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ABSTRACT

Lang, Zhao M.S., Purdue University, May 2020. Real-Time Precise Damage Charac-
terization in Self-Sensing Materials via Neural Network-Aided Electrical Impedance
Tomography: A Computational Study. Major Professor: Guang Lin.

Many cases have evinced the importance of having structural health monitor-

ing(SHM) strategies that can allow the detection of the structural health of infras-

tructures or buildings, in order to prevent the potential economic or human losses.

Nanocomposite material like the Carbon nanofiller-modified composites have great

potential for SHM because these materials are piezoresistive. So, it is possible to

determine the damage status of the material by studying the conductivity change

distribution, and this is essential for detecting the damage on the position that can-

not be observed by eye, for example, the inner layer in the aerofoil. By now, many

researchers have studied how damage influences the conductivity of nanocomposite

material and the electrical impedance tomography (EIT) method has been applied

widely to detect the damage-induced conductivity changes. However, only knowing

how to calculate the conductivity change from damage is not enough to SHM, it is

more valuable to SHM to know how to determine the mechanical damage that results

in the observed conductivity changes. In this article, we apply the machine learn-

ing methods to determine the damage status, more specifically, the number, radius

and the center position of broken holes on the material specimens by studying the

conductivity change data generated by the EIT method. Our results demonstrate

that the machine learning methods can accurately and efficiently detect the damage

on material specimens by analysing the conductivity change data, this conclusion is

important to the field of the SHM and will speed up the damage detection process

for industries like the aviation industry and mechanical engineering.
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1. INTRODUCTION

The process of implementing a damage identification strategy for aerospace, civil

and mechanical engineering infrastructure is referred to as structural health monitor-

ing (SHM) [1]. SHM provides cost-effective and reliable inspection and monitoring

solutions to ensure safety and reliability of structures, so it can help improve reli-

ability of existing infrastructure and design structures with a much longer service

life. Nanocomposite material like the Carbon nanofiller-modified composites attracts

much attention from researchers studying SHM since the nanocomposite material is

piezoresistive and therefore self-sensing. This means the conductivity of the nanocom-

posite material is tightly relevant to the stress and damage on the material, this ma-

terial shows a detectable change in their electrical conductivity with applied strain

or damage.

Because of the characteristic of the self-sensing material, the method that is capa-

ble of measuring the conductivity distribution through the material is highly required.

The electrical impedance tomography (EIT) is a good approach to estimate the elec-

trical conductivity distribution of material and it has been used widely since this

method can continuously and non-invasively generate vectors and images to repre-

sent the conductivity distribution through the material, and from the conductivity

distribution, the mechanical state can be deduced. With these advantages, EIT has

been used widely for the strain and damage detection. For example, Loh et al [2].

comes up with a new carbon nanotube-polyelectrolyte sensing skin, this skin is fab-

ricated via the layer-by-layer technique, since this skin is self-sensing, it can be used

to detect the damage and stress on the skin, the layer-by-layer approach is based

on the sequential adsorption of oppositely charged polyelectrolyte and nanomaterial

species to form homogeneous percolated nanostructures. In their study, EIT is ap-

plied on the newly proposed material to offer the two-dimensional damage maps, in
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the experiment, 32 copper tape electrodes are set around the boundary of material

for the implement of EIT. A pendulum impact testing apparatus is constructed in

the experiment as the damage to be detected, and on each specimen, four impacts

are induced. Finally, EIT is applied to detect damage, on the generated map, the ex-

istence of damage can be found and people can have a general idea where the damage

is as shown in Fig.1.1.. The application of using EIT for damage characterization is

extended by the research of Dai and Gallo et al. [3]. In their study, the sensor consists

of a nonwoven aramid fabric is used, which is first coated with nanotubes using a solu-

tion casting approach and then infused with epoxy resin through the vacuum assisted

resin transfer molding technique. They also improve the EIT by employing a newly

defined adjacent current–voltage measurement scheme associated with 32 electrodes

applied along the periphery of the sensor, with the improvement, their method can

generate EIT maps for more categories of damage including square holes, crack and

progressive impacts.

References introduced above have already shown that EIT can be used to detect

the damage on self-sensing material and the potential of EIT for SHM, however,

since the result of these studies is the EIT image that is in low resolution as shown

in Fig.1.1., we can only determine the existence of damage and have a general idea of

where the damage is, but the detailed information of damage status like the number,

exact location and severity of damage cannot be determined by applying their method,

and this information is essential to SHM since it is an important evidence for the

evaluation of the health status of structure, therefore, it is necessary to go a step

further to come up with a new method that can understand the output data of EIT

and determine the detailed information of the damage status like the number, location

and severity of damage.

