each run, the variables of each run include the

current time of the experiment, the running period, possible errors, possible stopping point

will be recorded.

3.5 Summary

In this chapter, the line following system and the license plate following system

are discussed in detail for hardware and software requirements. Indoor and outdoor

experiments and testing will be conducted to verify the performance and effectiveness.

The results of the experiments will be discussed in the next chapter.
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CHAPTER 4. EVALUATION AND RESULTS

4.1 Computer Vision System in ADST

ADST is an automated disconnected towing system that does not require a hard

connection between the leading vehicle and the trailer vehicle. ADST contains two

computer vision subsystems: a line following system for the leading vehicle and an

automated towing system for the trailer vehicle. The line following system allows the

leading vehicle to follow the lane line and drive by itself. And the automated disconnected

towing system allows the trailer to detect the license plate that is attached to the back of

the leading vehicle. The other important feature of ADTS is to adjust the trailer car’s

current speed according to the distance from the leading vehicle.

For line following and license plate following, each subsystem requires a stereo

camera and an NVIDIA Jetson Nano. The camera used in this project is a ZED stereo

camera. For line following and license plate detection, a regular webcam is able to

perform with any problem. However, in order to measure the distance between the leading

vehicle and the trailer vehicle, a stereo camera is needed. The Jetson Nano is used for

ATDS because of its affordable price. The main propose of this project is to build an

affordable, efficient automated disconnected towing system. However, if the budget

allows, an NVIDIA Jetson TX2 would be better for its higher computational power.

The computer programs for the computer vision system are written in python, and

the platform to run the programs is ROS. In order for the trailer vehicle to follow the

leading vehicle, it has to be able to recognize the license plate that is attached to the

leading vehicle first, which is the license plate detection function in ADTS. To do so,

firstly, the camera needs to find the region of interest in the input image. The region of

interest (ROI) is set to be about lower one-third of the height of the original image, and

about the center of the one-third of the image. And then, the program turns the ROI into

an array of points. An image filled with zero intensities with the same dimensions of the
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trimmed image is created as a mask. Then, the program fills the mask with values of 1

when the area overlaps with the frame (RIO) and fills with values of zero outside of RIO.

A bitwise operation is conducted between the mask and the frame to only keep the

triangular area of the frame.

4.2 Line Following

The goal of the line following system is to design an image processing system that

enables the leading vehicle to drive itself autonomously by following a lane line. Overall,

this line following system takes video images as input and produces cross track error

(CTE) as output. The CTE is used by Roboteq, which is a type of DC motor controller, to

calculate the steering angle command. The overall structure is demonstrated in Figure 4.1.

Figure 4.1. Line following system overview.

The goal of the first stage of the experiment for line following is to simply follow a

single line. After successfully performing the single line following, the system is modified

and redesigned to perform double line detection, which is to detect two lines and keep the

vehicle in the middle of the two lines. The line following system takes video frames as

input, and process with HSV color space, which filters out unnecessary information for

the line detection purpose. The HSV color space also helps to locate the yellow line in the

image, by the giving specific color channel parameters. After using color space, Canny

edge detection is used to find all the edges in the input frame. And then, we locate the

region of interest to the lower third of the whole frame, which is usually where the lane

appears when driving. Cross track error is used to calculate the angle from the center of

the line to the center of the image, as shown in Figure 3.3. After successfully performing

line following, we modified the system and tried to have the vehicle following two lines,
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which is indicated as lane following. In detecting the lanes, Hough Transform is used,

which is a commonly used technique to identify and detect features of a particular shape

in an image. Here, we only used the classical Hough transform, which is most commonly

used to detect regular curves like circles, lines, ellipses, etc.

4.2.1 Results for Single Line Following System

During the experiments, we use different error types and error locations to

measure the results when driving in the course, as shown in Table 4.1. For the error types,

there are software error and hardware error; and for error locations, there are location I: at

the beginning of the course; location II: at the middle part of the course; and location III:

at the end of the course, as shown in Table 4.2.

