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ABSTRACT 

Wheat is a major source of calories and protein for humans worldwide. Wheat is the most widely 

grown crop, with cultivation areas and production systems on every continent. The cultivated land 

area is vast because of its importance and adaptability to various environmental conditions. Global 

wheat production has not kept up with the growing population, provoking the need to develop new 

methods and techniques to increase genetic gains. The first research chapter of this Ph.D. 

dissertation involves performing genome-wide association studies (GWAS) to identify and 

examine transferability of marker-trait associations (MTAs) across environments. I evaluated yield 

and yield components traits among 270 soft red winter (SRW) wheat varieties. The population 

consists of experimental breeding lines adapted to the Midwestern and eastern United States and 

developed by public university breeding programs. Phenotypic data from a two-year field study 

and a 45K-SNP marker dataset were analyzed by FarmCPU model to identify MTAs for yield 

related traits. Grain yield was positively correlated with thousand kernel weight, biomass, and 

grain weight per spike while negatively correlated with days to heading and maturity. Sixty-one 

independent loci were identified for agronomic traits, including a region that with –logP of 16.35, 

which explained 18% of the variation in grain yield. Using 12 existing datasets from other states 

and seasons, in addition to my own data, I examined the transferability of significant MTAs for 

grain yield and days to heading across homogenous environments. For grain yield and days to 

heading, I only observed 6 out of 28 MTAs to hold up across homogenous environments. I 

concluded that not all marker-trait associations can be detected in other environments. 

In the second research chapter of this Ph.D. dissertation, I dissected yield component traits 

under contrasting nitrogen environments by using field-based low-throughput phenotyping. I 

characterized grain yield formation and quality attributes in soft red winter wheat. Using a split-

block design, I studied responses of 30 experimental lines, as sub-plot, to high nitrogen and low 

nitrogen environment, as main-plot, for two years. Differential N environments were imposed by 

the application, or lack thereof, of spring nitrogen application in a field, following a previous corn 

harvest. In this study, I measured agronomic traits, in-tissue nitrogen concentrations, nitrogen use 

efficiency, nitrogen harvest index and end-use quality traits on either all or subset of the germplasm. 

My data showed that biomass, number of spikes and total grain numbers per unit area were most 

sensitive to low nitrogen while kernel weight remained stable across environments. Significant 
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genotype x N-environment interaction allowed me to select N-efficient germplasm, that can be 

used as founding parents for a potential breeding population specifically for low-N environments. 

I did this selection on the basis of superior agronomic traits and the presence of the desirable gluten 

quality alleles such as Glu-A1b (2*) and Glu-D1d (5+10). 
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 LITERATURE REVIEW 

1.1 Importance of wheat in world food security 

The three major cereals that provide almost half of total plant calories consumed by 

humans are maize, rice, and wheat (Tweeten and Thompson, 2009). Wheat is a staple food for 

over 35% of the world’s population (Bushuk, 1997a). The starch content and the ease of milling 

or grinding wheat grain into flour makes wheat a major source of carbohydrates (Enghiad et al., 

2017). Gluten, which is the viscoelastic storage protein complex important in baking, makes 

wheat as a the main component of bread, cakes, and cookies (Pena, 2002). In 2018, 736 million 

metric tons of wheat was consumed globally, with China and India as top consumers. The United 

States consuming 30 million metric tons (~4%). In 2018-2019 season, 731 million metric tons of 

wheat was produced. The top producers were Europe, China, India, Russia, United States, and 

Canada. The United States produced 51.3 million metric tons (~7%) (USDA, 2019). The FAO 

reports global cereal production is expected to increase by 13% by 2027, mainly due to higher 

yields, and global human and animal consumption is projected to increase. For example, 

humans’ wheat consumption is expected to increase 13% by 2027. 

1.2 Wheat speciation 

Wheat is estimated to have been cultivated around 7,000 – 10,000 years ago in the Fertile 

Crescent (Dubcovsky and Dvorak, 2007; Gill and Friebe, 2002; White and Edwards, 2007). 

Wheat is an annual plant from the genus Triticum. Based on chromosome number, the wheat 

species can be divided into three main ploidy levels of diploids (with one set of chromosomes 2n 

= 2x = 14), tetraploids (with two sets of chromosomes 2n = 2x = 28), and hexaploids (with three 

sets of chromosomes 2n = 6x = 42) (McFadden and Sears, 1946). The single set in the diploids is 

the A genome; the additional set in the tetraploids is the B genome; and the third set in the 

hexaploids is the D genome (McFadden and Sears, 1946). Triticum monococcum L. spp 

aegilopoides and Triticum urartu, also known as wild einkorn wheat, is the progenitor of 

cultivated diploid wheat (Feldman, 2001; Peng et al., 2011). Triticum turgidum L. ssp. 

dicoccoides, also known as wild emmer wheat, is the progenitor of cultivated tetraploid and 

hexaploid wheat (Feldman, 2001; J. H. Peng et al., 2011; Peng et al., 2003). Each polyploidy 
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species is the product of interspecies hybridization followed by chromosome doubling (Feldman, 

2001). Seven chromosome pairs of the diploid wheat T. urartu (A genome = AA) plus seven 

additional chromosome pairs of the B genome constitute the 14 pairs of T. turgidum (AABB). 

These 14 pairs plus the additional 7 pairs of the D genome make up the 21 pairs of hexaploid T. 

aestivum (AABBDD) (Feldman, 2001). Therefore, the hexaploid wheat is an allopolyploid, 

meaning the genome contains three homologous sub-genome sets of A, B, and D. 

The two primary cultivated Triticum species are durum wheat (Triticum turgidum) and 

bread wheat (Triticum aestivum). Durum wheat is tetraploid (2n=4x=28 = AABB) with 14 pairs 

of chromosomes (Feldman, 2001). Bread wheat is hexaploid (2n=6x=42 = AABBDD) with 21 

pairs of chromosomes (Gill and Friebe, 2002) and is responsible for approximately 95% of the 

total world wheat production (Peng et al., 2011). Even though bread wheat is hexaploid, during 

meiosis it behaves as a diploid species (Feldman, 2001; Riley and Chapman, 1958). The 

homeologous pairing suppressor (Ph1) gene on chromosome 5B restricts pairing and crossovers 

to occur only between homologous chromosomes. Pairing and crossovers cannot occur between 

homeologous chromosomes (Dvorak et al., 2006; Griffiths et al., 2006).  

1.3 Wheat domestication syndrome 

The phenotypic differences between cultivated and wild wheat is a suite of traits, called 

domestication syndrome. The main domestication syndrome changes are the brittle rachis, 

tenacious glume and non-free threshability of wheat, which also impacted yield components 

(Gill et al., 2007; Peng et al., 2011). Mutations affecting primary traits were the loss of spike 

shattering and loss of tough glumes (Dubcovsky and Dvorak, 2007). For example, the diploid 

progenitors lack the free-threshing of the spike as observed in current tetraploid and hexaploid 

wheat (Kerber and Rowland, 1974; McFadden and Sears, 1946).  

The brittle rachis trait is described as the breakage of the rachis (main stem of spike) that 

causes the seed to be dispersed by the shattering of the spikelet. The group 3 brittle rachis genes, 

Br1, Br2, and Br3, are single, dominant genes located on the short arm of chromosomes 3D, 3A, 

and 3B, respectively (Chen et al., 1998; Watanabe and Ikebata, 2000; Watanabe et al., 2002). 

Transition to non-brittle (normal) rachis (br) was one of the underlying genetic changes of wheat 

domestication. The Q gene in wheat, located on each of the homeologous group 5 chromosomes, 

confers free-threshing (Gill et al., 2007; Simons et al., 2006), and allows for grain to be 
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mechanically harvested. The free threshing wheats have glumes that are thinner and allow for 

easier release of kernels (Peng et al., 2011). The Q gene is a member of the APETALA2 (AP2)-

like (WAP2) gene family (Faris et al., 2003), which is responsible for floral homeotic gene 

regulation. Free threshing phenotype is controlled by the dominant Q allele (Simons et al., 2006). 

The wild wheat cultivars consisted of tough glumes that were difficult to thresh for grain 

retrieval, while the cultivated wheats have soft glumes and free threshing ability (Peng et al., 

2011). The tenacious glumes (Tg) gene, located on chromosome 2D, affects glume tenacity 

(threshability) (Jantasuriyarat et al., 2004; Kerber and Rowland, 1974). The recessive mutations 

at the Tg loci display the physical appearance of hull-less wheat spike (Dubcovsky and Dvorak, 

2007). The complementary mutations of q to Q and Tg to tg give rise to the free-threshing and 

threshable forms of hexaploid wheat - QQtgtg (Dubcovsky and Dvorak, 2007; Jantasuriyarat et 

al., 2004; Kerber and Rowland, 1974). Based on the major gene controlling these traits, wheat 

chromosomes 1B, 2A, and homeologous chromosomes 3 and 5 played major roles in 

modification of domesticated wheat. 

1.4 The underlying traits that allow wide geographical adaptation 

Wheat is adapted to diverse growing regions and conditions. Wheat occupies 22% of the 

total cultivated area around the world (Leff, Ramankutty, & Foley, 2004). This includes the 

Great Plains of the United States, southern Australia, eastern Africa, southern South America, 

China, and throughout Europe. For example, wheat was harvested in 127 countries in 2017 

(FAOSTAT) and regional distributions show wheat is the major crop in Canada, western Europe, 

Russia, Middle East, central Asia, and Australia (Leff et al., 2004). Wheat is widely adapted to 

diverse geographical regions because of the adaptive mechanisms to different seasons and 

temperatures. Two of these mechanisms control the cold exposure requirements before 

transitioning to flowering, often called vernalization requirements, and the control of flowering 

time via photoperiod responses. 

The genetic system controlling vernalization requirements is rather complex involving 

epistasis. The dominant Vrn2 allele and recessive vrn1 allele are required for the expression of 

true winter growth habit, and spring wheat is confirmed by any of the dominant spring type Vrn1 

alleles that decreases vernalization requirements (Tranquilli and Dubcovsky, 2000; Yan et al., 

2004) .The Vrn1 loci are on the three homeologous chromosomes. However, Vrn-A1 is more 
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potent to Vrn-B1 and Vrn-D1, meaning that a recessive vrn-A1 requires longer vernalization than 

any of the vrn-B1 or vrn-D1 does. The Vrn1 and Vrn2 genes are located on the long arm of 

chromosomes 5A, 5B, and 5D (Barrett et al., 2002; Dubcovsky et al., 1998; Nelson et al., 1995) 

and Vrn3 on the short arm of chromosome 7B (Yan et al., 2006). The dominant Vrn3 allele 

confers early flowering and is an orthologue to the Arabidopsis FLOWERING LOCUS T (FT) 

gene (Yan et al., 2006). Recently, it was shown that the vernalization requirements is more 

complex and also under the control of copy number variation (Díaz et al., 2012; Würschum et al., 

2015; Zhu et al., 2014). After fulfillment of vernalization requirements, the transitioning to 

reproductive stage is controlled by photoperiod response genes. The transitioning to reproductive 

stage in wheat occurs upon extended exposure to sunlight. The major photoperiod response 

genes (Ppd) are located on the homoeologous group 2 chromosomes (Snape et al., 2001) and 

members of the pseudo response regulator gene family (Beales et al., 2007). Among all Ppd loci, 

the semi-dominant photoperiod insensitive Ppd-D1a allele experiences earlier spike growth and 

stem elongation, resulting in earlier flowering (Snape et al., 2001).  

1.5 Plant architecture: drivers of source-sink and harvest index 

Wheat plant height changed drastically in the 1960s, during the ‘Green Revolution’ which 

resulted in high yielding, semi-dwarf varieties. Reduction in plant height enabled applying more 

fertilizers and increased yield (Borlaug, 1983; Hedden, 2003). Tall wheat varieties typically fall 

over, or lodge, due to wind, rain, or an unsupportive stem. Peng et al. (1999) determined that 

interfering with plant hormone gibberellin is the mode of action of the Reduced height-1 (Rht) 

genes. Two dwarfing Rht-B1 and Rht-D1 loci on chromosomes 4B and 4D reduce plant height 

via sensitivity to gibberellin (Gale and Youssefian, 1985; Pearce et al., 2011; Peng et al., 1999). 

In addition to these gibberellic acid sensitive genes, there are other height reducing genes that act 

in gibberellic acid insensitive manner. For example, the height reducing allele Rht8c allele on the 

short arm of chromosome 2D (Guedira et al., 2010) is present in several United States soft and 

hard wheat breeding lines.  

Decreasing plant height allowed more assimilates to be partitioned to produce more grain 

and increase harvest index. Harvest index is a direct measure of the source-sink ratio (Reynolds 

et al., 2017). Austin (1980) first proposed the theoretical limit for wheat harvest index at 

approximately 60%. Recent reviews have shown that genetic improvement has made minimal 
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progress since the 1990s, with harvest index for wheat maintaining between 50-55% (M. John 

Foulkes et al., 2011). In wheat, increases in harvest index is said to be driven by increases in the 

number of grains produced under similar canopy structures (Green et al., 2012). Genetically, the 

alien chromatin introgression of Lr19 from Agropyron elongatum is associated with an increase 

in total biomass, more partitioning of biomass to spike growth, and an increase in radiation use 

efficiency (Reynolds et al., 2001). Harvest index is also affected by environment. For example, 

higher temperatures, carbon dioxide levels, and light intensity can affect photosynthetic activities 

and assimilates (Balota et al., 2017; Reynolds et al., 2012; Wheeler et al., 1996).  

Another trait that has contributed to grain numbers per unit area is tillering. Wheat has the 

capacity to tiller or form new lateral branches that are independent of the main stem. The tillers 

can develop to grow spikes, reach maturity, and contribute to producing more spikes and grains 

per plant. The development of tillers is a key factor in plant architecture in wheat, as the tillers 

are formed by the growth of axillary buds from the basal internodes (Spielmeyer and Richards, 

2004). The downside and potential drawback of increase tillering is the production of infertile 

tillers, because assimilates are distributed to these tillers that are competing with other sinks, but 

fail to contribute viable grain for increasing yield (M. John Foulkes et al., 2011). It appears that 

semi-dwarfism is also associated with more tillering, resulting in more grain filled heads 

(Borlaug, 1983). A single recessive major gene, tiller inhibition gene (tin3), was mapped to the 

long arm of chromosome 3A, which confers only one main culm, larger spikes, and greater seed 

size (Kuraparthy et al., 2007).  

1.6 Major cropping systems worldwide 

By the year 2035, wheat is predicted to have the greatest increase in global sown area in 

comparison to rice, maize, and soybean (W. Wu et al., 2007). Wheat cultivation occurs 

intensively in Europe, North America and Asia. In Europe, wheat is almost cultivated across the 

entire continent, most of which is winter wheat. Cropping shares for wheat are projected to 

increase in northern Europe (Elsgaard et al., 2012). In North America, two major wheat belts are 

responsible for most of the wheat production: west of the Mississippi River and spanning into 

southern Canada, and the Great Plains (Leff et al., 2004). Canada has a long history of growing 

wheat throughout the country, developed multiple classes of wheat including Canadian Western 

Red Spring, Canadian Western Soft White Spring, Canadian Western Amber Durum, Canadian 
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Prairies Spring Red, and others. Southwestern Saskatchewan practices conventional and 

conservative tilling practices, along with crop rotations of continuous wheat and fallow-wheat 

rotations (Zentner et al., 1991). In areas with high risk of soil erosion and drought, the most 

profitable management was a minimum or no tilling system incorporated into a fallow-wheat 

rotation (Zentner et al., 1991). Canada promotes organic agriculture. More research and 

emphasis is currently being investigated for breeding wheat in organic cropping systems (Kaut et 

al., 2009; Mason and Spaner, 2006). Mason et al. (2007) compared conventional management 

and organic management practices for Canadian Western Spring wheat cultivars grown in 

Alberta. They found that the major limiting factor for wheat grain yield in organic managed 

systems is weed pressure. In Asia, wheat is grown predominately in the Indus River valley in 

Pakistan, the Yellow River Valley in China, and most of central Asia. The Punjab province in 

Pakistan occupies 75% of the total wheat production in the country and frequent management is 

a rice-wheat irrigated rotation (Aujla et al., 2010). In the Indo-Gangetic Plains of South Asia, the 

rice-wheat agronomic system covers over 13.5 million hectares across Bangladesh, India, Nepal, 

and Pakistan (Ladha et al., 2009). In Chinse provinces of Jilin and Liaoning, common crop 

rotations are maize-wheat-soybean rotations and to the west it progresses into a maize-wheat 

cultivation area (Leff et al., 2004). In the Middle East, wheat is cultivated from Turkey, Iran, and 

along the Mediterranean coast. In this region, the main driver of yield and performance is the 

availability of water. An estimated 20-30% of wheat is irrigated, with the remaining in rainfed or 

semi-arid conditions (Pala et al., 2011). In Turkey, crop rotations with winter wheat include 

lentils, chickpea, sunflower, and fallow to increase productivity (Cayci et al., 2009). 

Besides the intensive growing regions, wheat is also grown in South America, Africa, and 

Australia. In South America, wheat dominates the south and creates another wheat belt in 

Argentina and Chile (Leff et al., 2004). Wheat is grown in the northern parts of Africa in 

Morocco, Algeria, Libya, and Tunisia and in south Africa as a second crop following maize.  

In Australia, wheat is the dominant crop and forms a wheat belt. In southern and western 

Australia, the major limiting factor for wheat yields is the availability of water, where crop 

experiences water stress and unfavorable high temperatures during the grain filling period 

(Hamblin et al., 1987; Luo et al., 2009). 
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1.7 Major cropping systems and market classes in the United States 

In the United States, wheat production and market are based on seasonality of planting and 

end-uses. Five major wheat classes exist in the US including hard red winter, hard red spring, 

soft red winter, soft red spring, and durum wheat. Kansas dominates wheat production, followed 

by North Dakota and Washington. In the Northern Plains, spring wheat is predominately grown. 

Montana, Minnesota, North Dakota, and South Dakota account for approximately 20% of the 

hard red spring wheat production (USDA ERS, 2019). The primary winter wheat production 

region covers 16% of the United States and includes the central Midwest, the central and 

northern Great Plains, and the Pacific Northwest (Brown & Rosenberg, 1999). In the Great 

Plains, hard red winter wheat is produced, while soft red winter wheat is grown in the eastern 

states and along the Mississippi River. Winter wheat contributes to approximately 70% of the US 

wheat production, accounting for 1,100 million bushels (USDA, 2019). Winter and spring soft 

white wheat is a niche market predominately grown in Washington, Michigan, and New York. 

Durum wheat is the least produced class and accounts for only 3-5% of total wheat production 

and is grown mainly in Montana and North Dakota (USDA ERS, 2019). Hard grains are used for 

bread making, soft red grains are used for cakes and cookies, soft white grains are used for 

noodle products, cereals, and white breads, and durum wheat is used for pasta. 

1.8 End-use quality traits 

End uses are determined by grain hardness, protein content, and gluten strength. Grain 

hardness, or endosperm texture, defines whether the grains are for bread making or cookie 

making (Pasha et al., 2010). Grain hardness analysis can be performed by the Single Kernel 

Characterization System (SKCS) to classify wheat as soft, medium, or hard grain. In U.S. eastern 

soft red wheat, typical grain hardness index averages around 23-24 (Kiszonas, Fuerst, & Morris, 

2013). In contrast, the hardness index of hard red winter and spring wheat averages between 58 – 

70 (Martin et al., 2001; Morris et al., 1999). The variation of kernel texture is genetically 

controlled by the single Hardness (Ha) locus (Chantret et al., 2005), located on chromosome 5D 

and contains three genes i.e., puroindoline a (Pina), puroindoline b (Pinb), and grain softness 

protein-1 (GSP-1) (Pasha et al., 2010). Soft wheat, which contains minimum if any damaged 
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starch, is used to make cakes, cookies, and crackers where low flour water absorption is desired 

(Bacon, 2001).  