In this study, We intend to combine machine learning algorithms especially the

neural network and EIT to determine the damage status on the self-sensing material

specimens, since neural network is very capable of identifying the nonlinear relation-

ship between input and the output.
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In our study, we use a EIT simulation program to generate the conductivity change

distribution vectors and images constructed from the vectors as the dataset, both cat-

egories of data represent the conductivity change distribution through a specimen.

All damage on the specimens used in simulation is circular. We apply machine learn-

ing methods like the fully connected neural network and convolutional neural network

on the EIT generated data to determine the damage status, and compare the perfor-

mance of models using vectors and images as input seperately.

Compared to the traditional ways of using EIT for damage detection, our method

not only finds the existence of damage but also givse a much more precise description

of the damage status, and after our model is well trained, it can achieve the real-time

and accurate damage detection for new samples which shows a great potential to the

field of SHM.

Fig. 1.1. An example of EIT generated image [2]



4

2. ELECTRICAL IMPEDANCE TOMOGRAPHY

2.1 EIT forward problem

EIT is a soft-field tomography technique that aims to determine the conductiv-

ity distribution of a detected domain using electrical excitations and corresponding

voltage measurements obtained along the domain’s periphery [4]. To apply the EIT

method, electrodes are located to the periphery of the domain being examined. Small

alternating currents will be injected between a pair of neighboring electrodes, and the

resulting voltage is measured between electrode pairs not involved in the current in-

jection [5]. The injection of current will be applied to the next pair of electrode and

this action will be repeated until every pair of electrode has been applied a injec-

tion of current. Flow of electric charge through the conductive domain is governed

by Laplace’s equation that is shown in equation (2.1) where the electric potential

distribution is φ and the conductivity distribution is σ.

∇ · σ∇φ = 0 (2.1)

Contact impedance between the electrodes and the examined domain is shown in

equation (2.2), which is used to calculate the boundary electrode voltages. Equation

(2.3) shows the conservation of charge. In equations (2.2) and (2.3), n is a normal

vector pointing outward, zl is the contact impedance at the lth electrode and Vl is

the measured voltage at the lth electrode, and N is the total number of electrodes.

zlσ∇φ · n = Vl − φ (2.2)

N∑
l=1

∫
El

σ∇φ · ndSl = 0 (2.3)
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The finite element approach can be used to solve the problem as shhown in equation

(2.4),  AM + AZ AW

ATW AD

 Φ

V

 =

 0

I

 (2.4)

AZij =
N∑
l=1

∫
El

1

zl
ϕiϕjdSl (2.5)

AWli = −
∫
El

1

zl
ϕidSl (2.6)

AD = diag

(
El
zl

)
(2.7)

Here, AM is the usual stiffness matrix for the governing equation to the numerally

meshed 2-D domain, Φ is a vector of the nodal voltages, V is a vector of electrode

solutions, I is a vector of current injections applied to the electrodes, and ϕi is the

interpolation function for the ith finite element. Equation (2.4) is only solved up to

an additive constant (i.e. a ground point). However, because EIT makes use of the

difference between electrode voltages, this is inconsequential.

2.2 EIT inverse problem

While in the EIT forward problem, the conductivity distribution of the examined

domain is known and the boundary voltage data is predicted from the conductiv-

ity distribution, the inverse problem predicts the conductivity distribution from the

measured boundary voltage data. The EIT inverse problem is nonlinear, so a one-

step linearization is used to estimate the electrical conductivity change between two

measurements in time. That is, one vector of voltage is measured from the domain

before deformation and a second vector of voltage is measured after deformation, EIT

will predict the conductivity change that causes the difference between the two sets

of measured voltage data.

δV = V (σ2, t2)− V (σ1, t1) (2.8)

W (δσ) = F (σ0 + δσ)− F (σ0) (2.9)
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In the equation (2.8), δV is the difference between the two sets of voltage data mea-

sured at time t1 and t2. F (·) is the operator that calculates the voltage from con-

ductivity, σ0 is the background conductivity and δσ is the conductivity change that

the inverse process seeks to predict. To solve the inverse problem, the vector δσ that

minimizes the difference between δV and W (δσ) needs to be found. The forward

operator can be linearized as F (σ0 + δσ) ≈ F (σ0) + Jδσ, J is the sensitivity matrix

and J = ∂F (σ0) /∂σ, with equation (2.9), the conductivity change distribution that

results in the minimization of the voltage difference can be written as equation (2.10).