Table 4.1. Error types

Type of Errors Error Names Example Errors

Type I Software Error camera failure
Type II Hardware Error low battery

Table 4.2. Error locations

Location of Errors Location Names

Location I at the beginning of the course
Location II in the middle of the course
Location II towards the end of the course
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Table 4.3. Results for indoor testing single line following on course track I.

July 25th 2019

Test Platform Go-kart

Test Environment Indoor

Course Track 1 1st Run 2nd 3rd 4th 5th 6th 7th 8th
Running Time (second) 50 0 35 35 30 20 25 22
Error Type I II I I I I
Error Location I I II I III I
Running Distance (meters) 5 0 8 5 8 10 10 10

Table 4.3 demonstrates the results for testing single line following in the indoor

environment. During the first few runs, the camera initialization latency was high and it

was having trouble finding the line. Sometimes, when it finally found it, the vehicle drove

for about 5 meters and then stopped. The reason for stopping is that the camera lost the

line. The color thresholds were adjusted, and also the angle of the camera. On the 6th run,

the vehicle was able to finish the course without stopping.

Table 4.4 shows the results for testing a single line following in the outdoor

environment. The biggest difference from indoor testing is the change in lighting

conditions. The natural light changes along with the position of the sun. When driving

towards the sun, which means the license plate is in the shadow, the camera was having a

difficult time detecting. The vehicle drove on the course in both directions. Table 4.4

shows that half of the runs fail because of shadow interference. More details will be

discussed later in this chapter. Table 4.5 shows the results for the indoor test on course

track III, which is the most difficult course we designed for the experiments. Figure 4.2

shows course track III in the garage area.
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Table 4.4. Results for outdoor testing single line following on course track I.

August 9th 2019

Test Platform Go-kart

Test Environment Outdoor

Course Track 1 1st Run 2nd 3rd 4th 5th 6th 7th 8th
Running Time (second) 55 0 50 0 0 45 40 40
Error Type I I I I I I
Error Location II I II I II I
Running Distance (meters) 5 0 10 5 0 10 5 10

Table 4.5. Results for indoor testing single line following on course track III.

Feburary 27th 2020

Test Platform RC car

Test Environment Indoor

Course Track II 1st Run 2nd 3rd 4th 5th 6th 7th 8th
Running Time (second) 20 25 0 25 10 15 12 10
Error Type I I II I I II
Error Location II I II I&II II I
Running Distance (meters) 10 5 0 20 15 10 15 10

4.2.2 Results for Lane Following System

When testing the lane following system in the outdoor environment, we apply the

same error types and error locations as in the indoor environment, as shown in Table 4.1

and 4.2. The biggest difference for lane following from line following is implementing

the Hough Transform algorithm to detect and calculate the slopes of the two lines in the

frame. Table 4.6 shows the results for the lane following in the indoor environment.

Overall, the system performance is more stable in the indoor environment.
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Figure 4.2. Course Track III for indoor testing environment.

Table 4.6. Results for indoor testing lane following on course track I.

January 7th 2020

Test Platform RC Car

Test Environment Indoor

Course Track 1 1st Run 2nd 3rd 4th 5th 6th 7th 8th
Running Time (second) 20 25 10 25 10 15 12 10
Error Type I I II I I II
Error Location II I II I&II II I
Running Distance (meters) 10 5 8 10 10 10 5 10

4.3 License Plate Following

The other computer vision system in ADST is to detect the license plate of the

leading vehicle and follow it by keeping a certain distance. There are two functions that

the ADTS system has to fulfill: the first one is the plate detection function, which is to be

able to detect the license plate by using just one camera; the second one is the speed

control function, which is to control the speed according to the distance information from

the stereo camera.
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The license plate attached to the leading vehicle was made with two colors, red

and yellow; but later on, pink and green were used instead because they are on the

opposite position of the HSV color wheel, as shown in Figure 4.3. The plate detection

function allows the camera to detect the license plate by its colors and shapes. The input

of the plate detection function is the image input, and the output is cross track error

(CTE), which is used in calculating the steering angle. At the same time, the speed control

takes the distance information from the stereo camera, and the program will adjust the

speed of the trailer vehicle according to the distance. The input of the speed control

system is the distance, and the output is the speed.