The wheat grain can be structurally divided into three components: bran (seed coat), 

endosperm, and embryo. The proportion of each component on average is 14% bran, 83% 

endosperm, and 3% embryo (White and Edwards, 2007). The endosperm contains the storage 

proteins and starch that are milled for production. Gluten comprises 75-85% of the total wheat 

endosperm protein (Branlard and Marion, 2001; Pena, 2002) and consists of polymeric and 

monomeric proteins of glutenins and gliadins. Glutenins are storage proteins that are classified as 

high-molecular weight glutenin subunits (HMW-GS) and low-molecular weight glutenin 

subunits (LMW-GS). HMW-GS loci are located on the long arm of chromosome 1A, 1B, and 

1D: Glu-A1, Glu-B1, and Glu-D1 (Branlard and Marion, 2001). LMW-GS loci are located on the 

long arm of chromosome 3A, 3B, and 3D: Glu-A3, Glu-B3, and Glu-D3. Sodium dodecyl 

suplhate (SDS) sedimentation test is usually conducted to determine glutenin amount/strength in 

wheat flour.  

Gliadins are alcohol-soluble proteins that represent almost 50% of gluten proteins 

(Branlard and Marion, 2001). In general, gliadins are less understood than glutenins. Gliadins are 

insignificant and non-effective for dough quality, formation, and swelling. The -gliadins are 

widely known to be the most relevant for the development of celiac disease, controlled by the 

Gli-2 loci on the short arm of group 6 chromosomes (Payne, 1987). Celiac disease is an 

autoimmune disorder that develops from the ingestions of gluten containing grains, such as 

wheat, barley, and rye. The disease can lead to inflammation and atrophy in the small intestine, 

anemia, and endocrine disorders (Briani et al., 2008; Fasano and Catassi, 2001). The prevalence 

of celiac disease was between 0.4 – 0.8% across the world, with significantly greater diagnosis in 

females than males (Singh et al., 2018). Two proteins that have been characterized for celiac 

disease epitopes are Glia-9 and Glia-20. The Glia-9 is recognized as the major 

immunodominant epitope by the patients (Vader et al., 2002). Glia-9 is more frequently 

recognized by the patients with celiac disease than Glia-20, as Glia-20 is recognized only in a 

minority of patients (van den Broeck et al., 2010). Wheat breeding for lower celiac disease 

gliadin proteins (van den Broeck et al., 2010) and biotechnology methods of silencing the gliadin 

proteins of wheat (Gil-Humanes et al., 2010) are being further researched for wheat varieties 

with lower toxicity to gluten intolerant patients.  
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1.9 Agronomic practices 

Agronomic practices have played significant role in increasing wheat production and 

quality. Row spacing, seeding rate, crop rotation, and tillage practices all can have significant 

effects on yield and quality. Current agriculture practices have pushed decreasing row spacing 

with variation in seeding rate for increasing yields. The overall goal of these practices is to 

produce maximum tillers that can bear fertile spikes and with potential to fill the grains near the 

end of the season. For example, plant density, implemented by changes in seeding density, can 

have considerable influence on foliar coverage and radiation use efficiency, which is directly 

related to carbon fixation and biomass. In the northern Great Plains region, the optimal row 

spacing and seeding rate in hard red spring wheat yield was 15 centimeters, a deviation from the 

standard 30 centimeter row spacing commonly practiced in this area (Chen et al., 2008). 

Marshall and Ohm (1987) noticed similar trends in soft red winter wheat grown in Indiana, 

where a narrow row spacing than conventional practices increased yield significantly, along with 

a combination of a higher seeding rate.  

Wheat is frequently intermixed in a two or three year crop rotation with maize and soybean 

in the United States. However, specific states and regions offer different crop rotations and 

practices based on climate and soil type. For example, Idaho performs varying tillage practices of 

conventional, minimum, and no-till along with rotating winter wheat between spring pea for two 

years or a three year winter wheat, spring barley, and spring pea rotation (Hammel, 1995). Lower 

midwestern regions perform intercropping of soybean and wheat to produce two crops in a fiscal 

year. In this system, soybean is planted in-between wheat rows at the heading stage (Reinbott & 

Helsel, 1987). This double-cropping system has shown increases in yields and positive crop 

effects on land use (Sandler et al., 2015). 

A key factor in agronomic management strategies is water availability. Factors that play 

significantly on the watering strategies are annual precipitation and the capability of applying 

water through irrigation. Worldwide, 45% of wheat grown in developing countries is irrigated, 

and China and India have approximately 75-80% of irrigated wheat (Reynolds, et al., 1999). In 

the United States, irrigated wheat is not commonly practiced, with the Northwest region 

irrigating 20% of grown wheat in the area (USDA, 2013). Papendick (1996) described that 100 

millimeters of water is required for wheat to grow to anthesis in the Pacific Northwest and water 

can be extracted from a depth of 1.8 meters. 
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A trend to decrease the environmental impact has shifted agriculture production into 

conservative or organic agriculture systems. Organic agriculture is dependent on nitrogen input 

through the use of manure, instead of synthetic fertilizers. Wheat organic systems were 35-47% 

more energy efficient than conventional wheat production systems in the United States (Pimentel 

et al., 1983). Clark and Tilman (2017) found global organic systems required more land than 

conventional systems per unit of food, and also used 15% less energy. Unfortunately, organic 

and conventional systems did not differ in their greenhouse gas emissions (Clark and Tilman, 

2017).  

1.10 Producing more with less resources sustainably 

Nitrogen (N) is the essential element for improving crop yields and economic returns 

(Keeney and Hatfield, 2008). N is routinely applied as a macronutrient fertilizer for increasing 

photosynthetic rates of plants to grow and develop. N, as one of the main determinant of all 

cellular components such as protein and ultimately amino acids (Lawlor, 2002), directly impacts 

photosynthesis, which is required for growth of plants via storage and energy of N compounds 

and carbohydrates (Lawlor et al., 1989). Supplying enough nitrogen allows the plant to stimulate 

leaf growth, supporting tissues and enzymes e.g., Rubisco (Pask et al., 2012) and photosynthesis 

by cell growth, cell division, and light reactions (Lawlor, 2002). There is therefore a considerable 

interaction between nitrate availability and carbon dioxide fixation.   

Plants also require phosphorus (P) to grow new tissue and perform cell division, as the 

DNA duplication and transcription are P-demanding processes (Elser, 2012). P is the least 

mobile and least available to plants in most conditions (Ramaekers et al., 2010). For this reason, 

P is applied to almost all soil types to make up for the inefficiency (Elanchezhian et al., 2015). P-

efficiency is directly related to the uptake and root-to-shoot ratio (Föhse et al., 1988). Richardson 

et al. (2011) describes the ‘root foraging strategy’ as improving acquisition of P in the soil by the 

virtue of uptake by the roots. The P-efficiency is species dependent. For example, ryegrass and 

wheat have medium to high efficiency due to a high root to shoot ratio (Föhse et al., 1988). One 

way to express P-efficiency is the amount of phosphorus in the soil required to produce 80% of 

maximum yield (Föhse et al., 1988), which was coined as “extern phosphorus requirement”. The 

ability to effectively use the available P is dependent on the root capability of acquiring P that is 

available in the soil, also termed “phosphorus uptake efficiency”. As P-efficiency is based on P-
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uptake efficiency by the roots, it was suggested that breeding for P-efficient plants should target 

identifying varieties that have high root-to-shoot ratio or high influx rates based on root 

absorption (Föhse et al., 1988). For example, Deng et al. (2018) identified significant difference 

among cultivars with higher phosphorus acquisition efficiency was based on variations in root 

morphology.  

Potassium (K) is the most abundant cation in plants and is essential for photosynthesis, 

translocation of photosynthates into sink organs, and maintenance and activation of enzymes 

(Pettigrew, 2008). This macronutrient is essential for producing photosynthetic assimilates for 

plant growth and development (Pettigrew, 2008). White (2013) suggested K tissue 

concentrations must be maintained above 5 – 40 mg of potassium per gram of dry matter to 

avoid loss of yield. K-deficiency can be detrimental to the plant, causing leaf chlorosis, necrosis, 

and decreases in net photosynthesis (Cakmak, 2005). Wheat proved to be more K-efficient than 

barley and sugar beet, with a greater relative yield under K-deficient conditions (Dessougi et al., 

2002). This was attributed mainly to the extensive root structure and producing a higher ratio of 

root length to shoot weight. Since K is necessary for maintaining photosynthetic carbon dioxide 

fixation, selecting varieties with enhanced K-efficiency can lead to more stable and adapted 

germplasm for diverse climatic environments. In addition, K plays a significant role in plant 

stress tolerance. Plants that can utilize K more efficiently have the potential to decrease 

production of reactive oxygen species, and thereby reducing cellular impairment under stressful 

conditions (Cakmak, 2005). 

Increasing production efficiency and minimizing environmental footprints are important 

goals of modern agriculture. For wheat, in most agronomic practices two to three nutrient 

applications consisting of nitrogen, phosphorus, potassium are needed before planting, at the five 

leaf stage, and potentially near anthesis (Otteson et al., 2007). For winter wheat, up to three 

fertilizer applications can be performed at tillering, stem elongation, and second node stage 

(Hirel et al., 2007) for meeting the plant demand for nitrogen, phosphorus, and other limiting 

nutrients. All of the agronomic practices are to meet and surpass standards in grain yield and 

quality. However, this goes against production efficiency by adding potentially more fertilizer 

applications and nutrients that are required. For example, there is a tendency to apply excess 

nitrogen as “insurance” where their immediate attention is on their economic survival based on 

crop performance (Raun and Johnson, 1999).  
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One critical question is how to produce more wheat efficiently with less resources. This 

takes into consideration the adaptability of wheat cultivars, and also the methods of harvesting 

wheat with less environmental footprint. The ability to minimize fertilizer applications, utilize 

less water, decrease environmental contaminations, and decrease soil erosion could have long 

lasting effects on agricultural production systems. A current conservation effort is producing 

more crop residue for soil health and structure. Wheat residue could be integral in longevity for 

soil structure (Skidmore et al., 1979). The complexity in wheat management is the tradeoffs and 

conflict; increasing fertilizer applications and inputs for increasing yields has adverse impact on 

environmental contamination and pollution, or decreasing applications at the cost of grain yield. 

Therefore, the best practices require proper stewardship to promote a sustainable and 

effective cropping system. The “4R” of crop nutrient stewardship are the Right source, Right 

rate, Right time, and Right place. The objective is to create a cropping system that matches the 

plant requirements in a method to reduce nutrient loss and promote sustainability. The 

advancement of fertilizer technology and research has included enhanced-efficiency fertilizers 

that are treated with nitrification or urease inhibitors to promote a controlled released of nitrogen 

fertilizers (Flis, 2017). 

Within the 4R, the source can be a variety of chemical application, either liquid form or 

granular solid, for a desired nutrient. For example, the source for nitrogen can include anhydrous 

ammonia, urea, and ammonium nitrate, or for phosphorus the source could be diammonium 

phosphate or monoammonium phosphate, and potassium chloride as a source for potassium 

(Heffer et al., 2015). The rate of application is dependent on crop necessities and management 

objectives. This can vary tremendously depending on limiting factors such as climate, soil type, 

and agronomic practices and many different rates and recommendations are discussed in other 

reviews (Ladha et al., 2005; Zhang et al., 1993). The timing of fertilizer is as equally importance 

as the source and rate. In maize and wheat, multiple applications of nitrogen fertilizer are 

routinely applied before planting, during vegetative growth, and occasionally during the grain 

filling period (Heffer et al., 2015). Lastly, the placement of fertilizer will depict how the nutrient 

is available to the crop. Common practices of fertilizer placement include broadcast over the top 

applications, or applying fertilizer directly to the top soil or deeper banding for targeted root 

zones (Heffer et al., 2015).  
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Another critical question is how to increase fertilizer recovery and how to reduce the 

environmental footprints. Of the three important nutrients mentioned above, nitrogen is the most 

prevalent. Erisman et al. (2008) estimated that in 2008, nitrogen fertilizers were responsible for 

feeding 48% of the world’s population. In the past four decades, the doubling of agricultural 

food production has come at a seven fold increase in nitrogen fertilizer use (Hirel et al., 2007). 

While the result of increasing nitrogen use is producing more crops for food, a large source of 

the nitrogen escapes into the environment. Raun and Johnson (1999) reported worldwide 

nitrogen use efficiency for cereal production was approximately 33%. Just a 1% increase in the 

efficiency of nitrogen could lead to saving over $230 million in nitrogen fertilizer costs.  

With crop fertilizer recovery estimated below 50% (Kanampiu, Raun, & Johnson, 1997), 

the unaccounted nitrogen is lost through leaching, volatilization, combustion, and runoff in the 

water. Nitrogen fertilizer applications are also prone to emission losses of ammonia and nitrous 

oxide, or losses on the surface and groundwater as nitrate (Flis, 2017). Developing crops with 

more N use efficiency can lead to decreasing the environmental footprints.   

1.11 Breeding for high- and low-input systems 

Most breeding programs are historically performed under optimal conditions and yield 

potential, where selection is routinely performed under abundance of nitrogen with sufficient 

water availability. This practice has resulted in continuous genetic gains. Heritability was shown 

to be higher for grain yield, nitrogen use efficiency, grain quality, and other yield and nitrogen 

component under optimal conditions (Brancourt-Hulmel et al., 2005; Cormier et al., 2013; 

Laperche et al., 2006). In maize, broad sense heritability was decreased approximately 29% in a 

low nitrogen environment compared to a high nitrogen environment due to the lower genetic 

variance in the low nitrogen environment (Bänziger et al., 1997).  

There is little evidence on effectively matching germplasm performance and fertilizer 

application for breeding purposes. Germplasm selection under higher nitrogen conditions may 

not be the best performers under lower N conditions. Brucker and Morey (1988) examined cost-

effectiveness in relation to maximum grain yield in wheat and fertilizer application, where they 

concluded a moderate application of 67 kg per hectare nitrogen application produced 96% of the 

maximum grain yield and did not adversely affect grain protein.  
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In general, most focus on low input cropping systems is based on the management of 

nitrogen, which is the most widely used fertilizer and accounted for 57% of the total fertilizer 

utilized in the United States (EPA, https://www.epa.gov/roe/). Low input management systems 

can be advantageous for producers due to reducing nitrogen fertilizer applications, therefore, 

providing a more cost-effective system with less environment impact. One obvious drawback is 

the decrease in grain yield with reduced nitrogen supplied (Gaju et al., 2011), although strategies 

for how this could be improved upon are not currently in place. Barraclough et al. (2010) 

proposed that the only way to produce a high yielding and high quality nitrogen efficient wheat 

variety is through increasing uptake of nitrogen. Dhugga and Waines (1989) stated that under 

increasing soil N levels, uptake is more important than utilization, which is in agreement with 

Ortiz-Monasterio et al. (1997) and Le Gouis et al. (2000) under high nitrogen conditions. In 

maize, a 38% reduction in grain yield was observed by reduction of nitrogen uptake of 50% at 

silking under low nitrogen conditions (Gallais and Coque, 2005), while utilization efficiency 

decreased with increasing nitrogen levels 

Barraclough et al., (2010) described four key traits for evaluating wheat nitrogen 

efficiency: grain yield, grain nitrogen percent, total nitrogen uptake, and nitrogen harvest index. 

These traits are constrained by the “law of conservation of matter” and that there is a 

physiological limit on crop nitrogen requirements. Nitrogen use efficiency (NUE), defined as the 

grain yield per unit of nitrogen available in the soil (Moll et al., 1982) is divided into two 

components: nitrogen uptake efficiency (NUpE), or the efficiency of absorbing nitrate and 

ammonium from the soil, and nitrogen utilization efficiency (NUtE), or the efficiency that the 

absorbed nitrogen is utilized to produce grain (Moll et al., 1982). Harper et al. (1987) determined 

that nitrogen uptake by the plant continues until maturity, even during the transition from 

vegetative to reproductive growth. The nitrogen remobilized from the vegetative tissues is one of 

the predominant sources of nitrogen for the grain (Pask et al., 2012). 

In 225 winter wheat varieties that represent 25 years of European winter wheat breeding, 

the additive genetic effect of nitrogen use efficiency increased 0.33% per year based on the 

progression of nitrogen utilization increasing 0.20% per year (Cormier et al., 2013). A current 

challenge is to improve NUE in wheat to produce more with less N input. Kanampiu et al. (1997) 

described varieties with a high harvest index and low forage (biomass) yield had lower plant 

nitrogen loss, and could be targeted traits for nitrogen use efficient wheat varieties. One 

https://www.epa.gov/roe/
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challenge is said to be the negative correlation observed between nitrogen uptake and utilization 

(Gallais and Coque, 2005). Nitrogen uptake efficiency accounted for 54% and 72% of the 

genotypic variation in nitrogen use efficiency soft red winter wheat grain yield and grain protein, 

respectively (Van Sanford and MacKown, 1986). 

1.12 Traits with influence on yield: prospects of further selection 

Crop improvement for high- or low-input environments require detailed information about 

contribution of yield-contributing traits in the final harvestable organs. In very applied and 

practical breeding programs, most of the focus is on genetic gains for yield. However, dissecting 

grain yield in wheat into the contributing traits in a target environment will identify targets of 

further improvements (Figure 1). 

 

 

Figure 1. Grain yield can be divided into the two main components of grain number (GN) and 

kernel weight (KW). Grain number is further dissected into number of spikes per unit area (on 

the far right), number of spikelets in each spike (middle sketch), and number of grains per each 

spikelet. The kernel weight (KW) is the contribution of each individual grain to total yield. This 

figure is adapted from a manuscript from major advisor lab that is under evaluation for 

publication. 

  

Yield can be defined in many different ways. For example, grain yield can be defined as 

the product of the number of grains per unit area and kernel weight (Abbate et al., 1998). 
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Alternatively, grain yield can be presented by the product of tiller density, kernels per head, and 

kernel weight (Brucker and Morey, 1988). Dhugga and Waines, (1989) proposed that grain yield 

can be defined as the reproductive sink capacity for dry matter, since more than 80% of the post-

anthesis dry matter is deposited into the grain.  

Previous studies have shown grain yield has been more impacted by the changes in the 

number of grains per area than kernel weight (Abbate et al., 1998), under both low nitrogen and 

high nitrogen environments (Le Gouis et al., 2000). The relationship between grain number and 

grain weight can be described as competitive, where an increase in the number of grains led to a 

decrease in thousand kernel weight, and vice versa (Le Gouis et al., 2000). However, alternative 

and contradicting results from Miralles and Slafer (1995) and Ugarte et al. (2007) describe this 

relationship as non-competitive for the available assimilates. The grain number per unit area was 

shown to be strongly correlated with the grain to spike weight ratio, and contributed to yield 

improvement in Argentina (Abbate et al., 1998).  

Evidence shows that exotic translocations such as the 1B/1R rye translocation onto the 

short arm on chromosome 1B (Rayburn and Carver, 1988), has contributed to grain yield by 

increasing the number of spikes, thousand kernel weight, and test weight (Villareal et al., 1995). 

The same translocation was shown to confer delayed leaf senescence, or the stay-green 

phenotype (Chen et al., 2010). Chen et al. (2010) performed an experiment where two genotypes 

with the 1BL/1RS translocation experienced higher values of photosynthesis than the controls 

without the translocation, resulting in producing larger grains by extending the flag leaf 

photosynthetic competence. 

Gaju et al. (2014) suggest delayed senescence would extend the grain filling period to 

allow for more photosynthesis for higher grain yields. The stay-green trait is the ability to retain 

green leaf area during grain filling. Delayed senescence, or promoting the stay green phenotype, 

allows crops to use up more agriculture inputs, extending the life span of individual leaves, and 

increase canopy duration (Thomas and Smart, 1993). The more time is allowed for 

photosynthesis to occur in the leaves, the more assimilates can be supplied to the grain. By 

further postponing senescence, more time can be allocated for grain filling and overall yield 

improvement by producing more carbohydrates for above ground growth and increasing the 

source to sink ratio. 
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For soft red winter wheat, the number of spikes per square meter and 500-kernel weight 

were highly significant and contributed to yield variation (Green et al., 2012). For grain size and 

weight, several important genes have been identified. The sucrose synthase 2 gene (TaSus2) 

contains a single nucleotide polymorphism for two distinct haplotypes, Hap-H and Hap-L, and 

both haplotypes were significantly associated with thousand grain weight (Jiang et al., 2011). 