The last term in equation (2.10) is a regularization term.

δσ∗ = arg min
δσ≥0

‖Jδσ − δV ‖2 + κ‖Lδσ‖2 (2.10)

The Fig.2.1. is an example of the image constructed from the conductivity change

distribution predicted by EIT, since the damage domain loses the electrical conduc-

tivity, its color is different from the color of the background. The pixel value vector

of a patch of domain reflects its conductivity change value, which is shown clearly in

the Fig.2.1..
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Fig. 2.1. Sample EIT image with colorbar presenting conductivity
change distribution
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3. DATASET

A large amount of data is required in our study, and all data used in our study is

generated by a EIT simulation program. The specimen used in the simulation is

in the size of 0.9m by 0.9m. All damage studied in our study is circular and each

specimen has at least 1 circular damage, at most 3 circular damage. For the balance

of data, one third of generated samples have 1 hole, one third have 2 holes and one

third have 3 holes. Each circular damage is in the radius between 0.03 to 0.05m. The

finite element mesh for the EIT reconstruction has 772 triangular cells.

As mentioned in the last chapter, EIT generates two categories of data, conduc-

tivity change distribution vectors and images constructed from the vectors. For the

vector, its length is 772 which equals to the number of cells in the EIT finite element

mesh and each element in the vector represents the conductivity change value of the

corresponding cell which is shown in Fig.3.1.. For the images, they are stored as

538-by-538-by-3 data matrix that shows the red, green, and blue color components

for each individual pixel which is shown in Fig.3.2., the width and height of the image

is 538 pixels. Both categories of data represent the conductivity change distribution

through a specimen and in this study, both of them are considered as input of models

trained in this study.
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Fig. 3.1. Conductivity change distribution vector and corresponding
finite element mesh

Fig. 3.2. An EIT image in the form of matrix
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4. METHODOLOGY

The goal of our study is to detect the damage status on self-sensing material specimen

by analyzing the EIT generated conductivity change distribution data with machine

learning methods. This goal can be divided into predicting the number, the radius

and the center position of the damage holes. For EIT images, we use Convolutional

Neural Networks(CNN) to predict the number and radius of holes and use K-means

to predict the center position of holes. For conductivity change vectors, we use fully

connected neural networks(FCNN) to detect the damage status.

4.1 Convolutional neural networks

Convolutional neural network is one of the variants of neural networks which is

frequently applied to analyzing images. In this section, the most important theories

and concepts of convolutional neural network are described.

4.1.1 Convolutional layer

A Convolutional Layer is essential in CNNs since it is used to detect features and

has several kernels with learnable weights [6]. Kernels work as filters and a kernel is

a matrix of integers as is shown in Fig.4.1.. Each kernel provides a measure for how

close a patch of input resembles a feature, a kernel slides over the complete image

and dot product is taken between the kernel and a patch of image, the greater the

result, the closer the patch of image resembles the feature. The computed dot product

values corresponding to the channels of each kernel are summed up with a bias to

produce the results of each kernel. These results form the spatial feature maps of the

convolutional layer.
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Fig. 4.1. Kernel in the Convolutional Layer [7]

4.1.2 Pooling layer

The next stage is the pooling layer, where the features extracted by the convolu-

tional layer are selected for downsampling, which reduces computational cost. The

function of the pooling layer is straightforward; for example, max pooling layer ex-

tracts the maximum in the feature maps after convolutional layer; average pooling

layer extracts the averages in the feature maps after convolutional layer [8].

Fig. 4.2. Max Pooling Layer
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4.1.3 Fully connected layer

Fully connected layer is an essential component of convolutional neural networks

and it connects to all neurons in the previous layer. It takes the outputs of the

previous layer, performs dot product between the weights of each neuron and the

input and adds a bias in each neuron.