Figure 4.3. Automated disconnected towing system overview.

In the early stage of the original system design and testing, the plate is made with

two colors in two shapes: the green circle in the center of a green rectangle. ADTS detects

the license by using the color filter and edge detection. After ADTS successfully detects

the license plate made with two colors, two real license plates are used to test the

performance of ADTS. The Python library, pytesseract, is used to convert images to

characters, such as numbers and letters. Using the real license plate is one step closer to

the real-world scenarios, in the future.

The original image input is showing in Figure 4.4. The image input includes all

the color information in RGB color space. The license plate used is a real Colorado plate,

which contains letters and numbers, as well as some information related to the registration.
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Figure 4.4. Grey scale image for license plate detection.

The first step in license plate detection is to take the input image and convert it into

gray scale, as shown in Figure 4.5. It is a common technique in image processing to

convert from RGB to grayscle, that is because sometimes, less information is needed for

each pixel. When testing ADTS, the only thing needs to be specified is the single intensity

value for each pixel. However, in RGB or BGR color space, the red, green and blue

channels have equal intensity. and so it is only necessary to specify a single intensity value

for each pixel, as opposed to the three intensities needed to specify each pixel in a full

color image.

The next step is to use a thresholding technique to convert the image to black and

white, and to only show the edges in of the objects in the image. Image thresholding is a

type of image segmentation analysis technique, which is an effective method of converting

an image from grayscale into binary image: foreground and background. When

converting to black and white and an edges-only image, we filter out the unnecessary

features, which is showing in Figure 4.6.
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Figure 4.5. Gray scale image for license plate detection.

Figure 4.6. Black and white, and edges-only image for license plate detection.
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After converting to edges-only image, the next step is to crop the image into the

region of interest area and to mask the cropped image with the original image, as shown in

Figure 4.7. The mask is a binary image consisting of zero- and non-zero values. The

mask we are using is applied directly to the grayscale image of the same size. All pixels

are zero in the mask are set to zero in the output image and the others remain unchanged,

which is area of the license plate in our image input.

Figure 4.7. Masked image.

A small machine learning model is trained to perform the license plate recognition

for letters and numbers. KNN, the K-nearest neighbor algorithm is used in ADTS, which

is a simple, effective easy-to-implement supervised machine learning algorithm. KNN is

one of the popular machine learning models to solve problems like classification or

regression. The KNN model is trained on Jetson Nano and it detects and reads letters

where it assigned floating values to each character and those are saved in a text file in 2D

format.
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We trained and tested the KNN model on two real license plates. The results are

showing in Figure 4.8 and 4.9. The results were less than perfect. In detecting the

Colorado plate, the model also captured other information that is not related to the license

plate in the frame. There are many bounding boxes in one image, other than just one for

the license plate. As for detecting the letters and numbers on the plate, the results are also

not accurate. It only read half of the characters on the license plate correctly. However, the

model filters out the state information, Colorado, at the bottom of the license plate

successfully.

When detecting the Michigan plate, there is more interfering noise than the

Colorado one, because of the College symbol, a capitalized m, is in the same line of the

real characters in the plate. The detecting results are worse for this plate. Only one out of

five characters on the plate are recognized.

Figure 4.8. Results for license plate detection on a Colorado plate.

4.4 Results for ADTS

After trying the license plate detection by using a small KNN model, we decided

to switch back to the previous plate made with two shapes in two contrasting colors, the

pink rectangle with a green circle in the middle, as shown in Figure 4.3.



44

Figure 4.9. Results for license plate detection on a Michigan plate.

We have tested ADTS on both RC cars and go-karts. Table 4.7 shows the results

on testing ATDS on go-karts on course track I. At first, a wagon was used and the license

plate was attached on it as the leading vehicle. And then the wagon was pulled it manually

to have the trailer vehicle follow the license plate on the cargo, as shown in Figure 4.10.