The gene associated with grain weight, TaGW2, was identified in homologous group 6 

chromosomes and the favorable haplotype on 6A (TaGW2-6A) confirmed wider grains and 

higher grain weight (Su et al., 2011). Other genes including TaGS5-3A and TaCKX6-D1 were 

found to be positive regulators of grain size and weight in wheat (Ma et al., 2016; Zhang et al., 

2012).  

In wheat, an increase in yield is not the result from an increase in biomass production, but 

from increasing grain number and size (Green et al., 2012; Lawlor, 2002). This indirectly 

increases harvest index. Austin (1980) hypothesized that the theoretical limit for harvest index 

for wheat is 60%. Most studies report harvest index to be between 0.40 – 0.50 (Green et al., 

2012), even under contrasting nitrogen environments (Cormier et al., 2013; Gaju et al., 2011; 

Hitz et al., 2017). Therefore, increases in biomass can lead to higher grain yield if harvest index 

stays unchanged.  

1.13 Conclusion 

Trait improvement for wheat can be dissected for yield potential in a high input 

environment and also for adaptability in a low input environment. The benefits of high inputs are 

associated with increasing genetic gains and yield performance. However, examining traits and 

breeding under less inputs and resources can be beneficial for selecting germplasm that 

maximize resource utilization under limited environment. The goal of this dissertation is to 

dissect the roles of yield and quality contributing traits under low input and high input 

environments. The first objective of this dissertation is to identify genomic regions associated 

with yield determining traits in soft red winter wheat population. The ability to utilize the wheat 

reference genome along with an elite population of diverse soft red wheat breeding lines from 

different breeding programs allowed identification of marker trait associations and potential 

quantitative trait loci for yield improvement. The second objective of this dissertation is to 

identify wheat traits, cultivars, and management adapted to a low-N environment. The 
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interaction of wheat cultivars, nitrogen applications, and environment was studied to determine 

germplasm and traits that can be used as founders for a new breeding population.  
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 TRANSFERABILITY OF MARKER TRAIT 

ASSOCIATIONS IN WHEAT IS DISTURBED MAINLY BY GENOTYPE 

BY ENVIRONMENT INTERACTIONS 

A version of this chapter was submitted to Functional & Integrative Genomics  

 

Data for the transferability testing for this chapter comes from the Triticeae CAP project, funded 

by NIFA-AFRI Grant no. 2011-68002-30029 from the USDA National Institute of Food and 

Agriculture.  

2.1 Introduction 

Over 35% of the world’s population relies on wheat as a main source of food (Bushuk, 1997a). 

Wheat is widely cultivated around the world for its adaptability to diverse growing regions and 

environmental conditions. The United States produced 51.3 million metric tons of wheat during 

the 2018-2019 season (USDA, 2019), where most wheat harvested occurs west of the Mississippi 

River and in the Great Plains (Leff et al., 2004). However, soft red winter (SRW) wheat is grown 

mainly in the Midwestern and eastern United States, accounting for 15-20% of US wheat 

production (USDA, 2019). Specifically, the growing region extends from 30°N to 45°N in latitude 

and about 73°E to 96°W in longitude (Bacon, 2001). In the Midwest and eastern wheat breeding 

region, grain yield and resistance to Fusarium head blight disease are the underlying traits for 

profitability. The soft wheat products require minimal gluten protein, and lower protein levels than 

hard wheats (Kiszonas et al., 2013). Therefore, producing more grain is the first focus of most 

SRW wheat breeding programs.  

Global demand for wheat is growing faster than genetic gains in yield potential (Reynolds et 

al., 1999). In the Great Plains region, the annual rate of genetic gain was estimated at 0.44%, 

mainly due to traits contributing to an increase in grain number (Donmez et al., 2001). The USDA 

winter wheat regional performance nurseries for the Great Plains region displayed similar results 

over a 50-year period, with estimated genetic gain for grain yield at 0.79% per year. From 1919 to 

2008, the genetic gains in SRW wheat in multiple environments ranged from 0.56% to 1.41% 

(Green et al., 2012).  
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Much of hereto forth yield increases were due to increases in the number of spikes per area, 

the number of seeds per spike and spikelet, and harvest index - producing more grain from 

increasing yield components but maintaining the same biomass (Green et al., 2012). With harvest 

index approaching its theoretical maximum biologic limits (Austin et al., 1980), increasing 

biomass can provide an opportunity to increase the photosynthetic tissues for fixing carbon and a 

productive canopy to capture radiation energy and convert it into dry matter. Reynolds et al. (2005) 

reported that an increase in radiation use efficiency, grain number, and grain yield were positively 

associated with an increase in above ground plant biomass.  

Breeding methodologies and techniques have changed drastically over the years. Further 

advances in statistical methodology and molecular markers led to the construction of genetic maps, 

evaluating complex traits, and associating the phenotypic variation with molecular markers (Devos 

et al., 1992; Helentjaris et al., 1986). The genetic maps facilitated the identification of quantitative 

trait loci (QTL) - the genomic region responsible for trait variation (Doerge, 2002). In wheat, QTL 

mapping has been performed for traits including yield components (Kumar et al., 2007), plant 

height (Cui et al., 2011), heat tolerance (Paliwal et al., 2012), grain quality (Olmos et al., 2003), 

and disease tolerance (Löffler et al., 2009; Shen et al., 2003; Zwart et al., 2010), among others. 

The identification of QTL has led to the use of molecular markers in screening germplasm for trait 

improvement (Anderson et al., 2001; Kirigwi et al., 2007). Bi-parental mapping is a powerful 

mapping tool. However, the limited number of recombination events in bi-parental populations are 

limited, which restricts the allelic diversity (Doerge, 2002; Myles et al., 2009) and leads to a low 

mapping resolution ( Zhu et al., 2008). 

The need to dissect complex traits within a large, diverse population led to the development 

of statistical methods that gave rise to genome-wide association studies (GWAS). Unlike bi-

parental mapping, GWAS consists of genetically diverse germplasm that harbor many historical 

and ancestral recombination events. GWAS is based on the strength of linkage disequilibrium (LD) 

between the markers and the polymorphisms controlling the observable phenotypes in a population 

(Yu and Buckler, 2006; Zhu et al., 2008). The statistical power to detect causal polymorphisms is 

based on the extend of LD in the population (Ersoz et al., 2007). Wheat, being a self-pollinating 

species, experiences relatively slow LD decay. Selection on wheat, as it is practiced in breeding 

prorams, leads to relatively slower rates of LD decay, as Liu et al. (2018) displayed that the extent 



 

 

32 

of high LD islands is much greater in cultivars (1,053kb) than landraces (785kb) due to the effect 

of artificial selection.  

GWAS has been used previously to study wheat for kernel size and milling quality 

(Breseghello and Sorrells, 2006; Daba et al., 2018; Gaire et al., 2019), spike traits (Liu et al 2018), 

root traits (Beyer et al., 2019), and grain yield and yield components traits (Sukumaran et al., 2015; 

Lozada et al., 2018). These studies implemented the various GWAS mapping approaches such as 

mixed linear model (MLM) (Yu et al., 2006) and compressed mixed linear model (CMLM) (Z. 

Zhang et al., 2010) to appropriately account for the underlying population structure and kinship. 

Recent studies have shown that single locus models, such as MLM and CMLM, generate more 

false negatives due to overfitting (Kaler et al., 2020; Wen et al., 2018). The multi-locus Fixed and 

Random Model Circulating Probability Unification (FarmCPU) model was shown to better control 

false positives and false negatives (Kaler et al., 2020; Liu et al., 2016), improving statistical power 

to identify true marker trait associations (MTAs). 

In this study, our goal was to identify MTAs for yield and yield component traits in an elite 

SRW winter wheat population developed by eastern and midwestern public breeding programs. 

Previous work by Gaire et al. (2019) in this population identified MTAs concerning SRW wheat 

end use quality traits in this population, but no work to date has explored yield related traits in the 

context of GWAS. We achieve this goal by field-based phenotyping and high-throughput 

genotyping.  

2.2 Materials and Methods 

2.2.1 Experimental design 

The Triticeae Coordinated Agricultural Project (TCAP) population consists of lines 

developed from breeding programs in Illinois, Kentucky, Maryland, Missouri, New York, Ohio, 

Indiana, and Virginia. The pedigree of lines are detailed in Huang et al (2016). The germplasm 

were grown in two growing seasons 2016-17 (WL17) and 2017-18 (WL18) at the Purdue 

Agronomy Center for Research and Education (ACRE) in West Lafayette, IN (40.43° N, 86.99° 

W) after a previous soybean crop. Similar field layouts and germplasm were planted in both years. 

Trials were planted in late September and harvest in late June of the following year. The 
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experiments were planted using a Hege (Wintersteiger, Australia) drill planter and harvested with 

a Wintersteiger plot harvester at physiological maturity. In each year, two replications were planted. 

Each replicate was a 13-row x 24-column layout, consisting of eight incomplete blocks, each 

accommodating 39 plots. Each plot measured 1.22m x 1.22m and we planted 20 grams seed per 

plot, which amounts to approximately plant density of 370 - 420 seeds per square meter. Before 

planting, 336 kg ha-1 of mono-ammonium phosphate (11-52-0) was applied. A spring nitrogen top-

dress application of 112 kg ha-1 in the form of liquid urea ammonium nitrate (28-0-0) was applied 

as recommended by crop management practices in the region. Trials were rainfed and did not rely 

on any form of irrigation. Monthly precipitation and temperature obtained from iClimate (2019) 

are detailed in Table 1. 

 

Table 1. Monthly precipitation and temperature in West Lafayette, Indiana, for the two cropping 

seasons of the study. 

 Temperature (C)   Precipitation (mm) 

Month 2016-2017 2017-2018   2016-2017 2017-2018 

September 20.8 19.3   81.0 50.5 

October 15.1 14.5   32.8 68.1 

November 8.3 5.3   135.9 125.8 

December -1.9 -1.4   58.9 20.6 

January -0.2 -4.7   111.7 39.9 

February 4.7 0.4   19.9 139.8 

March 5.6 2.8   109.1 79.1 

April 13.5 6.8   108.7 73.7 

May 15.7 21.1   175.3 93.7 

June 22.2 22.8   135.4 157.8 

 

2.2.2 Trait measurements 

We measured grain yield (YLD), days to heading (HD), days to maturity (MD), thousand 

kernel weight (TKW), biomass (BIO), number of spikes per area (NS), number of grains per spike 



 

 

34 

(GPS), grain weight per spike (GWS), and plant height (PH). YLD was measured at harvest, 

adjusted for 13% seed moisture, and was expressed as kg ha-1. HD was determined by complete 

emergence of heads (Feekes 10.5, Zadoks 58) in more than 50% of individual plants in a plot and 

expressed as the number of days after January 1st. Similarly, MD was determined when more than 

50% of plot reached physiological maturity (Feekes 11.3, Zadoks 91) and expressed as the number 

of days after January 1st. At maturity, PH was recorded by four random measurements per plot, 

from the ground to the top spikelet, excluding the awns, and expressed in centimeter (cm). Yield 

components were evaluated by measuring traits from an area of 0.25m x 0.3048m that was cut 

from the ground level after physiological maturity. First aboveground BIO was dried to constant 

weight, measured and expressed in grams (g). Next effective tiller numbers per unit area were 

counted from the cut sample and represented as number of spikes (NS). Then, five random spikes 

were randomly sampled from the total cut area to measure the number of grains per spike (GPS), 

and grain weight per spikes (GWS) – also expressed in grams. TKW was measured by counting 

and weighing 1,000 kernels, which was expressed in grams. 

2.2.3 Description of genotypic data 

This population was initially genotyped by using the 90K SNP chip array (Wang et al., 2014), 

and the marker density was later increased by completing genotyping-by-sequencing method, as 

explained in Poland et al. (2012). Briefly, reduced genomic libraries were created using Pst1-Msp1 

restriction enzyme combination consistent with Poland et al. (2012). The samples were pooled 

together at 96-plex to create libraries and each library was sequenced on a single lane of Illumina 

Hi-Seq 2500. Variant calling was performed using the TASSEL 5 GBSv2 pipeline (Bradbury et 

al., 2007) with 64 base k-mer length and minimum k-mer count of five. Reads were aligned to the 

wheat genome sequence assembly IWGSCv1.0 (Appels et al., 2018), using aln method of 

Burrows-Wheeler aligner (BWA) version 0.7.10 (Li and Durbin, 2009). For filtering of both 90K 

SNP chip array and GBS markers, we excluded any markers missing ≥ 10% data and those with 

minor allele frequency less than 0.05. We then used Linkage Disequilibrium K-number neighbor 

imputation (LD-kNNi) algorithm (Money et al., 2015) implemented in TASSEL 5 (Bradbury et 

al., 2007) to impute the missing markers. Markers that were not mapped to any specific 

chromosome were excluded from further analysis. The final genotypic dataset that was used in this 
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study consisted of 45K variants of which 13K were produced from the 90K SNP chip array pipeline 

and 32K were produced from GBS pipeline. 

2.2.4 Statistical analysis of phenotypic data 

In order to test the significance of genotypes, year, and genotype x year interaction, analysis 

of variance (ANOVA) was performed in R environment (R Core Team, 2019). For each trait, the 

following ANOVA model was fitted: 

 

[𝟏] 𝑌𝑖𝑗𝑘𝑙 = 𝜇 + 𝐺𝑖 + 𝑌𝑗 + 𝑅𝑘(𝑌𝑗) + 𝐺𝑌𝑖𝑗 + 𝐵𝑙(𝑅𝑌𝑘𝑗) + 𝜀𝑖𝑗𝑘𝑙  

 

Where the response variable 𝑌𝑖𝑗𝑘𝑙 is the observed phenotypic value of the ith genotype, in the 

jth year, in the kth replicate, and the lth incomplete block; 𝜇 is the overall mean, 𝐺𝑖 is the effect of 

the ith genotype, 𝑌𝑗 is the effect of the jth year, 𝑅𝑘(𝑌𝑗) is the effect of the kth replicate within the jth 

year, 𝐺𝑌𝑖𝑗 is the interaction effect of the ith genotype by the jth year, and 𝐵𝑙(𝑅𝑌𝑘𝑗) is the effect of 

the lth incomplete block within the kth replicate and the jth year. The 𝜀𝑖𝑗𝑘𝑙 represents the residual 

error. 

To produce phenotypic values of each line for GWAS analysis, the best linear unbiased 

estimate (BLUE) values were derived by implementing a mixed model (Yu et al., 2006) using the 

‘lme4’ package (Bates et al., 2015) in R environment (R Core Team, 2019) in equation [1], where 

genotype was considered as fixed effect and other terms were considered as random effects. The 

Pearson correlation coefficient was calculated by cor function in R by using BLUE values. Path 

analysis was performed on BLUE values by using the latent variable analysis ‘lavaan’ package 

(Rosseel, 2012) in R environment (R Core Team, 2019). 

2.2.5 Estimating heritability estimates 

Estimation of heritability based on experimental design requires a balanced design where all 

experimental entries are included in each replicate. Therefore, for producing variance components 

for estimating the broad sense heritability (H2), we used a reduced model as follows: 

 

[𝟐] 𝑌𝑖𝑗𝑘𝑙 = 𝜇 + 𝐺𝑖 + 𝑌𝑗 + 𝑅𝑘(𝑌𝑗) + 𝐺𝑌𝑖𝑗 + 𝜀𝑖𝑗𝑘𝑙  
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Where the response variable 𝑌𝑖𝑗𝑘𝑙 is the observed phenotypic value of the ith genotype, in the 

jth year, in the kth replicate, and the lth incomplete block; 𝜇 is the overall mean, 𝐺𝑖 is the effect of 

the ith genotype, 𝑌𝑗 is the effect of the jth year, 𝑅𝑘(𝑌𝑗) is the effect of the kth replicate within the jth 

year, and 𝐺𝑌𝑖𝑗 is the interaction effect of the ith genotype by the jth year. The 𝜀𝑖𝑗𝑘𝑙 represents the 

residual error. In this model all terms were considered as random effect. The broad sense 

heritability (H2) on an entry-mean basis was estimated following the equation (Nyquist, 1991; 

Piepho & Möhring, 2007a):   

 

 [3] 𝐻2 =
𝜎𝑔

2

𝜎𝑔
2+𝜎𝑔𝑦/𝑦

2 +𝜎𝜀/𝑦𝑟
2   

 

where 𝜎𝑔
2 is the genetic variance, 𝜎𝜀

2 is the error variance, and y is the number of years (𝑦 =

2), and 𝑟 is the number of replications per year (𝑟 = 2).  

2.2.6 Genome-wide association studies (GWAS) 

Principal component analysis (PCA) of marker data was used to visualize the underlying 

population structure. We used the first three principal components (PCs) to produce a 3D scatter 

plot. Pair-wise LD estimates between adjacent markers were calculated, as the squared coefficient 

of correlation (r2), using TASSEL 5 (Bradbury et al., 2007) with a sliding window of 1000 markers. 

The pairwise LD estimates were plotted against the physical distance to determine the decay of 

LD against physical range on each chromosome, and in particular around the regions, where 

marker-trait associations were identified in GWAS. LD decay plots generated in R using the Hill 

and Weir (1988) method and loess regression with assessment at r2 value of 0.2 (Edae et al., 2014; 

Vos et al., 2017).  

GWAS was performed using the GAPIT software (Lipka et al., 2012) in R for each trait 

using the Fixed and Random Model Circulating Probability Unification (FarmCPU) model (Liu et 

al., 2016) and first 3 PCs were used to control the population structure (Price et al., 2006). We 

reported MTAs that were identified at -logP > 4.0 (pvalue < 0.0001). If a genomic region was 

identified with multiple MTAs close to each other, we only report a representative MTA. We also 

identified MTAs that passed a 5% false discovery rate (FDR) for controlling multiple testing 
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(Benjamini and Hochberg, 1995). The coefficient of determination (R2) for each identified MTA 

was determined by fitting a linear model in R environment with the contrasting alleles of the 

marker and the 3 PCs as the covariates using an ordinary least squares regression. 

2.2.7 Transferability and validation of GWAS results 

YLD and HD data obtained from trials conducted in previous years and other states during 

the Triticeae CAP project were used to validate the transferability in other environments of the 

MTAs we identified in Indiana. This data comes from diverse environments i.e., five different 

locations and two growing seasons 2011-12 and 2012-13, as described by (Huang et al., 2016). 

These environments are: moderate nitrogen in Kentucky 2011-12 (KYM12), moderate nitrogen in 

Maryland 2011-12 (MDM12), moderate nitrogen in Missouri 2011-12 (MOM12) and 2012-13 

(MOM13), low nitrogen in Ohio 2011-12 (OWL12) and 2012-13 (OWL13), moderate nitrogen in 

Ohio 2011-12 (OWM12) and 2012-13 (OWM13), low nitrogen in Virginia 2011-12 (VAL12) and 

in 2012-13 (VAL13), and moderate nitrogen in Virginia 2011-12 (VAM12) and 2012-13 

(VAM13). We abbreviated grain yield and heading date we obtained from our 2016-17 and 2017-

18 seasons as WL17 and WL18. In total, we assembled data from 14 environments for validation 

and transferability examination. For WL17 and WL18 environments, we first accounted for 

incomplete block design and then included the data in the multi-environment data analysis. Multi-

dimensional scaling and linear discriminant analysis were used to cluster environments into 

seemingly homogeneous groups based on YLD or HD data. Then the accuracy of grouping was 

examined by cross validation. The cmdscale function in R was used to perform multidimensional 

scaling with Euclidean distances extracted using the dist function. Eigenvalues from three 

dimensions were extracted and incorporated into the lda function in the MASS package (Ripley et 

al., 2019) for linear discriminant analysis and cross validation by setting CV=TRUE. Upon 

confirmation of groupings, BLUEs were obtained for each homogeneous group following the same 

model [2] and GWAS analysis was completed for each homogeneous group. We considered a 

MTA as validated or transferable if identified with a -logP > 1.3 (pvalue < 0.05) in another 

homogenous group of environments. We chose this threshold because for validation, we are only 

interested in one specific marker and there is no need to control for testing of multiple hypotheses.   
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2.3 Results 

2.3.1 Phenotyping analysis and relationship among traits 

We evaluated grain yield and yield components of a soft red winter wheat population in 

West Lafayette, Indiana for two years. For all traits, the effect of genotype was significant at 0.001, 

indicating the presence of noticeable genetic variation in the germplasm. In addition, the effect of 

year, and replicate within years were significant at 0.001 for all traits except for GPS, where the 

effect of year, and rep within years were significant at 0.01. More importantly, the genotype x year 

interaction effect was significant at 0.001 for YLD, BIO, PH, HD, and MD, at 0.01 for NS, and at 

0.05 for GWS, but not significant for TKW and GPS (Table 2). The significant effect of genotype 

x year interaction will be further discussed in the GWAS section. 