4.1.4 Softmax

The softmax function is an activation function usually used in the classification

model to predict the class of the input. The softmax function takes the output from

the previous fully connected layer, estimates the probabilities for each class, and pre-

dicts the class that has the greatest probability as the prediction of the classification

model

4.2 K-means

K-means algorithm is an clustering algorithm that is capable of partitioning the

dataset into K distinct clusters, and these clusters should not overlap each other, each

data point in the dataset belongs to only one cluster. K-means tries to make the data

points inside a cluster as close as possible while keeping the data points in different

clusters as far as possible. It randomly select K data points as initial centroids then

the sum of the squared distance between data points and all centroids is calculated,

each data point is assigned to the closest centroid, then centroids for the clusters are

calculated by taking the average of the all data points that belong to each cluster,

these steps are iterated until the centroids cannot be changed any more.
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Fig. 4.3. Steps of K-means [9]
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5. CASE STUDIES

5.1 Predict the number of holes

5.1.1 Problem Setting

In this section, the principal idea is to create a model that can predict the number

of holes given the EIT generated conductivity change data. Since the number of holes

on a material specimen is between 1 to 3, the problem of predicting the number of

holes can be seen as a multiclass classification problem, the class 1, class 2 and class

3 represents that this specimen has 1, 2 and 3 holes.

5.1.2 Using EIT Images

A convolutional neural network is applied to predict the number of hole with EIT

images.

Data Preprocessing

Noise is observed on EIT images which influences the performance of our model,

in order to avoid this, the red color component for each individual pixel is removed. In

order to reduce the dimension of input and accelerate the model training process, the

input images are resized to 100 * 100-pixel by applying interpolation. Pixel values of

images are normalized to 0 to 1 by dividing all pixel values by 255 which will improve

the performance of the model and speed up the training process, the preprocessing

steps are shown in Fig.5.1..
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Fig. 5.1. Preprocessing process for EIT images

Convolutional Neural Network Structure

In the convolutional neural network used to predict the number of holes, the first

layer is the convolution layer that has 16 kernels and the size of each kernel is 3 by

3, the second layer is a Batch Normalization layer added to improve accuracy and

speed up training by solving the internal covariate shift problem of the previous layer,

the third layer is a Max Pooling layer used to reduce the complexity of computation

by reducing the dimensionality of the input, the forth layer is a Flatten layer that

flattens the input to 1-dimensional array, the fifth layer is a Dense layer that has 256

nodes to capture all the information contained in the input of this layer, the sixth

layer is a Dropout layer used to prevent overfitting and the output layer is a Dense

layer that has three nodes and the activation function is softmax since the model

works as a classifier. The Fig.5.2. and the Table 5.1. present the details of structure

of the convolutional neural network clearly.

Experiment and Result

In this section, an experiment is conducted using the previously proposed convo-

lutional neural network. The network is trained and tested using EIT images.

7650 EIT images are used to train and validate the convolutional neural network,

in the training process, 1500 epochs and batch size 32 have been used when feeding

in the training samples, after the training, the model’s performance on 1350 testing
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Fig. 5.2. The structure of the Convolutional Neural Network predict-
ing the number of holes

Table 5.1.
The detailed specifications of CNN predicting the number of holes

Layer Type Depth Kernel Size Stride

1 CONV+ReLU 16 3*3 1

2 BatchNormalization - - -

3 Max pooling - - -

4 Flatten - - -

5 FC 256 - -

6 Dropout - - -

7 FC+Softmax 3 - -

images gives the accuracy of 0.892. Fig.5.3. shows the training accuracy and the

validation accuracy plots against epochs.

5.1.3 Using Conductivity Change Vectors

A fully connected neural network is used to predict the number of holes with the

conductivity change vectors as a classification model.
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Fig. 5.3. Training process of the CNN predicting the number of holes

Data Preprocessing

The conductivity change vector is normalized to a unit vector by dividing every

element by the norm of the vector which can speed up the gradient descent process

and improve the performance and stability of our model.

Fully Connected Neural Network Structure

We choose to use a fully connected neural network to predict the number of holes

with the conductivity change vectors as a classification model. The proposed network

is composed of 1 input layer, 3 hidden layers and 1 output layer. The input layer

contains 772 neurons, each of them represents an element in the conductivity change

vector. The number of neurons in the first hidden layer is 256, which is enough

to understand all the information contained in the input layer. There are 64 and

16 neurons in the next two hidden layers. The activation function called ReLU is
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applied in neurons in hidden layers. In the output layer, there are three neurons and

the activation function is softmax function since our model is a three-classes classifier.

The Fig.5.4. and the Table 5.2. present the structure of the fully connected neural

network more clearly.