After successfully perform ADTS on the cargo and the trailer go-kart, we have two

go-karts driving at the same time: the leading vehicle performs the line following system

and the trailer vehicle performs the license plate following.

Figure 4.10. Using a cargo car as the leading vehicle to test ADTS.
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After successfully tested ADTS with a wagon and a go-kart, we used two go-karts

and tested on course track I and II, in both indoor and outdoor environments. Table 4.7

and table 4.8 show the results of the tests for course track I in both indoor and outdoor

environment. And table 4.9 shows the results for the test on course track II in the outdoor

environment. The results of the indoor tests again are better than the ones in the outdoor

environment, because of the same reason for the line following tests: the change of the

natural light according to the position of the sun. The shadow creates noises and interferes

with the performance of the vision system.

Table 4.7. Results for indoor testing ADTS on course track I.

July 25th 2019

Test Platform Go-kart

Test Environment indoor

Course Track 1 1st Run 2nd 3rd 4th 5th 6th 7th 8th
Running Time (second) 20 25 0 25 10 15 12 10
Error Type I I II I I II
Error Location II I II I&II II I
Running Distance (meters) 10 5 0 10 8 10 8 10

Table 4.8. Results for outdoor testing ADTS on course track I.

August 9th 2019

Test Platform Go-kart

Test Environment outdoor

Course Track I 1st Run 2nd 3rd 4th 5th 6th 7th 8th
Running Time (second) 30 0 30 0 20 0 15 15
Error Type I I&II II I I II
Error Location II I II I&II II I I
Running Distance (meters) 10 0 10 0 15 0 10 15
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Table 4.9. Results for outdoor testing ADTS on course track II.

August 14th 2019

Test Platform Go-kart

Test Environment outdoor

Course Track II 1st Run 2nd 3rd 4th 5th 6th 7th 8th
Running Time (second) 30 45 0 35 0 0 22 20
Error Type I I II I I II
Error Location II I II I&II II I
Running Distance (meters) 0 15 0 25 0 0 20 15

4.5 Discussion

During the tests for line/lane following and the ADTS systems, there are some

problems discovered which are not expected before the tests. The biggest issue with all

the vision systems is the shadow interference that is caused by the sun. When the sunlight

is not directly on the license plate, the camera sometimes cannot detect the plate because

of the shadow. Some times, with the impact of the shadow, the camera used is not able to

recognize or detect anything, including lines or the license plates. This could also happen

in cloudy days when there is not enough sunlight. But sunny days were chosen to do the

tests on purpose because the clouds increase the possibilities of rains that might damage

all the equipment used in the tests. Secondly, we were not able to test the ADTS on course

track III, due to its availability and the weather conditions. However, we were able to

build the track indoor in the garage area. Third, after the successful preformance of the

license plate following by using the plate made with two colors, we implemented a small

machine learning model, KNN, to recognize numbers and letters on the plate. The system

is not accurate enough and is not stable during tests. It might be because the training set is

not big enough, and the model needs longer training time. Lastly, we are only able to

conduct tests on ADTS on go-karts on course track I and II, because one of the go-karts

had mechanical issues later in the experiment.
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4.6 Summary

We conducted a series of experiments to test the performance of the computer

vision systems of ADTS. There are two vision subsystems, which are line/lane following

and license plate following. The tests are conducted in both indoor and outdoor

environments, and three different types of course tracks are designed and used in the

experiments.
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CHAPTER 5. CONCLUSION

5.1 Research Question

This study proposes an automated disconnected towing system (ADTS) that does

not require a physical connection between a leading vehicle and a trailer vehicle by only

using a computer vision system. Each of the leading and trailer vehicles has a depth

camera mounted in the front. The cameras on the leading vehicle can perform lane

detection. And the one on the trailer vehicle is able to perform license detection and to

detect the distance from the leading vehicle and adjust the speed accordingly.