 

Table 2: Analysis of Variance. 

  Trait 

Source of 

variance 
df YLD TKW BIO NS GPS GWS PH HD MD 

Genotype 269 *** *** *** *** *** *** *** *** *** 

Year 1 *** *** *** *** *** *** *** *** *** 

Genotype x 

Year 
269 *** ns *** ** ns * *** *** *** 

Rep(Year) 2 *** *** *** *** ** *** *** *** *** 

Block(Rep x 

Year) 
28 ** ns *** *** ns ns *** *** *** 

Significant values: *** < 0.001, ** < 0.01, * < 0.05, ns > 0.05 

df: degrees of freedom 

YLD: grain yield; TKW: thousand kernel weight; BIO: biomass; NS: number of spikes; GPS: grain per spike; 

GWS: grain weight per pike; PH: plant height; HD: days to heading; MD: days to maturity 

 

Grain yield ranged from 3,900 – 7,500 kg ha-1 with a mean of 5,830 kg ha-1 and heritability 

of 0.50 (Table 3). The top 10% highest yielding lines in the population averaged at 6,940 kg ha-1, 

while the 10% lowest yielding lines averaged 4,650 kg ha-1- a 1.5-fold difference. Not all of the 
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10% highest yielding entries were developed by one breeding program, indicating a potential for 

achieving genetic gains via germplasm exchange. Among these, high yielding lines developed 

from public breeding programs at Purdue (10 lines), Illinois (7 lines), Missouri (3 lines), Ohio 

State (2 lines), Kentucky (2 lines), and Maryland (2 lines) were identified.  

 

 

 

Table 3: Summary statistics and heritabilities (H2) based on WL1718. 

Trait Unit Mean SD Minimum Maximum H2 

Grain Yield kg ha-1 5827 678 3905 7500 0.50 

Thousand Kernel 

Weight grams 32 1.79 27 38 0.49 

Biomass grams 201 20 151 255 0.21 

Number of 

Spikes count 108 13 74 152 0.48 

Grain per spike count 37 4 25 50 0.44 

Grain weight per 

spike grams 0.98 0.14 0.68 1.38 0.41 

Plant Height centimeters 90 6 76 111 0.84 

Days to Heading Julian Days (from Jan 1) 133 2.01 128 139 0.69 

Days to Maturity Julian Days (from Jan 1) 171 1.28 168 175 0.62 

 

The traits with the greatest and significant positive phenotypic correlation to YLD were BIO 

(r = 0.29***), TKW (r = 0.29***), and GWS (r = 0.29***) (Table 4). BIO had an average of 201 

grams per cut area and heritability of 0.21. TKW ranged from 27.8 – 38.8 grams with a mean of 

32.3 grams and heritability of 0.49 (Table 3). The three lines with the greatest kernel weight were 

MD04W249-11-7, 04702A1-18, and MD03W64-10-3 and the three lines with the smallest kernel 

weight were OH08-178-52, VA09W-188WS, and MO080584. However, looking at the top 10% 

high yielding entries, the range of thousand kernel weight was narrower (30-35 grams), and around 

the average value for kernel weight. Total grain number in wheat is the cumulative effect of spike 

number per unit area and the number of grains per spike. The NS per measured area ranged from 
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74 to 152 spikes. The lines with greatest number of spikes were OH08-172-42, TRIBUTE, and 

IL08-12174 and the lines with lowest number of spikes per measured area were INW1021, 

0566A1-3-1-67, and 05251A1-1-136-9-5. GPS and GWS had a mean of ~37 grains per spike and 

0.98 grams, respectively and similar heritability estimates (Table 3). A significant negative 

correlation (r = -0.22***) was observed between NS and GPS (Table 4). This negative correlation 

has been observed previously in multiple experiments (Kotal et al., 2010; Philipp et al., 2018). PH 

had the highest heritability of 0.84, averaged at 90 cm, and showed a standard deviation of 6.2 cm. 

The tallest lines were CAYUGA, MO101329, and MO100647 while the shortest lines were 

03207A1-7-3-1, 9346A1-2-5-5-2-1, and MD03W665-10-5. The height of the 10% shortest lines 

averaged 80 cm. Lastly, the HD and MD had a mean of 133 and 171 days, respectively, and were 

highly correlated with one another (r=0.68***) (Table 4). Lines that headed later (>138 days) and 

matured later (> 173 days) included NY103-208-7263, NY99066-3444, CAYUGA, NY96009-

3037, and MEDINA, all varieties developed in New York and adapted to the eastern climate region. 

Both traits were significant and negatively correlated with YLD (r = -0.19**, r = -0.18**) (Table 

4) as this relationship has been documented previously (Addison et al., 2016).  

 

Table 4: Phenotypic correlations of BLUEs of nine measured traits. 

Trait TKW BIO NS GPS GWS PH HD MD 

GY 0.29*** 0.29*** 0.04 0.07 0.29*** 0.05 -0.19** -0.18** 

TKW  0.04 -0.18* -0.16** 0.28*** 0.01 -0.08 -0.16** 

BIO   0.47*** 0.24*** 0.22*** 0.31*** 0.09 0.13* 

NS    -0.22*** -0.31*** -0.14* -0.16** -0.10 

GPS     0.72*** 0.28*** 0.22*** 0.24*** 

GWS      0.26*** 0.12* 0.10 

PH       0.38*** 0.28*** 

HD        0.68*** 

MD         

Significance: < 0.001 = ***, <0.01 = **, < 0.05 = *. 

YLD: grain yield; TKW: thousand kernel weight; BIO: biomass; NS: number of spikes; GPS: grain per spike; 

GWS: grain weight per pike; PH: plant height; HD: days to heading; MD: days to maturity 
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2.3.2 Path coefficient analysis 

The correlation magnitudes were further broken down by using path analysis, following 

Dewey and Lu (1959). Path analysis parses out the correlation magnitude to direct and indirect 

components of influence (Dewey and Lu, 1959). In Figure 2, the single arrow lines indicate direct 

influence as measured by path coefficients (PXX) and the indirect effects are the association 

between variables measured by correlation coefficients (rxx). The indirect effects are the product 

of the path coefficients and correlation coefficients. The sum of the path coefficients and indirect 

effects of correlation coefficients equal the phenotypic correlations, thus breaking down the 

reasoning for positive and negative correlations observed.   

 

 

Figure 2: Path coefficient analysis diagram. 

 

In the a priori model, grain yield is directly affected by traits with significant phenotypic 

correlation (Table 4). These traits are thousand kernel weight, grain weight per spike, biomass, 

heading date, and maturity date. Biomass had the largest direct path coefficient of 0.27, followed 

by grain weight per spike and thousand kernel weight coefficients of 0.21, and 0.19, respectively 

(Table 5). The indirect effect of thousand kernel weight on grain weight per spike represents almost 
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one-sixth of the phenotypic correlation (Table 4) and direct path coefficient between grain weight 

per spike and yield (Table 5. Biomass and grain weight per spike are correlated (r=0.22; Table 3) 

and positively contribute to correlations with grain yield. Days to heading showed a negative direct 

effect on grain yield with path coefficient of -0.15 (Table 5), consistent with its negative correlation 

with grain yield (r = -0.19; Table 4). Similar patterns were observed for days to maturity.  

 

 

Table 5: Path coefficients for direct and indirect effects 

Path  Effects 
 

Thousand kernel weight → Yield  
 

Coefficients 
 

P16 Direct effect 0.19  
P16 x 

r12 

Indirect effect via grain weight per 

spike 

0.06 

 
P16 x 

r13 

Indirect effect via biomass 0.01 

 
P16 x 

r14 

Indirect effect via days to heading 0.01 

 
P16 x 

r15 

Indirect effect via days to maturity 0.02 

 
 Total 0.29 

Grain weight per spike →Yield  
  

 
P26 Direct effect 0.21  
P26 x 

r21 

Indirect effect via thousand kernel 

weight 

0.05 

 
P26 x 

r23 

Indirect effect via biomass 0.06 

 
P26 x 

r24 

Indirect effect via days to heading -0.02 

 
P26 x 

r25 

Indirect effect via days to maturity -0.01 

 
 Total 0.29 

Biomass →Yield  
  

 
P36 Direct effect 0.27 

 
P36 x 

r31 

Indirect effect via thousand kernel 

weight 

0.01 

 
P36 x 

r32 

Indirect effect via grain weight per 

spike 

0.05 

 
P36 x 

r34 

Indirect effect via days to heading -0.01 

 
P36 x 

r35 

Indirect effect via days to maturity -0.01 

 
 Total 0.29 
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Table 5 continued 

Days to heading → Yield  
  

 
P46 Direct effect -0.15 

 
P46 x 

r41 

Indirect effect via thousand kernel 

weight 

-0.01 

 
P46 x 

r42 

Indirect effect via grain weight per 

spike 

0.02 

 
P46 x 

r43 

Indirect effect via biomass 0.02 

 
P46 x 

r45 

Indirect effect via days to maturity -0.07 

 
 Total -0.19 

Days to maturity → Yield  
  

 
P56 Direct effect -0.11 

 
P56 x 

r51 

Indirect effect via thousand kernel 

weight 

-0.03 

 
P56 x 

r52 

Indirect effect via grain weight per 

spike 

0.02 

 
P56 x 

r53 

Indirect effect via biomass 0.04 

 
P56 x 

r54 

Indirect effect via days to heading -0.10 

 
 Total -0.18 

 

2.3.3 Genome-wide association studies 

The objectives of this study were to identify MTAs that control grain yield and other 

agronomic traits in this population in the Indiana environment and examine the transferability of 

MTA results across other environments. Of the 45K variants used in this study, approximately 

17K, 22K, and 5.7K were located on sub-genome A, B, and D, respectively. The first three 

principal components (PCs) of all marker data explained 6.5%, 5.2%, and 3.8% of the total 

variation (Figure 3). Consistent with the reports of Gaire et al. (2019) and Huang et al. (2016), PCs 

separated two distinct groups, which were previously attributed to whether germplasm is progeny, 

close relative, or descendants of the soft red winter wheat variety ‘Truman’ or not (Huang et al., 

2016). Linkage disequilibrium persisted variably across different chromosomes and the half decay 

distance (in base pairs) are presented in Table 6 for each chromosome. For example, LD persisted 

the longest physical range on chromosomes 2B (~125 mega base pairs Mbp) and 7D (109 Mbp). 

In contrast, chromosomes 5D (0.74 Mbp) and 6D (0.71 Mbp) displayed the fastest LD decay. 
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Figure 3: Principal component analysis based on all SNPs for 270 lines. (A) 3D scatterplot of first 

three principal components (PCs). (B) Scree plot describing the amount of variation by each 

principal component. 

Table 6: LD decay half distance per chromosome and genome. 

Chromosome 
Half Decay Distance  

(in base pairs) 

1A 2,110,000 

1B 12,150,000 

1D 6,320,000 

2A 3,640,000 

2B 124,980,000 

2D 6,460,000 

3A 1,290,000 

3B 2,290,000 

3D 2,420,000 

4A 1,680,000 

4B 4,990,000 

4D 1,090,000 

5A 3,470,000 

5B 3,410,000 

5D 740,000 

6A 1,320,000 

6B 2,670,000 

6D 710,000 

7A 1,260,000 

7B 2,260,000 

7D 108,980,000 

GENOME 1,052,196 
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We used the first 3 PCs to account for the underlying population structure in GWAS analysis 

for all traits evaluated in West Lafayette, IN, USA. For GWAS we used estimates of phenotypic 

data based on two years of study i.e., WL17 and WL18, termed WL1718 throughout, and 45K 

genome-wide variants for GWAS. In this study, we reported and discussed MTAs that were 

identified at –logP > 4.0 (pvalue < 0.0001) threshold. A total of 62 MTAs were identified for eight 

traits in WL1718 except for NS on 20 chromosomes (all excluding 3D). Based on their physical 

distances and the LD decay, the 62 MTAs were resolved in 59 independent loci (Figure 4). Of the 

59 loci, 11 passed the 5% FDR threshold for grain yield, days to heading, days to maturity, and 

plant height. Chromosome 3B showed the highest number of loci. Regions on chromosome 5A 

were found to be associated with four phenotypic traits including grain weight per spike, grain per 

spike, days to maturity, plant height, and thousand kernel weight (Figure 4; Table 7). Plant height 

showed maximum number of MTAs among traits. None of the MTAs were associated with 

multiple traits.  
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Figure 4: Genetic map of all significant MTAs identified by FarmCPU method for yield and 

yield component traits. 

 

For YLD, eleven MTAs were reported on chromosomes 1A, 3B, 6A, 6B, 7A, 7B, and 7D (Figure 

7). The MTA with the largest -logP value of 16.35 on chromosome 7D located at 633,027,374 

base pairs (bp) explained 18% of phenotypic variation for grain yield. The next largest signal on 

chromosome 1A of -logP = 8.27 had allele effect of 174 kg ha-1 (Table 7). 

Five MTA were identified for GPS on 3B, 4D, 5A, 5B, and 7D (Figure 5). These marker 

effects accounted for approximately 2 grain per spike and explained 4 – 7% of the phenotypic 

variation (Table 7). One MTA for GWS were found on chromosome 3B. Marker 
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gbs_3A_739555657 explained 8% of the phenotypic variation and accounted for an allele effect 

of 63 milligrams of grain weight per spike (Table 7). Lastly, TKW had 7 MTAs on chromosomes 

1D, 2A, 3B, 5A, 6A, and 6B (Figure 5). The strongest signal for TKW was identified on 5A at 

position 685,795,509 bp. This region exerted an effect of 540 mg and covered 10% of total 

phenotypic variation. The next largest signal was observed at position 206,962,855 bp on 

chromosome 2B with an effect of 690 mg and phenotypic explanation of 8%.  

For BIO, we identified 4 MTAs on chromosomes 1B, 3A, and 5D (Figure 5, Table 7). The 

largest signal for biomass was identified on chromosome 5D at position 365,732,020 bp with –

logP of 5.65 that explained 9% of variation observed in biomass. The next large signal for biomass 

was -logP of 4.69 on chromosome 3A. Independent MTAs for BIO represented 4-9% of the 

phenotypic variation with positive allele effects between 8.00 – 13.41 grams.  

Ten MTAs were identified for days to heading for WL1718 across nine chromosomes 

(Figure 8). Two MTAs on 7D had -logP values of 5.77 and 8.38 with allele effects of 0.74 and 

0.58 earlier heading date, respectively. Ten MTAs were identified with –logP up to 9.41 for days 

to maturity (Table 7). The most significant signal was identified at 44,485,665 bp position of 

chromosome 2D, which explained 16% of variation. Eleven MTAs were identified with –logP up 

to 9.90 for PH. One marker on 6D explained 16% of the phenotypic variation for plant height and 

had a minor allele frequency of 0.07 (Table 7).  
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Table 7: MTAs for yield and yield component traits in WL1718 environment. 

Trait Chr Marker Position Allelesa  MAF -logP Effect R2 Units 

Biomass 1B IWA6758 474118005 A/G (226/20) 0.12 4.07 12.30 0.04 grams 

 1B IWB72708 473529137 T/C (227/19) 0.11 4.36 12.80 0.05 grams 

 3A 3A_419257151 419257151 A/G (241/9) 0.07 4.69 13.41 0.07 grams 

 5D 5D_365732020 365732020 A/C (212/51) 0.21 5.65 8.00 0.09 grams 

Grain per 

spike 
3B 3B_22698880 22698880 A/G (246/20) 0.08 4.07 1.99 0.06 count 

 4D 4D_479593371 479593371 G/A (229/39) 0.15 4.33 1.75 0.07 count 

 5A 5A_606524326 606524326 C/G (221/44) 0.17 4.08 1.67 0.06 count 

 5B 5B_546826603 546826603 G/A (242/24) 0.1 4.61 2.33 0.04 count 

 7D 7D_440881288 440881288 G/A (233/34)  0.13 4.04 1.87 0.05 count 

Grain 

weight per 

spike  

3A 3A_739555657 739555657 T/C (238/31) 0.12 4.60 0.063 0.08 grams 

Maturity 

date  
1B 1B_680465515 680465515 G/A (241/6) 0.06 4.92 0.64 0.05 Julian days 

 1D 1D_458723021 458723021 G/A (247/21) 0.08 4.30 0.48 0.03 Julian days 

 2A 2A_515253009 515253009 T/C (230/3) 0.08 6.24 0.59 0.03 Julian days 

 2D 2D_44485665 44485665 A/G (237/31) 0.12 9.41 0.74 0.16 Julian days 

 3B 3B_85344544 85344544 C/T (238/7) 0.07 6.46 0.71 0.04 Julian days 
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Table 7 continued 

 4A 4A_688222191 688222191 A/G (244/7) 0.06 4.72 0.49 0.03 Julian days 

 5A 5A_26153196 26153196 G/A (135/126) 0.48 4.28 0.21 0.02 Julian days 

 5B 5B_158399441 158399441 G/A (239/28) 0.11 4.91 0.32 0.02 Julian days 

 5D IWB54292 556553226 T/G (173/96) 0.36 4.31 0.19 0.05 Julian days 

 6B IWA3268 705159045 T/C (232/35) 0.14 4.09 0.33 0.07 Julian days 

Plant height  2A 2A_66985350 66985350 C/A (248/19) 0.08 4.24 2.39 0.06 centimeters 

 2A IWB51951 92797308 T/G (227/43) 0.16 5.01 1.46 0.08 centimeters 

 2B 2B_146441175 146441175 A/G (230/34) 0.14 7.60 1.77 0.04 centimeters 

 2B 2B_776795892 776795892 G/A (215/5) 0.11 9.90 3.00 0.04 centimeters 

 3A 3A_699195908 699195908 T/C (233/6) 0.08 5.41 2.28 0.07 centimeters 

 3B IWB9589 611497265 T/C (211/52) 0.21 6.49 1.30 0.10 centimeters 

 4B IWB43355 657825660 A/G (150/114) 0.43 7.59 1.45 0.07 centimeters 

 5A 5A_480705790 480705790 C/A (255/13) 0.05 6.45 2.64 0.03 centimeters 

 6A 6A_419959989 419959989 T/G (149/113) 0.43 8.09 1.29 0.07 centimeters 

 6B 6B_21208064 21208064 G/A (239/29) 0.11 5.08 1.51 
< 

0.01 
centimeters 

 7B IWA4750 701186266 A/G (172/93) 0.35 6.67 1.20 0.01 centimeters 
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Table 7 continued 

Thousand 

kernel 

weight 

1B 1B_542725487 542725487 A/C (212/53) 0.21 4.77 0.37 0.03 grams 

 1D 1D_32441418 32441418 T/C (232/27) 0.12 5.08 0.49 0.02 grams 

 2A 2A_718459754 718459754 T/G (253/16) 0.06 4.37 0.57 0.04 grams 

 2B 2B_206962855 206962855 A/G (236/14) 0.09 5.89 0.69 0.08 grams 

 5A 5A_685795509 685795509 C/A (226/42) 0.16 6.30 0.54 0.10 grams 

 6A 6A_406733069 406733069 A/G (247/8) 0.06 4.68 0.82 0.07 grams 

 6B 6B_695913077 695913077 G/A (225/44) 0.16 5.67 0.45 0.02 grams 

Grain Yield 1A IWA5011 400311021 T/C (235/33) 0.13 5.90 191 0.04 kg ha-1 

 1A 1A_496309488 496309488 G/A (199/59) 0.24 8.27 174 0.06 kg ha-1 

 3B IWB32652 349636369 A/G (172/96)) 0.36 4.00 97 0.03 kg ha-1 

 3B 3B_310333182 310333182 G/A (221/19) 0.13 5.56 213 0.03 kg ha-1 

 6A IWB26414 5326425 A/G (236/30) 0.12 7.73 224 0.03 kg ha-1 

 6A IWB63176 63563014 A/G (193/74) 0.28 7.30 163 0.15 kg ha-1 

 6B IWB38887 696150409 A/G (143/126) 0.47 4.41 92 0.05 kg ha-1 

 6B 6B_73187805 73187805 G/A (251/15) 0.06 4.07 250 0.14 kg ha-1 

 7A IWB59141 6499010 A/C (194/69) 0.27 4.00 117 0.11 kg ha-1 

 7B IWB6720 59632081 A/C (227/39) 0.15 5.28 154 0.05 kg ha-1 

 7D 7D_633027374 633027374 C/T (236/17) 0.09 16.35 492 0.18 kg ha-1 
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Table 7 continued 

Days to 

Heading 
2B IWB34502 553613770 T/C (144/126) 0.44 6.62 0.44 0.01 Julian days 

 2D 2D_35683268 35683268 G/A (172/90) 0.35 4.81 0.37 0.02 Julian days 

 3A IWB6009 669524837 T/G (144/126) 0.47 6.03 0.39 0.05 Julian days 

 3B 3B_705185712 705185712 C/T (142/121) 0.46 5.98 0.39 0.02 Julian days 

 4B 4B_665871684 665871684 C/T (241/10) 0.07 6.92 1.11 0.02 Julian days 

 5B 5B_167440402 167440402 A/G (241/26) 0.10 4.33 0.42 0.02 Julian days 

 6A 6A_565344991 565344991 C/A (151/110) 0.42 7.39 0.46 0.02 Julian days 

 7A 7A_690860911 690860911 G/A (185/66) 0.28 4.86 0.38 0.05 Julian days 

 7D 7D_301325415 301325415 G/T (243/21) 0.09 5.77 0.74 0.10 Julian days 

 7D 7D_58927880 58927880 C/T (204/61) 0.24 8.38 0.58 0.08 Julian days 

aThe underlined nucleotide represents the favorable allele. For days to heading, days to maturity, and plant height, the favorable allele was reducing whereas 

all other traits the favorable allele was considered as increasing. 