Fig. 5.4. The structure of Fully Connected Neural Network predicting
the number of holes

Table 5.2.
The detailed specifications of FCNN predicting the number of holes

Layer Type Units

1 FC+ReLU 256

2 FC+ReLU 64

3 FC+ReLU 16

4 FC+Softmax 3
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Experiment and Result

In this section, an experiment is conducted using the previously proposed fully

connected neural network. 16800 conductivity change vectors are used to train and

validate the fully connected neural network, 700 epochs and batch size 32 have been

applied in the training process, after the training, the model’s performance on 4200

testing samples gives the accuracy of 0.995. Fig.5.5. shows the training accuracy

and the validation accuracy plots against epochs. From the result, we can see the

improvement of accuracy compared to the result of using EIT images as input.

Fig. 5.5. Training process of the FCNN predicting the number of holes
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5.2 Predict the radius of holes

5.2.1 Problem Setting

In order to detect the degree of damage on the material specimens, we need to

detect the radius of damage holes. In this section, we create a generic model that can

predict the radius of holes on material specimens given the EIT generated conductivity

change data. Since the distribution of radius is continuous, this task can be seen as

a regression problem. With the EIT images as input, we train a convolutional neural

network to predict the radius of holes, with the conductivity change vectors as input,

a fully connected neural network is used as a regression model.

5.2.2 Using EIT Images

Dataset and Data Preprocessing

The dataset we use in this section is same as the EIT images used in predicting

the number of holes and the images are prepossessed in the same way.

Convolutional Neural Network Structure

The structure of the CNN predicting the radius of holes is similar to that predicting

the number of holes, the only difference is that the output layer has no activation

function since the convolutional neural network is a regression model. The Fig.5.6.

and the Table 5.3. present the structure of the CNN clearly.

Experiment and Result

In this section, an experiment is conducted using the previously proposed convo-

lutional neural network. 7650 EIT images are used to train and validate the neural

network, after the training, the model is tested on 1350 images and the performance
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Fig. 5.6. Structure of the CNN predicting the radius of Holes

Table 5.3.
The detailed specifications of CNN predicting the radius of holes

Layer Type Depth Kernel Size Stride

1 CONV+ReLU 16 3*3 1

2 BatchNormalization - - -

3 Max pooling - - -

4 Flatten - - -

5 FC+ReLU 256 - -

6 Dropout - - -

7 FC 3 - -

using MSE gives the testing error of 1.01× 10−4, by comparing the predicted output

and the annotation, the average difference between the predicted and true radius is

0.00765m. Fig.5.7. shows the training process.
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Fig. 5.7. Training process of the CNN predicting the radius of holes

5.2.3 Using Conductivity Change Vectors

Dataset and Data Preprocessing

The dataset we use in this problem is same as the conductivity change vectors

used in predicting the number of holes and we prepossess the vectors in the same

way.

Fully Connected Neural Network

The structure of the fully connected neural network predicting the radius is almost

the same as that predicting the number of holes except that no activation function

is applied on the output layer in this network since the model is a regression model.

The Fig.5.8. and the Table 5.4. present the structure of the fully connected neural

network clearly.
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Fig. 5.8. The structure of Fully Connected Neural Network predicting
the hole radius

Table 5.4.
The detailed specifications of FCNN predicting the radius of holes

Layer Type Units

1 FC+ReLU 256

2 FC+ReLU 64

3 FC+ReLU 16

4 FC 3

Experiment and Result

In this section, an experiment is conducted using the previously proposed fully

connected neural network. 16800 conductivity change vectors are used to train and

validate the fully connected neural network, after the training, the model’s perfor-

mance on 4200 testing samples using MSE gives the testing error of 4.85 × 10−6, by

comparing the predicted output and the annotation, the average difference between

the predicted and true radius is 0.000872m. Fig.5.9. shows the training process.
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Fig. 5.9. Training process of the FCNN predicting the radius of holes

5.3 Predict the center position of holes

5.3.1 Problem Setting

In order to localize the damage, we need to predict the center position of holes.

On the EIT images, a damage hole can be seen as a cluster of pixels, therefore, the

clustering algorithms can be applied to predict the center position of holes. Unlike

the neural networks we introduced above, the clustering algorithms are unsupervised

machine learning algorithms, so we do not need to provide annotation of samples

to the algorithm. In our study, the K-means algorithm is used and the coordinates

of the pixels that form the damage domain on the image are fed to the K-means,

K-means divides the coordinates into K clusters, K is the number of damage holes,

and K-means can also output the centroids for the K clusters, we can approximately

see the K centroids as the centers of holes.
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With using the conductivity change vectors as input, this problem can be treated

as a regression problem, so we apply a fully connected neural network as a regression

model to predict the center position of holes with the vectors as a regression model.