5.2 Summary of The Research

ADST contains two computer vision subsystems: a line following system for the

leading vehicle and a license plate following system for the trailer vehicle. The line

following system allows the leading vehicle to follow the lane line and drive by itself. And

the license plate following system allows the trailer to detect the license plate that is

attached to the back of the leading vehicle.

For line following and license plate following, each subsystem requires a stereo

camera and an NVIDIA Jetson Nano. The camera used in this project is a ZED stereo

camera. For line following and license plate detection, a regular webcam is able to

perform with any problem. However, to measure the distance between the leading vehicle

and the trailer vehicle, a stereo camera is needed. The other option for measuring the

distance is to use radar. However, in this research, we are trying to only use one type of

sensor, which is the camera, to perform all the tasks. Jetson Nano is used for ATDS

because of its affordable price. The main propose of this project is to build an affordable,

efficient automated disconnected towing system. The computer programs for the

computer vision systems for ADTS are written in python, and the platform to run the

programs is ROS.
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5.3 Methodology

There are three different course tracks to test the ADTS, in different shapes,

different lengths, and different floor surfaces. Course track I consists of 10-meter straight

lines in both indoor and outdoor environments. Course track II is a combination of straight

lines and curves, about 20-meter long and 8-meter wide. Course track III is an 8-shape

course with about 10-meter straight lines and 2.5-meter radius curves.

ADTS is tested about 20-30 times on each course track, indoor and outdoor. And

for each run, the current time of the experiment, error type, the running period, possible

errors, possible stopping point are recorded.

5.4 Experiments

We conducted a series of experiments to test the performance of the computer

vision systems of ADTS. There are two vision subsystems, which are line/lane following

and license plate following. The tests are conducted in both indoor and outdoor

environments, and three different types of course tracks are designed and used in the

experiments.

5.5 Analysis

The purpose of this study is to only use a camera, computer vision technology, to

perform lane following and license plate following in the automated disconnected towing

system. By utilizing different tools, such as color filters and the Canny edge detector, the

ADTS can perform the lane following and license plate following in the indoor

environment with about 90% success rate. Once the tests were conducted in the outdoor

environment, the shadow created by the sun is the main challenge for the vision system.

For example, when the sunlight does not directly project on the license plate, the license
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plate will be covered by the shadow. The ADTS will have a difficult time capturing the

outlines and the colors of the plate. Although the outdoor testing for ADTS is less than

perfect, there are so many possibilities and potential in the vision system. To solve the

shadow interference could be one of the future research topics.

5.6 Problems and Future Studies

During the experiments for ADTS, there are some problems discovered which are

not expected before the tests.

1. The biggest issue with all the vision systems is the shadow interference that is

caused by the sun. When the sunlight is not directly on the license plate, the camera

sometimes can’t detect the plate because of the shadow. Some times, with the impact of

the shadow, The camera we are using is not able to recognize or detect anything, including

lines or the license plates. This could also happen in cloudy days when there is not enough

sunlight. But we chose sunny days to do the tests on purpose because the clouds increase

the possibilities of rains that might damage all the equipment used in the tests.

2. We were not able to test the ADTS on go-karts on course track III, due to its

availability and the weather conditions. However, we were able to build the track III in the

indoor environment and test on the RC cars.

3. After successfully preformed the license plate following by using the plate

made with two colors, we implemented a small machine learning model, KNN, to

recognize numbers and letters on the plate. The system is not accurate enough and is not

stable during tests. It might be because the training set is not big enough, and the model

needs longer training time.

4. Lastly, we are only able to conduct tests on ADTS on go-karts on course track I

and II, because one of the go-karts had mechanical issues later in the experiment.

The problems mentioned above can be future studies. Using QR code, barcode, or

PDF417 for license plate following is another possibility, instead of the plate we made

with two colors. We can also look into other networks for license plate pattern recognition.
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5.7 Summary

This chapter has concluded this research by reviewing the research question, the

methodology used in this research, problems discovered during experiments, and future

works.
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