Chr: chromosome 

MAF: minor allele frequency 

R2: coefficient of determination 
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Figure 5: Manhattan plots of traits based on FarmCPU method. Blue horizontal line indicates -

logP = 4.0, and red horizontal line indicates 5% FDR threshold. 

 

 

 

 

Figure 6: Q-Q plots from Manhattan plots of traits in Figure 5. 
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2.3.4 Transferability of GWAS results 

We used existing YLD and HD data that were generated from the same germplasm in other 

states and seasons. Altogether, we assembled 14-environment datasets, of which WL17 and WL18 

are from our field testing in Indiana. Linear discriminant analysis (LDA) on grain yield resulted in 

three homogeneous groups (Figure 7A) and on heading date resulted in four homogenous groups 

(Fig. 7B). Strikingly, we observed that year-to-year variations resulted in different groupings in 

some cases (Table 8). For example, for grain yield, LDA group 1 included WL17, KYM12, 

MDM12, MOM12, and MOM13, group 2 included WL18, OWL12, OWM12, VAL12, OWL13, 

and OWM13, and group 3 consisted of VAL13 and VAM13. We observed that for example, 

VAL12 and VAL13 are categorized in different groups (Figure 7A). Similar observation was true 

for WL17 and WL18. In addition, we noticed that groupings were different for grain yield and 

heading date. LDA for grain yield and heading date had a percent separation above 87% for each 

discriminant function and cross-validation confirmed successful separation of environments. 

 

 

Figure 7: Grouping of environment and year based on linear discriminant analysis. 3D plot of 

multi-dimensional scaling to visually observe groupings based on (A) grain yield and (B) 

heading date. 
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Table 8: Grouping of environments from linear discriminant analysis for GWAS based on grain 

yield and heading date. 

 Grouping 

Environment Grain yield  Heading date 

WL17 1  1 

WL18 2  1 

KYM12 1  4 

MDM12 1  3 

MOM12 1  2 

OWL12 2  2 

OWM12 2  2 

VAL12 2  3 

VAM12 2  3 

MOM13 1  1 

OWL13 2  1 

OWM13 2  1 

VAL13 3  2 

VAM13 3  2 

 

We performed GWAS for YLD and HD based on phenotypic observations from four 

environments: WL1718, Group 1, Group 2, and Group 3 (Figure 8 and Figure 10). In Group 1, 

twelve MTAs were identified in chromosomes 1B, 2B, 5A, 5B, 6A, 6B, 7A, 7B, and 7D (Figure 

8). Three MTAs were present on chromosome 6B and two MTAs on 7A. For Group 3, eight MTAs 

were identified on chromosomes 3B, 5B, and 7B, however, applying the same standard for markers 

in LD as above, resolved to five independent MTAs. No MTAs were identified in Group 2. When 

we compared YLD signals among the three homogenous groups, there was not any MTA identified 

in more than one group, indicating that QTL are specific to each group. 

A total of 28 independent MTAs were identified across environmental groupings for YLD 

but we only noticed seven MTAs that were identified in at least two environments which are 

indicative of transferability across environments. Two of these MTAs are located on chromosomes 

6B and 7D. The MTA on chromosome 6B for YLD at position 73,187,805 bp was identified in 

WL1718, Group 1, and Group 3 environments with -logP of 4.07, 7.75, and 2.38, respectively 

(Table 9). The marker effect for this validated MTA showed an effect size of 238 – 250 kg ha-1 

across environments. The MTA on chromosome 7D for YLD is at 633,027,374 bp, and was 

identified in WL1718, Group 1, and Group 3 environments with -logP of 16.35, 20.87, and 1.64, 
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respectively (Figure 8; Table 9). The marker effect of this MTA was approximately 492 kg ha-1 in 

WL1718, 393 kg ha-1 in Group 1, and 184 kg ha-1 in Group 3 (Table 9).  

 

Figure 8: Manhattan plots of Grain yield based on FarmCPU method. Blue horizontal line 

indicates –logP = 4.0, and red horizontal line indicates 5% FDR threshold. Blue circles indicate 

markers present in multi-environments. 
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Figure 9: Q-Q plots from Manhattan plots of grain yield from Figure 8. 

 

For HD, LDA grouping clustered environments into four groups. LDA group 1 included 

WL17, WL18, MOM13, OWL13, and OWM13, group 2 included MOM12, OWL12, OWM12, 

VAL13, and VAM13, and group 3 consisted of MDM12, VAL12, and VAM12 (Table 8). KYM12 

was a singleton Group 4, with no other group member (Figure 7B), and was left out of the analysis. 

GWAS was performed for these three groups. Group 1 had 35 MTAs (Figure 10), that were 

grouped into 26 independent loci. Eleven of these loci were located on chromosome 7A and five 

were located on chromosome 7D. For Group 2, eleven MTAs were identified on chromosomes 

1A, 1B, 3A, 4B, 5B, 6A, 6B, 7A, 7B, and 7D (Figure 10). Lastly, Group 3 did not show any 

significant MTAs for HD. When we compared HD signals among the three homogenous groups, 

only one MTA, marker 7D_301325415 on chromosome 7D, was present in more than one group. 

A total of 47 MTAs were detected for heading date across environments but we only 

noticed eight MTAs that were identified in at least two environments which are indicative of 

transferability across environments. These MTAs were identified on chromosomes 2B, 3A, 3B, 

4B, 5B, 7A, and 7D (Table 9). For HD, one marker from the SNP chip array, IWB34502 located 

at 553,613,770 bp on chromosome 2B was associated with days to heading (Table 9), in WL1718, 
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Group 1, and Group 2 environments with allele effect of 0.44, 0.29, and 0.30 days, respectively. 

A marker with similar effects in the same environments was identified at 690,860,911 bp on 

chromosome 7A with -logP of 4.86, 9.10, and 2.23 in WL1718, Group1, and Group 2, respectively 

(Table 9). 

Chromosome 7D contained two markers significant for days to heading. The positive allele 

associated with this marker (301,325,415 bp) on 7D showed effect sizes of 0.74, 0.68, and 0.98 

days for WL1718, Group 1, and Group 2, respectively (Table 9). The marker at position 

58,927,880 bp on chromosome 7D was found to be associated with heading date in environment 

WL1718, Group 1, and Group 2 with -logP of 8.38, 4.44, and 1.48 (Table 9). 

 

 

Figure 10: Manhattan plots of days to heading based on FarmCPU method. Blue horizontal line 

indicates –logP = 4.0, and red horizontal line indicates 5% FDR threshold. Blue circles indicate 

markers present in multi-environments. 
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Figure 11: Q-Q plots from Manhattan plots of heading date from Figure 10. 

 



 

 

 

Table 9: -logP value and marker effect for significant multi-environment MTAs. 

   Environment 

   WL1718 Group 1  Group 2 Group 3 

Trait Chr SNP -logP Effect -logP Effect -logP Effect -logP Effect 

Grain 

yield 

1A IWA5011 5.90 191 1.55 64 1.68 96 - - 

1A 1A_496309488 8.27 174 2.73 71 - - - - 

3B 3B_310333182 5.56 213 - - - - 1.69 170 

6A IWB63176 7.30 163 - - - - 1.57 94 

6B 6B_73187805 4.07 250 7.75 238 - - 2.38 235 

7A IWB59141 4.00 117 1.72 56 - - 3.04 150 

7D 7D_633027374 16.35 492 20.87 393 - - 1.64 184 

Days to 

heading 

2B IWB34502 6.62 0.44 5.53 0.29 1.94 0.30 - - 

3A IWB6009 6.03 0.39 1.85 0.16 - - - - 

3B 3B_705185712 5.98 0.39 - - 1.40 0.24 - - 

4B 4B_665871684 6.92 1.11 6.74 0.84 2.08 0.81 - - 

5B 5B_167440402 4.33 0.42 1.46 0.22 - - - - 

7A 7A_690860911 4.85 0.38 9.10 0.40 2.23 0.33 - - 

7D 7D_301325415 5.77 0.74 7.48 0.68 5.50 0.98 - - 

7D 7D_58927880 8.38 0.57 4.44 0.30 1.48 0.29 - - 

Represented MTAs based on the accepted threshold (-logP value > 1.3).

5
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For YLD, seven out of 28 MTAs and for HD, eight out of 47 MTAs were found to be 

transferable across seemingly homogenous environments. Therefore, we concluded that not all 

marker-trait associations are transferable and MTAs are often environment specific. 

2.4 Discussion 

Wheat provides approximately 20% of the protein and calories for human consumption 

worldwide (M. Reynolds et al., 2012). In order to meet the needs of the growing population, food 

supplies from major cereals such as maize, rice and wheat will need to increase by 2-3% annually, 

and wheat has shown the lowest rate of increases (Hawkesford et al., 2013). Ray et al. (2013) 

estimated wheat yields are increasing at 0.9% per year, much less than the 2.4% required to double 

global production by 2050. With future food security and climate challenges ahead, wheat breeding 

efficiency and genetic gains must improve significantly to develop stable, adapted, and high-

yielding wheat varieties.  

In this study, we analyzed associations between genotypes and phenotypes in a US SRW 

wheat elite population, consisting of breeding lines that were developed by breeding programs in 

the Midwest and east. Marker-trait associations for this population have been previously identified 

for Fusarium head blight (Arruda et al., 2016), days to heading (Huang et al., 2018), and grain 

quality (Gaire et al., 2019) from plants grown in Ohio and Virginia. We dissected the genetic 

architecture of this population for grain yield and related traits based on phenotypes observed in 

Indiana. In addition, we examined the transferability of SNPs across environments for the traits of 

YLD and HD.  

Phenotypic correlations among traits and deciphering their relationship can give insight 

into identifying selection criteria for improving traits of interest. Our study showed that grain 

components including TKW, BIO, and GWS were significantly and positively correlated with 

YLD. Previous studies have documented positive relationship between TKW and YLD as well 

(Arguello et al., 2016; Sharma et al., 2008). In wheat breeding research, biomass is often referred 

to as the whole above ground plant parts. The pre-Green Revolution wheat germplasm were tall, 

and their height was the driver of plant aboveground weight. Therefore, during the Green 

Revolution the main force that led to increases in harvest index and productivity was only reducing 

plant height. In this population, although variation in biomass was observed, we think that in this 

era a “useful biomass” is one that can lead to non-competing multiple well-grown culms (tillers) 
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with the potential to lead to a fertile spike. Increasing tiller numbers or protecting tillers in soft red 

winter wheat is one approach that can produce useful biomass. Our data showed that NS and BIO 

were significantly correlated (r=0.47) and that NS is distributed in a wide range from 74 to 152. 

For example, the varieties OHO8-172-42, IL08-12174, MD05W1292-11-1, 05264A1-1-3-2, and 

IL07-20728 showed averages above 240 grams for BIO and 134 NS. Other traits that can lead to 

useful biomass are smaller leaves with enhanced photosynthetic capacity and the levels of spike 

fertility, among others.   

While TKW, BIO, and GWS showed positive correlation with YLD, the duration of 

vegetative growth period, indicated by days to heading (and similarly days to maturity) negatively 

correlated with YLD. Similar negative correlation was reported by Addison et al., (2016).  Addison 

et al. (2016) noticed this trend in a SRW wheat recombinant inbred line (RIL) population across 

nine environments in the southern US, with the population segregating for photoperiod and 

vernalization loci. Grain number is the main driver of grain yield but no correlation was observed. 

This is a population of elite lines therefore; loci influencing traits relating to grain number could 

be potentially fixed in the population of elite germplasm. 

There are reports in the literature that shows positive correlations between days to heading 

and grain yield, (Godoy et al., 2018), especially under cooler temperatures for hard red spring 

wheat (Lanning et al., 2010). The primary reason for the observed negative correlation between 

days to heading and yield in this population could be that most of the late heading germplasm were 

developed by and adapted to the state of New York. Therefore, a hidden G x E interaction works 

contrary to the yield formation. Path analysis affirms the consequence of heading later is indirectly 

decreasing grain development. Therefore, a practical consideration for future characterization of 

populations that are mixture of germplasm from multiple crop breeding programs is that the 

experimenters can use days to heading as biomarkers because a shit in phenology could mask yield 

traits. When a drastic change between native germplasm and others is observed, yield differences 

are likely expected. Tessmann et al. (2019) used QTL markers for plant height, vernalization, and 

photoperiod genes along with the actual heading date trait as covariates in the GWAS model to 

account for the latitude differences. This method is also routinely performed for maize but 

including flowering time (days to anthesis) as covariates (Bian et al., 2014; Poland et al., 2011).  

One major concern in GWAS discoveries is marker density. Wheat is a self-pollinated crop 

and the germplasm has been under selection. Therefore, in the beginning of the experiment, 45K 
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markers seemed unnecessarily dense. We found evidence to the contrary. Increasing the marker 

density increased the probability of finding more MTAs which could have been missed. Significant 

MTAs with SNPs from GBS were 32 for yield components measured in WL1718 and 10 multi-

environment MTAs for GY and HD. In contrast, markers from the SNP chip array contributed 8 

MTA for yield components and 5 multi-environment MTA for GY and HD. This data indicates 

that MTAs were identified from both sets of SNP markers. In addition to this, we examined the 

inter-marker spaces for SNP chip markers located between two GBS markers. For example, the 

SNP IWB72708 (identified for biomass at –logP = 4.36) is located 897,950 bp downstream of 

gbs_1B_472631187 while 296,024 bp upstream of gbs_1B_473,825,161. The SNP IWB51951 

(identified for plant height at –logP = 5.01) is located 458,542 bp downstream of 

gbs_2A_92,338,766 while 1,095,722 bp upstream of gbs_2A_93,893,030. While these distances 

must be judged based on the basis of the local LD decay rates in each region, our conclusion is 

that the 45K marker set, combined from chip array and GBS methods, is not in excess for this 

germplasm and the combination of both marker sets can be complementary in GWAS applications.  

FarmCPU is a multiple loci linear mixed model that eliminates confounding effects 

between markers and kinship by iterating between both fixed and random effect models. In the 

fixed effect model, individual SNPs are tested while using pseudo-QTNs as covariates to control 

false positives. The FarmCPU model controls false positives, false negatives, and provides greater 

statistical power than alternative models used for association mapping (Kaler et al., 2020; Liu et 

al., 2016). Based on quantile-quantile (Q-Q) plots, FarmCPU effectively controlled false positives 

and false negatives based on the population structure and significant associations (Supplemental 

Figure S3, S4, S5). The Q-Q plot line holds close to the 1:1 line of expected versus observes 

association probabilities, with a slight upward tail indicating deviation from expected distribution. 

A deviation in the tail area indicates properly controlling false positives and false negatives, where 

any inflation line upward would indicate false positives or downward indicate false negatives 

(Kaler et al., 2020). Other researchers reported similar claims. Xu et al. (2018) and Vanous et al 

(2019) concluded the multi-locus model of FarmCPU provided more statistical power than single 

locus models with less over or under fitting. One potential drawback of FarmCPU is that the model 

identifies the most significant single SNP at a specific genomic location instead of a large peak of 

SNPs with other MLM models (Kaler et al., 2020).  
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In the target environment of Indiana, several loci affected yield and yield components traits 

were identified. Germplasm were also identified that harbor those favorable alleles. The 17 lines 

that harbored the favorable yield QTL for the region on 7D were all developed by Purdue’s small 

grains breeding program (Figure 12). It is possible that all 17 of these lines contain a 7E 

translocation for resistance to barley yellow dwarf and cereal yellow dwarf virus, and are 

descendants of the Purdue line “P107” (Ohm et al., 2005). However, we could identify the 7E 

translocation harboring line in the pedigrees of only 11 out of the 17 lines. This translocation could 

explain slow LD decay rate in over 100 Mbp on chromosome 7D.  

 

 

Figure 12: Principal component analysis based on all SNPs for 270 lines. A 3D scatterplot of 

first three principal components (PCs) where gold indicates the 17 Purdue breeding lines. 

 

QTL expressed in one environment may not equally or ever be expressed in other 

environments. To a large degree, this can be associated with the key environmental clues that are 

critical regulatory event for the mode of action and expression of traits and QTL. For example, if 

the mode of action of a growth QTL is via tiller development before winter that are later on 

sensitive to freezing temperature, then two environments differing in winter temperature would 

results in different number of tillers that are counted in the spring. Therefore, QTL could go 

unnoticed in the colder environment. Similar examples can be given for kernel weight QTL 

expression under two hot and mild grain-fill period temperatures. Such QTL by environment 

interaction effects can vary depending on the location and specific year. To identify stable QTLs, 
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GWAS on the basis of combined analysis of years and locations is suggested, which is often known 

as multi-environment GWAS (Gutiérrez et al., 2015; Sukumaran et al., 2018) for future QTL 

implementation in. marker assisted selection (Collard and Mackill, 2008; Ribaut and Ragot, 2007).  