5.3.2 Using EIT Images

Dataset and Data Preprocessing

The dataset we use in this section is same as the EIT images used in predicting

the number and radius of holes and we remove the red color component for each

individual pixel to remove the noise and background on the image, only the pixels

that form the damage domain are reserved.

K-means Clustering

The first step of using the K-means algorithm is specifying the number of clusters

K, which is the number of holes on the image in our study, since our model of pre-

dicting the number of holes has a good accuracy, we can assume that we have already

known the value of K. After we preprocess the EIT images, only the pixels that form

the damage domain are reserved, and we can find the coordinates of these pixels. We

use the K-means algorithm with the coordinates, and K-means will predict the center

position for the K holes.

Experiment and Result

After the model is fed with 9000 samples, by comparing the predicted output

and annotations, the average distance between predicted and true center position is

0.0172m.
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5.3.3 Using Conductivity Change Vectors

Dataset and Data Preprocessing

The dataset we use in this problem is same as the conductivity change vectors

used in predicting the number and radius of holes and we prepossess the images in

the same way.

Fully Connected Neural Network Structure

The structure of the fully connected neural network used here is similar to that

used in predicting the radius, except we add a dense layer with 32 neurons after the

second dense layer to improve the ability of model to represent more complicated

functions and the output layer has six nodes since for each hole, we need to predict

the x-coordinate and y-coordinate of its center. The Fig.5.10. and the Table 5.5.

present the structure of the fully connected neural network more clearly.

Fig. 5.10. The structure of Fully Connected Neural Network predict-
ing the center position of holes
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Table 5.5.
The detailed specifications of FCNN predicting the center positions of holes

Layer Type Units

1 FC+ReLU 256

2 FC+ReLU 64

3 FC+ReLU 32

4 FC+ReLU 16

5 FC 6

Experiment and Result

In this section, an experiment is conducted using the proposed fully connected

neural network. 16800 conductivity change vectors are used to train and validate the

fully connected neural network, after the training, the model performance on 4200

testing samples using MSE gives the testing error of 1.08 × 10−3, by comparing the

predicted output and the annotation, the average difference between the predicted

and true center position is 0.00591m. Fig.5.11. shows the training process of the

neural network.

5.4 Conclusion

According to our experiments, the machine learning models especially neural net-

works can be built for the damage prediction given EIT generated conductivity change

data. In this study, we use EIT images and conductivity change vectors as input

separately to predict the number, radius and center position of damage holes, the

comparison between the performance of models with different inputs is shown in the

Table 5.6. and Fig.5.12.. From the comparison, we can clearly see that the conduc-

tivity change vector is a better option as input and the main reason may be that the

process of constructing images from vectors causes the loss of details.
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Fig. 5.11. Training process of the FCNN predicting the center position of holes

Table 5.6.
Comparison of performance between using EIT images and conduc-
tivity change veotors as input

Prediction

Goal

Metrics EIT Images Conductivity

Change Vectors

Hole number Testing accuracy 0.892 0.995

Hole radius Average difference

between predicted

and true radius (m)

0.00765 0.000872

Center position Average distance

between predicted

and true center

positions (m)

0.0172 0.00591
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Fig. 5.12. Comparison of performance between using EIT images and
conductivity change veotors as input
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6. SUMMARY

Our study is a very first attempt of combining neural networks with EIT method to

detect the damage on the self-sensing material and from our empirical results, our

methods have a good performance. Compared to the traditional ways of using EIT for

damage detection, our method not only detects the existence of damage but also gives

a much more precise description of the damage status, including the number, center

position and size of damage, and after our models are well trained, they can achieve

the real-time and accurate damage detection for new samples, with these advantages,

our study has a great potential to the field of structural health monitoring.

Of course, our study still has the space of improvement, first, the size of damage

studied in our research is not very small compared to the size of specimen, so we

need to improve our method for detecting smaller damage, second, the number of

damage holes in our study is limited between 1 to 3, we need to increase the number

of damage holes that our method can handle and third, the damage studied in our

research is only circular holes, damage in different categories and shapes should be

considered in our future work.
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