However, our results showed that majority of MTAs are environment specific. Even when we 

contained GWAS analysis within homogenously environments, the majority of MTAs we 

identified in WL site for YLD and HD and were not observed in other environments. Even when 

markers were significant across environments, there was differences in phenotypic variation 

explained by each marker and the size of marker effect. For some traits such as grain yield the 

magnitude of variance component due to G x Y was 20% greater than the magnitude of variance 

component due to G. Since winter wheat is grown over nine months, variation in climate and 

weather can directly impact the year to year variability and effect of the environment. For example, 

the WL site in 2017 showed significantly higher monthly temperature than WL18 site from 

February through April (Table 1), which is a critical time in winter wheat development. With the 

increase in temperature, the vernalization period for 2017 was shorter than 2018, resulting in a 

decrease in yield. This could be one potential reason for the difference in classifying the WL17 

and WL18 site into different groups for YLD. Previous work is a mix of success and failure in the 

transferability of QTL across environments. Guan et al. (2018) identified 226 QTL controlling 

yield component traits and heat susceptibility in a Chinese elite double haploid winter wheat 

population. Across the 12 environments in northern China, only 39 of these QTL were deemed 

“stable” based on detection in at least three individual environments. Further explanation could be 

the significant source of variance based on effect of environment and effect of genotype by 

environment on all measured traits. In the United Kingdom, a double haploid population was 

developed from favorable bread making hexaploid winter wheat cultivars to detect QTL 

controlling yield variation. The population was evaluated and phenotyped at five field trials across 

multiple years in England, Scotland, Germany, and France. Two QTL were mapped on 

chromosome 6B for grain size and yield, Qtgw-jic.6A and Qyld-jic.6A, that were stable across nine 

of the twelve environments (Simmonds et al., 2014). These favorable QTL validated with near 

isogenic lines displayed improvements of 5.5% and 5.1% for grain yield and grain weight. 
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2.5 Conclusion 

Seeking stable QTLs for yield determining traits may not be the most thoughtful approach 

to improve stability and genetic gains for wheat breeding. QTL transferability is challenging, and 

we suggest proceeding with caution to identify QTLs across multiple environments. In our case, 

detecting MTAs in homogenous environments showed minimal opportunities for making progress 

across regions or even or for developing biomarkers for marker assisted selection. We suggest 

performing GWAS and evaluating MTAs in the targeted breeding environment. The ability to 

utilize past data is powerful for predictability and examining transferability, however, the effect of 

the environment could be the leading issue in non-transferable QTLs controlling significant MTAs.  
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 CULTIVAR, TRAIT AND MANAGEMENT SYSTEM 

SELECTION TO IMPROVE SOFT-RED WINTER WHEAT 

PRODUCTIVITY IN THE EASTERN UNITED STATES 

The end use quality data in this chapter was generated by the wheat quality laboratory in 

CIMMYT (Dr. Carlos Guzman). CG is a co-author in a paper we published from a version of 

this chapter in Frontiers Plant Science: https://doi.org/10.3389/fpls.2020.00335 

3.1 Introduction 

Wheat cultivation occupies 22% of the major croplands globally, and covers the temperate 

latitude of both hemispheres, consisting of the Great Plains in US, Canadian Prairie Provinces, 

western Europe, the Indus and the upper Ganges valleys, southern South America, eastern Africa, 

eastern China, southern Australia, and along the Kazakhstan and Russia border (Leff et al., 2004). 

Wheat grown throughout the world consists of either spring or winter wheat. Winter wheat requires 

a vernalization period to transition from vegetative to reproductive stage (Jorge Dubcovsky et al., 

2006). The vernalization requirement is genotype specific, with variations in time (15-45 days) 

and temperature (0-5°C) (Crofts, 1989). Some wheat producing regions manage autumn-grown 

wheat that are not considered winter types. These regions use the mild but elevated winter 

temperatures to grow wheat for higher yield potential. Examples of these locations are Mexico, 

California, and parts of the Middle East. Winter wheat is typically not viewed as a cover crop but 

has dual grain and grazing purposes in targeted regions such as Oklahoma and Texas (Maulana et 

al., 2019). 

A key characteristic of wheat is the unique properties of forming dough from flour (Shewry, 

2009). Quality is indicated by the performance of a cultivar at specific protein levels for defined 

end use products (Bushuk, 1997b) and viscoelastic properties (Shewry, 2009). Wheat classes are 

defined by grain hardness, protein content, and growth habit. Hard wheat has hard endosperm 

texture and higher protein content. Soft wheat has soft endosperm texture, low levels of damaged 

starch granule upon milling, and weaker dough strength that is suitable to make biscuits, cookies, 

and cakes (Bushuk, 1997b). Protein composition in the endosperm is made of monomeric gliadins 

and polymer glutenins subunits (Porceddu et al., 1997). Glutenins are further divided into high 

molecular weight (HMW) and low molecular weight (LMW) subunits. The composition of high 

and low molecular weight glutenin subunits is the key quality determinant for dough (Bushuk, 
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1997b). In addition to genetics, protein quantity and quality is dependent on environmental 

conditions (Cooper et al,, 2001; Luo et al., 2000).  

Management practices in wheat have substantial impacts on crop productivity and 

environmental stewardship. In both winter and spring wheat cropping systems, nitrogen (N) 

fertilizer applications are routinely applied pre-planting or during leaf formation (Zadoks 15) with 

additional N top-dress application in the stem elongation stage (Zadoks 30) or post-anthesis 

(Zadoks 69) (Otteson et al., 2007; Woodard and Bly, 1998). Developing a site-specific 

understanding for fertilizer expenses, environmental impacts such as leaching and volatilization, 

and efficient use of N by crops are pillars of crop profitability in relation to N management. 

Previous work by Koch et al. (2004) described the economic benefits for site-specific and 

environment-specific management practices for variable rate nitrogen applications, but further 

research is needed in the area of targeted genotype by environment by management practices for 

improved economic and environmental outcomes. 

N is necessary for growth of canopy, intercepting solar radiation, and photosynthesis in green 

tissues (Barraclough et al., 2014). Nitrogen use efficiency (NUE) is the amount of grain produced 

per unit of N available in the soil (Moll et al., 1982). In other words, the ability to increase grain 

yield per N applied. The two main components of NUE are uptake efficiency and utilization 

efficiency. Nitrogen uptake efficiency (NUpE) is the plant’s ability to absorb N available in the 

soil, and nitrogen utilization efficiency (NUtE) is the efficiency of which the absorbed N is utilized 

to produce grain (Moll et al., 1982). NUtE is also described as the ratio between crop yield and 

total N absorbed by the plant (Todeschini et al., 2016), indicative of the output of grain yield based 

on the amount of N taken up by the plant.  

It is nearly impossible to identify and recommend a single variety that is the “best” across 

multiple environments due to the infinite interactions that can cause unstable phenotypic 

characteristics (Allard and Bradshaw, 1964). Yield is the most economically important trait, 

making both pre-planting and in-season crop management (Kirkegaard and Hunt, 2010) critical to 

maximize this market for growers and suppliers. The end-use quality traits such as protein content 

and endosperm texture are also influenced by N availability during plant growth. Farm profitability 

is primarily dependent on grain yield and quality. With approximately 7.8 million metric tons of 

soft-red winter wheat produced in the US in 2018, accounting for ~15% of total wheat production, 

it is paramount to strategically manage the cost and benefits to increase yields. The goal of our 
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study was to identify traits responsive to N in a typical soft-red winter wheat breeding population 

under two contrasting N management and identify potential useful genetic solutions for the long 

term goal of managing wheat with reduced nitrogen fertilizer. To accomplish our goal, we 

evaluated grain yield, yield determining traits and N components under low N and high N 

environments and assessed protein quality. 

3.2 Materials and Methods 

3.2.1 Field experiments and nitrogen management 

Thirty experimental breeding lines, designated as PU01-PU30, from Purdue University’s 

soft-red winter wheat breeding program were selected based on their variation in grain yield (from 

3,500 to 6,500 kg ha-1). These 30 lines were planted in the Purdue Agronomy Farm (40.43° N, 

86.99°W) for two seasons: 2016-2017 and 2017-2018. The experimental layout included two N 

rates arranged in a split plot design with 4 blocks, where N rate was main-plot and line was sub-

plot. Each experimental unit measured 1.22 m x 3.05 m, with 7 rows spaced 15 cm apart with a 

targeted planting density of 370 seeds m-2. The soil type at the Agronomy Research Farm is a 

combination of Rockfield silt loam (fine-silty, mixed, superactive, mesic Oxyaquic Hapludalfs), 

Fincastle silt loam (fine-silty, mixed, superactive, mesic Aeric Epiaqualfs), and Toronto silt loam 

(fine-silty, mixed, superactive, mesic Udollic Epaqulafs) (USDA Web Soil Survey). Experiments 

were planted in late September following corn and harvested late June of the following year. The 

experiments were planted using a Hege (Wintersteiger, Austria) drill planter and plots harvested 

with a Wintersteiger (Wintersteiger, Austria) plot harvester at physiological maturity. 

In the fall, 224 kg ha-1 of mono-ammonium phosphate (11-52-0) was applied based on soil 

test (Mehlich-3) recommendations. The plot area was then chisel cultivated. Approximately 100 

kg ha-1 of potassium chloride was added to the entire experimental area as recommended by soil 

analysis. Emergence began approximately six days after planting. Spring nitrogen applications of 

112 kg N ha-1 of urea (46-0-0) was broadcast applied to the main plots, designed as high-N 

treatment, at stem elongation (Zadoks 30) growth stage. Prior to application, urea was treated with 

Limus (BASF, Germany), a urease inhibitor which prevents urea from being broken down via 

urease enzymes and lost through volatilization. The main plots, designated for low-N treatment, 

received zero spring N. Herbicide (Harmony Extra [thifensulfuron + tribenuron], DuPont, 35 g ha-
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1) was applied in mid-April to minimize weed pressure. Weather information including average 

monthly precipitation and temperature, as per iClimate (2019), are shown in Table 10. 

 

Table 10: Average temperature and precipitation for the duration of the study. Historical 

averages based on previous 30 years from the National Weather Service. 

 
Temperature (C)  Precipitation (mm) 

Month 2016- 2017 2017-2018 Historical  2016- 2017 2017-2018 Historical 

September 20.8 19.3 19.4  81.0 50.5 79.5 

October 15.1 14.5 12.8  32.8 68.1 79.2 

November 8.3 5.3 6.5  135.9 125.8 94.0 

December -1.9 -1.4 -0.2  58.9 20.6 80.5 

January -0.2 -4.7 -2.2  111.7 39.9 67.6 

February 4.7 0.4 0.1  19.9 139.8 58.9 

March 5.6 2.8 5.7  109.1 79.1 90.4 

April 13.5 6.8 11.7  108.7 73.7 96.8 

May 15.7 21.1 17.1  175.3 93.7 128.3 

June 22.2 22.8 22.2  135.4 157.8 107.9 

3.2.2 Agronomic traits 

Days to heading (HD) and days to physiological maturity (MD) were recorded when 50% of 

the plot showed head emergence and maturity, respectively, and expressed as the number of days 

from January 1 of the current year. Plant height (PLH), from the ground to the top of the uppermost 

spikelet, was measured at four locations within the plot at physiological maturity. Thousand kernel 

weight was measured and the average weight for a single kernel was calculated (KW). Grain yield 

(YLD) was measured on a whole plot basis, corrected for 13% moisture. 

The aboveground biomass (BIO) was estimated by cutting 0.25 m x 0.30 m (2 rows) from 

the middle of each plot for all treatments at heading (Zadoks 58), anthesis (Zadoks 60-68), and 

maturity (Zadoks 91) and dried to constant weight. Number of spikes per cut area (NS) was 

estimated by averaging the count of spikes at heading, anthesis, and maturity from the samples of 

cut area (0.25 m x 0.30 m). Yield component traits were measured from the same cut area sample 

at physiological maturity. Five random spikes were chosen to measure spike length (SPL), and 

hand-threshed to obtain the number of kernels per spike (KNS), kernel weight per spike (KWS), 
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and grain number per cut area (GN). Fruiting efficiency (FE) was calculated by the number of 

kernels produced by each spike divided by the spike weight at anthesis. Lastly, harvest index (HI) 

was determined by the dividing the grain yield by the aboveground biomass at maturity.   

We chose 5 out of 30 lines, based on earlier yield data, to analyze N concentration in biomass 

and grain. These lines showed a range of grain yield over five years and three locations in Indiana. 

The entire aboveground biomass (phytomass) was analyzed at heading and anthesis. At maturity 

once leaf senescence was complete, plant biomass was divided into grain and leaves plus straw. 

All samples were dried for 72 hours at 49°C.  

Plant samples were ground with cutting mill (Model E3703, Eberbach Corp, Bellevile, MI) 

and UDY grinder (Udy Corp, Fort Collins, CO) and passed through a 1.0 mm screen. Thirty 

milligrams of each sample were sent for flash combustion analysis (Flash EA 112 Series, CE 

Elantech, Lakewood, NJ). The N concentration of phytomass at heading (NCPH) and anthesis 

(NCPA) were measured on whole plant samples. The nitrogen concentration of phytomass at 

maturity (NCPM) was measured on leaf and straw tissues. The nitrogen concentration of grains at 

maturity (NCGM) was measured on the grain samples. 

For NUE measurement, we adopted the methods presented by Foulkes et al., (2009), and 

Moll et al., (1982).  

 

𝑁𝑈𝐸 =
𝐺𝑟𝑎𝑖𝑛 𝑑𝑟𝑦 𝑚𝑎𝑡𝑡𝑒𝑟 

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑁 
 

 

where 𝐺𝑟𝑎𝑖𝑛 𝑑𝑟𝑦 𝑚𝑎𝑡𝑡𝑒𝑟  is the grain yield (kg ha-1) of plots atmaturity (Zadoks 92), and 

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑁, based on the formula, is the nitrogen available from the soil and fertilizer. Residual 

N was not tested and is not included in the study and calculation of NUE. In this estimation, instead 

of available N, we used the amount of N applications in each treatment. Both low-N and high-N 

environments received the same fall N application of 25 kg N ha-1 as monoammonium phosphate. 

A spring N application of 112 kg ha-1 N was applied to the high-N environment only. The total N 

supplied in low-N environment was 25 kg ha-1 N, while the total N supplied in the high-N 

environment was 137 kg ha-1 N. N uptake was calculated as the total nitrogen in the aboveground 

biomass including grain. NUtE was measured as grain dry matter produced per gram of plant N 
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uptake. Nitrogen harvest index (NHI) was estimated as amount of nitrogen that was recovered in 

grains relative to overall N uptake of the plants.  

3.2.3 Phenotyping grain and flour characterization 

A subsample of grains from each N environment were subjected to Single Kernel 

Characterization System 4100 (SKCS) (Perten Instruments, Sweden) analysis. A single replicate 

was performed for each linein each N environment. The SKCS weighs and crushes individual 

kernels and converts the force-crush profile to a unit-less Grain Hardness Index (GHI). Whole-

meal flour samples were also prepared with a UDY Cyclone mill (Udy Corp, Fort Collin, CO) 

with a 0.5 mm screen. Sodium dodecyl sulfate (SDS) sedimentation volume was carried out 

according to the modified protocol described in Peña et al. (1990) using 1 g of flour.  

3.2.4 Glutenin subunits and the rye translocation 

Allelic variation of glutenin subunits and the presence or absence of the rye translocation 

were evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for all 

thirty lines following method described by (Peña et al., 2004).  

3.2.5 Statistical analysis 

Combined year analysis of variance (ANOVA) was performed with PROC GLM in SAS 9.4 

(SAS Institute, Cary NC) similar to the model presented by Iannucci et al., (2008), where sources 

of variations are year, nitrogen, year x nitrogen interaction, genotype, year x genotypes, nitrogen 

x genotypes, and year x nitrogen x genotype interaction effects, each tested against appropriate 

error term (Table 11). 

 

[1] Yijkl = µ + Yri + rep(Yr)li + Nj + NYrji + rep*N(Yr)lji + Gk + GYrki + GNkj + GNYrkji + ɛijkl  

 

Where Yijkl is the phenotypic observation of the lth replicate of the kth genotype, in the jth nitrogen 

treatment, observed in the ith year. µ is the grand mean, Yri is the effect of ith year, rep(Yr)li is the 

effect of the lth replicate in the ith year. The effect of year was tested against rep(Yr)li. Nj is the 

effect of the jth nitrogen treatment and NYji is the interaction effect of the jth nitrogen level with the 
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ith year. These two terms were tested against the interaction effect of nitrogen by replicate within 

the year (rep*N(Yr)lji). Gk represents the effect of the kth genotype. Remaining interactions were 

tested against the residual error. Tukey’s studentized range test (HSD) was implemented for 

comparison of means using the MEANS statement in PROC GLM (SAS 9.4) and significant 

differences reported with p < 0.05. 

 

Table 11: ANOVA for year (Y), nitrogen level (N), and genotype (G).  

  Grain Yield (YLD) 

Source of 

Variation 

d.f. Mean Square (x 

104) 

F value Pr > F 

Year (Y) 1 1286 5.23 ns 

Residual 1 6 246   

N levels (N) 1 11144* 12.75* * 

Y x N 1 40.4 0.05 ns 

Residual 2 6 874   

Genotype (G) 29 281*** 8.31*** *** 

Y x G 29 132*** 3.89*** *** 

N x G 29 53.5* 1.58* * 

Y x N x G 29 43.7 1.29 ns 

Residual 348 33.9   

Total 479    

Significance levels: <0.001 = ***, <0.01 = **, <0.05 = *, and > 0.05 = ns 

d.f: degrees of freedom 

 

Least squares means was estimated using ‘lsmeans’ package (Lenth, 2016) in R environment 

(R Core Team, 2019) for genotypes and N levels with combining years and implemented for 

phenotypic analysis. Heritability, in the broad sense (H2) (Nyquist, 1991; Piepho & Möhring, 

2007b), was estimated for each nitrogen environment by restricted maximum likelihood (REML) 

variance and covariance components using PROC MIXED (SAS Institute Inc., 2013) with random 

effect model in equation 2. 
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[2] 𝐻2 =
𝜎𝑔

2

𝜎𝑔
2 +  + 

𝜎𝑔𝑦
2

𝑦
  + 

𝜎𝜀
2

𝑦𝑟

 

 

With 𝜎𝑔
2 representing variance component of genotype (genetic variance), 𝜎𝑔𝑦

2  the variance 

component of genotype x year interaction, and finally 𝜎𝜀
2  the residual error. Denominators 

represent years (y=2), and replications (r=4). Pearson’s correlations were calculated for low-N and 

high-N environments separately using cor function in R environment (R Core Team, 2019). The 

linear relationship among measured traits was evaluated by Pearson’s correlation coefficient (r). 

Principal component biplot analysis was used to visualize relationships among traits and lines by 

using the ‘factoextra’ (Kassambara & Mundt, 2016) package and ‘factoMineR’ (Lê et al., 2008) 

package in R environment (R Core Team, 2019). 

3.3 Results 

3.3.1 Agronomic traits 

On average, the lines took approximately 130 days (from first of January) to head, and 168 

days to reach physiological maturity (Table 12). N effect was significant on biomass accumulated 

at physiological maturity (Table 13). For example, biomass at maturity (BIOMD) was ~22% greater 

in high N compared with low N.  

The effects of G and N x G were significant for number of spikes (NS) (Table 13). We 

observed correlations of r  0.21 between NS and BIOMD in both N treatments (Table 14), as more 

tillers produces more biomass. The lines showed variations in their number of tillers and biomass 

(Table 12). PU10 and PU14 showed an average of approximately 60 NS across both N treatments, 

and BIOMD greater than 95 g. In comparison, PU21 and PU29 averaged 43 NS and BIOMD of 87 

and 88 g, respectively, showing a difference of 20 spikes and 10 g of biomass per cut area. 

Number of spikes had the highest significant positive correlation observed with yield (r = 

0.64* in low N; r = 0.36* in high N). On average, 8 more effective spikes per sampled area were 

observed in high N compared to low N, which resulted in 275 more kernels per sampled area in 

high N compared to low N (Table 12). The grain number per unit area was a result of NS and 

effective tillers, which in our study, was significantly impacted by N. However, the weight of 

individual kernels was unaffected by N treatment (Table 13). The mean KW was 36 mg, with a 
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range of 25 – 47 mg across lines and environments (Table 12). PU14 was the only line to have a 

KW above 40 mg in low N and high N. We observed a negative correlation between GN and KW 

under both treatments (r = -0.34 low-N; r = -0.30 high-N) (Table 14).  
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Table 12: Mean, standard deviation (sd), and range of 14 agronomic traits and 7 in tissue 

nitrogen analysis traits in both environments. Heritability (H2) calculated for all 30 genotypes per 

nitrogen treatment. 

 High-N Low-N 

Trait – All 30 Genotypes 
Mean ± sd Range H Mean ± sd Range H 

Plant Development 

Days to Heading (HD) 130 ± 5.53 119 - 137 0.66 130 ± 5.57 119 - 137 0.70 

Days to Maturity (MD) 168 ± 3.53 162 - 175 0.55 167 ± 3.4 162 - 174 0.71 

Biomass at Maturity (g) (MDBIO) 109.02 ± 28.57 46.86 - 193.59 0.19 87.51 ± 28.07 21.09 - 157.49 0.20 

Plant height (cm) (PLH) 89.11 ± 9.43 67.25 - 112.75 0.77 81.42 ± 9.95 54.50 - 104.75 0.62 

Yield Components       

Yield (kg ha-1) (YLD) 6,335 ± 824.04 3,799 – 8,090 0.46 5,359 ± 888.4 2,965 – 7,640 0.41 

NUE (kg ha-1 grain / kg ha-1 N 

supply) 
46.05 ± 6.70  27.73 – 59.05 0.46 209.92 ± 46.67 118.62 – 305.61 0.41 

Grain Number per area (GN) 1,312 ± 317.99 538 – 2,128 0.23 1,037 ± 340.94 297 – 1,842 0.27 

Number of Spikes per area (NS) 58 ± 11.24 32 - 100 0.48 50 ± 11.03 25 - 94 0.55 

Kernel Weight (mg) (KW) 36 ± 4.4 25 - 46 0.88 36 ± 3.9 28 - 47 0.89 

Spike length (cm) (SPL) 8.4 ± 0.8 6.3 - 10.5 0.75 7.8 ± 0.7 5.9 - 10.0 0.63 

Kernel number per spike (KNS) 32 ± 6.08 15 - 49 0.52 29 ± 6.18 14 - 48 0.52 

Kernel weight per spike (g) 

(KWS) 
1.02 ± 0.21 0.51 - 1.66 0.51 0.91 ± 0.17 0.47 - 1.34 0.38 

Fruiting efficiency (grains g-1) 

(FE) 
87 ± 37.93 21 - 186 0.57 85 ± 39.56 23 - 210 0.56 

Harvest index (HI) 0.44 ± 0.05 0.27 - 0.55 0.22 0.38 ± 0.07 0.21 - 0.55 0.15 

Trait – 5 Subset Genotypes       

Nitrogen Analysis       

Nitrogen concentration of 

Phytomass at Heading (NCPH) 

(mg g-1) 

15.8 ± 1.9 11.0 - 20.8 - 11.1 ± 2.3 7.9 - 17.9 - 

Nitrogen concentration of 

Phytomass at Anthesis (NCPA) 

(mg g-1) 

12.1 ± 2.7 8.1 – 17.8 - 8.8 ± 1.8 6.3 – 16.6 - 

Nitrogen Concentration of 

Phytomass at Maturity (NCPM) 

(mg g-1) 

4.7 ± 1.6 2.6 – 10.7 - 3.5 ± 0.8 2.4 – 6.4 - 

Nitrogen concentration of Grains 

at Maturity (NCGM) (mg g-1) 
18.7 ± 2.6 13.5 – 23.4 - 16.9 ± 2.1 12.8 – 20.3 - 

N uptake (g g-1) 1.42 ± 0.34 0.69 - 2.62 - 0.87 ± 0.29 0.42 - 1.53 - 

NUtE (g g-1) 34.13 ± 5.99 18.10 - 45.72 - 39.78 ± 6.14 24.76 - 51.58 - 

NHI (%) 63 ± 7 42 - 72 - 66 ± 6 46 - 75 - 
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Table 13: ANOVA for year (Y), nitrogen level (N), genotype (G), and interactions for measured 

traits. ANOVA performed on all 30 lines except for last 7 traits relating to N analysis.  

Trait – All 30 genotypes Y N Y x N G Y x G N x G Y x N x G 

Days to Heading (HD) *** ns ns *** *** ns ns 

Days to Maturity (MD) *** *** ns *** ** ns ns 

Biomass at Maturity (g) (MDBIO) ** * ns * ns ns * 

Yield (kg ha-1) (YLD) ns * ns *** *** * ns 

NUE (kg ha-1 grain / kg ha-1 N supply) ns *** ns *** *** *** * 

Spike length (cm) (SPL) ** *** ns *** * ns ns 

Kernel number per spike (KNS) *** *** ns *** ns ns ns 

Kernel weight per spike (g) (KWS) *** *** * *** ** ns ns 

Grain Number per area (GN) ns ** ns *** ns * * 

Number of Spikes per area (NS) ns ns ns *** ns * * 

Kernel Weight (mg) (KW) *** ns ns *** *** ns ns 

Fruiting efficiency (grains g-1) (FE) *** ns ns *** *** ns ns 

Harvest index (HI) *** ns ns *** * ns ns 

Plant height (cm) (PLH) *** ** ns *** ns ns ns 

Trait – 5 subset genotypes        

Nitrogen Concentration of Phytomass 

at Heading (NCPH) (mg g-1) 
* *** ns ns ns ns ns 

Nitrogen Concentration of Phytomass 

at Anthesis (NCPA) (mg g-1) 
*** *** ns ns ns ns ns 

Nitrogen Concentration of Phytomass 

at Maturity (NCPM) (mg g-1) 
** ** ns ** * ns ns 

Nitrogen Concentration of Grains at 

Maturity (NCGM) (mg g-1) 
*** *** * *** ** ns ns 

N uptake (g) 
ns ** ns ns ns ns * 

Nitrogen utilization efficiency (NUtE) 

(g g-1) 
*** *** ns *** *** ns ns 

Nitrogen harvest index (NHI) (%) ns * ns *** ** * ns 

Significance: < 0.001 = ***, <0.01 = **, < = 0.05*, and > 0.05 = ns. 
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Table 14: Correlation table of Pearson correlation coefficients and significant p-values of 

correlations. Upper right triangle represents low-N and lower left triangle represents high-N 

environment. 

 KW PLH HI KWS NS MDBIO SPL FE NUE YLD GN KNS 

KW  0.45* -0.45*** 0.09 -0.09 0.25* -0.26 -0.75* -0.16 -0.16 -0.34 -0.54 

PLH 0.55  -0.57 0.19 -0.06 0.43 0.11 -0.52* 0.10 0.10 -0.03 -0.19 

HI -0.32*** -0.52  0.00 0.04 -0.33 0.13 0.51** 0.05 0.05 0.31 0.28 

KWS 0.27 0.32 -0.09  -0.11 0.3 0.46 0.66 0.10 0.05 0.23 0.68 

NS -0.25 -0.22 0.03 -0.31  0.51 -0.02 0.02 0.64* 0.64* 0.60 -0.04 

MDBIO 0.35 0.53 -0.53 0.14 0.21  0.18 -0.32 0.44 0.44 0.71 0.04 

SPL -0.18 -0.12 0.22 0.37 -0.09 0.01  0.31 0.09 0.09 0.32 0.59 

FE -0.80* -0.54 0.34** -0.07 0.18 -0.39 0.22  0.10 0.10 0.23 0.66 

NUE -0.11 -0.12 0.22 -0.05 0.36* 0.10 0.02 0.16  1.00 0.56 0.10 

YLD -0.11 -0.12 0.22 -0.05 0.36* 0.10 0.02 0.16 1.00  0.56 0.10 

GN -0.30 0.01 0.06 -0.09 0.42 0.66 0.12 0.21 0.34 0.34  0.40 

KNS -0.43 -0.13 0.14 0.63 -0.09 -0.15 0.53 -0.07 -0.05 0.06 0.14  

Significance: <0.001 = ***, < 0.01 = **, and <0.05 = *. 

KW: kernel weight; PLH: plant height; HI: harvest index; KWS: kernel weight per spike; NS: number of spikes; 

MDBIO: biomass at maturity; SPL: spike length; FE: fruiting efficiency; NUE: nitrogen use efficiency; YLD: grain 

yield; GN: grain number; KNS: kernel number per spike 

 

The effect of N, G, Y x G, and N x G were significant on YLD (Table 11) and the interaction 

of Y x N was not significant. On average, YLD was 976 kg ha-1 less in low N compared to high N 

(Table 12). In the high-N treatment, YLD had a mean of 6,335 kg ha-1 and ranged between 3,799 

– 8,090 kg ha-1. Difference in YLD resulted from producing more GN per treatment based on NS 

where N, G, N x G, and Y x N x G had significant effects on GN (Table 13). Y, G, and G x Y had 

significant effects on HI. Across genotypes in environments, HI ranged from 0.21 – 0.55 (Table 

12). The 5 lines selected for in-tissue N analysis revealed a range of grain yield. For example, 

PU08, PU10, and PU15 exhibited YLD greater than the mean across both environments, and PU17 

and PU21 exhibiting less YLD than average (Table 15).  
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Table 15: Nitrogen analysis and grain quality assessment of 5 subset lines. 

 Germplasm  

 PU08  PU10  PU15  PU17  PU21  

Low-N           

Yield (kg ha-1) 5,698  5,527  5,874  4,696  4,928  

NUE (kg ha-1 grain / kg ha-1 N supply) 227.96  221.10  235.01  187.84  197.12  

NCPH (mg g-1) 10.5  11.0  11.4  12.4  9.9  

NCPA (mg g-1) 8.5  8.4  9.0  8.8  8.5  

NCPM (mg g-1) 3.4  3.3  3.7  4.3  3.3  

NCGM (mg g-1) 16.1  16.2  16.0  18.1  18.3  

N uptake (g) 0.83  0.85  1.00  1.00  0.63  

NUtE (g g-1) 42.84  41.47  42.97  34.56  37.53  

NHI (%) 69  66  67  62  68  

GHI 14  14  13  24  16  

SDS-Sed 4.8  4.0  4.3  5.0  5.0  

High-N           

Yield (kg ha-1) 7,391  7,320  7,098  5,483  5,567  

NUE (kg ha-1 grain / kg ha-1 N supply) 53.95  53.43  51.81  40.03  40.64  

NCPH (mg g-1) 15.7  15.6  15.8  16.3  15.6  

NCPA (mg g-1) 11.8  11.3  12.1  12.1  12.9  

NCPM (mg g-1) 4.5  3.7  5.8  5.2  4.1  

NCGM (mg g-1) 18.9  18.4  17.9  19.1  19.6  

N uptake (g) 1.56  1.29  1.53  1.30  1.35  

NUtE (g g-1) 35.11  36.76  33.45  31.24  34.22  

NHI (%) 65  68  57  58  66  

GHI 20  17  9  17  19  

SDS-Sed 4.8  5.5  5.3  4.8  5.3  

Nitrogen concentration at heading (NCPH; mg g-1), anthesis (NCPA; mg g-1), maturity (NCPM; mg g-1), in grains 

(NCGM; mg g-1), nitrogen uptake (N uptake; g), nitrogen utilization (NUtE; g g-1), and nitrogen harvest index (NHI; %) 

determined from in season tissue analysis for 5 lines.  

Grain hardness index (GHI) based on single kernel characterization (SKCS).  

SDS Sedimentation (SDS-Sed) based on whole grain flour meal. 

 

Spike traits were investigated by measuring SPL and the KNS in both environments. The 

effect of N and G were significant on SPL and KNS (Table 13). SPL ranged from 5.9 - 10.5 cm 

(Table 12). The mean SPL was 7.8 cm in low N and 8.4 cm in high N. Positive correlation was 



 

 

79 

observed between SPL and KNS at 0.53 in high N and 0.59 in low N, respectively (Table 14). The 

mean KNS in high N was 32, in comparison to the mean KNS of 29 in low N. However, the range 

was similar under both N levels, from 20 to 50 KNS. PU28 produced the most KNS in high N with 

average of 41, and PU15 produced the most KNS under low N. The percent reduction of SPL and 

KNS from high-N to low-N treatments were, on average, 7.7% and 10.3%, respectively. In most 

cases, larger SPL values were associated with larger KNS values, suggesting that the length of the 

spike could be a primary determinant of the number of kernels per spike. 

Lines were significantly different for fruiting efficiency (FE) (Table 13); however, N did not 

affect FE. FE was highly heritable across environments (H2 >0.50) (Table 12). In high N, FE 

showed a mean of 87 kernels per gram of dry matter spike at anthesis (range 21 – 186) (Table 12). 

Genotypes PU02 and PU20 had the lowest FE of 57 and 62 in high-N environment, well below 

the average. PU07 and PU19 showed FE above 100 in both low-N and high-N treatment. 

3.3.2 In-tissue nitrogen analysis 

N treatment had significant effects on N concentration in phytomass at heading, anthesis, 

and maturity, as well as in grains for the 5 subset genotypes (Table 13). On average, N 

concentration in biomass at heading was 11.1 mg g-1 in low N (Table 12) where genotype PU17 

showed the maximum in-biomass N concentration (Table 15). In high N, plants were able to 

accumulate N concentration of 15.8 mg g-1 in biomass at heading (Table 12). The amount of in-

biomass N concentration decreased to 8.8 mg g-1 and 12.1 mg g-1 by anthesis in low-N and high-

N treatments and in-phytomass N concentration decreased to 3.5 mg g-1 and 4.7 mg g-1 by maturity 

in low-N and high-N treatments, respectively (Table 12).  

From anthesis to maturity, the amount of N in phytomass decreased. The effect of N and Y 

was significant for N concentration at anthesis and maturity (Table 13) where PU21 displayed the 

largest loss of 8.8 mg g-1 N from anthesis to maturity in high N, while PU15 lost 5.3 mg g-1 in low 

N (Table 15). This signifies the translocation of N into the grains. Genotypes were only 

significantly different at maturity stage for N concentration in phytomass and in grains (Table 13). 

The maximum NHI of 69% was observed in PU08 in low N. While the minimum NHI of 57% was 

observed in PU15 in high N (Table 15). The sum of N in phytomass and grain at maturity was 

approximately 22.0 mg g-1, on average (Table 13). The total N at anthesis was approximately 10.5 
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mg g-1 across environments. We observed that pre-anthesis N concentration was correlated with 

grain N concentration (r = 0.51; p-value < 0.001) among the 5 lines.  

3.3.3 Nitrogen use efficiency 

Nitrogen use efficiency was estimated for all 30 lines across N treatments. N, G, Y x G, N x 

G, and Y x N x G were significant for NUE (Table 13). Due to the level of N application, and 

method of calculation, NUE estimates were higher in low N (Table 12). For example, NUE 

averaged 209.92 kg ha-1 grain per kg ha-1 N supplied in low-N environment. PU03 had the lowest 

NUE of 179.78 kg ha-1 grain per kg ha-1 N, with PU13 the highest at 243.62 kg ha-1 grain per kg 

ha-1 N. In high N, NUE averaged 46.05 kg ha-1 N. PU08, PU10, and PU15 had the greatest NUE 

in high N (Table 15). We further quantified N uptake, NUtE, and NHI in 5 selected genotypes in 

this study (Table 15). The effect of N was significant on N uptake (Table 13). N uptake average 

1.42 g and 0.87 g in high N and low N, respectively (Table 12). This was a 38% reduction in whole 

plant N uptake. However, the effect of G and G x N was not significant, indicating that lines 

responded similarly to their N uptake across the two environments (Table 13). The effects of Y, 

N, G, and Y x G were significant on NUtE (Table 13). NUtE was significantly greater in low N 

(compared to high N) by 14% (Table 12). The effects of N, G, Y x G, and N x G was significant 

on NHI (Table 13). NHI ranged from 42 – 75% across years and environments. 

3.3.4 Glutenin subunits and the rye translocation 

Loci for HMW glutenin subunits Glu-A1, Glu-B1, and Glu-D1 and LMW subunits Glu-A3, 

Glu-B3, and Glu-D3 and presence of 1B/1R translocation (Table 16) were characterized (Figure 

13). In the thirty lines tested, the common Glu-A1 allele was the 1 subunit with only six genotypes 

possessing the 2* allele. The variants observed in Glu-B1 locus were 7, 7+8, 7+9, 13+16 and 

32+33 subunits. Two alleles 2+12 and 5+10 were found for Glu-D1 locus at almost equal 

frequency. For LMW, the Glu-A3c subunit and Glu-D3a subunit were the most frequent (Table 

16), while Glu-B3 showed a wide allelic variation. The 1B/1R rye translocation was identified in 

17 out of 30 genotypes. When we compared genotypes with translocation with those without the 

translocation by using two-sample t test, the difference was not significant (p value > 0.05). 
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Genotypes with the 1B/1R translocation varied in allelic variation for HMW and LMW subunits 

(Table 16). 
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Table 16: Allelic variation of HMW and LMW glutenin subunits and presence of 1B/1R translocation for each line. 
 Low-N  High-N  HMW  LMW  Low-N  High-N 

Germplasm Yield  Yield  Glu-A1 Glu-B1 Glu-D1  Glu-A3 Glu-B3 Glu-D3 Translocation GHI SDS-Sed  GHI SDS-Sed 

PU01 5,001  6,296  1 7 2+12  f j a 1B/1R 10 4.0  13 4.8 

PU02 5,405  6,292  2* 32+33† 5+10  c j b 1B/1R 6 4.8  12 5.5 

PU03 4,494  5,842  1 7 5+10  c f,g a - 9 4.8  12 5.8 

PU04 5,340  5,900  1 7 5+10  d† b a - 9 4.0  13 4.3 

PU05 5,426  6,780  1 7+9 2+12  d f,g,j† c/b 1B/1R 2 6.0  4 6.3 

PU06 5,571  6,485  1 13+16† 2+12  c f,g a - 7 4.3  13 5.8 

PU07 4,668  6,328  1 7 2+12  f j a 1B/1R 13 4.3  16 5.0 

PU08 5,699  7,392  2* 7 2+12  g j a 1B/1R 14 4.8  20 4.8 

PU09 5,875  6,479  1 7 2+12  c b a 1B/1R 10 5.0  12 6.3 

PU10 5,528  7,320  2* 7+9 2+12  g j a 1B/1R 14 4.0  17 5.5 

PU11 5,269  6,105  1' 13+16 5+10  c h a - 20 6.3  17 7.3 

PU12 5,270  5,656  1 7 5+10†  c f† b† 1B/1R 12 5.3  17 6.3 

PU13 6,090  6,817  1' 13+16 5+10  c h a - 16 5.5  17 7.0 

PU14 4,917  6,151  0 7+8 2+10.1  c g a - 19 5.5  20 7.0 

PU15 5,752  7,099  1 7 2+12  c b a 1B/1R 13 4.3  9 5.3 

PU16 5,638  6,710  1 7+9† 2+12†  c j† c† 1B/1R 13 3.8  16 4.0 

PU17 4,696  5,484  1 7 2+12  c j a 1B/1R 24 5.0  17 4.8 

PU18 5,870  6,707  1 7+8 2+12/5+10  c b b - 12 4.5  9 5.0 

PU19 5,650  6,148  2* 7+9 2+12  c j c 1B/1R 23 4.8  29 6.3 

PU20 5,742  6,676  2*† 7+9 2+12†  c h† a - 11 3.8  16 5.0 

PU21 4,928  5,568  1 7† 2+12  f j† a 1B/1R 16 5.0  19 5.3 

PU22 5,617  6,242  1 7+8 2+12  c b' a - 22 4.8  18 5.8 

PU23 5,619  6,402  1 7 2+12  d b' a - 12 5.0  14 5.3 

PU24 4,719  5,851  1' 13+16† 2+12  c h/b a - 25 5.3  31 4.8 

PU25 5,979  6,866  2* 7 2+12  g j a 1B/1R 17 4.3  21 5.3 

PU26 5,802  6,170  1 7+9† 2+12†  c j c† 1B/1R 19 3.8  25 4.3 

PU27 5,358  6,230  1 7+8 5+10†  c b b † - 15 5.0  16 5.3 

PU28 4,901  5,938  1 7+8/32+33 5+10/2+12  c f,g,j† b† 1B/1R 6 4.8  9 4.8 

PU29 5,040  6,059  1 7+9 2+12  c j c† 1B/1R 16 5.3  19 4.8 

PU30 5,080  6,065  1 7+8 5+10/2+12  d b' b - 7 4.5  12 5.0 
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 indicates similar to the allele showed but not confirmed with a proper check 

† indicates that the allele was not identified with certainty 

Grain hardness index (GHI) and SDS-Sedimentation (SDS-Sed) evaluated under both nitrogen environments for each line.
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Figure 13: Separation of glutenin subunits with SDS-PAGE. Varieties include Purdue 

Germplasm PU1-3, PU7-9, and OPA (Opata) and PIT (Pitic) were checks for reference. HMW 

glutenin subunits: OPA (Glu-A1 2*; Glu-B1 13+16; Glu-D1 2+12); PU1 (Glu-A1 1; Glu-B1 7; 

Glu-D1 2+12); PU2 (Glu-A1 2*; Glu-B1 32+33; Glu-D1 5+10); PU3 (Glu-A1 1; Glu-B1 7; Glu-

D1 5+10); PU7 (Glu-A1 1; Glu-B1 7; Glu-D1 2+12); PU8 (Glu-A1 2*; Glu-B1 7; Glu-D1 

2+12); PIT (Glu-A1 1; Glu-B1 7+8; Glu-D1 2+12); PU9 (Glu-A1 1; Glu-B1 7; Glu-D1 2+12); 

PU10 (Glu-A1 2*; Glu-B1 7+9; Glu-D1 2+12). LMW glutenin subunits: OPA (Glu-A3 b; Glu-

B3 i; Glu-D3 a); PU1(Glu-A3 f; Glu-B3 j; Glu-D3 a); PU2 (Glu-A3 c; Glu-B3 j; Glu-D3 b); PU3 

(Glu-A3 c; Glu-B3 f,g; Glu-D3 a); PU7 (Glu-A3 f; Glu-B3 j; Glu-D3 a); PU8 (Glu-A3 g; Glu-B3 

j; Glu-D3 a); PU9 (Glu-A3 c; Glu-B3 b; Glu-D3 a); PU10 (Glu-A3 g; Glu-B3 j; Glu-D3 a). 

3.3.5 Grain quality indicators 

The GHI values greater than 59 are indicative of hard while GHI values less than 33 specify 

soft endosperms. Because we analyzed only single replicate grains with SKCS, we could not 

perform ANOVA or any significance test among genotypes. GHI averaged 13.8 ± 1.03 (standard 

error of the mean) in low N. In high N, GHI averaged 16.1 ± 1.05 (Table 16). PU24 showed 

maximum GHI values of 25 and 31 in low N and high N, respectively. In contrast, PU05 showed 

the minimum GHI values less than five in both treatments.  

For SDS-sedimentation, higher values indicate better bread-making quality (Moonen et al., 

1982). SDS tested whole meal flour samples of each line performed in duplicate showed 
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sedimentation mean of 5.4 ± 0.15 in high N in contrast to 4.7 ± 0.12 sedimentation mean observed 

in low N (Table 16). PU16 showed minimum SDS-sedimentation while PU11 showed the 

maximum. 

Germplasm with the 1B/1R translocation showed a lower grain hardness and lower SDS-

sedimentation (Table 16). For example, PU05 and PU16 had the minimum GHI and the minimum 

SDS-sedimentation across environments, respectively, while PU11 and PU24 which do not carry 

the translocation show maximum GHI and SDS-sedimentation for whole grain flour meal. PU10 

and PU15 exhibit the translocation and were among the highest yielding lines in high N and low 

N, with lower protein in both environments and a lower SDS-sedimentation score than average in 

low N (Table 16). 

3.3.6 Nitrogen x genotype interaction 

Five traits including grain yield, grain number, number of spikes, nitrogen use efficiency, 

and nitrogen harvest index showed significant N x G interaction effect (Table 13), indicating that 

lines performed differently in response to nitrogen environments. In particular, when we assessed 

grain yield with ranks, a cross over interaction was observed for lines PU08 and PU13. PU08 was 

the first rank line in the high-N environment while PU13 was the first rank in the low-N 

environment (Figure 14). The change was evident as only 4 of 30 genotype held the same rank 

across environments. One specific genotype, PU26, is an example of the importance of 

phenotyping in low input environments. Under high N, PU26 yielded 6,170 kg ha-1, below average, 

and ranked as the 18th best genotype based on yield performance. However, in low N, PU26 yielded 

5,802 kg ha-1, above average, and moved up twelve spots to the 6th best yielding genotype. The 

change in ranking was indicative of genotype by nitrogen interaction.  
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Figure 14: Genotype ranking and interactions based on grain yield in low-N and high-N 

environment for 15 out of 30 genotypes. 

3.3.7 PCA – biplot analysis 

The interrelationship among traits and genotypes in the form of biplots in each environment 

is shown in Figure 15. Principal component analysis (PCA) was performed on the 12 traits 

measured and all 30 lines in both environments. In low N, PC1 and PC2 explained 34.8 and 32.5% 

of phenotypic variations, respectively. In high N, PC1 and PC2 explained 32.6 and 22.0% of 

phenotypic variation, respectively. The number of spikes was significantly and positively 

associated with grain yield in both environments (Figure 15; Table 14). Kernel weight was not 

positively associated with any other trait but had significant negative correlations with harvest 

index and fruiting efficiency. Lines are also visually shown in PCA-biplot. Two high yielding lines 

in both environments, PU08 and PU10, were in the same direction as grain yield and number of 

spikes.  
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Figure 15: PCA-biplot analysis among 12 agronomic traits and 30 genotypes. PCA-biplots were 

performed in both high-N and low-N environments. 
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3.4 Discussion 

Of the estimated 31.8 million acres of winter wheat planted in 2019, approximately 5.54 

(~17%) million acres are estimated to be planted as soft-red winter wheat in the eastern USA. A 

record low harvest area is expected in New Jersey, Ohio, and Virginia (USDA, 2019). The decline 

in wheat cultivation area in the US is due to an increase in acreage and production of maize and 

soybean. In maize, nitrogen dynamics and optimizations under varying environments have been 

studied extensively to increase productivity with efficient fertilization, management, and less 

environmental footprint (Bänziger et al., 1997; Ciampitti and Vyn, 2012). Studies in wheat took a 

variety of objectives from improving wheat for low-nitrogen input in order to reduce 

environmental impacts (Brancourt-Hulmel et al., 2005; Delogu et al., 1998; Le Gouis, Béghin, 

Heumez, and Pluchard, 2000; Ortiz-Monasterio et al., 1997), breeding for productivity gains and 

cost-effectiveness under low input environments (Bänziger and Cooper, 2001), and nitrogen use 

efficiency in soft-red winter wheat (Brasier et al., 2018; Hitz et al., 2017; Van Sanford and 

MacKown, 1986).The ability to identify nitrogen efficient soft-red winter wheat germplasm will 

have the potential to reduce N applications, therefore saving time, resources, and management 

costs.  

3.4.1 Yield and yield component responses 

The rank change of lines across environments, e.g., from high N to low N (Figure 14), can 

indicate the potential profit loss or gain. For example, the profit made by PU17, which yielded 

4,696 and 5,484 kg ha-1 under low N and high N, would be below the average profit margins across 

all 30 lines and displays the potential loss in comparison to other higher yielding lines. This data 

seems to suggest breeding specifically for separate environments by using beneficial founder 

individuals for each environment. A PCA-biplot that shows trait and line associations (Figure 15), 

can be useful for shortlisting of founder individuals. For example, in low N, unlike in high N, the 

biomass at maturity has a close association and higher correlation (Table 14) with grain yield, 

showing that, under limited nitrogen, the decreases of biomass (tillers and leaves), is the bottleneck 

for grain production later in the season. Therefore, it seems that the negative effect of low N is 
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through reduction in canopy size and radiation use. Yield potential is expressed as a function of 

light interception, radiation use efficiency, and harvest index, where the critical underlying trait 

common to all three components is above-ground plant biomass. An increase in biomass is 

associated with an increase in radiation use efficiency, grain number, and ultimately grain yield 

(Reynolds et al., 2005). In spring wheat, Caviglia and Sadras (2001) observed nitrogen deficiency 

reduced light interception and radiation use efficiency, ultimately because of smaller leaf area 

index due to decrease tillering and less shoot dry matter (biomass). Calderini et al., (1997) 

identified wheat cultivars reached a maximum leaf area index between the booting and terminal 

spikelet growth stage, implying the importance of establishing a wheat canopy earlier in the growth 

season as leaf area index and dry matter decreases post-anthesis when the wheat transitions from 

vegetative growth to reproductive growth for grains.  

In our study, the difference in spike number can be attributed to the lack of tiller initiation in 

the spring or the loss of an emerging tiller in winter. The decreases in biomass due to low-N 

treatment resulted in reduction of grain number via decreases of number of spikes, and kernel per 

spike, similar to previously reported observations (Le Gouis et al., 2000; Terrile et al., 2017). Grain 

number, as an important yield component, is positively related to pre-anthesis dry matter 

accumulation (Duan et al., 2018) and was shown to respond directly to N supply to the spike 

(Abbate, Andrade, & Culot, 1995). Our results indicate grain number and biomass are highly 

correlated (Table 14) and are associated with genotypes producing more grain in low and high N 

(Figure 15). Despite responsiveness of grain number, our study indicated that kernel weight is 

more stable under environmental conditions with higher heritability (H2 = 0.88 and 0.89), implying 

that the physiological mechanisms that control grain filling are able to fill the number of grains 

that were determined earlier. Even though a contradicting report of kernel weight was described 

as the main determinant of grain yield (Major et al., 1988), we observed grain number as the 

primary contributor for grain yield. Similar to our observation, other physiological studies reported 

similar behavior for environmental responsiveness of grain number and kernel weight (Ferrante et 

al., 2017; Sadras and Slafer, 2012; Slafer et al., 2014). 

3.4.2 End-use quality determinants 

One aspect of genotypic differences in responses to low N is end-use quality traits. Protein 

content, gluten quality, and endosperm texture in wheat are the driver of end-use products. Several 
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studies evaluated the relationship between grain yield to protein content and quality. For example, 

experimental evidence is indicative of a negative correlation between grain yield and protein 

(Cooper et al., 2001; Magallanes-López et al., 2017). We used several measures to understand the 

dynamics of protein quality under the two contrasting N regimes.  

Contrary to changes that we observed for grain yield under different N management, our 

study only indicated a slight decrease in SDS-sedimentation and grain hardness index. This is an 

opportunity for developing low-N efficient soft-red winter wheat breeding because these traits 

were minimally affected by the lack of sufficient N. Contrary to our results of soft-red winter wheat, 

N fertilizer was previously shown to have significant effect on SDS sedimentation in hard wheat 

(C. Luo et al., 2000; Saint Pierre et al., 2008).  

Gluten quality is a function of allelic variation of HMW and LMW subunits. For example, 

Glu-A1(2*) and Glu-D1(5+10) HMW subunits are considered high gluten quality alleles. Line 

PU02 revealed high yield and possessed Glu-A1(2*) and Glu-D1(5+10) HMW subunits. One of 

the highest yielding lines under low N, PU15, possessed Glu-A1(1) and Glu-D1(2+12) subunits, 

which are not considered the highest glutenin quality alleles. Selection of lines as breeding parents 

with reasonable yield under low N condition and high glutenin subunits as parents of breeding 

populations, may be a way to maintain the quality under low N in the breeding population.  

Germplasm with the 1B/1R translocation showed a lower grain hardness and lower SDS-

sedimentation. For example, PU05 and PU16 had the minimum GHI and the minimum SDS-

sedimentation across environments, respectively, while PU11 and PU24 which do not carry the 

translocation show maximum GHI and SDS-sedimentation for whole grain flour meal. PU10 and 

PU15 exhibit the translocation and were among the highest yielding lines in high N and low N 

(Figure 14), with lower protein in both environments and a lower SDS-sedimentation score than 

average in low N (Table 16).Morris & Paulsen (1985) analyzed hard winter wheat under two 

contrasting treatments. In deficient N, the low levels of vegetative N resulted in a significant 

decreased in total grain N after anthesis. In comparison, high N maintained 37 mg N plant-1 

throughout grain filling but increased grain N dramatically (Morris & Paulsen, 1985). Parts of the 

N that is in the grain comes from senescence of leaves (remobilization of existing N compounds) 

(Hawkesford, 2014). Tolley and Mohammadi (2020), showed significant differences for grain N 

at maturity in seven diverse wheat accessions. The grain N in low-N treatment was 23.3 mg g-1 

while grain N in high-N environment was 27.8 mg g-1. Our study did not detect any significant 
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genotypic variation of N uptake in spite of previous studies showing genetic variation in nitrogen 

uptake and assimilation previously described in wheat (Cox et al.,1985; Le Gouis et al., 2000; 

Ortiz-Monasterio et al., 1997). 

3.4.3 Breeding for low-N environments 

A comparative view of the crop produced per nitrogen used in this study indicates that 

breeding and selection for performance under low-N environment has the potential for minimizing 

N use and environmental impacts. In our study each additional kg ha-1 of spring N fertilizer resulted 

in a grain yield increase of 9 kg ha-1, with the G x N effect for grain yield being significant, 

indicating that lines responded differently (Table 11). For example, PU10 responded maximally 

and PU04 responded minimally by increasing 16 and 5 kg ha-1 of yield per each kg ha-1 of nitrogen 

applied.  

Most breeding programs and variety testing are historically performed under optimal 

conditions and sufficient N applications for evaluating yield potential. N applications have the 

negative environmental impact of leaching, pollution, and runoff into the water, as nitrate is the 

most commonly detected agricultural chemical in the water. Wu et al., (1996) estimated an average 

annual runoff and leaching of 4.47 kg N ha-1 and 4.57 kg N ha-1, respectively, in the midwestern 

and northern plain regions under corn, sorghum, soybean, wheat, or legume hay cultivation, 

accounting for about 5.5% and 5.6% of N applied. 

This result indicates that establishing breeding and selection for specifically performance 

under low-N cropping systems has the potential to produce reasonably well under low-N 

conditions while decreasing the environmental footprint. The former was evident by changes in 

rank analysis of lines in both environments (Figure 14). Change of rank in differential 

environments was previously used in drought (Li et al., 2011; Lopes et al., 2014), salinity 

(Chamekh et al., 2015; Salam et al., 1999), and other nutrient deficiencies (Murphy et al., 2008; 

Torun et al., 2000; Zhao et al., 2018), to postulate a need for environment specific management 

and breeding practices. For example, van Bueren and Struik (2017) described breeding for grain 

crops and vegetables under diverse N management for genotype adaptation and interaction with 

availability of N. 

Our data seems to suggest that the lines PU05, PU08, PU10, PU13, PU15, PU19, PU20, and PU26 

have the potential to be the founder of a breeding population for low-N environment (Figure 14). 
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For this selection we used criteria such as higher ranks in low-N conditions, higher kernel per spike 

in low-N, superior Glue-A1 (2*) allele, the rye 1B/1R translocation, and higher NHI and FE. 

Another related trait that can help wheat breeding for low-N system is the use higher grain protein 

content trait. It has been shown that greater translocation of nitrogen to grains from increased 

fertilizer N results in a higher grain protein concentration (Delogu et al., 1998; Saint Pierre et al., 

2008). A grain protein content (GPC) locus, GPC-B1, has been identified on chromosome 6B in 

wheat (Distelfeld et al., 2006). Gpc-B1 increases protein content via N remobilization from leaves 

and senescence (Uauy et al., 2006). 

3.5 Conclusion 

In conclusion, we propose the first ideotype for breeding N-efficient cultivars specifically 

for the US midwest wheat. In soft-red winter wheat, where grain yield and relatively lower grain 

protein content is desired, we believe that in-tissue concentration of nitrogen, which traditionally 

represents uptake and utilization of N, may not be a good indicator of nitrogen use efficiency.  

In fact, a superior and N-efficient genotype is one which uses the available N to produce a 

canopy allowing for maximum radiation use efficiency, producing dry matter that is required for 

fertile tiller and grain numbers. Therefore, for a grain crop where protein content is not critical, a 

good indicator of nitrogen use efficiency is fixation of carbon, efficient use of radiation, and 

developing a productive canopy, per unit of nitrogen used. The rank differences among lines in 

contrasting environments is a testament to the opportunity to select and breed for more crop per 

same N (or same crop with less or optimized N). In this context, the success of wheat breeding for 

N-deficient environments needs management strategies that enable supplying continuous 

availability of N in the field post-anthesis and during grain fill. 

Our study resulted in identification of traits and variants that will lead to increases of yield 

and maintaining of yield under lower nitrogen conditions, and therefore can be regarded as “the 

breeder’s toolkit for developing N-efficient soft-red winter wheat varieties”. For breeding soft-red 

winter wheat for high-N environment, PU08, PU10, and PU15 would be advantageous due to 

responsiveness to N with significant increases in grain number, biomass, and number of spikes, 

which led to the increase in grain yield. Since N treatment did not significantly impact end-use 

quality of the grains, N management in soft-red winter wheat can focus on the best practices for 

canopy enhancement, grain number per unit area, and yield. 
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 CONCLUSION 

Wheat will continue to be a major and important cereal for meeting the future food demands. 

Continual progress in US wheat production and genetic gains is critical for domestic and export 

markets for products such as cakes, crackers, and pastries. SRW is the highest yielding class of 

wheat and accounted for 15% of total wheat production in 2018-2019. A system based approach 

by aligning the right genetic materials to the right management practices is required for further 

increases in wheat yield and competitiveness given the competing US row crops i.e. corn and 

soybean. My goal was to identify traits in two different breeding populations and two different 

production systems that can allow informed decisions on which traits to select for further genetic 

improvement for each production system.  

 In the first research chapter, investigating a diverse population of elite breeding lines from 

multiple public breeding programs provided the opportunity to investigate important 

characteristics of high yielding SRW wheat lines in the United States. Varieties exhibiting better 

yield performance in Indiana were identified. Detailed yield component traits, such as kernel 

weight, number of spikes, and biomass were examined. Further genetic mapping identified MTAs 

and QTL regions for each trait with the effect sizes and coefficient of determination were discussed. 

While several MTAs were identified in Indiana environment, the genotype x environment 

interaction greatly limited the transferability of grain yield and days to heading MTAs across 

different environments in the SRW regions. Homogenous environments did not share MTAs, 

indicating the lack of stable QTL for grain yield and days to heading. My data emphasized that the 

quest for stable QTL across environment may not be a successful strategy and breeding must be 

targeted to specific environments.  

Next, in the second research chapter, I researched wheat traits, cultivars, and management 

practices on yield determining traits and grain quality. Precision management idealizes providing 

crops with the proper nutrients and minimizing the environmental impact. For wheat, intensive 

management practices bring into consideration fertilizers source, rate, timing, and placement for a 

cropping system to be effective. The genetic and physiological adaptations to agronomic fertilizer 

management is the main reason for past wheat yield gains. The best practices must consider 

stewardship of the environment and planning for future generations of agricultural production. 
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This objective classified Purdue breeding lines based on phenotypic performance and grain quality 

parameters in high and low nitrogen environments. Evaluating varieties under limiting nitrogen 

allowed identifying varieties with advanced performance and quality under low nitrogen 

management. My work established that under limiting nitrogen management, grain yield is 

reduced mainly due to reduction in biomass, tillering, and grain number. Varieties that exhibited 

higher above ground biomass were also higher yielding under nitrogen limitations. Grain number 

was the most sensitive yield component to limited N environment. My collaborations with 

CIMMYT Quality Laboratory allowed profiling of glutenin subunits and assessment of grain 

hardness and SDS-sedimentation. Lower N input may result in lower N concentration, I 

hypothesize that this deficit could be compensated by enriching the germplasm with alleles that 

confer higher proteins with more quality. 

Wheat breeding must continue to become more precise and adapted to the future 

management practices and needs in order to be competitive. For example, the data allowed me to 

design and propose two continuation populations to emerge from my thesis, which have the 

potential to advance wheat breeding efforts. In continuation of the first research chapter, the 

highest 10% yielding lines (n = 26) were selected for further multi-environment trials and crosses 

to enhance genetic diversity of Purdue soft red winter wheat germplasm. From my second research 

chapter, I selected ten lines with desirable traits of grain yield, grain number, kernel weight, 

favorable gluten allele, and presence of the 1B/1R translocation. A follow-up work could be 

producing a base breeding population by these founders targeted to low nitrogen management 

practices. A greater understanding of yield formation and nitrogen responses was accomplished 

for SRW wheat in this dissertation and data-driven breeding suggestions were proposed.  
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